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Abstract 

 The Pacific Coastal ecoregion contains large tracts of economically important 

forestlands that also serve as critical stream habitat for endangered Salmonids.  Excessive 

fine sediment deposition in streams of this region is a major environmental concern in the 

region but difficult to measure directly.  The use of stream invertebrates to monitor fine 

sediment conditions in streams requires careful consideration of several important factors 

that complicate their use as bioindicators including high spatial and temporal variability 

and covariance with other environmental variables.  

 To evaluate the use of stream invertebrates as bioindicators of excessive fine 

sediment, three hypotheses were tested. The first hypothesis was that invertebrates would 

be related to broad-scale climate variables (Chapter 2). The second hypothesis was that 

functional aspects of the invertebrate community would serve as useful indicators of 

excessive fine sediment condition. (Chapter 3).  The third hypothesis was that 

invertebrates in streams with naturally high levels of sediment would be tolerant to fine 

sediment (<2 mm, Chapter 4). Hypotheses were tested using a temporal data set at two 

streams in western Oregon, spatial data from 214 sites across the Oregon Coast Range, 

and in-situ experiment conducted in streams with erosive or resistant geologies.  

  In the temporal study, both invertebrate density and functional traits were 

positively related to El Niño strength (R2 range = 0.22-0.36, ρ range = 0.008-0.04) and air 

temperature (R2 range = 0.32-0.49, ρ range = 0.002-0.01).  The spatial study identified 

several environmental and hydrological factors that exhibited strong negative controls on 

both fine sediment (Mantel r range 0.14-0.25, ρ range = 0.001-0.01) and invertebrate 
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Scrapers (R2 range = 0.11-0.14, ρ range = 0.001-0.04). The result of the experimental 

study provide evidence that invertebrates in streams with erosive geologies exhibit 

tolerance to sediment addition when compared to invertebrates in resistant geologies 

(mean loss=15%, ρ <0.01) and that invertebrate grazing traits were most strongly 

associated with fine sediment dosing frequency (ρ <0.05).  

 The findings of this research demonstrate the role of geology in shaping 

invertebrate communities and their functional response to fine sediment addition and 

identify functional indicators that may be useful in different geologic settings. For 

environmental managers in the Pacific Coastal ecoregion, these findings are of potential 

value in assisting with the identification of biologically-relevant changes in stream fine 

sediment conditions and support efforts to balance economic needs in the region while 

protecting critical Salmonid habitat.    
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Chapter 1 Introduction 

 

Sediment Pollution of Small Streams in the United States 

 
While sedimentation is a natural component of lotic systems, erosion from 

anthropogenic activities, such as logging, agriculture and urban development, can deliver 

excessive levels of fine sediment to streams where it degrades habitat and affects algal 

communities, invertebrates and fish (Waters 1995; Wood and Armitage 1997). A 2006 

study by the United States Environmental Protection Agency (USEPA) found 42% of 

United States' stream miles are in poor condition due to excessive fine sediments and 

nutrients acting as major stressors to aquatic systems (USEPA 2006). In response to 

growing concern for the condition of national streams, the USEPA designed and 

implemented the National Wadeable Streams Assessment (WSA) from 2000-2004. The 

WSA was the first statistically sound survey of the country’s wadeable streams (Paulsen 

et al. 2008). The WSA examined 90% of the total length of perennial, first through fifth 

order streams in the United States (USEPA 2006) and identified key water-quality 

stressors which are likely impacting the chemical, physical and biological processes of 

wadeable streams. The WSA documented excessive nutrients and sediments as major 

sources of impairment for nearly a third of all stream length in the United States. In the 

Pacific Northwest, the WSA found nearly 20% of streams in poor condition due to 

excessive fine sediment (USEPA 2006). The WSA also determined stream-bed fine 

sediments as one of the greatest relative risks to biological condition (USEPA 2006). 

Logging, land development and other human activities in the Oregon Coast Range 

have altered the hydrology and sediment dynamics of forested watersheds (Hartman 
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2004), thus contributing to fine sediment pollution of small streams and degrading lotic 

habitat and impacting ecologic function (Poole 2010). However, benthic fine sediment is 

difficult to measure quantitatively, thus new management tools need to be developed to 

identify excessive fine sediment conditions and monitor their effect on stream function 

and resident biota. Stream invertebrates are integrators of environmental condition (Karr 

1998) and thus may be a useful tool for monitoring the impact of land use in the Coast 

Range on ecological processes. This dissertation will explore the use of stream 

invertebrates as bioindicators of sediment pollution in small streams of the Oregon Coast 

Range.  

The goal of the dissertation is to examine fine sediment-invertebrate relationships 

in the Coast Range from a temporal, spatial and causal-effect perspective. The major 

objectives are to: 1) Evaluate nine years of stream invertebrate data collected from two 

streams in western Oregon, 2) Examine invertebrate and environmental conditions with 

an emphasis on sediments in wadeable streams across the Coast Range ecoregion and to 

identify potential bioindicators of excessive sediment, and 3) Examine the role of 

geology in shaping invertebrate responses to excessive fine sediment and test invertebrate 

bioindicators that may be useful for biomonitoring fine sediment. The results of this 

research will provide insights about relationships among environmental factors, fine 

sediment and stream invertebrate communities in wadeable streams of the Oregon Coast 

Range streams; and thereby, will contribute to management efforts in a region 

experiencing increasing logging or urbanization pressure.  
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The Oregon Coast Range Study Area  

The Pacific Coastal ecoregion is characterized by a maritime climate with high 

winter precipitation and cool, dry summers (Naiman and Bilby 1998). Oregon’s Coast 

Range is covered by dense coniferous forests of hemlock, firs and redwoods (Naiman and 

Bilby 1998). The aquatic systems draining these forests support large runs of anadromous 

fish, including the endangered Chinook and coho Salmon, sensitive amphibians and 

birds. The Oregon Coast Range physiographic province is an economically and 

ecologically important region of the Pacific Northwest. The forestlands of this region are 

a major source of timber and a critical habitat for salmon and other endangered species 

(Hall et al. 2004). As second growth forests mature in the Oregon Coastal ecoregion, 

there is increased interest in developing best management practices reflecting knowledge 

of key ecological mechanisms and linkages in streams (Spies and Johnson 2007).  

Fine Sediment Dynamics in Oregon Coast Range Streams 

It is well known that forest management practices alter hydrologic processes in a 

watershed and can degrade the ecological function of both the watershed and streams 

(Hartman 2004). Silviculture and related timber harvesting activities in coastal Oregon 

can lead to changes in stream ecosystems that may degrade critical coastal habitat (Spies 

et al. 2007). Aquatic ecosystems are closely linked to near-stream land cover and 

watershed characteristics (Naiman et al. 2000), thus effective management of coastal 

forestlands is dependent on understanding the impact of land use and land cover on 

stream hydrology (Naiman and Bilby 1998; Spies and Johnson 2007). 

In small forest-covered watersheds, there are both internal and external pathways 

for transport and deposition of fine sediment (Gomi et al. 2005). Figure 1.1 shows a 
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conceptual model of the key physical processes and pathways related to stream sediment 

production and yield. In Oregon’s mountain forests, external watershed characteristics 

such as slope, land cover, climate, geology and soils control mass movements and 

landslides and deliver large amounts of sediment to streams (Swanson et al. 1987; Grant 

and Wolff 1991; Benda et al. 1998; Hassan et al. 2005). In the heavily-forested 

watersheds of the Oregon Coast Range, most of the precipitation infiltrates into well-

developed organic horizons, so overland runoff and erosion are rare; thus, the most likely 

mechanism of sediment flux into streams is through soil slumping (Cheng 1988). 

However, erosion from tree harvesting (Rice et al. 2004) and road building (Waters 1995; 

Luce and Black 2001) can increase sediment production and delivery to streams. Internal 

controls on sediment are related to mechanisms and processes that store, transport and 

deposit fine sediment within the stream. Stream substrate has been shown to store and 

release fine sediment from behind large boulders, while downed logs can trap significant 

volumes of sediment (Hassan et al. 2005). Flow dynamics, such as hydrograph shape, and 

seasonal conditions, such as fall flushing and tributary characteristics, are also important 

factors related to sediment transport and deposition (Gomi et al. 2005). 

II. Ecological Framework 

 

Abiotic and biotic controls of invertebrate assemblage in streams 

The assemblage structure of organisms in an ecosystem is the result of 

interactions between the abiotic and biotic determinants (Power et al. 1988) operating at 

multiple spatial and temporal scales (Hilborn and Stearns 1982; Poff 1997; Leibold et al. 

2004; Allan 2004). In lotic systems, assemblage patterns are associated with physical 

forces, ecosystem processes and biotic interactions that vary spatially (Usseglio-Polatera 
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and Tachet 1994) and temporally within a stream network (Vinson and Hawkins 1998; 

Allan and Castillo 2007; Winemiller et al. 2010). Invertebrate assemblage is spatially 

related to a range of discontinuous processes occurring across the biome scale to the 

individual rock within a stream (Cellot et al. 1994; Poole 2002; Wiens 2002). In the 

temporal dimension, invertebrate assemblages are shaped by a wide range of processes 

that vary climatically (Durance and Omerod 2007), yearly (McElravy et al. 1989), 

seasonally (Reece et al. 2001) and daily (Waters 1962).  

Recent lotic research has emphasized the model of patch dynamics derived from 

the physical habitat template (Pringle et al. 1988; Townsend 1989; Thompson and Lake 

2010) as a hierarchical framework for explaining assemblage structure and composition 

in streams (Frissell et al. 1986; Pringle et al. 1988; Wiens 2002; Winemiller et al. 2010). 

In this model, patches are defined as an assemblage or functional process zone (e.g. 

Thorp et al. 2008) that are surrounded by a shifting mosaic of dissimilar assemblage or 

area (Forman and Gordon 1981; Pickett and White 1985). Stream patches are related to 

both abiotic and biotic processes and scale-dependent mechanisms operating 

synergistically throughout the landscape. In stream systems, habitat patches are structured 

hierarchically and range in size from the biome scale to the individual rock in a stream 

(Figure 1.2; Frissell et al. 1986; Poff 1997; Wiens 2002; Parsons et al. 2003; Thorp et al. 

2006; Thorp et al. 2008). Ultimately, the interactions between abiotic and biotic patches, 

at multiple spatial and temporal scales, act as linked environmental filters shaping habitat 

and the invertebrate assemblage (Schumm 2005; Thorp et al. 2008). 

A stream’s structure and ecological function is hierarchical, highly variable and 

shaped by the landscape mosaic in which they flow (Thorp et al. 2008; Allan and Castillo 
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2007; Ward et al. 2002). Therefore, modeling the structure, function and processes 

related to fine sediment deposition in lotic systems is dependent on models that account 

for both spatial and temporal scales and reflect understanding of key mechanisms shaping 

the stream environment and the invertebrate assemblage (Frissell et al. 1986). In this 

sense, it is useful to conceptualize the ecology of streams and the related biotic 

assemblage using a framework of geomorphologically-derived levels representing the 

ecosystem mechanism at work (e.g. Frissell et al. 1986). Viewing lotic systems in this 

way provides several benefits including: 1) reducing the number of variables needed to 

model a system, 2) improving model performance, and 3) providing useful information 

for watershed managers (Frissell et al. 1986). Clearly, the processes discussed below are 

linked and active across multiple scales, but for the purposes of this discussion, the 

stream ecosystem is examined at four levels: biome, watershed basin, stream reach and 

habitat patch (Figure 1.2).  

Hierarchical controls of invertebrate assemblage 

Biome Level  

At the Biome level, large-scale environmental factors such as climate, surface 

geology and valley geomorphology act as indirect filters on local stream conditions and 

invertebrates assemblage (e.g. Parsons et al. 2003; Townsend et al. 2003). Large-scale 

mechanisms are related to stream assemblage through processes such as climate, 

hydrology and energetics. A study by Minshall et al. (1983) found that the differences in 

invertebrate assemblage across four biomes were related to precipitation and stream flow 

patterns, organic matter processing and basin geomorphology. Long-term climate 

patterns such as precipitation, runoff and flow affect invertebrate assemblage largely 
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through hydrologic patterns and timing. Poff and Ward (1989) argued that flow-related 

characteristics such as flood variability and predictability strongly influence assemblage 

structure by controlling ecological processes and related biotic interactions. For example, 

high flow variability and low flow predictability result in dominance by abiotic processes 

while low variability and high predictability support an assemblage shaped mainly 

through biotic interactions (Poff and Ward 1989). Long-term precipitation patterns also 

influence assemblage structure through the timing and duration of rainfall and stream 

flow. During wet years, stream habitat is more complex and flow more stable therefore, 

invertebrate populations are denser and more variable (Bêche et al. 2006). Invertebrates 

with drought-resistant biological traits are more common in dry years, while traits 

resistance to high flows and flooding are more common in wet years (Bêche and Resh 

2007). Another important biotic control of assemblage is simply the distance between 

regions or basins. Stream invertebrates are generally poor fliers and can only migrate 

relatively short distances during their terrestrial stages. Analysis of genetic variation 

among stream invertebrate populations suggests that dispersal capability and reproductive 

strategy of adult invertebrates is a limiting factor in their ability to move across large 

spatial scales (Bunn and Hughes 1997). 

Other geomorphic processes can act as regional or watershed-scale controls on 

local habitat conditions. For example, streams underlain with igneous rocks often have 

low hardness, which limits uptake of dissolved organic material (Minshall et al. 1983). 

Furthermore, igneous surface geology shapes alkalinity, which limits buffering capacity, 

thereby shaping assemblage through increased level of aluminum present in streamwater 

with low pH (Rosemond et al. 1992). Energy inputs are closely linked to stream width, 
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which is related to basin size, thereby controlling feeding strategy and assemblage 

(Richards et al. 1996). Landform characteristics such as gradient and valley formation 

have a strong effect on substrate type and canopy cover (Richards et al. 1996), which, in 

turn, influences organic matter inputs and retention. For example, high gradient streams 

with large boulders or woody debris have higher organic matter retention than low 

gradient high order streams; therefore, making headwaters streams functionally more 

stable (Minshall et al. 1983). Catchment land cover is also a determinant of invertebrate 

density and assemblage. A study of three different biomes in Canada representing 

different types of land cover (grasslands, eastern deciduous forest and western coniferous 

forests) showed significant differences between invertebrate assemblage and density 

(Corkum 1992) at the biome level, but differences were mainly due to local land use and 

riparian vegetation.  

Basin Level   

Stream structure and process within a basin are highly variable and related to 

catchment-scale characteristics such as geomorphology, hydrology, energetics and land 

cover. Geomorphologic factors such as relief, basin form and drainage area act as major 

controls on hydrology, channel shape and stream function thus shaping invertebrate 

assemblage (Frissell et al. 1986; Statzner et al. 1988). In a study of New Zealand streams, 

catchment-scale characteristics such as relief, basin form and drainage area accounted for 

most variation in invertebrate assemblage (Townsend et al. 2003). The stream network 

within a basin is also a source of assemblage variation (Rice et al. 2001; sensu Fisher et 

al. 2004). Geology and topography are also important characteristics shaping invertebrate 

assemblage through controls on channel form (Richards et al. 1996; Richards et al. 1997; 
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Benda et al. 1998), local habitat conditions (Davies et al. 2000) and interactions with land 

use (Shearer and Young 2011) and forest cover (Shearer and Young 2011). Stream 

sediment recruitment points at tributary junctions, where coarse substrate is abundant and 

sediment fining is reduced, show significantly higher biodiversity and abundance of taxa 

that prefer course substrate (Rice et al. 2001). Invertebrates richness decreases with 

increased elevation likely due to the difficulties associated with colonizing and inhabiting 

the extreme upper reaches of a stream (Allan 1975). Maximum taxa richness occurs at 

mid-order streams where intermediate flood disturbance regimes provide high habitat 

diversity (Stanford and Ward 1983) including substrate size and type (Grubaugh et al. 

1996) and yearly temperature variance (Ward and Stanford 1982; Minshall et al. 1985). 

Downstream shifts in other basin-related hydraulic properties, such as flow velocity and 

flow duration, exert extreme forces on benthic invertebrates that shape taxonomic 

composition and is reflected in biotic characteristics such as body form, feeding, 

movement and drift (Statzner et al. 1988; Poff and Ward 1989). Flow permanence of a 

stream also has a large effect on assemblage. Invertebrates assemblage in perennial 

streams is more abundant and different than the assemblage found in intermittent and 

ephemeral streams (Rosalie and Resh 2000; Halwas et al. 2005). 

The energetics of a stream, such as organic matter input, retention, processing and 

transport, act as controls of invertebrates assemblage. The River Continuum Concept 

(RCC) describes a downstream longitudinal shift of invertebrates assemblage due to 

habitat change and energy inputs (Vannote et al. 1980). The RCC predicts energy sources 

should shift downstream, from allochthonous to autochonous derived, invertebrates 

assemblage shifts. While the RCC is a useful framework for conceptualizing the 
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longitudinal characteristics of a river, its predictive power is limited (Statzner and Higler 

1985). A study by Minshall et al. (1983) demonstrated energetics and invertebrates 

feeding followed the shift postulated by the RCC, but local factors, such as riparian 

condition and hydrological variations, caused deviations from the predicted continuum. 

Other basin-related energetics are also related to invertebrates assemblage. For example, 

floods inundate the surrounding riparian zone and draw large amounts of organic material 

into streams as the flood recedes (Junk et al. 1989). In small streams, flood pulses are 

shorter and less predictable leading, whereas in larger streams, flood duration is long and 

more predictable. In high order streams, these processes lead to longer food chain length, 

thereby increasing ecological stability (Sabo et al. 2010). 

Land cover and land use are both related to natural basin characteristics and 

human-derived factors. Land use within a basin, in conjunction with natural conditions, 

can also shape assemblage. Basin-wide land use, such as urbanization and farming are 

known to affect stream integrity and invertebrates assemblage (Quinn and Hickey 1990; 

Allan et al. 1997). The effects of land use can be mediated by natural basin characteristics 

(Quinn and Hickey 1990) and the proximity of land use to the stream (Sponseller et al. 

2001; Townsend et al. 2003). 

Reach Level 

 Within a stream reach there are a range of abiotic and biotic processes which 

directly and indirectly shape invertebrates assemblage, resulting in high within-reach 

variability that can be greater than among-stream variation (Angradi 1996; Halwas et al. 

2005). In general, different habitats within a reach support different kinds of taxa and 

functional processes (Hawkins et al. 1982; Logan and Brooker 1983; Huryn and Wallace 
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1987; Angradi 1996; Scullion et al. 1982; Halwas et al. 2005). However, invertebrates 

assemblage, abundance and production are highly variable and strongly related to 

localized habitat features such as channel form, riparian land cover, disturbance and 

recovery. Reach gradient is related to invertebrates assemblage through stream velocity 

and organic matter entrainment and retention. For example, filtering organisms with 

attachment structures are common in fast currents, while crawling shredders are more 

common in slow water habitat (Huryn and Wallace 1987; Angradi 1996). Stream 

geomorphology is also an important filter of assemblage. Invertebrates abundance, 

assemblage and functional feeding group are different in bedrock, riffles and pools 

mainly due to differential organic matter dynamics (Huryn and Wallace 1987). Bedrock 

habitats have high organic matter entrainment and low retention, pools have low 

entrainment and high retention and riffles have intermediate levels of organic matter 

entrainment and retention (Newbold et al. 1982). Macroinvertebrates are often more 

abundant and diverse in riffles (Logan and Brooker 1983; Brown and Brussock 1991; 

Halwas et al. 2005) where the interstitial space of substrate common in riffles is 

optimized for collecting organic material and protection from stream current (Stanford 

and Ward 1983). Collector-filterers are more common in high entrainment bedrock 

habitats, shredders more common in high retention pool habitat and collector-gatherers 

present in all habitat types (Huryn and Wallace 1987). Downed logs and large woody 

debris in streams alter the hydrology of a stream and the invertebrates assemblage 

structure and function (Wallace et al. 1995; Johnson et al. 2003). In streams with large 

amounts of downed logs and woody debris, associated debris damns and pools are rich in 
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organic matter and can support high densities of invertebrates and different functional 

characteristics than plunge pools (Angradi 1996).  

Canopy cover and riparian inputs are an important determinant of assemblage, 

which can mask other disturbances such as logging (Frady et al. 2007). In small streams, 

allochthonous inputs from the surrounding vegetation are a major source of energy for 

stream invertebrates that feed on leaves and coarse organic material (Fisher and Likens 

1973; Cummins and Klug 1979). In addition, the leaf type and nutrient content have an 

effect on shredder consumption (Irons et al. 1988). Streams without shading have higher 

abundance and different feeding groups than shaded streams (Hawkins et al. 1982). 

Forest structure and composition can influence the assemblage of caddisfly shredders and 

grazers (Molles 1982) and the species composition and nutrient status of riparian 

vegetation relates to Trichopteran shredder activity (Irons et al. 1988). 

 Disturbance is an important abiotic factor related to invertebrates assemblage. 

Resh et al. (1988) define disturbance as “any relatively discrete event in time that disrupts 

ecosystem, assemblage, or population structure, and that changes resources, availability 

of substratum or the physical environment.” In lotic systems, disturbance can occur as 

floods or droughts that occur at an unpredictable intensity and frequency (Resh et al. 

1988; Lake 2003). Floods tend to increase downstream and lateral linkages while 

droughts discontinue or fragment downstream connections (Lake 2000). In streams, 

disturbance acts to maintain abiotic and biotic patches through generating disequilibrium 

conditions (Pickett and White 1985; Minshall and Peterson 1985), maintaining maximum 

diversity at intermediate levels (Connell 1978; Ward and Stanford 1983; De’ath and 
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Winterbourn 1995; Townsend and Scarsbrook 1997) and/or influencing net species 

interactions (Huston 1979; Hemphill and Cooper 1983).  

Succession and colonization are important biotic factors that shape assemblage 

and establish long-term patterns of invertebrates assemblage. When a stream is disturbed, 

most frequently by flooding, it is rapidly re-colonized by periphytic algae and 

invertebrates (Fisher et al. 1982). Drifting invertebrates from upstream can quickly 

colonize recently disturbed habitat and dominate the early assemblage (Brittain and 

Eikeland 1988). For example, several studies document mayflies (Baetidae) and midges 

as the first to colonize disturbed habitat and are gradually displaced by invertebrates with 

lower dispersal abilities (Fisher et al. 1982; Milner et al. 2008). However, at least one 

study found the successional pattern of assemblage can take more than 20 years to fully 

develop and is related to invertebrate dispersal ability, tolerance and stream habitat (Flory 

and Milner 2000; Milner et al. 2008).  

Patch level  

The patch level represents processes operating at scales relative to algae, 

invertebrates and fish. These processes include abiotic and biotic mechanisms largely 

controlled by substrate, nutrient availability and feeding (Minshall and Minshall 1977; 

Erman and Erman 1984; Frissell et al. 1986; Pringle et al. 1988). Invertebrates are 

generally most abundant on cobble- to boulder-sized particles, as this size-class acts to 

better trap organic matter retention, provides a stable living surface in strong currents and 

promotes nutrient delivery and exchange through increased turbulence (Rabeni and 

Minshall 1977; Erman and Erman 1984; Quinn and Hickey 1990). The condition and 

composition of the substrate is also an important determinant of assemblage. The addition 
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of sand to substrate begins to affect assemblage only at relatively larger amounts (>75%), 

whereas the presence of a light covering of silt significantly reduces richness (Hawkins et 

al. 1982; Angradi 1999). Substrate heterogeneity and texture relates to invertebrate 

assemblage; mixed substrata have higher invertebrate richness than a single substrate 

type (Allan 1975). Richness relates to medium particle size (Erman and Erman 1984), 

substrate heterogeneity and patch compactness (Boyero 2003) and size (Matias et al. 

2010). Substrate surface texture relates to assemblage with higher richness associated 

with complex texture (Hart 1978; Downes et al. 2000). Erosion and movement of 

substrate influences the shape and degree of sorting, thus causing drift or mortality as the 

rocks move or begin to erode (Holomuzuki and Biggs 2003).  

 Small-scale nutrient dynamics also act to shape primary productivity in stream 

communities. At very small temporal (hourly) and spatial (cm) scales, variability of 

stream water chemistry is a major determinant of nutrient availability and uptake (Pringle 

et al. 1988). For example, algae growth is often concentrated in fast currents where 

nutrient delivery is highest (Pringle and Bowers 1984; Pringle et al. 1988) or near 

metabolic activity such as midge larvae or caddisfly retreats (Pringle 1985). Algal 

assemblage relates to behavioral and feeding responses of invertebrates, including density 

(Rabeni et al. 2005), feeding strategy (Hart 1981) and territoriality (Hart 1985). 

 It appears that fish predation on invertebrates plays a marginal role in shaping 

stream invertebrate assemblage. Predation by vertebrates and invertebrates affects 

specific morphological features and behavior of taxa in single-organism experiments 

(Feltmate and Williams 1991) but in whole-stream studies was found to have a minimal 

effect on invertebrate assemblage, likely because of high emigration rates from drift or 
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substrate (Thorp and Bergey 1981; Culp 1986; Vinson and Hawkins 1998; Clements 

1999) or the effect is masked by high habitat variability (Brown and Lawson 2010). 

However, predation can have strong indirect effects on stream function such as leaf litter 

processing (Obernborfer et al. 1984) and diatom assemblage (Koetsier 2005).  

 

III. Literature Synthesis and Gap Analysis   

Impact of excessive fine sediment on invertebrates 

While sediment is a natural part of lotic systems, excessive sediment delivery 

from human activities can negatively impact stream invertebrate assemblage (Waters 

1995; Wood and Armitage 1997). For example, road constructing (Lenat et al. 1981), 

dam flushing (Gray and Ward 1982; Erman and Lignon 1988), mining activities (Quinn 

et al. 1992), logging (Lemly 1982; Montgomery et al. 2000) and agriculture (Richards et 

al. 1993; Matthaei et al. 2006) have been shown to increase fine sediment supply, 

delivery and deposition in the stream, which results in a loss of invertebrate abundance 

and richness and alters benthic communities. Sediment in the stream is carried by 

suspended load or saltation and is deposited on the benthos when stream velocity drops 

below settling velocity (Wood and Armitage 1997). Suspended sediment and stream 

turbidity results in invertebrate drift (Doeg and Milledge 1991) and lowers invertebrate 

abundance and richness (Quinn et al. 1992). Saltation is the rolling or bouncing of 

sediment particles carried in the bedload along the bottom of the stream. Saltation scours 

the benthos, altering benthic communities and mediating biotic interactions (Culp 1986; 

Schofield et al. 2004). Deposited sediment covers the substrate, embeds individual rocks 

or infiltrates into the substrate and fills interstitial space (Wood and Armitage 1997). 
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Stream invertebrates are strongly related to benthic substrate size (Rabeni amd Minshall 

1977; Hawkins 1982), composition (Allan 1975; Erman and Erman 1984; Bourassa and 

Morin 1995) and texture (Downes et al. 2000). As the proportion of sand and clay fines in 

substrate composition increases, invertebrate assemblage is altered (Quinn et al. 1992; 

Richards et al. 1993), richness is reduced (Larsen and Ormerod 2010; Larsen et al. 2010) 

and abundance is decreased (Bourassa and Mourin 1995). The effect on invertebrates by 

increasing deposition of fine sediment in the substrate has been observed at a 5% increase 

in fines (0.2 cm; Angradi 1999) with thresholds evident around 10% (Kaller and Hartman 

2004; Larsen et al. 2010). However, this relationship may not be the same in small 

mountain streams where invertebrates may be highly tolerant of sand-sized substrate 

(Williams and Mundie 1978; Hawkins et al. 1982; Culp 1986). Deposited fine sediment 

infiltrates into substrate where it affects invertebrates living in the hyporheos. A study by 

Richards and Bacon (1994) found fine sediments were greatest at a depth of 30 cm and 

resulted in a corresponding 60% reduction of invertebrates. A light covering of fines on 

the surface of substrate is also detrimental to invertebrates. Excessive surface fining is 

related to land cover (Roy et al. 2003) and upstream bank erosion (Larsen et al. 2009) and 

has been shown to reduce richness (Zweig and Rabeni 2005; Matthaei et al. 2006; Larsen 

et al. 2009), alter functional feeding (Rabeni et al. 2001) and affect specific taxa (Cover 

et al. 2008; Larsen and Ormerod 2010).  

Mechanisms of fine sediment impacts on invertebrates at multiple scales  

The effects of stream sedimentation operate across a wide range of temporal and 

spatial scales (Richards et al 1996; Larsen et al. 2009) and are mediated by environmental 

characteristics (Figure 1.3, Griffith et al. 2009) and mitigated by invertebrate tolerance 
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and avoidance (Roy et al. 2003). For example, Larsen et al. (2009) found sediment supply 

from bank erosion 500 m upstream was strongly related to downstream fine sediment 

cover, but invertebrates were most affected by sediment-related dynamics at the patch 

scale. 

At the patch scale, the negative impact of fine sediment on invertebrates is related 

to alteration of food webs, selection of tolerant functional characteristics and the physical 

effects on invertebrates. Fine sediment contamination of algae reduces mayfly feeding 

(Suren 2005), growth (Peeters et al. 2006) and assimilation rates (Broekhuizen et al. 

2001). Snail growth, however, was found to be highest at intermediate levels of 

contamination, suggesting they derive trace nutrients from the sediment (Broekhuizen et 

al. 2001). The harsh conditions generated by sediment saltation and deposition may also 

affect biotic interactions (Walde 1986). In a study by Schofield et al. (2004), sediment 

addition reduced predator feeding on invertebrates, allowing for more mayfly grazing, 

thus altering algal assemblage. Excessive sedimentation likely disrupts feeding strategies 

of invertebrates whose filtering structures or nets may be clogged by fine sediment 

(Rabeni et al. 2005). A study by Larsen et al. (2010) found that invertebrates with short 

life cycles and external gills were reduced by fine sediment cover and resulted in a nested 

assemblage pattern, suggesting that sedimentation selects for specific traits. This is 

supported in a study by Lemly (1982), which documented the bacterial infection of 

invertebrate gills covered by fine sediment.  

At the reach scale, there are several mechanisms related to the effect of suspended 

and deposited sediment on invertebrate assemblage. Suspended sediment reduces light 

penetration to the stream bottom, thus altering benthic periphyton assemblage (Davies-
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Colley et al. 1992), reducing organic content of the epilithon (Davies-Colley et al. 1992) 

and limiting stream productivity (Parkhill and Gulliver 2002). Increased flow and 

saltation scours benthic communities, altering algal assemblage and reducing biomass, 

particularly on upstream rock faces (Francouer and Biggs 2006). However, saltation and 

flow are directly related, so it is likely that invertebrate drift is actually a response to 

increased stream flow and not increased sediments in the bedload (Bond and Downes 

2003). For example, two experiments found invertebrate drift is induced at velocities just 

below critical flow when the substrate begins to move (Bond and Downes 2003; Gibbins 

et al. 2007). The duration of the sediment pulse also affects invertebrates. A study by 

Shaw and Richardson (2001) found invertebrate richness and abundance steadily 

decreased as pulse duration increased. 

 Deposited sediment also affects invertebrates by filling interstitial space in the 

hyporheos (Richards and Bacon 1994), reducing habitat availability (Suttle et al. 2004), 

affecting primary production (Rier and King 1996) and altering functional characteristics 

such as life history (Larsen et al. 2010) and colonization (Richards and Bacon 1994). 

Substrate stability is related to the size of the substrate particle (Matthaei et al. 1999). As 

fines increase in the substrate, bed stability is decreased and periphyton are reduced by 

the lack of stable habitat (Rier and King 1996), resulting in a reduction of invertebrate 

richness (Roy et al. 2003). Fine sediment cover on substrate reduces invertebrate richness 

and density (Zweig and Rabeni 2001; Matthaei et al. 2006) by altering periphyton 

assemblage and disrupting functional processes (Griffith et al. 2009). For example, in a 

study by Rabeni et al. (2005), scrapers and filterer-feeders declined in response to 

increasing fine sediment cover, suggesting a disruption of feeding mechanisms.  
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Relatively few studies have examined relationships between sediment and 

invertebrates at spatial scales above the reach level. Zweig and Rabeni (2001) examined 

four streams across a large spatial area and observed reduced invertebrate richness 

associated with increasing percent fine cover. Cover et al. (2008) examined six mountain 

streams and observed a negative correlation between specific taxa and depth of fine 

sediment. In this study, benthic sediment was correlated with basin scale sediment inputs, 

but the relationship with watershed-scale characteristics was not evaluated. Richards et 

al. (1993) examined 80 streams across a large (40,000 km2) basin and observed substrate 

size was strongly related to stream invertebrates in clay soil-type regions.  

 The impacts of fine sediment are confounded by invertebrate adaptation to 

naturally variable sediment conditions and the development of tolerant invertebrate 

assemblage across spatial scales (Larsen et al. 2010). Behavioral adaptations mitigating 

the effect of sedimentation include: delayed drift (Culp 1986; Larsen and Ormerod 2010), 

movement to sediment free areas (McClelland and Brusven 1980; Peeters et al. 2006; 

Francouer and Biggs 2006), modification of feeding strategy (Rundle and Hellenthal 

2000b) and tolerance to naturally high levels of sediment (Cline et al. 1982; Kreutzweiser 

et al. 2005; Rundle and Hellenthal 2000a). Moreover, sediment tolerance is facilitated by 

the short duration of a typical sediment pulse (Shaw and Richardson 2001) and the 

presence of refugia habitat at multiple scales (Roy et al. 2003; Francouer and Biggs 

2006). This helps explain the minimal effect of sediment on stream invertebrates found in 

several studies (i.e. Lenat et al. 1981; Cline et al. 1982; Kaller and Hartman 2004; 

Kreutzweiser et al. 2005), particularly those at larger spatial scales (Cover et al. 2008). 

Invertebrate mouthparts as indicators of excessive fine sediment in streams 
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 Macroinvertebrate sensitivity to sediment fining is well-documented and 

considerable effort has been devoted to developing related metrics, indices and tolerance 

values (e.g. Relyea et al. 2012, Figure 1.3). Observational and experimental research has 

demonstrated that increased sediment fines in the benthos can alter macroinvertebrate 

assemblage (Larsen et al. 2010; Extence et al. 2013), reduce diversity (Matthaei et al. 

2006; Larsen et al. 2010) and alters function (Schofield et al. 2004; Griffith et al. 2009). 

There are several mechanisms thought to be responsible for the observed effects of fine 

sediment on stream invertebrates. Figure 1.4 summarizes the sources and effects of fine 

sediment on invertebrates and benthic habitat. Excessive fine sediment in the washload 

reduces habitat availability (Richards and Bacon 1994), lowers productivity (Parkhill and 

Gulliver 2002) and creates harsh conditions through sediment scouring and saltation 

(Culp 1986). Sediment deposition on the stream benthos alters periphyton communities 

and food webs (Schofield et al. 2004) and buries critical interstitial habitat (Suttle et al. 

2004). Fine sediment has also been shown to affect the macroinvertebrate physiology by 

acting as a vector for gill infections (Lemly 1982) and/or reducing assimilation rates 

(Broekhuizen et al. 2001). Macroinvertebrate mouthpart morphology and wear may also 

be a causal mechanism related to fine sediment; however, few studies have specifically 

examined it as a potential indicator of excessive fine sediment conditions. Considerable 

effort has been devoted to identifying invertebrate indicators of sediment fining and 

several community metrics and functional characteristics have been proposed (Larsen and 

Ormerod 2010; Extence et al. 2013). However, there is neither a consensus on which 

metrics are reliable across broad regions nor an adequate understanding of the 

mechanistic drivers associated with indicators.  
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 The functional feeding group, in particular invertebrate scrapers, has been 

identified in several studies as a potential indicator taxa of excessive fine sediment 

(Zweig and Rabeni 2001). This suggests that invertebrate sensitivity to sediment may be 

acting through damage to scraper mouthparts or through wear caused by inorganic 

sediment particles in algal food sources. A study conducted by Arens (1989) showed that 

scraper mouthparts were substantially worn down when scrapers were forced to feed on 

sandpaper. The increased wear on mouthparts did not change molting frequency, 

suggesting that scraping organisms must cope with lost feeding efficiency due to 

mouthpart wear. While the example above represents an extreme case, there are few 

published spatial studies that examine the mouthpart wear of mayfly scrapers living in 

highly sedimented streams.  

 Scrapers have highly specialized mouthparts for harvesting and transferring 

epilithic algal cells to the mouth opening for consumption. To remove algae, 

invertebrates move brushes, rakes or rasps across the rock surface. These structures 

become worn after use, but are restored each time the invertebrate molts (Arens 1989; 

Arens 1990). Rhithrogena and Paraleptophlebia, two mayflies, both feed on epilithic 

algae, but have different mouthparts and mechanisms for feeding. The mandibles of 

Rhithrogena consist of short brushes composed of stiff bristles to scrape food off of rocks 

and into the mouth where the algae is strained by the mandibular molae before it passes 

into the stomach (Figure 1.5, McShaffrey and McCafferty 1988). The mandibles of 

Paraleptophlebia contain long fine hairs used to brush deposited organic material into the 

mouth, where it is cut and crushed into smaller pieces (Figure 1.6, Mattingly 1987). Fine 

sediment may wear down the stiff bristles of Rhithrogena and reduce feeding efficiency 
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(Figure 1.6, Arens 1990; Lancaster and Downes 2013). In contrast, Paraleptophlebia 

may be tolerant to sediment in food sources because the maxillae hairs and mandibles are 

not affected by hard inorganic particles and the sweep action of the maxillae does not 

result in sediment moving to the mouth. While observational research has found that 

Rhithrogena are sensitive to sediment and Paraleptophlebia are tolerant (McClelland and 

Brusven 1980; Angradi 1999), there is relatively little quantitative research on these 

relationships. Research on other taxa (Chironomidae; Hudson and Ciborowski 1996) 

supports mouthpart structure and wear as mechanisms for invertebrate sensitivity to fine 

sediment. 

Gap in the literature 

Management of land use and related impacts to stream processes often require a 

landscape-scale approach; however, at these scales, watershed complexity and natural 

gradients act as strong controls on assemblage. In large-scale studies, the noise from 

natural systems may equal or overwhelm the anthropogenic signal (Richards et al. 1997; 

Shearer and Young 2011), thereby increasing the probability of a Type II error. Using 

bioassessment as a management tool depends on the ability to separate natural variability 

from the anthropogenic influence on stream biota. This is a particularly important 

consideration in the Oregon Coast Region where stream biota are strongly related to 

natural gradients of substrate, elevation, forest cover and geology (Herlihy et al. 2005; 

Cole et al. 2003). Few studies have assessed the strength of natural variance on the 

relationship between fine sediment and stream invertebrates. Richards et al. (1996) 

observed geology and land use had similar effect magnitudes on the relationships 

between stream invertebrates and fine sediment in low elevation lacustrine and outwash 
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plains. Richards et al. (1993) found significant invertebrate relationships with substrate 

quality in clay-type but not in sand-type soils in a large agriculture basin. A literature 

review found no published studies of fine sediment that partition the natural variance, 

such as geology, from invertebrate response.  

Sediment measurements are another source of variance in bioassessment. 

Sediments are difficult to quantify in situ, thus many of the measures used are qualitative 

visual estimates (Zweig and Rabeni 2001) or semi-quantitative grid-point counts (Cover 

et al. 2008). Traditional quantitative estimates, such as the shovel method (Kaller and 

Hartman 2004) or Wollman pebble counts, cannot measure sediment size less than sand. 

Furthermore, in-stream measurements only provide a snap shot of sediment conditions. 

One possible improvement is to use a hydrologic model to predict sediment volume 

delivered to the stream. Doing so may provide a more realistic measure of sediment and 

reduce uncertainties related to sediment measurements. Models have been used to 

estimate other stream parameters such as nutrients (Wise and Johnson 2011). However, 

there is only one published study which correlated predictions from a sediment model to 

stream invertebrates (Cover et al. 2008). In this study, a landslide model (de la Fuente 

and Haessig 1993) and erosion model (Wischmeier 1976) were used to simulate sediment 

supply from six watersheds. Sediment estimates were correlated with in situ 

measurements (0.79< R2 <0.83) but not with invertebrates, likely due to naturally low 

levels of sediment observed in the streams.  

 In order to evaluate the use of stream invertebrates as bioindicators of excessive 

fine sediment, three investigations were conducted. The first examined nine years of data 

collected bi-annually from two streams in western Oregon (Chapter 2). The second study 
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used an Oregon Department of Environmental Quality data set to examine invertebrate 

and environmental conditions in wadeable streams across the Coast Range ecoregion and 

to identify potential bioindicators of excessive fine sediment (Chapter 3).  The final study 

used in situ experiment to examine the role of geology in shaping invertebrate response to 

excessive fine sediment conditions in the benthos and to evaluate grazing traits as 

indicators for biomonitoring fine sediment (Chapter 4). Three hypotheses were tested. 

The first hypothesis was that invertebrates would be related to broad-scale climate 

variables (Chapter 2). The second hypothesis was that functional aspects of the 

invertebrate community would serve as useful indicators of excessive fine sediment 

condition. (Chapter 3).  The third hypothesis was that invertebrates in streams with 

naturally high levels of sediment would be tolerant to fine sediment (<2 mm, Chapter 4).   
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Figure 1.1  Conceptual model of sediment supply and delivery to streams in Oregon 
Coast Range watersheds. Boxes represent process taking place throughout the 
watershed (dashed lines) and those taking place within the stream (solid line). 
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Figure 1.2  Temporal and spatial ecological relationships of invertebrate 
communities. The y-axis shows changing scale over 15 orders of magnitude with 
larger values at the bottom. Each level represents a nested model of a stream 
system ranging from the biome scale to the patch scale and from long-term to 
short-term process. The diagram illustrates the spatial and temporal complexity 
and hierarchical connectivity of stream ecosystems. 
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Figure 1.3  Sediment effects on stream function and the invertebrate community.  
Mitigating factors interact and feedback with sediment supply and stream function to 
shape invertebrate community. 
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Figure 1.4  Conceptual diagram shows sources of increased fines in streams and its 
mechanistic effects on invertebrates and benthic habitat. Excessive fine sediment 
can degrade benthic habitat and reduce invertebrate fitness resulting in altered 
communities and loss of function. The grey area represents the focus-area of this 
research. 
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Figure 1.5  Illustration of the different mouthpart structures and 
feeding strategies of two mayfly grazers: Rhithrogena and 
Paraleptophlebia. Photos by Karouna and Fuller (1992) and 
McShriffey and McCafferty (1988). Rhithrogena mouthparts contain 
combs (A) that are used to scrape-up periphytic algae and molae (B) 
to grind food particles. In contrast, Paraleptophlebia uses hairs (C) 
to brush up loose organic material and teeth to cut-up food particles 
(D). It is hypothesized that invertebrate response to fine sediment in 
food sources will be largely dependent on feeding traits.  
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Figure 1.6  Images showing experimental results on the effect of 
inorganic sediment on Rhithrogena mouthpart brushes and 
bristles. Lower panels show increasing wear on Rhithrogena 
bristles caused by feeding on algal food resources growing on 
sand paper (Arens 1990).  
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Chapter 2 Stream Invertebrate and Climate Relationships in the Pacific Coastal 

Ecoregion of Oregon 

 

 

Abstract 

 There are few published long-term studies of stream invertebrates and climate 

relationships in the maritime climate of the Pacific Coastal ecoregion. This study presents 

nine years (2005-2012), of invertebrate and climate data from three sites at two streams 

in two different ecoregions of Oregon. At two of the three sites, invertebrate density was 

significantly related to El Niño Southern Oscillation Index (R2 range = 0.22 - 0.36, ρ 

range = 0.008-0.04) and mean maximum air temperature (R2 range = 0.32-0.49, ρ range = 

0.002-0.01). At one of the three sites, precipitation was significantly associated with 

assemblage (psuedo r =0.60, ρ=.002) but not density. Trait-based characteristics also 

showed significant correlations with climate temperature and precipitation. Scrapers were 

correlated with air temperature (R2 range = 0.14 to 0.45, ρ range = 0.01-0.002), 

univoltinism (one generation per season) was correlated with mean maximum 

temperature (R2 range = 0.28 to 0.50, ρ range = 0.001-0.03) and semivoltinism (less than 

one generation per season) was correlated with precipitation (R2 = 0.41, ρ = 0.004). The 

findings of this study suggest that temperature may be a climate-related driver of 

invertebrate population variability in the Pacific Northwest. The findings of this study 

have possible implications for understanding the role of climate in shaping stream 

invertebrate communities and monitoring the impacts of climate change. 

 



  32 

Introduction 

 Stream invertebrates are often used to monitor the impacts of human activities on 

aquatic systems (Rosenberg and Resh 1993). Since all ecological systems are inherently 

variable, observed changes in stream invertebrate communities should be evaluated with 

respect to natural variability. This is particularly true for stream invertebrates, which are 

known to be highly variable across wide temporal scales from short-term seasonality to 

long-term climate variability (Townsend et al. 2003). Therefore, long-term data sets are 

needed to adequately characterize variability. Unfortunately, there are few long-term 

studies of stream invertebrates, so the natural variability of these systems is not well 

known (Jackson and Füreder 2006). 

 The value of long-term studies for understanding important ecological processes 

and monitoring the effect of human activities on the environment is well documented 

(Likens 1989; Burt et al. 2008; Dodds et al. 2012). Sustained ecological research over 

long temporal spans can reveal complex or subtle ecological processes that may be 

difficult to detect with short-term studies, but are important for solving environmental 

problems (Franklin 1987; Burt et al. 2008). Perhaps one of the best examples in aquatic 

systems are the long-term studies of stream biogeochemisty at Hubbard Brook, which 

unexpectedly revealed the effect of acid rain deposition on stream ecosystems (Likens 

and Bormann 1974) and ultimately led to widespread awareness and public policy 

regarding sulphur emissions in the 1990s (Likens 1999).  

 Long-term investigations have also made important contributions to stream 

macroinvertebrate (invertebrate) ecology including: population dynamics (Gudbergsson 

2004; Bêche et al. 2006), phenology (Resh 1992; Gasith and Resh 1999; Briers et al. 
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2004), colonization and recovery (Stone and Wallace 1998; Schloesser et al. 2000; Bêche 

et al. 2009; Vinson 2001) and community stability (Collier 2008; Bêche et al. 2009). For 

example, the interactive effect of climate and land use on community stability and 

persistence was documented through 10- and 20-year investigations of New Zealand 

(Collier 2008) and California streams (Bêche et al. 2009). Long-term investigations have 

also revealed invertebrate recovery patterns after major disturbances such as logging and 

fire. During a long-term study at the Coweeta Hydrologic Laboratory in North Carolina, 

it was shown that while clearcut logging increased invertebrate abundance, it also 

changed the food web from an allochthonous base to autochthonous base and recovery 

back to reference conditions was still evident 16 years later. Long-term studies of fire 

disturbance showed recovery of invertebrate was also slow (>10 years) and dependent on 

both post-fire landscape condition and climate conditions (Minshall et al. 2001; Minshall 

et al. 2003). Long-term studies have also documented the seasonal and interannual 

variability of stream invertebrate (Bêche et al. 2006; Bêche et al. 2007). 

 From a stream management perspective, documenting the natural variability of 

stream invertebrates would be a useful outcome of long-term studies. However, there are 

relatively few long-term studies of stream invertebrates (Jackson and Füreder 2006) and 

fewer still that document the influence of broad-scale climate conditions on stream 

invertebrates. Climate is a well-known source of variability in stream systems (Resh et al. 

2013) and is related to invertebrates through seasonal and interannual changes in stream 

temperature (Vinson 2001; Durance and Ormerod 2007) and precipitation-related flow 

regimes (Jackson et al. 1999; Milner 2006). Long-term climate variation, such as the 

North American Oscillation (NAO) and the El Niño Southern Oscillation (ENSO), drive 
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regional weather patterns, which subsequently influence several aspects of stream 

invertebrate communities including growth rate and phenology (Briers et al. 2004), 

abundance (Bradley and Ormerod 2001), functional traits (Lawrence et al. 2010) and 

bioassessment metrics (Mazor et al. 2009).    

 In the United States, the most extensive long-term studies of climate and stream 

invertebrates have been conducted in the Mediterranean climate of California, which is 

characterized by cool wet winters and hot dry summers. In Mediterranean climates, 

precipitation and flooding follow a predictable annual pattern of wet and dry conditions 

with high seasonal and interannual variability (Gasith and Resh 1999). Consequently, 

flow variability acts as a strong control on stream habitat (Bonada et al. 2007; Resh et al. 

2013), thereby influencing invertebrate diversity (McElravy et al. 1989), composition 

(Bêche et al. 2009), stability (Bêche and Resh 2007b) and functional traits (Bêche and 

Resh 2007a).   

 Understanding the effects of climatic conditions on stream systems is necessary 

for predicting the effects of climate change on stream communities. For example, the 

strong influence of climate on invertebrates in Mediterranean climates has led to the 

development of specific indicator metrics to monitor climate change (Lawrence et al. 

2010). However, the relationship between climate variability and stream invertebrates is 

likely to be region specific (Gasith and Resh 1999). Therefore, the climate-invertebrate 

relationships documented in one climate region may not apply to another. A good 

example of this is in the Pacific Coastal ecoregion of the Pacific Northwest, which is 

geographically close to California's Mediterranean climate but is a much cooler and 

wetter maritime climate. Therefore, the strong controls of drought and flow in the 
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Mediterranean may not act as strongly in Pacific Coastal streams. Moreover, the 

projected impacts of climate change in the two regions are different. Climate models 

predict both regions will likely become warmer, but maritime climates are expected to get 

wetter in the winter, while the Mediterranean is likely to get drier and more variable in 

the summer (Cayan et al. 2009; Karl et al. 2009).  

 Region-specific long-term studies of stream invertebrates would provide 

important information about the influence of precipitation and temperature on stream 

invertebrates in the Pacific Coastal ecoregion and other maritime climates. However, a 

literature review did not find any published long-term studies of invertebrates in the 

Pacific Coastal region of the Pacific Northwest of the United States. The purpose of this 

study is to examine long-term variation of stream invertebrates in response to broad-scale 

climate conditions using long-term data sets (9 years) collected biannually from two 

Oregon streams. To increase applicability of findings, sites were located in two different 

ecoregions with varying levels of land cover and landuse intensity and different stream 

invertebrate communities (Edwards, unpublished data). Study objectives were: (i) to 

relate precipitation and temperature to stream invertebrate assemblage and functional 

traits, and (ii) to test the hypothesis that stream invertebrates at both stream sites would 

associate with broad-scale climate conditions.  

2 Methods 

2.1 Study sites  

 The maritime climate of the Pacific Northwest extends from the west slope of the 

Cascades to the Pacific Ocean and north from around the California border to Alaska.  

The sites in this study fall within the Willamette Valley and Cascades ecoregions of 
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Oregon. On average, the Willamette Valley is generally warmer and drier than the 

Cascades, but the majority of precipitation in both regions occurs in the winter. 

Significant snowfall accumulation is typical at the Cascades sites but rare in the 

Willamette Valley. Invertebrate data were collected at three sites on two streams (Balch 

Creek and Lookout Creek) in Oregon. Streams were chosen in two basins reflecting 

different levels of land use intensity at two scales: the watershed scale (land 

development) and the reach scale (channelization).  

 Balch Creek is situated in the northern Willamette Valley along the West Hills of 

Portland. Balch Creek is situated within the eastern edge of the Oregon Coast Range 

where the climate is relatively mild with cool dry summers and wet winters (Table 2.1). 

Mean average temperature is 12.0 °C and mean average precipitation is 92 cm. The Balch 

Creek data collection site (BCS 1) is located at Forest Park, a public park within the 

urban growth boundary of Portland, Oregon (Figure 2.1). The majority of the Balch 

Creek basin is covered with dense forests of Douglas-fir (Pseudotsuga menziesii) and 

western hemlock (Tsuga heterophylla); however, about 18% of the basin is developed as 

single family residential (Table 2.1). Balch Creek was chosen for this study because of its 

location in an urban setting, but the majority of the watershed is naturally forested. 

Preliminary unpublished bioassessment has shown Balch Creek to be moderately 

impacted. Lookout Creek is located in the central Cascades within the HJ Andrews 

experimental forest (Table 2.1). Due to higher elevation, the climate at Lookout Creek is 

substantially cooler and wetter than at Balch Creek, particularly in the winter. Mean 

annual temperature at Lookout Creek is 9.5 °C and the mean annual precipitation is 222 

cm. The watershed for Lookout Creek is heavily forested with Douglas-fir and has no 
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land development; however, there is some scattered logging associated with experimental 

manipulations. At Lookout Creek, two sites with different reach characteristics were 

examined (Figure 2.1). Lookout Creek Site 1 (LCS 1) is located in an old growth forest 

with a natural stream channel, abundant large woody debris and a dense canopy. Lookout 

Creek Site 2 (LCS 2) is located about 7 km downstream where the stream had been 

channelized, large woody debris removed and the riparian canopy open. Preliminary 

unpublished bioassessment of Lookout Creek found LCS 1 to be unimpacted and LCS 2 

moderately impacted. Land cover for each basin was determined using two different data 

sets. Balch Creek data were categorized using Portland's Regional Land Use Information 

System (RLIS; Metro 2001; 1:400 scale). Land cover data for the Lookout Creek basin 

were obtained from the National Land Cover data base (NLCD; Fry et al 2006). 

2.2 Stream invertebrates 

 Invertebrates were collected by undergraduate students on field trips each May 

and November 2005-2012 using a non-lethal bioassessment technique. To ensure data 

quality, collections were supervised and all identifications and counts were verified by 

the author. Invertebrates were collected by students working in groups using D-nets to 

collect three 0.1 m2 samples in riffles (Table 2.2). The three D-net samples were 

composited and 1/3 of the sample was randomly sorted streamside (Figure 2.2). Over the 

duration of the study, multiple groups (5-10) collected invertebrate samples in the same 

reach at each site.   

2.3 Climate data 

 Stream and climate data were assembled from various sources, including the 

National Oceanic and Atmospheric Administration (NOAA) climate stations, HJ 
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Andrews Long Term Ecological Research Station (HJ LTER) datasets and gauges and 

city of Portland datasets (Table 2.1). Selection of climate stations was determined 

through exploratory analysis of multiple climate station locations (section 2.5). Four 

missing values at the Lookout Creek stations were replaced with values from the next 

nearest station at the same elevation (26 km distant). Current flow data were only 

available at Lookout Creek. Balch Creek flow data were not collected after 2002. At both 

streams, water chemistry data were incomplete, so two different time periods were used 

to compare streams. Monthly stream water chemistry for June 2005-2007 was used to 

compare monthly averages of nitrate (NO3, mg/L), soluble reactive phosphorous (PO4
3-, 

mg/L), suspended solids (mg/L), conductivity (µS/cm) and temperature (oC). Daily 

streamflow for both streams was compared using average June flow (L/S) from 1999-

2002.   

2.4 Invertebrate data analysis 

 For each sample, counts were averaged across groups to obtain an estimate of 

invertebrate density per m2 (Table 2.2). Invertebrate data were standardized for seasonal 

variance using z scores for fall and spring. Assemblage and functional aspects of stream 

invertebrates were related to climate parameters using ordination and linear modeling. 

Feeding group, voltinism and movement were selected as functional traits because of 

known associations with climate in other regions (Bêche et al. 2006; Lawrence et al. 

2010) and variation at the genus-level, which made trait assignment difficult. Family-

level functional attributes were assigned using best professional judgment based on 

knowledge of the genera commonly found in the study streams (Table 2.4). Due to 

ambiguity at the family level, Chironmonidae were not assigned functional attributes. 
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  Ordinations were used to examine relationships between biotic variables and 

assemblage and to inform selection of variables to be used in linear modeling.  

Assemblage was evaluated using Non-metric Multidimensional Scaling (NMDS), which 

is an unconstrained ordination technique that examines the overall similarity of biologic 

communities among sites. NMDS is often used with invertebrate data because it 

preserves the inter-site rank relationships and better represents species distances 

(Legendre and Legendre 1998). Community similarity was evaluated using the Bray-

Curtis Dissimilarity Index and NMDS ordinations of relative abundance and functional 

traits were used to compare streams in two-dimensional ordination space. Assemblage 

similarity was evaluated spatially, seasonally and temporally for all streams using Bray-

Curtis Community dissimilarity indices and compared between streams using t-tests. 

Differences in macroinvertebrate assemblage between streams were determined by 

analysis of similarities (ANOSIM). The ANOSIM procedure tests the hypothesis that 

there is no difference between stream samples by comparing ranked similarity matrices of 

Bray-Curtis distances (McCune and Grace 2002). The test statistic R ranges from 0 – 1. 

An R value of 0 indicates random grouping between stream samples and a value of 1 

indicates a 100% difference between stream samples. The statistical significance of R is 

calculated with a permutation test comparing randomly generated R values to the original 

R value. To examine relationships between assemblage and climate variables, a linear 

fitting function (Envfit) was used to fit climate vectors to ordinations of each stream. 

Envfit fits a vector to the ordination and a permutation test is used to determine psuedo r2 

and significance.   
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 Line smoothing and linear models were used to examine temporal patterns and 

climate-invertebrate relationships. Kendall's tau (t) was used to compare stream 

invertebrate density at each stream. Kendall’s tau is a rank-based technique often used to 

analyze temporal patterns in environmental data sets (El-Shaarawi and Niculescu 1992), 

environmetrics and water quality data (Hirsch et al. 1982) because it is less sensitive to 

outliers (McCabe and Wolock 2002 USGS). To smooth lines, local regression (LOESS) 

was used to compare invertebrate density between streams. LOESS is a nearest-neighbor 

smoothing function that utilizes a user-defined moving window around each x value to 

estimate a y value using regression (Legendre and Legendre 1998). Linear models were 

developed using average temperature, total precipitation as climate predictors and 

invertebrate density (mean abundance / m2) as response variables. All statistical analyses 

were performed using the “Vegan” package in R statistical software (R Development 

Core Team 2007).   

2.5 Climate data analysis 

 Climate data characterization and organization was determined using exploratory 

analysis. Temperate and precipitation data were examined at the following intervals: 

water year (WY, beginning October 1st), monthly and at 10, 100 and 200 days prior to 

invertebrate collection. Flow data (only available at Lookout Creek) daily mean, daily 

mean maximum and CV were evaluated at WY intervals and 10, 100 and 200 days prior 

to invertebrate collection. Time intervals were chosen to capture the typical response time 

and life span of stream invertebrates and to reflect seasonal variability in flow and 

climate. Exploratory analysis within and among stream sites revealed a lack of 

consistency in which time periods were best correlated with invertebrate data. Given the 
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small sample size and 6-month sampling interval, I chose a parsimonious approach to 

data organization and used daily maximum air temperature and total precipitation for the 

time-period between invertebrate samples. Flow data were expressed as mean daily flow 

for the WY and 10 days prior to sampling. All data were summarized and analyzed using 

seasonally standardized z-scores for total (precipitation only), mean and CV. El Niño 

Southern Oscillation (ENSO) conditions were characterized using the Multivariate ENSO 

Index (MEI) values obtained from NOAA Earth Centers Research Laboratory (accessed 

March 2013). ENSO is a coupled ocean-atmospheric phenomenon affecting global 

climate conditions (Cane and Zebiak 1985). In the Pacific Northwest, ENSO is associated 

with warm/dry and cool/wet conditions varying over a 5-10 year time scale (Mote et al. 

2003). The MEI index, expressed as z scores, is a measure of the ENSO signal strength 

derived from six ocean-atmosphere variables (Wolter and Timlin 2011). The MEI index 

was used to build invertebrate-climate ENSO regression models. 

3 Results 

3.1 Climate and site characteristics 

 Climate and stream characteristics at Balch Creek and Lookout Creek showed 

distinct differences. The Lookout Creek basin was cooler and wetter than the Balch Creek 

basin (Table 2.1) and June flow at Lookout Creek was approximately double that of 

Balch Creek. However, when normalized for area, Balch Creek had higher summer flow 

(2.4 vs. 0.9 liters per second). Average June stream temperature was similar at both 

streams (Table 2.1). The stream water chemistry at Lookout Creek was comparatively 

dilute, with lower nutrients and conductivity than at Balch Creek (Table 2.1), while 

suspended sediment concentrations were slightly higher at Balch Creek. During the study 
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period, ENSO conditions ranged from warm to cool phases with relatively strong warm 

ENSO events in Fall 2006 and Winter 2010 and relatively strong cool ENSO events in 

Spring 2008 and Fall 2010. Regional temperature and precipitation patterns during the 

study period were generally cool with average precipitation (with the exception of a dry 

year in 2005). Within the study period, two main climate patterns were observed in both 

study regions: warm/dry conditions in Fall 2006 and Spring 2007 and cool/wet conditions 

in Fall 2010 and Spring 2011.  

3.2 Stream invertebrates  

 At all three sites, the invertebrate assemblages were dominated by mayflies, 

stoneflies and caddisflies. At all sites, Heptageniidae and Baetidae were the most 

common family. At Balch Creek, Leptophlebiidae, Nemouridae and Chironomidae were 

also common. At Lookout Creek, Ephemerellidae, Peltoperlidae, Perlidae, Chloroperlidae 

and Hydropsychidae were also common. Stream invertebrate density varied temporally 

and spatially. LCS 1 had the highest invertebrate density while BCS 1 had the lowest 

(Table 2.2). At LCS 1, median invertebrate density was significantly different than at 

LCS 2 (τ = 0.4, ρ = 0.05) and, at BCS 1, median invertebrate density was strongly 

different than LCS 1 (τ = 0.3, ρ = 0.11). Temporal patterns of invertebrates were variable 

but appeared to be temporally correlated (Figure 2.3 and 2.4). For all streams, the highest 

seasonally standardized invertebrate density occurred in Spring 2007 and was relatively 

lower from 2008-2012 (Figure 2.4). The LOESS smoothed lines appeared to show a 3-4 

year interannual cycle of invertebrate density.  

 Stream invertebrate community similarity and assemblage varied within streams 

and across study sites. Similarity among years was lowest at LCS 2 (average index = 



  43 

0.32) and highest at Balch Creek (average index=0.23). Similarity was higher in the 

spring and significantly different from fall similarity only at BCS 1 (ρ = 0.03). 

Ordinations based on relative abundance showed the three stream sites separated along 

NMDS Axis 1 and within stream variation generally along NMDS Axis 2 (Figure 2.6). 

The assemblage at LCS 1 and LCS 2 varied along Axis 1 and 2, but in opposite directions 

(Figure 2.6). ANOSIM results (Table 2.3) showed the assemblages between the two 

streams were significantly different (R = 0.7, ρ = 0.001), and LCS 1 and LCS 2 at 

Lookout Creek were significantly different (R = 0.3, ρ = 0.003). Ordinations of relative 

abundance by season showed distinct assemblages in the spring and fall (Figure 2.7) with 

season associated with NMDS Axis 1 at the Lookout Creek sites and along NMDS Axis 

1 and 2 for BCS 1. ANOSIM results showed significant seasonal differences for BCS 1 

(R=0.7, ρ=0.001), LCS 1 (R=0.7, ρ=0.002) and LCS 2 (R=0.2, ρ=0.04). Ordinations 

based on functional feeding group also showed similar, but stronger, results with distinct 

communities in the spring and fall, separated along NMDS Axis 1 for the Lookout Creek 

sites and NMDS Axis 1 and 2 for BCS 1 (Figure 2.8).    

 Vector analysis found generally weak associations between climate and 

invertebrate assemblage. Temperature vectors showed weak associations with relative 

abundance assemblage (Table 2.5, Figure 2.7) at BCS 1 (r=0.09, ρ=0.15), LCS 1 (r=0.24, 

ρ=0.18) and LCS 2 (r=0.28, ρ=0.13). Temperature and ENSO showed slightly stronger 

correlations with FFG ordinations (Table 2.4, Figure 2.8) at BCS 1 (temperature: r=0.34, 

ρ=0.07 ENSO: r=0.26, ρ=0.16) and LCS 2 (temperature: r=0.28, ρ=0.13 ENSO: r=0.28, 

ρ=0.11). Voltinism at LCS 2 was associated with temperature (r=0.28, ρ=0.12) and 

precipitation (r=0.60, ρ=0.002). No other climate vectors were associated with 



  44 

ordinations. Bubble plots of scrapers in Figure 2.9 show increased relative density of 

scrapers associated with increasing temperatures and decreasing precipitation, while 

long-lived invertebrates at LCS 2 were negatively associated with precipitation and 

positively associated with temperature. 

 Invertebrate density and function were associated with ENSO, temperature and 

precipitation but not flow. Linear models of invertebrate density showed significant, 

positive relationships with ENSO and temperature (Figure 2.10) at both BCS 1 and LCS 

1. ENSO strength was positively associated with invertebrate density at BCS 1 (R2=0.22, 

ρ=0.04) and LCS 1 (R2=0 .36, ρ=0.008). Temperature was positively associated with 

invertebrate density at BCS 1 (R2=0.32, ρ=0.01) and LCS 1 (R2=0.49, ρ=0.002). No 

climate-related variables were significantly related to invertebrate density at LCS 2. 

Invertebrate-climate relationships were generally stronger in the fall; however, none of 

the regression models within season were significant.  

 Functional characteristics of the invertebrate community were also significantly 

related to temperature and precipitation at LCS 2. Scraper density was positively 

associated with temperature at BCS 1 (R2=0.18, ρ=0.06), LCS 1 (R2=0.45, ρ=0.002) and 

LCS 2 (R2=0.14, ρ=0.08). Precipitation was negatively associated with long-lived 

(semivoltine) invertebrates at LCS 2 (R2=0.41, ρ=0.004). 

4 Discussion 

4.1 Long-term climate and invertebrate patterns 

 This study attempted to identify long-term patterns between stream invertebrates 

and climate variables from three sites in two Oregon streams. During the nine-year study 

period, two phases of a relatively strong El Niño and La Niña conditions were present, 
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which likely contributed to warm/dry conditions in Fall 2006 and Spring 2007, and 

cool/wet conditions in Fall 2010 and Spring 2011. Over the course of the study and at all 

streams, invertebrate density was highly variable, which is similar to findings of other 

long-term studies conducted in California (Bêche and Resh 2007a; Bêche and Resh 

2007b). In contrast, assemblage was relatively stable, which may reflect the coarse 

taxonomy of the study (family-level) or the persistence of invertebrates, which has been 

observed in other streams of western North America (Robinson et al. 2000; Bêche and 

Resh 2007a). The temporal trends in invertebrate density appear to follow a sinusoidal 

pattern with a three to four year interval that may parallel El Niño cycles, which has been 

observed in other streams (Resh et al. 2013). Overall, invertebrate density and function 

were strongly correlated with climate conditions, even though both streams had distinctly 

different invertebrate communities and stream characteristics. However, the relationship 

between climate variables and invertebrates was different between streams and sites.  

4.2 Relationships between invertebrates and climate 

 The invertebrate community showed a strong seasonal component and generally 

weak association with climate-related variables. Invertebrate assemblage showed a weak 

association with temperature at LCS 1 and with temperature and precipitation at LCS 2.  

In the ordination of LCS 2, temperature and precipitation were inversely related to each 

other and precipitation appeared to be associated with fall invertebrate communities.  

Other research has documented the association of invertebrates with dry season 

precipitation in Mediterranean climates (Bêche and Resh 2007b), which may help explain 

the patterns in Lookout Creek where fall sampling is preceded by 3-4 months of 

relatively low precipitation and stream flow. The lack of significant relationships between 
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climate variables and relative abundance is likely due to the strong seasonal patterns 

controlling stream invertebrate communities. This is evident in the ordinations, which 

clearly show a strong seasonal component at all sites. 

 Ordinations based on invertebrate function showed stronger relationships with 

climate variables (Figure 2.9). In the ordinations based on functional feeding group, the 

climate vectors appeared to be independent of season, suggesting that functional 

groupings may be a better indicator of climate-invertebrate relationships, which has been 

documented in Mediterranean climates of California (Bêche et al. 2006). Bubble plots of 

invertebrate scrapers and those with long life cycles (semivoltine) reveal functional 

associations with climate patterns. Scrapers were associated with increasing maximum 

temperatures at BCS 1 and LCS 2 and negatively associated with precipitation only at 

LCS 2, which may be partially explained by increasing growth rates of algae in warmer 

temperatures (DeNicola 1996). However, at BCS 1 and LCS 2, temperature vectors were 

tangentially associated with scrapers, while the remaining variance may be associated 

with in-stream processes such as nutrient concentrations. At LCS 2, long-lived 

invertebrates were positively associated with temperature and negatively with 

precipitation. This may be due to flow variability or benthic-scouring flood events 

occurring at LCS 2, where the stream is channelized and lacks large woody debris, 

thereby making it unsuitable habitat for large-sized or long-lived organisms. This 

relationship was also found in highly intermittent streams in Mediterranean climates of 

California (Lawrence et al. 2010).    

 Invertebrate density showed stronger, and significant, associations with climate 

variables across seasons. However, while climate-invertebrate relationships were 
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generally stronger in the fall, none of the linear models based on season were significant, 

likely due to low sample size. Invertebrate density was strongly associated with ENSO 

strength and temperature at BCS 1 and LCS 1 (Figure 2.11a, 2.11b) across both seasons.  

At LCS 1, nearly half of the variance in invertebrate density was explained by average 

monthly maximum temperature. These findings suggest that invertebrate communities in 

the Pacific Coastal region and other maritime climates may be temperature limited; 

whereas, in drier climates such as the Mediterranean, they appear to be precipitation 

limited (Bêche and Resh 2007b). Functional attributes also showed stronger relationships 

with climate variables and may elucidate some of the mechanisms underlying 

invertebrate association with temperature and precipitation. At all sites, scrapers showed 

a strong positive association with temperature (Figure 2.11a, 2.11b, 2.11c). This may be 

the result of increased algal growth in warmer stream conditions (DeNicola 1996); 

however, increased temperatures may also increase growth rates or alter the phenology of 

stream invertebrates. For example, studies have shown that larval hatching, development 

and emergence is triggered and regulated by physiological processes related to 

temperature (Vannote and Sweeney 1980; Frady et al. 2007; Li et al. 2011). In this 

regard, the increased density of invertebrates across years observed in this study may be 

due to phenological shifts by invertebrates to optimize growth and development regulated 

by temperature. This is supported by the strong association of univoltine invertebrates 

with temperature at BCS 1 and LCS 1 (Figure 2.11d, 2.11e) where the timing of 

emergence may change the abundance of larval forms present in the stream. This pattern 

was not apparent at LCS 2 (Figure 2.11f) where semivoltine invertebrates had a strong 

association with precipitation and univoltine invertebrates were not related to 
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temperature. At LCS 2, the flow regime, as opposed to temperature, may exert a stronger 

control over invertebrates. The lack of a strong relationship with flow may be explained 

by the difference in scales between the ecological processes relevant to flow and the 

invertebrate sampling schedule. During high flow events, invertebrates will find refugia 

from fast moving water and will quickly rebound from a flood event as long as the 

channel has not completely scoured (Hart and Finelli 1999). In this study, two of the 

stream sites (BCS 1 and LCS 1) have natural stream channels and therefore can find 

places to avoid high flows; however, in the third site (LCS 2), there is comparatively little 

habitat complexity and consequently no refuge from fast moving water. This supports the 

findings that only the channelized site (LCS 2) showed an association between 

invertebrates and precipitation.  In this study, the sampling schedule did not result in 

samples right after a high flow event so it's unlikely that data would show a strong flow-

signal on invertebrates unless there was a major scouring event in the previous 6 months. 

4.3 Invertebrate stability  

 The different invertebrate-climate responses observed among study streams may 

be explained by community similarity and stability. Stability and persistence refer to 

temporal changes in a population of organisms around an equilibrium point as a result of 

perturbations (Collier 2008; Connell and Sousa 1983). Stability (abundance) refers to 

changes in abundance over time and persistence characterizes changes in the presence or 

absence of taxa over time. Persistence, while typically associated with presence-absence 

data, has also been used to examine assemblage data (e.g. Scarsbrook 2002). Invertebrate 

similarity over the study period was lowest at the LCS 2 where channelization and lack of 

woody debris likely creates harsh conditions during high flow events. At BCS 1 and LCS 



  49 

1, the relatively high similarity over the study period and weak association between 

assemblage and climate suggest high persistence (Table 2.5), while at LCS 2, the strong 

association of assemblage with climate indicates low persistence (Figure 2.10). 

Conversely, the strong association of invertebrate density to climate at BCS 1 and LCS 1 

suggest low stability, while the relatively stronger association of assemblage and climate 

at LCS 2 suggest low persistence. Other studies have found high persistence in streams 

with stable flow regimes and high stability in unstable streams (De’ath and Winterbourne 

1994; Scarsbrook 2002; Milner et al. 2006). In the present study, the high persistence of 

invertebrates in stable sites and low persistence in unstable sites may reflect a shift from 

biotic to abiotic dominated controls. In stable stream systems, the importance of 

predation and competition may drive changes in assemblage, while abundance is 

controlled by climate-related factors (Gasith and Resh 1999). In the unstable site, 

assemblage may be controlled through selection of traits that increase fitness for harsh 

flow conditions (Bêche and Resh 2007).   

4.4 Implications for climate monitoring 

 In Mediterranean streams, precipitation-related climate variability, such as 

droughts and floods, are clear drivers of stream biotic communities (Resh et al. 2013). 

While the present study only examined data from two streams, the findings suggest a 

temperature-driven climate control on invertebrates in maritime climates. This is logical 

given the relatively stable flow regime and cooler temperature of maritime streams in 

comparison to Mediterranean streams. In cooler streams, invertebrate growth may be 

limited by temperature, which is known to influence penology and body size (Vannote 

and Sweeney 1980; Elliott 1984). In streams within the regions that are influenced by the 
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North Atlantic Oscillation (NAO), invertebrates are associated with increased warmer 

winter temperatures driven by the warm phase of the NAO (Briers et al. 2004). From a 

climate monitoring perspective, the findings here indicate that, unlike the Mediterranean 

climate, invertebrates in maritime streams may be linked to climate change through 

temperature. In addition, the lower community similarity and generally stronger 

association with climate variables in the fall invertebrate samples suggest that climate 

monitoring may yield more useful information during the fall. Furthermore, the impacts 

of climate change may vary as a function of natural or human disturbance. For example, 

invertebrate persistence in reference streams may not change as a result of climate change 

but stability would. A decoupling of the invertebrate response from the climate signal 

may indicate a stream that is unstable because of human-related pressures.  

  



  51 

 

 
Figure 2.1  Map of study streams and basins in Oregon. Black circles represent data 
collection locations. Dark area is the Portland urban growth boundary. 
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Figure 2.2 Randomized field technique. Three D-net benthic samples are collected (a), 
composited into a plastic tub (b) and then transferred to the Field subsampling tray (c). 
Five cells (X) are randomly chosen from which macroinvertebrates are counted and 
identified. 
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Figure 2.3  Invertebrate abundance per area for the three study streams. X axis shows Fall 
(F) and Spring (S) samples from 2005-2012 (05-12).  
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Figure 2.4 Invertebrate density over time (z score) for three streams (a), ENSO and 
all streams (b), temperature and Balch (c) and Lookout sites (d), precipitation and 
Balch (e) and Lookout sites (f) .  The Y axis shows standardized invertebrate density 
and the X axis shows Fall (F) and Spring (S) samples from 2005-2012. 
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Figure 2.5 LOESS (span =0.65). Stream comparison of invertebrate density using 
Kendall's τ. X axis shows Fall (F) and Spring (S) samples from 2005-2012. 
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Figure 2.6 Assemblage in Balch Creek and Lookout Creek 
(Sites 1 and 2) for all seasons and years. 
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Figure 2.7  Ordinations based on relative abundance with climate vectors for Balch 
Creek 1 (BCS 1), Lookout Creek 1 (LCS 1) and Lookout Creek 2 (LCS 2). Only 
vectors with ρ < 0.20 are shown. Filled symbols are Spring, open symbols are Fall. 
Stress < 15 for all ordinations. Mean Temperature (Temp), Total Precipitation (Precip). 
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Figure 2.8  Ordinations based on functional feeding group with climate vectors. Only 
vectors with ρ < 0.20 are shown. Filled symbols are Spring, open symbols are Fall. 
Stress < 10 for all ordinations. 
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Figure 2.9 Balch Creek and Lookout Creek 
ordinations based on functional feeding group (a, b) 
and life length (c). Bubble plots show relative 
abundance of scrapers or semivoltine. Only 
temperature and climate vectors with ρ < 0.20 are 
shown. 
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Figure 2.10 Scatter plots for significant linear models of standardized (Z 
score) invertebrate density as a function of ENSO (a,b), or mean maximum 
temperature (Max Temp c,d). R2 and p-value for each model shown in plot. 
Only models with p < 0.10 are shown. Symbols are Fall (F) and Spring (S). 
There were no significant models for Lookout Site 2. 
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Figure 2.11 Standardized (Z score) invertebrate functional density for scrapers 
(a,b,c) and voltinism (d,e,f) as a function of average monthly maximum temperature 
(Max Temp, a,b,c,d,e) and average monthly precipitation (f). R2 and p-value for each 
model shown in plot. Only models with p < 0.10 are shown. Symbols are Fall (F) 
and Spring (S). 
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Table 2.1 Basin characteristics, stream physiochemical and climate summary data 
for study streams. Less than detection limit (LDL). Balch Land use data were 
obtained from RLIS  (2001) and Lookout land cover data were obtained from the 
NLCD (Fry et al 2006). Elevation data were obtained from the USGS (2014). 
  

Balch Creek Lookout Creek 

Watershed    
Area (km

2
)   9.1 62.4 

% Forest   81 100 
% Agriculture  0 0 
% Rural Residential  NA 0 
% Single Family Residential  18 0 
Mean Elevation (m)  233  978 
Minimum/Maximum Elevation (m)  384/14 1622/418 
Mean Slope (°)  16 21 
    
Station Information    
Climate Station ID  USC00356750 USS0022E07S 
Elevation  6 m 1067 m 
Distance from sampling site  20 km 70 km 
Gauging Station ID  NA GSLOOK #HF004 
Stream Water Chemistry  NA GSLOOK #CF002  
    
Climate  Mean (min-max) Mean (min-max) 
Monthly Precipitation (cm)  57.8 (18.3-105.1) 112.1 (5.7-192.7) 
Monthly Max Temperature (°C)  22.0 (11.8-24.0) 12.8 (5.5-20.4) 
    
Stream   Mean (min-max) Mean (min-max) 
June streamflow (liters/sec)  22.0 (5.1-52.7) 56.7 (34.0-112.0) 
Area-normalized streamflow (liters/sec)  2.4 (0.6-5.8) 0.9 (0.5-3.1) 
Temperature (

o
C)   14.9 (14.1-15.5) 15.7 (12.8-17.4) 

Conductivity (uS/cm)  163.7 (159.0-167.0) 37.6 (36.2-38.6) 
Nitrate (mg/L)  0.6 (0.58-0.73) LDL 
Soluble Reactive Phosphate (mg/L)  0.1 (0.07-0.08) 0.01 (0.01) 
Suspended Solids (mg/L)  10.3 (2.0-21.0) 5.6 (2.1-11.6) 
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Table 2.2 Summary invertebrate data from study sites. Fall (F), Spring (S) 
                    
  Balch Creek Lookout Creek Lookout Creek 
  BCS 1 LCS 1 LCS 2 

Sampling period  F05-F13 S05-F13 S05-F13 
Number of samples  15 16 16 
Mean area sampled m

2
 (min-max)   1.0 (0.46-1.4)  0.70 (0.56-.93) 0.69 (0.46-0.93) 

Mean total abundance  (min-max)  330 (103-800) 279 (106-502) 219 (109-302) 
Mean density m

2
 (min-max)  278 (200-717) 403 (190-664) 317 (196-450) 
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Table 2.3 Results of ANOSIM tests of 
differences between streams and season. 
Lookout Creek Sites 1 and 2 (LCS 1, LCS 
2). Balch Creek (BCS 1). 
  R ρ-Value  

All Sites  .72 0.001  
LCS 1 vs LCS 2  .27 0.003  
BCS 1 season  .66 0.001  
LCS 1 season  .70 0.002  
LCS 2 season  .16 0.04  
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Table 2.4  Attributes for each family used in 
functional analysis. Multivoltine (MV), Univoltine 
(UV), Semivoltine (SV). 
  Functional 

Feeding Group 
Life length 

mayfly     
Ameletidae  Collector UV 
Baetidae  Collector MV 
Heptageniidae  Scraper UV 
Leptophlebiidae   UV 
Stonefly    
Chloroperlidae  Predator UV 
Leuctridae  Shredder UV 
Nemouridae  Shredder UV 
Peltoperlidae  Shredder SV 
Perlidae  Predator SV 
Perlodidae  Predator UV 
Pteronarycidae  Shredder SV 
Caddisfly    
Glossossomatidae  Scraper UV 
Hydropsychidae  Collector SV 
Limniphilidae  Scraper UV 
Rhyacophilidae  Predator SV 
Diptera    
Chironomidae  NA NA 
Simulidae  Collector UV 
Tipulidae  Shredder UV 
Other    
Elmidae  Collector SV 
Gammarus  Shredder UV 
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Table 2.5.  Results of vector analysis. Only vectors with 
p-values <0.20 are shown. Lookout Creek Sites 1 and 2 
(LCS 1, LCS 2). Balch Creek (BCS 1). r2 = psuedo r2 
  R

2
 ρ value 

Assemblage ordination     
All Sites  Mean  maximum temperature  0.09 0.15 
LCS 1 Mean maximum temperature  0.24 0.18 
LCS 2 Mean maximum temperature  0.24 0.14 
LCS 2 Mean total precipitation  0.28 0.11 
FFG ordination    
BCS 1 Mean maximum temperature  0.34 0.07 
BCS 1 ENSO  0.26 0.16 
LCS 2  Mean maximum temperature  0.28 0.13 
LCS 2 Mean total precipitation  0.30 0.11 
LCS 2 ENSO  0.28 0.11 
Life Length ordination    
LCS 2 Mean maximum temp  0.28 0.12 
LCS 2 Mean total precipitation  0.60 0.002 
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Chapter 3 Invertebrate Indicators of Excessive Fine Sediment in Streams of the 

Oregon Coast Range. 

 

Abstract 

 Sedimentation is a leading cause of stream pollution and is a well-known source 

of habitat degradation in the salmon-bearing streams of the Pacific Coastal region. 

However, because sediment transport and deposition are natural processes, it is difficult 

to determine when sedimentation levels are excessive and may be affecting stream 

function. This study examines the use of macroinvertebrates as indicators of the presence 

of excessive fine sediment in streams of the Oregon Coast Range. Data from a synoptic 

spatially-balanced survey (randomized stream selection but with equal numbers of stream 

orders) of 214 wadeable streams (1st-3rd order, 1:100,000 USGS topographic maps) were 

used to develop and evaluate taxonomic and trait-based indicators of fine sediment (< 2 

mm) and bed stability. Exploratory analysis was used to identify important environmental 

and invertebrate variables that were then used in a subsequent analysis to identify 

potential invertebrate indicators. Mantel tests and non-metric multidimensional scaling 

showed that macroinvertebrate assemblage was significantly related to forty-five 

environmental variables across spatial scales including substrate size and stability, reach 

and watershed characteristics, stream water chemistry and basin land and forest cover. 

Linear models showed macroinvertebrates were in general weakly associated with fine 

sediment. However, when the effect of reach slope was factored-out, relationships 

improved in eight of sixteen metrics. In both erosive and resistant geologies, scrapers 

were negatively significantly related to percent fines (R2=0.14 ρ<0.05 and R2=0.11 ρ 
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<0.001, respectively). In erosive geologies, Paraleptophlebia (R2=0.21 ρ<0.01) was 

positively related to fines and invertebrates with external gills (R2=0.16 ρ <0.01) showed 

a significant negative relationship with fines. In resistant geologies, Rhithrogena and 

mayfly, stonefly and caddisfly (EPT) richness were both negatively related to fines 

(R2=0.10 ρ <0.01 and R2=0.10 ρ <0.001, respectively). The results of this study support 

the use of scrapers as a potential functional metric to monitor for excessive fines in 

streams of the Oregon Coast Range.  

 

Introduction 

 The Pacific Coastal region of the United States contains large tracts of 

economically important forestlands that also serve as critical stream habitat for 

anadromous fish (Hall et al. 2004). In the Pacific Coastal region, the major source of 

human disturbance is logging and road building, activities known to increase sediment 

supply and delivery to surface waters (Binkley and Brown 1993; McClain et al. 1998; 

May 2002). Excessive deposition of fine sediment (< 2 mm) on the stream benthos is a 

leading cause of stream impairment known to degrade stream habitat and impact 

endangered salmon populations (Nehlsen et al. 1991; Wood and Armitage 1997; USEPA 

2006). However, because of high natural variability, it is difficult to determine when a 

stream is experiencing sedimentation levels that are detrimental to biota (Griffith et al. 

2009; Shearer and Young 2011). This is particularly true in the Pacific Coastal region, 

which has high environmental heterogeneity and relatively moderate human disturbance 

(Hershey and Lamberti 1998; Richardson and Danehy 2007). From a management 

perspective, there is increased interest in developing regional biotic indicators, such as 
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stream invertebrates, which can be used to determine when biologically relevant changes 

in stream sediment are occurring (Karr 1998). 

 The impact of excessive fine sediment on streams is well documented. High 

levels of suspended sediment and turbid conditions reduce stream productivity (Davies-

Colley et al. 1992; Parkhill and Gulliver 2002). Sediment deposited on the benthos fills 

interstitial spaces, decreasing habitat availability and degrading salmon-spawning habitat 

(Suttle et al. 2004; Kaufmann et al. 2009). Stream invertebrates are particularly 

vulnerable to sediment fining. For example, substrate armoring from sediment deposition 

limits invertebrate migration in hyporheos (Stanley and Boulton 1993), which is an 

important refuge for invertebrates during hydrological extremes. Deposited fine sediment 

on the stream substrate clog invertebrate structures for filter feeding, reduce food 

availability to grazers and can damage invertebrate gill structures (Lemly 1982; Rabeni et 

al. 2005). Saltating sediment scours the substrate, creating harsh conditions that induce 

invertebrate drift and alter functional aspects of the invertebrate community (Bond and 

Downes 2003; Rabeni et al. 2005; Larsen et al. 2010). 

 Strong external and internal controls of sediment result in highly variable 

sediment conditions within and among streams. The size and distribution of sediment in 

streams is largely dependent on the interplay between stream supply and transport rates 

(Wilcock 1998). Sediment transport rates are a function of stream velocity and particle 

size and shape (Dietrich et al. 1989), while supply and delivery rates are largely 

dependent on basin characteristics such as slope, watershed area, land cover and geology 

(Kaufmann et al. 2009). In general, as sediment supply exceeds transport capacity, the 

benthic substrate composition becomes finer and the mean particle size decreases 
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(Jackson et al. 2001); however, human activities and natural stream characteristics, such 

as channel form, can exert strong controls on sediment supply and transport processes 

(Buffington and Montgomery 1999). In the heavily-forested watersheds of the Pacific 

Coast, runoff and erosion are rare, so much of the natural sediment supply is through soil 

slumping and landslides (Cheng 1988; Swanson et al. 1987; Grant and Wolff 1991; 

Benda et al. 1998; Hassan et al. 2005). Erosion from human activities such as tree 

harvesting (Rice et al. 2004) and road building (Waters 1995; Luce and Black 2001) can 

accelerate erosion and increase sediment supply and delivery to streams. Once sediment 

is in the stream, internal controls such as slope, velocity, channel form and large woody 

debris act to control storage and transport of sediment (Jackson et al. 2001; Hassan et al. 

2005).  

 Substrate fines are an important physical characteristic of the stream ecosystem; 

however, the primary interest of environmental managers is monitoring the effect of 

sediment fining on stream function. Consequently, there is increased interest in 

developing biotic indicators that may serve as a proxy for traditional sediment 

measurements (e.g. Relyea et al. 2012). Stream invertebrate sensitivity and tolerance to 

sediment is well documented in field studies. For example, the mayflies 

Paraleptophlebidae and Baetidae are known to be tolerant of high sediment conditions, 

while other mayflies such as Heptageniidae and Ephemerellidae are known to be 

sensitive (Relyea et al. 2012; Larsen and Ormerod 2010; Angradi 1999). While the 

mechanisms of tolerance are not well known, the recognition of invertebrate sensitivity 

has led to the development of invertebrate-based metrics for monitoring sediment fines 

(e.g. Richards et al. 1997; Zwieg and Rabeni 2001; Vieira et al. 2006; Relyea et al. 2012). 
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However, it is unclear which metrics are broadly reliable and few have been examined in 

areas, such as the Pacific Coastal ecoregion, with relatively moderate human disturbance 

and high environmental heterogeneity (Allan and Johnson 1997; Richards et al. 1997; 

Davies et al. 2000). In the Pacific Coastal region, the use of invertebrates as indicators of 

sediment fining presents several challenges. First, invertebrates are strongly related to 

other stream characteristics and thus increase the likelihood of a Type I error (Townsend 

et al. 2003). For example, in the Pacific Coastal region, stream biotic communities are 

known to be correlated with basin size, geology, land use and canopy cover (Herlihy et 

al. 2005; Weilhoefer and Pan 2006; Naymik et al. 2005; Banks et al. 2007; Cole et al. 

2003; Mazor et al. 2009). Second, because sediment delivery and transport in streams is a 

natural process, it is difficult to know when sediment fining is outside the range of natural 

variability or due to anthropogenic sources (Montgomery and Buffington 1997; Shearer 

and Young 2011). Therefore, biotic indicators must reflect stream sedimentation levels 

that are detrimental to stream habitat and function. Finally, traditional taxonomic metrics 

such as richness or assemblage may not detect moderate sediment disturbance (e.g. 

Larsen and Ormerod 2010) because it simply alters total habitat space, not stream 

function. Functional characteristics of the invertebrate community may provide a more 

useful indicator of sediment fining because it reduces taxonomic effort, is based on 

morphological and behavioral traits, may reflect changes in functional aspects of streams 

and are a source of food for salmon (Merritt and Cummins 2006; Cummins et al. 2005; 

Angermeier and Karr 1994; Wallace and Webster 1996). 

 The purpose of this study is to identify potential macroinvertebrate indicators of 

sediment fining in streams of the Oregon Coast Range. The objectives of this research are 
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to: 1) identify major environmental gradients controlling stream invertebrates across the 

Coast Range within erosive and resistant geologies; 2) examine correlation between 

environmental conditions and stream invertebrates in the region; and 3) evaluate potential 

invertebrate indicators of disturbance and stream fine sediment in basins with resistant 

and erosive geologies. Three specific hypotheses were tested. The first was that both 

stream invertebrates and fine sediment would be related to basin-scale (watershed slope) 

and reach-scale (canopy cover) characteristics. The second hypothesis was that statistical 

relationships between stream invertebrates and fine sediment would be improved by 

accounting for covariance between slope, sediment and invertebrates. The final 

hypothesis was that invertebrate traits would be correlated with substrate stability and 

fine sediment cover.  

2 Methods 

2.1 Study area 

 The Pacific Coastal region is located along the western edge of the northern 

United States and Canada (Figure 3.1). It is characterized by a maritime climate with cool 

dry summers and wet winters and contains one of the largest temperate rainforests in the 

world (Ryan 1994). The Pacific Coastal Region is densely covered with stands of tall 

coniferous trees and heavily dissected by streams, which support some of the last highly 

productive salmon habitat remaining in the United States. While the region has enough 

homogeneity to be considered a single ecoregion, there is large environmental and biotic 

variability at smaller spatial scales (Naiman and Bilby 1998). The Oregon Pacific Coast 

region has steep slopes with elevations from sea level to 1,249 m, but most of the 

ridgelines occur between 450 and 750 ms (Franklin and Dyrness 1973). Geology in the 



  73 

Oregon Coast Range varies from north to south and is mainly composed of marine-

derived sediments and basalts. Geology in the southern part, below the Yamhill River, is 

mainly sandstones (Tyee formation) with igneous mountain peaks. In the north, the 

geology is mixed sedimentary and volcanic with siltstones, sandstones and basalts 

(Franklin and Dyrness 1973). Average annual precipitation in the Oregon Coast Range 

ranges from 250 cm to 760 cm in the upper elevations, temperature is generally mild, 

with average January minimum temperature as low as 0oC and the July maximum 

average temperature at around 25oC (Franklin and Dyrness 1973). Oregon’s Coast Range 

contains a temperate coniferous rainforest characterized by Sitka spruce in the lower 

coastal elevations and western hemlock Douglas-fir inland (Franklin and Dyrness 1973). 

Riparian forests are structurally complex with mixed patches characterized by coniferous 

trees, alder, cottonwood and willow (Naiman et al. 1998). 

2.2 Data collection 

 Environmental data and macroinvertebrates were collected in wadeable streams 

randomly sampled across the Oregon Coast Range. Data were collected by the Oregon 

Department of Environmental Quality (DEQ) as part of an effort to monitor the Oregon 

Plan for Salmon and Watersheds (OPSW 2003). The OPSW is an Oregon-wide effort to 

monitor environmental factors that impact watersheds and stream habitat, particularly in 

regard to salmon migration and reproduction (OPSW 2003). The DEQ study utilized a 

spatially-balanced synoptic survey to collect biotic and abiotic data across a range of 

scales. This design allows for inference to unsampled streams, thereby providing an 

opportunity to make predictions about key ecological processes across Oregon’s Coast 

Range. A full description of the sampling design can be found in Herlihy et al. (2000). 
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Sampling locations were selected using a two-step spatially-random process. First, a 40 

km2 area was randomly selected from 1:100,000-scale USGS quadrants. Second, stream 

segments within the 40 km2 area were randomly selected and sampling sites along stream 

segments were systematically selected and georeferenced for field location. A sample 

reach (mean = 200 m) was forty times the mean wetted width of the stream.  

2.2a Environmental Data 

 Environmental data were collected using standard EPA protocols. Habitat data 

were characterized using a systematic design proportioned to the channel width 

(Kaufmann and Robison 1998). Thalweg profile (e.g. depth, habitat and presence of soft 

sediment) was measured at 100-150 equally-spaced intervals. Woody debris total was 

estimated from 10 segments between 11 transects. Channel and riparian characterizations 

were obtained with visual estimates from each of 11 transects. Discharge was measured 

at 0.6 depth at 15 to 20 intervals. Substrate size and embeddedness was measured 

systematically across at 11 transects (Kaufmann and Robison 1998). Five random 

substrate pieces from each transect were visually categorized by size class. Water 

chemistry was collected by in situ measurements or shipped to a lab (Herlihy 1998). 

Exploratory analysis focused on 51 environmental variables across a range of spatial 

scales (Table 3.1). I determined basin geology using a Geographic Information System 

(GIS) to categorize the major geologic unit within the subdelineated basin. GIS data were 

derived from the geologic map of Oregon (1:500,000; Walker and MacLeod 1991) and 

available from the USGS (Walker et al. 2003). Sub-basins with greater than 80% 

homogenous geology were categorized as either erosive (siltstone, sandstone, shale, 
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mudstone, alluvium or mafic pyroclastic) or resistant (mafic volcanic flow or mafic 

volcanic intrusive).  

 Stream sedimentation was quantified using substrate size, percent benthic sand 

and fines and bed stability. Substrate size data were collected using pebble counts and 

presented as the log of the geometric mean diameter. Percent sand (0.6-2.0 mm) and fines 

(<0.6 mm) was determined using pinch tests and then visually estimated as percent cover 

(Kaufmann et al. 1999; Kaufmann et al. 2009). Percent fines (size categories in Table 

3.1) were chosen for analysis to represent the amount of fine material that may be 

clogging interstitial space. Streambed stability was evaluated using an index known as 

the Log Relative Bed Stability (LRBS), developed to account for bed form roughness 

such as large woody debris or pools. LRBS is the log of the ratio of particle size to 

critical diameter (at bankfull flow) relative to the bed form (Kaufmann et al. 2009). 

LRBS is generally negative and decreases as substrate stability decreases. Low values of 

the LRBS indicate that the average streambed particle size is smaller than the stream 

competency, making the substrate relatively unstable (Kaufmann et al. 2008). In this 

study, LRBS was used to assess potential indicator traits and compare observed 

relationships between indicator traits and percent fines.  

2.2b Macroinvertebrates 

 Macroinvertebrates were collected in the summer from riffles and pools from nine 

transects in the middle, left or right of the channel using a modified kick net (595 μm 

mesh) from 0.5 m2 (4.5 m2 total) of the benthos. Invertebrate samples from multiple 

transects were pooled into one sample per site, elutriated in the field and randomly 

subsampled in the lab to 500 organisms. Taxonomic identification was standardized by 
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grouping all species to genera except midges, which were grouped by tribe. Functional 

attributes (Table 3.2) were determined using tolerance values found in Vieira et al. (2006) 

and Carlise et al. (2007). If no genus-level information was available, family-level 

information was used for all genera in that family. To further explore the relationship 

between invertebrate feeding traits and sediment fines, invertebrates were classified as 

brushers or gougers based on the studies of Arens (1989). Brushers use brush-like 

structures to sweep organic material into their mouths (Figure 3.5). Gougers use gouge-

like structures to pry up diatoms and other adhered algae. Invertebrate assemblages were 

represented by relative abundance (RA) of the total organisms found at each site. To 

reduce the influence of rare taxa, organisms representing less than 1% relative abundance 

and found at less than 3 sites were removed. This process resulted in the removal of 24 

taxa.  

2.3 Statistical Analysis 

2.3a Environment and Invertebrates  

 Major environmental gradients across the Coast Range and within both erosive 

and resistant lithologies were evaluated using Principal Components Analysis (PCA), 

Non-metric Multidimensional Scaling (NMDS) ordination and vector analysis. 

Environmental data were scaled and log transformed to normalize distributions.  PCA 

was used to examine major patterns in environmental conditions across the sites. PCA 

uses eigen analysis to reduce a complex data set to a smaller number of composite 

variables called principal components (McCune and Grace 2002). Invertebrate 

community was evaluated using NMDS to ordinate assemblage data based on relative 

abundance. NMDS is an unconstrained ordination technique that examines the overall 
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similarity of an assemblage (McCune and Grace 2002). NMDS is often used with 

invertebrate data because it preserves the inter-site ranked relationships and better 

represents species distances (Legendre and Legendre 1998). The relationship between 

assemblage and environmental variables was examined using a linear fitting function 

(Envfit) to fit environmental vectors to the ordinations. Envfit fits a vector to the 

ordination and a permutation test is used to determine importance (psuedo r2) and 

significance (ρ<0.05). The results of the Envfit analysis were used to select a subset of 

variables to represent the major environmental gradients in the Coast Range within each 

lithology.  

2.3b Collinearity  

 Multivariate collinearity between environmental variables and invertebrates was 

examined using Mantel tests and partial correlation (Mantel 1967). The Mantel test 

estimates the correlation between matrices (Legendre and Legendre 1998; Urban 2003). 

Partial Mantel tests are used in ecological studies to compare more than two matrices and 

control for the effect of interdependence between the matrices (Legendre and Legendre 

1998). Partial Mantel tests are frequently used to control for the effect of spatial 

autocorrelation often present in environmental data (Urban 2003; King et al. 2005). In 

this study, partial Mantel tests were used to control for the effect of reach slope on 

environmental variables and invertebrate assemblage within each geology (resistant or 

erosive).   

2.3c Potential invertebrate indicators  

 Potential invertebrate indicators of stream fine sediment were evaluated using 

vector analysis and linear models. Vectors of major environmental gradients were fitted 
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to invertebrate assemblage within resistant and erosive geologies. Vectors and bubble 

plots were used to examine the relationship between environmental variables, 

invertebrate indicators and fine sediment. Based on vector analysis results, a subset of 

invertebrate variables were selected for use in indicator analysis (Table 3.2) and 

examined using partial correlation. Partial correlation is used to remove the effect of 

intercorrelated variables (Naymik et al. 2005; King et al. 2005). In this study, partial 

correlation was used to control for the effect of slope on stream invertebrates and to 

assess relationships with sediment fines while controlling for the effect of slope. To 

improve reliability of the findings, a subset of streams was used to develop linear models. 

Streams with basins larger than 10,000 km2, width greater than 10 m and slopes greater 

than 10% were removed. Sample size was reduced from 121 to 67 in erosive geology and 

45 to 30 in resistant geology. All statistical analyses were performed using the “Vegan 

Package” in R statistical software (R Development Core Team, version 2.14.0, 2011).  

3 Results 

3.1 All Coast Range Sites  

3.1a Environment and Assemblage 

 A total of 214 sites across the Oregon Coast Range were used for analysis (Figure 

3.1). Sampled streams were generally small (Table 3.1, mean width < 6.3 m) and shallow 

(mean depth < 32 cm), steep (mean slope > 3.4%) and well-shaded (mean > 45%) with 

relatively low nutrients (mean Total Nitrogen < 0.20 mg/L). The majority of sites were 

situated in relatively small basins (< 15 km2) densely covered with coniferous forests. 

Substrate size was generally smaller in erosive stream sites, which had more sand and 

fines (Figure 3.6, erosive mean = 30%, resistant mean = 15% ) and fines (Figure 3.6, 
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erosive mean = 22% , resistant mean = 8%). Precipitation was variable across the sites, 

ranging from 100 - 400 cm (mean = 226 cm) and was related to elevation (range 3-1037 

m, mean = 196 m). In general, study streams had relatively large substrate size and 

abundant woody debris in the channel. The majority of human disturbance is from 

clearcut logging and associated road building (Hershey and Lamberti 1998). Other types 

of landuse in the basin is relatively low with an average of 1% urban development (range 

0-14%) and 2% agriculture (range 0-11%) in the study basins. Summary environmental 

data are shown in Table 3.1.  

 PCA analysis of the environmental variables revealed three gradients accounting 

for 28% of the variance in environmental characteristics of the streams (Table 3.3). PCA 

Axis I (13% of total variance) was mainly composed of substrate characteristics (i.e. high 

positive and negative loadings of gravel and fines, respectively). PCA Axis II (10% of 

total variance) represented a stream size gradient (i.e. high positive and negative loadings 

of slope and width x depth, respectively). PCA Axis III explained only 5% of the 

variance and loadings were comparatively low. Correlation analysis revealed a latitudinal 

gradient across sites and intercorrelations between major environmental gradients (Table 

3.4). The latitude gradient was positively associated with increasing canopy (r=0.27) and 

negatively associated with slope (r=0.10). Based on PCA results, 23 environmental 

variables across a range of spatial scales were selected for indicator analysis (Table 3.1).  

 Across all sites in the Coast Range, 111 taxa from six invertebrate orders were 

found in streams. The invertebrate community of Coast Range streams was dominated by 

mayflies, caddisflies, stoneflies and Diptera (Appendix A7-A10). The most common taxa 

were the Chironomidae, which were present in all but one site and represented 11% of the 
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total abundance (Appendix A7). Median taxa richness was 20 (range 7-35), and median 

EPT richness was 13 (range 4-27). Scrapers, collector-gatherers and clingers were the 

most common functional feeding groups. 

 Assemblage across all Coast Range sites were best characterized by a three-

dimensional solution (stress = 16) obtained for the NMDS ordination. The ordination 

pattern shows a continuous gradient along NMDS Axis I and II, suggesting that 

invertebrates are likely responding to a gradual change in environmental variability 

across the region. There was no clear separation of sites based on geology (Figure 3.2). 

NMDS Axis I was negatively correlated with the sensitive stoneflies Yoraperla and 

Moselia and positively correlated with the tolerant Dipteran Simulium and the moderately 

tolerant stonefly Plumiperla. NMDS Axis I may represent an invertebrate tolerance 

gradient with positive values indicating greater tolerance. NMDS Axis II was negatively 

correlated with the caddisfly genera Psychoglypha and the dragonfly Gomphidae, which 

both prefer slow-water habitat, and positively correlated with the caddisfly Neothremma 

and the stonefly family Nemouridae, both commonly found in small-forested streams. 

NMDS Axis II likely represents a stream-size gradient reflecting slower water and higher 

sediment.  

 Environmental vector fitting identified 23 environmental variables (Table 3.1) and 

11 functional metrics (Table 3.2), that were selected to characterize three major 

environmental gradients associated invertebrate assemblage (Figure 3.2). Ordination of 

species with fitted environmental vectors revealed three major environmental gradients 

related to invertebrate assemblage. NMDS 1 represents human disturbance gradients, 

which was also correlated with invertebrate tolerance scores. NMDS 2 represents a 
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stream-size gradient with canopy, density and slope related to shredders and scrapers, 

suggesting an upstream/downstream pattern predicted by the River Continuum Concept 

(Vannote et al. 1980). A weaker orthogonal gradient is suggested by substrate size, 

functional feeding and dissolved oxygen, which are correlated with each other but not 

well represented on the ordination plot.  

3.2 Basins with Erosive and Resistant Geology 

3.2a Environment and Invertebrates 

 GIS analysis resulted in 55 resistant basins and 159 erosive basins selected for 

analysis. Differences between streams in erosive and resistant basins were most evident 

at the reach and substrate scales. At the basin scale, erosive watersheds were slightly 

larger with lower average elevation and more agriculture land use (Appendix A2.a, A2.b 

and A2.f). Resistant basins were relatively steeper with more stream power (Appendix 

A5.a and A2.d). Water chemistry was similar between sites, but turbidity and temperature 

were slightly higher at erosive sites (Appendix A1.f and A1.d). At the reach and patch 

scale, the differences between the sites were more apparent. Streams in the erosive site 

were slightly wider and deeper (Appendix A3.d and A3.c) with slightly less canopy cover 

(Appendix A3.f). Substrate at the erosive sites was generally smaller (Figure 3.6, 

Appendix A4.a, A4.b, A4.c and A4.d) with more of the substrate area covered with fines 

(Figure 3.6, Appendix A3.f).  

 Invertebrate communities across all sites were dominated by Baetis mayfly and 

two subfamilies of Midges (Chironominae and Orthocladiinae, Appendix A7). Other 

common taxa included stoneflies (Zapada; Appendix A9), caddisflies (Rhyacophila; 

Appendix A10) and beetles (Optiservus and Zaitzevia). Assemblage of each geology was 
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characterized by a three-dimensional solution with a stress of 16 and 17 for resistant and 

erosive, respectively (Figure 3.3). The variance explained by NMDS Axis 1, 2 and 3 was 

27%, 21% and 20%, respectively, at the erosive sites and 33%, 30% and 17% at the 

resistant sites. In the erosive sites, Axis 1 was positively correlated with the caddisfly 

Dicosmoecus and negatively correlated with the coldwater stenotherm stonefly 

Yoraperla. Axis 2 was positively correlated with the caddisfly Goera, which is typically 

found in larger streams, and negatively correlated with the coldwater stenotherm stonefly 

Soliperla. Axis 3 was positively correlated with the sensitive stonefly Paraperla and 

negatively correlated with tolerant Simulium. In the resistant sites, Axis 1 was positively 

correlated with the stonefly shredder Zapada and Isoperla, both typically found in small 

coldwater streams, and negatively correlated with the tolerant Simulium. Axis 2 was 

positively correlated with the tolerant mayfly Acentrella and negatively correlated with 

the tolerant Dipteran Clinocera. Axis 3 was also positively correlated with Clinocera and 

negatively correlated with the moderately tolerant scraper Glossosoma. 

 Examination of the environmental vectors within geology identified 12 variables 

across a range of spatial scales that were strongly related to assemblage and most relevant 

to the objectives of this study (Table 3.5). The relationship of vectors and assemblage 

was different within each geology. In erosive geology, slope was negatively associated 

with NMDS Axis 1 and 2, while fines and stream size were associated with Axis 1. 

Agriculture and logging were significantly and positively associated with NMDS Axis 2. 

In resistant geology, stream size (width x depth), nutrients and canopy were strongly 

associated with assemblage (Figure 3.3). Stream size was negatively associated with 
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NMDS Axis 1 and 2, while slope and fines were positively associated with NMDS Axis 1 

and 2. Agriculture and logging were weakly associated with assemblage (Figure 3.3).  

 Assemblage within both geologies was significantly correlated with 

environmental vectors related to stream size, slope and substrate size and weakly 

associated with logging and agricultural disturbance (Table 3.5). Among geologies, there 

were slight differences in the relationship between assemblage and environmental 

vectors. In the erosive sites, assemblage was related to temperature and dissolved oxygen, 

whereas in resistant sites, assemblage was associated with total nitrogen. In both 

geologies, percent fines and slope vectors have similar associations with assemblage 

(Figure 3.3).  

3.3 Collinearity 

 Mantel tests showed environmental variables across spatial scales were correlated 

with assemblage within both geologies (Table 3.6). The strongest associations were 

found at basin scale, with slope related to assemblage at erosive (r=0.30, ρ<0.001) and 

resistant sites (r=0.11, ρ<0.01). In erosive sites, assemblage was significantly related to 

logging (r=0.06, ρ<0.05) and agriculture disturbance (r=0.10, ρ<0.01), while in the 

resistant sites, only logging was significant (r=0.15, ρ<0.05). When the effect of slope 

was removed with partial Mantel tests, the relationship between assemblage, fine 

sediment and stability was the same (Table 3.7), while the relationship with land 

disturbance showed mixed results (Table 3.7). In the erosive sites, the relationship 

between assemblage and disturbance substantially improved; however, this was not the 

case with fines, which slightly declined.  

3.4 Potential macroinvertebrate indicators of disturbance and sediment 
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 Exploratory analysis resulted in a subset of 13 invertebrate indicators (functional 

and taxonomic) chosen for evaluation as indicators of sediment fining in Coast Range 

streams (Table 3.2). Partial correlation and examination of bubble plots and vectors 

resulted in eight potential invertebrate indicators (Table 3.8). Partial correlation using 

residuals of the slope linear model improved linear correlations of invertebrate indicators 

with percent fines in five of the metrics (Table 3.9). In resistant geologies, external gills 

and Paraleptophlebia had the strongest relationship with percent fines (Table 3.9, Figure 

3.4). In erosive basins, scrapers and EPT richness had the strongest relationships with 

percent fines (Table 3.9, Figure 3.4). Across both geologies, scrapers had the most 

consistent relationship with % fines (Table 3.9, Figure 3.4). A similar relationship was 

observed in the analysis using bed stability (Table 3.9).       

4 Discussion 

4.1 Environment and Invertebrates  

  In the Oregon Coast Range, stream biotic and abiotic variables are strongly 

controlled by environmental gradients across a range of landscape scales. Within erosive 

and resistant basins, stream physical characteristics showed distinct differences, but the 

overall invertebrate assemblage was relatively similar. Erosive basins were generally 

larger, with lower stream power, smaller substrate and with more human disturbance than 

resistant basins. At all sites, the invertebrate assemblage was dominated by mayfly, 

stonefly and caddisfly taxa typically found in small-forested streams with low to 

moderate anthropogenic disturbance. Assemblages across all sites were strongly 

associated with slope, stream size, canopy and substrate and weakly associated with 

logging. In erosive sites, assemblage was also related to agriculture, temperature and 
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dissolved oxygen. While in resistant sites, assemblage was also related to nitrogen. In 

both basins, fines were related to assemblage as slope increased and stability decreased. 

This suggests that slope is an important environmental characteristic acting on sediments 

and invertebrates. However, this relationship is confounded by canopy cover, which also 

covaries with slope. The effect of canopy on stream biotic communities has been 

previously observed in Oregon's Coast Range (e.g. Naymik et al. 2005). Given the 

purpose of this study, slope was examined as an environmental intermediary for sediment 

fining and invertebrate assemblage. 

 Covariance between environmental variables and invertebrates suggests that 

environmental intermediaries across spatial scales likely control sediment fining and 

assemblage. For example, in both geologies, invertebrates show an association between 

slope, fines and invertebrates. However, the strong covariance of environmental variables 

likely obscures relationships with sediment fining and human disturbance. This is a well-

known limitation of using land cover to infer causal relationships (King et al. 2005). In 

the present study, controlling for effect of slope on invertebrate communities 

substantially improved correlations with fines, stability, logging and agriculture in the 

erosive basins; however, in resistant basins, only correlations with fines improved. This is 

likely due to different sediment supply rates and slope within each geology (O'Connor et 

al. 2014). In the resistant basins, low sediment supply and high transport rates result in 

sediment levels well within the tolerance range of stream invertebrates; therefore, the 

effect of sediment is not as pronounced. In this analysis, accounting for the covariance of 

slope with invertebrates increased correlation between substrate fines and selected 

indicator metrics.   
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 The findings of this study point to several taxonomic and functional invertebrate 

measures which may be useful to indicate sediment fining at levels detrimental to stream 

biota in Oregon's Coast Range. EPT richness was significantly and negatively correlated 

with % fines and positively correlated with bed stability only in erosive sites. EPT 

richness is a well-known indicator of human disturbance and sediment (e.g. Matthaei et 

al. 2006); however, because of strong environmental controls in the Coast Range, the 

relationship of EPT and sediment fining is likely confounded by canopy cover. In both 

geologies, % scrapers were positively associated with bed stability and negatively 

associated with % fines and may provide a functional indicator of sediment fining. While 

algal biomass is strongly related to canopy cover, it is also affected by both substrate 

stability and fines (Schofield et al. 2004). Furthermore, several studies show that 

excessive fine sediment in algae may affect scraper mouthparts and feeding behavior 

(Arens 1990; Lancaster and Downes 2013).  

  The observed relationships with Rhithrogena and Paraleptophlebia may indicate 

a mechanistic explanation for the effect of sediment on stream invertebrates. The scraper 

mayfly Rhithrogena was positively associated with stability and negatively associated 

with higher fines, while Paraleptophlebia was negatively associated with stability and 

positively associated with higher fines. This pattern is at least partially due to algal-

substrate relationships. Rhithrogena are scrapers feeding primarily on periphytic algae, 

whereas Paraleptophlebia are collector-gatherers feeding on a wide variety of deposited 

organic material. The mandibles of Rhithrogena consist of stiff, comb-like bristles used 

to scrape food off of rocks into the mouth where the algae is strained by the mandibular 

molae before it passes into the stomach (McShaffrey and McCafferty 1988, Figure 3.5). 
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Fine sediment may wear down these structures and reduce feeding efficiency of 

Rhithrogena (Arens 1990; Massey and Hartley 2009; Lancaster and Downes 2013). The 

mandibles of Paraleptophlebia contain fine hairs used to brush deposited organic 

material into the mouth where it is cut and crushed into smaller pieces (Mattingly 1987, 

Figure 3.5). In contrast to Rhithrogena, Paraleptophlebia may be tolerant to sediment in 

food sources because the maxillae hairs and mandibles are not affected by hard organic 

particles or the sweep action of the maxillae does not result in sediment moving to the 

mouth. The findings of this study support the theory that scraper feeding is somehow 

disrupted by increasing inorganic fines on the benthos and/or loss of bed stability; 

however, without examining mouthparts, it is difficult to confirm this relationship or to 

rule out the effect of canopy on algae as a causal mechanism. 

 Using biota to determine if a stream's function has been degraded by human 

activities is common practice in stream management. However, because of strong 

covariance with environmental characteristics, the use of stream invertebrates as 

indicators is vulnerable to false positives. In this study, while accounting for 

environmental covariance improved estimates and reduced the likelihood of error, it is 

still unclear if the proposed indicators are indeed responding to increased sediment fines 

or some other environmental factors, such as canopy. Future research should examine 

response to sediment fining in a controlled environment and explore the mechanistic 

relationships between feeding, mouthparts and sediment-contaminated food sources. 
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Figure 3.1 Map of study sites in Oregon's Coast Range. Dark and stippled areas are 
resistant geology, grey areas are erosive geology. 
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Figure 3.2 Ordination of invertebrates and hypothesized major 
environmental gradient. Grey-dashed line represents an orthogonal 
gradient. Closed circles are resistant and open circles are erosive 
geologies. Gradients were interpreted and only used as a framework for 
exploratory analysis.   
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Figure 3.3 Relationships between major significant 
environmental gradients and invertebrate assemblage within 
resistant and erosive geologies. Slope and size are important 
in both basins, while landuse is only significant in erosive 
basins. Figure also illustrates the different associations 
between assemblage and vectors within each geology. 
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Figure 3.4 Linear models of selected indicator residuals as a function of percent 
fines in both geologies. Residuals are unexplained variance from a linear model of 
slope and each indicator. Dashed trend line is for erosive sites, solid line is for 
resistant sites. Significant relationships for both geologies were found in Scrapers 
(a) and Gougers (c). In Erosive geologies, Brushers (b) and Rhithrogena (d) were 
significant. In resistant geologies, Paraleptophlebia (e) and External Gills (f) were 
significant. See Table 3.9 for R2 and ρ-values. 
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Figure 3.5.  Illustration of the different mouthpart structures and feeding 
strategies of two mayfly grazers: Rhithrogena and Paraleptophlebia. Photos 
by Karouna and Fuller (1992) and McShriffey and McCafferty (1988). 
Rhithrogena mouthparts contain combs (A) that are used to scrape-up 
periphytic algae and molae (B) to grind food particles. In contrast, 
Paraleptophlebia uses hairs (C) to brush-up loose organic material and teeth 
to cut-up food particles (D). It is hypothesized that invertebrate response to 
fine sediment in food sources will be largely dependent on feeding traits.  
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Figure 3.6 Boxplots of percent fines and sand covering the stream substrate in 
each geology.  
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Table 3.1 Environmental variables used in indicator analysis and subset of 
variables used for indicator analysis (X). Standard deviation (SD). 
    Variable Erosive Resistant   Analysis 

Substrate Characteristics  Mean (SD) Mean (SD)   
   Log Substrate Diameter 0.8 (0.3) 1.5 (0.8)  X 
   Log Relative Bed Stability -0.9 (1.0) -0.6 (0.8)  X 
   % Bedrock 6 (10) 9 (9)   
   % Boulders (250-400 mm) 50 (26) 70 (20)   
   % Cobbles (64-250 mm) 19 (24) 21 (17)   
   % Coarse Gravel (16-64 mm) 27 (11) 32 (12)   
   % Fine Gravel (2-16 mm) 12 (9) 9 (3)   
   % Sand (.06-2mm) 8 (10) 8 (7)  X 
   % Fines (silt/clay/muck) 22 (23) 8 (14)  X 
   % Sand and Fines 30 (22) 15 (16)  X 
   % Hardpan 2 (4) 4 (1)   
   % Organics 5 (4) 4 (4)   
Reach Characteristics     
   Thalweg mean depth (cm) 25.6 (14.1) 31 (12.1)   
   Wetted width (m) 4.0 (2.2) 6.2 (2.9)   
   SD depth (cm) 15.3 (8.6) 19.8 (9.4)   
   SD width (m) 1.5 (1.1) 3.0 (2.0)   
   Width x Depth 1.2 2.2 (1.8)  X 
   Width x Depth SD 0.9 (1.1) 1.8 (1.9)   
   Mean bank angle 43.2 (12.9) 41.6 (15.7)   
   Sinuosity (m/m) 1.3 (0.3) 1.2 (0.1)   
   Channel incision height (m)  0.4 (0.5) 0.3 (0.30)   
   % Fast water habitat 48 (24) 53 (20)   
   % Slow water habitat 51 (62) 50 (20)   
  Reach with Agriculture (Index) 0.1  (0.3) 0.01 (0.01)   
  Reach Human Disturbance (Index) 1.1 (0.9) 0.62 (0.7)  X 
   % Canopy cover midstream 44 (18) 45 (17)  X 
   % Rip Cover Tree (>3 m diameter) 25 (16) 21 (14)   
   % Areal Large woody debris 11 (11) 14 (16)  X 
   % Slope of reach 2.6 (2.1) 3.4 (2.1)  X 
   % Embeddedness 52 (20) 40 (15)   
Stream Water Chemistry     
  Orthophospate (mg/L) 0.01 (0.01) 0.01 (0.01)  X 
  Conductivity (uS/cm) 75.9 (3.7) 67 (18)  X 
  Total Nitrogen (mg/L) 0.20 (0.19) 0.18 (0.1)  X 
  Temperature (C) 13.0 (1.9) 12.6 (1.8)  X 
  Total Suspended Solids (mg/L) 3.3  (1.0) 0.9 (1.1)  X 
  Turbidity (NTU) 1.9 (1.9) 0.75 (0.42)  X 
Basin Characteristics     
  Area (km

2
) 9.5 (9.1) 14.5 (11.6)  X 

  Elevation (m) 189 (138)` 250 (179)  X 
  Precipitation (cm) 222.2 (60.4) 252.0  X 
  Stream Power (w/m

2
) 59.9  (38) 100.6 (50)  X 

  % Map Slope 3.0 (2.5) 3.5 (2.4)   
  % Agriculture in Basin 1 (2) 2 (1)  X 
  % Urban in Basin 2 (3) 2 (2)   
  % Deciduous Forest 13 (10) 14 (13)  X 
  % Evergreen Forest 65 (17) 69 (17)  X 
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Table 3.2 Invertebrate functional metrics and selected taxa 
used for indicator selection for both geologies. Relative 
abundance (RA) used in final analysis (X). 
    Variable 

Erosive 
Mean (range) 

Resistant 
Mean (range) 

Indicator 
Analysis 

    
Life Cycle     
% Semivoltine 18 (1-53) 18(1-67)  
% Univoltine 49 (21-80) 48 (18-88)  
% Multivoltine 22 (2-60) 20 (0-61)  
Breathing    
% Cutaneous 34 (4-74) 38 (6-84)  
% Spiracle 3 (0-310 3 (0-19) X 
% Tracheal 63 (25-92) 59 (16-92)  
%  Atmospheric Breathers 0 (0-7) 1 (0-24) X 
% External Gills 63 (24-91) 55 (17-89)  
Feeding    
% Scraper 28 (4-76) 27 (1-68) X 
% Filterers 10 (0-61) 11 (0-67) X 
% Gatherers 22 (5-52) 21 (4-49)  
% Shredders 10  (0-35) 11 (0-61)  
% Brushers 10 (0-11) 11 (1-29) X 
% Gougers 24 (0-69) 27 (3-56) X 
Movement    
% Clingers 56 (16-89) 53 (14-90)  
% Burrowers 10 (1-46) 11 (0-42)  
% Sprawlers 8 (0-38) 8 (0-51)  
% Swimmers 14 (3-59) 13 (1-38)  
Tolerance Values    
Suspended Sediment 4.0 (2.6-6.3) 4.1 (1.6-6.3)  
Deposited Sediment 4.5 (2.8-6.7) 4.7 (1.7-7.2)  
% Sediment Sensitive 17(0-45) 13 (0-42)  
% Sediment Tolerant 9 (0-6) 13 (0-60) X 
General Tolerance 4.0 (2.7-5.8) 4.1 (1.5-5.8)  
Other    
Taxa Richness 35 (21-53) 32 (13-50) X 
EPT Richness 24 (12-42) 21 (8-34) X 
% RA Paraleptophlebia 1 (0-15) 2 (0-11) X 
% RA Rithrogena 4 (0-0.19) 3 (0-30) X 
% RA Cinygma 1 (0-0.10) 1 (0-12) X 
% RA Isoperla 1 (0-0.02) 1 (0-11) X 
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Table 3.3 Loadings for each variable 
on PC Axis I, II and III 
 PC1 PC2 PC3 

% Fines -0.23 0.03 -0.05 
% Big Rocks 0.23 -0.06 0.06 

Width*Depth -0.01 -0.23 -0.17 
Slope  0.11 0.20 0.03 
Canopy 0.03 0.05 -0.25 
Nitrogen -0.02 0.03 0.14 
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  Table 3.4 Spearman Correlation Coefficients for latitude, slope, canopy and 
fines in Resistant (R) and Erosive (E) basins.  Table shows a correlation matrix 
for four variables in each geology. 
 

 
 

  
  

Resistant Variables E Latitude E Slope E Canopy E Fines Erosive Variable 
Resistant Latitude  0.14 0.19 0.10 Erosive Latitude 
Resistant  Slope 0.31  0.44 -0.21 Erosive Slope 
Resistant  Canopy 0.39 0.45  0.18 Erosive  Canopy 
Resistant  Fines -0.12 -0.13 -0.26  Erosive  Fines 

 R Latitude R Slope R Canopy R Fines  
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Table 3.5 Results from vector analysis for 
environmental variables in resistant (n=55) and 
erosive geologies (n=159) across a range of scales 
(basin to in-stream). Values are pseudo (r2) with p 
values: ρ<0.10 x, ρ< 0.05 *,  ρ<0.01**,  ρ<0.001***, 
not significant (NS). 
    Variable 

Resistant 
Basin 

Erosive 
Basin 

   

Basin   
% Reach Slope ***0.28 ***0.34  
% Logged (medium fragmentation) 

x
 0.08 **0.07 

% Agriculture NS **0.07 
Reach   
% Canopy cover ***0.27 ***0.31 
Stream width x depth ( m

2
) ***0.26 ***0.38 

Large Woody Debris (m
3
/m

2
) NS ***0.13 

In-Stream   
% Fines 

x
 0.09 ***0.10 

Bed Stability (LRBS) *0.23 ***0.16 
Temperature (

o
C) 

x
 0.08 ***0.20 

Nitrogen  (mg/L) *0.25 0.06 
Conductivity  (µS/cm) 

x
 NS 

x
 0.05 

Dissolved Oxygen (mg/L) 
x
 0.16 ***0.16 
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Table 3.6 Results from Mantel test relating 
environmental matrices to invertebrate matrix at 
three scales in both lithologies  across a range of 
scales (basin to in-stream). Mantel r statistic and 
p value is shown. ρ<0.10 x,  ρ< 0.05 *,  ρ<0.01**,  
ρ<0.001***, not significant (NS). 
 

    Variable 
Resistant 

Basin 
Erosive 
Basin 

   
Basin level   
% Reach Slope *0.11 ***0.30  
% Logged (medium fragmentation) *0.15 *0.06 
% Agriculture NS **0.10 
Reach   
% Canopy cover NS **0.12 
Stream width x depth ( m

2
) 

x
 0.10 ***0.21 

Large Woody Debris (m
3
/m

2
)   

In-Stream *0.19 **0.12 
% Fines NS **0.08 
Bed Stability (LRBS) NS ***0.13 
Temperature (

o
C) NS NS 

Nitrogen  mg/L NS NS 
Conductivity  (µS/cm) 

x
 0.14 NS 

Dissolved Oxygen (mg/L)   
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Table 3.7 Results from partial Mantel test relating 
environmental matrices to invertebrate matrix at three scales 
in both lithologies. Model shows the relationship with fines 
after the effect of slope on invertebrates has been removed. 
Mantel r statistic is shown. ρ<0.10 x,  ρ< 0.05 *,  ρ<0.01**, 
ρ< 0.001***,  not significant (NS). 
 
Mantel Model 

Resistant 
Basin 

Erosive 
Basin 

   
Invertebrates/Slope/Fines *0.14 ***0.25 
Invertebrates/Slope/Bed Stability 0.14* **0.25 
Invertebrates/Slope/Logging 

x
 0.09 ***0.26 

Invertebrates/Slope/Agriculture 
x
 0.10 ***0.28 
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Table 3.8 Adjusted R2 and p-values for selected indicators and correlation 
with slope and % fines (Fines) in resistant (n=30) and erosive (n=67) 
streams.  Relative abundance (RA). Slope direction indicated (+/-). 
ρ<0.10 x,  ρ< 0.05 *,  ρ<0.01**, ρ< 0.001***, not significant (NS). 
 

Variable 
Resistant 
Slope R

2
 

Erosive 
Slope R

2
 

Resistant 
Fines R

2
 

Erosive 
Fines R

2
 

     
Sediment tolerant (RA) **0.17 (-) ***0.33 (-) NS NS 
Scrapers (RA) NS *0.07 (-) NS ***0.06(-) 
Brushers (RA) NS NS NS **0.12 (-) 
Gougers (RA) 

X
0.08 (-) **0.10 (-) NS NS 

External Gills (RA) NS *0.07 (+) *0.18 (-) *0.05 (-) 
EPT richness ***0.22 (+) ***0.28 (+) NS ***0.25 (-) 
Paraleptophlebia(RA) **0.13 (+) **0.05 (+) *0.10 (+) NS 
RA Rhithrogena (RA) NS 

X
0.04 (-) NS 

X
0.04 (-) 
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Table 3.9 Adjusted R2 and p-values for selected indicators residuals (rsd) 
and correlation with bed stability (Bed Stbl) and % fines (fines) in resistant 
(n=30) and erosive (n=67) streams.   Relative abundance (RA). Slope 
direction indicated (+/-).  ρ<0.10 x,  ρ<0.05 *, ρ< 0.01**, ρ< 0.001***, not 
significant (NS). 
 

Variable 
Resistant 

Bed Stbl R
2
 

Erosive 
Bed Stbl R

2
 

Resistant 
rsd~fines R

2
 

Erosive 
rsd~fines R

2
 

     
Sediment tolerant (RA) NS NS NS *0.06 (-) 
Scrapers (RA) NS *0.08 (+) *0.11(-) ***0.14(-) 
Brushers (RA) NS **0.08(+) NS *0.07 (-) 
Gougers (RA) NS NS 

x
 0.07 (-) **0.04 (-) 

External Gills (RA) *0.15(+) NS *0.16(-) NS 
EPT richness *0.13(+) ***0.23 (+) NS **0.11 (-) 
Paraleptophlebia (RA) ***0.35 (-) NS **0.21 (+) NS 
 Rhithrogena (RA) NS **0.19(+) NS ***0.10 (-) 
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Chapter 4 An in-situ experiment to test the effect of natural sediment supply on 

stream invertebrate response to fine sediment addition in naturally colonized 

mesocosms 
 
 

Abstract 

 

 Forests of the Pacific Coastal ecoregion contain large tracts of economically 

important forestlands that also serve as critical stream habitat for endangered salmonids. 

Excessive fine sedimentation deposition in streams used for salmon reproduction is a 

major environmental concern in the region and currently there is increased interest in 

developing biologic indicators, such as stream invertebrates, to monitor fine sediment 

conditions in streams. To examine the effect of geology on invertebrate response to fine 

sediment addition, I conducted an in situ manipulative experiment in streams flowing 

through two different geologic settings. Four streams in both erosive and resistant 

geologies were selected and 10 mesocosms were placed in each stream and allowed to 

naturally colonize with stream invertebrates (n=40 in each geology). Randomly selected 

mesocosms received a treatment of repeated increasing sediment doses (<2mm) over four 

days and mesocosm controls received a methodological control. Invertebrate assemblage 

between geologies was different, but the response to sediment addition was not the same. 

In resistant basins, treatment mesocosms lost 15% more taxa on average (Ρ<0.01) than in 

erosive basins. Within geologies, erosive basins showed a stronger functional response 

(invertebrate grazing traits) to sediment dosing (ρ<0.05) and habitat loss (R2=0.20, 

Ρ<0.01); while in resistant basins, only invertebrate abundance was significantly related 

to dosing (Ρ<0.01) and habitat loss (R2=0.15, Ρ<0.05). Categorizing invertebrate grazers 

as brushers generally improved observed relationships over other classifications (e.g. 
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gougers, scrapers). The findings of this study illustrate the role of sediment supply in 

shaping invertebrate assemblage and provide evidence that sediment-tolerant invertebrate 

communities can develop in basins with naturally high levels of sediment. Furthermore, 

the results presented here also provide information about which invertebrate metrics may 

be useful in different geologic settings. For stream managers in the Pacific Coastal 

ecoregion, these findings provide important information needed to develop reliable 

sediment biomonitoring programs and identify biologically-relevant changes in stream 

fine sediment condition.  

 

Introduction 

 

 Sedimentation is a leading cause of surface water impairment in the United States.  

A national survey conducted in 2006 found that excessive sediment, in conjunction with 

increased nutrient levels, were responsible for degrading nearly half of the total stream 

length in the United States (Wood and Armitage 1997; USEPA 2006). Sediment delivery 

and transport is a natural hydrologic process controlled by the amount of erodible 

material available in the environment and stream carrying capacity (Wilcock 1998). 

However, human activities such as agriculture, natural resource extraction and land 

development increase sediment delivery to streams at levels that exceed natural 

conditions and result in stream degradation (Wood and Armitage 1997). The Pacific 

Coastal Region of the United States contains large tracts of economically important 

forestlands that also serve as critical stream habitat for anadromous fish (Spies and 

Johnson 2007; Hall et al. 2004). As efforts expand to manage and restore salmon 
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populations, there is an increased interest in developing biological criteria that can be 

used to monitor stream sediment conditions (Spies and Johnson 2007).  

 Stream conditions and invertebrate communities are shaped by environmental 

factors across spatial scales that are hierarchically structured (Frissell et al. 1986; Poff 

1997). Geology acts as large-scale control of sediment supply to the streams and thereby 

indirectly shapes stream invertebrate communities (Richards et al. 1996; Townsend et al. 

2003; O'Connnor et al. 2014). For example, Richards et al. (1997) found that invertebrate 

communities were shaped indirectly by geology and the effect of land use was masked by 

geology. In the Oregon Coast Range, the surficial geology is highly diverse and contains 

both highly resistant and erosive lithologies resulting in spatially variable sediment 

supply and transport rates (Hershey and Lamberti 1998; Richardson and Danehy 2007). 

In general, streams flowing through erosive basins should have more fine sediment and 

contain invertebrate communities that are adapted to high fine sediment conditions (Poff 

1997). The natural heterogeneity of the Coast Range may act as strong controls of 

invertebrate communities and thereby presents a challenge for their use in stream 

monitoring. Efforts to identify biologic indicators of excessive fine sediment in Coast 

Range streams should account for invertebrate adaptation to geomorphic conditions. 

 Excessive sedimentation on the stream benthos reduces the average substrate 

particle size in a physical process known as sediment fining. Sediment fining results from 

an increased sediment supply that exceeds carrying capacity, and thus may indicate 

excessive sedimentation due to anthropogenic activities; however, fine sediment (<2 mm, 

Clapcott et al. 2011) is difficult to measure and quantify. Once in the stream, fine 

sediment is ephemeral, highly variable and not well characterized by traditional pebble 
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counting methods. Furthermore, since sediment transport by streams is a natural process, 

it is difficult to establish relevant biological criteria for protecting ecological function.  

While sediment fining is an important physical characteristic, the primary interest of 

environmental managers is monitoring its effect on stream biota. Consequently, there is 

currently an increased interest in developing biologic-based invertebrate metrics that may 

serve as a proxy for physical sediment measurements (i.e. Relyea et al. 2012).   

 Stream invertebrate sensitivity to sediment fining is well documented (Waters 

1995, Figure 1.4). Observational and experimental research has shown that sediment 

fining can change macroinvertebrate assemblage (Larsen et al. 2010; Extence et al. 

2013), reduce diversity (Matthaei et al. 2006; Larsen et al. 2010) and alter ecological 

function of streams (Schofield et al. 2004; Griffith et al. 2009). Several mechanisms are 

thought to be responsible for the observed effects of fine sediment on stream 

invertebrates (Figure 1.4). For example, deposited fine sediment fills interstitial space and 

alters foodwebs (Suttle 2004; Schofield et al. 2004; Griffith et al. 2009). Sediment in the 

washload lowers productivity (Parkhill and Gulliver 2002) and creates harsh conditions 

(Culp 1986). Fine sediment has also been shown to affect the macroinvertebrate 

physiology by acting as a vector for gill infections (Lemly 1982) or reducing food quality 

(Broekhuizen et al. 2001; Peeters et al. 2006).  

 The sensitivity of stream invertebrates to fine sediment makes them useful for 

monitoring benthic sediment conditions and considerable effort has been devoted to 

identifying reliable invertebrate indicators and metrics (Relyea et al. 2009; Larsen and 

Ormerod 2010; Clapcott et al. 2011; Extence et al. 2013). However, there is neither a 

consensus on which metrics are reliable across broad regions nor is there an adequate 
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understanding of the mechanisms associated with invertebrate sensitivity to sediment 

fines. Several studies have shown that invertebrate feeding characteristics, such as algal 

grazing or scraping on the epilithon, are sensitive to sediment fines and may have 

potential as indicators (Rabeni et al. 2005; Zweig and Rabeni 2001). Stream 

invertebrates, such as mayflies, have highly specialized mouthparts for harvesting 

epilithic organic matter and transferring it to the mouth opening for consumption (Arens 

1989). For example, both the mayflies Rhithrogena and Baetis are known to feed on 

epilithic algae (Arens 1989); but have different mouthparts for harvesting it.  The 

maxillary palps of Rhithrogena consist of short brushes composed of stiff bristles to 

brush or scrape loose epilithic algae into the mouth (Figure 4.2, McShaffrey and 

McCafferty 1988). The mandibles of Baetis have a gouge-type structure that is used to 

pry up diatoms adhered to the epilithon (Figure 4.2, Arens 1989). Excessive fine 

sediment on the epilithon may interfere with grazer feeding (Arens 1990), but its effect 

may be mitigated by mouthpart structures. For example, invertebrates that brush food into 

their mouths may move more inorganic material into their mouths than gougers and thus 

consume lower quality food (Broekhuizen et al. 2001; Peeters et al. 2006).  

 To test the effect of geology on invertebrate response to fine sediment addition, I 

conducted an in situ manipulative experiment in eight small streams of the Oregon Coast 

Range. Two hypotheses were tested. The first was that selective adaption to natural levels 

of fine sediment would result in an invertebrate community structure that responds 

differently to increasing amounts of fine sediment (Poff 1997; Townsend and Hildrew 

2006). This was achieved by comparing streams in basins with either dominant erosive or 

resistant geologies. The second hypothesis examined the use of invertebrate grazing traits 
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as an indicator of excessive fine sediment in the benthos. In this case, selective forces  

would result in invertebrate communities with similar feeding traits that are shaped by 

natural sediment conditions (Poff 1997; Townsend and Hildrew 2006). For the second 

hypothesis, I predicted that brushing grazers would be more sensitive to sediment 

addition than gouging grazers. This was achieved by adding increasing amounts of fine 

sediment to in situ mesocosms containing naturally colonized invertebrates. 

2 Methods 

2.1 Study area and Experiment 

 The Oregon Coast Range provides an ideal location to test hypotheses about 

invertebrates, sediment and geology. The Coast Range contains basins with relatively 

homogenous erosive or resistant geologies (Figure 4.3) and there is relatively little urban 

development. The Oregon Pacific Coast Region has steep slopes with elevations from sea 

level to 1,249 m, but most of the ridgelines occur between 450 and 750 m (Franklin and 

Dyrness 1973). Geology in the Oregon Coast Range varies from north to south and is 

mainly composed of marine-derived sediments and basalts. In the north, the geology is 

mixed sedimentary and volcanic with both highly erodible (siltstones, sandstones) and 

resistant (Coast range Volcanics) surficial geology (Franklin and Dyrness 1973; Walker 

et al. 2003, O'Connor et al. 2014). The erosive basins of this region have some of the 

fastest stream bed-material attrition rates in the Coast Range (e.g. 80x faster, O'Connor 

2014); therefore it is reasonable to assume that, all else being equal, streams in basins 

underlain by bed-material with high attrition rates will result in relatively more fine 

sediment in the bed-load. For example, a model developed for western Oregon found that 

the soft rocks of the Klamath terrane had sediment flux rates considerably higher than in 
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resistant basins (O'Connor 2014). Average annual precipitation in the Oregon Coast 

Range ranges from 250 cm to 760 cm in the upper elevations, temperature is generally 

mild, with average January minimum temperature as low as 0oC and the July maximum 

average temperature at around 25 oC  (Franklin and Dyrness 1973). Oregon’s Coast 

Range contains a temperate coniferous rainforest characterized by Sitka spruce in the 

lower coastal elevations and western hemlock Douglas-fir inland (Franklin and Dyrness 

1973). Riparian forests are structurally complex with mixed patches characterized by 

coniferous trees, alder, cottonwood and willow (Naiman et al. 1998). 

 The area for this study was chosen based on a land cover analysis, relative 

proximity of the basin and reach site conditions (Figure 4.3). Within each geology, study 

basins were selected using a filtering process based on GIS analysis of geology and land 

cover (Figure 4.4). GIS analysis was conducted using the 1:500,000 scale USGS Geology 

layer (Walker et al. 2003), the 2006 National Land Cover data base (30 m spatial 

resolution, Fry et al. 2011) and vegetation data (10 m resolution) from the Coastal 

Landscape Analysis and Modeling Study (CLAMS 2014). All data were accessed in the 

fall of 2012. The first filter selected for basins with geology homogeneity >80% resistant 

or erosive. The second filter removed basins with more than 10% mixed forests or 

croplands. In the last filter, basins with total clearcut areas greater than 20% were 

removed. From an initial pool of 66 basins, 19 basins were selected for preliminary 

reconnaissance. Reach site selections were based on access, stream velocity and the 

presence of coarse substrate and riffles. Reaches with deep water, soft sediments or 

human disturbance were not used. After filtering process and site reconnaissance, 8 

streams (4 in each geology) were selected for study (Table 4.1). 
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 Mesocosms were designed so that multiple doses of sediment could be added to 

them over multiple days and then removed from the stream with both invertebrates and 

sediments contained inside. Mesocosms were constructed using plastic deli containers 

with a 1.24 L volume and 0.02 m2 of surface area at the top. For substrate, mesocosms 

were filled with consistently-sized landscape rocks (longest axis mean=13 mm). Thirty-

six holes (6 mm) were drilled equidistant around each container such that when the 

containers were placed within each other, the holes were aligned. Thus, each mesocosm 

consisted of a nested pair of flow-through containers filled with substrate thus providing 

an average of 625 cm2 of interstitial habitat. Interstitial habitat was estimated by filling 

the 10 mesocosms with substrate and water and then measuring the volume of water in 

the mesocosm. Mesocosms were placed in the stream and buried in the benthos at least 5-

15 cm deep where possible. To remove the mesocosm from the stream, the inner 

container was rotated counter to the outer container, the holes became misaligned and 

thereby allowed for the mesocosm to be closed in the stream and retain both fine 

sediment and invertebrates. Mesocosms were painted camouflage to minimize tampering 

risk and mesocosms were monitored (2-3 times per week) during the 3-5 week 

colonization period. Mesocosms found leaning during colonization were repositioned 

only if the substrate was still in the mesocosm. To compare the mesocosm invertebrate 

community to the natural stream community, D-net samples were collected at the end of 

the experiment and used to qualitatively evaluate the invertebrates richness in each 

geology.  

 The experiment design consisted of 4 streams with 10 replicates of treatments 

(sediment dose) or controls (no sediment) in each geology (n=4 resistant and n=4 
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erosive). Total sample size was 40 (treatment n=20, control n=20) replicates within each 

geology and allowed for the comparison within and between geologies. In July of 2012, 

mesocosms were placed in the stream and allowed to colonize for 3-5 weeks, and on 

October 12th 2012 a dosing schedule was initiated. Sediment used to dose mesocosms 

was obtained from an eroded stream bank and screened through a 2 mm sieve (50% 

<0.15 mm, organic content < 5%). The original dosing schedule called for an increasing 

volume of sediment to be added each day for a total of five days (Figure 4.5). However, 

an approaching storm event required the duration to be shortened and dosing amounts 

increased to ensure an adequate gradient of sediment was achieved. In the end, there were 

three separate doses on three days and with a range of 100 to 1100 ml of sediment (100 to 

1100 g). To dose, five randomly-selected mesocosms were isolated from the current 

using a bucket, sediment was added and allowed to settle and the isolation removed. 

Control mesocosms were also isolated as a methodological control. To remove 

mesocosms, the inner container was rotated, the container lid was put on and the entire 

mesocosm was quickly lifted out of the stream and placed in a plastic bucket. For 

periphyton analysis, three rocks were removed and frozen within 12 hours. Mesocosm 

contents (rocks, sediment and invertebrates) were poured into a larger container and fixed 

with isopropyl alcohol (90%) in the field.   

2.2 Environmental Data and Invertebrates 

 During the colonization period, environmental data were collected at each reach 

and each mesocosm. At each reach, canopy cover and stream water chemistry (Table 4.2) 

was determined using a densiometer and handheld field instrument (Model YSI 556 

MPS). Streamflow was measured using a flow meter (Flow Mate Model 2000) at five 
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spots equidistant across the stream. Depth and velocity at the top of the mesocosm were 

measured at each mesocosm and used to estimate flow. Sediment compostion of the sites 

was measured with shovel samples taken at the edge of the waterline nearest to the center 

of the arrays. Sediment samples were weighed and dry sieved. Biomass was estimated for 

periphyton, invertebrates and sediment organic content by determining the ash free dry 

mass (AFDM). Samples were dried for 24 hours at 100oC and weighed and burned at 

5000C for one hour. Periphyton biomass samples were obtained by scrubbing three rocks 

with a toothbrush and rinsing with water. Invertebrate biomass was estimated using all 

invertebrates found in the mesocosms. Sediment texture and organic content were 

determined using sediment remaining in mesocosms after removal sediments were dried, 

ashed and then sieved. Sediment in control mesocosms was used to characterize sediment 

texture. Invertebrates were counted by sorting the entire contents of mesocosms under 

10x magnification dissecting microscope (Lieder Model # MZ 730X). All invertebrates 

found were counted and identified to genus level where possible. The small size and early 

instars resulted in some family-level identification. Grazing traits were based on 

information found in the published literature (Table 4.6) and examination of specimens 

found in the mesocosms (Appendix A11).  

2.4 Data Analysis 

 To assess the performance of the mesocosms, invertebrate abundance and 

richness were compared between disturbed and undisturbed mesocosms using t-tests and 

coefficient of variation (CV). Environmental data were summarized and compared 

between geologies using t-tests. The invertebrate community was classified using 

presence/absence and relative abundance (RA). Invertebrate assemblages were 
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characterized using Nonmetric Multidimensional Scaling (NMDS) ordinations and 

visually displayed using presence/absence charts of all taxa. NMDS is an unconstrained 

ordination technique that examines the overall similarity of an assemblage (McCune and 

Grace 2002). NMDS is often used with invertebrate data because it preserves the inter-

site relationships and better represents species distances (Legendre and Legendre 1998). 

The relationship between mesocosm assemblage and environmental variables was 

examined using a linear fitting function (Envfit) to fit environmental vectors to the 

ordinations. Envfit fits a vector to the species ordination and a permutation test is used to 

determine importance (psuedo r2) and significance (ρ<0.05). The results of the Envfit 

analysis were used to explore relationships between invertebrate assemblage and 

environmental variables. Correlation between environmental variables was explored with 

Pearson's R. 

 The effect of geology on invertebrate response to sediment addition was 

examined by averaging invertebrate metrics for treatments and controls in each stream so 

that sample size was four in each geology. Average difference between treatment and 

controls for richness, abundance and grazing traits were compared between geologies 

using 2-tailed t-tests. Dosing frequency within erosive or resistant geologies was 

analyzed using one-way ANOVA with dosing frequency (0-3) as the categorical variable. 

Habitat loss was estimated using remaining inorganic sediment as a proxy for the 

reduction of interstitial habitat space in the mesocosm. Habitat loss data were evaluated 

using partial correlations to account for the covariance of stream velocity with 

invertebrate data. Residuals from the invertebrate-velocity models were regressed against 

sediment remaining in the mesocosms (habitat loss). All data were log transformed to 
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improve distributions. Models were developed using abundance, richness, RA grazers, 

RA brushers or RA gougers as response variables.  

3 Results 

3.1 Mesocosm performance  

 Out of 80 mesocosms placed in streams, 13 were lost or damaged. Six mesocosms 

were lost in one stream (Northrup) during high flow. More mesocosms were lost in 

erosive (10) than resistant (3) sites. Sediment dosing resulted in the mean addition of 337 

(erosive) and 269 (resistant) g of sediment to the mesocosms and a mean of 106 g 

(erosive) and 64 g of inorganic sediment were retained. Habitat loss in the mesocosms 

was similar between geologies and ranged from 62-98% loss of interstitial habitat. Total 

invertebrate abundance in the erosive mesocosms was 11,381 per 625 cm2 (mean=379) 

and in resistant mesocosms was 12,036 per 625 cm2 (mean=326; Table 4.1). Taxa 

richness ranged from 7-19 and was generally higher in resistant basins. Abundance CV 

ranged from 0.2 to 0.5 and was generally lower in resistant basins (Table 4.1). 

Invertebrate biomass in the mesocosms ranged from 4-179 mg per 625 cm2 and was 

significantly higher in the erosive controls (mean=70 mg) and treatments (mean=66 mg) 

than in resistant controls (mean=14 mg) and treatments (mean=12 mg, Table 4.5). 

Invertebrate abundance and biomass was correlated with velocity in erosive basins 

(R=0.75 and 0.47, respectively) but not in resistant basins. Summary mesocosm data are 

displayed in Table 4.5. Movement or disturbance (undisturbed and disturbed in Table 

4.5) of mesocosms during the colonization period or experimental period did not result in 

significant differences in abundance.   

3.2 Environmental variables 
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 Study streams had a mean width of 3.7 m and depth of 0.1 m and generally had 

low flow (0.001-0.7 m3/sec) and dense canopy cover (55-92%, Table 4.2). Streams in 

erosive geologies were slightly smaller with lower flow and less canopy cover than 

resistant streams (Table 4.2). Erosive streams (Table 4.2) had significantly lower 

dissolved oxygen (ρ<0.01), higher pH (ρ<0.05) and slightly higher nitrates (mg/L, 

ρ<0.10). Erosive sites has significantly higher average fine sand, very fine sand, and silt 

(Table 4.3, 15% vs 3%, 7% vs 1%, 12% vs 1%, respectively).  Within mesocosms, 

inorganic sediment was significantly higher (ρ<0.05) in erosive streams (mean=31g) than 

in resistant streams (Table 4.3, mean=60 mg). Organic content of the sediment (ρ<0.01) 

and the epilithon (ρ=0.06) in control mesocosms was higher in resistant streams (Table 

4.3). Velocity above the mesocosms ranged from 0.01-0.55 m/s and was slightly higher 

in erosive streams. Sediment dose ranged from 100-1100 g with a frequency of 1-3 times 

(Table 4.4). Sediment was slightly inversely correlated with velocity at both erosive 

(R=0.26) and resistant sites (R=0.15).   

3.3 Invertebrate assemblage 

 The invertebrate community in both basins was dominated by mayflies, stoneflies, 

and caddisflies and the effect of dosing on invertebrate assemblage was subtle (Figures 

4.6 and 4.7). The NMDS ordination of all streams and treatments showed that assemblage 

was distinctly different between geologies, but within geology there was no clear 

separation of streams (Figure 4.8). Ordinations of streams within each geology showed 

minor separation among streams (Figure 4.9). Assemblage in erosive streams was 

variable and slightly separated along NMDS Axis 1 and varied along NMDS Axis 2. 

NMDS Axis 1 was positively correlated with the stonefly (Zapada) and the Diptera 
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Simulium and NMDS Axis 2 was positively correlated with the Zapada and Simulim and 

negatively correlated with Snails and the Beetle (Orobrevia). Both axes in the ordination 

of erosive basins may represent a tolerance gradient with more tolerant taxis found at the 

negative ends of both axes. In resistant basins, assemblage was less variable but appeared 

to separate along NMDS Axis 2 and were variable along NMDS Axis 1. NMDS Axis 1 

was positively correlated with mayflies (Baetis and Paraleptophlebia) and negatively 

correlated with the Diptera Atherix and the caddisfly Brachycentrus. NMDS Axis 2 was 

positively correlated with the mayfly Rhithrogena and the stonefly Capniidae and 

negatively correlated with caddisfly Brachycentrus and Simulium. The major gradients 

represented in Axis 1 and 2 may also represent a tolerance gradient, but the pattern is not 

as clear as in the erosive basins. 

 Vector analysis of mesocosm environmental data showed two variables were 

significantly related to assemblage (Figure 4.11). In erosive basin, sediment remaining 

(psuedo r=0.40, ρ<0.01) and velocity (psuedo r=0.27, ρ<0.05) were related to 

assemblage, while in resistant basins, only sediment remaining (psuedo r=0.17, ρ<0.01) 

was significant. Neither total sediment added nor dosing frequency was significantly 

related to assemblage within either geology (Figure 4.9).   

3.4 Effect of sediment dosing frequency and habitat loss 

 Invertebrates in different geologies showed some differences in their response to 

sediment addition (Figure 4.10, Table 4.7). Of the six metrics evaluated, only the percent 

change in richness showed a significant difference between geologies. Treatment 

mesocosms in resistant geologies lost a mean of 12% of their richness while erosive 

basins gained 3% (ρ<0.01).  
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 Within geology, invertebrate response to dosing was observed in abundance, 

richness and grazing traits (Figure 4.10, Table 4.7). In resistant basins, dosing frequency 

decreased abundance  (ρ<0.001, Figure 4.10b) and richness (ρ<0.10, Figure 4.10d). In 

erosive basins, dosing frequency decreased relative abundance of grazers (ρ<0.10, Figure 

4.10g) and brushers (ρ<0.05, Figure 4.10i). Gougers were not reduced by dosing 

frequency in either geology. 

 Habitat loss showed negative relationships with invertebrates in both geologies 

Figure 4.11, Table 4.7). In resistant basins, habitat loss was negatively and significantly 

associated with abundance (R2=0.15, ρ<0.01) and richness (R2=0.10, ρ<0.01). In erosive 

basins, habitat loss was negatively and significantly associated with abundance (R2=0.17, 

ρ<0.01), grazers (R2=0.20, ρ<0.001), brushers (R2=0.18, ρ<0.001) and gougers (R2=0.16, 

ρ<0.010).   

4 Discussion 

4.1 Hypothesis 1: The effect of geology on invertebrate response to sediment addition 

 In support of my first hypothesis, my findings provide experimental evidence that 

in the absence of strong anthropogenic stressors, sediment-tolerant communities can 

develop in streams with naturally elevated sediment levels, and therefore will respond 

differently than invertebrates in streams with lower sediment. Fine sediment 

accumulation in the mesocosms was greater in erosive basins and there was a larger taxa 

loss in resistant basins. Within geologies, there also appeared to be different invertebrate 

responses to dosing frequency. In erosive basins invertebrate function (i.e. grazing traits) 

were more responsive to sediment addition, while richness and abundance loss were more 

pronounced in resistant basins. Furthermore, the pattern of loss across dosing frequency 
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appeared to be different between geologies. In erosive basins, invertebrates appeared to 

recolonize mesocosms after the second dose (i.e. abundance, % grazers and % brushers), 

while in the resistant basins, there was a more systematic loss of taxa. The greater amount 

of sediment trapped in control mesocosms in erosive basins indicates that these basins 

had higher background levels of fine sediment than streams in resistant geologies. 

Increased fine sediment supply to the streams in erosive basins is likely due to increasing 

physical and chemical weathering of fine-grained surface lithology (Leopold et al. 1964) 

and resistant geologies generally have higher transport rates (Kelsen and Wells 1989). 

For example, Richards et al. (1996) found increased fines correlated with the proportion 

of geologic Lacustrine clays. The effect of geology on invertebrate response to fine 

sediment addition may be explained by the strong environmental forces acting on stream 

invertebrates through sediment supply and transport in the stream and result in 

communities which have similar functional attributes (Poff 1997; Townsend and Hildrew 

1994). This has been observed in other studies. For example, Zweig et al. (2005) found a 

distinct decreases in scraper densities as the percent surface cover of fines (<2mm) 

increased. Burdon et al. (2013) observed a strong threshold response of invertebrates to 

fine sediment cover which was associated with habitat loss and impact to periphyton-

based food resources. The findings of my study provide in situ experimental evidence 

that invertebrate grazers are sensitive to excessive fine sediment in the benthos. 

Adaptation to excessive fine sediment conditions, such as drift, avoidance and feeding 

plasticity has been documented in other studies (i.e. Larsen and Ormerod 2010; 

Francouer and Biggs 2006; Runde and Hellenthal 2000; McClelland and Brusven 1980; 

Peeters 2006). In contrast, the lack of an assemblage response observed in my study does 
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not support the first hypothesis. While assemblages were significantly different between 

basins, the effect of sediment addition did not strongly alter assemblages within 

geologies. The lack of change in assemblage is partially due to the high variability among 

streams, but may also reflect the importance of habitat loss, which would not necessarily 

alter assemblage. The lack of assemblage response to increased levels of fine sediment 

has been observed in other sediment studies (Larsen and Ormerod 2010). The findings 

presented here help explain the lack of consistent findings of other research. For example, 

several studies have found little to no invertebrate response to fine sediment (i.e. Angradi 

1999; Kruetzweiser et al. 2005; Cover et al. 2008; Kaller and Hartman 2004; Matthaei et 

al. 2006; Richards and Bacon 1994). While other studies have shown a strong taxonomic 

and functional response to increased levels of fine sediment (Zwieg and Rabeni 2001; 

Rabeni et al. 2005; Larsen et al. 2010).  

4.2 Hypothesis 2: Brushers as indicators 

 Brushers showed significant negative associations with sediment dosing within 

erosive basins and appeared to be more sensitive than gougers. Within both geologies, 

neither scrapers nor gougers were significantly affected by sediment dosing. The negative 

association of brushers with sediment is supported by other experimental research; for 

example, a study by Broekhuizen et al. (2001) found the addition of fine sediment to food 

source reduced growth rate of the Leptophlebiia (brusher) and Arens (1990) showed 

increased wear of Rhithrogena mouthparts when forced to feed on diatoms growing on 

sand paper. Gougers did not appear to be affected by sediment dosing in this study, 

possibly due to less mouthpart damage or reduced transfer of inorganic material to the 

mouth. These findings are supported by several experimental and observational studies. 
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For example, an in situ experiment conducted by Angradi (1999) showed that Baetids 

(gouger) were positively associated with increased % fine substrate and, in a broad 

spatial-scale study, several Baetid genera were identified as only slightly sensitive to fine 

sediments (Relyea et al. 2012). These findings make sense in light of habitat template 

theory regarding the development of community traits through selective environmental 

pressures (Poff 1997; Townsend and Hildrew 1994). In resistant basins, fine sediment 

was naturally low and did not present a strong selective pressure favoring sediment-

adapted traits. As fine sediment was artificially increased, invertebrates could not adapt to 

conditions and simply left the mesocosms; as sediment dosing increased taxa richness 

and abundance correspondingly decreased. On the other hand, in erosive basins, the high 

levels of sediment act as a strong environmental filter towards community traits that are 

adapted to these conditions. The nested nature of stream communities (Larsen et al. 2010) 

provides a source of sediment-adapted invertebrates in erosive basins, and as sediment 

was artificially increased in erosive mesocosms, less tolerant traits (i.e. brushing) were 

replaced by more tolerant traits (i.e. gougers).  

4.3 Habitat loss vs. invertebrate sensitivity  

 The findings of this research also help illuminate the mechanisms related to 

habitat loss and invertebrate sensitivity to fine sediment. Several correlative studies have 

identified habitat loss as the primary mechanism associated with increased fines 

deposition (i.e. Griffith et al. 2009; Burdon et al. 2013). In this study, habitat loss played 

an important role in both basins; however, in erosive basins there was slightly stronger 

functional trait response to habitat loss than what was observed in abundance or richness. 

These findings suggest that while habitat loss was a primary driver of community change, 
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invertebrate physiological sensitivity to fine sediment was also evident as indicated by 

sediment-tolerant traits. The results associated with habitat loss in resistant basins are 

more difficult to interpret. One possibility is that the loss of habitat in resistant 

mesocosms was not large enough to be detected by the design on this experiment. On the 

other hand, without community traits that are adapted to fine sediment, a preference for 

one trait over another would not be expected in resistant basins. Further confounding 

these findings is the likely difference in algal food source. Resistant mesocosms 

contained less periphyton and may not have supported much algal feeding. In this case, 

the lack of response may be more closely associated with food availability. 

4.4 Implications for Management 

 Ecological investigations across scales can provide important information about 

environmental filters and resulting stream community (Poff 1997; Townsend and Hildrew 

1994). The findings presented here provide evidence that basin geology was an important 

environmental force possibly acting on invertebrate grazing through sediment production 

and subsequent selection of feeding strategies, such as gouging, that may limit ingestion 

of inorganic sediment. Furthermore, this study also presents evidence of invertebrate 

adaptation to localized sediment conditions within streams. The use of functional traits is 

a widely-used approach for both ecological and applied research (Poff 1997; Pollard and 

Yuan 2010) and these findings provide insight into how feeding mechanisms may be 

affected by fine sediment and the use of grazing traits as an indicator of fine sediment in 

streams. For example, the apparent observed adaptation of invertebrates to sediment may 

result in the underestimate of benthic sedimentation in erosive basins and overestimate it 

in resistant basins. This is important information for stream management that is focused 
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on reproduction habitat for salmonids. Conversely, the relative lack of invertebrate 

adaptation to sediment in resistant basins may make them a more sensitive indicator of 

anthropogenic sources of excessive stream sedimentation. Another important implication 

for management is related to the use of scrapers as a functional indicator. Invertebrate 

scrapers, such as the Heptageniidae family, are characterized by having mouthparts with 

stiff brushes that are used to scrape periphyton into their mouths. Invertebrate collectors 

such as Leptophlebiidae also use brushes to feed but are classified differently because 

they are generally thought of as eating a wide variety of organic material, not just 

periphyton. Given the well-known invertebrate flexibility of food source, it may be more 

ecologically and evolutionarily appropriate to develop indicators based on feeding 

mechanism only and ignore food source. The findings of this study support this approach 

and reflect ecological theories about adaptation and community trait development 

(Townsend and Hildrew 1994; Poff 1997; Orians 1980).  

 The extrapolation of small-scale ecological experiments to larger scale process 

requires caution (Lamberti and Steinman 1993). The duration, spatial scale and 

mesocosms themselves may affect colonization rates, assemblage and food webs 

(Angradi 1999). In this study, the assemblage found in the mesocosms represents only 

80% of the taxa observed in the study reaches. Common shredders and burrowers such as 

Peltoperlidae and Pteronarcyidae were noticeably absent from the mesocosms and in 

general the invertebrates colonizing mesocosms were small and early instars. In this 

study, it appears that erosive streams had comparatively higher productivity, and this was 

reflected in the relatively high biomass content of the erosive mesocosms. Given this fact, 

it is hard to separate the effect of sediment addition from overall habitat quality and 
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productivity in the mesocosms. Furthermore, because of low periphyton biomass in the 

resistant mesocosms, invertebrate feeding may have shifted from grazing to collecting 

non-algal organic matter. Invertebrate plasticity in feeding may explain the lack of 

response by grazers in resistant streams. On the other hand, the high quality of periphyton 

in erosive mescosms compared to surrounding substrate may stimulate grazing in the 

mesocosm.  

4.5 Conclusion 

 Excessive fine sediment in streams is a major concern for efforts to manage or 

improve salmonid reproductive habitat in Oregon's coastal forests. Currently, there is 

increased interest in developing functional or trait-based macroinvertebrate indicators to 

monitor the benthic sediment conditions of streams used for salmon spawning. Although 

derived from a limited study in one ecoregion, this study presents evidence of 

invertebrate adaptation to fine sediment and demonstrates the role of geology in shaping 

invertebrate response to sedimentation. The results of this experiment also support 

correlative studies that have found that invertebrate grazers are a useful indicator for fine 

sediment. Furthermore, the categorization of grazing types such as gougers or brushers 

contributes to a mechanistic explanation of sediment sensitivity and suggests that 

invertebrates may be responding to food quality in addition to interstitial habitat loss. 

From a management perspective, understanding the role of geology in shaping 

invertebrate functional response to sediment addition will help design sediment 

monitoring programs and interpret results of such studies. 
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Figure 4.2 Mouthpart structures of Rhithrogena (Brusher), and Baetis (Gouger), Scale 
difference, image by Arens (1989). 
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Figure 4.3 Map of study area and final site selections. Erosive basins: Beaver 
(Bevr), Pebble (Peb), Scappoose (Scap) and Northrup (North). Resistant 
basins: Drift, Jones, Jordon (Jord) and South Fork of the Wilson river (SF).  
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Figure 4.4  Schematic diagram showing basin selection process. 
Data source shown in italics. Geology data were obtained from 
USGS and based on the maps of Walker and MacLeod (1991), 
logging data were obtained from the Coastal Analysis and Modeling 
Study (CLAMS 2005), and landcover data were obtained from the 
National Landcover Data base (NLCD 2006). 
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Figure 4.5 Sampling schematic and planned dosing schedule. Top figure 
illustrates experimental set-up with randomly selects treatment (solid lines) 
and control (dashed lines) mesocosms. The lower figure shows the dosing 
and sampling schedule and amount of sediment added to each mesocosm. 
High flows on the third day of sampling resulted in an alteration of the 
schedule and only three sediment doses.  
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Figure 4.8 Ordinations based on presence/absence and relative abundance of all streams 
within each geology.  

 

Erosive  Resistant  Erosive  Resistant  

Relative Abundance Presence / Absence 
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  Figure 4.9 NMDS ordinations based on relative abundance of each 
mesocosm and dosing frequency for each stream. Symbols 
correspond to symbols in Figure 4.7. Numbers show dosing 
frequency associated with each mesocosm assemblage at each stream. 
Northrup samples were mixed up in the high flow event. No 
significant relationship between dosing frequnency and assemblage 
was observed in any of the streams.  
 

Erosive Streams 

 
Resistant Streams 
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Figure 4.10 Dose frequency boxplots of invertebrates for both geologies. Shows the 
response of invertebrate abundance (number per mesocosm, a), richness (b), biomass (c), 
grazer (d), brusher (e) and gouger (f) relative abundance (Rel. Abund). Results of 
ANOVA analysis shown (NS=not significant). 
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Figure 4.11 Ordinations and sediment (Sed.) vectors for both geologies (a,b). Bubble 
plots show relative abundance of grazer (c,d), brushers (e,f) and gougers (g,h). 
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Figure 4.12 Linear models of velocity-adjusted models of invertebrates as a 
function of inorganic sediment remaining in mesocosms. ρ<0.10 +, ρ< 0.05 *, 
ρ<0.01** 
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Table 4.3 Summary data and t-test results comparing control mesocosms 
(meso) and in-stream sediment data for each geology. Values are 
expressed as mean, minimum (min) and maximum (max) for biotic, 
environmental and sediment size-class data (% volume). Note sample size 
is different for in-stream sediment samples.   ρ<0.10 x, ρ<0.05 *, 
ρ<0.01**, ρ< 0.001***,  Not significant (NS) 

Variable  Erosive (n=9) Resistant (n=17) p-value 

Control Biotic data Mean (min-max) Mean (min-max)  
Abundance  405 (120-956) 391 (182-707) NS 
Richness 14 (12-15) 14 (11-16) NS 
Invertebrate Biomass (mg/meso) 66 (7-179) 14 (7-30) * 
Periphyton Biomass (mg/meso) 18 (4-93) 6 (2-19) x 
Control Environmental data Erosive (n=9) Resistant (n=17)  
Sediment Remaining (g/meso) 31(2-92) 6 (1-20) * 
% Organics in the Sediment 9 (3-17) 34 (3-70) *** 
Velocity (m/s) 0.15 (0.01-0.55) 0.08 (0.01-0.23) NS 
% Habitat remaining  95 (85-100) 99 (97-100) NS 
Control Sediment Size Mean (SD) Mean (SD)  
% >2 mm Very Fine Gravel  7 (6) 5 (7) NS 
% >0.6 mm Coarse Sand 17 (13) 12 (13) NS 
% > 0.25 mm Medium Sand 37 (16) 23 (12) * 
% > 0.15 mm  Fine sand 17 (11) 18 (8) NS 
% > 0.075 mm Very Fine Sand 11 (6) 20 (11) * 
% < 0.075 mm Silt 11 (7) 23 (14) * 
In-Stream Sediment Size Erosive (n=3) Resistant (n=4)  
% >0.6 mm Coarse Sand 26 (9) 56 (12) * 
% > 0.25 mm Medium Sand 40 (7) 43 (16) NS 
% > 0.15 mm  Fine sand 15 (5) 3 (3) * 
% > 0.075 mm Very Fine Sand 7 (1) 1 (1) ** 
% < 0.075 mm Silt 12 (1) 1 (1) *** 
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Table 4.4  Summary data and t-test results comparing treatment 
mesocosms (meso) in each geology. Values are expressed as mean, 
minimum (min) and maximum (max) for biotic and environmental data in 
both resistant and erosive geology.  ρ<0.10x, ρ< 0.05 *,  ρ<0.01**, Not 
significant (NS) 

Variable (N/N) 
Erosive Treatment 

(n=16) 
Resistant Treatment 

(n=20) 
p-value 

Biotic data Mean (min-max) Mean (min-max)  
Abundance (number/meso) 337 (86-860) 269 (138-490) NS 
Richness ( number/meso) 13 (7-19) 12 (9-17) NS 
Invertebrate Biomass (mg/meso) 70 (4-162) 12 (5-60) ** 
Periphyton Biomass (mg/meso) 14 (4-76) 7 (0-23) X 
Environmental data    
Dose Amount (g/meso) 393 (100-800) 415 (100-1100) NS 
Sediment Remaining (g/meso) 106 (38-235) 64 (14-116) * 
% Organics in the sediment 5 (3-10) 4 (3-6) NS 
Velocity (m/s) 0.14 (0.01-0.49) 0.08 (0.01-0.23) NS 
% Habitat loss dose (%) 63 (16-100) 66 (16-100) NS 
% Habitat remaining (%) 82 (62-94) 88 (61-98) NS 
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Table 4.5  Summary data and t-test results comparing 
treatments and controls or disturbed and undisturbed 
mesocosms (meso) in each geology. Sample size is for each 
analysis is indicated in parenthesis (N/N) and grouping 
variable is indicated in the grouping column. indicated in  
ρ<0.10x , ρ< 0.05 *,  ρ<0.01**,  Not significant (NS) 

Variable (N/N) Grouping Grouping p-value 

Erosive (15/9) Control Treatment  
Mean Abundance (number/meso) 337 406 NS 
Mean Richness ( number/meso) 13 14 NS 
Invertebrate Biomass (mg/meso) 70 66 NS 
Resistant (20/17) Control Treatment  
Mean Abundance (number/meso) 269 391 ** 
Mean Richness (number/meso) 12 14 ** 
Invertebrate Biomass (mg/meso) 14 12 NS 
Erosive Controls (5/4) Undisturbed Disturbed  
Mean Abundance (number/meso) 333 497 NS 
Mean Richness (number/meso) 13 14 NS 
Invertebrate Biomass (mg/meso) 80 56 NS 
Resistant Controls  (2/15) Undisturbed Disturbed  
Mean Abundance (number/meso) 387 392 NA 
Mean Richness (number/meso) 16 14 NA 
Invertebrate Biomass (mg/meso) 21 12 NA 
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Table 4.6  Mouthpart structure and food source information. Total and mean 
invertebrates in each geology. References:  Chapman and Demory (1993, CD), 
Hawkins (1985, H) Hawkins and Sedell (1981, HS), McShaffrey and McCafferty 
(1988, MM), Karouna and Fuller (1992, KF), Adams (2004, AD). 

Invertebrate 
Erosive 

Total (mean) 
Resistant 

Total (mean) 
Mouth 

Structure 
Food 

Source 
Setting Citation 

       
Rhithrogena 1077 (36) 866 (23) Brush Algae Lab, Cascades MM, HS 
Baetis 543 (18.1) 1160 (31) Gouge Algae Coast Range CD 
Paraleptophlebia 1150 (38) 60 (2) Brush Mixed Lab, Coast R. CD,KF 
Glossosoma 8 (NA) 87 (2) Gouge Algae Coat Range CD 

Atenella 0 67 (2) Gouge Mixed Cascades H 
Optioservus 65 (2) 6 (NA) Gouge Algae Coast Range CD, AD 
Drunella 6 (NA) 24 (1) Gouge Algae Cascades H 
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Table 4.7 Results of ANOVA analysis and linear models. F values, adjusted 
R2 and p-values are shown for sediment dose frequency (Dose Freq) and 
habitat loss (inorganic sediment remaining in mesocosms). Grazing traits are 
represented as relative abundance (RA). Slope direction indicated by + or -.  
ρ<0.10x , ρ< 0.05 *, 0.01**, 0.001***, Not significant (NS) 

Variable 
Erosive (n=29) 
Dose Freq (F) 

Resistant (n=36) 
Dose Freq (F) 

Erosive (n=29) 
Habitat Loss. (R

2
) 

Resistant (n=36) 
Habitat Loss (R

2
) 

Indicator     
Abundance NS **11.7 (-) *0.17 (-) *0.15 (-) 
Richness NS 

+
3.6 (-) NS *0.10 (-) 

Scraper RA NS
 

NS NS NS 
Grazer RA 

+
4.1 (-) NS **0.20 (-) NS 

Brush RA *5.2 (-) NS **0.18 (-) NS 
Gouge RA NS NS *0.16 (-) NS 
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Chapter 5 Summary 

 

 The Pacific Coastal region of the Pacific Northwest contains large tracts of 

economically important forestlands that also serve as critical stream habitat for 

endangered salmonids. Excessive fine sediment is a major source of habitat degradation 

in the small streams of this region that are used by salmon for spawning. In order to 

balance socioeconomic needs with preservation of salmon spawning habitat, 

environmental managers in the region are working to develop biologic indicators of 

excessive fine sedimentation that may signal when stream function has been altered due 

to anthropogenic activities. My dissertation research supports these efforts by quantifying 

the major sources of temporal and spatial variability known to affect stream invertebrate 

communities and by proposing specific trait-based indicators that may be useful for 

sediment monitoring in streams of the Oregon Coast Range, which is located along the 

western edge of the Pacific Coastal Region.    

 The research for my dissertation began by evaluating a unique long-term data set 

collected in the fall and spring from 2005-2013 in two streams of western Oregon. 

Analysis of long-term patterns in the data revealed that stream invertebrate were highly 

variable both seasonally and interannually and much of this variance was related to 

broad-scale climate patterns. These results provide important information for the design 

and interpretation of biomonitoring programs based on stream invertebrates. The second 

phase of my research used spatially-balanced data to identify spatial relationships 

between environmental variables that directly and indirectly affect fine sediment 

conditions and stream invertebrate communities. The results of this investigation 
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demonstrate the importance of accounting for covariance when using stream invertebrates 

to biomonitor fine sediment conditions. The final investigation for my dissertation 

utilized the geomorphic heterogeneity of Oregon's Coast Range to experimentally 

evaluate the effect of geology on invertebrate response to fine sediment addition. In the 

experimental phase of my dissertation research, I was able to show that invertebrate 

communities can adapt to naturally high levels of fine sediments that may exist in 

erodible geologies and thus they respond differently to increased levels of fine sediment 

in the benthos. The findings of this experiment confirm ecological theory regarding 

stream invertebrate natural selection and adaptation as well as provide important 

information for stream mangers attempting to interpret the results of bioassessment 

studies in regions with high geologic heterogeneity.   

 While the findings presented in my dissertation support the use of stream 

invertebrates to biologically monitor for fine sediment, there are several limitations worth 

considering. First the taxonomic resolution of the temporal study was relatively coarse 

(family-level) and there were not enough in-stream water chemistry and flow data to 

assess these components, which are well known to have strong controls on invertebrate 

communities. In the spatial study, observed relationships between fine sediment and 

stream invertebrates were correlative and therefore difficult to identify underlying 

causative or mechanistic relationships. Furthermore, strong covariance of environmental 

variables across the region increased the likelihood of making false associations between 

sediment, invertebrates and environmental factors. In the experimental study, 

colonization time was relatively short, so invertebrates in the mesocosm were generally 

early instars. Furthermore, the low sample size used when comparing between geologies 
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increased the likelihood of a Type II error and thus may underestimate the effect of 

geology on stream invertebrates. And finally, while a mechanistic explanation of fine 

sediment sensitivity was supported by the data, no actual gut contents or mouthpart wear 

were evaluated. Future experiments should include analysis of food consumption and/or 

mouthpart condition of invertebrate grazers living in high sediment conditions.    

 The results of my dissertation add to a growing body of research supporting the 

use of trait-based biological monitoring and provide valuable information regarding the 

use of stream invertebrates as a biologic indicators of fine sediment conditions in streams 

of the Oregon Coast Range. For example, invertebrate adaptation to fine sediment may 

result in the underestimate of benthic sedimentation in erosive basins and overestimate in 

resistant basins. Furthermore, by accounting for major sources of environmental  

variation and using trait-based categorization of invertebrate communities, these findings 

can be extrapolated to other streams within the Pacific Coastal Region. Ultimately, the 

findings of my dissertation may help stream managers balance socioeconomic demands 

on the Oregon Coastal forests with the desire to preserve some of the last remaining 

productive salmon habitat in the region.  
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Appendix: Supplementary Data and Images 

 

Appendix A1: Boxplots of environmental data for both resistant and erosive basins 
and streams in the Oregon Coast Range study area. 
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Appendix A2: Boxplots of environmental data for both resistant and erosive basins and 
streams in the Oregon Coast Range study area. 
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Appendix A3: Boxplots of environmental data for both resistant and erosive basins and 
streams in the Oregon Coast Range study area. 
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Appendix A4: Boxplots of environmental data for both resistant and erosive basins 
and streams in the Oregon Coast Range study area. 
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Appendix A5: Boxplots of environmental data for both resistant and erosive basins and 
streams in the Oregon Coast Range study area. 
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Appendix A6: Boxplots of environmental data for both resistant and erosive 
basins and streams in the Oregon Coast Range study area. 
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Appendix A7:  Ten most abundant invertebrates in the Oregon Coast Range 
Order Taxa Family (common name) 

Total Counts 
(% Rel. Abun.) 

# 
sites 

Min  
RA 

Median 
RA 

Max 
RA 

        
Diptera Chironominae Chironomidae (Midge) 12272 (13%) 213 0 0.10 0.58 
mayfly Baetis  Baetidae (Sm. Minnow) 8686 (9%) 200 0 0.06 0.56 
Diptera Orthocladiinae Chironomidae (Midge) 8210 (8%) 204 0 0.06 0.46 
Diptera Simulium Simuliidae (Black Fly) 4366 (5%) 124 0 0.007 0.59 
Stonefly Zapada Nemouridae (Forestfly) 4074 (4%) 159 0 0.02 0.48 
Caddis Rhyacophila Rhyacophilidae (Gr. R. W.) 3604 (4%) 197 0 0.04 0.30 
Beetle Optioservus Elmidae (Riffle Beetle) 3453 (4%) 116 0 0.04 0.59 
Caddis Glossossoma Glossossomatidae  (S. Cse) 2599 (3%) 141 0 0.03 0.20 
Mayfly Rithrogena Heptageniidae (Flat head) 2514 (3%) 108 0 0.004 0.28 
Stonefly Sweltsa Chloroperlidae (Lt. Green)  2337 (2%) 160 0 0.01 0.26 
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Appendix A8:  Five most common mayfly genera 
Order Taxa Family (common name) 

# sites 
(n=214) 

Min  
RA 

Median 
RA 

Max 
RA 

       
mayfly Baetis Baetidae (Sm. Minnow) 200 0 0.06 0.56 

mayfly Rithrogena Heptageniidae (Flat head) 108 0 0.004 0.30 
mayfly Cinygmula Heptageniidae (Flat head) 118 0 0.006 0.16 
mayfly Paraleptophlebia Leptophlebiidae (Prong Gill) 116 0 0.005 0.15 
mayfly Drunella Ephemerillidae (Spiny Crwler) 88 0 0.002 0.20 
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Appendix A9:  Five most common stonefly genera 

Order Taxa Family (common name)  
# sites 

(n=214) 
Min  
RA 

Median 
RA 

Max 
RA 

        
Stonefly Zapada Nemouridae (Forestfly)  159 0 0.02 0.48 
Stonefly Sweltsa Chloroperlidae (Lt. Green)  160 0 0.01 0.26 
Stonefly Malenka Nemouridae (Forestfly)  89 0 0.002 0.14 
Stonefly Calinueria Perlidae (Golden)  121 0 0.005 0.21 
Stonefly Yoraperla Peltoperlidae (Roach-Like)  45 0 0 0.53 
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Appendix A10:  Seven most common caddisfly genera 
Order Taxa Family (common name)  

# sites 
(n=214) 

Min  
RA 

Median 
RA 

Max 
RA 

        
Caddis Rhyacophila Rhyacophilidae (Grn Rck. Wr.)  197 0 0.02 0.30 
Caddis Glossossoma Glossossomatidae (Saddle Cs.)  141 0 0.01 0.20 
Caddis Hydropsyche Hydropsychidae (Net Spinner)  112 0 0.001 0.23 
Caddis Wormaldia Philopotamidae (Finger Net)  120 0 0.006 0.20 
Caddis Lepidostoma Lepidostmomatidae (Quilt Mr.)  78 0 0 0.18 
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Appendix A11:  Drawing of a Baetis (mayfly) 
mouthparts and gouge. 
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Appendix A12:  Images of mesosocm and placement in stream. Mesocosm is made 
of two nested plastic mesocosms with flow-holes aligned. To remove the 
mesocosm, a lid is placed on the mesocosm and the inner container is rotated 
counter to the outer container thus misaligning the holes and allowing for the entire 
contents to be removed from stream.    
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