Summer 8-14-2014

Cross-Cutting Concerns: The Varying Effects of Partisan Cues in the Context of Social Networks

Benjamin King Smith
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds
Part of the American Politics Commons, and the Social Influence and Political Communication Commons

Recommended Citation

10.15760/etd.1951

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.
Abstract

The theory of motivated reasoning predicts that partisan cues in the media will affect political attitudes, by encouraging individuals to align their views with those of their party’s elites. The effect has primarily been tested by looking at issues that have pre-established partisan positions (e.g. immigration reform, gay rights, etc.). This study looks at the effects of partisan cues in the media on attitudes toward a non-partisan issue, the NSA’s collection of Americans’ meta-data. Additionally, the study extends research on partisan cues by exploring the moderating role of an individual’s political communication network and, specifically, exposure to cross-cutting political communication. Findings are mixed: although there was no main effect of exposure to partisan cues in general, strong partisans were more affected by exposure to partisan cues than weak partisans were. Additionally, although frequency of political discussion was not found to moderate the effect of partisan cues, individuals with high exposure to cross-cutting communication were significantly less affected by partisan cues than those with low exposure to cross-cutting communication. Limitations, implications and future directions are discussed.

Keywords: partisan cues, cross-cutting communication, inter-personal communication, motivated reasoning, communication networks
Acknowledgments

First, I would like to thank my Committee Chairman, Dr. Lee Shaker, for his tireless commitment to this project, and invaluable input throughout the process. While cliché, it is not a stretch to say this project would not have been completed in its current form without his guidance. I would never have thought to explore cross-cutting communication networks without his prodding. In the same vein, I would like to thank Dr. Cynthia Coleman and Dr. Lauren Frank for their willingness to leave the door open when I needed fresh ideas, and for their support in completing this project.

I would also like to thank my beautiful wife, Azure Smith, for all she has done in supporting this project and me. Thank you honey!

I would like to give a shout-out to my former business partner, Ellen Treanor, for planting the original seed for this project. Her assistance with the development of the original research question came at a critical juncture.

Special thanks go to Prof. Stein, Prof. Barton, Prof. Husselbee, Prof. Chung, John Ggoldston and Sage Platt at the Southern Utah University Department of Communication. Similarly, special thanks go to Dr. Robinson, Dr. Ritchie and Dr. Whittington at the Portland State University Department of Communication.

Finally, I would like to thank the following individuals who have helped to shape this project, and provided invaluable support and advice along the way: Marc Bitter, Dan Brownhill, Rachel Erdman, Craig Heller, Caitlyn Kennedy, Sarah Martin, Serena McIntire, Ashley Randall, Mariko Thomas, Andrew Tripoli, Jenna Tucker and Aaron Young.
<table>
<thead>
<tr>
<th>Chapter / Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Review of Literature</td>
<td>2</td>
</tr>
<tr>
<td>The Current Study</td>
<td>11</td>
</tr>
<tr>
<td>Methods</td>
<td>13</td>
</tr>
<tr>
<td>Results</td>
<td>24</td>
</tr>
<tr>
<td>Discussion</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Appendix A – Stimuli</td>
<td>45</td>
</tr>
<tr>
<td>Appendix B – Survey Measures</td>
<td>48</td>
</tr>
<tr>
<td>Appendix C – Demographic Statistics and Tests for Between Condition Differences</td>
<td>54</td>
</tr>
<tr>
<td>Appendix D – Informed Consent</td>
<td>56</td>
</tr>
<tr>
<td>Appendix E – Institutional Review Board Human Subjects Approval</td>
<td>58</td>
</tr>
</tbody>
</table>
List of Tables

Table 1 – Attitudes by Strong or Weak Partisanship .. 26
Table 2 – Attitudes by High or Low Political Discussion Frequency 27
Table 3 – Attitudes by Low or High Exposure to Cross-Cutting Communication 28
Introduction

This study evaluates the effect of partisan cues on political attitudes and, specifically, the role of interpersonal communication networks as moderators of partisan cue effects. Building upon the work of Lazarsfeld and others (Hwang, 2012; Kimsey & Atwood, 1979; Lazarsfeld, Berelson, & Gaudet, 1948), this study updates research on individuals’ social networks as moderators of the effect of media upon political attitudes and decisions in the presence of partisan cues. Political science research into partisan cue moderators primarily focus on individual level factors, such as partisan affiliation and motivated reasoning. Research looking specifically at conversation networks in a political context primarily look at their effects on political participation, not on their role in shaping attitudes. This work bridges the divide.

If the role of political communication research is to assist in the promotion of “civic competence and coherent voting behavior” (Druckman, Peterson, & Slothuus, 2013, p. 75), then it is important to more fully understand the power that party loyalty has to trump logic and argument strength when making political decisions (Druckman, Fein, & Leeper, 2012; Jochim & Jones, 2013). To that end, this study utilizes an experimental approach to examine the effect of partisan cues embedded in messages about the NSA surveillance program on support for such surveillance as well as the possible moderators – including partisan strength, frequency of political discussion and exposure to cross-cutting communication – of this effect.
A primary emphasis of political communication research in America is the role of parties in shaping attitudes and voter preferences. Over the last fifty years, researchers have examined how political parties shape individuals attitudes and how the media helps to promote this influence. Of course, any discussion of the American voter must begin with the seminal book of the same name: *The American Voter*. Using a set of American National Election Studies panel surveys investigating candidate preferences during and after the 1958 presidential election, the authors concluded that party is the single strongest indicator of voting behavior. Put another way, the stronger an individual’s affiliation toward a political party, the more likely her attitudes and evaluations align strongly with her espoused party (A. Campbell, Converse, Miller, & Stokes, 1960).

Campbell et al.’s research is the foundation for over a half century’s worth of political science research into the psyche of the American voter and the role of partisan affiliation as a *heuristic*, or mental short-cut (Popkin, 1991). While many Americans are not eager to seek out information about the relevant issue stances of different candidates, they are “capable of picking up cheap cues, or heuristics” (Schaffner & Streb, 2002, p. 560) which allow them to accurately predict those stances based on things like candidate occupation (McDermott, 2005), gender (McDermott, 1997), religion (D. E. Campbell, Green, & Layman, 2011), race (Banducci, Karp, Thrasher, & Rallings, 2008), and especially party identification (Popkin, 1991). Knowing a small piece of information about a candidate, like their political affiliation, helps the otherwise uniformed voter make a prediction about whether a candidate shares his ideals or not.
Motivated Reasoning

The party affiliation heuristic is useful for voters because it limits the resources required to make a ballot box decision consistent with their own values and interests. Similarly, partisan affiliation can help voters make decisions about controversial political issues. Partisan cues in mediated messages can prompt individuals to take the stance attributed to their party, even if this requires an attitudinal change (Dancey & Goren, 2010; Goren, Federico, & Kittilson, 2009). In one case, researchers found that using partisan cues while asking individuals about their political values increased party-value alignment anywhere between 13% and 17%, depending upon the value under consideration (Goren et al., 2009). Partisan cues exacerbated the gulf between Republican and Democratic values in their study.

The established framework for understanding how this works – how partisan affiliation drives attitude formation – is the theory of motivated reasoning\(^1\) (or TMR; Kim, 2010). Based on research into cognitive dissonance (i.e., the feeling of discomfort associated with holding two or more conflicting cognitions; Festinger, 1957), the TMR states that individuals are motivated to produce emotionally preferable conclusions when presented with new information (Kunda, 1990).

When analyzing two dissonant pieces of information, individuals will take the path of least resistance toward a cognitive equilibrium. This equilibrium must simultaneously satisfy two sets of constraints: cognitive constraints, which maximize goodness of fit to the data, and emotional constraints, which maximize positive affect.

\(^1\) Alternatively known as motivated skepticism (Taber & Lodge, 2006)

In the context of attitude formation, established cognitive constraints include prior knowledge (including prior knowledge about the stances of differing parties), prior beliefs, and feelings of self-efficacy (Sanders, Clarke, Stewart, & Whiteley, 2011). These cognitive constraints will guide the assimilation of new knowledge and beliefs, as long as the situation is emotionally neutral. However, the greater the negative affect of the information, the greater the likelihood that the individual will reject it as false. This tendency towards rejection is known as a disconfirmation bias (Taber & Lodge, 2006). In a corollary, the more positive the affect, the less time and cognitive resources will be used to process the information, resulting in a prior attitude effect wherein individuals “view evidence consistent with prior opinions as stronger or more effective” (Druckman et al., 2013, p. 59). The tendency to maximize positive affect also drives individuals to selectively expose themselves to, or seek out, information that confirms their prior beliefs, in an effect known as confirmation bias (Stroud, 2008).

If an individual does not have an emotional response to the information he is processing, and he has the ability and motivation to systematically process said information, he will likely accept or reject the information based upon its perceived validity. However, if an emotional response is triggered, then the individual is likely to “demonstrate biased processing by (1) taking consonant information (that which falls in a narrow range of acceptance) as simply veridical, and embracing it, but (2) judging
counterattitudinal information to be the product of a biased, misguided, or ill-informed source, and rejecting it” (Gunther, 1992, p. 151).

This model suggests that an individual’s ideological affiliation is likely to trump prior attitudes, in the presence of partisan cues, due to the emotional difficulty associated with breaking party lines (Westen et al., 2006). This is supported by Dancey and Goren (2010), who used longitudinal survey data to show that individuals out of step with their party on health care reform and affirmative action tended to alter their attitudes to more accurately match those of their party when coverage of elite partisan debate in the media was high. The opposite effect – changing party preference to match attitude – was much less likely to occur.

It should be noted that this relationship is moderated by both the strength of party affiliation and the perceived quality of the information being processed (Redlawsk, Civettini, & Emmerson, 2010). Jones explains that: “people identify emotionally with [what] they have encoded in memory. They become attached emotionally to their current repertoire of encoded solutions, even as the problems they face evolve” (2003, p. 400). As such, when they are confronted with the need to change their preferred solution (i.e. party choice), there is a strong negative affect, equivalent to the strength of their attachment, that can only be overcome by a preponderance of inarguable evidence (Appel & Richter, 2010; Redlawsk et al., 2010).

The Role of Interpersonal Communication Networks

Taken in sum, evidence for the theory of motivated reasoning suggests that it is a strong model of the cognitive level influences on attitude formation and, in turn, on
voting behaviors. However, the model can be expanded to take into account the context in which these attitudes are formed and wherein these behaviors happen.

One of the more important contextual factors playing a role in attitude formation is discussion. Lazarsfeld and his co-authors were among the first scholars to look at communication networks as a mediator of media effects (Lazarsfeld et al., 1948), and through analyses of the 1940 presidential election, they were able to identify a path for the influence of mass media that they referred to as the two-step flow of communication. This model posits that mass media does not directly influence everyone in the general public but, instead, that the media has a direct effect on issue specific opinion leaders who then influence the general public.

While the original two-step flow of communication did not pick up as much traction among political scientists as it did elsewhere, “mainly for lack of empirical support (see, e.g., Bennett & Manheim, 2006)” (Mutz & Young, 2011, p. 1038), the last thirty years saw “a resurgence of interest in the power of social networks as conveyors of both influence and information that undergirds public opinion” (Mutz & Young, 2011, p. 1036). A relevant area of current research focuses on two ways that political conversation networks may moderate media effects: 1) by altering memory, and/or 2) altering behavior (Southwell & Yzer, 2008).

Interpersonal conversation networks and memory. The first way that conversation networks might moderate media effects is by altering the storage and retrieval of information. According to Southwell & Yzer, “A growing literature on the relationships between conversation and memory (e.g., Dickinson & Givón, 1997;
Edwards & Middleton, 1987; Southwell, 2005) suggests that people do not accept and store information directly from media outlets and then simply retrieve that information later in unmitigated fashion” (2008, p. 444). This is primarily due to inefficiencies in the functioning of our memories. Rather than retrieving only the most relevant information when presented with a stimulus, a large range of related thoughts are triggered. This is why, when presented with a partisan cue, there can be an affective response to the primed party, even if the evaluation being made depends on a primarily cognitive process. The partisan cue activates prior knowledge, policy positions, associations and feelings. This information helps guide the processes described in detail above.

The strengths of these cognitive connections and the ease of their retrieval are in part a factor of conversation. Looking at the 2000 Minnesota Senate campaign, Druckman (2004) used a logistic regression analysis to predict candidate vote choice. Within the model, a voter’s level of discussion about the campaign did not predict for whom they voted. Similarly, neither campaign attentiveness nor issue priming significantly predicted candidate preference. However, when levels of issue priming, campaign attentiveness and campaign discussion were factored together, they predicted vote choice more than any other factor. The ability of a candidate to cue certain issues within a voter’s cognition depended largely upon the amount of conversation the voter had about the campaign. This would imply that the more political discussion an individual has, the more likely she is to be affected by priming, a corollary of partisan cues.
Interpersonal conversation networks and behavior. In addition to altering memory retrieval and storage, it is possible that conversation moderates the relationship between media messages and behavior. In 2002, Scheufele proposed the *differential gains hypothesis*, which posits that the influence of media is at least partly a function of the extent to which individuals regularly participate in interpersonal communication. This hypothesis’s premise is that different people have different needs and uses for hard news. As such, there should be an interaction effect between specific needs (like political discussion), and news exposure.

In applying this hypothesis, Scheufele found that the interaction between political discussion frequency and hard news media use (specifically newspaper readership) significantly predicted political participation. Subsequently, it has been found that individuals who have conversations about a political topic, or expect to have conversations about a political topic, are more likely to engage in “mediated information-seeking behavior to gather information for use in those discussions” (Eveland & Cooper, 2013, p. 14092).

One implication of the differential gains hypothesis – that political discussion alters the relationship between media use and political behavior – is that a higher frequency of political discussion within ones social network should strengthen the effect of partisan cues in mediated messages. Specifically, “for those individuals who anticipate talking to others about political information garnered from mass media, there should be a cognitive tuning effect prior to their discussions (e.g., Cloven & Roloff, 1995)” (Scheufele, 2002, p. 51). This cognitive tuning effect should increase the attention given
to the media being read, and in turn should increase the likelihood of noticing and being affected by priming cues, like partisan cues.

Cross-Cutting Conversation Networks

The hypothesized roles of conversation networks in moderating information retrieval/storage and moderating political behavior indicate that the more individuals talk about politics, the more likely they are to be influenced by embedded partisan cues. In other words, increased political discussion frequency should facilitate the possibility that partisan affiliation will trump prior beliefs in the presence of partisan cues. However, this assumes that all conversation is equal.

Where Scheufele found that amount of interpersonal communication was associated with levels of participation, Mutz’s study of cross-cutting conversation (defined as conversations with non-like-minded others) demonstrates that the kind of communication matters (Mutz, 2002a, 2002b). Using a nationally representative sample, Mutz had respondents answer a battery of questions about the kinds of political discussions they have. In line with prior research, she found that discussion network size and frequency of political talk were positively associated with participation in the 1992 presidential election (b = .37 and b = .14 respectively; see: Mutz, 2002b, p. 844). However, she also found that exposure to cross-cutting conversation – the frequency of political conversation with individuals who hold opposing viewpoints, regardless of party affiliation (Mutz, 2006) – was negatively correlated with participation (b = -.21; Mutz, 2002b, p. 944).
In a similar study, Mutz found that possession of a larger cross-cutting political conversation network was also associated with increased political tolerance, as mediated by awareness of rationales for oppositional views (Mutz, 2002a). Mutz suggested that the reason these effects occur is that individuals with large cross-cutting networks are forced to consistently deliberate upon their own issue positions, which in turn increases the emotional discomfort they experience in relation to these issues.

As Redlawsk, Civettini, and Emmerson (2010) pointed out, it is illogical to expect individuals to maintain and support their existing political evaluations ad infinitum in the presence of extensive disconfirming, and emotionally discomforting, information. They, along with others (e.g. Dancey & Goren, 2010), empirically showed that as exposure to dissonant information increases, the likelihood that an individual will alter his or her beliefs and/or political associations to align with the disconfirming information also increases. This is perfectly in-line with the theory of motivated reasoning, as outlined above, and indicates that participation in cross-cutting communication should result in weaker attitudes. While this research does not specifically deal with the role of cross-cutting communication as a moderator of partisan effects, perhaps the interaction between media exposure and dissonant communication will moderate partisan effects contrary to the effect of general communication. In other words, where ‘normal’ political conversation supports the effect of partisan cues in mediated messages, perhaps cross-cutting conversation will limit the effect.
The Current Study

This research project evaluates the effect of partisan cues in the context of an ideologically disputed policy. In the summer of 2013, former National Security Agency (NSA) contractor Edward Snowden revealed that the agency collects meta-data on almost all American telecommunications as part of ongoing counter-terrorist activities (Poitras, Rosenbach, & Stark, 2013). This created a relatively large uproar domestically with opponents arguing the activity was a violation of personal privacy and the 4th Amendment’s protection against unlawful search. Proponents argued that the program was a necessary anti-terrorism tool, responsible for preventing the deaths of American citizens at home and abroad.

In response to the ensuing controversy over this program, Harry Reid, John Boehner and other party leaders voiced strong support for continuing the NSA surveillance program without meaningful alteration. In contrast, a group of Representatives in the House, equally split between Republicans and Democrats, nearly crippled the program by voting in support of a bill requiring individual warrants for each piece of information gathered (Weaver, 2013). According to the Pew Research Center’s polling undertaken between the summer of 2013 and the early spring of 2014, the general American public has shared Congress’s bi-partisan resistance/support for this controversial issue. Levels of support for and against the NSA’s actions are evenly split across the two parties (Pew Research Center, 2013a, 2013b, 2013c, 2014).

The context for this study is a (manufactured) news article describing a proposed Senate bill partially reducing the ability of the Federal government to collect meta-data.
Participants are alternatively shown a version of the article in which Republicans are proposing the bill, Democrats are proposing the bill or where neither party is referenced. Causal tests on the effect of partisan cues generally look at issues with pre-established partisan and ideological associations, and not on non-partisan issues. The NSA surveillance issue presents an opportunity to do just that.

The theory of partisan motivated reasoning (Taber & Lodge, 2006) suggests that partisan cues in the media help individuals remain consonant with the positions taken by their party’s elites. This is in part driven by a desire to avoid the emotional difficulty associated with cognitive dissonance (Westen et al., 2006). As such:

H1a: Individuals shown a partisan cue will report attitudes that align more closely with the position attributed to their party than those not shown a partisan cue.

H1b: This effect will be greater for those seeing a dissonant cue than for those shown a consonant cue.

H1c: Partisan cue effects will be greater for strong partisans than for weak partisans.

The differential gains hypothesis implies that individuals who regularly engage in political discussion are more affected by mediated messages than those who do not (Scheufele, 2002), and as such are more likely to be affected by a priming cue. Conversely, research into cross-cutting conversation exposure suggests that high exposure to dissonant conversation may result in a decreased effect from priming cues (Mutz, 2002a, 2002b). This leads to the following predictions:

H2: Partisan cue effects will be greater for those with a higher frequency of political discussion than for those with a lower frequency of political discussion.

H3: Partisan cue effects will be smaller for those with more exposure to cross-cutting communication than for those with less exposure to cross-cutting communication.
Methods

Participants and Procedures

This study uses a convenience sample of Americans, over the age of 18, recruited from Amazon.com’s Mechanical Turk - an online platform for paying subjects to perform varying types of tasks. While not a population-based probability sample, it is more representative of a sample than the typical in-person convenience sample used by most researchers (Mason & Suri, 2012). Respondents who fully completed the survey were paid $0.50.

The survey was administered using the Qualtrics survey platform, with respondents randomly assigned to one of three experimental conditions. The full manipulation can be found in Appendix A. The full set of measures, and question order, can be found in Appendix B.

632 responses were collected from Amazon’s Mechanical Turk over a 24-hour period in April of 2014. Anyone who did not complete the survey, as indicated by Qualtrics, was removed from the data set (n = 31). Additionally, respondents were removed for providing nonsensical responses to open-ended questions (n = 1), and for a failure to answer the questions about party identification (n = 1). Finally, anyone more than two standard deviations away from the mean time taken to read the manipulation was removed from the sample (M = 74.9, SD = 85.09, number removed = 10), as were those who took less than ten seconds to read the manipulation (n = 53). The final number of eligible subjects was 530.
Manipulation

Participants read a simulated online newspaper article describing a bill that would curtail the ability of the NSA to monitor the electronic activities of American citizens. The article was crafted to be as balanced as possible. It laid out the strongest arguments for and against the NSA program, as identified by the Pew Research Center (2013b).

There were three versions of the article: (1) Control, (2) Republican and (3) Democrat. In the first paragraph of the article and in the article title, the party of the individuals proposing the bill was altered to fit one of the three conditions, and in the last paragraph, the partisan affiliation of the organization was altered to match the first partisan reference (e.g. “the Democratic Center for Policy Dialogue). A picture accompanied the article, depicting Democratic Senator Ron Wyden, Republican Senator Saxby Chambliss or the Senate Chambers, depending on the condition. These two senators were picked because they have expressed views consonant with those stated in the article. Each respondent had an equal probability of being assigned to the three conditions. There were no significant differences in the distribution of respondents across any of the independent/demographic variables.2

Dependent Variables

There were two dependent variables: attitudes toward the NSA surveillance program (NSA Attitudes) and attitudes toward the bill proposed to alter the program (Bill Attitudes). Both were measured using a set of semantic differentials. Respondents were presented with a randomly ordered set of polarized adjectives on a 7-point scale from -3

2 See Appendix C for results of the between groups comparisons.
to 3. There were four sets of adjectives for each dependent variable, covering a range of possible attitudes. For *NSA Attitudes*, differentials included: (1) beneficial/harmful, (2) unreasonable/reasonable, (3) responsible/irresponsible and (4) necessary/unnecessary. The second and third were reverse coded. After data collection, all scores were averaged to create a single measure for *NSA Attitudes*, where lower scores indicate lower support for the NSA and higher scores indicate higher support for the NSA ($\alpha = .944$, $M = -1.1$, $SD = 1.74$, Range = -3 to 3).

For *Bill attitudes*, differentials included: (1) ignorant/intelligent, (2) unimportant/important, (3) good/bad, and (4) responsible/irresponsible. Item’s three and four were reverse coded. Originally, all four were averaged together into a single scale ($\alpha = .944$, $M = 1.6$, $SD = 1.43$, Range = -3 to 3). However, because this scale failed Tukey’s Test for Nonadditivity ($F (1, 1586) = 30.36, p < .001$), the question about unimportance/importance was removed, and the dependent variable was recalculated based only on the other three items ($\alpha = .940$, $M = 1.5$, $SD = 1.49$, Range = -3 to 3; Tukey’s Test for Nonadditivity: $F (1, 1057) = 1.99, p = .158$). All hypothesis tests were run both with the three-item scale, and with the original four-item scale. There were no significant differences in the results. As such, only the scores for the three-item scale are reported.

Frequency of Political Discussion

The frequency of discussion within a respondents political discussion network was measured following the methodology established by Mutz (2002a, 2002b). Respondents identified, by initials, the three individuals they discuss government,
elections and politics with the most. If, at any point, a respondent indicated there was no one else she discussed politics with, she was instead asked to identify the person with whom she was most likely to have an informal conversation. This was repeated until the respondent gave the initials of three individuals.

If the initials reported for a discussant duplicated a prior set of initials, the corresponding responses (both frequency of political discussion and exposure to dissonant discussion) were removed from analysis. While it is feasible that an individual had more than one discussion partner with the same initials, knowing which discussant was being referred to would be difficult for the respondent, given the questionnaire format. If the response given was not a name, nor a reference to a person (e.g. “yes,” “no one,” “none,” etc.), the corresponding discussant was also removed.

Using a 4-point scale (1 = Very Rarely, 4 = A Lot), respondents were asked to describe the frequency of political discussion with each of the named discussants. To create a political discussion frequency summary score, these measures were summed ($\alpha = .772, M = 4.5, SD = 3.48, \text{Range} = 0 \text{ to } 12$). For hypothesis testing, respondents were split into two groups at the median (high discussion group = Score > 5, N = 215; low discussion group N = 204).

Exposure to Cross-Cutting Political Communication

To measure exposure to cross-cutting political communication, respondents were asked five randomly ordered questions about each discussant’s views and party allegiances (Mutz, 2002b). These questions covered similarity of political views (from 0

3 The original methodology from Mutz (2002a) calls for asking either for the initials of the discussant or for the first name. However, the IRB that reviewed this research determined that the risks associated with asking for the first name might have outweighed the benefits.
= much the same, to 2 = very different), similarity of views on political issues (0 for
shares or neither shares nor opposes, 1 = opposes), general disagreement during
discussion of politics (0 = never to 3 = often), political party favored (coded 1 if
respondent only weakly supports opposite party of discussant, 2 if clear disagreement, 0
if else), and presidential candidate supported during the 2014 election (coded 1 for clear
disagreement with respondent, 0 for all others).

Each of the measures were coded as described, transformed so all five measures
ranged from 0 to 1, and summed to create a single additive index for each discussant,
ranging from 0 to 5 (Discussant 1 $\alpha = .836$, Discussant 2 $\alpha = .857$, Discussant 3 $\alpha = .808$;
Grand Mean = 2.4, SD = 2.04, Grand Range = 0 to 11.17, Grand Theoretical Range = 0
to 15). This “[represents the extent to which each discussion partner [holds] differing
views [from the respondent]]” (Mutz, 2002a, p. 123). To create a single cross-cutting
communication exposure score, each index was weighted by its corresponding political
discussion frequency, and then summed (M = 5.1, SD = 5.83, Range = 0 to 35.83;
Theoretical Range = 0 to 60). For hypothesis testing, respondents were split into two
groups at the median (high exposure group = score > 4.67, N = 206; low exposure group
N = 213). Average levels of cross-cutting exposure were comparable to previous findings
(See: Mutz, 2002a).

Political Party and Partisan Strength

For political party, respondents were first asked if, generally speaking, they think
of themselves as Republican, Democrat or Independent. They also had the option of
stating no preference. If the respondent was Independent or “no preference,” they were
asked whether they were closer to the Republican Party or Democratic Party. For H1c, ‘strong partisans’ were conceptualized as anyone who originally reported being a party member (n = 288), with all others considered weak partisans (n = 242).

Issue Specific Exposure to Cross-Cutting Political Communication

As a control, respondents were asked whether they had discussed the NSA topic with each of the three discussants named. If discussed, they were asked whether they agreed or disagreed with the discussant’s views (-3 = *Strongly disagree*, 3 = *Strongly agree*). Responses were weighted by amount of political discussion with the corresponding discussant, and combined into a single additive index (M = 4.5, SD = 7.02, Range = -13 to 36).

Political and Issue Motivations

Motivation is known to act as a moderator of media effects (Eveland, 2004). As such, four possible motivations were measured as controls.

Issue exposure. As exposure to an issue increases through either conversation or media exposure, the motivation to accurately process the information increases (Druckman et al., 2013; Hopmann, Vliegenthart, De Vreese, & Albæk, 2010). With this in mind, respondents were asked to indicate the extent to which they had heard or read about the NSA issue on a 5-point scale (0 = *None* to 4 = *A Lot*; M = 2.6, SD = 1.02).

Issue importance. The more personally important an individual finds a particular topic to be, the more motivated the individual is to accurately process the message (Miller & Peterson, 2004). As such, individuals were asked to report how important the
NSA topic was to them personally on a 7-point scale (0 = *Very unimportant* to 6 = *Very important*; M = 4.2, SD = 1.35).

Interest. Political interest is also known to be a motivation that moderates media effects (Grabe, Yegiyan, & Kamhawi, 2008), and was measured by asking individuals how often they follow what is going on in the government and public affairs on a 5-point scale (0 = *Never* to 4 = *Most of the Time*; M = 2.9, SD = .98). Additionally, issue specific interest was measured by asking about the frequency with which respondents sought out information on the NSA in the last month, on a 7-point scale (0 = *Never* to 6 = *Daily*; M = 2.5, SD = 1.68).

Political Knowledge

Much like motivation, political knowledge is a well-established moderator of political media effects (Young, 2004). To control for this, Delli Carpini and Keeter’s (1993) well-established political knowledge scale was used. Five open-ended questions cover a range of possible political information relevant to knowledge about the federal government. Individuals were asked to identify the more conservative party, the party currently in control of the House of Representatives, who Joe Biden is, which branch of government is responsible for determining if a bill is constitutional, and the necessary proportion of Congress required to over-turn a presidential veto. Incorrect answers were scored as 0, and correct answers were scored as 1. Each response was summed to create a single political knowledge score ($\alpha = .550, M = 4.1, SD = 1.08, \text{Range} = 0 \text{ to } 5$).4

4 The alpha for this test was significantly lower than is typical, primarily driven by the large number of respondents knowing four out of the five questions (27%), and knowing *all* of the questions (49.1%). Overall, the sample was much more capable of answering the questions than is typical. For example, Delli
Demographic Variables

This study also included a range of standard demographic variables. Gender was coded as 1 for female, 0 for male. Education was coded as 1 for High School/GED or less; 2 for some college or a two-year college degree; 3 for a four-year college degree; and 4 for a post-graduate degree. Race was coded as 0 for white/Caucasian and 1 for all others. Respondents gave their actual age, ranging from 18 to 76. Income was coded in $25,000 intervals, from 1 to 5.

Participant Demographics. All demographic information is provided in Appendix D. The sample skewed younger, with a median age of 31, and a mode of 26. There were more males in the sample than females, and respondents were overwhelmingly white. Most respondents did not initially state a party preference, although there were significantly more Democrats in the sample than there were Republicans. Appendix C has a full breakdown of all demographic statistics, along with breakdowns by condition seen, and results of statistical tests comparing each variable across condition.

Analysis

Hypotheses 1a and 1b. The first and second parts of hypothesis one predict differences in reported attitudes for individuals who saw dissonant cues, consonant cues, and no cue. Individuals who were in the same party (e.g. Republicans in the Republican condition) were placed in the consonant cue group. Similarly, individuals who saw the opposing party (e.g. Republicans in the Democrat condition) were placed in the dissonant
cue group. Where these two hypothesis looked specifically at differences between conditions, the corresponding tests looked at raw scores for each of the dependent variables. For H1a, four one-tailed independent samples t-tests compared differences between the consonant group and the control, and differences between the dissonant group and the control. H1b used a pair of one-way ANOVA to compare differences between all three groups.

Hypothesis 1c. The third part of hypothesis one predicts that strong partisans will be more affected by cues than weak partisans. *Strong partisans* were operationalized as individuals who originally reported being a party member, with all others considered *weak partisans*. Here, the prediction is not that there will be a difference in attitudes between groups, but rather that there will be an *absolute difference in difference*. In order to facilitate this comparison, the dependent variables were transformed as follows, where SP is strong partisans, and WP is weak partisans:

$$
\left| SP_{\text{c}\text{ue}} - \bar{SP}_{\text{control}} \right| \quad \left| WP_{\text{c}\text{ue}} - \bar{WP}_{\text{control}} \right|
$$

The mean value of the strong partisans in the control condition was subtracted from the observed value for each respondent in a cue condition (no differentiation was made for which cue the participant saw, just that she saw a cue). The same was done for the weak partisans. The absolute value of these differences were then compared using a pair of one-tailed independent samples t-tests, with the average value for strong partisans predicted to be greater than that of weak partisans.

Hypothesis 2. Similar to H1c, the second hypothesis predicts a difference in difference between individuals with high political discussion frequency and those with
low political discussion frequency. Individuals were only included in the analysis of this hypothesis if they reported speaking with at least one other individual about politics at any time in the past \(n = 419 \). Respondents were split into two groups at the median, with those reporting a sum score greater than five getting placed in the ‘high discussion’ group, and all others getting placed in the ‘low discussion’ group.

Where the prediction for H2 is for a difference in difference, the dependent variables were transformed as follows, where HD is *high discussion*, and LD is *low discussion*:

\[
|HD_{\text{c}} - \overline{HD_{\text{control}}}| \\
|LD_{\text{c}} - \overline{LD_{\text{control}}}|
\]

The resultant scores were compared using a pair of one-tailed independent samples \(t \)-tests, with the average value for *high discussion* predicted to be greater than that for *low discussion*.

Hypothesis 3. Similar to H1c and H2, the third hypothesis predicts a difference in difference between individuals with high exposure to cross-cutting political communication and those with low exposure to cross-cutting political communication. Respondents were split into two groups at the median; those with a score greater than 4.67 were put in the ‘high exposure’ group, with all other placed in the ‘low exposure’ group. As with H2, only individuals who reported speaking with at least one other individual about politics were included within these groups. The dependent variables were transformed as follows, where LE is low exposure and HE is high exposure:

\[
|LE_{\text{c}} - \overline{LE_{\text{control}}}| \\
|HE_{\text{c}} - \overline{HE_{\text{control}}}|
\]
The resultant scores were compared using a pair of one-tailed independent samples t-tests, with the average value for ‘low exposure’ predicted to be greater than that of ‘high exposure’.
Results

This analysis looks at differences in opposition to the NSA and support for limiting the NSA based upon each respondent’s party, partisan strength, political discussion frequency, cross-cutting political communication exposure and exposure to consonant or dissonant partisan cues. In general, respondents did not have a favorable view of the NSA; 69% of the sample had a negative NSA Attitude. Similarly, 81% had a positive Bill Attitude. As was expected, there was a very strong correlation between NSA Attitude and Bill Attitude, \(r (530) = -.629, p < .001 \).

Hypothesis 1a

H1a predicts that individuals who see a partisan cue will report attitudes aligning more closely with the position of their party than those who do not see a partisan cue. One-tailed independent samples \(t \)-tests were used to test this hypothesis, first comparing everyone who saw a consonant cue (e.g. Democrats who saw a Democrat cue) to everyone who saw no cue, and then comparing everyone who saw a dissonant cue (e.g. Democrats who saw a Republican cue) to everyone who saw no cue\(^5\).

First, there was no difference (\(t (353) = .68, p = .249 \)) in NSA Attitudes for those shown a consonant cue (\(N = 176, M = -.98, SD = 1.84 \)) and those shown no cue (\(N = 179, M = -1.10, SD = 1.71 \)). Additionally, there was no difference (\(t (353) = .89, p = .188 \)) in Bill Attitudes between those who saw a consonant cue (\(M = 1.49, SD 1.52 \)) and those who saw no cue (\(M = 1.62, SD = 1.40 \)).

\(^5\) Looking at specific political parties did not significantly alter the results of these tests.
Similarly, there was no difference ($t(352) = .20, p = .422$) in NSA Attitudes for those shown a dissonant cue ($N = 175, M = -1.14, SD = 1.69$) and those not shown a cue ($N = 179, M = -1.10, SD = 1.70$). There was also no difference ($t(352) = .77, p = .222$) in Bill Attitudes for those shown a dissonant cue ($M = 1.50, SD = 1.56$) and those not shown a cue ($M = 1.62, SD = 1.40$). H1a was not supported.

Hypothesis 1b

Hypothesis 1b predicts that those shown a dissonant cue will have attitudes more strongly in line with their party (higher scores for NSA Attitude and lower scores for Bill Attitude) than those shown a consonant cue. Two one-way ANOVA were used to test for differences between the consonant, dissonant, and no cue groups. The results were confirmed using a set of one-tailed independent samples t-tests.

Scores for NSA Opposition did not differ significantly between the three groups, $F(2, 527) = .42, p = .328$. Similarly, scores for NSA Limiting did not differ significantly between the three groups, $F(2, 527) = .45, p = .320$. Hypothesis 1b was not supported.

Hypothesis 1c

H1c predicts that the difference in attitudes between the no cue and the cue conditions will be greater for strong partisans than for weak partisans. Following the transformations described in the data analysis sub-section of the methods, this hypothesis can be re-written as:

$$|SP_{\text{cue}} - SP_{\text{control}}| > |WP_{\text{cue}} - WP_{\text{control}}|$$

A pair of one-tailed independent samples t-tests compared the difference in absolute difference for strong partisans (SP) who saw a cue and weak partisans (WP) who
saw a cue. Because tests for both *NSA Attitudes* and *Bill Attitudes* failed the Levene’s Test for Equality of Variances ($F = 5.03, p = .026$; and $F = 8.39, p = .004$ respectively), the Welch-Satterthwaite t-test was used, rather than the standard Student’s t-test.

Table 1 – Attitudes by Strong or Weak Partisanship

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong Partisan</td>
<td>107</td>
<td>-0.95</td>
<td>1.79</td>
<td>.173</td>
</tr>
<tr>
<td>Weak Partisan</td>
<td>72</td>
<td>-1.33</td>
<td>1.56</td>
<td>.183</td>
</tr>
<tr>
<td>Cue Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong Partisan</td>
<td>181</td>
<td>-0.72</td>
<td>1.84</td>
<td>.136</td>
</tr>
<tr>
<td>Weak Partisan</td>
<td>170</td>
<td>-1.41</td>
<td>1.62</td>
<td>.124</td>
</tr>
<tr>
<td>Bill Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong Partisan</td>
<td>107</td>
<td>1.59</td>
<td>1.44</td>
<td>.140</td>
</tr>
<tr>
<td>Weak Partisan</td>
<td>72</td>
<td>1.67</td>
<td>1.34</td>
<td>.157</td>
</tr>
<tr>
<td>Cue Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong Partisan</td>
<td>181</td>
<td>1.22</td>
<td>1.62</td>
<td>.121</td>
</tr>
<tr>
<td>Weak Partisan</td>
<td>170</td>
<td>1.78</td>
<td>1.38</td>
<td>.107</td>
</tr>
</tbody>
</table>

First, the average absolute difference in *NSA Attitudes* between the control condition and the cue conditions was significantly greater for *strong partisans* ($M = 1.58$, $SD = .96$) than for *weak partisans* ($M = 1.37$, $SD = .85$), $t (348.0) = 2.12$, $p = .017$, $MD = .205$. Conversely, the average absolute difference in *Bill Attitudes* between the control condition and the cue conditions was *not* significantly greater for *strong partisans* ($M = 1.31$, $SD = 1.17$) than for *weak partisans* ($M = 1.17$, $SD = .75$), $t (330.8) = 1.45$, $p = .069$, $MD = .138$. Where there was a difference on the first dependent variable, but not the second, H1c was only partially supported.

Hypothesis 2

Hypothesis 2 predicts that the difference in attitudes between the no cue and the cue conditions will be greater for those with high political discussion frequency than for...

*Because the dependent variable in this test was not normally distributed, an independent samples Mann-Whitney U test was performed, for verification. The results of the test were also non-significant, $p = .064$.}
those with low political discussion frequency. Similar to H1c, and following the transformation described in the sub-section on data analysis, this hypothesis can be rewritten as:

\[|H_{D_{\text{cue}}} - H_{D_{\text{control}}}| > |L_{D_{\text{cue}}} - L_{D_{\text{control}}}| \]

A pair of one-tailed independent samples t-tests compared the difference in absolute difference between those with high discussion who saw a cue (HD) and those with low discussion who saw a cue (LD).

Table 2 – Attitudes by High or Low Political Discussion Frequency

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Discussion</td>
<td>69</td>
<td>-1.34</td>
<td>1.67</td>
<td>.201</td>
</tr>
<tr>
<td>Low Discussion</td>
<td>73</td>
<td>-0.87</td>
<td>1.73</td>
<td>.202</td>
</tr>
<tr>
<td>Cue Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Discussion</td>
<td>146</td>
<td>-1.22</td>
<td>1.84</td>
<td>.152</td>
</tr>
<tr>
<td>Low Discussion</td>
<td>131</td>
<td>-0.87</td>
<td>1.67</td>
<td>.146</td>
</tr>
<tr>
<td>Bill Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Condition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Discussion</td>
<td>69</td>
<td>2.01</td>
<td>1.14</td>
<td>.138</td>
</tr>
<tr>
<td>Low Discussion</td>
<td>73</td>
<td>1.44</td>
<td>1.49</td>
<td>.174</td>
</tr>
<tr>
<td>Cue Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Discussion</td>
<td>146</td>
<td>1.79</td>
<td>1.44</td>
<td>.119</td>
</tr>
<tr>
<td>Low Discussion</td>
<td>131</td>
<td>1.33</td>
<td>1.50</td>
<td>.131</td>
</tr>
</tbody>
</table>

First, the average absolute difference in NSA Attitudes between the control condition and the cue conditions for high discussion (M = 1.54, SD = 1.00) and low discussion (M = 1.43, SD = .86) did not significantly differ, \(t (275) = .97, p = .168, MD = .109 \). Similarly, there was not a significant difference on absolute difference in Bill Attitudes between high discussion (M = 1.09, SD = .97) and low discussion (M = 1.21, SD = .88), \(t (275) = -1.14, p = .128, MD = -.127 \). Hypothesis 2 was not supported.

7 Where the dependent variable in this test was not normally distributed, an independent samples Mann-Whitney U test was also performed. The results of the test were non-significant, \(p = .104 \).
Hypothesis 3

Hypothesis 3 predicts that the difference in attitudes between the no cue and the cue conditions will be smaller for those with high exposure to cross-cutting political communication than for those with low exposure to cross-cutting political communication. Similar to H1c and H2, and following the transformation described in the sub-section on data analysis, this hypothesis can be re-written as:

$$|LE_{cue} - LE_{control}| > |HE_{cue} - HE_{control}|$$

A pair of one-tailed independent samples t-tests compared the difference in absolute difference between low exposure who saw a cue (LE) and high exposure who saw a cue (HE).

Table 3 – Attitudes by Low or High Exposure to Cross-Cutting Communication

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Condition</td>
<td>Low Exposure</td>
<td>73</td>
<td>-0.88</td>
<td>1.64</td>
<td>.192</td>
</tr>
<tr>
<td></td>
<td>High Exposure</td>
<td>69</td>
<td>-1.33</td>
<td>1.76</td>
<td>.212</td>
</tr>
<tr>
<td>NSA Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue Conditions</td>
<td>Low Exposure</td>
<td>140</td>
<td>-0.94</td>
<td>1.76</td>
<td>.149</td>
</tr>
<tr>
<td></td>
<td>High Exposure</td>
<td>137</td>
<td>-1.18</td>
<td>1.77</td>
<td>.151</td>
</tr>
<tr>
<td>Bill Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Condition</td>
<td>Low Exposure</td>
<td>73</td>
<td>1.52</td>
<td>1.44</td>
<td>.168</td>
</tr>
<tr>
<td></td>
<td>High Exposure</td>
<td>69</td>
<td>1.93</td>
<td>1.24</td>
<td>.150</td>
</tr>
<tr>
<td>Bill Attitudes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cue Conditions</td>
<td>Low Exposure</td>
<td>140</td>
<td>1.40</td>
<td>1.58</td>
<td>.133</td>
</tr>
<tr>
<td></td>
<td>High Exposure</td>
<td>137</td>
<td>1.75</td>
<td>1.37</td>
<td>.117</td>
</tr>
</tbody>
</table>

First, there was not a significant difference in absolute differences on NSA Attitudes for low exposure (M = 1.49, SD = .92) and high exposure (M = 1.50, SD = .95), $t (275) = -.04, p = .486, MD = -.004$. However, there was a significant difference in absolute Bill Attitude differences between low exposure (M = 1.28, SD = .93) and high exposure.
exposure8 (M = 1.07, SD = .86), \(t (275) = 1.91, p = .029 \). The average absolute difference between the cue conditions and the no cue condition was .204 points greater for those with low exposure to cross-cutting communication than those with high exposure to cross-cutting communication. H3 was partially supported.

8 Where the dependent variable in this test was not normally distributed, an independent samples Mann-Whitney U test was also performed. The results of this test were significant, \(p = .012 \).
Discussion

This experiment looked at the effect of partisan cues on attitudes toward the NSA, as predicted by the theory of motivated reasoning. While there was no main effect from the manipulation, strong partisans were significantly more affected by the presence of partisan cues than weak partisans, when looking at NSA Attitudes. Because most prior research is focused on issues that already have entrenched partisan positions, these findings are an important extension. The results confirm that partisan cues have an effect on attitudes, even when the issue being considered is not inherently partisan. However, the specific ways in which partisan cues have an effect on an issue of this nature may differ.

This study also aimed to expand our knowledge of partisan cue effects by looking at the moderating role of political discussion frequency in general, and cross-cutting communication exposure specifically. While there was no difference between those with high political discussion frequency and those with low political discussion frequency, there was a difference based on cross-cutting political communication exposure, when looking at Bill Attitudes. This is an important extension both to the partisan cue literature, and to our understanding of political communication networks. The results indicate that an individual’s conversation network, and more specifically, what kinds of conversations occur within said network, can significantly alter the relationship between partisan cues and attitudes.
Limitations

Before discussing implications, it is important to understand the limitations to this study. First, the sample was far from representative. This is an inherent issue with the sampling technique used (i.e. convenience sampling), and presents concerns when trying to make generalizations based upon the presented results. The highly skewed sample exacerbates this concern. 79.6% of the respondents felt that the NSA was an important issue, indicating they were highly motivated to accurately process the article. In other words, the sample collected may have been impervious to the manipulation, and/or unusually affected by it.

Second, the use of initials, and not initials and/or first names, presented a significant challenge to this research. Because of the possibility that an individual could have more than one discussant with the same initials (e.g. brothers and sisters), and given the inability to differentiate between referents when asking about the cross-cutting nature of said discussion, it was necessary to remove responses based upon duplicate entries. While there was not a significant difference with or without these added variables, it is possible that a more robust testing mechanism would have presented different, more reliable results.

Third, it is especially worth noting that prior to this study being conducted, there was significant movement on the NSA issue. Less than a month before this experiment took place, President Obama proposed changes to the NSA that in many ways directly echoed the proposals in the manipulation (Rampton, 2014). This increased attention

9 Again, it should be noted that this break from the work of Mutz (2002a, 2002b) was based upon feedback from the IRB reviewing the methodology.
shortly before the launch of the study may have skewed the results. In relation to this, there were some rather odd fluctuations in the dependent variables, especially across party affiliation and strength. While no explanation was found within the collected data, it is possible that the timing of the study was responsible (although I believe an alternative explanation to be more likely, as will be discussed shortly). Follow up studies should be performed on a more representative sample.

Finally, and perhaps especially relevant given the sampling methodology, this study suffered from a lack of stimuli checks. While many of the variables were randomized and reverse coded in order to limit the impact of inattentive responses, a stimulus check would have allowed for a systematic removal of cases where it was clear that individuals had not taken the study seriously (Mutz, 2011). This would have provided for a more valid sample.

Implications

Despite the limitations of this study, there are a number of important implications hinted to by the results. One of these implications is that the issue under consideration may have a different influence on partisan cue effects than was previously known. Despite the partisan cue in this study having no main effect on respondents, there were still significant differences across partisan strength and across different levels of cross-cutting communication exposure. The partisan cue had an effect, but not necessarily in the ways predicted by the theory of partisan motivated reasoning.

While the increased attention to this issue prior to the study may be responsible for the counter-theoretical results, there is an alternative explanation: the unique nature of
the NSA scandal. The NSA data collection issue is highly controversial, and yet it shares both bi-partisan support and bi-partisan opposition. An example of how the characteristics of this may have resulted in theoretically unaccounted for effects concerns the way in which strong partisans were affected by the partisan cue. Strong partisans seeing a dissonant cue and strong partisans seeing a consonant cue both showed a difference from the control condition, but the difference was in the same direction. Specifically, strong partisans who saw either cue had significantly lower Bill Attitudes than strong partisans who did not see a cue, $t(286) = 1.93$, $p = .027$. It did not matter which cue it was, the response was roughly the same.

This may be due to the lack of an explicit sponsor for the bill under consideration, and again, the unique characteristics of this issue. As noted previously, the leaders of both the Democratic and Republican Party – including Democratic Senate Majority Leader Harry Reid and Republican Speaker of the House John Boehner – have supported allowing the NSA to continue as is. Where the ‘party elites’ have made their views known, it is possible that some of the most partisan respondents were reacting to elected officials perceived as unfaithful to their party (i.e. those proposing the bill from within their own party, despite the stances of senior party officials). This would certainly explain the counter-theoretical results, but is impossible to confirm with the collected data. If future testing can reproduce a similar effect, it would suggest that an expansion to the theory of motivated reasoning might be necessary.

A second implication of these results concerns differences in partisan cue effect moderators for varying kinds of attitudes. Here, it is worth recalling that partisan strength
had a different effect on the relationship between partisan cues and attitudes than cross-cutting political communication exposure did. The strength of an individual’s partisan affiliation altered the relationship between partisan cues and NSA Attitudes, whereas cross-cutting political communication exposure altered the relationship between partisan cues and Bill Attitudes. The expectation was that these moderators would influence both dependent variable measures equally; the question then, is why they did not.

The clear explanation for these split results seems to be the nature of the variables themselves. Where the question for NSA Attitudes seems rather clearly to capture attitudes toward an existing issue, the question for Bill Attitudes on its face seems to measure attitudes toward a future solution to the issue. In context, believing the NSA’s data-collection activities are bad does not imply a belief that the Senate is capable of effectively fixing the problem in the future. The split effects for these two measures suggest that partisan cues may not have a universal effect on all attitudes. As such, it is important to continue exploring the underlying cognitive structures mediating the partisan cue effect, and the corresponding implications.

Among the more important theoretical implications, this study points toward the possibility that cross-cutting networks influence the way individual’s process political messages, and do so in a way not fully accounted for by, but complementary to, the theory of motivated reasoning. This could have profound implications for Communication, Psychology and Political Science research writ large. The next step in this research line is to explore the effect of cross-cutting exposure on the cognitive processing strategy used when reading/viewing political messages.
Conclusion

In summation, it is worth considering the normative implications of this study, specifically in relation to cross-cutting exposure and partisan strength. Strong partisans tend to be the most politically knowledgeable, and the most politically active individuals in America. Strong partisans are the individuals most actively shaping the American government, by consistently showing up at the ballot box, making their views known to their representatives and by reaching out to consonant others to do the same. Most unfortunately, strong partisans are also the most likely to have their attitudes altered by partisan cues.

If the role of political communication research is to assist in the promotion of “civic competence and coherent voting behavior” (Druckman et al., 2013, p. 75), than these findings may help to reinforce the normative standard of the ideal citizen, as one willing to participate in deliberation with dissonant others. The findings from this study suggest that consistent exposure to opposing views may help to decrease the power of partisan cues to trump logic and argument strength when making political relevant decisions.

Scheufele (2002) and Mutz make similar arguments: “homogeneous environments are ideal for purposes of encouraging political mobilization… heterogeneity makes these same activities much harder” (Mutz, 2002b, p. 852). It is perhaps then unsurprising that strong partisans are the least likely to have a heterogeneous communication network. While it is harder to mobilize an individual constantly exposed to dissonant views than it is to mobilize someone who only hears what they want to hear, this research indicates
that dissonance shapes a more nuanced view of the world. This nuance may be exactly what we want from those participating in the public sphere.
References

We would now like to have you read a news story about this topic which was published recently by the Associated Press. Please read it completely before moving on to the next section.

Bill Proposed [by Senate -- Democrats / Republicans] To End NSA Data Collection

WASHINGTON (AP) - While Americans remain sharply divided on the NSA’s public surveillance of most U.S. phone calls and emails, a new bill is being proposed [by a group of Senate -- Democrats / Republicans] that would curtail the program. The NSA program has been characterized by supporters of the bill as a violation of personal privacy and the 4th Amendment’s protection against unlawful search.

With court approval, the government has been collecting data from nearly all phone calls and email communications in the U.S. This data includes things like date, time, phone numbers, email address and other meta-information. Recently made changes to the surveillance program have placed restrictions on how the data is collected, such as requiring all activities to be monitored by a full-time civil liberties officer.

Opponents argue that any further changes will limit the ability of the NSA to identify future national security threats. They believe that the data provided by the program is an important tool in the fight against terrorism.

Supporters of the new bill argue that those changes do not go far enough to protect Americans and that more should be done. They would like to see additional changes such as prohibiting bulk collection, and only allowing records that are to or from a suspect to be gathered, rather than those that are simply about the target.

“Social media and other online communities have provided a safe haven for having open and private dialog with individuals across the globe,” said William Murphy, president of the [Democratic / Republican] Center for Policy Dialogue. “This bill will generally prevent the government from listening to those conversations.”
Picture 1 – Control

Picture 2 - Democrat
Picture 3 – Republican
Appendix B – Survey Measures

Q1 – Some people seem to follow what's going on in government and public affairs most of the time, whether there's an election going on or not. Others aren't that interested. How often would you say you follow what's going on in government and public affairs?

- Most of the Time
- Some of the Time
- Only Now and Then
- Hardly at All
- Never

Q2 – As you may know, it has recently been revealed that the NSA (National Security Agency) has been collecting meta-data on almost all communications in the U.S. How much have you heard or read about this topic?

- None
- Only a little
- Some
- Quite a bit
- A Lot

Q3 – How unimportant or important would you say this topic is to you personally?

- Not at all Important
- Very Unimportant
- Somewhat Unimportant
- Neither Unimportant nor Important
- Somewhat Important
- Very Important
- Extremely Important

Q4 – In the last month, how frequently have you sought out information about this topic?

- Never
- Less than Once a Month
- Once a Month
- 2-3 Times a Month
- Once a Week
- 2-3 Times a Week
- Daily

[Question Timer]

[Instruct 2 (see Appendix A)]

[Show Manipulation (see Appendix A)]

[Question Timer]

[Randomize Question Order – Also Randomize Item Order]

Q5 – Collecting meta-data from nearly all American communication as part of anti-terrorism efforts is:

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmful</td>
<td>o</td>
<td></td>
<td></td>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unreasonable</td>
<td>o</td>
<td></td>
<td></td>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necessary</td>
<td></td>
<td>o</td>
<td></td>
<td>o</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptable</td>
<td></td>
<td></td>
<td>o</td>
<td></td>
<td>o</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beneficial
Reasonable
Unnecessary
Unacceptable
Q6 – Passing a bill limiting the ability of the National Security Agency to collect information about
the communications of American citizens is:

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Ignorant</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Responsible</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Good</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Unimportant</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Intelligent</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Irresponsible</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Bad</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

[End Randomize Question Order]

D1 – Generally speaking do you think of yourself as a…

[Randomize order]
Republican
Democrat
[End Randomize order]
Independent
No preference

D2a – Would you call yourself a…

[Randomize order]
Strong Democrat
Not very strong Democrat
[End Randomize order]

D2b – Would you call yourself a…

[Randomize order]
Strong Republican
Not very strong Republican
[End Randomize order]

D2c – Do you think of yourself as closer to the… (which party do you tend to vote for most often)

[Randomize order]
Republican
Democrat
[End Randomize order]

D3 – Which candidate did you happen to support, if either, in the 2012 Presidential election?

[Randomize order]
Barack Obama
Mitt Romney
[End Randomize order]
Other
Instruct 3 – From time to time, people discuss government, elections, and politics with other people. We'd like you to provide the first names or just the initials of people you talk with about these matters. These people might be from your family, from work, from the neighborhood, from some other organization you belong to, or they might be from somewhere else. These discussions could have happened in person, on the phone, in an online chat room, on social media, or somewhere else.

Q7 – Who is the person you’ve talked with most about politics? (Please give the initials only)

Initials

[Allow Text Entry]

I do not speak about politics with anyone

[If selected skip to Q7a, followed by Q8a, and Q9a]

Q8 – Aside from the person you just named, who is the person you’ve talked with most about politics?

Initials

[Allow Text Entry]

There is no one else I discuss politics with

[If selected skip to Q7a, followed by Q8a]

Q9 – Aside from the two individuals you have named so far, is there someone else you’ve talked with about politics?

Initials

[Allow Text Entry]

There is no one else I discuss politics with

[If selected skip to Q7a]

Q7a – Well then, can you give the initials of the person with whom you were most likely to have informal conversations with during the course of the past month?

[Allow Text Entry]

Q8a – Aside from the person you just named, who is the person you were most likely to have informal conversations with during the course of the past few months?

[Allow Text Entry]

Q9a – Aside from the two individuals you have named so far, who is the person you were most likely to have informal conversations with during the course of the past few months?

[Allow Text Entry]

Q10 – When you talk with [insert name], do you discuss politics a lot, some, a little, or very rarely?

A lot
Some
A Little
Very Rarely
[Randomize order of questions]

Q11 – Compared with [insert name], would you say that your political views are much the same, somewhat different, or very different?

 Much the same
 Somewhat Different
 Very Different

Q12 – Do you think [insert name] normally favors Republicans or Democrats, or both, or neither?

 {Randomized placement of option one and three}
 Republicans
 Both/Neither
 Democrats
 {End randomization}
 Don’t Know

Q13 – Which presidential candidate, if any, did [insert name] favor in the last election? Obama, Romney, or some other candidate?

 [Randomize order]
 Obama
 Romney
 [End randomize order]
 Other
 Don’t Know

Q14 – When you discuss politics with [insert name], do you disagree often, sometimes, rarely, or never?

 Often
 Sometimes
 Rarely
 Never

Q15 – Overall, do you feel [insert name] shares most of your views on political issues, opposes them, or doesn’t [insert name] do either one?

 Shares
 Neither shares nor opposes
 Opposes

[End Randomization]

Q16 – Have you discussed the NSA surveillance program with [insert name]?

 Yes
 No

 [If Yes, show Q16a]
Q16a – Do you agree or disagree with [insert name]’s views on this topic?

 Strongly Disagree – Disagree – Somewhat Disagree – Neither Disagree nor Agree – Somewhat Agree – Agree – Strongly Agree

[Repeat Q10-Q16a x 2]

Instruct 4 - We’re now going to ask you a few questions about the government in Washington. Please write your responses in the space provided directly below each question. Many people don’t know the answers to these questions, so if there are some you don’t know just write that and move on.

[Randomize Order of Questions]

Q17 – What job or political office is now held by Joe Biden?

 [Allow Text Entry]

Q18 – Whose responsibility is it to determine if a law is constitutional or not … is it the president, the Congress, or the Supreme Court?

 [Allow Text Entry]

Q19 – How much of a majority is required for the U.S. Senate and House to override a presidential veto?

 [Allow Text Entry]

Q20 – Which party has the most members in the House of Representatives in Washington right now?

 [Allow Text Entry]

Q21 – Would you say that one of the parties is more conservative than the other, and if so which one?

 [Allow Text Entry]

[End Randomization]

Instruct 5 – The following questions are for demographic purposes. Please answer as accurately as possible. Your responses will remain confidential.

D4 – What is your current age?

 [Allow Text Entry]

D5 – What is your gender?

 [Randomize order]
 Male
 Female

[End Randomization]
D6 – What is your race / ethnicity

{Drop down list}
White / Caucasian – African American – Hispanic – Asian – Native American – Pacific Islander – Other

D7 – What is your annual salary (including bonuses and commissions in U.S. dollars?)

{Drop down list}
0-$25,000 - $25,001-$50,000 - $50,001-$75,000 - $75,001-$100,000 - $100,001-$125,000 - $125,001-$150,000 - $150,001-$175,000 - $175,001-$200,000 - $200,001+ - Prefer not to state

D8 – What is the highest level of education you have completed?

{Drop down list}
Less than High School – High School / GED – Some College – 2-year College Degree – 4-year College Degree – Master’s Degree – Doctoral Degree – Professional Degree (JD, MD) – Prefer not to state
Interval/Ratio Level Variables by Condition Seen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Condition</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV - NSA Attitudes</td>
<td>Control Condition</td>
<td>179</td>
<td>-1.1</td>
<td>1.7</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>-1.1</td>
<td>1.7</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>-1.0</td>
<td>1.8</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>-1.1</td>
<td>1.7</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>DV - Bill Attitudes</td>
<td>Control Condition</td>
<td>179</td>
<td>1.6</td>
<td>1.4</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>1.4</td>
<td>1.5</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>1.6</td>
<td>1.6</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>1.5</td>
<td>1.5</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>Age</td>
<td>Control Condition</td>
<td>179</td>
<td>33.7</td>
<td>12.7</td>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>35.2</td>
<td>12.3</td>
<td>19</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>35.9</td>
<td>13.6</td>
<td>19</td>
<td>73</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>34.9</td>
<td>12.9</td>
<td>18</td>
<td>76</td>
</tr>
<tr>
<td>Political Interest</td>
<td>Control Condition</td>
<td>179</td>
<td>2.8</td>
<td>1.0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>2.9</td>
<td>0.9</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>2.9</td>
<td>1.0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>2.9</td>
<td>1.0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Issue Exposure</td>
<td>Control Condition</td>
<td>179</td>
<td>2.6</td>
<td>1.1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>2.6</td>
<td>1.0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>2.6</td>
<td>1.0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>2.6</td>
<td>1.0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Issue Importance</td>
<td>Control Condition</td>
<td>179</td>
<td>4.2</td>
<td>1.3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>4.3</td>
<td>1.3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>4.2</td>
<td>1.4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>4.2</td>
<td>1.3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Issue Interest</td>
<td>Control Condition</td>
<td>179</td>
<td>2.3</td>
<td>1.7</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>2.5</td>
<td>1.6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>2.6</td>
<td>1.7</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>2.5</td>
<td>1.7</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Political Knowledge</td>
<td>Control Condition</td>
<td>179</td>
<td>4.0</td>
<td>1.2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>4.2</td>
<td>0.9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>4.1</td>
<td>1.2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>4.1</td>
<td>1.1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Political Discussion Frequency</td>
<td>Control Condition</td>
<td>179</td>
<td>4.4</td>
<td>3.4</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>4.2</td>
<td>3.4</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>5.0</td>
<td>3.6</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>4.5</td>
<td>3.5</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Cross-Cutting Exposure</td>
<td>Control Condition</td>
<td>179</td>
<td>3.9</td>
<td>6.3</td>
<td>-13</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>4.4</td>
<td>5.6</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>5.7</td>
<td>6.3</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>5.1</td>
<td>5.8</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Issue Discussion (with valence)</td>
<td>Control Condition</td>
<td>179</td>
<td>3.9</td>
<td>6.3</td>
<td>-13</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Republican Condition</td>
<td>177</td>
<td>4.3</td>
<td>6.7</td>
<td>-4</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Democrat Condition</td>
<td>174</td>
<td>5.3</td>
<td>7.9</td>
<td>-8</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>530</td>
<td>4.5</td>
<td>7.0</td>
<td>-13</td>
<td>36</td>
</tr>
</tbody>
</table>
ANOVA Tests – Interval/Ratio Variables by Condition Seen

<table>
<thead>
<tr>
<th>Variable Tested</th>
<th>F-statistic</th>
<th>Sig. (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DV – NSA Attitudes</td>
<td>0.21</td>
<td>.813</td>
</tr>
<tr>
<td>DV – Bill Attitudes</td>
<td>0.69</td>
<td>.500</td>
</tr>
<tr>
<td>Age</td>
<td>1.33</td>
<td>.264</td>
</tr>
<tr>
<td>Political Interest</td>
<td>0.85</td>
<td>.426</td>
</tr>
<tr>
<td>Issue Exposure</td>
<td>0.04</td>
<td>.958</td>
</tr>
<tr>
<td>Issue Importance</td>
<td>0.24</td>
<td>.790</td>
</tr>
<tr>
<td>Issue Interest</td>
<td>1.07</td>
<td>.346</td>
</tr>
<tr>
<td>Political Knowledge</td>
<td>0.95</td>
<td>.388</td>
</tr>
<tr>
<td>Political Discussion Frequency</td>
<td>2.75</td>
<td>.065</td>
</tr>
<tr>
<td>Cross-Cutting Exposure</td>
<td>1.70</td>
<td>.184</td>
</tr>
<tr>
<td>Issue Discussion (with Valence)</td>
<td>1.85</td>
<td>.158</td>
</tr>
</tbody>
</table>

Nominal/Ordinal Level Variables by Condition Seen

<table>
<thead>
<tr>
<th>Variable</th>
<th>Level</th>
<th>Control</th>
<th>Rep.</th>
<th>Dem.</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partisan Strength</td>
<td>Weak Partisan</td>
<td>72</td>
<td>89</td>
<td>81</td>
<td>242</td>
<td>45.7</td>
</tr>
<tr>
<td></td>
<td>Strong Partisan</td>
<td>107</td>
<td>88</td>
<td>93</td>
<td>288</td>
<td>54.3</td>
</tr>
<tr>
<td>Political Party</td>
<td>Democrat</td>
<td>131</td>
<td>121</td>
<td>120</td>
<td>372</td>
<td>70.2</td>
</tr>
<tr>
<td></td>
<td>Republican</td>
<td>48</td>
<td>56</td>
<td>54</td>
<td>158</td>
<td>29.8</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>102</td>
<td>107</td>
<td>100</td>
<td>309</td>
<td>58.3</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>77</td>
<td>70</td>
<td>74</td>
<td>221</td>
<td>41.7</td>
</tr>
<tr>
<td>Race</td>
<td>White</td>
<td>142</td>
<td>139</td>
<td>137</td>
<td>418</td>
<td>78.9</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>37</td>
<td>38</td>
<td>37</td>
<td>112</td>
<td>21.1</td>
</tr>
<tr>
<td>Education</td>
<td>No College</td>
<td>27</td>
<td>21</td>
<td>17</td>
<td>65</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>Some College</td>
<td>68</td>
<td>73</td>
<td>66</td>
<td>207</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>4-Year College Degree</td>
<td>62</td>
<td>62</td>
<td>71</td>
<td>195</td>
<td>36.8</td>
</tr>
<tr>
<td></td>
<td>Post-Graduate Degree</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>63</td>
<td>11.9</td>
</tr>
<tr>
<td>Income</td>
<td>$0 - $25,000</td>
<td>83</td>
<td>81</td>
<td>72</td>
<td>236</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>$25,001 - $50,000</td>
<td>60</td>
<td>51</td>
<td>56</td>
<td>167</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>$50,001 - $75,000</td>
<td>21</td>
<td>23</td>
<td>29</td>
<td>73</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>$75,001 - $100,000</td>
<td>6</td>
<td>14</td>
<td>8</td>
<td>28</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>$100,001 +</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>26</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Chi-Square Tests - Nominal/Ordinal Variables by Condition Seen

<table>
<thead>
<tr>
<th>Variable Tested</th>
<th>Pearson χ^2</th>
<th>df</th>
<th>Asymp. Sig. (2-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partisan Strength</td>
<td>3.71</td>
<td>2</td>
<td>.156</td>
</tr>
<tr>
<td>Political Party</td>
<td>1.18</td>
<td>2</td>
<td>.556</td>
</tr>
<tr>
<td>Gender</td>
<td>0.51</td>
<td>2</td>
<td>.773</td>
</tr>
<tr>
<td>Race</td>
<td>0.04</td>
<td>2</td>
<td>.982</td>
</tr>
<tr>
<td>Education</td>
<td>3.58</td>
<td>6</td>
<td>.734</td>
</tr>
<tr>
<td>Income</td>
<td>6.74</td>
<td>8</td>
<td>.565</td>
</tr>
</tbody>
</table>
Informed Consent

You are invited to participate in a research study conducted by Benjamin Smith under the direction of Dr. Shaker. This study attempts to collect information about the public's familiarity with current events.

Procedures

If you decide to participate, you will be asked to complete the following questionnaire. The questionnaire will take approximately 10 minutes or less.

Risks/Discomforts

Risks are minimal for involvement in this study. However, you may feel uncomfortable when asked to share information about yourself. You are welcome to skip any question that you feel uncomfortable answering.

Benefits

You may not receive any direct benefit from taking part in this study. However, it is hoped that through your participation, the study may help to increase knowledge which may help others in the future.

Confidentiality

All information that is obtained in connection with this study will be kept confidential and will only be reported in an aggregate format (by reporting only combined results and never reporting individual ones). All questionnaires will be concealed, and no one other than the research team will have access to them. At no point will your name be linked to your answers.

Compensation

Through Amazon.com’s Mechanical Turk, you will receive direct financial compensation for the completion of this survey in the sum of $.50

Participation

Participation in this research study is completely voluntary. You have the right to withdraw at any time or refuse to participate entirely.

Questions about the Research

If you have questions or concerns regarding this study, contact Benjamin Smith at bensmith@pdx.edu or Dr. Shaker at lshaker@pdx.edu.

Questions about your Rights as Research Participants
If you have questions or concerns about your rights as a research subject, please contact Research and Strategic Partnerships, Market Center Building 6th floor, Portland State University, 503-725-4288.

By completing this survey, you are certifying that you are 18 years of age or older, an American citizen, that you have read and understand the above information and agree to take part in the survey. Press the "Print" button below to keep a copy of this form for your own records.

If at this point you choose to continue in this research study, please click ">>>" to continue.
Appendix E – Institutional Review Board Human Subjects Approval

Date: April 18, 2014

To: Lee Shaker, Benjamin Smith
From: Karen Cellarius, HSRRC Chair

Re: HSRRC approval for your project titled, “Cross-Cutting Concerns: The Varying Effects of Partisan Cues in the Context of Social Networks”
HSRRC Proposal # 143007

Approval-Expiration: April 18, 2014-April 17, 2015

Review Type: Expedited, Categories 7

In accordance with your request, the PSU Human Subjects Research Review Committee has reviewed your request for approval of the project referenced above for compliance with PSU and DHHS policies and regulations covering the protection of human subjects. The Committee is satisfied that your provisions for protecting the rights and welfare of all subjects participating in the research are adequate, and your project is approved. Please note the following requirements:

Approval: You are approved to conduct this research study only during the period of approval cited above; and the research must be conducted according to the plans and protocol submitted (approved copy enclosed).

Changes to Protocol: Any changes in the proposed study, whether to procedures, survey instruments, consent forms or cover letters, must be outlined and submitted to the Committee immediately. The proposed changes cannot be implemented before they have been reviewed and approved by the Committee.

Continuing Review: This approval will expire on. It is the investigator’s responsibility to ensure that a Continuing Review Report on the status of the project is submitted to the HSRRC two months before the expiration date, and that approval of the study is kept current. The Continuing Review Report is available at www.rsp.pdx.edu/compliance_human.php and in the Office of Research and Strategic Partnerships (RSP).

Adverse Reactions and/or Unanticipated Problems: If any adverse reactions or unanticipated problems occur as a result of this study, you are required to notify the
Committee immediately. If the issue is serious, approval may be withdrawn pending an investigation by the Committee.

Completion of Study: Please notify the Committee as soon as your research has been completed. Study records, including protocols and signed consent forms for each participant, must be kept by the investigator in a secure location for three years following completion of the study (or per any requirements specified by the project’s funding agency).

If you have questions or concerns, please contact the Office of Research Integrity in the PSU RSP at hsrrc@pdx.edu.