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Abstract
Urban water use arises from a mix of scale-depdraephysical and socioeconomic
factors. In Portland, Oregon, single-family resitnvater use exhibits a tightly coupled
relationship with summertime weather, although tklationship varies with land use
patterns across households and neighborhoodsthidss developed a multilevel
regression model to evaluate the relative impogarfaveather variability, parcel land
use characteristics, and neighborhood geographiexbin explaining single-family
residential water demand patterns in the Portlaattopolitan area. The model drew on a
high-resolution panel dataset of weekly mean sunwager use over five years (2001-
2005) for a sample of 460 single-family househaloignning an urban-to-suburban
gradient. Water use was found to be most elastit re@spect to parcel-scale building
size. Building age was negatively related to wass at both the parcel and
neighborhood scale. Half the variation in water cae be attributed to between-
household factors. Between-neighborhood variaticarted a modest but statistically
significant effect. The analysis decomposed houseiemperature sensitivity into four
components: a fixed effect common to all househ@dwusehold-specific deviation
from the fixed effect, a separate extreme heatgffand a land use effect, where lot size
exaggerated the effect of temperature on waterRessults suggested that land use
planning may be an effective non-price mechanisnioiog-range management of peak
demand, as land use decisions have water use atiphs. The combined effects of
population growth, urbanization, and climate chaegaose water providers to risk of
water stress. Modeling fine-grain relationships agbeat, land use, and water use

across scales plays a role in long-range climaa@@h planning and adaptation.
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Chapter 1: Introduction

1.1. Climate change and urban water resource maimasg

Clean, potable water is an increasingly scardeatde resource. Although U.S.
per-capita water use has declined relative to #¥®4, population growth has stressed
urban water supply infrastructure, leading to mamagnt of demand through higher
prices, technological change, and conservatiomiinges (Gleick 2003; Coomes et al.
2011). Climate change threatens to add a new sofisteess to urban water
provisioning systems (Miller and Yates 2006). la ®acific Northwest, a wide range of
climate change scenarios have projected hottesr, duimmers, which could reduce
snowpack and modify the timing and magnitude adastiflow, potentially limiting water
supply during peak-season demand in late summete(lted Salathé 2010). At the same
time, peak demand may itself increase, as air tesyne drives summer water
consumption (Praskievicz and Chang 2009). The eaispf climate-induced reductions
in supply and increases in demand, compoundedébgftacts of population growth,
paints a potentially grim picture of intensified teastress associated with warming
climate patterns.

The reliability of urban water provisioning systeim the next century will
depend on stabilizing peak demand (Vano et al. R0 @rowing body of literature on
the geography of urban water use suggests thatibgistructural and land cover
variables mediate the relationship between climatépeak demand (Domene and Sauri
2006; March and Sauri 2009). In summer, singledfaresidential (SFR) water use tends

to be less weather sensitive in denser neighboshaiiti smaller lots or more



multifamily housing, as there is less space fogated vegetation (Balling et al. 2008;
Breyer et al. 2012). These findings point to a foleurban densification in softening the
impact of higher summer temperatures on water sg@ad of a broader plan for
adaptation to climate change in cities.

Clear articulation of the relationships among eliey urban form, and water use
could also inform long-range forecasting. Sevetahario-based analyses have
incorporated the effects of both climate and lasel thange on projected water demand,
yielding surprising results. Low-density residehtiavelopment dominated climate
change in driving future neighborhood-level watse increases in Hillsboro, Oregon, a
suburb of Portland (House-Peters et al. 2010). €@y, a broader study that jointly
modeled urban water supply and demand in the $eaadtropolitan area found that
continued urban densification was key to stabitizieak demand and averting shortages
(Polebitski et al. 2011). These findings suppoetitiotion of a conservation effect
associated with urban density that may help altewiae severity of regional water stress.
Long-range water demand models that assume a sthia form or otherwise neglect
the place-specific effects of land use on watermag misgauge the trajectory demand,
overestimating in densifying areas and underestngat areas experiencing rapid low-

density development.

1.2. Multiple scales, multiple populations
Land use shapes the relationship between clinmatevater use. Evidence for this
is compelling, although the bulk of analyses focuge this relationship have relied on

spatially and temporally aggregated data. Becansestale water consumption data



have historically been unavailable, it is largehkoown how much the scale of analysis
influences the strength of this relationship. Dbesspurported conservation effect of
urban density aggregate up from daily householdgs®es or operate independently as a
contextual effect at the neighborhood scale? Adtevely, does density interact with
finer-scale household processes in ways that magenevident from a single-scale
perspective? To model the effect of land use orsébold water use without
inadvertently introducing ecological or atomistati&cies (Robinson 1950; Alker 1969),
it is necessary to examine water use at multiphesc

This analysis drew on a rare, high-resolution pdataset of daily SFR water use
to examine the micro-foundations of establishedaysesle relationships between
weather, water use, and land use. Even at thist@iake, however, it should be recognized
that a certain level of abstraction from directexg@nce is present in the data. The finest
resolution available is the household, an aggregaif one or more individuals in space,
on a specific day, which represents an aggregafigvater-consuming moments. Each of
these moments is intricately bound up with a compié of factors, including "local
cultures, everyday routines, institutional practiead structures” (Jones and Duncan
1995, 29). As a consequence of this abstracti@nsitinal connecting the consumptive

moment with its context has been encoded, albgierfectly, in the data.

When attributed with parcel-scale and neighborhecale land use
characteristics, multiple related populations amd represented in these data: a
population of water use observations, a populatidBFR households, and a

(geographically uncertain) population of neighbartt® (Kwan 2012). The study period



can also be thought of as a sample from a supeaukgiogn of summer days in the
Portland (Crowder and South 2011). Broader soctmeic, political, and climactic
factors play a role in shaping these parametefsmihe Pacific Northwest or between
regions. This analysis takes a quantitative appreagrappling with a small piece of this
complexity, SFR water consumption across houseladseighborhoods in the

Portland metropolitan area.

1.3. Problem to be investigated

Outdoor water use figures prominently in managdroéresidential landscapes,
even in the maritime Pacific Northwest, where tlmate is marked by distinct rainy and
dry seasons. In Portland, Oregon, water use eshaltightly coupled relationship with
summertime weather and climate, although thisiorahip varies with patterns of land
cover and building structure across householdsaighborhoods. This thesis developed
a multilevel regression model to evaluate the indatnportance of weather variability,
parcel characteristics, and neighborhood geogragmitext in explaining SFR water
demand patterns. Multilevel models tease out vaeassociated with each level of a
nested set of relationships (Goldstein 2003). im ¢thse, a time series of daily water
demand observations was nested within individuakkbolds. Households were, to an
unknown degree, nested within neighborhoods; bpditia units were attributed with
land use characteristics. In addition to partithgnwariance across scales, the analysis
tested for heterogeneity in finer-scale coefficsegmd interactions between drivers across
scales. Results are presented against currentsiaddmng of relationships among

weather, land use, and residential water use. @garch concluded by relating key



findings back to the problem of double (or tripbxjposure and potential adaptation
strategies for urban water provisioning systentfigocombined effects of climate,
population, and land use change in American cifiess thesis was a component of a
broader study on the effects of combined climatkland use change on the

sustainability of urban water resources.

1.4. Research questions

The goals of this thesis were fourfold. First, thesis sought to detect and
measure the degree of heterogeneity in weatheitisépof water use patterns across
households and neighborhoods. Second, the elgsifotater use with respect to parcel-
scale and neighborhood scale building structurelamd cover characteristics was
estimated. Third, variance in water use was pantiil across scales. Finally, the thesis
sought to determine whether the drivers of waterinteract across scales and measure

their effects. The analysis will provide answershe following research questions:

1. How sensitive is SFR water use to weather vari&tibo what extent does

this sensitivity vary across households?

2. To what extent do individual household charactarssexplain variance
in SFR water use patterns? How do parcel charastes affect water use and

does this effect vary across neighborhoods?



3. To what extent do neighborhood characteristics @xplariance in

household water use patterns?

4. To what extent to these variables interact acrasdes?

1.5. Structure of the thesis

Chapter 2 reviews relevant literature on water lissxamines evidence linking
weather variation with water use at multiple spatied temporal scales, paying particular
attention to previous studies of SFR water uselamd use covariates. Qualitative
evidence for neighborhood influences on houselarid management decisions is
presented. The literature review then turns to Hegearchies, describing how these data
structures relate to ecological and atomistic tadia and the modifiable areal unit
problem. Current problems in the detection andanauion of neighborhood effects are
presented. The chapter concludes by presentingargl@spects of the urban water
provisioning system in the study area of Portlabaggon.

Chapter 3 constructs a theoretical scaffoldingaitilevel regression. It explains
the theory behind fixed and random effects, vaeat@composition, and cross-scale
interactions. Unconditional means and random slopedels for water use are developed
and parameters are interpreted. Problems relatassessing goodness of fit and
statistical significance in multilevel models arsalissed. Chapter 4 describes data
sources and pre-processing of water use, weath@étaad use variables. It also details

the model development process and diagnostic punesd



Chapter 5 presents the results. An increasinghyptex series of models are
developed to illustrate how variance in water gseairtitioned across scales. The final
model includes random intercepts for householdreeighborhood as well as random
slopes for household response to maximum air tegiyer. Fixed effects are specified to
account for persistent effects of heat and rairmggdascale effects of lot size, building
size, and building age, as well as neighborhoott &féects of building age and a cross-
level interaction involving maximum air temperatawred lot size. The final model
explains 67% of variance in SFR water use.

Chapter 6 discusses these results in light otiagisesearch and explores
implications for urban water resource sustainahitifing these implications back to
central questions of climate change adaptationtl@donservation effect of urban
density. It suggests that land use planning reptes overlooked strategy for long-
range water demand management and draws connebgbmsen results and the need for
integrated land use planning and water resourceageament.

Chapter 7 concludes by summarizing key analytiesillts. On average,
maximum air temperature tends to be the primanedof temporal variation in
summertime water use, while building size is thenpry driver of spatial variation in
water use. The effect of temperature was decompiasedn average or fixed effect, a
household-specific deviation from that averagegxdreme heat effect, and a land use
effect, encapsulated by a cross-level interactiam was detected between temperature
and lot size. Building age varies inversely witht@vause and is significant at both the
parcel and neighborhood scales, indicating thata¢del level of summertime water use

were associated with new construction, primarilgstauction of low-density housing.

7



Results provide evidence that land use patterns Wwaxer use implications and
underscored the utility of modeling fine-grain tedaships among heat, land use, and
water use across scales as part of a broader pnagfrplanning and adaptation to

combined climate and land use change.



Chapter 2: Background and Literature Review

This chapter reviews the literature on urban waserthrough a framework of
coupled human-natural systems. Section 2.1 dravesdiverse range of quantitative and
gualitative studies to discuss the roles of spscale, and seasonality in the patterning of
SFR water use. Section 2.2 frames SFR water uaaeasted hierarchy and discusses
methodological issues related to statistical depeod and heterogeneity. Section 2.3
concludes by presenting relevant aspects of thensapply in the study area of
Portland, Oregon, along with expected shifts asgediwith combined climate and land

use change.

2.1. Urban water use as coupled human-natural syste

A rich body of academic literature has develop@diiad urban water demand
modeling and forecasting. Throughout th& 2@ntury, however, this research focused
primarily on modeling temporal rather than spateiiation (House-Peters and Chang
2011a; Tanverakul and Lee 2012). Prices, technolagy climate were seen the key
drivers of demand; econometric and time seriesyaraldominated the research agenda
(Maidmont et al. 1985; Zhou et al. 2001; Arbuéale003). However, water use
research has carved out a more prominent roledogmaphy in the first decade of the
21 century. Increasingly approached through the fraonk of a coupled human-natural
system (Liu et al. 2007), urban water use has bederstood as an explicitly spatial
phenomenon arising from complex biophysical andas@rocesses that operate at
multiple spatial and temporal scales (March andiiS2109). The shift towards

recognizing the roles of space and scale of waeswmption parallels a second



guantitative revolution in geographic research (Kwwad Schwanen 2009) as well as a
new emphasis on the place-based dimensions of cgtgn (Goodman et al. 2010) and

effects of the build environment on behavior (Nonne& al. 2006).

2.1.1. Water use and scale

Drivers of water use vary across scales. At tbballscale, rising incomes
dominate population growth in driving increasedevaise and subsequent water stress in
large river basins (Alcamo et al. 2007). Weathet elimate explain much of the
variation in daily water use across U.S. cities idvizont and Miaou 1986), while water
prices account for demand variation between cétearser temporal resolutions
(Arbués et al. 2003; Grafton et al. 2011). As intkean water use data have become
available, socio-demographic factors, building deal characteristics, and land cover
patterns have been found to account for spatigtan in water use within cities (Wentz
and Gober 2007; Balling et al. 2008; Chang et@1.Q2, filtering coarse-scale climate
and economic signals into fine-scale water useamnés (Sauri 2003). The relationship
between water use and urban form is particulayrpnent in lower-density suburban
areas (March and Sauri 2010). Although the drieérgater use vary across scales, the
role of scale itself in structuring water use i$ well understood (Medd and Chappells

2007; Perveen and James 2010), particularly foarurbsidential water use.

2.1.2. Seasonality of water use
Weather and climate are the primary biophysiciadeds of urban water use.
Urban water use studies customarily subset totakael into two components, base and

seasonal use (Howe and Linaweaver 1967; Maidmaalt &085; Miaou 1990; Zhou et

10



al. 2001). Generally taken as mean winter waterash@inbase use reflects daily indoor
water consumption associated with cooking, drinkaiganing, and sanitation. Base use
is considered climate-invariant, fluctuating inste@ath incomes and technology,
although this may not hold for warm-winter areaerehhouseholds use water outdoors
year-round (Gato et al. 2007). The difference betwwinter and summer water use is
taken to represent seasonal (or outdoor) waterSesesonal use responds to variations in
weather and climate, reflecting water ‘lost’ to pgranspiration (ET).

The temperature that elicits seasonal use vaciess cities and regions. Akuoko-
Asibey et al. (1993) found mean per-capita weeldyaevuse became responsive to
temperatures above 15°C in Calgary, Canada, whdeliont and Miaou (1986)
estimated the changepoint at 21°C across nineceast U.S. cities. Protopapas et al.
(2000) located the threshold temperature at 25i5typer-dense New York City,

United States. Zhou et al. (2001) found a secae@per nonlinear increase above 39°C
in Melbourne, Australia. Urban water use varieemsely with precipitation patterns,
although summer usage tends to respond more ti@lfaoncurrence than to depth
(Miaou 1990; Adamowski and Karapataki 2010). Thgnii@de of seasonality varies
widely within and across cities, while base usesiatively constant (Maidmont and
Miaou 1986; Mayer and DeOreo 1999). Rockaway €R8l11) compared residential use
across 11 North American cities and found the Id\aesual rates of water use in the
rainy cities of Seattle, Washington, (annual averaigl69 gallons per day, or GPD) and
Cleveland, Ohio, (191 GPD), while the highest userse in the desert cities of Las

Vegas, Nevada, (557 GPD) and Phoenix, Arizona, (4RD).
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Since seasonal use varies with climate, it icttraponent of water use that
exposes municipalities to risk of summer water@tgrparticularly in cases of
prolonged drought or extreme heat. However, thg gkasticity of seasonal use suggests
that it is the component of water use with the tgstacapacity for change. Outdoor
watering restrictions are increasingly used to segpseasonal use where drought has
induced water scarcity (Kenny et al. 2004). Renvaok Green (2000) found outdoor use
restrictions to be significantly more effectivereducing seasonal demand than voluntary
measures. Water use restrictions and rationing hageme routine in some desert cities
(Hanak and Davis 2006) and are not without preceidemore humid climates,
particularly where demand has outstripped the aggpataging supply infrastructure

(Lyon et al. 2005; Hill and Polsky 2007).

2.1.3. Drivers of single-family residential (SFRater use

Seasonality is particularly pronounced in the S¥Rer use sector. Polebitski and
Palmer (2010) found that a 10% increase in mearimuar temperature led to a 10%
increase in SFR water in Seattle, Washington, wBdlking and Gober (2007) estimated
a 6% increase in Phoenix, Arizona, for a 10% in@eda mean maximum temperature.
Linkages with rainfall are smaller but statistigadignificant (Balling and Cubuque 2009;
Polebitski and Palmer 2010). Spatially explicitds&s have identified covariance of SFR
water use, particularly the weather sensitivityvater use, with land use and socio-
economic characteristics. In Phoenix, Arizonagxample, SFR water use was found to
be most drought-sensitive in census tracts withdrigncomes and more swimming pools

per capita (Balling et al. 2008). In Portland, GmegSFR water use has tended to be
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lower and less weather-sensitive in older neighbods with higher building densities
(Chang et al. 2010; House-Peters et al. 2010; Bretyal. 2012). Because of the
connection between peak demand and land use, Shand&arandvash (2010) found
that changes in urban design to limit opportunitegsoutdoor water use would aggregate
to substantially reduce citywide peak water useortland. Taken together, these studies
have suggested a prominent role for residentialdeapes in patterning SFR water use

and stabilizing peak demand.

2.1.4. The ‘nature’ of residential landscapes

Outdoor water-consuming behaviors are embeddessidential landscapes,
where the coupling between human and natural sgsbemomes especially pronounced.
Residential landscapes tend to reflect sharedidgtit towards nature, functioning
simultaneously as sites of neighborhood solidamitgt social coercion (Cook et al. 2011).
Both individuated spaces and communal places,easal landscapes link neighbors
through common norms, shared streetscapes, amdeptndent property values.
Hydrological processes of rainfall, infiltratiom@&ET play out in tandem in social

functions of recreation, emulation, display, anel teproduction of everyday life.

Social hierarchies become articulated in residéf@ndscapes through water use.
Highlighting the cultural and perceptual aspectaater use, Askew and McGuirk
(2004) argued that irrigation for green, lush gasdm a newly suburbanized area of New
South Wales, Australia, served to display statusleaalso denoting conformity to
neighborhood norms. Similarly, Domene et al. (20@%galed that higher income

households in the water-stressed, suburban pergshafrBarcelona, Spain, tended to
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maintain extensive gardens with irrigated turfgrdssfgrass functioned as a positional
good, in these frameworks, intended to denote statd to distinguish the wealthy from

lower income households, whose gardens made ud®wdht-tolerant native vegetation.

Robbins (2007) developed a theory of ‘lawn peomexplain why well-
educated individuals who profess to have more aonfce the environment also
consume vast amounts of resources, including fawa chemicals, to maintain green
lawns. The yard appears as a site of coerciomisnftamework, where lawn people
anxiously reproduce a turfgrass monoculture by kameously responding to
neighborhood expectations and the biophysical deméthe lawn itself. As they labor
for multiple ecologies, lawn people raise questiabsut individual agency and who has
domesticated whom in turfgrass-dominated landscdpe®me newer residential
developments, norms of lawn maintenance have besomeercive that they are
codified and legally enforced through homeownes®aisitions (Turner and lbes 2011).
Collectively, these points underscore a need fymdhetic understanding of SFR

households as they are embedded in their ecoldgpés biophysical and social.

2.2. Nested hierarchies

Chowdhury et al. (2011) argued that the dense we&sgocial and ecological
elements at work in residential landscapes reqaimasiltiscalar analysis. An act of
outdoor water use (or the decision to abstaingctdla range of contexts, from the daily
weather to the specificity of the household, thepprty’s land cover, neighborhood
landscaping norms, and broader municipal or bioregifactors. To the extent that these

contextual aspects jointly shape water-consumirmgbiers, SFR water use may take on
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a nested or ‘hierarchical’ data structure. Thigisaceexplains why multilevel regression
would be appropriate for water use, as nested tatddresses problems of correlation,
scale, aggregation between individuals and grospatial applications of multilevel

models are presented and possible critiques aras$isd.

2.2.1. Multilevel data structures

A wide variety of social data exhibit a nestectlmstered structure. Clustered data
cannot be regarded as statistically independergingple linear regression and other
statistical techniques that require an independemom sample are not appropriate.
Multilevel regression is designed to handle cliesletata. Also called hierarchical linear
regression, the technique respects the groupectsteuof the data, allowing for
dependence among observations in the same groupetebgeneity among groups.
Application of multilevel models to nested dataistures originated in education
research, with students nested in classrooms drmbks; and has expanded to a wide
range of disciplines (Goldstein 2003). Panel da¢mgnt a temporal form of nested
hierarchy, where a sequence of observations ieté@sta subject (Singer and Willett

2003).

2.2.2. Ecological and atomistic fallacies

In his influential paper laying out the ecologiallacy, Robinson (1950)
demonstrated that results from group-level datactbe ascribed to individuals because
aggregation smooths over individual variation stiat within-group and between-group
variability are conflated. Alker’s (1969) atomistallacy showed that applying properties

of individuals to groups is equally invalid. Jorsesl Duncan (1995) argued that the
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multilevel approach avoids both the ecological ataimistic fallacies, providing an
opportunity for jointly modeling individuals andein neighborhood contexts without
reducing one to the other. By decomposing variauoress scales and examining cross-
scale interactions, multilevel models harness tigetlying mechanisms of the
ecological and atomistic fallacies—differences amiance within and between clusters—

to measure contextual effects (Jones 1991).

2.2.3. Geographic hierarchies

Spatial data are often clustered at multiple scal@ater use is no exception.
Treating these spatial clusters as geographicaipgrand scales as levels would seem to
be an appealing way to account for place and celuddl light on how drivers interact
across scales. However, conceptual and methodalagitiques have been raised against
multilevel approaches to spatial data analysissélwitiques are discussed below and

are addressed in the analysis that follows.

One of the premises behind multilevel modelinthet the underlying population
parameters are variable, or nonstationary, in #rapce. For example, the effect of daily
maximum air temperature on SFR water use coulg traty across space. However,
Fotheringham and Brundson (1999) note that appapattal nonstationarity in
coefficients could also reflect bias from omitteatigbles. Parameters would be stable
across space in constant in a correctly specifiedah) in this view, raising questions
about whether spatial nonstationarity arises froeducible place-based differences or
human cognitive limits in the face of complexityptReringham and Brundson (1999)

also note that some multilevel models have gengisiatially clustered residuals,
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particularly at coarser scales of the data strecteading to biased results. In a nested
structure, dependence is captured by unambiguoasoership to a neighborhood group.
No dependencies are assumed between neighborfidog@ssumption may be
unwarranted in a geographic context because ienegtpatial relations of adjacency,
proximity, and continuity. For spatial processég, houndaries of group membership
may be fuzzy or even non-existent. Failing to actdor this variance may lead to

spatial clustering of model residuals.

Several studies have compared multilevel modeis geographically weighted
regression (GWR) to investigate whether correlatiecays continuously across space or
operates in discrete packets in unambiguously eafed places. Chaix et al. (2005)
found GWR superior to multilevel regression, intttiee latter accounted for less
variance and generated spatially clustered resdiiiey concluded that assigning
individuals to unambiguous and unrelated groupdiedmn unwarranted fragmentation
of space that was inadequate to capturing spatiakegses, which, in their case, more
realistically operated along a continuum. Howelépez-Carr et al. (2012) suggested
that the multilevel place-based approach complieethe space-based, distance-decay
approach of GWR, particularly with respect to pplielated processes that operate in
discrete geographic units. Spatial implementatafmaultilevel models have attempted
to accommodate correlation among coarse-scaleaspaiis by including spatial lags
(Caughy et al. 2007) or a local index of spatiabaarrelation (Chen et al. 2010) as

explanatory variables.

17



2.2.4. Problems of neighborhood context

Even if spatial correlation structures could beugibly captured with discrete
neighborhood units, the delineation of those boturadapens up another forum for
uncertainty. Lopez-Carr et al. (2012) showed tpatial applications of multilevel
models are vulnerable to a set of issues colldgtnederred to as the modifiable areal
unit problem (MAUP). The MAUP implies that spatarrelations may vary by both
scale and unit of aggregation such that alternatbrdigurations of neighborhoods
boundary could generate different results (Openst28d). Neighborhood geometry is
often represented as a set of contiguous, muteatiiusive spatial units that tessellate
the study area, mostly for the convenience of &searcher—census geographies are a
prime example. With spatiotemporal data, the uagast of bias increases exponentially
with the number of aggregative and scalar posséslialong both spatial and temporal

dimensions (Cressie 1998).

Not only do results depend on configuration ofghéiorhood boundaries, but
there is uncertainty in how much the selected zonaiincides with the true
contextually relevant geographic area (Kwan 20TBg area exerting the contextual
influence may be spatially disjoint, may shift owene, have fuzzy boundaries, or
otherwise vary from convenient, historically staldled unambiguous enumeration units.
These considerations have immediate implicationslébection and interpretation of

neighborhood effects.
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2.2.5. Neighborhood effects

With the spatial turn in academic literature, aegated literature on
neighborhood effects has emerged to explain atyasfesituations whereby
neighborhood context influences individual behavi@urlauf 2004). Seeking to isolate
the effect of neighborhood context, researchersyno@erating completely outside the
discipline of geography) have had to grapple wsgues of spatial dependence and
heterogeneity, as well as the MAUP and cognatelenad of geographic correlation.
Some researchers have eschewed zonal neighboralbogisther in favor of bespoke
neighborhoods, where a unique neighborhood geoyriaptelineated for each research
subject (Bolster et al. 2006, Johnston et al. 200#)ers have constructed flexible
geographies (variable buffer sizes) to examine ghaim contextual effects across scales

(Caughy et al. 2007).

In addition to grappling with MAUP, the specifiawsal mechanisms
undergirding the observed pattern of neighborhdtetes remain in question. Johnston
et al. (2005) enumerated possible compositionalcamtéextual processes that link
individual behaviors and neighborhood charactessincluding self-selection,
emulation of neighbors, active peer-to-peer peisnaand lobbying for new rules to
govern peer behavior. Manski (1993) offered a tggwlof neighborhood effects.
Correlated effects occur when a prior sorting pssdeads to self-similarity across
individuals in the same neighborhood. Exogenousceffoccur when neighborhood-scale
factors structure but are unrelated to finer-spabeesses. Finally, endogenous effects

occur when individual behaviors are interdepend&ntobserver would not be able to
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distinguish between the latter two pathways, cnggdi fundamental analytical difficulty,
which Manski termed the reflection problem. Thesayathway linking individual

behavior and neighborhood context remains an aatea of research.

Critiquing multilevel approaches to neighborhodf@as, Entwistle (2007)
argued the term ‘hierarchical’ biases the direcbbmultilevel research by privileging
the structure side of what is actually a dialebgtween structure and agency. By
locating the structure, the group or neighborh@bdhe ‘top’ of the hierarchy, the
modeling approach seems to imply that causatieonsing from that scale, when
correlated effects, endogeneity, or some otherga®of inter-causation may be at work.
Interestingly, Subramanian et al. (2009) pointetitbat the reverse could, paradoxically,
also be true. Robinson’s (1950) idea of an ecolddatlacy, they posited, had an
ecology of his own, one of methodological indivilsia that reflected Cold War anxiety
around the Soviet Union and prioritized individuationality over the group-level
dynamics. By applying a multilevel model to Robin'sooriginal data, the authors

provided evidence for contextual effects that wererlooked in the original analysis.

Neighborhood effects have been observed in reBadevater usage patterns
(Aitken et al. 1991; Ramachandran and Johnson 2&id p multilevel approach has
been found to explain more variation in SFR watsr than single-scale analysis
(Polebitski and Palmer 2010). The recursive conoestbetween context and behavior
involved in residential landscapes, noted by Rabk2®07) and Askew and McGuirk
(2004), suggest a neighborhood effect operatimvgater use through the social

dimensions of residential landscapes. Similar ¢ffeave been noted in electricity
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consumption. Households, particularly those whorditirespond to appeals to altruism
or cost-savings, lowered their electricity use whality bills were modified to show
household consumption to be higher than the neidfidoal average, and marked the

disparity with a sad face (Allcott 2011).

2.3. The study area: Portland, Oregon

This section presents the hydrological and saaatext of residential water use
in Portland, Oregon. It describes regional wat@pduinfrastructure and current trends
in water usage for the two water providers in gtigly. The section concludes by

discussing implications of climate and land usengeaon water use in the region.

2.3.1. Water supply infrastructure

Summer water supply in the Portland metropolitaaaaelies heavily on winter
precipitation stored in the Bull Run watershed (ff@y2.1). Located in the Cascade
Range, this surface water supply system is manhg&rtland Water Bureau (PWB),
the largest water supplier in the State of Oredtre system comprises two open-air
reservoirs and a lake with a combined usable stotagacity of 14.2 billion gallons
(BG). Discharge from Bull Run watershed far excedasvolume, but limited storage
capacity means that the reservoirs must be rectiamgeually—multi-year storage is not
currently possible. The drawdown period for BulllReservoirs begins when outflows
exceed inflows, usually in June. Drawdown typicahds with the onset of fall rains in
mid-October, although it occasionally persists tigto December in drier years. In

addition to providing water for human consumptistneamflow from the Bull Run
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watershed must be managed for endangered spear@syfarly to cool streams for

returning salmonids in autumn (Portland Water Buy@810).

PWB supplements Bull Run reservoirs with a smaleundwater reserve, the
Columbia South Shore Well Fields, with an initi@8ay pumping capacity of 102
MGD. A series of smaller wells were added to th&teasypy when PWB annexed the region
previously served by Powell Valley Water Distrigt2005. In addition to serving a retalil
population of over 500,000, PWB sells water whdeesa 22 smaller water providers,
serving a combined retail and wholesale populadiori70,250 in fiscal year 2004-2005.

Currently, PWB serves a total population of oved,900.

Figure 2.1: Urban water supply infrastructure. Bk of the Portland metropolitan region’s watepgly
originates from Bull Run Reservoir #1 (left), loedtin the Cascade Range and operated by Portlater Wa
Bureau (PWB). PWB provides water for the City oftRmd and also sells water wholesale to smaller
water providers; Tualatin Valley Water District (WD) is their largest wholesale customer. As a meambe
of the Joint Water Commission, TVWD also withdramater from Hagg Lake (right), located in the Coast
Range. Images sources: http://upload.wikimediavgkipedia/commons/3/30/Bull_Run_Reservoir_1.jpg
(left) and _http://www.usbr.gov/projects/Projeqi?proj Name=Tualatin%20Projegeight).

The state’s second largest water provider, TuaMglley Water District
(TVWD) serves a suburban and largely unincorporated in Washington County, west

of City of Portland, providing water to a populatiof nearly 200,000. Wholesale
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purchases from PWB are augmented by water obtaimedgh the Joint Water
Commission (JWC), which operates the reservoiragdlake in the Upper Tualatin
River and the Barney Reservoir in the Coast RaRggife 2.1). A modest aquifer
storage and recovery system has been built to sioter precipitation for additional
supplies during peak season, since daily purchageanmited to 42.3 MGD from PWB
and 10 MGD from JWC (Tualatin Valley Water Distrzg05). TVWD serves a rapidly
growing area and expects to add 82,000 residen2®4%. Demand projections have
indicated that peak demand will exceed currenesystapacity by 2025. TVWD
ultimately plans to draw water from the WillameR&er to meet the additional demand

(Tualatin Valley Water District 2013).

2.3.2. Characterizing regional water use

According to their most recent Water Managemedt@anservation Plan
(Portland Water Bureau 2010), total annual watesamption from PWB-managed
water supplies was 32.9 BG in fiscal year 2004-2@Q&rage flow increased from 83
million gallons per day (MGD) in winter to 123 MGDB summer, with a peak flow of
187 MGD. Considering only the retail service am@mual consumption was 20.1 BG for
a population of 494,200. Of that, 8.2 BG (41%) wasociated with small-meter
residential meters (presumably, most of these BRe I®useholds), leading to daily per-
household consumption of 163 GPD, comparable tttl8sgper-household consumption
of 169 GPD (Rockaway et al. 2011). Average perteapater consumption was 66 GPD
in the denser retail service area, compared toG@RD in the broader, more suburbanized

wholesale service area. Retalil per-capita watehasaleclined an average of 19 GPD
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compared to the 1987-1992 period. PWB attributesttha combination of factors,
principally plumbing code changes, which mandatatewefficient appliances and were
effective after 1992. For TVWD, the residentialteecomprises 70% of annual usage.
The provider distributed an average of 23 MGD i020with peak flow of 53 MGD
(Tualatin Valley Water District 2005). In 2012, TMMpurchased 70% of its water of
through a wholesale contract with PWB (Tualatinl®faMWater District 2012). Both
PWB and TVWD are members of the Regional Supplysédium, which pools
resources for a range of passive and active wateservation programs and allows for

coordination across water providers across thddarimetropolitan area.

2.3.3. Climate change

Downscaled climate change and emissions scerfaaias projected exaggerated
seasonality of future precipitation patterns in Baeific Northwest, likely trending
towards wetter winters, drier summers, and unagedaasonal transitions (Mote and
Salathé 2010; Hamlet 2011). The effect of theseigated climactic shifts on the timing
and magnitude of reservoir inflows is also uncer{@almer and Hahn 2002). Because
surface water storage depends on antecedent clooatktions, the system may be
vulnerable to drought, although actual shortagee loaly occurred in 1992, when
groundwater was unavailable to make up for shdstfalBull Run supply. Water yield
models under climate change scenarios suggedshthdrawdown period will begin
earlier and end later both in the Bull Run and ag¢iLake (Palmer and Hahn 2002;
Palmer et al. 2004), although no shortfalls areenily projected under climate change

scenarios (personal communication, Lorna Stickedttl&éd Water Bureau, May 2013).

24



Lot area, single family residential

0 5 IO Miles area (mz)
I N TR NN AR NN N M N <420 535-590 >1230
B0 HEET Il
0 5 10 Kilometers
0-10ch  40-50th  90-100th
percentile

Figure 2.2: Urban density in the study area. Thdysarea was defined by the service areas fordrattl
Water Bureau (PWB) and Tualatin Valley Water Dit(irVWD), the largest two water providers in the
State of Oregon. To visualize the density alonguttian-to-suburban gradient, mean SFR lot area was
aggregated at the block-group level (excluding grity industrial lands). Lot sizes are generallyadest
and density is highest near the city center (shiompurple). Lot sizes increase and density deceeast
distance from the city center (shown in orange).

2.3.4. Land use change
Two countervailing tendencies are at work withpexs to seasonal water use in

Portland. On the one hand, increased summer tempesdinked to climate change are
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expected to drive up seasonal use. On the othel, lsantinued urban densification could
mitigate the linkage between weather and wate(8kandas and Parandvash, 2010).
Since 1973, suburban development in the Portlaga laas been contained by an urban
growth boundary (UGB), which has encouraged aresmingly compact urban form with
smaller lots, higher building densities, and thewdr opportunities for outdoor watering.
However, large-lot developments have also proliegtalong the suburban peripheries of
the UGB, leading to a pronounced urban densityigradFigure 2.2). Older
neighborhoods with smaller average lot sizes tertgktclustered near the city center and
were associated with lower average water use (Caaaly 2010) and less pronounced
seasonality (Breyer et al. 2012). In short, the ¢heyer of outdoor water use,
temperature, can be expected to be increase ws#ebut the temperature sensitivity of
water use may vary spatially due to concurrent ifieason of the urban core and
suburbanization of the periphery. The sum totdhete offsetting trends is currently

unknown.
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Chapter 3: Theory

The previous chapter has reviewed evidence toesidigat SFR water use arises
from a wide range of possible drivers arrangedmested hierarchy of scales. This
chapter takes the nested data structure as agfaleparture to construct the theoretical
scaffolding for the multilevel analysis that follewSection 3.1 defines key conceptual
aspects to multilevel models. Section 3.2 expl&iesutility of multilevel regression for
exploring scalar aspects to SFR water use as achdata structure. Section 3.3 develops
equations for a three-level random slopes moddi aitross-scale interaction. Section
3.4 discusses potential limitations related to ss8¢g goodness of fit and statistical

significance in multilevel models.

3.1. Mixed effects

A mixed-effects model can describe any regressiodel containing both fixed
and random effects. Fixed effects refer to a sipglemeter estimated for all cases, as
with pooled ordinary least squares (OLS) regresskamdom effects imply estimation of
a separate parameter for each group of cases, Witse parameters are drawn from a
probability distribution common to all groups (Kreihd de Leeuw 1998). The method
tailors a regression model to each group of casee wtitching those group-specific
regressions together through the shared distribubiothis way, mixed effects models
are akin to partially pooled linear regressiongamtrast to nonpooled OLS, where
regression models for each group are unrelated{@ebnd Hill 2007). Not only does

the shared distribution account for the broadetedrshared by all groups, but its mean
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and variance can shed light on nuanced relatioashifhe data that would otherwise be
missed (or, worse, misinterpreted) in OLS regressio

A mixed effects model is appropriate where thadae inherently a grouped or
clustered. Clustered data cannot be treated asdependent random sample because of
higher within-group dependence and between-groupnee. By jointly fitting a set of
related regression models to the sample of indatgland the corresponding sample of
groups, mixed effects approach not only accountghi® structure of within-group
correlation and between-group variance but actydélges that structure at the center of
the analysis. Mixed effects models have been usédnor a range of clustered data
structures in both social and physical scienceth applications ranging from education
(Goldstein 2003) to two-stage sampling in ecologiesearch (Zuur et al. 2009) and
epidemiology (Gelman and Hill 2007), as well asagety of repeated-measure data

(Singer and Willett 2003).

3.2. Conceptualizing a multilevel approach to resitial water use

A multilevel model is a specific type of mixed efts model developed for data
arranged in a nested hierarchy. The central hygalHer this thesis is that repeat-
measure household water use follows a nested ttatiwse that includes the
neighborhood scale. If the data support this hygsith a time series of water use
observations can be thought of as being groupeésted within a household. Each
household water use pattern, in turn, can be thoofgds nested within a neighborhood,
following Tobler’s First Law of geography. As a saguence, there are multiple

dimensions of statistical dependence in the datasa time (correlation among
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sequential water use observations for a singledimld), across space (correlation
among households in the same neighborhood), andsascales (Figure 3.1). Estimated
variance in the distribution of random effects banused to assess the relative
importance of spatial and temporal drivers; thchteque is known as variance
decomposition. Neighborhood effects will be assgfgeexamining the component of
this variance associated with the neighborhoodeséamultilevel approach can also be
used to detect contextual effects or interacticetsvben drivers at different scales. Cross-

scale interactions involving weather and land ws#ables will be investigated below.

CITYWIDE AVERAGE

Low DENSITY
NEIGHBORHOOD

HIGH DENSITY
NEIGHBORHOOD

SMALL ' MEDIUM

WEEK | WEEK 2 WEEK | WEEK 2 WEEK | WVEEK 2 WVEEK |

Q Low water use
WEEK | TEMPERATURE = 20°C

High water use WEEK 2 TEMPERATURE = 25°C
Figure 3.1: Conceptual diagram of household wateras a nested data structure. Weekly water use
observations are nested in households, which atedé neighborhoods. The structure is markedidgiy h
within-group correlation, as indicated by similgrih color—Ilots tend to be smaller in the denser
neighborhood—and high between-group variance—hgggreity in neighborhood density. Based on
previous research, one would expect the lowest Hweater use (shown by size of oval on Week 1 and

Week 2) and the least temperature response (chamyal size between Week 1 and Week 2) to be
associated with the small lot in the high dens#ighborhood.
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3.3. Developing a multilevel model of residentiakev use

This analysis uses a panel dataset of SFR wageiouavestigate the extent to
which land use contextualizes the relationship betwweather and water use at the
household and neighborhood scales. To underscgrm&thodological concepts, the
following section steps through the developmerd ofultilevel model of SFR water use.
First, equations are presented for an unconditioregns model, followed by a more

complex, three-level model with random slopes antbas-level interaction.

3.3.1. An unconditional means model

The first step to multilevel modeling is constiaotof an unconditional means
model, where a random effects structure is specig no predictors are included.
Equivalent to a random effects analysis of variatioe unconditional means (or ‘empty’)
model is useful for assessing the prominence ofjtbaping structure. An intercept is
estimated for each group as the weighted mear dat points falling within that group.
Variance in this intercept serves to indicate thength of the grouping structure—if
groups are dissimilar, their intercepts are, tdte Telative importance of scale can be
assessed by partitioning total variance in waterin® components that relate back to
each scale in the hierarchy. To illustrate, an grttpee-level random intercept model is
developed below.

Over a given time period i, an individual housef®lvater use is given in
Equation 1.

Yijk = Tojk + Eijk (1)
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Equation 1 states that mean water use on timegefay household j located in
neighborhood k is a function of two components:riean water use for that household
o and a random error tergy, which expresses the deviation of that specifiekveom
the household meanis an independent and random error term that adherthe usual
assumptions of linear regressiar(0, 62)).

As a random coefficientyy appears fixed at the household scale but variteeat
neighborhood scale because it arises from a distoi of coefficients shared by all
households in a particular neighborhood. This i@hship is given in Equation 2.

Tojk = Bok + Rojk 2
In Equation 27 is a function of the mean water use in neighbodhaadenoted aBo,
and a random effect,oRR, reflecting the deviation of each household’s meater use
and the neighborhood mean. The varianceggfiRgiven byr®e. Thus, the distribution
of household coefficiens in a particular neighbadhgan be characterized in terms of the
mean offox and standard deviation af.

Also a random coefficienpox appears fixed at the neighborhood scale but
actually arises from a probability distribution st@d by the set of neighborhoods. This
relationship is stated in Equation 3.

Box = Yoo + Uok )
In Equation 3yqo is an intercept term that expresses the grand wieaater use across
all neighborhoods. The neighborhood-specific demmefrom this grand mean is given by
random effect gk with variance denoted g&o.
Equations 3 and 2 can be substituted into Equdtitanyield the full expression

for household water use:
31



Yijk = Yoo + Uok + Rojk + &k 4)

Equation 4 states that an individual household'temase is a function abo, a fixed
intercept that represents the grand mean of wagsrand a composite error termy
Rojk + €ijk, that expresses how water use for a particular paint deviates from that
grand mean. This deviation has been partitionaedthnee variance components: the
component that can be attributed to the neighbatlf{dg), to the household ¢g), and
to the weekdjjx). Each component is assumed to follow a normaitidigion centered on
zero and with variance denotedqgso, t°00, ando?, respectively. The sum of these
variance components is identical to the variandd®fesponse variable. Total variance
in household water use can in decomposed acroEs dsed on that identity.

A key output of variance decomposition is intraslaorrelationg), which is
calculated from variance components as shown iratmu5:

_ P50 +T80 (5)
2 2 2
PootTooto

P
Ranging from O to 1p is a measure of within-group dependence. It refldte portion of
total variance that can be attributed to betweeamstbold and between-neighborhood
factors. A larger value indicates that clusterigdbusehold and neighborhood is more
prominent, suggesting that processes at thesesgulalga larger role in explaining
variance in the response variable. Because therthaee levels specified in this model, it

IS necessary to calculate a separate intraclasslatbonpy to capture the portion @f

that can be attributable to between-neighborhootbfs, as shown in Equation 6:

2
py = 2 6)

'y 2
$Go+THo
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Both p andpy can be used to calculate design effects, whiclngpertant for assessing
whether a multilevel approach is more efficienttl@S (Snijders 2005). Design effects
provide a measure of redundancy in the data cawsedthin-group dependence.
Simulation studies have found that data with desifgcts > 2 warrant multilevel
analysis (Muthen and Satorra 1995). The formulal&sign effects is given in Equation
1.

Design effect =1+ p(6 — 1) (7
Here,0 denotes average cluster size, in this case, tdauof observations per
household and the number of households per neighbdr Effective sample size is
obtained by dividing the design effect by the samgite, and can be used to assess the
statistical power of the analysis, since the eiffecsample size accounts for redundancy
arising from dependence in the data. Statisticalggoncreases with the effective sample

size, which is particularly important at the ‘tai’the hierarchy (Snijders 2005).

3.3.2. A three-level random slopes model with sisxsale interactions

This section develops a random slopes model ast@nsion of the empty model.
Explanatory variables are specified at level 1 @iveg, level 2 (parcel characteristics),
and level 3 (neighborhood characteristics). A csxsse interaction between weather and
parcel characteristics is also specified. Modepots can be used to assess the relative
importance of drivers at each scale as well asnhgnitude of any interactions across
scales. Dependencies among observations are cajyigevariance-covariance matrix

that results from the structure of random effddimwever, variance decomposition
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becomes more complex because the variance of raslbp®s may be estimated in
different units than the random intercepts.

On a given day, an individual household’'s water isggiven in Equation 8, which
extends Equation 1 to include weather variation.

Yijk = Toji + Wi + €ijic (8)
Equation 8 states that water use on a given dayhdusehold j in neighborhood k is a
function of three components. First, the interegptreflects average household water
use, the amount of water used on a given summereggmydless of weather variation.
The value is constant over time for a given houkkhot variable across households and
neighborhoods. Second, the change in water useiassbwith a change in weather
conditions is given by the slope tery, which modifies a time series of weather
conditions W. Weather varies over time but, for a given timg@ment, is assumed to be
constant over space, so lacks subscripts for $petiis j or K. Finally, a random error
component is given by (e~N(0, 62)).

Once againgoj andmy appear fixed at the household scale but actuaby a
from a neighborhood-specific distribution. Equati¢éhand 10 expand on Equation 2 by
specifying household slopes and intercepts is etiom of parcel characteristicsgHis
well as the neighborhood mean and the random etisaxpressed in Equations 9 and
10.

Tojk = Book + Bo1Hjk + Rojk 9
Tk = B1o + B11Hjk + Ryjk (10)
The termBook represents neighborhood mean water use—the spbkéndicates that

this term varies across neighborhoods. The t@gn$o., andpi; are purely fixed effects,
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meaning that they do not vary across space or tiergee the absence of subscripts i, j,
or k. Bo1 andpi1 capture the effect of parcel characteristics amskbold intercepts and
slopes, respectively, whilgorepresents the baseline level of weather sengifiertall
households. One could also test for wheflagrfio, andp: vary across neighborhoods,
but this possibility is omitted here for simplicitiRandom effects are, once again, given
by terms Rjx and Rjx.

The neighborhood mean interc@pix arises from a probability distribution
shared by all neighborhoods, as stated in Equation

Book = Yoo T YoinNk + Uk (11)

Here,Book varies across neighborhoods as a function of ttwegonents: the mean
interceptyqo, the effect of neighborhood characteristigs,, which modifies a vector of
neighborhood characteristicg,Mnd the random effectol) The variance of g} indicates
the magnitude of contextual influence of neighboxhoharacteristics on neighborhood
average water use.

To express the full multilevel equation for houslehwater use, the fixed effects

are first defined in Equations 12-14.

Bio = Y10 (12)
Bo1 = Yoiu (13)
Bi1 = Y11 (14)

These equations simply restate that the effechafacteristics on household coefficients
(Bo1 @andp11) and the baseline level of weather sensitiVity)(are truly fixed effects.

Equations 12-14 can be substituted into Equatiossd10, which can be substituted into
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Equation 8 and re-arranged to obtain the long-foradel for Yjx expressed in Equation
15.

Yijk = Yoo + Y10Wi + Y1ouHjk + Y1onNk + Y11 WiHjk + Uok + Roji + RyjcWi + &k (15)
Equation 15 states that weekly household wateatises from a complex mix of
biophysical and social drivers. At level 1, theefil effect of weather Ws given byyi,.

At level 2, a fixed effect of parcel characteristidy is given byyion. At level 3, a fixed
effect of neighborhood characteristicg il given byyoin. The magnitude of the cross-
scale interaction between weather and parcel ctearstecs, given by, is itself a fixed
effect. However, the overall effect on water us®aepends on the values of &id H,

as well as the random term;RV;. The quantity 4 + Rojx + RyxWi+ € Is a compound
error term with neighborhood @, household (B« + RyxWi), and residualefy)
components. As in the unconditional means modeilanee in Ry and Wy is expressed
ast?oo ande’oo, respectively. The estimated variance of houses$loloest, i is given by
7°10. Slope-intercept correlation is given ty. Note that intraclass correlation cannot be
calculated for a random slopes model because tienea components are expressed in

different units (Kreft & De Leeuw 1998).

3.4. Diagnostics

Although the relative magnitudes of variance congmas are useful for assessing
the importance of drivers at each scale, obtaimngiple estimates of variance makes it
difficult to evaluate the statistical significanckthe estimate. For the same reasons,
comparing overall goodness of fit across modethalenging. Approaches to these

methodological problems are discussed below. Rabkdlagnostics at each level should
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also be examined for normality and independenatyding spatial independence (Chaix

et al. 2005).

3.4.1. Statistical significance

Statistical significance is straightforward in Ot&gyression, but less so in
multilevel regression (Baayen et al. 2008). Thenedt consensus about how to calculate
p-values for fixed and random effects (Bates 2086)ne software applications—SPSS
and HLM, for example—produce p-values as outputsixed and random effects, while
others do not, namely Ime4, a mixed-effects regragsackage available through R
Statisical Software (Bates 2006). Parametric boagaging procedures and likelihood
profiling have been proposed as alternative meadgtiermine statistical significance of

estimated coefficients (Bates 2010).

3.4.2. Goodness of fit

With OLS regression, model fit can be assessell Kita simple dimensionless
measure that is readily calculated as the propodforariance explained by model terms.
Because mixed-effect models have separate var@stoceates for each random effect
and the residual variance, there are multiple ptssvays to calculate a commensurate
metric. A range of possible pseudd€liculations have been proposed to indicate overall
model fit (Roberts et al. 2011), but each can leblematic. Those that assess model fit
in terms of reduction in residual variance can abswariance explained by higher-order
random effects. In others, it is possible to obtagative pseudo®values for more
complex models. Metrics for assessing overall métdetmains an active area of

research for mixed-effects models. Nakagawa anee&elth (2013) have proposed a pair
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of measures, the marginal and conditionglItB quantify overall fit. Respectively, they
refer to the proportion of variance explained bed effects and by both fixed and
random effects. Marginal and conditiondl\Rll be reported—with caution—in the
analysis that follows.

Since multilevel models use maximum likelihoodrastion, a likelihood ratio
test can be used to select the random effectstgteuthat is best fitting (or, more
accurately, most likely in relation to) the groupistructure in the data (Baayen et al.
2008). Model fit can also be compared using loglihood, Akaike Information
Criterion (AIC), Bayesian Information Criterion (B), or similar metrics obtained from
likelihood-based estimation techniques—but, agamhy with caution. These outputs
provide no insight into overall model fit and areamingless for comparing models that
use different data. Their utility lies in examinirgative fit between alternative model
specifications based on the same dataset. AIC #adh&ve the additional quality of
penalizing model complexity, in contrast to thedency of R to increase with the
number of covariates. However, any assessmentative fit must be attentive to
whether maximum likelihood (ML) or restricted maxim likelihood (REML)
estimation is used. The former is preferred foeassg models with different fixed
effects while the latter is preferred for assessmuglels with different random effects
because it accounts for the number of parametérsated (Bates 2010). AIC and

deviance will be used to compare relative fit asno®dels in the analysis that follows.
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Chapter 4: Data and Methods

A multilevel model was developed to investigate tbles of weather and land use
in driving variation in SFR water use. This chaptetails data sources (Section 4.1),
methods of model development (Section 4.2), angndistic procedures (Section 4.3)
used in this implementation. Data were drawn frangb data on SFR water
consumption distributed along an urban-to-subudradient in the Portland
metropolitan area. Candidate explanatory variaiblelsded weather, building structure,
and land cover variables for both sample taxlotsasross neighborhoods. The model
development process began by selecting an ingradom intercepts structure through a
series of unconditional means models. Random s|apess-scale interactions, and fixed
effects were then fit to the data using iteratovg-likelihood ratio tests. Bootstrapping
procedures and likelihood profiling, respectivelgre used to assess statistical

significance and construct confidence intervalsnimdel parameters.

4.1. Data

4.1.1. Response variable: Single-family resider{&kiR) water use

The dependent variable, SFR water use, repreadine series of weekly mean
water use observations in summer (June-August) 20@t-2005 for 460 households
served by two water providers: PWB (n = 321) andM¥ (n = 139). In this case, a
‘household’ is defined by the water meter assodiatih a discrete billing unit at a
unique address spatially referenced to a SFR tabepdn the analysis that follows,
‘household’ and ‘parcel’ refer to the same spaitrat. The term *household’ connotes

behavior, while the term ‘parcel’ refers to aspaxftbuilding structure and land cover.
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The number of residents per billing unit was unknomwthis study. The service areas for
these utilities span an urban gradient, ranging festablished neighborhoods with
relatively high building density near the urbanector newly constructed, lower-density
subdivisions along the suburban periphery.

Selection of sample households was performed b Bi&ff member Dr.
Hossein Parandvash. Once household consent wasexhtaach water meter was
equipped with a flow monitoring device to transentime series of meter readings to
PWB, although instrumentation for households inTh&VD service area differed from
that used for PWB households. The resulting raw degre manipulated to show quantity
of flow per day. There was some device error, paldrly for TVWD households (more
flow recorded than is possible to move throughpipe in that 24 hour period), with
some very high values in a few cases; these valaes removed by request of PWB
staff before we obtained the data. Because thamgsguestion was aimed at weather
sensitivity, data were limited to summer months1@}ugust), as the typical SFR water
use pattern are higher and more variable in summ#tr,an average of 1271 liters per
day (LPD) compared to 575 LPD in winter (Figure)4However, sample households
exhibited wide variation around the average, wittne households consuming over 2000
LPD in summer while others maintained the wintezrage of around 600 LPD (Figure
4.2). Daily data were aggregated to weekly meanegsbecause the signal connecting
weather and water use is more pronounced at tais sakuoko-Asibey et al. 1990).
Water use is substantially more variable at the/daiale, likely related to indoor water
use drivers or weekend effects (Wong et al. 204, thus not related to either weather

or land use.

40



2000 A

1500

lassd

Jan  Feb Mar Apr May Jun Ju  Aug Sep Oct Nov Dec
Month

Figure 4.1: Seasonality of daily household water lg month, 2001-2005. For the typical Portlandlsin

family residential household, median water use {gvtibt) increases from 575 liters per day in witder

1271 liters per day in peak season (July-Augusixdts (in orange) indicate that the variance atex

use also becomes greater in summer. Violin plotl{ie) visualize the density of water use, undaiag

the stability of winter use and the elasticity ofraner use.
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Figure 4.2: Spatial variation of daily householdavaise by month, 2001-2005. Single-family residgnt
households exhibited wide variation around the ayemwater use level of 1271 liters per day in summe
Consumption levels were particularly high for hcdugds in the northwestermost part of the study,darea
excess of 2000 liters per day, and were partioulad in the areas directly east of the WillameRiger.
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The source data contained observations for adaayaple of households (n =
746), but the data were highly imbalanced. Someéloolds were monitored
continuously from 1999-2008, while others were naneid for a month or less. Mixed-
effects models can handle imbalanced data (Bate3)2but a problematic spatial trend
was evident in this missing-ness (Snijders and Bo2R12). Nearly all TVWD
households were missing substantial chunks ofdlaéao issues with research design
and data collection that preceded the present sisaljhus, it was necessary to select a
time period to temporally subset the data. Aftaareiing a set of six possible time
periods, the years ranging from 2001 to 2005 welected. This time period was
associated with a fairly large (n = 460) and spigtianbiased distribution of households
along an urban gradient, avoiding any spatial elust the missing data (Figure 4.4).
This time period also has the advantage of inclydimme interannual weather variation
(hotter or cooler summers due to El Nino Southesnil@tion) while avoiding any
marked decline in SFR water use. A ~6% decline wasu@nt for the households with

most complete time series, 1999-2008.

4.1.2: Explanatory variables

Candidate explanatory variables were selectelsreg tscales (Table 4.1): weather
(level 1), SFR parcel (level 2), and neighborhdegd] 3). These variables were selected
because they have proven significant in singlet/dwed effect studies in the water
demand literature (Balling et al. 2008; Praskiexdod Chang 2009; Chang et al. 2010;

Breyer et al. 2012).
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Table 4.1: Candidate explanatory variables. Datmcas include Interactive Numeric and Spatial
Information Data Engine (INSIDE) Idaho gridded weatdata and Regional Land Information System
(RLIS). At the neighborhood scale, three alterreboundaries were examined, census tracts (n 5 125)
RLIS neighborhood boundaries (n = 63), and reg{ars 10). For each, neighborhood-scale values were
calculated from a spatial join to RLIS single-fayniésidential taxlots.

Scale Predictor Source
Minimum/maximum air temperature (°C) INSIDE Idaho
Weather Minimum/maximum relative humidity (%) INSIDE Idaho
(level 1) Precipitation (mm) INSIDE Idaho
Wind speed (km/hr) INSIDE Idaho
n = 35,065 Five-day cumulative precipitation Calculated value
Extreme heat index Calculated value
Lot area (M) RLIS 2005
Households Building area () RLIS 2005
Low vegetation (rf) %) RLIS 2007
(level 2) High vegetation () %) RLIS 2007
Impervious (M, %) RLIS 2007
n =460 Property value: land, building, total* ($US) RLISS
Building age RLIS 2005
Mean SFR lot area (M Calculated value
Mean SFR building area @n Calculated value
Neighborhood Mean SFR property value (land, building, total) (Tddited value
Mean SFR building age (years) Calculated value
(level 3) X
Mean SFR low vegetation f26) Calculated value
Mean SFR high vegetation {n®6) Calculated value
Mean SFR impervious (m%) Calculated value

At level 1, daily air temperature (minimum and nmaxm, °C) and precipitation
depth (mm) were derived from Interactive Numerid &patial Information Data Engine
(INSIDE) Idaho gridded weather data, a spatiallplieit (4 kn grid) and statistically
downscaled dataset of daily weather variables geéeeifrom a regional climate model
(Abatzoglou 2013). To capture spatial variationvater use over the study area, mean

daily values for all grid cells with centroids fallj inside a water provider service area
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were calculated. The monthly distribution of tengtere and precipitation in the study
area is shown in Figure 4.3. Two additional indieese calculated to capture temporally
lagged effects of heat or rain: the extreme hadxndefined by a count of the number of
the previous five days with daily maximum air temgiare > 32°C, and the cumulative
precipitation index, defined by the sum of pre@pdn depth for the previous five days.
These values were then aggregated to their weegnsand subset to the summer

months of 2001-2005 in order to correspond withkleeater use.
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Figure 4.3: Distribution of temperature and preeiidon patterns, 2001-2005. The climate in Portland
Oregon, is marked by distinct rainy and dry seasbamperature peaks during the dry summer months of
July and August, when water demand reaches its peak

At level 2, each SFR taxlot was attributed with tbllowing building structural
characteristics derived from a 2005 iteration tlegiBnal Land Information System
(RLIS): lot size (M), building size (rf), building age (years built relative to 2012), and
property value (land, building, and total valud05 $US). Land cover data were
derived from a 2007 land cover classification, jed by Metro Regional Government,
with the following four classes: impervious surfaclew vegetation, high vegetation, and

water. Total pixel area (fpand % of total area assigned to each land cgperwere
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tabulated by taxlot in ArcGIS version 10.0. No waiiels were detected from the land

cover data in sample taxlots.

Census tracts (n=125) [ ] RLIS neighborhoods (n=63)

@® TVWD households (n=139)
PWB households  (n=321)

Figure 4.4: Spatial distribution of households arthhborhood boundaries. The analysis considereg th
candidate neighborhood structures: census tragd€ft), neighborhood association boundaries ftioen
Regional Land Information System (RLIS, top riglathd regions (bottom left). The spatial distribntif
sample households (symbolized by water providgpyésented for comparison (bottom right). Eachiapat
dataset was overlaid on the study area (shownreiy) gr

At level 3, there were nearly infinite possibatifor zonation of neighborhood
boundaries. The uncertain geographic context pnolsigggests that delineation of
neighborhood boundaries may not coincide with trgextually relevant spatial area. In
light of these concerns, three different neighbodsowere considered in this analysis:
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census tracts (n = 125), neighborhood boundares the Regional Land Information
System, or RLIS (n = 63), and broad regions defioedhe purposes of this study

(n =10). The spatial configuration of these nbminoods is shown in Figure 4.4. Mean
values for all building structural and land covariables for the population of SFR
taxlots were obtained for each using ArcGIS 10.0.

Census tracts are an attractive zonal configurdiecause of the wealth of
socioeconomic data available at that scale. ByrasthtRLIS neighborhood boundaries
have very little data, but may be more contextuadlgvant, as these boundaries are
delineated locally, not federally, and are ofteacufor land use planning or conducting
municipal business. They also tend to coincide wWithboundaries of neighborhood
associations or community planning organizationsaddition, household location
decisions may be influenced by these neighborhoumte than by census tracts, so RLIS
neighborhoods capture neighborhood effects byssdéfetion. A total of 12
neighborhoods were merged so that at least thregeholds fell within each RLIS
neighborhood. The regions dataset was createdfoparison with finer-scale
neighborhoods by subsetting water provider studgsaimto the coarse-scale units using

the Willamette River, Interstate 5, Interstate 2% Highway 26.

4.1.3. Variable transformations

In this study, the response variable and all dates were transformed to the
natural log scale, then centered on their granchreahlues. Log-transformation
normalized variables and allowed estimated coetffits to be interpreted as elasticities,

unitless measures with readily comparable effegssiMean centering allows intercepts
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to be interpreted as means, which is helpful faregating unbiased random effects. The
decision for mean-centering weather and neighbattsoale variables was
straightforward because these data have only algresan. However, for variables at
levels 2, it was possible to center on either aignmean or the grand mean for the
sample. The grand mean was selected in all caseghlight contextual effects (Enders
and Tofighi 2005). After normalizing and centerieggch variable represented the

deviation from log-transformed global mean.

4.2. Model development

Models were fit in three stages using the Imecfiom for mixed-effects models
from the Ime4 version 0.99999 (Bates, MaechlerkBoand Walker 2013) deployed in R
Statistical Software version 2.15.0 (R Core Tearh2)0First, alternative unconditional
means models were specified to compare plausihbiora intercept structures (Section
3.3.1) with iterative fitting algorithms availabiierough LMERConvenienceFunctions
package version 2.0 (Tremblay and Ransijn 20133. Sdtected random intercept
structure was then used as input for an iteratieegss that fit random slopes and
identify any higher-level predictors of lower-lewvahdom coefficients (Section 3.3.2).
Variables with fixed effects were subsequently beicknd cross-scale interactions were
explored using the full random effects structugge@fic functions used at each step of

model development are summarized in Table 4.2.

4.2.1. Initial random intercepts structure
To select an initial random intercepts structarseries of unconditional means

models were fit using REML estimation. This steped®ined whether intercepts varied
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Table 4.2: Functions used for model developmertt RitStatistical Software.

Model development step Function R package

Fit initial Imer Ime4
unconditional means model version 0.99999

. : . LMERConvenienceFunctions
Remove influential outliers romr.fnc ;

version 2.0
Assess anticonservative p-values LMERConvenienceFunctions
pamer.fnc

of cross-scale interactions

Forward-fit random effects

Back-fit fixed effects

Likelihood ratio testing

Marginal and conditional R

Parametric bootstrapping

Multicollinearity

Confidence intervals

ffRanefLMER.fnc

bfFixefLMER_F.fnc

anova

r.squaredGLMM

boot.mer

vif.mer

confint

version 2.0

LMERConvenienceFunctions
version 2.0

LMERConvenienceFunctions
version 2.0

Ime4
version 0.99999

MuMin
version 1.9.5

Ime4
version 1.0.4

https://raw.github.com/
aufrank/R-hacks/master/
mer-utils.R

Ime4
version 1.0.4

by neighborhood and selected among alternativéhberpood boundaries. Water use

observations were grouped by household, by neidgideal, and both households and

neighborhoods. Three alternative neighborhood baues were considered: census

tracts, neighborhood associations, and regionsi(€ig.4). Relative log-likelihood ratio

tests were performed to compare pairs of modegmifgiance level of 0.05). Three

models with best fit (lowest deviance) were ideetif Design effects and contextual

relevance were examined to select a prevailingaaneiffects structure from this subset.
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Outliers were removed from the selected empty moslielg the romr.fnc function from
LMERConvenienceFunctions, where an outlier wasngefias any observation from the
prevailing candidate model with standardized resiglgreater than 2.5 standard
deviations from the mean (Tremblay and Ransijn 2048te that Ime4 version 0.99999
was used to fit models input while Ime4 version4 Was used to bootstrap p-values and

calculate confidence intervals.

4.2.2. Specifying random effects

Random slopes were forward-fit using the ffRaneBRIfnc function from
LMERConvenienceFunctions. This algorithm uses REddtimation to iteratively
evaluate a list of possible random effects strastuapplying a log-likelihood ratio test
(significance level of 0.05) to compare relatiienith a baseline model. To avoid bias
from omitted variables, the baseline model includiédandidate explanatory variables

(Zuur et al. 2009).

4.2.3. Back fitting fixed effects

Fixed effects were back-fit using the bfFixeflLMBERfnc function from
LMERConvenienceFunctions. The back-fitting proocessd by this script is outlined
below. The input model contained all candidate axatory variables (Table 4.1), along
with all cross-scale interactions identified angigant using the anticonservative p-
values generated through the pamer.fnc functiom it ERConvenienceFunctions
(Table 4.3). Using ML estimation, the following gsewere iteratively performed. First,
the least significant model parameter at the cetiseale was identified based on the t-

statistic. The relative fit of models with and vatht this candidate variable were
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compared using a log-likelihood ratio test (sigrafice level of 0.05). If the test was
significant, the variable was retained; otherwisejas removed. The next iteration began
by selecting the next-smallest t-statistic, in dlgovalue. Once all of the variables at the
coarsest scale were tested, the process steppedtddire next-finest scale and repeated
the same steps. However, in addition to checkindehfit with a likelihood ratio test,
these finer-scale variables were tested for crogkesnteractions with higher-level
variables. To specify the most parsimonious moaledl o avoid conflating
nonstationarity with omitted variable bias), potahtedundancies in the selected random
effects structure were also examined at each iberaf the variance could be accounted
for with a fixed instead of a random effect, thiedawas pruned. To most accurately

express both the fixed and random effects, thé firalel was estimated in REML.

Table 4.3: Candidate cross-scale interactions.vahi@ble pairs with interaction effects that wederitified
as significant using the pamer.fnc function fromERIConvenienceFunctions are marked with an ‘x’.
Maximum air temperature was found to interact wailiparcel-scale building structural variables adlas
impervious land cover. Interactions between weatheables and lot size were most significant amstm
common. Each significant candidate interaction tess tested in back-fitting process.

Land use variables with significant cross-scale interaction

Property Impervious

Level 1 Lot size, value area Lot size, Building size,
variable parcel parcel parcel neighborhood neighborhood
Maximum
X X X X X

air temperature

Antecedent
precipitation

Extreme heat
index
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4.3. Model diagnostics

Previous studies of water use have noted two kethoaological problems with
multilevel models: (1) a wide range of potentiaibllinear explanatory variables and (2)
autocorrelated or nonstationary model error tetdese, model diagnostics paid careful
attention to possible multicollinearity betweenefikeffects. Residual diagnostics at each
scale of analysis were undertaken, with particatsntion paid to possible spatial
correlation in ‘higher-order random effects, temgdacorrelation in ‘lower-order’ effects,
or correlation between random effects and explapatariables.

The Imer function does not generate p-valuesitedfor random effects because
of uncertainty in the degrees of freedom for theaeinator of the F-test that assigns p-
values (Bates 2006; Bates 2010). Bootstrappinggoha@s (1,000 replicates) were used
to estimate p-values. Absolute and relative goosloé&it were compared for the
unconditional means model, the models develop&eation 3.2, and the final model.
Marginal and conditional Rneasures were obtained to assess overall goodffiss
(Nakagawa and Schielzeth 2013). To conduct hypdthests about the fixed effects, a
Wald approximation from the likelihood profile wased to calculate confidence
intervals of fixed-effect parameters. For randofeas, confidence intervals were

identified from a likelihood profile (Bates 2010).
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Chapter 5: Results
This chapter presents results of multilevel regjresanalysis of SFR water use.
Section 5.1 reviews model outputs for candidatenditional means models and
provides justification for selecting the initialndom intercepts structure. Section 5.2
covers the results from the model development m®oéforward-fitting random effects
and back-fitting fixed effects. Section 5.3 examitige final model. Section 5.4
concludes by examining residual diagnostics andigess of fit. It also compares the

predictive power of a multilevel model to pooled ®butputs.

5.1. Results of unconditional means model

Results from candidate unconditional means (optyihmodels are reported in
Table 5.1, with corresponding design effects inl@&h2. Intraclass correlatiop)(for
each empty model was relatively large, suggeshag$FR water use exhibited a nested
data structure. All empty models that included andntercepts by household (Models 1
and 5-7) hagh > 0.5, indicating that roughly half of total var@e in water use can be
attributed to between-household or between-neidtdmat variability. Between-week
weather variability accounted for 47% of total waisee variance in Models 1 and 5-7.
Relatively less variation was attributed to betwaeighborhood variability. Among
three level modelgy suggested that 22-30% of between-household variaas
attributed to between-neighborhood factors (Taki®¢. B1odel fit (AIC, deviance) was
best for three-level models (Models 5-7), with watge observations nested in
households and households nested in neighborhbogddikelihood testing confirmed

that a model with both household and neighborhddires were significantly more
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likely, given the data (p < 0.05). Taken togetlleese findings suggest the possibility of
neighborhood effects at work, although it is ureertvhich (if any) of the three
candidate neighborhood geographies adequatelyrealtioe area exerting the contextual

effect (Kwan 2012).

Table 5.1: Results from unconditional means modétsdels that grouped households into neighborhoods
were a better fit to the data.

Household Neighborhood Residual

Model Level 2 Level 3 AIC deviance variance variance variance
1 Household - 66415 66409 0.4206 - 0.3670
2 - Tract 80227 80221 - 0.2701 0.5673
3 - Region 86034 86028 - 0.0732 0.6952
4 - RLIS 83275 83269 - 0.1487 0.6241
5 Household Tract 66365 66357 0.2953 0.1244 0.3670
6 Household Region 66339 66331 0.3365 0.1016 0.3670
7 Household RLIS 66353 66345 0.3162 0.0883 0.3670

The neighborhoods with highest mean water use lweeted in the northwestern
area of the TVWD service area, an area known as @rekk (Figure 5.1). Households
with lower water use areas were clustered in mstabéished neighborhoods on the east
side of the study area, although some areas ofiagér use were detected close to the
city center at finer spatial scales—these areas@® with more affluent close-in
neighborhoods. Note that variance in interceptsyelsas the size of the confidence
intervals, was highest for individual householdd Bowest for regions, consistent with
MAUP. As more observations are grouped into a apatiit, the variability in those
observations was averaged away in the weighteageeillustrating the smoothing

effects of aggregation at coarser scales.
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Figure 5.1: Distribution of random effects from onditional means models. Maps and quantile plots of
intercept variability in four two-level unconditiahmeans models with random effects specified for
addresses (n = 460, Model 1), tracts (n = 125, Mafeeighborhood associations (n = 63, Modebay
regions (n = 10, Model 4). Because random intescegyiresent a weighted average of observations, the
maps indicate where log-transformed water use ghtens tended to be high or low in the city relatio
the grand mean. Corresponding quantile plots watifidence intervals for each grouping structureeegv

the effect of MAUP in the results, in that intertepriability is most prominent in the most disagggited
data (Model 1).

Design effects in Table 5.2 indicated substaniggdendence in the data, leading
to reductions in effective sample size. This wasi@aarly true at level 1 because of
strong temporal correlation of water use obsermatior a given household. At level 2,
all empty models exceeded the threshold desigetedfe2 (Muthen and Satorra 1995),
but results were mixed at level 3. Grouping houtshby RLIS neighborhood (Model 7)
led to relatively large design effects of 2.38, tiensus tracts (Model 5) yielded a
design effect of only 1.79. The small number of$eholds per census tract (average of

3.68) may explain this result. Grouping househblgsegion presented the reverse
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problem. The calculated design effect of 11.43tted sharp reduction in effective
household sample size, from 460 to 40, raising tuesabout the statistical power of the
estimate (Scherbaum and Ferreter 2009). Given tws®derations, as well as the
plausible contextual relevance noted in SectiortP4RLIS neighborhoods were selected

as the most contextually relevant neighborhood Hdaon

Table 5.2: Design effects from unconditional meanaglels. Results suggested a three-level model with
households grouped by neighborhood associationdzoigs from the Regional Land Information System
were most appropriate for the data.

Levelsland 2 Levels2and 3
Mean Design Effective Mean Design Effective
M odel ICC clqster offect sample ICC Clu_ster effect sample
size size size size
1 0.53 76.23 41.17 852 - - -
2 0.32 280.52 91.15 385 - - -
3 0.10 556.59 334.81 105 - - -
4 0.19 3506.50 107.90 325 - - -
5 0.53 76.23 41.13 852 0.30 3.68 1.79 256
6 0.54 76.23 41.94 836 0.23 46.00 11.43 40
7 0.52 76.23 40.44 867 0.22 7.30 2.38 194

A three-level random effects structure, with SF&tew use observations grouped
by households that were, in turn, nested in RLI§ht@rhoods, was selected for further
examination. A small number of data points (907gper 2.59% of total) were identified
as influential outliers in this empty model usihg fprocess as explained in Section 3.3.1.
These outliers could have arisen from device erdrom water leakage from pipes on
the property. Once influential outliers were renmhv@odel residuals approached the

normal distribution (Figure 5.2). Parameter estaador the selected empty model with
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this modified dataset indicate that 50% of totalasace in observations arose from
between-household processes(= 0.32), with 15% attributed to between-neighboxho
processesyfoo = 0.09). The remaining 35% variation can be aited to temporal or

random variation, captured by the residwdH 0.37).

Raw Data, Liters Response Variable, log(liters)
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Figure 5.2: Distribution the raw data and resporas@ble. The distribution of weekly mean singlefty
residential water use data in summer was skeweddmgall number of very large observations (lefty. F
analytical purposes, water use data were transfbtmée natural log scale and grand mean centered.
Influential outliers were removed, resulting in lesponse variable (right).

5.2. Results of model development

5.2.1. Fitting random effects

The forward-fitting process identified significaméterogeneity in the slopes for
daily maximum air temperature and cumulative fiagrgrecipitation at the household
scale, indicating that the weather-sensitivity after use was household-specific.
However, because variation in the slope for cunuddtve-day precipitation was small

(t?10= 0.001 compared tf10= 0.15 for temperature), this predictor was inctidely as
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a fixed effect. No other random slopes were detec@entrary to expectations, the effect

of parcel-scale land use characteristics was notddo vary across neighborhoods.

5.2.2. Fitting fixed effects

The back-fitting process selected maximum air temajure (TMAX), five-day
cumulative precipitation (CumPrcp), and the extrdmeat index (Extreme_Heat) as
explanatory variables at level 1. Relative humiaityl wind speed were also evaluated,
but were not significantly related to water usegetemperature and precipitation were
included in the model. Lot size (Lot_Size), builglisize (Building_Size), and building
age (Building_Age) were selected at level 2, whileperty value was not. No land cover
variables were selected at the household scalideAevel 3, models that included
neighborhood mean building age (Building_Age_Nbaj & of SFR area with low
vegetation (LowVeg_ % Nbo) were identified as siigaifitly more likely. Cross-scale
interactions between TMAX and Lot_Size at bothhbasehold scale and neighborhood
scale were selected. However, at the neighborhcalé, ghe coefficient was barely
significant, approaching zero in value, so it whsnately excluded from the final model.
None of the other candidate cross-scale interagiiofable 4.3 were found to be

significant.

5.3. Full model

Fixed effects, variance components, and mod@&ffithe full model are reported
in the rightmost columns of Tables 5.3 - 5.5, refipely. To illustrate how variance is
explained across scales, these tables includeassnor a series of increasingly

complex multilevel models leading to the full madEhe tables also indicate parameters
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named in Chapter 3 to link empirical results witdtistical theory. The leftmost column
presents the selected unconditional means modgbt{Emodel), omitting influential
outliers. To its left is an expanded model thatudes TMAX, CumPrcp, and
Extreme_Heat as fixed effects (Level 1 fixed). Nelxé model was expanded to account
for Building_Size, Lot_Size, and Building_Age (Léz=fixed). Random slopes for
TMAX were then specified (Random slopes). The ifiadidel expands the random slopes
to include fixed effects for the neighborhood-sqakedictors Building_Age Nbo and
LowVeg_%_Nbo, as well as the cross-scale interadietween TMAX and Lot_Size.
Because all variables were natural log transforroedfficients represent elasticities and
can be interpreted as the percent change in waéeassociated with a 1% change in the
explanatory variable. Interepts are interpretedwasages, with random effects denoting

deviation from the average.

5.3.1. Estimated fixed effects

Water use increased with temperature and decredgiegrecipitation, as
expected. A 10% increase in TMAX was associatetl iB.9% increase in water use.
The connection between rainfall and water use wkasively weak (decrease of 0.2% for
a 10% increase in CumPrcp). Extreme_Heat was &jadisant and positive, with a
10% increase associated with an additional 0.8%eas®e in water use, on top of the
fixed effect for TMAX of 3.9%. Bootstrapping ressiindicated these coefficients were
highly significant (p < 0.001).

At the household scale, water use was positivetysetated with Building_size

and Lot_size, while negatively correlated with Blinly_age. Building_size had the
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largest effect of all explanatory variables—a 10f#reéase was associated with a 6.0%
increase in water use. A 10% increase in Buildigg \&as associated with a 1.6%
decrease in water use. Estimates for these vasia®ee significant across model runs (p
< 0.05). Although Lot_size appeared to be a stpmegictor of water use in the Level 2
fixed effects model, its effect weakened as vaeanas absorbed by other variables
more complex models. In the full model, the effefcLot_Size was less pronounced
(1.6%) and less significant (p = 0.06) than eitBeilding_size or Building_age. While
Lot_Size was a poor predictor of water use onws,dhe cross-scale interaction

involving Lot_size and TMAX+;1) was relatively large and highly significant.

Table 5.3: Regression coefficients. Fixed effeetutts from increasingly complex model design are
presented. In the empty model, only random intasceygre specified. Fixed effects were added for
weather (Level 1 fixed) and parcel characterigtigs/el 2 fixed), then temperature response wasvaitb
to vary by household (Random slopes). Finally, hieaghood-scale variables and a cross-level intieract
were specified (Full Model) Parametric bootstragpgimocedures were used to obtain p-values.

Variable Parameter Empty Le_zvel 1 Le_vel 2 Random Full
model fixed fixed slopes model
Intercept Yoo -0.015 -0.015 - 0.005 - 0.006 0.000
TMAX Y10T - 0.392**  0.392** 0.396*** 0.394***
CumPrcp Y1i0P - - 0.024** - 0.024** -0.024*%=* - (0.024**
Extreme_Heat Y10H - 0.083*+*  0.083** 0.082*** 0.083***
Lot_Size Y1oL - - 0.184**=* 0.144** 0.132*
Building_Size Y108 - - 0.607** 0.595%** 0.600***
Building_Age Y 10A - - -0.236 -0.249*=*  -(0.158**
LowVeg_%_Nbo YO1N1 - - - - 0.049
Building_Age_Nbo YO1N2 - - - - -0.218*
mewton TWAX L e

*p<0.1; * p<0.05; **p<0.01
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Building_Age Nbo also exhibited an inverse relasioip with water use.
Compared to the household scale, the effect ofdBwgl Age Nbo was larger but was
less significant (p = 0.07). Water use increasdt WwowVeg_ % Nbo, but the effect was
not significant (p = 0.63). Multicollinearity wa®tan issue in the full model as variance

inflation factors were less than 2.5 for all exgltory variables.

Table 5.4: Variance components. Random effectdtessam increasingly complex model design are
presented. In the empty model, only random intasceggre specified. Fixed effects were added for
weather (Level 1 fixed) and parcel characterigties/el 2 fixed), then temperature response wasvaitb
to vary by household (Random slopes). Finally, heayhood-scale variables and a cross-level intieract
were specified (Full Model) Parametric bootstraggimocedures were used to obtain p-values.

Empty Level 1 Level 2 Random Full
Parameter - -
model fixed fixed slopes model
Residual o2 0.231%*  0.223%* 0223  0219%*  0.219%
Household 1200 0.323% 03237 (2850  (0287%%  (.289%
intercept
TMAX slope %10 : - : 0.147%% 0,142+
Slope-intercept To1 - - . 0.300%*  0.300%%*
covariance
Neighborhood 0%o  0.004"*  0.095%* 0,014 0.090* 0.006*
intercept
IcC, oH 0.644 0.651 0.561 - :
ICCy oN 0.225 0.227 0.047 ; :

*p<0.1; ** p<0.05; **p<0.01

5.3.2. Estimated variance components

Variance components in Table 5.4 were largesteruticonditional means models and
decreased as fixed and random effects accountdgrgssively more variation in the
response variable, as expected. Residual variaitcly decreased from 0.231 to 0.223

as weather variables accounted for variance at Ietben decreased to 0.219 with the
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addition of random slopes for TMAX. Variance in theusehold level intercept declined
from 0.323 to 0.285 as fixed effects at level 2taggd a portion of between-household
variance. The slope-intercept correlation of Ocidgated that households with high water
use, as reflected by larger intercepts, also tetml@édve more temperature-sensitive
water use, indicated by steeper slopes (Figure 8&)ance in the neighborhood
intercept dropped sharply from 0.09 to 0.006 oheemodel controlled for parcel
characteristics. Although small, p-values genergtenugh bootstrapping (1,000

replicates) indicated that variance in neighborhimbercepts was different from zero.
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Figure 5.3: Correlation of household-specific sbpead intercepts. Slopes and intercepts were glédte
randomly selected subset of 10% of sample housstioidemperature (in grey) along with the fixeteet
for temperature (in black). The resulting fan sheafects the slope-intercept correlation of 0.8 an
indicates that higher water-consuming households, lag(liters per day) > 0, also tend to be hawaen
temperature-sensitive use patterns (slope > 0).
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5.4. Diagnostics

5.4.1. Normality and independence of residuals

Level 1 residuals were not temporally correlated appeared to follow a normal
distribution centered on zero (Figure 5.4), satigfyrequirement that~N(0, ¢2).
Normality and independence in the residual suggdebta the full model successfully
captured dependencies the data at this scale. &@lspattern was evident in the random
slope for TMAX (Morans | p-value = 0.0991) or theusehold intercept (Morans |
p-value = 0.40), indicating that nesting of houddtdn neighborhoods led to a spatially
random pattern. At the neighborhood-scale, restdwale also found to be spatially
random in the full model (Morans | p-value = 0.7aljhough this result could also reflect
the very limited variability in between-neighboritbeariance, controlling for parcel
characteristics. Cluster and outlier analysis in@IS 10.0 indicated no significant hot or
cold spots in random effects. The full model alad the effect of removing correlation
between standardized residuals and predictordcpiay between Lot_Size and the

random effect for TMAX (Figure 5.5).

5.4.2: Goodness of fit

AIC and deviance in Table 5.5 indicated that iasregly complex models
accounted for progressively more variation in wakes. Deviance decreased from 49085
in the unconditional model to 47631 in the full regdvhile the number of parameters
increased from 3 to 15. Results from log-likelihagato tests, conducted with ML or
REML estimation, as appropriate (see Section 3.#hdjcated that each model explained

significantly more variance than the previous, @ligfh the magnitude of this difference
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Figure 5.4: Normality and independence of levet¢diduals. Residuals from the full model were notynal
distributed, centered on zero (left), and werenudtcorrelated across week-long time lags (right).
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Figure 5.5: Correlation between lot size and ranédiect for temperature across models. Because it
excluded neighborhood-scale variables, the Randopes model resulted in correlation between
explanatory variables and random effects, partibulzetween lot size and the random slope for
temperature (left). The full model removed the etation, resulting in superior performance as asl|
improved model fit (right). This result suggesthdttneighborhood effects were at work in the dewen if

the estimated between-neighborhood intercept vititialvas itself small.
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was relatively low between the random slopes maddlthe full model. Between the full
and the empty model, residual variance decreasedtwel 1, 11% at level 2, and 93%
at level 3. The marginal and condition&l\Rere calculated for the full model as 0.22 and
0.67, respectively, indicating that fixed effeckplained 22% of total variance, with that

portion increasing to 67% of total variance whemdiam effects were included.

Table 5.5: Relative goodness of fit across moddsults from increasingly complex model design are
presented. In the empty model, only random intasceggre specified. Fixed effects were added for
weather (Level 1 fixed) and parcel characteridfiessel 2 fixed)., then temperature response wasnaitl
to vary by household (Random slopes). Finally, heayhood-scale variables and a cross-level intieract
were specified (Full Model) Comparative model fittwAkaike Information Criterion (AIC), Bayesian
Information Criterion (BIC) and deviance statistiteg-likelihood ratio tests indicated significant
improvement in model fit in the full model.

Empty Level 1 Level 2 Random

Metric model fixed fixed slopes Full model
AIC 49082 47854 47749 47581 47571
BIC 49116 47913 47833 47682 47698
deviance 49074 47840 47729 47557 47541
Number of parameters 4 7 10 12 15
Log-likelihood vs. previous 0 0 0 0.0013

(p-value)

5.4.3. Confidence intervals and hypothesis tests

Confidence intervals constructed from the liketilgrofile can be used to assess
whether estimated coefficients are significantlyedent from zero. Results are presented
in Figure 5.6. As expected based on bootstrappeayes, the coefficients for lot area
and % neighborhood low vegetation were not sigaifity different from zero. All other

fixed effects were deemed significant.
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Figure 5.6: Confidence intervals for fixed effetgull model. Estimates are interpreted as theiglar
elasticity of water use with respect to each predicariable. Confidence intervals for lot area and
neighborhood % low vegetation are not significaxifferent from zero. * p<0.1; ** p<0.05; ***p<01.

5.4.4. Predictive power of the multilevel model

To assess the predictive power of a multileveraggh, a pooled ordinary least
squares (OLS) model were specified with the samezlfeffects. Estimated coefficients
and confidence intervals were not significantlyfetiént from the full multilevel model.
The main difference lay in the nonstationarity afltirevel coefficients and the
partitioning of variance across scales. The utdityhese model features is revealed when
the model is used for prediction. The sample dats subset into a calibration dataset
(2001-2004) and a validation dataset (2005). PoOlef and multilevel models were

estimated using the calibration data. Parametenatds were very similar to results
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presented above. Figure 5.7 compares model preadiscto observed 2005 values for
water use. The pooled OLS model only explained 22%ariance in water use,
commensurate with the marginad Rported above. The multilevel model performed
significantly better, explaining 59% of total var@e. By decomposing variance across
scales and allowing for household heterogeneitgulilevel approach respected the
nested structure of repeat-measure household wsgelata, which considerably

improved the accuracy of model predictions.

Multilevel prediction, R*=0.59 OLS prediction, R*=0.22

Observed
o

r

Fitted

Figure 5.7: Predicted water use from the multilewedel. Multilevel and pooled OLS models were
calibrated to 2001-2004 data and validated on 212@&. The full multilevel model predicted 59% of
variance in observed water use 2005 (left), whil€&d.S model with the same fixed effects structure
explained only 22% of variance (right). Decomposiagance across scales and allowing for household
heterogeneity were key to improving predictive poafa repeat-measure household water use data
model.
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Chapter 6: Discussion

This chapter situates multilevel model resultthm context of previous research
and explores implications for stabilizing peak urlveater demand amid combined
climate and land use change. Section 6.1 teasd¢h@ubles of weather variables in
driving temporal variation in water use. Sectiod Biterprets the effects of building
structural variables on water use. Sections 6.36ah@xplore possible explanations for
why the effects land cover and between-neighborhaoidbility, respectively, were
insignificant in the full model. Section 6.5 condés the chapter by highlighting the
utility of fine-scale analysis for accurate wateeprojections, while also substantiating
calls for greater coordination among water resouraaagers and land use planners in

the interests of long-range water resource sudiditya

6.1. Decomposition of weather sensitivity

Response of SFR water use to temperature fluonstan be decomposed into
four components: a fixed effect, a household-spe@indom effect, an extreme heat
effect, and a land use effect that involved thesrscale interaction of lot size and
temperature (Figure 6.1). The fixed effect of terapgre reflected the general tendency
for SFR water use to increase on hotter days asdmmlds replace water lost to ET. The
estimated temperature elasticity of 0.39 was Ialvan estimates of 1.0 obtained in
Seattle, Washington (Polebitski and Palmer 2018)(a6 based on data from Phoenix,
Arizona (Balling and Gober 2007). Both of thesalsts relied on data aggregated to
coarser spatial and temporal resolutions, which hezee lead to conflation of the

average effect and household-specific deviatiom fthe average. The fine scale of
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analysis used for the present study revealed thatdholds exhibited a wider range
temperature responses, with a standard deviatiOtB@ffrom the average elasticity
(Figure 5.6). In the full model, household-spec#iocpes and intercepts were positively
correlated €5, = 0.3), consistent with previous findings that hefugdds with higher water
consumption levels also tended to have more sebganation in water use (Polebitski
and Palmer 2010). Apart from providing insightoibetween-household heterogeneity,
allowing temperature response to vary across haldglignificantly improved model
fit (Table 5.5) and predictive power (Figure 5.Calibration and validation results
indicated that the full multilevel model predict®8% of variance in water use, a
remarkable degree of accuracy given the it is nabmmon for residential water use
models to account for less than 40% of total vaeafiRenwick and Archibald 1998;
Ramachandran and Johnson 2011), although thetliterancludes notable exceptions

(Shandas and Parandvash 2010).

Temperature was a more robust predictor of watertiian precipitation. The
weak linkages between water use and precipitatiay Imave resulted from the fact that
rainfall is rare in summer (Balling and Cubuque @0&nd that many automatic irrigation
devices are not calibrated to weather fluctuat{@essonal communication, Steven
Carper, Tualatin Valley Water District, July 2018ntecedent precipitation conditions
were more predictive than actual rainfall deptfierting the role of soil moisture
dynamics in mediating water balances, particulasdyer lost to ET over time (Berthier et
al. 2004). Persistent effects of rainfall and exieeheat are consistent with previous

studies (Miaou 1990), although the temperaturedheited an ‘extreme’ heat effect was
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relatively low in Portland (32°C). For example, Zhet al. (2001) defined extreme heat
events above 39°C in Melbourne, Australia. Maximaintemperature in Portland

exceeded this threshold on only two occasions dutie study period.
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Figure 6.1: Decomposition of temperature respoRsar components of single-family residential resmon
were to temperature fluctuations were identifieflxed effect of maximum air temperature (commoraliio
households), a random effect of water use (houdedmécific deviation from the fixed effect), a segia
extreme heat effect, and a cross-level interadietaveen temperature and lot size. Width of arrow
indicates the strength of the relationship.

6.2. Linkages between land use and water use

Linkages between land use and water use were faumaltiple scales (Figure
6.2). Building size and building age were significaredictors of water use. Water use
was most elastic with respect to building sizep alsnsistent with previous studies on
water use in the Pacific Northwest, in terms ohbditection and magnitude (Chang et al.

2010; Shandas and Parandvash 2010). Polebitskalnter (2010) estimated a
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comparable building size elasticity of 0.51 in $eatVashington. It is possible that
larger buildings could reflect larger householdsizalthough Chang et al. (2010) found
no significant relationship between household aizeé water use at the block-group
scale. Alternatively, building size could be codlar with income, where more affluent
households tend to both have larger houses anghaisewater in summer, consistent
with survey evidence that outdoor water use afiggs higher-income households

seeking to display their social status (Askew araGMirk 2004; Domene et al. 2005).

Neighborhood
characteristics

Mean ,
U’/dfb
Building age e
Building size
Lot size
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Figure 6.2: Linkages between land use and wateatszss scales. Building size exhibited the strenhge
linkage with water use, suggesting possible conagaf high water use patterns and high incomes or
household sizes. Building age was negatively cateel with water use at both the household and
neighborhood, indicating a suburban effect at weihce the newest construction is located in lowsitg
suburban areas. Although weakly related to waterassa fixed effect, lot size was involved in austb
(but temporally contingent) cross-scale interactigth temperature.
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Lot size is commonly thought to drive seasonalityater use, and has been
identified as a significant predictor in aggregataaties (House-Peters and Chang 2011).
However, at the fine scale used for the currenlyarg the linkage between water use
and lot area was relatively weak (0.13) and stesiBy insignificant. Instead of operating
as a fixed effect, lot area was a component obasbcross-scale interaction with
temperature, where larger lots tended to ampliéyetiect of temperature on water use
(Figure 6.1). Importantly, the analysis did note¢ta similar interaction between
weather and building size. This suggested thatimglsize and lot size have different
types of effects on water use. Building size héided effect, one that operates with
temporal consistency across households at mulgakes, which explains its importance
at the parcel (Shandas and Parandvash 2010), gtock (Chang et al. 2010), and tract
scales (Polebitski and Palmer 2010). In contrastgeffect of lot size has a temporally
inconsistent effect, being contingent on weathacttlations, with a magnitude jointly
determined by its interaction with temperature (ffgy6.3). The model did not detect
between-neighborhood heterogeneity in the effeeingfland use variable, suggesting
that these parameters affect water use similarysache study area. Once again, fine-
scale analysis was required to draw out thesendistins.

The effect of building age appeared particulantgrsy because it was selected at
both the household and neighborhood scale. Chaalg @010) also found a significant
spatial covariance of average building age andmwese at the block-group scale,
although Polebitski and Palmer (2010) found thatdfiect of building age was sensitive

to the season and the type of model specified. iBecaf changes in building code in
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1992, older buildings are more likely to be equigbpath water-inefficient technologies,

such that a positive relationship would be expebtttveen indoor water use and
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Figure 6.3: The contingent effect of lot size. Retxtl water use from a multilevel model increaséh w
temperature, but the magnitude of the increasendkspen lot size. At low temperatures, there ielitt
difference in water use patterns between watefroge households on large lots (top quartile) ared th
interquartile range. Interaction between weatherlanhsize becomes prominent above 22°C. Water use
generally tends to be lower and less variable aalsst lots (bottom quartile).

building age. Finding an inverse relationship bemveummer water use and building age
suggested that the land use factors driving higamr water use dominated any
conservations effects from indoor water use efficies. Building age was moderately
correlated with building size (Pearsons correlatiof.31) and lot size (Pearsons
correlation = -0.21), but not enough to suggesbleras with multicollinearity. Although
more significant at the parcel scale, the effediwfding age was more pronounced at

this scale (-0.22), indicating that a separateedfiget is at work at the neighborhood
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scale, even after controlling for parcel-scaledinty age. This result implied that
household on two otherwise similar parcels woulel water differently depending on the
average building age in the neighborhood. Thigpmegation would be consistent with
survey evidence showing that outdoor water useesdrvdisplay status and convey
social distinction, particularly in newer suburbasidential developments (Askew and

McGuirk 2004; Domene et al. 2005).

6.3. Why was land cover not more predictive?

Land cover explained almost no variation in SFRewase. On its face, this result
was surprising because it would seem that the waigierands of vegetation would drive
the underlying process that generates seasonal usgeHowever, the result is not
without precedent. Previous research has uncowerelitively weak relationship
between water use and vegetation (Wentz and Gd@lat;, 2Breyer et al. 2012). This
finding could have arisen from household misundeading of vegetation water
requirements. Some evidence suggests that housetanidoe poor estimators of ET and
agronomical requirements, over-watering (Balling &ober 2007) or under-watering
(Domene et al. 2005) as a result. Another possikfganation is that building structural
variation captured all the relevant information king land cover variation redundant.
Alternatively, the low correlation could have rdasdl from the data resolution— water
use may be highly sensitive to particular typesrgjated vegetation that were not
captured by the land use classification. The lamccdataset contained only four land
cover classes, which may have been too coarsetiogliish between thirsty lawns and

drought-tolerant native shrubbery, since thesedtade differences may be central to
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accounting for why one patch of earth was waterbilevthe other was not (House-Peters
and Change 2011b). However, investigation with aentietailed land cover

classification (The Intertwine 2012) that includedlass for lawns did not improve

model results.

A more likely explanation is that the presenca é&dwn did not necessarily mean
that the lawn is being irrigated. Portland Waterdaw (2010) provided anecdotal
evidence to substantiate this claim. AccordingWBE? declining rates of summertime
lawn irrigation stemmed from outdoor water resioies imposed during a drought in
1992. Many households reported a change in attimaards lawn irrigation after the
drought as they “realized that if they didn’t watieeir lawn, they didn’t have to spend
time mowing it, and the grass grew back green an as the fall rains began” (Portland
Water Bureau 2010, 3-1). Two decades later, lawtenivey appears to have ceased in
some neighborhoods, but for a few holdouts, asleas defect en masse from turfgrass
irrigation. In other neighborhoods, however, irtegaturfgrass remains the norm. This
heterogeneity, in concert with the lack of detailand cover types, could account for
why the low vegetation was selected through loghilood ratio testing but was
ultimately not significant in the final model. Tleffect of vegetation was more likely,
given the data, but its place-based effect, coupitid lack of differentiation between
water-intensive and drought-tolerant vegetatiomramhé¢hat the estimated coefficient was

not significantly different from zero.

6.4. Variance decomposition
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One of the main strengths of a multilevel apprdéhin the decomposition of
variance across scales. However, the portion af t@riance attributable to between-
neighborhood factors fell sharply once the modetmadled for parcel characteristics
(Table 5.3). This decline reflected Fotheringham Brundson’s (1999) point regarding
the difference between nonstationarity and modskpecification—nonstationarity in
neighborhood intercepts in the full model was tmge the model accounted for relevant
sources of between-neighborhood variance. Logtikeld ratio testing indicated that the
full model was more likely given the data (TablB)5although the significance of this
test (p = 0.0013) was smaller other model pairs Pp2e-16). Bootstrapped p-values also
indicated that between-neighborhood variability wtistically different from zero, but
small. Grouping households by neighborhood hacktfeet of improving overall model
performance, in terms of both model fit and redgaaorrelation between model residuals
and covariates (Figure 5.6). This would suggedtttieprocesses driving high water use
were primarily located at the household scale thait similar households tended to be
closer together—this would correspond with coredlateighborhood effects as defined
by Manski (1993). By contrast, the effect of neigtiiood building age would seem to
operate as a contextual effect in Manski’s framdyvsince it captured a separate source
of meso-scale variation, after controlling for parouilding age. The analysis concluded
that neighborhood context was associated with ya wedest but statistically significant

effect on water use, controlling for weather anddaug structural characteristics.

6.5. Policy implications
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The decomposition of temperature sensitivity masediate implications for
vulnerability of urban water provisioning systenmlar the combined effects of climate
and land use change. A wide range of climate mquteject hotter, drier summers, while
urbanizations models project ongoing densificat®eagarding climate, Mote and Salathé
(2010) projected that summer temperatures acresBdhific Northwest would increase
1.9to 2.7 °C by 2040 and that mean summer rainfallld decrease 5.1% to 11.2%,
relative to the 1970-1999 mean. The INSIDE Idahddgd dataset projected the
following changes to summer climate over the pe#0&85-2055 in the study area,
relative to the 1970-1999 mean: 0.24 to 1.43°Caases in summer temperatures,
decreases in cumulative five-day precipitation [3#4to 34%, and increases of 71.0% to
140% in the extreme heat index (Figure 6.4). Atdhme time, Metroscope, a regional
land use and transportation model, projected omgoiban densification as population in
the Portland area continues to grow within the arfpawth boundary. Assuming SFR
capacity is exhausted by 2040, median lot sizedgepted to decrease an average of
160nt (-22%) with decreases of up to 30timlow-density, high water-consuming areas

in proximity to transit (Figure 6.5).

6.5.1. Triple exposure

Taken together, results indicated that SFR watertended to be higher and more
temperature sensitive in residential areas chaiaetkby larger, newer buildings on
larger lots. In other words, sprawl drove increaeesimmertime water use that are
likely attributable to increased outdoor use. & hlteady been noted that the built

environment associated with sprawl encouragesaqoéatiy high levels of resource
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Figure 64: Projected deviation in summer maximum air tempeesu2025-2055. Projections are shown
for three emissions scenarios and are expressatilecto the reference period of 1970-1999. The
Geophysical Fluid Dynamics Laboratory Earth SysMatel (GFDL_EMS2M) is the most cool and wet
warming scenario, while the Hadley Global Enviromtiglodel 2 (HadGEM2_ES) is the most hot and dry
scenario. The Model for Interdisciplinary ReseavahClimate (MIROCS5) lies between these extremek. Al
scenarios project higher temperatures and lesspjtedion in summer. Data source: INSIDE Idaho.

consumption (Norman et al. 2006). Fine-scale ligsagetween the built environment
and high levels of outdoor water use have importansequences for reliability of urban
water supply in the aggregate. For example, ragbdidan growth throughout inland
California, United States, magnified seasonalityater use, jeopardizing water security
in the region (Hanek and Davis 2006). Similarlyreases in water consumption for
newly-built pools and gardens in so-called ecosiwenclaves have stressed local water
supplies on the Mediterranean island of Mallorcaf(ahd Schmidt 2011). Yet, demand-
side shortages are not unique to semi-arid regi@asssmatch between fixed supply and

increasing demand can stress water resources idtaimates as well (Lyon et al.
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Figure 6.5: Projected change in mean single-faneitjdential (SFR) lot area. Results are aggredated
census tract and refer to projected changes by. 2048 calculation assumed that all capacity foRSF
development was exhausted, both in terms of newtnaetion and infill. Densification is greatest in
suburban tracts in proximity to transit. Data seufdetroscope.

2006). Hill andPolsky (2007) showed that summertime outdoor wagerestrictions in
suburban Massachusetts, United States, resultddonotdrought-induced shortage of
supply but from excessive demand because the |osHyaurban form promoted
intensive outdoor use. In the context of climatarde, suburbanization may lead to not
double but triple exposure to risk of water shoggaly increasing aggregate water
demand (population growth) and amplifying the seasty of that demand (land use),
even as temperature drives demand increases vignlslarinking the hydrological
resource base (climate change).

However, results also point to the capacity fdram form to soften the impact of

high temperatures on water use, with urban dessitying as a pathway to climate
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resilience and, potentially, more sustainable unvater provisioning systems. In
Portland, the groundwork for urban density hasaalyebeen laid out in state-level land
use regulations that constrain sprawl! within araargrowth boundary. Ongoing
densification is projected for the Portland metidpao region, with the largest changes in
median lot size anticipated in low-density, curhgstiburban areas, particularly those
areas that are well-served by light rail (Figur®) 6Across the region, multifamily
developments with limited opportunities for outdeater use are expected to comprise
an increasing share of the housing stock (persmramunication, Dennis Yee, Metro
Regional Government, June 2013). From a water ressistandpoint, this trend appears

to double as a form of urban climate change adaptat

6.5.2. Vegetation feedbacks and landscape regulstio

Although densification appears to be a mechan@mefilience from a water
demand standpoint, a more comprehensive view walstlaccount for complex
feedbacks between land use and water use relateddo heat island (UHI) effects
associated with dense areas covered by impervigteces. Households may, to some
extent, increase water use to mitigate UHI eff€@Gishathakurta and Gober 2010),
although water use tends to be inversely relatéghp@rvious surfaces in Portland
(Breyer et al. 2012). Indeed, low-density developte Tucson, Arizona was identified
as an urban heat ‘sink,” where evaporative codiiomn vegetated surfaces lowered
surface temperatures relative to the surroundisgr¢Halper et al. 2012). Land cover
change towards more vegetated surfaces was foundigate UHI under climate change

scenarios in Portland (Middel et al. 2011). A massiee planting campaign is already
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underway in Portland. Although intended primarily stormwater management, this land

cover change may ameliorate the worst effects WHVell.

Many areas are already developed such that patbétouilding structure are
relatively fixed. For these areas, outdoor water nestrictions become increasingly
common to suppress nonessential uses in timessef,@lthough this form of demand
management fails to address the structural origirexcessive seasonality. Hanek and
Davis (2006) have suggested that regulation of tetige in residential landscapes may
be more effective in addressing the root causeas@nal water stress. Replacement of
water-intensive vegetation with drought-toleranatev-efficient plants would function as
a sort of retrofitting of residential landscapesligcourage excessive outdoor water use,
just as previous changes in building code mandatddr-efficient appliances in
remodels. These sorts of passive conservation icpods have been a significant factor in

declining per-capita urban water demand since 1B®2kaway et al. 2011).

6.5.3. Land use planning as equitable water demmadagement

Conservation pricing has been proposed as amatiee strategy to manipulate
outdoor water use (Rinaudo et al. 2012). Howevatemuse tends to be relatively
inelastic with respect to price (Worthington andfif@n 2008). Some research indicates
that high water-consuming households become mostae to water prices in peak
season (Kenney et al. 2008), while other studies faund that wealthy households,
who tended to have the highest water use rateg, ss price-sensitive overall (Mieno
and Braden 2011), so it is unclear whether prigeswould have the desired effect.

Apart from efficacy concerns, price hikes also haggity implications— raising prices
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on water would be disproportionately borne by lemwvame households (Renwick and
Green 2000; Domene et al. 2005). To the extentidimaiscape irrigation serves to display
status, there is reason to believe signaling is@@acarcity through price would not only
burden low-income households, but would also mekgsited residential landscapes

more exclusive, thus enhancing the role of outdeater use as a marker of social status.

The results of multilevel analysis suggest thatllase planning may be an
effective non-price mechanism for managing pealgdam demand, as land use
decisions have water use implications. Manipulat#ager use through land use would
target the behavioral origins of demand-side viah#ity to water stress. It would also
signal a structural change to water demand, since-pased demand management
implies movement along the water demand curve,enising urban density to reduce
seasonality would constitute a downward shift im demand curve (Sauri 2003). Gober
et al. (2013) argued that the intricate linkagesvben land use and water use call for
increased coordination between land use plannersvater resource managers. Indeed,
the extent to which integrated land and water glamnis possible could be viewed as a
form of adaptive capacity, increasing system ressde in the face of complex change and
deep uncertainty (Larson et al. 2013). Results filoenpresent analysis could inform that
coordination, because examining parcel-scale wetelisolates the land use effects in a
way that is most relevant for land use planninga(®las and Parandvash 2010).
However, it should be noted that these implicatiareslimited to urban water delivery

systems such as those considered in this studultR@say not apply to other water
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rights configurations, particularly given the comyl historically-contingent legacy of

water rights allocations in the American West.
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Chapter 7: Conclusions

7.1. Summary of main findings

This analysis used multilevel regression to ingasé scalar dimensions of SFR
water use. It provided evidence that residentidbwase arises from a mix of biophysical
and social drivers at multiple spatial and tempecalles. Responses to the research
guestions presented in Section 1.4 are as follows.

Maximum air temperature drove temporal variationvater use through multiple
pathways (Figure 6.1). On average, a 10% increasgakimum air temperature lead to a
3.9% increase in water use. Household sensitiatyed widely from this average effect,
ranging from no response to a 10% increase. Aneettedinfall varied inversely with
water use and was more predictive than precipitadgpth and, although the magnitude
of the effect (0.25%) was less pronounced than ézatpre. The analysis also revealed a
separate, time-lagged effect associated with exdreeat (0.9%). Although
heterogeneous responses to maximum air tempema&nesdetected, households
exhibited little to no variation in responses te fiersistent effects of rainfall and extreme
heat.

Between-household variability explained halftod variance in SFR water use,
and was more important than weather fluctuatiorexplaining water use variation. As a
result, allowing intercepts to vary by householdsiderably improved the accuracy of
predicted water use. In terms of parcel charadiesisvater use was most elastic with
respect to building size than any other predidtaniuding temperature, with a 10%

increase in building size associated with a 6%ease in water use, on average. Building
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age varied inversely with water use (-1.6%). Watsr tended to increase with lot size,
although the magnitude of lot size as a fixed efieas surprisingly weak (1.3%). The
effects of parcel characteristics were found tedrestant across neighborhoods.

Mean neighborhood SFR building age was inverssbted to water use, with an
effect that was more prominent than household mgldge (-2.2%), although the
significance of this effect was weaker. Controllfiog parcel characteristics, variation
between neighborhoods was very small, but stadifidifferent from zero. Although
most of the variability in water use arose from $ehold-scale processes, a model that
accounted for between-neighborhood variation wasnéel more likely, given the data,
and improved model performance (Figure 5.5). Tradyais concluded that
neighborhood effects are present in household waeralthough the magnitude of these
effects is weak at best.

A significant cross-scale interaction was detettetiveen temperature and lot
size. Unlike building size, which operated as adiveffect, the effect of lot size was
contingent on weather fluctuations; larger lotsdemhto magnify temperature-induced
increases in water use, but only on hotter daygu(€i6.3). This finding highlighted the
utility of multiscalar analysis. Lot size has beeentified at a significant driver of water
use in coarser-scale studies, likely because igkwired effect and strong weather-
contingent effect became conflated with aggregafitrese nuances, which improved the
predictive power of the model, may not be evideoif a single-scale perspective.
Single-family residential land use and water ugelbaund in a complex and mulitscalar

relationship (Figure 6.2).
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7.2. Addressing issues of scale and aggregation

A multilevel approach was selected to jointly midtie micro-foundations and
meso-scale context of household water consumpt@as <o avoid both ecological and
atomistic fallacies. In this framework, statistid@ipendence and between-group
heterogeneity were not merely sources of standaod leias to be controlled, but
important artifacts of the data warranting investign in their own right. The research
design sought to address critiques of multilevg@irapches to geographical hierarchies
(Fotheringham and Brundson 1999; Chaix et al. 20B&)ses arising from the uncertain
geographic context problem (Kwan 2012) were comsii®y examining alternative
neighborhood boundaries. Neighborhood associahdrcammunity planning
organization boundaries were determined to be cwgextually relevant. In light of
concerns regarding the discrete, fragmented spatraglation structure implied in
multilevel models, clustering of residuals was &ahg examined at multiple scales—no

clustering was detected in the full model.

7.3. Climate change, urban form, and resilience

One of the main contributions of this research thasdecomposition of
temperature response into four components: a fixeverage effect, a household-
specific deviation from this average, an extrenmgt leéfect, and a land use effect,
encapsulated by the cross-scale interaction betlaésize and temperature (Figure 6.1).
These findings underscored the demand-side vuliiégyadd urban (and especially
suburban) water provisioning systems to water stsemmming from higher summer

temperatures and extreme heat events, suggestmppssibility of triple exposure to the
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combined effects of population growth, climate amgrand suburbanization. However,
the same findings also provided evidence for aemasion effect associated with urban
density, implying that dense land use patterns ahsy be areas of resilience (House-
Peters and Chang 2011b). Moreover, these findinoggga to land use planning as a
potentially robust and equitable non-price mechartis target unsustainable levels of

outdoor water use.

7.4. Future work

This research has focused on the roles of weatigttand use variables in
shaping SFR water use patterns. Future work cinikdtese patterns to household
characteristics, particularly attitudes, incomeysehold size, lawn watering practices,
and presence of drought-tolerant vegetation. Evieésn compelling that these factors
could meaningfully influence water consumption (Cora et al. 2005; Domene and
Sauri 2006). Household water use is generally erdétline, but the average household
size is shrinking, too, which has important impiicas for resource use (Liu et al. 2007).
Connecting water use patterns with survey datadcayeal important cultural and
perceptual dimensions to water use.

Future research could also explore the relatigassdimong land cover, water use,
and the MAUP. The land cover data used for thisyaisawas at a relatively fine scale (3
ft pixels), but the classification itself was fgidoarse, containing only four land cover
types. As a consequence, no statistically sigmficalationship between land cover and
water use was detected. Future research couldafeaeahore robust land cover

classification to distinguish between irrigated aoa-irrigated vegetation. Furthermore,
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the MAUP was considered but not rigorously addrssehis analysis. Future research
could leverage this detailed classification scheéon#evelop a more robust treatment of
the MAUP, perhaps by using land cover to delineaighborhood. Results may clarify
the relationship between the spatial extent ofjated vegetation and summertime water
use patterns, while avoiding biases associatedsedle and unit of aggregation.
Results from the multilevel model can also be rpooated into urban water
demand models to project water use under combilmadte and land use change
scenarios (House-Peters et al. 2010; Polebitski 2011). Conservation effects could
also be explored, both in terms of ongoing pertea@ductions in water use as well as
the countervailing trend of demand hardening, aaflgin winter, where marginal
changes in water conservation become increasinffigult because the easiest changes
have already been made. Conservation can exterdettoé existing infrastructure and is
increasingly valued according to the cost of adaieg water supply infrastructure in

lieu of reducing demand, so accurate projection® laavery concrete monetary value.

This analysis considered multiscalar dynamicsetiags, and spatial
characteristics of residential water use as a emlipuman-natural system. As such, the
research responds to calls to develop a deepersatadding of how social and ecological
processes form systems (Redmon et al. 2004). Re&teater use is itself nested
within a broader urban water provisioning systerthws socio-ecological dynamics.
Future research could tie household water usehir etater-consuming sectors and
situate the aggregate demand for water in relatidhe economic and ecological

processes that shape water supply.
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