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ABSTRACT 

Bicycle use is increasing in many parts of the U.S. Local and regional governments have 

set ambitious bicycle mode share goals as part of their strategy to curb greenhouse gas 

emissions and relieve traffic congestion. In particular, Portland, Oregon has set a 25% 

mode share goal for 2030 (PBOT 2010). Currently bicycle mode share in Portland is 

6.1% of all trips. Other cities and regional planning organizations are also setting 

ambitious bicycle mode share goals and increasing bicycle facilities and programs to 

encourage bicycling. Increases in bicycle mode share are being encouraged to increase. 

However, cities with higher-than-average bicycle mode share are beginning to experience 

locations with bicycle traffic congestion, especially during peak commute hours. Today, 

there are no established methods are used to describe or measure bicycle traffic flows.  

In the 1960s, the Highway Capacity Manual (HCM) introduced Level of Service (LOS) 

measurements to describe traffic flow and capacity of motor vehicles on highways using 

an A-to-F grading system; “A” describes free flow traffic with no maneuvering 

constraints for the driver and an “F” grade corresponds to over capacity situations in 

which traffic flow breaks down or becomes “jammed”. LOS metrics were expanded to 

highway and road facilities, operations and design.  In the 1990s, the HCM introduced 

LOS measurements for transit, pedestrians, and bicycles.  Today, there many well 

established and emerging bicycle level of service (BLOS) methods that measure the 

stress, comfort and perception of safety of bicycle facilities. However, it was been 

assumed that bicycle traffic volumes are low and do not warrant the use of a LOS 
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measure for bicycle capacity and traffic flow. There are few BLOS methods that take 

bicycle flow into consideration, except for in the case of separated bicycle and bicycle-

pedestrian paths.  

This thesis investigated the state of BLOS capacity methods that use bicycle volumes as a 

variable.  The existing methods were applied to bicycle facility elements along a corridor 

that experiences high bicycle volumes in Portland, Oregon. Using data from the study 

corridor, BLOS was calculated and a sensitivity analysis was applied to each of the 

methods to determine how sensitive the models are to each of the variables used. An 

intercept survey was conducted to compare the BLOS capacity scores calculated for the 

corridor with the users’ perception.  In addition, 2030 bicycle mode share for the study 

corridor was estimated and the implications of increased future bicycle congestion were 

discussed. Gaps in the BLOS methods, limitations of the thesis study and future research 

were summarized.  

In general, the existing methods for BLOS capacity are intended for separated paths; they 

are not appropriate for existing high traffic flow facilities. Most of the BLOS traffic flow 

methods that have been developed are most sensitive to bicycle volumes. Some of these 

models may be a good starting point to improve BLOS capacity and traffic flow measures 

for high bicycle volume locations.  Without the tools to measure and evaluate the patterns 

of bicycle capacity and traffic flow, it will be difficult to monitor and mitigate bicycle 

congestion and to plan for efficient bicycle facilities in the future. This report concludes 
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that it is now time to develop new BLOS capacity measures that address bicycle traffic 

flow.  
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1.0 INTRODUCTION 

In the U.S., local transportation agencies and regional planning organizations are 

promoting bicycle use as a strategy to alleviate transportation congestion, improve 

greenhouse gas emissions and public health. Many cities and Metropolitan Planning 

Organizations (MPOs) have set aggressive bicycle mode share goals in their regional 

plans.  In particular, Portland, Oregon has set a 25% bicycle mode share goal for 2030 

(PBOT 2010). Currently, bicycle mode share in Portland is 6.1% of all trips. As mode 

share for bicycles has increased, bicycle volumes have also increased. At some locations, 

periods of bicycle traffic congestion have begun to appear. Similar to motor vehicles, the 

most common times of day for bicycle congestion are during peak commute hours. For 

cyclists in Portland, these locations of traffic congestion tend to be near route bottlenecks 

such as bridges in the central business district or where safe bicycle routes to different 

areas of the city are limited. Although these areas of bicycle traffic congestion exist, there 

are currently no methods that can describe these incidences of high bicycle traffic flow 

and resulting congestion.  

Without the tools to measure and evaluate the patterns of bicycle capacity and traffic 

flow, it will be difficult monitoring and mitigating bicycle congestion and planning 

efficient bicycle facilities in the future.  
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Level of Service (LOS) measurements were first developed in the 1960s in the Highway 

Capacity Manual (HCM) to describe traffic flow and operations of motor vehicles on 

highways using an A-to-F grading system; A is free flow traffic with no maneuvering 

constraints for the driver and an F grading for breakdown flow, or traffic jam conditions. 

Additional LOS metrics were developed to describe facilities and operations.   

In the 1980s, the HCM expanded LOS measures to transit, pedestrians, and bicycles.  

Bicycle level of service (BLOS) was developed for bicycle facility comfort.  BLOS 

capacity methods has not been established based on the assumption that bicycle traffic 

volumes are generally low and do not warrant a BLOS capacity measure (HCM 2010; 

Landis, Vattikuti, and Brannick 1997), with one exception, in the case of an off-street 

path. This off-street path BLOS method is known as hindrance; the delay experienced 

due to passing and meeting other bicyclists and pedestrians on a path. Over the past two 

decades, modifications and expansion of the hindrance method have been attempted.  In 

the late 1990s the Federal Highway Administration (FHWA) recommended that the 

hindrance method for separated off-street paths could be applied to on-street bike lane 

and was included in the HCM 2000 manual. However, this method was dropped in the 

HCM 2010 due to lack of research and evidence that the method is appropriate for 

applying to on-street facilities (HCM 2010). 

This thesis investigated the state of BLOS capacity methods that use bicycle volumes as a 

variable.  The existing methods were then applied to bicycle facility elements along a 

corridor that experiences high bicycle volumes in Portland, Oregon. Using data from the 
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study corridor, BLOS was calculated and a sensitivity analysis was applied to each of the 

methods to determine how sensitive the models are to each of the variables used. An 

intercept survey was conducted to compare the BLOS capacity scores calculated for the 

corridor with the users’ perception. 2030 bicycle mode share for the study corridor was 

estimated for the corridor and the implications of not addressing bicycle congestion were 

discussed. Gaps in the BLOS methods, limitations of the thesis study and future research 

were summarized.  

The site that was chosen to apply the existing BLOS capacity methods was the 

Hawthorne Bridge Corridor in Portland, Oregon. The advantages of this corridor are that 

it is currently experiencing periods of high bicycle traffic volumes, robust bicycle data is 

available, and the corridor includes a variety of bicycle facility elements such as on-street 

bicycle lanes of varying widths, off-street paths, and intersections.  

The thesis is organized as follows. A literature review of the history of LOS measures is 

given and the role of the HCM in its development. The state of BLOS measures that 

consider bicycle volumes is summarized. Research regarding Bicycle capacity and traffic 

flow are discussed. In addition, the methods used to design a sensitivity test for each of 

the models in this thesis project are described.  Next, each of the methods that calculate 

BLOS measures using bicycle flow is explained. Following the methods, the Hawthorne 

Bridge Corridor site and elements are described. The data collection and how the data 

was used to develop a base set of values to test each of the methods is explained. 

Following, the BLOS methods are analyzed; BLOS is calculated for the appropriate 
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elements along the Hawthorne Corridor and a sensitivity analysis is used to evaluate the 

sensitivity to each of the variable inputs. The intercept survey results are described and 

compared with the analysis. A discussion follows that explains the result, discusses the 

gaps and its implications for future BLOS analysis. Finally, limitations of the methods 

and study are outlined and future research is recommended. 
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2.0 LITERATURE REVIEW 

2.1 Highway Capacity Manual and Level of Service 

The Highway Capacity Manual (HCM) was first developed in 1950 to provide capacity 

guidelines for freeway design for transportation professionals. In the 1965 version of the 

HCM a performance measurement was introduced, named Level of Service (LOS), and 

was synonymous with motor vehicle capacity on highways. LOS was developed in order 

to easily explain the operations of the road network in a way that elected officials and the 

public can easily understand.  LOS performance measures are based on a grading system 

of “A” to “F”; “A” being the best performance and “F” the worst. During the first two 

decades, HCM was focused on motor vehicle operations (TRB 2000). 

Bicycles and pedestrians first appeared in the HCM in 1985. However, bicycles and 

pedestrians were only considered obstacles to level of service for motor vehicles. Then, 

in 1991 a monumental shift occurred in the management of the US highway system. The 

Intermodal Surface Transportation Efficiency Act (ISTEA) was signed into law. ISTEA 

shifted the focus of the Federal transportation agencies from encouraging the construction 

of highways (as the highway system was essentially completed) to improving the existing 

freeway system and designing a safer and more efficient transportation system for all 

modes. ISTEA encouraged the development of a more multimodal transportation system 

integrating more transit, bicycle, and pedestrian facilities (Schweppe 2001) 
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This shift in the transportation industry’s purpose influenced the HCM‘s performance 

measures.  In the HCM 2000 pedestrian traffic became relatively well defined and LOS 

methodologies were developed for pedestrian flow and facilities. Bicycle level of service 

(BLOS) measures were mainly focused on cyclist comfort on various bicycle facilities 

but also included some experimental methods for calculating bicycle delay at 

intersections and BLOS based on bicycle traffic flow in bike lanes and shoulders. 

The most current version, the HCM 2010, has included a multi-modal level of service 

(MMLOS) method for urban streets. The MMLOS framework takes into consideration 

the perspectives of motor vehicle drivers, pedestrians, bicycles and transit users on 

different types of transportation facilities including intersections and urban streets (TRB 

2010). One of the key features is that it integrates the effects of motor vehicles on 

pedestrians and bicyclists. For bicycles this latest edition emphasizes BLOS measures of 

cycling comfort based on the quality of bicycle facilities and the speed and density of 

motor vehicle traffic next to the facilities. This latest version of the HCM also includes a 

detailed BLOS method that measures the delay of bicyclists on off-street paths. However, 

the 2010 version dropped 2000 version’s methods of bicycle delay at intersections and 

BLOS based on bicycle traffic flow on bike lanes and shoulders. The reasoning for the 

exclusion of the additional bicycle measures was due to lack of research of the methods 

used (TRB 2010). 

Other transportation organizations have also developed guidelines and measures of LOS. 

Agencies and organizations adapted the most recent versions of the HCM as the basis for 
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their own models, such as the Florida DOT 2013 Quality/Level of Service Handbook 

(State of Florida Department of Transportation 2013).  The American Association of 

State Highway and Transportation Officials (AASHTO) and the Federal Highway 

Administration (FHWA) have their own level of service reference guides and methods 

for BLOS but also borrow from the HCM (AASHTO 2010; FHWA 1998).  

In the last 20 years additional performance measures similar to BLOS have been 

developed by transportation researchers. These methods have aimed to address the unique 

characteristics of bicycle travel that have not been reflected in the standard BLOS 

methods, and are in some cases, a reaction to the limitations of the present accepted 

methods. BLOS type performance metrics are often developed from survey results of 

respondents perceptions of bicycle facilities (Carter et al. 2013). A common process that 

is used in the development of a bicycle performance metrics is to instruct research 

subjects to study photos, watch video taken by someone on a bicycle in different 

environments or have them ride directly on facilities. The research subjects are then 

asked to give feedback about their perception of comfort or safety at each scenario. Using 

the responses from the respondents and the attributes of the facilities in the study area, 

models of performance metrics are developed. Regression-based methods, order probit 

models, and fuzzy clustering are common methods for developing BLOS determination 

method (Landis, Vattikuti, and Brannick 1997; Landis et al. 2003; Petritsch et al. 2007; 

Jensen 2007; Jensen 2012; Sorton and Walsh 1994).  
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Among the performance metrics that have been developed, definitions vary. Types of 

BLOS performance measures include measures of cyclist perception, level of bicyclist 

stress, bicycle interaction hazard score, and bicycle suitability (Lowry et al. 2012; Asadi-

Shekari, Moeinaddini, and Zaly Shah 2013). One BLOS method is described as the 

“perception index for bicycle level of service (Callister and Lowry 2013). The HCM 

defines BLOS measures as  the  “perceived comfort and safety of bicycle travel (TRB 

2010).” Another method measures “Bicycle Suitability.” Most of the methods use road 

facility characteristics and motor vehicle speeds and volumes to determine how suitable 

the facility is for cycling (Callister and Lowry 2013).”  The HCM and the Florida DOT 

Quality/Level of service have different definitions of LOS and require different criteria 

(Dowling et al. 2014).  

The HCM 2010 defines three different concepts that overlap in meaning; 1) quality of 

service, 2) level of service, and 3) service measures. Quality of service is how the traveler 

perceives the functioning of the roadway facility. Travel surveys, user complaints and 

observations were used to develop quality of service measures. Level of Service (LOS) is 

the grading system used to describe certain thresholds of quality of service. Service 

measures define LOS measures for different elements. Elements of a roadway include 

segments, points, facilities, corridors, areas, and systems. Service measures interpret 

user’s perceptions and are measureable in the field.  Operational analysis is the 

determination of instantaneous conditions on a road element and then deciding if the 

existing facilities are adequate or if operational improvements are warranted. Design 
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analysis determines LOS based on the attributes of the roadway facilities or the addition 

or change of roadway facilities. Planning and preliminary analysis uses a number of 

default values to project future LOS before new facilities or changes to existing facilities 

are made. The HCM also provides methods for evaluating individual elements of a road 

system or a combination of elements (TRB 2010).  

The main variables used to calculate operational LOS are vehicle volumes and speed. The 

LOS metrics include traffic density, percent time following, average travel speed, percent 

free flow speed, and delay. In contrast, BLOS for on-street facilities is determined from 

geometric variables, motor vehicle traffic and speed, not bicycle volume. Only for off-

street paths are BLOS calculated using bicycle volumes and speed.  

Table 1 lists the different system elements. For each of the elements, the type of service 

measurements available for motor vehicles and bicycles is given.  
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Table 1: Service Measures for Different Elements from the HCM 2010 

System Element Motor Vehicles Bicycles 

Freeways and Multi-lane 

Highways 
Density 

Comfort 

Perceived exposure1 

Two-Lane-Highway 

Percent time following 

Average Travel Speed 

Percent free-flow speed 

Comfort 

Perceived exposure2 

Urban Street Facilities and  

Segments 
Percent free-flow speed 

Comfort 

Perceived exposure3 

Urban Street Intersections Control Delay None 

Off-street pedestrian and 

bicycle facilities 
None 

Frequency of Hindrance 

Delay from Hindrance 

A main assumption in BLOS analysis is that bicycle volumes rarely reach a critical mass 

in which bicycle volumes would affect bicycle traffic flow, delay or have a significant 

effect on the comfort of cycling. The Florida DOT Q/LOS handbook claims that bicycle 

volumes do not have an effect on BLOS (State of Florida Department of Transportation 

2013). In 1997, Bruce W. Landis, et al. wrote in his report, Real-Time Human 

Perceptions, Toward a Bicycle Level of Service; 

 “Thus defined, the bicycle level of service (BLOS) is not a measure of vehicular flow or 

capacity as is the convention for other travel modes. Although methods do exist for 

quantifying bicycle flow and capacity, such performance measures are generally not 

                                                 

1 Variables include separation from traffic, motorized traffic volumes and speeds, heavy vehicle percentage, 

and pavement quality. Note bicycle volume or speed is not used. 
2 Variables include separation from traffic, motorized traffic volumes and speeds, heavy vehicle percentage, 

on-highway parking and pavement quality. Note bicycle volume or speed is not used. 
3 Variables include separation from traffic, motorized traffic and volumes, heavy vehicle percentage, 

presence of parking, pavement quality. Intersections are included in the segment and include separation of 

traffic, cross street width.  Note bicycle volume or speed not used. 
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relevant for mixed-mode collectors and arterials in the United States, at least in the 

foreseeable future (Landis, Vattikuti, and Brannick 1997).”   

The 2010 HCM states; 

 “Some vehicular measures are less applicable to bicycle mode. For example, bicycle 

density is difficult to assess, particularly with regard to facilities shared with pedestrians 

and others. Because of the severe deterioration of service quality at flow levels well 

below capacity (e.g., freedom to maneuver around other bicyclists), the concept of 

capacity has little utility in the design and analysis of bicycle facilities; rather, cyclists 

typically dismount and walk their bicycles before a facility reaches capacity. Values for 

capacity therefore reflect sparse data, generally from European studies or from 

simulation.”  

2.2 State of BLOS Measures that Include Bicycle Volumes 

The following is a summary of the state BLOS measures that include bicycle volumes as 

an input.                     Table 2 at the end of this section summarizes the methods and 

outlines the variables used in each method. 

2.2.1 BLOS methods for Off-Street Paths 

The developments of BLOS methods that include bicycle traffic flow are limited.  One 

method that uses bicycle traffic volumes to calculate BLOS is explained in the seminal 

report by Hein Botma, Method to Determine Level of Service for Bicycle Paths and 

Pedestrian-Bicycle Paths, written in 1995 in the Netherlands. Botma’s theory is that the 
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number of passings and meeting of pedestrians and bicyclists on a path can be quantified 

and used to describe the level of service, capacity and perceived safety.  Each passing and 

meeting event is referred to as “hindrance.” The hindrance model is used to determine 

BLOS for two-lane pedestrian-only paths, bicycle-only paths and shared-use paths 

separated from motor vehicle traffic. The method considers the width of the path, the 

volumes and speeds of both pedestrians and cyclists (Botma 1995).   

Botma simplified the model by observing that bicycles tend to be 4 times faster than 

walking on flat segments, which is appropriate for the Netherlands. Another 

simplification is to assume that traffic volumes travel 50 percent in each direction for 

two-way paths.  The simplified equations determine BLOS based on bicycle and 

pedestrian volumes. The BLOS is determined from calculating and frequency of passings 

and meetings and then converting to “events per second”.  

In 2006, the FHWA developed a new off-road path BLOS method based on the 

“hindrance”. The FHWA determined that the Botma method’s shortcut calculations were 

not necessarily appropriate to use in the US because bicyclist behavior and bicycle 

facilities differ from Europe’s. The FHWA report noted that US bicyclists are less 

experienced, have different mode splits between recreational and commuter cyclists and 

dimensions for facilities differ from Europe’s. In addition, Americans ride different types 

of bicycles than are used in other countries (Patten et al. 2006). The report outlined new 

version of Botma’s model that includes a variety of shared path users including runners, 

in line skaters, and child bicyclists.  The method is based on the Botma model. However, 
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it was developed from the results of a national study of 15 trails and a user perception 

study which included participants viewing video of the 15 trails. The following model 

was developed from the study. The method calculates the probability of passings and 

meeting between the various users using a cumulative distribution method. An easy to 

use workbook to make calculations was developed by the Toole Design Group as part of 

the FHWA project (Hummer et al. 2006).   

The HCM 2010 LOS method for shared-use paths borrows from the Botma and FHWA 

hindrance methods but is much more complex and laborious. The method also includes 

cumulative distribution calculations to better estimate the randomness of passings and 

meetings along a segment. The HCM 2010 shared-use path method allows for more 

detailed data inputs about non-motorized modes (TRB 2010). Default values are given to 

simplify the calculations for variables such as mean speed and standard deviation that are 

not normally collected in the field. However, the method allows the freedom to create any 

mix of non-motorized mode share users, speeds and standard deviations.    

The method developed by Botma requires 3 calculations. The HCM 2010 method has 8 

steps and more than 15 calculations including a cumulative distribution function to 

determine BLOS. A worksheet is available from the University of Idaho that calculates 

some of the steps from the HCM 2010. However, the most complicated calculations for 

the probability of passings and meeting must be developed for each segment (Callister 

and Lowry 2013).  
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2.2.2 BLOS for On-Street Bike Lanes 

There are no BLOS methods were developed exclusively for on-road segments that 

incorporate bicycle volumes. However, the Federal Highway Administration (FHWA) 

suggested that the off-road bicycle path method developed by Botma is reasonable to use 

for on-street bicycle lanes with moderate to low motor vehicle traffic and no disruption in 

flows (i.e. no intersections, driveways, or stops). The bike lane must be wide enough for 

two effective bicycle lanes or the motor vehicle volumes must be low enough that cyclists 

can use the motor vehicle lane to pass other cyclists safely (Allen et al. 1998).   

The HCM 2010 does have BLOS methods for multilane highways and two lane 

highways. However, bicycle volumes are not considered and only BLOS comfort of 

facilities are calculated.  Bicycle LOS methods are also available for urban street 

facilities in the HCM 2010 and utilize bicycle speed to calculate travel time. However, 

bicycle volumes are not considered (TRB 2010). This is common for most of the models 

developed for road segment BLOS (Landis, Vattikuti, and Brannick 1997; Callister and 

Lowry 2013; Parks et al. 2013).  

Like the HCM 2010, The Danish BLOS model, developed by Soren Underlien Jensen, 

for on-roadway segments only calculates the comfort of bicycle facilities. The variables 

and coefficients were developed from survey responses based on videos of road 

segments. Linear regression was used to determine variables that were significant for 
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developing a facility satisfaction BLOS model. This model does not consider bicycle 

volumes or bicycle congestion (Jensen 2007; Dowling et al. 2014) 

A BLOS model for arterials has also been developed by the Florida DOT. This method 

considers the sum of road segments and intersections of an arterial. Similar to the 

development of BLOS models based on the perception of participants observing bicycle 

facilities, this study had participants ride on a bicycle route that included different types 

of facilities and answer a survey for each type of road segment. Again, this study does not 

consider bicycle traffic volumes, only facilities. No bicycle volumes are used to develop 

the final model (Petritsch et al. 2007; Dowling et al. 2014). 

2.2.3 Intersection BLOS 

Chapter 19 in the HCM 2000 includes an intersection bicycle capacity LOS method. 

There are two equations for the method; 1) bicycle capacity and 2) delay. The variables 

include saturation flow rate for bicycles with a default value of 2000 bicycles per hour. 

The effective green time for bicycles and the signal cycle length are needed to calculate 

capacity of a bicycle lane at an intersection. The control delay calculation uses the results 

from the bicycle capacity calculation and one way flow rate of bicycles for estimating 

bicycle delay. Control delay values are converted into BLOS intersection values (TRB 

2000).  

HCM 2010, Urban street segments, Chapter 18, also gives methods for BLOS at 

intersections. As in the HCM 2000, BLOS of signalized intersections bicycle lane 
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capacity and delay are calculated using bicycle flow rate. However, these calculations are 

used to determine the BLOS for facility comfort, not bicycle traffic flow and capacity. 

The chapter discusses bicycle saturation rate and states that there is no recent information 

on calculating saturation flow for bicycles. The current standard default values for 

bicycle saturation flow is 2,000 bicycles/h (TRB 2010). The Florida DOT has also 

developed intersection BLOS methods but does not consider any bicycle metrics (Landis, 

Vattikuti, and Brannick 1997).  

Soren Underlien Jensen, from Denmark also developed method for determining 

intersection BLOS. The variables for this method include width of bicycle lane, type of 

crossing facility for bicyclists, and the type of facility before the intersection. There are 

two different methods; one for when the cyclist crosses the intersection and another for 

when the bicyclist turns right. This right turning method is based on Danish left turn 

movements that are not used in the US.  Bicycle volumes are not used as a variable. This 

method calculates perceived bicyclist satisfaction. (Jensen 2012). 

No other BLOS methods are available for any other types of bicycle facility, such as 

bicycle boulevards for cycle tracks.                     Table 2 summarizes the methods 

described above. The checkmark designates the variables needed to calculate each 

method. The “R” is the variables that are not needed in the calculation but are the 

required conditions that are needed to appropriately apply the methods. For example, the 

Botma on-way bicycle path does not use bicycle path width in the calculation, however, 
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the path must fall within a certain range in order to be considered a two-lane path.  “O” 

designates the variables that are optional. 
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                    Table 2: Summary of BLOS Methods that Use Bicycle Traffic Flow as a Variable 

Inputs 

Off-Street 

One-Way 

Bicycle 

Path 

Off-Street 

One-Way 

Bicycle 

Lane 

Shared Off-Street Path 
Signalized 

Intersections 

 Botma 

1995 

HCM  

2000 

Botm

a 

1995 

HCM 

2000 

FHWA 

2006 

HCM 

2010 

HCM 

2000 

Bicycle 

Volume               

Mean Speed O O O   O  

Speed SD O O O   O  

Pedestrian 

Volume       O    

Mean Speed   O   O  

Speed SD   O   O  

Other 

Modes 

Volume     O O  

Mean Speed      O  

Speed SD      O  

Directional Volumes   R   R    

Lane Width R R R       

Center Line         

Green Time for Bicyclists         

Signal Cycle Length         

 = Value needed 

R = Requirement of method 

O = Optional or Use Default 
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2.3 Bicycle Density and Capacity Studies 

There have been no established guidelines for what constitutes an acceptable BLOS 

density, capacity or traffic flow. However, these methods have been successfully 

developed for pedestrians (Fruin 1992; HCM 2010).  

Studies related to bicycle traffic density have been conducted in countries with higher 

population densities and a well-established bicycle ridership. In China, bicycle use has 

plummeted from 62 % bike mode share in 1986 to 16 % in 2010 (Fong 2013). Yet, 

research on bicycle capacity and congestion metrics is still conducted. Chinese research 

found that, as in the US, facilities, road geometry and motor vehicle traffic volumes 

contribute to cyclist’s perception of comfort. However, bicycle traffic flow was also a 

significant factor on both separated bicycle paths and bike lanes (Li et al. 2012).  

Another Chinese study developed conversion factors that equate how many bicycle 

units equal a passenger car unit. These conversion factors were developed to model the 

interaction between bicycle congestion and motor vehicles (Kang, Xiong, and 

Mannering 2013).  Due to differences in road geometry, and cultural differences in 

terms of driving and cycling behavior and rules-of-the-road, Chinese methods and 

models of level of service may not be transferrable to US bicycle traffic modeling.  

Studies in Germany, California, and China have considered levels of service based on 

bicycle density. Table 3 summarizes each country’s proposed BLOS grades for A and 
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F. The density is described in square foot per bicyclist, the reciprocal of density, which 

is cyclist per unit. These are the same units used to describe the pedestrian density 

(Fruin 1992). This is different than the measurement for motor vehicles, which is 

described as vehicles per distance. However, bicycle travel is more fluid and bicycles 

do not always travel in a lane for with one vehicle behind another, like a motor vehicle.  

The table demonstrates the differences among cultures about what constitutes an A or F 

grade. German BLOS F is the same density as the Chinese equivalent BLOS A rating of 

108 ft 2/ bicycle (Hummer et al. 2006). 

Table 3: Density BLOS for Different Geographic Locations (Hummer et al. 2006) 

Location BLOS A BLOS F 

California 215 ft 2/ bicycle 40 ft 2/ bicycle 

Germany 2150 ft 2/ bicycle 108 ft 2/ bicycle 

China 
108 ft 2/ bicycle           

(Very Comfortable) 

24 ft 2/ bicycle     

(Dismount) 

 

Table 4 illustrates the results from a variety of studies on bicycle saturation flow 

(Hummer et al. 2006). Note that for a one-lane path, the saturation flow rate is between 

500 and 4,000 bicycles. Another report summarizing international studies on bicycle 

capacity concluded that the saturation flow rate for bicycles on a four foot bicycle lane 

was between 2,000 to 3,000 bicycles per hour. The report also noted that a BLOS of F is 

not defined by the capacity or saturation flow rate. BLOS F is the perception that 

conditions are unacceptable (Allen et al. 1998).  
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Table 4: Bicycle Saturation Flow Studies and Results (Hummer et al. 2006) 

Location Study Year Path Width 
Saturation Flow 

(Bicycles/h) 

Davis, CA 1975 1.2m (4 ft.) 3,600 

Sweden 1977 1.2m (4 ft.) 1,500 

Netherlands 1991 0.78 (2.6 ft.) 3,000-3,500 

China 1993 1 m (3.3 ft.) 1,800 – 2,100 

Canada 1994 1.25 (4.1 ft.) 4,000 

US (HCM) 1994 1 to 2 lanes 500 -2,350 

Netherlands 1995 1 m (3.3 ft.) 3,200 

 

2.4 Sensitivity Analysis 

In order to gain some insight into the BLOS methods that use bicycle volumes and to 

determine how sensitive each of the variables is in the various methods, a sensitivity 

analysis was developed. This section summarizes studies that were used to develop a 

sensitivity test. Other studies of BLOS methods have used sensitivity analysis to 

determine the significance of variables within the methods. Most of these sensitivity 

analyses evaluated bicycle facilities. One such sensitivity study compared the variation 

in BLOS scores between different sites. The purpose of the study was to test the HCM 

2010 multi-modal level of service (MMLOS) scores as they were applied to four 

different locations. Each input was tested by varying the value of the input from the 

initial, base value used at each site. The method varied depending on the type of 

variable. For example, volumes were increased at 20 % increments while all other 

inputs were held constant (Carter et al. 2013). This test showed that for bicycle LOS 

pavement condition and shoulder parking width had the largest changes in LOS; 

however these changes varied greatly for each site. Another project applied a sensitivity 
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methodology to study 26 variables in the HCM 2010 MMLOS. The researcher tested 

most values at a 50 % increase or decrease in values. Other changes in variables were 

based on realistic changes. For example, 5 mph changes in speed were tested instead of 

changing them by a percentage (Elias 2010).   

One study compared the HCM 2010 BLOS, the Danish Road Directorate BLOS and the 

Bicycle Environmental Quality Index (BEQI). The “Sensitivity to Key Design Factors” 

was tested. This sensitivity method was a qualitative comparison of how well design 

factors were “out of a transportation agency’s control” and how sensitive the BLOS 

measurements were to before and after bicycle infrastructure improvements. In addition  

the research  used a qualitative scale to measure  how user friendly the tools were for 

calculating BLOS (Parks et al. 2013).  

For this analysis a combination of the Carter and Elias sensitivity models were applied 

to each of the BLOS methods. A combination base of values was developed for this 

project based on real data or, where necessary, default values. For each model, each 

variable was increased and decreased by a 25% or 50% increment, with all other base 

values held constant. A percent change from the base value was measured and plotted. 

The plots include the BLOS threshold, measured as the percentage of the base variables. 
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3.0 METHODS 

To understand of the state of practice for BLOS capacity measures, methods that 

measure bicycle volumes as a variable were chosen for evaluation. Using the results of 

the literature review, a list of bicycle methods is summarized in                     Table 2.  

The following describes each of methods in detail. 

3.1 On-Street Segments 

3.1.1 Botma LOS for Bicycle Paths 

As was previously described, Botma developed a capacity BLOS for off-street paths. 

However, the FHWA determined that under some circumstances, the Botma method for 

bicycle-only paths can be applied to on-street bicycle lanes (Allen et al. 1998)  

Botma developed the concept of “hindrance;” the delay experienced by bicycles passing 

and maneuvering around other off-street path users. Three maneuvers, called events,  

were outlined in his model; 1) a bicyclist passing a user going in the same direction, 2) a 

bicyclist meeting another user going in the opposite direction, and 3) a combination of 

passing and meeting. The criterion to define BLOS is “the frequency of events with 

respect to time;” in particular, frequency (F) will be expressed as “number of events per 

second.”  The method was developed for two-lane paths. Table 5 is a summary of what 

is considered a two-lane bicycle lane width.  
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Table 5: Botma Definition of Bicycle Lane Widths (Botma 1995) 

. 

 

A path width of 1.5 m (4.9 ft.) is considered just enough width for two bicycles to ride 

side by side. A 2 m (6.6 ft.) wide bike lane is comfortable for two bicycles riding side 

by side (Botma 1995).  

Botma developed two different hindrance BLOS methods; one for bicycle-only paths 

and another for pedestrian-bicycle paths.  A “path” is not clearly defined, except to say 

that a path is not intended for motor vehicles and bicycles together on the street. 

Quality of operation, or BLOS, for a bicycle only path is based on frequency of 

passings, using the following equation. 

𝐹 = 2𝑄𝜎/{𝑈√𝜋} (3.1) 

Where 

𝐹 = Frequency of passings 

𝑈 = the mean speed (default of 18 km⁄h (11.2 mph)) 

𝜎 = standard deviation of speed (default of 3 km⁄h (1.9 mph)) 

𝑄= volume of bicycles (bicycles/h) 

Equation (3.1) can be simplified using default values to  

𝐹 = 0.188𝑄 (3.2) 

Number of lanes Width of path, m (ft.) 

1 0.75-1.00 (2.5-3.3) 

2 (Narrow) 1.5 (4.9) 

2 (Generous) 2 (6.6) 
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Using default values, equation (3.2) yields Table 6 for a two lane, one way bicycle path. 

The definition of LOS F is the condition of 100% of cyclists experiencing hindrance 

along a one kilometer long path.  

Table 6: Service Volumes and Frequency Of Events for One-Way, Two Lane 

Bicycle Paths Using Default Values (Botma 1995) 

LOS 
% with hindrance 

over 1 km 

One-Way 

Service Volume 

bicycles/h 

Frequency 

passings 

events/s 

A 0-10 130 < 1/150 

B 10-20 260 < 1/75 

C 20-40 520 < 1/35 

D 40-70 910 < 1/20 

E 70-100 1300 < 1/15 

F 100 >1300 > 1/15 

 

The frequency of passings in Table 6  can be described as one passing per 150 seconds. 

For example, an LOS A is when a cyclist only passes another cyclist every 2.5 minutes.  

3.1.2 HCM 2000, On-Street Bicycle Lanes 

The HCM 2000, Chapter 19 includes methods for evaluating different types of bicycle 

LOS, including a capacity LOS for on-street paths (TRB 2000). Chapter 19 and its 

methods were not included in the HCM 2010 due to a lack of research and testing.  

However, since it is the only on-street BLOS capacity method, it will be analyzed.  

The main criteria for this method include either a bike lane or a paved shoulder that is 

not normally used as a motor vehicle lane. The method makes an assumption that, if a 
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bicycle lane is narrow and motor vehicle traffic is relatively low, a cyclist could use the 

adjacent motor vehicle lane for passing. For an on-street path it is assumed that all 

bicycle traffic is traveling in the same direction.  BLOS is based on the number of 

events. It is the same calculation as Botma off-street bicycle path in Equation (3.1) but 

with different recommended values and different thresholds for BLOS, given in Table 

7. 

The calculation is based on metric measurements.  It is recommended to collect real 

bicycle traffic speeds. The default for bicycle speed is 18 km/h (11.2 mph).  The default 

standard deviation for speed is 1.5 km/h (0.93 mph) for commuters, 3 km/h (1.9 mph) 

for mixed user types, and 4.5 km/h (2.8 mph) for recreational users.  

Table 7: HCM 2000 Bike Lane BLOS Thresholds (TRB 2000) 

BLOS 
Frequency of 

events per hour 

A ≤ 40 

B > 40 - 60 

C > 60 -100 

D > 100 -150 

E > 150 -195 

F > 195 
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3.2 Off-Street Paths 

3.2.1 Botma LOS for Pedestrian- Bicycle Paths 

Botma’s method for determining BLOS on paths is innovative and relatively simple to 

calculate. There are four different interactions between pedestrians and bicycles that 

produce hindrance: 1) pedestrians from other pedestrians, 2) pedestrians from bicycles, 

3) bicycles from pedestrians, and 4) bicycles from bicycles. In addition, there are two 

different types of hindrances, meetings and passings. Meetings are when two users of 

the path pass each other face to face. Passings are when one user passes another user 

that is moving slower but in the same direction.   

The following applies to two lane, two way bicycle and pedestrian separated paths.  

 𝑄𝑝= one-way volume of pedestrians, bicycles⁄h 

𝑄𝑏= one-way volume of bicycles, bicycles⁄h 

𝑈𝑝= mean speed of pedestrians in km⁄h with the default of 4.5 km/h 

𝑈𝑏 = mean speed of bicycles in  km⁄h  with a default of 18 km/h 

Botma noticed, in general, a bicycle is four times faster than a pedestrian. In this model 

and using default values given above,  𝑈𝑏  is considered four times greater than  𝑈𝑝 ; a 

bicycle is on average four times faster than the average pedestrian and the bicycle will 

pass three times the pedestrians. Therefore,  

𝐹𝑝𝑎𝑠𝑠𝑏−𝑝 = 𝑄𝑝 (
𝑈𝑏

𝑈𝑝
− 1) = 𝑄𝑝 (

18

4.5
− 1) = 3𝑄𝑝 (3.3) 
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And a pedestrian will pass a bicyclist, 

𝐹𝑝𝑎𝑠𝑠𝑝−𝑏 = 𝑄𝑏 (1 −
𝑈𝑝

𝑈𝑏
) = 𝑄𝑏 (1 −

4.5

18
) = .75𝑄𝑏 (3.4) 

As explained in Equation (3.1) and (3.2), the frequency of a bicycle passing another 

bicycle is   

𝐹𝑝𝑎𝑠𝑠𝑏−𝑏 = 0.188𝑄 

To calculate the number of meetings between mode users 𝑄1 is the flow in the primary 

direction, with a mean speed 𝑈1 in the primary direction 1.  𝑄1 meets mode users , 𝑄2 

with a mean speed 𝑈2 within a segment length of 𝑋, within time 𝑇 is given with the 

equation 

𝑁𝑚𝑒𝑒𝑡 = 𝑋𝑇𝑄1𝑄2(
1

𝑈1
+

1

𝑈2
) (3.5) 

. Pedestrians meeting a bicycle equals 

𝐹𝑚𝑒𝑒𝑡𝑝−𝑏 = 𝑄𝑏 (1 +
𝑈𝑝

𝑈𝑏
) = 𝑄𝑏 (1 +

4.5

18
) = 1.25𝑄𝑏  (3.6) 

𝐹𝑚𝑒𝑒𝑡𝑏−𝑝 = 𝑄𝑝 (1 +
𝑈𝑏

𝑈𝑝
) =  𝑄𝑝 (1 +

18

4.5
) = 5𝑄𝑝 (3.7) 

It follows that bicycles meeting bicycles equals 

𝐹𝑚𝑒𝑒𝑡𝑏−𝑏 = 2𝑄𝑏 (3.8) 

Note that meetings receive half the weight of passings because it takes less time to meet 

than to pass. Combining the previous equations for passings and meetings, a total 

frequency of passings and meetings simplifies to 
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𝐹𝑡𝑜𝑡𝑎𝑙𝑝 = 1.375𝑄𝑏  (3.9) 

𝐹𝑡𝑜𝑡𝑎𝑙𝑏 = 5.5𝑄𝑝 + 1.188𝑄𝑏  (3.10) 

𝐹𝑡𝑜𝑡𝑎𝑙𝑢𝑠𝑒𝑟𝑠 = {6.875𝑄𝑝𝑄𝑏 + 1.188𝑄𝑏
2}/(𝑄𝑝 + 𝑄𝑏)  (3.11) 

Table 8: BLOS for Users of a Two-Way, Two Lane Path (Botma 1995) 

BLOS 
Frequency                         

events/s 

A < 1/95 

B 1/95-1/60 

C 1/60-1/35 

D 1/35-1/25 

E 1/25-1/20 

F > 1/20 

  

3.2.2 HCM 2000 Shared Off-Street Paths 

The HCM 2000 method is based on the Botma method for LOS for pedestrian-bicycle 

paths. This method is also based on Botma’s hindrance.  

Unlike the Botma method that assumes a 50:50 direction split; this method allows the 

proportioning of directional split.  

𝐹𝑝 = 3𝑣𝑝𝑠 + 0.188𝑣𝑏𝑠 (3.12) 

𝐹𝑚 = 5𝑣𝑝𝑜 + 2𝑣𝑏𝑜 (3.13) 

𝐹 = 0.5𝐹𝑚 + 𝐹𝑝 (3.14) 

Where 

𝐹𝑝 = number of passing events (events⁄ h) 

𝐹𝑚= number of opposing events (events ⁄h) 
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𝐹 = total number of events (events⁄ h) 

𝑣𝑝𝑠= flow rate of pedestrians in subject direction (peds⁄ h) 

𝑣𝑏𝑠 = flow rate of bicycle in subject direction (bicycles⁄ h) 

𝑣𝑝𝑜 = flow rate of pedestrians in opposing direction (peds⁄ h) 

𝑣𝑏𝑜 = flow rate of bicycle in the opposing direction (bicycles⁄ h) 

If assuming that users directional split is 50:50 then the following equation can be used. 

𝐹 =  𝑣𝑝(2.5 + 0.5𝑝) + 𝑣𝑏(1 − 0.812𝑝) (3.15) 

Where  

𝑣𝑝= total pedestrian traffic (peds⁄ h) 

𝑣𝑏= total bicycle traffic (bicycles⁄ h) 

Table 9: BLOS for HCM 2000 Shared Off-Street Paths (TRB 2000) 

BLOS 
Frequency of 

events 

A ≤ 40 

B > 40 - 60 

C > 60 -100 

D > 100 - 150 

E > 150 - 195 

F > 195 

 

3.2.3 FHWA Shared Use Path Analysis Tool 

In 2006, the FHWA sponsored a study and published a report titled Shared-Use Path 

Level of Service Calculator, A User’s Guide (Patten et al. 2006). The Toole Design 
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Group developed an easy-to-use analysis workbook for determining BLOS for shared 

paths. The following is an explanation of the method.  

SUPLOS = 5.446 – 0.00809(E) – 15.86(RW) – 0.287(CL) – (DPF)   (3.16) 

Where 

E = Events = Meetings per minute + 10 (active passes per minute) 

RW = Reciprocal of path width 

CL = 1 if trail has a centerline, 0 if trail has no centerline 

DPF = Delayed pass factor 

Table 10: BLOS for FHWA Shared Use Path Analysis Tool (Patten et al. 2006) 

BLOS 
Frequency of 

events 

A X ≥4.0 

B 3.5≤ X<4.0 

C 3.0≤ X<3.5 

D 2.5≤ X<3.0 

E 2.0≤ X<2.5 

F X<2.0 

 

The variables needed include the path width, presence of center line, volume for all 

users and the mode split between bicycles, pedestrians, runners, inline skaters, and child 

bicyclists. The worksheet calculates a cumulative distribution function for meetings and 

passing of each mode. This model assumes a 50:50 directional mode share user split for 

all users. Screenshots of the worksheets are shown in Figure 1and Figure 2. 
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Figure 1: Screenshot of Shared Use Path Flow Analysis Tool, FHWA 

 

Figure 2: Screenshot of Shared Use Path Flow Analysis Tool. Inputs, FHWA 

 

3.2.4 HCM 2010 Method for BLOS for Off -Street Paths  

The most intensive method for determining Capacity BLOS is the HCM method for off-

street paths. This method is also based on the framework developed by Botma. It is 

more flexible for calculating different width paths and different volumes. The HCM 

2010 BLOS for off-street paths calculates the probability of passings and meetings 

using a cumulative distribution method.  The process of calculating the HCM BLOS for 

off-street paths is described hereafter.  

The data needed for this method includes hourly volumes by direction per user 

(bicyclists, pedestrians, runners, in-line skaters, child bicyclists, or other). Depending on 
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the purposes of analysis, hourly, ADT, or peak volumes can be used.  Other data that is 

needed include average speed for each mode and proportion of path users represented 

by each mode. Path width and presence of center line are also required for evaluation. 

Average speeds should be collected for each mode on each segment being evaluated, 

however in the absence of such data, default values for average speed and standard 

deviation are given for bicycles and pedestrians; 12.8 mph (20.1 km/h) with a standard 

deviation of 3.4 mph (5.5 km/h) and 3.4 mph (5.5 km/h) with a standard deviation of 

0.6 mph (1km/h) respectively. 

1) Calculate directional flow rate.  

Once data is collected the directional flow rate, qi, is calculated for each 𝑖 mode.   

𝑞𝑖 =
𝑄𝑇∗𝑝𝑖

𝑃𝐻𝐹
 (3.17)    

Where 

 𝑄𝑇= total hourly directional path demand ( all modes by direction ⁄hr) 

𝑝𝑖 = percent path mode split for each mode i 

𝑃𝐻𝐹 = Peak hour factor = average volume per hour/ (4∗volume during peak 15 minute 

period) 

2) Calculate active passings per minute 

Active passings refer to the events in which a bicycle passes another mode user moving 

in the same direction. For example, when a bicycle passes another bicycle or pedestrian 

going in the same direction but is moving at a slower speed.  
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Figure 3: Schematic of Passings 

 

Calculating passings for shared use paths requires the calculation of a cumulative 

probability of normal distribution.  The probability of being passed is expressed by the 

following equation. 

𝑃(𝑣𝑖) = 𝑃 [𝑣𝑖 < 𝑈 (1 −
𝑥

𝐿
)] (3.18) 

Where 

U = speed of the average bicyclist (mph) 

vi = speed of the other path user mode i (mph)  

L= length of the segment (mi) 

x = distance from average bicyclist to user (mph) 
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Because vi is normally distributed it can be estimated for each segment using the 

following equation. 

𝑃(𝑣𝑖) = 0.5[𝐹(𝑥 − 𝑑𝑥) + 𝐹(𝑥)] (3.19) 

Where 

𝑃(𝑣𝑖) = estimated average probabilities at the start and end of each slice 

Dividing the length of the segment into dx pieces, the average probability of a passing in 

each segment can be estimated as the average of the probabilities at the beginning and 

end of each piece, dx.  0.01 miles is used for the value of dx.  

The next step in calculating the probability of passings is by multiplying P(vi) for each 

slice of the segment by the density of users of mode i and summing all of the segments. 

This is done by using the following equation. 

𝐴𝑖  = ∑ 𝑃(𝑣𝑖) ∗  
𝑞𝑖

𝜇𝑖

𝑛
𝑗=1 ∗  

1

𝑡
𝑑𝑥𝑗  (3.20) 

Where 

Ai = expected passings per minute by mode i by average bicyclist 

qi =directional hourly flow rate of mode i ((modal users)⁄h) 

µi =average speed of mode i (mph) 

t = path segment travel time for average bicyclist (min)  

dxi = length of discrete segment j  (mi) 



 

36 

 

This calculation must be repeated for each mode on the path; bicyclists, pedestrians, 

runners, in-line skaters, and child bicyclists. The final step for determining passings is 

to sum all the expected number of passings per minute for each mode, 𝐴𝑖.  

𝐴𝑇 =  ∑ 𝐴𝑖𝑖  (3.21) 

Where 𝐴𝑇 is the expected active passings for the average bicyclist during the peak 15 

minute period.  

3) Calculate meetings per minute 

Meetings are the numbers of times that a bicycle passes users of the path that are 

traveling in the opposite direction.  At the moment the bicyclist enters the off-street 

bicycle segment, a set number of users moving in the opposite direction will be on the 

segment and the bicyclist will pass all of these users. This is represented by the 

following equation. 

𝑀1 =
𝑈

60
∑

𝑞𝑖

𝜇𝑖
𝑖   (3.22) 

Where 𝑀1 are the meetings per minute of users already on the path segment and U is 

the speed of the average bicyclist. A second equation is calculated in order to account 

for the probability of users who have yet to enter the segment during the time that it 

takes the bicyclist to ride the length of the segment.  This is determined by the 

following equation. 
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𝑃(𝑣0𝑖) = 𝑃 (𝑣𝑖 > 𝑋
𝑈

𝐿
)  (3.23) 

Where 

𝑃(𝑣0𝑖) = probability of meeting opposing user of mode i 

X = the distance of user beyond end of path segment 

All other variables were previously defined.  

 
Figure 4: Schematic of Meetings 

Because 𝑃(𝑣0𝑖) is normally distributed, a version of equation (3.19) can be used to 

estimate the additional meetings.  

𝑃(𝑣0𝑖) = 0.5[𝐹(𝑥 − 𝑑𝑥) + 𝐹(𝑥)] 

Where 𝑥∗ is the length of the path outside of the segment in which users travel before 

entering the segment area. This is based on the time it takes the average bicycle to 

complete riding on segment, L.  For meeting bicycles 𝑥∗ would equal L because they 

would be going the same speed in the same time. For meeting pedestrians, 𝑥∗ is equal to 

the length that the average pedestrian can cover at speed 𝑣0 in the same time that it 
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takes the average bicycle to complete riding on segment L.  Again the appropriate 

length of dx is equal to 0.01 miles.  

Once 𝑃(𝑣0𝑖) is calculated for each slice of segment𝑥∗, then each slice is multiplied by f,  

the density of users of mode 𝑖 and summing all of the segments using the following 

equation. 

𝑀2𝑖  = ∑ 𝑃(𝑣0𝑖) ∗  
𝑞𝑖

𝜇𝑖

𝑛
𝑗=1 ∗  

1

𝑡
𝑑𝑥𝑗  (3.24) 

Where 𝑀2𝑖 is the expected meetings per minute of user of mode  𝑖  that enters the 

segment while the average bicyclist enters the segment. The total number of meeting 

per each mode is calculated by the following equation. 

𝑀𝑇 = (𝑀1 + ∑ 𝑀2𝑖𝑖 ) (3.25) 

4) The probability of delayed passings 

The next variable that is necessary for calculating off-street paths is the probability of 

delayed passings.  This is the delay in minutes from the occurrence of two users that are 

meeting while the bicyclist wants complete a passing. The bicyclist must delay or slow 

its passing maneuver.  

 
Figure 5: Delay from Cyclist Passing a Meeting of Two Path Users 
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The calculation of the probability of delayed passings is dependent on the width of the 

path. The probability of passing section being blocked by mode 𝑖 is give by the 

following equation. 

𝑃𝑛𝑖 = 1 − 𝑒−𝑝𝑖𝑘𝑖 (3.26) 

Where  

𝑃𝑛𝑖 = probability of passing sections being blocked by mode i 

𝑃𝑖= distance required to pass mode i 

𝑘𝑖 = density of user mode i ( users per mile) 

The width of the path determines the number of lanes in the path regardless of 

markings.  The following table shows the effective number of operational lanes based 

on path width.  

Table 11: Number of Operational Path Lanes Based on Path Width (TRB 2010) 

Path width , ft. Lanes 

8.0 - 10.5 2 

11.0 - 14.5 3 

15.0 - 20.0 4 

 

For two-lane paths there are two scenarios for a bicyclist (subject); both lanes taken by 

a user mode (opposing), blocking the bicyclist, and only one lane used by a user mode, 

not blocking bicyclist.  

The probability of delayed passings in the subject direction, Pds and the opposing 

direction 𝑃𝑑𝑜 are calculated using the following equations. 
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𝑃𝑑𝑠 = 𝑃𝑛𝑜𝑃𝑛𝑠 + 𝑃𝑛𝑜(1 − 𝑃𝑛𝑠)(1 − 𝑃𝑑𝑜) (3.27) 

𝑃𝑑𝑜 = 𝑃𝑛𝑜𝑃𝑛𝑠 + 𝑃𝑛𝑠(1 − 𝑃𝑛𝑜)(1 − 𝑃𝑑𝑠) (3.28) 

Where  

𝑃𝑑𝑠 = probability of delayed passing in subject direction 

𝑃𝑑𝑜 = probability of delayed passing in opposing direction 

𝑃𝑛𝑜 = probability of blocked lane in opposing direction 

𝑃𝑑𝑠 = probability of blocked lane in subject direction 

Combining equations 3.27 and 3.28,  

𝑃𝑑𝑠 =
𝑃𝑛𝑜𝑃𝑛𝑠+𝑃𝑛𝑜(1−𝑃𝑛𝑠)2

1−𝑃𝑛𝑜𝑃𝑛𝑠(1−𝑃𝑛𝑜)(1−𝑃𝑛𝑠)
  (3.29) 

Equations 3.26 and 3.29 are then used to solve for𝑃𝑑𝑠. This must be calculated for all 

modal pairs. Since we are only considering bicyclists and pedestrians, only two sets of 

calculations need to be made.  

Next, the total probability of delayed passings, 𝑃𝑇𝑑𝑠, must be calculated from all mode 

pairs. As described above, there are only two solutions for𝑃𝑑𝑠; the bicycle/bicycle 

passings and the pedestrian/bicycle passings. 

The total probability of delayed passings is calculated by 

𝑃𝑇𝑑𝑠 = 1 − ∏ (1 − 𝑃𝑚𝑑𝑠)𝑚  (3.30) 

The last calculation is the total delayed passings per minute.  

Delayed passings per minute =  𝐴𝑇 ∗ 𝑃𝑇𝑑𝑠 ∗ 𝑃𝐻𝐹  (3.31) 
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Once the values for total meetings per minute, the active passings per minute, and the 

delayed passings per minute in the same direction of travel have been calculated, the 

HCM BLOS worksheet for Pathways, BLOS for off street paths can now be 

determined.  

For this study, a workbook was developed to calculate the total meetings per minute, 

active passings per minute, and the delayed passings per minute. These values were 

entered into the HCM BLOS worksheet for off-street paths.  

3.3 Signalized intersections 

3.3.1 HCM 2000 Signalized Intersections 

One method for determining BLOS at intersections was found that incorporates bicycle 

volumes is found in the HCM 2000. This method was removed in the HCM 2010 

because of minimal testing of the methodology and insufficient evidence for default 

values.  

This method uses the measurement of control delay, in seconds per bicycle, to 

determine the BLOS score.  First, the capacity of the bicycle lane is estimated. It is 

recommended that at saturation flow rate of 2000 bicycles/hour be used. 

𝑐𝑏 = 𝑠𝑏
𝑔

𝐶
= 2000

𝑔

𝐶
  (3.32) 

Where  
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𝑐𝑏 = bicycle lane capacity, bicycles⁄h 

𝑠𝑏= saturation flow rate, bicycles⁄ h = 2000 

𝑔 = effective green time for the bicycle lane, s 

𝐶 = Signal Cycle Length (s) 

The bicycle lane capacity is used to solve the equation for control delay, 

𝑑𝑏 =
0.5𝐶(1−

𝑔

𝐶
)

2

1−[
𝑔

𝐶
𝑚𝑖𝑛(

𝑣𝑏
𝑐𝑏

,1.0)]
  (3.33) 

Where  

𝑑𝑏= control delay for bicycles, s⁄ bicycle 

𝑐𝑏=bicycle volume for one direction bicycle lane, bicycle⁄ h 

4.0 SITE DESCRIPTION 

The site chosen for the application of the BLOS methods with bicycle volumes is the 

Hawthorne Bridge Corridor. The following is a description of the study area and its 

location in the city.  

Portland, Oregon is located on the Willamette River. The downtown central business 

district, southwest and northwest neighborhoods are located on the west bank of the 

river. The southeast, northeast, and north neighborhoods are on the east side of the river. 

See Figure 6.  Beyond the downtown district, along the west side of the river, west side 
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neighborhoods have steep topography and curvilinear roads. Bicycle and pedestrian 

connectivity between neighborhoods is generally poor. For bicyclists, steep topography, 

narrow winding roads and fast-moving traffic make these west side neighborhoods less 

enticing for traveling or commuting by bicycle. 

 

Figure 6: Area Map of Portland Oregon  

Source: Google Maps 

 

In contrast, the east side of the Willamette River is less steep. Most neighborhoods have 

grid plan street layouts. Bicycle boulevards are located on lower volume roads, parallel 

to major arterials, and bicycle facilities have relatively good connectivity. Because of 

these attributes, the east side neighborhoods are more attractive for bicycling.  Some 

east side neighborhoods, close to downtown, have a bicycle mode share of 10% to 13% 

(Geller 2013). 

The Portland Downtown commercial business district is located on the west bank of the 

Willamette River. Travel between the east and west sides require access by a bridge. 

Portland has 11 bridges that cross the Willamette River. These bridges act as traffic 
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bottlenecks between the east and west sides of the city. Three bridges are closed to 

bicycle traffic; two are freeway bridges and the third is an exclusive freight bridge. The 

remaining eight bridges have some bicycle and pedestrian facilities but vary in 

convenience, quality and comfort.  Eight of the bridges that are connected to downtown 

Portland are shown in Figure 7. The 2012 estimated bicycle Annual Average Daily 

Traffic (AADT) is given for each bridge.  The Hawthorne Bridge has the highest 

bicycle AADT, estimated at 8,000 (PBOT 2012). 
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Figure 7: 2012 Estimated Portland Bridge Bicycle AADT (PBOT 2012)  

Map Source: maps.stamen.com 

 

The study area, which will be referred to as the Hawthorne Bridge Corridor, is 

illustrated in Figure 8. The Hawthorne Bridge Corridor was chosen because it has 

several advantages over other locations. First, this location has the highest bicycle 

traffic volume in Portland. The goal of this study is to explore if current bicycle traffic 

volumes are great enough to warrant the development of an LOS for bicycle traffic 
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flow, therefore choosing a site with the largest known bicycle volumes is appropriate. 

Second, this segment contains many different types and configurations of bicycle 

amenities with minimal changes in traffic volumes. Within the chosen study area there 

was limited access to the segment. The segment is located on a raised viaduct with only 

four access points where bicycle traffic could increase or decrease. This will be 

discussed in more detail later in this section. The importance of having limited access 

points was so that BLOS methods could be tested with the same estimated traffic 

volumes. Third, this location has the most multi-modal data available in Portland. 

Fourth, The Hawthorne Bridge is a good example of a typical bottleneck traffic 

constraint in many large cities. Many major cities are built on or along rivers and 

require the use of bridges to access key areas of the city.  



 

 

4
7
 

 

Figure 8: Hawthorne Bridge Corridor Study Area 
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4.1 The Hawthorne Bridge Corridor Study Area 

The Hawthorne Bridge was built in 1910 and is the oldest vertical lift bridge in the US 

that is still functioning.4 The bridge is owned and maintained by Multnomah County. It 

was renovated in 1999. During the renovation, sidewalks were widened from six to ten 

feet to accommodate increasing bicycle and pedestrian traffic.  In a joint effort between 

a local bicycle advocacy group, Cycle Oregon, and the City of Portland, the bridge 

received a permanent bicycle data collection system in 2011. The permanent data 

collection equipment consists of pneumatic tubes placed on the bridge on each side of 

the bridge. Additionally, a public bicycle count display, known as The Totem, is located 

on the west side of the bridge counts in real time. 

Viaducts lead traffic onto and off of the Hawthorne Bridge. They begin and end at 

signalized intersections. The distance between them is approximately three quarters of a 

mile. On the east side, access to the bridge is reached by a viaduct that begins at a major 

east side arterial couplet; northbound 99W, or SE Grand Avenue, illustrated in Figure 8 

and circled on the east, or right side of the map. This viaduct is split into two structures; 

westbound and eastbound. The westbound viaduct begins at the intersection of SE 

Grand Avenue and Madison Street, and will be referred to as the Westbound Madison 

                                                 

4 http://web.multco.us/bridges/hawthorne-bridge 
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Viaduct. The Eastbound viaduct ends at SE Grand and Hawthorne Boulevard, and will 

be referred to as the Eastbound Hawthorne Viaduct. The Westbound Madison Viaduct 

will be considered the beginning location of the study area.  

The West side of the bridge includes a short viaduct that splits to two one way ramps 

illustrated in Figure 8. The westbound ramp terminates at the intersection of First 

Avenue and Main Street.  This is where the westbound study area ends, illustrated by 

the two circles on the west side, or left side of the map. The westbound viaduct also 

includes a left turn ramp onto SW First Avenue, a one-way southbound street.   

The Eastbound ramp begins at SW first and Madison. A second east bound ramp is 

located on Naito Parkway. Note that the eastbound bicycle traffic must cross the ramp 

from Naito Parkway. Bicycle traffic from Waterfront Park accesses the Hawthorne 

Bridge via the Naito Parkway ramp on the sidewalk. There are two main paths that are 

taken by bicycle traffic.  

4.2 Segment Descriptions 

The area of study was broken into 14 different elements; on-road bike lanes (designated 

by solid blue lines), off-road shared paths (designated by dashed purple lines), and 

signalized intersections (designated by orange circles) illustrated in Figure 9. The on-

road and off-road egments are divided into lengths of consistent bicycle facilities.  For 

example, if a value of a variable used in calculating BLOS changes, such as a bike lane 
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width, then a new sub-segment begins. Each element is labels with number, circled in 

red.   

 

Figure 9: Hawthorne Bridge Study Corridor with Element Numbers 

The area of study begins and ends at the controlled intersections on the east side, 

following the direction of travel. Table 12, Table 13, and Table 14 describe each set of 

elements; on-street, off-street, and signalized intersections respectively.  

Table 12 provides a photo of each on-street bike lane segment, the number designated 

in Figure 9 , the name, the length, width of the lane, and the unique features in the 

segment.  Table 13 also gives the same variables for off-street path segments as Table 

12 gave for on-street segments. Table 14  provides a photo of the intersections, the 

designated number given in Figure 9, the bicycle green time, the cycle length and the 

important features of the intersections. 
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Table 12: On-Street Segments 

On-Street Segment Name 

Length, 

feet 

(mile) 

Width, 

feet 
Features 

 

 
 

 

Westbound 

Madison Viaduct 

Bike Lane 

423 

(0.08) 
9 

2 painted bike 

lanes 

 

 
 

        

Westbound 

Madison Viaduct 

Bike Lane 

838 

(0.16) 
9 

1 bike lane 

 

3 foot painted 

buffer 

 

 
 

 

Main Street Bike 

Lane 

559 

(0.11) 
4 

1 painted bike 

lane 

 

 
 

 

Bicycle Lane on 

SW Madison 

Avenue 

420 

(0.08) 
5 

1 painted bike 

lane 

2 

3 

6 

9 
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On-Street Segment Name 

Length, 

feet 

(mile) 

Width, 

feet 
Features 

 

 
 

 

 

Eastbound 

Hawthorne 

Viaduct 

552 

(0.10) 
6 

Bus pull-out 

crosses bike 

lane 

 

 
 

 

 

Eastbound 

Hawthorne 

Viaduct 

458 

(0.08) 
12 

2 bike lanes 

 

Bollards 

 

 
 

 

 

Eastbound 

Hawthorne 

Viaduct 

378 

(0.07) 
12 

1 bike lane 

 

5 foot painted 

buffer 

 

  

 12 

 13 

 11 
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Table 13: Off-Street, Shared Path Segments 

Off-Street Segment Name 

Length, 

feet 

(mile) 

Width, 

feet 
Features 

 
  

 

 

Madison 

Viaduct 

Off-Street Path 

693 

(0.13) 
9 

 

Painted 

centerline 

 

4 foot bike 

lane 

 

5 foot 

pedestrian 

lane 

 

Bus Stop 

 

Shared Path 

Ramp 

intersects  

 

 

  
 

 

 

Hawthorne 

Bridge,  

North Sidewalk 

1439 

(0.27) 
10 

No centerline 

 

Shared path 

 

 
 

 

 

Hawthorne 

Bridge,  

South Sidewalk 

1943 

(0.37) 
10 

No centerline 

 

Shared path 

 

Shared path 

ramp 

intersects 

 

3 

5 

 10 
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Table 14: Signalized Intersections 

Intersection Name 
Green 

Time 

Cycle 

Length 
Features 

        

 
 

 

 

SE Madison  

and  

Grand Avenue 

23 70 

 

5 foot 

bicycle 

Lane 

 

Bike box 

 

Right turn 

pocket 

 

Bus stop 

 

 

 

 
  

        

 

SW Main  

and  

First Avenue 

26 60 

 

4 foot 

bicycle lane 

 

Left 

merging 

busses   

 

Left turn 

ramp 

  

 

 
 

 

 

SW Madison 

Street and  

First Avenue 

26 60 

5 foot bike 

lane 

 

Left turn 

pocket 

 

Bus stop 

 

1 

7 

8 
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Intersection Name 
Green 

Time 

Cycle 

Length 
Features 

 

 
 

 

 

 

SE Hawthorne 

Boulevard  

and  

Grand Avenue 

23 70 

7 foot 

bicycle line 

 

6 foot 

painted 

buffer 

 

 

  

 14 
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5.0 DATA COLLECTION 

Data along the Hawthorne Bridge Corridor were collected from the Portland Bureau of 

Transportation (PBOT). In addition, geometric data and directional mode share of 

bicycles and pedestrians were manually collected to fill gaps in the data.  

5.1 Hawthorne Bridge Data 

 

Figure 10: Collected Data from the Hawthorne Bridge 

 

5.1.1 Portland Bureau of Transportation Manual Counts 

Yearly manual bicycle and pedestrian counts collected by the PBOT were used for this 

study. The manual counts are collected annually by trained volunteers, usually during 

the second and third weeks of September as part of the National Bicycle and Pedestrian 

Documentation Project. Typically, bicycle and pedestrian counts are collected in 15 
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minute increments for two hours, during traditional peak traffic hours of 7AM to 9 AM 

and 5PM to 7 PM.  Data is also collected on the weekends between the hours of 9AM 

and 11AM.  

The counts used in this study were collected on the south and north sidewalks of the 

Hawthorne Bridge at the location illustrated in Figure 10. The north sidewalk bicycle 

traffic is predominantly westbound, to downtown Portland. Peak traffic for all modes on 

the north side of the bridge is during the morning peak. The South Sidewalk traffic is 

predominantly eastbound and the peak traffic is during the evening peak.  The counts 

include bicycle and pedestrians volumes by gender. The directional split is unknown.  

Table 15 is a summary of the counts that were used in this study.  

Table 15: PBOT Manual Counts 

Date Location 
Start 

Time 

End 

Time 
Bikes Peds Total 

Tuesday, 

September 10, 

2013 

South 

Sidewalk 
5 PM 7 PM 1522 205 1727 

Wednesday, 

September 11, 

2013 

North 

Sidewalk 
5PM 7PM 243 271 514 

Saturday, 

September 14, 

2013 

South 

Sidewalk 
9 AM 11AM 243 271 514 

 

Note that the volumes in Table 15 are two hour counts. The Tuesday, September 10 

count was during the peak hour. The mode split was 88% bicycles and 12% pedestrians.  

For the Wednesday, September 11 the count was also collected during the PM peak 
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period.  However, it is not the peak period for the north side of the bridge, which carries 

commuter traffic during the AM peak. The mode split during this time was 47% 

bicycles and 53% pedestrians. The Saturday, September 14 mode split was 43% 

bicycles and 57% pedestrians. 

5.1.2 Hawthorne Bridge Continuous Bicycle Counts 

Portland Bureau of Transportation, in conjunction with Multnomah County and Cycle 

Oregon, installed an Eco-Counter ™ automated continuous bicycle counter display on 

the deck of the Hawthorne Bridge (PBOT 2013). One set of tubes was installed on the 

south sidewalk and another on the north sidewalk. Pneumatic tubes count bicyclists and 

can detect the direction of travel.  The bicycle counts are recorded in 15-minute 

increments. A public bicycle count display, the Totem, is located on the west side of the 

Hawthorne Bridge, illustrated in Figure 10. The Totem displays bicycle counts in real 

time from both sets of tubes on the bridge and also displays the yearly accumulated 

bicycle volumes, shown in Figure 11. Figure 12 is a screenshot of the Eco Counter 

website, displaying the data in an hourly format.   Data can be downloaded  in yearly, 

daily, hourly, and 15 minute increments . Spreadsheets can also be easily be 

downloaded from the website in Microsoft Excel format.   
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Figure 11: Vicinity map of Hawthorne Bridge from Eco Counter Website and 

Hawthorne Totem Counter Source: EcoVisio 

 

 

Figure 12: Screenshot of the Eco Counter Website Displaying Available data 

Format Source:EcoVisio 

 



 

60 

 

Hourly and daily counts from 2013 and 2014 were downloaded.   The combined 

directional 2013 bicycle AADT was 4,670 and the highest weekday volume was 8,452. 

The highest weekend volume was 9,834 bicyclists.  

A typical summer day (June 2013 – September 2013) had an average bicycle AADT of 

5780 and an hourly average of 240 bicycles per hour. A typical 8AM Peak hour on the 

north sidewalk was 716 and with a high of 969. The average 5 PM peak count of 765 

with a high of 1,010. The greatest one hour summer count was 1697 bikes per hour in 

June 2013.  

A typical 2013/2014 winter day (December 2013- February 2014) had an average 

bicycle AADT of 3,032 and an hourly average of 126 bikes per hour. A typical 8AM 

peak hour count on the north side of the bridge was 490 bicycles per hour and the 5PM 

peak on the south sidewalk was 451. Weekend 1PM counts averaged 126 bicycles per 

hour, combining north and south sidewalks.  

Average summer and winter hourly volumes are illustrated in Figure 13. The 

Hawthorne Bridge has typical commute bicycle volumes; a peak in volumes between 

7AM and 9AM and between 5PM and 7PM. The month with the greatest bicycle 

volumes was in August. The weekday peak hour on the north side of the Hawthorne 

Bridge in August was  976 on Tuesday, August 13 at 8AM. The highest hourly count on 

the south sidewalk was 950 bicycle on Wednesday, August 7 at 5PM.  
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Figure 13: Average 2014 Winter and Summer Hourly Bicycle Volumes 

  

All hourly bicycle counts for 2013 were plotted in numerical rank order in Figure 14. 

The 90th percentile for all hourly bike counts is 212 bikes. The plot illustrates that for 

90 percent of the hours in a year, the hourly bicycle volumes are less than 212. 
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Figure 14: 2013 Hawthorne Bridge North Sidewalk Hourly Bicycle Volumes 

 

Figure 15 and Figure 16 show typical current peak hour traffic on the Hawthorne 

Bridge. The photo in Figure 15 was taken on Segment 2 in April 2014 during the 

morning peak period between 7:30 AM and 8 AM. Bicycles must maneuver around 

each other because of the varying speeds and abilities of the cyclists. The photo in 

Figure 16 was taken on the same day during the PM peak period at Segment 10 during 

the 5 PM hour and illustrates the bicycle and pedestrian congestion that can be 

experienced on the bridge. Also note the confined conditions between the bridge railing 

and the motor vehicle lane; there is no room for bicycle error.  
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Figure 15: AM Peak Period Bicycle Traffic on Segment 2 

 

 

Figure 16: PM Peak Period Bicycle Traffic on Segment 10 
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5.1.3 Portland Maps and Online Data Collection 

Other data sources were explored online. Motor vehicle, bicycle, and pedestrian counts 

within the study area corridor counts were found on PortlandMaps.com. This website, 

maintained by the City of Portland, archives short term traffic counts and is available to 

the public. Intersection counts, pedestrian counts, peak hour motor vehicle traffic, and 

AADT were collected and compared with collected data.   

5.2 Manually Collected Data 

Additional data was collected to supplement the available data. Data collections 

included three manual counts of directional pedestrian data and bicycle route 

information. Geometric information was collected on-site along the corridor. In 

addition, an intercept study was conducted, explained in Chapter 7.  
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Figure 17: Manual Data Collection 

 

5.2.1 Geometric Data Collection 

The City of Portland has made many bicycle and pedestrian facility changes within the 

Hawthorne Bridge Corridor in recent years. In order to get the most up-to-date road 

dimensions, geometric data was collected on-site. Bicycle lanes, vehicle lanes, and 

sidewalk widths were measured manually. Segment lengths, posted speeds, signal cycle 

lengths and effective green time for bicycles were also collected. 

5.2.2 Data Collection for directional and route mode share 

While analyzing the different BLOS methods, it became clear that some directional data 

would be useful for analysis. Accurate bicycle traffic volumes and directional data were 

available from continuous counters on the Bridge. However, pedestrian data was 

lacking. Few pedestrian counts were available; only PBOT manual counts and some 
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short term intersection counts. Most important, there were no pedestrian directional 

counts.  

In order to get a sense of the directional traffic patterns on the Hawthorne Bridge, three 

one-hour manual counts were conducted at different locations, shown in Figure 17. 

Count locations were chosen based on view and ease of counting. Directional counts of 

pedestrians and bicyclists were collected.  

The first count took place on the east end of the south side of the Hawthorne Bridge on   

Wednesday, April 9 at 4PM to 5PM.    The second count took place on Friday April 11 

between 12PM and 1PM on the west end of the north sidewalk on the bridge. The third 

count took place Monday, April 14, 5PM to 6PM on the west end of the south sidewalk. 

A summary of the results are given in Table 16.  

Table 16: Manual Directional Counts of Bicyclists and Pedestrians 

Date and Location 

Bicycles 

%  in each direction 

 (bicyclists/h) 

Pedestrians 

% in each direction 

(Pedestrians/h) 

Total Users 

 EB WB EB WB  

Wednesday, April 9  

4-5 PM 

South Sidewalk 

 

100% 

(476) 

0% 

(0) 

63% 

(92) 

37% 

(54) 
622 

Friday, April 11 

12-1 PM 

North Sidewalk 

 

0% 

(0) 

100% 

(113) 

29% 

(90) 

71% 

(220) 
423 

Monday April 14 

5-6PM 

South Sidewalk 

100% 

(906) 

0% 

(0) 

80% 

(152) 

20% 

(38) 
1096 
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Table 16 shows the percent of bicycles per direction. The directional bicycle count 

volumes are in the parenthesis. Bicycle are encouraged to follow the same traffic 

patterns as motor vehicles; use the north side of the bridge for westbound traffic and the 

south side for eastbound traffic. During this data count, all bicyclists used the “correct” 

side of the bridge and had a 100:0 directional split. This agrees with the Eco-Counter 

data, which typically has daily directional bicycle splits of 99:1 to 97:3. 

Pedestrians have a different directional split pattern than bicyclists on the Hawthorne 

Bridge. Table 16 shows that the directional split for pedestrians is about 60 to 80 

percent in the dominant bicycle and motor vehicle direction.  

In summary, directional pedestrian volumes are not always 50:50. This is important 

when considering the accuracy of using shared path hindrance methods with assumed 

equal directional splits. However, it is difficult to make estimates about bicycle route 

splits from one-hour counts at each of the three locations. This data collection was only 

three hours; one hour at each location. Further study of directional counts, mode share, 

and routes taken would be useful for this analysis. 

5.3 Final Base Data Values 

A collection of base data values were needed for the analysis.  For bicycle and 

pedestrian volumes, the City of Portland manual counts were used. The time and date 

chosen was the PM Peak for Tuesday, September 10, 2013. It was the only one of the 

three manual counts that took place on the side of the bridge during its peak period. The 

reason the manual count was chosen  over other types of data to develop base peak 
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period values was because it included both actual bicycle and pedestrian counts at a 

peak hour. No other collected data at the time of method analysis had pedestrian data.  

A reasonable estimated peak hour was formulated from the two hour count. The four 

15-minute periods with the highest volumes were chosen from the Tuesday, September 

10 data. See Table 17for values. The volume during the 5:15 PM to 6:15 PM hour was 

the highest hourly volume during the peak period; 974 bicycles and 105 pedestrians. 

Since this is an estimation of typical bicycle and pedestrian volumes, the values were 

rounded to 975 bicycles and 100 pedestrians. 

Table 17: PBOT Peak Hour Manual Counts Used for Base Values  

Date Time Bicycles Pedestrians 

9/10/13 

5:15 PM 354 41 

5:30 PM 205 24 

5:45 PM 196 23 

6:00 PM 219 17 

Peak Hour 

Total 
 974 105 

    

The base value for bicycles was similar to the August data from the Totem Eco-Counter 

data, with peak hourly values of 976 and 950. It is also similar to the April 14, 2014 

manual count of 906 bicycles. 

The remaining base values include bicycle and pedestrian speeds and standard 

deviations for speed. These are the default values given in the HCM. There was no 

speed data available within the study area.. Some of the BLOS methods have other 
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additional variables that require base values. These will be discussed in each method 

analysis.  

Table 18: Base Variables 

Variable Bicycles Pedestrians 

Volumes 975 100 

Speed 12.8 mph (20.1 km/h) 3.4 (5.5 km/h) 

Standard Deviation 3.4mph  (5.5 km/h) 0.6 (0.9 km/h) 
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6.0 DATA ANALYSIS AND RESULTS 

A collection of BLOS methods that use bicycle volume as a variable were tested on 

bicycle facilities within the study area. A table of the methods, the source of the method 

and the facilities that the methods are applicable to are given in Table 19.  

Table 19: BLOS Methods Tested 

Facility Source Method 

On-street 

Segments 

Botma LOS for Bicycle Paths 

HCM 2000 On-Street Bicycle Lanes 

Off-street 

segments 

Botma 
LOS for Pedestrian-Bicycle 

Path 

HCM 2000 Shared Off-Street Paths 

FHWA Shared use path Analysis tool 

HCM 2010 Pathways 

Intersections HCM 2000 Signalized Intersections 

 

The following describes the analysis of each of the BLOS method as they were applied 

to the elements/segments in the Hawthorne Bridge the study area. For each method 

tested, there will be 1) a short description of the method, 2) a list of the 

segments/elements that the methods were applied to 3) a description of variables that 

were needed for the analysis 4) BLOS results as each method was applied to each of the 

elements/segments 5) a sensitivity plot and analysis including BLOS thresholds for each 

of the methods 6) A summary of results and gaps in the methods as it pertains to the 

elements. 
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6.1 On-Street Segments 

Two methods were evaluated for on-street segments; Botma’s LOS for Bicycle Paths 

and the HCM 2000 LOS for On-Street Bicycle Lanes. However, Botma’s method is 

carried out in two ways. First, the LOS for bicycle paths is carried out using the original 

default values. Second, the Botma method is calculated using the HCM default values 

for speed and standard deviation. The second method for on-street bicycle lanes in the 

HCM 2000 is essentially the same as the Botma method but with different default 

values and BLOS grading thresholds. The variables needed are given in Table 20.  

Table 20: Methods and Variables Used for On-Street Bicycle Lanes  

Inputs 
Off-Street  Bicycle Path 

One-way 

On-Street Bicycle Lane 

One-way 

 Botma 1995 HCM  2000 

Volume 

Mean Speed 

Speed SD 

    

Can use Default Uses Default 

Can use Default Uses Default 

Lane Width 
Width Requirements 

(4.9 to 6.6 feet) 

Width Requirements 

(4.9 to 6.6 feet) 

 

Figure 18 illustrates the on-street segments that the above methods were applied to. 

However, four of the seven on-street segments do not meet the lane width requirements. 

The segments that do not meet the requirements are designated with the shaded call 

boxes in Figure 18. 
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Figure 18: On-Street Bicycle Lanes and Locations 
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6.1.1 Botma LOS for One-Way Bicycle Paths 

The LOS method for one-way bicycle paths was not intended for on-street bike lanes 

(Botma 1995). However, the HCM 2000 recommends this method for on-street bicycle 

paths (TRB 2000).  This method was chosen because it determines BLOS using bicycle 

volumes to determine hindrance; the delay based on passing other cyclists.  This method 

was applied to seven on-street bicycle path segments in the study area, shown in Figure 

18. 

The default values for the mean speed and standard deviation are 18 km (11.2 mph) and 

3km (1.9 mph) respectively. The frequency equation is simplified using default values 

to  

𝐹 = 0.188𝑄 

where Q is the hourly volume of bicycles.  This equation is for a two lane, one-way 

bicycle path with path width requirements between 4.9 feet and 6.6 feet. Only segments 

3, 9, and 11 have widths that fall within the required range. There is no guidance for one 

lane bicycle paths. However, conclusions can be drawn for BLOS of a one lane bicycle 

path based on calculations for a two lane path. Three of the seven segments, 2, 12, and 

13 would be considered three lane bicycle paths based on Botma’s assumptions. Botma 

does not give any guidance for three lane paths.  
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This method does not use lane width as a variable in the method equation. The lane 

widths in Table 20 are only guidelines to determine if the method is appropriate for 

each segment. For all segments, all inputs are the same therefore there is one answer for 

all segments. The result for of the Botma method using default values is given in the 

first column in Table 21. 

Table 21: Variables Used and BLOS Results for On-Street, One-Way Segments  

  Botma Botma HCM HCM 2000 

Q, Volume 975 975 975 975 975 975 975 

U, Mean Speed, 

km/h 

18 20.6 20.6 20.6 20.6 20.6 20.6 

σ, Std Dev, km/h 3 5.5 3 1.5 5.5 3 1.5 

F, Frequency, events 

per hour 

183 293 160 80 293 160 80 

Frequency of 

Passings 

1/19.7 1/12 1/22 1/45    

BLOS  E F D C F E C 

 

The results show that a BLOS score of E for all tested segments.  Comparing values in 

Table 22, the frequency of passings of 1/19.7 is near the requirements for a BLOS score 

of D.   The determination of BLOS is only based on the volume of bicycles and the 

assumptions of a two lane path, a default mean speed of 18 km/h and a default bicycle 

speed standard deviation of 3 km/h.  
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Table 22: Service Volumes and Frequency of Events for One-Way, Two Lane 

Bicycle Paths Using Default Values (Botma 1995) 

BLOS 

% with 

hindrance 

over 1 km 

One-Way 

Service 

Volume 

bicycles/hour 

Frequency 

passings 

A 0-10 130 < 1/150 

B 10-20 260 < 1/75 

C 20-40 520 < 1/35 

D 40-70 910 < 1/20 

E 70-100 1300 < 1/15 

F 100 >1300 > 1/15 

 

6.1.2 Botma LOS for One-Way Bicycle Paths with HCM Default Values 

Both the HCM 2000 and HCM 2010 default values for mean and standard deviation 

bicycle speeds are 20.6 km/h (12.8 mph) and 5.5 km/h (3.4 mph) respectively. The 

HCM 2000 also assigned standard deviation for commuters as 1.5 km/h (.9 mph), 

3km/h (1.9 mph) for mixed users and 5.5 km/h (3.4 mph) for recreational users. The 

frequency equation for bicycle LOS for a bicycle only path is based on frequency of 

passings by Botma is 

𝐹 = 2𝑄𝜎/{𝑈√𝜋}  

Where Q is the bicycle volume, 𝜎 is the standard deviation and U is the mean speed in 

kilometers. 

Using the US default values (in SI units) for speed and the three different values for the 

standard deviation the Botma equation for frequency was calculated. See results in 
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Table 21  under the heading “Botma HCM” With a Standard deviation of 1.5 km/h the 

BLOS is C, for 3 km/h it is D and for 5.5 km/h it is F. This makes sense that as the 

range of speed variation increases, there will be more passings compared to cyclists that 

have similar speeds and a smaller standard deviation.  

6.1.3  HCM 2000 LOS for One-Way Bicycle Paths 

The HCM 2000 uses the same method and equations developed by Botma but use a 

different table of BLOS values. Table 23 illustrates the difference in BLOS score 

thresholds based on frequencies of passings and meetings. The Botma method has a 

smaller range for A and B scores compared to the HCM method. However, the overall 

range of all scores is wider; there can be a greater frequency of passings and meetings 

before reaching a BLOS score of F compared to the HCM 2000 BLOS thresholds.  

Table 23: BLOS Comparison of Frequency Thresholds 

BLOS 

Frequency Thresholds 

Passings/h 

Botma HCM 

A 24 40 

B 48 60 

C 103 100 

D 180 150 

E 240 195 

F > 240 >195 

 

The BLOS results are given in Table 21, The HCM 2000 BLOS thresholds yields a 

BLOS of F for a standard deviation of 5.5 km/h, E for 3 km/h, and C for 1.5 km/h. 
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Using the HCM thresholds, the BLOS score is different between the Botma and HCM 

2000 for the standard deviation of 3 km/h.  

6.1.3.1 Sensitivity Analysis 

A sensitivity analysis was conducted to test the sensitivity of each method to its input 

variables. The default values were held constant in each of the equations as each of the 

variables was tested. Each variable was increased and decreased by certain percentages 

from the default, or base values. The percent change in the frequencies or BLOS score 

was compared to the frequency of the base values. The results are illustrated in Figure 

19 and 28. Since the same equation was used in both methods, the percent change is the 

same in both figures. The difference is in the BLOS thresholds for the Botma method 

and the HCM 2000 method.  
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Figure 19: Sensitivity of Variables in Botma One-Way Path With Botma BLOS 

Thresholds 

 

 

Figure 20: Sensitivity of Variables in Botma One-Way Bicycle Path With HCM 

2000 BLOS Thresholds 

 

The change in standard deviation and volume, Q, are proportional to the changes in 

frequency. In contrast, the change in mean speed varies. Slower speeds, below 18 km/h, 

produce a larger change in frequency than speeds greater than 18 km/h. This illustrates 

that the mean speed is less predictable and varies the most than changes in standard 

deviations and volume.  

In addition to the percentage increase and decrease of volumes, 200 bicycles were also 

plotted. The value of 200 bicycles was to show a value close to the 90th percentile of 

200 Bicycles A
B
C

D

E

0%

50%

100%

150%

200%

250%

0% 50% 100% 150% 200% 250%

P
er

ce
n

t 
C

h
a
n

g
e 

in
 F

re
q

u
en

cy
 o

f 

P
a
ss

in
g
s 

a
n

d
 M

ee
ti

n
g
s

Percent Change in Variable

Bicycle Speed Std. Dev. Bicycle Mean Speed

Bicycle Volume Base

F



 

79 

 

hourly bicycle volumes, which was 212 bicycles. A volume of 200 bicycle garners an 

LOS score of B under the Botma thresholds and an A using the HCM 2000 values. 

The methods used for on-street segments was not intended to be used as such; they were 

intended for one-way bicycle paths separated from motor vehicle traffic. There are no 

actual lane width variables but Botma’s method was developed for a two lane path up to 

6.6 feet wide. This constraint did not fit most our on-street segments. Those segments 

that did fit the lane width constraints had other differences that were not considered. 

This yielded the same results for all three segments.  Additionally, each segment will 

have its own unique mean speed. Mean bicycle speed can be measured but it is not data 

that is commonly collected for bicycles. These methods may be adequate for on-street 

paths but they were not developed by Botma from on-street bicycle path data and have 

not been adequately researched and tested.   

Table 24:  Summary of BLOS Scores for On-Street Bicycle Lanes 

On-Street Segment Name 
Botma 

1995 

HCM 

2000 

 

 
 

 

Westbound 

Madison Viaduct 

Bike Lane 

E F 

2 
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On-Street Segment Name 
Botma 

1995 

HCM 

2000 

 

 
 

        

Westbound 

Madison Viaduct 

Bike Lane 

E F 

 

 
 

 

Main Street Bike 

Lane 
E F 

 

 
 

 

Bicycle Lane on 

SW Madison 

Avenue 

E F 

 

 
 

 

 

Eastbound 

Hawthorne 

Viaduct 

E F 

3 

6 

9 

 11 
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On-Street Segment Name 
Botma 

1995 

HCM 

2000 

 

 
 

 

 

Eastbound 

Hawthorne 

Viaduct 

E F 

 

 
 

 

 

Eastbound 

Hawthorne 

Viaduct 

E F 

 

 

  

 12 

 13 
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6.2 Off-Street Paths 

Most of the BLOS methods that consider bicycle volumes were developed for off-street 

paths. Like the one-way bicycle path,  the method that all other methods build on were 

developed by Botma (Botma 1995).  For this analysis, tests of four off-street path 

methods were performed: 1) the original Botma LOS for Pedestrian-Bicycle Paths, 2) 

HCM 2000 Shared Paths equations, 3) The FHWA Worksheet, and 4) the HCM 2010 

methods and worksheet for pathways, developed at the University of Idaho.  

There are three segments that the following methods are most applicable to; Segments 

4, 5 and 10, illustrated in Figure 21. Segments 5 and 10 represent the shared use 

sidewalks on the Hawthorne Bridge.  Segment 4 is located on the sidewalk on the 

northeast side of the bridge. The locations of the three segments are illustrated in Figure 

21. The width of the Hawthorne Bridge sidewalk is 10 feet and is a shared path with 

pedestrians. There is no separation of traffic with lane markings. Segment 4 is 9 feet 

wide with separation of pedestrians and bicycles with a painted lane marking. These 

values are given in Table 25.
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Figure 21: Off-Street Bicycle Lanes
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Table 25: Off-Street Path Segments and Variables 

Segment 
Path 

width 
Centerline 

Total 

Bicycles 

Total 

Pedestrians 

4 9 Yes 

975 100 5 10 No 

10 10 No 

 

6.2.1 Botma LOS for Pedestrian- Bicycle Paths 

Botma’s method determines the BLOS based on all users of a mixed-use path.  The 

method is innovative and relatively simple to calculate. However, for the evaluation of 

this study area there are many shortcomings and limitations. Botma limits his method to 

a two lane path; the segment that this method is most applicable, the sidewalk on the 

Hawthorne Bridge, is a 10 foot wide path, which would be considered a three lane path. 

Another constraint of this method is that it makes the assumption that the directional 

split for each non-motorized mode is 50:50. For the segments that we are analyzing, the 

directional split for bicycles on the Hawthorne Bridge is 98:2 and for pedestrians it is 

unknown, but it may be closer to 70:30 or 80:20 split, based on manual counts for this 

thesis.  

This method was calculated in two ways. First, the simplified equations that used the 

default values of 18 km/h for the bicycle mean speed and a pedestrian mean speed of 

4.5 km/h will be calculated. Second, the original equations will be calculated using the 
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HCM mean speeds for bicycles and pedestrians of 20.6 km/h (12.8 mph) and 5.5km/h 

(3.4 mph) respectively.  

Despite its limitations, this method was applied to the Hawthorne Bridge sidewalk using 

the bicycle and pedestrian peak volume default value of 975 bicyclists per hour. The 

corresponding pedestrian traffic volume of 100 was also used in this analysis.  No other 

values are needed for this simplified method.   

The requirement for this equation is to use the value of half of the traffic volume in the 

equation, representing a 50:50 split, the bicycle and pedestrian volumes were halved.  

This default value is used in all of the simplified methods in this section, even if there is 

a change in the actual mean speed. The sensitivity of the mean speed, U, and the 

standard deviation, 𝜎,  were analyzed in this study.  Botma’s default values are changed 

to the HCM default values. 

Table 26: BLOS Value Comparison Between Botma Default Values versus HCM 

Default Values For Mean Speeds 

Method 
1/(User 

events/sec) 
BLOS 

Simple 

(Botma) 
4.2 F 

Long 

(HCM) 
4.1 F 

 

meetings. Using the volume of 487, or half of the total bicycles, and 50 or half of the 

pedestrians, yields a BLOS score of F for all users, illustrated in Table 26 and Table 8. 
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Note that this method is for a two lane path and that it is assumed that all directional 

volumes are 50:50.  

Comparing the values in Table 26 concludes that the values are not substantially 

different between the Botma and HCM bicycle and pedestrian default speeds.  This is 

probably due to the fact that the ratios are similar; the ratio for the Botma default mean 

speed values for pedestrians and bicycles is 4.5/18 or 0.25. Using HCM values the ratio 

is 5.5/20.6 or 0.27. 

Table 27: BLOS for Users of a Two-Way, Two Lane Path (Botma 1995) 

BLOS Frequency                         

(events per second) 

A < 1/95 

B 1/95-1/60 

C 1/60-1/35 

D 1/35-1/25 

E 1/25-1/20 

F > 1/20 

  

6.2.1.1 Sensitivity Analysis 

Using the long method, in which there are no set default values, a sensitivity analysis 

was tested. Six tests were calculated. For each of the variables, all other variables were 

held constant using the default values. The variables are 1) Bicycle volume (975) 

pedestrian volume (100), 3) mean bicycle speed (18 km/h), 4) mean pedestrian speed 

(4.5), 5) mean bicycle flow, U (18 km/h), 6) standard deviation, σ (3 km/h). The mean 

bicycle and pedestrian flows are values used in the frequency equation and are used as a 
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default, or base, value in the Botma report. With the base equaling 100%, each of the 

variables was adjusted to values 50% to 200% of the base value. The calculations were 

made and the solutions were measured as a percent of the value from the base 

conditions solution.  

 

Figure 22: Sensitivity Analysis of Bicycle and Pedestrian Volumes and BLOS 

Thresholds 
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Figure 23: Sensitivity Analysis of Mean Speeds and BLOS Thresholds 

 

Figure 22 and Figure 23 plots illustrate the percent change in the frequency of passings 

and meetings when there is a percentage change in each of the variables with all other 

variables held constant. The BLOS thresholds are plotted in each figure. Percent 

changes in bicycle and pedestrian volumes are shown in Figure 22. As bicycle volumes 

increase, frequencies of meetings and passings increase linearly. Most important is the 

relationship of the frequencies to the BLOS thresholds. The lowest bicycle volume used 

in this sensitivity analysis is a one-way volume of 200 bicycles per hour.  Using the 

base values for all other variables, including 100 pedestrians, the total bicycle volume 
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pedestrians, bicycle volume would have to be 300 bicycles per hour to reach a BLOS 

score of E and 63 cyclists per hour for an A score.  

Figure 23 display the sensitivity of the method to mean speeds for bicycles and 

pedestrians. There are two mean bicycle speeds that are used in this method; Mean 

bicycle speed, U is used in the equation for the frequency, F and the mean bicycle speed 

is used in the remaining equations. For mean bicycle speed, U is here is more sensitivity 

as the value decreases and less sensitivity as its value increases. Mean bicycle speed has 

a linear relationship to Mean bicycle speed, 𝜎, has the least amount of sensitivity of all 

the mean speed variables. 𝜎 also has a linear relationship to frequency. The mean 

pedestrian speed the method is also more sensitive to 𝜎 at lower speeds; the slower you 

walk the greater the probability of meeting or being passed increases. As in Figure 22, 

the BLOS thresholds are plotted in Figure 23. It would be difficult to bring these values 

within the BLOS thresholds of BLOS A to E.  

This BLOS method has may drawbacks. First, the assumption of a 50:50 split in 

direction for each mode is not appropriate for any of our segments. Second, the method 

assumes a two lane two way path. This assumption does not fit most of the elements in 

the study area. This probably explains why it is so difficult to reach the LOS; or sites do 

not fit the method well enough. 
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6.2.2 HCM 2000 Shared Off-Street Paths 

One improvement of this method compared to the last method is that directional splits 

can be designated. Also, this method applies to both two and three shared paths. The 

same method is used for both but each has unique BLOS threshold; the two lane path is 

the same as Table 8 in the previous method and Table 28 for three lane paths. This 

method uses the default used in the previous sections for developing the frequency with 

mean bicycle flow, U of 18 km/h and a standard deviation, σ, of 3 km/h.  

Table 28: BLOS Table for HCM 2000 Shared Paths for a Three Lane Path (HCM 

2000) 

BLOS 
Frequency of 

events 

A ≤ 90 

B > 90 - 140 

C > 140 -210 

D > 210 - 300 

E > 300 -375 

F > 375 

 

Table 29: Directional Splits Modeled for Bicycle and Pedestrians 

Bikes 

total 

Bikes, 

subject 

Direction 

Bikes 

Opposite 

Direction 

Peds 

total 

Peds, 

Subject 

Direction 

Peds, 

opposite 

Direction 

975 100% 0% 100 100% 0% 

 99% 1%  90% 10% 

 97% 3%  80% 20% 

 80% 20%  70% 30% 

 70% 30%  60% 40% 

    50% 50% 

 



 

91 

 

To evaluate the method with directional variables, a list of various combinations of 

directional volumes was constructed.  Table 29 lists the directional splits that were 

computed for bicycles and pedestrians. For each of the directional splits for bicycles, 

each combination of pedestrian splits was paired. For example, for a bicycle directional 

split of 99:1 is paired with pedestrian split of 100:0, 90:10, 80:20, 70:30, 60:40, and 

50:50. The 100%, 99%, and 97% subject directional split values were chosen because 

these are the percent splits that exist on the Hawthorne Bridge.  All combinations 

received as BLOS score of F. 

6.2.2.1 Sensitivity Analysis 

Sensitivity plots were constructed for volumes and directional splits in Figure 24 and 

Figure 25. Figure 24 illustrates the change in frequency of passings and meetings from a 

percentage change in bicycle and pedestrian volumes, with all other base values held 

constant. Both bicycles and pedestrians have linear relationships to frequency. The 

model is more sensitive to changes in bicycle volumes than pedestrian volumes.  A 

similar plot was constructed to illustrate the sensitivity of directional variation in 

volumes for bicycles and pedestrians.  The change in variables refers to a change in the 

subjective direction from the base case of a 50:50 split. For example, the 50% change 

refers to 50% of the 50:50 directional split, half of 487 or 273 bicycles in the subject 

direction. In order for the bicycle volume to remain steady, the opposing direction 

volume was 975 – 273.  The method is more sensitive to variations in directional 

bicycle volumes. Pedestrian directional sensitivity is low, illustrated in Figure 25. Note 
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that, despite the higher levels of passing and meeting frequency thresholds for a three 

lane BLOS, the range of the BLOS thresholds are small and all values fall in the BLOS 

F category. 

 

Figure 24: Sensitivity of Bicycle and Pedestrian Volumes and BLOS Thresholds 
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Figure 25: Sensitivity of Directional Splits for Bicycles and Pedestrians Volumes 

 

In order to fall into a BLOS grade between A and E, a bicycle/pedestrian volume of no 

more than 480/0 will give a BLOS Score of A and 75/120 will give a BLOS score of E. 

This method is an improvement to the previous methods; true directional splits can be 

used and there are separated BLOS thresholds for three lane paths. Using this HCM 

2000 Method for shared off-street paths still give us a BLOS score of F for our off-
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6.2.3 FHWA Shared Use Path Analysis Tool 

In 2006, the FHWA sponsored a study and the development of a shared use path 

workbook. The workbook was developed by The Toole Design Group. The variables 

needed include the width of the path, if the path has a center line or not, the directional 

volume for all users and the mode split. This model assumes a 50:50  directional user 

split on a shared path or trail (Hummer et al. 2006). This method is intended for 

recreational use than urban commuter traffic.   Table 30 summarizes the segments to 

which the method can be applied and their base variables. BLOS thresholds are given in 

Table 31. These BLOS thresholds are applied in decending numerical order; all the 

methods evaulated thus far have had an assending value of frequency to apply LOS 

Scores. As illustrated in sensitivity plots in Figure 26, Figure 27 and Figure 28.   

Table 30: Shared Off-Street Path Segments and Base Values 

Segment 
Path 

width 
Centerline 

Total 

Bicycles 

Total 

Pedestrians 

Bicycle  

Mode 

Split 

Pedestrian 

Mode 

Split 

4 9 Yes  

100 

  

5 10 No 975 90% 10% 

10 10 No    
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Table 31: BLOS Thresholds for Shared Use Path Flow Analysis Tool (Hummer et 

al. 2006) 

BLOS Scores 

A ≥4 

B 3.5 

C 3 

D 2.5 

E 2 

F < 2 

 

Again, using base values in Table 30, all segments received an F BLOS grade.  

6.2.3.1 Sensitivity Analysis  

Sensitivity analysis was applied to all variables and is illustrated with BLOS thresholds 

in Figure 26, Figure 27 and Figure 28. Each variable was tested with all other variables 

held at the base values. The change in BLOS score with change in total volume and 

change in path with are shown in Figure 26. The base value for total volume is 1075, 

975 bicycle plus 100 pedestrians. Because the assumed directional volume split is 

50:50, half of the total volume, 537 users was used in the worksheet. The BLOS 

thresholds are in the reversed order compared to the previous sensitivity plots. This is 

because the previous BLOS scores were based on frequency; the higher the frequency, 

the lower the score. These sensitivity plots compare changes in variables to a percent 

change in BLOS score; the higher the score, the better the conditions.  Decreasing the 
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volume 50% brought the BLOS score to E and dropping the volume to a 25% level 

brought the BLOS value to D. Increasing path width by 150% brought the BLOS to E.  

 

Figure 26: Percent Change in BLOS Score with Percent Change in Total Volume 

and Path Width 
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However, as bicycles have a smaller mode share, inline skaters increase mode share and 

BLOS decreases again.  

Bicycles versus pedestrians have a linear relationship, as bicycle mode share increases 

and pedestrian mode in decreases, BLOS improves. However when percent bicycle 

changes to 110% of base percentage of 90%, or 99% mode share, BLOS Drops. A 

similar trend is developed with runners. Child bicyclists have the least amount of 

sensitivity, with a decrease in BLOS as child cyclists increase and bicycles decrease.  

  

Figure 27: Percent Change in BLOS Score with Percent Changes in Bicycle 

Proportion versus Other Modes 
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Figure 28: Percent Change in BLOS Score with Change in With or Without 

Center Line 
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advantage is that it considers more that bicycle and pedestrians; one of the reasons that 

this method is complicated. It also considers path width and presence of a center lane 
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6.2.4 HCM 2010 method for BLOS for off street paths  

The most intensive method for determining Capacity BLOS is the HCM method for off-

street paths. This method is based on the framework developed by Botha, and is more 

flexible for calculating for different width paths and different volumes. The BLOS is 

determined by calculating three values using a cumulative distribution function: 1) the 

number of passings per minute, 2) number of meetings per minute and 3) the probability 

of delayed passings. These three values are then input in a spreadsheet developed by the 

University of Idaho using HCM 2010 methods.  

An example problem will not be explicitly calculated, only the results calculated from 

the workbooks will be given.  Only bicyclists and pedestrians were considered. Analysis 

will considered directional bicycle splits of 100:0, 99:1, and 97:3. For pedestrians, 

directional splits that were considered  included 100:0, 90:10, 80:20, 70:30, 60:40, and 

50:50. Default values for average speed and standard deviation are given for bicycles 

and pedestrians;  12.8 mph with a standard deviation of 3.4 mph and 3.4 mph with a 

standard deviation of 0.6 mph respectively. The segments evaluated are the same as the 

ones used in the other shared off-street path methods; 4, 5 and 10, shown in Figure 21. 
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Table 32: Variables Used for HCM 2010 BLOS for off-street paths 

Variable 

Default or 

collected 

data? 

Values used 

Hourly volumes by 

direction per user 
Collected Peak volumes used 

Average speed for each 

mode 
Default 

12.8 mph for bicycles  

with SD of 3.4 

3.4 mph for pedestrians  

with a SD of 0.06 

Proportion of path users 

presented by each mode 
Default 

Bicycle directional splits of  

100:0, 95:5, 90:10 

Pedestrian directional splits of 

100:0, 90:10, 80:20, 70:30, 60:40 50:50. 

Path width Collected 9-10 feet depending on segment 

Presence of a centerline 

stripe 
Collected Varies depending on segment 

 

For each of the three segments, 4, 5 and 10, a table of scores, with varying pedestrian 

splits is given in Table 33. For each model, the bicycle directional split was 99:1 and 

paired with each of the pedestrian splits given in Table 32. Segment 4 received a score 

of  E and segments 5 and 10 received a score of  D. See Table 33. 
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Table 33: BLOS Results for Segments 4, 5 and 10 Using HCM BLOS for Shared 

Off-Street Paths 

Segment 

Bicycle 

Directional Split 

Pedestrian Directional 

Split HCM 

score 
BLOS 

% 

Opposing 

% 

Subject 

% 

Opposing 

% 

Subject 

3 
0.01 0.99 0.50 0.50 2.12 E 

0.01 0.99 0.60 0.40 2.13 E 

5 
0.01 0.99 0.50 0.50 2.59 D 

0.01 0.99 0.60 0.40 2.61 D 

10 
0.01 0.99 0.50 0.50 2.60 D 

0.01 0.99 0.60 0.40 2.58 D 

 

6.2.4.1 Sensitivity Analysis 

Variables tested in the sensitivity model include bicycle and pedestrian volumes, length 

of segment, path width, center line, bicycle and pedestrian mean and standard deviation 

of speed, directional split for both bicycles and pedestrians, peak hour factor, and the 

mode share split between bicycles and pedestrians. The results are illustrated in Figure 

29 through Figure 32. Each figure includes the thresholds of BLOS. Percent changes in 

bicycle and pedestrian volumes are plotted in Figure 29. The base data received a BLOS 

score of E. Bicycle volumes are more sensitive than pedestrian volumes in this BLOS 

method. A 50% increase or decrease in bicycle volumes changes the BLOS grade one 

value, with higher volumes receiving poorer BLOS grades.  
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Figure 29: Sensitivity of Bicycle and Pedestrian Volumes 

 

All geometric variables were plotted in Figure 30. The length of the segment has no 

direct impact of the BLOS score. The center line is a binary value of zero for no center 

line and a value of one for the presence of a center line. This plot illustrates that the 

addition of a center line will decrease the BLOS grade by one half.  Path width is a 

sensitive variable in the model. This makes sense because path width has a large impact 

on the ability for users to maneuver around others when passing or meeting another.  
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Figure 30: Sensitivity of Geometric Variables 
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Figure 31: Sensitivity of Standard Deviation and Mean Speeds of Bicycles and 

Pedestrians 
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bicycles it was 99%. Pedestrian directional variation is not sensitive in this model. 

Bicycle directional variation is sensitive. This plot illustrates that BLOS score improves 

with a 50:50 directional split. This result is suspicious. The peak hour factor was also 

and modeled and shows that there is a minimal sensitivity for higher values in and more 

sensitivity for lower peak hour factors changes.  The final variable that was modeled 

was the percent bicycles. This variable represents a change in bicycle mode share versus 

pedestrians. The base values for mode share were 90% for bicycles and 10% for 

pedestrians. The other two ratios that were modeled were 45% bicycles: 55% 

pedestrians and 67% bicycles: 33% pedestrians. The plot illustrates that a mode share of 

55% for pedestrians and 45% for bicycles had a lower BLOS score than a 10% 

pedestrian and 90% bicycle mode split. This variable is relatively sensitive.  
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Figure 32: Sensitivity of Peak Hour Factor, Percent Bicycles and Pedestrians in 

Subject Direction, and the Percentage of Bicycles to Pedestrians 

 

A summary of the BLOS scores for each method on each off-street method is given in 

Table 34.  All methods gave a BLOS score of F except for the HCM 2010 method.  

  

0%

50%

100%

150%

200%

0% 50% 100% 150% 200% 250%

P
er

ce
n

t 
C

h
a

n
g

e 
in

 B
L

O
S

 S
co

re

Percent Change in Variable

% Bicycles in Subject Direction
% Pedestrians in the Subject Direction
PHF
% Bicycles

A

B

C

D

E

F



 

107 

 

 

Table 34: Summary of BLOS Scores for Off-Street Segments 

Off-Street Segment Name 
Botma 

1995 

HCM 

2000 

FHWA 

2006 

HCM 

2010 

 

 
  

 

 

Madison 

Viaduct 

Off-Street Path 

F F F 

 

E 

 

 

  
 

 

 

Hawthorne 

Bridge,  

North Sidewalk 

F F F D 

 

 
 

 

 

Hawthorne 

Bridge,  

South Sidewalk 

F F F D 

4 

5 

 10 
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6.3 Signalized intersections 

6.3.1 HCM 2000 Signalized Intersections 

This was the only BLOS method found for intersections that uses bicycle volumes as an 

input.  This method uses the measurement of control delay, in seconds per bicycle, to 

determine the BLOS score.  First the capacity of the bicycle lane is estimated. It is 

recommended that at saturation flow rate of 2000 bicycles/hour be used.



 

 

1
0
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Figure 33: Signalized Intersection
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This method was tested on the four intersections in the study area; elements 1, 7, 8, and 

14. The results are given in Table 35. Intersections 1 and 14 are on the east end of the 

study area and received a BLOS grade of C.  Intersections 7 and 8 are on the west, 

downtown end of the study area and received a BLOS grade B. 
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Table 35: Summary of Intersection BLOS Variables and Results  

Intersections Name 
Lane 

Capacity 

Control 

Delay 
BLOS 

        

 
 

 

 

SE Madison  

and  

Grand Avenue 

657 14.5 
 

C 

 

 
  

        

 

SW Main  

and  

First Avenue 

929 14.5 
B 

 

 

 
 

 

 

SW Madison 

Street and  

First Avenue 

964 14.5 B 

 

 
 

 

 

 

SE Hawthorne 

Boulevard  

and  

Grand Avenue 

657 23.5 C 

 

1 

7 

8 

 14 
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6.3.1.1 Sensitivity Analysis 

Sensitivity analysis and BLOS on variables is illustrated in Figure 34 and Figure 35. 

Figure 34 illustrates that saturation flow rate is not sensitive. More importantly, bicycle 

volume is not sensitive for higher volumes and is only slightly sensitive for lower 

volumes. The sensitivity of this intersection BLOS is greater compared to any of the 

segment models.  

 

Figure 34: Sensitivity Analysis and BLOS Thresholds for Saturation Flow Rate 

and Bicycle Volume for Controlled Intersections 

 

Figure 35 illustrates the sensitivity of the effective green time and the cycle length. As 

effective green time increases, the BLOS improves. As the cycle length increases, 

BLOS decreases.  
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Figure 35: Sensitivity Analysis and BLOS Thresholds for Effective Green Time 

and Cycle Length . 
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A summary of the BLOS grades for each segment is given in        Table 36 . The shaded 

score boxes designate the locations that did not meet the general requirements of the 

method. For example, for LOS Bicycle Paths, segments 2, 6, 12 and 13 did not meet the 

path width requirement for the methods. Another example is segments 4, 5 and 10 did 

not have a 50:50 directional split. Less than 50, 18 out of 40 possible segment/ method 

combinations met the general requirements of the methods.  Note that the conflict points 

4 and 11 did not meet any of the requirements. The methods that were most applicable 

were the HCM 2010 paths method and the method for signalized intersections. 

However, bicycle volumes have very low sensitivity in the intersection model. A 

summary of the strengths and weaknesses of each of the methods is given in      Table 

37.      Table 37 also gives a summary of the most significant variables in each BLOS 

model.  
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       Table 36: Summary of BLOS Methods and Scores for Each Segment/ Element Using Base Values 

 Facility Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

On-Street 

Facilities 

Botma 1995  E E   E   E  E E E  

Botma 1995 with 

HCM Defaults 
 F F   F   F  F F F  

HCM 2000  F F   F   F  F F F  

Off-Street 

Facilities 

Botma 1995    F F     F     

Botma 1995 with 

HCM Defaults 
   F F     F     

HCM 2000    F F     F     

FHWA 2006    F F     F     

HCM 2010 Paths    E D     D     

Intersections HCM 2000 C      B B      C 



 

  

1
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     Table 37: Summary of BLOS Methods that Include Bicycle Volumes as an Input 

Method 

Most 

Sensitive 

Variables 

Strengths Weaknesses 

HCM 2000 

On-Street 

Bicycle Paths 

 

 

Bicycle 

Volume 

 

Mean 

Bicycle 

Speed 

 

Bicycle 

Speed 

Standard 

Deviation 

 

Simple Equations 

 

Methods not developed or tested for appropriateness of on-

street bicycle paths application.  Removed from HCM 2010 

 

Methods only consider path widths equivalent to two lanes. 

Methods do not consider path widths less than 4.9 feet or 

more than 6.6 feet 

 

Thresholds for BLOS A and B may be difficult to achieve; 

bicycle volume must be less than 300 bicycles per hour. 

Botma 1995  

Off –Street 

Shared Path 

 

Bicycle 

volume 

 

Pedestrian 

Volumes 

 

 

Simple equations; 

A short method with 

default values.  

A long method that 

allows for changes to 

default mean speeds 

 

Must have less than 80 bicycles per hour to achieve a BLOS 

score of E or better 

 

Methods only consider path widths equivalent to two lanes 

 

Assumes a directional ratio of 50:50 for bicycle and 

pedestrian modes 

 

Only for facilities separated from motor vehicles 

 

BLOS threshold does not capture volumes over 200 bicycle 

per hour 



 

  

1
1
7
 

Method 

Most 

Sensitive 

Variables 

Strengths Weaknesses 

 

HCM 2000 

Shared Off-

Street Paths 

 

 

Bicycle 

volume 

 

Directional 

split for 

bicycles 

 

 

Simple Equations 

 

Accounts for directional 

splits for bicycles and 

pedestrians 

 

BLOS thresholds for 

both 2 and 3 lane paths 

 

Bicycle and pedestrian traffic volumes must be very low to 

achieve a BLOS score of E or better 

 

BLOS threshold may be hard to achieve  

 

Only meant for shared paths separated from  motor vehicles 

FHWA  

Shared Use 

Path Analysis 

Tool 

 

Total volume 

 

Path width 

 

Percent  

bicycles 

versus 

pedestrians 

 

 

Easy to use workbook/ 

spreadsheet  

 

Accounts for mode split 

between bicycles, 

pedestrians, runners, 

inline skaters, and child 

bicyclists.  

 

Accounts for lane 

markings on path and 

path width 

 

Assumes a 50:50 directional split for all modes. 

 

Only meant for shared paths separated from  motor vehicles 
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Method 

Most 

Sensitive 

Variables 

Strengths Weaknesses 

HCM 2010 

BLOS for 

Shared Paths 

 

Path Width 

 

Bicycle 

Volumes 

 

 

Able to account for 

mode share split among 

many different modes.  

 

Actual directional and 

mode share split can be 

modeled.  

 

Some geometric 

variables are included in 

the model 

 

Considered most 

reliable method for 

calculating BLOS for 

shared paths 

 

 

Complex calculations; Difficult and time-consuming to 

calculate  

 

Only meant for shared paths separated from  motor vehicles 

HCM 2000 

Signalized 

Intersections 

 

Cycle length 

 

Simple to Calculate 

 

According to the Latest HCM method not based on enough 

evidence, research 

 

Saturation flow rate and bicycle volumes are not sensitive 
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7.0 INTERCEPT SURVEY 

In order to get a sense of how the BLOS scores compare with the expectations and 

perceptions of the users of the study area, an intercept survey was conducted.  First, a 

preliminary pilot intercept survey was conducted.  One month later, the actual intercept 

survey was administered.  

Both surveys took place on the northwest side of the Hawthorne Bridge, near the Eco 

Counter Totem on Segment 6. The survey was administered during a monthly event, 

Breakfast on the Bridges. Breakfast on the Bridges is a volunteer event held on the last 

Friday of each month from 7AM to 9AM. The purpose of the event is to reward people 

for commuting by bike. Coffee, fruit, and doughnuts are served. Respondents were 

approached to take the survey while stopping for coffee and snacks.  

The pilot survey was administered on Friday, January 31, 2014 from 8AM to 9AM. The 

weather was wet but not raining, cloudy and approximately 45 degrees. Fifteen surveys 

were completed. The bicycle count on the bridge from 8AM to 9AM was 528. A copy of 

the Pilot survey is available in Appendix C. Respondents were asked to take the pilot 

survey and to give their feedback about the pilot survey.  
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This initial pilot survey had fewer segments than the final number of segments used in 

the final survey. The area of study was only split into six segments; three in each 

direction; before the bridge, after the bridge, and on the bridge. The final study had 14 

different segments/ elements. Respondent were asked their level of satisfaction in each of 

the segments.  

Some useful information was gleaned from the pilot survey. The survey asked 

respondents, on a scale of 1-6 what their satisfaction biking in each of the areas 

(segments) was. These values were converted into a pseudo-BLOS score. Where a score 

of 1 was a BLOS F and a 6 was a BLOS A. All segments received an average pseudo-

BLOS grade between a C and a D-. However, the question only asked for overall 

satisfaction, not about bicycle capacity satisfaction.   

Another question asked if they thought bicycle congestion was a problem in any of the 

segments. One of the respondents commented that he didn’t think that bicycle congestion 

was a problem but that he welcomed bicycle congestion. The segment that had the most 

complaints about bicycle congestion was the north side of the Hawthorne Bridge. 

However, this is the segment that the respondents had just biked on before taking the 

survey. Four of the six segments they were asked about had not been biked on at the time 

of the survey; the memory of their previous experiences on the route would not be the 

same as for the two segment that they had just biked on.   
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An improved and simplified final survey was administered at the next Breakfast on the 

Bridges on February 28. The weather was cloudy and dry. The temperature was 42 

degrees. The bicycle traffic volume was 580 for the 8AM to 9AM hour. See final version 

of the survey in Appendix C.  The goal was to collect 30 responses. However, only 16 

surveys were completed.  

Respondents were asked their route onto the bridge, demographic information, and what 

areas in the study area would they like to see improved. The purpose of this intercept 

survey was to see if capacity was affecting their bicycling experience. The main question 

asked’ On the Hawthorne Bridge today, which best describes your riding experience?” 

They had six choices, A through F, and with each letter, a statement that describes each 

level of service:  

A. Free flow, the path is all yours! 

B. You can keep your speed but you must maneuver around bicycles and pedestrians 

a little 

C. You have to change your speed a little to maneuver around bicycles and 

pedestrians 

D. You have to change your speed to maneuver around other bicycles and 

pedestrians a lot! 

E. Biking is difficult. It is hard to move around other bicycles and pedestrians 

F. Forced to dismount your bike because there are too many obstacles on the route 
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67% of respondents came from SE Grand and Madison. 20% came from the Esplanade 

ramp. 33% were heading to SW First and Main. 27% were heading to Waterfront Park, 

and 13% were going to Naito Parkway via the Waterfront Park trail.  

Table 38: LOS Grades from Intercept Survey  

LOS Grade % of Respondents 

A 20% 

B 47% 

C 27% 

D  

E  

F  

 

Table 39: Segments that Respondents Would Like to See Improved  

Segment % of respondents Issues 

4 20 

Merging bicycles and pedestrians at  ramp 

from Esplanade Path 

 

6 20 

Weaving around pedestrians 

Merging with vehicles 

 

7 33 

Bike lane drop 

Narrowing bike 

Merging with vehicles 

 

 

Most respondents rode this route at least 4 times per week and considered themselves to 

be strong and fearless riders. 47% described their riding experience that morning to be a 

BLOS B, 27% a BLOS of C, and 20% a BLOS of A. There was not a BLOS score less 
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than C. When applying the HCM 2010 method for bicycle paths for this hour of traffic 

with a volume of 580 bicycles per hour, the BLOS score was a C.  

When asked what areas they would like to see improved, the segment/element that 

received the most responses was Element 7 at the intersection of SW first and Main. 

However, the area of improvement was right outside the study area. A bike lane drop is 

located in a highly congested area just west of the SW First and Main intersection. The 

next two elements that received requests for improvement were elements 4 and 6. 4 is the 

conflict point at the esplanade ramp and 6 is the segment onto Main Street. There are no 

existing BLOS measures for measuring off-street path intersections such as the conflict 

point at the Esplanade ramp. Segment 6 concerns for bicyclists have to do with both 

bicycle congestion and merging left with high motor vehicle volumes and short left 

merging distance.  There are also no measurements for merging with motor vehicle 

traffic.  

This survey had many weaknesses. First, there were only 16 responses, which is a poor 

sample and not statistically sound. Second, most of the respondents are experienced 

commuters; therefore, it was not possible to understand what an acceptable level of 

congestion is. Third, although the respondents were asked questions about all of the 

segments in the corridor, but the segments that they had just rode on had a larger effect 

on their answers.  
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One of the major issues with the survey is that not all respondents were familiar with the 

entire route.  Some respondents used the shared path routes from or to the Esplanade and 

/or used the Waterfront park ramps. They were not familiar with the facilities on the 

viaducts.  

Nevertheless, some interesting information was gleaned from the survey. First, from the 

pilot survey, overall the segment received an average psudo-BLOS grade of D. However 

this was not specific to traffic congestion. Second, in the main intercept survey, almost 

half of respondents gave the corridor a BLOS grade of B. Third, One respondent thought 

that bicycle traffic congestion is a good thing.  
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8.0 DISCUSSION 

The main purpose of this thesis was to summarize the state of BLOS for capacity 

methods and how applicable the methods are on bicycle facilities with high bicycle traffic 

flows. The focus of this research was to find methods that incorporate bicycle volumes to 

calculate BLOS capacity and traffic flow and to apply them to existing bike facilities that 

have periods of high bicycle traffic volumes.  

The methods that most closely resembled BLOS capacity measures were methods that 

calculate the delay caused by passings and meetings of cyclists and other users on path 

segments separated from motor vehicle traffic. The method is called hindrance and was 

developed by Botma in the Netherlands in 1995. The hindrance method was intended for 

bicycle and bicycle and pedestrian paths separated from motor vehicles. Except for the 

one method found for intersections, all other methods found for were built on Botma’s 

hindrance method.    

Only one method was found that calculated BLOS using bicycle volumes for on-street 

bicycle facilities. This method, recommended by the FHWA, is a simplified version of 

the hindrance method in one direction applied to on-street one-way bike lanes. However, 

the method was not included in the HCM 2010 because of lack research and evidence 

that the method was applicable to on-street bike lanes (HCM 2010). Therefore, there is 

currently no method recommended for determining BLOS for capacity for on-street bike 

lanes. In this study, a bicycle volume of 975 yielded a LOS score of F. However, with a 
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smaller standard of deviation in bicycle speeds of 0.9 mph and a higher mean speed of 

12.8 mph the method yielded a score of C.  

It was recommended that the Botma hindrance method only be applied to bike paths that 

have a two lane width path between 1.5 and 2 meters wide. With these criteria, half of the 

one-way bike lanes did not meet the requirements of the method. Another weakness is 

that method, in terms of a determining BLOS for bike lanes, is that the road geometry and 

facilities were different for each segment. However, these were not considered in the one-

way bike paths method.   

For the one-way bicycle path methods, the sensitivity relationships for bicycle volumes 

and bicycle standard deviation were positive and linear; as bicycle volumes or bicycle 

standard deviation increased, the value of the frequency of passings and increased by the 

same percentage. For higher values of bicycle mean speed, the relationship was negative 

and linear. As mean speed decreased, the less sensitivity and effect it had on the overall 

frequency score. For a bicycle volume of 975 with a standard deviation of 1.9 mph, the 

BLOS was an E.  

Another limit of the one-way path method is that it was only developed for a two lane 

path. It would not be possible to calculate the BLOS for one, three, or larger 

configurations with existing BLOS methods for bicycle paths. For evaluating capacity on 

a bike lane, lane width may be an important variable for relieving bicycle congestion. 

However, no such methods have been researched or developed. Additionally, each 
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segment will have its own unique mean speed base on road slope and constraints. Mean 

bicycle speed can be measured but it is not data that is commonly collected for bicycles. 

This method may be adequate for on-street bike lanes but there are many gaps in the 

methods that need to be addressed. 

Most of the methods for BLOS capacity are for off- street shared paths. Three of the 

segments/elements were used to evaluate this method; the Hawthorne Bridge sidewalk 

segments of 5 and 10 and the shared sidewalk of Segment 4. However, these methods are 

intended for recreational paths, not the constrained shared sidewalks located on that are 

used in this study. All methods for off-street paths are based on Botma’s LOS method for 

off-street shared paths. This method assumes a directional split of 50:50 for all modes. 

The bicycle mode split on the Hawthorne Bridge is close to 100:0. Directional split is 

important because meetings and passings have different hindrance times and are the main 

criteria for BLOS in these methods.  When directional splits for pedestrians were 

measured for this project, it was found that two-thirds of pedestrians walk in same 

direction as bicycles and vehicles but the other third travel in the opposite direction. 

During one peak hour count, 80% of pedestrians walked in the same direction as 

bicyclists, not 50% as the methods assume. Therefore, the segments did not meet the 

requirements of the methods. The thresholds for BLOS are unattainable with the 

conditions the study area.  This was observed in the analysis. Those methods that 

assumed a directional mode share of 50:50 and had path width requirements yielded 

BLOS scores of F.  
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The HCM 2000 developed a version of the Botma method that allows for assigned 

directional split for all modes and can be used for two or three lane paths. However, all 

shared sidewalks in the study area received a BLOS grade of F. The sensitivity test for 

the HCM 2000 method revealed that bicycle volumes had the greatest sensitivity. This 

method was also not included in the 2010 version of the HCM for not enough evidence or 

research to conclude that this is an appropriate method. For our study area, realistic 

values of volumes did not garner BLOS scores higher than an F.   

An FHWA worksheet was developed to calculate BLOS for shared paths. This worksheet 

is also based on Botma’s work. This method uses the 50:50 directional split constraint but 

it includes bicycles, pedestrians, runners, inline skaters, and child cyclists; clearly this 

method is designed for recreational shared paths. Because of the directional path 

constraint, this method was also not applicable to our study area on the Hawthorne 

Bridge. When applying the variables for this method, it yielded a BLOS score of F. 

Again, volumes were the most sensitive variable.  

The latest method in the HCM 2010 for off street paths allows for an unlimited number of 

user types and directional splits. The main drawback of this method is that it difficult and 

time consuming to calculate. The method requires a cumulative distribution calculation 

based on the length of the path and must be calculated separately for each mode 

interaction. This could probably be remedied with the development of a workbook or 

program that will calculate the cumulative probability functions within the method. The 

BLOS values for the Hawthorne Bridge were a D and Segment 3 received an E score. 
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These values seem more reasonable compared to the three other methods. The variables 

that are most sensitive were bicycle volume, path width, standard deviation of bicycle 

speeds and lower mean speeds.  The HCM 2010 method for paths may not be designed 

for high volume shared sidewalks in constrained areas, like a bridge, but it may be a good 

foundation to develop a better off-street shared path model for BLOS capacity measures. 

In the case of intersections, one method uses bicycle volumes. However, the model was 

not sensitive to bicycle volumes. Capacity, or saturation flow rate, is a variable in this 

method. A default value of 2000 bicycles per hour is used.  However there has not been 

much research or agreement on what constitutes the capacity for bicycles in the US. This 

method was also dropped from the HCM 2010 for inadequate research and validation. It 

was the only method found that utilized bicycle volumes to calculate BLOS capacity at 

intersections. 

A summary of the intercept survey found that respondents were concerned most about 

segments 7: the intersection of SW 1st and Main, Segment 6: the transition from the 

Hawthorne Bridge to SW Main Street, and conflict area 4: the Esplanade Ramp. All of 

these facilities were fresh in the minds of the cyclists. They were all located nearest the 

survey location. However, each of these segments/elements has legitimate safety and 

comfort issues that need to be addressed. Another issue with the survey is that the 

respondents were seasoned riders. The expectations of these riders may be different than 

those that rarely or never ride; those that we will need to attract if we are to increase 

bicycle mode share to 30% of trips. 
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It must also be noted that methods have only been found for off-street bicycle only paths, 

off-street shared paths, and intersections. No methods exist for the growing variety of 

bicycle facilities such as bicycle boulevards, cycle tracks and bike boxes.  

A bicycle projection estimation for the Hawthorne Bridge was carried out.  To address 

this objective, population,  household survey data, and  bicycle counts for the Portland 

Metro area were used to develop an estimated 2030 bicycle traffic projection for 

Portland, and in particular for the Hawthorne Bridge. If estimated 2030 bicycle mode 

share goals are reached, Hawthorne Bridge bicycle volumes would increase by 230% 

with an estimated peak hour volume between 2,200 and 5,300 bicycles per hour. These 

values are higher than estimations of bicycle capacity saturation rates of between 2,000 

and 3,500 per hour and confirm that capacity measures should be developed. Note that 

bicycle volumes below capacity will also cause delay. One of the tradeoffs for those that 

choose to use a bicycle over motor vehicle use is that, although the travel time tends to be 

slower on a bicycle, delay during the trip is low due to lower traffic volumes. If we want 

to encourage more people to cycle and keep the current cyclists choosing to cycle, than it 

would be wise for transportation agencies avoid bicycle delay.  A measurement such as 

BLOS for capacity will help transportation officials mitigate and plan for future 

mitigation of bicycle traffic.  

In summary, it was found that a bicycle capacity method will become a useful tool as 

bicycle mode share and bicycle volumes increase to meet future climate change and 

transportation planning goals. However, the existing models for BLOS capacity are not 



 

131 

 

appropriate for bicycle facilities with periods of high bicycle traffic flows and will have 

to be developed.  

  



 

132 

 

9.0 CONCLUSION 

This study has revealed gaps in existing BLOS capacity measures and found that the 

existing BLOS models are not applicable to most bicycle facilities with high bicycle 

traffic flow such as on-street bike lanes and intersections. For many types of emerging 

bicycle facilities, such as bicycle boulevards and cycle tracks, no bicycle capacity or 

traffic flow measures have been developed.  It has also been demonstrated that bicycle 

mode share is projected to increase drastically in the next 20 years due to aggressive 

planning goals as a strategy to curb climate change and traffic congestion. Yet, there have 

been no plans to develop a system to mitigate bicycle capacity and traffic flow.  

Level of service measures are commonly used to measure all modes of traffic. It is 

recommended to use the current BLOS framework metrics for measuring bicycle 

congestion so that the integration of bicycles into overall multi-modal traffic evaluation is 

seamless. It is also recommended that BLOS for bicycle facilities with high bicycle flow 

be addressed through research and the development of a new BLOS methodology.  

Initial research is needed in the areas of bicycle flow and capacity. Capacity guidelines 

for the urban, American context need to be developed.  As previously discussed, An A 

level of capacity in China is an F level of service for Germany.. It is time to develop new 

guidelines that describe acceptable levels of bicycle capacity in the US.  

In addition, it is recommended that variables that are statistically significant for a BLOS 

capacity measure for the urban context be investigated including geometric variables, 
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bicycle speed and standard deviation for different facilities. Also, pedestrian, transit, and 

motor vehicle variables should be tested for significance in affecting bicycle capacity.  

This study has also revealed that the best methods are those which can accommodate 

varying differentials of facilities and different levels of available data.  Research is ripe 

for developing workbooks and programs that can more easily determine BLOS capacity 

and allow users to refine or customize the accuracy of the results.  New default values 

also need to be researched and established. 

The motivation for this study was to investigate what bicycle levels of service measures 

exist and if they are necessary. This study brings to light the necessity of BLOS Capacity 

measures in areas where bicycle mode share are increasing. BLOS Capacity measures 

will be a useful tool for transportation engineers and planners to mitigate future bicycle 

traffic congestion and to forecast possible bicycle capacity problems in the same way that 

they use these measures to mitigate motor vehicle traffic. If transportation agencies want 

to meet the future planning goals for emissions and traffic congestion then they should 

not ignore bicycle capacity issues. There are already many obstacles to attracting new 

bicycle riders. Bicycle traffic congestion and delay will not only discourage potential 

riders but decrease existing bicycle ridership. BLOS capacity and traffic flow measures 

will be a necessary tools for transportation planning in the near future.  
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APPENDIX A: 2030 BICYCLE VOLUME ESTIMATES 

In order to meet the goals of the Portland 2030 Plan, bicycle mode share needs to 

increase to 25%   (PBOT 2010). Bicycle mode share in the City of Portland is currently 

6.2 %. The Portland metro area is projected to grow at a rate of 1.37- 1.7 % annually by 

2030.This means that the current population of the Portland Metro Area will grow from 

603,000 to between 826,110- 1,025,100 by 2030 (Metro 2009).  

Mode share is the percent of daily trips using a particular traffic mode type. Daily trips 

are estimated by multiplying the number of households in an area by the average number 

of daily trips, which is currently estimated at 9.21 household trips per day. The number of 

households in Portland in 2011 was estimated to be 269,781. The projected number of 

households in in Portland in 2035 is 402,000.  Using a growth rate model, the estimated 

household population would be 369,947 in 2030, illustrated in Figure a. 

One objective of this research was to determine if BLOS capacity measures are needed 

today or in the future. To address this objective, population,  household survey data, and 

existing bicycle counts for the Portland Metro area were used to develop a 2030 bicycle 

traffic projection for Portland, and in particular for the Hawthorne Bridge. If projected 

bicycle mode share goals are reached, Hawthorne Bridge bicycle volumes would increase 

by 230% with an estimated peak hour volume between 2,200 and 5,300 bicycles per 

hour. These values are higher than estimations of bicycle capacity saturation rates of 

between 2,000 and 3,500 per hour (Allen et al. 1998). Using this example of a high 

bicycle traffic corridor, it is reasonable to assume that in the future there will be 
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additional locations that will experience similar traffic congestion and confirm that 

capacity measures should be developed.  

 

 

Figure a. Projected Growth of Portland Households 

 

If the estimated 2030 households are multiplied by the current average daily trips per 

household of 9.2, daily trips in 2030 Portland are equal to 3,403,512 trips per day. If 

Portland reaches its goal of a 25% bicycle mode share, then there will be an estimated 

850,878 bicycle trips per day. Using the same method with an estimated 2012 household 

population of 274,302, the number of trips in 2012 that constitute 6.2% of daily trips is 

156,462.  
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The 2012 Average Annual Daily Traffic (AADT) for bicycles on the Hawthorne Bridge 

was 4,364 (collected from PBOT EcoCounter Totem Site). The AADT was calculated 

from averaging all the daily volumes of the year. Dividing the 2012 bicycle AADT of 

4,364 on the Hawthorne Bridge by the 6.2 % bicycle mode daily trips of 156,462, an 

estimated 2.8 % of bicycle trips are taken on the Hawthorne Bridge. Assuming that only 

the household population and mode share of bicycles increases to 25% in 2030, all else 

equal, the number of daily trips on the Hawthorne Bridge could be 

369,947 households* 9.2 HH trips per day*0.25 bike mode share*0.028 on Hawthorne 

Bridge. 

= 23,824 AADT 

If the peak hour in 2030 is distributed the same as in 2010, then the estimated peak hour 

volume would be 4,176. 

Table a.  Current and Projected Bicycle Volume Estimations 

Year 2012 2030 

Estimated Households 275,000 370,000 

Number of Daily Trips                        

(Households *9.2 Daily Trips) 

2,500,000 3,400,000 

Bicycle Mode Share 6.2% 25% 

Number of Bike Trips 156,000 850,000 

Hawthorne Bridge AADT,                          

based on a 2.8% of Bike Trips 

4,300 24,000 

Peak Hour Volume 975 4000 
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Volume Estimation with                                 

58% Diverted to Tilikum Bridge 

(1,833) 10,062 

 Estimated Peak Hour Volume after 

Tillikum Bridge Opening 

(407) 2,234 

 

Portland is building a bicycle, pedestrian, and transit only bridge that will be completed 

in 2016. The Tilikum Bridge is located less than one quarter mile south of the Hawthorne 

Bridge. Bicyclists who use the Hawthorne Bridge today may be diverted to the Tilikum 

Bridge.  

The following is a very rough estimate of possible bicycle volumes in the future. A 

bicycle count in the vicinity of the Tilikum Bridge, on a popular commute and 

recreational trail, the Springwater Corridor, would be a good estimate of bicycle traffic 

that could be diverted by the Tilikum Bridge. In 2008, the bicycle AADT on the 

Springwater Corridor was 2543 (Portland Bureau of Transportation 2012). See Figure b. 

This is 58% of the bicycle traffic on the Hawthorne Bridge.  

Even if the Tilikum Bridge takes 58% of the Hawthorne Bridge traffic, which is an 

overestimation of the actual traffic that will be diverted, the AADT on the Hawthrone 

bridge would be about 10,000 bicyclists; A 230%  increase from current bicycle volume. 

If the same daily percentage of bicycle travel during the peak hour in 2030 is the same as 

today with the diversion of 58% of the bicycle traffic to the Tilikum Bridge, then the 

estimated average peak traffic volume would be 2,234 bicycles per hour. Bicycle capacity 

estimates for a one lane bicycle path are between 2,000 and 3,500 bicycles per hour 

(Allen et. al 1998). Note that even though the Hawthorne Bridge is ten feet wide, it is a 
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shared facility with pedestrians. During peak hours bicycle travel is often limited to one 

lane due to pedestrian use of the bridge.  

 

Figure b. Bridge Bicycle Counts and Projected Bridge Use. Image from Google 

Maps 
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APPENDIX B. PILOT SURVEY 

 

Please answer the following questions 
 about your biking satisfaction in these areas around the Hawthorne Bridge 

 
My satisfaction biking in these areas (Circle answer): 

Location 
 

Terrible! 
 

 

 

   
Very 

Pleasant  

1 = Grand Ave to Bridge   1 2 3 4 5 6 

2 = North side of Bridge  1 2 3 4 5 6 

3 = Bridge to SW 1st Ave   1 2 3 4 5 6 

4 = SW 1st to Bridge  1 2 3 4 5 6 

5 = South Side of Bridge   1 2 3 4 5 6 

6 = Bridge to Grand Ave  
1 2 3 4 5 6 

Do you think bicycle congestion is a problem in any of these areas?  YES NO 

If yes, which areas? 

Gender   M  F TG   
       
Age  under 18 18 - 35 36-50 50-65 Over 65 
 
  

     

Thank you for your feedback! Other comments welcome on back  
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APPENDIX C: INTERCEPT SURVEY 

1. Which way did you get here?  (circle answer) 

1. SE, Grand and Madison (bike box) 

2. Spring water Corridor from the south 

3. Esplanade from the North 

4. Other, How? 

 

2. Which way are you going now?  

1. Waterfront Park, North 

2. Waterfront Park, South 

3. Naito Parkway 

4. 1st and Main 

5. Other, how? 

 

3. How often do you take this route?   

Per week? Per day? Per month? 

 
 

  

 

4. As a cyclist, do you consider yourself to be: 
1.    Very confident! I can ride on any street 

2.    Confident, I am comfortable riding if there is a bike lane 

3.    I am only comfortable riding on off-street paths or streets with low traffic volumes   

5. On your route approaching and on/off the Hawthorne Bridge, what areas would you like to see 

improved the most? See map, write down number(s) or describe. 

6. On the Hawthorne Bridge today, which best describes your riding experience? 

A. Great! I can ride at the speed I want!  
B. I can keep my desired speed but must maneuver around bicycles and pedestrians a little or let 

other faster riders pass me 

C. I have to reduce my desired speed a little to maneuver around bicycles and pedestrians or to let 

other faster riders pass me 

D. I have to reduce my desired speed a lot to maneuver around other bicycles and pedestrians or to 

let other faster riders pass me! 

E. Biking is difficult. It is hard to maneuver around other bicycles/pedestrians or faster riders that 

want to pass me 

F. I am forced to stop or nearly stop because there are too many bicycles/pedestrians on the bridge  

7. What age range do you belong to? 

Under 18 18-35 36-50 51-65 Over 65 

 
8. What is your gender?  

M F Other 
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