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CHAPTER I

INTRODUCTION

The objective of this thesis is to present an introduction to a
combination of the Bergeron method of characteristics and the trape-
zoidal rule of integration to the digital computer solution of
transients in electric circuits. This method has been used both in
Europe and here at the Bonneville Power Administration.i’ 2

Since this method has not been generally available to students
of electrical engineering, this paper discusses the method with com-
plete details for transient and steady state problems involving both
lumped and distributed parameter.

Chapter two discusses the Bergeron method applied to distributed
parameters of transmission lines. The graphical solution with ex-
amples presents the general method and how it can be applied to a
digital computer solution.

The flrst part of chapter three begins with the node equations '

and the trapezoidal rule of integration used in the digital computer

lH. Prinz and H. Dommel, "“Uberspannungsberechnung in Hochspannunge-
snetzen", presented at the Sixth Meeting for Industrial Plant Managers,
Munich, Germany, 1964.

2
"Digital Computer Solution of Electromagnetic Transients in

Single and Multiphase Networks", I.E.E.E. Transactions on Power Appara-
tus and Systems, Vol. Pas-88, pp. 388-399, April 1969




solution. The Bergeron method applied to distributed parameters of
lossless line by digital computer is introduced; the equations and
equivalent impedance network of a line are derived.

The trapezoidal rule of integration is applied for lumped para-
meters, the equation describing the relation of voltage and current
are determined and the equivalent impedance network for each lumped
parameter is obtained. Finaily, the digital solution of a syst;m
with one nonlinear element is discussed. Three detailed examples
are presenteds the first, a lossless line with distributed para-
meters, the second, a circuit with lumped parameters, and the third,
a system with a nonlinear parameter. _

Chapter three consists of the example of a relatively simple
problem by both the conventional Laplace transformation technique and
the described computer transient program.

Chapter four includes the comparisoh of both techniques and the

conclusion.




CHAPTER II
BERGERON METHOD

The method of characteristics with the aid of the trapezoidal
rule of integration can be generalized ;g a method capable of solving
transients in any network with’diéi;ibuted as well as lumped parameters.

In order to understand the method of characteristiecs, in the
following paragraphs we shall discuss the Bergeron method, which will
perform the character of the method of characteristics and some graphi-
cal example which enables us to understand the concept of our main
oﬁjective--the digital computer solution of electromagnetic transient.
The trapezoidal rule of integration will be described in the course of
this paper. |

In about 1930 the Bergeron method was originally devised by Louis
Bergeron and O. Schnyder. This method is by ho means new and it has
been used as an aid for the calculation and determination of the tran-
sient phenomena in hydraulic systems. The Bergeron method has been used
extensively iq the field of hydraulics and the contributions to this
field are well known. Recently there have been attempts to apply this
method to electrical systems. The method is essentially a graphical
process and this naturally will develop drawing errors. However, these
errors can be eliminatgd by the use of a digital computer.

In this method transmission lines may be considered exactly with-
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. out having the equivalent networks of lumped elements and the essential

nature of the line is retained. This can be considered one of the ad-
vantages of this method. Another advantage is that complex forcing
functions such as sinusoids and exponentials can be handled exactly,
while in other methods these types of functions have to be approximated
and simulated in different forms. The method is also capable of hand-
ling circuits with lumped, resistive, inductive, and capacitive ele-
ments. Non-linear elements cause little difficulty.

There are fundamental mathematical equations for all wave motion.
There are a number of different types of solutions for these equations.
One of these solutions is that the basis of the Bergeron method is such
that it is exact and does not rely on mathematical series for its ex-
pression. Since transients are often discontinuous, this is an impor-
tant point.

Let' us now continue our discussion on relation of voltage and
current on & lossless line. The following two equations describe the

relation of voltage and current on a transmission line.

- defox = L. 21/pt 1)

- 91/0x = C. Je/fot (2)
wheres

e = voltage to ground

i = line current

t = time

L = line inductance per ﬁnit length

C = line capacitance per unit length




X = distance on the transmission line
We may introduce two notations, Z and a.

where:

[
1]

surge impedance of the line
a = velocity of propagation of the
disturbance

Thelr relations with L and C ares

z =VI/C
1/\/T.c

By substitution of one equation for another we obtain two equations

i

a

of voltage and current as follows:

Fifox? = 1/a% B 1fot? (3)
Feo/ox® = 1/a® .5 ofot? (&)
The classical solution of these two equations iss
i=F (x-at) + Fp (x+at) (5)
| e=72, F (x-at) =2, Fp (x+at) (6)

Here F1 and F, are some functions and voltage and current are

functions of time.
We can think of the expressions (x+at) and (x-at) as waves travel-
ing in the negative and positive direction, respectively. Now by some

manipulation of equations (5) and (6) we will see the principle of
Bergeron method clearly, e
Let us multiply equation (5) by Z and first add it, then subtract

it from equation (6). The result will be the two following equations:



e+2Z .1

[}

2Z . Fy(x-at) (7)

i

e -2 .1=222. Fy(xtat) (8)

If the two expressions (x-at) and (x+at) in ;qmtion (7) and
(8) are constant, the left hand side of the two equations will also
be constant. |

Now if we think of an observer who travels along the line with
a constant velocity "a" in the positive x direction, then this obser-
ver would tell us that the expression e + Z.i appears constant to him.

If we express this in physical terms, we may understand the con-
cept of two equations (7) and (8) thoroughly. This simply can be ex-
pressed so that if we think of an observer who is able to travel along
the line with the traveling wave, at the same speed as the wave is
moving, and at the same time i1s able to measure the voltage and current
flowing, he would see that the relation of voltage and current is
e + Z.1 = constant.

The result of the above discussion permits us to write equations
(7) and (8) as the following formss

Constant (9)

e+2.1

e - Z , 1 = Constant (10)
Equations (9) and (10) are the equations of two straight lines in
the voltage and current plane with the slopes of +Z and -Z, respectively.
This is the basic idea of the ﬁergeron method.
In order to formulate the principle of this method we have to

express another point.
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let us assume two observers are moving along a transmission line,
one in positive and the other in negative direction. As they are moving
along the line they meet each other at a point where the voltage and
current that one observer is measuring is the same as the other.

Equations (9) and (10) are called the "characteristics" of the
preceeding differential equations. From this we may say that the
Bergeron method is the extension of the "Method of Characteristic".

In order to see the practical aspect of this method we illustrate

some examples as followss

Distributed-Constant Transmission Line

Consider the distributed-constant transmission line AC and point

B between A and C as shown in fig. (1)a

Voltage
QA_ FAS e Atz c
& —— 4
‘ t-—A‘t‘z_
~(a) P4 it !
: g&-atl
H
Fg. (1) et
(b) Current

Aty and Aty represent the transit time for sections AB and BC,
respectively. This means Aty unit of time takes the wave travel from
A to B and Aty unit of time from B to C.

Now if some observer at time (t-aty) starts traveling from
point A toward point B with wave velocity, he would see the relation

of voltage and current along the line as follows:




o+ Z.4 =K, (11)

Here K is constant.

If another observer starts traveling from point C toward point
B with wave velocity, he would see the relation of wvoltage and current
along the line as follows:

e - 2.1 =K, (12)

Suppose by some means the voltage and current at point A at
time (t-sty) and at point C at time (t-aty) are known. By having this
information equations (11) and (12) can be solved for K (constant) and
consequently the points and lines A(y_,t,) and C(t.aty) 20 be plotted
in voltage and current plane as shown in fig. (1)b. The slopes of the
lines A(t-aty) and C(t-aty) 8re ~Z and +Z, respectively.

Now if we go back to our observers, we see that they will meet
each other at point B at time t and both register the same value for
voltage and current. Consequently, by having the past pistory we are
able to determine voltage and current at any point and at any instant
of time.

Transmission Line with a Non-Linear Resistor

Let us turn our attention to a more complicated and practical
example. Consider the system shown in fig. (2). There is a trans-
mission line terminated by a non-linear resistor. The characteristic
of the resistor and the parameters of the line are known. For this
example the line is considered to be. lossless.

The non linearity of an element in a system causes some com-

plexity as far as the Bergeron method is concerned. The transient




voltage across the resistor and the transient current at the source

are desired while a step voltage is applied at the point A at time

Zero.
Voltage A Resistor Characteristic
CJ"" A B el—sp 24 «a ca
1 © ~0- !
A ! source step
Non-Linear 78 voltage
Resistor —* 58
38
(a) 1 '
Fig. (2) (v) Current

One very important advantage of the Bergeron method is that it
enables us to compute current and voltage simuitaneously. In spite of
other methods there is no need for separate computation to determine the
solution of electromagnetic tr;nsient which shall be discussed in full
details in further sections. The Bergeron diagram for this system is
shown in fig. (2)b.

Let us consider an observer moving at the wave speed up and down
along the transmission line. Every time this observer travels the dis-
tance AB or BA it takes him one time unit. Here the time unit corres-
ponds to the transit time of the line. Suppose he is leaving the re-
éeiving end B at a time -1. This means one time unit before the step
voltage is applied at A. We shall notice in the following paragraph

that it is necessary to have some information of the past history in a
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short periocd of transit time.

Consider equations (11) and (12). Every time the observer travels
the distance AB and BA we sg;uld be able to show the straight lines
corresponding equations (11) and (12), respectively. He will reach A
at time zero just as the step is applied. We know voltage and current at
time -~i at B is zero. From this equation (11) becomes a straight line
with the form of e = Zi passing the origin and intersecting the step
voltage e at point oA in Bergeron diagram at time zero., The slope of
this‘line is +Z where Z is the line surge impedance., This line is rep-
resented by o, oA as shown in fig. (2)b. Now at point oA (o represents
time zero and A represents terminal A in fig. (2)a)we know voltage and
current at time zero. In the next step when the observer travels from
A to B we know already the past history for the next step time +1. The
equation describes the relation of voltage énd current at this time is
equation (12). This is a line passing through point oA with the slope
of -Z and intersecting the resistor characteristic at point 1B, The
characteristic of his travel from time -1 until time +1 is the line o,
oA and oA, 1B.

The intersection of the line oA, 1B with a line representing the
characteristics of the resistor tells us the required voltage and
current at B at time +1. We may notice that the characteristics of
- the resistor can take any degree of complexity without really making
the problem more complicated.

To continue the solution of this problem for further steps,‘fho
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observer simply continues his travel back and forth along the transe

mission line and the diagram is built up as shown in fig. (2)b.

Lumped Elements

Since the Bergeron method is not our main objective and it is
only to give us a basic background for our further discussion in
chapter two, we limit ourselves to a brief description of the handling
of lumped elements in the Bergeron method.

Important elements in power systems are of course lumped induc-

is presented by the Bergeron method. The one possible disadvantage in
this case is that the results must be a little approximated. The |
approximation taken in this method is quite controllable and the result
obtained by the Bergeron method is not worse than those from other
processes.

To show the process of the method a lumped inductance example is

illustrated as follows:

Lumped Inductance

Consider a transmission line terminated by a lumped inductance as
shown in fig. (3)a. Let us assume some disturbance is applied at A and
the voltage and current at B is known at time t. Since we know the re-

quired information of B at time t, the point By can be plotted in fig.
(3)v.
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The voltage across an inductance is given bys
e=1,.di/dt (13)
This will be handled by using finite differences rather than

differentials, therefore let dt = h.

We want to find the voltage at point B at time t + h, The point
By Must be on the straight line characteristic Agyn_ ¢ B seen by an
observer leaving A at time t + h = At, wherest is the transit time from
A to B Now if h is small enough that we can assume e varies linearly
in this interval, e{ and et4h are the voltages at point B at time t
and t+h respectively, then we may write equation (13) in the form of:
((eg + et4h )/2) e h =1 ., ai (1)
or
et+h = -e¢ + L/(h/2) . di (15)
Equation (15) is plotted in fig. (3)b represented by the line Bt, Se
The slope of this line is L/(h/Z); This means tan O = L/(h/2).

Voltage
A B
L
(a)
/7
1 /(b) Current
Fig. (3) -
B¢

Since we know the angle &, we can plot the equation of the line

Bi,S and since the point Bt is symmetrici;v_wiﬂm By, the line B{_, S can



P e 13

o

ersects the line Ay,p .49 P at the desired

be plotted. This line int
point By,pe
The complete diagram is built up by assuming that an observer

travels back and forth along the transmission line AB. The surge im-
pedance of such a line is L/(h/2) and transit time is h/2. In this
case it might be argued that the inductor has been simulated by a

transmission line.

Lumped Capacitance and Series ILumped Circuit

The same process could be done in a case of Jumped capacitance.
In this case the surge impedance is h/2c and the line transit is h/2.

The series lumped circuit can be handled in the Bergeron method
by the method just described, which may be "Cascaded" and this enables
us to solve any combination of such elements in any electrical circuit.

The Bergeron method provides a powerful tool for the solution of
transient voltage and current in electrical engineering. So far this
method taught us how to determine the transient voltage and cufrent
graphically in an electrical circuit. The concept of this method will
be applied to our next discﬁssion regarding the digital computer solu-
tion.



CHAPTER III

DIGITAL COMPUTER TECHNIQUE

The computation of the transient voltage and current was discussed
by means of the graphical method in the previous chapter. As mentioned
before, the disadvantage of this graphical method is the errorsAmade by
drawing and the time consumed for the solution of a large power system.
However, graphical errors and the problem of time can be eliminated by
means of digital computation.*

The important digital computer solutions which are discussed in
this chapter are the method of characteristics and the trapezoidal rule
of integration. Since node equations play an important role in digital
computer solution, these are discussed first and then the trapezoidal

rule of integration is presented.

Node Equations

The system of node equations, applying the Kirchhoff's current
law, is an important fundamental base for a digital computer solution
of a large power system. In order to derive a general formula for node
equations in any electrical circuit, consider the circuit shown in
fig. (4). The Kirchhoff's current law states that the sum of the currents

at each node is zero.

*of course, the main purposes:of using digital computers are
automatic solution and faster facility in obtaining data.
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Applying this law at node 1, 2, 3, and 4 with direction of current

as shown in fig. (&) (the arrow represents the direction of current),

gives
yg(a - V1) = Ya(vl - 2) + Yc(Vl - Va) (16)
0=Y(V% = ) = L, (V3 - 0) - Yq(V3- V) (18)

and for node 4

0= -Y (Y, - 0) + Ya(V3 = W) + Yo(Vy = Vi) (19)
Rearranging this equation and letting Yge =1, gives .
I = V(T + Y, + X)) = VoY, = WY, (20)

0] Vsz - VB(Yb + Ym + Yd) + Vqu (22)

o
|

= V1Yo + V3¥g - Wy(¥p + Y + Ye)o (23)

'Yé , z b
! —-erL—*,

TS T
e Yy =9 ¥y —

Fige (&)
The node voltages V;, V,, Vb, and V, can be determined by solving the
four equations 20 = 23 simultaneously. By knowing these voltages, all
branch currents can be found. We should note that the number of equa~
tions is one less than the number of nodes.
From the above four equations we can derive the general node

equation for any electrical circuit as follows:



I1 = ViYil + Véle + V3Y13 +

Vi¥pq + Volpp + V3¥pg +

H
N
]

I3 = V1Y31 + V2Y32 + V3Y33 +

L NN NN N ] vnY1n

sesovoe vnrzn

o000 0000 vnYBn

L [ 4 L [ ] [ ] * * * . ® L] L2 L 4 L] [ L] *e L] L L ® ©

. L] * L4 L L] * L 4 L] L d Ld . L [ ] L ° LR ] * L] L] L o

I, =Vt ¥ Vo + VY,

] =) o]
[v] -p1'E)

or

+VY +VY +....... VY ]

n nn ]

wheresin our case n = 4 and Iz, 13, and I, are zero.

Trapezoidal Rule of Integration

There are a number of ways to integrate a function and one of

16

these is the trapezoidal method which is used in many digital computer

solution techniques. In order to see the rule of this integration

method, consider function F in Fig. (5) (F could be any continuous

function).

>

d/

/ )

I
l I
|
3. 3‘ % ‘a | |
Y3 | gaq Qﬁ
P
R
o § Z 3 n-
Fige (5)

The t axis is equally divided in n small division and each small



17
division is designated byst. The area below the curve between zero
and n determines the integral of function F from O to n. Let us write
the area of each trapezoid under the curve and then by summation of all
areas, the integral of F will be found.

Ay = (1/2)yg +y1 ) st

Ay = (1/2)(Y1 +y, )ot

L ] L ® [ e L L d ° L] * L L 4 L]

L [ d L [ ] L] L] * e [ ] L] L . L]

(1/2)(yn_

+ yh-i )et

n=1 2

An (1/2)(yn-1 + yn ) ot.

By adding all areas the total area will bes

n
A= (At/?.)(yo 2¥9 427, + o o o o 4 2y, ¢ + V) =5th
o
Of course one could say this result may not be accurate enough since
an approximation is used. This will depend on how small t is. The use
of At will be made moré clear in the next part where the digital computer

solution is discussed.

DIGITAL COMPUTER SOLUTION OF ELECTOMAGNETIC TRANSIENTS

A digital computer solution of transients can be applied to power
systems containing long lines with or without lumped parameters. The
process taken in this digital computer solution is a step by step pro-
cedure that proceeds along the time axis where each step is designated
by At. This short interval of time may be either fixed or variable.

Starting with initial condition t = O, the state of the system in the
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sequence of steps is found at t =at, 2at, 3at, .... up to the maximum
time t, . for a particular case. In every state of the process the
past history is known. This means when we are solving for time t the
previous states t - At, t = 26t, t - 3at, and back to the initial con-
ditions are known. In the case of long lines the past history used for
time t is t - Twhere Tcorresponds to the travel time of the line. 1In
the case of lumped parameters At corresponds only to the previous step
where it can be any arbitrary length of time. Therefore a limited
portion of this "past historj“ is used for long lines in the method
of charactefistics and in the trapezoidal rule of integration.

Equivalent impedance network of a line and lumped parameters are
presented by the equatlions derived by the method of characteristics
for lines and trapezoidal rule of integration for lumped parameters
and the record of past history. This will be made clearer as we first

discuss lossless lines and the lumped parameter networks.

Lossless Line

In order to derive an equation by the method of characteristics
for lossless line and consequently to build an equivalent impedance
network for the line, we have to remind the reader of some material
which has been already discussed in chapter two. This also helps us
to see that the digital computer solutipn is actually Bergeron's
method for a lossless line.

Consider a lossless line with inductance L and capacitance C
per unit length (fig. 6). The relation of voltage and current at a

point x along the line is
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L(di/at) (24)
c(2e/2t) (25)

-de/dx

-3i/ox

The general solution, first given by d'Alembert, is:

1(x,t) = Fj(x-at) + F,(x+at) (26)
o(x,t) = 2,F;(x-at) = Z.Fy(x+at) (27)
where
2 =\/1/C

a = 10ET”

: o———-— - e e -w’
Terminal a Terminal b
(¢ e s e —

Fig. (6) Lossless Line
and by some manipulation which was discussed in chapter two, equations
(26) and 27) can be written in the form of:
e(x,t) + Z.i(x,t) = 22.F (x = at) = constant (28)
e(x,t) = Zoi(x,t) = =2Z2.F (x + at) = constant. (29)
As we see equations (24) - (29) are the same as equations (1) - (8)
in the previous chapter.

Now with the same imaginary observer as before, who travels along
the line, equations (28) and (29) seen by the observer are constant.
This means when he travels from b at time t = T equation: (28) is équal
to equgtion (29) when he reaches a at time t. If the travel time to get
from b to a or a to b is

T=1/a
(1 is the léngth of the line), then with the same logic we have:
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0g(t) = Zi, ((8) =e(t -T)+ 28 , (t-T) (30)

eb(t) - Zib,a(t) =e (t-7)+ 21a,“b (t = ¢) | (31)

12,0 and"'ib’a can be found from equations (30) and (31) as follows:
1a,0(t) = (1/2)ey(t) + (<(1/2)e(t = T) - 1, 1(t -7)) (32)
ib,a(t) = (1/Z)eb(t) + (-(1/Z)ea(t -7) - ia,b(t - 0)). (33)

Consider equation (32); the second term of the right hand side of this

equation can be simulated as a source current parallel with Z and let

us call this current I_ (t-7 )e Therefore equation (32) can be written

in the following forms
1, p(8) = (1/2)e (8) + T(t - T) (34)
where
To(t =T) = «(1/2)ep(t «T) = 1, o(t = T). (35)

Consequently the equivalent impedance network by considering equations
(34) for node a is illustrated in fig. (7).

2. @ ia,b(f'>
e (t) ’ L(t- T)
o
Fige (7)
Similarly,for node b equation (33) can be written in the form of:
1p,a(t) = (1/2)ep(t) + I(t - T) (36)

where

Iy(t - T) = =(1/2)ey(t = T) = 1, (t - T)- (37)
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and the equivalent impedance network considering equation (36) for
node b is shown in fig. (8)

b

<
ib,a(t)

Ip(t - T) 2 | en(t)

Fig. (8)
Now, if fig. (7) and (8) are combined in an imaginary box, the
complete equivalent impedance network of the line is a two port net-

work as shown in fig. (9).

a  15,4t) | e
- 1 N
l Ib(t-Z') I
e (t) l 2 Z (;) Z l
e | I, (t-7) | oy (t)
l& | : | v o
—_ d

Fig. (9) Equivalent impedance network

This fully describes the lossless line at its terminals. As the
diagranm shows, the terminals are not connected; of course the conditions
at the other terminal in respect to another are only seen indirectly by
- means of equations (30) - (33) with a time delay .

Although the method of characteristics can handle lossy lines also,
the differential equations produced are not directly integrable. There-
fore, losses are neglected at this stage. They may be included later as

equivalent lumped resistances.
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In order to indicate the complete procedure a digital computer

solution for a lossless line is illustrated in full detail as follows:

Test Case No. 1

Consider a series of three different lines, which are terminated
by an infinite line. A rectangular voltage impulse, coming from an in-
finite line, is applied to these lines. This is shown in fig. (10).

The voltage at node 4 is desired for maximum time of 20 micro-seconds.”

V=1 Peue
I' -scl=0° 1 1=600 ft 2 1=500 ft 3 1=600 ft 4 1= g
- o~ < < —0
Z=500 Z=50 2=500 2=50 2=500
a=1000£t//"s a=600ft//'s a=1000ft/I"s a=600ft/r"s a=1000ft//s
(a)
1 2 3 4 g
O0—AN' W\ < 0 O o
R=500 (b) R=500
Figo (10)

€1 = 600 rt(600ft/ s) = 1/5 | L
T2 = 500 £t/(1000ft/ S) = .5 S
T3 = 600 rt/(600ct/ 8) = 1/5
Infinite line means the travel time on the line is more than the
time of study and when a voltage impulse of 1 p.u. is coming over this
line, it is represented by voltage impulse of 2 p.u. coming over its
*This problem is taken from L. V. Bewley, Traveling Waves on

Transmission Systems, (New York: Dover Publications, Inc., 1951),
p. 100,
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equivalent resistance R = Z. Infinte line 4, g shown in fig. (10)a

is represented as a resistance to ground with R = Z as shown in

Fig. (10)b.
Given datas
0 t<0
Excitations e(t)={
2,0 )0
at = .25/%
taax, = 2003
Solution:

The first step is to draw the equivalent network impedance of
the system. This could be done by using fig. (9) for each node and the
second step is to write node equations for all nodes. For this type of
problem (lossless lines) there is no need to put node equations in ° ’
matrix form, because all equat?ions can be solved independently. (The
equivalent impedance network of the system is completely shown in
fig. (11).
Node Equations:

Consider each node in fige. (11); the node equations for node 1,
2, 3, and 4 are found as followss

i),p- 14(t) = (1/50)e; + Ij(t = Ty) = (2 - ¢)/500 = 0 (38)
1,4 *1p,3 = (1/50)ey + Ip(t = ) + (1/500)e, + Ip(t-F) =0 (39)
13,2 + 13,4 = (1/500)e5 + I5(t = 5) + (1/50)e5 + Ij(t - T3) =0 (40)

13’4 +1, = (1/50)e, + I, (¢ -25) + (1/500)au =0 (41)
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5008 4 i3 2(t)

_ = |
- 9
e ! $Q
eca |
-

q q ’\N ’:\ L ~~ ~
TP R R G0 gt 0F f0 i
s o WA

<

500 2
A A"

Fige (11) Equivalent Impedance Network
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Node voltages ey, ey, e3s and e, can be found from equations

(38)=(41) in the following form:

ey(t) = (500/11) (2/500 - I;(t - T;)) | (42)
o,(t) = (500/11) (-I(t - T3) - I (t - 7)) (43)
e3(t) = (500/11) (-I3(t = £p) = I5(t = T3)) (44)
ey (t) = (500/11) (-I(t - T3)) 5)

In order to compute the node voltages, we need to compute I
and I'. By considering equations (32) - (35), we haves

1,1 (£) = (1/50)e,(t) + I (t - T;)

I)(t = Ty) = - (1/50)ep(t - T7) = 45 1(t = T7)

1y,2(t) = (1/50)e3(t) + Ij(t - T3)

I(t = %) = - (1/50)e1(t = 1) = 13 2(t -~ T3)

13,2(t) = (1/500)e3(t) + I3(t - T,)

1, 5(t) = (1/500)e,(t) + L(t = )

13('0 - l‘z)_ + -(1/500)92(1: -T,) - 12,3(; - T,)

iy,3(t) = (1/50)g,(t) + T, (t - 2'3)

I3(t - T3) = =(1/50)ey(t = T3) = 1 3(t ~ 3)

ig 5 (£) = (1/50)e5(t) + Ii(t - %)

Lt - T3) = =(1/50)e5(t = 73} = 15 4 (t - T5)

Now we have all the information to write a digital computer
program for this system.
Digital Computer Program:

Before we write a program, we have to describe some notatiéns‘

used in the program, These notations correspond to the previous nota-
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tions and they are as followst
Tl = maximum time

= t

= (Tmax./ ot) = units of time

B H U
i

= time

K=7q =§ (in unit of time)

N=T, (in unit of time)

E(n,I) = en(t) n=1, 2, 3, &

R (2,I) = 12,1(1'.)

R(1,I) = io,;L (t)

P(2,I) = 12’3(t)

The program written on the next page is in basic language and has

been executed by G. E. Mark IT,
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100 DIM E(4,100),R(4,100),A(3,100),B(%,100),P(3,100)
110 READ T1,D

120 READ E(1,1),A(1,1),A(2,1),B(2,1),E(3,1),E(2,1)
130 READ A(3,1),B(3,1),E(%¥,1),B(4,1)

140 PRINT "TIME","VOLTAGE AT NODE 4t I
150 J=1+T1/D

160 FOR I=2 TO J

170 T=D*(I-1)

180 K=I-4

190 N=I-2

200 IF T) .75 THEN 210

204 k=1 ——

206 N=1

210 E(1,I)= (500/11)*(2/500-A(1,K))
215 E(2,I)=(500/11)*(-B(2,K)-A(2,N))
220 R(2,I)=(1/50)*E(2,I)+B(2,K)
230 A(1,I)=-(1/50)*E(2,I)-R(2,I)

240 R(1,I)=(1/50)*E(1,I)+A(1,K)

250 B(2,I)=-(1/50)*E(1,I)-R(1,I)

270 E(3,I)=(5oo/11)¥(-B(3,N).A(B,K))
280 R(3,I)=(1/500)*E(3,I)+B(3,N)

290 A(2,I)=-(1/500)*E(3,I)-R(3,I)
300 P(z,I)=(1/500)*E(2,I)+A(2,N)
310 B(3,I)=-(1/500)*E(2,1)-P(2,I)
330 E(4,I)=-(500/11)*B(4,K)

340 R(4,I)=(1/50)*E(4,I)+B(k4,K)



350 A(3,I)=-(1/50)*E(4,I)-R(4,I)
360 P(3,I)= (1/50)*E(3,I)+A(3,K)
370 B(%,I)=-(1/50)*E(3,I)-P(3,I)
380 PRINT T,E(4,I)

390 NEXT I

400 DATA 20,.25

410 DATA +0,.0,.0,.0,.0,.0

420 DATA .0,.0,.0,.0

999 END

The result is printed on the next page.
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In the previous example a digital computer solution for a loss-

less line was fully described. In order to see that different types
of systems with a lossless line are terminated in a resistor, induector,
or capacitor, some examples of traveling wave on single phase lines
will be illustrated.

The following examples are taken from H. Prinz, W. Zaengl and
0. Volaker.* |

In most examples, the line is assumed to be lossless and the
surge impedance for a single phase line with a R'= and G'= 0 iss

2z =vL'/c’

rt=1./1'¢c

and travel time is:

where
i = length of line
L'= Series inductance per unit length
C'= Shunt capacitance per unit length
is Line Terminated in R (R) Z)

Energization is from dc source. The result is shown in fig.v(lz),
a, b, ¢, and d.

R= (1/10)2 1,

P Sl
- -

*H. Prinz, W. Zaengl and 0. Volaker, "The Method of Bergeron for
Solving Traveling Wave Problems" (in German), Bulletin SEV, Vol., 53,
(Swiss Association of Electrical Engineering, August, 1962), pp. 725-739.
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3. Line terminated in R (R>Z), internal resistance R, = 2

Energization 1s from dc source.

7 S S R
Rg-‘:? ‘ﬂ z’t B
> Ya 1Y
€ Re22 Pl s
<
Fig. (14) L S " ©

Voltage at A and B
Line terminated in R (R)>Z), energization frem current source

Switch closes at t=0, i(t)=o for t <0, i(t)=I for t£O
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S |
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6. Reflections at line junctions
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9. Line terminated with inductance

Energization is from dc source.
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Fig. (20)
Voltage at A and B

10, Line teminated with capacitance

Energization is from dc source.

A 7T 8

P-Y

Fig. (21) In contrast to lumped inductances,
sudden' jumps in the current are
possible in distributed-parameter lines

11, Lumped series inductance

F) .
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] ' [ Y i
& 1 } o 4
T T N—w
' -~ ~ ’
: /’, “‘ I,
— v i/
@ - : l, 3
L
: I
4
':"/

Fig. (22)




12, Lumped series capacitance

Energization is from dc¢ source.
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Fig. (23)
Voltage at A and B

1l Shunt inductance in middle of line

Energization is from dc source.,
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Voltage at A, B, and X

14. Shunt capacitance in middle of line

Energization is from dc source.
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Lumved parameters

Lumped parameters are handled by the use of the trapezoidal rule
of integration using digital computers. The impedance network is de-

termined by the equivalent impedance of each element.

Inductance. Consider an inductance between nodes a and b in fig. (26).
The voltage across the inductance iss

0y (1) = op(t) = L(dt, ,(t)/at) (46)

Node a L Node b
o BOOTIN —0
Fige (26)

Let us assume that voltage and current at time t - ot are known, and
we want to find voltage and current at time t. These are determined
by integration of equation (46) from t - at to the unknown state t.
From equation (46) we have:-

(8 = (1) (o (8] - oy (t0)at

.t t
.jdia,b(t) = (1/1) S (eg(t) = ep(t))dt
%-at t-at
° t
fap(® = @) { (o, (1) - eyeiat
t-at ¢
a8 = g 0t -a8) + (/1) | (o,(1) = oy(0))at (47)
$t-at

The second term of right hand side of equation (47) can be integrated
by using the trapezoidal rule of integration and this givesz
ia,b(t) = ia,b(t - At) + (1/L)( At/Z)(ea(t) - Gb(t) + ea(t -At) -
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Rearranging this equation, we have:
1a,b(t) = (at/2L)(e (t) = ey(t)) + 1, (¢t = At) + (at/2L)(e, (t -at) -

ep(t - at)) (48)

Let the second half right hand side of equation (48) be designated by

Ia’b(t - At), then equation (48) can be written in the form of:
1,,p(t) = (at/2L)(e () = o (1)) + I, 1 (t - at)  (49)

where

Ia,b(.t -Aat)= ia,b(t - t)+ (At/Z_L)(ea(t -At) - eb(t - at)).(50)

Now by considering equations (49) and (50), (At/2L) and Ia,p(t-at)
can be simulated in a resistance and source current across the resis-
tor, respectively. Therefore the equivalent impedance network of an
inductor can be illustrated as in fig. (27).

Ia’b(t - At)

(k) Om
o L g | e——)
! D ?
e (t) ‘
1 R=2L/at °b(£)

Fig. 27 Equivalent impedance ne:t.work

As was mentioned before, the trapezoidal rule produces some
error in computation and this error is of order (At)3; now if &t be
chosen sufficiently small and cut in half, then the error will be cut
in 1/8. The trapezoidal rule of integration used in equation (48)
shows that this rule is identical with replacing the differential
quotient in (46) by a central difference quotient at midpoint between

t and t - At with assuming that e is linear during this interval.

I'd
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Capacitance
Consider a capacitor as shown in fig. (28). The voltage across

a capacitor in general is:

e(t) = 1/C jidt + o(0) (51)
Node a, A ¢ oNode b

LI

C
Fig. (28)

We wish to find the voltage across the capacitor at time (t), while
we know voltage and current at time (t - At). Therefore equation (51)
can be written in the following forms

e,(t) = ep(t) =1/C idt + e,(t = t) = g(t = t). (52)
Let us apply the trapezoidal rule of integration on equation (52),
which yields:
ea(t) - eb(t) - (1/c)(At/2)(ia’b(t) + ia’b(t -at)) + e, (t -at) -
es(t - bt) (53)
Solving equation (53) for 1, y(t), it gives:
ia’b(t) = (ZC/At)(ea(t) - 8, (t)) - 15 p(t - at) - (2¢/ ot)(ez(t - at) -
e (t - at)) (54)
If the second half right side of equation (5%) is designated as

Ia,b(t - At), equation (54) can be written in the form of:

1g,b(t) = (2C/at)(eg(t) - ep(t)) + I p(t -at) (55)

where

I p{t —at) = -1, (t = At) = (2C/at)(e, (¢ = &L) = e (t - ot)) (56)

Again by considering equations (55) and (56), (2C/at) and



42

Now if these four nodes can be reduced to two nodes, it would be
easier to solve a system than using 4 nodes. Suppose there is a ten-

circuit series of R - L ~ C branches in éwéystem, and if for each ele=-

ment we use oﬁé equivalenéunetwork impedance, we have to deal with 28
nodes. However, if each of the R -~ L - C branches can be presented by
two nodes and one equivalent resistance, we have to deal with only

10 nodes, This will be illustrated in the next digital computer solu-
tion for a series R - L - C branch.

In order to derive an equation describing the relation of voltage
and current in a series R « L - C branch, consider fig. (31)a. The
fundamental equation is:

e~ ©p = Ri + L(di/dt) + 1/05 idt + ey(0) (58)
where ec(O) is the initial condition of voltage ejacross the capacitor.

Let us apply the trapezoidal rule of integration to equation
(58). We know this rule is equivalent to using central differences;
this means e = L(di/dt) can be replaced by:

(1/2)(e(t) + o(t = at)) = (L/At)(1(t) - 1(t - at)) (59)
This is similar to equation (49). Now the average capacitor voltage
between (t - At) and (t) is:

eo(average) = (1/2)(e (t) + o, (t - AL))
S 1/c Sidt can be written in the form of 1 = C(de,/dt), by the same
'procedurq used for equation (58), i = c(deg/dt) can be written as:

(1/2)(1(t) + 1(t =at)) = (C/at)(es(t) - o4(t - At))

or

e, = (at/2c)(1(t) + i(t -2¢)) + et - ot)
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Now let us determine each term of equation (58) step by step at
(t =at) to (t), and then substitute each term in the equation and
find the final result which is applicable for our digital computer
solution,
8y =~ op = (1/2)(eg(t) = ep(t) + eg(t ~ At) -~ ep(t -at))
R = (R/2)(1(t) + 1(t - AL))
L(di/dt) = (L/at)(i(t) - i(t -at))
(1/¢) 5 1dt + 6 (0) = (1/2)(eo(t) + eg(t - At) = (at/4C)(1(t) +

o i(t - at) + o (t = A1)

Now substitut;;we;;h term equation (58) and multiply by two and
reorder; we have:
(e (t) = e, (t)) + (e, (t) = &L) - e (t - at)) = 1(£)(R + 2L/at + at/20)
+ i(t - 8t)(R - 2L/at + At/2C) + 2eo(t - At): (59)
Let the following symbols be assigneds
Y = 1/(R + 2L/st + At/2C)
P = Y(R - 2L/at + At/2C)
Then equation (59) becomes:
1,,p(t) = Tleg(t) = o, (1)) + I, bt -At) (60)
where
I,,p(t = At) = Y(e,(t =a1) = ep(t = At) = 26,(t ~At)) = Pi, (¢ = at)
For computer programming the updating of I, pcan be done
as followss
a) Compute H = Y(ea(t) - eb(t)) + Ia,b(t -At).
This is the new current, but it should not be stored.
b) Compute eq(t) = o,(t = ot) + (at/2C)(i(t - at) + H)
¢) Update I, u(t) = Y(ey(t) - ep(t) = 2og(t)) - PH



d) H should be stored into location for current, i(t) = H
For past history we should have three values Ia’ b, i, and e
By considering equations (60) and (61), the equivalent impedance

network for a series R - L - C is as shown in fig. (32).

o Ia.b(t -t
</
a o NAAAA AANAANM e AN NN < b
e ce) Y=1/(R+ 2L/ t + t/2C) I ep(t)

Fig. (32) Equivalent impedance network
When all impedance networks are replaced by each element, the
nodal equations for any network can be determined. This was explained

in previous sections. The set of equations can be written in the form

[l fw] - [w] - o
Matrix [@(t)] , {i(t)] ’ and[i] are column matrix. Part of

the voltage of e(t)] matrix is known and the other part is unknown.

Let K designate the known part and U the unknown part; then ﬁe haves
[YKUJ [Yma E’x(tﬂ ig(t) Ix

Solving for [eU(t)], it gives:

() o] = (o] - Do) ]
[eu®)] =[¥w] [ - RIRES)! (61)
(] =[] - %]

This leads us to the solution of a system of linear equations

or

where

with a constant coefficient matrix [YUU], and with At fixed.
A digital computer solution is illustrated in full details on

the next page.
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Test Case No. 2

An impulse of rectangular waveform is applied to a voltage
divider. This voltage divider has an equivalent circuit as showm
in fig. (33). The equivalent circuit is formed of ten equal sections.
We wish to determine the oscillation in voltage at low voltage end.
Voltage at node 10 and current from node 9 to 10 are desired.*
C Ro 9 19,10(t) ¢

< o— jl‘: ::——N—T"M I—~-—-IWNF“‘—I‘—""4"‘““

| [

High voltage sections Low véiiage ’
gsection
Fig. (33)
Givens

Ce =10 PF Excitation:

L = .5/H e1(t) = 1. for t30

C = 15 nF e1(t) =0 for t£9

R=1n

At = 1lns

Solutions

By considering fig. (32) for a series R = L - C and fig. (27)
for a capacitor, the equivalent impedaﬁce network for the system shown
in fig. (33) can be illustrated as in fig. (34%) on the next page.

Let the following symbols be assigned:

Y = 1/(R + 2L/at +2t/2C)
P=7Y(R - 2L/ t + at/2C)

*This problem is taken from Hermann W. Dammel, Habilitation
Thesis, submitted to the Munich Institute of Technology, May 1967, p.37.
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(o )
AN

I1 ’(%(\LAt)

Iy,2(t-at) Ip, 3(t-at)
© ©
2L/at at/2C R 2 2L/at stf2¢ R
‘& ANA—AM e WA AN ANA—ANAA
1, (t)— i, ()™
L, M,2 k5 2.
15 .0(0)" MNOR
s 32 2|
o ] ¢ Y PN
N o .
£ do & o
(@] N o \
« | +~ - i
l-(-:) i Hm \‘\
%
\
\

I9’1?£:-At)

-

./

2L/at at/2c R

1g9,10(t) =

10 2L/at R

at/2C

'y

10;0tt)

\)
19,0(t}
2
q
0013’(;
N
>3
b

|

t72ACe

Fig. (34) E:}quivalent Impedance Network
;
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Node equationss
Since we know voltage at node 1, there is no need to write the
node equation for this node.
Node No. 2:

-1124'1204'123-0

according to eqmtions (55) and (60)5we have'

-1, 2(t) = -Y(el(t) + ez(t)) - J:1 z(t - at)

2 oft) = 2¢ /At(e (t) - 0) + 12 ot = 2t)
15,3(t) = Y(ea(t) - e3(£)) + T2,3(t - &%)
By adding and reordering these equations, it gives:

-Yel(t) + (2Y + ZCe/At)az(t) - YGB(t) - Il’z(t -At) + Iz’o(t - At) +

12’3(1’. - 4at)
lets

Y' = 2Y + 2C /at

Il Yel(t)

= o + - -
Ip =-I ,2(t-At) 12 oft at) + 12’3(1-. At)
then the node equation for node Noe. 2 is:

I1 —Ye(t)-Ye (t) +I

T2
Node No. 3:
12’3(t) + iB,O(t) + iB,b(t) =0
where
-12’3(1‘-) = -Y(e,(t) - e5(t)) - 12,3(':, -At)
13,0(1-.) = 2ce/At(e3(t) - 0) + 13,0(1; - At)
i3 () = Y(eq(t) - eu(t.)) +15 4(t - 4at).
Again, by adding and reordering these equations and letting
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0= -Yop(t) + T' eg(t) - Yeu(t) + Iy
Similarly, for nodes 4, 5, ..... and 10, we haves

0 = ~Yeg(t) + Y'ey(t) = Yog(t) + Iy,

0 = -Yeg(t) + Y'eg(t) - Yeyo(t) + Ipg

0= -Yeg(t) + Y.elo(t) + ITlO

In matrix form this can be written as follows:

o

(1)=(1 -x 0 0 0 0 0 0 0]E, |+[ Iy
0 [=1]¥ Y-Y 000 0 0 Offy |+ I
0 |=[0 <Y Y=Y 0 0 0 0 O|f [+|In
ol=1]0o0 0=y Y'-Y 000 0 O :es + IT5
0|=]0 0 0-Y Y -YO 0 0jog |+|Igg
ol=]lo0o o 0 oy Y'-YOOWe7+IT7
0O|=[0 000 0 =Y Y.Yoflg |+|Ig
0|=[0 000 ¢ 0 Y-Ylg |+ I
0o]=[0 0000 00 }‘h:flq*‘f'l‘lo
which iss

[]=[] [e] + [m]
.‘
[e] = [Y] ( [1] - R
Now we are ready to write a computer program for this system.

Let us first draw a flow chart for the program and then write the
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computer program.
In order to be able to follow the program, let us define the
symbols used in the program.

T = maximum time

D= At
Rl =R
L2 =L
C = series capacitance

I:A] = [In-l, ﬁ] {
[el= 21,01 N =1,2,35 cevees 9
Y61= [In, n + ;S

(] - 121 - (e = [ml

(2] = 1]

@ - ]
BUAEREY

J1 = maximum time

R(L,M) = iL,L‘i"l L= 1,2,3’0000’9
M=1

The flow chart is shown on the next page.




Flow chart of

test, case No. '-

( STOP )
2 o ™ —

T, at,e1,R,L,C,C, ,
INITIAL CONDITIONS

4

CONSTRUCT
MATRIX Q = Y

[

STORE MATRIX W = Y"l

4

FORJ = 1 TO (T, /at)

Y

T=(J - 1)at

¥
(B]= 0] C([1] - [1])
Y

.
<

FORL= 1TO09

Y

COMPUTE

i AND Ip AT TIKE t + at

|

Y

* L4
PRINT, E AND i
—
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Compute r I;£'O grams i

100 DIM E(9,1),2(9,1),A(9,1),B(9,1),C(9,1)
110 DIM V(9,1),R(9,1),I(9,1),T(9,1),P(9,1)
120 DIM W(9,9),F(9,1),G(9,1),H(9,1),Q(9,9)

130 READ T,D,El
140 READ R1,L2,C,Cl,Al,V1,I1
150 MAT A=ZER(9,1)
160 MAT B=ZER(9,1)
170 MAT C=ZER(9,1)
180 MAT Z=ZER(9,1)
190 MAT I=ZER(9,1)
200 MAT V=ZER(9,1)
210 MAT P=ZER(9,1)

220 PRINT ®TIME","CURRENT TO 10%,*VOLTAGE AT 10%

225 PRINT

230 Y=1/(R1+2*L2/D+D/ (2*0))
240 U=Y*(R1-2*L2/D+D/(2%C))
250 Y1=2%Y+2*C1/D

260 MAT Q=ZER(9.9)

270 FOR K2<1 T0 9

280 FOR K3=1 T0 9

290 IF K2{ K3 THEN 370
300 Q(K2,K3)=Y1

310 R4=K3+1— — _

'320‘ IF K4%=10 THEN 380

330 Q(K2,K)=-Y
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340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520

530

540

550
560
570
580
590

K5=K3-1

IF K5=0 THEN 370

Q(K2,K5)=-Y

NEXT K3

NEXT K2

MAT W=INV(Q)

J1=1+T/D

FOR J=1 70 J1

MAT F=A-B

MAT G=F-C

MAT H=G+2Z

MAT E=w*H

FOR L=1 TO 9

M=1

IF Ly1 THEN 550

IF J= THEN 520 |

S=E1

GO TO 530 -

S=0. |
R(L,M)=Y*(S-E(1,1))+A(1,1) -

GO TO 570 ..

L1=1-1 Tl
R(L,M)=Y*(E(L1,M)-E(L,M) )+A(L,M)
V(L,M)=V(L,M)+(D/(2%C) )*(I(L,M)+R(L,M))
IF L>1 THEN 650

IF J=1 THEN 620
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600
710
610
630
640

. 650

660
670
680
690
700
710
720
730
240
750
760
770
780
790
800
810
820
830
840
850

S=E1
GO TO 630

S=0.

T(L,M)=Y*(S-E(L,M)-2%V(L,M) )-U*R(L,M)
GO TO 660
T(L,M)=Y*(E(LL,4)-E(L,M)-2*V(L,M) )-U*R(L; M)
I(LM)=R(LM)
A(L,M)=T(L,M)
P(L,M)=(2*C1/D)*E(L,M)+B(L,M)
B(L,M)=-P(L,M) - (2*C1/D)*E(L,M)
NEXT L

FOR N=1 to 9

N1=N+1

IF N1=10 THEN 760

C(N,M)=A(N1,M)

GO TO 810

R2=Y*E(9,1)+A1

V1=V1+(D/(2%C) )*(I1+R2)
A1=Y*(E(9,M)-2*V1)-U*R2

I1=R2

C(9,M)=A1

NEXT N

Z(1,1)=Y*E1

K1=J-1

Ti=K1%D

PRINT T1,I(9,1),E(9,1)
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860 NEXT J
870 DATA 1E-7,2E-9,1.
880 DATA 1,.5E-6,15E-9,1E-11,.0,.0,.0

999 END

This program was executed by.G.E. MARK II in basic language.

The result is shown on the next page.

e
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[ ] * L L[] L ] L ] L] ® L] e ® ® Ll & ¢ * L ] L] [ ] (- L] * L] ] ® LJ [ ] L (] [ ) ®

4.2F -8
4¢3F.~-8
HeJE-8
4.5E~-8
4,6E-8

]
I ROVOVOVYWOOVYVY

[}
NN RNEKR KK NAOARNRRNRNRANVARR M

qgﬁﬂgNT TO 10 VOLTAGE AT 10

e

L&t:=1 nSoecCe

0

1.83314E-14
5.88344E~13
9.35622E-12
9.83733E~11
7.69899E-10
4.78733E-9
2.4651 7TE~8
1.08181E-7
4.131855-7
1.39571E-6
4.22254E-6
1.15576E-5
2.88562E-5
6+ 61632E-S
1.40091E~4

2.75178E~4

5.03352E-4
8. 60069E~4
1.37627E=3
2.06678F-3
2.91792E-3
3.87927E-3
4.86513FE~-3

" 5¢76935E~3

604928E'35

0.006976

T7.22497F -3
7-3168SE=3

“Te3TT74E-3

7«53591E-3
7. 86628E~3
8¢ 34976E~3

 B.86951E-3

9.25222E~3
9.34264E-3
9.08076E~3
B.54481E-3
7.93436E-3
7.49371E-3
7+40553E~-3
7.70319E-3
8e24641E~3
g« 77769E=3
9.03962E-3
8.89569E~3
8o40122E-3

0
0

1.66487E-12
5¢46451E~11
8.89194E-10
9.57107E-9

7.6715E-8
4e8E6IBE-T
'2.57863E-6
1.15968E-5
4.53916E-5
1+57112E-4
4.8690TE~4
1+36457E-3
3.48603E~3
8.17068E-3

1 1e76621E=2
3.53576E-2.

0065759
0.113879
0.183878
0-276932
0388708
0.507324
0613001
0.680521
0.684931
0.609648 .
0454632
0.241327
10 12219)?."2
~0.183325
=0.29445
=-0.295591
-0.193238
~2. 7T8355E-2
0.138319
0.243057
0248175
0.155202
5¢53983E~3
-0.136309
-0+210143
«0.186373
=T7:92247TE-2

5¢97903E-2,

0165742
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4 TE-8
fle BE=~8
fYFE-8
5.E~8
S-IE-8
S.2E~8
5-3E'8
SvaE-s
5.5E-8
i 5. 6E~8
507E-8

6«5E-8

6+ 6E-8

6073‘8
6.8E-8
&.9E~8
TeE~-8

7-1E~8
7.2E-8
T« 3E~-8
Te4E~8
7.5E-8

706E°8;

7. TE-8
7.8E-8
7-9E‘8
8.E-8

8.1E-8
802E'8
g.3E-8
B.4E-8
8.5E-8
B.6E~-8
8.7E-8
"8+8E-8
809E‘8
9.E~8

9.1E-8
9.2E~4
903E‘8
9.4E=-8
9.5E-~8

CUUREIIR AT 10
7. 78015F =3
T7«31874E~3
Te 22514E-3
7.5251E-3

8.04834E-3
BeS514TEE-3
8. 67823E~3
e 4541E-3

7+96359E-3
T«47106E-3
7+ 24635F-3
T«%42512E-3
Te94169E-3
8+5702E~3

9.05161lE-3
9.23714E-3
9.169B2E-3
9.05985E~3

. 9«16773E-3

9. 66017E-3
1.05179E~2
1« 15458E=-2
1.24773E-2
1.31141E-2
1. 34229E=-2

"'1e35359E=-2

1¢36594F-2
10 39441E-2
1:43938E~2
10486”8E-9
1«51538E-2
1.51238F~2
le47912E=-2
1¢43259E-2
0.013961
138659E-2
140537E-2
1eA3762E-2
le46078E-2
1445696E-2
l1«42261E~2
1+36995E-2
0.0132
1.29124E-2
1:29046E=-2
1«31053E~2
1+33563E-2
1. 35048E-2
1.34784E-2

VOLTAGE AT 10
0.190656

0.126015
6+35218E~3:
=0.108057

.=~0.161066

~0.128291
-2.86038E-2
8e 633TH4E=2
0.159137
0.156318
8.52172E~-2
-0.010585

T =7.46785E-2

-6 TS357E-2
1«33047E-2
0.133167
0.239952
0.2926168
0.282K12
0237974
0204554
De220957
0.295312
0400287
0487499
0513191
0.,460817
0+«348259
0.216385
G.106184
3. TET78BF~-2
307615E-3

=2 1374TE=-2

~6e 24451 E=-2

-0.1211822

-0.176343

-0.193775

“D. 147893

-4.04611E~2
95241 4E~2
0.207631
GC.250847 .
0206911
9. 44087E-2

T=4.05258E-2

-0.145744
~0-18577
-0« 154581
-7.35513E-2




1.43E-7

T0E CURRENT AT 10
9.6E-8 1.33051E-27
9. 7E-8 ~TTTTTTTI O30 739R~2
9.8E-8 1.286977~2
9.9E~-8 0.012726¢
1.E~7 1e 262391 =2
1.01E-7 1.25315E=2
1.02E~-7 1.24508E-2
1.03E-7 1.24332E-2
1.04E~T 0.01255
1.05E~7 1e28348E-2
1.06E=7 1+ 32396E~-2
1.07E-7 1.36394E-2
1.08E-7 1.38931E-2
1.09E-7 1.39293E~-2
1.1E~-7 1.38052E=-2
le11E-7 0.013697
l1.12E=-7 1.38175E-2
1.13E~7 1.43008&F-2
lel4E=7 1¢51165E-2
l1e15E=7 1060649}3‘2
1.16E=7 1. 68632E~2
1e17E~7 1. 72814E-2
1.18E-7 le 72570FR~-2
1.19E~7 1.69289E-2
1.2E-7 1e65652F~2
1.21E-7 1.64275E-2
1e22E-7 1.66355E~2
1.23E-7 1o 71048E=~-2
1e24E=-7 1+75908E-2
1+25E=7 +1.78137E-2
1.26E-T 1.76019F-2
1.27E-7 169808E=-2
1028E"‘7 1a61623E"2
1.29E-7 le54441E~2
1.3E-7_ 1.50683E-2
1.31E~7 “1s%51108E-2
1.32E~7 1+54514E~-2
1033]“.‘."7 1-58377E"2
1e34E-7 1+.60068E-2
1+35E-7 1.58069E-2
1.36E~7 1+52621E-2
1.37E-7 1+45536E-2
1.38E~7 - 1.39315E-2
1.39E~7 1.35983E=2
1e4E=-7 " De01362
"1e41E-7 1.39018E-2
led2E-7 1¢42378E~2

. 1.44095E-2

VOLTAGE AT 10

e

T G.022027

0.1008691
Qelffnn?s
NDe1509064
D0.128056
8+ 66966E-2
3.70862E-2
-9.79344E-~3
"'3v 97979E-2
~3«66782E~2
0.01137
0.102543
0.216033
0.316089
0.366209
0.347509
0.271337
0.177788
0.118627
0.131876
0.220799
0.348943
0455176
0.482297
0.4052€9
0.244671
5.81226E-2
=8« 6H4T31E~2
-0.142712
-0.106737
~1.722871E-2
6«53583E~2
8.9€239E-2
3.87242E~-2
-Gel 965{413"2
-0.15835
«0+195195
-0144039
-1.79388E=-2
0.133763
0e247805
0275743
0.20569

6. 7346TE-2
~8.14975E~-2
=-0.180453
-0.192338
-0.117904
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1-43E_7 .

l1e44E~-7
1.45E~7
1 46E~7
| 4757
1.482-7
1e49E~7
1eSE-7

1eS1E=7
| oop.7
1'53E_7
1.54E¢7
1.55E=7
| SeE-7

1.57E-7 ~

. SEE~T
1.59E-7
1e6E=7

1e61E~7
1.622-7
1'63E-7
1e6UE~T

1.65E=7 -

L eep-7
1.67E_7
le68E~7
1.69E-7
1.7E—7

1e71E=7
1e72E=7
1o 7357
1'74E-7
1.75E-7
1.763_7

1.77E-7‘

1078E-7
1+.79E-7
1.8E=7

1.81E=7
1 8oF -7
1083277
1.84FE~7
1.85E-7
1<87E-7
| BEE~T
1 «89E=7
1.95-7

I.Q;Ef7

CURRTNT AT 10

1.44095E-2
1428 75E=2
1« 38902E~-2
1«33735E=~-2
1089549E-2
1 2808 TE~2
1e29&1 1E~?
1.33671E=2
1¢37635E~2
1.39733E_2
0013911

0013654

0.013409

loqussﬁna/ﬂ

137706E-2
1 e A LUBE=2
1+51989E=2
1657401 F=2
l.56639E-2
1] e 59689F, -2
15070 7E-2
1«46984F~-2
1o 47224E-2
1e52015E=-2
1593481 ~2
e 65495E~2
1. 668 TAE-2
1.619363_2
1¢52072E=-2
1.41027E-2
1.33061F-2
1.30815E-2
1+33978E~-2
1e394S1E-2
1043156E-a
1eI1B31E~2
0.013503

16251095 ~2
1¢15956E=-2
1«109253F-2

.1'11125E-2

1.14975F~-2
16191 77E-2
00012055

l1el17683E~-2
l.lISQSE,g

1.0q668E-2

92.98251E~3
9.83641F~3

VOUNGE‘Mrio

06117904
6. 6333E~3
0.198151
0'199689
.0el147185
8.0014S5E~2
OoOQoslz
5.37142E=2
0018611
00234692

G 4395

0190996
Oe138472
0.120792
00166278
0.268349
G.384181
0.45379
0430961
06310075
0.13372%
~2.47608E-2
wGe 6HOEBAE -2
«5.36359E -2
ToaSU4TT2E=2
0.2162
028469
00230568
6+ 42826E-2
~0e 145583
0304853
~0.339969
~-Je 23448
~3e671061E~-2
e 2TBEULE
0269224
0.154€48
2:90124%-3
~0e107384
=0el126711
=J.056575
5. 65087E=2
Deld9643
Del 779156
0.135&898
0056009
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1.92E~-7
1 o93E"7
1e94E~-7
1.95E-~7
1.96E~7
1«97E=7
1498E-7
1.99%-7
2eE-7
2.01E-7
2.02E-7
2.03E=7
2:04E~-7
2.05K~7
2.06E~-7
2.07E-7
2.08E-7
20091::"7
2e 1E-7
2¢11E-7
2.12E-7
2.13E-7
2e 14E-7
2¢185E-7
2¢16E~7
2.17E-7
2.18E~7
2+19E~-7
2.2FE-7
2.21E~7
2+22E-7
2.23E-7
2.24E«7
2.25E~7
2.26E-7
2¢27E~-7
2028}:'7
2.29E-7
2.3E-~7
2+31E-7
2.32E~-7
2. 33E-~-7
2 3’4?"7
2.35E-~7
2+ 36FE~7
2.37E-7
2¢38E~7

CURREXT AT 10

9.97531E~-3
l1.02118E=-2
1.03503E-2
1.03026FE~-2
1.01256E~-2
9.9635F-3

9.93917E-3

1.00677E-2

1.02488E-2
1.034228E-2
1202774E-2
1.01135E~2
100194E-~2
1.01638E-2
1.05921E-2
1.11669F-2
1.16195E-2
0.011694

1.13024E-2
1.05976E-2
9.91028E-3
9.57517E-3
9.739061F-3
le02614E-2

1e07728E-2

1.08678E-2
1.03311E-2
9.26931E-3
8.07045E-3
7.20369E-3
6. 9664EE~-3
7.31796E-3
7.89525E-3
8.20916E-3
7.91513E-3
7.00975F-3
5.84031E-3
4.92032E-3
4o 64045E=-3
5.04901E-3
5.81197E-3
6+ 38899E-3
6+ 32962E-3
5.52831F~3
4.29533E-3
3.19973E-3
2. 7651E-3

VCLTAGE AT 10

~1.29586E~2
~3.349]13E-2
2.67175E~3
0.074962
0.150127
0.20259
0.226348
0232335
0.235097
0239353
0.23642
0213164
De166859
0114489
B.79079E=-2
0115498
0.200722
0.311877
0.392215
0.38779
0278866
9.65193E-2
-8.72938E~2
-0.193623
=~0177587
-5.42053E=-2
0106545
0214718
0'207849
B8.52919E-2
~B.9BBHSE-2
~0.223844
~0.242508
~0.132497
S.05415E-2
0.211483
0267608
0194388
3.95426E-2
-0.103124
-0e146251
-0.058886
0114315
0.276272
0.331236
0.239825 .
4.45249E-2
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TIMS

2¢39E-7
2e4F~7
2:41E-7
2 42E=7

2-43E'7'

2.44E-7
2045E‘7
2e46E-7
2e47E-7
2+ 48E~7
20495“7
2.5E-7

251E-7 .

20525'7
2.53E-7
2¢54E~7
2¢55E~-7
2f56E‘7
257E=7
2.58E=-7
2-593'7
2.6E-7
2.61E-7
2¢62E~7
24 63E-7
2. 64E~7
2¢ 65E~7
2.66E~7
2.67E~7
2+ 68E~7
24 69E-7
2¢7TE-7
2.71E-7
2e¢72E-7
2.73E-7
2074E'7
2. 75FE~7

CURRENT AT 10

341821 7E~3
4+19587E-3
5.23213E-3
5.69991E-3
5.30791F-3
«22535E~3
2.99889E~3
2.26741E-3
2.42536E~3
3.4128E-3
4eTH2TEE-3
5.75176F~3
5¢94051E-3
5.2274E-3
2.98376F-3
2.83635F-3
2.34293F-3
2.71001E-3
2.69574E-3
4.7419E-3
5.26087E-3
4.92751E-3
3.8296E-3
2+ 40819E-3
1.22764E-3
6.97811E-4
B+ 8TETIE-4
1.51552E-3
2.10889E-3
2.24461E-3
1+ 74704E-3
7+5277T4E-4
-3. 7821 3E-4
-1.24915E-3
=1+6135E-3
~1.47411E-3
«1.05636E£-3

VOLTACT AT 10
-0.1496%12
=0.230145
~0+.138557
90480 79E'2
0.3672982 .
0.536008
0.528482
0.345266
B.07246E~2
~0.128808
-0e17491
~5e29946E-2
0.224853
0466737
0568315
0.475838
0232651
= e38258E-2
-0.222117
-0.222588 -
-5.59017E=-2
0184502
0.370802
0404667
0264509
1.35849E~-2
-0+23329¢6
-0.2366309
~0331969
-0.155012
TeT7T7309E-2
0.261284
0.32162
De246578
8.57488E-2
=7.78279F -2
~0.16847
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4.2E-8
Qe JE-8
de6E~8
4.8E-8
5.E~8
S5.2E-§
Se4E-8
Se.6E=~8
5.8E~8
G.E-8
6.2F~8
6« NE=-E
6+ 6E-Y
6.8E~&
T«E-8
Te2F~8
T+ 4F~8
7.6E-8
7-8E-8
8.E-H
_ 8.2v-8

At = 2 nSoc.

CURRENT TO 10

o .
3¢95973E-10
1.0477F-8
1¢34325K~7
1«11072E-6
6+« 65004806
3.0673E-5
1131958~4
Se42545E~-4
B.64058E~-4
1.83661E-3
3¢31295E-3
5.097071~3

6+ 72786E=3-—
Tt o TGS GE =3

7.93802E-3
T« 80699% -3
7+¢93€06E-3
8.49512E-3
‘Be97341F~3
e 75759E~3
Te96458E~-3
74581 3F-3
TeBA1H9E-3
Be61E91E-2
Be72201E-3
Te92955E-01
7«25074E-3
Te 618921~3
e 709GYE=-3
9« 1EGONF -3
He 788N AUF~-3
Be 6H646F~3
9« 87T75E=-3

1«16978FK~2
1.37014F-2
1:27081?}-‘3
1.29861E~-2
1.42314F-2
1.53735E-2
1¢51042E=-2
0.013891

UVOLTAGE AT 10

j= N o)

21

S5e GCATHAE-B
105024E'6
1e934R26E~5
1+ 60322E~4
9.59736E~4
4+41043E-3
1.61338E=-2
4+.B0359E-2
0.11767S
0.239446

0.200804

0543081,
0869764
0408546
9.72993E-2

-0.192367

-0.263324

-7.58422E=-2
0.177954
0.235732
3.900448-2

-0.18E547

-~0+174086
5.55022E~-2
Ue2147389
0.105492

~0.116265

6137492
9. 1594KE~2
0.268%833
0.220399
NeQGTOTE-2
B. TR32LE=2
0.+34225
0491665

« 240043
G990 7TEE-2
7+32841E-2
0.201004
Oe!660664
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B IT.=-8
806E"8
8.8E-8
O.F-8

G258
9.4E~-8
9.6E~8
9.8E-8
leE=-7

1.338075-2
1« 401 7SE~-
1e 4448 SF -2
1. 380227 -2
1e 285602F -2
1¢29415F5-2
1« 365/43E=2
1e¢ 35€28F =2
1.25707E-2

=0«098411
Qe 2THHTH
~(.122471

0.173095
Ve 197307
1e459411%-2

=T i86NBE~2

3.58113F~-2
N11%K&3

The curves are shown on the following page.
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Voltage at node 10 (e3o(t)) and current from node 9 to node 10
(19’10(t)) were plotted in fig. (35), where first t was selected 1 nSec.

and then 2 nSec. From these figures, the significance of selection of
At appears. The peak value of ej1p(t) is 0.6849. Volt ;- at t = 26
SeCes and .5697 Volt: = at t = 26 Sec. when t is 1 nSec. and 2 n Sec.,
respectively. This shows that during time 26 nSec. and 28 nSec. that
is t = 27 nSéc., one point has been ignored in fig. (35) and this is
because of selection of t = 2 nSec. This difference is the same for
19,10(t). which becomes clearer by studying the two curves.

From the above discussion, we note that the smaller &t is the

more accurate of the calculated data.

Nonlinear and Time-~Varying Parameters

Nonlinear and time-varying parameters can be handled as well as
linear parameters. However, when there is only one nonlinear parameter
in a system, the solution is still linear and when there is more than
one nonlinear parameter, the entire system becomes nonlinear and thus
the solution gets very complicated.

Consider equation (61), when there is one nonlinear parameter, it
is not included in matrix [&]. To find an equation describing the
relation of voltage and current, ia,b can be considered as two currents
with two additional nodes:

ip ® ia,b and i, = 'ia,b
The equation consists of two parts; linear and nonlinear. By

superimposing the two additional currents i,= i, = 'ia,b’ equation (61)
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can be written in the form of:

ey(t) = ey(t) + 2 . a,b(t)
\——Y-J — > /

Linear part nonlinear part

The linear part is computed by ignoring the nonlinear part.

Matrix‘:zl is the precalculated difference of ath and bth columns of

[?UU] -1. By considering the two simultaneous equations derived by the
linear network equation and the nonlinear equation, which is the char-
acteristic of the nonlinear element, current ia,b(t) can be found as

follows:

a(t) - oy(t) = (1) - oy(t) + (7, - 23, (1) (62)

N Y
linear part nonlinear part

Let us put equation (62) in a general form as followss
o(t) =A - B, ,(t) (63)
The nonlinear equation in the form of given characteristics is:
0g(t) = oy(t) = £(1, ,t)) (64)

The nonlinear characteristic can be presented point by point
and by each set of points, a linear equation is made and all equations
are plotted as piecewise linear; then the result will be the character-
istic of the nonlinear element shown as a curve. This 1s represented
by Bonneville Power Administration®s program.

Now consider fig. (37), where the characteristic of a nonlinear
element as piecewise linear and a linear network equation in the form
of equationA(63) are plotted. The intersection of these two curves
gives the value of ia,b(t)‘ For each step, when t changes the lineag

network line moves parallel with the latter one and every time a new
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value is found for ia b(t.). When ia b(t) is known, it can be used in
] 9
equation (62) and solved for e(t).

e (t) A -
A nonlinear equation

| network equation

I / eqe (63)

[
srlution

|
> ia,b(t)

Fige (37) Solution for nonlinear parameter.

A nonlinear characteristic can represent any type of nonlinear
element, In the case of a lightning arrester, since there should be
a certain voltage (vbreakdown) until the current be discharged,
ia,b(t) remains zero until voltage breakdown and in the case of a sys-
tem with one lightning arrester, the entire system is really linear until
voltage breakdowne.

When a nonlinear element is a time varying resistance, equation
(64) becomes simpler. Since resistance is a function of time, equation
(64) can be written in the following forms

aa(t) - eb(t) = R(tR) . ia’b(t)

When a nonlinear element is an inductance, the characteristic is

usually defined ast
?Uz f(ia,b )
and the total flux iss
P (t) = (e, (t) - e (t))at +#(0) (65)
Now when the trapezoidal rule of integration is applied to

equation (65), it givess
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0, (t) = o (t) = (2/at)f(1, (1)) - C(t - at),
~— C(t = At) can be considered as initial condition or past history and
for time zero and (t - At), it is respectively as follows:
| c(0) = (2/5t) #(0) + ef0) = e,(0)
C(t =At) = C(t = 25t) + 2(e (t = AL) - e (t =AtL)) (66)
When a system consists of nonlinear elements, the time of study

may not be the same as the time-varying of nonlinear elements, There-

fore, it may be more than one time-varying and this makes the program

longer.

In order to see how a system with one nonlinear element can be

solved by digital computer, an example is illustrated on the next page.
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Test Case No. 3

. “consider-a .systém having a nonlinear element (lightning arrester)
;sho-wn on fig. (38). A lightning stroke hits a line close to a sub- .
station, whilch can be considered as a current :hnpulsew with. a character-
istic as shown in fig. (39). The voltages at nodes 1, 2, 3, 4, 8, and

discharge current at lightning arrester are to be found.™*

b
[+)
1 g (lightning stroke) =0.1/"s
7 > tpax // (=1.1 /5
—— b 3
z;=001 S
|v\\ ' T= 1% 2= 30
lightning S, : > &
arrester 2 (cable)
£,=0.17% _[—
1.1009 F 5000 S2
Z=370 T 1 I
infinite (+¥$tpax) T
. 7=0.1 /%  transformer
bolo10~? F
I“igo (38 )

Given:

Zs = 370stall lines except the line from 2 to 4 which is 30 ohm

t = time of study = .1 /’sec., which is the smallest wave travel

time on line. This can be smaller, but not more than .1 sec.

*This problem is taken from Hermann W. Dammel, Habilitation Thesis,
submitted to the Munich Institute of Technology, May, 1970, pe 37.
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Characteristics of the lightning arrester:

Vbreakdown = 610 V
current i in KA’ 0 I S| 1 |25 |25 (3 | 10

voltage e in KV, 0 ’4&0 ,510 ‘ 540 l 580 I 590 I 660
Characteristic: of the lightning sﬂrge is shown in fig. (39).

(E) A
18 =8 KA

——= 4 KA

e = en — — ——

1/’ ) 50f§ | t
Fige (39)
Solutions
The equivalent impedance network of the system is shown on the
next page.
Let: U= wave travel time on a line
At = time of study
The node equations can be written as follows:
Node 8:
1,(t) + 183(':.) - ig(t) = 0
(1/370)eg(t) + (1/370)eg(t) + I g(t - T) - ig(t) =0
eg(t) = (370/2)(ig(t) = I,;g(t - 7))
Node 3:
iBa(t) + iBz(t) + 136(t) =0
(1/370)e5(t) + Igz(t = T') + (1/370)e5(t) + Ij5(t - Tp) + (1/370)
e3(t) + Ig(t -'c;) =0



o

_% Qz(t)

(g @) o
l Gu®)
¥ G 2!

Py

gsmz 2 Q

3on

o J’
X® §:%°

v
- — — - - &
Z{;/)Z‘ ning —
Qrrester

Fig. (40) BEgivalent inpedance network




S 75
e3(t) = (=370/3)(Ip3(t =T) + j5(t = 1) + Izt - 7))
Node 23

Before Vpreakdown 610 V3

123(t) +159(t) +1(t) =0

(1/370)e,(t) + Ipy(t = T) + (1/370)e,(t) + Iy p(t - T) +
(1/30)ep(t) + Igp(t =) =0

ex(t) = (-1110/43)(Ipy(t = Z) + I;p(t =T2) + Iy(t - 73))

At and after Vpreakdown?

13(t)+1 1(t)+14(t)+i (ty =0

o2(t) = (-0 (Epp(t -5 + Typlt =T + Tgp(t - & 5) - (1)

linear part (67)
This also can be written in the following form:

ex(t) = ep5(t) - 1110/43 ig(t) (68)
Node 13 '
12(t) + 1 (8) +1,,(t) =0
(1/370)91(1-.) + Ig(t -7;) + (ZC/At)el(t) + Ica(t = 5) +
- (1/370)e4 (t) + IM(t -Z,)=0

el(t ) = (~1/(2/370%2¢c/at)) (Im(t -5)+ Igi(t -at) +I,,(¢ - g))
Node 43

15(t) + 4,(t) + 1,4(¢) =0 ,
(1/30)e,(t) + Iy (t = T3) + (2C/at)ey(t) + Ig(t -at) +
(1/5000)e,,(t) = 0
oy(t) = (-1/(1/30+2C/ot+1/5000))(Ipy(t = &) + Igy(t -ot))
Nodes 6 and 7:
eg(t) = =370 Tpe(t - T,)
o,(t) = =370 Ip,(t - 73)
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Considering the lightning surge characteristics, in fig. (39),
current ig(t) can be determined in the following form:
ig(t) = Bt for 0 <t 1
ig(t) = (~4/49)t + 396/49 for 1 <t <50
The characteristic curve éf the lightning arrester 1is plgtted
in fig. (#1) by having 7 points given in characteristic of the light-
ning arrester. Equation of the line between each two points is as
follows: |
op(t) = 880 12(t) for 0 ep(t) g Nho i
ex(t) = 370 + 140 1,(t) for 440 L ep(t) < 510
o (t) {540
ez(t) = 480 + 40 iz(t) for 540 £ ez(t) < 580

ez(t) = 450 + 60 iz(t) for 510

e,(t) = 530 + 20 1,(t)  for 580 (e (t) < 590
e,(t) = 560 + 10 1,(t) for 590 e, (t) €660

Now consider equation (68) which is:

2

ey(t) = ep,(t) - (1110/43) 14(t)

Let us find them;ntersectionwof”tﬁi; line with nonlinear segmgnts of
the lightning arrester as shown in fig. (41). '
1) i,(t) = eLz(t)/BBO + 1110/43) for i,(t) & 5
2) 12(1-.) = (eLz(t) - 370)/(140 + 1110/43) for 12(1-.)\<1.o
3) iz(t) = (eLz(t) - 450)/(60 +1110/43) for iz(t)\<1.5
4)  1,(t) = (e ,(t) = 4B0)/(KO + 1110/43) for 1,(t) 2.5
5)  1,(t) = (e,(t) - 530)/(20 + 1110/43) for 1,(t)3.0
6) 12(t) - (eLz(t) - 560)/(10' + 1110/43) for 12(1.)410
As was mentioned before, the system is linear up to voltage
breakdown and therefore eg(t) = e72(t)s Once ep2(t) reaches Vypeakdowns
i2(t) is computed by first equation derived from the intersection of(

linear equation and nonlinear segments as above. If the computed value
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" of ip(t) corresponds to the given value of ip(t), it is accepted, other-
wise the next equation should be used. For example, if the first equa-
tion 1s used, the computed value of ip(t) isg.5, ip(t) is accepted,
otherwise the second or further equaﬁons should be used. The same
procedure should be followed for all equations until the computed value
of 12(1:) meets the corresponding equation condition.

Once an accepted computed iz(t) is found, ez(t) can be computed
by equation (67). For the next step the same procedure is used and
ez(t) does not have to reach or to be more than voltage breakdown,
because after Vyngakdown the lightning arrester still discharges current.

The past history currents IAS’ 133, IAB’ IAZ’ IBl’ IAl' IAl’ ICl’
I,gs I, and IB? are computed by means of equations (35), (37), and
(56).
Now all equations are set and we are ready to write a digital
computer program.
Let us define the symbols used in the program.
D =at
Tl = maximum time
Cl and C = capacitance
E(8,I) = eg(t)
E(2,I) = ez(t)

°© @ e @ e ° 6 e 9

A(8,I) = IAe(t)
B(3,I) = Ig(t)
€(2,I) = I,(t)



R(B,I) = 183(t)
P(39I) = 138(1")
I8

is(t)

I2
L is a reference for first nonlinear computed epx(t) .

A flow chart and digital computer program are on the next page.

e
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( START )

4

‘READ
~T,D,C,C1,L=0, AND

INITIAL CONDITION

FOR I =1 TO (1+T,,./D)

Y

COMPUTE LINEAR ep(t)

A
S
I
O
A

4

COMPUTE

THE SECOND AND

A OTHER NONLINEAR ez(t)

COMPUTE
THE FIRST NONLINEAR ep(t)

—
r

‘COMPUTE
ALL NODE VOLTAGES,
‘CURRENT AND

PAST HISTORY CURRENTS I(t)

A

80
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Computer program:

100 DIM E(8,100),A(8,100),B(8,100),C(8,100)

105 DIM R(8,100),P(8,100),Q(8,100)

110 READ T1,D

120 READ C,C1

130 READ A(8,1),R(8,1),B(3,1),P(3,1),0(3,1),R(3,1),B(4,1)
140 READ c(3,1),A(3,1),B(2,1),P(2,1),R(2,1),Q(2,1),Q(%,1)
150 READ €(2,1),A(2,1),B(1,1),P(1,1),Q(1,1),R(1,1),P(¥,1)
160 READ A(1,1),c(1,1),B(7,1),P(7,1),P(6,1),A(6,1),A(4,1)
165 PRINT "TIME","VOLTAGE AT 4","VOLTAGE AT 8% ,"DISCHARGE CURRENT AT 2"
166 PRINT

170 L=0

180 I1 = 1 + T1/D

190 FOR I =2 TO I1

200 T = D*(I - 1)

210 IF T)1. THEN 240

220 I8 = 8+T

230 GO TO 250

240 I8 = —(4/49)*T + 396/49

250 K =1« 11

. 20N=TI-1 o

e
e
e
e

T-l0

270 M~
280 IF T)1l. THEN 320

290K =1

300N=1 -




310 M =1

320 E(8,I)=(370/2)*(18-A(8,K))

330 E(3,I)=(-370/3)*(B(3,K)+A(3,N)+C(3,N))
340 P(3,I)=(1/370)*E(3,1)+B(3,K)

350 A(8,I)=-(1/370)*E(3,I)-P(3,I)

360 R(8,I)=(1/370)*E(8,I)+A(8,K)

370 B(3,1)=-(1/370)*E(8,I)-R(8,I)

380 E(2,I)=(-1110/43)*(B(2,N)+A(2,N)+C(2,M))
390 IF L) 0 THEN 420

400 IF E(2,I){610 THEN 660

410 L = 1

420 12=E(2,I)/880+1110/43)

430 IF 12 ) .5 THEN 450

440 GO TO 580

450 I2=(E2,1)-370)/(140+1110/43)

460 IF I2 »>1. THEN 480

470 GO TO 580

480 I2=(E(2,I)-450)/(60 + 1110/43)

490 IF I2) 1.5 THEN 510 ;
500 GO TO 580

510 I2=(E(2,I)-480)/(40+1110/43)

520 IF I23 2.5 THEN 540

530 GO TO 580

540 I2=(E(2,I)-530)/(20+1110/43)

550 IF I2) 3. THEN 570 -
560 GO TO 580
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570 I2=(E(2,1)-560)/(10+1110/43)

. 580 E(2,I)=(-1110/43)*(B(2,N)+A(2,N)+C(2,M)+I2)
590 IF E(2,I)> .0 THEN 660

600 L = 0

610 GO TO 390

660 P(2,1)=(1/370)*E(2,1)+B(2,N)

670 A(3,1)=-(1/370)%E(2,1)-P(2,I)

680 R(3,I)=(1/370)*E(3,I)+A(3,N)

690 B(2,I)=-(1/370)*E(3,1)-R(3,I)

700 E(6,I)=-370*A(6,N)

710 Q(3,I)=(1/370)*E(3,I1)+C(3,N)

720 A(6,I)=-(1/370)*E(3,1)-Q(3,I)

730 P(6,I)=(1/370)*E(6,I)+A(6,N)

740 C(3,1)=-(1/370)*E(6,1)-P(6,I)

750 E(u,I)=(-1/(1/3o+2*c/1E.7+1/5000))*(A(u,M)+B(4,N))
760 P(4,I)=(1/30)*E(%,I)+A(4,M)

770 C(2,I)=-(1/30)*E(4,I)-P(4,I)

780 Q(2,I)=(1/30)*E(2,I)+C(2,M)

790 A(4,I)=-(1/30)*E(2,I)-Q(2,I)

800 Q(4,I)=(2*C/1E-7)*E(4,I)+B(4,N)

810 B(4,I)=-Q(4,I)-(2*C/1E-7)*E(4,I)

820 E(1,I)=(-1/(2/370+2%C1/1E-7))*(B(1,N)+C(1,N)+A(1,N))
830 P(1,I)=(1/370)*E(1,I)+B(1,N) |

840 A(2,I)=-(1/370)*E(1,I)-P(1,I)

850 R(2,I)=(1/370)E(2,1)+A(2,N)

860 B(l,I)=-(i/370)*E(2,I)-R(2,I)
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870 Q(2,X)=(2%CL/1LE7)*E(LyI)+CLyN)
880 C(1,I)==Q(1,I)=(2%CL/1E~7)*E(L,T) |
890 E(7,I)=-370%B(7,N)

900 P(?7,I)=(1/370)E(7,I)+B(7,N)

910 A(1,I)=-(1/370)*E(7,I)-P(7,I)

920 R(1,I)=(1/370)*E(1,I)+A(1,N)

930 B(7,I)=-(1/370)*E(1,1)-R(1,I)

940 PRINT T,E(4,I),E(8,I),I2

950 NEXT I

960 DATA 8,.1

970 DATA 1E-9,4.4E-9 '

980 DATA +05.0,00,00540,40,,0 —
985 DATA 04005204.05 20540420 ‘
990 DATA ¢0440,40500,.0,.0,.0

995 DATA +04404.0,.0,.0,.0,.0

999 END

The result is printed on the next page.
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Past History Current I

In the last three examples, we saw that the past history plays an
important role in digital computer solution. For each step of time the
equivalent current source I has to be recorded in order to build I4 4,7
for the next step and for each inductance and capacitance, we need to
know Ia,b(t - at)s  This requires a-double list of I, and I,. Now if
the currents in equations (50) and (55) be expressed by equations (49)
and (55), respectively, we may find an equation describing Ia,b(t -at)
in a form in which I may be computed faster. |

Let us write (49) and (50) again for the sake of convenience.

ig,p(t) = (8 t/2L)(e () = ey (t)) + I, 1(t -at) (69)
and at time (t -At) equation (69) can be written in the form ofs

ia,b(t = 8t) = (8t/2L)(ea(t- AL) = ep(t-o1)) + I p(t - 2 5t),
equation (50) iss

I, p(test) = 1, y(t-st) + (at/2L)(e, (t=st) - ep(t-at)).

Find ia,b<t -‘Af) from equation (50) and substitute in equation
(69) and reorder it; we have: | |

I, plt-at) = I, y(t- at) + 2(st/2L)(e,(t- at) = e(t-at)) (70)
Similarly, equations (55) and (56) give:

Ia,b(t-0t) = -Iy p(t-26t) = 2(2C/at)(ea(t- 2t) - ep(t- at)) (71)
Equations (70) and (71) could be written in a general form as follows:

Ia,b(t -At) = + (I ,b(t - 2At) + 2H(t)). (72)

a

Wheres
+ is for inductance

- is for capacitance
H(t) = (&t/2L)(e,(t= Bt) =« o (t~-£t)) for inductance

H(t) = (ZC/At)(ea.(t- Ot) = ep(t- At)) for capacitance




Accuracy
Since approximation is made by trapezoidal rule of integration

for lumped parameters, there is some error in computing voltage and
current. However, as long as At is selected sufficiently small, the
error in practice is completely ignorable. The result obtained by
trapezoidal method is adequate for the purpose of digital computer
solution. Compared with other methods, the approximation is more or
as accurate as other alternative methods. As long as the oscillation
of highest frequency is represented by sufficient number of points,
the selection of At is not too important.

Before we draw our conclusion, it would be a good idea to discuss
Laplace transformation technique of the solution of electromagnetic
transient or steady state in a circuit. This will show the advantages

and disadvantages of both techniques.
LAPLACE TRANSFORMATION TECHNIQUE

Differential equations have been used traditionally to describe
engineering and physical probleis particularly in the electrical field.
Since a general solution is npt always available for differential equa-
tions, the laplace transformation is a mathematical tool that greatly .
facilitates the solution of constantecoefficient linear differential
equations. By laplace transformation, a differential equation can be
transferred into relatively simple algebraic equations. The complete

solution of the original differential equation is obtained by trans-

e

formation backe ) i
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ILaplace transformation eliminates the independent variable in
differential equations and operator s takes its place. The s operator
is a complex quantity and may be handled algebraically in an equation.

The transformation from the real independent variable domain to
the s complex variable domain is obtained by integration of the differ-
ential equation as follows: '

By definition‘the Laplace transformation integral is:
F(s) = S:-S"'f(t)dt = 71'(1;)
where s is called Laplace oper;;or, f(t) is a known function and F(s)
is the Laplace form of function £(t).
The inverse transformation or transformation back from s domain
to the t domain is:
f(t) = (1/2nj)J?F(s)eStds
of courée there are numbers of books which describe the Laplace
transformation and its tables to which the reader may refer for more
information.™ |
In order fo compare the first method with the Laplace transformation
technique, an example is illustrated on the next page.
Laplace transformation result is shown.in figs. (47), (48), and
(49). The digital computer solution result is shown in fig. (50).
The two results are fairly similar to each otherj the difference
could be considered as the approximation used in computing voltage and

current in both lLaplace and digital comouter methods. The two results

are individually accepted for practical purposes.

*Floyd E. Nixon, Handbook of Ilaplace Transformation, 2d ed.
(EngleWOOd Cliffs, Ne Jo¢ 1965)’ PPe 21-"’4.
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Test case No. 4

Consider the two R - L - C branches shown below. This is similar
to the example of test case No. 2 with only two branches.

Let us find voltage at node 2.

Fig. (46)
Givens
e1(t) = 1.0 for £t )0
e;(t) = 0. for {0
R=1 —-
e 1=.5 7%
C=15 AF T .
Ce= 10 PF
t =1 ns.
Solutions
First each element of the circuit is wrjitten in the Laplace trans-

formation form, which is replaced in the circuit and then the voltage is

found in & domain.
In Laplace transformation form each element is written é.s follows:
¢. —— 1/sC

L, —— sl
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R —» R

C, —— 1/sC,

(=]
Let the following symbols be assigned for the sake of convenience:
(R + sL + 1/sC)

(1/sCq)
then voltage ep(t) is found as followss

A

B

e2(s) = e1(s) (B(A + B))/(AB + (A + B)?)
=e1(8).C(LCC,s + RCCqs + C + Cg)/(CC4(LCsZ + RC + 1) + (LCCys? +

2
" RCC,s

+C+ Ce)

—

/s

[ —— D ¢ |
then
ex(s) = (1/5)(2.1017s% + 4.10%3s + 4.10%)/(s* + 4.10%57+
6.0027,1017s2 + 12,1035 + 4,103%)
The roots of the polynomial of denominator are found by digital
computer. Thus eé(s) can be written in the followiné forms
op(5) = 1/5 = .3619499/(s + 999406 - 52.763.10%) = .3619599/(s + 999406 +
32.763.108) - .131522/(s + 1.00059.106. 37.2382.108) - .131522/(s +
1.00059.10% + 7.2382.108).
By inverse lLaplace transformation and havings:
et® = cosa + jsina
e,(s) can be written in t domain as follows:
ep(t) = 1 - .724e=999400t005(2,763.108¢) - .2760-10%% 005 (7.2382.108¢)
(73)
In order to be able to compare the Laplace transformation technique
with the digital computer method by use of trapezoidal rule of integ;a-

tion, the above example has been solved by both techniques.



Result of laplace Transformation Technique
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“0e 682649

0.618358
0681876
0. 77639
0.90198
10193

1.G9751

1.12758
112448
1.11739
1.13293
1.18014

100



_TIME

e

1eG38E~6e

1. 0E6E=-G
1.06375-6
1.036E-6
1.039F-6
1.04F-6
10A1F=-6
1.0125~6
1.0343E-6
leQH1T~6
1.045F-6
1.0206F~-6
1.047F-6
1.048E~6G
1.049%-6
1.052-6
1.0515~-6
1.0587~6
1.0538-6
1.654E-6
1.055F-6
1.0565-6
1¢057%-6
1.0585~6
loOSQR‘G
1.067=6
16GCiIF=6
1.0625-6
1.GG35=-6
1.0647-6
- 1+065F~06
1.066E-6
1.0567FK-6
1.068E-6
1-069?‘6
1.07¥-6
10671R-6
1.072F.-6
1e073E-6
1.074F~6
1.0750-6
1.076F-6
1G77%-6
1.G6767~6
10079?'6

1.08E-6 .
1 081F=6.
T 1.27046

1.082E-0

1.24466

1729535

129978
1.241060
1.12742
0969623
0867555
0.792412
0773374
0.795196
0827755
0842603
0826125
07956823
Q773289
0791137
Qe EAARLY
09841606
1.12073
1.23353
129254
l.268941
124051
117755
‘113114
111557
1012236
112577
109751
1.02284
0.910201
0769117
0697393
0. 663904
0.695414
Q0.773973
0866097
6939099
0976432

VOLTAGE AT NODE 2

6.984413,

0987112

T1e01214

1.07459
1416743
1.26325
1.32652
133055

101
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TIME

0

l RO 3]

DeF=0

Nle =2

5.F =9

G =9

TeF =9

BeE~Y

9.F-9

l1e.F~¥

Io1E-8
127K
12586
1e447 -8
1e57=-8
1e6F-8
1o 75-8
le8F-8
l1e9F~8
2.F-8

P.1E-8
221 =8

Re5F-¥
3.6FE-8
