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Abstract 
 

Continued aggressive scaling of electronic technology poses obstacles for maintaining 

circuit reliability.  To this end, analysis of reliability is of increasing importance.  Large scale 

number of inputs and gates or correlations of failures render such analysis 

computationally complex.  This paper presents an accurate framework for reliability 

analysis of logic circuits, while inherently handling reconvergent fan-out without 

additional complexity.  Combinational circuits are modeled stochastically as Discrete-

Time Markov Chains, where propagation of node logic levels and error probability 

distributions through circuitry are used to determine error probabilities at nodes in the 

circuit.  Model construction is scalable, as it is done so on a gate-by-gate basis. 

The stochastic nature of the model lends itself to allow various properties of the 

circuit to be formally analyzed by means of steady-state properties.  Formal verifying the 

properties against the model can circumvent strenuous simulations while exhaustively 

checking all possible scenarios for given properties.  Small combinational circuits are used 

to explain model construction, properties are presented for analysis of the system, more 

example circuits are demonstrated, and the accuracy of the method is verified against an 

existing simulation method. 
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Chapter 1: Introduction 

1.1 Motivation 

1.1.1 Shrinking Feature Size 
 

Traditionally, transient errors in circuits have been a result of issues such as power 

supply instability and mismatches between components [13].  However, continued 

reduction of device size has led to increased transient errors due to undesirable 

interference. 

Feature size reduction results in an increased amount of charge that is stored in 

circuit nodes.  Coupled with reduced noise margins, this can render circuits more 

vulnerable to manufacturing defects, transient faults due to noise, and radiation 

interference [1].   Minority carriers are created when neutrons or alpha particles collide 

with silicon.  Current pulses of short duration can result from the minority carriers if they 

are collected by a p-n junction [1].  A current pulse resulting from the collision, referred 

to as a single-event upset (SEU), may cause a bit flip in a combinational logic node or 

memory component, possibly resulting in a soft error.  A SEU can cause a soft error if it is 

greater than a cell’s critical charge.  With continued decreased feature size, attenuation 

is likewise decreased when errors propagates through the circuit.  Lower energy particles, 

another byproduct of reduced feature sizes and voltage levels, also attribute to the 

occurrence of SEUs [5]. 
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CMOS device dimensions are estimated to reach near the design limit of 50 nm by 

2020 [12].  Exhausting the scalability of silicon-based circuit has made research and 

development of nanoscale electronics a valuable and relevant field.  Recently multiple 

logic circuit technologies have demonstrated feasible potential for use in the not too 

distant future.  Nanoscale architecture will likely have to expect, at least for the present 

time, device and failure rates of 10% or more [14]. 

While performance and cost, and more recently power consumption, have been 

the predominant concerns for digital system design, technology scaling has caused a large 

emphasis to be placed on reliability evaluation.  As an emerging technology, it can be 

expected that nanoscale electronic devices and their interconnections will have 

significantly more reliability issues than current CMOS devices. Failures can occur during 

and after fabrication, making it difficult to implement a singular test and repair procedure.  

Reduced device dimensions lead to increased susceptibility of various phenomena 

interference.  

Having to work with the increasing levels of error probability, developing an 

understanding of the likelihood of errors at specific nodes can aid in better fault-tolerance, 

error reduction and improved design of the system.   
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1.1.2 Application to Architecture 
 

As previously mentioned, a fault in a circuit can result from physical properties, 

design methodology, or use of operation.  A manifestation of a fault is referred to as a 

soft error, which in a digital circuit is an incorrect Boolean logic state. If an error alters the 

intended functionality of the output of the design, it causes a failure.  A fault does not 

necessarily result in a soft error, and an error does not necessarily result in a failure.  

Some present architectures methods to handle reliability issues predominantly 

focus on the failure of the system, namely fault-tolerant design.  This entails testing and 

routing around failures, incorporating extra circuit elements into a design that can be 

used if other devices and connections fail, essentially using redundant logic for error 

prevention.  

An effective fault tolerant system is able to automatically surmount the effects of 

faults by utilizing redundant circuitry.  It can continue operating with inconsequential or 

non-degradation to performance or undesired alteration of data.  This excess circuitry 

results in degraded testability and ability to handle failures over the life of the system. 

The extra circuitry also results in extra overhead cost and has questionable ability to 

handle continuous failures over the life of the circuit. Therefore placement of redundant 

circuit must be utilized critically and ideally as minimally as possible without 

compromising the quality of the design.  Redundant circuitry is inevitably likely to be 
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desired in locations where there is a high probability of error, and at nodes that are most 

critical to the accuracy of the output of the circuit.  Likewise, minimizing unnecessary 

redundant circuitry is desirable at nodes where failure probability is low and/or the effect 

of an error at a given node is negligible to the accuracy of the output of the circuit. 

1.2 Summary of Paper  
 

Due to increased probability of error compared to existing circuitry, it can be 

beneficial to model nanoscale circuits as probabilistic instead of deterministic.  To that 

end, this paper presents a framework for modeling and analyzing the reliability of a 

sequential circuit using Markov Chains and probabilistic model checking.  The objective is 

to aid in effective estimation of soft error probability. 

Probabilistic model checking is a type of formal verification.  For stochastic systems, 

it is used for analyzing reliability and performance measures.  It is comprised of two 

primary parts: 

 the construction of a formal model of a real-life system to be analyzed  

 formal properties to check against the model revealing qualities of the system 

The formal model is a stochastic one, where measures are quantified probabilistically 

as opposed to deterministically.  Errors at nodes in the circuits are a function of two 

probabilistic elements; logic levels of primary inputs to the circuit, and noise manifested 

as errors originating at the outputs of gates. 
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Primary inputs to a combinational logic block are assumed to have a given 

probability of being either a logic high and a logic low.  This probability then propagates 

through the circuit structure to allow for any node logic level of the circuit to be expressed 

probabilistically.  Based on assumed physical properties of the gate, there is a given 

probability of failure at the output of each gate after the logical computation of that gate.    

The probability of an error at a given gate can also affect the probability of error of other 

gates, as it can propagate through the circuit. 

Using the described probabilistic elements, a stochastic model is constructed for 

the logic levels of nodes in the circuit, and stochastic models are constructed for error 

estimation at each gate output.  The stochastic models take the form of discrete-time 

Markov chains (DTMCs).   

Representing the circuit as stochastic model allows for analysis of the system via 

formal verification.  The formal verification takes the form of property specifications that 

are constructed with probabilistic computation tree logic (PCTL), a probabilistic temporal 

logic used to quantify or prove or disprove attributes of the circuit.   This framework 

allows flexibility of analysis based upon the properties that are composed.  Properties can 

reveal a wide variety of attributes of the circuit, from observability of specific errors at 

individual nodes, to the ability to see how errors at specific nodes affect errors at other 

nodes. 
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Briefly, the primary contributions of this paper are: 

 A thorough method for stochastically modeling error probability of nodes of 

combinational logic circuits.  The model inherently allows for handling 

simultaneous errors and reconvergent fan-out. 

 A framework for using properties to analyze the steady-state error probabilities of 

the stochastic model.  The analysis is flexible, scalable, and can reveal the 

relationship of failures of a specified node to failures of nodes in fan-in cone of the 

gate of interest. 

 

 

1.3 Paper Organization 
 

Chapter 2 covers the state of the art, briefly looking at various existing 

methodologies for reliability analysis of circuits, specifically probabilistic analysis. 

Chapter 3 details the presented framework for modeling combinational circuits.  

First, error representation for the model is detailed, and then the method for error 

estimation at nodes is presented. 

Simple combinational logic circuits are used as examples to demonstrate the reliability 

estimation.  Discrete-time Markov chains are introduced, as they are the implemented 

stochastic model used to represent the combinational circuits.   Construction of DMTCs 
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for error probability estimation is explained, and examples combinational circuits are 

shown.    

In Chapter 4, a framework for model checking of the system is overviewed.  

Generic properties that can be analyzed are presented and briefly discussed.  The 

methodology for estimating steady-state probabilities using DTMCs is detailed.  The 

probabilistic temporal language used to form properties to verify against the model is 

defined in terms of syntax and semantics, and what it means to ‘satisfy’ a property is 

explained. 

Chapter 5 presents case-studies.  With the DTMCs required for the model 

established, a brief introduction to the PRISM probabilistic model checker is presented, 

where the software syntax is shown and code for the previously mentioned simple 

combinational circuits are demonstrated.  Specific examples of property specifications in 

PRISM are proposed to present a framework for model checking.  The accuracy of the 

model is verified by taking a simple circuit and comparing the simple circuit implemented 

as the presented model versus implementing the circuit as a hard coded monolithic DTMC 

where each combination of logic levels and probabilities of nodes comprise a state.  The 

paper concludes with Chapter 6 briefly summarizing the work and presenting future 

possibilities.  Compliable PRISM code for models of some of the examples circuits 

presented in the paper are included in the Appendices. 
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Chapter 2: State of the Art 
 

Some recent approaches to reliability analysis for CMOS circuits have used a 

variety of probabilistic methods.  [1] presents two algorithms that each assume 

independent gate failure.  The first uses observability, as it quantifies the effect of a gate 

failure on the circuit output.  It constructs a closed-form expression for the reliability of a 

circuit as a function of failure probabilities and observabilities of the gates.  The method 

can be useful when single gate errors are more common than multiple gate errors.  

However, the primary drawback to the method is the limitation of not being able to model 

multiple simultaneous errors. 

The second algorithm presented in [1] is a single-pass algorithm that is able to 

model multiple simultaneous errors.  Gates are sorted topologically and processed in a 

single ‘pass’ from the inputs to the outputs.  Sorting topologically allows for the effects of 

multiple gates errors in the transitive fan-in cone of a gate to be calculated at the input 

of the gate.  The cumulative effect of errors at a gate output are estimated using (1) the 

joint signal probability distribution of the gate input, (2) the propagated error 

probabilities from the transitive fan-in at the gate inputs, and (3) the failure probability of 

the gate.  Correlation coefficients are introduced to handle the possibility of reconvergent 

fan-out.  Inevitably, the coefficients add an undesirable additional level of complexity to 

the algorithm.   
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In addition to the second algorithm, [1] also presents an upper bound that can be 

used on the single-pass algorithm to limit the maximum number of simultaneous gate 

failures.  For a circuit, a sample space is of size O(Nk), where N is the number of gates, and 

k is the upper bound for number of possible simultaneous gate failures. 

[2] uses Binary Decision Diagrams (BDDs) and Algebraic Decision Diagrams (ADDs) 

for symbolic reliability analysis on combinational circuits.  It focuses on analyzing the 

probability that a transient fault will manifest itself as an error on the output of the circuit. 

  [13] demonstrates reliability analysis through use of probabilistic transfer 

matrices (PTMs).  Individual PTMs for gates interact to form an overall PTM for the circuit.  

This allows for the extraction and analysis of output probabilities, overall probability of 

error, and signal observability.  The PTM method allows for simultaneous computations 

over all possible input combinations, calculating exact error probabilities, as opposed to 

relying on estimations from vector sampling.  PTMs allow flexibility, and circuits are 

modeled at the logic level, using matrices for gates.  As the probabilities of BSC errors for 

each gate are independent, the matrices can model a range of errors such as transient 

errors or stuck-at-faults. 

However, to generate a PTM for an entire circuit, PTMs for gates or subcircuits are 

combined using tensor products of the individual PTMs.  This results in extremely large 

matrices as if there are two matrices M1 and M2 with dimensions m × n and p × q, the 

resulting tensor product of M1 and M2, M1 ⊗M2, is an mp × nq matrix. 
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[14] presents a method for using Bayesian networks that can model large circuits.  

The Bayesian network is directed acyclic graph comprised of a set of random variables 

and their connectional dependencies.  Gates are modeled using a conditional probability 

table (CPT).  This models the probability of gate output signals being at a given Boolean 

logic state given the state of the input signal.  The significant drawback to the Bayesian 

networks model is the undesired complexity from the inherently large CPTs.    

[15] and [16] present methods using Markov Random fields (MRF).   In the place 

of Boolean logic, a model is constructed of energy distribution functions derived from 

Gibbs distribution.  Probabilities of energy levels at gate inputs and interconnects (a 

message passing algorithm) propagates the probability distributions from the inputs to 

the outputs of the Boolean system.  [16] has MATLAB-based libraries for logic gates that 

calculate error probability distributions at nodes for specific input distributions.  The 

MRFs model requires the minimization of a Gibbs distribution function with a significant 

number of variables for multilevel logic circuits.  The resulting undesirable issue of the 

method, as with the PTM and the Bayesian models, is the complexity.  
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Chapter 3: Probabilistic Modeling for Reliability  

3.1 Gate Error Estimation 

3.1.1 Errors Due to Physical Attributes 

Noise in a circuit can be caused by various sources, e.g. physical attributes of the 

circuit, such as crosstalk, terrestrial cosmic radiation, electromagnetic interference, etc.  

A binary symmetric channel (BSC) is used to model the noise at the output of each gate 

in a circuit.  In the BSC model, a transmitter sends a binary bit, and a receiver receives the 

bit.  The bit is expected to be received as it was sent.  However, there exists a possibility 

that the polarity of the bit is erroneously flipped during the transmission [6], resulting in 

a soft error at the output of the gate. 

For a given gate g, g0→1 ∈ {0, 1} represents the presence or absence of a soft error 

originating at the output of a gate due to noise, where a logic low was expected and the 

noise induced BSC results in a logic high.  Likewise, g1→0 ∈ {0, 1} is the presence or absence 

of a soft error originating at the gate output due to noise, where a logic high was expected 

and the noise inducted BSC results in a logic low.  g0→1 =0 and g1→0 =0 represent the 

absence of an error, while g0→1 =1 and g1→0 =1 represent the presence of an error. 
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3.1.2 Error at the Output of a Gate 
 

 For a given gate, there is not only the possibility of an error occurring at the output 

of the gate, but the possibility of an error propagating through from the fan-in cone of 

the gate to the output.  If there is an error originating at the output of a gate, and an error 

propagated through to the output of the gate, their effects will advantageously cancel 

each other out, leaving the resulting output of the gate the same as intended error free 

value.  

For a given gate, g, εg ∈ {0, 1}, is an error-indicating variable, or comparator, for 

the error-incorporated gate output to the intended error-free logic level of the gate 

output.  εg=0 is the case where the error-incorporated output of gate g is the same as the 

error-free output.  εg=1 is the case where the error possibility-incorporated output of 

gate g is the same as the intended error-free output.  εg is the exclusive disjunction 

between an error originating at the output of the gate and an error propagating through 

to the output of the gate from the input fan-in cone of the gate. 
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3.1.3 Examples 

 

Figure 1: Inverter b, with primary input a 

Figure 1 depicts an inverter with primary input a, and output b.  As a is a primary 

input, it is assumed that there exists no possibility of an error (e.g. εa) propagating from 

the fan-in cone of b through to the output of b.  b0→1 and b1→0, originating at the output 

of b, are noise dependent and are estimated based upon physical properties. εb, is the 

error-indicating variable, indicating the presence or absence of a resulting error at b.  In 

Table 1, the “Error-free b” entry indicates the intended deterministic values of b, while 

the “Error-incorporated b” entry is the value of b taking into consideration the possibility 

of error. 

From Table 1, it can be observed whenever b0→1 =1 or b1→0 = 1, then εb=1.  i.e. εb 

= b0→1 /b1→0 

a b0→1/b1→0 Error-free b 
Error-incorporated 

b 
εb 

0 - / 0 1 1 0 

0 - /1 1 0 1 

1 0 / - 0 0 0 

1 1 / - 0 1 1 

Table 1: εb from inverter in Figure 3 

 



 
 

14 
 

Figure 2 depicts inverter b, feeding into a second inverter c. 

 

Figure 2: Two inverter circuit 

 

As b is not a primary input, there exists a possibility it is propagating an error, εb, 

from the input fan-in cone of gate c, through to the output of c.  εc, is the variable that 

represents the presence or absence of an error occurring at the output of c, regardless of 

whether is it a result of a propagated error from the fan-in cone of inverter c, or an error 

originating at the output of c, c0→1 or c1→0,.   

εc, the error indicating variable at the output of gate can be expressed directly as 

a functions of:  

 the input error-free logic levels of node in its fan-in cone, b 

 the error-indicating variables of node in its fan-in cone, εb 

 the probability of an error occurring at the output of gate c, Pr(c0→1) /Pr(c1→0) 

The origin of an error occurring at the output of c, is either from the fan-in cone εb, 

or from the output originating at the output of c, c0→1=1/c1→0=1.  As shown in Table 2, if 

either the propagated error or the error originating at the output occur, it results in εc=1.  
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But if both types of errors occur simultaneously, they advantageously cancel each other 

out, and εc=0.   i.e. εc  =  εb ⊕ c0→1/c1→0. 

 

Error-free b εb c0→1/c1→0 
Error-free 

c 
Error-incorporated  

c 
εc 

0 0 -/0 1 1 0 

0 0 -/1 1 0 1 

0 1 0/- 1 0 1 

0 1 1/- 1 1 0 

1 0 0/- 0 0 0 

1 0 1/- 0 1 1 

1 1 -/0 0 1 1 

1 1 -/1 0 0 0 

Table 2: Resulting εc for Two Inverter Circuit 

 

For another example, two-input NAND gate d is shown in Figure 3, with primary 

inputs b and c. 

 

Figure 3: Two-input NAND gate d with primary inputs b and c 

Since both inputs are primary inputs, there is never a case where an error is 

propagated from the input fan-in cone of d to the output of d.  Therefore, εd=1 only occurs 

whenever only when d0→1=1 or d1→0=1, as shown in Table 3. 
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b c d0→1/d1→0 Error-free d Error-incorporated d εd 

0 0 - / 0 1 1 0 

0 0 - /1 1 0 1 

0 1 - / 0 1 1 0 

0 1 - /1 1 0 1 

1 0 - / 0 1 1 0 

1 0 - /1 1 0 1 

1 1 0 / - 0 0 0 

1 1 1 / - 0 1 1 

Table 3: Resulting εd for Two-input NAND gate d. 

 As depicted in Figure 4, when an inverter is added to the circuit to feed into node 

c, it carreis with it the posibilty of an error at its output, εc. εc can affect the probability 

of the occurrence of εd, since it could propagate to the output of d, or cancel out either 

d0→1 or d1→0. 

 

Figure 4: Invert and two-input NAND gate circuit 

 In the two inverter circuit example, whenever there was an error at the output of 

the first inverter, it would always propagate through to the output of the second inverter.  

For the circuit in Figure 4, when εc=1, it does not always propagate through to the output 

of d.  As shown in Table 4, whenever b=0, regardless of the logic level of error-free c, when 
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εc=1, the error is not propagated to the output of d, because prior to considering the any 

error originating at the output of d, d will always be a logic high.  εd can be expressed as 

εd = (b ∧ εc ∧ ¬d0→1/¬d1→0) V ((¬b V ¬εc) ∧ d0→1/d1→0) 

   This example demonstrates that not all errors propagate from the fan-in cone to the 

output of a given gate. 

 

 

 

b Error-free c εc d0→1/d1→0 
Error-free 

d 
Error-incorporated  

d 
εd 

0 0 0 -/0 1 1 0 

0 0 0 -/1 1 0 1 

0 0 1 -/0 1 1 0 

0 0 1 -/1 1 0 1 

0 1 0 -/0 1 1 0 

0 1 0 -/1 1 0 1 

0 1 1 -/0 1 1 0 

0 1 1 -/1 1 0 1 

1 0 0 -/0 1 1 0 

1 0 0 -/1 1 0 1 

1 0 1 0/- 1 0 1 

1 0 1 1/- 1 1 0 

1 1 0 0/- 0 0 0 

1 1 0 1/- 0 1 1 

1 1 1 -/0 0 1 1 

1 1 1 -/1 0 0 0 

Table 4: Resulting εd for inverter and two-input NAND gate circuit 
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3.2 DTMCs 
 

Discrete-time Markov chains (DTMCs) are essentially state transition diagrams 

augmented with probabilities.  They are comprised of a set of states that represent 

possible configurations of the system.  Transitions between the states are probabilistic 

and determined by discrete probabilistic distributions.  

DTMCs are a memoryless random processes, where the next state is dependent only 

upon the current state and not on previous states.  A DTMC can formally be defined as a 

tuple (S, sinit, P, L) where: 

 S is a set of states, (e.g. {s0, s1, …, sn-1}, where n is the number of states)  

 Sinit ∈ S is the initial state 

 P: S ×S →[0,1] is the transition probability matrix 

    where ∀ s ∈ S  → ∑s’∈S P(s,s’) =1 

 L : S →2AP is function labeling states with atomic propositions [4] 

Since P is a stochastic matrix: 

 s,s’ ∈ S  → P(s,s’) ∈ [0,1]          (5) 

 s ∈ S → Σs’∈S P(s,s’) = 1           (6) 
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Another way to represent a DTMC is as a series of random variables 

{X(k) | k=0, 1, …} 

where X(k) is the state of the system at discrete-time step k. 

Using this terminology, the Markov property, can be defined as  

Pr(X(k)= sk  | X(k-1)=sk-1, …, X(0)=sinit) = Pr(X(k)= sk  | X(k-1)=sk-1) [4]          (7) 

This demonstrates the independence of the current state on the past.  Equation (7) also 

assumes the DTMC is time-homogenous, where the probabilities are time independent. 

 

3.3 Error Probability Estimation using DTMCs 
 

 For each gate in a combinational circuit, a DTMC is constructed to determine the 

error probability at the output of that gate.  As previously established, the error 

probability at the output of a gate is a function of the error-free logic levels of the node(s) 

in its fan-in cone, the error-indicating variables of the nodes in its fan-in cone, and the 

presence or absence of an error originating at the output of the gate.  A single DMTC is 

constructed for the sole purpose of estimating probabilities of error-free logic levels for 

every node in the circuit.   
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  The states of a DTMC for the error probability of a logic gate are dependent upon 

both the states of the DTMC for the error-free logic levels of the nodes in the fan-in cone 

of the gate, and the states of the DTMCs for the error probability of the gates in the gate 

of interest’s fan-in cone.  This method of multiple DTMCs is used, as opposed to a single 

DTMC in order to make the model constructibly scalable.  For a given combinational 

circuit, a single monolithic DTMC could be constructed to represent each unique 

combination of error-free node logic levels and error probabilities at the output of each 

gate, but this would render the model extremely difficult to create for large scale circuits. 

 

 

3.3.1 DTMC for Error-Free Node Logic Level Estimation 
 

Because a DTMC for the error probability of a given gate is dependent upon a 

DTMC for the error-free node logic level of a combinational circuit, the DTMC for the error 

free node logic levels of the circuit is explained first.  The primary input(s) to the 

combinational circuit block are assumed to have known probabilities of being logic high 

and logic low.  The probabilities from the primary inputs will propagate through to all the 

nodes in the circuit.  The probability of a logic high occurring at a gate is simply the 

probability of the inputs to the gate being logic values that would result in a logic high at 

the output of the gate.   
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For the DTMC representing the error-free logic level of each node in a 

combinational circuit, each state is a unique combination of logic levels of all the nodes 

in the circuit.  As logic levels are dictated by the values of the primary inputs, the number 

of possible states for the error-free node logic level DTMC is 2number_of_primary_inputs. 

Transitions between states are determined by the probabilities associated with 

the primary inputs being either a logic high or a logic low.  i.e. the probability of 

transitioning to any state is the joint probability of the primary inputs associated with that 

state.  

 

 

3.3.1.1 DTMC for Error-Free Node Logic Level Estimation Inverter Example 

 

Figure 5: Inverter b with primary input a 

For example of a DTMC for error-free node level logic estimation, we first start 

with the simplest possible circuit, a single inverter.  Figure 5 shows inverter b, with 

primary input a.  The DTMC is expressed as D = (S, sinit, P, L), where: 

 S = {s0, s1} 

 sinit = s0          (arbitrary) 
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 P = �
Pr (¬a) Pr (a)
Pr (¬a) Pr (a)

� 

 AP = {¬a ∧ b, a ∧ ¬b} 

o L(s0) = {¬a ∧ b} 

o L(s1) = {a ∧ ¬b} 

The Boolean values associated with each state are the logic levels of primary input 

a (e.g. state s0 implies ¬a).  As can be seen in the graphical representation of the DTMC in 

Figure 6, from either state, the DTMC transitions to the state s0 = {¬a ∧ b}, with the 

probably of primary input a=0. Likewise, from either state, a transition to state s1 = {a ∧ 

¬b} occurs with the probability of primary input a=1. 
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Figure 6: DTMC for error-free logic levels of inverter in Figure 5 

 

3.3.2  DTMCs for Error Probability Estimation 

 

For each gate in a combinational circuit, a DTMC is constructed for estimating the 

error probability at the output of that gate.  For a given gate, a state of a DTMC minimally 

indicates the presence or absence of a resulting error at the output of that gate, where 

for a gate g, εg=0 represents the absence of an error, and εg=1 represents the presence 

of an error. For simplicity, this two state model is initially presented, but the number of 

states can be expanded to represent such characteristics such as: 
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 If there is an resulting error at the output of a gate, whether it is a 0→1 error or 

whether it is a 1→0 error. 

 If there is a resulting error at the output of a gate, whether it originated at the 

output of the gate, or whether it propagated from the fan-in cone of the gate. 

Transitions between the two states are comprised of unique combinations of the 

probabilities of node logic levels and errors of the inputs in the fan-in cone of a gate, as 

well as the probability of an error at the output of the gate.  The type of the potential 

error originating at the output of a gate (e.g. g0→1, or g1→0 for gate g) is dependent on 

node logic levels and error probabilities of the inputs in the fan-in cone of the gate.  In the 

DTMCs for error probability estimation of each gate, this dependency is expressed using 

conditional probability.  A transition of the model is expressed as given a certain 

combination of node logic levels and error probabilities from the input fan-in cone of the 

gate, that the probability of an absence or presence of an error originating at the output 

will determine to what state the model transitions.  

The node logic levels of the inputs in the fan-in cone are derived from the error-free 

node level logic DTMC, and the error probabilities of the nodes in the fan-in gate, are 

derived from the DTMC for the error probability of the input node of mention.  The 

probability of the absence or presence of an errors originating at the output of the gate 
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are noise dependent constants and are estimated based upon physical properties.  e.g. 

for a given gate g, Pr(g0→1) ∈ [0, 1]. 

3.3.2.1 DTMCs for Error Probability Estimation of Inverter Example  
  

Inverter b, in Figure 5 is first used as an example of a DTMC for error probability 

estimation.  Before constructing the DTMC, Table 5 is created to more clearly introduce 

the form of the expressions for transitions and states comprising the DTMC. 

 The DTMC for the error probability estimation of b has two states, εb=0, and εb=1.  

Transitions to these states are comprised of combinations of a and b0→1, or b1→0.  As a is a 

primary input, there is no εa, an error that can be propagated through to the output from 

the fan-in cone of the gate.  From any state, the disjunction of ¬b1→0 |¬a, and ¬b0→1|a 

results in εb=0, and hence comprise the transition to the state εb=0.  Likewise, the logical 

disjunction of b1→0|¬a, and b0→1|a results in εb=1, and hence comprises the transition to 

the state εb=1. 

 

Expression results in εb=0 Expression results in εb=1 

¬b1→0 | ¬a b1→0 | ¬a 

¬b0→1 | a b0→1 | a 

Table 5: Distinct expressions for error probability of inverter b 
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The DTMC for the error probability of b, εb, can be expressed as a tuple, Dεb = (Sεb, 

sεb_init, Pεb, L), where: 

 Sεb = {sεb0, sεb1} 

 sεb_init = εb0          (arbitrary) 

 Pεb = 

�
(Pr(¬b�→ �)|¬a) + (Pr(¬b�→ �)|a) (Pr(b�→ �)|¬a) + (Pr(b�→ �)|a)

(Pr(¬b�→ �)|¬a) + (Pr(¬b�→ �)|a) (Pr(b�→ �)|¬a) + (Pr(b�→ �)|a)
� 

 AP = {¬εb , εb} 

o L(sεb0) = {¬εb} 

o L(sεb1) = {εb} 

This dependency of εb on the DTMC for a is depicted in Figure 7, as the logic level 

of a dictates whether b1→0 or b1→0.is needed for transitioning to εb=0 or εb=1.  Figure 8 

depicts the actual DTMC for εb, where conditional probability is used to express the 

dependency of state of b1→0 and b1→0.on the state of a. 



 
 

27 
 

 

Figure 7: DTMCs for εb, the error probability of inverter b 
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Figure 8: DTMC for εb, the error probability at the output of inverter b 

The total number of states for the model is equal to 2(number of primary inputs + number of gates).  In 

the case of the single inverter, 2(1 + 1)= 4 states.  

 

3.3.2.2 DTMCs for Error Probability Estimation: Two Inverter Example  

 

For the two inverter circuit shown in Figure 9, the DTMC for εc, the error 

probability at the output of inverter c, will not only depend on the DTMC for error-free 

logic levels of the circuit, but also the DTMC for εb, since an error at b could propagate to 

the output of c.  The DTMC dependency is depicted in Figure 10.    
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Figure 9: Two Inverter Circuit 

 

 

Figure 10: DTMC dependency for two inverter circuit in Figure 9 
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Since the DTMCs for εb and εc are both dependent on the DTMC for node level 

logic, we first construct the DTMC for node level logic.  The DTMC for the error-free node 

logic level circuit is identical to the DTMC for the error-free node logic level circuit for the 

single inverter circuit in Figure 5, except the states include the variable for node c.  The 

transitions remain unchanged, as they are solely dependent on the primary input to the 

circuit, which remains unchanged. 

The DTMC is expressed as D = (S, sinit, P, L), where: 

 S = {s0, s1} 

 sinit = s0          (arbitrary) 

 P = �
Pr (¬a) Pr (a)
Pr (¬a) Pr (a)

� 

 AP = {¬a ∧ b ∧ ¬c, a ∧ ¬b ∧ c} 

o L(s0) = {¬a ∧ b ∧ ¬c} 

o L(s1) = {a ∧ ¬b ∧ c} 

A graphical depiction of the DTMC for the error-free node logic levels of the two 

inverter circuit in Figure 9 is shown in Figure 11.  
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Figure 11: DTMC for error-free logic levels of two inverter circuit in Figure 6. 

 

As construction of the DTMC for εb was already demonstrated when the single 

inverter circuit was examined, we proceed immediately to construction of the DTMC for 

εc. The DTMC for εc  is constructed much the same as the DTMC for εb, with the primary 

difference being that the DTMC for εc, the error probability at the input of its fan-in gate, 

is one of the variables comprising transitions between states.  As with Table 5 for εb, the 

left column of Table 6 shows expressions that result in εc=0.  Likewise, the expressions in 

the right column result in εc=1. 
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Expression results in εc=0 Expression results in εc=1 

¬c1→0| (¬b  ∧ ¬εb) c1→0 | (¬b  ∧ ¬εb) 

c0→1 | (¬b ∧ εb) ¬c0→1 | (¬b ∧ εb) 

¬c0→1 | (b ∧ ¬εb) c0→1 | (b ∧ ¬εb) 

c1→0| (b ∧ εb) ¬c1→0| (b ∧ εb) 

Table 6: Distinct expressions for error probability of inverter c 

For the sole purposes of fitting more legibly into a transition probability matrix, 

the logical disjunction of the expressions that result in εc=0, is abbreviated as 

“Trsn_to_sεc0”. 

Trsn_to_sεc0 = Pr(¬c1→0)| (¬b ∧ ¬εb) V Pr(c0→1)| (¬b ∧ εb) V Pr(¬c0→1)| (b ∧ ¬εb) 

   V Pr(c1→0)| (b ∧ εb)  

Likewise, the logical disjunction of the expressions that result in εc=1, is abbreviated as 

“Trsn_to_sεc1” 

Trsn_to_sεc1 = Pr(c1→0)| (¬b ∧ ¬εb) V Pr(¬c0→1)| (¬b ∧ εb) V Pr(c0→1)| (b ∧ ¬εb) 

   V Pr(¬c1→0)| (b ∧ εb) 

 

The DTMC for the error probability of c, εc, can be expressed as a tuple, Dεc = (Sεc, 

sεc_init, Pεc, L), where: 

 Sεc = {sεc0, sεc1} 

 sεc_init = εc0          (arbitrary) 
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 Pεc = �
Trans_to_s��� Trans_to_s��� 
Trans_to_s���  Trans_to_s��� 

� 

 AP = {¬εc, εc} 

o L(sεc0) = {¬εc} 

o L(sεc1) = {εc} 

A graphical depiction of the DTMC for εc of the two inverter circuit is shown in 

Figure 12.  

 

Figure 12: DTMC for εc, the error probability at the output of inverter c 
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The total number of states for the model is equal to 2(number of primary inputs + number of gates).  In 

the case of the two inverter circuit, 2(1 + 2)= 8 states.  

 

3.3.2.3 DTMCs for Two-Input NAND Gate 
 

A two input NAND gate d shown in Figure 13, with primary inputs c, and b, is used 

to show an example of constructing DTMCs for gate/circuits with multiple inputs. 

 

Figure 13: Two-Input NAND gate 

 

As with the previous examples, first a DTMC for error-free node level logic is 

constructed.  Each state of the DTMC comprises the logic levels in the circuit for a unique 

combination of primary inputs.  Transitions to the states are the probabilities of unique 

combinations of the primary inputs.  The resulting DTMC is expressed as D = (S, sinit, P, L), 

where: 

 S = {s0, s01, s10, s11} 

 sinit = s00          (arbitrary) 
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 P = �

Pr(¬c ∧  ¬b) Pr(¬c ∧  b) Pr(c ∧  ¬b)  Pr(c ∧  b)
Pr(¬c ∧  ¬b) Pr(¬c ∧  b) Pr(c ∧  ¬b)  Pr(c ∧  b)
Pr(¬c ∧  ¬b) Pr(¬c ∧  b) Pr(c ∧  ¬b)  Pr(c ∧  b)
Pr(¬c ∧  ¬b) Pr(¬c ∧  b) Pr(c ∧  ¬b)  Pr(c ∧  b)

� 

 AP = {¬c ∧ ¬b ∧ d,  ¬c ∧ b ∧ d,  c ∧ ¬b ∧ d,  c ∧ b ∧ ¬d} 

o L(s00) = {¬c ∧ ¬b ∧ d} 

o L(s01) = {¬c ∧ b ∧ d} 

o L(s10) = {c ∧ ¬b ∧ d} 

o L(s11) = {c ∧ b ∧ ¬d} 

The Boolean values associated with each state are the logic levels of primary 

inputs a and b respectively (e.g. state s00 implies ¬a ∧ ¬b).   Figure 14 is a graphical 

representation of the error-free node logic level DTMC. 
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Figure 14: Error-free node logic level DTMC for the 2-input NAND gate d. 

  

With the DTMC for error-free node level logic already constructed, we now 

construct the DTMC for εd. In Table 7, expressions resulting in εd=0 are shown in the left 

column, and expressions resulting in εd=1 in the right column.  From either state, the 

logical disjunction of the expressions resulting in εd=0 comprises the transition to state 

sεd0.  Likewise, from either state, the logical disjunction of the expressions resulting in 

εd=1 comprise the transition to state sεd1. 
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Expression results in εd=0 Expression results in εd=1 

¬d1→0 | (¬c V ¬b) d1→0 | (¬c V ¬b) 

¬d0→1 | (c ∧ b) d0→1 | (c ∧ b) 

Table 7: εd for two-input NAND gate in Figure 12 

The DTMC for the error probability of d, εd, can expressed as a tuple, Dεd = (Sεd, sεd_init, 

Pεd, L), where, 

 Sεd = {εd0, εd1} 

 sεd_init = εd0          (arbitrary) 

Pεd =  

�
(Pr(¬d�→ �)|(¬c ⋁ ¬b)) + (Pr(¬d�→ �)|(c∧ b)) (Pr(d�→ �)|(¬c ⋁ ¬b)) + (Pr(d�→ �)|(c∧ b))
(Pr(¬d�→ �)|(¬c ⋁ ¬b)) + (Pr(¬d�→ �)|(c∧ b)) (Pr(d�→ �)|(¬c ⋁ ¬b)) + (Pr(d�→ �)|(c∧ b))

� 

 AP = {¬εd, εd} 

o L(sεd0) = {¬εd} 

o L(sεd1) = {εd} 
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Figure 15: DTMC for εd of two-input NAND gate in Figure 13 

 

The total number of states for the model is equal to 2(number of primary inputs + number of gates).  In 

the case of the two input NAND gate, 2(2 + 1)= 8 states.  

 

3.3.2.4 DTMCs for Inverter and Two-Input NAND Gate Circuit 
 

Figure 16 depicts a simple combinational circuit, with primary inputs a and b.   

 

Figure 16: Inverter and two-input NAND circuit 
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The DTMC for the error-free node logic levels of the circuit is expressed as D = (S, 

sinit, P, L), where: 

 S = {s0, s01, s10, s11} 

 sinit = s00          (arbitrary) 

 P = �

Pr(¬a ∧  ¬b) Pr(¬a ∧  b) Pr(a ∧  ¬b)  Pr(a ∧  b)
Pr(¬a ∧  ¬b) Pr(¬a ∧  b) Pr(a ∧  ¬b)  Pr(a ∧  b)
Pr(¬a ∧  ¬b) Pr(¬a ∧  b) Pr(a ∧  ¬b)  Pr(a ∧  b)
Pr(¬a ∧  ¬b) Pr(¬a ∧  b) Pr(a ∧  ¬b)  Pr(a ∧  b)

� 

 AP = {¬a ∧ ¬b ∧ c ∧ d, ¬a ∧ b ∧ c ∧ ¬d, a ∧ ¬b ∧ ¬c ∧ d, a ∧ b ∧ ¬c ∧ d} 

o L(s00) = {¬a ∧ ¬b ∧ c ∧ d} 

o L(s01) = {¬a ∧ b ∧ c ∧ ¬d} 

o L(s10) = {a ∧ ¬b ∧ ¬c ∧ d} 

o L(s11) = {a ∧ b ∧ ¬c ∧ d} 
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Figure 17: DTMC for error-free node logic levels of circuit in Figure 16. 

With the DTMC for error-free node level logic already constructed, we now construct 

the DTMCs for εc and εd.  The DTMC for inverter εc is constructed in the exact same way 

as the DTMC for the inverter from Figure 5, since the inputs to both the inverters are 

primary inputs.  The DTMC for εc can then be expressed as a tuple, Dεc = (Sεc, sεc_init, Pεc, 

L), where: 

 Sεc = {sεc0, sεc1} 

 sεc_init = εc0          (arbitrary) 

 Pεc = �
(Pr(¬c�→ �)|¬a) + (Pr(¬c�→ �)|a) (Pr(c�→ �)|¬a) + (Pr(c�→ �)|a)
(Pr(¬c�→ �)|¬a) + (Pr(¬c�→ �)|a) (Pr(c�→ �)|¬a) + (Pr(c�→ �)|a)

� 
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 AP = {¬εc , εc} 

o L(sεc0) = {¬εc} 

o L(sεc1) = {εc} 

 

To aid in explaining the construction of the DTMC for εd, Table 8 shows expressions 

resulting in state εd=0 in the left column, and expressions resulting in state εd=1 in the 

right column.  From either state, the logical disjunction of the expressions resulting in 

εd=0 comprises the transition to state sεd0.  Likewise, from either state, the logical 

disjunction of the expressions resulting in εd=1 comprises the transition to state sεd1. 

 

Expression results in εd=0 Expression results in εd=1 

d1→0 | ((b ∧ ¬c ∧ ¬εc) V ¬b) d1→0 | ((b ∧ ¬c ∧ ¬εc) V  ¬b) 

d0→1 | (b ∧ ¬c ∧ εc) ¬d0→1 | (b ∧ ¬c ∧ εc) 

¬d0→1 | (b ∧ c ∧ ¬εc) d0→1 | (b ∧ c ∧ ¬εc) 

d1→0 | (b ∧ c ∧ εc) ¬d1→0 | (b ∧ c ∧ εc) 

Table 8: Distinct expressions for error probability of NAND d 

For the sole purposes of fitting more legibly fit into a transition probability matrix, 

the logical disjunction of the expressions that result in εd=0, is abbreviated as 

“Trsn_to_sεd0”. 
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Trsn_to_sεd0 =  (Pr(¬d1→0)|((b ∧ ¬c ∧ ¬εc) V ¬b))) V (Pr(d0→1) | (b ∧ ¬c ∧ εc))  

 V (Pr(¬d0→1) | (b ∧ ¬c ∧ εc)) V (Pr(d1→0) | (b ∧ c ∧ εc)) 

Likewise, the logical disjunction of the expressions that result in εd=1, is abbreviated as 

“Trsn_to_sεd1”. 

Trsn_to_sεd1 = (Pr(d1→0) | ((b ∧ ¬c ∧ ¬εc) ¬b))) V (Pr(¬d0→1) | (b ∧ ¬c ∧ εc))  

V (Pr(d0→1) | (b ∧ c ∧ ¬εc)) V (Pr(¬d1→0) | (b ∧ c ∧ εc)) 

 

The DTMC for the error probability of d, εd, can be expressed as a tuple, Dεd = (Sεd, 

sεdinit, Pεd, L), where, 

 Sεd = {sεd0, sεd1} 

 εdinit = εd0          (arbitrary) 

 Pεd = �
Trans_to_s��� Trans_to_s���  
Trans_to_s���  Trans_to_s��� 

� 

 AP = {¬εd, εd} 

o L(sεd0) = {¬εd} 

o L(sεd1) = {εd} 
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Figure 18: DTMC for εd from circuit in Figure 16 

The total number of states for the model is equal to 2(number of primary inputs + number of gates).  In 

the case of the two input NAND gate, 2(2 + 2)= 16 states.  

 
 

3.4 Expanded DTMC State Model for Error Probability 

The presented DTMCS for error probability of a gate have two states, reveling that at 

any step, the gate either has an error or is error-free.   When there is an error, it may be 

desired to learn more about the error, for example: 
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 Whether the error was propagated to the output of the gate from the gate’s fan-

in cone, or if it originated at the output of the gate 

 Whether the error was a logic low when a logic high was expected, or whether the 

error was a logic high when a logic low was expected. 

To this end, a DMTC for error probability with additional variables is shown. 

 

3.4.1 Set of States for Error-Free Output of Gate 
 

A variable can be added to the DTCM for error probability indicating whether or 

not the error-free logic level of the node is supposed to be a logic low or logic high.  For a 

gate, g, the set of states is referred to as gef ∈ {0, 1}, where gef =0 represents an intended 

logic low, and gef=1 represents an intended logic high.   

3.4.2 Set of States for Propagated Error Only 
 

 A variable can be added for error probability indicating whether or not there is an 

error propagated through to the output of the node of interest.   For a gate, g, the variable 

is referred to as peg ∈ {0, 1}, where peg=0 represents the case where there is no 

propagated error, and peg=1 represents the case where there is a propagated error.  The 

pe in peg stands for ‘propagated error’, and g is the name of the gate. 
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3.4.3 Two Inverter Example 
 

Figure 20 depicts a two inverter circuit, with primary input a. 

 

Figure 19: Two Inverter Circuit 

Table 9 is constructed to more clearly depict the expanded state DTMC for the error 
probability of c.  The table is identical to Table 2 for the DTMC, with the exception of the 
column for the states of εc.   

 

Error-free 
b 

εb c0→1/c1→0 
Error-
free c 

Error-
incorporated  

c 
εc 

 
cef 

 

 
pεc 

0 0 -/0 1 1 0 1 0 

0 0 -/1 1 0 1 1 0 

0 1 0/- 1 0 1 1 1 

0 1 1/- 1 1 0 1 1 

1 0 0/- 0 0 0 0 0 

1 0 1/- 0 1 1 0 0 

1 1 -/0 0 1 1 0 1 

1 1 -/1 0 0 0 0 1 

Table 9: Resulting expanded state model for error probability in the Figure 19 circuit 

From Table 9, it can be observed that 

εc  =  εb ⊕ c0→1/c1→0. 

cef = c 
 

pec = eb 
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The DTMC for error probably at gate c will now expand to eight states, since there 

are three Boolean variables, i.e. 23 states. 

For the sole purposes of fitting more legibly into a transition probability matrix, 

the logical disjunctions of the expressions that result in unique combinations or εc, cef, 

and pec are abbreviated as “Trsn_to_sεc0”, “Trsn_to_sεc1”, … , and “Trsn_to_sεc7” . 

Trsn_to_sεc0 = Pr(¬c0→1)|(b ∧ ¬εb) 

 Trsn_to_sεc1 = Pr(c1→0)| (b ∧ εb) 

Trsn_to_sεc2 = Pr(¬c1→0)| (¬b ∧ ¬εb) 

Trsn_to_sεc3 = Pr(¬c0→1)| (¬b ∧ εb) 

Trsn_to_sεc4 = Pr(c0→1)| (b ∧ ¬εb) 

Trsn_to_sεc5 = Pr(¬c1→0)| (b ∧ εb) 

Trsn_to_sεc6 = Pr(c1→0)| (¬b ∧ ¬εb) 

Trsn_to_sεc7 = Pr(¬c0→1)| (¬b ∧ εb) 

The DTMC for the error probability of c, εc, can then be expressed as a tuple, Dεc = (Sεc, 

sεc_init, Pεc, L), where: 

 Sεc = {sεc0, sεc1, … , sεc7} 
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 sεc_init = εc0          (arbitrary) 

 Pεc = �

Trans_to_s� Trans_to_s� … Trans_to_s�

Trans_to_s� Trans_to_s� … Trans_to_s�

… … … …
Trans_to_s� Trans_to_s� … Trans_to_s�

� 

 AP = {¬εc ∧ ¬cef ∧ ¬pec,  εc ∧ cef ∧ ¬pec,  ¬εc ∧ cef ∧ pec, εc ∧ cef ∧ pec, ¬εc ∧ 

¬cef ∧ ¬pec, εc ∧ ¬cef ∧ ¬pec, ¬εc ∧ ¬cef ∧ pec, εc ∧ ¬cef ∧ pec} 

o L(sεc0) = { ¬εc ∧ ¬cef ∧ ¬pec} 

o L(sεc1) = {¬εc ∧ ¬cef ∧ pec} 

o L(sεc2) = {¬εc ∧ cef ∧ ¬pec} 

o L(sεc3) = {¬εc ∧ cef ∧ pec} 

o L(sεc4) = {εc ∧ ¬cef ∧ ¬pec} 

o L(sεc5) = {εc ∧ ¬cef ∧ pec} 

o L(sεc6) = {εc ∧ cef ∧ ¬pec} 

o L(sεc7) = {εc ∧ cef ∧ pec} 

 
 

The total number of states for the model is equal to 2(number of primary inputs + number of gates).  In 

the case of the two input NAND gate, 2(2 + 2) = 16 states.  
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3.5 Comparison of Presented Model vs Single DTMC for Error Probability 
Analysis 
 

 To verify the accuracy of the presented model for error probability analysis using 

DTMCs, a single DTMC is created for error probability analysis of gates in a combinational 

circuit, and the results are compared. 

 

3.5.1 Single DMTC Construction for Error Probability 
 

 For a given combinational circuit, each state of a DTMC is a unique combination 

of error-free node logic levels and error indicating variables (e.g. εg for gate g) for each 

node in the circuit.  From any state, transitions to each state are the logical conjunction 

of the probabilities of the primary inputs to the combinational circuit and the probabilities 

of the presence or absence of errors occurring at the output of each node (e.g. Pr(g0→1) 

or Pr(g1→0) for gate g that result in transitions to each unique state.   

 

 

 

3.5.2 Single Inverter Example 
 

 Inverter b with primary input a is depicted in Figure 21.  The error-free logic 

structure of the circuit is established prior to building any DTMC, therefore when a is a 

logic low, b is a logic high.  Likewise, when a is a logic high, b is a logic low. 
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Figure 20: Inverter b with primary input a 

 
 

The single DTMC for the node logic level and the error probability of b can be 

expressed as a tuple, Dcircuit = (S, sinit, Pcircuit, L), where: 

 S = {s0, s1, s2, s3} 

 sinit = s0          (arbitrary) 

 Pcircuit =   

⎣
⎢
⎢
⎡
Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)

Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)

Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)

Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)⎦
⎥
⎥
⎤

 

 AP = {a ∧ ¬εb, ¬ a ∧ ¬εb,  a ∧ εb, ¬a ∧ εb} 

o L(s0) = {a ∧ ¬εb} 

o L(s1) = {¬a ∧ ¬εb} 

o L(s2) = { a ∧ εb} 

o L(s3) = {¬a ∧ εb} 
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3.5.3 Comparing Dcircuit  vs Dεb 
 

When comparing the single DTMC (for node logic levels and error probability) for 

a circuit to that of DTMC for εb in section 3.4.1.1, it can be observed that the values of εb 

are the same for each of the corresponding states of the DTMCs.  i.e. In both states s0 and 

sεb0, εb=0.  In both states, s1 and sεb1, εb=1, etc.  In both DTMCs, since each state can be 

reached immediately reached from any state, if the transition probabilities are the same, 

the states of the two models will have equivalent steady-state probabilities for εb.  Pcircuit, 

the transition probability matrix for Dcircuit, and Pεb, the transition probability matrix for εb 

are shown below. 

 Pcircuit = 

⎣
⎢
⎢
⎡
Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)

Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)

Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)

Pr(a) ∧ Pr(¬b�→ �) Pr (¬a) ∧ Pr (¬b�→ �) Pr(a) ∧ Pr(b�→ �) Pr (¬a) ∧ Pr (b�→ �)⎦
⎥
⎥
⎤

 

 Pεb = �

(Pr(¬b�→ �)|a) (Pr(¬b�→ �)|¬a) (Pr(b�→ �)|a) (Pr(b�→ �)|¬a)
(Pr(¬b�→ �)|a) (Pr(¬b�→ �)|¬a) (Pr(b�→ �)|a) (Pr(b�→ �)|¬a)
(Pr(¬b�→ �)|a) (Pr(¬b�→ �)|¬a) (Pr(b�→ �)|a) (Pr(b�→ �)|¬a)
(Pr(¬b�→ �)|a) (Pr(¬b�→ �)|¬a) (Pr(b�→ �)|a) (Pr(b�→ �)|¬a)

� 

For Pεb, the probability of transitioning to εb=0, Pr(¬b0→1)| a, is equal to Pr(¬b0→1) ∧ 

P(a), since a logic high value for a is always and only the result of Pr(a=1)  The steady-state 

probability of transitioning to εb=0 is thus equal for DTMCs Dcircuit (single DTMC for entire 

circuit)  and Dεb.  Likewise Pr(¬b1→0)| ¬a can be expressed as Pr(¬b1→0) ∧ P(¬a), etc.  Thus 
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Dcircuit, the single DTMC for the entire circuit (node logic levels and error probabilities) and 

Dεb (the DMTC for εb) yield equivalent steady-state values for states of εb. 

 

3.5.4 Two Inverter Circuit Example 
 

The two-inverter circuit with primary input a is depicted in Figure 21.  The error-

free logic structure of the circuit is established prior to building any DTMC, therefore 

when a=0, b=1, and likewise, when a=1, b=0. 

 

 

Figure 21: Two inverter circuit 

 

Each unique combination of node logic levels and error probabilities at the output of 

each gate comprises a state.  For the two-inverter circuit, the logic level and error 

probabilities comprising the states are variables are a, b, c, εb, and εc.  Since the error-

free logic levels of b and c change deterministically with the value of a, only a is mentioned.  

As shown in Table 10, the probabilities Pr(a), Pr(b0→1)/Pr(b1→0), and Pr(c0→1)/Pr(c1→0), 

determine the state the DTMC will transition to (i.e. the values of a, b, c, εb, and εc).  In 
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this way, the logical conjunction of distinct combinations for Pr(a), Pr(b0→1)/Pr(b1→0), and 

Pr(c0→1)/Pr(c1→0) comprise the transitions.  As the logic levels of b and c change 

deterministically with a, the values of b and c are omitted from Table 9. 

 

Transition Resulting State 

Pr(a) Pr(b0→1)/Pr(b1→0) Pr(c0→1)/Pr(c1→0) a εb εc state # 

0 -/0 0/- 0 0 0 0 

0 -/0 1/- 0 0 1 1 

0 -/1 -/0 0 1 1 3 

0 -/1 -/1 0 1 0 2 

1 0/- -/0 1 0 0 4 

1 0/- -/1 1 0 1 5 

1 1/- 0/- 1 1 1 7 

1 1/- 1/- 1 1 0 6 

Table 10: Logic levels and error probabilities for two inverter circuit in Figure 21 

For the sole purposes of fitting more legibly fit into a transition probability matrix, 

the logical disjunctions that comprise the transitions of each state in the DTMC are shown 

below: 

 

Trsn_to_s0 = Pr(¬a) ∧ Pr(¬b1→0) ∧ Pr(¬c0→1) 

Trsn_to_s1 = Pr(¬a) ∧ Pr(¬b1→0) ∧ Pr(c0→1) 

Trsn_to_s2 = Pr(¬a) ∧ Pr(b1→0) ∧ Pr(c1→0) 
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Trsn_to_s3 = Pr(¬a) ∧ Pr(b1→0) ∧ Pr(¬c1→0) 

Trsn_to_s4 = Pr(a) ∧ Pr(¬b0→1) ∧ Pr(¬c1→0) 

Trsn_to_s5 = Pr(a) ∧ Pr(¬b0→1) ∧ Pr(c1→0) 

Trsn_to_s7 = Pr(a) ∧ Pr(b0→1) ∧ Pr(c0→1) 

Trsn_to_s6 = Pr(a) ∧ Pr(b0→1) ∧ Pr(¬c0→1) 

 

The DTMC for the error probabilities of the two inverter circuit in Figure 22, can be 

expressed as a tuple, Dcircuit = (S, sinit, Pcircuit, L), where: 

 S = {s0, s1, ..., s7} 

 sinit = s0          (arbitrary) 

 Pcircuit = �

Trans_to_s� Trans_to_s� … Trans_to_s�

Trans_to_s� Trans_to_s� … Trans_to_s�

… … … …
Trans_to_s� Trans_to_s� … Trans_to_s�

� 

 

 AP = {¬a ∧ ¬εb ∧ ¬εc,  ¬a ∧ ¬εb∧ εc,  ¬a ∧ εb ∧ εc,  ¬a ∧ εb ∧ ¬εc,  

 a ∧ ¬εb ∧ ¬εc, a ∧ ¬εb ∧ εc, a ∧ εb ∧ εc,  a ∧ εb ∧ ¬εc} 

o L(s0) = {¬a ∧ ¬εb ∧ ¬εc} 
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o L(s1) = {¬a ∧ ¬εb ∧ εc} 

o L(s2) = {¬a ∧ εb ∧ ¬εc} 

o L(s3) = {¬a ∧ εb ∧ εc} 

o L(s4) = {a ∧ ¬εb ∧ ¬εc} 

o L(s5) = {a ∧ ¬εb ∧ εc} 

o L(s6) = {a ∧ εb ∧ ¬εc} 

o L(s7) = {a ∧ εb ∧ εc} 

3.5.5 Comparing Dcircuit  vs Dεc 
 

The logic level of a from Dcircuit is equivalent to the logic level of cef from Dεc, when 

a=0, b=0, and c=0 (i.e. cef, the error-free logic level of c). Likewise, the logic level of εb 

from Dcircuit is equivalent to the logic level of pec from Dεc, as εb is the propagated error 

entering into c (i.e. pec).  These variable equivalents for Dεc and Dcircuit are shown in Table 

10. 

 

DTMC Dεc Dcircuit 

Error-free node c equivalent cef a 

Error at node b equivalent pec εb 

Table 11: Variable equivalents for Dεc and Dcircuit. 
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From Dεc, the DTMC for εc, sεc0 = ¬εc ∧ ¬cef ∧ ¬pec, which is equivalent to ¬εc ∧ ¬a ∧ 

¬εb, according to Table 11, and consequently equivalent to s0 . 

Therefore, 

sεc0 =  s0 

¬εc ∧  ¬cef ∧  ¬pec = ¬a ∧ ¬εb ∧ ¬εc 

From Dεc, the DTMC for εc, the probability of transitioning to εc=0 is:  

Trsn_to_sεc0 = Pr(¬c0→1)|(b ∧ ¬εb) 

If b is a logic high and there is no resulting error at the output of b, i.e. εb=0, then 

there is no high to low error originating at the output of b, (i.e. ¬b1→0).  Therefore, the 

case b ∧ ¬εb, implies ¬a ∧ ¬b1→0.   

Trsn_to_sεc0 = Pr(¬c0→1)|(b ∧ ¬εb) 

By substitution,  

Trsn_to_sεc0 = Pr(¬c0→1)|( ¬a ∧ ¬b1→0) 

When considering steady-state probability, Pr(¬c0→1)|( ¬a ∧¬ b1→0) can be expressed as:  

Pr(¬c0→1) ∧ Pr( ¬a) ∧ Pr(¬b1→0). 
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This is equivalent to Trsn_to_s0 = Pr(¬a) ∧ Pr(¬b1→0) ∧ Pr(¬c0→1).  Therefore it is 

proven that sεc0 and s0 are equivalent, and the probabilities of transitioning to each of 

those respective states, Trsn_to_sεc0 and Trsn_to_s0 are equivalent as well. 
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Chapter 4: Probabilistic Model Checking 
 

The established stochastic model presents a framework for properties to be 

checked against the model.  Properties provide analysis of the stochastic model by 

verifying specified conditions or criteria.  As the transitions of the model are probabilistic, 

the properties used to test it will reflect the inherent probabilistic nature of the system, 

in this way the utilization of the properties can be referred to as probabilistic model 

checking.   The properties are based upon a probabilistic temporal logic, which examines 

the behavior of the system with respect to time. 

A simple view of the probabilistic model checking process, depicted in Figure 22, 

consists of a probabilistic model checker, where the inputs are a probabilistic model, and 

probabilistic temporal logic specifications written for the model.  The output of the model 

checker is the result from the application of the logic specifications to the model, verifying 

or disproving the specifications, or giving quantifiable results. 
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Figure 22: Probabilistic model checking flow 

Once the description of the system has been modeled as a stochastic system, e.g. 

DTMCs, a formal specification of quantitative system properties, is used to analyze the 

circuit expressed using temporal logic.  As Dutch computer scientist Edsger Dijkstra said 

“Program testing can be used to show the presence of bugs, but never to show their 

absence!”; property specifications must be formed with much thought to extract the 

desired information regarding reliability and performance properties.  In order to analyze 

a DMTC, one or more temporal logic properties are required.  The beauty of model 

checking is the depth and breadth of information extracted from the model is largely at 

the discrepancy of the composed properties.   
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All properties are expressed temporally to convey either transient or steady-

state/long-run behavior. 

Certain properties are proposed that extract potentially desirable information.  

Implementation of the properties using a probabilistic temporal language with model 

checker specific syntax is detailed later in Chapter 5.  These properties are by no means 

exhaustive, but represent only a small sample set of various attributes of the system that 

can be tested. 

For this project, the primary objective of the model checking and the composed 

properties is to estimate the error probability at specified nodes in the circuit.  Properties 

are thus written to analyze the error probabilities with respect to the previously 

mentioned temporal measures. 

Various nodes in the circuit with high probability of failure can be of interest.  Or, 

the dependency of the output of the circuit on specific nodes can be relevant with regard 

to the placement of fault tolerant circuitry.  An error at one node might have a greater 

effect on the output of the circuit than an error at another node.  Nodes with higher 

probability of failure and/or nodes that have a higher effect on the output of the circuit 

could potentially be desirable places to implement redundant circuitry to circumvent 

potential failure 
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4.1 Steady-State Probabilities 
 

 Properties can be used to estimate any number of long-run behaviors probabilities 

of the model.  As one of the more important attributes of the model to analyze can be 

the steady-state behavior of various nodes, steady-state estimations in DTMCs are briefly 

detailed.   

 

4.1.1 Long-Run and Steady-State Probabilities 
 

DTMCs can either be constructed to depict discrete time-steps to accurately model 

time or as time-abstract, where no information is assumed from transitions of the model.  

The presented combinational logic model is a time-abstract model, as propagation delay 

is not taken into account. 

Transient probabilities are essentially only useful in discrete time-step models, 

however, long-run behavior can yield useful information in any DTMC.   

The percentage of time, in the long run, that is spent in a specific state can be 

calculated by taking the limit: 

πs  = limk→∞ πs,k 

where πs,k is the transient state distribution at a given time k (or after k transitions), 

having started in state, s (i.e. πs,k(s’) for all states s’).  This limit, if it exists, is referred to 

as the limiting distribution. 
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To find out if the limiting distribution exists, firstly some terminology from [4] is 

introduced. 

 Reachable: A state, s,’ is reachable if, from s, there exists a finite path that ends in 

s’. 

 Strongly Connected:  T ⊆ S, is strongly connected if there exists a path from each 

state in T to every other state in T. 

 Strongly Connected Component (SCC):   An SCC is a maximally strongly connected 

set of states, where no superset of the set of states is strongly connected. 

 Bottom Strongly Connected Component (BSCC):  A set of states is a BSCC if it is (1) 

a SCC, and (2) there are no state outside the SCC is reachable from T. 

 Irreducible: If all of a Markov chain’s states belong to one BSCC, the Markov chain 

is considered irreducible. 

 Periodic: A state s, with period d, is periodic if the greatest factor of the set {n| fs
(n) 

> 0} =d, where fs
(n) is the probability of starting in s and returning to s in n steps.   A 

Markov Chain with a period of one is aperiodic. 
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If a DTMC is finite, irreducible, and aperiodic, a limiting distribution will exist, and the 

limiting distribution is independent of initial state and distribution.  Probabilities 

independent of initial distribution are referred to as steady-state probabilities, denoted 

simply as π.  Steady-state probabilities can be computed by using the linear equation 

system:  

π∙P = π and ∑s∈S π(s) = 1 [4] 

The unique solution to the system will be the steady-state probability.  

 

4.2 Probabilistic Computational Tree Logic 
 

Verification of the system is performed formally by means of properties 

specifications that reveal, prove, or disprove specified functionality of a system.  The 

properties take the form of probabilistic temporal logics, which allows for analysis of the 

behavior of how a system changes temporally. 

Probabilistic Computational Tree Logic (PCTL), a branching-temporal logic, serves 

as the foundation for properties used in this probabilistic model checking.  The 

probabilistic component of PCTL, the P operator, allows for quantitative extension on 

standard CTL quantifiers over paths.  PCTL syntax is comprised of state and path formulas.  

State formulae are generated by context-free grammar, where for a state s of a DTMC (S, 

sinit, P, L), the grammar for PCTL state formulae is 
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ɸ ::= true | a | ɸ ∧ ɸ | ¬ɸ | P~p [ψ] 

where a is an atomic proposition, ψ is a path formula, and p ∈ [0,1] is a probability bound  

~∈ [<, >, ≤, ≥],  p ∈ [0,1].  [4] 

The semantics for the DTMC state formulae are defined as 

s ⊧ true   always 

s ⊧ a   ⇔ a ∈ L(s) 

s ⊧ ɸA ∧ ɸB  ⇔ s ⊧ ɸA and  s ⊧ ɸB 

s ⊧ ¬ ɸ   ⇔ s ⊭ ɸ 

where ⊧ implies satisfaction. 

For a path ω of an DTMC (S, sinit, P, L), the grammar for PCTL path formulae is 

Ψ ::=  X ɸ  |  ɸ ∪≤k ɸ |  ɸ ∪ ɸ | 

where k ∈ . [4] 

In PCTL, path formulae only occur inside the P operator. 

The semantics for DTMC path formulae are formally defined as 

ω ⊧  X ɸ   ⇔ ω(1) ⊧ ɸ 

ω ⊧ ɸA ∪≤k ɸB   ⇔ ∃ i≤ k such that ω(i) ⊧ ɸB  
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 and ∀ j <I, ω(j) ⊧  ɸA 

ω ⊧ ɸA ∪ ɸB   ⇔ ∃ k ≥ 0, ω(k) ⊧  ɸB and ∀ i < k ω(i) ⊧  ɸA 

ω ⊧ F Φ   ⇔ ∃ k ≥ 0, ω(k) ⊧  Φ 

ω ⊧ G Φ   ⇔ ∀ i ≥ 0 ω(i) ⊧  Φ  [4] 

 

4.3 Satisfiability 
 

With the probabilistic model and the temporal language necessary to build the 

property specifications, determining how a property specification is satisfied or not 

satisfied has to be addressed.  The inputs to the system, the DTMCs and the PCTL formula 

ɸ, and the output that is the set of states that satisfies ɸ, the state formula, are formally 

defined as 

Sat(ɸ) = {s ∈ S | s ⊧ ɸ } 

Satisfaction can be an evaluation for a single state, s ⊧ ɸ, i.e. s ∈ Sat(ɸ), or of the entire 

system, s ⊧ ɸ ∀ s ∈ S, i.e.  Sat(ɸ) = S. 

For the non-probabilistic operators, satisfaction can be defined as 

   Sat(true) = S 

Sat(a)   =  { s ∈ S | a ∈ L(s) } 
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Sat(¬ɸ) = S\Sat(ɸ) 

Sat(ɸA ∧ ɸB)  =  Sat (ɸA) ∩ (ɸB) 

Sat(P~p [ψ]) = { s ∈ S | Prob(s, ψ) ~ p }  [4] 
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Chapter 5: Case Studies 
 

5.1 PRISM 
 

PRISM is an open-source probabilistic model checker that can be used to analyze 

and model probabilistic behavior.  Based at Oxford University Computing Laboratory, 

PRISM was initially developed at the University of Birmingham.  It supports construction 

and analysis of discrete-time and continuous-time Markov chains, and Markov decision 

processes.   PRISM’s high-level Property Specification Language supports a number of 

temporal logics, PCTL, CSL, and LTL (for the model described, only PCTL is covered).  In 

cases of state explosion, PRISM supports up to a maximum model size of 170 million 

states. [4] 

Although briefly described earlier, an overview of the probabilistic model checking 

process, further depicted in Figure 23, is comprised of two phases: 

 model construction, a description of the system 

 model checking, a formal specification of the system’s quantitative properties. 
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Figure 23: Probabilistic model checking process 

 

The high-level model is the PRISM language description.  Model construction takes 

PRISM language description and through matrix manipulation and a graph-based 

algorithm, constructs a set of reachable states.  A model is then implemented as Markov 

models, in this case, DTMCs.  Model checking is performed by applying properties formed 

as temporal logics to the model.  The outcome of the properties expressed in formulas 

yield quantifiable results.   
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Probabilistic model checking, PRISM in particular, applies numerical computation 

to produce exact results. This stands in contrast to discrete-event simulation methods 

where results are approximated by taking the average of results from a large number of 

random samples.  These utilized methods are comprised of graph theoretical algorithms 

and numerical computation.  Graph theoretical algorithms are used to determine the set 

of reachable states in a model, or estimate qualitative properties.  Numerical 

computation is used to calculate probabilities and reward values.  The graph theoretical 

algorithms utilize graph structures of a Markov chain to determine qualitative properties 

and the reachability of states. [4] 

Solutions to linear equations of systems, or calculation of transient probabilities 

of a Markov chain generally form the basis for numerical computation.  Jacobi, Gauss-

Seidel and SOR techniques are used for finding solutions for linear equation systems, 

while uniformisation is utilized for transient probabilities [4]. 

 

5.1.2 Model Specification 
 

PRISM models are composed of modules and variables. A system is comprised of 

the parallel composition of interacting modules, with each module representing different 

components of the modeled system.   A set of variables represents the state of each 

module.   
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The change of the state of modules is expressed as a set of guarded commands of 

the form: 

[action] guard → probability: update 

where:  

 action is an optional label for reference 

 guard is a predicate over the model variables 

 probability is a real-valued expression 

 update is of the form (x’1=u1) & (x’2=u2) & … & (x’k=uk), 

where x1, x2, …, xk are local variable belonging to a module and u1, u2, …uk are 

expressions over all model variables [4].  

More specifically, a full command in PRISM looks like the below example: 

[������]�������
������

(� = ���� ∧ εb = �����) ����������������� →
�����

�10�
�����������

: (��� = ����)���������  +
������

1 − �10�����
�����������

: (��� = �����)��������� ;
������

  

A command is enabled if the state satisfies the predicate guard.  A transition then updates 

the module’s variables by taking into account its specified probability of occurrence. 

5.1.3 Example Error Estimation Model in PRISM 
 

Figure 24 depicts the single inverter b, used in Chapter 3, with primary input a.  As 

a is a primary input, it is assumed that there is no probability of error at a.  Figure 25 
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depicts an implementation of the single inverter circuit for error probability in compliable 

PRISM modeling language.  

 

Figure 24: Single inverter b with primary input a 

 

 

In module primary_input, the logic level of primary input a toggles between true 

and false with a fifty percent probability of being in each state, where true and false 

dtmc 
 
const double pa = 0.5;     // probability of primary input 'a' being true (i.e. logic 1) 
const double b01 = 0.1;    // probability of 0 -> 1 error originating at node 'c' 
const double b10 = 0.1;     // probability of 1 -> 0 error originating at node 'c' 
 
//-------------------------- error-free circuit structure ------------------------------------------- 
formula b=true = a=false;    // b = INV(a) 
 
//-------------------------- input transitions -------------------------------------------------------- 
module primary_input 
    a:bool;    // logic level of input node 'a' 
 
    [update]a=false | a=true -> 1-pa:(a'=false) + pa:(a'=true);  
endmodule 
  
 
//-------------------------- DTMCS for error estimation at output of inverter ‘b’ --------- 
module inv_b 
    eb :bool;  // error at 'b', where 'true' is an error, and 'false' is error-free 

   
    // from any state, ‘eb’ transitions to ’true’ with probability 'b01' or ‘b10’ 
    [update]a=false -> b10:(eb'=true) + 1-b10:(eb'=false) ; 
    [update]a=true -> b01:(eb'=true) + 1-b01:(eb'=false); 
endmodule 

 
 

Figure 25: Prism implementation for error estimation of single inverter b 
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represent logic low and logic high respectively.  The error-free circuit structure is 

established using formulas.  Formula b represents the error-free logical functionality of 

inverter b.  In PRISM, formulas are utilized to avoid duplication of code.  The name of the 

formula can then be referenced as shorthand for the expression in any place an 

expression would be used.  In the example, the formulas essentially creates a module or 

DTMC for b, where the value changes in accordance with the Boolean formula and the 

value of a.  In this way, module primary_input in addition with formula b form the 

previously mentioned DTMC for error-free node logic levels of the circuit.  

Representation of the circuit structure through formulas aids in the scalability of the 

model.    

  Module inv_b is used to calculate the probability of error at the output of the 

inverter.  Module inv_b comprises two commands for error estimation at the output of 

inverter b, as there is a command for each logic level of a, the input to the inverter.  

The PRISM code in Figure 25 is compilable, and can be run by cutting and pasting 

the code into the ‘model’ window of the PRISM Model Checker.  

 

Figure 26: Two Inverter circuit 
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Figure 26 depicts the simple two-inverter circuit used in Chapter 3, with primary 

input a and output c.  As this circuit is simply the single inverter with an additional inverter 

on the output, the PRISM model code is identical to the PRISM model for the single 

inverter circuit with the addition of formula c, the error-free logical representation of 

inverter c, and module inv_c, used for error estimation of c.  In the first commands for 

inv_c the guards are conditions where an error is not propagated from inverter b.  In the 

last two commands of module inv_c, the guards are conditions where an error is 

propagated from b. 
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dtmc 
 
const double pa = 0.5;         // probability of primary input 'a' being true (i.e. logic 1) 
const double b01 = 0.1;     // probability of 0 -> 1 error originating at node 'b' 
const double b10 = 0.1;     // probability of 1 -> 0 error originating at node 'b' 
const double c01 = 0.1;     // probability of 0 -> 1 error originating at node ‘c’ 
const double c10 = 0.1;     // probability of 1 -> 0 error originating at node 'c' 
 
//-------------------------- error-free circuit structure ----------------------------------------------- 
formula b=true = a=false;    // b = INV(a) 
formula c=true = b=false;    // c = INV(b) 
 
 
//-------------------------- input transitions ------------------------------------------------------------- 
module primary_input   
    a:bool;  // logic level of input node 'a' 
 
    [update]a=false | a=true -> 1-pa:(a'=false) + pa:(a'=true);  
endmodule 
  
//-------------------------- DTMCS for error estimation at output of inverter ‘b’ -------------- 
module inv_b 
    eb :bool;  // error at 'b', where 'true' is an error, and 'false' is error-free 
 
// from any state, ‘eb’ transitions to ’true’ with probability 'b01' or ‘b10’ 
    [update]a=false -> b10:(eb'=true) + 1-b10:(eb'=false); 
    [update]a=true -> b01:(eb'=true) + 1-b01:(eb'=false); 
endmodule 
 
 
//-------------------------- DTMCS for error estimation at output of inverter ‘c’ -------------- 
module inv_c 

ec:bool;  // error at 'c', where 'true' is an error, and 'false' is error-free 
cef:bool;  // error-free ‘c’, where 'true' is an error, and 'false' is error-free 

    pec:bool;  //  'true’ is a propagated error to 'd', 'false' is no propagated error to 'd'. 
// cases where no error propagated from inverter 'b' 
    [update]b=true & eb=false -> c01:(ec'=true)&(cef'=false)&( pec'= false)+1-c01:(ec'=false)&(cef'= false)& 
(pec' =false); 
    [update]b=false & eb=false -> c10:(ec'=true)&(cef'=true)&(pec'=false)+ 1-c10:(ec'=false) 
&(cef'=true)&(pec'=false);  
 
// cases where error propagated from inverter 'b'  
    [update]b=true  & eb=true -> c10:(ec'=false)&(cef'=false)&(pec'=true) + 1-c10:(ec'=true) &(cef'=false)& 
(pec'=true); 
    [update]b=false & eb=true -> c01:(ec'=false) &(cef'=true)&(pec'=true) + 1-
c01:(ec'=true)&(cef'=true)&(pec'=true);   
endmodule 

Figure 27: PRISM implementation for error estimation of two inverter circuit 
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5.2 Property Specifications 
 

The general scope of how properties can be used for reliability analysis of the 

circuit was previously presented, but the implementation of them is realized through 

PRISM’s property specifications.  Operators from PCTL and some of its extensions form 

the foundation for PRISM’s property specification language.   

The inherent nature of probabilistic model checking lends itself to analysis of 

quantitative properties.  It allows for testing the probability of a given event or occurrence.    

More complex properties can be expressed by combining the arithmetic equations with 

numeric values. 

Operators P, R, and S form the primary constructs in the PRISM specification 

language which are used to extract temporal characteristics of the system.  The P operator 

is the probability of an event occurrence.  The S operator is the steady-state probability 

of an event.  The R operator is the expected value of a random variable that is associated 

with a specified reward.  As the presented model is time-abstract, only steady-state and 

rewards properties involving steady-state behavior yield viable results for large scale 

circuits. 

As stated previously, the primary inquiries of interest involve the error probability 

of nodes as well as the dependency of the nodes on other nodes in the circuit (as 

discussed previously, the dependency of the error probability of a node on the error 

probability of nodes other than that of the nodes in its fan-in cone cannot be accurately 
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analyzed without additional variables). To that end, 15 property specifications in PRISM’s 

property specification language are composed and shown in Table 12.  The properties 

only represent a small subset of qualities of the circuit that can be analyzed.  They largely 

serve as examples to represent some of the depth and breadth that PRISM’s properties 

can analyze. 

 

No. Property 

1 P=?[FI εc=true] 

2 S=?[ε=true] 

3 S=?[εc=true & pec=true] 

4 S=?[εc=true & cef=false] 

5 S=?[εc=true & pec=true & cef=false] 

6 P=? [F εc=true] 

7 P=? [G[≤t] εc=false] 

8 P=? [εc=false  UI εc=true] 

9 P=? [εc=false  U εc=true] 

10 P=? [εc=false  W εc=true] 

11 P=? [F εc=true] / P=? [F εc=true] 

12 R{“ εc_total”}=? [CI], 

13 R{“step”}=? [F εc=true] 

14 R{“error”}=? [S] 

15 R{“error”}=? [I=t] 

Table 12: Proposed properties for combinational circuits 
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5.2.1 Transient and Steady-State Probabilities 
   

The transient behavior of the output of the circuit can be examined using the P 

operator and the ‘eventually’ operator F, expressed as FI where I is the interval [0 ≤ t] ∈ 

ℝ. 

Property 1:  P=?[FI εc=true] 

Property 1 asks what the probability is of an error at node c, occurring at some step during 

internal I.  

The steady-state operator, S, is used in Property 2, where the question posed is the 

steady-state probability of an error at node c.    

Property 2:  S=?[εc = true], 

This can also be expanded to analyze multiple nodes using logic disjunction or 

conjunction.  Property 3 demonstrates the expansion by asking the steady-state 

probability of an error at node c as a result of an error propagated from node b.  

Property 3:  S=?[εc=true & pec=true] 

Property 4 demonstrates another variation of the steady state example is to look 

at the steady-state probability of error at the output of the circuit when the expected 

value (error-free value) at c is a logic low. 

Property 4: S=?[εc=true & cef=false] 
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 Property 5 is another steady-state property revealing the steady-state probability of an 

error at c, when an error-free logic low is expected, and the error is propagated from b. 

Property 5: S=?[εc=true & cef=false & pec=true] 

 

5.2.2 Timing and Event Ordering 
 

For transient analysis, the F operator is time-bounded by the interval I.  However, 

there also exists a time-unbounded variant that is simply expressed as F without I, where 

F then becomes equivalent to F[0,∞), this allows analysis over the lifetime of the system.  

The time-unbounded operator F can be used to estimate if an event will ever occur. 

Property 6 poses the question if there exists the possibility that there will ever be an error 

at node c.   In our model, this is a trivial question, but this could be relevant in a model 

where there exists no probability for an error to originate at the gate of interest, but 

possibly be propagated from other gates. 

Property 6:  P=? [F εc=true] 

The ‘always ‘ or ‘global’ operator, G, expresses a condition that remains true, as 

opposed to expressing a condition becoming true, as operator F does.  An example of a 

possible relevant property with regard to the circuit could be Property 7, which asks what 

the probability is that there is no error at node d during interval I. 
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Property 7:  P=? [GI εc=false] 

 The ‘until’ operator, U, states that for two given conditions, the first condition is 

to remain true until the second condition becomes true. Property 8 poses the question of 

asking what the probability is that an error at node c will not occur until after interval I.   

Property 8:  P=? [εc=false UI εc=true], 

Property 9 is a slight modification of Property 8, asking what the probability is that 

a given node will fail before another node, specifically, the probability that there 

is an error at node c prior to an error at node b.  Although indirect, this can 

demonstrate comparative susceptibility to error, as well as potential error 

dependency. 

Property 9:  P=? [εc=false U εb=true] 

 Similar to the ‘until’ operator, Property 10 demonstrates the ‘weak until’ 

operator, W, which can be used to ask what the probability is that an error at node 

b, if it occurs, occurs prior to an error at node c.  The primary difference between 

the ‘weak until’ and the ‘until’ operator is that the ‘weak until’ operator also 

encompasses the scenario where no error at either node occurs. 

Property 10:  P=? [εc=false W εb=true] 
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5.2.3 Conditional Probability 
 

Conditional probability can be used to express the dependence of one event upon 

another.   With respect to the circuit, this can be particularly relevant where it is desired 

to find the probability of an error at one node in the circuit given an error at another node.  

Conditional probability can be examined by using the conjunction operator.  For example, 

Property11 asks the question that at a given time interval, what is the probability of an 

error at node c given an error at node b. 

Property 11:  P=? [FI εc=true] & P=? [FI εb=true] 

Using this technique could show the level of dependence one node’s error 

probability has on another node’s error probability.  This could assist in fault tolerance 

design, in that the nodes where being error free is most critical to the output of the circuit 

can be targets for including redundant circuitry to better assure the output would be 

unaffected by errors on nodes that have an especially strong influence on the accuracy of 

the output.     
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5.2.4 Reward-Based Properties 
 

Rewards are used to detail quantitative properties [4].  In a Markov chain, rewards 

are the labeling of state and transitions with real values.  In PRISM, rewards can be 

associated either with specified states or transitions. 

The R operator represents the expected variable of a random variable defined 

using PRISM’s rewards.   There are four different variants of reward properties in PRISM 

 C<=t: Cumulative 

 F: Reachability 

 I=t: Instantaneous 

 S: Steady-state 

where t is the step. 

As there can be multiple reward structures, each type of reward can have an 

associated name or title, denoted here as rew, and used with the R operator as 

R{“rew”}=? [], 

to denote the expected value of reward structure rew.  For a simple example, a reward 

structure ec_total assigns a state reward of one to states where node c has an error.   
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rewards "ec_total" 
ec=true: 1; 

endrewards 
 

The accumulated amount of the reward over a period of time can be used as in 

Property 12 to ask the question of which is the expected cumulative number of steps node 

c has an erroneous output over time interval  [0, t]. 

Property 12:  R{“εc_total”}=? [C≤t], 

Property 12 can be expanded to help analyze the source of the error at node c.  In 

addition to the reward structure ec_total, reward structures can be created to assign a 

state reward of one to states for each of the following unique cases: 

 There is an error at c and b at the same step 

rewards "ec_eb" 
(ec=true & eb=true): 1; 

endrewards 

 

 There is an error at c when a logic low was expected 

rewards "ec_def_0" 
 (ec=true & cef=false): 1; 
endrewards 

 

 There is an error at c when a logic high was expected 

rewards "ec_def_1" 
 (ec=true & cef=true): 1; 
endrewards 
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Rewards can also be accumulated until a specified time and utilized to reveal such 

information as mean-time to failure.  For example, a reward structure steps is given a 

value of one at each state.   

rewards "steps" 
 a=false:1; 
 a=true:1; 
endrewards 
 

Property 13 asks the expected number of step prior to the first failure at node c. 

Property 13:  R{“steps”}=? [F εc=true] 

The S operator can be utilized with rewards to give the steady-state of reward 

accumulation.  If a reward structure error assigns a transition reward of one to every 

transition in the circuit where an error occurs, Property 14 asks the expected stead-state 

rate of error probability for all the nodes in the two inverter circuit.   

rewards "total_errors" 
 eb=true:1; 
 ec=true:1; 
endrewards 

 

Property 14:  R{“total_errors”}=? [S] 

Using reward structures to analyze steady-state properties can be seen as similar or 

redundant when compared to using the S operator to analyze properties as shown in 

Property 2, but it can be useful to double check or verify the accuracy of analysis. 
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Finally, the R operation can be used to show instantaneous values of rewards.  

Property 15 asks the total expected number of errors in the circuit at a given time 

step/instance.  Where t is the step/instance at which the total number of expected errors 

is being estimated. 

Property 15:  R{“total_error”}=? [I=t], 

 

5.3 Presented DTMC Model vs Single DTMC Model 

 To verify accuracy, the modular DTMC model is compared to the singular DMTC 

model.  Figure 28 depicts a simple circuit of an inverter feeding into one of the inputs of 

a two-input NAND-gate.   

 

 

Figure 28: Inverter and two-input NAND circuit 

 

Pr(a) and Pr(b) are each 0.5. c0→1, c1→0, d0→1 and d1→0 are all 0.1. Variants of the 

previously proposed properties are run against the model, with the results shown in Table 

12.   
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No. Property Presented 
DTMC  
Model 

Single 
DTMC 
Model 

1 P=?[F≤20 εd=true] 0.9487 0.9510 

2 S=?[εd=true] 0.1400 0.1400 

3 S=?[εd=true & ped=true] 0.0500 0.0500 

4 S=?[εd=true & def=false] 0.0450 0.0450 

5 S=?[εd=true & ped=true & def=false] 0.0225 0.0225 

6 P=? [F εd=true] 1.0000 1.0000 

7 P=? [G≤20 εd=false] 0.0513 0.0489 

8 P=? [εd=false  U≤20  εc=true] 0.9487 0.9510 

9 P=? [εc=false  U εc=true] 0.7632 0.7368 

10 P=? [εc=false  W εc=true] 0.7632 0.7368 

11 P=? [F≤20  ped=true &  εd=true] 0.6226 0.6415 

12 R{“ εc_total”}=? [C≤100], 13.8200 13.8600 

13 R{“step”}=? [F εc=true] 7.4285 7.1428 

14 R{“error”}=? [S] 0.2400 0.2400 

15 R{“error”}=? [I=17] 0.2400 0.2400 

Table 13: Sample properties for circuit in Figure 16 

 
The non-transient properties yield identical results for the two models (Properties 

2, 3, 4, 5, 6, 14 and 15), but as the modular model is time-abstract, transient properties 

show some variance from the more accurate, but less scalable single model.  Compilable 

code for modular DTMC and the single DTMC is located in Appendices A and B respectively. 
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5.4 Example of Presented DTMC Method handling Reconvergent Fan-out 
 

 

 

Figure 29: combinational circuit for comparison with First Pass method 

For the depicted circuit in Figure 29, with a fifty percent probability of the inputs 

to the circuit being either a logic low or logic high, and a ten percent probability of errors 

originating at the output of each gate (for both 0→1 and 1→0 errors, Table 13 gives the 

resulting probabilities for εm using the First Pass method from [1] without correlation 

coefficients (incorporating correlation coefficients highly increases the accuracy of the 

First Pass method), and the proposed DMTC method (incorporating in correlation 

coefficients .  

 



 
 

86 
 

Model Actual First Pass Method 
without correlation 

coefficients 

Presented DTMC 
Method 

εm, probability of 
error at m 

0.2267 0.2274 0.2267 

Table 14: Results for εm from the circuit in Figure 29 

 

 In this presented model for the six gate circuit, there are 2number of primary inputs + 

number of gates = 26+6 = 4096 states. 
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Chapter 6: Summary and Possible Future Work 
 

This paper describes a framework for an accurate method for probabilistic analysis 

for logic circuits.  The primary advantages of the model are: 

 Complete verification, as opposed to partial verification provided by simulation 

 Handling reconvergent fan-out without additional complexity 

 Property specifications that allow for depth and breadth of analysis, including error 

dependency of nodes in the node of interest’s fan-in cone. 

While demonstrated on Boolean logic gates, the model can be modified to use on 

developing circuit technologies such as reversible and quantum gates.   Possible future 

work could include extended the model to analyze sequential circuits, where inputs to 

the combinational logic would include feedback from circuit outputs. 
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Appendix A: PRISM Code for Modular DTMC Model of Circuit from Figure 16  
 

dtmc 
 
const double pa = 0.5;         // probability of primary input 'a' being true (i.e. logic 1) 
const double pb = 0.5;         // probability of primary input 'b' being true (i.e. logic 1) 
const double c01 = 0.1;     // probability of 0 -> 1 error originating at node 'c' 
const double c10 = 0.1;     // probability of 1 -> 0 error originating at node 'c' 
const double d01 = 0.1;     // probability of 0 -> 1 error originating at node ‘d’ 
const double d10 = 0.1;     // probability of 1 -> 0 error originating at node 'd' 
 
 
//-------------------------- error-free circuit structure ----------------------------------------------------
----------- 
formula c=true = a=false;                    // c = INV(a) 
formula d=true = b=false&c=false;    // d = NAND(c,b) 
 
 
//-------------------------- input transitions -----------------------------------------------------------------
----------- 
module circuit_inputs   
    a:bool init false;  // logic level of input node 'a' 
 
    [update]a=false -> 1-pa:(a'=false) + pa:(a'=true);  
    [update]a=true -> 1-pa:(a'=false) + pa:(a'=true);  
endmodule 
 
 
module b_input  
    b:bool init false;  // logic level of input node 'b' 
 
    [update]b=false -> 1-pb:(b'=false) + pb:(b'=true);  
    [update]b=true -> 1-pb:(b'=false) + pb:(b'=true);  
endmodule 
 
 
//-------------------------- DTMCS for error estimation at output of inverter ‘c’ -------------------
---------- 
module inv_c 
    ec: bool init false;  // error at 'c', where 'true' is an error, and 'false' is error-free 
    cef: bool init false;   // expected/error-free 'c': 'false' = logic low, 'true' = logic high 
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// from any state, ‘ec’ transitions to ’true’ with probability 'c01' or ‘c10’ 
    [update]a=false -> c10:(ec'=true)&(cef'=true) + 1-c10:(ec'=false)&(cef'=true); 
    [update]a=true -> c01:(ec'=true)&(cef'=false) + 1-c01:(ec'=false)&(cef'=false); 
endmodule 
 
//-------------------------- DTMCs for error estimation at output of 2-input NAND ‘d’ -----------
---------- 
module nand_d 
    ed: bool init false;  // error at 'd', where 'true' is an error, and 'false' is error-free 
    def: bool init false;   // expected/error-free 'd': 'false' = logic low, 'true' = logic high 
    ped: bool init false; // 'true; is a propagated error to 'd', 'false' is no propagated error 
to 'd'. 
 
   // from any state of ‘ed’, if there is an error propagated through ‘d’,  
    // ‘ed’ transitions to ‘true’ with probability '1-d01' or ‘1-d10’    
    [update]b=true & c=false & ec=true -> d01:(ed'=false)&(def'=true)&(ped'=true) + 1-
d01:(ed'=true)&(def'=true)&(ped'=true); 
    [update]b=true & c=true  & ec=true -> d10:(ed'=false)&(def'=false)&(ped'=true) + 1-
d10:(ed'=true)&(def'=false)&(ped'=true); 
 
    // from any state of ‘ed’, if there is no error propagated through ‘d’,  
    // ‘ed’ transitions to ‘true’ with probability 'd01' or ‘d10’ 
    [update]b=false & ec=false         -> d10:(ed'=true)&(def'=true)&(ped'=false) + 1-
d10:(ed'=false)&(def'=true)&(ped'=false); 
    [update]b=false & ec=true          -> d10:(ed'=true)&(def'=true)&(ped'=true) + 1-
d10:(ed'=false)&(def'=true)&(ped'=true); 
    [update]b=true & c=false& ec=false -> d10:(ed'=true)&(def'=true)&(ped'=false) + 1-
d10:(ed'=false)&(def'=true)&(ped'=false); 
    [update]b=true & c=true & ec=false -> d01:(ed'=true)&(def'=false)&(ped'=false) + 1-
d01:(ed'=false)&(def'=false)&(ped'=false); 
endmodule 
 
 
//-------------------------- reward structures -------------------------------------------------------- 
 
// assigns a reward of 1 anytime there is an error at 'd' 
rewards "ed_total" 
    ed=true : 1; 
endrewards 
 
// assigns a reward of 1 anytime there is an error at 'd' as a result of the propagated 
error at 'c' 
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rewards "ed_ec" 
    (ed=true &ped=true): 1; 
endrewards 
 
// assigns a reward of 1 anytime there is an error at 'd', when expecting a '0' 
rewards "ed_def_1" 
    (ed=true & def=true): 1; 
endrewards 
 
// assigns a reward of 1 anytime there is an error at 'd', when expecting a '1'' 
rewards "ed_def_0" 
    (ed=true & def=false): 1; 
endrewards 
 
// assigns an reward of 1 to every time step 
rewards "step" 
    a=true: 1; 
    a=false: 1; 
endrewards 
 
// assigns a reward to 1 anytime there is an error anywhere in the circuit 
rewards "total_errors" 
    ec=true: 1; 
    ed=true: 1; 
 
endrewards 
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Appendix B: PRISM Code for Singular DTMC Model of Circuit from Figure 16  
 
dtmc 
 
const double pa = 0.5;         // probability of primary input 'a' being true (i.e. logic 1) 
const double pb = 0.5;         // probability of primary input 'b' being true (i.e. logic 1) 
const double c01 = 0.10;     // probability of 0 -> 1 error originating at node 'c' 
const double c10 = 0.10;     // probability of 1 -> 0 error originating at node 'c' 
const double d01 = 0.10;     // probability of 0 -> 1 error originating at node ‘d’ 
const double d10 = 0.10;     // probability of 1 -> 0 error originating at node 'd' 
 
 
 
//-------------------------- error-free circuit structure ----------------------------------------------------
----------- 
formula c=true = a=false;             // c = INV(a) 
formula d=true = b=false&c=false;    // d = NAND(c,b) 
 
 
//-------------------------- input transitions -----------------------------------------------------------------
----------- 
module circuit_inputs   
    a:bool init false;  // logic level of input node 'a' 
    b:bool init false;  // logic level of input node 'b' 
 
 ec: bool init false; 
 ed: bool init false; 
    [update]a=false ->  
((1-pa)*(1-pb)*(1-c10)*(1-d10)) :(a'=false)&(b'=false)&(ec'=false)&(ed'=false)+ 
((1-pa)*(1-pb)*(1-c10)*d10)     :(a'=false)&(b'=false)&(ec'=false)&(ed'=true)+ 
((1-pa)*(1-pb)*c10    *(1-d10)) :(a'=false)&(b'=false)&(ec'=true) &(ed'=false)+ 
((1-pa)*(1-pb)*c10    *d10)     :(a'=false)&(b'=false)&(ec'=true) &(ed'=true) + 
((1-pa)*pb    *(1-c10)*(1-d01)) :(a'=false)&(b'=true) &(ec'=false)&(ed'=false)+ 
((1-pa)*pb    *(1-c10)*d01)     :(a'=false)&(b'=true) &(ec'=false)&(ed'=true)+ 
((1-pa)*pb    *c10    *(1-d10)) :(a'=false)&(b'=true) &(ec'=true) &(ed'=true)+ 
((1-pa)*pb    *c10    *d10)     :(a'=false)&(b'=true) &(ec'=true) &(ed'=false) +  
(pa    *(1-pb)*(1-c01)*(1-d10)) :(a'=true) &(b'=false)&(ec'=false)&(ed'=false)+ 
(pa    *(1-pb)*(1-c01)*d10)     :(a'=true) &(b'=false)&(ec'=false)&(ed'=true)+ 
(pa    *(1-pb)*c01    *(1-d10)) :(a'=true) &(b'=false)&(ec'=true) &(ed'=false)+ 
(pa    *(1-pb)*c01    *d10)     :(a'=true) &(b'=false)&(ec'=true) &(ed'=true)+ 
(pa    *pb    *(1-c01)*(1-d10)) :(a'=true) &(b'=true)&(ec'=false)&(ed'=false)+ 
(pa    *pb    *(1-c01)*d10)     :(a'=true) &(b'=true)&(ec'=false)&(ed'=true)+ 
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(pa    *pb    *c01    *(1-d01)) :(a'=true) &(b'=true)&(ec'=true) &(ed'=true)+ 
(pa    *pb    *c01    *d01)     :(a'=true) &(b'=true) &(ec'=true) &(ed'=false); 
 
[update]a=true -> 
((1-pa)*(1-pb)*(1-c10)*(1-d10)) :(a'=false)&(b'=false)&(ec'=false)&(ed'=false)+ 
((1-pa)*(1-pb)*(1-c10)*d10)     :(a'=false)&(b'=false)&(ec'=false)&(ed'=true)+ 
((1-pa)*(1-pb)*c10    *(1-d10)) :(a'=false)&(b'=false)&(ec'=true) &(ed'=false)+ 
((1-pa)*(1-pb)*c10    *d10)     :(a'=false)&(b'=false)&(ec'=true) &(ed'=true) + 
((1-pa)*pb    *(1-c10)*(1-d01)) :(a'=false)&(b'=true) &(ec'=false)&(ed'=false)+ 
((1-pa)*pb    *(1-c10)*d01)     :(a'=false)&(b'=true) &(ec'=false)&(ed'=true)+ 
((1-pa)*pb    *c10    *(1-d10)) :(a'=false)&(b'=true) &(ec'=true) &(ed'=true)+ 
((1-pa)*pb    *c10    *d10)     :(a'=false)&(b'=true) &(ec'=true) &(ed'=false) +  
(pa    *(1-pb)*(1-c01)*(1-d10)) :(a'=true) &(b'=false)&(ec'=false)&(ed'=false)+ 
(pa    *(1-pb)*(1-c01)*d10)     :(a'=true) &(b'=false)&(ec'=false)&(ed'=true)+ 
(pa    *(1-pb)*c01    *(1-d10)) :(a'=true) &(b'=false)&(ec'=true) &(ed'=false)+ 
(pa    *(1-pb)*c01    *d10)     :(a'=true) &(b'=false)&(ec'=true) &(ed'=true)+ 
(pa    *pb    *(1-c01)*(1-d10)) :(a'=true) &(b'=true)&(ec'=false)&(ed'=false)+ 
(pa    *pb    *(1-c01)*d10)     :(a'=true) &(b'=true)&(ec'=false)&(ed'=true)+ 
(pa    *pb    *c01    *(1-d01)) :(a'=true) &(b'=true)&(ec'=true) &(ed'=true)+ 
(pa    *pb    *c01    *d01)     :(a'=true) &(b'=true) &(ec'=true) &(ed'=false); 
 
 
endmodule 
 
 
//-------------------------- reward structures -------------------------------------------------------- 
 
// assign a reward of 1 any step there is an error at 'd' 
rewards "ed_total" 
    ed=true : 1; 
endrewards 
 
// assign a reward of 1 any step there is an error at 'd' as a result of the propagated 
error at 'c' 
rewards "ed_ec" 
    (ec=true & ed=true) : 1; 
endrewards 
 
// assign a reward of 1 any step there is an error at 'd', when expecting a '0' 
rewards "ed_def_0" 
  (a=false&b=true&ed=true): 1; 
endrewards 
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// assign a reward of 1 any step there is an error at 'd', when expecting a '1' 
rewards "ed_def_1" 
    (a=true & ed=true): 1; 
    (a=false& b=false&ed=true): 1; 
endrewards 
 
// assign an reward of 1 to every step 
rewards "step" 
    a=true:  1; 
    a=false: 1; 
endrewards 
 
// assign a reward of 1 any step there is an error anywhere in the circuit 
rewards "total_errors" 
    ec=true: 1; 
    ed=true: 1; 
endrewards 
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Appendix C: PRISM Code for the Circuit from Figure 30 
 
dtmc 
 
 
// -------------------- (fixed) error probabilities ---------------------------- 
 
const double pa = 0.5;        //Prob(a=1)=0.5 
const double pb = 0.5;        //Prob(b=1)=0.5 
const double pc = 0.5;        //Prob(c=1)=0.5 
const double pd = 0.5;        //Prob(d=1)=0.5 
const double pe = 0.5;        //Prob(e=1)=0.5 
const double pf = 0.5;        //Prob(f=1)=0.5 
 
const double g01 = 0.1;     //Prob(g0->1)=0.1 
const double g10 = 0.1;     //Prob(g1->0)=0.1 
const double h01 = 0.1;     //Prob(h0->1)=0.1 
const double h10 = 0.1;     //Prob(h1->1)=0.1 
const double j01 = 0.1;     //Prob(j0->1)=0.1 
const double j10 = 0.1;     //Prob(j1->1)=0.1 
const double k01 = 0.1;     //Prob(k0->1)=0.1 
const double k10 = 0.1;     //Prob(k1->1)=0.1 
const double l01 = 0.1;     //Prob(l0->1)=0.1 
const double l10 = 0.1;     //Prob(l1->1)=0.1 
const double m01 = 0.1;     //Prob(m0->1)=0.1 
const double m10 = 0.1;     //Prob(m1->1)=0.1 
 
 
//--------------------------error-free circuit structure ------------- 
formula g=true  = a=true & b=true;  // g = a & b 
formula h=true  = c=true | d=true;  // h = c | d 
formula j=true  = e=true & f=true;  // j = e & f 
formula k=true  = g=true & h=true;  // k = g & h 
formula l=true  = h=true | j=true;  // l = h & j 
formula m=true  = k=true | l=true;  // m = k & l 
 
 
 
 
// ------------------------ input transitions --------------- 
 
module circuit_inputs   
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    a:bool init false;  // logic level of input node 'a' 
    b:bool init false;  // logic level of input node 'b' 
    c:bool init false;  // logic level of input node 'c' 
    d:bool init false;  // logic level of input node 'd' 
    e:bool init false;  // logic level of input node 'e' 
    f:bool init false;  // logic level of input node 'f' 
 
    [update]a=false | a=true -> 1-pa:(a'=false) + pa:(a'=true); 
    [update]b=false | b=true -> 1-pb:(b'=false) + pb:(b'=true); 
    [update]c=false | c=true -> 1-pc:(c'=false) + pc:(c'=true);  
    [update]d=false | d=true -> 1-pd:(d'=false) + pd:(d'=true); 
    [update]e=false | e=true -> 1-pe:(e'=false) + pe:(e'=true); 
    [update]f=false | f=true -> 1-pf:(f'=false) + pf:(f'=true); 
endmodule 
 
 
//------------------------------------------------------------------------- 
 
module AND_g 
    eg : bool init false; 
    [update]a=false | b=false -> 1-g01:(eg'=false) + g01:(eg'=true); 
    [update]a=true  & b=true  -> 1-g10:(eg'=false) + g10:(eg'=true); 
endmodule    
 
//------------------------------------------------------------------------- 
 
module OR_h 
    eh : bool init false; 
    ei : bool init false; 
    [update]c=false & d=false -> 1-h01:(eh'=false)&(ei'=false) + h01:(eh'=true)&(ei'=true); 
    [update]c=true  | d=true  -> 1-h10:(eh'=false)&(ei'=false) + h10:(eh'=true)&(ei'=true); 
endmodule 
 
//------------------------------------------------------------------------- 
 
module AND_j 
    ej : bool init false; 
    [update]e=false | f=false -> 1-j01:(ej'=false) + j01:(ej'=true); 
    [update]e=true  & f=true  -> 1-j10:(ej'=false) + j10:(ej'=true); 
endmodule 
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//------------------------------------------------------------------------- 
 
module AND_k 
    ek : bool init false; 
 
    //error propagates through from transitive fan-in cone 
    [update]g=false & h=false & eg =true & eh=true  -> k01:(ek'=false) + 1-k01:(ek'=true); 
    [update]g=false & h=true  & eg=true & eh =false  -> k01:(ek'=false) + 1-k01:(ek'=true); 
    [update]g=true  & h=false & eg =false & eh=true  -> k01:(ek'=false) + 1-k01:(ek'=true); 
    [update]g=true  & h=true  &(eg=true | eh=true) -> k10:(ek'=false) + 1-k10:(ek'=true); 
 
 
   // no error propagate trough from transitive fan-in cone 
    [update]g=false & h=false &(eg =false | eh =false)-> k01:(ek'=true) + 1-k01:(ek'=false); 
    [update]g=false & h=true  &(eg =false | eh=true) -> k01:(ek'=true) + 1-k01:(ek'=false); 
    [update]g=true  & h=false &(eg=true | eh =false) -> k01:(ek'=true) + 1-k01:(ek'=false); 
    [update]g=true  & h=true  & eg =false & eh =false  -> k10:(ek'=true) + 1-
k10:(ek'=false); 
endmodule 
 
 //------------------------------------------------------------------------- 
 
module OR_l   
    el : bool init false; 
    //error propagates through from transitive fan-in cone 
    [update]h=false & j=false &(ei=true | ej=true) -> l01:(el'=false) + 1-l01:(el'=true); 
    [update]h=false & j=true  & ei =false & ej=true  -> l10:(el'=false) + 1-l10:(el'=true); 
    [update]h=true  & j=false & ei=true & ej =false  -> l10:(el'=false) + 1-l10:(el'=true); 
    [update]h=true  & j=true  & ei=true & ej=true  -> l10:(el'=false) + 1-l10:(el'=true);  
 
   // no error propagate trough from transitive fan-in cone 
    [update]h=false & j=false &  ei =false & ej =false  -> l01:(el'=true) + 1-l01:(el'=false); 
    [update]h=false & j=true  & (ei=true | ej =false) -> l10:(el'=true) + 1-l10:(el'=false); 
    [update]h=true  & j=false & (ei =false | ej=true) -> l10:(el'=true) + 1-l10:(el'=false); 
    [update]h=true  & j=true  & (ei =false | ej =false) -> l10:(el'=true) + 1-l10:(el'=false); 
endmodule 
 
 //------------------------------------------------------------------------- 
 
module OR_m 
    em : bool init false; 
    //error propagates through from transitive fan-in cone 
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    [update]k=false & l=false &(ek=true | el=true) -> m01:(em'=false) + 1-m01:(em'=true); 
    [update]k=false & l=true  & ek =false & el=true  -> m10:(em'=false) + 1-
m10:(em'=true); 
    [update]k=true  & l=false & ek=true & el =false  -> m10:(em'=false) + 1-
m10:(em'=true); 
    [update]k=true  & l=true  & ek=true & el=true  -> m10:(em'=false) + 1-m10:(em'=true);  
 
    //error propagates through from fan-in cone 
    [update]k=false & l=false &  ek =false & el =false  -> m01:(em'=true) + 1-
m01:(em'=false); 
    [update]k=false & l=true  & (ek=true | el =false) -> m10:(em'=true) + 1-
m10:(em'=false); 
    [update]k=true  & l=false & (ek =false | el=true) -> m10:(em'=true) + 1-
m10:(em'=false); 
    [update]k=true  & l=true  & (ek =false | el =false) -> m10:(em'=true) + 1-
m10:(em'=false); 
endmodule 
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