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PT-symmetry and eigenmodes

Abstract

Spectra of systems with balanced gain and loss, described by Hamiltonians with
parity and time-reversal (PT ) symmetry is a rich area of research. This work studies
by means of numerical techniques, how eigenvalues and eigenfunctions of a Schrödinger
operator change as a gain-loss parameter changes. Two cases on a disk with zero bound-
ary conditions are considered. In the first case, within the enclosing disk, we place a
parity (P ) symmetric configuration of three smaller disks containing gain and loss me-
dia, which does not have PT -symmetry. In the second case, we study a PT -symmetric
configuration of two smaller disks with gain and loss media. We find a rich variety of
exceptional points, re-entrant PT -symmetric phases, and a non-monotonic dependence
of the PT -symmetry breaking threshold on the system parameters. Previous explo-
rations of spectra of PT -symmetric systems have mainly been limited to finite discrete
models or problems in one dimension. By leveraging systems on a two-dimensional con-
tinuum, we show how the complexity and variability of the spectral behavior increases.
Finally, by considering small analytically computable examples, we study the concept
of exceptional points and their relation to the PT -symmetry breaking threshold.

1 Introduction
In this thesis, we study the behavior of eigenvalues and eigenfunctions of partial differ-

ential operators arising from models with two types of symmetry. The first symmetry is
reflection symmetry about an axis, or parity (P) symmetry. The second is symmetry under
the composition of parity and time-reversal operations, known as PT -symmetry. The latter
case has received considerable attention in the literature on “non-Hermitian physics” due to
its striking applications.

Over the past 25 years research on non-Hermitian Hamiltonians with real spectra has
become an area of focus across disparate topics in physics, spanning mathematical physics
[1]–[4], optics and photonics [5], [6], acoustics [7], electrical circuits [8], [9], condensed mat-
ter physics [10], [11], and open quantum systems [12]–[16]. Beginning with Bender and
Boettcher’s discovery [17] that the Schrödinger eigenvalue problem for a non-relativistic par-
ticle on an infinite line with complex potentials V (x) = VR(x) + iVI(x) has purely real
spectrum, and is bounded below. Similar results are obtained for non-relativistic particle
on a line with compact support [18], [19], discrete tight-binding models on finite or infi-
nite lattices [20]–[22], and even minimal models with 2 × 2 Hamiltonians. In each case,
the non-Hermitian Hamiltonian H, which is typically an unbounded operator or a matrix,
commutes under the combined operations of parity P and time-reversal T . This antilinear
PT -symmetry guarantees purely real or complex conjugate eigenvalues [23], as we shall see
in detail later.

After their experimental realizations in numerous platforms, it has become clear that PT -
symmetric Hamiltonians accurately model open systems with balanced, spatially separated
gain (VI > 0) and loss (VI < 0) [24]. If we begin from the Hermitian Hamiltonian H0
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with real spectrum and orthogonal eigenfunctions, as the imaginary part of the potential
VI(x) is increased, two or more purely real eigenvalues will develop into complex-conjugate
pairs. This eigenvalue degeneracy, called exceptional point (EP) degeneracy [25]–[27], is
characterized by the coalescence of corresponding eigenfunctions and lowering of the rank
of the Hamiltonian operator. The transition across the EP from a real spectrum to one
with complex-conjugate eigenvalues is called the PT -symmetry breaking transition, since
the corresponding eigenfunctions lose that symmetry, i.e., PTu(x) ̸= u(x).

We will investigate a two-dimensional continuum model on a compact domain subject
to hard-wall (vanishing eigenfunctions) boundary condition in the presence of constant PT -
symmetric complex-valued potentials. In one dimension, such potential leads to a single
PT -symmetry breaking transition when the strength of the imaginary part of the potential,
γ, exceeds a threshold γPT set by the Hermitian Hamiltonian H0. We will show that the two-
dimensional case differs dramatically. It leads to multiple transitions where pairs of stable
eigenmodes change into amplifying and leaky eigenmodes (complex conjugate eigenvalues)
as γ is increased. Moreover, we find PT -reentrant behavior where, as the pure gain-loss
potential VI is increased, amplifying and leaky modes become stable again (purely real
eigenvalues). This complex behavior can be further explained by varying the sizes and
distances of the subdomains.

This thesis is structured as follows. In Section 2, through elementary mathematical
arguments, we understand that commuting operators preserve each other’s eigenspaces. We
then use this fact to study the parity and PT symmetric configurations in Sections 3 and 4.
In Section 5, we outline of the numerical procedure we use for discretization. Results on the
spectra, including eigenfunctions, for both our P -symmetric model of Section 6, as well as our
PT -model of Section 4, across multiple PT -breaking and restoring transitions are collected
in Section 7. Finally, Section 8 concludes the paper with a discussion on exceptional points
and their relation to our results. Note that the original numerical findings obtained during
this work, described in Section 7, are also being published in a journal paper [28]. The
materials in the remaining sections do not substantial overlap with this publication.

2 Commuting operators
Let X be a vector space over C, and consider the following linear operator, A : X → X.

A nonzero u ∈ X, satisfying Au = λu for some λ ∈ C is called an eigenvector, and λ is
called the corresponding eigenvalue. We define the corresponding eigenspace EA

λ by EA
λ =

{u ∈ X : Au = λu}.
A subspace U ⊆ X is called an invariant subspace of A if

AU ⊆ U,

where AU = {Au : u ∈ U}. The eigenspace EA
λ is an invariant subspace of A, i.e,

AEA
λ ⊆ EA

λ . (1)

Indeed, (1) is immediately seen; let x ∈ EA
λ , and y = Ax. Then, Ay = A(Ax) = A(λu) = λy.

In other words, y ∈ EA
λ , thus showing that AEA

λ ⊆ EA
λ .
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Next, consider an additional linear operator, B : X → X, with the added property that
A and B commute, which we write as

AB = BA. (2)

For linear operators on a finite dimensional space (those given by matrices) or for bounded
linear operators A,B on an infinite dimensional space X, this means that

ABu = BAu, for all u ∈ X. (3)

We also allow linear operators A on X which are defined only on a subspace dom(A) ⊂
X called the domain of A. A subspace U ⊂ X is invariant under an unbounded A if
A(U ∩ domA) ⊂ U . Eigenvector and eigenspaces of unbounded operators are, by definition,
contained in their domain. An unbounded linear operator A is said to commute with a
bounded linear operator B [25, p. 171] if whenever u is in dom(A), the vector Bu is also in
dom(A) and

ABu = BAu, for all u ∈ dom(A). (4)

Thus, to summarize, when we write (2), we mean that either (3) holds or (4) holds depending
on whether A is bounded or unbounded, respectively.

Next, let us discuss the often-made statement that “commuting operators preserve each
other’s eigenspaces.” More precisely, we prove the following result.

Proposition 2.1. If (2) holds, then every eigenspace of A is an invariant subspace of B.

Proof. We need to prove that when A and B commute,

BEA
λ ⊆ EA

λ . (5)

Consider an eigenvector x ∈ EA
λ . Then, since Ax = λx, applying B to both sides, BAx =

Bλx. By commutativity, ABx = λBx. This shows that Bx ∈ EA
λ . Hence (5) holds.

Corollary 2.2. Suppose (2) holds and dimEA
λ = 1. Then, given any eigenvector x ∈ EA

λ ,
the vector Bx is a scalar multiple of x.

Proof. For any x ∈ EA
λ , applying B to Ax = λx, we get BAx = Bλx, or ABx = λBx,

by commutativity. Thus both x and Bx are in the eigenspace EA
λ , which is given to be of

dimension one. Hence, they must be collinear.

The final result needed is for the case when B is an antilinear bounded operator instead
of a linear operator as assumed above, i.e., for α ∈ C and x, y ∈ X, the operator has the
property that

B(αx+ y) = ᾱBx+By.

The definition of commutativity of an antilinear B with a (bounded or unbounded) linear
operator A is exactly the same as what we have described above.

Proposition 2.3. If an antilinear bounded operator B and a linear operator A satisfy the
commutativity property (2), then the following statements hold:
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1. If λ is a real eigenvalue of A and x is a corresponding eigenvector, then both x and Bx
are in EA

λ . In particular if dimEA
λ = 1, then both x and Bx are collinear.

2. If λ is a complex eigenvalue of A and x is a corresponding eigenvector, then λ̄ must be
an eigenvalue of A and Bx must be a corresponding eigenvector.

Proof. Given that Ax = λx for some x ∈ X, applying B to both sides,

BAx = Bλx = λ̄Bx

by the antilinearity of B. Hence, by commutativity,

ABx = λ̄Bx.

Both statements of the proposition follow as a result.

3 Parity Symmetry
In this section, we describe a commonly occurring symmetry operator that commutes

with a differential operator. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary
with reflection symmetry about the second axis, i.e., any point in Ω when reflected about
the second axis also lies in Ω, and

{(−x1, x2) : (x1, x2) ∈ Ω} = Ω.

Let L2(Ω) denote the set of complex-valued functions f on Ω whose absolute value |f | is
square integrable on Ω. Define the parity operator P : L2(Ω) → L2(Ω) by

(Pf)(x1, x2) = f(−x1, x2),

i.e., P mirrors functions on Ω about the second axis. Let (·, ·) denote the (complex) L2(Ω)-
inner product, that is, given u, v ∈ L2(Ω), their inner product is given by the integral

(u, v) =

∫
Ω

u(x1, x2) v(x1, x2) dx1dx2. (6)

The accompanying norm is ∥u∥ = (u, u)1/2. By a change of variable in the integrals, using
the reflection symmetry of Ω, one can prove that for all u, v ∈ L2(Ω),

(Pu, v) = (u, Pv),

∥Pu∥ = ∥u∥,
(7)

i.e., P is a linear, self-adjoint, and unitary operator in L2(Ω).
Next, consider the Laplacian operator, denoted by ∆, on this domain, supplemented with

zero boundary conditions. It is an unbounded linear operator on L2(Ω) with

dom(∆) = H2(Ω) ∩ H̊1(Ω) ⊂ L2(Ω). (8)

Here, we use standard notation (see [29]–[31]) for Sobolev spaces Hk(Ω) of complex-valued
functions and the subspace H̊1(Ω) of H1(Ω)-functions with zero boundary values in the
appropriate sense.
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1
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x1
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d

τ

DL DR

DC

Ω

Figure 1: An example with reflection symmetry (P -symmetry). Geometrical parameters of
this P -symmetric model are the domain Ω of radius 1, gain medium (green) subdomains DL

and DR of radii ρ, placed d units apart, and a balanced lossy (red) medium subdomain DC .

Lemma 3.1. The parity operator P and the Laplacian ∆ commute, i.e, ∆P = P∆.

Proof. Per (4), we must prove that whenever u ∈ dom(∆), the function Pu is also in dom(∆)
and that ∆Pu = P∆u holds.

Let u ∈ dom(∆). By the chain rule,

∂

∂x1

u(−x1, x2) = − ∂u

∂x1

(−x1, x2).

i.e., ∂x1Pu = −P∂x1u. Additionally, ∂x2Pu = P∂x2u. Thus, Pu is in H1(Ω) if and only if u
is in H1(Ω). Higher order derivatives can be similarly treated. Hence, Pu ∈ dom(∆).

By repeated application of chain rule,

(∆Pu)(x1, x2) =

(
∂2

∂x2
1

+
∂2

∂x2
2

)
u(−x1, x2)

=

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
(−x1, x2) = (P∆u)(x1, x2),

thus proving the result.

Consider the problem of finding a nontrivial complex-valued eigenfunction u on Ω and a
complex number λ such that

Hu = λu, in Ω, (9a)
u = 0, on the boundary ∂Ω, (9b)

where
H = −∆u+ V u. (10)
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We say H is P -symmetric if
PH = HP. (11)

Note that H = −∆u + V u is an unbounded operator on L2(Ω) with dom(H) = dom(∆) as
specified in (8). Suppose

V (−x1, x2) = V (x1, x2), (x1, x2) ∈ Ω, (12)

i.e., the potential V is reflection-symmetric. If we also denote the operator u 7→ V u by
simply V , we make the following elementary observation.

Lemma 3.2. Suppose (12) holds. Then the parity operator P commutes with the V operator.

Proof. Similar to the proof of Lemma 3.1, we begin by applying P to V u, to see P (V u) =
V (−x1, x2)u(−x1, x2). By (12), since V (−x1, x2) = V (x1, x2), we immediately have

P (V u)(x1, x2) = V (x1, x2) (Pu)(x1, x2).

Thus, V and P commute.

Proposition 3.3. If P is the parity operator, H is as defined in (10) on a reflection-
symmetric Ω, and V satisfies (12), then HP = PH.

Proof. Let u ∈ dom(H). It is easy to verify that Pu ∈ dom(H). By applying P to the
definition Hu = −∆+ V u,

PHu = P (−∆u+ V u)

= −∆Pu+ P (V u) = HPu,

by Lemma 3.1 and Lemma 3.2.

Corollary 3.4. Under the assumptions of Proposition 3.3, if x ∈ EH
λ , then Px ∈ EH

λ .

Proof. This follows immediately from Proposition 2.1 since H and P commute by Proposi-
tion 3.3.

The significance of Corollary 3.4 is that any eigenfunction of H after reflection continues
to be an eigenfunction of H with the same eigenvalue λ. In particular, if the eigenspace of
λ is one-dimensional, as in Corollary 2.2, then eigenfunctions of the eigenvalue λ must be
reflection-symmetric.

We conclude this section with a particular example of H, a Schrödinger operator that we
will focus on later for further study. Let Br(p1, p2) = {(x1, x2) ∈ R2 : (x1−p1)

2+(x2−p2)
2 <

r2} denote the disk of radius r centered at p, where p = (p1, p2) ∈ R2 and put

Ω = B1(0, 0).

We see this Ω is reflection-symmetric. The potential V is illustrated by the configuration in
Figure 1, and is defined using a real parameter γ by

V (x1, x2) =


1 + γi, if (x1, x2) ∈ DL, DR

1− 2γi, if (x1, x2) ∈ DC ,

1, otherwise,
(13)
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where DL, DR, and DC are the subdomains indicated in Figure 1, and i is the imaginary unit.
Clearly, the property (12) holds for this V . Hence, Proposition 3.3 and Corollary 3.4 holds
for this example. If we model optical fibers with three cores, two of which balance out the
third, the configuration of Figure 1 can arise. This Schrödinger operator H then arises when
simplifying the time-harmonic Maxwell system using the translational symmetry of the fiber
to compute the so-called TM modes: see e.g., the derivation in [29, Lecture Notebook G].

4 PT -Symmetry
In this section, we consider the problem of finding a nontrivial complex-valued function

u on Ω and a complex number λ such that

Au = λu, in Ω, (14a)
u = 0, on the boundary ∂Ω, (14b)

where A = −∆u + V u. This is a similar type of Schrödinger operator as in the previous
section, differing only in that V is no longer reflection symmetric. Instead, the operator
u 7→ V u (which we continue to denote by V ) commutes with an antilinear operator. We will
describe this through the following example, which we will study in further detail.

1

ρ
x1

x2

d

DL DR

Ω

Figure 2: An example of PT symmetry. Geometrical parameters of this P symmetric model
are the domain Ω of radius 1, gain medium (green) subdomain DL and a lossy medium (red)
subdomain DR of radii ρ, placed d units apart.

Given a configuration like Figure 2, we set V using a given real parameter γ by

V (x1, x2) =


1− γi, if (x1, x2) ∈ DR

1 + γi, if (x1, x2) ∈ DL

1, otherwise,
(15)
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where DL, DR are as indicated in Figure 2, and i is the imaginary unit.
Let T : L2(Ω) → L2(Ω) be the antilinear operator given by

(Tf)(x1, x2) = f(x1, x2).

Here, the overline indicates complex conjugation. This T is often called the time-reversal
operator. This terminology can be understood from the time-harmonic ansatz. Namely, given
a real-valued function f̂(x, t) of space x and time t, suppose its time variation is harmonic.
Meaning, there is a complex-valued f(x) satisfying

f̂(x, t) = Re(f(x)eiωt)

=
1

2
(f(x)eiωt + f(x)e−iωt).

Now, if we change the sign of t, then

f̂(x,−t) =
1

2
(f(x)e−iωt + f(x)eiωt)

= Re(f(x)eiωt).

Therefore, time-reversal of f̂ in the time-harmonic regime is expressed simply by the complex
conjugation of f .

The composition P ◦ T , simply written as PT , is antiunitary. An operator H is said to
be PT -symmetric if (2) holds with A = H and B = PT , i.e.,

PTH = HPT. (16)

Of interest to us is the (unbounded) operator A defined by

Au = −∆u+ V u

for all u ∈ dom(A) := H2(Ω) ∩ H̊1(Ω). Here, Hk(Ω) denotes the Sobolev space of square-
integrable functions, all of whose derivatives of order at most k ≥ 1 are also square integrable,
and H̊1(Ω) denotes the subspace of H1(Ω)-functions that vanish on the boundary ∂Ω.

Lemma 4.1. The Laplacian ∆ commutes with PT , i.e, ∆ (PT ) = (PT ) ∆.

Proof. By the results of Lemma 3.1, we already see that P commutes with ∆. Therefore,
let us just show that T commutes with ∆. Let u be a complex-valued function on Ω. We
see that

∆(PT ) u(x1, x2) =

(
∂2

∂x2
1

+
∂2

∂x2
2

)
(PT ) u(x1, x2).

Again, by repeated application of the chain rule, and recalling that ∆ and P commute, we
get

∆(PT ) u(x1, x2) =
∂2

∂x2
1

(−x1, x2) +
∂2

∂x2
2

(Tu)(−x1, x2),

=
∂2u

∂x2
1

(−x1, x2) +
∂2u

∂x2
2

(−x1, x2),

= PT (∆u)(x1, x2).

In conclusion, ∆(PT ) = (PT )∆.

9



Lemma 4.2. The potential V , as defined in (15), commutes with PT .

Proof. We prove this similarly to Lemma 4.1, and use the results of Lemma 3.2. We compute

V (PTu)(x1, x2) = V (x1, x2) u(−x1, x2)

= V (−x1, x2) u(−x1, x2)

= PT (V u)(x1, x2),

where we used that V (−x1, x2) = V (x1, x2). Therefore, we have that V (PT ) = (PT )V .

Proposition 4.3. Let V be as defined in (15) and A = −∆+ V . Then

PTA = APT. (17)

Consequently, for every eigenvalue λ of A with corresponding eigenfunction u ∈ dom(A),
the following statements hold:

1. If λ is a real eigenvalue, then both u and PTu are in EA
λ . In particular if dimEA

λ = 1,
then both u and PTu are collinear.

2. If λ is a complex eigenvalue, then λ̄ must be an eigenvalue of A having PTu as its
eigenfunction.

Proof. The commutativity (17) is an immediate consequence of Lemmas 4.1 and 4.2. The
remaining statements then follow from Proposition 2.3 setting the antilinear operator B to
PT .

5 Numerical discretization by finite element method
The starting point [29], [31] for a Galerkin discretization of a partial differential operator

is a weak formulation. We can develop the weak form using integration by parts. Given
smooth complex-valued functions u, v defined on Ω, by the integration by parts formula, we
have ∫

Ω

∇u ∇v dx1dx2 +

∫
Ω

∆u v dx1dx2 =

∫
∂Ω

ν · ∇u v ds,

where ν is the unit outward normal vector to ∂Ω. Using the notation for L2 inner product
defined in (6), for any smooth test function v vanishing on the boundary ∂Ω, this gives
(∆u, v) + (∇u,∇v) = 0. Thus,

(Au, v) = (−∆u+ V u, v)

= (−∆u, v) + (V u, v)

= (∇u,∇v) + (V u, v).

Therefore, the equation Au = λu (see (14)) implies that for all such v,

(∇u,∇v) + (V u, v) = λ(u, v). (18)
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This is the weak formulation of the eigenvalue equation Au = λu.
The finite element method imposes the same equation on the Lagrange finite element

space Xh consisting of continuous functions, vanishing on ∂Ω, which are polynomials of
degree at most p in each mesh element. Here, the mesh is a geometrically conforming mesh
of triangles subdividing the domain, respecting the material interfaces, with curved elements
near the circular boundaries and interfaces. The subscript h indicates the maximal diameter
of all elements in the mesh. Consequently, as h becomes smaller, or as p becomes larger, the
discretization becomes finer and dimXh becomes larger.

Our numerical method computes the eigenvalues of a discretization Ah : Xh → Xh of the
infinite-dimensional operator A, defined by

(Ahuh, vh) = (∇uh,∇vh) + (V uh, vh)

for all uh, vh ∈ Xh. Namely, we compute an eigenvalue approximation λh and eigenfunction
uh satisfying

Ahuh = λhuh. (19)

The (right) eigenfunction uh ∈ Xh in (19) is equivalently given by

(Ahuh, vh) = λh(uh, vh),

for all vh ∈ Xh.
To distinguish between the two main examples of potentials we focus on, let us denote

by Hh : Xh → Xh as the operator arising from the reflection-symmetric potential, namely

(Hhwh, vh) = (∇wh,∇vh) + (V wh, vh) with V as in (13), (20)

and Ah as the operator on Xh defined using the potential which is not reflection symmetric,
namely,

(Ahwh, vh) = (∇wh,∇vh) + (V wh, vh) with V as in (15), (21)

for all wh, vh ∈ Xh.
Both of these discretized operators are defined on general finite element meshes without

any symmetry constraints. As the maximal diameter of mesh elements denoted by h goes
to 0, we expect discrete eigenvalues and eigenfunctions converge to their exact counterparts
under further conditions. This can be seen in our numerical experiments. Proving this using
finite element theory appears to be possible, but is beyond the scope of this thesis.

The case of reflection symmetric meshes offer further interesting applications of our prior
discussions. Examples of such meshes are shown in Figure 3. We created such meshes
using the Netgen mesh generator [32]. Since it does not have a built-in option to create
symmetric meshes, we wrote a script which uses Netgen to mesh the right half of the domain,
then reflect each mesh entity (elements, edges, points, labels, etc) about the vertical axis,
and merge the halves into a consistent Netgen mesh structure. As we shall see now, on
such reflection-symmetric meshes, the resulting discrete operators preserve commutativity
and accompanying spectral structures that we saw previously for the exact (undiscretized)
operators.

Lemma 5.1. Suppose the mesh is reflection symmetric and let uh and vh be in the Lagrange
space Xh with respect to such a mesh. Then the following holds:

11



Figure 3: An example of a reflection-symmetric mesh and illustration of basis functions
(finite element shape functions) of the Lagrange space on such a mesh. The last plot shows
a reflection-symmetric shape function, where the reflection of the shape function in the first
plot is the shape function in the second plot.

1. Puh ∈ Xh and Tuh ∈ Xh.

2. (Puh, vh) = (uh, Pvh).

3. (∇Puh,∇vh) = (∇uh,∇Pvh).

4. (Tuh, vh) = (uh, T vh).

5. (∇Tuh,∇vh) = (∇uh,∇Tvh).

Proof.
(1). We can see that each basis function of the Lagrange space, upon an application of

P , is either unchanged or results in another basis function of Xh, due to the symmetry of
the mesh (the former case is illustrated in the last plot of Figure 3).

(2). The second statement follows from the first and by noting that∫
Ω

(Puh)(x1, x2)vh(x1, x2) dx1dx2 =

∫
Ω

uh(−x1, x2)vh(x1, x2) dx1dx2,

and by changing the variable x1 to −x1,∫
Ω

(Puh)(x1, x2)vh(x1, x2) dx1dx2 =

∫
Ω

uh(x1, x2)vh(−x1, x2) dx1dx2,

=

∫
Ω

uh(x1, x2) (Pvh)(x1, x2) dx1dx2,

so (Puh, vh) = (uh, Pvh).
(3). The proof of the third statement follows in a similar manner, with an additional

application of the chain rule:∫
Ω

(∇Puh)(x1, x2)∇vh(x1, x2) dx1dx2 =

∫
Ω

(
−∂x1uh(−x1, x2)
∂x2uh(−x1, x2)

)
· ∇vh(x1, x2),

=

∫
Ω

(
−∂uh

∂x1

)
(−x1, x2)

(
∂v̄h
∂x1

)
(x1, x2) +

(
∂uh

∂x2

)
(−x1, x2)

(
∂v̄h
∂x2

)
(x1, x2) dx1dx2,
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which after performing the change of variable (x1 → −x1), simplifies to∫
Ω

∇uh(x1, x2)(∇Pvh) dx1dx2.

Thus we see that (∇Puh,∇vh) = (∇uh,∇Pvh).
(4). We see that∫

Ω

(Tuh)(x1, x2) vh(x1, x2) dx1dx2 =

∫
Ω

uh(x1, x2)vh(x1, x2) dx1dx2,

which becomes
(Tvh, uh) = (uh, T vh),

as desired.
(5). The proof of this item follows after using the fact that differentiation and conjugation

commute.

Using the lemma, we now proceed to prove two results concerning the commutativity
of the bounded operators A and H with the appropriate symmetry operators on the finite-
dimensional space Xh.

Proposition 5.2. Assume that the mesh is reflection symmetric. Then PHh = HhP on
Xh.

Proof. To prove this, we use the earlier results as follows. For any uh, vh ∈ Xh,

(PHhuh, vh) = (Hhuh, Pvh) by Lemma 5.1(2),
= (∇uh,∇Pvh) + (V uh, Pvh)

= (∇Puh,∇vh) + (PV uh, vh), by (7) and Lemma 5.1(3),
= (∇Puh,∇vh) + (V Puh, vh), by Lemma 3.2.

This proves that

(PHhuh, vh) = (HhPuh, vh)

for all uh, vh ∈ Xh, as desired.

13



Proposition 5.3. Assume that the mesh is reflection symmetric. Then PTAh = AhPT on
Xh.

Proof. We prove this similarly to Proposition 5.2. For any uh, vh ∈ Xh,

(PTAhuh, vh) = (TAhuh, Pvh), by Lemma 5.1(2),

= (Ahuh, TPvh), by Lemma 5.1(4),

= (Ahuh, PTvh), since P and T commute,

= (∇uh,∇PTvh) + (V uh, PTvh)

= (∇Puh,∇Tvh) + (PV uh, T vh) by Lemma 5.1(3),
= (∇PTuh,∇vh) + (PTV uh, vh) by Lemma 5.1(4),
= (∇PTuh,∇vh) + (V PTuh, vh) by Lemma 4.2,
= (AhPTuh, vh),

which proves the stated commutativity on the space Xh.

The previous results show the following structure-preservation properties for symmetric
meshes. The commutativity property HP = PH (from the undiscretized case Proposi-
tion 3.3) is inherited by the discrete case, HhP = PHh (seen in Proposition 5.2). The
commutativity property APT = PTA (from the undiscretized case Proposition 4.3) is in-
herited by the discrete case as AhPT = PTAh (seen in Proposition 5.3). Therefore we are
able to apply the general results from Section 2 to the discretization for these cases.

We conclude this section with a final word on the numerical methodology we used for
solving the discrete eigenproblems. All eigenproblems in this paper are being numerically
solved using a contour integral eigensolver, known as FEAST [33], [34]. This iterative eigen-
solver solves the eigenproblem for a selected cluster of eigenvalues, within a contour. FEAST
is also capable of computing its corresponding eigenmodes. This algorithm is suitable for
not only Hermitian, but also non-Hermitian structures such as the ones considered in this
paper. The numerical results presented in the following sections have been computed using
an open-source implementation of FEAST in Python [35], built atop the open-source finite
element library NGSolve [36]. We use NGSolve’s mesh and solution visualization capabili-
ties to report plots of finite element functions that represent eigenmodes of the P and PT
symmetric models. We use standard Python visualization tools such as matplotlib for plots
like band diagrams and eigenflows.

6 Results from the P -symmetric model
In this section, we report on our computations of the spectrum of the discretized operator

H in (20).
Let us begin with the base case of γ = 0, or V = 1, from (13). In this case, solutions can

be computed semi-analytically without any numerical computation. Eigenfunctions admit
the separable form u(r, θ) = R(r)Θ(θ) in polar coordinates r, θ, where

R(r) = Jn(r
√
λ− 1), Θ(θ) = einθ,
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Figure 4: Bands showing the variations in the first seven eigenvalues as the parameter γ
increases. Here, d, τ = 0.3, and ρ = 0.1.

for some integer n. The boundary condition u|∂Ω = 0 implies Jn(
√
λ− 1) = 0, which yields

expressions for eigenvalues λ in terms of the ℓth zero µn,ℓ of Jn. Namely, λ is one of

λn,ℓ = 1 + µ2
n,ℓ, n = 0, 1, 2, . . . , ℓ = 1, 2, . . . . (22)

In particular, the lowest seven eigenvalues in ascending order are

λ0,1 ≈ 6.783,

λ1,1 ≈ 15.682 (multiplicity 2),
λ2,1 ≈ 27.375 (multiplicity 2),
λ0,2 ≈ 31.471,

λ3,1 ≈ 41.707 (multiplicity 2),
λ1,2 ≈ 50.219 (multiplicity 2),
λ4,1 ≈ 58.523 (multiplicity 2),

(23)

and further eigenvalues can be easily generated from the Bessel zeros by the formula (22).
The semi-analytically-found eigenvalues at γ = 0 provide input initial locations for

computing eigenvalue trajectories as γ increases. They also serve to verify our numerical
methodology—our numerically computed eigenvalues were observed to be very close to the
exact semi-analytically found values in the γ = 0 case. How each eigenvalue changes as γ
increases from zero is shown in Figure 4. Where the eigenvalue bands in Figure 4 intersect
the γ = 0 axis, the computed values are very close to the above listed semi-analytically
found values. Afterward, as γ increases, we no longer have an analytical representation of
the eigenvalues. The initially real eigenvalues become complex as γ increases. From the
plots of the imaginary parts in Figure 4, the complex eigenvalues clearly do not appear to
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Figure 5: All solutions for a P symmetric model at γ = 100, of order 4. Here, d, τ = 0.3,
and ρ = 0.1. Not all complex eigenvalues appear as complex conjugate pairs.

Figure 6: Two P symmetric intensities for ρ, τ = 0.1, d = 0.3, whose eigenvalue solutions are
15.68 and 41.73.
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come in complex conjugate pairs. To further confirm this, we calculated many eigenvalues
for a fixed γ. Specifically, in Figure 5, we show the spectrum for γ = 100, computed using a
Lagrange space Xh of polynomial degree p = 4. Clearly, many eigenvalues are complex and
not all come in complex conjugate pairs.

Before concluding this section, we examine the intensities (square of the absolute values)
of a few eigenmodes of Hh, shown in Figure 6. These eigenmodes were obtained with
parameters p = 4, ρ = 0.1, d = 0.3, τ = 0.3 for eigenvalues λ = 15.68, and 41.73. We can
note that both the eigenmodes are reflection symmetric. This is in accordance with the
prior theory leading to Corollary 3.4, which predicted that eigenfunctions must be reflection
symmetric.

7 Spectra from the PT -symmetric model
In this section, we present our computational findings on the spectra of the operator Ah

defined in (21).
Again, we begin with the base case mentioned in Section 6, with V = 1 from (15). In

Figure 7, we track (real and imaginary parts of) the lowest seven eigenvalues as a function
of the parameter γ. Note that all eigenvalue bands at γ = 0 start at the values listed in (23).
While the eigenvalues do vary as γ increases, initially they all remain real. This is quite
unlike the behavior we saw in the P -symmetric case example of Figure 4.

As γ is increased further, at some critical threshold value of γ, often called the “breaking
threshold”, some eigenvalues become complex, as seen in Figure 7. It is also clear from the
plot of the imaginary parts in the same figure that once they become complex, they actually
occur in complex conjugate pairs. This is unlike the behavior in the previous Figure 4.
However, it is entirely in accordance with the theory in Proposition 4.3. Note, that the first
three eigenvalue bands in Figure 7 did not exhibit complex bifurcations in the range of γ
considered. However, a few of the eigenvalues higher up in the spectrum exhibited breaking
thresholds at what appear to be “exceptional points.” We will define an exceptional point
later, in Section 8.

An unusual finding in Figure 7 is the presence of multiple re-entrant points. Namely,
after the few real eigenvalues have bifurcated into the complex plane, by further increasing
the gain-loss parameter γ, one can apparently make them purely real again, at a higher value
of γ, called the re-entrant point. This phenomena occurs for multiple eigenbands in Figure 7.
To show this clearly, we have included zoomed in two-dimensional views in Figures 7b–7c as
well as three-dimensional views for the same data in Figure 8.

Next, we see an example of how eigenfunctions change as γ is varied. We focus on the
case where d = 0.15 × 2, shown in Figure 7. Consider the two bands of real eigenvalues
meeting at a bifurcating threshold in Figure 7b, after which they become complex conju-
gates. Denoting the corresponding two eigenfunctions by u1 and u2, we can examine their
progression as γ increases through the bifurcating value. For each eigenfunction u, we plot
its intensity |u|2 in Figure 9 for selected γ-values. We conclude from Figure 9 that before the
bifurcation, in accordance with the statement of Proposition 4.3 for real eigenvalues λ with
one-dimensional eigenspace, the corresponding eigenfunction u is PT -symmetric, i.e., PTu
and u are collinear, so their intensities are P -symmetric, or reflection symmetric. We see
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(a) Eigenvalue bands showing the variations in the lowest seven eigenvalues as
the gain-loss parameter γ increases

(b)

(b) Rescaled plot, zooming into the first bi-
furcation (the first oval in Figure 7a)

(c)

(c) Rescaled plot, zooming into the last part
of Figure 7a

Figure 7: Multiple eigenvalue bifurcations for the case d = 0.15× 2, ρ = 0.1.

18



(a) 3D plot of data in Figure 7b (b) 3D plot of data in Figure 7c

Figure 8: 3D visualization composed of eigenvalues in the complex plane for each γ-value.

p = 5 Intensity |u1|2 Intensity |u2|2

γ = 96

γ = 99

γ = 102

Figure 9: Two eigenfunctions around the first breaking threshold (where the eigenvalues
become complex conjugate pairs) indicated in Figure 7b, where p is the polynomial degree.
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Figure 10: The changes in the first breaking threshold as the radius of gain-loss disks ρ is
varied.

this reflection symmetry in the first row of plots of Figure 9 corresponding to γ = 96, before
the breaking threshold, where λ is real. After the breaking threshold, in the plots of the sec-
ond row for γ = 99, the intensities of the eigenmodes no longer exhibit reflection symmetry.
This breakage of symmetry is the reason we refer to the threshold as a breaking threshold.
This is also in accordance with the statement of Proposition 4.3 for non-real eigenvalues,
which no longer guarantees that PTu and u are collinear, even if λ has a one-dimensional
eigenspace. In fact, PTu must be linearly independent from u when λ is complex since it is
an eigenfunction of a distinct eigenvalue λ̄ ̸= λ, per Proposition 4.3. The final row of Fig-
ure 9 shows that the reflection symmetry of intensities have been restored after the re-entrant
point when γ = 102.

Next, consider how first breaking threshold (often a quantity of practical interest) changes
as the radius of the gain-loss disks, ρ, is varied. The results are in Figure 10. We observe an
inverse-square relationship with ρ, in the left figure (where ρ is varied, fixing d = 0.25), and
in the right figure (where ρ is varied, and we examine three different d values). It might be
possible to explain such an inverse-square law by viewing the gain-loss disks as a distributed
version of two points in the plane where gain and loss are concentrated. Reviewing the right
graphs again, we anticipate complicated spectral variations with respect to d. For example,
for the fixed value of ρ = 0.1 we note that from the different curves of the right figure, that
the breaking threshold is not a monotonic function of d.

A more detailed picture of dependence of the first breaking threshold on d (the gain-
loss separation) emerges from further extensive computations whose results are compiled in
Figure 11. Here, d is varied, while ρ = 0.1. Note that the d values on the horizontal axis are
nonuniformly and manually chosen (after seeing the first set of results) for better resolution
of unanticipated variations. Note that in this figure, for values of d < 2ρ, the gain and loss
disks overlap. We account for this overlap by careful meshing (such an overlapping case
and accompanying mesh can be seen in Figure 12). Within the overlap, since gain and the
loss cancel each other out, the values of V are real. It follows that the breaking thresholds
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Figure 11: Variation of the first breaking thresholds with gain-loss separation distance d.

Intensity |u1,2|2, γ = 200 |u1,2|2, γ = 250 |u1,2|2, γ = 350

Figure 12: Overlapping gain-loss disks corresponding to the case d = 0.15, p = 4, ρ = 0.1.
The symmetry breakage is still visible in the second column, although it is less pronounced
when compared to the nonoverlapping case in Figure 9.
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Figure 13: As gain-loss separation distance d decreases, the initial threshold identified as the
first breaking threshold disappears, and the second becomes the first.
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are high (as seen in the figure for low d values), determined by slivers of gain and loss left
by the overlap. As d is increased, the overlap decreases (with no overlap when d > 2ρ).
This explains the initial decay of the breaking threshold values. Nonetheless, the observed
variations of the first breaking threshold as a function of d appears to be too complex for
any one simplistic explanation. Some of the complexity is explained by multiple eigenvalues
transitioning between the real and complex conjugate regimes as d varies.

For example, let us take a closer look at the apparent discontinuity in the above graph
near d = 0.3. The eigenflows in Figure 13 identify the cause of this jump as the disappearance
of a bifurcation-reentrant loop as d decreases, i.e., the initial first breaking threshold yielded
by this loop disappears, so the second breaking threshold a higher γ value suddenly becomes
the first breaking threshold.

8 Exceptional points
In the previous section, we have seen “breaking thresholds” occurring at specific parameter

values for a selected PT -symmetric model. This model, after finite element discretization,
typically creates numerical eigenproblems of size 104 × 104 or larger. It is difficult to distill
the mathematical behavior at the thresholds due to the size of the problem. Therefore, in
this section, through small (hand-computable) examples, we will find similar behavior at
points called exceptional points in the mathematical literature (defined below). This allows
us to better understand and place the behavior of the eigenflows shown in Section 7 into a
mathematically known context.

Let us define

s(γ) := the number of distinct eigenvalues of T (γ).

It is known from analytic function theory [25], [37] that s(γ) is a constant function on
compact subsets of the domain of analyticity of T (γ), except at a finite number of points,
which we define as exceptional points, or EPs, where s(γ) may take a different value.

For large eigenproblems, determining numerically whether a point is an exceptional point
is problematic; finite computational searches will likely miss EPs, as they are just a few
finitely many points in an infinite continuum of points where s ≡ constant. Therefore, we
focus on small analytic matrices T (γ) for which all details are amenable to hand calculation,
so no numerical search is involved. We proceed to demonstrate the behavior near exceptional
points visually through some small examples.

Example 8.1. Let T (γ) be defined by [25, Example 1.1(a)][
1 γ
γ −1

]
.

Its eigenvalues are
−
√
γ2 + 1, +

√
γ2 + 1.

Clearly, we see that s(γ) of this example is 2, except for at two exceptional points, ±i.
To visualize the exceptional points in the continuum of remaining eigenvalues, we let

t ∈ R, and consider λ±(γ(t)), along the curve γ(t) = it, a curve in the complex plane that
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Figure 14: A visualization on the parameterized complex plane (right), as well as two-
dimensional plot of the real and imaginary parts of λ±(γ(t)), as a function of t, along
γ(t) = it (left).

Figure 15: We see how λ+(γ(t)) becomes λ−(γ(t)) as the parameter t increases. A similar
change occurs for λ−(γ(t)). This signifies that as the cycle is traversed, the ordered eigenvalue
set undergoes a permutation.

24



passes through both EPs. Then, λ±(γ(t)) can be visualized as curves in three dimensional
plots where the xy-plane represents C and the z axis represents parameter t. The first plot
of Figure 14 gives such a visualization. Another way to visualize the eigenvalues is to plot
the real and imaginary parts of the λ±(γ(t)) as a function of t. This is shown in the second
plot of Figure 14. Clearly, both these plots show bifurcation behaviors that are similar to
the behavior near the symmetry breaking thresholds we have seen in the eigenflows of the
previous section (such as Figure 7).

This example also shows additional interesting behavior near its exceptional point, as
pointed out in [25]. Eigenvalues can undergo a reordering along a path which encircles
an exceptional point. We can visualize this phenomenon in this example by examining how
eigenvalues change along a different curve, this time circling around the exceptional point +i,
namely,

γ(t) = i+ εeit,

for some small ε > 0. As we traverse this path around i, the eigenvalue trajectories λ±(γ(t))
encircle zero, as shown in Figure 15. More interestingly, the ordered tuple of eigenvalues
(λ−(γ(t)), λ+(γ(t))) reverses its order after encircling half the path around zero.

Finally, we consider the eigenvectors near an exceptional point. Diagonalizing T (γ) as
the product of V DV −1, we obtain

V =

[
1−
√

γ2+1

γ

√
γ2+1+1

γ

1 1

]
.

We see that eigenvectors, which are the columns of V , become collinear at the exceptional
points of this example. For instance, at γ = +i,

V =

[
−i −i
1 1

]
.

This shows that in this example’s EP, geometric multiplicity is strictly less than algebraic
multiplicity. Namely, the former reduces to 1 at the EP, while the latter remains at 2. How-
ever, as we shall see not all exceptional points show this reduction in geometric multiplicity.

Example 8.2. This is a simpler example, from [25, Example 1.1(b)], which we include to
show that a reduction in geometric multiplicity does not need to occur at an EP. Let T (γ)
be defined by [

0 γ
γ 0

]
.

Its eigenvalues are
−γ, +γ.

Once again, we see that s(γ) of this example is 2, except at γ = 0, meaning there is one
exceptional point. We can see by diagonalizing T = V DV −1, that the eigenvectors of T can
be chosen independently of γ, as the columns of

V =

[
−1 1
1 1

]
.
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Figure 16: The real and imaginary parts of λ±(it), as a function of t, along γ(t).

Thus, the geometric multiplicity is always 2, as there are two linearly independent eigenvec-
tors. Algebraic multiplicity must therefore be at least 2 (and is exactly 2), as T is 2 × 2.
Therefore, unlike the previous example, we do not see any discrepancy between the geometric
and algebraic multiplicities in this example.

A visualization of the two eigenvalues along the path

γ(t) = t,

which includes the exceptional point, is shown in Figure 16.

Example 8.3. Another simple example is offered by T (γ) be defined by[
0 γ
0 0

]
,

mentioned in both [25, Example 1.1(c)] and [38, Example 2.9]. Clearly, the eigenvalues
here are 0 for all γ. This means s(γ) ≡ 1 for all γ. This is an example of T (γ) with no
exceptional points. Note, the algebraic multiplicity of the zero eigenvalue is two for all γ.
Additionally, note that T (γ) is permanently degenerate, as s(γ) < 2 (recall that a square
N ×N matrix-valued function T (γ) is said to be permanently degenerate when s(γ) < N).

Example 8.4. A closely related example is the T (γ) defined by [25, Example 1.1(d)][
1 γ
0 0

]
.

The eigenvalues are the diagonal entries again, but this time, there are two distinct eigen-
values 0 and 1, no matter the value of γ . Hence the matrix is not permanently degenerate.
There are no exceptional points. Thus, taking into account Example 8.3 also, the lack of
exceptional points is not correlated with the operator being permanently degenerate.
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Figure 17: Visualization of the spectrum near an EP of Example 8.6. λ±(γ(t)), when γ(t) = t
(left). Visualization on the parameterized complex plane (right), as well as two-dimensional
plots of the real and imaginary parts of λ±(γ(t)), when γ(t) = t (left).

Example 8.5. Yet another similar example is the T (γ) defined by [25, Example 1.1(f)][
γ 1
0 0

]
.

The eigenvalues are the diagonal entries again, namely 0 and γ, both analytic functions of
γ in the entire complex plane. The number of distinct eigenvalues is s(γ) ≡ 2, except at the
exceptional point γ = 0.

Example 8.6. Consider the T (γ) defined by[
ε+ γ ρeiα

−ρe−iα ε− γ

]
,

for ε, ρ, α ̸= 0. This example [38, Example 2.10] arises from a simplified model of unidirec-
tional invisibility made possible using PT symmetry. Its eigenvalues are

ε+
√

γ2 − ρ2, ε−
√

γ2 − ρ2, (24)

and corresponding eigenvectors are[(
−γ +

√
(γ2 − ρ2)

)
ρ−1eiα

1

]
,

[(
−γ −

√
(γ2 − ρ2)

)
ρ−1eiα

1

]
. (25)

We see from (24) that s(γ) = 2, except when γ = ±|ρ|, which are the exceptional points. At
these EPs, it is clear from (25) that the geometric multiplicity reduces to 1.

Next, fixing ε = ρ = α = 3, let us visualize the spectral behavior near an EP. Con-
sider λ±(γ(t)), along the real line γ(t) = t, which passes through the EPs. Two types of
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visualization (as explained in Example 8.1) of the resulting spectral variations are shown in
Figure 17.

From the plots of Figure 17, we clearly see a bifurcation of the spectra from real to
complex conjugates at γ(t) = t = −|ρ| = −3 and a re-entry from complex conjugates to
real spectrum at γ(t) = t = +|ρ| = +3. This is similar to the behavior in Figure 7 for
the higher dimensional eigenproblem we studied numerically. In the first plot of Figure 17,
λ− (orange) overlaps λ+ (blue), and Im(λ−) (orange) overlaps Im(λ+) (red) in the second
plot. In the second plot, the overlaps are seen more clearly. Additionally second plot shows
a sudden switching between the imaginary parts of λ+ and λ− that occurs midway through
the complex conjugate region.

Through these examples, we have seen that the behavior of the large and more compli-
cated eigenproblems, unearthed in the previous section through extensive numerical studies,
can also be reproduced, to some extent, in small 2 × 2 examples. In particular, we found
analogs of both breaking thresholds and re-entrant points through the study of exceptional
points of analytic 2× 2 matrix functions.
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