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Abstract 

Urban water use arises from a mix of scale-dependent biophysical and socioeconomic 

factors. In Portland, Oregon, single-family residential water use exhibits a tightly coupled 

relationship with summertime weather, although this relationship varies with land use 

patterns across households and neighborhoods. This thesis developed a multilevel 

regression model to evaluate the relative importance of weather variability, parcel land 

use characteristics, and neighborhood geographic context in explaining single-family 

residential water demand patterns in the Portland metropolitan area. The model drew on a 

high-resolution panel dataset of weekly mean summer water use over five years (2001-

2005) for a sample of 460 single-family households spanning an urban-to-suburban 

gradient. Water use was found to be most elastic with respect to parcel-scale building 

size. Building age was negatively related to water use at both the parcel and 

neighborhood scale. Half the variation in water use can be attributed to between-

household factors. Between-neighborhood variation exerted a modest but statistically 

significant effect. The analysis decomposed household temperature sensitivity into four 

components: a fixed effect common to all households, a household-specific deviation 

from the fixed effect, a separate extreme heat effect, and a land use effect, where lot size 

exaggerated the effect of temperature on water use. Results suggested that land use 

planning may be an effective non-price mechanism for long-range management of peak 

demand, as land use decisions have water use implications. The combined effects of 

population growth, urbanization, and climate change expose water providers to risk of 

water stress. Modeling fine-grain relationships among heat, land use, and water use 

across scales plays a role in long-range climate change planning and adaptation. 
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Chapter 1: Introduction 

1.1. Climate change and urban water resource management 

 Clean, potable water is an increasingly scarce, valuable resource. Although U.S. 

per-capita water use has declined relative to the 1970s, population growth has stressed 

urban water supply infrastructure, leading to management of demand through higher 

prices, technological change, and conservation incentives (Gleick 2003; Coomes et al. 

2011). Climate change threatens to add a new source of stress to urban water 

provisioning systems (Miller and Yates 2006). In the Pacific Northwest, a wide range of 

climate change scenarios have projected hotter, drier summers, which could reduce 

snowpack and modify the timing and magnitude of streamflow, potentially limiting water 

supply during peak-season demand in late summer (Mote and Salathé 2010). At the same 

time, peak demand may itself increase, as air temperature drives summer water 

consumption (Praskievicz and Chang 2009). The prospect of climate-induced reductions 

in supply and increases in demand, compounded by the effects of population growth, 

paints a potentially grim picture of intensified water stress associated with warming 

climate patterns.  

 The reliability of urban water provisioning systems in the next century will 

depend on stabilizing peak demand (Vano et al. 2010). A growing body of literature on 

the geography of urban water use suggests that building structural and land cover 

variables mediate the relationship between climate and peak demand (Domene and Saurí 

2006; March and Saurí 2009). In summer, single-family residential (SFR) water use tends 

to be less weather sensitive in denser neighborhoods with smaller lots or more 
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multifamily housing, as there is less space for irrigated vegetation (Balling et al. 2008; 

Breyer et al. 2012). These findings point to a role for urban densification in softening the 

impact of higher summer temperatures on water use as part of a broader plan for 

adaptation to climate change in cities.  

 Clear articulation of the relationships among climate, urban form, and water use 

could also inform long-range forecasting. Several scenario-based analyses have 

incorporated the effects of both climate and land use change on projected water demand, 

yielding surprising results. Low-density residential development dominated climate 

change in driving future neighborhood-level water use increases in Hillsboro, Oregon, a 

suburb of Portland (House-Peters et al. 2010). Conversely, a broader study that jointly 

modeled urban water supply and demand in the Seattle metropolitan area found that 

continued urban densification was key to stabilizing peak demand and averting shortages 

(Polebitski et al. 2011). These findings support the notion of a conservation effect 

associated with urban density that may help alleviate the severity of regional water stress. 

Long-range water demand models that assume a static urban form or otherwise neglect 

the place-specific effects of land use on water use may misgauge the trajectory demand, 

overestimating in densifying areas and underestimating in areas experiencing rapid low-

density development. 

1.2. Multiple scales, multiple populations 

 Land use shapes the relationship between climate and water use. Evidence for this 

is compelling, although the bulk of analyses focused on this relationship have relied on 

spatially and temporally aggregated data. Because fine-scale water consumption data 
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have historically been unavailable, it is largely unknown how much the scale of analysis 

influences the strength of this relationship. Does the purported conservation effect of 

urban density aggregate up from daily household processes or operate independently as a 

contextual effect at the neighborhood scale? Alternatively, does density interact with 

finer-scale household processes in ways that may not be evident from a single-scale 

perspective? To model the effect of land use on household water use without 

inadvertently introducing ecological or atomistic fallacies (Robinson 1950; Alker 1969), 

it is necessary to examine water use at multiple scales. 

 This analysis drew on a rare, high-resolution panel dataset of daily SFR water use 

to examine the micro-foundations of established meso-scale relationships between 

weather, water use, and land use. Even at this fine scale, however, it should be recognized 

that a certain level of abstraction from direct experience is present in the data. The finest 

resolution available is the household, an aggregation of one or more individuals in space, 

on a specific day, which represents an aggregation of water-consuming moments. Each of 

these moments is intricately bound up with a complex mix of factors, including "local 

cultures, everyday routines, institutional practices and structures" (Jones and Duncan 

1995, 29). As a consequence of this abstraction, the signal connecting the consumptive 

moment with its context has been encoded, albeit imperfectly, in the data.  

 When attributed with parcel-scale and neighborhood-scale land use 

characteristics, multiple related populations are being represented in these data: a 

population of water use observations, a population of SFR households, and a 

(geographically uncertain) population of neighborhoods (Kwan 2012). The study period 
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can also be thought of as a sample from a super-population of summer days in the 

Portland (Crowder and South 2011). Broader socio-economic, political, and climactic 

factors play a role in shaping these parameters within the Pacific Northwest or between 

regions. This analysis takes a quantitative approach to grappling with a small piece of this 

complexity, SFR water consumption across households and neighborhoods in the 

Portland metropolitan area. 

1.3. Problem to be investigated 

 Outdoor water use figures prominently in management of residential landscapes, 

even in the maritime Pacific Northwest, where the climate is marked by distinct rainy and 

dry seasons. In Portland, Oregon, water use exhibits a tightly coupled relationship with 

summertime weather and climate, although this relationship varies with patterns of land 

cover and building structure across households and neighborhoods. This thesis developed 

a multilevel regression model to evaluate the relative importance of weather variability, 

parcel characteristics, and neighborhood geographic context in explaining SFR water 

demand patterns. Multilevel models tease out variance associated with each level of a 

nested set of relationships (Goldstein 2003). In this case, a time series of daily water 

demand observations was nested within individual households. Households were, to an 

unknown degree, nested within neighborhoods; both spatial units were attributed with 

land use characteristics. In addition to partitioning variance across scales, the analysis 

tested for heterogeneity in finer-scale coefficients and interactions between drivers across 

scales. Results are presented against current understanding of relationships among 

weather, land use, and residential water use. The research concluded by relating key 
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findings back to the problem of double (or triple) exposure and potential adaptation 

strategies for urban water provisioning systems to the combined effects of climate, 

population, and land use change in American cities. This thesis was a component of a 

broader study on the effects of combined climate and land use change on the 

sustainability of urban water resources. 

1.4. Research questions  

 The goals of this thesis were fourfold. First, the thesis sought to detect and 

measure the degree of heterogeneity in weather sensitivity of water use patterns across 

households and neighborhoods. Second, the elasticity of water use with respect to parcel-

scale and neighborhood scale building structure and land cover characteristics was 

estimated. Third, variance in water use was partitioned across scales. Finally, the thesis 

sought to determine whether the drivers of water use interact across scales and measure 

their effects. The analysis will provide answers to the following research questions:  

 

1. How sensitive is SFR water use to weather variation? To what extent does 

this sensitivity vary across households?  

 

2.  To what extent do individual household characteristics explain variance 

in SFR water use patterns? How do parcel characteristics affect water use and 

does this effect vary across neighborhoods?  
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3. To what extent do neighborhood characteristics explain variance in 

household water use patterns?  

 

4. To what extent to these variables interact across scales?  

1.5. Structure of the thesis 

 Chapter 2 reviews relevant literature on water use. It examines evidence linking 

weather variation with water use at multiple spatial and temporal scales, paying particular 

attention to previous studies of SFR water use and land use covariates. Qualitative 

evidence for neighborhood influences on household land management decisions is 

presented. The literature review then turns to data hierarchies, describing how these data 

structures relate to ecological and atomistic fallacies and the modifiable areal unit 

problem. Current problems in the detection and explanation of neighborhood effects are 

presented. The chapter concludes by presenting relevant aspects of the urban water 

provisioning system in the study area of Portland, Oregon.  

 Chapter 3 constructs a theoretical scaffolding for multilevel regression. It explains 

the theory behind fixed and random effects, variance decomposition, and cross-scale 

interactions. Unconditional means and random slopes models for water use are developed 

and parameters are interpreted. Problems related to assessing goodness of fit and 

statistical significance in multilevel models are discussed. Chapter 4 describes data 

sources and pre-processing of water use, weather, and land use variables. It also details 

the model development process and diagnostic procedures. 
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 Chapter 5 presents the results. An increasingly complex series of models are 

developed to illustrate how variance in water use is partitioned across scales. The final 

model includes random intercepts for household and neighborhood as well as random 

slopes for household response to maximum air temperature. Fixed effects are specified to 

account for persistent effects of heat and rain, parcel-scale effects of lot size, building 

size, and building age, as well as neighborhood scale effects of building age and a cross-

level interaction involving maximum air temperature and lot size. The final model 

explains 67% of variance in SFR water use.  

 Chapter 6 discusses these results in light of existing research and explores 

implications for urban water resource sustainability, tying these implications back to 

central questions of climate change adaptation and the conservation effect of urban 

density. It suggests that land use planning represents an overlooked strategy for long-

range water demand management and draws connections between results and the need for 

integrated land use planning and water resource management.  

 Chapter 7 concludes by summarizing key analytical results. On average, 

maximum air temperature tends to be the primary driver of temporal variation in 

summertime water use, while building size is the primary driver of spatial variation in 

water use. The effect of temperature was decomposed into an average or fixed effect, a 

household-specific deviation from that average, an extreme heat effect, and a land use 

effect, encapsulated by a cross-level interaction that was detected between temperature 

and lot size. Building age varies inversely with water use and is significant at both the 

parcel and neighborhood scales, indicating that elevated level of summertime water use 

were associated with new construction, primarily construction of low-density housing. 
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Results provide evidence that land use patterns have water use implications and 

underscored the utility of modeling fine-grain relationships among heat, land use, and 

water use across scales as part of a broader program of planning and adaptation to 

combined climate and land use change. 
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Chapter 2: Background and Literature Review 

 This chapter reviews the literature on urban water use through a framework of 

coupled human-natural systems. Section 2.1 draws on a diverse range of quantitative and 

qualitative studies to discuss the roles of space, scale, and seasonality in the patterning of 

SFR water use. Section 2.2 frames SFR water use as a nested hierarchy and discusses 

methodological issues related to statistical dependence and heterogeneity. Section 2.3 

concludes by presenting relevant aspects of the water supply in the study area of 

Portland, Oregon, along with expected shifts associated with combined climate and land 

use change. 

2.1. Urban water use as coupled human-natural system 

 A rich body of academic literature has developed around urban water demand 

modeling and forecasting. Throughout the 20th century, however, this research focused 

primarily on modeling temporal rather than spatial variation (House-Peters and Chang 

2011a; Tanverakul and Lee 2012). Prices, technology, and climate were seen the key 

drivers of demand; econometric and time series analyses dominated the research agenda 

(Maidmont et al. 1985; Zhou et al. 2001; Arbués et al. 2003). However, water use 

research has carved out a more prominent role for geography in the first decade of the 

21st century. Increasingly approached through the framework of a coupled human-natural 

system (Liu et al. 2007), urban water use has been understood as an explicitly spatial 

phenomenon arising from complex biophysical and social processes that operate at 

multiple spatial and temporal scales (March and Saurí 2009). The shift towards 

recognizing the roles of space and scale of water consumption parallels a second 
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quantitative revolution in geographic research (Kwan and Schwanen 2009) as well as a 

new emphasis on the place-based dimensions of consumption (Goodman et al. 2010) and 

effects of the build environment on behavior (Norman et al. 2006).  

2.1.1. Water use and scale 

 Drivers of water use vary across scales. At the global scale, rising incomes 

dominate population growth in driving increased water use and subsequent water stress in 

large river basins (Alcamo et al. 2007). Weather and climate explain much of the 

variation in daily water use across U.S. cities (Maidmont and Miaou 1986), while water 

prices account for demand variation between cities at coarser temporal resolutions 

(Arbués et al. 2003; Grafton et al. 2011). As intraurban water use data have become 

available, socio-demographic factors, building structural characteristics, and land cover 

patterns have been found to account for spatial variation in water use within cities (Wentz 

and Gober 2007; Balling et al. 2008; Chang et al. 2010), filtering coarse-scale climate 

and economic signals into fine-scale water use outcomes (Saurí 2003). The relationship 

between water use and urban form is particularly prominent in lower-density suburban 

areas (March and Saurí 2010). Although the drivers of water use vary across scales, the 

role of scale itself in structuring water use is not well understood (Medd and Chappells 

2007; Perveen and James 2010), particularly for urban residential water use. 

2.1.2. Seasonality of water use 

 Weather and climate are the primary biophysical drivers of urban water use. 

Urban water use studies customarily subset total demand into two components, base and 

seasonal use (Howe and Linaweaver 1967; Maidmont et al. 1985; Miaou 1990; Zhou et 
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al. 2001). Generally taken as mean winter water demand, base use reflects daily indoor 

water consumption associated with cooking, drinking, cleaning, and sanitation. Base use 

is considered climate-invariant, fluctuating instead with incomes and technology, 

although this may not hold for warm-winter areas where households use water outdoors 

year-round (Gato et al. 2007). The difference between winter and summer water use is 

taken to represent seasonal (or outdoor) water use. Seasonal use responds to variations in 

weather and climate, reflecting water ‘lost’ to evapotranspiration (ET).  

 The temperature that elicits seasonal use varies across cities and regions. Akuoko-

Asibey et al. (1993) found mean per-capita weekly water use became responsive to 

temperatures above 15°C in Calgary, Canada, while Maidmont and Miaou (1986) 

estimated the changepoint at 21°C across nine east coast U.S. cities. Protopapas et al. 

(2000) located the threshold temperature at 25.5°C in hyper-dense New York City, 

United States. Zhou et al. (2001) found a second, steeper nonlinear increase above 39°C 

in Melbourne, Australia. Urban water use varies inversely with precipitation patterns, 

although summer usage tends to respond more to rainfall occurrence than to depth 

(Miaou 1990; Adamowski and Karapataki 2010). The magnitude of seasonality varies 

widely within and across cities, while base use is relatively constant (Maidmont and 

Miaou 1986; Mayer and DeOreo 1999). Rockaway et al. (2011) compared residential use 

across 11 North American cities and found the lowest annual rates of water use in the 

rainy cities of Seattle, Washington, (annual average of 169 gallons per day, or GPD) and 

Cleveland, Ohio, (191 GPD), while the highest users were in the desert cities of Las 

Vegas, Nevada, (557 GPD) and Phoenix, Arizona, (441 GPD).  
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 Since seasonal use varies with climate, it is the component of water use that 

exposes municipalities to risk of summer water scarcity, particularly in cases of 

prolonged drought or extreme heat. However, the very elasticity of seasonal use suggests 

that it is the component of water use with the greatest capacity for change. Outdoor 

watering restrictions are increasingly used to suppress seasonal use where drought has 

induced water scarcity (Kenny et al. 2004). Renwick and Green (2000) found outdoor use 

restrictions to be significantly more effective in reducing seasonal demand than voluntary 

measures. Water use restrictions and rationing have become routine in some desert cities 

(Hanak and Davis 2006) and are not without precedent in more humid climates, 

particularly where demand has outstripped the capacity of aging supply infrastructure 

(Lyon et al. 2005; Hill and Polsky 2007).  

2.1.3. Drivers of single-family residential (SFR) water use 

 Seasonality is particularly pronounced in the SFR water use sector. Polebitski and 

Palmer (2010) found that a 10% increase in mean maximum temperature led to a 10% 

increase in SFR water in Seattle, Washington, while Balling and Gober (2007) estimated 

a 6% increase in Phoenix, Arizona, for a 10% increase in mean maximum temperature. 

Linkages with rainfall are smaller but statistically significant (Balling and Cubuque 2009; 

Polebitski and Palmer 2010). Spatially explicit studies have identified covariance of SFR 

water use, particularly the weather sensitivity of water use, with land use and socio-

economic characteristics. In Phoenix, Arizona, for example, SFR water use was found to 

be most drought-sensitive in census tracts with higher incomes and more swimming pools 

per capita (Balling et al. 2008). In Portland, Oregon, SFR water use has tended to be 
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lower and less weather-sensitive in older neighborhoods with higher building densities 

(Chang et al. 2010; House-Peters et al. 2010; Breyer et al. 2012). Because of the 

connection between peak demand and land use, Shandas and Parandvash (2010) found 

that changes in urban design to limit opportunities for outdoor water use would aggregate 

to substantially reduce citywide peak water use in Portland. Taken together, these studies 

have suggested a prominent role for residential landscapes in patterning SFR water use 

and stabilizing peak demand. 

2.1.4. The ‘nature’ of residential landscapes 

 Outdoor water-consuming behaviors are embedded in residential landscapes, 

where the coupling between human and natural systems becomes especially pronounced. 

Residential landscapes tend to reflect shared attitudes towards nature, functioning 

simultaneously as sites of neighborhood solidarity and social coercion (Cook et al. 2011). 

Both individuated spaces and communal places, residential landscapes link neighbors 

through common norms, shared streetscapes, and interdependent property values. 

Hydrological processes of rainfall, infiltration, and ET play out in tandem in social 

functions of recreation, emulation, display, and the reproduction of everyday life.  

 Social hierarchies become articulated in residential landscapes through water use. 

Highlighting the cultural and perceptual aspects of water use, Askew and McGuirk 

(2004) argued that irrigation for green, lush gardens in a newly suburbanized area of New 

South Wales, Australia, served to display status, while also denoting conformity to 

neighborhood norms. Similarly, Domene et al. (2005) revealed that higher income 

households in the water-stressed, suburban peripheries of Barcelona, Spain, tended to 
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maintain extensive gardens with irrigated turfgrass. Turfgrass functioned as a positional 

good, in these frameworks, intended to denote status and to distinguish the wealthy from 

lower income households, whose gardens made use of drought-tolerant native vegetation.  

 Robbins (2007) developed a theory of ‘lawn people’ to explain why well-

educated individuals who profess to have more concern for the environment also 

consume vast amounts of resources, including toxic lawn chemicals, to maintain green 

lawns. The yard appears as a site of coercion, in this framework, where lawn people 

anxiously reproduce a turfgrass monoculture by simultaneously responding to 

neighborhood expectations and the biophysical demand of the lawn itself. As they labor 

for multiple ecologies, lawn people raise questions about individual agency and who has 

domesticated whom in turfgrass-dominated landscapes. In some newer residential 

developments, norms of lawn maintenance have become so coercive that they are 

codified and legally enforced through homeowners associations (Turner and Ibes 2011). 

Collectively, these points underscore a need for a synthetic understanding of SFR 

households as they are embedded in their ecologies, both biophysical and social. 

2.2. Nested hierarchies 

 Chowdhury et al. (2011) argued that the dense weave of social and ecological 

elements at work in residential landscapes requires a multiscalar analysis. An act of 

outdoor water use (or the decision to abstain) reflects a range of contexts, from the daily 

weather to the specificity of the household, the property’s land cover, neighborhood 

landscaping norms, and broader municipal or bioregional factors. To the extent that these 

contextual aspects jointly shape water-consuming behaviors, SFR water use may take on 
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a nested or ‘hierarchical’ data structure. This section explains why multilevel regression 

would be appropriate for water use, as nested data. It addresses problems of correlation, 

scale, aggregation between individuals and groups. Spatial applications of multilevel 

models are presented and possible critiques are discussed. 

2.2.1. Multilevel data structures 

 A wide variety of social data exhibit a nested or clustered structure. Clustered data 

cannot be regarded as statistically independent, so simple linear regression and other 

statistical techniques that require an independent random sample are not appropriate. 

Multilevel regression is designed to handle clustered data. Also called hierarchical linear 

regression, the technique respects the grouped structure of the data, allowing for 

dependence among observations in the same group and heterogeneity among groups. 

Application of multilevel models to nested data structures originated in education 

research, with students nested in classrooms and schools, and has expanded to a wide 

range of disciplines (Goldstein 2003). Panel data present a temporal form of nested 

hierarchy, where a sequence of observations is nested in a subject (Singer and Willett 

2003).  

2.2.2. Ecological and atomistic fallacies 

 In his influential paper laying out the ecological fallacy, Robinson (1950) 

demonstrated that results from group-level data cannot be ascribed to individuals because 

aggregation smooths over individual variation such that within-group and between-group 

variability are conflated. Alker’s (1969) atomistic fallacy showed that applying properties 

of individuals to groups is equally invalid. Jones and Duncan (1995) argued that the 
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multilevel approach avoids both the ecological and atomistic fallacies, providing an 

opportunity for jointly modeling individuals and their neighborhood contexts without 

reducing one to the other. By decomposing variance across scales and examining cross-

scale interactions, multilevel models harness the underlying mechanisms of the 

ecological and atomistic fallacies—differences in variance within and between clusters—

to measure contextual effects (Jones 1991). 

2.2.3. Geographic hierarchies 

 Spatial data are often clustered at multiple scales; water use is no exception. 

Treating these spatial clusters as geographical groups and scales as levels would seem to 

be an appealing way to account for place and could shed light on how drivers interact 

across scales. However, conceptual and methodological critiques have been raised against 

multilevel approaches to spatial data analysis. These critiques are discussed below and 

are addressed in the analysis that follows. 

 One of the premises behind multilevel modeling is that the underlying population 

parameters are variable, or nonstationary, in the parlance. For example, the effect of daily 

maximum air temperature on SFR water use could truly vary across space. However, 

Fotheringham and Brundson (1999) note that apparent spatial nonstationarity in 

coefficients could also reflect bias from omitted variables. Parameters would be stable 

across space in constant in a correctly specified model, in this view, raising questions 

about whether spatial nonstationarity arises from irreducible place-based differences or 

human cognitive limits in the face of complexity. Fotheringham and Brundson (1999) 

also note that some multilevel models have generated spatially clustered residuals, 
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particularly at coarser scales of the data structure, leading to biased results. In a nested 

structure, dependence is captured by unambiguous membership to a neighborhood group. 

No dependencies are assumed between neighborhoods. This assumption may be 

unwarranted in a geographic context because it neglects spatial relations of adjacency, 

proximity, and continuity. For spatial processes, the boundaries of group membership 

may be fuzzy or even non-existent. Failing to account for this variance may lead to 

spatial clustering of model residuals.  

 Several studies have compared multilevel models with geographically weighted 

regression (GWR) to investigate whether correlation decays continuously across space or 

operates in discrete packets in unambiguously delineated places. Chaix et al. (2005) 

found GWR superior to multilevel regression, in that the latter accounted for less 

variance and generated spatially clustered residuals. They concluded that assigning 

individuals to unambiguous and unrelated groups implied an unwarranted fragmentation 

of space that was inadequate to capturing spatial processes, which, in their case, more 

realistically operated along a continuum. However, López-Carr et al. (2012) suggested 

that the multilevel place-based approach complimented the space-based, distance-decay 

approach of GWR, particularly with respect to policy-related processes that operate in 

discrete geographic units. Spatial implementations of multilevel models have attempted 

to accommodate correlation among coarse-scale spatial units by including spatial lags 

(Caughy et al. 2007) or a local index of spatial autocorrelation (Chen et al. 2010) as 

explanatory variables. 
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2.2.4. Problems of neighborhood context 

 Even if spatial correlation structures could be plausibly captured with discrete 

neighborhood units, the delineation of those boundaries opens up another forum for 

uncertainty. López-Carr et al. (2012) showed that spatial applications of multilevel 

models are vulnerable to a set of issues collectively referred to as the modifiable areal 

unit problem (MAUP). The MAUP implies that spatial correlations may vary by both 

scale and unit of aggregation such that alternative configurations of neighborhoods 

boundary could generate different results (Openshaw 1984). Neighborhood geometry is 

often represented as a set of contiguous, mutually exclusive spatial units that tessellate 

the study area, mostly for the convenience of the researcher—census geographies are a 

prime example. With spatiotemporal data, the uncertainty of bias increases exponentially 

with the number of aggregative and scalar possibilities along both spatial and temporal 

dimensions (Cressie 1998).  

 Not only do results depend on configuration of neighborhood boundaries, but 

there is uncertainty in how much the selected zonation coincides with the true 

contextually relevant geographic area (Kwan 2012). The area exerting the contextual 

influence may be spatially disjoint, may shift over time, have fuzzy boundaries, or 

otherwise vary from convenient, historically stable, and unambiguous enumeration units. 

These considerations have immediate implications for detection and interpretation of 

neighborhood effects. 
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2.2.5. Neighborhood effects 

 With the spatial turn in academic literature, a variegated literature on 

neighborhood effects has emerged to explain a variety of situations whereby 

neighborhood context influences individual behaviors (Durlauf 2004). Seeking to isolate 

the effect of neighborhood context, researchers (many operating completely outside the 

discipline of geography) have had to grapple with issues of spatial dependence and 

heterogeneity, as well as the MAUP and cognate problems of geographic correlation. 

Some researchers have eschewed zonal neighborhoods altogether in favor of bespoke 

neighborhoods, where a unique neighborhood geography is delineated for each research 

subject (Bolster et al. 2006, Johnston et al. 2004). Others have constructed flexible 

geographies (variable buffer sizes) to examine changes in contextual effects across scales 

(Caughy et al. 2007).  

 In addition to grappling with MAUP, the specific causal mechanisms 

undergirding the observed pattern of neighborhood effects remain in question. Johnston 

et al. (2005) enumerated possible compositional and contextual processes that link 

individual behaviors and neighborhood characteristics, including self-selection, 

emulation of neighbors, active peer-to-peer persuasion, and lobbying for new rules to 

govern peer behavior. Manski (1993) offered a typology of neighborhood effects. 

Correlated effects occur when a prior sorting process leads to self-similarity across 

individuals in the same neighborhood. Exogenous effects occur when neighborhood-scale 

factors structure but are unrelated to finer-scale processes. Finally, endogenous effects 

occur when individual behaviors are interdependent. An observer would not be able to 
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distinguish between the latter two pathways, creating a fundamental analytical difficulty, 

which Manski termed the reflection problem. The causal pathway linking individual 

behavior and neighborhood context remains an active area of research. 

 Critiquing multilevel approaches to neighborhood effects, Entwistle (2007) 

argued the term ‘hierarchical’ biases the direction of multilevel research by privileging 

the structure side of what is actually a dialectic between structure and agency. By 

locating the structure, the group or neighborhood, at the ‘top’ of the hierarchy, the 

modeling approach seems to imply that causation is coming from that scale, when 

correlated effects, endogeneity, or some other process of inter-causation may be at work. 

Interestingly, Subramanian et al. (2009) pointed out that the reverse could, paradoxically, 

also be true. Robinson’s (1950) idea of an ecological fallacy, they posited, had an 

ecology of his own, one of methodological individualism that reflected Cold War anxiety 

around the Soviet Union and prioritized individual rationality over the group-level 

dynamics. By applying a multilevel model to Robinson’s original data, the authors 

provided evidence for contextual effects that were overlooked in the original analysis.  

 Neighborhood effects have been observed in residential water usage patterns 

(Aitken et al. 1991; Ramachandran and Johnson 2011) and a multilevel approach has 

been found to explain more variation in SFR water use than single-scale analysis 

(Polebitski and Palmer 2010). The recursive connections between context and behavior 

involved in residential landscapes, noted by Robbins (2007) and Askew and McGuirk 

(2004), suggest a neighborhood effect operating in water use through the social 

dimensions of residential landscapes. Similar effects have been noted in electricity 
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consumption. Households, particularly those who did not respond to appeals to altruism 

or cost-savings, lowered their electricity use when utility bills were modified to show 

household consumption to be higher than the neighborhood average, and marked the 

disparity with a sad face (Allcott 2011).  

2.3. The study area: Portland, Oregon 

 This section presents the hydrological and social context of residential water use 

in Portland, Oregon. It describes regional water supply infrastructure and current trends 

in water usage for the two water providers in this study. The section concludes by 

discussing implications of climate and land use change on water use in the region. 

2.3.1. Water supply infrastructure 

 Summer water supply in the Portland metropolitan area relies heavily on winter 

precipitation stored in the Bull Run watershed (Figure 2.1). Located in the Cascade 

Range, this surface water supply system is managed by Portland Water Bureau (PWB), 

the largest water supplier in the State of Oregon. The system comprises two open-air 

reservoirs and a lake with a combined usable storage capacity of 14.2 billion gallons 

(BG). Discharge from Bull Run watershed far exceeds this volume, but limited storage 

capacity means that the reservoirs must be recharged annually—multi-year storage is not 

currently possible. The drawdown period for Bull Run reservoirs begins when outflows 

exceed inflows, usually in June. Drawdown typically ends with the onset of fall rains in 

mid-October, although it occasionally persists through December in drier years. In 

addition to providing water for human consumption, streamflow from the Bull Run 
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watershed must be managed for endangered species, particularly to cool streams for 

returning salmonids in autumn (Portland Water Bureau, 2010).  

 PWB supplements Bull Run reservoirs with a smaller groundwater reserve, the 

Columbia South Shore Well Fields, with an initial 30-day pumping capacity of 102 

MGD. A series of smaller wells were added to the system when PWB annexed the region 

previously served by Powell Valley Water District in 2005. In addition to serving a retail 

population of over 500,000, PWB sells water wholesale to 22 smaller water providers, 

serving a combined retail and wholesale population of 770,250 in fiscal year 2004-2005. 

Currently, PWB serves a total population of over 900,000.  

 

Figure 2.1: Urban water supply infrastructure. The bulk of the Portland metropolitan region’s water supply 
originates from Bull Run Reservoir #1 (left), located in the Cascade Range and operated by Portland Water 
Bureau (PWB). PWB provides water for the City of Portland and also sells water wholesale to smaller 
water providers; Tualatin Valley Water District (TVWD) is their largest wholesale customer. As a member 
of the Joint Water Commission, TVWD also withdraws water from Hagg Lake (right), located in the Coast 
Range. Images sources: http://upload.wikimedia.org/wikipedia/commons/3/30/Bull_Run_Reservoir_1.jpg 
(left) and  http://www.usbr.gov/projects/Project.jsp?proj_Name=Tualatin%20Project (right). 

 

 The state’s second largest water provider, Tualatin Valley Water District 

(TVWD) serves a suburban and largely unincorporated area in Washington County, west 

of City of Portland, providing water to a population of nearly 200,000. Wholesale 
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purchases from PWB are augmented by water obtained through the Joint Water 

Commission (JWC), which operates the reservoir at Hagg Lake in the Upper Tualatin 

River and the Barney Reservoir in the Coast Range (Figure 2.1). A modest aquifer 

storage and recovery system has been built to store winter precipitation for additional 

supplies during peak season, since daily purchases are limited to 42.3 MGD from PWB 

and 10 MGD from JWC (Tualatin Valley Water District 2005). TVWD serves a rapidly 

growing area and expects to add 82,000 residents by 2042. Demand projections have 

indicated that peak demand will exceed current system capacity by 2025. TVWD 

ultimately plans to draw water from the Willamette River to meet the additional demand 

(Tualatin Valley Water District 2013). 

2.3.2. Characterizing regional water use 

 According to their most recent Water Management and Conservation Plan 

(Portland Water Bureau 2010), total annual water consumption from PWB-managed 

water supplies was 32.9 BG in fiscal year 2004-2005. Average flow increased from 83 

million gallons per day (MGD) in winter to 123 MGD in summer, with a peak flow of 

187 MGD. Considering only the retail service area, annual consumption was 20.1 BG for 

a population of 494,200. Of that, 8.2 BG (41%) was associated with small-meter 

residential meters (presumably, most of these are SFR households), leading to daily per-

household consumption of 163 GPD, comparable to Seattle’s per-household consumption 

of 169 GPD (Rockaway et al. 2011). Average per-capita water consumption was 66 GPD 

in the denser retail service area, compared to 127 GPD in the broader, more suburbanized 

wholesale service area. Retail per-capita water use has declined an average of 19 GPD 
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compared to the 1987-1992 period. PWB attributes this to a combination of factors, 

principally plumbing code changes, which mandated water-efficient appliances and were 

effective after 1992. For TVWD, the residential sector comprises 70% of annual usage. 

The provider distributed an average of 23 MGD in 2005, with peak flow of 53 MGD 

(Tualatin Valley Water District 2005). In 2012, TVWD purchased 70% of its water of 

through a wholesale contract with PWB (Tualatin Valley Water District 2012). Both 

PWB and TVWD are members of the Regional Supply Consortium, which pools 

resources for a range of passive and active water conservation programs and allows for 

coordination across water providers across the Portland metropolitan area.  

2.3.3. Climate change 

 Downscaled climate change and emissions scenarios have projected exaggerated 

seasonality of future precipitation patterns in the Pacific Northwest, likely trending 

towards wetter winters, drier summers, and uncertain seasonal transitions (Mote and  

Salathé 2010; Hamlet 2011). The effect of these anticipated climactic shifts on the timing 

and magnitude of reservoir inflows is also uncertain (Palmer and Hahn 2002). Because 

surface water storage depends on antecedent climate conditions, the system may be 

vulnerable to drought, although actual shortages have only occurred in 1992, when 

groundwater was unavailable to make up for shortfalls in Bull Run supply. Water yield 

models under climate change scenarios suggest that the drawdown period will begin 

earlier and end later both in the Bull Run and at Hagg Lake (Palmer and Hahn 2002; 

Palmer et al. 2004), although no shortfalls are currently projected under climate change 

scenarios (personal communication, Lorna Stickel, Portland Water Bureau, May 2013).  
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Figure 2.2: Urban density in the study area. The study area was defined by the service areas for Portland 
Water Bureau (PWB) and Tualatin Valley Water District (TVWD), the largest two water providers in the 
State of Oregon. To visualize the density along the urban-to-suburban gradient, mean SFR lot area was 
aggregated at the block-group level (excluding primarily industrial lands). Lot sizes are generally smallest 
and density is highest near the city center (shown in purple). Lot sizes increase and density decreases with 
distance from the city center (shown in orange).  

 

2.3.4. Land use change 

 Two countervailing tendencies are at work with respect to seasonal water use in 

Portland. On the one hand, increased summer temperatures linked to climate change are 
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expected to drive up seasonal use. On the other hand, continued urban densification could 

mitigate the linkage between weather and water use (Shandas and Parandvash, 2010). 

Since 1973, suburban development in the Portland area has been contained by an urban 

growth boundary (UGB), which has encouraged an increasingly compact urban form with 

smaller lots, higher building densities, and thus fewer opportunities for outdoor watering. 

However, large-lot developments have also proliferated along the suburban peripheries of 

the UGB, leading to a pronounced urban density gradient (Figure 2.2). Older 

neighborhoods with smaller average lot sizes tend to be clustered near the city center and 

were associated with lower average water use (Chang et al. 2010) and less pronounced 

seasonality (Breyer et al. 2012). In short, the key driver of outdoor water use, 

temperature, can be expected to be increase water use, but the temperature sensitivity of 

water use may vary spatially due to concurrent densification of the urban core and 

suburbanization of the periphery. The sum total of these offsetting trends is currently 

unknown. 
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Chapter 3: Theory 

 The previous chapter has reviewed evidence to suggest that SFR water use arises 

from a wide range of possible drivers arranged in a nested hierarchy of scales. This 

chapter takes the nested data structure as a point of departure to construct the theoretical 

scaffolding for the multilevel analysis that follows. Section 3.1 defines key conceptual 

aspects to multilevel models. Section 3.2 explains the utility of multilevel regression for 

exploring scalar aspects to SFR water use as a nested data structure. Section 3.3 develops 

equations for a three-level random slopes model with a cross-scale interaction. Section 

3.4 discusses potential limitations related to assessing goodness of fit and statistical 

significance in multilevel models. 

3.1. Mixed effects 

 A mixed-effects model can describe any regression model containing both fixed 

and random effects. Fixed effects refer to a single parameter estimated for all cases, as 

with pooled ordinary least squares (OLS) regression. Random effects imply estimation of 

a separate parameter for each group of cases, where those parameters are drawn from a 

probability distribution common to all groups (Kreft and de Leeuw 1998). The method 

tailors a regression model to each group of cases while stitching those group-specific 

regressions together through the shared distribution. In this way, mixed effects models 

are akin to partially pooled linear regression, in contrast to nonpooled OLS, where 

regression models for each group are unrelated (Gelman and Hill 2007). Not only does 

the shared distribution account for the broader context shared by all groups, but its mean 



28 
 

and variance can shed light on nuanced relationships in the data that would otherwise be 

missed (or, worse, misinterpreted) in OLS regression. 

 A mixed effects model is appropriate where the data are inherently a grouped or 

clustered. Clustered data cannot be treated as an independent random sample because of 

higher within-group dependence and between-group variance. By jointly fitting a set of 

related regression models to the sample of individuals and the corresponding sample of 

groups, mixed effects approach not only accounts for the structure of within-group 

correlation and between-group variance but actually places that structure at the center of 

the analysis. Mixed effects models have been used to honor a range of clustered data 

structures in both social and physical sciences, with applications ranging from education 

(Goldstein 2003) to two-stage sampling in ecological research (Zuur et al. 2009) and 

epidemiology (Gelman and Hill 2007), as well as a variety of repeated-measure data 

(Singer and Willett 2003). 

3.2. Conceptualizing a multilevel approach to residential water use 

 A multilevel model is a specific type of mixed effects model developed for data 

arranged in a nested hierarchy. The central hypothesis for this thesis is that repeat-

measure household water use follows a nested data structure that includes the 

neighborhood scale. If the data support this hypothesis, a time series of water use 

observations can be thought of as being grouped or nested within a household. Each 

household water use pattern, in turn, can be thought of as nested within a neighborhood, 

following Tobler’s First Law of geography. As a consequence, there are multiple 

dimensions of statistical dependence in the data, across time (correlation among 
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sequential water use observations for a single household), across space (correlation 

among households in the same neighborhood), and across scales (Figure 3.1). Estimated 

variance in the distribution of random effects can be used to assess the relative 

importance of spatial and temporal drivers; this technique is known as variance 

decomposition. Neighborhood effects will be assessed by examining the component of 

this variance associated with the neighborhood scale. A multilevel approach can also be 

used to detect contextual effects or interactions between drivers at different scales. Cross-

scale interactions involving weather and land use variables will be investigated below. 

 

Figure 3.1: Conceptual diagram of household water use as a nested data structure. Weekly water use 
observations are nested in households, which are nested in neighborhoods. The structure is marked by high 
within-group correlation, as indicated by similarity in color—lots tend to be smaller in the denser 
neighborhood—and high between-group variance—heterogeneity in neighborhood density. Based on 
previous research, one would expect the lowest level of water use (shown by size of oval on Week 1 and 
Week 2) and the least temperature response (change in oval size between Week 1 and Week 2) to be 
associated with the small lot in the high density neighborhood. 
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3.3. Developing a multilevel model of residential water use 

 This analysis uses a panel dataset of SFR water use to investigate the extent to 

which land use contextualizes the relationship between weather and water use at the 

household and neighborhood scales. To underscore key methodological concepts, the 

following section steps through the development of a multilevel model of SFR water use. 

First, equations are presented for an unconditional means model, followed by a more 

complex, three-level model with random slopes and a cross-level interaction.  

3.3.1. An unconditional means model 

 The first step to multilevel modeling is construction of an unconditional means 

model, where a random effects structure is specified but no predictors are included. 

Equivalent to a random effects analysis of variance, the unconditional means (or ‘empty’) 

model is useful for assessing the prominence of the grouping structure. An intercept is 

estimated for each group as the weighted mean of all data points falling within that group. 

Variance in this intercept serves to indicate the strength of the grouping structure—if 

groups are dissimilar, their intercepts are, too. The relative importance of scale can be 

assessed by partitioning total variance in water use into components that relate back to 

each scale in the hierarchy. To illustrate, an empty three-level random intercept model is 

developed below. 

 Over a given time period i, an individual household’s water use is given in 

Equation 1. 

    Y��� � π��� � ε���            (1) 
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Equation 1 states that mean water use on time period i for household j located in 

neighborhood k is a function of two components: the mean water use for that household 

π0jk and a random error term εijk, which expresses the deviation of that specific week from 

the household mean. ε is an independent and random error term that adheres to the usual 

assumptions of linear regression (ε~N(0, σ²)).  

 As a random coefficient, π0jk appears fixed at the household scale but varies at the 

neighborhood scale because it arises from a distribution of coefficients shared by all 

households in a particular neighborhood. This relationship is given in Equation 2. 

    π��� � β�� � R���           (2) 

In Equation 2, π0jk is a function of the mean water use in neighborhood k, denoted as β0k, 

and a random effect, R0jk, reflecting the deviation of each household’s mean water use 

and the neighborhood mean. The variance of R0jk is given by τ200. Thus, the distribution 

of household coefficiens in a particular neighborhood can be characterized in terms of the 

mean of β0k and standard deviation of τ00. 

 Also a random coefficient, β0k appears fixed at the neighborhood scale but 

actually arises from a probability distribution shared by the set of neighborhoods. This 

relationship is stated in Equation 3.  

    β�� � γ�� � U��            (3) 

In Equation 3, γ00 is an intercept term that expresses the grand mean of water use across 

all neighborhoods. The neighborhood-specific deviation from this grand mean is given by 

random effect U0k with variance denoted as φ2
00.  

 Equations 3 and 2 can be substituted into Equation 1 to yield the full expression 

for household water use: 
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    Y��� � γ�� � U�� � R��� � ε���          (4) 

Equation 4 states that an individual household’s water use is a function of γ00, a fixed 

intercept that represents the grand mean of water use, and a composite error term, U0k + 

R0jk + εijk, that expresses how water use for a particular data point deviates from that 

grand mean. This deviation has been partitioned into three variance components: the 

component that can be attributed to the neighborhood (U0k), to the household (R0jk), and 

to the week (εijk). Each component is assumed to follow a normal distribution centered on 

zero and with variance denoted as φ
2
00, τ

2
00, and σ², respectively. The sum of these 

variance components is identical to the variance of the response variable. Total variance 

in household water use can in decomposed across scales based on that identity.  

 A key output of variance decomposition is intraclass correlation (ρ), which is 

calculated from variance components as shown in Equation 5: 

    ρ �
���

� ����
�

���
� ����

� ���
            (5) 

Ranging from 0 to 1, ρ is a measure of within-group dependence. It reflects the portion of 

total variance that can be attributed to between-household and between-neighborhood 

factors. A larger value indicates that clustering by household and neighborhood is more 

prominent, suggesting that processes at these scales play a larger role in explaining 

variance in the response variable. Because there are three levels specified in this model, it 

is necessary to calculate a separate intraclass correlation ρN to capture the portion of ρ 

that can be attributable to between-neighborhood factors, as shown in Equation 6: 

    ρ� �
���

�

���
� ����

�               (6) 
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Both ρ and ρN can be used to calculate design effects, which are important for assessing 

whether a multilevel approach is more efficient than OLS (Snijders 2005). Design effects 

provide a measure of redundancy in the data caused by within-group dependence. 

Simulation studies have found that data with design effects > 2 warrant multilevel 

analysis (Muthen and Satorra 1995). The formula for design effects is given in Equation 

7. 

    Design effect � 1 � ρ"θ $ 1%         (7) 

Here, θ denotes average cluster size, in this case, the number of observations per 

household and the number of households per neighborhood. Effective sample size is 

obtained by dividing the design effect by the sample size, and can be used to assess the 

statistical power of the analysis, since the effective sample size accounts for redundancy 

arising from dependence in the data. Statistical power increases with the effective sample 

size, which is particularly important at the ‘top’ of the hierarchy (Snijders 2005). 

 3.3.2. A three-level random slopes model with cross-scale interactions 

 This section develops a random slopes model as an extension of the empty model. 

Explanatory variables are specified at level 1 (weather), level 2 (parcel characteristics), 

and level 3 (neighborhood characteristics). A cross-scale interaction between weather and 

parcel characteristics is also specified. Model outputs can be used to assess the relative 

importance of drivers at each scale as well as the magnitude of any interactions across 

scales. Dependencies among observations are captured by a variance-covariance matrix 

that results from the structure of random effects. However, variance decomposition 
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becomes more complex because the variance of random slopes may be estimated in 

different units than the random intercepts.  

 On a given day, an individual household’s water use is given in Equation 8, which 

extends Equation 1 to include weather variation.  

    Y��� � π��� � π&��W� � ε���           (8) 

Equation 8 states that water use on a given day i for household j in neighborhood k is a 

function of three components. First, the intercept π0jk reflects average household water 

use, the amount of water used on a given summer day regardless of weather variation. 

The value is constant over time for a given household but variable across households and 

neighborhoods. Second, the change in water use associated with a change in weather 

conditions is given by the slope term π1jk, which modifies a time series of weather 

conditions Wi. Weather varies over time but, for a given time increment, is assumed to be 

constant over space, so lacks subscripts for spatial units j or k. Finally, a random error 

component is given by εijk (ε~N(0, σ²)). 

 Once again, π0jk and π1jk appear fixed at the household scale but actually arise 

from a neighborhood-specific distribution. Equations 9 and 10 expand on Equation 2 by 

specifying household slopes and intercepts is a function of parcel characteristics Hjk as 

well as the neighborhood mean and the random effect, as expressed in Equations 9 and 

10. 

    π��� � β��� � β�&H�� � R���           (9) 

    π&�� � β&� � β&&H�� � R&��               (10) 

The term β00k represents neighborhood mean water use—the subscript k indicates that 

this term varies across neighborhoods. The terms β01, β01, and β11 are purely fixed effects, 
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meaning that they do not vary across space or time, hencee the absence of subscripts i, j, 

or k. β01 and β11 capture the effect of parcel characteristics on household intercepts and 

slopes, respectively, while β10 represents the baseline level of weather sensitivity for all 

households. One could also test for whether β01, β10, and β11 vary across neighborhoods, 

but this possibility is omitted here for simplicity.  Random effects are, once again, given 

by terms R0jk and R1jk. 

 The neighborhood mean intercept β00k arises from a probability distribution 

shared by all neighborhoods, as stated in Equation 11. 

    β��� � γ�� � γ�&�N� � U��         (11) 

Here, β00k varies across neighborhoods as a function of three components: the mean 

intercept γ00, the effect of neighborhood characteristics γ01N, which modifies a vector of 

neighborhood characteristics Nk, and the random effect U0k. The variance of U0k indicates 

the magnitude of contextual influence of neighborhood characteristics on neighborhood 

average water use.  

 To express the full multilevel equation for household water use, the fixed effects 

are first defined in Equations 12-14. 

    β&� � γ&�           (12) 

    β�& � γ�&*           (13) 

    β&& � γ&&           (14) 

These equations simply restate that the effect of characteristics on household coefficients 

(β01 and β11) and the baseline level of weather sensitivity (β10) are truly fixed effects. 

Equations 12-14 can be substituted into Equations 9 and 10, which can be substituted into 



36 
 

Equation 8 and re-arranged to obtain the long-form model for Yijk expressed in Equation 

15. 

     Y��� � γ�� � γ&�W� � γ&�*H�� � γ&��N� � γ&&W�H�� � U�� � R��� � R&��W� � ε���      (15) 

Equation 15 states that weekly household water use arises from a complex mix of 

biophysical and social drivers.  At level 1, the fixed effect of weather Wi is given by γ10. 

At level 2, a fixed effect of parcel characteristics Hjk is given by γ10H. At level 3, a fixed 

effect of neighborhood characteristics Nk is given by γ01N. The magnitude of the cross-

scale interaction between weather and parcel characteristics, given by γ11, is itself a fixed 

effect. However, the overall effect on water use also depends on the values of Wi and Hjk, 

as well as the random term R1jkWi. The quantity U0k + R0jk + R1jkWi+ εijk is a compound 

error term with neighborhood (U0k), household (R0jk + R1jkWi), and residual (εijk) 

components. As in the unconditional means model, variance in R0jk and U0k is expressed 

as τ200 and φ2
00, respectively. The estimated variance of household slopes π1jk is given by 

τ
2
10. Slope-intercept correlation is given by τ01. Note that intraclass correlation cannot be 

calculated for a random slopes model because the variance components are expressed in 

different units (Kreft & De Leeuw 1998). 

3.4. Diagnostics 

 Although the relative magnitudes of variance components are useful for assessing 

the importance of drivers at each scale, obtaining multiple estimates of variance makes it 

difficult to evaluate the statistical significance of the estimate. For the same reasons, 

comparing overall goodness of fit across models is challenging. Approaches to these 

methodological problems are discussed below. Residual diagnostics at each level should 
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also be examined for normality and independence, including spatial independence (Chaix 

et al. 2005). 

3.4.1. Statistical significance 

 Statistical significance is straightforward in OLS regression, but less so in 

multilevel regression (Baayen et al. 2008). There is not consensus about how to calculate 

p-values for fixed and random effects (Bates 2006). Some software applications—SPSS 

and HLM, for example—produce p-values as outputs for fixed and random effects, while 

others do not, namely lme4, a mixed-effects regression package available through R 

Statisical Software (Bates 2006). Parametric bootstrapping procedures and likelihood 

profiling have been proposed as alternative means to determine statistical significance of 

estimated coefficients (Bates 2010). 

3.4.2. Goodness of fit 

 With OLS regression, model fit can be assessed with R2, a simple dimensionless 

measure that is readily calculated as the proportion of variance explained by model terms. 

Because mixed-effect models have separate variance estimates for each random effect 

and the residual variance, there are multiple possible ways to calculate a commensurate 

metric. A range of possible pseudo-R2 calculations have been proposed to indicate overall 

model fit (Roberts et al. 2011), but each can be problematic. Those that assess model fit 

in terms of reduction in residual variance can obscure variance explained by higher-order 

random effects. In others, it is possible to obtain negative pseudo-R2 values for more 

complex models. Metrics for assessing overall model fit remains an active area of 

research for mixed-effects models. Nakagawa and Schielzeth (2013) have proposed a pair 
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of measures, the marginal and conditional R2, to quantify overall fit. Respectively, they 

refer to the proportion of variance explained by fixed effects and by both fixed and 

random effects. Marginal and conditional R2 will be reported—with caution—in the 

analysis that follows. 

 Since multilevel models use maximum likelihood estimation, a likelihood ratio 

test can be used to select the random effects structure that is best fitting (or, more 

accurately, most likely in relation to) the grouping structure in the data (Baayen et al. 

2008). Model fit can also be compared using log-likelihood, Akaike Information 

Criterion (AIC), Bayesian Information Criterion (BIC), or similar metrics obtained from 

likelihood-based estimation techniques—but, again, only with caution. These outputs 

provide no insight into overall model fit and are meaningless for comparing models that 

use different data. Their utility lies in examining relative fit between alternative model 

specifications based on the same dataset. AIC and BIC have the additional quality of 

penalizing model complexity, in contrast to the tendency of R2 to increase with the 

number of covariates. However, any assessment of relative fit must be attentive to 

whether maximum likelihood (ML) or restricted maximum likelihood (REML) 

estimation is used. The former is preferred for assessing models with different fixed 

effects while the latter is preferred for assessing models with different random effects 

because it accounts for the number of parameters estimated (Bates 2010). AIC and 

deviance will be used to compare relative fit across models in the analysis that follows. 
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Chapter 4: Data and Methods 

 A multilevel model was developed to investigate the roles of weather and land use 

in driving variation in SFR water use. This chapter details data sources (Section 4.1), 

methods of model development (Section 4.2), and diagnostic procedures (Section 4.3) 

used in this implementation. Data were drawn from panel data on SFR water 

consumption distributed along an urban-to-suburban gradient in the Portland 

metropolitan area. Candidate explanatory variables included weather, building structure, 

and land cover variables for both sample taxlots and across neighborhoods. The model 

development process began by selecting an initial random intercepts structure through a 

series of unconditional means models. Random slopes, cross-scale interactions, and fixed 

effects were then fit to the data using iterative log-likelihood ratio tests. Bootstrapping 

procedures and likelihood profiling, respectively, were used to assess statistical 

significance and construct confidence intervals for model parameters. 

4.1. Data 

4.1.1. Response variable: Single-family residential (SFR) water use 

 The dependent variable, SFR water use, represents a time series of weekly mean 

water use observations in summer (June-August) over 2001-2005 for 460 households 

served by two water providers: PWB (n = 321) and TVWD (n = 139). In this case, a 

‘household’ is defined by the water meter associated with a discrete billing unit at a 

unique address spatially referenced to a SFR tax parcel. In the analysis that follows, 

‘household’ and ‘parcel’ refer to the same spatial unit. The term ‘household’ connotes 

behavior, while the term ‘parcel’ refers to aspects of building structure and land cover. 
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The number of residents per billing unit was unknown in this study. The service areas for 

these utilities span an urban gradient, ranging from established neighborhoods with 

relatively high building density near the urban core to newly constructed, lower-density 

subdivisions along the suburban periphery. 

 Selection of sample households was performed by PWB staff member Dr. 

Hossein Parandvash. Once household consent was obtained, each water meter was 

equipped with a flow monitoring device to transmit a time series of meter readings to 

PWB, although instrumentation for households in the TVWD service area differed from 

that used for PWB households. The resulting raw data were manipulated to show quantity 

of flow per day. There was some device error, particularly for TVWD households (more 

flow recorded than is possible to move through the pipe in that 24 hour period), with 

some very high values in a few cases; these values were removed by request of PWB 

staff before we obtained the data. Because the research question was aimed at weather 

sensitivity, data were limited to summer months (June-August), as the typical SFR water 

use pattern are higher and more variable in summer, with an average of 1271 liters per 

day (LPD) compared to 575 LPD in winter (Figure 4.1). However, sample households 

exhibited wide variation around the average, with some households consuming over 2000 

LPD in summer while others maintained the winter average of around 600 LPD (Figure 

4.2). Daily data were aggregated to weekly mean values because the signal connecting 

weather and water use is more pronounced at this scale (Akuoko-Asibey et al. 1990). 

Water use is substantially more variable at the daily scale, likely related to indoor water 

use drivers or weekend effects (Wong et al. 2010), and thus not related to either weather 

or land use. 



41 
 

Figure 4.1: Seasonality of daily household water use by month, 2001-2005. For the typical Portland single-
family residential household, median water use (white dot) increases from 575 liters per day in winter to 
1271 liters per day in peak season (July-August). Boxplots (in orange) indicate that the variance in water 
use also becomes greater in summer. Violin plots (in blue) visualize the density of water use, underscoring 
the stability of winter use and the elasticity of summer use.  

 

Figure 4.2: Spatial variation of daily household water use by month, 2001-2005. Single-family residential 
households exhibited wide variation around the average water use level of 1271 liters per day in summer. 
Consumption levels were particularly high for households in the northwestermost part of the study area, in 
excess of 2000 liters per day, and were particularly low in the areas directly east of the Willamette River. 
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 The source data contained observations for a larger sample of households (n = 

746), but the data were highly imbalanced. Some households were monitored 

continuously from 1999-2008, while others were monitored for a month or less. Mixed-

effects models can handle imbalanced data (Bates 2010), but a problematic spatial trend 

was evident in this missing-ness (Snijders and Bosker 2012). Nearly all TVWD 

households were missing substantial chunks of data due to issues with research design 

and data collection that preceded the present analysis. Thus, it was necessary to select a 

time period to temporally subset the data. After examining a set of six possible time 

periods, the years ranging from 2001 to 2005 were selected. This time period was 

associated with a fairly large (n = 460) and spatially unbiased distribution of households 

along an urban gradient, avoiding any spatial cluster to the missing data (Figure 4.4). 

This time period also has the advantage of including some interannual weather variation 

(hotter or cooler summers due to El Nino Southern Oscillation) while avoiding any 

marked decline in SFR water use. A ~6% decline was apparent for the households with 

most complete time series, 1999-2008.  

4.1.2: Explanatory variables   

 Candidate explanatory variables were selected at three scales (Table 4.1): weather 

(level 1), SFR parcel (level 2), and neighborhood (level 3). These variables were selected 

because they have proven significant in single-level, fixed effect studies in the water 

demand literature (Balling et al. 2008; Praskievicz and Chang 2009; Chang et al. 2010; 

Breyer et al. 2012).  
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Table 4.1: Candidate explanatory variables. Data sources include Interactive Numeric and Spatial 
Information Data Engine (INSIDE) Idaho gridded weather data and Regional Land Information System 
(RLIS). At the neighborhood scale, three alternative boundaries were examined, census tracts (n = 125), 
RLIS neighborhood boundaries (n = 63), and regions (n = 10). For each, neighborhood-scale values were 
calculated from a spatial join to RLIS single-family residential taxlots. 

Scale Predictor Source 

Weather 

(level 1) 

n = 35,065 

Minimum/maximum air temperature (°C) INSIDE Idaho 
Minimum/maximum relative humidity (%) INSIDE Idaho 

Precipitation (mm) INSIDE Idaho 

Wind speed (km/hr) INSIDE Idaho 

Five-day cumulative precipitation Calculated value 

Extreme heat index Calculated value 

   

Households 

(level 2) 

n = 460 

Lot area (m2) RLIS 2005 

Building area (m2) RLIS 2005 

Low vegetation (m2, %) RLIS 2007 

High vegetation (m2, %) RLIS 2007 

Impervious (m2, %) RLIS 2007 

Property value: land, building, total* ($US) RLIS 2005 

Building age RLIS 2005 

   

Neighborhood 

(level 3) 

Mean SFR lot area (m2) Calculated value 

Mean SFR building area (m2) Calculated value 

Mean SFR property value (land, building, total) Calculated value 

Mean SFR building age (years) Calculated value 

Mean SFR low vegetation (m2, %) Calculated value 

Mean SFR high vegetation (m2, %) Calculated value 

Mean SFR impervious (m2, %) Calculated value 

 

 At level 1, daily air temperature (minimum and maximum, °C) and precipitation 

depth (mm) were derived from Interactive Numeric and Spatial Information Data Engine 

(INSIDE) Idaho gridded weather data, a spatially explicit (4 km2 grid) and statistically 

downscaled dataset of daily weather variables generated from a regional climate model 

(Abatzoglou 2013). To capture spatial variation in water use over the study area, mean 

daily values for all grid cells with centroids falling inside a water provider service area 
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were calculated. The monthly distribution of temperature and precipitation in the study 

area is shown in Figure 4.3. Two additional indices were calculated to capture temporally 

lagged effects of heat or rain: the extreme heat index, defined by a count of the number of 

the previous five days with daily maximum air temperature > 32°C, and the cumulative 

precipitation index, defined by the sum of precipitation depth for the previous five days. 

These values were then aggregated to their weekly means and subset to the summer 

months of 2001-2005 in order to correspond with weekly water use. 

 

Figure 4.3: Distribution of temperature and precipitation patterns, 2001-2005. The climate in Portland, 
Oregon, is marked by distinct rainy and dry seasons. Temperature peaks during the dry summer months of 
July and August, when water demand reaches its peak. 
 

 At level 2, each SFR taxlot was attributed with the following building structural 

characteristics derived from a 2005 iteration the Regional Land Information System 

(RLIS): lot size (m2), building size (m2), building age (years built relative to 2012), and 

property value (land, building, and total value in 2005 $US). Land cover data were 

derived from a 2007 land cover classification, provided by Metro Regional Government, 

with the following four classes: impervious surfaces, low vegetation, high vegetation, and 

water. Total pixel area (m2) and % of total area assigned to each land cover type were 
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tabulated by taxlot in ArcGIS version 10.0. No water pixels were detected from the land 

cover data in sample taxlots. 

 
Figure 4.4: Spatial distribution of households and neighborhood boundaries. The analysis considered three 
candidate neighborhood structures: census tracts (top left), neighborhood association boundaries from the 
Regional Land Information System (RLIS, top right), and regions (bottom left). The spatial distribution of 
sample households (symbolized by water provider) is presented for comparison (bottom right). Each spatial 
dataset was overlaid on the study area (shown in grey). 
 

 At level 3, there were nearly infinite possibilities for zonation of neighborhood 

boundaries. The uncertain geographic context problem suggests that delineation of 

neighborhood boundaries may not coincide with the contextually relevant spatial area. In 

light of these concerns, three different neighborhoods were considered in this analysis: 
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census tracts (n = 125), neighborhood boundaries from the Regional Land Information 

System, or RLIS (n = 63), and broad regions defined for the purposes of this study  

(n = 10).  The spatial configuration of these neighborhoods is shown in Figure 4.4. Mean 

values for all building structural and land cover variables for the population of SFR 

taxlots were obtained for each using ArcGIS 10.0.  

 Census tracts are an attractive zonal configuration because of the wealth of 

socioeconomic data available at that scale. By contrast, RLIS neighborhood boundaries 

have very little data, but may be more contextually relevant, as these boundaries are 

delineated locally, not federally, and are often used for land use planning or conducting 

municipal business. They also tend to coincide with the boundaries of neighborhood 

associations or community planning organizations. In addition, household location 

decisions may be influenced by these neighborhoods more than by census tracts, so RLIS 

neighborhoods capture neighborhood effects by self-selection. A total of 12 

neighborhoods were merged so that at least three households fell within each RLIS 

neighborhood. The regions dataset was created for comparison with finer-scale 

neighborhoods by subsetting water provider study areas into the coarse-scale units using 

the Willamette River, Interstate 5, Interstate 205, and Highway 26.  

4.1.3. Variable transformations 

 In this study, the response variable and all covariates were transformed to the 

natural log scale, then centered on their grand mean values. Log-transformation 

normalized variables and allowed estimated coefficients to be interpreted as elasticities, 

unitless measures with readily comparable effect sizes. Mean centering allows intercepts 
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to be interpreted as means, which is helpful for generating unbiased random effects. The 

decision for mean-centering weather and neighborhood-scale variables was 

straightforward because these data have only a grand mean. However, for variables at 

levels 2, it was possible to center on either a group mean or the grand mean for the 

sample. The grand mean was selected in all cases to highlight contextual effects (Enders 

and Tofighi 2005). After normalizing and centering, each variable represented the 

deviation from log-transformed global mean. 

4.2. Model development 

 Models were fit in three stages using the lmer function for mixed-effects models 

from the lme4 version 0.99999 (Bates, Maechler, Bolker and Walker 2013) deployed in R 

Statistical Software version 2.15.0 (R Core Team 2012). First, alternative unconditional 

means models were specified to compare plausible random intercept structures (Section 

3.3.1) with iterative fitting algorithms available through LMERConvenienceFunctions 

package version 2.0 (Tremblay and Ransijn 2013). The selected random intercept 

structure was then used as input for an iterative process that fit random slopes and 

identify any higher-level predictors of lower-level random coefficients (Section 3.3.2). 

Variables with fixed effects were subsequently back-fit and cross-scale interactions were 

explored using the full random effects structure. Specific functions used at each step of 

model development are summarized in Table 4.2. 

4.2.1. Initial random intercepts structure 

 To select an initial random intercepts structure, a series of unconditional means 

models were fit using REML estimation. This step determined whether intercepts varied 
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Table 4.2: Functions used for model development with R Statistical Software. 

Model development step Function R package 

Fit initial  
unconditional means model 

lmer 
lme4  

version 0.99999 

Remove influential outliers romr.fnc 
LMERConvenienceFunctions  

version 2.0 

Assess anticonservative p-values 
of cross-scale interactions 

pamer.fnc 
LMERConvenienceFunctions  

version 2.0 

Forward-fit random effects ffRanefLMER.fnc 
LMERConvenienceFunctions  

version 2.0 

Back-fit fixed effects bfFixefLMER_F.fnc 
LMERConvenienceFunctions  

version 2.0 

Likelihood ratio testing anova 
lme4  

version 0.99999 

Marginal and conditional R2 r.squaredGLMM 
MuMIn  

version 1.9.5 

Parametric bootstrapping  boot.mer 
lme4  

version 1.0.4 

Multicollinearity vif.mer 
https://raw.github.com/ 
aufrank/R-hacks/master/ 

mer-utils.R 

Confidence intervals  confint 
lme4  

version 1.0.4 

 

by neighborhood and selected among alternative neighborhood boundaries. Water use 

observations were grouped by household, by neighborhood, and both households and 

neighborhoods. Three alternative neighborhood boundaries were considered: census 

tracts, neighborhood associations, and regions (Figure 4.4). Relative log-likelihood ratio 

tests were performed to compare pairs of models (significance level of 0.05). Three 

models with best fit (lowest deviance) were identified. Design effects and contextual 

relevance were examined to select a prevailing random effects structure from this subset. 
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Outliers were removed from the selected empty model using the romr.fnc function from 

LMERConvenienceFunctions, where an outlier was defined as any observation from the 

prevailing candidate model with standardized residuals greater than 2.5 standard 

deviations from the mean (Tremblay and Ransijn 2013). Note that lme4 version 0.99999 

was used to fit models input while lme4 version 1.0.4 was used to bootstrap p-values and 

calculate confidence intervals.  

4.2.2. Specifying random effects 

 Random slopes were forward-fit using the ffRanefLMER.fnc function from 

LMERConvenienceFunctions. This algorithm uses REML estimation to iteratively 

evaluate a list of possible random effects structures, applying a log-likelihood ratio test 

(significance level of 0.05) to compare relative fit with a baseline model. To avoid bias 

from omitted variables, the baseline model included all candidate explanatory variables 

(Zuur et al. 2009). 

 4.2.3. Back fitting fixed effects 

 Fixed effects were back-fit using the bfFixefLMER_F.fnc function from 

LMERConvenienceFunctions. The back-fitting process used by this script is outlined 

below. The input model contained all candidate explanatory variables (Table 4.1), along 

with all cross-scale interactions identified as significant using the anticonservative p-

values generated through the pamer.fnc function from LMERConvenienceFunctions 

(Table 4.3). Using ML estimation, the following steps were iteratively performed. First, 

the least significant model parameter at the coarsest-scale was identified based on the t-

statistic. The relative fit of models with and without this candidate variable were 
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compared using a log-likelihood ratio test (significance level of 0.05). If the test was 

significant, the variable was retained; otherwise, it was removed. The next iteration began 

by selecting the next-smallest t-statistic, in absolute value. Once all of the variables at the 

coarsest scale were tested, the process stepped down to the next-finest scale and repeated 

the same steps. However, in addition to checking model fit with a likelihood ratio test, 

these finer-scale variables were tested for cross-scale interactions with higher-level 

variables. To specify the most parsimonious model (and to avoid conflating 

nonstationarity with omitted variable bias), potential redundancies in the selected random 

effects structure were also examined at each iteration. If the variance could be accounted 

for with a fixed instead of a random effect, the latter was pruned. To most accurately 

express both the fixed and random effects, the final model was estimated in REML. 

 

Table 4.3: Candidate cross-scale interactions. The variable pairs with interaction effects that were identified 
as significant using the pamer.fnc function from LMERConvenienceFunctions are marked with an ‘x’. 
Maximum air temperature was found to interact with all parcel-scale building structural variables as well as 
impervious land cover. Interactions between weather variables and lot size were most significant and most 
common. Each significant candidate interaction term was tested in back-fitting process. 

 Land use variables with significant cross-scale interaction 

Level 1  
variable 

Lot size, 
parcel 

Property  
value,  
parcel 

Impervious  
area,  
parcel 

Lot size,  
neighborhood 

Building size,  
neighborhood  

Maximum  
air temperature 

x x x x x 

Antecedent  
precipitation  

x  -  - - - 

Extreme heat 
index 

x - - - - 
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4.3. Model diagnostics 

 Previous studies of water use have noted two key methodological problems with 

multilevel models: (1) a wide range of potentially collinear explanatory variables and (2) 

autocorrelated or nonstationary model error terms. Here, model diagnostics paid careful 

attention to possible multicollinearity between fixed effects. Residual diagnostics at each 

scale of analysis were undertaken, with particular attention paid to possible spatial 

correlation in ‘higher-order’ random effects, temporal correlation in ‘lower-order’ effects, 

or correlation between random effects and explanatory variables.  

 The lmer function does not generate p-values for fixed or random effects because 

of uncertainty in the degrees of freedom for the denominator of the F-test that assigns p-

values (Bates 2006; Bates 2010). Bootstrapping procedures (1,000 replicates) were used 

to estimate p-values. Absolute and relative goodness of fit were compared for the 

unconditional means model, the models developed in Section 3.2, and the final model. 

Marginal and conditional R2 measures were obtained to assess overall goodness of fit 

(Nakagawa and Schielzeth 2013). To conduct hypothesis tests about the fixed effects, a 

Wald approximation from the likelihood profile was used to calculate confidence 

intervals of fixed-effect parameters. For random effects, confidence intervals were 

identified from a likelihood profile (Bates 2010). 
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Chapter 5: Results 

 This chapter presents results of multilevel regression analysis of SFR water use. 

Section 5.1 reviews model outputs for candidate unconditional means models and 

provides justification for selecting the initial random intercepts structure. Section 5.2 

covers the results from the model development process of forward-fitting random effects 

and back-fitting fixed effects. Section 5.3 examines the final model. Section 5.4 

concludes by examining residual diagnostics and goodness of fit. It also compares the 

predictive power of a multilevel model to pooled OLS outputs. 

5.1. Results of unconditional means model 

 Results from candidate unconditional means (or ‘empty’) models are reported in 

Table 5.1, with corresponding design effects in Table 5.2. Intraclass correlation (ρ) for 

each empty model was relatively large, suggesting that SFR water use exhibited a nested 

data structure. All empty models that included random intercepts by household (Models 1 

and 5-7) had ρ > 0.5, indicating that roughly half of total variance in water use can be 

attributed to between-household or between-neighborhood variability. Between-week 

weather variability accounted for 47% of total water use variance in Models 1 and 5-7. 

Relatively less variation was attributed to between-neighborhood variability. Among 

three level models, ρN suggested that 22-30% of between-household variance was 

attributed to between-neighborhood factors (Table 5.2). Model fit (AIC, deviance) was 

best for three-level models (Models 5-7), with water use observations nested in 

households and households nested in neighborhoods. Log-likelihood testing confirmed 

that a model with both household and neighborhood structures were significantly more 
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likely, given the data (p < 0.05). Taken together, these findings suggest the possibility of 

neighborhood effects at work, although it is uncertain which (if any) of the three 

candidate neighborhood geographies adequately captured the area exerting the contextual 

effect (Kwan 2012). 

 
Table 5.1: Results from unconditional means models. Models that grouped households into neighborhoods 
were a better fit to the data. 

Model Level 2 Level 3 AIC deviance 
Household 
variance 

Neighborhood 
variance 

Residual 
variance 

1 Household - 66415 66409 0.4206 - 0.3670 

2 - Tract 80227 80221 - 0.2701 0.5673 

3 - Region 86034 86028 - 0.0732 0.6952 

4 - RLIS  83275 83269 - 0.1487 0.6241 

5 Household Tract 66365 66357 0.2953 0.1244 0.3670 

6 Household Region 66339 66331 0.3365 0.1016 0.3670 

7 Household RLIS 66353 66345 0.3162 0.0883 0.3670 

 

 The neighborhoods with highest mean water use were located in the northwestern 

area of the TVWD service area, an area known as Wolf Creek (Figure 5.1). Households 

with lower water use areas were clustered in more established neighborhoods on the east 

side of the study area, although some areas of high water use were detected close to the 

city center at finer spatial scales—these areas coincide with more affluent close-in 

neighborhoods. Note that variance in intercepts, as well as the size of the confidence 

intervals, was highest for individual households and lowest for regions, consistent with 

MAUP. As more observations are grouped into a spatial unit, the variability in those 

observations was averaged away in the weighted average, illustrating the smoothing 

effects of aggregation at coarser scales. 
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Figure 5.1: Distribution of random effects from unconditional means models. Maps and quantile plots of 
intercept variability in four two-level unconditional means models with random effects specified for 
addresses (n = 460, Model 1), tracts (n = 125, Model 2), neighborhood associations (n = 63, Model 3), and 
regions (n = 10, Model 4). Because random intercepts represent a weighted average of observations, the 
maps indicate where log-transformed water use observations tended to be high or low in the city relative to 
the grand mean. Corresponding quantile plots with confidence intervals for each grouping structure reveal 
the effect of MAUP in the results, in that intercept variability is most prominent in the most disaggregated 
data (Model 1). 
 

 Design effects in Table 5.2 indicated substantial dependence in the data, leading 

to reductions in effective sample size. This was particularly true at level 1 because of 

strong temporal correlation of water use observations for a given household. At level 2, 

all empty models exceeded the threshold design effect of 2 (Muthen and Satorra 1995), 

but results were mixed at level 3. Grouping households by RLIS neighborhood (Model 7) 

led to relatively large design effects of 2.38, while census tracts (Model 5) yielded a 

design effect of only 1.79. The small number of households per census tract (average of 

3.68) may explain this result. Grouping households by region presented the reverse 
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problem. The calculated design effect of 11.43 led to a sharp reduction in effective 

household sample size, from 460 to 40, raising questions about the statistical power of the 

estimate (Scherbaum and Ferreter 2009). Given these considerations, as well as the 

plausible contextual relevance noted in Section 4.1.2, RLIS neighborhoods were selected 

as the most contextually relevant neighborhood boundary. 

 
Table 5.2: Design effects from unconditional means models. Results suggested a three-level model with 
households grouped by neighborhood association boundaries from the Regional Land Information System 
were most appropriate for the data. 

 Levels 1 and 2 Levels 2 and 3 

Model ICC 
Mean  
cluster  
size 

Design 
effect 

Effective 
sample  

size 
ICC 

Mean  
Cluster 
 size 

Design  
effect 

Effective  
sample  

size 

1 0.53 76.23 41.17 852 - - -  

2 0.32 280.52 91.15 385 - - -  

3 0.10 556.59 334.81 105 - - -  

4 0.19 3506.50 107.90 325 - - -  

5 0.53 76.23 41.13 852 0.30 3.68 1.79 256 

6 0.54 76.23 41.94 836 0.23 46.00 11.43 40 

7 0.52 76.23 40.44 867 0.22 7.30 2.38 194 

 

 A three-level random effects structure, with SFR water use observations grouped 

by households that were, in turn, nested in RLIS neighborhoods, was selected for further 

examination. A small number of data points (907 rows, or 2.59% of total) were identified 

as influential outliers in this empty model using the process as explained in Section 3.3.1. 

These outliers could have arisen from device error or from water leakage from pipes on 

the property. Once influential outliers were removed, model residuals approached the 

normal distribution (Figure 5.2). Parameter estimates for the selected empty model with 
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this modified dataset indicate that 50% of total variance in observations arose from 

between-household processes (τ00
2 = 0.32), with 15% attributed to between-neighborhood 

processes (φ2
00 = 0.09). The remaining 35% variation can be attributed to temporal or 

random variation, captured by the residual (σ
2 = 0.37).  

 

Figure 5.2: Distribution the raw data and response variable. The distribution of weekly mean single family 
residential water use data in summer was skewed by a small number of very large observations (left). For 
analytical purposes, water use data were transformed to te natural log scale and grand mean centered. 
Influential outliers were removed, resulting in the response variable (right). 

 

5.2. Results of model development 

5.2.1. Fitting random effects 

 The forward-fitting process identified significant heterogeneity in the slopes for 

daily maximum air temperature and cumulative five-day precipitation at the household 

scale, indicating that the weather-sensitivity of water use was household-specific. 

However, because variation in the slope for cumulative five-day precipitation was small 

(τ210 = 0.001 compared to τ210 = 0.15 for temperature), this predictor was included only as 
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a fixed effect. No other random slopes were detected. Contrary to expectations, the effect 

of parcel-scale land use characteristics was not found to vary across neighborhoods. 

5.2.2. Fitting fixed effects  

 The back-fitting process selected maximum air temperature (TMAX), five-day 

cumulative precipitation (CumPrcp), and the extreme heat index (Extreme_Heat) as 

explanatory variables at level 1. Relative humidity and wind speed were also evaluated, 

but were not significantly related to water use, once temperature and precipitation were 

included in the model. Lot size (Lot_Size), building size (Building_Size), and building 

age (Building_Age) were selected at level 2, while property value was not. No land cover 

variables were selected at the household scale. At the level 3, models that included 

neighborhood mean building age (Building_Age_Nbo) and % of SFR area with low 

vegetation (LowVeg_%_Nbo) were identified as significantly more likely. Cross-scale 

interactions between TMAX and Lot_Size at both the household scale and neighborhood 

scale were selected. However, at the neighborhood scale, the coefficient was barely 

significant, approaching zero in value, so it was ultimately excluded from the final model. 

None of the other candidate cross-scale interactions in Table 4.3 were found to be 

significant. 

5.3. Full model 

 Fixed effects, variance components, and model fit for the full model are reported 

in the rightmost columns of Tables 5.3 - 5.5, respectively. To illustrate how variance is 

explained across scales, these tables include estimates for a series of increasingly 

complex multilevel models leading to the full model. The tables also indicate parameters 
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named in Chapter 3 to link empirical results with statistical theory. The leftmost column 

presents the selected unconditional means model (Empty model), omitting influential 

outliers. To its left is an expanded model that includes TMAX, CumPrcp, and 

Extreme_Heat as fixed effects (Level 1 fixed). Next, the model was expanded to account 

for Building_Size, Lot_Size, and Building_Age (Level 2 fixed). Random slopes for 

TMAX were then specified (Random slopes). The full model expands the random slopes 

to include fixed effects for the neighborhood-scale predictors Building_Age_Nbo and 

LowVeg_%_Nbo, as well as the cross-scale interaction between TMAX and Lot_Size. 

Because all variables were natural log transformed, coefficients represent elasticities and 

can be interpreted as the percent change in water use associated with a 1% change in the 

explanatory variable. Interepts are interpreted as averages, with random effects denoting 

deviation from the average. 

5.3.1. Estimated fixed effects 

 Water use increased with temperature and decreased with precipitation, as 

expected. A 10% increase in TMAX was associated with a 3.9% increase in water use. 

The connection between rainfall and water use was relatively weak (decrease of 0.2% for 

a 10% increase in CumPrcp). Extreme_Heat was also significant and positive, with a 

10% increase associated with an additional 0.8% increase in water use, on top of the 

fixed effect for TMAX of 3.9%. Bootstrapping results indicated these coefficients were 

highly significant (p < 0.001).  

 At the household scale, water use was positively correlated with Building_size 

and Lot_size, while negatively correlated with Building_age. Building_size had the 
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largest effect of all explanatory variables—a 10% increase was associated with a 6.0% 

increase in water use. A 10% increase in Building_age was associated with a 1.6% 

decrease in water use. Estimates for these variables were significant across model runs (p 

< 0.05). Although Lot_size appeared to be a strong predictor of water use in the Level 2 

fixed effects model, its effect weakened as variance was absorbed by other variables 

more complex models. In the full model, the effect of Lot_Size was less pronounced 

(1.6%) and less significant (p = 0.06) than either Building_size or Building_age. While 

Lot_Size was a poor predictor of water use on its own, the cross-scale interaction 

involving Lot_size and TMAX (γ11) was relatively large and highly significant. 

 
Table 5.3: Regression coefficients. Fixed effects results from increasingly complex model design are 
presented. In the empty model, only random intercepts were specified. Fixed effects were added for 
weather (Level 1 fixed) and parcel characteristics (Level 2 fixed), then temperature response was allowed 
to vary by household (Random slopes). Finally, neighborhood-scale variables and a cross-level interaction 
were specified (Full Model) Parametric bootstrapping procedures were used to obtain p-values.                      

* p<0.1;  ** p<0.05;  ***p<0.01 

 

Variable Parameter 
Empty 
model 

Level 1 
fixed 

Level 2  
fixed 

Random  
slopes 

Full  
model 

Intercept γ00 -0.015  - 0.015 - 0.005 - 0.006   0.000 

TMAX γ10T -    0.392***   0.392**   0.396***   0.394*** 

CumPrcp γ10P -  - 0.024*** - 0.024** - 0.024*** - 0.024*** 

Extreme_Heat  γ10H -    0.083***   0.083**   0.082***   0.083*** 

Lot_Size γ10L - -   0.184***   0.144**   0.132*   

Building_Size γ10B - -   0.607***   0.595***   0.600*** 

Building_Age γ 10A - - -0.236 - 0.249*** - 0.158** 

LowVeg_%_Nbo γ01N1 - - - -    0.049 

Building_Age_Nbo γ01N2 - - - - - 0.218* 

Interaction, TMAX 
and Lot_Size γ11H - - - -   0.187*** 
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 Building_Age_Nbo also exhibited an inverse relationship with water use. 

Compared to the household scale, the effect of Building_Age_Nbo was larger but was 

less significant (p = 0.07). Water use increased with LowVeg_%_Nbo, but the effect was 

not significant (p = 0.63). Multicollinearity was not an issue in the full model as variance 

inflation factors were less than 2.5 for all explanatory variables. 

 
Table 5.4: Variance components. Random effects results from increasingly complex model design are 
presented. In the empty model, only random intercepts were specified. Fixed effects were added for 
weather (Level 1 fixed) and parcel characteristics (Level 2 fixed), then temperature response was allowed 
to vary by household (Random slopes). Finally, neighborhood-scale variables and a cross-level interaction 
were specified (Full Model) Parametric bootstrapping procedures were used to obtain p-values.  

* p<0.1; ** p<0.05;  ***p<0.01 

 

5.3.2. Estimated variance components 

 

Variance components in Table 5.4 were largest in the unconditional means models and 

decreased as fixed and random effects account for progressively more variation in the 

response variable, as expected. Residual variance initially decreased from 0.231 to 0.223 

as weather variables accounted for variance at level 1, then decreased to 0.219 with the 

 Parameter 
Empty 
model 

Level 1 
fixed 

Level 2 
fixed 

Random  
slopes 

Full  
model 

Residual σ² 0.231***  0.223***  0.223*** 0.219*** 0.219*** 

Household 
intercept τ

2
00 0.323***  0.323***  0.285*** 0.287*** 0.289*** 

TMAX slope τ
2
10 - - - 0.147*** 0.142*** 

Slope-intercept 
covariance τ01 - - - 0.300*** 0.300*** 

Neighborhood 
intercept φ

2
00 0.094***  0.095***  0.014 0.090* 0.006* 

ICCH ρH 0.644  0.651  0.561 - - 

ICCN ρN 0.225  0.227  0.047 - - 
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addition of random slopes for TMAX. Variance in the household level intercept declined 

from 0.323 to 0.285 as fixed effects at level 2 captured a portion of between-household 

variance. The slope-intercept correlation of 0.3 indicated that households with high water 

use, as reflected by larger intercepts, also tended to have more temperature-sensitive 

water use, indicated by steeper slopes (Figure 5.3). Variance in the neighborhood 

intercept dropped sharply from 0.09 to 0.006 once the model controlled for parcel 

characteristics. Although small, p-values generated through bootstrapping (1,000 

replicates) indicated that variance in neighborhood intercepts was different from zero. 

 

Figure 5.3: Correlation of household-specific slopes and intercepts. Slopes and intercepts were plotted for 
randomly selected subset of 10% of sample households for temperature (in grey) along with the fixed effect 
for temperature (in black). The resulting fan shape reflects the slope-intercept correlation of 0.3 and 
indicates that higher water-consuming households, with log(liters per day) > 0, also tend to be have more 
temperature-sensitive use patterns (slope > 0).  
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5.4. Diagnostics 

5.4.1. Normality and independence of residuals 

 Level 1 residuals were not temporally correlated and appeared to follow a normal 

distribution centered on zero (Figure 5.4), satisfying requirement that ε~N(0, σ²). 

Normality and independence in the residual suggested that the full model successfully 

captured dependencies the data at this scale. No spatial pattern was evident in the random 

slope for TMAX (Morans I p-value = 0.0991) or the household intercept (Morans I  

p-value = 0.40), indicating that nesting of households in neighborhoods led to a spatially 

random pattern. At the neighborhood-scale, residuals were also found to be spatially 

random in the full model (Morans I p-value = 0.77), although this result could also reflect 

the very limited variability in between-neighborhood variance, controlling for parcel 

characteristics. Cluster and outlier analysis in ArcGIS 10.0 indicated no significant hot or 

cold spots in random effects. The full model also had the effect of removing correlation 

between standardized residuals and predictors, particularly between Lot_Size and the 

random effect for TMAX (Figure 5.5).  

5.4.2: Goodness of fit 

 AIC and deviance in Table 5.5 indicated that increasingly complex models 

accounted for progressively more variation in water use. Deviance decreased from 49085 

in the unconditional model to 47631 in the full model, while the number of parameters 

increased from 3 to 15. Results from log-likelihood ratio tests, conducted with ML or 

REML estimation, as appropriate (see Section 3.4.2), indicated that each model explained 

significantly more variance than the previous, although the magnitude of this difference  
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Figure 5.4: Normality and independence of level 1 residuals. Residuals from the full model were normally 
distributed, centered on zero (left), and were not not correlated across week-long time lags (right). 

 

 

 

Figure 5.5: Correlation between lot size and random effect for temperature across models. Because it 
excluded neighborhood-scale variables, the Random slopes model resulted in correlation between 
explanatory variables and random effects, particularly between lot size and the random slope for 
temperature (left). The full model removed the correlation, resulting in superior performance as well as 
improved model fit (right). This result suggested that neighborhood effects were at work in the data, even if 
the estimated between-neighborhood intercept variability was itself small. 
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was relatively low between the random slopes model and the full model. Between the full 

and the empty model, residual variance decreased 5% at level 1, 11% at level 2, and 93% 

at level 3. The marginal and conditional R2 were calculated for the full model as 0.22 and 

0.67, respectively, indicating that fixed effects explained 22% of total variance, with that 

portion increasing to 67% of total variance when random effects were included. 

 
Table 5.5: Relative goodness of fit across models. Results from increasingly complex model design are 
presented. In the empty model, only random intercepts were specified. Fixed effects were added for 
weather (Level 1 fixed) and parcel characteristics (Level 2 fixed)., then temperature response was allowed 
to vary by household (Random slopes). Finally, neighborhood-scale variables and a cross-level interaction 
were specified (Full Model) Comparative model fit with Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC) and deviance statistics. Log-likelihood ratio tests indicated significant 
improvement in model fit in the full model. 

Metric 
Empty 
model 

Level 1 
fixed 

Level 2 
fixed 

Random 
slopes 

Full model 

AIC 49082 47854 47749 47581 47571 

BIC 49116 47913 47833 47682 47698 

deviance 49074 47840 47729 47557 47541 

Number of parameters 4 7 10 12 15 

Log-likelihood vs. previous 
(p-value) 

- 0 0 0 0.0013 

 

5.4.3. Confidence intervals and hypothesis tests 

 Confidence intervals constructed from the likelihood profile can be used to assess 

whether estimated coefficients are significantly different from zero. Results are presented 

in Figure 5.6. As expected based on bootstrapped p-values, the coefficients for lot area 

and % neighborhood low vegetation were not significantly different from zero. All other 

fixed effects were deemed significant. 
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Figure 5.6: Confidence intervals for fixed effects in full model. Estimates are interpreted as the partial 
elasticity of water use with respect to each predictor variable. Confidence intervals for lot area and 
neighborhood % low vegetation are not significantly different from zero. * p<0.1;  ** p<0.05;  ***p<0.01. 
 

5.4.4. Predictive power of the multilevel model 

 To assess the predictive power of a multilevel approach, a pooled ordinary least 

squares (OLS) model were specified with the same fixed effects. Estimated coefficients 

and confidence intervals were not significantly different from the full multilevel model. 

The main difference lay in the nonstationarity of multilevel coefficients and the 

partitioning of variance across scales. The utility of these model features is revealed when 

the model is used for prediction. The sample data was subset into a calibration dataset 

(2001-2004) and a validation dataset (2005). Pooled OLS and multilevel models were 

estimated using the calibration data. Parameter estimates were very similar to results 
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presented above. Figure 5.7 compares model predictions to observed 2005 values for 

water use. The pooled OLS model only explained 22% of variance in water use, 

commensurate with the marginal R2 reported above. The multilevel model performed 

significantly better, explaining 59% of total variance. By decomposing variance across 

scales and allowing for household heterogeneity, a multilevel approach respected the 

nested structure of repeat-measure household water use data, which considerably 

improved the accuracy of model predictions. 

 

Figure 5.7: Predicted water use from the multilevel model. Multilevel and pooled OLS models were 
calibrated to 2001-2004 data and validated on 2005 data. The full multilevel model predicted 59% of 
variance in observed water use 2005 (left), while an OLS model with the same fixed effects structure 
explained only 22% of variance (right). Decomposing variance across scales and allowing for household 
heterogeneity were key to improving predictive power of a repeat-measure household water use data 
model. 
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Chapter 6: Discussion 

 This chapter situates multilevel model results in the context of previous research 

and explores implications for stabilizing peak urban water demand amid combined 

climate and land use change. Section 6.1 teases out the roles of weather variables in 

driving temporal variation in water use. Section 6.2 interprets the effects of building 

structural variables on water use. Sections 6.3 and 6.4 explore possible explanations for 

why the effects land cover and between-neighborhood variability, respectively, were 

insignificant in the full model. Section 6.5 concludes the chapter by highlighting the 

utility of fine-scale analysis for accurate water use projections, while also substantiating 

calls for greater coordination among water resource managers and land use planners in 

the interests of long-range water resource sustainability. 

6.1. Decomposition of weather sensitivity 

 Response of SFR water use to temperature fluctuations can be decomposed into 

four components: a fixed effect, a household-specific random effect, an extreme heat 

effect, and a land use effect that involved the cross-scale interaction of lot size and 

temperature (Figure 6.1). The fixed effect of temperature reflected the general tendency 

for SFR water use to increase on hotter days as households replace water lost to ET. The 

estimated temperature elasticity of 0.39 was lower than estimates of 1.0 obtained in 

Seattle, Washington (Polebitski and Palmer 2010) and 0.6 based on data from Phoenix, 

Arizona (Balling and Gober 2007). Both of these studies relied on data aggregated to 

coarser spatial and temporal resolutions, which may have lead to conflation of the 

average effect and household-specific deviations from the average. The fine scale of 
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analysis used for the present study revealed that households exhibited a wider range 

temperature responses, with a standard deviation of 0.37 from the average elasticity 

(Figure 5.6). In the full model, household-specific slopes and intercepts were positively 

correlated (τ01 = 0.3), consistent with previous findings that households with higher water 

consumption levels also tended to have more seasonal variation in water use (Polebitski 

and Palmer 2010). Apart from providing insights into between-household heterogeneity, 

allowing temperature response to vary across households significantly improved model 

fit (Table 5.5) and predictive power (Figure 5.7). Calibration and validation results 

indicated that the full multilevel model predicted 59% of variance in water use, a 

remarkable degree of accuracy given the it is not uncommon for residential water use 

models to account for less than 40% of total variance (Renwick and Archibald 1998; 

Ramachandran and Johnson 2011), although the literature includes notable exceptions 

(Shandas and Parandvash 2010).  

 Temperature was a more robust predictor of water use than precipitation. The 

weak linkages between water use and precipitation may have resulted from the fact that 

rainfall is rare in summer (Balling and Cubuque 2009) and that many automatic irrigation 

devices are not calibrated to weather fluctuations (personal communication, Steven 

Carper, Tualatin Valley Water District, July 2013). Antecedent precipitation conditions 

were more predictive than actual rainfall depth, reflecting the role of soil moisture 

dynamics in mediating water balances, particularly water lost to ET over time (Berthier et 

al. 2004). Persistent effects of rainfall and extreme heat are consistent with previous 

studies (Miaou 1990), although the temperature that elicited an ‘extreme’ heat effect was 
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relatively low in Portland (32°C). For example, Zhou et al. (2001) defined extreme heat 

events above 39°C in Melbourne, Australia. Maximum air temperature in Portland 

exceeded this threshold on only two occasions during the study period.  

 

Figure 6.1: Decomposition of temperature response. Four components of single-family residential response 
were to temperature fluctuations were identified: a fixed effect of maximum air temperature (common to all 
households), a random effect of water use (household-specific deviation from the fixed effect), a separate 
extreme heat effect, and a cross-level interaction between temperature and lot size. Width of arrow 
indicates the strength of the relationship. 

 

6.2. Linkages between land use and water use 

 Linkages between land use and water use were found at multiple scales (Figure 

6.2). Building size and building age were significant predictors of water use. Water use 

was most elastic with respect to building size, also consistent with previous studies on 

water use in the Pacific Northwest, in terms of both direction and magnitude (Chang et al. 

2010; Shandas and Parandvash 2010). Polebitski and Palmer (2010) estimated a 
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comparable building size elasticity of 0.51 in Seattle, Washington. It is possible that 

larger buildings could reflect larger household sizes, although Chang et al. (2010) found 

no significant relationship between household size and water use at the block-group 

scale. Alternatively, building size could be collinear with income, where more affluent 

households tend to both have larger houses and use more water in summer, consistent 

with survey evidence that outdoor water use arises from higher-income households 

seeking to display their social status (Askew and McGuirk 2004; Domene et al. 2005). 

 

 

Figure 6.2: Linkages between land use and water use across scales. Building size exhibited the strongest 
linkage with water use, suggesting possible covariance of high water use patterns and high incomes or 
household sizes. Building age was negatively correlated with water use at both the household and 
neighborhood, indicating a suburban effect at work, since the newest construction is located in low-density 
suburban areas. Although weakly related to water use as a fixed effect, lot size was involved in a robust 
(but temporally contingent) cross-scale interaction with temperature. 
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 Lot size is commonly thought to drive seasonality of water use, and has been 

identified as a significant predictor in aggregated studies (House-Peters and Chang 2011). 

However, at the fine scale used for the current analysis, the linkage between water use 

and lot area was relatively weak (0.13) and statistically insignificant. Instead of operating 

as a fixed effect, lot area was a component of a robust cross-scale interaction with 

temperature, where larger lots tended to amplify the effect of temperature on water use 

(Figure 6.1). Importantly, the analysis did not detect a similar interaction between 

weather and building size. This suggested that building size and lot size have different 

types of effects on water use. Building size had a fixed effect, one that operates with 

temporal consistency across households at multiple scales, which explains its importance 

at the parcel (Shandas and Parandvash 2010), block-group (Chang et al. 2010), and tract 

scales (Polebitski and Palmer 2010). In contrast, the effect of lot size has a temporally 

inconsistent effect, being contingent on weather fluctuations, with a magnitude jointly 

determined by its interaction with temperature (Figure 6.3). The model did not detect 

between-neighborhood heterogeneity in the effect of any land use variable, suggesting 

that these parameters affect water use similarly across the study area. Once again, fine-

scale analysis was required to draw out these distinctions.  

 The effect of building age appeared particularly strong because it was selected at 

both the household and neighborhood scale. Chang et al. (2010) also found a significant 

spatial covariance of average building age and water use at the block-group scale, 

although Polebitski and Palmer (2010) found that the effect of building age was sensitive 

to the season and the type of model specified. Because of changes in building code in 
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1992, older buildings are more likely to be equipped with water-inefficient technologies, 

such that a positive relationship would be expected between indoor water use and 

 

Figure 6.3: The contingent effect of lot size. Predicted water use from a multilevel model increases with 
temperature, but the magnitude of the increase depends on lot size. At low temperatures, there is little 
difference in water use patterns between water use from households on large lots (top quartile) and the 
interquartile range. Interaction between weather and lot size becomes prominent above 22°C. Water use 
generally tends to be lower and less variable on smallest lots (bottom quartile). 

 

building age. Finding an inverse relationship between summer water use and building age 

suggested that the land use factors driving high outdoor water use dominated any 

conservations effects from indoor water use efficiencies. Building age was moderately 

correlated with building size (Pearsons correlation = -0.31) and lot size (Pearsons 

correlation = -0.21), but not enough to suggest problems with multicollinearity. Although 

more significant at the parcel scale, the effect of building age was more pronounced at 

this scale (-0.22), indicating that a separate age effect is at work at the neighborhood 
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scale, even after controlling for parcel-scale building age. This result implied that 

household on two otherwise similar parcels would use water differently depending on the 

average building age in the neighborhood. This interpretation would be consistent with 

survey evidence showing that outdoor water use serves to display status and convey 

social distinction, particularly in newer suburban residential developments (Askew and 

McGuirk 2004; Domene et al. 2005). 

6.3. Why was land cover not more predictive? 

 Land cover explained almost no variation in SFR water use. On its face, this result 

was surprising because it would seem that the water demands of vegetation would drive 

the underlying process that generates seasonal water use. However, the result is not 

without precedent. Previous research has uncovered a relatively weak relationship 

between water use and vegetation (Wentz and Gober 2007;  Breyer et al. 2012). This 

finding could have arisen from household misunderstanding of vegetation water 

requirements. Some evidence suggests that households can be poor estimators of ET and 

agronomical requirements, over-watering (Balling and Gober 2007) or under-watering 

(Domene et al. 2005) as a result. Another possible explanation is that building structural 

variation captured all the relevant information, making land cover variation redundant. 

Alternatively, the low correlation could have resulted from the data resolution— water 

use may be highly sensitive to particular types of irrigated vegetation that were not 

captured by the land use classification. The land cover dataset contained only four land 

cover classes, which may have been too coarse to distinguish between thirsty lawns and 

drought-tolerant native shrubbery, since these fine-scale differences may be central to 
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accounting for why one patch of earth was watered while the other was not (House-Peters 

and Change 2011b). However, investigation with a more detailed land cover 

classification (The Intertwine 2012) that included a class for lawns did not improve 

model results.  

 A more likely explanation is that the presence of a lawn did not necessarily mean 

that the lawn is being irrigated. Portland Water Bureau (2010) provided anecdotal 

evidence to substantiate this claim. According to PWB, declining rates of summertime 

lawn irrigation stemmed from outdoor water restrictions imposed during a drought in 

1992. Many households reported a change in attitude towards lawn irrigation after the 

drought as they “realized that if they didn’t water their lawn, they didn’t have to spend 

time mowing it, and the grass grew back green as soon as the fall rains began” (Portland 

Water Bureau 2010, 3-1). Two decades later, lawn watering appears to have ceased in 

some neighborhoods, but for a few holdouts, as residents defect en masse from turfgrass 

irrigation. In other neighborhoods, however, irrigated turfgrass remains the norm. This 

heterogeneity, in concert with the lack of detail in land cover types, could account for 

why the low vegetation was selected through log-likelihood ratio testing but was 

ultimately not significant in the final model. The effect of vegetation was more likely, 

given the data, but its place-based effect, coupled with lack of differentiation between 

water-intensive and drought-tolerant vegetation, meant that the estimated coefficient was 

not significantly different from zero. 

6.4. Variance decomposition 
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 One of the main strengths of a multilevel approach lies in the decomposition of 

variance across scales. However, the portion of total variance attributable to between-

neighborhood factors fell sharply once the model controlled for parcel characteristics 

(Table 5.3). This decline reflected Fotheringham and Brundson’s (1999) point regarding 

the difference between nonstationarity and model misspecification—nonstationarity in 

neighborhood intercepts in the full model was tiny once the model accounted for relevant 

sources of between-neighborhood variance. Log-likelihood ratio testing indicated that the 

full model was more likely given the data (Table 5.5), although the significance of this 

test (p = 0.0013) was smaller other model pairs (p < 2.2e-16). Bootstrapped p-values also 

indicated that between-neighborhood variability was statistically different from zero, but 

small. Grouping households by neighborhood had the effect of improving overall model 

performance, in terms of both model fit and reducing correlation between model residuals 

and covariates (Figure 5.6). This would suggest that the processes driving high water use 

were primarily located at the household scale, but that similar households tended to be 

closer together—this would correspond with correlated neighborhood effects as defined 

by Manski (1993). By contrast, the effect of neighborhood building age would seem to 

operate as a contextual effect in Manski’s framework, since it captured a separate source 

of meso-scale variation, after controlling for parcel building age. The analysis concluded 

that neighborhood context was associated with a very modest but statistically significant 

effect on water use, controlling for weather and building structural characteristics. 

6.5. Policy implications 
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 The decomposition of temperature sensitivity has immediate implications for 

vulnerability of urban water provisioning systems under the combined effects of climate 

and land use change. A wide range of climate models project hotter, drier summers, while 

urbanizations models project ongoing densification. Regarding climate, Mote and Salathé 

(2010) projected that summer temperatures across the Pacific Northwest would increase 

1.9 to 2.7 °C by 2040 and that mean summer rainfall would decrease 5.1% to 11.2%, 

relative to the 1970-1999 mean. The INSIDE Idaho gridded dataset projected the 

following changes to summer climate over the period 2025-2055 in the study area, 

relative to the 1970-1999 mean: 0.24 to 1.43°C increases in summer temperatures, 

decreases in cumulative five-day precipitation by 4.2% to 34%, and increases of 71.0% to 

140% in the extreme heat index (Figure 6.4). At the same time, Metroscope, a regional 

land use and transportation model, projected ongoing urban densification as population in 

the Portland area continues to grow within the urban growth boundary. Assuming SFR 

capacity is exhausted by 2040, median lot size is projected to decrease an average of 

160m2 (-22%) with decreases of up to 300m2 in low-density, high water-consuming areas 

in proximity to transit (Figure 6.5).  

6.5.1. Triple exposure 

 Taken together, results indicated that SFR water use tended to be higher and more 

temperature sensitive in residential areas characterized by larger, newer buildings on 

larger lots. In other words, sprawl drove increases in summertime water use that are 

likely attributable to increased outdoor use. It has already been noted that the built 

environment associated with sprawl encourages particularly high levels of resource  
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Figure 6.4: Projected deviation in summer maximum air temperatures, 2025-2055. Projections are shown 
for three emissions scenarios and are expressed relative to the reference period of 1970-1999. The 
Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL_EMS2M) is the most cool and wet 
warming scenario, while the Hadley Global Environment Model 2 (HadGEM2_ES) is the most hot and dry 
scenario. The Model for Interdisciplinary Research on Climate (MIROC5) lies between these extremes. All 
scenarios project higher temperatures and less precipitation in summer. Data source: INSIDE Idaho. 
 

consumption (Norman et al. 2006). Fine-scale linkages between the built environment 

and high levels of outdoor water use have important consequences for reliability of urban 

water supply in the aggregate. For example, rapid suburban growth throughout inland 

California, United States, magnified seasonality of water use, jeopardizing water security 

in the region (Hanek and Davis 2006). Similarly, increases in water consumption for 

newly-built pools and gardens in so-called ecotourist enclaves have stressed local water 

supplies on the Mediterranean island of Mallorca (Hof and Schmidt 2011). Yet, demand-

side shortages are not unique to semi-arid regions—a mismatch between fixed supply and 

increasing demand can stress water resources in humid climates as well (Lyon et al.  



78 
 

 
Figure 6.5: Projected change in mean single-family residential (SFR) lot area. Results are aggregated by 
census tract and refer to projected changes by 2040. This calculation assumed that all capacity for SFR 
development was exhausted, both in terms of new construction and infill. Densification is greatest in 
suburban tracts in proximity to transit. Data source: Metroscope. 

 

2006). Hill and Polsky (2007) showed that summertime outdoor watering restrictions in 

suburban Massachusetts, United States, resulted not from drought-induced shortage of 

supply but from excessive demand because the low-density urban form promoted 

intensive outdoor use. In the context of climate change, suburbanization may lead to not 

double but triple exposure to risk of water shortages by increasing aggregate water 

demand (population growth) and amplifying the seasonality of that demand (land use), 

even as temperature drives demand increases while also shrinking the hydrological 

resource base (climate change). 

 However, results also point to the capacity for urban form to soften the impact of 

high temperatures on water use, with urban density serving as a pathway to climate 
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resilience and, potentially, more sustainable urban water provisioning systems. In 

Portland, the groundwork for urban density has already been laid out in state-level land 

use regulations that constrain sprawl within an urban growth boundary. Ongoing 

densification is projected for the Portland metropolitan region, with the largest changes in 

median lot size anticipated in low-density, currently suburban areas, particularly those 

areas that are well-served by light rail (Figure 6.5). Across the region, multifamily 

developments with limited opportunities for outdoor water use are expected to comprise 

an increasing share of the housing stock (personal communication, Dennis Yee, Metro 

Regional Government, June 2013). From a water resources standpoint, this trend appears 

to double as a form of urban climate change adaptation. 

6.5.2. Vegetation feedbacks and landscape regulations 

 Although densification appears to be a mechanism for resilience from a water 

demand standpoint, a more comprehensive view would also account for complex 

feedbacks between land use and water use related to urban heat island (UHI) effects 

associated with dense areas covered by impervious surfaces. Households may, to some 

extent, increase water use to mitigate UHI effects (Guhathakurta and Gober 2010), 

although water use tends to be inversely related to impervious surfaces in Portland 

(Breyer et al. 2012). Indeed, low-density development in Tucson, Arizona was identified 

as an urban heat ‘sink,’ where evaporative cooling from vegetated surfaces lowered 

surface temperatures relative to the surrounding desert (Halper et al. 2012). Land cover 

change towards more vegetated surfaces was found to mitigate UHI under climate change 

scenarios in Portland (Middel et al. 2011). A massive tree planting campaign is already 
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underway in Portland. Although intended primarily for stormwater management, this land 

cover change may ameliorate the worst effects UHI as well. 

 Many areas are already developed such that patterns of building structure are 

relatively fixed. For these areas, outdoor water use restrictions become increasingly 

common to suppress nonessential uses in times of crisis, although this form of demand 

management fails to address the structural origins of excessive seasonality. Hanek and 

Davis (2006) have suggested that regulation of vegetation in residential landscapes may 

be more effective in addressing the root cause of seasonal water stress. Replacement of 

water-intensive vegetation with drought-tolerant, water-efficient plants would function as 

a sort of retrofitting of residential landscapes to discourage excessive outdoor water use, 

just as previous changes in building code mandated water-efficient appliances in 

remodels. These sorts of passive conservation techniques have been a significant factor in 

declining per-capita urban water demand since 1992 (Rockaway et al. 2011).  

6.5.3. Land use planning as equitable water demand management  

 Conservation pricing has been proposed as an alternative strategy to manipulate 

outdoor water use (Rinaudo et al. 2012). However, water use tends to be relatively 

inelastic with respect to price (Worthington and Hoffman 2008). Some research indicates 

that high water-consuming households become more sensitive to water prices in peak 

season (Kenney et al. 2008), while other studies have found that wealthy households, 

who tended to have the highest water use rates, were less price-sensitive overall (Mieno 

and Braden 2011), so it is unclear whether price hikes would have the desired effect. 

Apart from efficacy concerns, price hikes also have equity implications— raising prices 
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on water would be disproportionately borne by low-income households (Renwick and 

Green 2000; Domene et al. 2005). To the extent that landscape irrigation serves to display 

status, there is reason to believe signaling increased scarcity through price would not only 

burden low-income households, but would also make irrigated residential landscapes 

more exclusive, thus enhancing the role of outdoor water use as a marker of social status.  

 The results of multilevel analysis suggest that land use planning may be an 

effective non-price mechanism for managing peak long-run demand, as land use 

decisions have water use implications. Manipulating water use through land use would 

target the behavioral origins of demand-side vulnerability to water stress. It would also 

signal a structural change to water demand, since price-based demand management 

implies movement along the water demand curve, while using urban density to reduce 

seasonality would constitute a downward shift in the demand curve (Saurí 2003). Gober 

et al. (2013) argued that the intricate linkages between land use and water use call for 

increased coordination between land use planners and water resource managers. Indeed, 

the extent to which integrated land and water planning is possible could be viewed as a 

form of adaptive capacity, increasing system resilience in the face of complex change and 

deep uncertainty (Larson et al. 2013). Results from the present analysis could inform that 

coordination, because examining parcel-scale water use isolates the land use effects in a 

way that is most relevant for land use planning (Shandas and Parandvash 2010). 

However, it should be noted that these implications are limited to urban water delivery 

systems such as those considered in this study. Results may not apply to other water 
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rights configurations, particularly given the complex, historically-contingent legacy of 

water rights allocations in the American West. 
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Chapter 7: Conclusions 

7.1. Summary of main findings 

 This analysis used multilevel regression to investigate scalar dimensions of SFR 

water use. It provided evidence that residential water use arises from a mix of biophysical 

and social drivers at multiple spatial and temporal scales. Responses to the research 

questions presented in Section 1.4 are as follows.  

 Maximum air temperature drove temporal variation in water use through multiple 

pathways (Figure 6.1). On average, a 10% increase in maximum air temperature lead to a 

3.9% increase in water use. Household sensitivity varied widely from this average effect, 

ranging from no response to a 10% increase. Antecedent rainfall varied inversely with 

water use and was more predictive than precipitation depth and, although the magnitude 

of the effect (0.25%) was less pronounced than temperature. The analysis also revealed a 

separate, time-lagged effect associated with extreme heat (0.9%). Although 

heterogeneous responses to maximum air temperature were detected, households 

exhibited little to no variation in responses to the persistent effects of rainfall and extreme 

heat.  

  Between-household variability explained half of the variance in SFR water use, 

and was more important than weather fluctuations in explaining water use variation. As a 

result, allowing intercepts to vary by household considerably improved the accuracy of 

predicted water use. In terms of parcel characteristics, water use was most elastic with 

respect to building size than any other predictor, including temperature, with a 10% 

increase in building size associated with a 6% increase in water use, on average. Building 
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age varied inversely with water use (-1.6%). Water use tended to increase with lot size, 

although the magnitude of lot size as a fixed effect was surprisingly weak (1.3%). The 

effects of parcel characteristics were found to be constant across neighborhoods.  

 Mean neighborhood SFR building age was inversely related to water use, with an 

effect that was more prominent than household building age (-2.2%), although the 

significance of this effect was weaker. Controlling for parcel characteristics, variation 

between neighborhoods was very small, but statistically different from zero. Although 

most of the variability in water use arose from household-scale processes, a model that 

accounted for between-neighborhood variation was deemed more likely, given the data, 

and improved model performance (Figure 5.5). The analysis concluded that 

neighborhood effects are present in household water use, although the magnitude of these 

effects is weak at best. 

 A significant cross-scale interaction was detected between temperature and lot 

size. Unlike building size, which operated as a fixed effect, the effect of lot size was 

contingent on weather fluctuations; larger lots tended to magnify temperature-induced 

increases in water use, but only on hotter days (Figure 6.3). This finding highlighted the 

utility of multiscalar analysis. Lot size has been identified at a significant driver of water 

use in coarser-scale studies, likely because its weak fixed effect and strong weather-

contingent effect became conflated with aggregation. These nuances, which improved the 

predictive power of the model, may not be evident from a single-scale perspective. 

Single-family residential land use and water use are bound in a complex and mulitscalar 

relationship (Figure 6.2). 
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7.2. Addressing issues of scale and aggregation 

 A multilevel approach was selected to jointly model the micro-foundations and 

meso-scale context of household water consumption so as to avoid both ecological and 

atomistic fallacies. In this framework, statistical dependence and between-group 

heterogeneity were not merely sources of standard error bias to be controlled, but 

important artifacts of the data warranting investigation in their own right. The research 

design sought to address critiques of multilevel approaches to geographical hierarchies 

(Fotheringham and Brundson 1999; Chaix et al. 2005). Biases arising from the uncertain 

geographic context problem (Kwan 2012) were considered by examining alternative 

neighborhood boundaries. Neighborhood association and community planning 

organization boundaries were determined to be most contextually relevant. In light of 

concerns regarding the discrete, fragmented spatial correlation structure implied in 

multilevel models, clustering of residuals was carefully examined at multiple scales—no 

clustering was detected in the full model.  

7.3. Climate change, urban form, and resilience 

 One of the main contributions of this research was the decomposition of 

temperature response into four components: a fixed or average effect, a household-

specific deviation from this average, an extreme heat effect, and a land use effect, 

encapsulated by the cross-scale interaction between lot size and temperature (Figure 6.1). 

These findings underscored the demand-side vulnerability of urban (and especially 

suburban) water provisioning systems to water stress stemming from higher summer 

temperatures and extreme heat events, suggesting the possibility of triple exposure to the 
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combined effects of population growth, climate change, and suburbanization. However, 

the same findings also provided evidence for a conservation effect associated with urban 

density, implying that dense land use patterns may also be areas of resilience (House-

Peters and Chang 2011b). Moreover, these findings pointed to land use planning as a 

potentially robust and equitable non-price mechanism to target unsustainable levels of 

outdoor water use. 

7.4. Future work 

 This research has focused on the roles of weather and land use variables in 

shaping SFR water use patterns. Future work could link these patterns to household 

characteristics, particularly attitudes, income, household size, lawn watering practices, 

and presence of drought-tolerant vegetation. Evidence is compelling that these factors 

could meaningfully influence water consumption (Domene et al. 2005; Domene and 

Saurí 2006). Household water use is generally on the decline, but the average household 

size is shrinking, too, which has important implications for resource use (Liu et al. 2007). 

Connecting water use patterns with survey data could reveal important cultural and 

perceptual dimensions to water use. 

 Future research could also explore the relationships among land cover, water use, 

and the MAUP. The land cover data used for this analysis was at a relatively fine scale (3 

ft pixels), but the classification itself was fairly coarse, containing only four land cover 

types. As a consequence, no statistically significant relationship between land cover and 

water use was detected. Future research could develop a more robust land cover 

classification to distinguish between irrigated and non-irrigated vegetation. Furthermore, 
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the MAUP was considered but not rigorously addressed in this analysis. Future research 

could leverage this detailed classification scheme to develop a more robust treatment of 

the MAUP, perhaps by using land cover to delineate neighborhood. Results may clarify 

the relationship between the spatial extent of irrigated vegetation and summertime water 

use patterns, while avoiding biases associated with scale and unit of aggregation. 

 Results from the multilevel model can also be incorporated into urban water 

demand models to project water use under combined climate and land use change 

scenarios (House-Peters et al. 2010; Polebitski et al. 2011). Conservation effects could 

also be explored, both in terms of ongoing per-capita reductions in water use as well as 

the countervailing trend of demand hardening, especially in winter, where marginal 

changes in water conservation become increasingly difficult because the easiest changes 

have already been made. Conservation can extend the life of existing infrastructure and is 

increasingly valued according to the cost of adding new water supply infrastructure in 

lieu of reducing demand, so accurate projections have a very concrete monetary value.  

 This analysis considered multiscalar dynamics, time lags, and spatial 

characteristics of residential water use as a coupled human-natural system. As such, the 

research responds to calls to develop a deeper understanding of how social and ecological 

processes form systems (Redmon et al. 2004). Residential water use is itself nested 

within a broader urban water provisioning system with its socio-ecological dynamics. 

Future research could tie household water use to other water-consuming sectors and 

situate the aggregate demand for water in relation to the economic and ecological 

processes that shape water supply. 
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