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Abstract
Quantitative data from a completed year of an imtioe online high school
bioinformatics instructional program were analyasdoart of a descriptive research
study. The online instructional program provided tpportunity for high school students
to develop content understandings of molecular Enand to use sophisticated
bioinformatics tools and methodologies to conduthantic research. Quantitative data
were analyzed to identify potential associationsveen independent program variables
including implementation setting, gender, and sta@elucational backgrounds and
dependent variables indicating success in the progncluding completion rates for
analyzing DNA clones and performance gains fromtpfpost assessments of
bioinformatics knowledge. Study results indicatat tiinderstanding associations between
student educational backgrounds and level of ssamay be useful for structuring
collaborative learning groups and enhancing sadiffigl and support during the program

to promote higher levels of success for particigastudents.
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Introduction

The field of bioinformatics has created a revalatin the study of biology by
redefining how biological research is carried cud &ow that research is impacting
modern societies. The National Center for Biotedbgy Information (NCBI) is a
premier center in the United States for biomedacal bioinformatic research, including
the databasing, accessing, and analyzing of bint#ofy information. According to the
NCBI, “Bioinformatics is the field of science in wdh biology, computer science, and
information technology merge to form a single dptioe. Over the past few decades,
major advances in the field of molecular biologyupled with advances in genomic
technologies, have led to an explosive growth enldiological information generated by
the scientific community. This deluge of genomitormation has, in turn, led to an
absolute requirement for computerized databass®te, organize, and index the data
and for specialized tools to view and analyze tad

Bioinformatics is significantly impacting many &gps of modern societies, most
particularly in the field of medicine, but alsoagriculture, environmental science, and
forensic science. According to the NCBI, “The rdpiemerging field of bioinformatics
promises to lead to advances in understanding basimgical processes and, in turn,
advances in the diagnosis, treatment, and prevenfimany genetic diseases.
Bioinformatics has transformed the discipline adlbgy from a purely lab-based science
to an information science as well. Increasinglgldgical studies begin with a scientist

conducting vast numbers of database and Web sitelsss to formulate specific
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hypotheses or to design large-scale experimentsinifplications behind this change, for
both science and medicine, are staggering.”

As part of the bioinformatics revolution, bioinfeatics courses and laboratories
have been incorporated into many Biology departsantolleges and universities at the
undergraduate and graduate levels throughout ttedJ8tates. In addition to specific
courses, many institutions now offer BA and MS aegrin Bioinformatics, or
Bioinformatics in combination with Molecular Biolggr Computational Biology. High
school Biology educators are also becoming incnggaware of the importance of
bioinformatics as a component of course offerimmgsstudents who have completed their
introductory Biology courses and want to deepeir #tr@wledge and experience in
biology.

At the high school level, bioinformatics instrustiand laboratory experience is
highly aligned with many aspects of the Next Get@naScience Standards (NGSS,
2013) including the Scientific Practices of Devetagpand Using Models and Analyzing
and Interpreting Data; the Crosscutting Concepatferns, Cause and Effect, and
Structure and Function; and the Life Sciences Pis@ary Core Ideas, particularly LS1A
- Structure and Function, LS3A - Inheritance ofif&d.S3B - Variation of Traits, LS4A
- Evidence of Common Ancestry, and LS4B - NatuedeStion.

In reference to high school instruction, bioinfatms can be viewed as
incorporating three main areas of emphasis thad lom understandings developed in
many introductory Biology courses: a) genomicsherstudy of the genes that make up

an organism, b) proteomics, or the study of thetion, shape, interactions, and



abundance of proteins, and c) systems biologyh@study of the role of DNA and
protein interactions on the function of biologisgstems (Campbell and Heyer, 2003).
The completed Human Genome Project (National Ltsttof Health, 2003) is one
prominent example of a recent scientific milesttra is frequently referenced in many
high school biology classrooms. Bioinformatics @dya significant role in the Human
Genome Project where scientists sequenced thexapately 3 billion base pairs of
DNA which make up the approximately 30,000 gensglneg in the 23 pairs of
chromosomes found in the nucleus of human bodg.ddihny other current scientific
discoveries and technological advancements in nmejiagriculture, and evolutionary
studies are frequently discussed in the populaiangdich provide relevant applications
of bioinformatics to the high school curriculum.

However, there are challenges in providing biainfatics instruction at the high
school level. One significant challenge is teacHekel! of understanding and expertise
in domain-specific bioinformatics knowledge andhe use of specialized bioinformatics
procedures and tools that were developed by ssteritir scientists. Even when teachers
develop the necessary understandings and expehesehallenge still remains for
structuring the learning environment and sequenitiagnstruction for high school
students. This includes providing access to, asdrang the usability of, the
bioinformatics tools, and scaffolding the learnegerience to provide sufficient
supports for students’ conceptual and skill develept.

It was to specifically address these challengasttie Bioinformatics: Learning

by Doing Program was developed by the Waksmantinstat Rutgers University. The
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program was supported, in part, by a grant from\thonal Science Foundation (NSF)
as part of the Discovery Research K-12 Progranpaksof the Bioinformatics: Learning
by Doing program, a unique, online teaching andieg software application was
developed called DSAP (the DNA Sequence Analysigyam). The Bioinformatics:
Learning by Doing title reflects the program’s uridi@g philosophy that the best way to
learn science is by doing science. As part of tlegam, high school students not only
received scaffolded bioinformatic content instrantithey used that content knowledge,
along with procedural knowledge and laboratory ankihe bioinformatics tools, to
conduct authentic genetic research. As the culnoinatf their participation, each student
had the opportunity to conduct authentic geneseaech by analyzing a novel DNA
sequence and publishing their findings in the GelkHaNA sequence database of the
NCBI.

The researcher’s prior association with the pnoghad been as a member of the
WestEd team serving as the NSF External Evaluataht Bioinformatics: Learning by
Doing Program conducted by the Waksman Instituteudgers University. The
researcher participated in activities to analyz# @port evaluation data for the Year 3,
Year 4, and Year 5 program years. By Year 5, siganit aspects of the program had
been in place for multiple years and could be amreid well established (e.g., the
version of the DSAP software, theolffia australiana clone (duckweed) used in DNA
analysis, and the protocols for the laboratory nieglu At the same time, as would be
expected of a complex online teaching and learsaftyvare application with distributed

users, aspects of the program were also contingabijving (e.g., the sequencing of the
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onsite wet-lab activities with the online DSAP aities, and the enhancement of online
video tutorials and Help Modules). In addition, idgrthis time, the program experienced
significant growth, which may be considered a gjriondicator of the usability,
feasibility, and effectiveness of the program atlirgh school level. Amidst this
constancy and change, certain trends in the dataviére collected and analyzed by both
Rutgers and WestEd began to indicate areas offisigmi program impact, areas that
needed improvement, and areas that were, as y@tammned. This study addressed
some of these previously unexamined areas, witprtbmise that the results might
provide additional insight into how the program hasctioned in the past, as well as
valuable insight for potential enhancements topitogram, and related online

bioinformatics programs, in the future.



Literature Review

The following literature review includes reseageticles and reports that address
three related topics: 1) Bioinformatics InstructiarHigh School; 2) Types of
Knowledge in Science Achievement; and 3) Learnmg Web-Based Environment.

Wefer and Sheppard (2008) describe an analysigybfschool Biology standards
from 49 states and the District of Columbia for ten related to bioinformatics. In
analyzing the state science standards that werkaae prior to the release of the NGSS
(2013), the authors evaluated the degree to whaihfbrmatics content and related
issues were incorporated, even though the teamformatics did not appear in any of
the standards documents. The authors identifiegl distinct areas of bioinformatics
content and related issues: 1) Human Genome Pliggecmics; 2) forensics; 3)
evolution; 4) biological classification; 5) nuclet# variations; 6) medicine; 7) computer
use; 8) agriculture/food technology; and 9) sci&ec@nology/society issues. The
authors found significant gaps in the degree tactvthese areas were addressed across
the standards. In addition, standards statemelatedeto bioinformatics content and
issues were generally ambiguous and over genetlaBased on the standards
documents in place at that time, the authors caieciwould take motivation for
teachers to detect the relevance of bioinformatrabinitiative for teachers to incorporate
bioinformatics into their biology lessons.

Wefer and Anderson (2008) conducted a case stuihgavays in which 10 high
school students processed information and intedyatecedural and analytical thought

during an instructional unit on bioinformatics theds conducted over 10 class periods.
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The bioinformatics unit was embedded in an electam-honors Genetics course. All
participating students in the Genetics course loawpdteted an introductory high school
biology course that covered the appropriate presggcontent (i.e., DNA structure,
replication, DNA isolation, etc.). The bioinformadiinstructional unit extensively
incorporated the use of computer-based bioinforcaairograms including Basic Linear
Alignment Search Tool (BLAST), the Protein Data B4RBD), and ClustalW.
Quantitative data representing students’ undergtgraf domain specific content and
procedural skills were obtained using a quiz andm@hensive end of unit test.
Qualitative data was obtained by semi-structuréeluews conducted at the end of the
unit and supported by daily student journal entridge authors conclude that effective
bioinformatics instruction requires the integratmfrprocedural knowledge and higher-
order knowledge. The authors suggest that teashexdd scaffold bioinformatics
instruction that integrates procedural knowledgénvmajor conceptual understandings
and domain-specific factual knowledge into a cohesehema. Teachers should
incorporate resources that diagnose individualestudognitive differences and organize
bioinformatics instruction in a way that recognitiesse cognitive differences.

Gelbart, Brill, and Yarden (2009), described algtaf the impact of a web-based
simulation in bioinformatics on high school biologtyidents’ understanding of genetics
research. The web-based genetics research sinmnaéi® embedded at the end of a 30-
hour unit on genetics. The genetics content oktimilation was based on students’
knowledge received during instruction prior to lmegng the simulation. The simulation

guided students through five sequential, scaffolalesignments using the methods and
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tools of modern geneticists, including bioinforneatito identify a mutated gene which
causes deafness in humans. The researchers chistudent participation in the
research simulation promoted the generation ofagilons that connect molecular
mechanisms and phenotype. Participation in thearekesimulation also promoted
understanding of one of the basic heuristics okgemesearch in which a link can be
formed between the normal and the mutated fornasabfaracter at the molecular level to
facilitate the identification of the gene involveddetermining a certain phenotype.

Shavelson, Ruiz-Primo, Li, and Ayala (2003) defoence achievement as
consisting of four types of knowledge. Declaratwewledge (knowing what) includes
scientific definitions and facts, mostly in therfoof terms, statements, description, or
data. Procedural knowledge (knowing how) includ¢ken production rules or
sequences of steps that can be carried out tovechisub-goal leading to completion of a
task. Schematic knowledge (knowing why) includesgiples, schemes, and mental
models that can be used to interpret problemsbteshoot systems, explain what
happened, and predict changes. Strategic knowl@gahgsving when, where, and how to
use knowledge) includes domain-specific conditikmadwledge and strategies such as
planning, problem-solving, and monitoring progressard a goal.

Weisman (2009) conducted a study during the redesfi@ lecture-only, upper-
level undergraduate Bioinformatics course into &\ehanced, collaborative, virtual
laboratory. Of the 43 students who completed thesm eight were juniors, 34 were
seniors, one was a first-year graduate student3@mvdere Biology majors. All

participating students had completed the preretguisiurses which included a two-



semester biology sequence, a one-semester geoaticse, general chemistry, and
college-level algebra. Traditional on-site teachadgpratories typically used in courses
such as cell biology, genetics, and biochemisttgroincorporate informal collaborative
small groups performing an exercise. Subcomporadritee study were designed to test
whether collaborative learning was practical iroafine bioinformatics lab and whether
student groups could provide peer support for nreutjuestions regarding bioinformatics
tools. All virtual laboratory experiments were perhed using standard web-based
bioinformatics tools. Students were taught to bezseif-sufficient in using
bioinformatic tool documentation but were also wemneouraged to seek peer support
when encountering problems. Qualitative data shawata large majority of students
found that the online collaborative learning enmirent benefitted their learning. In
addition, the data indicated that students rowtiapproached their peers for help in the
virtual bioinformatics lab setting.

Raes, Schellens, De Wever, and Vanderhoven (2ijucted a large-scale
study involving 347 high school students in graélesd 10 from 18 different classes in
10 different high schools. The study examined theact of multiple modes of
scaffolding (teacher-enhanced, technology-enharareticombined teacher-enhanced
and technology-enhanced) on students’ domain-spécibwledge and metacognitive
awareness during information problem solving (IS} web-based collaborative inquiry
project. Students worked collaboratively in paigsidg the investigation. The researchers
concluded that teacher-enhanced scaffolding hadreésgest effect on acquisition of

domain-specific knowledge during the IPS projeattipularly for students with low
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prior knowledge. Technology-enhanced scaffolding webst beneficial for students’
metacognitive awareness that facilitated self-raigul learning. The researchers
concluded that both teacher-enhanced and techneloggnced modes of scaffolding are
needed to support a diversity of students during-based inquiry learning.

Gelbart and Yarden (2011) analyzed the same weddldasinformatics
simulation described earlier (Gilbert, Brill, anénen, 2009) of high school biology
students’ understanding of genetics research thrautdjfferent research lens. The
researchers addressed the following question: Whédtof support does a teacher
provide during enactment of the research simulaimh how does it facilitate students’
ability to coordinate between declarative and pdocal knowledge? According to the
researchers, engaging students in authentic réspeactices in the bioinformatics
simulation required students to use conditionaMdedge. The authors’ definition of
conditional knowledge incorporates many similarezsp of Shavelson, Ruiz-Primo, Li,
and Ayala’s definition of strategic knowledge. Tdwghor's premise was that because
coordination between declarative and strategic kadge is not typical in regular school
tasks, students were unlikely to carry out suchradioation without guidance from the
teacher. The researchers’ conclude that the teacleeis essential in facilitating
students’ use of conditional knowledge in condugtanthentic research as opposed to

simply performing a set of procedures.
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Method

This descriptive research study analyzed quamvgatata from a completed year
of the Bioinformatics: Learning by Doing online higchool bioinformatics instructional
program. Quantitative data were analyzed to idg@atssociations between the input
variables of implementation setting, gender, andestits’ educational backgrounds and
the outcome variables of students’ knowledge graamith level of completion of the
program. For this study, knowledge growth was deit@ed by pretest to posttest gains,
and students’ level of completion was determineddaypletion rates for analyzing the
DNA sequences in a series of clones (four praciiaees and one or more unknown
clones).

Research Question
This study addressed the following research questi
In an online bioinformatics instructional progr&on high school students,
are there associations between the interventidgimgegender, and students’
educational backgrounds and students’ level ofesgt the program as
indicated by completion rates for clone analysid performance gains from
pretest to posttest assessments?

To address this research question, quantitatiteewlas analyzed from the Year 5
implementation of the Bioinformatics: Learning bypibg program (2011 - 2012
academic year). The Year 5 implementation dataexpsrted directly from the DSAP
online instructional and assessment program. Th&MDdata included individual student

records containing intervention setting data, etlonal background data, clone analysis
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completion rate data, and pretest and posttesbqmeaince data. These sets of data were
chosen for analysis of associations because thagicothe most relevant indicators of
the setting, the characteristics that studentgyliorthe learning environment (educational
background and prior knowledge) and the most retewalicators of the outcomes of the
intervention (clone completion rates and knowledgms). The intervention setting,
students’ educational background characteristiod séudents’ performance on the
pretest were analyzed as independent input vasaBlene completion rates and posttest
gains were analyzed as dependent outcome varid&itmse completion rates were the
most direct indicator of students’ progress anatess in the program. Pretest scores
indicated students’ knowledge prior knowledge aastigst scores indicated learning
gains as a result of the intervention. Where appl&, mean pretest to posttest gains were
analyzed using paired
t-tests to determine the statistical significantthe observed score. Given that clone
completion rates were based on ordinal rather slsafed data, only descriptive statistics
were used in the analysis of that indicator of sgedn the program.

Intervention
The Year 5 implementation of the Bioinformaticgakning by Doing program
included a total of 38 high schools and approxihyate600 students in seven different
states and the District of Columbia. The high s¢htended to be located in middle-class
urban and suburban neighborhoods and includedpudilc and private schools. A
majority of the schools were located in New Jel(@&8yschools). For the purposes of this

study, only those 17 New Jersey schools that peatied in the Waksman Summer
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Institute at the Rutgers campus in Piscataway, Blensey, were considered for this study
based on the premise that those schools had avedydtigh degree of similarity in the
training and structure of the intervention. Of 8143 schools, schools with very small
class sizes or anomalously low completion rategew&cluded, for a total of 13 schools
and 330 students included in this study.

The intervention began with a three-week Summstitirie conducted by the
Waksman Institute. One teacher (designated a TesaohEr) and two students
(designated as Student Scholars) from each higtoseltended the Summer Institute.
The Summer Institute was a three-week period ehisive wet-lab exercises, content
lectures, online DSAP bioinformatics exercises, grolip meetings. The Summer
Institute was led by the Waksman Institute’s Prbfgicector and other Rutgers staff who
had led each prior year of the Bioinformatics: lnéag by Doing program (Year 1 -Year
4). During the three-week Summer Institute, thenTdaachers and Student Scholars
received a fast-paced version of the instructioaciice, and research opportunities that
other students received during the academic yearaperiod of one or two semesters.
Although the Team Teachers and the Student Sch@eesved nearly identical lab
exercises and lectures during the Summer Institéetwo groups rotated through the
structured activities on separate tracks.

The researcher had the opportunity to attendesettay period of the Summer
Institute in July, 2011, and observe this imporgaiaicess that began the Year 5
intervention. During a debriefing session with Tream Teachers conducted by the

Rutgers staff, each teacher described the succasdeshallenges of implementing the
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program at his or her school. One comment stoodbecause it was consistent for all
teachers and because it significantly reflectedebming environment. The Team
Teachers commented that the Student Scholars dmectiin many ways as their peers in
providing instruction and support to other studehtsng the academic year.

Another prominent observation at the Summer mgtitvas that the Student
Scholars typically worked together in both formatlanformal collaborative learning
groups during the wet-lab exercises and the ofd8AP bioinformatics exercises. The
formal collaborative learning groups consistedhaf pair of Student Scholars that
attended from each high school. In addition toeél@®determined pairings by school,
the researcher observed that students contindabyeted for brief periods around a
student, or student pair, which had successfullggleted an activity. Other students
were eager to learn the strategies or insightstfieasuccessful students had learned or
used. These groupings quickly formed and as quididiganded as students worked
through the wet-lab exercises and used the onlmiafbrmatics tools to complete the
steps of DNA analysis.

In addition to the students supporting each adloeing the activities at the
Summer Institute, Rutgers staff were continuallggent to guide the students to uncover
answers to their own questions, and to problemessblutions to the problems they
encountered. The researcher’s observations at¢he &% Summer Institute helped shape
the research questions for this study.

During the academic year, the Bioinformatics Paogwas conducted in two

distinct instructional settings, formal classes aridrmal school clubs. As would be
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expected, the formal class was a scheduled petodgithe school day and is lead by
the Team Teacher, with the Student Scholars seasrtgaching assistants. Students
received a class grade that is part of their @fiacademic record. The informal clubs
were typically held after scheduled classes ane\sepervised by the Team Teacher,
with Student Scholars playing a significant rolgpmoviding instruction.

At the beginning of the academic year in bothisgttstudents conducted a series
of wet-lab exercises to construct a cDNA libraryctmines of the studied organism.
Students then determined the size of the clongeeldprming plasmid DNA purification,
restriction digests, Polymerase Chain Reaction (P&@md gel electrophoresis. These wet
lab exercises prepared the unknown DNA sequene¢shth students later analyzed as
part of conducting authentic genetics researchuameous to the wet lab activities,
students logged into the DSAP online applicatioth begin analyzing a series of practice
clones that teach them how to use the bioinforraatiols. Students must complete the
four practice clones, designated PCL1 - PC4 befeirgglallowed to analyze an unknown
clone (designated UC). The practice clones werggded to scaffold students’
bioinformatics knowledge and experience througbhquence of steps that progress from
simple to more abstract or sophisticated.

The practice clones contained tasks and challethgéstudents would typically
encounter when analyzing unknown clones. In the B&pAplication, students were
supported by selectable features including Help Mies] a list of Frequently Asked
Questions (FAQSs), videos, and tutorials. Additiosigbport included online Clone

Discussion modules between students, teacherRRuatgers faculty. Rutgers faculty and



16
staff also provided online feedback to studentspomses to embedded analysis questions
associated with the practice clones. After studeatscompleted PC1 - PC4, they could
begin analyzing their unknown clone (UC). In thassl setting, completion of the
practice clones and an unknown clone were poténtialirse requirements that factored
into the course grade, and consequently, affectetbsts’ academic records. In the club
setting, completion of any level of clone analyséas voluntary and did not affect
students’ academic records.

The successful analysis of an unknown clone wasidered an indication that
students could transfer the knowledge they hacdhéshworking with the practice clones
to the analysis of novel data during a processutifentic bioinformatics research. A
student’s analysis of an unknown clone was revielmethe Rutgers faculty and returned
to the student with feedback if correction was reedJpon successful completion, the
student’s authentic genetic research resultingerainalysis of a previously unknown
DNA sequence was published in GenBank, the DNA secgl database maintained by

the NCBI, in the name of the student, the studdrtisher, and the Rutgers researcher.
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Figure 1 below shows the major components of tleeEBrmatics: Learning by

Doing Program as they relate to the sequence afatdliection instruments used during

| Intervention |
Analysis of Analysis of Submit
Summer Wet = §
Sl i Lab —> Practice —> Unknown —> Analysis
MR RS abs Clones 1-4 Clone to NCBI
O, Student 0, Student
Educational Clone Analysis
Background Completion
Survey Rate
O, Student O, Student
Bioinformatics Bioinformatics
Pretest Posttest

the program. The intervention begins with the Sumimstitute for Team Teachers and a
selected subset of Student Scholars. After the Semhmstitute, components;@rough
O4apply to all students. For the first observatidndents were administered the online
Bioinformatics Knowledge Pretest {{Ommediately after logging into DSAP. The
second observation consisted of students’ educdtimackground characteristics
collected during an online Survey{mmediately after completing the pretest.
Figure 1. Bioinformatics Program Components and ObservationData Collection
Legend

0, Student Bioinformatics Knowledge Pretest (at the beginning of DSAP login)

O, Student Educational Background Survey (immediately following the Pretest)

0; Student Bioinformatics Knowledge Posttest (identical to Pretest)

0, Student Clone Analysis Completion Rate (Practice Clones 1-4 and Unknown Clone)

Students then proceeded through the wet lab tievand the same sequence of

analyzing four practice clones (PC1 - PC4). Aftedents completed analysis of the four
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practice clones, students were administered thaeBioinformatics Knowledge
Posttest (@), which was identical to the pretest. Students tied the opportunity to
complete the analysis of an unknown clown. Follgnamalysis of an unknown clone (or
the highest level of practice clone completion)dsits’ Clone Analysis Completion data
was gathered (£. Data for observations;@hrough Q were exported directly from the
DSAP software application for analysis by the receer.

Instruments and Observations

The Student Bioinformatics Knowledge Pretest aosttest (Qand Q) analyzed
for this study contained fourteen 1-point multigl®ice items and one 4-point
constructed-response item, for a total of 18 pdsgbints. The items were developed by
WestEd content experts and vetted by the Rutgaffs Ebllowing the administration of
the pretest and posttest, those items that didhatth goodness-of-fit item parameters
established by WestEd were eliminated from itenmyasmaand were not included in this
study. The researcher classified the individuahgevith reference to the Science
Knowledge Framework developed by Shavelson, Rumn&rLi, and Ayala (2003). The
Science Knowledge Framework was part of the inBiainformatics program proposal
for developing assessments that addressed the ay/paswledge required for using
bioinformatics tools to analyze the practice cloaed to conduct authentic research by
analyzing an unknown clone. As an indication obitsader usage, the Science
Knowledge Framework was also used as the knowl&dgeework for the 2009 and
2011 NAEP Science Assessments. The Science Knoe/ledgnework includes four

types of knowledge: Declarative Knowledge, Procatiknowledge, Schematic
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Knowledge, and Strategic Knowledge. The majorityhef pretest/posttest items aligned
with either Declarative Knowledge (6 points) oraB#igic Knowledge (9 points).

The pretest was administered online immediatelr atudents logged into DSAP
for the first time. An identical posttest was adistiered online typically after students
had completed all four practice clones (PC1 - RG4he DSAP instructional sequence,
but before students began analyzing an unknowreclon

The constructed-response item was a complex 4-poampt where students
were required to describe and explain their ansk@rhand scoring, an initial set of 50
student responses reflecting an intended rangeocoés were selected and independently
scored by the researcher and two other projectat@is using a detailed scoring rubric.
Discrepant scores were discussed and any agre@ddggcsion rules were documented.
For the second round of scoring, each scorer imibguely reviewed his or her initial
scores and made any changes resulting from thedessomssion and decision rules. Rater
agreement after the second round of scoring waderéhan 0.90. For any responses
with less than total agreement after the seconddpa consensus score was established.
Based on the scoring discussions, decision rulescansensus scores from round one
and round two of scoring the 50 responses, tharelser independently scored the
remaining student responses.

One potential weakness of the DSAP pretest antlgsbslata is that there were
little or no external incentives for the studergsaciated with performance on the tests.
The pretest and posttest data were gathered phlynf@riuse in program evaluation and

students were aware that the results would noaipetd them directly. As such,
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performance on the pretest and posttest may rietteéhe same level of effort as
performance if there had been stronger incentivéhi® students to do their best. Even
with this weakness, the data is still consideréevamt to this study for comparing gains
between groups of students with different charties. Additionally, the tests did not
adequately sample all four type of knowledge inSleeence Knowledge Framework
developed by Shavelson, Ruiz-Primo, Li, and Ay20g3).

The Student Educational Background Survey) @nsisted of eight questions
addressing the demographics and career interestaagnts. The Survey was
administered online to all participants immediatafter they completed the pretest.
Student responses to the questions about Gendéttanitity were optional. All
information in the Survey was self-reported by shedents, and no separate verification
of the reported data was performed. Survey datantas analyzed for this study included
current year in high school and prior completiorHohors or AP Biology.

In addition to the categories of educational bagkgd, the study also examined
potential associations relative to gender anduesitvnal setting (class or club). The
gender demographic characteristic was also cotledieing the online Survey. The
instructional setting was determined by the schio®lstudent attended.

Data for the Student Clone Analysis CompletioneR&}) were tracked internally
by the DSAP administrative module. The clone comiprerate data served as the most
important measure of student progress and suacélss program. The data identified the
highest level of completion of practice clonesdach student (PC1 - PC4) and whether

or not the student completed analysis of one oermaoknown clones. The analysis of an
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unknown clone represented the highest level ofestudchievement for all students
participating in the program. The analysis of aknawn clone allowed high school
students to engage in the scientific enterprisedmducting authentic bioinformatic
research and publishing the DNA sequences in pdaligbases through the NCBI.
Unlike the four practice clones, which were ideattior all students, the unknown clones
varied in difficulty across all students based loe inique DNA sequence that each

student had obtained or were provided for analysis.
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Implementation Setting and Student Demographics
The first level of analysis of the program bedagdooking at the distributions of

participants according to the independent variabtebe study (program
implementation, gender demographic, and studerdagtuinal backgrounds). A total of
330 students began the Bioinformatics: Learnindpbing program in the 13 schools
included in the study in the 2011-2012 academic.y&sindicated earlier, the
Bioinformatics program was implemented as eithtaraal class or informal club at
each school—with one exception. At one school,gnoep of students participated as a
formal class, and a different group participatedmsnformal club. Table 1 shows the
number of schools and students participating bynset
Table 1

Participation by School Setting

Setting Schools Students Size
Minimum Maximum  Median Mean
Class 9 193 6 52 17 21
Club S 137 17 64 19 27
Total 13* 330

Note. One school participated with both a class anldila ¢
As shown in Table 2, across the 13 schools, theepéage of male and female
students was identical (50%), with slightly morelesahan females in class settings

(51% to 49%), but fewer males than females (47%38b) in club settings.
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Table 2

Student Gender by School Setting

Setting Male Female Total
n % n % n %
Class 99 51 94 49 193 58
Club 65 47 72 53 137 42
Total 164 50 166 50 330 100

Table 3 and Table 4 show the distribution of stusl@ccording to the student
educational background variables. Across the sshtlmd program included students
from all high school grades. Sixty-nine percenthaf students who began the program
were Freshman or Sophomores, and 31% were Juni@snoors. Thirty-nine percent of
all students had not completed a prior AP Biology{onors Biology course.

Table 3

Distribution by Year in School

Year in school n %
Freshman 101 31
Sophomore 127 38

Junior 66 20

Senior 36 11

Total 330 100
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Table 4

Distribution by Prior AP or Honors Biology

Completed prior AP or Honors Biology

Status n %
No 129 39
Yes 198 61

Total 327 100

Note. Three student records are missing.
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Results

The results of the program, including the studdoe completion rates and the
pretest to posttest bioinformatics knowledge gawese analyzed in reference to the
independent variables (program implementation,esttigender, and student educational
backgrounds) to determine potential associatiohs.résults of the analyses are
presented in sequence from the most general lalledt(dents) to increasingly specific
subsets of students. The two indicators of stugseatess in the program (clone
completion rates and bioinformatics knowledge gamwere first examined for all
students, and subsequently in reference to: (ajehegraphic variable of gender; (b) the
implementation variable of setting; and (c) thedstuit educational background variables
of Completion of Prior Honors or AP Biology, andafen School.

Table 5 shows the percentages of the highest tdwabne completion for all
students who began the program. Of the 330 stuadrdsnitially logged into DSAP and
completed the pretest and educational backgroumnvegul9% did not complete any of
the practice clones, 12% completed through justtimeclone PC4, and 58% completed
all four practice clones and analyzed at leastwr@own clone.

Table 5

Clone Completion Rates for All Sudents (n=330)

0 PC1 PC2 PC3 PC4 Unknown clone

19% 5% 2% 4% 12% 58%

Note. O represents no completion of any clones. PC2, PC3, PC4, and Unknown
Clone represent completion rates at each levdbokcanalysis.
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Table 6 shows the mean pretest scores for als8RfEnts and the mean posttest
scores for the 211 students (64%) who completegrihgram to that level. As indicated
earlier, the posttest was typically administerddradtudents completed PC1 - PC4, and
before students were allowed to analyze an unkroame.
Table 6

Pretest and Posttest Scores for All Sudents

Test Number of students Mean D
Pretest 330 9.30 4.12
Posttest 211 12.25 3.70

Note. Mean out of 18 maximum points possible

Figure 2 and Figure 3 show the distribution of phetest and the posttest scores

for all students.
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Figure 2. Frequency Distribution of Pretest Scores for&lidents
Note. PRE TOT = Pretest Total Scores
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Figure 3. Frequency Distribution of Posttest Scores for@tlidents
Note. POST TOT = Posttest Total Scores

The second level of analysis of results lookegragram success relative to the
intrinsic demographic variable of gender. Tabld@ves the percentages of the highest
level of clone completion for students by genddre percentages of males and females
who completed no practice clones were similar (2af4nales, and 18% for females) as
were the percentages who completed one or moreowrknlone (57% for males, and
58% for females). Table 8 shows the pretest anttgsiscores by gender with a
maximum score of 18. Pretest and posttest meanmaad gains (p = 0.655) were highly
similar for males and females. Overall, the twarany indicators of success in the
program, clone completion rates and knowledge gdemonstrate minimal difference

for the demographic variable of gender.
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Clone Completion Rates by Gender

28

Gender 0 PC1

Male (n=164) 21% 5%

Female (n=166) 18% 6%

PC2 PC3 PC4 Unknown clone
2% 3% 12% 57%
1% 5% 11% 58%

Note. O represents no completion of any clones. PC2, PC3, PC4, and Unknown
Clone represent completion rates at each levdbokcanalysis.

Table 8

Pretest and Posttest Scores by Gender

Pretest Pretest mean

Mean gain
mean all of posttest  Posttest Mean gain
Gender (p=
students students mean D
0.655)
Male
(Pretest n=164) 9.25 10.29 12.13 1.84 4.05
(Posttest n=103)
Female
(Pretest n=166) 9.36 10.30 12.36 2.07 3.45

(Posttest n=108)

Note. Mean out of 18 maximum points possible

An independent variable of the program that isiesic to the student is the

implementation variable of school setting—eithemnial class or informal club. Table 9

shows the percentages of the highest level of abongpletion by class or club setting.
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Unlike the gender variable, where there were mihohféerences between males and
females for clone completion rates, there are ldifferences for the setting variable.
Table 9

Clone Completion Rates by Setting

Unknown
Setting 0 PC1 PC2 PC3 PC4
clone
Class 5% 0% 0% 3% 13% 79%
(n=193) (10) (0) (0) (5) (25) (153)
Club 39% 13% 4% 7% 9% 28%
(n=137) (54) (18) (5) 9) (13) (38)

Note. O represents no completion of any clones. PC2, PC3, PC4, and Unknown
Clone represent completion rates at each levdbokcanalysis.

As shown in Table 9, only 5% of the students assés did not complete any
practice clones compared with 39% of the studentsubs. Conversely, 79% of the
students in classes completed all four practiceedand at least one unknown clone
compared to only 28% of the students in clubs. &@les minimal attrition from students
in classes as they completed PC1 through PC3 (&) o contrast to students in clubs,
where nearly one-fourth of the students (24%)tledtprogram after completing PC1,
PC2, or PC3.

The other outcome variable in the program, bigimfatics knowledge gain, was
also examined for setting, class or club. The tesnlTable 10 comparing pretest and
posttest scores by setting also reflects the Higii@n rate of students in clubs that was

evident in the clone completion rates in Table Bth@ 137 students in clubs who started
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the program and took the pretest, only 44 (32%l the posttest. In contrast, of the 193
students in classes who took the pretest, 167 istsid®6%) took the posttest. The pretest
mean of all students in classes was much higherttiepretest mean of all students in
clubs (10.10 to 8.18, or an 11% difference on aipdiét test). However, the pretest
means for only those students who completed batlptétest and the posttest (column
Pretest Mean of Posttest Students), were highliyasifior classes and clubs (10.34 to
10.11). Additionally, the posttest means and meansgwere highly similar for classes
and clubs (p = 0.783).
Table 10

Pretest and Posttest Scores by Setting

Pretest Pretest mean

Mean gain
mean all of posttest  Posttest Mean gain
Setting (p=
students students mean D
0.783)
Class
(Pretest n =193) 10.10 10.34 12.26 1.92 3.46
(Posttest n = 167)
Club
(Pretest n = 137) 8.18 10.11 12.21 2.09 4.72

(Posttest n = 44)

Note. Mean out of 18 maximum points possible
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Based on Table 10 showing the pretest and posttests by setting, the mean
bioinformatics knowledge level at the beginninglad program for approximately one-
third of the students in clubs (44 of 137 studeoits32% with pretest mean of 10.11) was
highly similar to the pretest mean for all studantslasses (10.10). Additionally, the
posttest means for students in clubs and classeshaghly similar (12.21 for clubs and
12.26 for classes). The implication of these resslthat students who completed all four
practice clones (PC1-PC4) demonstrated similar rkeawledge gains irrespective of
setting. Based on Table 9 showing the clone congpleates by setting, although over
one-third of the students in clubs (39%) quit thegoam soon after starting, 28% did
reach the highest level of the program and comeésor more practice clones, and
fully 79% of the students in classes analyzed omaare unknown clones. The
implication of these results is that irrespectiveetting, students were able to use the
DSAP online software in the Bioinformatics: Leampioy Doing program to conduct
authentic bioinformatics research. The differemcattrition rates between classes and
clubs may relate to structural factors that operatehe different settings such as
participation criteria, attendance criteria, grgdaniteria, the role of collaborative student
groups, etc., but these factors were beyond theesabthis study. The difference in
attrition rates between settings may also relatbg¢ceducational backgrounds of the
students who participated, i.e., what charactesstid the students bring to the program.
The next section of this report examines pote@asabciations between the independent

student educational background variables and ss@adble program.
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Table 11 compares the clone completion rateslfstwedents based on the student

educational background variable of whether or hetdtudent had previously completed
an Honors Biology or AP Biology course. As showTable 11, an interesting trend
appears in the clone completion rates. Comparstuttents who had completed a prior
course, a greater percentage of students who hambmpleted a prior course finished all
the practice clones PC1 - PC 4 (73% to 67%), lmmaller percentage actually analyzed
an unknown clone (55% to 60%). The most notablendison was between the
percentage that successfully finished all the praationes but did not go on to analyze
an unknown clone (18% difference for students withiibe prior courses, compared to
7% for students with the prior courses).
Table 11

Clone Completion Rates by Prior Biology

Took Did not Finished Analyzed Difference
Prior Honors or
pretest finish PC1-PC4 ucC finished PC1-PC4
AP Biology
PC1-PC4 and analyzed UC
No
100% 27% 73% 55% 18%
(n=129)
Yes
100% 33% 67% 60% 7%
(n =198)

Note. Three missing records out of total of 330 paoaacits. PC1- PC4 represent the four
practice clones, and UC represents one or moreawrkiclones.
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The implication of these results is that studevite both have, and have not,
completed an Honors or AP Biology course were ssgfaéin the program, but that there
may be an advantage in completing what may be ths¢ difficult component of the
program, analyzing an unknown clone, for studerts ivave completed the prior
courses.

Table 12 shows the pretest and posttest scoredl fstudents based on the student
educational background variable of whether or hetdtudent had previously completed
an Honors or AP Biology course. As shown in Talflethe same percentage of students
in each group took the posttest (64%). Unlike tretgst to posttest comparisons by
gender and by setting, there is suggestive, buniciasive, evidence of a statistically
significant difference (p = 0.054) in the mean dagtween students who had, and had
not, completed a prior Honors or AP Biology couiBgferences in mean gains between
groups (prior and no prior) on the subsets of itemegasuring Declarative Knowledge and
Strategic Knowledge were also analyzed but didsnggest statistically significant
differences (p = 0.133 for Declarative Knowledged @ = 0.472 for Strategic
Knowledge). Considered together, the results ind & and Table 12 indicate that
students who had completed a prior Honors or ARogiycourse had greater overall

success in the Bioinformatics: Learning by Doinggram.
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Table 12

Pretest and Posttest Scores by Prior Biology

Prior Pretest
Mean gain
Honors or  Pretest Took mean of  Posttest Mean gain
(p=
AP mean posttest  posttest mean D
0.054)
Biology students
No
7.80 64% 8.62 11.17 2.55 3.95
(n=129)
Yes
10.35 64% 11.43 12.97 1.54 3.57
(n=198)

Note. Three missing records out of total of 330 pagoaacits. Mean out of 18 maximum
points possible.

A second student educational background varidideyear in school in which the
student participated in the program (freshman, sojre, junior, or senior), was also
analyzed relative to clone completion rates andmke@awledge gains. Table 13
compares the clone completion rates for all stigbased on the year in high school.
Completion rates by year in high school showed exdukfferences between freshman
and sophomores as a group compared to juniorseamars as a group. Although
completions rates for the practice clones PC1 - W&# relatively high for both groups,
the differences are large between the two grouparfalysis of one or more unknown
clones. Approximately half (51%) of the freshman aophomore group analyzed an

unknown clone compared to nearly three-quarterg] ¥ the junior and senior group.
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Table 13

Clone Completion Rates by Year in School

Took Didnot Finished Analyzed Difference

Year in school pretest finish PC1-PC4 ucC finished PC1-PC4

PC1-PC4 and analyzed UC
Freshman/Sophomore
100% 14% 86% 51% 35%
(n =228)
Junior/Senior
100% 5% 95% 73% 22%

(n=102)

Note. PC1- PC4 represent the four practice clones|Hhdepresents one or more
unknown clones.

Although there were large differences betweeryda in school groups for clone
completion rates, separate analysis of the diff@efetween years in school for pretest
to posttest mean gains were not statistically &icant (p = 0.607). Considered together,
these results indicate that all grade levels adestits in high school can be successful in
the program, but that there may be an advantagariars and seniors compared to
freshman and sophomores in completing what mapdenost difficult component of
the program, analyzing an unknown clone.

Data for a third student educational backgrounthbée, the number of years the
student had participated in the Bioinformatics pang, was also collected via the student
guestionnaire. The distribution of students actbegossible responses (First, Second,
Third, Fourth) to the questionnaire prompt sugge#tat students interpreted prior

participation differently. For example, some studanay have considered dropping out
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of the program during a prior year as not partitigpbecause they did not finish some
specific stage such as the wet labs or practiagesloOther students may have considered
starting, but not completing any stage of the pmogras participating. As a result, data
for this background variable were not analyzed.

The last level of analysis of results in the stlabked at two independent
variables together relative to the outcome variablelone completion rates. As shown
earlier in Table 9, there were large differenceslame completion rates by setting, with
only 28% of students in clubs completing one orenanknown clones in contrast with
79% in classes. As shown above in Table 13, there aiso large differences in clone
completion rates by year in school, with only 51#the freshman and sophomore group
completing one or more unknown clones in contrast #3% of the junior and senior
group.

Table 14 shows the clone completion rates by coatimins of these groupings,
the freshman and sophomore group by class andatabthe junior and senior group by

class and club.



37

Table 14

Clone Completion Rates by Setting by Year in School

Took Didnot Finished Analyzed Difference
Year in school
pretest finish PC1-PC4 uC finished PC1-PC4

and setting
PC1-PC4 and analyzed UC
Freshman/Sophomore
Class (n=126)  100% 9% 91% 75% 16%
Club (n =102) 100% 66% 34% 23% 11%
Junior/Senior
Class (n = 67) 100% 6% 94% 88% 6%
Club (n = 35) 100%  54% 46% 43% 3%

As shown in Table 14, the differences betweenggday year in school were
most extreme for clubs. In clubs, the percentagarobrs and seniors who completed
one or more unknown clone (43%) was nearly twieeprcentage for freshman and
sophomores (23%). The difference was also evideralasses, where the percentage of
juniors and seniors was 13 percentage points hitjlaerthe percentage for freshman and
sophomores (88% to 75%). These results indicatetlibee was an advantage in both
settings for juniors and seniors in analyzing aknawn clone, but that the advantage

was much greater in clubs than in classes.
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Discussion

This study contributes to the existing body ddritture that addresses
bioinformatics instruction at the high school lelaglanalyzing selected program input
variables and selected student outcome variableeidify possible associations that
promote success in the online Bioinformatics: Leayiby Doing program. In the online
Bioinformatics program, students at all high schgralde levels, and in both the
traditional formal class setting and the informlalbcsetting not currently represented in
the literature, were successful at using bioinfdresaools to analyze a sequence of pre-
determined practice clones and to analyze one oe n@dknown clones.

The Bioinformatics program incorporated multipledaes of scaffolding in a web-
based information problem solving project as del$tudy conducted by Raes, Schellens,
De Wever, and Vanderhoven (2011). The resulthisfBioinformatics study support the
conclusion by Raes, Schellens, De Wever, and Vaoden (2011) that both teacher-
enhanced and technology-enhanced modes of scaifodde needed to support a
diversity of learners in a web-based inquiry leagwrogram. Scaffolding in the
Bioinformatics program included the technology-lsharalysis of the practice clones
from simple to more sophisticated levels, and exigexdback from the Rutgers staff to
the students’ responses to the embedded analyss$igs associated with each practice
clone. An additional support feature of the Biomf@atics program was the online Clone
Discussion modules that allowed for extensive,rentemote communication and
collaboration between students, Student Schokashers, and Rutgers staff.

A particular aspect of high school bioinformatiestruction highlighted by the

Bioinformatics program is the role of the Studeoh&ars. The two Student Scholars at
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each school provided support as student-teachdaatinthe classes and clubs, but
particularly in the informal club setting. Althouglone completion rates were much
higher for classes than for clubs, 28% of the sttgle clubs did complete the practice
clone sequence and analyze one or more unknowe<l@iven the less structured open-
entry, open-exit, and ungraded nature of the chitirgy compared to the class setting, it
may be that the role performed by the Student Schohade a significant contribution to
the observed level of student success.

For students in both classes and clubs, increcleeeé completion rates and
bioinformatics knowledge gains were associated pitbr completion of either an
Honors Biology or AP Biology course. Additionalipcreased clone completion rates
were associated with grade level, or year in sch®k group, students who were
juniors or seniors had much higher rates for amagymnknown clones than students who
were freshman or sophomores.

In comparing the Bioinformatics program with prags reported in the current
literature, the Bioinformatics program appearsealhique in including participants at all
high school grade levels who may not have complatsekt of prerequisite courses. For
example, in the case study of high school studeamslucted by Wefer and Anderson
(2008) , the students had previously completedhanductory high school biology
course that covered the appropriate prerequisiteeat In the Gelbart, Brill, and Yarden
study (2009) of a web-based bioinformatics simatagembedded at the end of a 30-hour
high school unit on genetics, students had comglitie earlier portions of the unit

covering the prerequisite genetics content. Inrest for the schools with clubs in the
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Bioinformatics program (5 of the 13 schools in ¢idy), participation was open to all
students who signed up at the beginning of thedcfear.

Through the unique club setting, the online Biomiatics program provided
students with access to bioinformatics instructteat might not have otherwise be
available to them at their schools. By extendingig@ation to freshman and
sophomores, the Bioinformatics program providedasdo a self-selected group of
students interested in this rapidly emerging ffldtudy impacting many aspects of
modern society. If some of these students subs#guepeated the program as juniors or
seniors, they may have developed the capacityrt@ s student-teachers or to provide
peer-to-peer support to other students in collab@atudent learning groups as
demonstrated in the Weisman study (2009) whereestadoutinely approached their
peers for help in a virtual bioinformatics laborgtsetting.

Limitations of the Current Research

The data used in this study were originally cdéelcfor the purpose of general
program evaluation, and therefore, the use of #ta ih this study is limited to those
program input and outcome variables applicabldltstadents. For example, the data
collected for general program evaluation suppartegaring clone completing rates by
setting by year in school. However, the data da@suapport additional level of analyses
such as the effect of different forms of impleméntaof the Bioinformatics program
(wet labs, lectures, online labs, etc.) within ¢hess or club settings at different schools,
since that data was not collected. Additionallthaiigh clone completion rates can be

compared, the data does not provide any informatbmut why students did, or did not,
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complete certain levels of clone analysis or infation about what problems students
may have encountered that influenced clone congpleti

The data originally collected for program evaloatincluded approximately
1,600 participating students in 38 high schoolsanen different states and the District of
Columbia in Year 5 of the program. The data usatiisistudy was limited to 13 schools
that participated in the Waksman Summer Instittitb@Rutgers campus in Piscataway,
New Jersey at the beginning of the program yeahodigh the study data may be
considered inclusive of virtually the entire subsfigparticipants in New Jersey, the
degree to which the data from the New Jersey [jaatits is representative of the entire
participating population was not examined.

Although this study used student performance erBibinformatics Knowledge
Pretest and Posttest as an indicator of learningsgthe identical pretest/posttest had
limitations in both test design and test admint&ira In terms of test design, the test did
not adequately sample all four knowledge typesienScience Knowledge Framework
developed by Shavelson, Ruiz-Primo, Li, and Ayale0@). The test primarily addressed
either Declarative Knowledge or Strategic Knowledde a result, the pretest to posttest
comparisons provided limited information relatieedne of the original goals of the
Bioinformatics program — to develop student underding of important bioinformatics
and genetics concepts and science practices. Beohtise limitations in test design, one
of the issues highlighted in the Gelbart and Yarstedy (2011) regarding students’

incorporation of Strategic Knowledge in conductanghentic bioinformatics research as
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opposed to simply performing tasks based on Praaekdmowledge could not be
examined in this study.

In terms of test administration, students hateliticentive to demonstrate their
best performance on either the pretest or postiest they were aware that the results
would not pertain to them directly. Although usefiai making some levels of
comparison, anecdotal data from the teachers atgeRustaff, as well as some of the
open-response item data, support the limitatioth@fdata in making strong conclusions
about the effect of the Bioinformatics program tudents’ knowledge.

Additional Research

The results and limitations of this study suggesteral avenues for additional
research in future iterations of the program astimer high school bioinformatics
programs. One avenue is to examine more closetiests’ educational backgrounds,
and specifically, students’ prior knowledge at bieginning of the program in
comparison to indicators of success at the endeoptogram, to determine if
prerequisites are warranted for participation thegithe class or the club setting to more
fully meet the program’s goals. This analysis migilsb provide insight into strategies
that teachers can use to structure collaboratiwdestt learning groups that foster higher
levels of success for all participating students.

Another avenue for research is to examine theaoteimpact of “student
scholars” who receive specialized advance trairang, the role of students who are
repeating the program for a second or third yeathe level of success of other students

in the program. This analysis may provide insigi iwhat problems in the program
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sequence can typically be addressed by teachduding student-teacher) or peer-to-
peer support, and what problems typically requxecet-level support, such as from the
Rutgers staff.

A final suggested avenue for research relatesfgly to the club setting. The
club setting provides a unique opportunity, basethe current literature, for high school
students to participate in bioinformatics learnamgl research when a school does not
have a formal class incorporating the field of gtusinalysis of the features of clubs with
relatively high clone completion rates, as welttes characteristics of the students within
those clubs who persist through all stages of thgnam, may provide insight into

strategies that all clubs could employ to increassrall student success.
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Appendix A. Portland State University HSRRC Memorardum

Human Subjects Research Review Committee

Research and Strategic Partnerships Portland State

Post Office Box 751 (RSP) 503-725-3423 tel
Portland, Oregon 97207-0751  503-725-8170 fax UNIVERSITY
hsrrc@pdx.edu

Portland State University HSRRC Memorandum

To:  Cary Sneider/Douglas Lownsbery

From: Todd Bodner, Chair, HSRRC 2013

Date: May 24, 2013

Re:  Your HSRRC application titled, “Using Multivariate Correlational Analysis to Enhance
Online High School Bioinformatics Instruction” (HSRRC Proposal #132499)

In accordance with your request, the Human Subjects Research Review Committee has reviewed
your proposal for compliance with DHHS policies and regulations covering the protection of
human subjects. The committee is satisfied that your provisions for protecting the rights and welfare

of all subjects participating in the research are adequate, and your project is approved.

Please note the following requirements:

Changes to Protocol: Any changes in the proposed study, whether to procedures, survey
instruments, consent forms or cover letters, must be outlined and submitted to the Chair of the
HSRRC immediately. The proposed changes cannot be implemented before they have been

reviewed and approved by the Committee.

Continuing Review: This approval will expire May 24, 2014 , one year from the approval date.. 1t is the
investigator’s responsibility to ensure that a Continuing Review Report (available in RSP) of the status of
the project is submitted to the HSRRC approximately two months before the expiration date, and

that approval of the study is kept current.

Adverse Reactions: If any adverse reactions occur as a result of this study, you are required to
notify the Chair of the HSRRC immediately. If the problem is serious, approval may be withdrawn

pending an investigation by the Committee.

Completion of Study: Please notify the Chair of the Human Subjects Research Review Committee
(campus mail code RSP) as soon as your research has been completed. Study records, including
protocols and signed consent forms for each participant, must be kept by the investigator in a secure

location for three years following completion of the study.

If you have questions or concerns, please contact the HSRRC at hsrrc(@pds.edu or (503)725-2227.
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Appendix B. Rutgers and PSU Data Use Agreement

RUTGERS, THE STATE UNMIVERSITY OF NEW JERSEY
Data Use Agreement

This Data Use Agreement (“DUA") is effective on the 24th day of July, 2013, (“Effective
Date”) by and between Rutgers, The State University of New Jersey on behalf of Andrew
Vershon, Director Waksman Student Scholars Program (‘Rutgers’), and Portland State
University on behalf of Douglas Lownsbery ("Recipient”), located at Portland State University,
Research and Strategic Partnerships, Post Office Box 751 (RSP), Portland, Oregon 97207-
0751, collectively hereinafter referred to as the “Parties”. ‘

The Parties agree to the provisions of this DUA in order to address the requirements of
Rutgers transferring data to Recipient and to protect the interest of both Parties.

1. INTRODUCTION In accordance with National Science Foundation Grant DRL -
0733255 (“Grant’) and the requirement to share data generated under Grant awards
with other researchers, Rutgers is willing to transfer the data developed under the
Grant to Recipient under the project Bioinformatics: Leaming by Doing (“Data) for the
use described in Article 2 below.

2. USE Rutgers will transfer an electronic copy of the original Data electronically to
Recipient solely for the basis to facilitate Douglas Lownsbery's Master's Thesis
Research Proposal (‘Thesis”). Recipient shall have the right to use the Data provided
by Rutgers for this thesis.

3. RESTRICTIONS CN USE Recipient agrees Douglas Lownsbery will not use or further
disclose the Data other than as permitted by this DUA, or as otherwise required by
law or regulation. Recipient shall use appropriate safeguards to protect the Data from
misuse or inappropriate disclosure and to prevent any use or disclosure other than as
provided in this DUA or as otherwise required by law or regulation. Recipient shall
not attempt to identify the individuals to whom the Data pertains, or attempt to contact
such individuals.

4. REPORTING Recipient shall report annually to Rutgers the status, use and location
of the Data.

5. TERM AND TERMINATION

(a) Term. The Term of this DUA shall be effective as of the date first written
above, and shall terminate not to exceed three (3) years thereafter. At such
time, Recipient shall destroy or securely delete Data from any Recipient
servers and any non-network computers.

(b) Termination for Cause. Should Recipient or Douglas Lownsbery commit a
material breach of this DUA, which is not cured within thirty (30) days after
Recipient receives notice of such breach from Rutgers, Rutgers shall
terminate the DUA immediately. Neither Recipient nor Douglas Lownsbery
shall retain any copies of the Data.

a7



6. PUBLICATION AND ACKNOWELEDGEMENT When Douglas Lownsbery
publishes the results of his thesis, it is an NSF requirement to credit the project
as an NSF award and NSF division, the project name, the university and the
project director as follows:

Bioinformatics: Learning by Doing, NSF DRL 0733255, awarded to
Rutgers, The State University of New Jersey, Andrew K. Vershon, project
director.

7- MISUSE OF DATA Recipient agrees to be responsible for its own negligent
acts and omissions to the full extent allowed by law for the misuse or
unauthorized use of Data.

RUTGERS, The Shie University of PORTLAND State University
New Jersey

8/12/13

(Date)

GN (Srgna‘F_a}‘

Jennifer L Ward
Assoclate Director
Sponsored Projecty Rdmisidhitinne)
Portiand State University

(Titie) (Title)

April 14, 2003 Data Use Agreement Template 20of2
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Appendix C. Student Educational Background Survey

1. In the fall semester, | will be a high school: Freshman Sophomore
Junior Senior Home Schooled

2. This is my: First,  Second ___ Third ourkh year participating in the WSSP
project.

3. Which of the following classes have you take@Regck all that apply)

____APorHonors Biology _ Calculus

____Chemistry __ Trigonometry

____APorHonors Chemistry ___ Statistics

____Physics __ Other Advanced mathematics:

____AP or Honors Physics

____ Other Advanced Sciences __ Advanced compatnogse

4. What advanced Science course(s) are you takiayear?
(Text box)

5. Are you interested in pursuing science as a&gelimajor?

Yes, | am interested in the Life Sciences (@igiogy)

Yes, | am interested in other types of science

No, | am interested in another major (Text box )
Don’t know yet

| am not planning to attend college

6. For each statement below, circle the numberrttuat closely corresponds to your
feelings about the statement. Select a 5 if ymngty agree with the statement; select a
1 if you strongly disagree with the statement.e8eB if you neither agree nor disagree.

a. It is important to know science in order togefood job. 54 3 2 1

b. I am interested in a career in scientific reslear5 4 3 2 1

c. | enjoy doing laboratory exercises more thanmater analysis. 5 4 3 2 1
d. I am interested in a career in the medical fiegl 4 3 2 1

e. There is little need for science in most jolis.4 3 2 1

f.  am interested in a career that is relatedhéolife sciences. 54 3 2 1

g. Science is useful for the problems of everydfay |15 4 3 2 1
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Your responses to these questions are optionagnreciated.

7. Gender Female Male

8. Ethnicity

____ American Indian or Alaska Native
Asian

Black or African-American

Native Hawaiian or Pacific Islander
White

Other
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Appendix D. Student Bioinformatics Original PretestPosttest

As part of the registration process for DSAP weaslkdng students to take a survey
before you begin the analysis of your DNA sequendés will also ask you to take the
survey a second time before we submit your DNA sages for publication on the NCBI
databases. The following questions will give resie@rs a chance to see how much you
know about genomics and genetics before and aftagiuhe DSAP program.

At the end of the survey there are some questlatsaill help researchers gather
information about DSAP users. Your responses eilb improve future versions of
DSAP.

The WSSP instructors and your teachers will notkkiado completed which
assessment! All students are number coded.

Please take this survey without looking up the amswn the internet, or in a textbook or
lecture notes. Please limit yourself to 60 minutésu will sign an electronic pledge on
this at the end of the survey.

Thank you for participating in this survey.
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T OEEGE | GCGCGEPZ{ TTGTGT TGGETAC EEGG(ﬁ AT TECECGGCCGC TCAACAACT

(AR ﬂl I m |
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Q1. The DNA sequence for a cDNA clone is derivearfra waveform generated

by a DNA sequencing instrument. In the colored i@awve shown above, the different
peaks represent:

A) the protein sequence.
B) fluorescent labeled DNA pieces of different size
C) the different sizes of each actual base.

D) probabilities for each base based on typical Dd¢4uences.
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G CCHBAnG TAG TGC TTTATT G C ART A CETGCATC T G G AR TAG K

Q2. The first step in analyzing a DNA sequence iddtermine if it is readable by
looking at the waveform of the sequence. Whichheffollowing is the best reason why
you would consider the above waveform to be unigla@a

A) The waveform is unreadable unless you have apscftware to read it.
B) The letters in the top sequence have spaceatbabo large.
C) The waveform peaks are not distinct and ovezkagh other too much.

D) The numbers under the letter sequence are tge.la
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Q3. Which statement best identifies the last relediadse in the DNA sequence from the
waveform pictured above?

A) C82, because it is the last base in the sequesioze N83.
B) A98, because it is the last base in a sequehcensecutive A bases.
C) G103, because it is the last clear peak in tesform with no overlaps.

D) T112, because it is the last clear peak in theeform with no overlaps.

Q4. If the number of bases in a DNA molecule wenented or compared or calculated,
you would find:

A)A=Cand G=T.
B)A=GandC=T.
C)T=AandC=0G.
D) no two bases would be equal in number.

E) that all bases are equal in number.
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Q5. In the analysis of a cDNA insert you may beeasio convert the sequence to its
“reverse complement” form. This is due to the aaniiel nature of the DNA strands,
which means that:

A) the twisting nature of DNA creates nonparalteasds.

B) the 5' to 3' direction of one strand runs coutdehe 5' to 3' direction of the other
strand.

C) base pairings create unequal spacing betwedwthBNA strands.
D) one strand is positively charged and the oth@egatively charged.

E) one strand contains only purines and the otbetains only pyrimidines.
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Clone:  1AH307 Crop Ends - XP Sequence
= e Edbliag Un this step vou will cxomine o wavelorm and determine the st and ond of the cDNA ineen = —
Welcome |l'!n| H/J
Crop Ends - 5P
-

Crop Ends - XP 1 . |

4 | Remove (crop) the sequence after the last base (question 3).
SPIXE Overlup Remove {crop) the sequence before the start base (question 2).
Bl Sequerice Use the waveform software to convert this cropped XP sequence to its reverse

complement form

[ Copy the cropped reverse complement XP sequence here:
» BLAST ) Fa F i+ |
A Sl ATAATTGATGGTTTTACTTGCTTATACAAGAGTAACATTGATTTGTTTTTCTATGTGCTAGGCAATG | &

s N TCAACGAGAATGAGCTGE A T CCTAATTT i""I
TGCACAAGGATGTGEAAAA y CATAGACG | |=
ARATTGTTGATAAAGGAATAATTCTTGAAGCCGATCCAGAAGCTATTGLCCATAAGGTATCAAT ARG ILI

ks
« Back Mext »

Q6. DSAP asks you to compare two DNA sequences fhensame clone to see if there
is an overlap. The first sequence (the SP sequéneejered as is. The second sequence
(the XP sequence) is derived from the complemersizand of DNA from the same
region. Looking at step #4 above, why do you neeadse the waveform software to
convert the XP sequence to its reverse complenoemt before entering it in step #5 to
compare it to the SP sequence?

A) Complementary strands of DNA use different baaie languages, so the XP

strand needs to be converted by the waveform sodtivafore it can be compared
to the SP strand.

B) The XP strand of DNA is considered “junk” DNAdneeds to be converted by
the waveform software before it is compared toSRestrand.

C) The SP and XP sequences have different opemgeidmes, so the XP strand
needs to be converted before it can be compartéetS8P sequence.

D) Complementary strands of DNA are anti-paralielthe XP sequence needs to be
reversed and converted to complementary base Ipatte waveform software
before looking for overlaps with the SP sequence.
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Q7. The information contained in a strand of DNAyrdatermine the sequence of:
A) amino acids in a protein.
B) sugars in a polysaccharide.
C) amino acids in a fat.
D) fatty acids in a protein.

E) fatty acids in a fat.

Q8. The BLASTN search program allows you to evaudeiw similar a DNA sequence
from one organism is to DNA sequences found inrotihganisms by comparing e-
values. Small e-values usually suggest that seguanglarities are due to shared
ancestry. Which process best explains a small@eval two organisms that anet very
closely related?

A) Polymorphism

B) Convergent evolution

C) Polyandry

D) Crossing over
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Clone:  1AH3.07 BLASTn
¥ ldane Dditing Yo this sters o will prcfiion @ BLAS T scroly o b DNA Hibanscs fo rivabetics wilhi the =
+ BLAST edited sequence. "‘=“" LVLJ
BLASTn ¥
e Open the BLASTn search page and run a search with the 2 1
A 1 DL . PRSI : Retrieve sequence
edited sequence against the nint database
Dretine ORF -
BLASTp
HLAST= vs. BLASTp 2 List the best matches from three different organisms:
Accession # Definition Organism E Value
XM_D01544025 Acyrthosiphon pisum | pea aphid 3e-37 r
) sk e Satmniin XM_D01599118 AGAPOO7963-PA (Aga Armigeres subalbatus Te-12
XM_823377 Drosophila grimshawl| Drosophlla grimshaw | 1e-09

3 | Open the BLASTn search page and run a search with the edited sequence against the st
database

« Back MNext »

Q9. Your instructor is convinced that your sequesceery similar to sequences from the
pea aphid, Armigeres, and fruit fly, Drosophilattivere found in the above BLASTnN
search. Based on the e-values, would you agrdsagree with your instructor’s
position?

A) Yes, because all three e-values are less than 1.

B) Yes, because only very similar sequences averred by a BLASTn search.

C) No, because plants and animals cannot haveasiDNA sequences.

D) No, because 3e-37 is a much smaller numberbgdB, so they are not that
similar.
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Q10. Scientists often compare DNA sequences fréfardnt organisms.
a) What can scientists learn from highly consemeggions of DNA?

(Text box for answer)

b) What can scientists learn from differences betwthe DNA sequences?

(Text box for answer)

Q11. Under what conditions would you use nucleosieiguences rather than protein
sequences (or amino acid) to prepare phylogenegs {a scheme that shows the
evolutionary relationships of organisms)?

(Text box for answer)
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Q12. Arrange the following steps involved in s\gdis of a protein in the correct order.

Vi.

A complementary RNA copy of DNA is made.

The DNA double helix unwinds.

MRNA binds to ribosomes.

The amino acids of two adjacent tRNAs form atme bond.
MRNA leaves the nucleus.

An anticodon of tRNA recognizes an mRNA codon.

A) i, i, dii, v, vi, iv
B) i, i, iii, v, iv, vi
C) i, i, iii, iv, vi, v
D) iv, v, ii, i, vi, iii
E) ii, i, v, iii, vi, iv

Q13. Using the DSAP program you will determineatiy DNA sequence codes for a
protein. Suppose a gene has the base sequence AOGSGAAC. The polypeptide
encoded by this gene has how many amino acids?

A) 2
B) 4
C) 6
D) 12

E) 36
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Q14. When a BLASTP protein database search isqmeeid using the amino acid
sequence for a clone, a number of potential matateegenerated from different
organisms.

If the triplet CCC codes for the amino acid prolindacteria, then in plants CCC should
code for:

A) leucine.

B) valine.

C) cystine.

D) phenylalanine.

E) proline.
Q15. One of the steps in analyzing a clone invoaresxamination of the potential
amino acid sequence that would be generated frero@NA during protein synthesis.
In the early steps of protein synthesis, the prodoof mRNA from a gene sequence is
called:

A) translation.

B) transformation.

C) transcription.

D) activation.

E) replication.
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Clone: 1AH3.07 BLASTx vs. BLASTp
¥ Clame. Fiting In this step you will compare the BLASTx and BLASTp seurch results to determine if you 1 ==
+ BLAST chose the correct ORF in the Tonlbox ) g—'
| BLASTn | -
BLASTS 1 Look at the BLASTx and BLASTp results that you have entered: —
Rete ORE BLASTx BLASTp
BLASTp
Accession # E Value Accession # E Value
BLASTx vs, BLASTp
KP_0015944060 XP_001559168
XP_001599168 AP_001944060
XP_001656371 XP_316555
¢ Analysis & Submission —
Do lI\_c pl_'_olcinls_ found in lh-‘: BLASTp search match the Yas Mo
proteins found in the BLASTx search?
2 | Compare the E-Values for each protein found by the Yes Mo
BLASTx and the BLASTp searches. Are the E-Values simifar?
-
« Back MNext »

Q16. In step #1 above you are asked to companesidts of a BLASTx search,
which searches a protein database using a tradsiatdeotide query, and a BLASTp
search, which searches a protein database usirggearpquery. Why might these two
search tools produce different results if sequegeegrated from the same clone are
used?

A) The two searches use two different databaseshwhill automatically
produce different results.

B) Nucleotide sequences can produce variable magthits because of different
reading frames while a protein sequence can onhgde one way.

C) Translated nucleotide queries will contain memytations that the protein
gueries will not.

D) Nucleotides and proteins are completely différanlecules and will produce
different results.
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Q17. Using the table, determine what amino acidisece will be generated, based on
the following mRNA codon sequence?

Second Letter
5'AUG-UCU-UCG-UUA-UCC- - . ~ .

UUG3 uuu | Phe |ucu UAU | Twr |uGu |Cys U

u |uuc ucc | ser |UAC uGc c

UUA |Leu UCA UAA Stop |UGA Stop|A

A) met_arg_g|u-arg_g|u_arg uuG ucG UAG Stop UGG Trp |G

cuu ccu CAU | His |cGU u

¢ |cuc | Leu|cce | Pro |cAC €6t | arg [C

-alu- - -aln- CUA CCA CAA | GIn [CGA A
B) met-glu-arg-arg-gin-leu st | |SUA cea ool cea kT
letter AUU ACU AAU | Asn |AGU |Ser u |letter

-ser-leu-ser-leu- Alauc | ne [Acc | mr |AAC AGC c

C) met-ser-leu-ser-leu-ser Aue Ace AAR [ 1ys [AGH | ar [3

AUG et | ACG AAG AGG G

D) met-ser-ser-leu-ser-leu Guy Gey GAU | Asp |GGU u

G |GUC | ya |GCC Ala | GAC GGC |aly |C

GUA GCA GAA | Glu | GGA A

GUG GCG GAG GGG G

E) met-leu-phe-arg-glu-glu
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IADSRILGI*ILIKIVHLNGNLGSHOCTLSKE*PFLIMMATDSLPNTM
MEMDSQLLKNKKILRRSYFLKQAEPTREKLS *LMVLLAYTRVTLICFSM
C*AMSTRMSCFCOTF*TVYTNPSA*FCTRMWEKGIS*TTLML*C*5*TK
LLIKE*FLEKPIQKLLPIRYQO*GVEKISQ*ESSLYLRFFKORKNSLNGPCL
SDFEDLHSIVCLGLIFPNTFFSFLLHEYE*NS*IKFTLLDLEDDLGLN

LIGTGLFEIHSFIIYSLL*IKLC

32 amino acids.
EeqUance.

*OTRGF*EFEF* *K*YISMVI*GAINVHCORNSHS* * *WOPTLCQIL*CGWTL
NF*RTKKF*EEVIF*NKQSQFGNYHN*WFYLLIQE+*H*FVFLCARQCQRE*AA
SVERFELCIRIHLPNFAQGCGKKESHRQP*CYNASHRRNC* *RNNS*SRSRSY
CP*GINKE*RYPNRRAVCISGSSNSERTA*MVPA*VILKIYIPLEFVWV*YFQIL
HFFPFCCMNMNKIHELNSRFWTLRMIWV*T*SELDYSKFILLLFIHYCK*NF-

SRLEDFRNLNFDENSTSOW*SREPSMYTVKGIAILDNDGNRLFAKYYD

ADGLSTFKEQOKNFEKKLFSKTSRANSEIITIIDGFTCLYKSNIDLFFYV
LGNVNENELLLSNVLNCVYESICLILHKDVEKRNLIDNLDAIMLVIDE

IVDKGIILEADPEAIAHKVSIRSEDIPIGEQSVSOVLOTAKEQOLKWSL
LK*F*RFTFHCLFGFDISEKYIFFLSVA*I*IKFMN*IHAFGP*G*FGFE
LNRNWIIRNSFFYYLFITIVNKTL-

Q18.The Toolbox program determines the protein eecgi translated from three
different reading frames of a DNA sequence.

Based on the Toolbox results shown on the rightchvieading frame most likely codes
for a protein?

(* indicate stop codons)

A) Reading Frame 1

B) Reading Frame 2

C) Reading Frame 3

D) Reading Frame 1 and Reading Frame 3 are bothlgdjiely.
E) None of the reading frames is likely to prodagarotein.
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Clone:  1AH3.07 Define ORF
EiSome Idilng | In this step woun will determing if there is an open reading frame (ORF) in vouor edited DNA w —
+ BLAST sequenge [ 8 ] LV'"
BLASTn
BLAXT i Pus i DMNA s vhere it can Retri

be translated in each of the reading frames. tHICKE SoULience
Detine ORF 2
BLASTp
BLASTx vs. BLASTp 2 | Which reading frame is most likely Lo code fora +1 43 +3 None

protein?

3 Paste the most likely protein sequence ora portion of a protein sequence here:

¢ Amnalysis & Submission

SREPSMYTVKGIAILDNDGNRLFAKYYDADGLSTFKEQKNFEKKLFSKTSRANSEIITIDGFTCLYKSMIDLFF
YVLGNYNENELLLSNVLNC VY ESICLILHKDVEKR NLIDNLOATMLVIDEIVDKGIILEADPEATAHKY SIR SEDI
PIGEQSVSOVLQTAKEG LKWSLLK

« Back Next »

Q19. The Toolbox program in DSAP allows you tolgr@a DNA sequence to
determine each of the potential open reading frame®RFs. In step #2 above you are
asked choose one of three likely reading frames#+21or +3, or none of them. Why

does DSAP only offer three ORFs to choose fronafgr given sequence that is read in
one direction?

A) Because the three ORFs refer to DNA, mRNA, arodgin sequences,
respectively.

B) Because DNA and RNA only share three bases:,An@ C.

C) Because codons contain three bases, so aftérdhthree ORFs they start to
repeat.

D) Because DNA contains three strands, each vatbvitn ORF.



Q20. You have found two
individuals (Mutl, Mut2)
carrying mutations in the wild
type DNA sequence shown
below. DNA from both
individuals has been sequenced.
In one mutant DNA sequence
there is a single nucleotide

change in which a T base has '’

been substituted by a C
(underlined base in the Mutl
sequence). In the second
mutant DNA sequence there is
a deletion of the same base

(underlined position in the Mut2 sequence).

Second Letter

c

A

uuu
uuc
UUA
uuG

ucu
ucc
UCA
uceG

| Tyr
Stop
Stop

UGy |Cys
uGe

UGA Stop
UGG TIp

cuu
cuc
CUA
cuG

ccu
ccc
CCA
cCcG

| His

CAA GIn

cGu
CGC
CGA
CGG

Arg

AUU
Auc
AUA
AUG

AcCU
Acc
ACA
ACG

| Asn

Lys

AGU | Ser
AGC
AGA
AGG |Ar9

Guu
Guc
GUA
GUG

GCcu
GCC
GCA
GCG

| Asp

| Glu

GGU
GGC
GGA
GGG

Gly

OFrOC | OXPOC | OFOC|(OFPOC

3rd

letter

Which mutation is more likely to have a larger effen the activity of the protein?

Wild type 5'- CGA ATT CAT CTG ATATTG ATA AAAATG AGT - 3

A) Mutl 5'- CGA ATT CAC CTG ATATTG ATA AAA ATG AGT -3

B) Mut2 5'- CGA ATT CA_CTG ATATTG ATA AAA ATG AGT -3'

Explain your answer.

(Text box for answer)
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PLEDGED:

| worked on this assessment independently. | didiee any texts or other resources, and
spent no more than 60 minutes on it.

Signed:

School:

Thank you for participating in this survey! Yousponses will help researchers make the
DSAP more effective and meaningful for studentage. Your participation is greatly
appreciated.
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