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Abstract 

Solar cells have extrinsic losses from a variety of sources which can be minimized by 

optimization of the design and fabrication processes. Reflection from the front surface is 

one such loss mechanism and has been managed in the past with the usage of planar 

antireflection coatings. While effective, these coatings are each limited to a single 

wavelength of light and do not account for varying incident angles of the incoming light 

source. Three-dimensional nanostructures have shown the ability to inhibit reflection for 

differing wavelengths and angles of incidence. Nanocones were modeled and show a 

broadband, multi-angled reflectance decrease due to an effective grading of the index.  

Finite element models were created to simulate incident light on a zinc oxide nanocone 

textured silicon substrate. Zinc oxide is advantageous for its ease of production, benign 

nature, and refractive index matching to the air source region and silicon substrate. 

Reflectance plots were computed as functions of incident angle and wavelength of light 

and compared with planar and quintic refractive index profile models. The quintic profile 

model exhibits nearly optimum reflection minimization and is thus used as a benchmark. 

Physical quantities, including height, width, density, and orientation were varied in order 

to minimize the reflectance. A quasi-random nanocone unit cell was modeled to better 

mimic laboratory results. The model was comprised of 10 nanocones with differing 

structure and simulated a larger substrate by usage of periodic boundary conditions. The 

simulated reflectance shows a ~50% decrease when compared with a planar model. When 

a seed layer is added, simulating a layer of non-textured zinc oxide, on which the 

nanocones are grown, the reflectance shows a fourfold decrease when compared with 
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planar models. At angles of incidence higher than 75o, the nanocone model outperformed 

the quintic model. 
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1. Introduction 

Reflection occurs when light travels from one medium to another with differing refractive 

indices. The minimization of reflection is of great importance to a number of scientific 

endeavors and technological fields, including solar power. Photovoltaic energy 

production is a continually growing field which has experienced rapid growth throughout 

the past decade. Installed solar capacity more than doubled from 2010 to 2011, up from 

887 megawatts to 1,887 megawatts of total capacity in the United States [1]. The upward 

trend continued in 2012 as capacity reached 3,313 megawatts [2]. Despite a recent natural 

gas boom, solar technology is positioned for continued growth in the coming decades.  

While the technology is not novel, and silicon solar cells have been in use for more than 

half-a-century, the power produced is still marginal when compared to fossil fuel power 

production due primarily to photovoltaic cells being much less cost-efficient. Reducing 

the production costs will allow solar technology to thrive as an alternative to the more 

pollution-intensive, geopolitically-risky, climate-altering fossil fuel power industry.  

Perhaps the most advantageous attribute of solar energy is the abundance of sunlight the 

Earth receives. In terms of fossil fuel usage, tons of coal equivalence is used, the solar 

radiation per year is equal to 1.8 x 1018 tons of coal equivalence [3]. With such a great 

amount of solar irradiance, even utilization of a modest percentage would allow for much 

of the world’s power needs to be met. 

The need for better performing solar cells has led researchers to study the characteristics 

of animal antireflective (AR) structures. The usage of nature's designs in science and 

engineering is known as biomimetics. Some insects use AR to camouflage themselves 
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from predators, while others use AR to enhance vision [4]. The eyes of moths have 

developed over millions of years to be antireflective due to nano-pillars which are 

closely-packed on the surface of the eye [5]. The usage of structures to minimize 

reflection, as used in nature, has many applications including military camouflage, optical 

lenses, and solar cells. The solar cell application is of particular interest here. 

 

Figure 1.1. Electron microscope image of moth eye at 50 micron, 5 micron, and 1 micron. [5] 

 

1.1 Solar Cell Operation and Structure 

Solar cells operate by absorption of photons in the solar electromagnetic spectrum in 

order to create electron-hole pairs, separating those charge carriers in the junction, and 

collection of the carriers at the terminals to drive a direct electric current [6]. Photons 

must be of sufficient energy to be absorbed. The energy is used to promote an electron 

from the valence band to the conduction band and drive the circuit. Photons of energy 

less than the minimum needed to excite an electron across the energy gap are reflected or 

transmitted by the cell. Photons of excess energy promote electrons, as well as holes, but 

this excess energy is lost in the form of heat due to electronic relaxation to the conduction 

band edge and holes to the valence band edge. Electronic conduction band promotion 

also creates the absence of an electron, or a hole, at the valence band. The physical 
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interpretation of this process has the electron and hole collected at the contact terminals 

of the device where they enter the circuit [3].  

The most basic solar cell structure is the combination of two different types of 

semiconductors called a p-n junction which forms an interface through which charges 

interact. The different types can be made of the same original material; typically silicon is 

used for commercial grade cells. When the two parts are created from a single material, 

the n-type portion is doped with donor impurities to yield a high electron conductivity in 

this region. Atoms with more valence electrons than silicon (Group V elements), which 

has four valence electrons, are used. The p-type portion is made from doping the 

substance with acceptor ions, those with less valence electrons (Group III elements) than 

the original semiconductor. This allows for a high hole conductivity in this region [3].  

The dopants create a junction with a built-in potential, eliminate the need for a bias 

voltage, and adjust the valence and conduction band energy levels. This asymmetry is the 

basic requirement for photovoltaic energy conversion in a solar cell [6]. The Fermi 

energy, the energy at which the probability of electron occupation is exactly one-half, is 

split into two quasi-Fermi levels, one for electrons and one for holes. This describes the 

illuminated state of the cell. The difference between the quasi-Fermi energies 

corresponds approximately to the output voltage, while the output current can be 

calculated from the number of absorbed photons and their quantum efficiency [6]. The 

charge carrier separation occurs in the depletion region, with typical width ~1 micrometer 

while the absorption process extends over the whole thickness of 200 micrometer. This 
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absorber layer is approximately 150 to 250 microns thick [7]. This is a large amount of 

material and contributes significantly to the cost of modules. 

 

1.2 Efficiency Limitations and Design Improvements 

Design improvements create better functioning solar power devices. There are two types 

of limitations which adversely affect solar cells, intrinsic and extrinsic limitations.  

Photovoltaic devices can be improved in a few select ways in order to overcome their 

extrinsic limitations. The intrinsic limitations cannot be overcome by design. They 

include incoming light energy limitations due to the range of the solar spectrum, Auger 

recombination, free carrier absorption, and radiative recombination [8, 9]. Extrinsic 

limitations can be overcome and include surface recombination, contact shadowing, 

series resistance, incomplete collection of photo-generated carriers, and reflection at the 

front surface, among others [10]. While all of these are important, without allowing the 

light to enter the cell, none of the other extrinsic limitations factor into cell performance.  

Therefore, reflection at the front surface is the first and most basic problem to overcome 

in cell design. 

 

1.3 Reflection Minimization 

The design of efficient photovoltaic devices requires the limiting, or eliminating, of 

power conversion loss mechanisms, including reflection of incoming light, at the front 
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surface.  Reflection occurs when light travels from a medium to another medium with 

differing index of refraction.  For a solar cell, three different types of incident radiation 

reflection occur including reflections from contacts, back surfaces, and front surfaces as 

seen in figure 1.2.  The topic of this thesis will focus on front surface reflection 

minimization. 

 

Figure 1.2. Reflection of incident light on a solar cell. [11] 

 

The methods employed to limit reflectivity in solar cells are texturing of the surface and 

applying planar antireflective coatings. Texturing is used to increase scattering into the 

cell, which increases the probability of capturing a photon from the incident light, and 

light trapping which lengthens the path length and increases the probability of electron-

hole pair production from photon absorption. Planar coatings produce destructive 

interference with reflected waves and decrease the refractive index of the medium on 

which the light is incident. 



6 

 

The employment of antireflective coatings has greatly diminished this problem [12]. By 

using a thickness equal to one-quarter times the incident wavelength, reflections can be 

minimized. However, these coatings are for a single wavelength and must be applied in 

successive layers for broadband effects. The planar coatings do not take into account the 

different angles at which light can be incident [13]. Successive layering of individually 

antireflective coatings will aid performance of a cell but also increases manufacturing 

costs and difficulty.   

 

Figure 1.3. Single planar AR coating showing destructive interference of the first and second 
reflected waves R1 and R2 due to the quarter-wave phase difference.  The thickness of the coating is � � � �� where m is an positive integer, the indices of refraction for the incident, AR layer, and 

substrate are ��, �	, and ��. [14] 

 

1.4 Planar Coatings 

Planar anti-reflection coatings are deposited at a depth of one-quarter of the wavelength 

of incoming light. For each wavelength, there must be an additional coating to minimize 
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reflection. Since this is not possible in practice, a few different planar surfaces are used to 

minimize reflection at the wavelengths associated with maximum intensity in the incident 

spectrum. From the Fresnel equation for reflectivity, the ideal index of refraction is for an 

anti-reflection coating can be found. At normal incidence, with a single AR coating of 

index �, the Fresnel equation, from the field boundary conditions for three media with 

indices of refraction for the incident and substrate media �� and ��, takes the form [13]: 

� �  � ��� � ���� � 4���� sin� �2���  �1 � ������ � 4���� sin� �2���  � 
Where � is the AR layer thickness, � is the incident wavelength, and ��and �� are: 

�� � �� � ��� � �  and �� � � � ��� � �� 

With a thickness of a quarter-wavelength, the sine function terms in the numerator and 

denominator are zero: 

sin� $2�� �% � sin� $2�� & �4% � sin� ��2 � 0 

The reflection equation is minimized when � � 0 and is now: 

� �  ( ��� � �����1 � ������( � � �� � ��� � � �  � � ��� � ��1 � ��� � ��� � � �� � ��� � �� ��
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� )) �2��� � 2������ � ���� � ������ � ���� � ��� � ��� � ���� � ������ � ���� � ��� ))�
 

�  ( �2��� � 2������ � ���� � ��� � ��� � ���� � ���(� � 0 

Which yields: 

�*+ � � �  ,���� 

Therefore, to minimize reflection from a planar surface, it must be coated with a coating 

of thickness equal to one-quarter the size of the incident wavelength and have an index of 

refraction equal to the geometric mean of the media which it separates. 

 

1.5 Textured Antireflection 

An omni-directional, antireflection scheme is desirable to cover a broadband of the 

electromagnetic spectrum for varying angles of incidence. This can be achieved with 

texturing of the surfaces. Texturing changes the entrance angle as light enters the cell and 

extends the optical path length which allows for increased chances of absorption (figure 

1.4). This can also be achieved by deposition of tapered nanostructures onto cells. Since 

these structures can be readily deposited from low-cost materials and utilizing simple 

technology, nanostructures are considered cost-effective and results-enhancing ways to 

maximize the efficiency of solar cells [15].   
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Figure 1.4. Light trapping on textured surface. [16] 

 

1.6 Zinc Oxide Nanocones as Antireflection Materials 

For standard silicon used in photovoltaic devices, with an index varying between 3.73 to 

5.57 in the visible spectrum, the geometric mean, with air as the first medium, ranges 

from 1.924 to 2.345 [17]. This is the range of zinc oxide’s index of refraction [17]. Thus, 

zinc oxide is a natural choice for a planar anti-reflection coating between air and silicon 

media because of its index and the fact it is a transparent semiconducting material. Of 

particular importance here, the growth mechanisms for zinc oxide allow for optimization 

of the morphology, including tapering of the structures to act as a grading of the 

refractive index [18]. The nanostructures can be grown as ZnO nanowires and then 

tapered to form nanocone shapes. The nanowire radius, height, density, and tilt, with 

respect to the z-axis, can be controlled by growth conditions. This allows for 

customization of the morphology to achieve the desired results [19]. In addition to the 
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performance properties which make ZnO a good choice, the inert qualities of ZnO and its 

abundance and low cost allow for ease of implementation in manufacturing. 

 

Figure 1.5. Nanocones constructed at Oak Ridge National Laboratory. [20] 

 

1.7 Motivation for Computation and Effective Medium Approximation 

In the past, modeling for multiple AR coating structures were calculated using transfer 

matrix method and much of the modeling for structured interfaces was accomplished by 

applying the effective medium approximation [21]. This can be useful for some 2-

dimensional geometry, however, limitations arise which cause the need to use a direct-

solving method applied to the Maxwell equations. 

The effective medium approximation is used to model interactions between two media, 

which have inherent inhomogeneity, as a homogeneous mixture with an associated 

effective dielectric function or refractive index [22]. The refractive index for the first 

medium is � and the second medium is ��. The volume filled by the ZnO is -� and the 
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by the air is - � 1 � -�. The generalized effective medium equation for two different 

media, in terms of the refractive indices, is: 

-� ��� � �.//���� � 2�.//� � �1 � -�� �� � �.//��� � 2�.//� � 0 

For use with zinc oxide structures in air, the equation becomes: 

-012 �013� � �.//��012� � 2�.//� � �1 � -012� �456� � �.//��456� � 2�.//� � 0 

Here, �.// is the effective index of refraction for individual slabs and -012is the 

percentage of zinc oxide which fills the volume. 

The nanostructure models created contain radii and separation distances significantly 

smaller than the incident light wavelengths.  This leads to optical properties which are 

driven by multiple diffuse scattering events [23]. Due to the effective medium theory's 

convergence issues when calculating solutions for high-scattering models the 

approximation cannot accurately model the nanocone-field interactions. Despite the 

recent formulation of a transfer matrix model for n-scatters using a multipole expansion, 

COMSOL's direct solving of the fields at the nodal points allows for a more accurate 

description of the field responses [22]. The direct solving of Maxwell's equations using 

finite elements also solves random geometry, such as a tilt in the structure, without the 

need to approximate the system as a single body. Directly solving the equations also 

allows for a near-field solution of the system. This method uses intensity integrations 
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over the top portion of the geometry which encompasses the backscattered light [24].  

With the subtraction of the incident intensity, the reflection can be calculated. 

 

1.8 Thesis and Research Objectives 

Previous laboratory work has shown a decrease in reflectance when employing a 

nanostructured layer on the front surface of silicon substrates. This decrease was evident 

for a varying incident angle and wavelength of light. This study was undertaken to 

recreate a similar model using a direct solver to simulate the reflection minimization by 

ZnO nanostructures on Si substrates. The structure for the laboratory synthesized 

nanowires (figure 1.6) differed from the cones in this study.   

 

Figure 1.6. Lab grown ZnO nanowires on conductive oxide substrate. [25] 
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Greater angles of incline from base-to-tip were observed, with some nearly parallel with 

the substrate. This was neglected here due to computational difficulties. Also, the wires 

did not have large tapering at the top and were Wurzite extrusions grown from the 

substrate. The differing geometries are significant, nevertheless, the laboratory 

experience prompted this study to utilize nanostructures to show a decrease of total 

reflection from silicon substrates.   

COMSOL Multiphysics® was used to model the nanocones and obtain reflectance values 

at varying angles and wavelengths. The data is then compared with the ideal values, as 

calculated from quintic gradient index profile media, and the laboratory plots. A decrease 

in reflectivity is obtained in the models by addition of conical structures. 
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2. Theory 

2.1 Fresnel Equations, Plane Waves, and Maxwell’s Equations 

The incident light on a solar cell is governed by Maxwell’s equations of electrodynamics.  

The generalized equations for the electric and magnetic fields in terms of the electric 

field 789, displacement vector :889, and the magnetic fields in vacuum and medium, ;89 and <889 
respectively are [26]: 

∇889 = :889 � ρ/ 

∇889× 789 � � ∂;89>?  

∇889 = ;89 � 0 

∇889× <889 � @/8889 � ∂:889>?  

It is often more convenient to use Maxwell’s equations in terms of only two vector fields, 

the electric and the magnetic field, 789 and ;89. This can be accomplished by applying the 

constitutive relations. These relations express :889 in terms of vector 789 and the polarization 

vector B89, and ;89 in terms of <889 and the magnetization C889 [26]: 

:889 �  D�789 �  B89 � D789 

 <889 �  E� F;89 � C889 � E;89 
@/8889 � G789 
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Here D� and µ0 are the permittivity and permeability of free space and ε and µ are the 

permittivity and permeability of the materials, while σ is the conductivity. For linear 

media, the polarization and magnetization are directly proportional to the 789 and ;89 fields 

so the B89 and C889 vectors can be absorbed into the 789 and ;89 vectors. Now ε and µ can be 

considered constants. For a non-conductive system, such as those considered in the 

models and containing no sources, the charge density ρ/ and current density @/ are equal 

to zero. Putting this together with the previous relations and equations yields: 

∇889  = 789 � 0 

∇889× 789 � � ∂;89>?  

∇889 = ;89 � 0 

∇889× ;89 � ED ∂789>?  

These are the more familiar, source-less Maxwell equations. Since the light from the 

visible spectrum is to be considered, the electromagnetic wave equations are useful in 

determining the field response over time. Using the above form of Maxwell’s equations, 

one can eliminate some equations to get a single vector quantity of interest. Taking the 

curl of the second equation, and using the vector triple product identity yields: 

∇889× ∇8889× 789 �  ∇889 H∇889 = 789I � ∇�789 � �∇ �789 � ∇889× J� ∂;89>? K �  � ∂>?∇889× ;89 
�∇ �789 �  � ∂>?∇889× ;89 �  � ∂>? JED ∂789>? K 
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∇ �789 � ED ∂  �789>?� � 0 

Similarly,  

∇889× ;89 � ∇889 H∇889 = ;89I � ∇�;89 � �∇ �;89 � ∇889× ED ∂789>? �  ED ∂>?∇889× 789 

�∇ �;89 � ED ∂>?∇889× 789 �  ED ∂>? J� ∂;89>? K 

∇ �;89 � ED ∂  �;89>?� � 0 

Introducing the wave speed, which is the speed of light c in a vacuum,     
L� � 1ED � 1E�D�  �M� NOLPPQ� 

gives one the electromagnetic form of the wave equation, with twice-differentiated 

vectors with respect to space and time and the squared wave speed as a pre-factor: 

∇ �789 � 1L� ∂  �789>?� � 0 

∇ �;89 � 1L� ∂  �;89>?� � 0 

2.2 Plane Waves 

For an incoming plane wave, representing light from a distance source, for instance the 

sun, the equations can be modified to allow for time-harmonic fields, or those with 
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sinusoidal variation. The fields can be rewritten to include an amplitude with spatially- 

and time-varying portions [27]: 

789��9, ?� � 789�R5HS89·69FUVI 
;89��9, ?� � ;89�R5HS89·69FUVI 

789� and ;89� are the wave amplitudes, and can be complex vectors in general, �9 is the 

position vector, W89 is the wave vector, and ω is the angular frequency. The amplitudes 

need only to be considered constant and real for these purposes. Applying the new time-

harmonic fields to the electromagnetic wave equations gives: 
∇ �789��9, ?� � 1L� ∂  �789��9, ?�>?� �  ∇ �789�R5HS89·69FUVI � 1L� ∂  �789�R5HS89·69FUVI>?� � 0 

∇ �789�R5HS89·69FUVI � 1L� M���X��789�R5HS89·69FUVI � ∇ �789�R5HS89·69FUVI � �XL  � 789�R5HS89·69FUVI � 0 

∇ �789�R5HS89·69FUVI � W�789�R5HS89·69FUVI � ∇ �789��9, ?� � W�789��9, ?� � 0 

Similarly, the ;89-field response can be formulated in the same way: 

∇ �;89��9, ?� � 1L� ∂  �;89��9, ?�>?� �  ∇ �;89�R5HS89·69FUVI � 1L� ∂  �;89�R5HS89·69FUVI>?� � 0 

∇ �;89�R5HS89·69FUVI � 1L� M���X��;89�R5HS89·69FUVI � ∇ �;89�R5HS89·69FUVI � �XL  � ;89�R5HS89·69FUVI � 0 

∇ �;89�R5HS89·69FUVI � W�;89�R5HS89·69FUVI � ∇ �;89��9, ?� � W�;89��9, ?� � 0 
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These are the time-harmonic wave equations which are to be solved for the field 

response. The vector W89 is the wave vector and its magnitude is YW89Y� � UZ[Z .  It defines the 

propagation of the wave [27]. The fields in this form allow for plane wave analysis with a 

source far enough away to be considered perfectly planar wave fronts impinging on the 

surface. As light travels to the medium of the device, it is not just in plane wave form, but 

also has definitive field vectors associated with it and thus phase properties. This incident 

light will be acted on in two distinct ways when interacting with the medium of the solar 

cell, if one does not account for absorption; it will be reflected or it will be transmitted. 

This leads to the Fresnel equations. Figure 2.1 shows the relationship between the 

incident, reflected, and transmitted fields for a transverse electric wave. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.  Incident, reflected, and transmitted fields for a TE wave. [28] 
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The incident electromagnetic wave is transverse, with the electric field, magnetic field, 

and the wave vector all mutually orthogonal from a medium with index of refraction � 

to a medium with index ��. The index of refraction of a material is defined as: 

� � \ EDE�D� �  ,E6D6 

The index can be put into terms or the relative permeability E6 and relative permittivity D6 in order to simplify the equation and disregard the unit system [29]. 

 

2.3 Fresnel Equations 

Boundary conditions imposed on electrodynamic fields leads to a relationship between 

the incident, reflected, and transmitted waves’ amplitudes called Fresnel’s equations. For 

media with matching permeabilities, these can be written in terms of the indices of 

refraction.  

Concentrating on the electric field, the complex, exponential forms are altered to 

distinguish between the different directions. The utilization of time-harmonic electric and 

magnetic field formulations for incoming, reflected, and transmitted fields yields [26, 

27]: ]�LM�R�?: 7895��9, ?� � 789�_R5HS89_·69FU_VI �R-`RL?R�: 7896��9, ?� � 789�aR5HS89a·69FUaVI b�O�cQM??R�: 789V��9, ?� � 789�dR5HS89d·69FUdVI 
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The wave numbers are defined by: 

W5� � ��X5L  � , W6� � ��X6L  � , WV� � ���XVL  �
 

At a given point in the medium from which light is incident, the total field is the sum of 

the contributions from the incident and reflected fields. In the second medium, where 

transmission occurs, the total field is just given by the transmitted field. Since the fields 

are coplanar in nature, and must be continuous across the boundary in which the 

reflection occurs, the tangential components of the total fields must be equal. Combining 

this equality with the above formulations of the fields gives: 

e789�_R5HS89_·69FU_VI �  789�aR5HS89a·69FUaVIfV41g � e789�dR5HS89d·69FUdVIfV41g 

For this equation to hold true, the exponentials must have equivalent arguments.  

Therefore, the frequencies must be the same since the frequency of a monochromatic 

wave cannot be changed by a reflection from an interface:   

X5 �  X6 �  XV 
The wave vectors dotted into the position vector are equivalent, or all the wave vectors lie 

in the same plane: 

W895 · �9 �  W896 · �9 �  W89V · �9 
This leads to a relationship between the field amplitudes: 

789�_ � 789�a � 789�d 
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The interaction of light with materials is formulated using the 789 and <889 fields. In the same 

manner as the electric field boundary relationship is found, the <889 field is found.   

<V � <�V 
For S-polarization, or transverse electric (TE) mode, the fields have the following 

orientation near the surface boundary: 

 

Figure 2.2.  Incident, reflected, and transmitted fields for a TE wave. [30] 

 

For figure 2.2, the electric field is in the plane of incidence and has no component in the 

direction of propagation. Using elementary trigonometry and the tangential component 

continuity equation: 
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<�_ cos j5 �  <�a cos j5 � <�d cos jV 
For j �  j5 � j6 and j� �  jV 

Defining the impedance for a medium: 

m � 71<1 

Since the ratio of the electric and magnetic fields produces units of ohms, this yields:  

7�_m cos j5 � 7�am cos j5 �  7�Zm� cos jV 
Using the above equations, the following ratios are obtained for a TE wave [31]: 

J7�a7�_ Kn � m� cos j5 � m cos jVm� cos j5 � m cos jV    
J7�d7�_ Kn � 2m� cos j5m� cos j5 � m cos jV    

For P-polarization, or transverse magnetic (TM) mode, the fields have the orientation 

near the surface boundary seen in figure 2.3. 

For these fields, the orientations are reversed. The tangential components are again 

equated with the electric field being put into trigonometric component form and the 

magnetic components subtracted since there is a direction shift upon reflection: 

7�_ cos j5 �  7�a cos j5 � 7�d cos jV 
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For j �  j5 � j6 and j� �  jV 
and 

<889�_ � <889�a � <889�d 
 

 

Figure 2.3.  Incident, reflected, and transmitted fields for a TM wave. [32] 

 

Again using the wave impedance and similar mathematical substitutions, the following 

ratios are obtained for a wave with an electric field parallel to the plane of incidence [27]: 
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J7�a7�_ K|| � m� cos jV � m cos j5m� cos jV � m cos j5    
J7�d7�_ K|| � 2m� cos j5m� cos jV � m cos j5    

To put the Fresnel equations in terms of the indices of refraction, the impedance is further 

modified. The case involving two dielectrics is considered. Defining the so-called 

“impedance of free space” as the ratio of the permeability of free space to the permittivity 

of free space, the equations can then be modified, for non-conducting, non-magnetic 

media, for the index-dependent equations [29]: 

m � 7< � pED     and    � � ,E6D6 q  ,D6 

m � \ED $D�D�% $E�E�% � \ EE� �D�D  $E�D�% � \ EE� m�√D6 � \ EE� m�� q m��    
Therefore, the reflection and transmission coefficients for TE and TM modes are:  

b7 Cs�R 
tuv
uw� � xJ7�a7�_ Knx� � y � cos j5 � �� cos jV� cos j5 � �� cos jV   y�

b � xJ7�d7�_ Knx� � y 2� cos j5� cos j5 � �� cos jV   y� zu{
u|

 

bC Cs�R 
tuv
uw� � xJ7�a7�_ K||x� � y � cos jV � �� cos j5� cos jV � �� cos j5   y�

b � xJ7�d7�_ K||x� � y 2� cos j5� cos jV � �� cos j5   y� zu{
u|
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2.4 Conical Profile 

For nanostructured media, the index of refraction is not simply described as in the above 

discussion. Generally speaking, the index of refraction of a material is a tensor of second 

rank which has directional dependence. For a linear, isotropic, and homogeneous 

medium, the index loses spatial variation for an unbounded region. While this type of 

material is considered here, the isotropy is limited to the interior of the structure. 

However, a cross-sectional area of the structure displays a mixture of air and nanocone. 

Therefore, the index of refraction is constant inside the structure but varies for the 

complete system as a function of the structure's spatial dimensions. 

For reflection minimization, the optimal index of refraction for an intermediary between 

two media of indices equal to �� and �� is: 

� � ,���� 

A material with this index of refraction is deposited at a thickness equal to: 

? � �4� 

The wavelength of incident light is denoted by λ. This technique is used in succession for 

various wavelengths to maximize transmission.   

A gradient index of refraction can enhance transmission without the associated thickness 

requirement. A medium with a graded index has a continuously varying index of 

refraction which causes light rays travel on curved paths. Gradient media are traditionally 
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deposited in layers varying refractive indices or by doping in increasing amounts at 

increasing depths. Conversely, a graded index can also be realized in layers where the 

composition is gradually changed with depth. For example, when the air-to-solid volume 

fraction in a porous film changes with height this film can be considered a graded index 

material, provided the coarseness of the cones and air gaps are well below the wavelength 

scale. Tapered nanostructures are a similar case and require only a single deposition to 

grade the index. Instead of multiple layers of different index, geometric structure 

provides the grading. For nanocones, a well-defined geometry allows for calculation of 

the refractive index profile. An air to zinc oxide nanocone interface starts with an index 

approximately equal to one and slowly varies to equal a fractional portion of zinc oxide 

as the light travels down the cone. The cone has a height h and a radius R.  The smaller 

cone is proportional to the larger and has a height z and radius r. The differential portion 

of the cone with which light is coming into contact is marked as yellow on figure 2.4.  

For a cube with sides equal to twice the radius of the large cone, and using similar 

triangles to eliminate the radial dependence, the following mathematical analysis can be 

performed to find the refractive index profile: 
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Figure 2.4.  Nanocone unit cell.  The refractive index is a function of the fractional area of the cone. 
The cone is consists of air filling with refractive index �� � 	 and a ZnO nanocone of index �	 �}. �~	�. 

 

Effective refractive index as a function of height: 

������ �  ���� � �� � ���� $��%� �� � ��� 

���� �  �� � �� � ������ $��%� �� � ��� 

���� �  �� � �� � �����2��� $��%� �� � ��� 

���� �  �� � �� � ����4�� J����K �� � ��� 
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���� �  �� � �� � ��� �4 $� � �� %�
 

As a check, the profiles of the top and bottom portions of the unit cell can be found. The 

profile at the top should be equal to the index of air since the extreme peak of the 

nanocone is infinitesimally small. The bottom of the unit cell should be the area of a 

square, with refractive index equal to air, and a circular portion in the interior with 

refractive index equal to zinc oxide.  

For n(z) = n(h): 

���� �  �� � �� � ��� �4 $� � �� %�
 

���� � �� � �� � ��� �4 �0�� � �� 

For n(z) = n(0): 

��0� �  �� � �� � ��� �4 $� � 0� %�
 

��0� �  �� � �� � ��� �4 $��%�
 

��0� �  �� � �� � ��� �4 

��0� � �1 � �4 �� � �4 � 

The nanocone has a quadratic refractive index profile. The ideal refractive index profile is 
quintic in nature: 
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���51V5[ � �� � �� � ��� $10 � ��  � � 15 � ��  � � 6 � ��  �% 

The nanocone and quintic refractive index profiles are plotted in figure 2.5. 

 

 

Figure 2.5. Spatially-varying refractive index comparison for nanocones and the quintic profile. 

 

The curves display similar qualities with the exception of an inflection point for the 

quintic profile. The nanocone profile can be adjusted to contain a similar constant portion 

of the graph by cascading the cone with a cylindrical base which holds the index profile 

constant or with a model containing a base layer of ZnO underneath the cones. Having 

this layer between the nanocones and the silicon substrate models a system with a seed 

layer which can be used to enhance nanostructure growth. During laboratory synthesis of 

nanowire coated silicon, the growth is stimulated with a seed layer deposited before 

nanostructure growth [19]. This is taken into account in the models and thus alters the 
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index profile to behave more like the quintic profile. Figure 2.6 shows the modified 

profile. 

 

Figure 2.6. Spatially-varying refractive index for nanocones with a seed layer. 
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3. Methods and Computational Model   

3.1 Computational Equipment 

The large computational power required to accurately model the nanocone-light 

interactions necessitated access to a system capable of performing the calculations. A 64-

bit computer was built to handle the simulations utilizing a Windows Enterprise 2008 R2 

server. Initially, an Intel Xeon E5506 LGA 1366 Quad-Core Processor was installed, but 

calculation times needed to be reduced, so a faster eight-core AMD 6212 Opteron 

processors, clocked at 2.60 GHz each, were installed. A total of 64 GB of random access 

memory (RAM) was installed at the outset. However, due to the mesh refinements 

needed, an additional 112 GB were added for a total of 176 GB of RAM. In addition, a 

one TB hard drive was installed to house the many large files stemming from the models. 

Having extra storage aided in the computational ability by allowing extra memory to be 

swapped-in and thus enabling models with larger RAM needs to be computed without 

shutdowns. The hardware was housed in a single casing. The hardware required to run 

the models is listed in table 3.1. 

Server Processor Processor 
Speed 

RAM Memory 

 
 

Windows 
Enterprise 2008 

R2  
 

 
 

AMD 6212 
Opteron  
(8 Core) 

 
 

2.60 GHz 
(Dual) 

 
 

176 GB 
 

 
 

1 TB 

 

Table 3.1. Computer hardware required for model simulations. 
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3.2 Finite Element Method and PARDISO Solver 

COMSOL operates using finite element analysis. The finite element method (FEM) uses 

piecewise approximations, in place of, continuous functions. An element which is finite 

allows a discrete, or digitized, number, relation, or equation to lead to approximate 

solutions of problems containing analog properties or infinitely large in extent. These 

replacements are often polynomial in form and enable a finite number of degrees of 

freedom, in place of a continuum [33].  

Physical systems can be described by a governing set of equations and boundary 

conditions. COMSOL uses FEM to cut the geometry of the model into elements which 

are linked together with nodes, at which the system solves for the necessary equations. 

Each node has a unique equation and the set of equations are solved simultaneously for 

the desired result. The field quantities are interpolated over the elements. All elements 

adjacent to a particular node have identical degrees of freedom [34].   

The system is viewed by finite element analysis software as being approximately linear in 

nature provided the individual elements are made small enough. At a very small scale, 

this methodology works satisfactorily in all practical physical systems. However, due to 

the extremely high number of mesh points, an extremely robust solver must be used. 

COMSOL uses the PARDISO (parallel sparse direct solver) to compute the solutions to 

the models. 
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PARDISO performs analysis, symbolic and numerical factorization and forward and 

backward substitution [35]. The PARDISO direct solver calculates the solution to a set of 

sparse linear equations of the form: 

�� � � 

This is accomplished by using a parallel Lower-Upper (LU), Lower-Diagonal-Lower 

(LDL), or LLT (Lower-Lower Transpose) factorization [35]. To allow factorization of 

this kind, the electromagnetic equations must be converted to suitable forms. The purpose 

of finite element analysis is to construct the matrix A and then solve for the system. This 

is accomplished by discretization of the fields and geometry. The fields to be discretized 

by COMSOL are displayed on the graphical user interface with the appearance of the 

wave equation: 

�889 � HEF�889 � 789I � W���D6 � MGXD��789 � �889 � HEF�889 � 789I � W��D6789 � 089 
However, the weak form of the vector wave equation is used which reduces the rigid 

requirements of an exact solution, provided the modified equation holds true for certain 

test functions. This approximate solution allows for the use of numerical methods to 

solve the equations. The weak form of the above wave equation in terms of a test 

function W is: 

� EF�� �889 � 789�  · H�889 � �8889I �� � W�� � D6789� · �8889 �� � 0 
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Vector elements ��8889� are used to discretize the field and to satisfy the divergence 

condition. Scalar functions do not satisfy the divergence condition �889 · :889 � 0 for the 

source-less equations since discretization of the electric field makes it globally 

continuous [36]. Nor do scalar functions enforce continuity in the tangential electric field 

and the normal displacement field. The field elements take the form: 

789��9� � � 71�88891��9�1  

This approach satisfies the above requirements since the vector element is divergence 

free and the fields can be continuous and discontinuous where applicable [36]. The 

essential boundary conditions for the second order partial differential wave equations are 

the Dirichlet and Neumann conditions which require the fields and their first derivatives 

to match at the boundaries. 

Even with the above approach, the extremely large number of equations to be solved and 

solutions to be organized needs to be handled in a precise manner. Also, the desire for a 

relatively fast solution to the model's equations is required. PARDISO enables fast 

solutions by pivoting and block diagonal pivoting of the matrices. Matrix pivoting 

involves the interchanging of rows and columns to more quickly solve the system. The 

pivot in a matrix is the element on the diagonal by which other elements are divided. In 

matrix pivoting, a preferred element is placed on the diagonal to grant a solving 

advantage [37].  
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The use of PARDISO limits regular pivoting when necessary, since this is not always the 

most effective method,  by using block diagonal pivoting which obtains an equivalent 

system which is more diagonally-dominant in the usually sparse matrices of 

electromagnetic wave simulations. While preprocessing reduces partial pivoting, or 

matrix row interchange, and speeds-up the factorization, a solver must be robust enough 

to solve Maxwell's equations. Pivoting grants this robustness and so must be included in 

PARDISO. These block diagonal pivots are a compromise of the speed and robustness 

[38].   

 

3.3 Building Models 

The models in COMSOL are created using MATLAB scripts and a graphical user 

interface (GUI) which consists of a workspace where the geometry, variables, 

parameters, and physics are input and a computer aided drafting region in which the 

model is viewed. While the GUI provides a convenient platform for some model 

manipulation, MATLAB often allowed for better model controls, specifically 

parameterization, plotting, and troubleshooting.  

The nanocone models are first declared to operate in the frequency domain and a 1-, 2, or 

3-dimensional workspace is specified. Parameters are defined to be varied during 

computation and variables are declared. The parameters varied include the incident light 

angle, nanocone dimensions, the wavelength of light, and the index of refraction. The 

variables of note are the wave vector components which are needed to properly define the 
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propagation in 2- and 3-dimensions. Angular dependence is built-in to allow for varied 

incident light to interact with the modeled structure. The geometry is then built using 

either preprogrammed primitives, free-drawn curves, or inputted values from the user.  

Geometric spacing of the mesh elements is vitally important to model functionality, as 

well as physical accuracy, since the mesh elements need to properly dissect the structure 

without distorting or inverting the elements. Once the geometry is built to specification, 

the material properties are defined and assigned to the various spatial regions. Material 

properties tensors are on-diagonal, identical elements to specify a linear, isotropic, and 

homogeneous medium. The materials can also be defined as an interpolative function 

with a predetermined dependence on a particular quantity. This allows for a wavelength-

dependent index of refraction to vary with the parameterization of the incident light's 

wavelength. Both the real and imaginary parts of the refractive index can be defined, but 

only the real portion is considered in the models presented here. 

Next the electrodynamics, including the boundary conditions of the system, are defined.  

The modeled wave equation acts over the entire global coordinate system and is of the 

form: 

�889 � H�889 � 789I � W��D6789 � 0 

The electric displacement field model is calculated from the material property equation: 

D6 � �� � MW�� 

COMSOL users a minus sign for the imaginary part although it can be a positive sign by 

convention. The refractive index has a real part, n, of the relative permittivity and the 
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imaginary portion, k, which is responsible for the absorption by the material. In the 

calculations presented here, only the real portion is considered. The absorption in the 

visible spectrum is minimal and so can be discounted, as shown in section 3.8.3. The 

boundary conditions are more detailed in scope and are discussed in the chapter section 

3.6. 

 

3.4 Meshing Requirements 

Once the boundary conditions are defined appropriately, which can be non-trivial, the 

mesh is created. A mesh is a sampling of the geometry in order to numerically compute a 

solution. The mesh elements need to be small enough to impose linearity on the system 

components, but large enough to enable computation by the computer. An element size of 

one-tenth of the wavelength (λ) is desired to produce accurate models [39]. The meshing 

requirements put a considerable strain on the computer, by not only lengthening 

computation times, but causing a run-time failure due to insufficient memory. A simple 

halving of the mesh size will cause a minimum of an eight-fold increase in computational 

time due to a 3-dimensional geometry. To accurately simulate the required models, a 176 

gigabyte server was constructed to allow for such small mesh elements. Typical meshes 

can range from 50,000 elements to 5,000,000 elements, depending on the complexity of 

the geometry, in order to allow for the required λ/10 sizing. 
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3.5 Nanocone Model Geometry and Mesh 

The nanostructure models consist of a single unit cell which is made periodic in the x and 

y-directions. Modeling of the periodic geometry limits the capabilities of both the 

software and computer. The scale, physics, and post-processing are computationally 

intensive and need to have very well-defined geometry, mesh elements, and boundary 

conditions. The geometry consists of a single unit cell repeated to the computer's infinity 

limitations to simulate a small structured portion on a much larger substrate. A single 

nanocone unit cell is shown in figure 3.1. The dimensions for this model are 500 nm in 

height and 50 nanometers in radius to effectively demonstrate the geometry, even though 

most models can vary widely. The cone has material properties defined to match zinc 

oxide, the substrate on which the cone is placed has properties defined to match those of 

silicon, and the portion surrounding the nanocone is vacuum to approximately simulate 

air qualities. 
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Figure 3.1.  Single nanocone geometry. 

 

The bulk of the volume is meshed with unstructured free tetrahedral elements to 

minimize the filling requirements and still properly represent the unit cell. However, the 

geometry is also periodic, contains small cornering portions, and has a central structure 

better sampled from triangular surface elements. 

To ensure accurate replication of the unit cell's faces, the repeated boundary surfaces 

must be copied from the  source boundary to the destination boundary. This ensures 

proper definition of the periodicity and wave vectors in adjacent virtual unit cells. The 

nanocone and substrate surfaces are also defined to have separate surface meshes to 

sufficiently fill the spatially-constricted geometry areas and to account for curved 

surfaces. This also eliminates inverted elements, which are volumetric inversions created 
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from improper element definition and cause errors. Nanocone surface meshing elements 

are defined as triangular elements with a growth rate of 1.1-1.4.  The growth rate dictates 

the size adjustment in adjacent locations and is kept close to unity in the areas with 

complex geometry to smoothen the transition to larger elements. The surface mesh 

maintains higher quality elements at the local nodal points by higher order differential 

functions which better represents the geometric surface variations with triangular-to-

tetrahedral transition points. Controlling the resolution of curvature also controls the 

density in curvilinear regions. The typical conical model has a mesh curvature resolution 

programmed to 0.3. A value of 0.3 allows the mesh to accurately recreate the geometry 

without needing exceedingly small elements. Such small elements would drastically 

increase the computational time and power needed. The mesh for the 500 nm high x 50 

nm radius cone is shown in figure 3.2.   
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Figure 3.2.  Nanocone mesh. 

 

3.6 Boundary Conditions 

Three types of boundary conditions are used in the nanostructure models including a) 

port boundaries which are transparent to plane waves and where the incoming waves are 

excited, b) continuity boundaries which satisfy the continuity of tangential fields, and c) 

periodic boundaries which allow for infinite periodicity of the model's defined unit cells.  

The usage of periodic boundary conditions allows the user to create an infinite array of 

nanostructures by periodically repeating the defined unit cell. This simulates a portion of 

a much larger area. Continuity boundary conditions are utilized when the tangential 
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components of the field vectors are to be continuous. The boundary conditions are shown 

in figure 3.3. 

 

Figure 3.3. Boundary conditions for a 2-dimensional, periodic nanoridge cell. 

 

3.6.1 Continuity Boundary Conditions 

For an arbitrary surface, an infinitesimal surface S can be defined to compute the surface 

integral. The surface integral can be converted to a contour integral, with closed path C 

along the differential length �`8889, according to Stokes' Theorem. As the surface S→ 0, the 

leftmost and rightmost segments of the path drop and only the top and bottom portions 

are left. This integral becomes a simple subtraction of the fields in the respective regions 
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upon evaluation. The fields 789 and 789� along the differential lengths �` of region 1 and 2, 

which are equal, are just the tangential components of the fields 7V and 7�V and are 

perpendicular to each differential length. The tangential components of the fields can 

then be shown to be continuous. This result holds for the electric and displacement 

vectors [40]. 

�∇ 8889× 789 
�  = �� �� �  � 789 = �`8889 � 0 

�  

As the surface S→ 0 

H789� · ∆`8889 – 789 · ∆`8889I � 0  
�7�V � 7V�∆` � 0 

7V �  7�V 
 

 

Figure 3.4. An arbitrary surface splitting two regions containing electric fields �889	 ��� �889} 
respectively, with infinitesimally small length ��88889, closed path C, and integration surface S. 
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The <889 field boundary conditions are formulated the same way. For an arbitrary boundary, 

the tangential components must be continuous. Applying the boundary condition to 

Maxwell’s equation [40]: 

�∇ 8889× <889 
�  = �� �� �  � <889 = �`8889 � 

� �� @/8889 � ∂:889>? �  = �`8889 
�  

With no surface currents: 

�<�V � <V�∆` � >>? H�:�V � :V�∆`I � 0 

<V � <�V 
 

3.6.2 Periodic Boundary Conditions 

The periodic boundaries at the right and left edges of the unit cell have Floquet 

periodicity applied. This allows for a translation of the unit cell to be studied, which is 

repeated to infinity, and creates infinitely many parallel unit cells extending in all 

directions to which the periodic condition applies. Periodic boundaries allow the 

simulation of very large systems, which otherwise might be impossible to model, by 

using a much smaller portion to populate the system through replication. 

Floquet periodicity, sometimes called Floquet-Bloch periodicity, can only represent a 

periodic structure which is well-defined, such as the unit cell presented here. The 

incoming “source” field vector translates to the outgoing “destination” by a phase shift.  
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In this way, the source is mapped onto the destination to repeat the structure over the 

period. COMSOL defines the periodic boundary phase shift as: 

� � W89  · ��9¡.¢V � �9¢6[� 

This is simply the exponential term of a Bloch wave with W89  being the wave vector and 

 ��9¡.¢V � �9¢6[� being the distance between the wave coming into, and going out of, an 

arbitrary cell of the system. These boundaries are defined on the unit cell's vertical 

boundaries, but can be any cell with the proper definition of the source and destination 

position vectors. With this phase shift, the Bloch waves at the boundary where the wave 

leaves the arbitrary cell take the form: 

£H�9 � �89I �  £��9�RF5�S89·H69¤+89I � £��9�RF5HS89·69IRF5HS89·+89I 
� £��9�RF5HS89·69¥a¦IRF5HS89·�69§¨¥dF69¥a¦�I � £��9�RF5HS89·69§¨¥dI 

The symbol £ is representative of the electromagnetic fields and their associated wave 

behavior. The periodic condition for the Bloch waves in the model is satisfied by 

defining: 

£��9� � £H�9 � �89I �  £��9�RF5HS89·69§¨¥dI 
This allows the model to simulate an infinite array of unit cells with any geometry. 
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3.6.3 Port Boundary Conditions 

Ports are used to drive electromagnetic waves into the region of interest and for 

calculating various quantities depending on the modeler's needs. The port boundaries are 

transparent to the waves passing through them [39]. The incident fields are user defined 

and are time-harmonic which allows a stationary solution. The wavelength is varied, with 

the angular dependence stated explicitly in the exponential terms. The direction of 

propagation is in the negative z-direction or from the top boundary down through the cell.   

bC ©M�LsQM�ª: <� � <�«RF5�S¬_ � <�«RF5�1_aS® ¯°±�4²³´4�� sP?ªsM�ª: <� � <�«RF5HS¬dI � <�«RF5�1µ_S® ¯°±�¶.V4�� · 
b7 ©M�LsQM�ª: 7� � 7�«RF5�S¬_ � 7�«RF5�1_aS® ¯°±�4²³´4�� sP?ªsM�ª: 7� � 7�«RF5HS¬dI � 7�«RF5�1µ_S® ¯°±�¶.V4�� · 

�R?O � sinF $�456��5 sin�O`¸�O�% 

Where W¼5is the x � component of the incident wave vector 

and W¼Vis the x � component of the transmitted wave vector. 
In addition, the propagation constant is the absolute value of the wave vector normal to 

the top and bottom boundaries: 

Ä � ÅM�LsQM�ª: YWÆ_Y � |�456W�cos �O`¸�O�|sP?ªsM�ª: YWÆdY � |��5W�cos ��R?O�| · 
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3.7 Solution Formulation 

The port boundary conditions are utilized for computing the reflectance from the 

scattering parameter matrix, or S-parameters, by integration of the fields at the top 

surface. S-parameters can be associated with voltage reflection and transmission but they 

are defined in terms of the electric fields in high-frequency calculations. The S-parameter 

matrix for n ports is defined as: 

Ç �  ÈÉ Ê É1Ë Ì ËÉ1 Ê É11Í 
For the total electric field 789V3V4² representing the incident wave added to the reflected 

portion, an S-matrix element is calculated from the fields using [39]: 

É11 �  Î �H789V3V4² � 7891I · 7891&  · �� ��1³36V 1Î H7891 · 7891&I  · �� ��1³36V 1  

In terms of power flow, the S-matrix elements are formulated as follows: 

É11 �  ,BsÏR� �R-`RL?R� -�sQ Bs�? �√BsÏR� ]�LM�R�? s� Bs�? � �  p�� · ÐÉ9Ñp�� · ÐÉ9�Ñ �  p�� · Ð12 �RH789 � <889&IÑp�� · Ð12 �RH789 � <889&I�Ñ 
Here, ÐÉ9Ñ is the time-averaged Poynting vector which is allowed under a steady state 

condition for the incident and reflected power and only the real portion of the cross-

product is needed [40]. 
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Transverse electric waves have a time-averaged Poynting vector projected onto the axis 

of propagation, in terms of 789 only, by replacing the magnetic field with the use of the 

triple cross-product substitution [39]: 

É11 ÒÓ � ÔÕ
p�� · Ð12 �RH789 � <889&IÑp�� · Ð12 �RH789 � <889&I�ÑÖ×ÒÓ

� ÔÕ
p� Ð12 �R �789 · H�� � <889&I Ñp� Ð12 �R �789 · H�� � <889&I �ÑÖ×ÒÓ

 

�
ÔØ
ØÕ\� Ð12 �R $789 · �� ÄμX 789%Ñ

\� Ð12 �R $789 · �� Ä�μ�X� 789%�ÑÖÚ
Ú×

ÒÓ
� ÔØ

ÕÛÐ ÄμX |789 ·|�ÑÐ Ä�μ�X� |789� ·|�ÑÖÚ
×

ÒÓ
�  ÔØ

ÕÛÐ 1mÒÓ |789 ·|�1mÒÓ® |789� ·|�ÑÖÚ
×

ÒÓ
 

The permeability is equal to one in both media for all models used and the wave 

impedance for transverse electric propagation is defined as: 

mÒÓ � μXÄ   
 In this way, the reflectance is calculated as the square of the first S-parameter matrix 

element which would be incident through the initial port and reflected back through the 

same port. This becomes a ratio of the square of the field magnitudes: 

É� ÒÓ � �ÒÓ � ÜÐ 1mÒÓ |789 ·|�1mÒÓ® |789� ·|�ÑÝ
ÒÓ

� JÐ|789 ·|�|789� ·|�ÑKÒÓ 

For transverse magnetic waves: 
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É11 ÒÞ � ÔÕ
p�� · Ð12 �RH789 � <889&IÑp�� · Ð12 �RH789 � <889&I�ÑÖ×ÒÞ

� ÔÕ
pÐ<889& · 12 �RH�� � 789IÑpÐ<889& · 12 �RH�� � 789I�ÑÖ×ÒÞ

 

�
ÔØ
ØÕ\Ð<889& · 12 �R $DXÄ <889%Ñ

\Ð<889& · 12 �R $D�X�Ä� <889%�ÑÖÚ
Ú×

ÒÞ
�

ÔØ
ØÕ\Ð<889& · �R $ 1mÒÞß <889%Ñ

\Ð<889& · �R $ 1mÒÞ® <889%�ÑÖÚ
Ú×

ÒÞ
� ÔØ

ÕÛÐ 1mÒÞß Y<889Y�1mÒÞ® Y<889�Y�ÑÖÚ
×

ÒÞ
 

The impedance for transverse magnetic propagation is defined as: 

mÒÞ � ÄDX 

The reflectance becomes: 

É� ÒÞ � �ÒÞ � ÜÐ 1mÒÞß Y<889Y�1mÒÞ® Y<889�Y�ÑÝ
ÒÞ

� àÐY<889Y�Y<889�Y�ÑáÒÞ 

 

3.8 Model Verification 

The formulation of a multifaceted model requires multiple checks on its validity to verify 

the computational integrity of the software and solution viability of the models. A check 



50 

 

on the proper domain scaling is done for periodic boundary conditions. Also, the known 

Fresnel equations are modeled to establish a baseline reflection model. The ability to 

neglect the absorption is tested and the nanocone model is varied to reproduce the 

familiar Fresnel solutions. 

 

3.8.1 Periodic Boundary Conditions from Single Cell Grouping 

The Floquet-Bloch boundary conditions must repeat the simple unit cell appropriately 

when applied to a model. This is verified by computing the fields for non-periodic cells 

and aligning them at the side boundaries to show an effective repetition of the central 

cell. As the number of non-periodic unit cells are increased, the appearance of periodicity 

becomes evident. Figures 3.5a - 3.5c show the usage of single, non-periodic unit cells 

increasing in number from a single domain to multiple domains for a simple, 2-

dimensional geometry consisting of a single nanopillar. The five domain model is 

compared with the infinitely periodic model in figure 3.6. As the number of single 

domains placed side-by-side goes to infinity, the periodic condition is shown to exist 

demonstrating the proper usage of the Floquet-Bloch conditions in the models.   



51 

 

 

Figure 3.5. Normalized electric field waveforms for the incoming and scattered fields with 
perpendicular incidence and TM polarization for non-periodic boundary conditions for a) single 

nanopillar domain, b) three nanopillar domains, and c) five nanopillar domains from a 2-dimensional 
model.   
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Figure 3.6.  Comparison of 1) central unit cell of 5 domain model and 2) the unit cell from a periodic 
boundary model.  As the number of single, non-periodic unit cells goes to infinity, the waveform 

repeats the periodic waveform. 

 

3.8.2 Fresnel Model Verification 

Confirmation of the computational effectiveness for reflection conditions with an 

air/glass interface between two infinite slabs in 3-dimensions is shown in figure 3.7. The 

model was constructed on the micron scale but very well could have been of any 

dimensions because of the infinite slab interface and depths. When compared with 
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solutions calculated from the Fresnel equations, these models accurately recreate the 

Fresnel conditions. The analytical solutions are plotted for the TE and TM polarization 

equations: 

b7 Cs�R: � � y � cos j5 � �� cos jV� cos j5 � �� cos jV   y�
 

bC Cs�R: � � y � cos jV � �� cos j5� cos jV � �� cos j5   y�
 

 

Figure 3.7.  Fresnel model for 1 µm high with a single interface between air and glass.  The calculated 
analytical values and the simulation results are plotted. 
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3.8.3 Discounting Absorption 

To simplify the models, the absorption coefficient was set to zero. When silicon is 

modeled, a complex index of refraction is required to account for the absorptive 

properties in certain parts of the spectrum. In silicon solar cells, the thickness usually is 

chosen such that nearly all light is absorbed in the first passage. Therefore, we can 

neglect reflection and transmission at the back surface. Since reflection at the front 

surface and not transmission is considered, the need for better computational speed and 

functionality outweighs the need for a model including absorptive properties as long as 

the complex portion is minimal at the simulated wavelength, as proves to be the case.   

Silicon has a complex dielectric function at 532 nm wavelength of [17]: 

D � �� � MW�� � �4.1503 � 0.043933M�� 

The Fresnel equations for TM polarization is modeled for a single vacuum-silicon 

interface for both a complex dielectric function and a real one. The model has a varying 

angle of incident monochromatic light at a wavelength of 532 nm. This wavelength is 

chosen since it is a standard type of green laser light used in laboratory settings. 

While silicon has an absorptive element associated with its refractive index, an imaginary 

component causing losses in the medium, this is not taken into account in the subsequent 

models. The models are still well within the range of validity since, even with the 

dielectric losses included, the graphs are, for all practical purposes, identical (Figure 3.8). 
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Figure 3.8. Comparison of real and complex dielectric functions for a single Air/Si interface with 532 
nm incident light. 
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4. Results and Discussion 

Using the stated theory and computational methods, models were created to minimize the 

reflection of incident light on nanostructured ZnO on Si substrates for various conical 

widths, heights, and spatial orientations. The first models created were 2-dimensional to 

gain a working knowledge of the software, limit computational time and requirements, 

and to quickly adjust the various parameters. Three-dimensional models can then be 

constructed and simulated with more confidence in the computed solution.   

 

4.1 Nanocone Verification Model 

Verification of the nanocone model represents a challenge since the geometry is non-

planar. The problem was resolved by varying the structure to reproduce the Fresnel 

model by reducing the heights of the nanocones to zero by incremental steps and 

observing the reflection graph. Figure 4.1 shows the reduction of fixed, 50 nm radii ZnO 

nanocones from 250 nm height to planar, or 0 nm height on a ZnO substrate. Heights 

greater than this were used, but no significant difference was observed beyond 250 nm 

heights. These models were used to plot the reflectance graphs is Figure 4.2. The 3-

dimensional nanocones have index of refraction � � 2, as does the substrate on which 

they are placed, and the top portion is air with an index � � 1. As the nanocone height is 

reduced, the reflectance plots adjust to the accepted transverse magnetic (TM)  plots for a 

planar interface. TM polarization is used for the incident light and the wavelength is 532 
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nm. The angle of incidence is increased from grazing to perpendicular incidence in steps 

of 3o. The plots converge to the Fresnel solution as the height is decreased to 0 nm. 

 

Figure 4.1.  Height reduction of ZnO nanocones on ZnO substrate: a) 250 nm b) 150 nm c) 100 nm d) 
50 nm e) 25 nm f) 0 nm. Wavelength: 532 nm, Refractive index: 2.03. 
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Figure 4.2.  Reflectance plots for decreasing ZnO nanocone heights on ZnO substrate with TM 
polarization and a wavelength of 532 nm and refractive index of 2.03.  As the nanocone height goes to 

zero, the Fresnel solution is recreated, as seen in the bottom right. 
 

4.2 Two-Dimensional Models 

The 2-dimensional framework in COMSOL simulations is a cross-section of infinitely 

long structures. The structures in figure 4.3 are of nanoridges with heights of 1000 nm 

and base widths of 100 nm. Magnetic (left) and electric (right) fields are plotted. Light 
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incidence was defined at 60o to the left from perpendicular. The nanoridge refractive 

index profile change acts to direct the light into the substrate, which is shown here as the 

rectangular base. This decreases the losses when compared to an air/substrate interface.  

The reflectance plots show a decrease in total reflection versus a planar interface. 

 

Figure 4.3.  2D 1000 nm height x 100 nm width nanoridge plots of the magnetic field in TM 
propagation (left) and the electric field in TE propagation (right) for 60o incidence. Wavelength: 500 

nm, Refractive index: ZnO 2.0516, Si 4.29749. 

 

 

Figure 4.4. Reflectance vs. angle of incidence for 2D 1000 nm height x 100 nm width nanoridge 
structures for TM (left) and TE (right) polarizatio ns. 
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4.3 Three-Dimensional Models 

4.3.1 Single Nanocone with Periodic Boundaries 

Three-dimensional arrays were created with the use of a single ZnO nanostructure on an 

Si substrate and periodic boundaries in the x-direction and y-direction. The nanocone in 

figure 4.5 shows a single cone unit cell with 1000 nm height and 50 nm radius.   

 

Figure 4.5.  Single 1000 nm height x 50 nm radius nanocone unit cell with periodic boundaries. 

 

The reflectance curves for transverse magnetic and transverse electric polarizations for 

both the nanocone geometry and a planar interface are compared in figure 4.6. The total 

reflectance decreases with the addition of nanocone structures. The total reflectance for 
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the nanocone models is about a factor of two lower than without the structuring for the 

TE case. The TM simulation shows approximately one-half the value of the planar model 

at perpendicular incidence to 5o incidence, but the planar model continues toward a lower 

reflectance for increasing incident angle. The planar case crosses the nanocone case at 

~58o as it the angle increases toward the Brewster angle. Beyond the ~58o angle, the 

planar TM case does not intersect the nanocone curve until 90o. The nanocone 

polarization dependence is much less pronounced than the planar case.  

 

 

Figure 4.6. Reflectance vs. angle of incidence comparison for a 1000 nm height x 50 nm radius 
nanocone model and a planar interface.  Light wavelength is 500 nm. 
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4.3.2 Height Variation 

The ZnO nanocone heights were varied to minimize the reflectance. Heights ranging 

from 200 nm to 1000 nm in increments of 200 nm, as well as, 2 microns and 3 microns 

were modeled. In the TM case, the 400 and 800 nm heights showed the lowest 

reflectance. For the TE case, the shorter structure models showed an increase in 

reflectivity relative to the 1000 nm length, while the longer structures reduced reflection. 

Interesting features appear in the 800 nm graphs showing a Brewster angle-like dip for 

the higher incident angles. When simulations differing in wavelength were run, the 1000 

nm nanocone model displayed the lowest reflectance. The incident light is 500 nm 

wavelength and the substrate is silicon.   

 

 

Figure 4.7.  Reflectance vs. angle of incidence for varying nanocone heights with fixed radii of 50 nm 
for transverse magnetic fields. Wavelength: 500 nm, Refractive index: Zno 2.0516, Si 4.29749. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60 70 80 90

R
e

fl
e

ct
a

n
ce

Angle of Incidence (degrees)

Height Variation for 50 nm Radius Nanocones

Transverse Magnetic Polarization

3000 nm

2000 nm

1000 nm

800 nm

600 nm

400 nm

200 nm



63 

 

 

Figure 4.8.  Reflectance vs. angle of incidence for varying nanocone heights with fixed radii of 50 nm 
for transverse electric fields. Wavelength: 500 nm, Refractive index: Zno 2.0516, Si 4.29749. 

 

Overall, as the height increases, the reflectance decreases in some cases and increases in 

others. For example, the 400 nm nanocones for TM polarization show the smallest 

reflectance, but an average reflectance for the TE case when compared to the others. 

Figures 4.7 and 4.8 show the height variations for TE mode and TM mode. The shortest 

structure models showed an increase in reflectivity relative to the 1000 nm length for TE, 

with the previous noted exception, while the longer structures generally reduced 

reflection. Yet, the TM case is quite different with longer structures not showing a 

reduced reflectance. The 800 nm heights showed the lowest reflectance when both 

polarizations were taken into account and both polarizations showed the near-zero dip at 
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1000 nm nanocone model displayed the lowest reflectance. Figure 4.7 shows the height 

variation reflectance plots for TE mode and TM mode.   

 

4.3.3 Width Variation 

Widths of the nanocones were varied by increasing the radii from 25 nm to 100 nm. The 

limits were set to mimic the laboratory limitations on diameter and to minimize the 

possibility of computer crashes, due to memory limitations, which increase with 

enlarging the number of volumetric mesh elements. The heights are fixed at 1 

micrometer. The nanocone spacing in the array is not varied, but the distance from the 

central point of one cone to its neighbor is affected by their radii increasing. A fixed 

density of a two nanocone radii distance between the neighboring cones centers was used 

regardless of width. A size comparison of the radii for the nanocone models is shown in 

figure 4.9. 

 

Figure 4.9.  Comparison of nanocone radii with left: 25 nm, center: 50 nm, and right: 100 nm. The  
nanocone models show the top portion of the unit cell including the substrate on which the cones are 

set and the periodic boundaries. 
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Figure 4.10.  Reflectance vs. angle of incidence for nanocone geometries of differing widths and 

constant 1000 nm height for transverse magnetic fields.  Wavelength: 500 nm, Refractive index: Zno 
2.0516, Si 4.29749. 

 
Figure 4.11.  Reflectance vs. angle of incidence for nanocone geometries of differing widths and 

constant 1000 nm height for transverse electric fields.  Wavelength: 500 nm, Refractive index: Zno 
2.0516, Si 4.29749. 
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The reflectance plots as a function of incident angle in figures 4.10 and 4.11 show the 

reflectivity decreasing with increasing radius. A larger radius allows the incident light to 

be transmitted at angles larger than 70o better than structures with smaller radii. The 

refracted waves are directed down the larger radii nanocones but get scattered off the tops 

of the steeper cones. At larger angles, a 10:1 height to radius ratio refracts the light 

toward a position inside the cone which better guides the light after subsequent 

refractions than the 20:1 or 40:1 ratios. 

 

4.3.4 Density Variation 

The density variation was modeled by adjusting  the separation distance between each 

nanocone center. The nanocone array density affects the transition from air to the 

substrate as a function of the gradient index profile. Increasing the density theoretically 

smoothens the transition, provided the cones are spaced enough to allow for conical 

morphology to be present. The spacing is a function of the unit cell area for fixed cone 

sizes. As the cell area is increased for a constant radius cone, the density decreases. If the 

unit cell is square-based, the maximum density is achieved by having the cone's radius 

equal to half the length of the unit cell's square base. Maximum density is a problem for 

the simulation since the number of mesh elements increases dramatically with the 

required decreases in element size needed to fill the small spacing at the wall of the cell 

where it meets the cone's base. Despite building a more powerful computer to handle 

such issues, the meeting point of the cone base and the cell wall creates a singular point 

in the model which cannot be solved for since the solutions cannot be calculated without 
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all points remaining inside the geometry. The point can either be removed by a Boolean 

subtraction or the cone can be shifted into the center of a slightly larger cell area. The 

latter was chosen with an additional area of 5 nm added to the unit cell's base, with 2.5 

nanometers on each side. This was deemed computationally-sufficient, without 

compromising the solution, since the amount was two orders of magnitude below the 

incident wavelength and the nanocone's geometric dimensions. In addition, the nanocone 

base only fills a circular portion of the cell's square base and the extra spacing is 

insignificant when compare to the unfilled area. 

The density variation (figure 4.12) included a cell structure equal to the width of the 

cone, with the previous restrictions, a cell length equal to 1.5 times the cone diameter, 

and twice the cone diameter.   

 

Figure 4.12. Model domains for ~ 0 nm spacing, 50 nm spacing, and 100 nm spacing between the 
nanocone bases. 

 

The best performing model is that with no separation between the cones. Only at high 

angles of incidence, ~70o and above, does the 50 nm cone spacing model have a lower 

reflectivity 
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Figure 4.13. Reflectance vs. angle of incidence (TM) plots for nanocone density variations of 100 nm, 
50 nm, and ~ 0 nm separation distances at the cone bases. Wavelength: 500 nm, Refractive index: 

Zno 2.0516, Si 4.29749. 

 

Figure 4.14. Reflectance vs. angle of incidence (TE) plots for nanocone density variations of 100 nm, 
50 nm, and ~ 0 nm separation distances at the cone bases. Wavelength: 500 nm, Refractive index: 

Zno 2.0516, Si 4.29749. 
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4.4 Nanocone Comparison with Quintic Profile Gradient Index Films 

The quintic profile provides the benefit of very slow transitions of the refractive index 

near the interfaces. Since the quintic profile remains the highest standard for gradient 

index anti-reflective material, comparisons with the profile are made with varying 

incident angle and wavelength [41]. The profile is compared with a 1000 nm height x 50 

nm radius nanocone model, as was shown in figure 2.5 and is repeated here in figure 

4.15. 

 
Figure 4.15. Spatially-varying refractive index comparison for nanocones and the quintic profile. 

4.4.1 Angular Dependence 

The incident angle was swept from perpendicular to 90o  in increments of 3o. The 

wavelength is fixed at 63 nm for the incident light. Both the nanocone and quintic models 

are high-performing for a wide variety of incident angles.  
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Figure 4.16.  Reflectance comparison for quintic profile, planar, and 1000 nm height x 50 nm radius 
nanocones for TM (top) and TE (bottom) at 632.8 nm. Si index is 3.88163 and ZnO index is 1.98882. 
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The quintic profile exhibits near zero reflectance for many incident angles. The nanocone 

model is about half way between this reflectance and a planar interface model. For angles 

greater than 75o, with TM or TE polarization, the nanocone model outperforms the 

quintic profile gradient media model.  

 

4.4.2 Wavelength Dependence 

Although some nanocone models performed better than others for varying incidence, 

with a fixed wavelength of 500 nm, this limits the solar spectrum to its maximum only, 

but discounts the remaining wavelengths. The electromagnetic radiation modeled ranges 

from 450 nm to 700 nm which mimics the visible portion of the spectrum. 

 
Figure 4.17.  Reflectance comparison for quintic profile media and 1000 nm height x 50 nm radius as 

a function of wavelength with perpendicular incidence TM light. 

0

0.1

0.2

0.3

0.4

0.5

0.6

400 450 500 550 600 650 700 750 800

R
e

fl
e

ct
a

n
ce

Wavelength (nm)

Reflectance vs. Wavelength

TM Mode at 0 degrees Incidence

Quintic Nanocones Planar



72 

 

 

Figure 4.18.  Reflectance comparison for quintic profile media and 1000 nm height x 50 nm radius as 
a function of wavelength with perpendicular incidence TE light. 

 

 

4.5 Quasi-Randomized Nanocone with Periodic Unit Cells 

To more accurately model the structures created in a laboratory setting, a quasi-random 

unit cell was created containing 10 nanocones. The heights, radii, tilt, surface position, 

and apex truncation were all varied to maximize the randomness. Still, since periodicity 

was used to model a much larger area than the initial unit cell, the geometry is only quasi-

random due to the periodicity of the cell in the xy-plane. The incident angle is varied and 

the wavelength of light is 500 nm. 
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The model is constructed from a unit cell with 375 nm depth and width for the silicon 

substrate dimensions. The depth is 500 nm but has a back surface with absorbing 

boundary conditions.  This makes the silicon substrate effectively infinitely thick to 

minimize internal reflections due to the simulation parameters and not the physical 

model. Within the unit cell the randomization of the zinc oxide conical structures 

included variations in vertical direction, diameter, and placement. The corresponding 

parameters are summarized in table 4.1 and the geometry is displayed in figure 4.19. This 

10 cone orientation presents a computationally-demanding model due to the extreme 

variance in the structures and the high number of degrees of freedom and mesh elements 

needed.   

Table 4.1.  Randomization parameters for 3D quasi-random nanocone model. 

Cone 
Number 

Position  
(x, y) (nm) 

Height (nm) Radius (nm) Tilt (nm)  
(x, y) 

Top/Bottom 
Ratio 

1 (57.5, 57.5) 800 50 (0, -25)  0.1 
2 (167.5, 82.5) 1100 60 (+25, 12.5) 0.05 
3 (287.5, 57.5) 1000 50 (0, +50) 0.1 
4 (145, 205) 850 60 (-25, 0) 0.05 
5 (57.5, 150.5) 900 40 (+25, 0) 0.1 
6 (287, 190) 1150 70 (-25, +25) 0.1 
7 (60, 315) 1000 50 (-12.5, 12.5) 0.05 
8 (190, 315) 1000 55 (12.5, -12.5) 0.075 
9 (300, 315) 850 45 (-12.5,-12.5) 0.05 
10 (50, 225) 750 30 (0, 0) 0.025 
 

The mesh elements needed to be sufficiently small, ideally one-tenth the incident 

wavelength, to allow for accurate calculations and to properly discretize the sharp corners 

of the cones which produce small areas needing a high density mesh. The desired mesh 

needed to be adjusted to allow the calculations to be performed in a reasonable amount of 
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time. Sectional meshing, which decreased the total number of elements by user-defined 

face and boundary elements, enabled an appropriate sizing while ensuring computability. 

The type and quantity of the elements are listed in table 4.2. 

 

Figure 4.19.  Top view of 3D quasi-randomized nanocone model.  Coloring for contrast. 

 

Table 4.2.  Type and quantity of 3D quasi-random nanocone model mesh elements. 

 Point Edge Boundary Volume 
Number of 
Mesh Elements 
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5594 

 
50,492 

 
692,006 
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These mesh element numbers are significantly smaller than the originally attempted 

refinement. With the desired scaling of the mesh size with geometry, wavelength, and 

dielectric properties, the mesh elements were an order of magnitude higher and made 

computation impossible due to the computer server's memory limitations. Even with 

much fewer mesh elements, the models have minimal artifacts in the solutions. The mesh 

for the top view of the geometry from figure 4.19 is shown in figure 4.20.    

 

 

Figure 4.20.  Top view of 3D quasi-randomized nanocone model geometry and mesh. 
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A 45o view, with-respect-to the xy-plane, is displayed in figure 4.21. The increased 

number of mesh elements can be seen at the cone bases and peaks. The triangular shapes 

of the mesh elements on the exterior surfaces are created separately from the interior 

tetragonal structures. The surface meshing allows for proper computation of the fields at 

the boundaries in a model with larger interior tetragonal elements. 

 

 

Figure 4.21.  45o from xy-plane view of 3D quasi-randomized nanocone model geometry and mesh. 

 

Figure 4.22 displays the TM (left) and TE (right) polarization models with the field 

solutions for the magnetic and electric fields at a 45o incident angle. The randomized 
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nature of the cones increase the light propagation directional dependence over vertically-

aligned cones. Vertical conical shapes are azimuthally-symmetric in the nanocone array 

and this guides the wave into the substrate. The light path randomization in the quasi-

random model is enhanced upon each successive scattering event. The reflectance plot 

shows a decrease over planar interfaces for both transverse magnetic and transverse 

electric propagation by a factor of two or more, but the reflection is higher than with the 

vertical alignment.   

 

Figure 4.22.  The field solutions at a 45o angle for the magnetic field (left) in transverse magnetic 
polarization and electric field (right) in transverse electric polarization. 
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The curves follow a similar pattern to the one followed by the single nanocone array, 

with a slight shift toward higher values. The reflectivity has been decreased from the 

planar interface values by ~40% except for high angles of incidence in the TM planar 

case. The overall improvement was not as significant as in the purely vertical nanocone 

model. The outlying points for the nanocone model are limited in number and require 

discussion of their validity. The vertically-aligned, purely periodic nanocone reflectance 

is shown for comparison. 

 

 

Figure 4.23.  Reflectance vs. angle of incidence plot for 3D quasi-random nanocone model.  Both TM 
and TE propagations for the air/ZnO nanocone/Si substrate model are shown in comparison with a 

planar interface. Wavelength: 500 nm, Refractive index: Zno 2.0516, Si 4.29749. 
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Figure 4.24.  Reflectance vs. angle of incidence plot for 3D vertical and periodic nanocone model. 
Both TM and TE propagations for the air/ZnO nanocone/Si substrate model are shown in 

comparison with a planar interface. Wavelength: 500 nm, Refractive index: Zno 2.0516, Si 4.29749. 

 

The plots for the reflectance of the quasi-random nanocone models (figure 4.23) contain a 

few outlying points and some scattering of data. This was caused by the need for further 

refinement of the mesh. Mesh elements could not be made smaller without causing a 

crash of the server due to memory limitations. Several attempts to find the optimal mesh 

size were conducted. The elements needed to be small enough to yield a reasonable 

solution, yet large enough to allow computation. The elements listed in table 4.2 show the 

quantities needed to create the mesh. With only a few outliers which are well off the 

modeled curves, the plot in figure 4.23 displays a satisfactory solution provided the 

outliers can be proven extraneous. 
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The plot in figure 4.23 is a model with mesh element refinement. Previous models had 

meshes which were not optimized and were still too coarse to give good results. A 

previous version is shown in figure 4.25 and exhibits the more sporadic data points 

associated with too coarse of a mesh.   

The data points for the TM and TE polarizations are more scattered which represents the 

difficulty in finding a satisfactory solution with too large of mesh elements. A 

comparison of the plots in figures 4.23 and 4.25 shows most of the higher valued data 

points dropping toward the rest of the data points upon refinement. However, the outlier 

at 39o for the TE plot remains at a value considered too high to be a reasonable solution. 

To check the validity of the point, the model was run again 1.5o above and below the 

incidence angle with step sizes bisected for each run. This is shown in figure 4.26. The 

appearance of a sharp peak spiking at 39o and then rapidly dropping off to the left and 

right is indicative of an artifact.   
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Figure 4.25.  Quasi-random nanocone reflectance plot with a coarse mesh and more outliers.  

 

 

Figure 4.26. Reflectance plot for quasi-random nanocone model with incident angle varying from 
37.5 to 40.5 degrees. 
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While the outlying point at 39o appears to be an artifact, a check as to whether or not this 

was a resonance phenomenon was completed. This seems highly unlikely, since the 

random nature of the geometry would not easily create such a response. The integrated 

intensity from the reflected light would have to be very close to 100% at the top 

boundary. The geometry of the nanocones has a rounded surface which redirects 

scattered light from its surface toward varying directions. With cones positioned in a non-

uniform manner on the substrate and having differing orientations and sizes, the near total 

reflectance at a certain angle causing a resonance peak with an amplitude of 100% is 

highly unlikely.   

 

4.6 Seed Layer 

A seed layer can be applied to substrates to enhance growth of nanostructures. Part of the 

motivation for this thesis were growths of nanowires in the laboratory setting using a seed 

layer. Spray pyrolysis was used to grow the wires from a zinc oxide seed layer. The 

average layer thickness was 50 nm and this size is modeled here. A hexagonal wurtzite 

crystalline structure formed under these conditions and differs from the conical shape 

here.   

The seed layer effectively smoothens the transition in the refractive index from the ZnO 

nanocone/air geometric mixture to the substrate by adding an additional medium of ZnO. 

The jump in effective refractive index between the nanocones and the substrate is 

decreased and the index profile better mimics the quintic (ideal) profile. The quintic and 
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seed layer nanocone refractive index profiles are plotted in figure 4.27. The quintic 

profile has an inflection point in the middle of the plot which causes it to turn down at the 

end point. A seed layer for the nanocone mimics this inflection causing the smoother 

transition. The constant index of the seed layer better matches the Si substrate index. 

 

Figure 4.27. Spatially-varying refractive index profiles for nanocones with a 50 nm seed layer (red, 
bottom) and the quintic profile (top, blue). The seed layer height is added to the 1000 nm height of 
the nanocones. This is shown here as -50 nm height since it is a part of the substrate and does not 

affect the cones.  

 

 The magnetic and electric fields are compared for models with and without a seed layer 

in figure 4.28 for 1000 nm tall cones with 50 nm radii. The overall reflectance decreases 

significantly by ~50% (figure 4.29). When plotted in comparison with the planar model, a 

dip in reflectance for both the polarizations mimics the transverse magnetic dip in 

reflectance near the Brewster angle. This was not seen in most TE cases previously 
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discussed. In the model without the seed layer, the TE and TM reflectance curves begin 

at just under 20% and are approximately equal until ~18o, at which point, the TM curve 

starts to dip lower and the TE deviates upward. In the previous model, the TE and TM 

divert from one another but here they stay relatively close and low in value. The 

reflectance plots do not start to increase appreciably until a much higher angle of 

incidence is reached. The plots for with (top) and without (bottom) seed layers are 

compared in figure 4.29. A comparison with a planar interface is also made in each plot 

for TM and TE polarizations. 

 

Figure 4.28.  1000 nm height x 50 nm radius nanocone field plots for the y-component with TM (top 
left) and TE (top right) polarizations.  Light is incident at 45o.   
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Figure 4.29. Reflectance vs. angle of incidence comparison for a 1000 nm height x 50 nm radius 
nanocone model and a planar interface with a 50 nm ZnO seed layer (top) and without (bottom).  
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The seed layer was then applied to the 3D quasi-randomized geometry. A 50 nm layer of 

ZnO was added between the bases of the cones and the substrate and the model was run 

again for TM and TE modes. The reflectance is plotted as a function of incident angle.  

This model needed 1,108,474 mesh elements and solved for 7,019,960 degrees of 

freedom. The geometry and mesh are shown in figure 4.30. There is a false blue coloring 

for contrast with the other meshed domains in order to highlight the seed layer.   

 

 

Figure 4.30.  Quasi-random nanocone mesh with a 50 nm seed layer below the cone bases. 
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The mesh needed several edge elements to be constructed. Without these, the volume 

elements became inverted as the mesh distorted itself to fit within the model's parameters. 

This involved considerable time commitment to optimize the element sizes and discrete 

constructions. 

The reflectance simulations (figure 4.31) show a significant decrease over the model 

without a seed layer. This extra layer, which stems from nanostructure growth, improves 

the overall optical performance of the nanocones. Since the laboratory-grown structures 

were nanowires instead of nanocones, this is only an approximation and would need to be 

examined experimentally. The creation of these nanocones from nanowires would 

possibly require some form of etchant application. 

 

Figure 4.31.  Reflectance vs. angle of incidence for quasi-random nanocones with a 50 nm seed layer. 
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The values at 48o for TM polarization and 72o for TE polarization show two more 

possible artifacts. The reflectance is 98.697% and 55.399% respectively. Both of these 

values deviate greatly from the data points 3o below and above them. The same 

methodology as before is employed to check their validity.   

 

Figure 4.32. Reflectance validity check around 48o for TM polarization outlying point.  The model is 
a quasi-random nanocone with a seed layer geometry. 

 

A possible diffraction response was also checked by varying the wavelength at the 48o 

outlier data point in figure 4.32. The values of reflectance were 50% for 500.1 nm and 

54% for 499.9 nm light. With such small deviations from 500 nm, the magnitude of these 

data points should be higher if it were a resonance peak since at 48o the reflectance is 

close to 100%. A small change in wavelength should not produce such a dramatic change 

in the total reflection. 
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The reflectance as a function of incident light angle for the 72o data point from the TE 

plot is shown in figure 4.33. The peak is about half of the previous outliers and seems to 

more smoothly vary as the angle changes slightly. This is also checked for resonance 

using a variation of the wavelength. Adjusting the wavelength by 0.1 nm above and 

below 500 nm showed a large discrepancy in reflection values with 10.869% for 499.9 

nm and 22.544% for 500.1 nm incident light. A real resonance peak would not drop so 

dramatically, nor vary so widely, with such a small change in the wavelength. This 

suggests the existence of an artifact at this data point.   

 

 

Figure 4.33. Reflectance validity check around 72o for TE polarization outlying point.  The model is a 
quasi-random nanocone with a seed layer geometry. 
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4.7 Comparison with Laboratory Results 

In the laboratory, nanowires were grown by the research group and had characteristics of 

high density, highly variable angles, and hexagonal structures. A scanning electron 

microscope image of the nanowires is displayed in figure 4.34 and is contrasted with the 

quasi-random nanocone geometry from the computational models (figure 4.35). The 

nanowire sample image is 6.2 µm2 and the nanocone model is 375 nm2. This visually 

distorts the density comparison between the images.   

 

 

Figure 4.34. Scanning electron microscope image of ZnO nanowires on Si substrate. 
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Figure 4.35. Quasi-random nanocone computational model. 

 

A density comparison reveals a slight variation between the sample and model. A 1500 

nm2 selection from the nanowire sample was chosen for a density comparison (figure 

4.36). The larger area increased the  ability to visually count the wires and increases the 

statistical variation of wire placement. The total wire count was 48. Dividing this by four, 

to match the nanocone model size, gives a count of 12 nanowires per 375 nm2. This is 

slightly hirgher than the 10 nanocones per 375 nm2 from the model. 
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Figure 4.36. SEM image of ZnO nanowires on Si substrate.  A 1500 nm2 area (red) is used to 
calculate the nanowire density. 

 

Reflection intensity plots of the nanowire samples in figure 4.37 range from -90o to 90o 

degrees of the angle θ. In this experiment the reflection is measured with a small area 

detector at the specular angle. In this arrangement the scattering angle is 2θ, and the plot 

shows reflected intensity vs. scattering angle, 2θ. This experimental arrangement is hence 

not the same as assumed in this thesis work. An important aspect of the experimental 

results is the disappearance of polarization dependence due to the randomized structures. 

This is reproduced in the quasi-random, periodic boundary model. The scattering of light 

from the geometry is no longer orderly and does not preserve the TM and TE 

characteristics. 



 

Figure 4.37.  Experimental reflectance from randomly oriented ZnO nanowires. 

4.8 Wavelength Dependence

The quasi-random model with a seed layer was checked for reflectance response due to 

varying wavelength. The wavelength range used was 450 nm to 750 nm. The incident 

wavelength was swept for both TM and TE polarizations and shows a reflectance value

of ~7%, on average. Figure 4.38

perpendicular incidence.  As expected, the polarization dependence disappears from the 

randomized geometry causing heavy scattering. This causes the data points to overlap 

appreciably.  
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.  Experimental reflectance from randomly oriented ZnO nanowires. 

 

 

4.8 Wavelength Dependence of Quasi-Random Nanocone Model with Seed Layer

random model with a seed layer was checked for reflectance response due to 

varying wavelength. The wavelength range used was 450 nm to 750 nm. The incident 

ept for both TM and TE polarizations and shows a reflectance value

of ~7%, on average. Figure 4.38 shows both the TM and TE mode plots for light with 

perpendicular incidence.  As expected, the polarization dependence disappears from the 

causing heavy scattering. This causes the data points to overlap 

 

.  Experimental reflectance from randomly oriented ZnO nanowires.  

Random Nanocone Model with Seed Layer 

random model with a seed layer was checked for reflectance response due to 

varying wavelength. The wavelength range used was 450 nm to 750 nm. The incident 

ept for both TM and TE polarizations and shows a reflectance value 

shows both the TM and TE mode plots for light with 

perpendicular incidence.  As expected, the polarization dependence disappears from the 

causing heavy scattering. This causes the data points to overlap 
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Figure 4.38.  Wavelength dependence of reflectance for TM and TE polarization incident at 
perpendicular incidence on a quasi-randomized nanocone geometry. 

 

4.9 Discussion and Future Work 

The randomization of the structures in the models increases the required computational 

power. These models need extra refinement at geometrically complex areas. This 

refinement slows runtime and even overstretches the memory of the server causing 

frequent crashes. There is a trade-off between performance and accuracy in the models 

which is seen in jittery curves and in spikes of reflectance values near singular points 

going up to 100%. The reflectance at these angles was examined and shown to be likely 

caused by  artifacts due to the lack of mesh refinement. Decreased mesh elements sizes 

increased the number of mesh elements, increasing the degrees of freedom and equations 

for which to solve, thereby increasing the runtime. The RAM utilized for the solutions 
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averaged ~152 GB of a total 176 GB. This was after a server computer was built to 

handle such computations. Previously, the models simply ran out of memory and could 

not be completed. 

The computational demand on the system required the limitation of models to the optical 

properties. While only optical phenomena were considered, the challenges were many. 

The models constructed were plagued by inaccurate results for well over a year resulting 

in inaccurate solutions for even the simplest cases. The early models showed wavy 

patterns in the fields which were artifacts caused by an insufficient mesh refinement. An 

increase in RAM eliminated this problem. Problems stemmed from the reflectance 

measurements showing significant flux in values, greater than 100% of incident light, and 

even negative values in the early stages of development. These were overcome by 

reformulation of the problem into S-matrix calculations and a two port system, increased 

memory and computational power for the hardware used, and persistence from the 

modeler.   

As for the physics, the nanocone model showed a good overall reduction of reflectance 

when compared with planar interfaces. An overall decrease in the reflectance values were 

achieved. The reflectance data did not exactly paralleled the laboratory experiments, but 

differing geometric shapes restricted the comparison. The computations did perform well 

enough to validate the model's accuracy. Yet, the results are not yet refined enough to 

allow for an accurate description of a working device. In solar cells, it is unlikely the 

structures will be outside of a protective layer. This adds a minimum of one more 

medium through which light must travel before coming into contact with the 
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nanostructures. This outer layer will typically be an acrylic or glass and will not 

significantly reduce the transmission, but it will not be ideal. However, an inversion of 

the nanocones on the backside of the protective transparent cover may have similar 

optical enhancements when a heterojunction is created with a p-type medium. This 

remains another option for a real device and a simulated model would be beneficial to 

enhance the design. 

The inclusion of the seed layer, as often used in deposition techniques, allowed the 

reflectance improvement to be more competitive with the quintic profiles calculated in 

the 1980's from effective medium models. Our calculations showed that a 50 nm seed 

layer lowers the reflectance at small angles to approximately 8%. This is less than half 

the reflectance typically found in nanocone surfaces without seed layers, which was 

calculated to be ~18%. We were also able to confirm experimental findings that the 

polarization dependence of the reflectance gets lost on random structured surfaces.  

Overall, we can therefore state that exact solutions to Maxwell’s equations for simple 

optical problems is now becoming feasible with desktop computers enhanced to ~180 GB 

RAM, and with commercially available programs.  

 Of course, our results do not yet accurately represent the entirety of a working solar cell 

as we disregarded completely the physics of electron transport, the inclusion of a p-type 

material to create the junction, the outer contacts which block absorption, and thermal 

heating to name a few of the important properties to model. The desire to model complete 

cells in the future remains an intriguing option for further work.   
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