
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Winter 2-20-2014

The Role of Prototype Learning in Hierarchical The Role of Prototype Learning in Hierarchical

Models of Vision Models of Vision

Michael David Thomure
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Thomure, Michael David, "The Role of Prototype Learning in Hierarchical Models of Vision" (2014).
Dissertations and Theses. Paper 1665.
https://doi.org/10.15760/etd.1664

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F1665&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/1665
https://doi.org/10.15760/etd.1664
mailto:pdxscholar@pdx.edu

The Role of Prototype Learning in Hierarchical Models of Vision

by

Michael David Thomure

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Melanie Mitchell, Chair

Mark Jones
Bart Massey
James Hook
Martin Zwick

Garrett Kenyon

Portland State University
2014

c© 2013 Michael David Thomure

i

ABSTRACT

I conduct a study of learning in HMAX-like models, which are hierarchical

models of visual processing in biological vision systems. Such models compute

a new representation for an image based on the similarity of image sub-parts

to a number of specific patterns, called prototypes. Despite being a central

piece of the overall model, the issue of choosing the best prototypes for a given

task is still an open problem. I study this problem, and consider the best way

to increase task performance while decreasing the computational costs of the

model. This work broadens our understanding of HMAX and related hierarchi-

cal models as tools for theoretical neuroscience, while simultaneously increasing

the utility of such models as applied computer vision systems.

ii

For LV and LT

iii

Acknowledgements

I am enormously grateful to my advisor, Melanie Mitchell, for her patient guid-

ance through the many years of our collaboration, for her clarity of thought,

and for her high standards. Thanks to my committee for their helpful feedback,

and particularly to Mark Jones for making this work more clear and accessible,

and to Bart Massey for shepherding a perplexed undergraduate. Thanks many

times over to Garrett Kenyon for his support and encouragement, and for help-

ing me to think about the broader context of our work. Conversations with

Garrett and the rest of the Synthetic Cognition Group at Los Alamos National

Labs, including Steven Brumby and Luis Bettencourt, have been instrumental

in the development of this dissertation. I also have been lucky to share a lab

with excellent minds and good friends, including Ralf Juengling, Martin Cenek,

Max Quinn, and Will Landecker.

Last, but quite the opposite of least, I am indebted to my partner and future

wife, Jennifer. Thank you for your years of support, sacrifice, and love. Thank

you for holding me up. May I find a way to repay you.

iv

Table of Contents

Abstract i

Dedication ii

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background & Prior Work 5

2.1 Object Recognition . 5

2.2 Alternating Multilayer Architectures 6

2.2.1 S1 Layer . 8

2.2.2 C1 Layer . 8

2.2.3 S2 Layer . 9

2.2.4 C2 Layer . 9

2.2.5 Classifier . 9

2.2.6 Related Work . 10

2.3 Prototype Learning . 11

v

2.3.1 Learning of Invariance Properties 13

2.4 Evaluation . 14

2.4.1 Datasets Used in This Work 15

3 Glimpse 23

3.1 Architecture . 24

3.1.1 Preprocessing Layer . 24

3.1.2 S1 Layer . 26

3.1.3 C1 Layer . 29

3.1.4 S2 Layer . 29

3.1.5 C2 Layer . 30

3.1.6 Classifier . 31

3.2 Model Parameters . 33

3.2.1 Scaling . 34

3.2.2 Edge Detector Size . 39

3.2.3 S1 Normalization . 40

3.3 Comparison to Previous Models 43

4 The Role of Shape Prototypes 54

4.1 Methods . 54

4.2 Role of Invariant Representations 56

4.3 Importance of Shape . 59

4.4 Discussion . 72

5 Feature Selection 74

5.1 Background . 74

5.2 Methods . 78

5.3 Results . 79

5.4 Conclusions . 82

vi

6 Learning by Clustering 83

6.1 Background . 84

6.2 Methods . 86

6.3 Results . 88

6.3.1 Effect of Training Size 88

6.3.2 Effect of Activation Function 90

6.4 Discussion . 94

6.5 Conclusions . 96

7 Clustering with Feedback 97

7.1 Background . 97

7.2 Weighted Clustering . 98

7.2.1 Illustrative Example . 101

7.3 Methods . 104

7.4 Results . 105

7.4.1 Informative Backgrounds 106

7.5 Conclusions . 109

8 Conclusions 111

9 Future Work 114

Bibliography 117

vii

List of Tables

3.1 Similarity between the response maps for multiscale detectors com-

pared with that for multiscale inputs (i.e., image scaling). The simi-

larity is measured as the correlation coefficient for the response maps

shown in Figure 1.9. The correlation coefficient takes values between

zero and one, with larger values indicating more similar maps. . . . 36

7.1 The number of prototypes given non-zero weight by the classifier,

from a total set of 10,000 imprinted prototypes. 109

viii

List of Figures

2.1 Diagram of the alternating multilayer architecture. An image is first

processed by units in the S1 layer, each of which is selective for an

edge at a particular orientation and scale. The result is processed

by units in the C1 layer, which provide local invariance by pooling

over a small neighborhood of S1 units. Units in the S2 layer are

then applied, which become active when the input matches a stored

shape template called a prototype. The result is passed to the C2

layer, in which units pool over the all S2 units for a given prototype.

Activity of the C2 units is passed to a classifier, which predicts the

class of object in the image (e.g., “dog”). 7

2.2 Illustration in which prototypes are constructed by imprinting for

a hypothetical animal/no-animal task. (a) Image regions (shown

as red boxes) are chosen at random, and (b) new prototypes are

recorded from the model’s C1 activity. In this example, six proto-

types are created from three images. 12

2.3 Example visualizations of prototypes taken from Serre et al. [1],

corresponding to airplanes (left), faces (middle), and motorcycles

(right). Here, an oval indicates the location and scale of an edge

detector (i.e., an S1 unit), while color indicates the contrast of those

edges. 15

ix

2.4 Example images from reference corpora used in this work. 17

2.5 (a) Example images of cars and airplanes for an object recogni-

tion task. In this hypothetical dataset, objects are strongly as-

sociated with a particular context, where airplanes appear on sky

backgrounds, and cars on asphalt. (b) Examples of an “unexpected”

context for the same task. 19

2.6 Example images from synthetic corpora used in this work. 21

2.7 Example image from the ETH80 dataset (left) and corresponding

object mask (right), as provided with the dataset. 22

2.8 Example image from the COIL dataset (inner left) and the best cor-

responding object mask I was able to generate using a color thresh-

old (right). A contrast-enhanced section of the object’s boundary is

shown (far left), which shows the presence of background artifacts. . 22

3.1 Overview of the Glimpse model. An image is presented at the bot-

tom layer, and processing flows up the diagram. Layers of S-units are

shown as solid-outline boxes, and C-unit layers are shown as dashed-

outline boxes. The C2 layer generates a one-dimensional vector of

features, with one feature per S2 prototype. At the top layer, those

features are passed to a trained classifier, which predicts the object

class. 25

3.2 Illustration of a scale pyramid for an example image containing a

circle. This pyramid has five scales, with a down-sampling ratio of

21/4 between scales. Scale bands appear translucent for illustration. 26

3.3 A Gabor edge detector can be thought of as the combination of a

sine wave with a two-dimensional, oriented Gaussian function. . . . 27

3.4 Visualization of the S1 detectors corresponding to edge orientations

θ =
(
π
8
, 3π

8
, 5π

8
, 7π

8

)
, given clockwise from the top-left corner. 27

x

3.5 S1 activity at one scale for an image containing a circle. Activity

is shown for all four orientations, with plots corresponding to the

detectors in Figure 3.4. 28

3.6 C1 activity at one scale for an image containing a circle. Activity is

shown for the four orientations in Figure 3.5. 29

3.7 (a) Example in which a prototype is "imprinted" from an image,

with the selected region shown in red. (b) The S2 activity resulting

from applying this prototype to the original image. Red indicates

high activity, while blue indicates low activity. 31

3.8 Example image used for discussion of detector scaling in Glimpse. . 35

3.9 Multiscale edge detectors of size 41x41 pixels, as defined by Equa-

tion 3.2, were used to avoid clipping in large scale detectors. Color

indicates the detector’s preferred input, with black indicating low

activity, white indicating high activity, and gray indicating no pref-

erence. 35

3.10 Edge maps for multiscale detectors, where the order of response maps

corresponds to that in Figure 3.9. Brightness indicates response

strength, with white indicating maximum response. 36

3.11 Edge maps for a small scale detector applied to a scale pyramid,

formatted as in Figure 3.10. Notice that the corresponding maps

are very similar between methods. 37

3.12 (top) Frequency response for multiscale detectors shown in Figure

3.9. The horizontal axis indicates frequency, and the vertical axis

indicates the degree of response. Each detector responds to a range

of frequencies. (bottom) Effective frequency response when applying

a single detector to down-sampled versions of the same image. Notice

the strong similarities in the response characteristics. 38

xi

3.13 Frequency sensitivity for different detector widths w, summarized

by the detector’s power spectrum. The horizontal axis indicates

frequency, and the vertical axis indicates the degree of response.

Here, the Gabor wavelength is set to 1
4
the detector width. Notice

that frequency sensitivity drops dramatically for detectors smaller

than 11 pixels. 41

3.14 Frequency sensitivity for Gabor detectors of various size, shown as

the two-dimensional power spectrum. The center of each plot indi-

cates the detector’s responsiveness to low frequency input, and the

border of the plot indicates the same for high frequencies. The an-

gle from the horizontal indicates the orientation selectivity, with 0◦

meaning an input of a horizontal line. 42

3.15 Effect of normalization on S1 activity for two different approaches.

(a) Input activity is bounded with an additive bias as x′ = x
‖x‖+b ,

and the behavior is plotted for various values of the bias b. This

causes the input to be suppressed even when its energy was initially

large. (b) Input activity is bounded with a conditional bias as x′ =
x

max(‖x‖,b) . Low-energy inputs are suppressed, while the response to

high energy patches is contrast invariant. 44

3.16 Architecture diagram for the HMAX model. The default parameter

choices—which are used in this work—are shown to the right of the

diagram. 46

3.17 Architecture diagram for the SLF model. The default parameter

choices—which are used in this work—are shown to the right of the

diagram. 47

xii

3.18 Performance comparison (AUC) for 4075 C2 features using HMAX

(white), SLF (hatched gray), and Glimpse (blue) models. Datasets

include subsets of Caltech101 categories—Airplanes, Faces, Faces

(easy), and Watch—the Animals dataset of Serre et al. [2], and the

synthetic tasks of Pinto et al. [3]. Error bars indicate standard error

over five independent trials. 48

3.19 Performance comparison (AUC) for 4075 C2 features using SLF

(hatched gray) and Glimpse (blue) models. Datasets are due to

Fergus et al. [4]. Error bars indicate standard error over five inde-

pendent trials. (Note that a lack of variation leaves the error bars

difficult to see.) . 50

3.20 Performance comparison (AUC) for 4075 C2 features using SLF

(hatched gray) and Glimpse (blue) models. Tasks are from the Cats

v. Dogs dataset. Results on the left give performance for photo-

graphic foreground objects, while results on the right give the same

for rendered foreground objects. Results are given for different types

of backgrounds, including uniform color (Gray), randomly generated

images following a 1
f
frequency distribution (Noise), and randomly

chosen photographs of outdoor scenes (Image). Error bars indicate

standard error over five independent trials. 51

3.21 Performance comparison (AUC) on Caltech101 tasks for varying

number of C2 features using HMAX (gray), SLF (dashed), and

Glimpse (blue) models. Error bars show one standard error. 52

3.22 Performance comparison (AUC) on the Animals task for varying

number of C2 features using HMAX (gray), SLF (dashed), and

Glimpse (blue) models. Error bars show one standard error. 53

xiii

3.23 Performance comparison (AUC) on the Cars v. Planes task (vari-

ation level three) for varying number of C2 features using HMAX

(gray), SLF (dashed), and Glimpse (blue) models. Error bars show

one standard error. 53

4.1 Performance comparison (AUC) for raw pixels (white), C1 features

(hatched gray), and 4075 C2 features (blue). Datasets include sub-

sets of Caltech 101 categories—Airplanes, Faces, Faces (easy), Mo-

torbikes and Watch—the Animals dataset of Serre et al., and the

synthetic tasks of Pinto et al.—Cars v. Planes and Face1 v. Face2.

The vertical axis indicates the mean performance over five indepen-

dent trials, and error bars indicate standard error over five indepen-

dent trials. 57

4.2 Performance as in Figure 4.1 comparing pixel (white), C1 (hatched

gray), and 4075 C2 (blue) features. 58

4.3 An example in which (a) an image patch is used to construct (b)

an imprinted prototype. The figure shows the activations—white

denotes high activation, black denotes low activation—for a neigh-

borhood of C1 units, with one plot for each edge orientation. The

activation values within this prototype are then permuted to create

(c) a shuffled prototype. Note that activation is permuted across

orientation bands as well as locations. 61

4.4 An example of a random prototype, with plots corresponding to the

four orientation bands. Each component is chosen independently

from a uniform distribution. 62

xiv

4.5 Comparison of Glimpse’s performance across different tasks, using

4075 imprinted (blue), shuffled (gray), and random (hatched red)

prototypes. The vertical axis shows the mean AUC over five inde-

pendent training and testing splits, and error bars show the standard

error. Results for the Cars v. Planes and Face1 v. Face2 tasks use

variation level three. 64

4.6 Comparison of Glimpse’s performance on two tasks, using 4075 im-

printed prototypes (blue); and 4075 random prototypes (dashed red).

The horizontal axis shows the variation level (over rotation, position,

and scale) of the object of interest, and the vertical axis shows the

mean AUC over five independent training and testing splits at each

variation level. Error bars show the standard error. Results for raw

pixel (gray) and C1 (dashed gray) features are shown for reference. 65

4.7 Comparison of Glimpse’s performance for different numbers of im-

printed (blue), shuffled (gray), and random (dashed red) prototypes.

Performance is reported as mean AUC over five trials, with error bars

showing one standard error. Variation level three is used for each task. 67

4.8 Performance (mean AUC and range) using individual features from

either imprinted (solid blue) or random (dashed red) prototypes for

(a) the Cars v. Planes task, and (b) the Face1 v. Face2 task. In

both cases, the tasks use variation level three. The line shows the

mean performance over five independent trials, while the shaded area

shows the range of performance values. 68

xv

4.9 Characterization of best-performing prototypes for the Cars v.

Planes task (cf. Figure 4.8a) based on the input patches to which

they respond most strongly. (a): Each row corresponds to one of the

top five imprinted prototypes (those ranked 1–5 in the imprinted set

in Figure 4.8a). The 10 images in each row are the 10 image patches

in the Cars v. Planes dataset to which the prototype matched most

closely. All patches in a row are drawn from different images. (b):

Same as part (a), but here the five top prototypes are those ranked

1–5 in the random-prototype set in Figure 4.8a. In contrast to part

(a), there is a distinct lack of shape specificity along each row. . . . 70

4.10 Characterization of best-performing prototypes for the Face1 v.

Face2 task (cf. Figure 4.8b) based on the input patches to which

they respond most strongly. Results are shown as in Figure 4.9,

with the best matches shown for (a) imprinted and (b) random pro-

totypes. As before, random prototypes lack the shape specificity

that is characteristic of imprinted prototypes. 71

5.1 Illustration in which prototypes are learned by feature selection. (a)

Image patches (shown as red boxes) are chosen at random, and (b)

candidate prototypes are recorded from the model’s C1 activity that

is calculated from these patches. (c) Task feedback is used to weight

each candidate prototype, illustrated here with high, medium, and

low weight indicated by a green check mark, yellow question mark,

and red “X”, respectively. (d) Candidates are selected by weight to

construct the final set of prototypes. 75

5.2 Performance on the Animals task for prototypes learned by fea-

ture selection (solid orange line), compared with performance for

imprinted (solid blue line) and random prototypes (dashed red line). 79

xvi

5.3 Performance on synthetic tasks for prototypes learned by feature se-

lection (solid orange line), compared with performance for imprinted

(solid blue line) and random prototypes (dashed red line). 80

5.4 Performance on the Caltech 256 task for prototypes learned by fea-

ture selection (solid orange line), compared with performance for

imprinted (solid blue line) and random prototypes (dashed red line). 81

6.1 Illustration in which prototypes are learned by clustering. (a) Im-

age patches (shown as red boxes) are chosen at random, and (b)

prototypes are recorded from the model’s C1 activity. (c) The pro-

totypes are partitioned into clusters. (d) Each cluster is summarized

by computing the average of its prototypes. This creates a new set

of prototypes—given as vectors of C1 activations—and the model is

evaluated using only these new prototypes. 85

6.2 Comparison of performance for C2 features using imprinted (gray)

and k-means (dashed gray) prototypes. The vertical axis shows the

mean performance (accuracy) over five independent trials for 1,000

prototypes, with error bars showing one standard error. Surprisingly,

imprinting led to superior representations across nearly all tasks. . . 89

6.3 Comparison of performance on multiclass datasets for 1,000 C2 fea-

tures using imprinted (gray) and k-means (dashed gray) prototypes,

as in Figure 6.2. 90

6.4 Comparison of Glimpse’s performance for different numbers of im-

printed (solid) and k-means (dashed) prototypes, for a representa-

tive sample of the datasets used in Figure 6.2. Plots show mean

performance (accuracy) over five independent trials, with error bars

showing one standard error. 91

xvii

6.5 Comparison of Glimpse’s performance on rendered Cats v. Dogs

over image backgrounds for different numbers of imprinted (solid)

and k-means (dashed) prototypes, as in Figure 6.4. 92

6.6 Effect of sample size on Glimpse’s performance with k-means pro-

totypes on the Animals (solid) and Cars v. Planes (dashed) tasks.

Performance is shown for 128 prototypes. The horizontal axis shows

the number of candidates (on a log scale) per prototype, the vertical

axis shows the mean performance (accuracy) over five independent

trials for sparse logistic regression. Error bars show one standard

error. 92

6.7 Performance for k-means prototypes using the standard activation

function (gray), compared to that using a sparse, contrast invariant

activation function (hatched gray). The vertical axis shows the mean

performance (accuracy) over five independent trials for 1,000 proto-

types, with error bars showing one standard error. (The error is not

visible for k-means prototypes on Caltech 256, due to low variation

between trials.) These results suggest that the activation function is

not the cause of the poor performance for k-means prototypes. . . . 95

6.8 Performance on multiclass datasets for k-means prototypes using the

standard activation function (gray), compared to that using a sparse,

contrast invariant activation function (hatched gray). 96

xviii

7.1 Illustration in which prototypes are learned with feedback using

weighted clustering. (a) Image regions (shown as red boxes) are

chosen at random, and (b) prototypes are recorded from the model’s

C1 activity. (c) Task feedback is used to weight each prototype, with

high, medium, and low weight indicated by a green check mark, yel-

low question mark, and red “X”, respectively. (d) The prototypes

are partitioned into clusters. (e) One new prototype is created from

each cluster, given by the weighted average of the prototypes in that

cluster. 99

7.2 Results for unweighted k-means clustering on an artificial task, which

illustrates the effect of “background” data when clustering proto-

types. Data points are sampled from two “foreground” Gaussian

distributions centered at (−3, 1) and (4, 8), and a “background” lin-

ear function Y = 4−X for normal random variable X. The goal is

to recover the parameters of the two foreground distributions as the

numberM of background points is increased, while the total number

N = 2048 of foreground points is held constant. Points are colored

(blue and green) according to their cluster assignment. As more

background points are added, the cluster centers (red diamonds) are

pulled away from the foreground distributions. 102

xix

7.3 Results for weighted k-means clustering on the artificial task of Fig-

ure 7.2c for different weights αB on the background points. The

weight on foreground points is held constant at 1.0. The estimated

parameters of the foreground distributions are shown (red diamonds)

along with the algorithm’s initial cluster centers (red triangles; see

Line 1 of Algorithm 3). As the weight on background points is

decreased, the effect of those points is reduced. The result is a sig-

nificant improvement on the estimate of the foreground distributions. 103

7.4 Example of weights computed from the degree of overlap between

the prototype and the foreground object. 104

7.5 Comparison of performance for k-means prototypes learned without

weights (gray) and with foreground weights (hatched gray). The ver-

tical axis shows the mean performance (accuracy) over five indepen-

dent trials, each using 100 prototypes with sparse logistic regression.

Error bars show one standard error. 106

7.6 Comparison of performance for different numbers of C2 features us-

ing k-means prototypes learned without weights (solid) and with

foreground weights (dashed). Plots show mean performance (ac-

curacy) over five independent trials, with error bars showing one

standard error. Plot (a) shows results for the Animals task and plot

(b) shows results for the Cars v. Planes task. 107

xx

7.7 Utility of foreground prototypes for different datasets, where utility

is defined as in Equation 7.2. This measure is zero if foreground and

background prototypes are equally likely to be used for classification,

with greater values indicating a preference for foreground prototypes.

Here, a prototype is used if its feature is given a non-zero weight by

the classifier, and is a foreground (fg) prototype if it was recorded

from any part of a target object. 109

1

Chapter 1

Introduction

Hierarchical models of vision have been suggested repeatedly in the computa-

tional neuroscience literature to describe the functional organization of visual

processing in biological systems. One of the best known of these models is

the HMAX system [5, 2], which has garnered interest both in neuroscience and

computer vision communities. This model can be understood as addressing the

object recognition problem, in which the system takes an image and responds

with the type of object present in that image. As an example of this problem,

an object recognition system may be presented with images of animals, and its

task is then to determine the type of animal present in each image. Models such

as HMAX tackle this problem by first computing a number of abstract features

for the image, and then applying methods from statistical machine learning to

choose the object class that best matches those features.

To compute features for an image, such systems apply a hierarchy of lo-

cal pattern detectors at various locations and scales across the image. At the

bottom of the hierarchy, each detector looks for a simple oriented edge, while

at higher levels, a given detector looks for a specific pattern—or prototype—in

the activation of lower-level detectors. The maximum activation for each of

2

these abstract detectors is then used as the value of a single feature, and the

combination of these feature values forms the new image representation. It is

the top-level feature-value representation that is used by a trained classifier to

determine the type of object present.

The choice of prototypes clearly plays an important role in the performance

of the model. However, it is unclear how to best choose these prototypes, given

a particular instance of the object recognition problem. One promising ap-

proach is to learn a useful set of prototypes automatically by finding statistical

regularities in a set of example images. A simple example of this approach—

called “imprinting”—has recently resulted in the model achieving competitive

(though still far below human) performance on multiple computer vision bench-

marks. This performance has led to the theory [2] that prototypes composed of

imprinted shape are responsible for the model’s success. Given the simplicity

of imprinting, it seems probable that more sophisticated learning methods can

achieve even better performance on these tasks.

The thesis advanced in this dissertation is that hierarchical visual models can

be improved by learning prototypes. An investigation of this topic first requires

knowing what performance the model is able to achieve without learning, in

order to have an effective baseline when evaluating learning methods. Using

this baseline, we can then measure the effect of learning using imprinting as

well as other methods found in the literature. Finally, the benefit of using task-

specific information during learning can be measured by introducing a new

method that uses classifier feedback.

The contributions of this dissertation include the following.

• A novel framework is developed that allows the expression of a wide range

of hierarchical visual models. This framework is used to construct a

new visual model called Glimpse, which achieves competitive performance

3

(Chapter 3).

• Common benchmark datasets are analyzed, and many are shown to be

uninformative for object recognition research (Section 4.2).

• The benefit of imprinting is investigated, leading to the conclusion that

imprinted shape is unnecessary to account for the model’s success (Section

4.3). An alternative representation for object recognition based on random

prototypes is introduced.

• A study is conducted on the use of feedback in prototype learning, where

results show a significant increase in performance (Chapter 5).

• A more sophisticated learning technique—one that is commonly used in

similar visual models—is also investigated (Chapter 6), with the discovery

of important limitations.

• A new feedback-driven learning method is introduced in (Chapter 7),

which is computationally efficient. The method is flexible enough to ac-

cept many forms of feedback information.

The rest of the dissertation is organized as follows. Chapter 2 provides back-

ground on the family of HMAX-like models used in this work, and discusses

how they have been used in the literature. Chapter 3 introduces an HMAX-like

model called Glimpse, which I developed for this dissertation. Chapter 4 pro-

vides an analysis of prototype learning, and discusses the role of shape in such

prototypes. Chapter 5 investigates a method known as feature selection, and

shows how task information can be used to increase model performance. Chap-

ter 6 analyzes an existing approach for prototype learning by using a machine

learning method called clustering. Chapter 7 introduces a novel extension to

4

clustering that allows task information to be used when learning prototypes. Fi-

nally, I present my conclusions in Chapter 8, and discuss future work in Chapter

9.

5

Chapter 2

Background & Prior Work

This chapter provides context for the dissertation, and begins by outlining the

problem domain in Section 2.1. Section 2.2 describes the family of hierarchical

models used in the dissertation. Section 2.3 explains how an important compo-

nent of these models, called prototypes, are learned from image data. Finally,

Section 2.4 describes the methodology that is commonly used to evaluate such

models.

2.1 Object Recognition

This work considers the task of visual object recognition. Given a previously

unseen image containing an unlabeled object, the task of object recognition

is to predict what that object is. This is a difficult prediction task, as the

appearance of an object can change greatly due to lighting conditions and the

relationship between object and observer. Often the goal of object recognition is

to recognize an entire class of objects, rather than to identify a single instance.

Inherent differences between the instances of the same class make the task even

more difficult. Consequently, a successful object recognition system must be

robust to such changes, a property that is called invariance. Of course, the

6

system must not be too inclusive, or it risks “recognizing” the same object in

every image. This property of being appropriately inclusive is called selectivity.

Advances in object recognition would dramatically affect how devices in-

teract with their environment, and allow us to interact with those devices in

a more natural way. Such advances could enable applications such as visual

search, gesture-based interfaces, and robotic navigation, while impacting areas

such as national security, transportation, consumer electronics, and medicine.

Along the way, advances in object recognition could easily impact our under-

standing of the neuroscience of vision.

2.2 Alternating Multilayer Architectures

The focus of this dissertation is a family of object recognition systems that I

call alternating multilayer architectures, which were popularized by the Neocog-

nitron [6] and HMAX models [2, 5]. These systems employ artificial neural

networks in a manner inspired by biological vision systems. The network is

organized hierarchically into discrete layers, where the activity of one layer is

used as input to the layer above.

A diagram of the architecture is shown in Figure 2.1. The image is processed

by a layer of S1 units, which detect edges of different orientation and scale. The

result is processed by a layer of C1 units, which provide some tolerance to

changes in the scale or location of those edges. The names S1 and C1 refer to

the so-called simple and complex cells in the brain, as discovered by Hubel &

Wiesel [7].

Activity of the C1 layer is processed by a layer of S2 units, which detect

the presence of shape templates called prototypes. The system is connected

hierarchically, with activity for multiple edge orientations fed into each S2 unit.

The result is processed by a layer of C2 units, which provide tolerance to large

7

Figure 2.1: Diagram of the alternating multilayer architecture. An image is
first processed by units in the S1 layer, each of which is selective for an edge
at a particular orientation and scale. The result is processed by units in the
C1 layer, which provide local invariance by pooling over a small neighborhood
of S1 units. Units in the S2 layer are then applied, which become active when
the input matches a stored shape template called a prototype. The result is
passed to the C2 layer, in which units pool over the all S2 units for a given
prototype. Activity of the C2 units is passed to a classifier, which predicts the
class of object in the image (e.g., “dog”).

8

changes in the size and location of objects. This alternation between S-units

and C-units is argued to allow the model to balance the conflicting needs of

selectivity and invariance [2]. Finally, the activity of the C2 layer is input to a

classifier, which predicts the class of the object.

In short, the system uses a hierarchy to compute a new representation of

the image, from which an object can be identified more easily than from raw

pixel values. Critically, this representation is invariant to certain changes to

the object’s appearance, such as those caused by certain translations, rotations,

and scalings.

2.2.1 S1 Layer

An S1 unit takes a neighborhood of image pixels as input, and responds to an

edge at a particular orientation and scale. The unit becomes active if the given

edge occurs at that location in the image. A battery of S1 units—corresponding

to a range of edge orientations and scales—is applied at each location in the

image. The same battery is replicated for each location, and the resulting

activity defines a set of “edge maps”. Note that the parameters of the edge

detectors are constants that are specified as part of the model.

2.2.2 C1 Layer

The input to a C1 unit consists of a small region of S1 activity defined by a

neighborhood of locations and scales. A C1 unit’s activation is equal to its

most active input. Thus, the C1 layer is intended to provide a small degree of

tolerance to changes in the position and scale of the edges detected at S1.

9

2.2.3 S2 Layer

An S2 unit takes a neighborhood of C1 activity as input, and compares it to

a stored shape template called a prototype. The activity of the S2 unit reflects

the degree of match between the input and the prototype. There is a battery of

S2 units applied at each location, where each unit is associated with a different

prototype. This battery is replicated across all locations and scales at C1. Thus,

the S2 layer provides specificity to particular shapes. Unlike the parameters at

S1, the set of prototypes is not specified by the model. This will be discussed

further in Section 2.3.

2.2.4 C2 Layer

The input to a C2 unit consists of activity from all S2 units for a given prototype.

A C1 unit’s activation is equal to the maximum input activation. There is one

C2 unit for each prototype, and the activity of a C2 unit indicates the best

match for that prototype anywhere in the image (and at any size). Thus, C2

activity provides an image representation that is invariant to changes in the

object’s position and scale.

2.2.5 Classifier

The input to the classifier consists of the activity for all C2 units in the network.

Each activity value is called a feature, and the vector of activities of all C2 units

is called a feature vector. Similarly, the class of object in the image is called

the label. The classifier compares the feature vector to those it has seen in the

past, and predicts a label for the image.

To perform this prediction, the classifier must have been exposed previously

to the feature vectors and known labels for a set of example images. During

10

this training phase, the classifier uses the examples to learn the relationship

between labels and features.

2.2.6 Related Work

Perhaps the best known example of an alternating multilayer architecture is the

HMAX model [5, 2]. HMAX was initially designed as a neuroscience tool to

account for the behavior of biological vision systems, and its parameters were

chosen to match observations from neurophysiology [8]. The model was later

shown to be useful for computer vision problems, with researchers using it to

demonstrate what was then state-of-the-art performance on common computer

vision problems [1, 9]. However, it should be noted that the model’s performance

on visual tasks is well below the capabilities of humans. The model did match

constrained human performance [2] on a so-called “speed of sight” task [10], in

which the image is shown very briefly.

The design of HMAX was influenced by the work of Fukushima on the

Neocognitron, and was itself the basis for the Sparse Localized Features (SLF)

model of Mutch & Lowe [11]. Additionally, alternating multilayer architectures

are closely related to Convolution Networks [12, 13] and other “deep” neural

networks [14, 15], which have recently generated interest in both academic and

industrial contexts. The model has been extended by a number of researchers,

increasing its performance substantially [16, 17, 18, 19, 3, 20, 21, 22, 23, 24, 25,

26]. Since its introduction, HMAX has been applied to tasks such as biometric

analysis [27], face and facial expression recognition [28, 29], remote sensing [30],

and the modeling of visual attention [31, 32, 33]. The alternating multilayer

architecture is also a common theme in the neuroscience literature [34, 35, 36,

37, 38].

11

2.3 Prototype Learning

As discussed above, the choice of prototypes used by the S2 layer is not given

as part of the model. Instead, prototypes are learned from images by a process

known as imprinting. In this approach, illustrated in Figure 2.2, the model

is applied to a set of example images and the C1 activity is recorded—or

imprinted—for selected image regions. These regions are selected at random,

and one prototype is created from each region.

The method of imprinting is argued to create a redundant “dictionary” of

discriminative shape components [39]. This is thought [2] to be central to the

model’s success, and the learning of S2 prototypes via imprinting is the primary

contribution of the extended HMAX model compared to the base model of

Riesenhuber & Poggio [5]. This is explained by Serre et al. [2]:

The major extension is a new unsupervised learning stage of the

units in intermediate stages of the model. A key assumption in the

new model is that the hierarchy [...] builds a generic dictionary

of shape-tuned units which provides a rich representation for task-

specific categorization [...] The resulting dictionary is generic and

universal in the sense that it can support [...] the recognition of

many different object categories. (Emphasis added.)

The prototypes in the dictionary are redundant if they encode the same shape

more than once, and are discriminative if they yield feature values that help

distinguish between different visual categories.

The performance of the HMAX model was shown to increase significantly

when manually constructed prototypes were replaced with those learned by

imprinting [40]. In practice, imprinting often leads to strong model performance

even when the prototypes are learned from unrelated images. In one case,

12

Figure 2.2: Illustration in which prototypes are constructed by imprinting for
a hypothetical animal/no-animal task. (a) Image regions (shown as red boxes)
are chosen at random, and (b) new prototypes are recorded from the model’s
C1 activity. In this example, six prototypes are created from three images.

for example, the model successfully performed a multiclass object recognition

task using prototypes learned from randomly-chosen natural images [9]. This

supports the notion that imprinting can create dictionaries that are universal.

Due to the random selection of image regions, however, there is no guarantee

that imprinted prototypes will be helpful for classification. In fact, this is often

not the case, either because prototypes are redundant or because they lead to

non-discriminative features. This is problematic for two reasons. The first is

that such prototypes can decrease the performance of the model, since many

common classifiers are sensitive to irrelevant features [41, 42]. The second rea-

son is that the addition of these prototypes dramatically increases the model’s

computational complexity, which is already quite significant.

13

To address these problems, some researchers [11, 18, 20, 32, 40] have suc-

cessfully used a process known as feature selection [43] to identify and remove

extraneous prototypes. The approach has been very effective, increasing perfor-

mance while reducing the number of prototypes by as much as 75% [18]. Un-

fortunately, the computational expense of feature selection can be prohibitive,

and this limits the number of imprinted prototypes that can be evaluated. Ad-

ditionally, feature selection can only return a discriminative prototype if it was

found during imprinting—that is, it can never synthesize a new prototype.

An alternative way to reduce the number of prototypes is called clustering

[44]. Here, the set of imprinted prototypes is grouped into clusters of visually

similar elements. A new prototype is created for each cluster, and only the

new prototypes are used by the model. In the most common approach [20, 40,

45], the k-means algorithm [46] is used to create new prototypes that are the

“average” of the elements in each cluster. The techniques of feature selection

and k-means clustering will be discussed further in Chapters 6 and 7.

2.3.1 Learning of Invariance Properties

In addition to learning prototypes for S2 units, it is also possible to learn the

connectivity patterns of C-units, which encode the model’s invariance prop-

erties. The general problem of invariance learning has been considered in a

handful of studies [47, 48, 49, 50, 51], and was applied to an HMAX-like system

by Masquelier et al. [52]. See also [53, 54] for a discussion of invariance learning

in biological systems. Note that I ignore the problem of invariance learning in

this work, and instead focus only on the learning of selectivity. Thus, I apply

fixed connectivity for C1 and C2 units.

14

2.4 Evaluation

The purpose of learning prototypes is to increase the accuracy of the classifier

while decreasing the number of prototypes used at (and thus the compute cost

of) the S2 layer. To evaluate a particular learning method, therefore, an obvious

approach is to compute the accuracy using sets of learned prototypes, and

compare that to some baseline accuracy. One baseline is the accuracy that

would be achieved by chance—that is, if the model classified each feature vector

by randomly guessing from the set of target classes. Given T target classes,

the probability of correctly guessing the class for a single feature vector is 1
T
,

and thus the accuracy due to chance for a binary classification task is 50%.

Accuracy that is (statistically) significantly above 50% implies that the learned

prototypes allow the classifier to form a useful decision boundary. Some studies,

such as that of Serre et al. [40], compare the classifier accuracy and related

measures for learned prototypes to that of manually constructed prototypes.

In this case, the performance for manually-chosen prototypes provides a lower

bound on the performance achievable in the absence of learning. In some cases,

these manually-chosen prototypes lead to performance that would be expected

if the classifier were guessing at random [45]. The difference between the two

accuracies indicates the relative performance benefit of learning.

Note that accuracy indicates only whether prototypes led to discriminative

features. It does not, however, explain why those features were useful for clas-

sification. To better understand this, it is common to ask what a given S2 unit

is “looking for”—that is, what input pattern it responds to. Remember that

a prototype represents a configuration of C1 activity. However, the invariance

properties of the C1 layer mean that it produces the same activity for an en-

tire class of related images. Thus, the prototype actually represents a class of

related image patterns, which can be difficult to analyze.

15

Figure 2.3: Example visualizations of prototypes taken from Serre et al. [1],
corresponding to airplanes (left), faces (middle), and motorcycles (right). Here,
an oval indicates the location and scale of an edge detector (i.e., an S1 unit),
while color indicates the contrast of those edges.

Various ways to visualize a prototype have appeared in the literature. Since

S1 units specify the presence of edges, one way to visualize the input pattern

corresponding to a prototype is to show the activation of those edge detectors

[1, 36, 40]. For clarity, each S1 detector is represented by an oval, which indicates

the location and orientation of the detector’s preferred edge. Some examples

of this approach are shown in Figure 2.3. Another approach [11] applies an S2

unit at multiple locations and scales across each image in a corpus, and records

the image locations that lead to the highest activity. This provides a collection

of image patches that match the prototype, and these patches are inspected

manually. I have also used this visualization approach in my work [55].

2.4.1 Datasets Used in This Work

The computer vision literature contains a wealth of public datasets, which pro-

vide a shared point of reference and allow the comparison of models with very

different architectures. While we do not attempt an exhaustive list, this section

provides a survey of some common object recognition datasets.

Two datasets used for research in HMAX-like visual models are the Caltech

101 corpus [56] and the tasks of Fergus et al. [4]. The Caltech 101 corpus

includes examples of 102 categories (101 foreground categories and a background

16

category), where each category contains between 30 and 800 examples. The

tasks of Fergus et al. provide similar examples for a set of five (four foreground

and one background) categories. These datasets have been used extensively in

research, both in HMAX-like models [1, 9, 11, 16, 17, 18, 20, 21, 24, 26, 30,

39, 57, 58, 59, 60, 61, 62] and the broader computer vision literature [63, 64,

65, 66, 67, 68]. The related Caltech 256 corpus [69] has also been used for

work on HMAX-related models [62, 30, 61]. The Animals dataset of Serre et

al. [39, 70, 2] presents an Animal/No-Animal task, and was used to compare

behavior of their HMAX model with that of human subjects. Example images

from these datasets are shown in Figure 2.4.

A number of authors [19, 71, 72, 73] have raised concerns about corpora

based on unconstrained natural imagery of the kind described above. The

first concern is simply that the tasks have become too easy, and thus fail to

differentiate between models. This issue is somewhat positive, in that it reflects

the substantial progress made since these datasets became available, and is

being addressed with the introduction of significantly larger datasets. A more

serious concern is that these datasets may be too easy simply because they

lack real-world variation in the presentation of objects. If an object is always

presented in the same way, and this way is different for different objects, then

the model may end up recognizing the presentation rather than the object itself.

The Caltech 101 dataset has received particularly strong criticism. For example,

Pinto et al. [19] showed that a simple model with no invariance properties could

account for the dataset’s best-reported performance.

To demonstrate, imagine that the goal is to build a dataset consisting of cars

and airplanes. This dataset could be composed of example images downloaded

from the internet, such as those shown in Figure 2.5a. In these images, the

object’s context is highly predictable. Airplanes are set against a blue or cloudy

17

(a) Caltech 101 (b) Caltech 256

(c) Datasets due to Fergus et al. [4]. (d) Animals

Figure 2.4: Example images from reference corpora used in this work.

18

sky, while cars are shown driving over asphalt. Furthermore, imagine that the

visual model is evaluated on the dataset, and it performs spectacularly. Does

this suggest that the model performs invariant object recognition? If so, it

should be able to recognize the same objects in a new context, such as those

in Figure 2.5b. An airplane spends a great deal of time resting on the ground,

after all, and often appears on the same asphalt surface that composes the “car”

context. There are even instances in which a car may appear in the sky! If the

dataset does not include such examples, we have no way of knowing whether

the model is simply performing “blue sky” detection for airplanes and “road”

detection for cars.

This issue relates to what the machine learning community calls generaliza-

tion, which is the ability to solve the general problem we care about, rather than

exploiting specific regularities in the training data. Ideally, an object recogni-

tion system should mimic the abilities of natural vision systems. Thus, the

system should generalize with respect to object presentation, which includes

such attributes as pose, location, illumination, and background clutter or con-

text.

In response to these concerns, some authors have chosen to create synthetic

object recognition tasks. These tasks were designed to probe a system’s ability

to demonstrate viewpoint invariant object recognition, without using visual cues

from the surrounding environment. The dataset is constructed by rendering a

3D object model from various points of view, and then composing the object

with a randomly-chosen image background. The difficulty of each task depends

on the type of background and range of viewpoints from which an object is

rendered.

Pinto et al. [3, 74] provide two such datasets of rendered objects. The first

dataset contains rendered examples of cars and airplanes (Car v. Plane), and

19

(a) (b)

Figure 2.5: (a) Example images of cars and airplanes for an object recognition
task. In this hypothetical dataset, objects are strongly associated with a partic-
ular context, where airplanes appear on sky backgrounds, and cars on asphalt.
(b) Examples of an “unexpected” context for the same task.

measures category-level discrimination (Figure 2.6a). The second dataset con-

tains rendered examples of two different faces (Face1 v. Face2), and measures

subordinate-level discrimination—that is, discrimination between examples of

the same category (Figure 2.6b). The provided data is split into seven different

variation levels—levels of variation in rotation, position, and scale of the ob-

jects of interest—and each level of variation defines a separate object-recognition

task.

Additionally, a similar set of tasks was constructed by Brumby et al. [62],

which contain both rendered and natural examples of cats and dogs (Cats v.

20

Dogs ; Figure 2.6c). These objects were composed with various backgrounds, in-

cluding uniform gray, randomly-generated 1
f
noise, and natural imagery selected

randomly from the internet.

The use of computer-generated objects could be considered a source of con-

cern, as they may present visual statistics unrepresentative of natural imagery.

A possible solution to this problem could use images of real objects in con-

junction with natural image backgrounds. (In fact, this was already done as

part of the Cats v. Dogs dataset.) There exist a number of datasets containing

real foreground objects with variation in orientation and illumination, including

ALOI [75], ETH80 [76], NORB [77], and COIL [78]. Given pixel-wise object

masks—that is, a labeling of pixels as “foreground” or “background”—the object

can be easily extracted to create new corpora (see Figure 2.7 for an example).

While object masks are available for the ALOI and ETH80 datasets, NORB

and COIL lack this information. Unfortunately, the automatic generation of

such masks is sometimes non-trivial, as illustrated in Figure 2.8 for an example

COIL object.

It is worth noting that we often do care about the context in which an

object appears, including its associated background information. In fact, “scene”

recognition has become a fruitful line of research unto itself [79, 80], and has

been suggested as a mechanism with which to “prime” object detection [81, 82].

For any given experiment, however, we want to know exactly what is being

measured. We want to know that a model performs well because it solves the

object recognition problem rather than relying on background artifacts and

consistent presentation. In general, we want to know why a model performs the

way it does, which drives the quest for explainable visual models [83].

21

(a) Cars v. Planes (b) Face1 v. Face2

(c) Cats v. Dogs

Figure 2.6: Example images from synthetic corpora used in this work.

22

Figure 2.7: Example image from the ETH80 dataset (left) and corresponding
object mask (right), as provided with the dataset.

Figure 2.8: Example image from the COIL dataset (inner left) and the best
corresponding object mask I was able to generate using a color threshold (right).
A contrast-enhanced section of the object’s boundary is shown (far left), which
shows the presence of background artifacts.

23

Chapter 3

Glimpse

To support my research, I have created a novel system for the implementation

and application of hierarchical visual models. I call this system the General

Layer-wise IMage Processing Engine (GLIMPSE) [84]. The goal of the Glimpse

Project is to allow a broad range of feed-forward, hierarchical models to be

encoded in a high-level, declarative manner, with low-level details of the imple-

mentation hidden from view. This project combines an efficient implementation

with the ability to leverage parallel processing facilities and is designed to run

on multiple operating systems using only common, freely-available components.

Using this system, I have instantiated a particular hierarchical model that

I call the Glimpse model. The rest of the chapter discusses this model, start-

ing with the architecture in Section 3.1. In Section 3.2, I discuss the method

used to choose some of the more significant model parameters. Finally, Section

3.3 provides a comparison of Glimpse behavior to that of similar hierarchical

models from the literature, demonstrating that Glimpse effectively replicates

the behavior of well-known models from the literature.

24

3.1 Architecture

The Glimpse model is an example of an alternating multilayer architecture

introduced in Chapter 2. It applies multiple stages with alternating layers

of S- and C-units, which provides a trade-off between selectivity (i.e., object

specificity) and invariance (i.e., stability under image transformations). It uses

six layers in total.

An image is first input to the model and is preprocessed. A layer of S1

units is then applied, which implement localized edge detectors across a range

of scales and orientations. This is followed by a layer of C1 units, which provides

a representation that is invariant to small changes in an object’s location and

scale. A layer of S2 units is then applied, which detect localized patterns of

activity often representing shapes. These patterns are given by prototypes, and

are detected at each scale independently. A layer of C2 units is applied to the

result, which pools over the entire image and over all scales. The output is

largely invariant to changes in location and scale of the target object. Finally, a

classifier is applied to a feature vector composed of C2 activity, and a prediction

is made regarding the class of object in the image. A diagram of the model is

given in Figure 3.1, which also summarizes some of the model’s more significant

parameters. Below, I provide details for each layer of the model.

3.1.1 Preprocessing Layer

In the first layer, the input image is preprocessed. The image is converted to

grayscale, and resized such that its shortest edge is 220 pixels (maintaining the

image’s aspect ratio). The result is split into a nine-band scale pyramid by

down-sampling the image at progressively higher rates (using an anti-aliasing

filter). The ratio between neighboring scale bands is 21/4. An example scale

pyramid is shown in Figure 3.2 for an image containing a circle.

25

Figure 3.1: Overview of the Glimpse model. An image is presented at the
bottom layer, and processing flows up the diagram. Layers of S-units are shown
as solid-outline boxes, and C-unit layers are shown as dashed-outline boxes. The
C2 layer generates a one-dimensional vector of features, with one feature per
S2 prototype. At the top layer, those features are passed to a trained classifier,
which predicts the object class.

26

Figure 3.2: Illustration of a scale pyramid for an example image containing a
circle. This pyramid has five scales, with a down-sampling ratio of 21/4 between
scales. Scale bands appear translucent for illustration.

3.1.2 S1 Layer

The first stage of S-units applies localized edge detectors over each scale band

of the preprocessed image. The detectors are implemented by first computing a

normalized dot-product1 and then applying the absolute value operator. That

is, the activation of the S1 unit is given by

S1(x,d) =
|(x,d)|
‖x‖ · ‖d‖

(3.1)

where d is an S1 edge detector, and x is a patch of the input image, (·, ·) denotes

the dot product, |·| denotes the absolute value operator, and ‖·‖ denotes the L2

norm of the vector. Here, vectors are denoted in lowercase bold font (x), and

matrices in uppercase bold font (X). Scalars will be denoted in lowercase (x).

Edge detectors are defined by the Gabor function, given as

d (u, v) = exp

(
−(u20 + γ2v20)

2σ2

)
sin

(
φ+

2πx0
λ

)
, where (3.2)

u0 = u cos θ + v sin θ

v0 = −u sin θ + v cos θ .

1The normalized dot-product is also called the cosine similarity.

27

(a) Sine wave (b) Gaussian (c) Gabor edge detector

Figure 3.3: A Gabor edge detector can be thought of as the combination of a
sine wave with a two-dimensional, oriented Gaussian function.

Figure 3.4: Visualization of the S1 detectors corresponding to edge orientations
θ =

(
π
8
, 3π

8
, 5π

8
, 7π

8

)
, given clockwise from the top-left corner.

Here, u and v define the horizontal and vertical offset from the center of the

detector. This defines a Gaussian window applied to a sinusoidal wave, as

illustrated in Figure 3.3.

In this work, I use orientations θ =
(
π
8
, 3π

8
, 5π

8
, 7π

8

)
, phase φ = 0, aspect ratio

γ = 0.6, wavelength λ = w
4
, and scale σ = λ

2
, where w = 11 is the detector

size. Thus, there are four S1 detectors, corresponding to edges at four different

orientations. This is shown in Figure 3.4. When these detectors are applied to

the “circle” image used in Figure 3.2, this produces the result shown in Figure

3.5.

Note that the choice of λ and σ was made to ensure that one to two cycles

28

Figure 3.5: S1 activity at one scale for an image containing a circle. Activity
is shown for all four orientations, with plots corresponding to the detectors in
Figure 3.4.

of the sinusoidal wave would be present in the resulting detector. Overall, the

Gabor parameters were chosen to provide a good trade-off between orientation

and scale specificity, as discussed below in Section 3.2.

The behavior of the S1 activation function (Equation 3.1) has a number of

desirable properties. First, the dot product provides a measure of similarity

between the input patch and detector. Second, the normalization constraint

provides a form of contrast gain control, in that a dark edge on a light back-

ground elicits a similar response regardless of the darkness of the edge or bright-

ness of the background. However, note that this causes poor behavior for very

dark image regions, since Equation 3.1 approaches infinity as the norm on the

input patch shrinks to zero. Thus, I suppress activation in low-light regions by

thresholding the input norm as

S1(x,d) =
|(x,d)|

max (‖x‖ , τ)× ‖d‖
. (3.3)

In my experiments, I use the threshold τ = 0.1.

Another desirable property of Equation 3.1 is its invariance to an inversion of

the image, which is provided by the absolute-value operation in the numerator.

That is, the model responds identically when each white pixel is replaced with

a black pixel and vice versa.

29

Figure 3.6: C1 activity at one scale for an image containing a circle. Activity
is shown for the four orientations in Figure 3.5.

3.1.3 C1 Layer

The C1 layer implements local pooling over space, as well as a down-sampling in

the spatial resolution. Each C1 unit pools over a small neighborhood of S1 units

at one scale, where this neighborhood is 11x11 units in all experiments. Given

a neighborhood of S1 activation denoted by the vector x, the C1 activation is

calculated as

C1(x) = max
i

xi , (3.4)

where xi ranges over the elements of the input neighborhood. The result is

then down-sampled by some constant factor, N . Thus, C1 activity is retained

at every scale, but only for every N th location. In my experiments, the down-

sampling factor was set to N = 5, which results in each S1 unit contributing

to the activation of exactly one C1 unit. Applying this processing to the S1

activity in Figure 3.5 results in the C1 layer shown in Figure 3.6. This has the

effect of “blurring” the S1 edge maps.

3.1.4 S2 Layer

The S2 layer detects patterns in each scale and location of C1 activity. Each

S1 unit compares a local neighborhood of C1 activity to a stored pattern called

a prototype. The comparison is implemented as a radial basis function (RBF),

30

and is given as

S2(x,p) = exp
(
−2β ‖x− p‖2

)
(3.5)

for C1 input x, S2 prototype p, and parameter β. The S2 activity is maximal

when the input and prototype are identical, and decreases as the input diverges

from the prototype. This decrease is not linear, however, but follows a Gaussian

function with width β−1. Large values of β cause the S2 unit to be sharply

tuned, such that the input and prototype must be nearly identical for the unit

to become active. The unit becomes broadly tuned as β decreases. Note that the

input and prototype contain activity for all four orientations bands. However,

S2 prototypes are applied at each scale independently.

A prototype is constructed by imprinting the C1 data from a randomly

selected patch in a randomly selected training-set image, as discussed in Chapter

2. This is illustrated in Figure 3.7a. Applying the prototype to the image from

which it was imprinted results in S2 activity shown in Figure 3.7b. Notice the

high activation for the region from which the prototype was imprinted.

3.1.5 C2 Layer

The C2 layer applies a maximum-value pooling operation to the activity of all

S2 units for a given prototype, including all locations and scale bands. That is,

the activation of a C2 unit is given by

C2(x) = max
i

xi (3.6)

where x is the activation of all S2 units for a given prototype. Thus, the C2

layer has one unit for each S2 prototype. The activation of a unit indicates the

degree to which the corresponding prototype was matched at any location and

scale within the image.

31

(a) (b)

Figure 3.7: (a) Example in which a prototype is "imprinted" from an image,
with the selected region shown in red. (b) The S2 activity resulting from ap-
plying this prototype to the original image. Red indicates high activity, while
blue indicates low activity.

3.1.6 Classifier

As the final step in the model, a trained classifier is applied to a feature vector

that is constructed from C2 activity. The classifier analyzes the feature vector

by applying a decision function, which decides which object label to return. A

simple decision function might be

f(x) = sgn

(
m∑
i=1

xi

)
, (3.7)

where x is the feature vector composed of C2 activity, and m is the number

of features. If the sum of the features is greater than zero, then the “positive”

class is chosen by returning +1. Otherwise, the “negative” class is chosen by

returning −1. In practice, the values +1 and −1 would be associated with

different object labels, such as “dog” and “person”.

The linear decision function in Equation 3.7 is not very useful, because it

assumes that all features are associated with the positive class. What if a strong

32

match for one prototype indicates the presence of a “dog”, while a strong match

for another prototype indicates a “person”? To handle this case, a slightly more

complex function is needed. An example of such a function is

f(x) = sgn

(
b+

m∑
i=1

αixi

)
, (3.8)

where the feature weights αi and bias b are parameters that are chosen during

a training process. This allows, for example, a “dog” feature to be weighted

negatively, assuming that −1 indicates the “dog” class.

The training process takes a collection of labeled feature vectors called the

training set, and chooses the classifier’s parameters such that the classifier pre-

dicts the correct label for as many training examples as possible. At the end

of training, the parameters are fixed, and the classifier is evaluated on a set

of labeled examples called a test set that were not part of the training set.

The errors on this set determine the performance of the classifier, and thus the

performance of the model.

The form of the decision function and the learning method used to choose

its parameters are defined by the choice of classification algorithm. A com-

mon choice of classification algorithm in HMAX-like models is called a support

vector machine (SVM). An SVM chooses a subset of the feature vectors as ref-

erence points, called support vectors. Given a new image, the decision function

compares the feature vector to each support vector. The predicted label is the

one associated with the most similar support vectors. Specifically, the decision

function is defined as

f(x) = sgn

[
b+

∑
k

γkφ (x,vk)

]
, (3.9)

where vk denotes the kth support vector, γk denotes the importance of that

vector, and b is a bias term. The function φ (x,v) is called the kernel function,

33

and measures the similarity between the feature vector and the support vector.

In the simplest case, called a linear SVM, φ (x,v) is just the inner product of

the two vectors. In this case, Equation 3.9 can be rewritten as

f(x) = sgn

[
b+

∑
i

(∑
k

γkvki

)
xi

]
, (3.10)

which takes the form of Equation 3.8 with feature weights given as αi =∑
k γkvki.

In some instances, classification is performed using logistic regression [85].

This is an alternative approach2 with a decision function given by

f(x) = sgn
[

1

1 + e−(b+
∑
αixi)

− 1

2

]
, (3.11)

where i is a feature index, b is a bias term, and the expression 1/ (1 + e−t)

is called the logistic function. In some cases, the classifier is encouraged to

use as few features as possible, which is achieved by setting the remaining

feature weights αi to zero. This is called “sparse” logistic regression [86]. In my

experiments, sparse logistic regression consistently resulted in performance that

was similar to that of a linear SVM classifier, while being significantly faster to

train.

It is sometimes useful to measure a feature’s “importance”, that is, the de-

gree to which it influences the classification. In the case of a linear SVM, the

importance of the ith feature has been measured [41, 87] as the value α2
i . Similar

values have been used to measure feature importance in logistic regression [42].

3.2 Model Parameters

I have performed a number of experiments to investigate the optimal parameter

settings for the Glimpse model. One significant choice is the method used to
2Despite the misleading terminology, logistic regression is actually an algorithm for clas-

sification problems rather than regression.

34

create scale bands in the S1 layer, which is considered in Section 3.2.1. The

optimal size of the edge detector at the S1 layer is considered in Section 3.2.2,

and Section 3.2.3 considers the best way to implement normalization in the S1

activation function.

3.2.1 Scaling

In a hierarchical model such as HMAX, the activity of the S1 layer indicates

the presence of edges at various locations and scales. Edges can be extracted at

different scales using (at least) two alternative approaches. First, a battery of

multiscale detectors can be applied to the original image, where each detector

responds to an edge at a different scale. Second, the image may be repeatedly

down-sampled, with a single detector scale applied to each layer of the resulting

scale pyramid. Given the correct down-sampling ratio, the two alternatives

produce equivalent results [88, 89].

To demonstrate this equivalence, I will use the "dog walking" image shown

in Figure 3.8. This image is first processed with a set of multiscale detectors3,

as shown in Figure 3.9, with results shown in Figure 3.10. The same image is

then used to construct a scale pyramid, and only the smallest scale detector

is applied to each level. Results of this latter step are shown in Figure 3.11.

Notice that the two maps are nearly identical. Furthermore, the pixel-wise

correlation between corresponding edge maps is shown in Table 3.1, with very

similar output for the two methods. These results have been found for multiple

images.

The equivalence can be seen in a more general way by investigating the

frequency response for the edge detectors used in each method. Figure 3.12
3Notice that the detectors in Figure 3.9 are much larger than we would use in practice.

This is required so that large Gabor waves fit entirely within the detector window. This is
not an issue when using a scale pyramid, because only the smallest scale detector is used.

35

Figure 3.8: Example image used for discussion of detector scaling in Glimpse.

Figure 3.9: Multiscale edge detectors of size 41x41 pixels, as defined by Equation
3.2, were used to avoid clipping in large scale detectors. Color indicates the
detector’s preferred input, with black indicating low activity, white indicating
high activity, and gray indicating no preference.

36

Figure 3.10: Edge maps for multiscale detectors, where the order of response
maps corresponds to that in Figure 3.9. Brightness indicates response strength,
with white indicating maximum response.

Scale 1 2 3 4
Correlation 0.95 0.89 0.83 0.81

Table 3.1: Similarity between the response maps for multiscale detectors com-
pared with that for multiscale inputs (i.e., image scaling). The similarity is
measured as the correlation coefficient for the response maps shown in Figure
1.9. The correlation coefficient takes values between zero and one, with larger
values indicating more similar maps.

37

Figure 3.11: Edge maps for a small scale detector applied to a scale pyramid,
formatted as in Figure 3.10. Notice that the corresponding maps are very similar
between methods.

(top) shows the power spectrum of the four edge detectors shown in Figure

3.9. Figure 3.12 (bottom) shows the corresponding results for a high-scale filter

applied to different layers of a scale pyramid. The similarity of the responses

for both methods demonstrates that they are sensitive to edges in the same set

of scale bands. Thus, edge maps generated by the two methods will be nearly

identical, and this property holds regardless of the input.

The result of Glimpse’s S1 layer is a set of edge maps, each indicating the

presence of an edge at a specific orientation and scale. Ideally, the architecture

should minimize runtime costs, allowing for fast “shallow” processing of large-

scale content. That is, scale bands containing low-frequency information should

38

Figure 3.12: (top) Frequency response for multiscale detectors shown in Figure
3.9. The horizontal axis indicates frequency, and the vertical axis indicates the
degree of response. Each detector responds to a range of frequencies. (bottom)
Effective frequency response when applying a single detector to down-sampled
versions of the same image. Notice the strong similarities in the response char-
acteristics.

39

incur lower computational cost during analysis, since low frequencies have low

spatial resolution. Given the equivalence of scale pyramids to multiscale detec-

tors, I argue that a scale pyramid better supports the two design goals given

above. By scaling the image, I can choose a single detector scale that is well

adapted to the size of the detector. This ensures that the entire Gabor pattern

fits within the window (i.e., it avoids “clipping”), which greatly increases its

orientation specificity. Furthermore, note that computing S1 feature maps for

large scales is computationally cheaper under a scale pyramid, because the size

of the input matrix is smaller for lower frequencies. Indeed, this approach is

used in the SIFT [90] and SLF [11] models in the literature.

3.2.2 Edge Detector Size

Next, I consider the optimal size of the S1 edge detector. Since down-sampling

always increases the frequency response of the system, the ideal solution is to

choose the detector with the highest possible frequency—and thus the smallest

size. This has the added benefit of minimizing the system’s run-time. Note,

however, that the detector should not be too small, as aliasing will cause the

frequency response to blur for some diagonal orientations. Thus, I measure the

power spectrum of the multi-orientation detectors at different sizes4, looking for

the smallest size that maintains a sharp frequency distribution.

Figure 3.13 shows the power spectrum for edge detectors of various areas.

As the area of the detector is increased, its frequency response decreases (that

is, a larger detector matches a lower-frequency edge), and tightens to match

a smaller range of frequencies. Although only a single Gabor orientation is

shown here, results for other orientations are nearly identical. Based on the

argument given above, the optimal detector will have a high-frequency response
4The power spectrum of these small "images" can be measured without edge artifacts,

because detector values decrease to zero at the edges by design.

40

in a tight band, which corresponds to a tight peak near the right side of the

plot. In this case, an 11x11 pixel window is suggested. Figure 3.14 shows

the two-dimensional Fourier transform of the same set of Gabors, which shows

the frequency response of the detector for each orientation. Here, frequency is

plotted as the distance from the center of the plot, and Gabor orientation is

given by the angle from the horizontal. In these plots, the radial width of the

high power areas indicates the range of orientations to which the given detector

responds. Thus, a patch that is far from the center of the image and which

has a small radial width indicates a detector that responds to high-frequency

input at a specific orientation. These results also suggest that an edge detector

of 11x11 pixels provides the best trade-off between frequency and orientation

selectivity.

3.2.3 S1 Normalization

Finally, I consider the best way to implement normalization in the S1 activation

function (see Equation 3.1). As noted above, normalization is useful to provide

contrast gain control, meaning that the S1 unit will be somewhat invariant to a

change in the contrast of the input. For example, this allows an edge detector

to match well even in a region of low contrast. However, a direct normalization

of the input as

x′ =
x

‖x‖
(3.12)

has the undesirable property of magnifying noise in regions with extremely low

light (seeing “ghosts in the darkness”).

To avoid amplifying this noise, I bias the denominator in Equation 3.12 to

guarantee that it is bounded by some constant. In the simplest case, we can

41

(a) w = 5 (b) w = 7

(c) w = 9 (d) w = 11

(e) w = 15 (f) w = 21

Figure 3.13: Frequency sensitivity for different detector widths w, summarized
by the detector’s power spectrum. The horizontal axis indicates frequency, and
the vertical axis indicates the degree of response. Here, the Gabor wavelength is
set to 1

4
the detector width. Notice that frequency sensitivity drops dramatically

for detectors smaller than 11 pixels.

42

(a) w = 5 (b) w = 7

(c) w = 9 (d) w = 11

(e) w = 15 (f) w = 21

Figure 3.14: Frequency sensitivity for Gabor detectors of various size, shown
as the two-dimensional power spectrum. The center of each plot indicates the
detector’s responsiveness to low frequency input, and the border of the plot
indicates the same for high frequencies. The angle from the horizontal indicates
the orientation selectivity, with 0◦ meaning an input of a horizontal line.

43

use an additive bias of the form

x′ =
x

‖x‖+ b
. (3.13)

This is similar to the proposed "divisive normalization" model of contrast gain

control in cortex [91, 92]. The approach ensures that regions with gain less than

b are not amplified, but fails to appropriately scale regions whose gain is larger

than b. In fact, only regions with very high contrast will be mapped to have

near-unit norm. This is illustrated in Figure 3.15a, which shows the behavior

of an additive bias for different values of b.

As an alternative, a conditional bias takes the form

x′ =
x

max (‖x‖ , b)
, (3.14)

which maps all regions with gain larger than b to the surface of a spheroid

with radius b (see Figure 3.15b). Only those regions lying within the sphere are

suppressed. This achieves gain control for those regions lying on, or outside, the

unit sphere, and treats those lying within the sphere as noise. This is illustrated

in Figure 3.15b, which shows that the input patches are properly normalized

even when the bias is large. Due to this behavior, I use a conditional bias

(Equation 3.14) in the Glimpse model.

3.3 Comparison to Previous Models

The goal of this work is to uncover general properties of alternating multilayer

architectures. However, the use of a new model risks introducing a qualitative

shift in behavior, and thus to non-generalizable results. As a result, I performed

extensive validation to verify that the Glimpse model captures the qualitative

behavior of similar hierarchical models found in the literature.

Implementations for the HMAX and SLF models were first downloaded from

the internet [93]. I then measured the performance of all three models (Glimpse,

44

(a) Additive: x′ = x
‖x‖+b

(b) Conditional: x′ = x
max(‖x‖,b)

Figure 3.15: Effect of normalization on S1 activity for two different approaches.
(a) Input activity is bounded with an additive bias as x′ = x

‖x‖+b , and the
behavior is plotted for various values of the bias b. This causes the input to
be suppressed even when its energy was initially large. (b) Input activity is
bounded with a conditional bias as x′ = x

max(‖x‖,b) . Low-energy inputs are
suppressed, while the response to high energy patches is contrast invariant.

45

SLF, and HMAX) using imprinted prototypes on tasks commonly used in the

literature. The SLF model has been used in a number of studies (e.g., [3]),

and has often been shown to out-perform the HMAX model [11]. Thus, SLF

provides an additional reference point that is helpful for validating the Glimpse

model.

Figure 3.16 shows a diagram of the HMAX model used in this work, with

values for some of the more important parameters. This is an approximation

of the model used by Serre et al. [2, 1]. Compared with the diagram of the

Glimpse model (Figure 3.1), there are two significant differences. First, the

HMAX S2 layer uses prototypes of six different sizes, while Glimpse uses a single

prototype size. Second, the S2 prototypes used in the HMAX implementation

are “normalized”, meaning that the total activation within each prototype is

scaled to have unit (L2) norm5.

Similarly, Figure 3.17 shows a diagram of the SLF model used in this work.

Differences between Glimpse and SLF are three-fold. First, note the use of

“lateral inhibition” at the C1 layer, which means that C1 units at a given lo-

cation compete. As a result, less active units have their output suppressed—or

inhibited—by more active units. Second, the S2 layer in the SLF model uses

“sparse prototypes”, which means that an imprinted prototype uses only the

most active orientation at each location. When comparing such a prototype to

an input patch, only these active orientations are considered. This is argued

to increase the model’s robustness to clutter [11]. Third, the C2 layer of the

SLF model pools over a limited area of S2 activity, rather than pooling glob-

ally over all scales and locations. This area is given by a small neighborhood

around the prototype’s original location, and includes the S2 activity for the

scale immediately above and below the imprinted scale.
5Note that this normalization process is not applied to the S2 unit’s input.

46

Figure 3.16: Architecture diagram for the HMAXmodel. The default parameter
choices—which are used in this work—are shown to the right of the diagram.

47

Figure 3.17: Architecture diagram for the SLF model. The default parameter
choices—which are used in this work—are shown to the right of the diagram.

48

Figure 3.18: Performance comparison (AUC) for 4075 C2 features using HMAX
(white), SLF (hatched gray), and Glimpse (blue) models. Datasets include
subsets of Caltech101 categories—Airplanes, Faces, Faces (easy), and Watch—
the Animals dataset of Serre et al. [2], and the synthetic tasks of Pinto et al. [3].
Error bars indicate standard error over five independent trials.

Results are shown in Figure 3.18 for the HMAX, SLF, and Glimpse models

on subsets of Caltech101 [56], the Animals task of Serre et al. [2], and the

synthetic tasks of Pinto et al. [3]. Following Serre et al. [1], each model uses 4075

C2 features learned by imprinting, and a linear-kernel SVM for classification.

Performance is reported as the area under the ROC curve (AUC). I performed

five independent trials for each model and corpus, and imprinted new prototypes

in each trial. The height of each bar shows the mean performance across those

trials, and error bars show one standard error. Figure 3.19 shows a similar

comparison for the tasks of Fergus et al. [4], where Glimpse is compared with

the SLF model. Performance for the HMAX model was omitted in this and later

experiments, since 1) the behavior of SLF and HMAX is often quite similar,

while 2) applying the HMAX model takes considerably more time.

From these two figures, we see that the behavior of Glimpse appears to be

49

consistent with that of the reference models across all tasks. This suggests that

the model has the salient features of previous work. Thus, there is a good

chance that interesting results found for the Glimpse model would also apply

for other hierarchical models.

However, I do note differing results for two tasks. On the Animals task,

the HMAX model displays performance that is significantly above that of the

other models. This is unsurprising, as it is the task for which the model’s

parameters were optimized. Additionally, the SLF model displays performance

that is significantly below that of the other models on the Face1 v. Face2 task.

This result is likely due to the use of localized pooling at C2 in the SLF model,

which is inappropriate in synthetic tasks that vary the object’s location. Thus, it

is surprising that SLF performance does not suffer on the Cars v. Planes task,

as that too includes strong variation in object location. Interestingly, these

results show that model performance is quite saturated across all Caltech101

and Fergus et al. tasks, indicating that these tasks are of limited use for object

recognition research. This result is investigated further in Chapter 4.

Figure 3.20 compares the SLF and Glimpse models on the Cats v. Dogs

tasks. Glimpse performs better—often significantly better—than the SLF

model on all tasks. As discussed above, this may be due to the localized pooling

operation at C2 of the SLF model.

Thus far, the behavior of Glimpse has only been investigated for very large

networks, that is, those employing a large number of prototypes. It is possible

that two models could behave similarly in this case, while showing qualitatively

different behavior for less complex S2 layers. To investigate this, I measure the

performance for each of the models as the number of prototypes is increased,

and thus capture the “scaling behavior” of each model.

Results are shown in Figures 3.21-3.23 for a representative subset of the

50

Figure 3.19: Performance comparison (AUC) for 4075 C2 features using SLF
(hatched gray) and Glimpse (blue) models. Datasets are due to Fergus et al. [4].
Error bars indicate standard error over five independent trials. (Note that a
lack of variation leaves the error bars difficult to see.)

tasks in Figure 3.18. As before, these results show that Glimpse has captured

the qualitative behavior reported in the literature, even with respect to changes

in the number of units in the S2 layer. Additionally, it is interesting to note

the lack of a consistent ranking for the three models, since each model shows

superior performance on at least one of the four datasets. This is important to

note for those developing their own models, so that no single model is considered

a “gold standard”.

51

Figure 3.20: Performance comparison (AUC) for 4075 C2 features using SLF
(hatched gray) and Glimpse (blue) models. Tasks are from the Cats v. Dogs
dataset. Results on the left give performance for photographic foreground ob-
jects, while results on the right give the same for rendered foreground objects.
Results are given for different types of backgrounds, including uniform color
(Gray), randomly generated images following a 1

f
frequency distribution (Noise),

and randomly chosen photographs of outdoor scenes (Image). Error bars indi-
cate standard error over five independent trials.

52

(a) Airplanes (Caltech101)

(b) Watch (Caltech101)

Figure 3.21: Performance comparison (AUC) on Caltech101 tasks for varying
number of C2 features using HMAX (gray), SLF (dashed), and Glimpse (blue)
models. Error bars show one standard error.

53

Figure 3.22: Performance comparison (AUC) on the Animals task for varying
number of C2 features using HMAX (gray), SLF (dashed), and Glimpse (blue)
models. Error bars show one standard error.

Figure 3.23: Performance comparison (AUC) on the Cars v. Planes task (vari-
ation level three) for varying number of C2 features using HMAX (gray), SLF
(dashed), and Glimpse (blue) models. Error bars show one standard error.

54

Chapter 4

The Role of Shape Prototypes

In this chapter, I describe a series of detailed experiments to investigate how

learned shape prototypes in alternating multilayer models affect classification

performance. Surprisingly, I find that the classification performance of net-

works using randomly generated prototypes—with no apparent spatial struc-

ture—perform in a nearly identical way to networks using prototypes imprinted

from natural images in a way so as to capture “useful” shape components.

The rest of this chapter is organized as follows. Section 4.1 discusses the

basic methodology used in all experiments for this chapter. The benefit of

invariant representations is considered in Section 4.2. The role of shape proto-

types is investigated in Section 4.3. Finally, a discussion of the results is given

in Section 4.4. This work has been published in a shorter format as [55].

4.1 Methods

Unless otherwise noted, all experiments in this work use the following exper-

imental methodology. In each trial, a different subset of half the images was

chosen for training, with the other half reserved for testing. Each trial chooses

a different set of prototypes, and performance is reported on the test set. Re-

55

sults are somewhat stochastic, because the classifier is applied with a different

set of features and a different set of testing images in each trial. Thus, each

experiment is repeated five times, and the average performance is reported.

Beyond the features derived from C2 activity (see Chapter 3), the exper-

iments below use two additional types of features. First, “pixel” features are

computed by converting the image to grayscale, and concatenating image rows

to form a single vector. Second, “C1” features are derived from the activity of

all units in the C1 layer by concatenating units for all positions, scales, and

edge orientations to form a single vector. Both cases result in a feature space

of very high dimensionality1. Techniques for dimensionality reduction, such as

PCA, were not used, because the goal was to give the invariant representation

every opportunity to succeed.

Note that a fixed feature space is required for many classifiers, including

SVMs. That is, the number of features representing each image must be con-

stant. However, the dimensionality of a pixel or C1 representation depends on

the size of the input image2, and thus the size of the images was constrained in

these experiments. For tasks derived from the Caltech 101 dataset and the tasks

of Fergus et al., the image size was constrained by removing border pixels as

needed. Fortunately, this is likely to have little effect on Glimpse’s performance,

as foreground objects are intentionally placed in the center of each image. All

remaining tasks employ images of the same size.
1The dimensionality of a C1 representation is at least 20,000 features. This size increases

as the image becomes elongated. A pixel representation is even larger, with approximately
50,000 features for a square image.

2This is not the case for a C2 representation, which provides one feature per prototype.

56

4.2 Role of Invariant Representations

I first investigate the benefit of Glimpse’s C2 features relative to a simpler image

representation. Remember from Section 2.2 that Glimpse’s C2 representation

is described as invariant, because C2 activity is unaffected by changes to an ob-

ject’s location or scale. Here, I specifically investigate the role of this invariance

property in the success of the model.

To do this, a given task is performed using a representation composed of

C2 activity, and Glimpse’s performance is measured. The same task is then

performed using a representation composed of C1 features, and again using pixel

features. These latter representations lack the strong invariance properties of

the C2 layer, and thus provide a useful performance baseline.

The results are shown in Figure 4.1, which reports performance across a

number of datasets for raw pixel features (light gray), C1 features (dark gray),

and 4075 C2 features (blue). Performance is reported as the mean area under

the ROC curve (AUC) across five independent trials, with error bars showing

one standard error. The set of prototypes is imprinted independently for each

trial.

Interestingly, the Caltech 101 tasks do not appear to require an invariant

representation. In most cases, performance for C1 features is almost identical

to that using C2 features. In fact, many tasks can be performed using only raw

pixel data, and I am thus forced to conclude that these tasks are of little use

in the study of invariant object recognition. These results agree with similar

findings of Pinto et al. [19]. Consequently, these datasets will not be used in

the experiments described in the next sections.

In contrast, results for the remaining tasks showed a significant benefit for

invariant representations. For the Animals, Cars v. Planes, and Face1 v. Face2

tasks, pixel features were effectively useless for recognition. In addition, while

57

Figure 4.1: Performance comparison (AUC) for raw pixels (white), C1 features
(hatched gray), and 4075 C2 features (blue). Datasets include subsets of Caltech
101 categories—Airplanes, Faces, Faces (easy), Motorbikes and Watch—the
Animals dataset of Serre et al., and the synthetic tasks of Pinto et al.—Cars v.
Planes and Face1 v. Face2. The vertical axis indicates the mean performance
over five independent trials, and error bars indicate standard error over five
independent trials.

C1 features provide a useful representation for these tasks, an invariant repre-

sentation using C2 features is significantly more useful.

Figure 4.2a shows results for the tasks of Fergus et al. These results are

quite similar to those for the Caltech 101 tasks in Figure 4.1. Again, pixel

features account for nearly all of the model’s performance, and an invariant

representation provides little additional benefit. Figure 4.2b shows results for

the various Cats v. Dogs tasks. On the left half of the plot, results are shown for

real objects—those captured from natural imagery—on the three background

types. While the invariant C2 representation is clearly superior to raw pixel

features, a C1 representation completely accounts for the performance increase.

However, note the model’s surprisingly high performance in the presence of

58

(a) Datasets from Fergus et al.

(b) Cats v. Dogs

Figure 4.2: Performance as in Figure 4.1 comparing pixel (white), C1 (hatched
gray), and 4075 C2 (blue) features.

59

natural image backgrounds (i.e., bars labeled “Image” on the left side of Figure

4.2b). It is possible that this is caused by unintentional regularities in the

background for each object, such as a tell-tale difference in the edge statistics

of “cat” backgrounds vs “dog” backgrounds.

The right half of Figure 4.2b shows results for the Cats v. Dogs tasks us-

ing rendered objects. In this case, an invariant C2 representation provides a

clear benefit over C1 features. Additionally, the performance for C1 and C2

features decreases as the backgrounds become more complex, with the highest

performance for simple gray backgrounds, lower performance for backgrounds

containing randomly generated noise, and the lowest performance for back-

grounds containing complex image natural images. However, note the strong

performance for raw pixel features, which may indicate an insufficient variation

in the presentation of objects or their backgrounds.

In summary, these results suggest that Glimpse’s C2 representation provides

a significant benefit for performing object recognition. However, many tasks

that are used often in the literature do not require an invariant representa-

tion, and thus provide little information about the efficacy of object recognition

models.

4.3 Importance of Shape

In this section, I test the “shape dictionary” hypothesis discussed in Section 2.3,

which suggests that an imprinted representation is useful because it captures

important “shape-based” properties of objects [2]. To isolate the benefit of

learned shape features, I measure the impact on Glimpse’s performance when

this information is degraded. In the first step, a set of prototypes is imprinted

as previously described. Performance is then measured on the same task when

these prototypes are “shuffled”, that is, when the order of activation values

60

in each prototype are randomly permuted. This process is demonstrated in

Figure 4.3. As a result, the shape information—that is, spatial and orientation

configuration—is scrambled, while the basic activation statistics within each

prototype are maintained.

Finally, performance is measured for a set of unlearned, ”shape-free” proto-

types. This set is constructed randomly, where each prototype component is

drawn independently from a uniform distribution over activation values. (This

approach should not be confused with imprinting, in which randomness is used

to choose the location of image regions.) Due to their construction, these pro-

totypes capture neither the spatial information, nor the activation statistics of

learned shape prototypes. Recent evidence suggests that various kinds of ran-

dom features can be surprisingly useful in hierarchical networks [64, 94, 95],

though the reasons for this behavior are still unclear.

Specifically, random prototypes are constructed as observations of a mul-

tivariate, independent, and identically-distributed random variable, with each

component given by

pi ∼ Uniform(0, 1) .

An example of such a prototype matrix is shown in Figure 4.4.

Additionally, random and shuffled prototypes are both sparse and gain in-

variant, which are properties that imprinted prototypes lack3. Sparsity is en-

forced by lateral inhibition across orientation bands at each location, where the

activity xi for the ith orientation at location ` is scaled as

x′i =
xi
a`
,

and where a` =
√∑

x2j measures the total energy for all units at location `.

This has the effect of suppressing less active orientations. Gain invariance is
3This approach was inspired by the architecture of the PANN model [30].

61

(a) Image patch.

(b) Imprinted activation.

(c) Shuffled activation.

Figure 4.3: An example in which (a) an image patch is used to construct (b)
an imprinted prototype. The figure shows the activations—white denotes high
activation, black denotes low activation—for a neighborhood of C1 units, with
one plot for each edge orientation. The activation values within this prototype
are then permuted to create (c) a shuffled prototype. Note that activation is
permuted across orientation bands as well as locations.

62

Figure 4.4: An example of a random prototype, with plots corresponding to
the four orientation bands. Each component is chosen independently from a
uniform distribution.

achieved by constraining the total energy of the input and prototype, where S2

activation is computed as

S2

(
x

‖x‖
,

p

‖p‖

)
for input x and prototype p, and activation function S2 (·, ·) as given in Equa-

tion 3.5 (Page 23). This allows the comparison between input and prototype to

be unaffected by a change in contrast in x.

I found that performance for shuffled and random prototypes was substan-

tially lower without the sparse contrast-invariant activation function. In con-

trast, such an activation function significantly decreased performance when im-

printed prototypes were used. The reason for this relationship is currently

unknown. However, I hypothesize that this result indicates that imprinted and

random prototypes operate in different ways. I believe that a “good” set of im-

printed prototypes should contain examples of specific and discriminative shapes

from the domain. These are qualities that a set of random prototypes will lack.

In contrast, a “good” set of shuffled or random prototypes may simply need to

contain prototypes that are sufficiently different from one another. Imprinted

prototypes are unlikely to contain such heterogeneity, due to the structure that

is presence in natural imagery.

Glimpse’s performance for imprinted, shuffled, and random prototypes is

63

shown in Figure 4.5. Performance is reported as mean AUC over five indepen-

dent trials for the datasets identified in Section 4.2. Each feature vector is based

on 4075 prototypes. Figure 4.5a shows this comparison for the Animals task,

and for variation level three of the Cars v. Planes and Face1 v. Face2 tasks.

Figure 4.5b shows the same comparison for the Cats v. Dogs tasks. Across

all datasets, I found that the degradation of shape information has surprisingly

little impact on Glimpse’s performance. In fact, this degradation led to an

improvement in performance for the Face1 v. Face2 task.

Figures 4.6a and 4.6b show a similar comparison (without “shuffled” proto-

types) for the Cars v. Planes and Face1 v. Face2 tasks, respectively, as the level

of variation is increased. Following Pinto et al. [3], performance is plotted as the

variation level is increased. As before, performance is plotted as mean AUC,

with error bars showing one standard error. Results for imprinted prototypes

were similar to those reported by Pinto et al. [3], with performance dropping as

the variation level was increased. However, I find that random prototypes also

perform this way, with behavior that is nearly identical to that of imprinted

prototypes. Critically, I find that a (invariant) C2 representation based on ran-

dom prototypes performs well even when a pixel or C1 representation does not.

Thus, an invariant representation is crucial, while shape is not.

Taken together, these results seem to contradict the “shape dictionary” hy-

pothesis. A number of possible explanations for these results were considered. I

first considered the possibility that a sufficiently large network is simply robust

to a bad choice of prototypes. That is, it is possible that any sufficiently large set

of prototypes would lead to the behavior seen in Figure 4.6. To investigate this,

I compare the performance of these two representations using different numbers

of prototypes, with results shown in Figure 4.7. Performance was quite similar

even when using only 10 prototypes. Regardless of the size of the network, I was

64

(a) Animals and synthetic tasks of Pinto et al. Variation level three
is used for synthetic tasks.

(b) Rendered Cats v. Dogs on various backgrounds.

Figure 4.5: Comparison of Glimpse’s performance across different tasks, using
4075 imprinted (blue), shuffled (gray), and random (hatched red) prototypes.
The vertical axis shows the mean AUC over five independent training and test-
ing splits, and error bars show the standard error. Results for the Cars v.
Planes and Face1 v. Face2 tasks use variation level three.

65

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 4.6: Comparison of Glimpse’s performance on two tasks, using 4075
imprinted prototypes (blue); and 4075 random prototypes (dashed red). The
horizontal axis shows the variation level (over rotation, position, and scale)
of the object of interest, and the vertical axis shows the mean AUC over five
independent training and testing splits at each variation level. Error bars show
the standard error. Results for raw pixel (gray) and C1 (dashed gray) features
are shown for reference.

66

unable to find a significant difference in performance between a representation

based on random versus imprinted prototypes.

Alternatively, I considered the possibility that a random prototype provides

a weakly discriminative feature when used in isolation, but that a group of

random prototypes could be strongly discriminative. This might be the case

if each feature provides an independent piece of information about the object,

which when combined is enough for recognition. This is inspired by a machine

learning technique called boosting [96], in which a number of “weak” classifiers

are combined to create a single, highly discriminative group. In contrast, I

expect imprinting to generate at least some prototypes that provide highly

discriminative representations, even when considered in isolation.

To investigate this, I measured performance based on individual features.

For each prototype generation method (imprinting or random), I generated 4075

prototypes as before, except here I used them one at a time to create a single

value to represent each image in order to train and test the SVM. As before,

I performed five independent training and testing splits using each prototype.

Figure 4.8a shows the performance for single imprinted prototypes and single

random prototypes on the Cars v. Planes task, where the prototypes are ranked

by performance. Figure 4.8b shows the same values for the Face1 v. Face2 task.

I found very little difference between the two representations in terms of the

occurrence of individually-discriminative features. In fact, it is striking how

well the best random features perform when operating in isolation. In short, it

appears that random prototypes are not limited to operating in ensembles.

Lastly, I investigated the hypothesis that the imprinted and random pro-

totype representations behave similarly because they code for similar visual

features. It is possible, in theory, that the process of random prototype gen-

eration occasionally creates the kind of useful shape selectivity that would be

67

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 4.7: Comparison of Glimpse’s performance for different numbers of im-
printed (blue), shuffled (gray), and random (dashed red) prototypes. Perfor-
mance is reported as mean AUC over five trials, with error bars showing one
standard error. Variation level three is used for each task.

68

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 4.8: Performance (mean AUC and range) using individual features from
either imprinted (solid blue) or random (dashed red) prototypes for (a) the
Cars v. Planes task, and (b) the Face1 v. Face2 task. In both cases, the
tasks use variation level three. The line shows the mean performance over five
independent trials, while the shaded area shows the range of performance values.

69

expected under imprinting. In this case, I would expect these “lucky” random

features to be among the most discriminative when used in isolation.

Due to the nature of these networks, it is difficult4 to interpret the contents

of a prototype directly. Instead, I attempt to characterize a given prototype

by examining those input patches that provide the best match. Figures 4.9

and 4.10 shows this data for the most discriminative prototypes on the Cars

v. Planes and Face1 v. Face2 tasks, respectively. Each row in the figures

corresponds to one of the five most discriminative prototypes, that is, those

ranked 1–5 in Figure 4.8. The columns of each row give the 10 image patches

from the dataset to which the corresponding prototype matched most closely,

where each image is allowed at most one match. Although it may appear that

patches in, say, the top row of Figure 4.10a are from slightly different positions

of the same image, these patches are in fact from different images.

As expected, it appears that the five imprinted prototypes are responding

preferentially to specific “shape-based” patterns relevant to faces, and are rel-

atively robust to rotation and translation of those patterns. However, the five

random prototypes display no obvious “shape” preference along each row, nor

do their responses appear to be relevant to faces.

These results show that, while imprinted features are highly selective to

shape and somewhat invariant to background clutter, random prototypes are

not easily interpretable as shape templates. Although results were shown for one

particular set of imprinted and random prototypes, this behavior was found to

be qualitatively similar for other, independently generated, sets of prototypes.
4As one example, the invariance properties of the C2 layer may cause the same feature

values to be produced for multiple images.

70

(a) Imprinted prototypes

(b) Random prototypes

Figure 4.9: Characterization of best-performing prototypes for the Cars v.
Planes task (cf. Figure 4.8a) based on the input patches to which they respond
most strongly. (a): Each row corresponds to one of the top five imprinted pro-
totypes (those ranked 1–5 in the imprinted set in Figure 4.8a). The 10 images
in each row are the 10 image patches in the Cars v. Planes dataset to which the
prototype matched most closely. All patches in a row are drawn from different
images. (b): Same as part (a), but here the five top prototypes are those ranked
1–5 in the random-prototype set in Figure 4.8a. In contrast to part (a), there
is a distinct lack of shape specificity along each row.

71

(a) Imprinted prototypes

(b) Random prototypes

Figure 4.10: Characterization of best-performing prototypes for the Face1 v.
Face2 task (cf. Figure 4.8b) based on the input patches to which they respond
most strongly. Results are shown as in Figure 4.9, with the best matches shown
for (a) imprinted and (b) random prototypes. As before, random prototypes
lack the shape specificity that is characteristic of imprinted prototypes.

72

4.4 Discussion

In this work, I investigated the hypothesis that shape-based prototypes are

central to the ability of alternating multilayer networks to perform invariant

object-recognition. To summarize the results:

• I apply Glimpse to challenging benchmarks for invariant object recogni-

tion, and find that learned “shape” prototypes are not necessary to achieve

the performance seen in the literature. These benchmarks specifically em-

phasize viewpoint-invariance by including realistic variation in the pre-

sentation of objects. As such, the “shape-free” features based on random

prototypes seem to provide an unlearned, unbiased (i.e., universal) dictio-

nary.

• Upon analysis, I find evidence that (1) randomly-generated prototypes

mediate performance that is on par with a learned shape dictionary (Fig-

ures 4.5 and 4.6), even for small networks (Figure 4.7) or single prototypes

(Figure 4.8). Critically, I also find evidence that (2) those prototypes lack

shape specificity (Figures 4.9 and 4.10), a characteristic that was thought

to be central to the success of these networks.

Taken together, these results argue that our understanding of successful hierar-

chical visual models is far from complete, and that further analysis is warranted.

Furthermore, my work suggests that—when used properly—random prototypes

may have an important role to play in these hierarchical networks.

I am left with several questions that have yet to be answered. Chief among

them are: (1) In what types of object-recognition tasks would a set of learned

shape-based prototypes provide an advantage over randomly generated proto-

types? Equivalently, for what sorts of tasks can we simply rely on random

prototypes and thus avoid the cost of learning? (2) What are the mechanisms

73

underlying the success of random prototypes in my experiments? For example,

can this success be explained by mechanisms related to the methods of ran-

dom projections or compressive sensing [97, 98]? The consideration of these

questions is left for future work.

74

Chapter 5

Feature Selection

This chapter considers the problem of learning prototypes from data. In this

sense, the method discussed here can be thought of as an extension of imprint-

ing. Although the literature on hierarchical visual models contains many ap-

proaches to prototype learning, this chapter focuses on one particular approach

called feature selection. The approach of feature selection has been reported to

significantly increase performance in some models [11], even on complex tasks

with many object categories.

In this chapter, I explore the benefits of feature selection for increasing the

performance of the Glimpse model. I find that this method leads to a dramatic

improvement in performance, but is limited by its prohibitive computational

cost.

5.1 Background

Feature selection begins in a manner similar to imprinting. The process starts

by selecting patches at random from training images. Glimpse is applied to

each patch, and the model’s C1 activity for each patch is recorded as a candi-

date prototype. Each candidate is assigned a weight that reflects its estimated

75

Figure 5.1: Illustration in which prototypes are learned by feature selection. (a)
Image patches (shown as red boxes) are chosen at random, and (b) candidate
prototypes are recorded from the model’s C1 activity that is calculated from
these patches. (c) Task feedback is used to weight each candidate prototype,
illustrated here with high, medium, and low weight indicated by a green check
mark, yellow question mark, and red “X”, respectively. (d) Candidates are
selected by weight to construct the final set of prototypes.

“quality”. A candidate prototype’s weight is estimated from task feedback in

an application-specific way, as will be described below. Finally, candidates are

selected by weight to form the final set of prototypes. This process is illustrated

in Figure 5.1.

A more detailed description of feature selection is shown in Algorithm 1.

The algorithm begins in Line 1 by choosing a large set of candidate prototypes

from training images, as done in imprinting. Glimpse is then used with these

prototypes to extract features for each image in the training set. From the

76

extracted features, a subset is selected in Lines 3a-3c. In Line 3a, the quality of

each feature fi is computed in an application-specific way. The quality measure

is denoted as J(·). Features are then ranked according to J(fi) in Line 3b. The

first k features in the ranked list are “selected” in Line 3c, where k is specified a

priori. The prototype associated with each selected feature is identified in Line

4. Glimpse is used with the selected prototypes in Line 5, and the performance

is evaluated on a set of testing images.

Algorithm 1 Prototype learning by feature selection.
Input: Number n of candidate prototypes, number k of selected prototypes,
and set of training and testing images.

1. Select n candidate prototypes from training images, as in imprinting.

2. Use Glimpse with candidate prototypes to compute n features for each
training image.

3. Select k features:

a) Compute quality J(fi) of each feature fi.

b) Rank features by quality.

c) Select the k highest-ranked features.

4. Create setP of only those candidate prototypes whose feature was selected
in Line 3c.

5. Evaluate Glimpse on testing images using prototypes in P.

In the most common approach, the quality J(·) of each feature is computed

using feedback from the classifier. This feedback indicates whether a given

feature was discriminative. For a linear SVM, this value can be computed

from the feature weights αi that are assigned when training the classifier. As

discussed in Section 3.1.6, the decision function of a linear SVM can be written

77

as

f(x) = sgn

[
b+

∑
i

(∑
k

γkvki

)
xi

]
, (5.1)

where γk is the weight on the kth support vector, vki is the ith feature of the kth

support vector, and xi is the ith feature value. The weight of the ith feature is

given as αi =
∑

k γkvki, and feature quality is measured as J(fi) = α2
i . This

approach has been used successfully by a number of researchers [11, 18, 99] to

increase model performance while minimizing the number of prototypes.

One drawback of feature selection is its high computational cost, which re-

sults from the fact that feature quality requires feature values to be computed

for every candidate prototype on every training image. In practice, this signifi-

cantly limits the number of candidate prototypes that can be evaluated.

As a result of this drawback, some researchers have suggested the use of other

forms of task information [20, 26, 40]. In one example, candidate prototypes

are selected only if they were created from the part of the image that contained

the foreground object [40].

Another approach chooses the weight of a candidate based on the classifier’s

estimated feedback [17]. In this method, a small set of reference prototypes is

recorded from training images, and classifier feedback is used as defined above

to weight each prototype. When a weight is needed for a candidate proto-

type, it is not measured directly from classifier feedback. Instead, the weight

is copied from the most similar reference prototype. If the reference prototype

was useful for classification, then the candidate is weighted highly. Otherwise,

the candidate is given a low weight.

The estimated feedback approach compares prototypes with respect to a

number of properties of the activation values within the prototype’s template,

such as the mean and standard deviation of the activation values. These prop-

erties are intrinsic, in that they have nothing to do with the current task. The

78

approach was demonstrated to select useful features for an HMAX model, while

significantly reducing its computational cost [17].

5.2 Methods

As discussed in the previous section, feature quality has often been computed

from weights assigned by a linear SVM. In my experiments, I use a similar

approach, but instead use weights assigned by sparse logistic regression [86]. As

discussed in Section 3.1.6, the decision function for logistic regression can be

written as

f(x) = sgn
[

1

1 + e−(b+
∑
αixi)

− 1

2

]
, (5.2)

where αi is the weight on the ith feature. In my experiments, I compute feature

quality as J(fi) = α2
i . The parameters in Equation 5.2 have been chosen using

a sparse optimization procedure, so that the fewest number of features are used.

Performance is measured as the classification accuracy1 for five independent

trials, and the mean and standard error of the trials is reported. Due to its pro-

hibitive computational cost, however, only a single trial is reported for feature

selection.

In each trial, half the images are chosen at random for training, and the

other half are saved for testing. The training images are used to choose a new

set of prototypes, and a sparse logistic regression classifier is trained on features

composed of C2 activity. The datasets used in these experiments are those

for which an invariant representation was found to be useful in Section 4.2,

including the Animals task of Serre et al. [2], and the Cars v. Planes and Face1

v. Face2 tasks of Pinto et al. [3].
1Accuracy is used in this and later chapters that employ multiclass datasets, since AUC

is a measurement of performance on binary tasks.

79

Figure 5.2: Performance on the Animals task for prototypes learned by feature
selection (solid orange line), compared with performance for imprinted (solid
blue line) and random prototypes (dashed red line).

5.3 Results

I evaluated the performance for prototypes learned by feature selection, and

compared this with the performance of imprinted and random prototypes. For

each method, performance was computed for a range of network sizes (i.e., for

different numbers of prototypes). Results are given for the Animals task in

Figure 5.2, the Cars v. Planes task in Figure 5.3a, the Face1 v. Face2 task in

Figure 5.3b, and the Caltech 256 task in Figure 5.4.

I found that feature selection consistently out-performs other methods. For

the baseline methods of imprinting and random construction, performance im-

proves consistently with model size—that is, with an increase in the number of

prototypes. In contrast, performance for feature selection generally saturates

at a particular model size, with the best performance occurring even for small

networks. This shows that task feedback can be used to find highly discrimi-

native, task-specific prototypes. Interestingly, performance for feature selection

80

(a) Cars v. Planes

(b) Face1 v. Face2

Figure 5.3: Performance on synthetic tasks for prototypes learned by feature
selection (solid orange line), compared with performance for imprinted (solid
blue line) and random prototypes (dashed red line).

81

Figure 5.4: Performance on the Caltech 256 task for prototypes learned by
feature selection (solid orange line), compared with performance for imprinted
(solid blue line) and random prototypes (dashed red line).

is not decreased by including more prototypes. This suggests that the model

is robust to prototypes that lead to irrelevant and redundant features, at least

when sparse logistic regression is used for classification.

The benefit of feature selection depends heavily on the size of the model

used. For example, the performance for prototypes learned by feature selection

is no better than that of random prototypes on the Cars v. Planes task, if

the model is allowed to use only 10 prototypes. However, the benefit of feature

selection quickly becomes apparent when the model size increases.

In a sense, the “saturation point” for feature selection—that is, the smallest

model with high performance—provides a measure of a dataset’s complexity.

In this sense, the Face1 v. Face2 dataset is more complex than the Cars v.

Planes dataset. This agrees with our intuition, since a single “wheel” proto-

type was enough to achieve high performance on the Cars v. Planes task (see

Figures 4.8a and 4.9a). This measure also suggests that the Animals dataset

is more complex than the Face1 v. Face2 dataset, which could be explained

82

by the broad variation of appearance in the “animal” category. Similarly, this

measure suggests that the Caltech 256 dataset is more complex than the An-

imals dataset, which could be explained easily by the significant difference in

the number of object categories between the two datasets.

5.4 Conclusions

In this chapter, I explored the benefits of feature selection for increasing the

performance of the Glimpse model. I found that feature selection led to a

dramatic improvement in performance, although the method is limited by its

prohibitive computational cost.

Prototypes learned by feature selection consistently out-performed those

learned by baseline methods such as imprinting. The benefit of feature se-

lection over other methods was often significant, but this result depended on

the number of prototypes used in the model. Overall, the difference between

methods only becomes apparent at a certain scale, and this scale appears to be

task dependent. Thus, my results suggest that it is critical to consider the scal-

ing behavior of a model, rather than simply measuring performance at a fixed

number of prototypes. Interestingly, performance for prototypes learned by fea-

ture selection was very high on some datasets, even when very few prototypes

were used. This result suggests that task feedback has been used successfully

to find a small set of task-specific and discriminative prototypes.

83

Chapter 6

Learning by Clustering

As discussed in Section 2.3, imprinting has a number of drawbacks that re-

sult from the inclusion of redundant and non-discriminative prototypes. This

increases the model’s computational cost, and can decrease its performance as

well. A number of approaches have been suggested in the literature to overcome

these drawbacks.

This chapter investigates k-means clustering, which is a fast method for

summarizing a large set of prototypes by creating a small number of represen-

tative examples. K-means has been used repeatedly in the literature to learn

prototypes in hierarchical models. For example, this approach is suggested

[100] as the best approach for “unsupervised” learning in convolutional net-

works, which are hierarchical models that bear a strong resemblance to HMAX.

While k-means has been used to learn prototypes in HMAX [20, 40, 45], its

benefit—compared with imprinting, for example—is still unclear.

Surprisingly, I find that k-means provides no performance benefit when com-

pared to imprinting, but instead often hurts performance. I explore two hy-

potheses to explain the lack of improvement, but find that both hypotheses are

contradicted by the evidence. Thus, finding an explanation for the behavior of

84

k-means prototypes is left as an open problem.

The rest of this chapter is organized as follows. Section 6.1 provides back-

ground on k-means clustering, and discusses how this method can be used to

learn prototypes. Section 6.2 outlines the experimental methodology used in

the experiments of this chapter, and my results are presented in Section 6.3.

These results are discussed in Section 94. Finally, Section 6.5 summarizes the

findings and provides conclusions.

6.1 Background

The approach of clustering takes the choice of prototypes and casts it as a

machine learning problem. Just as in imprinting, the process starts by ran-

domly selecting image patches, applying a hierarchical model, and recording

the model’s C1 activity for each region. These prototypes are then treated as

vectors that are partitioned into a number of clusters. Each cluster is summa-

rized by a new prototype that is representative of the cluster members, and the

model is evaluated using only these representatives as prototypes. This process

is illustrated in Figure 6.1.

Clusters are chosen so that prototypes from the same cluster are similar. The

overall quality of a cluster is measured as the variance of the cluster elements.

Once clusters are chosen, each cluster is summarized by computing the average

of all prototypes assigned to it. This is possible because the prototypes are

treated as vectors, so the ith component of the average is given by the average

of the ith component across all members of the cluster.

The above description can be written analytically as an objective function

that measures how well (or poorly) a given partitioning meets the criteria. This

85

Figure 6.1: Illustration in which prototypes are learned by clustering. (a) Im-
age patches (shown as red boxes) are chosen at random, and (b) prototypes
are recorded from the model’s C1 activity. (c) The prototypes are partitioned
into clusters. (d) Each cluster is summarized by computing the average of
its prototypes. This creates a new set of prototypes—given as vectors of C1
activations—and the model is evaluated using only these new prototypes.

is given as

Obj(P;C) =
k∑
j=1

n∑
i=1

cij ‖xi − pj‖2 , (6.1)

where P = {pj} is the matrix of new prototypes, k is the number of prototypes

in that matrix, n is the number of original prototypes, and xi is the ith such

prototype. The matrix C encodes the cluster assignments, where the element

cij ∈ {0, 1} indicates whether the ith example is assigned to the jth cluster.

The goal of prototype learning by clustering is to find a new set of prototypes

P that minimize the objective function. The inner summation of Equation 6.1

ranges over the elements of a given cluster, calculating their dissimilarity with

86

the cluster’s representative prototype. The higher this dissimilarity, the more

the choice of prototypes is penalized. The outer summation ranges over the

clusters, combining these penalties. Thus, the best prototypes are those that

minimize the variance over all clusters simultaneously.

One approach to minimize Obj(P;C), called k-means [101], is shown in

Algorithm 2. The algorithm begins in Line 1 by choosing a large set of example

prototypes from training images, as done in imprinting. Clustering is then

performed in Lines 2a-2d. This begins by guessing the cluster centers P in Line

2a, and then repeatedly applies the following two steps. Cluster assignments are

reviewed in Line 2b to ensure that each candidate is assigned to the cluster with

the closest center. The center of each cluster is shifted in Line 2c to minimize

its distance to all members, where the new center is chosen to be the average of

all current members. These two steps are repeated until the objective function

reaches a fixed point in Line 2d. Finally, Glimpse is evaluated on separate set

of testing images in Line 3, where prototypes are given from the cluster centers

P.

Note that a reassignment in Line 2b will always decrease the combined

penalty for the two clusters in the reassignment, that is, the cluster that loses a

member and the cluster that gains it. Similarly, Line 2c will never increase the

penalty for either cluster, since the cluster centers are chosen to minimize this

penalty. Since the value of the objective function is never increased, k-means is

guaranteed to converge to a (locally) optimal set of clusters.

6.2 Methods

In these experiments, Glimpse uses the sparse logistic regression classifier [86]

that was introduced in Section 3.1.6. Clustering is performed using the Mini-

Batch k-means algorithm [102], implemented in the Scikit-Learn Python pack-

87

Algorithm 2 Prototype learning by k-means clustering.
Input: Number n of initial prototypes, number k of clusters, and set of training
and testing images.

1. Select n prototypes from training images, as in imprinting.

2. Partition these prototypes into clusters:

a) Choose initial cluster centers P arbitrarily.

b) Reassign each candidate to the cluster with the nearest center, given
by

cij =

{
1 if j = argmin

j∗
‖xi − pj∗‖

0 otherwise.

c) Update each cluster center according to the newly assigned points,
given by

pj =
1∑
i cij

∑
i

cijxi .

d) Go to Step 2b unless the objective Obj() in Equation 6.1 has con-
verged.

3. Evaluate Glimpse on testing images using cluster centers P as prototypes.

age [103]. In this chapter, performance is measured as the classification accu-

racy1 for five independent trials, and the mean and standard error of the trials

is reported. In each trial, half the images are chosen at random for training,

and the other half are saved for testing. The training images are used to choose

a new set of prototypes, and the classifier is trained on features composed of

C2 activity. The datasets used in these experiments are those for which an

invariant representation was found to be useful in Section 4.2.
1Accuracy is used in this and later chapters that employ multiclass datasets, since AUC

is a measurement of performance on binary tasks.

88

6.3 Results

For each dataset, the performance of Glimpse is measured using 1,000 proto-

types learned by k-means clustering, which uses a large set of 10,000 candidate

prototypes. Every set of k-means prototypes is learned from an independent

set of candidates. For comparison, the performance is computed on the same

dataset using 1,000 imprinted prototypes.

Results are shown in Figures 6.2 and 6.3. Surprisingly, imprinting led to

a superior representation in these experiments, with performance that was at

least as high as for k-means prototypes across all tasks.

As in Chapter 4, the performance for Glimpse is also analyzed for different

number of prototypes. Results are shown in Figures 6.4 and 6.5, which shows

the performance (mean accuracy) for different numbers of prototypes chosen

by imprinting and k-means. These results suggest that the difference between

representations is less significant in low-dimensional representations (i.e., for a

small number of prototypes), but that imprinted representations have a superior

scaling behavior.

6.3.1 Effect of Training Size

Note that the experiment described in the previous section used the same num-

ber of candidates when learning k-means prototypes, regardless of the number

k of prototypes to be learned. Consequently, the average number of candidates

per cluster varies inversely with k. For example, the ratio of candidates to pro-

totypes in Figure 6.4a is approximately 1,000:1 on the left side, but only 10:1

on the right. It is possible that this difference adversely affects the performance

of learned prototypes. To test this, I measure the performance of Glimpse using

k-means prototypes learned with different numbers of candidates.

89

(a) Animals and synthetic tasks of Pinto et al. Variation level three
is used for synthetic tasks.

(b) Cats v. Dogs with rendered objects on various backgrounds.

Figure 6.2: Comparison of performance for C2 features using imprinted (gray)
and k-means (dashed gray) prototypes. The vertical axis shows the mean per-
formance (accuracy) over five independent trials for 1,000 prototypes, with error
bars showing one standard error. Surprisingly, imprinting led to superior rep-
resentations across nearly all tasks.

90

Figure 6.3: Comparison of performance on multiclass datasets for 1,000 C2
features using imprinted (gray) and k-means (dashed gray) prototypes, as in
Figure 6.2.

Results are shown for two representative datasets in Figure 6.6, which shows

the change in performance when k prototypes are learned with an average of

10, 100, and 1,000 candidates per cluster. This data is reported for the Animals

and Cars v. Planes tasks. Interestingly, I see little evidence that more training

samples result in better prototypes. In fact, the results for the Cars v. Planes

task shows a slight negative trend.

6.3.2 Effect of Activation Function

My results for prototypes learned using k-means are surprising, but not unprece-

dented. Although researchers have reported good performance for k-means in

related visual models (e.g., see [100]), it is unclear whether these results also

apply to HMAX-like models. Studies of prototype learning for HMAX-like net-

works have reported mixed results, and have roughly been in line with our

findings. For example, Brumby et al. [30] report that prototypes found using

a Hebbian learning rule (similar to an online version of k-means) often fail to

91

(a) Animals

(b) Face1 v. Face2

Figure 6.4: Comparison of Glimpse’s performance for different numbers of im-
printed (solid) and k-means (dashed) prototypes, for a representative sample of
the datasets used in Figure 6.2. Plots show mean performance (accuracy) over
five independent trials, with error bars showing one standard error.

92

Figure 6.5: Comparison of Glimpse’s performance on rendered Cats v. Dogs
over image backgrounds for different numbers of imprinted (solid) and k-means
(dashed) prototypes, as in Figure 6.4.

Figure 6.6: Effect of sample size on Glimpse’s performance with k-means proto-
types on the Animals (solid) and Cars v. Planes (dashed) tasks. Performance is
shown for 128 prototypes. The horizontal axis shows the number of candidates
(on a log scale) per prototype, the vertical axis shows the mean performance
(accuracy) over five independent trials for sparse logistic regression. Error bars
show one standard error.

93

outperform a simple imprinting procedure.

Here, I consider whether the poor results for k-means, relative to its use in

other architectures, is related to Glimpse’s S2 activation function. One of the

unique characteristics of HMAX-like networks is their use of an RBF activation

function. However, one of the models in which k-means has been successful uses

a dot-product activation function, similar to that used for Glimpse’s S1 layer.

This section investigates whether this difference can account for Glimpse’s poor

performance when using k-means prototypes.

To test this hypothesis, Glimpse’s S2 activation function was modified to

use a dot product in the following way. Remember that the RBF in Equation

3.5 is based on the distance between the input x and prototype p. However,

the distance is defined in terms of the inner product. Using this definition along

with the bilinearity of the inner product, the distance can be rewritten as

‖x− p‖ = ‖x‖2 + ‖p‖2 − 2 (x,p) , (6.2)

where the term (·, ·) denotes the dot product. If contrast normalization is

used—that is, the input and prototype are constrained to have unit norm—

then Equation 6.2 implies that

‖x− p‖ ∝ (x,p) .

That is, the use of contrast normalization makes the distance function pro-

portional to the dot product between the two vectors2. A method for contrast

normalization was already introduced in Section 4.3, and was shown to be useful

for random prototypes. That method is used here as well.

Results are shown in Figures 6.7 and 6.8 for 1,000 prototypes learned with

k-means, where the S2 units use either an RBF (as in Figure 3.5) or a sparse,
2The connection between an RBF and normalized dot product is also discussed by Serre

et al. [104].

94

contrast invariant activation function. In nearly all tasks, the updated acti-

vation function resulted in a significant decrease in performance. The only

exception to this decrease was the synthetic Face1 v. Face2 task, in which a

sparse contrast-invariant activation function led to an increase in model per-

formance. These results suggest that the activation function is generally not

responsible for Glimpse’s poor performance when using k-means prototypes.

6.4 Discussion

Results for imprinted prototypes reported here and in Chapter 4 suggest that

performance is based on finding a few discriminative patterns in key locations

of objects. For example, a “car wheel” appears to form such a discriminative

pattern in the Cars v. Planes task (see Figure 4.9 on Page 70), while an oriented

“face” pattern appears to suffice for the Face1 v. Face2 task. This suggests an

explanation for the poor performance seen for k-means prototypes. Specifically,

k-means will choose new prototypes that are combinations of multiple example

prototypes. Thus, a discriminative pattern—such as the wheel of a car—will

be corrupted with examples of other object parts.

However, the hypothesis just described may hold only for “simple” tasks,

which use a small number of narrowly-defined object categories. Would the

same result hold if the categories are defined more broadly, or if the number

of categories is increased? Results reported for feature selection (Chapter 5)

suggest that these results may not hold. For example, results for feature selec-

tion on the Animals task (Figure 5.2 on Page 79) suggest that there may be no

small set of discriminative prototypes for the broadly-defined class of “animal”

images. In addition, similar results on the Caltech 256 task (Figure 5.4 on

Page 81) suggest that the hypothesis may not apply when the number of object

categories becomes large.

95

(a) Animals and synthetic tasks of Pinto et al. Variation level three
is used for synthetic tasks.

(b) Rendered Cats v. Dogs on various backgrounds.

Figure 6.7: Performance for k-means prototypes using the standard activation
function (gray), compared to that using a sparse, contrast invariant activation
function (hatched gray). The vertical axis shows the mean performance (accu-
racy) over five independent trials for 1,000 prototypes, with error bars showing
one standard error. (The error is not visible for k-means prototypes on Caltech
256, due to low variation between trials.) These results suggest that the activa-
tion function is not the cause of the poor performance for k-means prototypes.

96

Figure 6.8: Performance on multiclass datasets for k-means prototypes using the
standard activation function (gray), compared to that using a sparse, contrast
invariant activation function (hatched gray).

6.5 Conclusions

This chapter investigated the use of k-means clustering to learn prototypes in

Glimpse. I hypothesized that clustering would significantly increase the model’s

performance, compared to the use of imprinted prototypes. However, my results

suggest that k-means is poorly adapted to the problem of prototype learning.

The performance for prototypes learned by k-means was consistently worse than

that using an imprinted dictionary (Figure 6.2), and this relationship did not

depend on the number of prototypes used (Figure 6.2).

Surprisingly, I found that this result did not depend on the number of ex-

amples that were used during clustering (Figure 6.6). Additionally, the result

does not appear to be caused by the use of an RBF activation function, as

performance suffered further when the activation function used the equivalent

of a dot product (Figure 6.7). Thus, the explanation for this poor performance

is still unclear, and is left for future work.

97

Chapter 7

Clustering with Feedback

Chapter 5 showed that task information can be very useful to learn a small set

of discriminative prototypes for an HMAX-like model. However, the method

considered, called feature selection, has a high computationally cost. Alterna-

tively, Chapter 6 showed that an alternative method, called clustering, has a

low computational cost, but fails to find discriminative prototypes.

In this chapter I propose and test a new method for prototype learning that

attempts to improve upon these existing approaches. The new method uses task

information in a scalable way to learn a small set of discriminative prototypes

from a large number of candidates. The method uses an approach based on

clustering, but integrates a notion of feature quality to ignore candidates that

are irrelevant to the task.

7.1 Background

In HMAX-like models, the approach of learning prototypes with task infor-

mation has generally been limited to that of feature selection, as discussed in

Chapter 5. Perhaps the only other use of task information in the literature

is the approach of category-dependent imprinting, which was used by Serre et

98

al. (2002). Here, the model was applied to a Faces v. Background task, and

prototypes were imprinted only from “face” images. The authors report a small

increase in performance, compared with imprinting from both “face” and “back-

ground” categories.

Outside of HMAX-like models, a number of approaches have been suggested

to include task information during clustering. These approaches have been

introduced in the machine learning literature, and include methods such as

Learning Vector Quantization [105] and Information Loss Minimization [106].

7.2 Weighted Clustering

In this section, I introduce a novel way to learn prototypes using task feed-

back. This method extends the clustering approach, described in Section 6.1,

by integrating task information in the form of weights on the prototypes. I hy-

pothesized that the introduction of task feedback would significantly improve

the performance of prototypes learned by clustering.

As in other approaches, the method starts by generating prototypes from a

set of training images, that is, by recording the C1 activity that results from

applying Glimpse to randomly chosen image patches. Task information is used

to assign a weight to each prototype, which indicates its estimated contribution

to the model’s performance. A weighted version of clustering is applied to

1) partition prototypes into groups and 2) create a new prototype from each

group. Each new prototype is synthesized by taking the weighted average of all

members of its group. This process is illustrated in Figure 7.1.

As before, clusters are chosen so that members of the same cluster are as

similar as possible. In this case, however, clusters are robust to outliers with low

weight. Once a partition is chosen, each cluster is summarized by computing

the weighted average of all cluster members. This can be captured analytically

99

Figure 7.1: Illustration in which prototypes are learned with feedback using
weighted clustering. (a) Image regions (shown as red boxes) are chosen at
random, and (b) prototypes are recorded from the model’s C1 activity. (c)
Task feedback is used to weight each prototype, with high, medium, and low
weight indicated by a green check mark, yellow question mark, and red “X”,
respectively. (d) The prototypes are partitioned into clusters. (e) One new
prototype is created from each cluster, given by the weighted average of the
prototypes in that cluster.

in the objective function

ObjW (P;C) =
k∑
j=1

n∑
i=1

αicij ‖xi − pj‖2 , (7.1)

where P is a set of prototypes, C is a set of cluster assignments, and xi is the

ith prototype, as in unweighted clustering. The additional term αi gives the

weight of the ith example patch, which is assumed to be non-negative. It is not

assumed that weights sum to unity.

As in Equation 6.1, the inner summation ranges over members of a given

cluster, and calculates the degree to which those members differ from the clus-

100

ter’s center. The penalty for this cluster is proportional to the degree of differ-

ence. Unlike Equation 6.1, however, this penalty is scaled by the weight αi of

each prototype, such that deviations due to low-weight prototypes are penalized

less than those for highly-weighted prototypes. The outer summation combines

the penalties for all clusters.

To minimize Equation 7.1, I propose a simple modification to the k-means

algorithm. The modified algorithm is shown in Algorithm 3. Note that the only

difference between this and Algorithm 2 is the need to compute weights in Line

2 and the use of a weighted average to update cluster centers in Line 3c.

Algorithm 3 Prototype learning by weighted k-means clustering.
Input: Number k of clusters, and set of training and testing images.

1. Select prototypes from training images, as in imprinting.

2. Compute weight αi for each prototype xi.

3. Partition prototypes into clusters:

a) Choose initial cluster centers P.

b) Reassign each prototype to the cluster with the nearest center, given
by

cij =

{
1 if j = argmin

j∗
‖xi − pj∗‖

0 otherwise.

c) Update each cluster center according to the newly assigned proto-
types, given by

pj =
1∑
i cij

∑
i

αicijxi .

d) Go to Step 3b unless the objective ObjW() in Equation 7.1 has con-
verged.

4. Evaluate Glimpse on testing images using cluster centers P as prototypes.

101

7.2.1 Illustrative Example

To demonstrate Algorithm 3, I investigate its behavior on an artificial clustering

task with two-dimensional data. Here, training data is sampled from a combi-

nation of three distributions, composed of two isotropic Gaussian distributions

and a linear function with random noise. The goal is to estimate the parame-

ters of the Gaussian data, while minimizing the effect from samples of the linear

function. Thus, the linear function plays the role of image backgrounds, while

the two Gaussian distributions provide examples of “image foregrounds”.

Results are shown in Figure 7.2 for an increasing amount of background

data. In the plots, we can see that the unweighted k-means algorithm becomes

increasingly “distracted” by background data points, particularly as the training

set becomes dominated by such data. This is significant, as unconstrained

natural image corpora often contain many more examples of image backgrounds,

compared with the amount of foreground data.

Next, I apply the weighted k-means algorithm to the most extreme case in

Figure 7.2, in which a 4:1 ratio of foreground to background points is used. As

the weight on background points is decreased relative to foreground points, we

expect the recovered distribution parameters to shift toward their true values.

Results are shown in Figure 7.3. As expected, the estimated means (shown as

red diamonds) approach their true values as the weight on background patches

increases. This demonstrates how non-uniform weighting can effectively com-

pensate for background distractors. As with other forms of k-means clustering,

I found that the algorithm was sensitive to the choice of initial cluster centers.

However, I found that poor results occurred for weighted k-means much less

frequently than for unweighted k-means.

102

(a) M = 1
8N (b) M = N

(c) M = 4N

Figure 7.2: Results for unweighted k-means clustering on an artificial task,
which illustrates the effect of “background” data when clustering prototypes.
Data points are sampled from two “foreground” Gaussian distributions centered
at (−3, 1) and (4, 8), and a “background” linear function Y = 4−X for normal
random variable X. The goal is to recover the parameters of the two foreground
distributions as the numberM of background points is increased, while the total
number N = 2048 of foreground points is held constant. Points are colored
(blue and green) according to their cluster assignment. As more background
points are added, the cluster centers (red diamonds) are pulled away from the
foreground distributions.

103

(a) αB = 1 (b) αB = 1
2

(c) αB = 1
10

Figure 7.3: Results for weighted k-means clustering on the artificial task of
Figure 7.2c for different weights αB on the background points. The weight on
foreground points is held constant at 1.0. The estimated parameters of the
foreground distributions are shown (red diamonds) along with the algorithm’s
initial cluster centers (red triangles; see Line 1 of Algorithm 3). As the weight on
background points is decreased, the effect of those points is reduced. The result
is a significant improvement on the estimate of the foreground distributions.

104

(a) No overlap, αi = 0.0 (b) Partial overlap, αi = .5 (c) Total overlap, αi = 1.0

Figure 7.4: Example of weights computed from the degree of overlap between
the prototype and the foreground object.

7.3 Methods

My experiments investigate the effectiveness of learning new prototypes when

initial prototypes are drawn only from the foreground object. Specifically,

this asks whether better prototypes are learned when initial prototypes drawn

from image backgrounds are suppressed. This problem is approached using

weighted clustering, where weights indicate whether the prototype was drawn

from the foreground object. Specifically, weight is calculated as the fraction of

the prototype—or rather, the image region from which it was recorded—that

overlaps the foreground object. This is illustrated in Figure 7.4.

To compute these weights, we need to know which image pixels represent the

foreground, and which are from the background. Such detailed segmentations

are available for the Animals task, and were generated manually for the Cars

v. Planes task. In my experiments, a constant value of 0.1 was added to all

weights, which ensures that background prototypes (i.e., those drawn from the

image background) will not be ignored entirely. This is intended to provide more

examples of natural image statistics, while focusing the learner on examples of

the foreground objects. However, the model’s performance was qualitatively

unchanged when this constant was removed.

Note that an entirely different source of task information was also inves-

105

tigated. In that investigation, a prototype was weighted heavily if it was

discriminative—that is, if the prototype generated a feature that was useful

for classification. However, the results for that investigation were very similar

to that reported in Section 7.4.

The experiments used Glimpse with a sparse logistic regression classifier [86].

The implementation of prototype clustering used in Chapter 6 was modified

according to Algorithm 3. Unless otherwise noted, each experiment is repeated

in five independent trials, and the mean and standard error of the performance

is reported. In each trial, half of the images are chosen for training, with the

other half reserved for testing. The set of prototypes is then chosen from the

training images, and the classifier is trained on the resulting feature vectors.

Performance is reported as the accuracy on the set of test images. The datasets

used in these experiments are those for which an invariant representation (i.e., a

representation composed of C2 activations) was found to be useful, as described

in Section 4.2, and includes the Animals task of Serre et al. [2] and the Cars v.

Planes task of Pinto et al. [3].

7.4 Results

Results are shown in Figure 7.5, which reports performance for new 1,000 proto-

types learned from 10,000 initial prototypes. These results show no significant

improvement in performance when the learner is focused on the foreground ob-

ject. As before, the model’s scaling behavior is also analyzed by measuring the

performance for different number of prototypes, with results reported in Figure

7.6. This analysis shows that learning from image foregrounds often hurts per-

formance when Glimpse uses few prototypes. Thus, it appears that foreground

weights have not helped the learner find an improved object representation.

106

Figure 7.5: Comparison of performance for k-means prototypes learned without
weights (gray) and with foreground weights (hatched gray). The vertical axis
shows the mean performance (accuracy) over five independent trials, each using
100 prototypes with sparse logistic regression. Error bars show one standard
error.

7.4.1 Informative Backgrounds

This experiment assumes that only image foregrounds are useful for classifi-

cation. However, it is possible that the poor results for learning from image

foregrounds in Figure 7.5 are due to the presence of discriminative image back-

grounds. To test this hypothesis, I ask whether prototypes drawn from the

background are more or less useful than those drawn from the foreground ob-

ject. To measure this, I generate prototypes, and record whether they overlap

the object. Prototypes are weighted by classifier feedback using sparse logistic

regression, and are said to be used by the classifier if their weight is non-zero.

The event that a prototype has any overlap with a foreground object is mod-

eled as a random variable, with probability P (fg). The event that a feature

generated from a prototype is used by the classifier is modeled as another ran-

dom variable, with probability P (used). The utility of foreground prototypes is

107

(a) Animals

(b) Cars v. Planes

Figure 7.6: Comparison of performance for different numbers of C2 features
using k-means prototypes learned without weights (solid) and with foreground
weights (dashed). Plots show mean performance (accuracy) over five indepen-
dent trials, with error bars showing one standard error. Plot (a) shows results
for the Animals task and plot (b) shows results for the Cars v. Planes task.

108

measured as

Utility(fg) = log2

(
P (used | fg)
P (used | ¬fg)

)
, (7.2)

where P (used | fg) and P (used | ¬fg) are the probabilities that foreground and

background prototypes are used by the classifier, respectively. This measure is

zero if foreground and background prototypes are equally likely to be useful for

classification, and grows when foreground prototypes are more useful than back-

ground prototypes. A utility value of 1.0 indicates that foreground prototypes

are twice as likely to be useful, compared with background prototypes.

Figure 7.7 reports the utility of foreground prototypes for the two datasets in

Figure 7.5, where probabilities are estimated using 10,000 imprinted prototypes.

The results suggest that recording prototypes from foreground objects should

provide a significant benefit for the Cars v. Planes task, where foreground

prototypes were used twice as often as background prototypes. In contrast, the

benefit of foreground and background prototypes was nearly indistinguishable

for the Animals task.

These results are somewhat surprising. Although experiments in Section 4.2

suggested that an invariant representation is useful for performing the Animals

task, we see here that the prototypes composing this representation are often

drawn from image backgrounds. Therefore, this dataset may be less informative

for studies of object recognition than previously thought. Interestingly, these

results agree with a previous study [83], which suggests that an HMAX-like

model relies on the presence of “blurry” image backgrounds to perform the

Animals task.

Table 7.1 reports the total number of prototypes that were used by the

classifier for each dataset. Note that this number varies considerably across the

datasets, which appears to reflect the dataset’s inherent difficulty. Relative to

its behavior on the Cars v. Planes task, the classifier used four times more

109

Figure 7.7: Utility of foreground prototypes for different datasets, where utility
is defined as in Equation 7.2. This measure is zero if foreground and background
prototypes are equally likely to be used for classification, with greater values
indicating a preference for foreground prototypes. Here, a prototype is used if
its feature is given a non-zero weight by the classifier, and is a foreground (fg)
prototype if it was recorded from any part of a target object.

Corpus Number Used
Animals 450

Cars v. Planes 110

Table 7.1: The number of prototypes given non-zero weight by the classifier,
from a total set of 10,000 imprinted prototypes.

prototypes for the Animals dataset. This suggests that the “animal” category

(or perhaps the “not animal” category) is harder to represent than rendered cars

and planes.

7.5 Conclusions

In this chapter, I investigated a new method to learn prototypes from training

images when task information is available. The new method was created by

extending the clustering approach discussed in Chapter 6 to incorporate weights

110

on prototypes. This approach was intended to capture the low computational

cost of clustering, while using task information to learn prototypes that are

discriminative.

Surprisingly, the addition of task information had very little effect on the

performance of learned prototypes, with performance under the new approach

being similar to—or worse than—a simple unweighted clustering. A follow-up

experiment suggested that this poor performance is likely due to the method of

weighted clustering, rather than the source of task information. Thus, it appears

that weighted clustering is not effective for learning discriminative prototypes

in HMAX-like models.

111

Chapter 8

Conclusions

This work investigated an influential family of hierarchical visual models, which

have garnered significant interest in both the computer vision and neuroscience

communities. Such models are applied to the problem of object recognition, in

which the model must discriminate between different three-dimensional objects

(such as automobiles) based solely on the visual input. The task is performed by

exhaustively comparing patches of an image to a set of stored patterns, called

prototypes, and the results are fed to a statistical classifier that predicts the

category of object present. Prototypes are learned by imprinting patches from

arbitrarily chosen training images.

While the choice of prototypes is thought to be crucial to the model’s success,

we lack a comprehensive understanding of the mechanisms by which prototypes

mediate this success. This dissertation investigated those mechanisms, including

the impact of prototypes on model performance, the benefits and limitations of

adapting prototypes to new tasks, and the role of feedback in this adaptation.

The contributions of this dissertation include the following.

• A new hierarchical model is introduced (Chapter 3). A novel framework

was created, which allows the expression of a wide range of hierarchical

112

visual models. This framework was used to implement a new visual model

called Glimpse, the performance of which was shown to be competitive

with existing HMAX-like models.

• Limitations in common datasets are identified (Chapter 4). I analyzed

a number of benchmark datasets that have commonly been used in ob-

ject recognition research, and find that many are inappropriate for testing

viewpoint-invariant object recognition. Instead, I found that high per-

formance on many of these datasets was possible by using only a simple

representation that lacks viewpoint invariance.

• The importance of imprinted shape is studied (Chapter 4). I investigated

a core assumption of HMAX-like models, namely that their success as

widely reported in the literature was due to the learning of prototypes

by imprinting. This was tested by comparing performance for imprinted

prototypes and prototypes generated in a purely random fashion. Surpris-

ingly, I found that performance was nearly identical for the two methods.

While prototype learning is likely to be a crucial way to increase model

performance, this result argues that the method of imprinting—assumed

to be central to the model’s success—may be entirely unnecessary.

• The importance of feedback is demonstrated (Chapter 5). I investigated the

effect of feedback on model performance, and showed how feature selection

can be used to choose a small set of discriminative prototypes. The results

include an improvement in model performance, and a reduction in its

computational cost.

• Limitations in a common prototype learning method are found (Chapter

6). The method of k-means clustering, often used in the hierarchical

model literature, is shown to result in surprisingly poor performance in an

113

HMAX-like model. The performance for prototypes learned by k-means

clustering was found to be lower than those learned by imprinting.

• A feedback-driven method for prototype learning is introduced (Chapter

7). An extension of k-means clustering is described, which integrates task

feedback into the learning process. Few assumptions are made of the form

of feedback used, allowing the method to be applied in a wide range of

situations. Compared with feature selection, the method requires far less

computation and allows completely new prototypes to synthesized.

114

Chapter 9

Future Work

This work raises a number of important questions about the family of HMAX-

like models, which should be addressed in future work. The most important goal

is to construct a new theory, which describes how the family of HMAX-like mod-

els supports competitive performance on viewpoint-invariant object recognition

tasks. Such a theory should account for the results of Section 4.3. Specifically,

such a theory should explain how a randomly-constructed representation sup-

ports discrimination, despite its lack of shape specificity. Furthermore, such

a theory should be able to predict when, if ever, a learned representation will

out-perform random prototypes.

One source of inspiration for this theory may come from work on compres-

sive sensing [98], in which random measurements are used to capture and store

signals (such as visual or auditory signals) using a highly compressed representa-

tion. An important restriction is that the signals must be sparse. Here, signals

are assumed to be generated by combining atoms of a dictionary1, and are called

sparse if each signal can be represented using a small (possibly different) subset

of those atoms.
1For example, edge components form the atoms of one such dictionary for image data.

115

The salient point in compressive sensing is the idea that random measure-

ments have little effect on the “similarity” between sparse signals; if two signals

are similar, then their random measurements will be similar. The questions that

should be asked include the following. First, does the C1 layer provide a sparse

representation—that is, is the C1 layer sparsely active—for natural images?

This is very likely to be true, since past studies [107] suggest that a represen-

tation composed of localized edge filters does provide a sparse representation.

Second, do features computed with random prototypes preserve the similarity

between images? That is, do similar images result in similar feature vectors,

if those feature vectors are computed using random prototypes. Under what

definition of “similarity”? Third, how does a highly-nonlinear transformation,

such as the pooling operation at C2, affect the results of compressive sensing?

Another interesting area of future work is to understand the role of addi-

tional layers of S-units in these models, which can be approached as an extension

of the investigation in Section 4.2. Biological systems rely on many layers of

processing, but it is unclear whether models such as HMAX derive any signif-

icant benefit from using, for example, an S3 layer. On one hand, a prototype

in a high model layer can express more complex patterns than those in a low

layer, since a given S-layer is defined in terms of the patterns captured in the

S-layer below. This allows a deep model to use domain-specific patterns that

are sparsely activated. On the other hand, a prototype in a high model layer

is defined with respect to a larger image area than a prototype in a low layer,

since each C-layer leads to more invariance. Thus, I expect model depth to be

limited by the resolution of the input data (e.g., the number of pixels). Part

of this future work should include an investigation of the role of depth in this

family of models.

Finally, the study of prototype learning, both with and without the use

116

of feedback, should be extended. The perplexing behavior for representations

learned by k-means will be investigated, with a focus on the ways in which

k-means prototypes differ from imprinted prototypes. In addition, I plan to

extend my results for feedback-driven learning by comparing weighted clustering

with alternative methods, such as supervised clustering [106], learned vector

quantization [108], and the concurrent optimization of classifier and prototype

dictionary as suggested by Boureau et al. [109]. Weighted clustering will also

be compared with the general problem of instance-weighted learning [110], as

discussed in the machine learning literature.

117

Bibliography

[1] T. Serre, L. Wolf, and T. Poggio, “Object Recognition with Features

Inspired by Visual Cortex,” CVPR, 2005.

[2] T. Serre, A. Oliva, and T. Poggio, “A feedforward architecture accounts for

rapid categorization,” Proceedings of the National Academy of Sciences,

vol. 104, pp. 6424–6429, Apr. 2007.

[3] N. Pinto, Y. Barhomi, D. D. Cox, and J. J. DiCarlo, “Comparing State-

of-the-Art Visual Features on Invariant Object Recognition Tasks,” in

Proceedings of the IEEE Workshop on Applications of Computer Vision

(WACV 2011), 2011.

[4] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by un-

supervised scale-invariant learning,” Computer Vision and Pattern Recog-

nition, vol. 2, pp. 264–271, 2003.

[5] M. Riesenhuber and T. Poggio, “Hierarchical models of object recognition

in cortex,” Nature Neuroscience, vol. 2, pp. 1019–1025, Nov. 1999.

[6] K. Fukushima, “Neocognitron: A self-organizing neural network model

for a mechanism of pattern recognition unaffected by shift in position,”

Biological Cybernetics, vol. 36, pp. 193–202, Apr. 1980.

118

[7] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex.,” The Journal of

Physiology, vol. 160, pp. 106–54, Jan. 1962.

[8] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio,

“A quantitative theory of immediate visual recognition,” Progress in Brain

Research, Computational Neuroscience: Theoretical Insights into Brain

Function, vol. 165, pp. 33–56, 2007.

[9] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust

object recognition with cortex-like mechanisms,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 29, pp. 411–426, Mar.

2007.

[10] S. J. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human

visual system.,” Nature, vol. 381, no. 6582, pp. 520–2, 1996.

[11] J. Mutch and D. G. Lowe, “Object Class Recognition and Localization Us-

ing Sparse Features with Limited Receptive Fields,” International Journal

of Computer Vision, vol. 80, pp. 45–57, Oct. 2008.

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation Applied to Handwritten Zip

Code Recognition,” Neural Computation, vol. 1, pp. 541–551, Dec. 1989.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[14] Q. V. Le, M. A. Ranzato, R. Monga, M. Devin, G. S. Corrado, J. Dean,

and A. Y. Ng, “Building High-level Features Using Large Scale Unsuper-

119

vised Learning,” in Proceedings of the 29th International Conference on

Machine Learning, (Edinburgh, Scotland, UK), 2012.

[15] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends

in Machine Learning, vol. 2, pp. 1–127, Jan. 2009.

[16] Y. Huang, K. Huang, L. Wang, D. Tao, T. Tan, and X. Li, “Enhanced

biologically inspired model,” in Proceedings of the 2008 IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1–8, Aug. 2008.

[17] E. Krupka, A. Navot, and N. Tishby, “Learning to Select Features using

their Properties,” Journal of Machine Learning Research, vol. 9, pp. 2349–

2376, 2008.

[18] W. Zhu and L. Zhang, “Object Recognition with Task Relevant Com-

bined Local Features,” in Proceedings of the International Conference on

Intelligent Computing, pp. 285–292, Springer Berlin / Heidelberg, 2008.

[19] N. Pinto, D. Cox, and J. J. Dicarlo, “Why is Real-World Visual Object

Recognition Hard?,” PLoS Computational Biology, vol. 4, Jan. 2008.

[20] Y. Wu, N. Zheng, Q. You, and S. Du, “Object Recognition by Learning

Informative, Biologically Inspired Visual Features,” in Proceedings of the

IEEE International Conference on Image Processing – ICIP 2007, 2007.

[21] P. Moreno, M. J. Marín-Jiménez, A. Bernardino, J. Santos-Victor, and

N. P. D. L. Blanca, “A Comparative Study of Local Descriptors for Ob-

ject Category Recognition: SIFT vs HMAX,” in Pattern Recognition and

Image Analysis, pp. 515–522, Springer Berlin / Heidelberg, 2007.

120

[22] Q.-S. Lian and Q. Li, “Object Recognition Based on Biologic Visual Mech-

anisms,” in Proceedings of the 2008 Congress on Image and Signal Pro-

cessing, pp. 386–390, IEEE, 2008.

[23] J.-W. Woo, Y.-C. Lim, and M. Lee, “Obstacle Categorization Based on

Hybridizing Global and Local Features,” in ICONIP 2009 (C. S. Leung,

M. Lee, and J. H. Chan, eds.), (Berlin, Heidelberg), pp. 1–10, Springer

Berlin Heidelberg, 2009.

[24] R. G. J. Wijnhoven and P. H. N. de With, “Advanced Concepts for Intelli-

gent Vision Systems,” in Advanced Concepts for Intelligent Vision Systems

2009 (J. Blanc-Talon, W. Philips, D. Popescu, and P. Scheunders, eds.),

pp. 410–421, Springer, 2009.

[25] S. Bileschi and L. Wolf, “Image representations beyond histograms of

gradients: The role of Gestalt descriptors,” in Proceedings of the 2007

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8,

IEEE, June 2007.

[26] P. Mishra and B. K. Jenkins, “Hierarchical model for object recogni-

tion based on natural-stimuli adapted filters,” in Proceedings of the 2010

IEEE International Conference on Acoustics, Speech and Signal Process-

ing, pp. 950–953, IEEE, 2010.

[27] K. Faez, S. Motamed, and M. Yaqubi, “Personal verification using ear

and palm-print biometrics,” in Proceedings of the 2008 IEEE International

Conference on Systems, Man and Cybernetics, pp. 3727–3731, IEEE, Oct.

2008.

[28] Z. Yaghoubi, K. Faez, M. Eliasi, and S. Motamed, “Face recognition using

HMAX method for feature extraction and support vector machine clas-

121

sifier,” in Proceedings of the 24th International Conference on Image and

Vision Computing New Zealand – IVCNZ’09, pp. 421–424, IEEE, Nov.

2009.

[29] W. Gu, C. Xiang, and H. Lin, “Modified HMAX models for facial expres-

sion recognition,” in Proceedings of the 2009 IEEE International Confer-

ence on Control and Automation, pp. 1509–1514, IEEE, Dec. 2009.

[30] S. P. Brumby, G. Kenyon, W. Landecker, C. Rasmussen, S. Swami-

narayan, and L. Bettencourt, “Large-Scale Functional Models of Visual

Cortex for Remote Sensing,” in Applied Imagery Pattern Recognition 2009

(AIPR ’09), 2009.

[31] D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, “Attentional

Selection for Object Recognition — A Gentle Way,” in Biologically Mo-

tivated Computer Vision (H. H. Bülthoff, C. Wallraven, S.-W. Lee, and

T. A. Poggio, eds.), pp. 251–267, Springer, 2002.

[32] S. S. Chikkerur, T. Serre, C. Tan, and T. Poggio, “What and where:

A Bayesian inference theory of attention,” Vision Research, vol. 50,

pp. 2247–2233, May 2010.

[33] B. Han, X. Gao, V. Walsh, and L. Tcheang, “A saliency map method

with cortex-like mechanisms and sparse representation,” in Proceedings of

the ACM International Conference on Image and Video Retrieval - CIVR

’10, (New York, New York, USA), p. 259, ACM Press, July 2010.

[34] H. Wersing and E. Körner, “Learning optimized features for hierarchical

models of invariant object recognition.,” Neural Computation, vol. 15,

pp. 1559–88, July 2003.

122

[35] W. Einhäuser, C. Kayser, K. Körding, and P. König, “Learning Multi-

ple Feature Representations from Natural Image Sequences,” in Artificial

Neural Networks - ICANN 2002, p. 788, 2002.

[36] P. O. Hoyer and A. Hyvärinen, “A multi-layer sparse coding network learns

contour coding from natural images,” Vision Research, vol. 42, pp. 1593–

1605, June 2002.

[37] R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational

Maps in the Visual Cortex. 2005.

[38] E. T. Rolls and T. Milward, “A model of invariant object recognition in the

visual system: learning rules, activation functions, lateral inhibition, and

information-based performance measures.,” Neural Computation, vol. 12,

pp. 2547–72, Nov. 2000.

[39] T. Serre, Learning a Dictionary of Shape-Components in Visual Cortex:

Comparison with Neurons, Humans, and Machines. Phd thesis, Mas-

sachusetts Institute of Technology, Cambridge, Apr. 2006.

[40] T. Serre, M. Riesenhuber, J. Louie, and T. Poggio, “On the Role of Object-

Specific Features for Real World Object Recognition in Biological Vision,”

in Biologically Motivated Computer Vision (H. H. Bülthoff, C. Wallraven,

S.-W. Lee, and T. A. Poggio, eds.), pp. 209–218, Springer, 2002.

[41] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vap-

nik, “Feature Selection for SVMs,” in Neural Information Processing Sys-

tems 2000, pp. 668–674, 2000.

[42] Andrew Y Ng, “Feature selection, L1 vs. L2 regularization, and rotational

invariance,” in Proceedings of the Twenty-First International Conference

on Machine Learning, (Banff, Canada), 2004.

123

[43] I. M. Guyon and A. Elisseeff, “An Introduction to Variable and Feature

Selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–1182,

Mar. 2003.

[44] K.-L. Du, “Clustering: a neural network approach.,” Neural networks,

vol. 23, pp. 89–107, Jan. 2010.

[45] J. Louie, A Biological Model of Object Recognition with Feature Learning.

Masters, Massachusetts Institute of Technology, 2003.

[46] J. MacQueen, “Some methods for classification and analysis of multi-

variate observations,” in Proceedings of the Fifth Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1, pp. 281–297, Univ. of Calif.

Press, 1967.

[47] P. Földiák, “Learning invariance from transformation sequences,” Neural

Comput., vol. 3, pp. 194–200, June 1991.

[48] L. Wiskott and T. J. Sejnowski, “Slow Feature Analysis: Unsupervised

Learning of Invariances,” Neural Computation, vol. 14, pp. 715–770, Apr.

2002.

[49] W. Einhäuser, C. Kayser, P. König, and K. Körding, “Learning the invari-

ance properties of complex cells from their responses to natural stimuli,”

European Journal of Neuroscience, vol. 15, no. 3, pp. 475–486, 2002.

[50] M. W. Spratling, “Learning viewpoint invariant perceptual representa-

tions from cluttered images,” IEEE transactions on pattern analysis and

machine intelligence, vol. 27, pp. 753–61, May 2005.

124

[51] S. M. Stringer, G. Perry, E. T. Rolls, and J. H. Proske, “Learning invariant

object recognition in the visual system with continuous transformations.,”

Biological cybernetics, vol. 94, pp. 128–42, Feb. 2006.

[52] T. Masquelier, T. Serre, S. J. Thorpe, and T. Poggio, “Learning com-

plex cell invariance from natural videos: A plausibility proof,” tech. rep.,

Massachusetts Institute of Technology, Cambridge, MA, 2007.

[53] G. Wallis and E. T. Rolls, “Invariant face and object recognition in the

visual system,” Progress in Neurobiology, vol. 51, pp. 167–194, Feb. 1997.

[54] N. Li and J. J. DiCarlo, “Unsupervised natural experience rapidly al-

ters invariant object representation in visual cortex.,” Science (New York,

N.Y.), vol. 321, no. 5895, pp. 1502–7, 2008.

[55] M. D. Thomure, M. Mitchell, and G. T. Kenyon, “On the Role of Shape

Prototypes in Hierarchical Models of Vision,” in International Joint Con-

ference on Neural Networks (IJCNN), 2013.

[56] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models

from few training examples: an incremental Bayesian approach tested on

101 object categories,” in CVPR 2004, Workshop on Generative-Model

Based Vision, 2004.

[57] D.-S. Pham and S. Venkatesh, “Joint learning and dictionary construction

for pattern recognition,” in Proceedings of the 2008 IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1–8, IEEE, June 2008.

[58] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, Unsupervised

Learning of Invariant Feature Hierarchies with Applications to Object

Recognition. IEEE, June 2007.

125

[59] R. Rigamonti, M. A. Brown, and V. Lepetit, “Are sparse representations

really relevant for image classification?,” in CVPR 2011, pp. 1545–1552,

IEEE, June 2011.

[60] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of Visual Fea-

tures through Spike Timing Dependent Plasticity,” PLoS Computational

Biology, vol. 3, Feb. 2007.

[61] C. Thériault, N. Thome, and M. Cord, “Extended coding and pooling

in the HMAX model.,” IEEE transactions on image processing : a pub-

lication of the IEEE Signal Processing Society, vol. 22, pp. 764–77, Feb.

2013.

[62] S. P. Brumby, L. M. Bettencourt, M. I. Ham, R. A. Bennett, and

G. Kenyon, “Quantifying the difficulty of object recognition tasks via

scaling of accuracy versus training set size,” in COSYNE, 2010.

[63] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught

Learning: Transfer Learning from Unlabeled Data,” in Proceedings of the

Twenty-Fourth International Conference on Machine Learning, (Corval-

lis, Oregon), AAAI Press, 2007.

[64] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, “What is

the best multi-stage architecture for object recognition?,” in Proceedings

of the 2009 IEEE 12th International Conference on Computer Vision,

pp. 2146–2153, IEEE, Sept. 2009.

[65] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu,

and Y. LeCun, “Learning Convolutional Feature Hierarchies for Visual

Recognition,” in Advances in Neural Information Processing Systems 23

126

(J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,

eds.), 2010.

[66] F. Rodriguez and G. Sapiro, “Sparse Representations for Image Classifi-

cation: Learning Discriminative and Reconstructive Non-Parametric Dic-

tionaries,” tech. rep., University of Minnesota, Minneapolis, Minnesota,

2007.

[67] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching

using sparse coding for image classification,” in Computer Vision and

Pattern Recognition, pp. 1794–1801, IEEE, June 2009.

[68] F. Perronnin, J. Senchez, and Y. L. Xerox, “Large-scale image catego-

rization with explicit data embedding,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp. 2297–2304,

IEEE, June 2010.

[69] G. Griffin, A. D. Holub, and P. Perona, “The Caltech-256,” tech. rep.,

Caltech, 2007.

[70] S. M. Crouzet and T. Serre, “What are the visual features underlying

rapid object recognition?,” Frontiers in Perception Science, vol. 2, 2011.

[71] J. Ponce, T. Berg, M. Everingham, D. Forsyth, M. Hebert, S. Lea,

M. Marszalek, C. Schmid, B. C. Russell, A. Torralba, C. Williams,

J. Zhang, and A. Zisserman, “Dataset Issues in Object Recognition,” in

Toward Category-Level Object Recognition, pp. 29–48, 2006.

[72] Y. LeCun, D. G. Lowe, J. Malik, J. Mutch, P. Perona, and T. Poggio,

“Object Recognition, Computer Vision, and the Caltech 101: A Response

to Pinto et al.,” Mar. 2008.

127

[73] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR

2011, pp. 1521–1528, IEEE, June 2011.

[74] N. Pinto. Personal Communication.

[75] J. Geusebroek and A. Smeulders, “The Amsterdam library of object im-

ages,” International Journal of Computer Vision2, vol. 61, no. 1, pp. 103–

112, 2005.

[76] B. Leibe and B. Schiele, “Analyzing Appearance and Contour Based

Methods for Object Categorization,” in International Conference on Com-

puter Vision and Pattern Recognition (CVPR’03), (Madison, Wisconsin),

2003.

[77] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic

object recognition with invariance to pose and lighting,” in Proceedings

of the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2004. CVPR 2004., pp. 97–104, IEEE, 2004.

[78] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia Object Image Library

(COIL-100),” technical report, Columbia University, 1996.

[79] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic

Representation of the Spatial Envelope,” International Journal of Com-

puter Vision, vol. 42, pp. 145–175, May 2001.

[80] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, “SUN Database:

Large-scale Scene Recognition from Abbey to Zoo,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2010.

[81] A. Torralba and A. Oliva, “Statistics of natural image categories,” Net-

work: Computation in Neural Systems, vol. 14, pp. 391–412, Aug. 2003.

128

[82] A. Torralba, “Contextual Priming for Object Detection,” Int. J. Comput.

Vision, vol. 53, pp. 169–191, July 2003.

[83] W. Landecker, M. D. Thomure, L. M. A. Bettencourt, M. Mitchell, G. T.

Kenyon, and S. P. Brumby, “Interpreting Individual Classifications of Hi-

erarchical Networks,” in Computational Intelligence and Data Mining -

CIDM 2013, Special session on Interpretable Systems in Machine Learn-

ing., 2013.

[84] M. D. Thomure, “Source code for the Glimpse model.” URL: http://web.

cecs.pdx.edu/~mm/glimpse/, Nov. 2013.

[85] C. Bishop, Pattern Recognition and Machine Learning. Springer, Oct.

2006.

[86] S. K. Shevade and S. S. Keerthi, “A simple and efficient algorithm for

gene selection using sparse logistic regression,” Bioinformatics, vol. 19,

pp. 2246–2253, Nov. 2003.

[87] D. Mladenić, J. Brank, M. Grobelnik, and N. Milic-Frayling, “Feature se-

lection using linear classifier weights: interaction with classification mod-

els,” in Proceedings of the 27th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, 2004.

[88] P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact Image

Code,” IEEE Transactions on Communications, vol. 31, pp. 532–540, Apr.

1983.

[89] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice

Hall, Aug. 2002.

129

[90] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”

International Journal of Computer Vision, vol. 60, pp. 91–110, Nov. 2004.

[91] D. J. Heeger, “Normalization of cell responses in cat striate cortex.,” Vi-

sual neuroscience, vol. 9, pp. 181–97, Aug. 1992.

[92] O. Schwartz and E. P. Simoncelli, “Natural signal statistics and sensory

gain control.,” Nature neuroscience, vol. 4, pp. 819–25, Aug. 2001.

[93] T. Serre, A. Oliva, and T. Poggio, “Source code for the HMAX and SLF

models.” URL: http://cbcl.mit.edu/software-datasets/pnas07/, Nov. 2013.

[94] N. Pinto, Z. Stone, T. Zickler, and D. Cox, “Scaling up biologically-

inspired computer vision: A case study in unconstrained face recognition

on facebook,” in CVPR 2011 Workshop on Biologically-Consistent Vision,

pp. 35–42, IEEE, June 2011.

[95] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng,

“On random weights and unsupervised feature learning,” in NIPS 2010

Workshop on Deep Learning and Unsupervised Feature Learning, 2010.

[96] Y. Freund and R. Schapire, “Experiments with a new boosting algorithm,”

in Proceedings of the Thirteenth International Conference on Machine

Learning, pp. 148–156, 1996.

[97] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face

recognition via sparse representation.,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 31, pp. 210–27, Feb. 2009.

[98] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, “Sparse

Representation for Computer Vision and Pattern Recognition,” Proceed-

ings of the IEEE, vol. 98, no. 6, pp. 1031–1044, 2010.

130

[99] S. S. Chikkerur, C. Tan, T. Serre, and T. Poggio, “An integrated model

of visual attention using shape-based features,” tech. rep., Massachusetts

Institute of Technology, Cambridge, MA, June 2009.

[100] A. Coates and A. Y. Ng, “Learning Feature Representations with K-

means,” in Neural Networks: Tricks of the Trade (G. Montavon, G. B.

Orr, and K.-R. M uller, eds.), Springer, 2nd ed., 2012.

[101] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on

Information Theory, vol. 28, pp. 129–137, Mar. 1982.

[102] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th

international conference on World wide web - WWW ’10, (New York,

New York, USA), p. 1177, ACM Press, 2010.

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine

Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[104] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, and T. Pog-

gio, “A Theory of Object Recognition: Computations and Circuits in the

Feedforward Path of the Ventral Stream in Primate Visual Cortex,” tech.

rep., Massachusetts Institute of Technology, Cambridge, MA, 2005.

[105] T. Kohonen, “Improved versions of learning vector quantization,” in 1990

IJCNN International Joint Conference on Neural Networks, pp. 545–550,

IEEE, 1990.

131

[106] S. Lazebnik and M. Raginsky, “Supervised learning of quantizer codebooks

by information loss minimization.,” IEEE transactions on pattern analysis

and machine intelligence, vol. 31, pp. 1294–309, July 2009.

[107] D. J. Field, “Relations between the statistics of natural images and the

response properties of cortical cells.,” Journal of the Optical Society of

America. A, Optics and image science, vol. 4, pp. 2379–94, Dec. 1987.

[108] P. Schneider, M. Biehl, and B. Hammer, “Distance learning in discrim-

inative vector quantization.,” Neural computation, vol. 21, pp. 2942–69,

Oct. 2009.

[109] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level

features for recognition,” in Computer Vision and Pattern Recognition

2010, pp. 2559–2566, IEEE, June 2010.

[110] N. Karampatziakis and J. Langford, “Online Importance Weight Aware

Updates,” in Proceedings of Uncertainty in Artificial Intelligence (UAI-

11), (Corvallis, Oregon), pp. 392—-399, AUAI Publishers, 2011.

	The Role of Prototype Learning in Hierarchical Models of Vision
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1397232036.pdf.uBb8F

