
spawned tasks within a specific size range for each benchmark. We set the task size

target in our predictor to a minimum of 1000 instructions. Tasks predicted to be

less than 1000 instructions are not spawned by the task dispatcher. Even though

our predictor is capable of highly accurate control independence prediction, the

task size prediction is quite inaccurate and widely varies for all benchmarks. The

variation in the task size has a big impact on performance due to load imbalance,

even under perfect parallelism conditions, as we show in section 5.6.1. Notice that

even though the predictor is set to dispatch tasks with a minimum size of 1000 in

structions, many spawned tasks are actually smaller due to task size mispredictions.

At this point, we have tasks of large size, distant and control independent from

prior tasks. Task execution will be considered in the next section.

5.3 Task Execution

This section explains the algorithm to address the data independence requirement

of tasks. In order to isolate the effects of data dependencies on the performance of

our model, we augment our predictor with an oracle. This oracle acts as a perfect

value predictor for the child task and ensures that the child task can proceed in

parallel with the parent task without stalling due to inter task data dependencies.

The oracle serves three purposes:

• 	It mainly acts as a perfect value predictor giving the child core the exact

register and memory state at the start of its execution.

64

• It isolates the impact of CI predictor accuracy on processor performance by

comparing the difference between the perfect CI predictor and a conventional

CI predictor.

• 	It also informs a speculative core of its call level at the time of spawning (as

explained in section 4.2.3).

The oracle takes in the register and memory state at the time of forking and

proceeds with program execution until the reconvergence point is reached. There

are two possibilities here.

1.) Prediction is correct: The prediction is correct and the reconvergence point

is hit. In this case, the oracle will have the correct register and memory state

until the reconvergence point. The oracle communicates this information to the

spawned core. Hence a new core can start executing in parallel with its parent, at

the control independent point with the exact register and memory state without

any inter task data dependencies. The speculative core uses local buffers to save

its state.

2.) Prediction is incorrect: In the second case, when the control independence

predictor misspeculates, the oracle is designed to work in two modes - conventional

reconvergence prediction mode and perfect reconvergence prediction mode.

In the conventional prediction mode, the oracle does not convey the mispre

diction to the control logic and allows the child task to proceed and fork further

tasks. At a later stage, when it is found that the prediction was wrong, all the

work done by the child task and its subsequent tasks are squashed.

65

Benchmark Accuracy (0/0)
98.32

Performance Drop (%) I

0
.bzipl

equake 100 0
mel 97.24 7

twolf 96.1 - 25.8

Table 5.3: Impact of predictor accuracy on performance

In the perfect prediction mode, the oracle immediately informs the control logic

that this prediction will not converge. Following this, the predictor will look for a

different point to fork.

This approach gives us a convenient method to isolate the effects of predictor

accuracy on performance as shown in Table 5.3. It is interesting to notice that in

twolf, a 3.9% drop in predictor accuracy results in a 25.8% drop in performance.

This is because of throwing away all the incorrect work done by the subsequent

non speculative cores following a misprediction.

5.4 Task Retirement

After a parent spawns a child task, the parent tracks program execution in its own

core to see if it converges with the child task. There are multiple ways in which the

parent can decide that it has converged with the child task. Table 5.4 compares

the accuracy (in percentage) and correlation between expected and observed task

sizes using three different methods to track convergence.

1.) No path info - In the simplest method, the parent can decide that it has

converged the very first time it encounters the JPC. In many cases, the same RPT

entry is linked many times over while forming a large task. Consequently, the

66

Beachmark No path lafo UDlque PC's la path Exact);NIth 1Df0
Ace Exp Obs Att Exp Obs Att EX)) Obs I

bzip2 94.7 1321.6 764 96 1197.3 721.7 89.3 1669.5 1588.3
equake 99.7 1040.4 459 84.9 1008 790 64.3 1004.3 1370.2
md 100 1106 2269.5 100 1070 2280 93.2 1078.7 2916.7
parser 100 1137.1 312.5 97.9 1040.3 561.4 27.8 1084.1 1936.6
twolf , 99.6 1005.8 115.6 99 1006.5 .323.6

....
94 1206.7 , 1801.2

Table 5.4: Tracking convergence using three different methods.

Key: Acc - Predictor accuracy (%), Exp - Expected task size (number of instruc

tions, Obs - Observed task size (number of instructions).

JPC will be encountered many times before the task finally converges. So it is a

naive approach to decide on reconvergence based on the first occurence of JPC.

Though this method predicts accurately, the main disadvantage of this approach

is the disparity between the intended and observed task sizes. This disparity is

obvious because, when FPC and JPC are predicted, in most cases the linking logic

will iterate over the same JPC many times before convergence. But during actual

execution if it is decided that a task converges on the first occurrence of JPC, it

will miss out on the iterations which were considered to increase the task size when

the task was predicted.

2.) Exact path info - Instead, it is a good idea to trace the path from FPC to JPC,

noting the RPC's and LPC's that feature along the path, at the time of prediction.

This method gives very good correlation between intended and observed task sizes,

but predictor accuracy is very low.

3.) Unique PC's in path - It is sufficient to note only the unique PC's from

FPC to JPC. However, the order in which they occur needs to be captured. This

67

order of occurrence is the key to the algorithm. This method gives good correla

tion between intended and observed task sizes, along with good predictor accuracy.

Since the Unique PC's in path method gives a good balance between accuracy

and correlation between expected and observed task sizes, it has been used for all

further experiments. During actual execution, if the RPC's and LPC's are ob

served in the same order, all the way until the JPC is hit, control logic decides

that the task has converged.

In conventional branch prediction, a mispredicted branch can be detected at

the commit stage. This is because, the condition over which the control logic

had speculated, will be resolved by the time the branch reaches this stage. Since

the branch instruction is always guaranteed to reach the commit stage, detecting

branch misprediction is very deterministic and straight forward. But this is not the

case with reconvergence prediction. The RPT does not store the exact number of

instructions, but only the maximum and average number of instructions from the

FPC to JPC. The exact number of instructions after which the control logic will

find out a\ reconvergence misprediction is not known. So control logic establishes

a threshold, within which it is expected to see the JPC. If this does not happen,

it decides that the control flow has gone in the wrong direction. This threshold

is decided as a tradeoff between prediction accuracy and misprediction penalty.

A larger threshold would mean a longer wait time and more accurate predictions,

but it would also mean more wasteful work in case of a misprediction. Typically

this threshold is set at twice the task size. Table 5.5 shows the impact of wait

time (as a multiple of expected task size) on predictor accuracy (in percentage)

68

Bmark/Wait 1 1.5 2 2.5
time

bztp2 Ace 98.32 98.32 98.32 98.32
Perf 1.01 l.01 1.01 1.01 I

equake Ace 41.4 93.22 100 100
Perf 1.16 1.98 2.71 2.71

mer Aee 47 88 97.24 97.24
Perf 1.58 2.82 3.36 3.30

Molf Aee 85.1 92.2 96.1 96.7

'---
Perf 1.78_.1....-. 1.86 2.04 2.02

Table 5.5: Impact of wait time over predictor accuracy and performance.

Key: Acc - Predictor accuracy (%), Perf - DOE performance (speedup of 4-core

DOE over single core) .

and performance (speedup of 4-core DOE over single core - see section 5.6.1). It

can be noted that, as the wait time increases the predictor accuracy increases, but

beyond a certain point, performance begins to decrease. This is because of more

instructions being thrown away on a misprediction.

When a nonspeculative core converges it passes over the nonspeculative state

to the next core and goes idle. It is now available and awaits its t:tun in the

ring to execute the next task. The next core now becomes the head. When the

parent task converges with its child task, it means that the speculation from the

task predictor was correct. This also means that the work that has been done

so far by the speculative core is correct. The speculative core is now made the

non speculative core. The local state of the speculative core is committed to the

architectural state. If the speculative core finishes before its parent (the parent

could be either speculative or nonspeculative), it will have to stall.

69

5.5 Task Squashing

If the task predictor mispredicts, the child task needs to be squashed. There are

two options to deal with the subsequent tasks that follow the child. In a sim

pler implementation they can be readily squashed which makes them immediately

available to spawn further tasks. In a more complex implementation, the subse

quent tasks can wait until the corrected task tries to fork again. If the corrected

task spawns at the same point and the same mask is sent from the task predictor,

there is no need to squash any of the subsequent tasks. The task predictor can be

biased such that under this condition, it will attempt to use the same branch that

it had used for spawning on the previous ocassion.

Only the first implementation has been tried out in our experiments. A task

misprediction can occur only in the conventional reconvergence prediction mode,

the results of which are presented in section 5.3.

5.6 DOE Experiments

This section explains the experiments specific to the DOE execution model ex

plained in section 4.3.

5.6.1 Ideal Performance

Figure 5.2 shows 4-core DOE speedup over a single-issue in-order core. The bench

marks mcf, equake and twolf show good performance of up to 3.5 for mcf. The

performance however falls short of the peak performance of 4 which is what can

be theoretically achieved with 4 cores. This is under the assumption of perfect

parallelism between tasks (equivalent to perfect task input value prediction). The

70

doe-4

4-,-.--

3·..j.·······_·_····_·_·_······=
1
:I

2
=rn 	 1

o

bzip2 equake mef parser twoIf

Benchmark

Figure 5.2: Speedup of 4-core DOE

other two benchmarks, parser and bzip, show small or no speedup. The key insight

from this experiment is that load imbalance due to size variation between tasks

can significantly limit SpMT performance, even with perfect parallelism and with

no inter-task data communication delays. To explain the performance variation

among the five benchmarks in this experiment, we show in Figure 5.3 the average

core activity for 4-core DOE configuration with perfect parallelism. The graph

shows the percentage of time a core is running, stalling, or idle with no task as

signed to it. The performance problem of parser and bzip2 is a result of very high

idle time. We often see long stretches of execution with the control logic unable to

spawn a new task due to the predictor failing to predict a task with the targeted

task size of 1000 that was set in the predictor.

71

doe-4

'00%

90%

80%
iii

.§ 70%

E-c 60% • stall
c

50%c:> • idle
':

i 40% • running ,.. 30%
[;A 20%

1)%

0%
uN ~~ .9- ~ M 0

IN :::s e a.I:J r::r ~ Q.l1li

BeDchmark

Figure 5.3: Average core activity, 4-core DOE

5.6.2 Scalability

Since our ultimate goal is to achieve performance comparable to out-of-order su

perscalar processors by using multiple simple in-order cores, we measure potential

DOE performance as the number of cores increases. Figure 5.4 and Figure 5.5

show that performance scales reasonably well with the number of cores. Since

these experiments are with perfect parallelism, we can only conclude that on well

performing benchmarks there seem to be no serious scalability issues up to 8 cores

due to task size variability.

5.6.3 Performance for Various Levels of Parallelism

So far, our experiments conducted with perfect parallelism indicate that there is

a good potential for performance with DOE, even on programs with very com

plex control flow that lead to wide variations in task sizes. The question now

72

doe-2 ooe-4 doe-6 ooe-8

Configuration

Figure 5.4: DOE mcf speedup vs. number of cores

mef

7

6

5
0.. = 4

1 	3

0..

r.f.l 	 2

1

o

twolf

5

4

0.. = 3

1
0..

2

~ 1

o
doe-2 doe-4 doe-6 doe-8

Configuration

Figure 5.5: DOE twolf speedup vs. number of cores

73

twolf - 4 cores - doe

4 T···..·•··• ..··················1

=..3

1
:I

2
!E1

o
'I:.t" 00 o o o o o. \()o 0\ 00 t-o o Q. Q. Q. Q.o -ao 8

Configuration

Figure 5.6: 4-core DOE twolf performance for various levels of parallelism

becomes what is the potential performance achievable with DOE at various levels

of parallelism.

We show in Figures 5.6, 5.7 and 5.8 DOE speedup of twolf under various lev

els of parallelism and for 4, 6 and 8 core configurations. In these figures, pn

represents a simulation with n% parallelism between tasks. For example, p100

represents perfect parallelism or perfect inter-task value prediction, therefore no

dependent execution is required, and p80 represents a situation where 20% of the

task execution time is spent on dependent execution. We also show in the graphs

for comparison the performance of 4 and 8-wide out-of-order superscalar execution.

In Figures 5.9, 5.10 and 5.11 we show similar results for mcf.

The key insights from these graphs are the following:

74

twolf- 6 cores - doe

4-~--·-------··-------------·--'-··----------i

Q., 3
::r
"i 2
~

~1

o
'"q" 00 o o o gI I o 0'1 00 ~ o o ..- Q, Q, p,. p,.o o p,.o o

Configuration

Figure 5.7: 6-core DOE twolf performance for various levels of parallelism

twolf- 8 cores - doe

5
Q.,4
.g 3
IQ., 2 '"

ell 1

o
'"q" 00 o o o

I I 0'1 00 t8 ~ o o ..- Q, Q, Q.. c..o p,.o 8
Configuration

Figure 5.8: 8-core DOE twolf perf~rmance for various levels of parallelism

75

mcf- 4 cores - doe

5

c. 4
.g 3
18

!.2
I'll

1

o
-.::t 00 o o o o o

I
o
o
o

I
o
o
o

o
0..

0\
0..

00
0..

t"
o..

\0
0..

Configuration

Figure 5.9: 4-core DOE mcf performance for various levels of parallelism

mer - 6 eores - doe

6

5

=-4

1
:::I

3

~2
1

0
'V 00 o g gf I o ~ ~ 0 0 ~ 0.. 0.. 0.. 0..0 0 0..0 0

Configuration

Figure 5.10: 6-core DOE mcf performance for various levels of parallelism

76

mcf - 8 cores - doe

67 ..,...----------......- ...----...-----------.-------~

c. 5 ~----"~.-.-----.

=
'i 4
a. 3
rl1 2

1
a

'q"
I o
o
o

00
I o
o
o

8-s:;:l..

~
s:;:l..

~
s:;:l..

o
t

s:;:l..

o
\0
s:;:l..

Configuration

Figure 5.11: 8-core DOE mcf performance for various levels of parallelism

• 	 DOE latency tolerance helps maintain a good level of performance for moder

ate levels of dependent execution. For example, 30% of dependent execution

in twolf on 4-core DOE configuration results in a reduction in speedup of

20% from the ideal case of perfect parallelism.

• 	 Beyond a certain threshold that varies between benchmarks and configura

tions, performance suffers a significant hit. This threshold is 35% dependent

execution or 65% parallelism (p65) on 4-core DOE configuration. The per

formance threshold moves closer to pI00 as the number of cores increase.

• 	 DOE performs close or better than 4-wide out-of-order execution on 6-core

DOE if dependent execution is kept at 15% or better.

77

Chapter 6

Conclusions

6.1 Comparison with Prior Work

This section makes a qualitative comparison between the thread spawning schemes

discussed in section 3.2 and our scheme.

The Multiscalar and Superthreading architectures follow a compiler based thread

spawning scheme, requiring recompiling. of existing binaries. In the compiler based

scheme, memory dependences between instructions are not readily apparent and

in order to disambiguate them, the instructions need to be decoded. Hence the

compiler cannot do this disambiguation at the time of creating tasks. In the M ulti

scalar approach, even though it is difficult to disambiguate memory dependencies,

loads are still speculated, to make sure the execution model does not lose out

on performance. Memory dependences are tracked by means of an ARB, which

keeps an account of all the loads and stores in all the tasks and their order. The

ARB is a very complex structure to implement and moreover, in the event of a

miss peculation a huge penalty is paid in the form of squashing the violating task

and all subsequent tasks. This is a big limitation on the speculation throughput

of M ultiscalar architecture.

To ovecome this limitation, Superthreaded architecture takes a step backward

choosing not to speculate, but instead enforce data dependences. Superthreaded

architecture does not achieve considerable performance from its thread spawning

78

scheme because, 1.) It only spawn threads along loop iterations, which may be

very restricted. 2.) It stalls on data dependences in an attempt to avoid hardware

complexity by not performing data speCUlation.

The task predictor proposed in this thesis is dynamic and will not need any

change in existing and legacy binaries. Since our prediction is based on run time

information, it is more accurate. Moreover, we do not need to speculate on mem

ory dependences that are difficult to disambiguate, at the same time not losing

out on performance like the Superrthreaded architecture, because of the latency

tolerant feature of the DOE execution model. DOE does not buffer speculative

state like Multiscalar architecture. Instead it use checkpoints ensuring efficient

resource utilization.

The Trace Processor gives very good load balancing features because of the

consistent trace sizes. This architecture is organized on the basis of a trace cache.

Storing traces in a trace cache necessitates redudant storage of dynamic code, re

ducing resource utilization. Since traces are of a small size, it is very difficult to

exploit parallelism within such short traces as they will invariably be data de

pendent. Small traces also have the problem of the task start overhead being a

significant part of the total trace execution time. Traces are also of a fixed size,

giving less flexibility.

Unlike Trace processors, our predictor works well with regular cache structures

without requiring redundant storage of code. Our predictor also creates threads

of flexible and large sizes.

79

Even though the DMT thread spawning scheme was proposed for an 8MT ar

chitecture, it can be used for a distributed architecture as well. But since the

thread spawning scheme relies on program constructs like boundaries of loops and

functions, load balancing can be a significant problem because of the inconsistent

thread sizes. DMT follows a complex thread spawning scheme, there by necessi

tating a thread ordering scheme that is not simple.

Our predictor does not rely on program constructs, thereby providing the flex

ibility to create well balanced tasks. The program order of tasks matches the ex

ecuting cores physical order in the ring. Hence DOE follows a very simple thread

ordering mechanism~

8M and C8MT processors spawn threads on loop iterations. This gives good

performance on numeric code. However it has been observed that sequential ap

plications have irregular patterns and are not loop intensive. In addition to this,

they also lose out on performance due to load imbalance. The same architecture

follows an alternate approach, by storing the frequency of execution of each basic

block in relation to other basic blocks. This would need very large tables, resulting

in a costly implementation.

Our predictor explicitly identifies reconvergence points and guarantees control

independence between tasks. It achieves this with a very hardware efficient tech

nique.

80

In comparison to all the prior architectures, DOE gives better performance in

case of inter task data dependencies because of its latency tolerant architecture.

6.2 Conclusions

The objective of this thesis was to create tasks for an SpMT architecture. This is a

very critical activity since it is the starting point and the bottleneck that will decide

the performance of any SpMT architecture. We started with the known problems of

task creation for an SpMT architecture being, task start / commit overheads, load

imbalance, inter task control misspeculations and inter task data misspeculations.

We tried fixing each problem, knowing very well that each problem could present

contradicting requirements. The initial goal was to predict control independent

threads, without focussing on predicting large sized threads. With this approach

we were able to predict threads that were consistently of similar sizes. Then we

tried to look into the task size requirement. We used the trasitive property of

control independent points to them together to get larger tasks. Since the tasks

were still of consistent sizes they gave good load balancing features. The inter data

dependence requirement was handled with an oracle machine or a perfect value

predictor. There are some encouraging signs because some of the experiInents that

we conducted have shown that most of the data dependences (80%) often tend to

repeat over' a period of time and hence they are value predictable. Including data

dependencies into predicting tasks is left as future work.

We tried testing our predictor on a novel SpMT implementation, the DOE ar

chitecture, with in-order cores having latency tolerance and check point processing

features. Another reason not to prioritize data dependences in our task predic

tion scheme is the latency tolerance feature of our DOE architecture. Our results

81

have shown that even with 20% inter task data dependences a 4 core DOE will

clearly outperform an 8 wide superscalar. This is considering the fact that an 8

core DOE will occupy the same area as a 4 wide superscalar. There is tremendous

potential for this architecture. There is still a long way to go in our research. The

ultimate goal is to provide very good performance on sequential applications with

latency tolerance, using an architecture that is power efficient and scalable. We

will continue with our research to provide more answers.

6.3 Future Work

Our task predictor is still in its initial stage. This section details the potential for

future work on our task predictor.

Improve the Task Predictor Accuracy:

The task misprediction penalty is high in an SpMT architecture, because all

the instructions executed speculatively by multiple cores will need to be thrown

away. The difference in the performance between the perfect task predictor and

the conventional task predictor highlights the importance of the task predictor

accuracy. It is possible to use more run time information to avoid forking on tasks

that tend to mispredict. Saturating counters could be used for this purpose.

Reduce the Discrepancy between Predicted and Observed Task Sizes:

We observe from the results in Table 5.2, that even though we use the path

information to decide on task convergence, there is still a considerable difference

between predicted and observed task sizes. This discrepancy is critical because it

disturbs the load balance and accounts for a lot of performance loss in the form

82

of stalled cycles. The RPT entry can be augmented with an execution_count field,

which is a count of the number of times its TPC executes from the spawn point

to the join point. This information is updated from the retirement stream.

Set the Task Size Threshold Dynamically:

In Figure 5.3 we see that in some benchmarks there are a lot of idle cycles

because the predictor does not find a task that meets the task size requirement.

This is because the task size is fixed statically. The task size threshold must be

made dynamically adjustable based on run time performance.

Include Data Dependencies into Task Selection Criteria:

The tasks are currently being predicted without considering data dependencies

between tasks. This is because of the oracle execution model. The data depen

dences need to be predicted based on profiling information. Each RPT entry is

augmented with two fields that hold information on register dependencies:

• 	 Set of influenced registers (SIR): The set of registers that are expected to

be written into from the spawn point to the join point .

.• 	Set of live-in registers (SLR): The set of registers from the spawning task

which will be used as inputs by the spawned task during its execution.

A memory dependence predictor is used to perform the same operations for

memory dependencies.

This information can be used by the predictor to spawn tasks that have a high

level of data independence.

83

[16] H. Akkary, R. Raj war , and S. T. Srinivasan, "Checkpoint processing and

recovery: Towards scalable large instruction window processors," MIGRO-36,

December 2003.

[17] � T. Vijaykumar, "Compiling for the multiscalar architecture," Ph. D. Thesis,

University of Wisconsin-Madison, 1998.

[18] � R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, "An

efficient method of computing static single assignment form," In Proceedings of

the 16th Annual AGM Symposium on Principles of Programming Languages,

pp. �25-35, 1989.

[19] � E. Rotenberg, Q. Jacobson, and J. Smith, "A study of control independence

in superscalar processors," HPGA-5, 1999.

[20] � E. Rotenberg and J. Smith, "Control independence in trace processors,"

MIGRO-32, 1999.

[21] � Y. Chou, J. Fung, and J. P. Shen, "Reducing branch misprediction penalties

via dynamic control independence detection," IGS, 1999.

[22] � C.-Y. Cher and T. N. Vijaykumar, "Skipper: A microarchitecture for exploit

ing control-flow independence," MIGRO-34, 200l.

[23] � A. Gandhi, H. Akkary, and S. T. Srinivasan, "Reducing branch misprediction

penalty via selective branch recovery," HPGA-10, 2004.

[24] � A. S. Al-Zawawi, V. K. Reddy, E. Rotenberg, and H. Akkary, "Transparent

control independence," ISGA-34, 2006.

87

[25] 	 J. Tsai and P.-C. Yew, "The superthreaded architecture: Thread pipelining

with run-time data dependence checking and control speculation," In Pro

ceedings of the International Conference on Parallel Architectures and Com

pilation Techniques, pp. 35-46, 1996.

[26] 	 E. Rotenberg, S. Bennett, and J. Smith, "Trace cache: a low latency approach

to high bandwidth instruction fetching," In Proceedings of 29th International

Symposium· on Microarchitecture, 1996.

[27] 	 Q. Jacobson, E. Rotenberg, and J. Smith, "Path-based next trace prediction,"

In Proceedings of the 30th Annual International Symposium on Microarchi

tecture, pp. 14-23, 1997.

[28] 	 T.-Y. Yeh and Y. Patt, "Two-level adaptive branch prediction," In Proceed

ings of 24th International Symposium on Microarchitecture, pp. 51-61, 1991.

[29] 	 J. Tubella and A. Gonzlez, "Control speculation in multithreaded processors

through dynamic loop detection," HPCA-4, pp. 14-23, 1998.

[30] 	 P. Marcuello and A. Gonzelez, "Thread-spawning schemes for speculative mul

tithreading," In Proceedings of the 2nd International Symposium on High

Performance Computer Architecture, February 2002.

[31] 	 D. Kroft, "Lockup-free instruction fetch/prefetch cache organization," The

8th Annual International Symposium on Computer Architecture, pp. 81-87,

1981.

[32] 	 J. Smith and G. Sohi, "The microarchitecture of superscalar processors," Pro

ceedings of the IEEE, pp. 1609-1624, 1995.

88

