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Abstract 
 

This manuscript describes the design, development, and implementation 

of a linear high efficiency power amplifier. The symmetrical Doherty power 

amplifier utilizes TriQuint’s 2nd Generation Gallium Nitride (GaN) on Silicon 

Carbide (SiC) High Electron Mobility Transistor (HEMT) devices (T1G6001032-

SM) for a specified design frequency of 3.6 GHz and saturated output power of 

40 dBm.  Advanced Design Systems (ADS) simulation software, in conjunction 

with Modelithic’s active and passive device models, were used during the design 

process and will be evaluated against the final measured results.  The use of 

these device models demonstrate a successful first-pass design, putting less 

dependence on classical load pull analysis, thereby decreasing the design-cycle 

time.   

The Doherty power amplifier is a load modulated amplifier containing two 

individual amplifiers and a combiner network which provides an impedance 

inversion on the path between the two amplifiers. The carrier amplifier is biased 

for Class-AB operation and works as a conventional linear amplifier.  The second 

amplifier is biased for Class-C operation, and acts as the peaking amplifier that 

turns on after a certain instantaneous power has been reached.  When this 

power transition is met the carrier amplifier’s drain voltage is already approaching 

saturation. If the input power is further increased, the peaking amplifier 

modulates the load seen by the carrier amplifier, such that the output power can 

increase while maintaining a constant drain voltage on the carrier amplifier. 



ii 
 

The Doherty power amplifier can improve the efficiency of a power 

amplifier when the input power is backed-off, making this architecture particularly 

attractive for high peak-to-average ratio (PAR) environments.  The design 

presented in this manuscript is tuned to achieve maximum linearity at the 

compromise of the 6dB back-off efficiency in order to maintain a carrier-to- 

intermodulation ratio greater than 30 dB under a two-tone intermodulation 

distortion test with 5 MHz tone spacing.  Other key figures of merit (FOM) used to 

evaluate the performance of this design include the power added efficiency 

(PAE), transducer power gain, scattering parameters, and stability.  The final 

design is tested with a 20 MHz LTE waveform without digital pre-distortion (DPD) 

to evaluate its linearity reported by its adjacent channel leakage ratio (ACLR).  

The dielectric substrate selected for this design is 15 mil Taconic RF35A2 

and was selected based on its low losses and performance at microwave 

frequencies.  The dielectric substrate and printed circuit board (PCB) design 

were also modeled using ADS simulation software, to accurately predict the 

performance of the Doherty power amplifier.  The PCB layout was designed so 

that it can be mounted to an existing 4” x 4” aluminum heat sink to dissipate the 

heat generated by the transistors while the part is being driven.  The 

performance of the 3.6 GHz symmetrical Doherty power amplifier was measured 

in the lab and reported a maximum PAE of 55.1%, and a PAE of 48.5% with the 

input power backed-off by 6dB.  These measured results closely match those 

reported by design simulations and demonstrate the models’ effectiveness for 

creating a first-pass functional design.    
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Chapter 1 

1.1 Historical Relevance 

 A new power amplifier technique for amplitude-modulated (AM) radio-

frequency signals was introduced by William H. Doherty in 1936.    During the 

time of its inception it represented a more efficient alternative to both 

conventional amplitude-modulated techniques and Chireix outphasing.  [1,2].  

This technique achieves higher plate efficiencies, up to 65% independent of 

modulation, by means of a combined action of the variation of load distribution of 

the vacuum tubes, and the variation of the circuit impedance over the modulation 

cycle.  When Doherty joined the Bell Telephone Laboratories in June 1929, he 

was engaged in the development of high-power radio transmitters for 

transoceanic radiotelephony and broadcasting.  This led to a breakthrough to 

greatly improve the efficiency of radio-frequency power amplifiers which is now 

ubiquitously termed the “Doherty amplifier”.  The Doherty amplifier was first used 

in a 50 kW transmitter application with low audio frequency distortion of less than 

a few percent.  These amplifiers operated with an efficiency of 60%, representing 

a reduction of nearly one-half the power consumption compared to a 

conventional linear amplifier operating at 33% efficiency [3].   

 In the years that followed, Doherty amplifiers continued to be used in a 

number of medium and high power low-frequency (LF) and medium-frequency 

(MF) vacuum tube AM transmitters [4,5].  A one-megawatt AM transmitter 

operating in the long-wave band began regular operations in postwar Europe in 

August 1953, where the outputs of two 500 kW Doherty amplifiers were joined in 
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a bridge configuration.  The practical implementation of classical triode-based 

Doherty scheme was restricted by its substantial nonlinearity for both linear 

amplification of AM signals and grid-type signal modulation that required 

complicated envelope correction and feedback linearization circuits.  However, 

Doherty amplifiers employing tetrode transmitting tubes could improve their 

overall performance when the modulation was applied to screen grids of both the 

carrier and peaking tubes, while the control grids of both tubes are fed by a 

nearly constant level of RF excitation.  This resulted in the peaking tube being 

modulated upward during the positive half of the modulating cycle and the carrier 

tube being modulated downward during the negative half of the modulating cycle 

[6]. 

 For the classical Doherty power amplifier with matched power tubes, the 

transition voltage is half the peak-envelope power (PEP), and the total output 

power of the amplifier comes from the carrier tube for input amplitudes less or 

equal to the transition point.  The region between the transition point and PEP 

values represents the load modulation region and the voltage of the carrier tube 

remains constant at the PEP level.  The voltage seen at the peaking tubes 

continues to rise linearly, with its current rising twice as fast as the current in the 

carrier tube in order to reach its PEP value at maximum output power.  

Therefore, at low output power levels, the carrier amplifier operates linearly, 

reaching saturation that corresponds to maximum efficiency at some transition 

voltage below the system peak output voltage.  However, in the presence of 
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higher output power levels the carrier amplifier remains saturated while the 

peaking amplifier operates linearly.   

1.2 Overview 

This manuscript describes the design, development, and implementation 

of a linear high efficiency power amplifier. The symmetrical Doherty power 

amplifier utilizes TriQuint’s 2nd Generation 2.5 mm GaN HEMT devices 

(T1G6001032-SM) for a specified design frequency of 3.6 GHz and saturated 

output power of 40 dBm.  Advanced Design Systems (ADS) simulation software, 

in conjunction with Modelithic’s active and passive device models, are used 

throughout the design process and will be evaluated against the final measured 

results.  The omission of classical load-pull analysis represents a potential 

reduction in design-cycle times, enabling a designer to get their product to 

market faster.    

 

Figure 1:  Block Diagram of Doherty Power Amplifier [7] 
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 A functional block diagram of a symmetric Doherty power amplifier is 

shown in Figure 1.  The RF input signal passes through a power splitter where 

the power is equally split, implying a 3 dB drop in output power at the output of 

the splitter.  The RF input signal feeding the peaking amplifier is then passed 

through a quarter-wavelength transformer which inverts the impedance between 

the carrier and peaking transistor.  A more cost-effective way to achieve the 

function of the power splitter and quarter-wavelength transformer is by employing 

a 90 degree 3 dB hybrid coupler.  These devices can be realized in very small 

packages with a low temperature co-fired ceramic (LTCC).  At the output of the 

carrier amplifier a quarter-wavelength transformer recombines the output signal 

of the carrier and peaking amplifier.  From this node the modulated impedance is 

approximately half that of the 50 ohm system impedance.  Thus, a quarter-

wavelength transformer is employed to convert the modulated impedance to the 

system impedance, ensuring the maximum power transfer to the load is being 

satisfied.       

The carrier amplifier works as a conventional linear amplifier and is usually 

biased in Class-AB.  The second transistor acts as the peaking amplifier and is 

controlled in a way that it turns on only after a certain instantaneous power has 

been reached.  In the classical design of Doherty power amplifiers the peaking 

amplifier is typically biased for Class-C operation.  When this power transition is 

met the carrier amplifier’s drain voltage is already approaching saturation, if the 

input power is further increased, the peaking amplifier modulates the load seen 

by the carrier amplifier, such that the output power can increase while 
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maintaining the drain voltage level of the main amp constant.  This results in an 

amplifier that maintains high efficiency throughout the load modulation region 

depicted in Figure 2.   

 

Figure 2:  Characteristic Efficiency of a Doherty Power Amplifier [7] 
 
 The concept of a load modulated power amplifier can be viewed as an 

active load-pull technique, where the reactance of the RF load can be modulated 

by applying current from a second phase coherent source.  Referring to Figure 3, 

the source on the left “sees” a load resistance of RL, if the generator on the right 

sources a zero current. However, if both the sources are supplying current, both 

currents flow into the load resistor such that the voltage appearing across the 

load resistance can be calculated using the following equation. 

( )1 2L LV R I I= +                                         (1.1)  
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Figure 3: Impedance cases for Doherty Power Amplifier [8] 
  

 This can be applied to AC circuits if complex notation is used to represent 

magnitude and phase of the voltages and currents and the resistive and reactive 

components of the impedances. In this form, the equations show the possibility of 

changing, or “pulling” the impedance seen by source on the left by controlling the 

magnitude and phase of the current I2 [8].     

2
1

1

1L

I
Z R

I

 
= + 

                                           (1.2) 

 Balanced amplifiers are combined in parallel with the assumption that the 

impedance seen by each has some common load impedance scaled up by the 

number of parallel devices.  It assumes that the devices are identical in terms of 

device periphery, bias, and drive level.  For the design of Doherty power 

amplifiers these conditions can be relaxed so that the impedance seen by each 

element is a function of other elements as well as the common load.   
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Figure 4:  Carrier and Peaking Amplifier Power Contributions [8] 
  

 The RF output power of a Doherty power amplifier is a combination of the 

carrier and peaking amplifier which is depicted in Figure 4.  As the input power is 

increased from small-signal to large-signal, only the carrier amplifier is 

functioning and the peaking amplifier is in an non-active state.  When a certain 

instantaneous RF input power is reached the peaking amplifier begins to 

contribute to the output power.  The key action of the Doherty power amplifier 

occurs during the region where the peaking device is active and the main device 

is held in a constant maximum voltage condition.  This is achieved thorough the 

dynamic resistance of the load whose effective value decreases dynamically with 

increasing drive level due to the load-pulling effect of the peaking amplifier, 

thereby maintaining maximum voltage swing and high efficiency.  The output 

power increases in proportion to the input voltage drive level, so that a square 
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root characteristic is observed by the carrier amplifier.  The peaking amplifier 

produces an upward load-pull effect, so that it generates an output power 

proportional to the cube of the increasing input voltage amplitude.  In theory, 

these two characteristics combine to produce a composite linear power response 

[8].     

 The design presented in this manuscript was tuned to achieve maximum 

linearity trading-off its maximum PAE and 6dB backed-off PAE, in order to 

maintain a carrier-to-intermodulation ratio greater than 30 dB when excited by 

two-tones with 5 MHz tone spacing.  The load modulation characteristic is much 

softer than in an ideal, symmetric Doherty power amplifier, which suggests that 

the carrier amplifier’s drain voltage is not saturated at the onset of load 

modulation. Although this design strategy does not lead to the efficiency 

characteristic of an ideal Doherty power amplifier, it offers a significant boost in 

average efficiency compared to a Class AB design.   

 The use of modulated carriers for the down link in mobile 

telecommunication systems contain high peak power signal characteristics but 

on average operate at much lower power levels.  A single-ended Class AB PA is 

very inefficient with a high peak to average signal.  The power amplifier needs to 

be sufficiently large to meet the peak output requirements while maintaining 

efficiency at lower power levels when backed-off considerably from saturation.  

This can be performed with Doherty power amplifiers by improving the efficiency 

and operating under dynamic load conditions. 
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 The demand for linear high efficiency power amplifiers in small-cell base 

station applications are required to support the increasing data rates for 

modulations such as Orthogonal Frequency Division Multiplexing (OFDM), which 

is used predominately in Long Term Evolution (LTE) 4G networks.  Typically, the 

use of digital pre-distortion (DPD) is required to reduce the distortion 

mechanisms cause by AM-AM, AM-PM, and memory effects.  The motivation for 

using a symmetrical Doherty power amplifier using GaN on SiC HEMT devices 

are its high efficiency, lower operating expenses, lower capital expenditures, and 

smaller size.  The lower capital expenditure is largely due to the cost reduction of 

the power supplies, reduced heat dissipation requirements, and overall reduction 

in mass.  Moreover the Doherty power amplifier is a proven architecture with 

adequate bandwidth to meet today’s telecommunication standards [6-9]. 
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Chapter 2 
Amplifier Characteristics Overview 

2.1 Classes of Operation 

There are numerous texts and papers dedicated to the performance 

characteristics of power amplifiers [6] – [15], and in this chapter an overview will 

be presented.  Typically, power amplifiers can be distinguished from one another 

by their class of operation.   There are several classes of operation denoted by 

the amplifiers voltage and current waveforms. These classes are generally 

defined by four criteria: efficiency, power, linearity, and conduction angle.   

Efficiency is defined as the ratio of the Radio Frequency (RF) power to the 

Direct Current (DC) power.  Power is the capability of delivering a voltage or 

current to the amplifier’s load at the frequency of interest. The conduction angle 

is considered 100% when the device is always on and the waveforms are not 

distorted.  To a lesser degree the biasing and matching networks provided to the 

amplifier also help to define what class of operation the amplifier performs in.  

Table 1 summarizes the qualities of amplifiers operating in different classes of 

operation. 

Table 1: Summary of Amplifier Class of Operations [10] 

Class Efficiency Power Linearity 
Conduction 

Angle 
A 25% Max. High Best 100% 

AB  < 68% High Some Distortion < 100% 
B 78.5% Max. High More Distortion 50% 
C > 78.5% Low Poor < 50% 
D < 100% Medium Moderate 50% 

E/F 100% Low Poor 50% 
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 The performance of the symmetric Doherty power amplifier can be 

described by Figures of Merit (FOM).  These include the maximum output power, 

one decibel (1 dB) compression point, Third-Order Intercept (TOI), stability, 

bandwidth, etc.  An overview of these FOM will be provided in this chapter giving 

a thorough treatment for each.  

 

2.1.1 CLASS-A 

The classic defining behavior of a Class-A power amplifier is its linearity.  

Figure 5 illustrates that the Class-A power amplifier can amplify a signal while 

maintaining its linear transfer characteristic with no distortion. However, Class-A 

power amplifiers are horrendously inefficient and can only achieve a theoretical 

25% efficiency when capacitive-coupled to the load.  In a power amplifier, this not 

only wastes power but potentially increases the operating costs.  This inefficiency 

comes from the standing current, approximately half the maximum output 

current, and a large part of the power supply voltage present across the output of 

the device at low signal levels.     

 
 

Figure 5:  Linear Operation of Class-A Amplifier [10] 
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The typical single-stage amplifier employing a common 

cathode/emitter/source configuration inverts the phase of the signal but maintains 

a constant gain associated with the power entering the device.  In order to 

maintain a linear response, the input power level applied to a Class-A power 

amplifier must be relatively small.  This prevents the amplifier from being 

overdriven, which in turn prevents the amplifiers output from reaching saturation.   

The load line technique is a common method used to design Class-A amplifiers 

to ensure the device is appropriately biased to achieve a linear output.  A 

graphical depiction of the load line technique for biasing a device is shown in 

Figure 6.     

 

Figure 6:  Graphical Depiction of Load Line Technique for Biasing Device [10] 
 

The waveform of the collector or drain current is biased at a level greater 

than the amplitude of the input signal current in order to maintain linear 
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operation.  The conduction angle is said to be 100% because current flows 

during the whole waveform period and maintains a sinusoidal output as seen in 

Figure 7. 

 

Figure 7:  Collector/Drain Current Waveform for Class-A [10] 
 
2.1.2 CLASS-B 

When a device operates as a Class-B amplifier, the most obvious contrast 

is evident in the collector/drain or emitter/source current waveforms where the 

conduction angle is now 50%.  The DC supply is reduced by a factor of 2/π 

compared to the class A condition, resulting in a theoretical efficiency of π/4 or 

about 78.5%.  This is shown in Figure 8 where the device will conduct current 

only half the time while being in an off condition the other half.  The device is 

biased in such a way that the signal current is the only source to turn on the 

device and the DC bias current is nearly zero.  When the base drive signal 

voltage falls below a certain level, the transistor collector current vanishes and 

the transistor is “Off.”  It is also evident that the signal being amplified will have 

more distortion compared to the Class-A power amplifier.   
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Figure 8:  Collector/Drain Current Waveform for Class-B Operation [10] 
 

The downside is that in theory 6 dB more drive power is needed to 

achieve the Class B condition. The upside is that Class-B linearity is improved 

under 3 dB backed-off conditions.  Due to the symmetry of the drive signal about 

the pinch-off level, the conduction angle remains constant for varying drive 

levels. Therefore, a 3 dB reduction in input power corresponds to a 3 dB 

reduction in output power, demonstrating its linear behavior.  At this drive level 

the efficiency could be increased by increasing the load resistor value which 

results in larger voltage swing.   

Practical implementations of Class-B amplifiers in push-pull configurations 

sometimes experience a slightly reduced conduction angle over the theoretical 

Class-B operations.  This occurs when the transistors are operated at a zero 

voltage base (BJT) or gate (MOS) bias.  This causes crossover distortion where 

both transistors in the push-pull configuration are in the “off” state.  As in the 

single-ended Class-B operations the maximum theoretical efficiency is 78.5%, 
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but comes with the added benefit of cancelling even harmonic distortion 

products. 

2.1.3 CLASS-AB 

A compromise between Class-A and Class-B operation is referred to an 

amplifier classification known as Class-AB.  In Class-AB operation the device 

operates over half the waveform the same way as in Class-B operation, but also 

conducts a small amount of current on the other half.  The device is biased at a 

non-zero DC current where the magnitude of the current is dictated by the trade-

off between linearity, efficiency, and power.  The bias point selected determines 

the voltage swing and the conduction angle which can be seen in Figure 9.   

 

Figure 9:  Collector/Drain Current Waveform for Class-AB Operation [10] 
  

 A significant reduction in the DC component of the device current results 

in an increased theoretical efficiency of 68%.  However, these effects only come 

at the expense of input drive power, which constitutes a reduction in overall 

power gain when compared to a Class-A power amplifier.  One important issue 
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that is often overlooked in Class-AB operation is the effect of a 3 dB reduction in 

drive level. Unlike the Class-A case, the output power does not show a 

corresponding 3 dB drop.  This implies that the amplifier is a non-linear amplifier 

where a signal with an amplitude-modulated envelope will be distorted at peak 

power levels [8].   

 

2.1.4 CLASS-C 

Operations under Class-C conditions occur when the output tuning 

network conditions the signal, typically through a parallel resonant inductor 

capacitor (LC) circuit.  This resonant circuit is tuned to the frequency of interest 

and sustains the RF waveform during the non-conducting part of the cycle.  The 

non-conducting portion of the cycle can be seen in Figure 10.  Typically, the 

output matching is a parallel resonant circuit that is designed to provide an output 

signal that is proportional to the input signal at the resonant frequency of interest. 

 

Figure 10:  Collector Current Waveform for Class-C Operation [10] 
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 The current waveform starts to take an appearance of series of short 

pulses, having a low DC component, and also a lower fundamental component in 

comparison to Class-AB.  Very high efficiency can be achieved, but it comes with 

the burden of heavy input drive requirements, a reduction in maximum output 

power, and a reduction in linearity.     

 
2.2 Figures of Merit 

Besides amplifiers being described by their class of operation, they are 

also described by Figures of Merit (FOM).  Generally speaking the FOM 

characteristics are based on the performance of the amplifier under specific test 

and measurement conditions.  Thus these specified conditions need to be well 

documented and held stable for the measurement to accurately compare the 

strengths or weaknesses of the device under test (DUT). The following FOM’s 

are used:  

 

• Power-Added-Efficiency 

• Output referred third-order intercept point 

• 1-dB compression point 

• Maximum Output Power 

• Stability 

• Transducer Power Gain 

• Matching Technique 

• Scattering Parameters 
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2.2.1 POWER-ADDED-EFFICIENCY 

Power-Added-Efficiency (PAE) is a measure of a device’s ability to convert 

the applied DC power to an RF power for a given fundamental frequency.  

Calculating PAE accounts for the input power (PRFin) to the device as shown in 

Equation 2.1.  

��� �
����	
 – ���
� 

���
�  

����	
 – ���
� 

��� � ���
                            (2.1) 

For devices where there is low to moderate gain the inclusion of the RF 

input power can be significant.  PAE is the most accepted FOM when comparing 

the efficiency of devices.  PAE differs from drain efficiency in that drain efficiency 

measures how much DC power is converted to RF power.  The problem with 

using this measurement is that it does not take into account the incident RF 

power that goes into the device.  This can be substantial in a single-stage RF 

device where gain is low.  

2.2.2 OUTPUT THIRD-ORDER INTERCEPT POINT 

While the output third order intercept (TOI) point is not directly measured 

in devices with good linearity, it is used to assess the distortion products of the 

device.  It is an indicator of the intermodulation distortion (IMD) that exists in non-

linear systems.  Please recall the trigonometric identity where two cosines are 

summed together to create the sum and difference frequencies.   

( ) ( ) ( ) ( )1
cos cos cos cos

2
x y x y x y⋅ = − − +                (2.2) 

 



 

Not only are the sum in difference frequencies created but the higher 

order harmonic frequencies 

a two-tone IMD test can be used to determine 

products. 

Figure 11:  Frequency Graph of a Two
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Not only are the sum in difference frequencies created but the higher 

order harmonic frequencies are generated as well. Figure 11 demonstrates how 

can be used to determine the value of the 

 

 

:  Frequency Graph of a Two-Tone Measurement

IMD product will increase in magnitude as the input power 

damental tones increase.  This increase will depend upon the offset 

spacing and the gain of the device at the frequencies used, but a general rule of 

for every 1 dB of increased input power, there will be a 3 dB increase to 

order IMD products.  The output third-order intercept refers to the output 

power where the output power and 3-order IMD power are extrapolated beyond 

their linear region and intersect at a single-point.   

Fundamental Tones 

3rd Order IMD

Not only are the sum in difference frequencies created but the higher 

demonstrates how 

the value of the third-order IMD 

 

Tone Measurement [10] 

increase in magnitude as the input power 

is increase will depend upon the offset 

a general rule of 

nput power, there will be a 3 dB increase to 

order intercept refers to the output 

order IMD power are extrapolated beyond 

Order IMD 
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Figure 12:  Pout versus Pin Graph Illustrating Intercept Points [10] 
 

The information gained from a power amplifier operating in the linear 

region is helpful in identifying the characteristics and behavior.  This information 

is also used to extrapolate into other FOM parameters.  As can be seen in Figure 

12 there are several characteristics of the DUT that can be extracted from a Pout 

versus Pin graph.  In general, linearization itself leads to better efficiency and 

applies to real-world linear power amplifiers, where a certain level of linearity is 

mandatory.   

2.2.3 1dB COMPRESSION POINT 

The 1dB compression point is defined by extrapolating the linear gain 

curve beyond its measured saturation region and determining the point where the 

measured gain is 1 dB below the extrapolated linear gain point, as shown in 

Figure 13. 
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Figure 13:  Measured and Extrapolated Gain Compression Plot of an Amplifier [10] 
 
 

Other compression points such as 0.5 dB and up to 2 and 3 dB can be 

determined in the same manner as necessary up to where the amplifier is fully 

saturated.  

2.2.4 MAXIMUM OUTPUT POWER 

The maximum output power region is where the device is saturated and 

the device cannot output any additional power into the load.  This condition is 

generally where the efficiency of the device is high and the output voltage is 

severely clipped, as shown in Figure 14.  The graph shows what the ideal output 

waveform may look like compared to the saturated condition.   

1 dB Compression Point 
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Figure 14:  Ideal Waveform Compared to Compressed Amplifier Output [10] 
 
 
2.2.5 STABILITY 

The stability of a device is one of the key elements to a successful design 

and demonstrates an amplifier’s resistance to oscillate.  In a two-port network, 

oscillations are possible when either the input or output presents a negative 

resistance.  This occurs when either |S11| or |S22| are greater than one.   A device 

is said to be unconditionally stable at a given frequency if the real parts Zin and 

Zout are greater than zero for all passive load and source impedances [16].  The 

traditionally accepted equation to determine unconditional stability is the Rollet 

condition, where if K is greater than one the device meets the requirements to be 

unconditionally stable.  This can be determined by 2-port S-parameter data from 

the equation below. 

� �  
��|���|��|���|��|∆|�

�|������|
� 1,       "#$%$ ∆� S��S�� ' S��S�� (2.3) 
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2.2.6 TRANSDUCER POWER GAIN 

 The transducer power gain of device is defined as the power delivered to 

the load at the fundamental frequency (dBm), minus the power available from the 

source (dBm).  The transducer power gain eliminates the issue of negative 

insertion loss, where a passive network might increase delivered power [17].   

Transducer power gain is the decibel ratio of power delivered to the load to the 

power available from the source. 

 10log L

A

P
TransducerGain

P
=                                      (2.4) 

2.2.7 BANDWIDTH 

 The bandwidth of a device describes how much spectrum a system is 

capable of responding to, and can be quantified in a variety of ways depending 

on the specific system requirements.  The 1-dB bandwidth can be defined where 

the transmission coefficient S21, falls off from its highest peak by 1-dB from its 

high frequency, Fh, to low frequency, Fl.  In a similar manner the 2-dB and 3-dB 

bandwidths can be found.  Another way to define bandwidth is the percentage 

bandwidth of a system.  It can be found by determining the difference between 

the high frequency Fh, and low frequency FL, divided by it center frequency, Fc, 

and multiplied by 100%.  Similarly, the transmission coefficient can be defined 

the case where S21 falls by 1, 2, or 3dB from its center frequency.  

(%) 100%h l

c

F F
BW

F

−
= ⋅                                         (2.5) 
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2.2.8 MATCHING TECHNIQUE  

 The input and output matching of any power amplifier is of utmost 

importance to the performance of the device.   To obtain the maximum power 

transfer, we must transform characteristic impedance, Zo, from the source to the 

complex input impedance seen looking into the transistor, Zs.  Similarly, we must 

transform the complex output impedance, ZL, looking into the output of the 

transistor to the Zo of the load.  

 
Figure 15:  Block Diagram of Microwave Amplifier [16] 

   

 A number of techniques can be used to design input and output matching 

networks.  Because the relatively high 3.6 GHz design frequency and the 

performance of most lumped components at these frequencies a transmission 

line, TL, technique on microstrip was selected to perform the input and output 

matching of the device.   
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2.2.9 S-PARAMETERS  

 The scattering parameters, commonly referred to as S-parameters, give a 

complete description of the network as seen at its N-port network.  The scattering 

matrix relates the voltage wave incident on the port to those reflected from the 

port [18].   S-parameters can be calculated using network analysis techniques or 

measured on a Vector Network Analyzer (VNA) like that shown in Figure 16.   

 
Figure 16:  Agilent ENA E5071C Vector Network Analyzer  

 
 Consider the two port network shown in Figure 17, where Vn

+ is the 

amplitude of the voltage wave incident on port n, and Vn
- is the amplitude of the 

voltage wave reflected from port n.  The scattering matrix, [S] is defined in 

relation to those incident and reflected voltage wave. 

[ ] 11, 121 1

21, 222 2

S SV V
S

S SV V

− +

− +

    
= =    
       

                            (2.6) 
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Figure 17:  Agilent ENA E5071C Vector Network Analyzer 
 

The first number of the subscript refers to the measured port, while the second 

number refers to the incident port.  For example, S21, means the response at port 

2 due to a signal at port 1.   By applying a signal to port 1 with an incident wave 

of voltage, V1
+, and measuring the reflected wave amplitude, V2

-, coming out of 

port 2.  This assumes that all ports are terminated in matched loads, Zo, to avoid 

reflections except for port 1. Therefore, S11, is the reflection coefficient seen 

looking into port 1, when all other ports are terminated in matched loads, and 

S12 is the transmission coefficient from port 2 to port 1 when all other ports are 

terminated in matched loads.  If we assume that each port is terminated in 

impedance Zo, we can determine the four S-parameters of the two-port network 

by equation (2.7). 

                                   (2.7) 
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 S-parameters can be presented in one of two ways, linear magnitude or 

quantified logarithmically in decibels (dB).  The latter being the more commonly 

used quantification found in industry.  Because S-parameters are a voltage ratio, 

and power is proportional to voltage squared, the formula to convert the linear 

magnitude to decibels can be found using equation (2.8).    

( ) 20 logij ijS dB S= ⋅                                        (2.8) 

2.2.10 PEAK-TO-AVERAGE RATIO 

 The peak-to-average ratio (PAR) is the ratio of the peak power level to the 

time average power level.  The PAR can be represented as a ratio of the 

statistical occurrence of a peak relative to an average power level.  The peak 

power of the PAR is often defined as 0.01% complementary cumulative 

distribution function (CCDF).  Figure 18 shows an example of the CCDF for a 

typical QPSK and OCQPSK signal with a resolution bandwidth of 5MHz. 

 

Figure 18:  PAR of QPSK and OCQPSK signal [7] 

  



28 
 

Chapter 3 
 
Semiconductor Process, Device, and Model Overview 

3.1 Semiconductor Technology 

The TriQuint T1G6001032-SM is a 10 Watt (P3dB) discrete GaN on SiC 

HEMT device which operates from DC to 6 GHz.  The device was designed 

using TriQuint’s TQGAN25 production process, a high-frequency 0.25 micron 

GaN on SiC.  This process features advanced field plating techniques to optimize 

microwave power and efficiency at high drain bias operating conditions. This 

optimization can potentially lower system costs in terms of fewer amplifier line-

ups and lower thermal management costs.  This 2nd Generation GaN brings 

reliable integrated RF solutions that use less power, are compact, and serve 

wide frequency ranges.  The TQGAN25 process supports frequencies from DC 

to 18 GHz including discrete transistors, MMICs, and packages solutions.  

TriQuint’s TQGAN25 process can operate up to 40 Volts and has achieved a 

mean time to failure (MTTF) of greater than 10 million hours at 200°C and 

greater than 1 million hours at 225°C.   

3.2 Transistor Performance 

 The symmetric Doherty power amplifier utilizes two of TriQuint’s 

T1G6001032-SM GaN on SiC HEMT operating from DC to 6 GHz.  This 

optimization can potentially lower system costs in terms of fewer amplifier line-

ups and lower thermal management cost [19].  The functional block diagram for 

the T1G601032-SM GaN Packaged transistor is shown in Figure 19.   
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Figure 19:  Functional block diagram for T1G6001032-SM [19] 
  

 The transistors absolute maximum ratings are provided in table 2 below.  

The operation of this device outside the parameter ranges may cause permanent 

damage.  These are stress ratings only, and functional operation of the device at 

these conditions is not recommended. 

 

Table 2: Absolute Maximum Rating [19] 

Parameter Value 
Breakdown Voltage (BVDG) 100 V (Min) 
Gate Voltage Range (VG) -7 to 0 V 
Drain Current (ID) 1.2 A 
Gate Current (IG) -2.5 to 4.2 mA 
Power Dissipation (PD) 16 W 
RF Input Power, CW,  
T = 25 deg C (PIN) 34 dBm 
Channel Temperature (TCH) 275°C 
Mounting Temperature  
(30 Seconds) 320°C 

Storage Temperature  -40 to 150°C 
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 The recommended operating conditions for the T1G6001032-SM 

transistor is provided in table 3. 

Table 3: Recommended Operating Conditions [19] 

Parameter Value 
Drain Voltage (VD) 32 V 
Drain Quiescent Current (IDQ) 50 mA 
Peak Drain Current (ID) 650 mA 
Gate Voltage (VG) -2.9V 
Channel Temperature (TCH) 225°C (Max) 
Power Dissipation, CW (PD) 11.8 W (Max) 
Power Dissipation, Pulse (PD) 12.5 W (Max) 

 

3.3 Transistor Model 

The HMT-TQT-T1G6001032-SM-001 is a nonlinear model created by 

Modelithics for TriQuint’s T1G6001032-SM packaged GaN transistor.  The model 

is based on the extraction of a customized Angelov nonlinear model that is 

validated against I-V, S-parameters, and large signal load pull measurement 

datasets.  The model is extracted such that performance can be scaled with 

temperature and quiescent bias voltage.  The model representation for HMT-

TQT-T1G6001032-SM-001 is shown in Figure 20 [20]. 

 

 Figure 20:  HMT-TQT_T1G6001032-SM-001 Model Representation [20] 
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The model is optimized for operation for VDD equal to 32 V. The model 

parameter, temperature, represents the backside ambient temperature.  The 

model parameter, self_heat, is a scaling factor for the electro-thermal model 

(range from 0 to 1), 0 = self-heating is turned off, 1(default) = self-heating is fully 

turned on, and a value of 0.1 is representative of 10% thermal duty cycle.  The 

device was characterized on a Zo = 50 ohm test fixture to set the reference 

planes at the edge of the ceramic package as shown below in Figure 21 [20]. 

 

Figure 21:  Model and Measurement Reference Plane [20] 
 The desired IV characteristics call for a VDD of 32V and an idle quiescent 

current of 50mA. The vendor’s models pulsed IV characteristics are shown in 

Figure 22, where the voltage gate to source (Vgs) is swept from -4V to 0.V in 0.2V 

increments with measurement pulse width of 0.5 microseconds equal to a duty 

cycle of 0.01%.  The red line represents the IV characteristics for the model while 

the blue line represents the measured results.   
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Figure 22:  Ids (A) vs. Vds (V) Pulsed I-V Characteristics [20] 
 

It can be seen in Figure 22 as IDS increases, the VDS must increase to 

produce the same quiescent current.  By inspection of the IV characteristics 

displayed in Figure 23 we estimate a Vgs of -2.6 V is required to produce an idle 

quiescent current of 50 mA with a 32V VDD.  Please observe that as the VGS gets 

closer to zero the quiescent current increases exponentially.   

 

Figure 23:  Ids (A) vs. Vgs (V) Pulsed I-V Characteristics [20]  
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The S-parameters corresponding to the pulsed I-V characteristics of 

VDSQ equal to 32V and IDSQ equal to 50mA are shown in Figure 24.  The 

frequency was swept from 100MHz to 6GHz on a Vector Network Analyzer 

(VNA).  Similarly the models response is shown in red, while the measured 

response is shown in blue.  The S11 and S12 response produces very accurate 

results between the model and the measured results published by the vendor.  

The forward gain response for S21 is shown by the log mag plot and shows a 

distinguishable delta at lower frequencies, but should be negligible for our design 

frequency of 3.6 GHz [20]. 

 

Figure 24:  S-Parameter response for VDSQ = 32V and IDSQ = 50mA [20] 
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F = 3GHz, VDSQ = 32V, IDSQ = 50 mA, and Pin = 19dBm 
 

Figure 25:  Modelithics Load Pull Validation [20] 
 
 

Table 4: Summary of Load Pull [20] 

 

Load Pull 
Summary 

Max Pout Load 
Impedance 
Zo*(mag/phase) 

Max Pout 
Value 
(dBm)  

Max PAE Load 
Impedance 
Zo*(mag/phase) 

Max PAE 
Value (%) 

Measured  Zo*(0.519/39.763) 40.2 Zo*(0.746/49.348) 76.5 
Model Zo*(0.459/33.724) 40.4 (Z0*(0.769/46.949) 72 
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Chapter 4 
Design Process and Methodology 

4.1 Design Overview 

 The symmetrical Doherty power amplifier is designed for high linearity 

using TriQuint’s T1G6001032-SM GaN on SiC HEMT device with a targeted 

design frequency of 3.6 GHz and saturated power of 40dBm.  This section 

describes the design process and methodology, providing a thorough discussion 

of the device selection, biasing circuit, matching network, combining networks, 

and design layout. This section will also provide relevant design simulations used 

to analyze each stage of the design and report the simulated figures of merit 

pertaining to the design of the Doherty power amplifier.   The functional block 

diagram of the Doherty power amplifier is shown again in Figure 26.   

 

Figure 26:  Functional Block Diagram of Doherty PA [7] 
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4.2 Device Selection  

 The selection of the passive circuit elements are discussed for the bias 

circuitry, combining network, and RF signal path and briefly covers the selection 

of the substrate material used for the design layout.  Since the active device was 

described thoroughly in chapter 3, the reader is asked to refer to the previous 

chapter for details pertaining to the T1G6001032-SM GaN device. Table 5 list the 

passive component bill of materials used for the Doherty power amplifier. 

 
Table 5: Passive Elements Bill of Materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference  Value Description  Manufacture  

R1 50 ohm, 
50 ohm, 10W terminator, 
60120 Anaren 

C1, C2, 
C3, C4, 
C9, C10, 
C11, C12 

10pF Cap, 10pF, 1% AVX – ACPU 

R2, R3 10 ohm 
RES, 10 ohm, 1% , 1/8W, 
0603 Rohm 

C5, C6, 
C15, C16, 
C21, C22 

10uF Cap , 10UF , 50V, X7R, 
2220 

TDK 

C7, C8, 
C13, C14 

1000pF Cap, 1000pF, X7R 1206 Murata 

C17, C23 50uF 50V Electrolytic Cap, 50uF, 50V    

C19, C20 0.2pF Cap, 0.2pF, +/-0.1pF ATC 600S 

C21 0.8pF Cap, 0.8pF, +/-0.1pF ATC 600S 
Splitter   3.0-4 GHz Hybrid coupler Anaren 
Connector 
x 2 

50 ohm 
connector 

50 ohm N type connector Huber + Suhner 

PCB   MTL D51030  2613 MTL 

Base plate     RJR 
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 The dielectric substrate selected for the 3.6 GHz Doherty power amplifier 

is 15mil Taconic RF35A2 and was selected based on its low losses and 

performance at microwave frequencies.  This substrate is designed with an ultra-

low fiber glass content to achieve “best in class” insertion loss properties and a 

homogeneous dielectric constant throughout the laminate.  The uniform 

dispersion ceramic throughout the laminate yields extremely low coefficients of 

thermal expansion.  The laminate is manufactured in a multi-step process that 

provides excellent dielectric properties as well as copper peel adhesion [21].  The 

dissipation factor versus frequency is shown in Figure 27.  It shows a low 0.0012 

dissipation factor at 3.6 GHz allowing for maximum power transfer and resulting 

in low heat generation.   Comparing the vender’s quoted dissipation factor to 

Rogers 4350B laminate this is a 3x improvement, making it an ideal laminate for 

power amplifier applications [22]. 

 

Figure 27:  Taconic RF-35A2 Dissipation Factor [21] 
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 The coupling and de-coupling capacitors selected for this design are AVX 

ACCU-P thin-film chip capacitors.  The use of low loss dielectric materials, 

silicon-dioxide and silicon oxynitride, in conjunction with highly conductive 

electrodes results in low equivalent series resistance (ESR) and high Q.  The 

capacitor structure for the AVX ACCU-P is shown Figure 28. These high-

frequency characteristics change at a slower rate with increasing frequency than 

microwave ceramic chip capacitors [23].  The 0603 capacitors selected for this 

design has a specified tolerance of +/-1% measured at 1 MHz, and have a 

breakdown voltage of 50 Volts.  An ESR of 132 m-Ohms at 3.6 GHz was linearly 

extrapolated from the data sheet which was specified at 0.9 and 2.4 GHz.    

 

 

Figure 28:  AVX ACCU-P Capacitor Structure [23] 
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4.3 Biasing Circuitry 

The DC bias circuitry of the Doherty power amplifier can be divided into 

four individual circuits designed to deliver the required drain and gate voltages to 

the carrier and peaking amplifier.  To isolate the RF from the DC power supply a 

quarter-wavelength transmission line is used as an RF choke so that DC appears 

as a short-circuit at the gate and drain while at microwave frequencies it appears 

as an open-circuit. Several shunt capacitors are used absorb current spikes 

caused from supply ripple while also decoupling any RF from the DC power 

supply. A series resistor is used at the input of the gate to further absorb noise 

from the power supply or RF leaking into the power supply. The bias circuitry for 

the carrier and peaking amplifiers are identical and is represented by the circuit 

model shown in Figure 29.    

 

 

Figure 29:  Circuit model of the bias circuitry  
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A microstrip line is a transmission line consisting of a strip conductor and a 

ground plane separated by a dielectric medium [14].  To determine the length of 

our quarter-wavelength transmission line we must first determine the phase 

velocity, vp, given by the following equation. 

p

ff

c
v

ε
=

                                               (4.1) 

 Where c is the speed of light (3 x 108 m/s) and ffε  is the effective relative 

dielectric constant of the dielectric substrate.  We can determine the effective 

relative dielectric constant of the 15 mil RF35A2 Taconic substrate by using the 

following equation. 

1 1 1

2 2 1 12 /
r r

ff
H W

ε ε
ε

+ −  
= +  + ⋅                     (4.2) 

 Where rε  is the dielectric constant of the substrate, H is the height of the 

substrate, and W is the line width of the microstrip.  Inserting the properties of the 

Taconic RF35A2 substrate into the equation 4.2 returns an ffε  equal to 2.658.  

We can then determine the line length of the quarter-wavelength transformer 

from the following equation. 

( )90 /180

ff o

l
k

ο οπ

ε
=

⋅                                           (4.3) 
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Where ko is equal to the inverse of the wavelength in free space, given by the 

following equation.   

0

2 f
k

c

π
=

                                                (4.4) 

 Finally, we can determine that the length of the quarter-wavelength in the 

15 mil RF35A2 Taconic substrate is approximately 1.29 cm or 502 mil.  This 

value will be used to approximate the placing of the 10 pF decoupling capacitor 

and will be referenced for the quarter-wavelength transformer in the output 

combining network of the carrier amplifier.    

4.4 Input Combining Network 

  
 The symmetrical Doherty PA design requires that the RF input power to 

be equally split between the carrier and peaking amplifier.  This is more 

commonly performed using a Wilkinson power divider which can be realized with 

microstrip and a chip isolation resistor.  However, since the peaking amplifier 

requires a 90 degree phase delay at its input, it is advantageous to employ a 90 

degree 3dB hybrid coupler to accomplish the power splitting and phase delay 

functions.   

 The 90 degree hybrid coupler selected for this design is an Anaren 

XC3500P-03S high performance 3dB hybrid coupler intended for use between 

3.3 GHz and 3.8 GHz.  It is packaged in a low-profile manufacturing-friendly 

surface mount package.  It is designed particularly for balanced power and low 

noise amplifiers, plus signal distribution and other applications where low 
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insertion loss and tight amplitude and phase balance is required.  It can be 

employed in power applications up to 55 Watts, which is more than enough 

power handling capabilities for the 10 Watt Doherty power amplifier design [24]. 

 The electrical specifications call out a minimum isolation of 21dB, a 

maximum insertion loss of 0.25dB, a maximum VSWR of 1.20, and a maximum 

amplitude balance of +/- 0.25 dB.  The phase delay is specified with a tolerance 

of +/- 3 degrees and must be accounted for later in the design process.  This 

device can be operated over a wide temperature from -55°C to +85°C.   The 90 

degree hybrid coupler pin configuration can be seen in Figure 30.  Since this 

device can be used in combiner and splitter applications, the pin out 

configuration can be used so that the device is oriented 90 degrees counter 

clockwise such that pin 1 is the isolation port, pin 2 is the input port, pin 3 is the -

3dB port connected to the carrier amplifier, and pin 4 is –3dB with a -90 degree 

delay connected to the peaking amplifier. 

 

 

Figure 30:  The XC3500P-03S 3dB Hybrid Coupler Pin Configuration [24] 
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Figure 31:  Data Item used to import S4P data 

 Using the vender supplied 4 port S4P touchstone file the performance of 

the 3dB 90 degree coupler was evaluated using the data item feature in ADS.   

Once the 4 port touchstone file was imported using the data item feature shown 

in Figure 31, the output performance of the device reported a magnitude 

imbalance on ports 3 and 4 to be approximately 0.1 dB at 3.6 GHz.  The phase 

delta between ports 3 and 4 was approximately -90.8 degrees which meets the 

+/- 3 degrees specified in the device’s data sheet.   

 

Figure 32:  Output performance of 3dB Hybrid Coupler 
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 Having found reasonable performance from the 3dB 90 degree coupler, 

the phase difference at the input of the carrier and peaking amplifier must be 

verified.  This was achieved by modeling the layout of the Taconic RF35A2 

substrate and the design layout leading up to the input of the carrier which can 

be seen in Figure 33.    

 

Figure 33:  Circuit model to test input combining network 
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 A small-signal S-parameter simulation in Figure 34 shows the phase delta 

at the input of the transistors is approximately 89° between the carrier and 

peaking amplifier at 3.6GHz. This meets the impedance inversion requirements 

of the input combining network. 

 

Figure 34:  Simulation results of input combining network 

4.5 Input and Output Matching Networks 

The input and output matching network for the carrier and peaking 

amplifier were determined by running harmonic balance simulations in ADS and 

tuning the widths and lengths of the transmission lines until the maximum gain 

and PAE were reported.   Tunable variables were deployed to find the optimal 

width for each segment of transmission line for the input and output matching 

network of the carrier and peaking amplifier which can be seen in Figure 35 

below.  This iterative process made design of the input and output matching 

networks straight forward.  Starting from the left and moving to the right the 

variables were tuned until a relative maxima for gain and PAE were found before 

proceeding to the next variable. 
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Figure 35:  Matching Network Transmission Line Tuning  

The classical design approach would opt for a source-pull analysis to 

determine the impedance looking into the transistor to return the maximum gain.  

Then the transmission line impedance matching network would be design to 

match the 50 ohm source impedance to the input impedance of the transmission 

line.   This approach is time-consuming, tedious, and prone to calculation error 

given the nature of the transmission line formulas [14].  Having performed these 

calculations in the past, a deep appreciation for working design models alleviates 

this facet of the design process. 

4.6 Zopt Impedance Selection 

In the design of classical symmetric Doherty power amplifiers, the 

selection of the carrier amplifiers Zopt condition is critical to the amplifiers 

saturated power characteristic.  Less emphasis toward the selection of the Zopt 

impedance is described here because a softer efficiency peak at backed-off 

power levels was required to meet linearity requirements, which will be discussed 
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momentarily.  This implies that the carrier amplifier is still behaving linearly when 

the peaking amplifier begins to turn on.  This differs from the design of the 

classical symmetric Doherty power amplifier which requires that the carrier 

amplifier is saturated before the peaking amplifier begins to turn on, resulting in a 

sharp efficiency peak at backed-off input power.   

However, to achieve the sharp efficiency peak which is exemplary of the 

classical Doherty design the selection of Zopt must meet three criteria 

simultaneously and are discussed here to give depth and thorough treatment of 

the Doherty power amplifier. 

1.  Zopt must provide saturated power when both the carrier and 

peaking amplifier are fully on. 

2. 2*Zopt at a 2:1 VSWR centered around Zopt delivers the best 

possible efficiency. 

3. Zopt and off-state of the peaking amplifier must be able to 

achieve high impedance into the Doherty combining network. 

 In the classic approach of selecting the Doherty amplifiers target 

impedance, we must consider many factors including gain, power, and efficiency.  

Trade-offs will need to be made to best meet our design criteria.  An ideal device 

would have max power and max efficiency exactly separated by a 2:1 VSWR.  

The power and efficiency contours would oppose each other perfectly.  In reality 

few devices follow an ideal impedance trajectory.  Therefore, to maximize the 

back-off efficiency it is important to look at load pull data at the target average 

power in addition to saturated conditions. 
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4.7 Output Combining Network 

 The output combining network of the 3.6 GHz Doherty power amplifier 

was designed using transmission lines.  A quarter-wavelength transmission line 

on the output of the carrier amplifier was employed to sum the signals back 

together so that the phases at the recombination nodes were equal.  The method 

for evaluating phase at this recombination node was by modeling this network 

shown in Figure 36. 

 

 
Figure 36:  Output Combining Network  
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 The transistors were replaced by the Anaren XC3500P-03S high 

performance 3dB hybrid coupler to produce a 90 degree output of phase 

response at the input of the carrier and peaking amplifiers output matching 

networks.  At the recombination node where the output of the carrier and peaking 

amplifiers meet the circuit was broken and terminated with 50 ohms so that 

small-signal S-parameters simulations could measure the phase going into the 

recombination node. The simulated results shown in Figure 37 shows the phase 

at the recombination node are approximately equal.   

 

Figure 37:  Simulated Phase at Recombination Node   

4.8 Off-State of Peaking Amplifier 

 When the input-power is completely backed-off the peaking amp should 

be inactive and “invisible” to the carrier amplifier.  In order to achieve this it is 

desirable to achieve an open-circuit from the combining node of the peaking-

amplifier. The off-state impedance measured by the small-signal matching 

network, should create an open-circuit into the recombination node.  A simulation 
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in ADS was setup to measure the off-state impedance of the peaking amplifier 

and its circuit model representation is given in the Figure 38 below. 

 

Figure 38: Circuit Model Representation to Measure Off-state Impedance [7] 

 The circuit was broken at the recombination node and a 25 ohm terminal 

was placed at the peaking amplifiers recombination node to replicate the ideal 

modulated impedance Zm.  The off-state impedance of the peaking amplifier was 

simulated using small-signal S-parameters and the transmission line length 

depicted by ɸPO was tuned to optimize the highest attainable impedance into the 

peaking amplifiers recombination node.   Moreover, to confirm that the peaking 

amplifier was in its off-state due to the implications of Class-C biasing, the 

amplifier was connected in Doherty mode and the same high-Z impedance was 

measured at the recombination node of the peaking amplifier confirming the off-

state of the peaking amplifier.  This normalized off-state impedance is shown 

below in Figure 39 and corresponds to a real impedance of 365 ohms.       
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Figure 39:  Simulated Off-State Impedance of Peaking Amplifier   

4.9 Output Impedance Transformer 

The output impedance transformer for the Doherty power amplifier was 

created using a microstrip quarter-wavelength transformer. From the 

recombination node the modulated impedance is approximately half that of the 

50 ohm system impedance.  Therefore, an output transformer is required to 

convert the 25 ohm modulated impedance to the 50 ohm system impedance.  A 

quarter-wavelength transformer is employed to convert the modulated 

impedance to the system impedance, ensuring the maximum power transfer to 

the load is being satisfied. The calculation to determine the impedance of the 

output transformers transmission line is shown. 
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50 25 35.4TZ = Ω⋅ Ω = Ω                             (4.5) 

Referring to equations 4.1 through 4.4 we calculated the length and width 

of the microstrip quarter-wavelength transformer and determined that the length 

to be 489 mils and the width to be 51.4 mils. 

4.10 Final Design 

 The final design of the 3.6 GHz Doherty power amplifier was simulated 

using ADS to model the 15 mil Taconic RF35A2 substrate, PCB design layout, 

passive, and active models.  The final design was evaluated by its small signal S-

parameters, large-signal single-tone PAE and gain, two-tone PAE, gain and 

carrier to IMD ratio.  The most critical of these parameters being the carrier to 

intermodulation distortion ratio reported during the two-tone PAE vs swept input 

power simulations.  To achieve a carrier to IMD ratio greater than 30 dB, while 

maximizing PAE, the transmission line dimensions of the input and output 

matching networks were tuned.  This resulted in a design tradeoff between its 

maximum PAE and backed-off PAE in exchange for improved linearity. The final 

circuit model used to evaluate the 3.6 GHz Doherty power amplifier can be seen 

in Figure 40. 
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Figure 40:  Circuit Model of 3.6 GHz Doherty Power Amplifier 

4.11 Simulated Results 
 This section will reports the simulated results of the final design shown in 

Figure 38.  The first of which are the small-signal S-parameters swept from 100 

MHz to 6 GHz shown in Figure 41.  It should be mentioned that the frequency 
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response is a result of the carrier amplifier because the peaking amplifier is in an 

“off-state” for small-signal analysis due to the Class-C biasing.   

 
Figure 41:  Simulated Small-Signal S-parameters 

 The single-tone harmonic balance simulation was used to sweep the input 

power from 10 dBm to 27 dBm in 1 dB increments.  The result show the 

transducer power gain (dB) and PAE(%) in Figure 40 below.  The simulated 

transducer power gain is approximately 15.5 dB until it approaches 

approximately 34 dBm and a pronounced dip in gain can be observed.  This dip 

in gain is due to the interaction between the carrier and peaking amplifier.  This is 

the instantaneous power where the peaking amplifier is beginning to contribute to 

the output of the Doherty power amplifier.  
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Figure 42:  Simulated transducer power gain and PAE 

 The simulated single-tone large signal PAE shown in Figure 42 reported a 

maximum 64.5%, and a PAE of 50.4% when the input power is backed-off by 6 

dB.  The soft efficiency peak is evident and is an indicator that the carrier 

amplifier is still operating linearly as the peaking amplifier begins to contribute to 

the RF output power.   

 A two-tone harmonic balance simulation was used to record the two-tone 

IMD measurements reported in Figure 43. The transducer power gain, PAE, 3rd-

Order, and 5th-Order IMD products are shown.    Please observe that the carrier 

to intermodulation ratio no longer meets the 30 dBc specification at 

approximately 35 dBm.   

 
Figure 43:  Simulated Two-Tone Gain, PAE, 3rd-Order IMD, 5th--Order IMD  
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4.12 Layout 
 
 The design layout 3.6 GHz Doherty power amplifier was created using the 

layout feature in ADS and can be seen in Figure 44.  The PCB design layout is 

designed so that it can be mounted to an existing 4” x 4” aluminum base plate 

used to dissipate the heat created by the device.  This layout features adequate 

grounding with numerous vias connecting the top metal to the ground plane. 

 

Figure 44:  Design layout of 3.6 GHz Doherty Power Amplifier 
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  RF paths for the carrier and peaking amplifier are included to tune and 

evaluate and the performance of each amplifier.  Tuning handles are included to 

the carrier and peaking amplifiers output combining networks as well as the 

peaking amplifiers input combining network.  This feature is used to tune the 

input and output combining network to achieve the desired phase performance 

for their respective networks.   

 Should the user be constrained by the use of two individual power 

supplies, the layout also includes an optional voltage regulator on the gate supply 

of the peaking amplifier. This would enable the user to add a low-drop out (LDO) 

negative voltage regulator such as the Maxim 1735 which comes in a 5 pin, SOT-

23 package.  This device operates from -2.5 to -6.5 Volts input voltage and can 

supply an output from -1.25 to -5.5 Volts with the use of an external voltage 

divider.  This device guarantees a 200 mA maximum output current with a low 

voltage dropout of 80mV.  The guaranteed maximum output current of 200 mA is 

more than sufficient to supply the near zero gate current of the T1G6001032-SM 

GaN HEMT device and the 80mV low-voltage dropout is more than enough to 

supply the -2.6 to -2.8 Volts needed for the gate of the carrier amplifier from the -

4.3V pinched off gate voltage of the peaking amplifier.  

4.13 Assembly Method 
 The assembly of the 3.6 GHz Doherty power amplifier begins by soldering 

the PCB to the 4” x 4” aluminum heat sink with nickel-tin plating, making it 

possible to solder the heat sink to the back metal of the PCB.  A hotplate and 

lead based solder was required to mount the test fixture to the aluminum base 
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plate.  We found through trial and error that applying a thin coat of lead based 

solder to the baseplate produced the best results.  The Taconic RF35A2 test 

fixture is then mounted to the base plate and mounting screws are used to hold 

the test fixture in place during the solder flow process.  A temperature of 280° C 

is used to flow the solder between the nickel-tin plated aluminum heat sink to the 

back metal of the Taconic RF35A2 substrate.  Once the test fixture has cooled it 

is placed in an ultrasonic alcohol solution to clean any excess flux that 

accumulated during the solder flow process.   

 

Figure 45:  Hot Plate Assembly of SMD Components 

 Once the test fixture has been cleaned the passive and active 

components can be mounted to the test fixture. This is achieved by setting the 

temperature of the hotplate to 240°C, allowing sold er to flow between the top 

metal of the PCB and surface mount components, shown in Figure 43.  This step 
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would be repeated several times during the tuning of the Doherty power 

amplifier.  It was necessary to test the carrier and peaking amplifiers individually 

to ensure adequate performance.  Female banana plugs with flat metal leads 

were soldered to the top metal of the PCB using a more traditional soldering iron 

making it easy to connect DC power to the test fixture. Finally the assembled test 

fixture is connected in Doherty mode which can be seen in the Figure 46. 

 

 

Figure 46:  Assembled 3.6 GHz Doherty Power Amplifier 
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Chapter 5 
Power Amplifier Measurements 

5.1 Test Instruments 

 
The 3.6 GHz Doherty power amplifier was tested on the bench and its 

performance was evaluated against the simulated performance first presented in 

the previous chapter.  The precision instruments used to test the device under 

test (DUT) are listed in table 6.  Four DC power supplies were used to power the 

individual gates and drains of the power amplifier.  A pair of Agilent E4438C ESG 

were used for two-tone IMD measurements in conjunction with a MiniCirucits 3dB 

splitter.  A single ESG was used for single-tone tests.  Due to the output power 

limitations of the Agilent E4438Cs an Amplifier Research (AR) 5S1G4M2 800 

MHz to 4.2 GHz power amplifier was used to adequately drive the Doherty power 

amplfier into saturation.  

Table 6: Test Equipment 

Make Model Quantity Description 

Agilent E3631A 2 DC Power Supply 

Agilent E3662A 2 DC Power Supply 

Agilent  E4438C 2 ESG 250 kHz to 4 GHz 

Agilent  ENA E5071B 1 Vector Network Analyzer 

Agilent  E4418B 1 Power Meter 

Agilent E9300A 1 Power Sensor 

AR 5S1G4M2 1 800 MHz to 4.2 GHz Power Amp 

R&S FSV 1 Signal Analyzer 9 kHz – 30 GHz 

Narda  4226-20 1 20 dB Directional Coupler 

MiniCircuits ZFSC-2-10G 1 Power Splitter 

Meca IS-3000 1 Isolator 3 GHz – 4.8 GHz 
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From the output of the AR amplifier a 24” piece of coax is used which 

terminates to a Meca isolator to ensure that energy flows in one direction.  This is 

an extremely useful device for isolating components in a chain, to prevent any 

voltage standing wave ratio (VSWR) at the input of the DUT.  From the output of 

the DUT the RF signal goes into a Narda 20 dB directional coupler, so that the 

signal coming out of the coupled port is attenuated by 20 dB before it is received 

on the R&S FSV signal analyzer.  This is a necessary precaution since the 

instruments receiver can be damaged by RF signals greater than 30 dBm.  The 

output of the directional coupler is also padded with a 20 dB attenuator to prevent 

damaging the power sensor of the Agilent E4418B power meter 

 

Figure 47:  Two-Tone IMD Large-Signal Bench 
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5.2 DC Biasing 
 The Doherty power amplifier was DC biased to produce a quiescent 

current of 100 mA by setting Vgc to 2.7 V and a Vdd of 28 V, where the gate 

voltage on the peaking amplifier is pinched off to -4.3 V to achieve a Class-B 

bias.  The turn-on and shut-down sequence of the power supplies is absolutely 

critical to avoid damaging the T1G6001032-SM GaN devices.  Since these 

devices are biased in depletion mode applying a more negative voltage on the 

gate pinches off the channel.  If the Vdd is turned on with 0 Volts on the gate, the 

channel is wide open and current will be near Idss.  The turn-on and shut-down 

sequence should be followed at all times.  Not following this protocol will damage 

the device resulting in gate leakage currents. 

 

                    Turn-on     Shut-down 

               1.  Vgc      1.  RF 

          2.  Vgp      2.  Vdd 

          3.  Vdd      3.  Vgp 

          4.  RF      4.  Vgc 

 To eliminate any voltage drop across the DC cables, custom 16 gauge 

cables were created for the carrier and peaking amplifier drain supplies that 

terminated the force and sense lines at the DC input of the DUT.  The use of 

individual DC power supplies allowed us to accurately monitor the currents being 

sourced from each of the individual supplies, and more importantly shows the 

instantaneous power at which the peaking amplifier turns on.   
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5.3 Small-Signal Testing   
The small-signal scattering parameters were measured using an Agilent 

ENA E5071B.  The instrument was calibrated using its accompanying E-cal and 

setup for a broadband sweep from 1 MHz to 6 GHz with a -30 dBm source 

signal.  The simulated (blue) and measured (red) results are shown in Figure 48 

shows that the simulated and measured results line up reasonably well.  The 

small-signal S-parameters are due solely to the carrier amplifier because the 

instantaneous power level of the power amplifier is not large enough to activate 

the peaking amplifier. 

 

Figure 48:  Simulated vs. Measured S-Parameters 



64 
 

The largest discrepancy between the simulated and measured small-

signal results can be observed by the input return loss reported between 2 and 4 

GHz. The measured results are approximately 5 dB better than those reported by 

simulated results.  Additionally, the simulated output return loss is approximately 

6 dB better than that reported by the measured results and can also affect the 

amplifiers performance characteristics.  Many factors could attribute to this delta 

including part-to-part variation of passive and active components, phase 

inaccuracies into the recombining node, and dielectric substrate modeling. 

The stability can be determined from the small-signal S-parameters 

discussed earlier from Rollet’s condition defined by equation (2.3).  The stability 

plot shown in Figure 49 shows that the device is unconditionally stable from 

approximately 2.3 to 4.2 GHz, which is adequate for the intended operation of 

this power amplifier.  However, we can observe that the conditions for oscillations 

exist out of the intended band of operation.  The use of a band-pass filter could 

be deployed to ensure that the out-of-band characteristics of the power amplifier 

are unconditionally stable, but would come at the cost of the filters insertion loss. 

 

Figure 49:  Simulated vs. Measured Stability (K) 
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 From the forward gain plot shown in Figure 41 the bandwidth of the device 

can be ascertained and is provided in table 7.   The calculated 1 dB percentage 

bandwidth of the 3.6 GHz Doherty power amplifier is approximately 7.8%.  A 

limitation of the classical Doherty power amplifier’s input configuration generally 

results in narrow bandwidth, but the results shown here are respectable, 

providing nearly 280 MHz of linear gain. The 2dB and 3dB frequency bandwidth 

and percentage bandwidths are also provided showing an increase to bandwidth 

as the insertion loss requirements in the passband are increased. 

 

Table 7: Doherty PA Bandwidth 

Insertion 
Loss 
(dB) 

Lower 
Frequency 

(MHz) 

Upper 
Frequency 

(MHz) 

Frequency 
Bandwidth 

(MHz) 

Percentage 
Bandwidth 

(%) 
1 dB 3430 3710 280 7.78 
2 dB 3365 3760 395 10.97 
3 dB 3310 3800 490 13.61 

 

5.4 Large-Signal Bench Calibration 
 A rigorous calibration process was required to remove any losses from the 

RF signal path so that the performance of the Doherty power amplifier could be 

tested and evaluated with high accuracy.   A detailed description of the large-

signal bench calibration process is provided in this section with accompanying 

figures to show the necessary steps required to accurately measure the 3.6 GHz 

Doherty power amplifier. 
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1.  Power Meter/Sensor Calibration 

a. Set frequency 3.6 GHz 

b. Zero Power Sensor 

c. Calibrate Power Sensor 

 

Figure 50:  Power meter and sensor calibration 

2.  Subtract coaxial cable loss from the output of the ESG 

a. Use a THRU to connect the power sensor to the output of the ESG 

b. Apply a 0 dBm CW 

c. Apply an amplitude reference offset on the ESG so that a reading of 0 

dBm is measured on the power meter. 

 

Figure 51:  Subtract coaxial cable loss 
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3.  Subtract losses between the ESG output and DUT input 

a. Connect the output of the ESG to the input of the AR power amplifier 

b. Connect the output of the AR amplifier to the isolator. 

c. Connect the output of the isolator with a barrel connector 

d. Use a THRU to connect the power sensor to the barrel connector 

e. Adjust the gain on the AR amplifier until a 20dB a reading of 20 dBm is 

measured on the power meter. 

f. Apply an amplitude reference offset on the ESG  

 

Figure 52:  Subtract losses between ESG output and DUT input 

 

4.  Subtract losses through the 20 dB directional coupler 

a. Connect the barrel connector attached to the isolator to the input of the 

20 dB directional coupler. 

b. Connect the 20 dB coupled port to the input of the signal analyzer 

c. Connect a 20 dB attenuator to the output of the directional coupler 

d. Connect the power sensor to the 20dB attenuator 
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e. Apply a 0 dBm CW from the ESG and set the reference level offset on 

the signal analyzer and power meter so that 0 dBm reading is reported 

from both instruments. 

 

Figure 53:  Subtract loss through directional coupler 

 A similar calibration procedure was performed for the two-tone IMD large-

signal testing.  Additional steps were necessary to calibrate the two-tone IMD 

large-signal bench where the power of each tone was set to produce equal 

outputs.  The losses from each coaxial cable between the splitter and ESGs were 

accounted for by setting the amplitude reference offset on each individual ESG. 

5.5 Single-Tone Large-Signal Tests 
 The measured single-tone large signal results were captured in 1 dB 

increments and compared with simulated results.  Figure 54 shows that the 

measured results produced a maximum PAE of 55.1% and a PAE of 48.5% with 
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an input power backed-off by 6dB.  Comparing these results with the simulated 

results reported a maximum PAE of 64.5% and a PAE of 50.4% with an input 

power backed-off by 6 dB.  The measured maximum output power of 40.8 dBm 

was reported versus the simulated 41.7 dBm.  This corresponds to a linear 

output power of 12 and 15 Watts respectively.    

 

 

Figure 54:  Measured vs. Simulated PAE (%) 

 Similarly, the transducer power gain was recorded in 1 dB increments by 

measuring the ratio of the power delivered to the load versus the power available 

from the source.  Figure 55 shows the transducer power gain (dB) versus the RF 

output power (dBm). As the input power is increased we can observe the 

measured gain is decreasing.  The decrease in measured transducer power gain 

versus that of the reported simulated results gives an explanation for the 
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discrepeancies between the reported PAE and maximum output power.  

Moreover, the 6dB delta measured between the S22 output return loss described 

in the S-parameter section demonstrates the effects that the output matching 

network has on PAE, maximum output power, and transducer power gain. 

 

 

Figure 55:  Measured vs. Simulated Transducer Power Gain (dB) 

 

The 1 dB compression point can be found by extrapolating the linear gain 

curve beyond its measured saturation region and then determining the point 

where the measured gain is 1-dB below the extrapolated linear gain point.  We 

can observe from the plot in Figure 56 that the linear extrapolation of the RF 

output power results in a 1 dB compression point of approximately 38.7 dBm.  

The simulated 1-dB compression could not be determined from the data provided 

but is approximated at 41 dBm.   
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Figure 56:  Measured vs. Simulated 1dB Compression Point (dB) 

 

5.6 Large-Signal IMD Tests 
 The two-tone IMD large-signal results were measured to evaluate the 

linearity of the 3.6 GHz Doherty power amplifier.  The tones were separated by 5 

MHz which corresponds to a tone at 3597.5 MHz and 3602.5 MHz.  This test is 

called out in IEEE IMS2014 student design competition for “High Efficiency 

Power Amplifier Design Competition,” which evaluates the linearity of the power  

amplifier by requiring a carrier to intermodulation ratio greater than 30 dB. The 

input power will be incremented by 1dB from 0 dBm and the PAE will be 

measured at the first output power where the ratio falls below 30 dBc [26].    
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Figure 57:  Simulated vs. Measured carrier to IMD ratio   

 Figure 57 shows the measured vs. simulated carrier to IMD ratio results.  

We can observe that the carrier to IMD ratio falls below the 30 dB carrier to IMD 

ratio with an input power corresponding to 20 dBm and an output power of 34.5 

dBm. Figure 58 shows the two-tone PAE results of measured vs. simulated 

results.  The PAE reported where the carrier to IMD ratio falls below 30 dB is 

39.8%.  This would result in a score of 54.8 which is determined by the product of 

the PAE and frequency weighting factor having the form (GHz)0.25 [24].  The 

maximum measured two-tone PAE was recorded at 48.3% which is 10% lower 

than those reported simulated PAE. The two-tone transducer power gain 

reported similar values to those found in figure 55 and are not reported here for 

brevity.  We may conclude that the delta created between the simulated and 

measured results is due to the deviation reported by the output return loss, 

amplifier biasing, and phase offsets in the input and output combining networks.   
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Figure 58:  Measured vs. Simulated Two-Tone PAE (%)  

 Please observe the 3rd-order IMD improves between 25 and 30 dBm RF 

output power.  Linearity sweet spots are a common phenomenon in traditional 

class AB power amplifiers.  However, in a Doherty PA such cancellation effects 

become more prominent due to the interaction of main and peak amplifiers which 

have different bias points, thus different transfer characteristics [25].  A specific 

bias point can greatly improve the 3rd-order IMD but there are issues associated 

with it.  First, tuning the quiescent current does not only affect the third order IMD 

but also the higher order IMDs. It happens in such a way that the 5th-order IMD 

becomes worse if the 3rd-order IMD improves [27]. This can be observed in 

Figure 59, where the 3rd-Order IMD improves resulting in degraded 5th-Order 

IMD.  For obvious reasons, it is not practical to suppress 3rd-Order IMD products 

below 5th-Order IMD products.   
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Figure 59:  3rd-Order and 5th-Order IMD  

5.7 Large-Signal LTE Modulated Tests 
The Doherty power amplifier can improve the efficiency of a PA when the 

input power is backed-off, making this architecture particularly attractive for high 

peak-to-average (PAR) environments.  Demand for linear high efficiency power 

amplifiers in small-cell base station applications is required to support the 

increasing data rates for modulations such as Orthogonal Frequency Division 

Multiplexing (OFDM), which is used predominately in Long Term Evolution (LTE) 

4G networks.  Typically, the use of digital pre-distortion (DPD) is used to reduce 

the distortion mechanisms caused by AM-AM, AM-PM, and memory effects to 

achieve the linearity requirements of high PAR networks.  This section will give 

the test results of the 3.6 GHz Doherty power amplifier when a 20 MHz LTE 

waveform is swept over RF output power.  The results here are without the use 

of DPD, but if it were used we can expect that the distortion mechanisms caused 
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by AM-AM, AM-PM, and memory effects would be reduced, further improving the 

linearity of the power amplifier.   

The modulated waveform is a quadrature phase shift keyed (QPSK) with a 

20 MHz system bandwidth and an 18 MHz measurement bandwidth.   This 

particular waveform uses all of its 100 resource blocks. An LTE resource block is 

defined as 12 contiguous subcarriers corresponding to 180 kHz in the frequency 

domain and one time slot in the time domain.  The subcarriers in LTE have a 

constant frequency delta of 15 kHz.  This means that in the frequency domain, 

one terminal can receive or transmit in one resource block or integer multiples of 

one resource block.  In other words, it is not possible to assign less than 12 

subcarriers to one terminal [29] 

 

Figure 60:  Measured PAE and Gain with 20 MHz LTE Waveform   



76 
 

The occupied bandwidth contains 99% of the total integrated mean power 

of the transmitted spectrum.  The occupied bandwidth can be measured by 

performing spectral measurements with the Rohde & Schwarz FSV signal 

analyzer.  Figure 61 shows the spectral emissions of the QPSK_20MHz_100RB 

test waveform.  The adjacent channel leakage power ratio (ACLR) is an 

important measure to verify that the transmitter does not cause unacceptable 

interference to an adjacent channel.  In 4G networks the ACLR must be verified 

for two different scenarios which are distinguished by EUTRA and UTRA spectral 

emissions.  The example provided in Figure 61 shows the EUTRA ACLR where it 

is assumed that the adjacent channel is another LTE channel.   We can observe 

that as the input power is swept in 1 dB increments the ACLR begins to degrade 

after output power approaches 27 dBm, and fails the EUTRA ACLR specification 

limit of -30 dBc at approximately 35 dBm 

 

Figure 61:  EUTRA-ACLR (dBc) vs RF Output Power (dBm)  
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Conversely, the UTRA measurement would treat the adjacent channel 

measurement as if it were being utilized by a WCDMA channel and calls out a 

more stringent ACLR specification of -33 dBc.  The ACLR results reported in 

Figure 61 demonstrates that the 3.6 GHz Doherty power amplifier can support a 

20 MHz LTE network up to an output power of 35 dBm without the use of DPD.  

Dynamic memory effects must be compensated for using DPD to improve the 

linearity of the device beyond an output power of 35 dBm.  In GaN HEMT 

devices these memory effects are predominately caused by the effects of 

trapping [7].   

 
 

Figure 62:  Measured PAE and Gain with 20 MHz LTE Waveform   

The transducer power gain and PAE efficiency are reported in Figure 62 

using the modulated 20 MHz LTE waveform.  The maximum PAE reported was 

43.4% and with the input power backed-off by 6dB the PAE is equal to 37.82% 

and corresponds to an output power of 35.6 dBm.  The maximum output power 
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measured is 38.6 dBm, which is less than the maximum output power reported 

for single-tone and two-tone measurements.  This is an expected outcome 

because as you increase the bandwidth of a power amplifier with a modulated 

waveform, the power spectral density will decrease, resulting in a lower 

maximum output power. 

5.8 Thermal Imaging Results 
 The Flir T650sc was used to capture the thermal images shown in Figure 

63, where the amplifier was driven to full saturation to a maximum output power 

of 40.8 dBm [30].  The camera has a feature that enables it to focus on a specific 

area and report the temperature which allowed us to focus on the individual 

T1G6001032-SM GaN devices to report their operating temperature at maximum 

output power.  We can observe that the carrier amplifier (left) is 2.5°C warmer 

than the temperature reported by the peaking amplifier (right).  This agrees with 

our expectations since the majority of the power is being dissipated by the carrier 

amplifier.  The temperature ranges from 26.5°C to 4 4.2°C where the top metal 

layer maintains a temperature just above the ambient room temperature, 

demonstrating the effectiveness of the 4” x 4” aluminum heat sink.  

 

Figure 63: Thermal Image of Carrier (Left) and Peaking (Right)   
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Chapter 6 
Discussion, Conclusions, Future Work, and Closing Remarks 

6.1 Discussion  

 The Doherty power amplifier was first introduced in 1936 and has seen a 

recent resurgence in popularity due to the potential efficiency improvements for 

modulation schemes possessing high peak-to-average ratios like those used in 

4G LTE networks.  The design trade-off of high efficiency usually comes at the 

cost of degraded linearity and the Doherty power amplifier is no different.  The 

work presented here describes an active load modulated amplifier, with an input 

and output network tuned to achieve high linearity, thereby trading-off its 

maximum PAE and backed-off PAE.  The load modulation characteristic is much 

softer than in an ideal, symmetric Doherty power amplifier, which implies that the 

carrier amplifiers drain voltage is not saturated at the onset of load modulation. 

 The motivation for this project was to evaluate the active models created 

by Modelithics.  The third-party modeling vendor recently partnered with TriQuint 

to model TriQuint’s 2nd generation GaN HEMT devices.  To the knowledge of this 

author this is the first Doherty power amplifier developed using these active 

device models.  The simulated and measured results of the 3.6 GHz Doherty 

power amplifier reflected positively on the use of these active device models and 

demonstrated a functional first-pass design without the use of classical load-pull 

analysis.  This represents a benchmark in TriQuint device modeling which has 

predominately relied on load-pull analysis for its production line of GaN power 

amplifiers [29]. 
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6.2 Conclusions  

This manuscript described the design, development, and implementation 

of a 3.6 GHz Doherty power amplifier with a saturated output power of 40 dBm, 

using TriQuint’s 2nd Generation GaN on SiC HEMT devices (T1G6001032-SM).  

Advanced Design Systems (ADS) simulation software, in conjunction with 

Modelithic’s active and passive device models, were used to model the design 

throughout each step of the design process.  The use of these device models 

demonstrated a successful first-pass design and a comparison of the simulated 

and measured results were reported.  The omission of classical load-pull analysis 

represents a potential reduction in design-cycle times, enabling a design team to 

get their product to market faster.    

The realized 3.6 GHz Doherty power amplifier had a maximum PAE of 

55.1% and reported a PAE of 48.5% when the input power was backed-off by 

6dB.   A maximum output power of 40.8 dBm was achieved while excited by a 

single-tone at 3.6 GHz.  Conversely, when a 20 MHz LTE waveform was used to 

evaluate the performance of the Doherty power amplifier, a maximum output 

power of 38.6 dBm was attained.  This degradation to the maximum output 

power can be explained using elementary systems and signal analysis, where if 

the bandwidth of a system is increased, the power spectral density will decrease.  

The two-tone IMD test demonstrated the load modulated amplifiers linearity 

versus output power and meets the -30 dBc design criteria up to an output power 

of 34.5 dBm, corresponding to a PAE of 39.8%.  The 3rd -order IMD 

characteristics shows a linearity improvement between 25 and 30 dBm and can 
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be attributed to the cancellation effects due to the interaction between the carrier 

and peaking amplifiers where the separate bias points creates the individual 

transfer functions resulting in the cancellation of 3rd-order IMD products.   

6.3 Future Work 

Continued efforts leading up to IMS2014 are in order to determine the 

optimal bias point of the 3.6 GHz Doherty power amplifier.  It’s advantageous to 

determine the bias point where the 3rd-order and 5th-order IMD products 

simultaneously reach the -30 dBc design specification.  This would fully exploit 

the cancellation effects of the IMD products in an effort to return a more favorable 

PAE, resulting in a higher FOM for the competition.   

The future work of this design hinges on the availability of the active GaN 

HEMT devices (T1G6001032-SM).  The active devices are currently out of stock 

in TriQuint’s inventory and the six samples provided to this author were 

exhausted during the evaluation and testing of the Doherty power amplifier.  Most 

of which were damaged during the evaluation period, because the turn-on and 

shut-down protocol sequence was not strictly followed.  These devices have not 

been officially released to the public, but we are hopeful that requests for 

additional samples will be provided.  

A continued effort tuning the phase of the input and output combining 

network is necessary to optimize the performance of the Doherty power amplifier.  

Please recall that tuning handles were added to the output combining networks 

of the carrier and peaking amplifier to ensure that the phase is recombining 

equally.  However, all but one of the PCBs were exhausted during the assembly 
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and evaluation phase of this project and with no parts currently available this 

author is reluctant to modify the only existing functional hardware. 

6.4 Closing Remarks  

 While working on the thesis project described within this manuscript, the 

author was introduced to many new aspects of microwave design, technology, 

and methodologies.  This project can be highlighted by unique milestones that 

are provided in the bulleted notes below, and represent ‘first-time’ exposure to 

such.   

• RF Amplifier design using GaN 

• RF Amplifier design above 26 dBm 

• RF Amplifier design above 1.0 GHz 

• Load Modulated Power Amplifiers 

• Hot-Plate Assembly Techniques 

 A good thesis project challenges a student to reach to the limits of their 

abilities and aptitude.  This thesis project has provided an outlet for personal 

development and adds to a growing project portfolio after completing the MS 

curriculum at Portland State University.  The reward for these academic pursuits 

will ultimately be measured in the accomplishments of this author in the months 

and years following a public thesis defense.  The inspiration to design an active 

load modulated amplifier began several years ago.  With the results presented in 

this manuscript provides the forward momentum to transition into the next project 

has materialized.      
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