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Recent work indicates that microorganisms present in soils can 

remove carbon monoxide from the atmosphere and as such constitutes a 

major sink. B.E.T. adsorption studies were carried out on repre­

sentative soils from the Willamette Valley River Basin in order to 

determine their adsorptive characteristics for carbon monoxide and 

other gases. Attempts were made to isolate, through a non-soil ­

destructive sterilization, the adsorptive characteristics of the soil 

microorganisms as well as of the -test soil. 
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The carbon monoxide studies show physical adsorption equivalent 

to the coverage of a few per cent of the surface area at 25.0° and 

76 cm-Hg. Adsorption studies also shows that the soil rather then 

the microorganisms adsorbs most of the carbon monoxide. On sterilized 

soil, chemical sorption of oxygen was present and was probably caused 

by the oxidation of dead or damaged soil microorganisms. 

Hysteresis effects were present in all adsorption studies at 

25.0° and appears to be a characteristic of the constituents of the 

soil and represents a new and as yet unexplained phenomenon. 
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CHAPTER I 

INTRODUCTION 

Carbon monoxide (CO) is a colorless, odorless gas with well­

known poisonous properties. It has a melting point of -207°C and 

a boiling point at -192°C. The gas is only slightly soluble in water: 

0.00440% of O°C and 0.00279% at 20°C, by weight (1). 

There are certain salt solutions in which the carbon monoxide 

dissolves with reaction. The absorption and reaction of carbon mon­

oxide with hemoglobin is physiologically important; among inorganic 

salts the univalent copper salts are important. Cuprous chloride 

(CuCl) solution is used in gas analysis to absorb carbon monoxide 

(forms CuCl.CO·2H 0 complex) (1). For a long time only a fewaddi­2

tional compounds of carbon monoxide were known, but now compounds of 

som~ 20 or more metallic elements are known [i.e. Ni(CO)4' Fe(CO)S' 

Fe2 (CO)9' cr(CO)6' KCO, etc.] (1). 

While a great deal is known about carbon monoxide in the 

laboratory, we are at a loss to e~plain its fate in the environment. 

Carbon monoxide is the second most abundant pollutant in urban air; it 

is exceeded only by carbon dioxide and generally exceeds all other 

pollutants combined. 

The various major environmental sources of carbon monoxide are 

derived from: 

1. Incomplete combustion of fossil fuels. 

2. Coal, volcanic, marsh, and natural gases. 
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3. 	 Marine hydrozoan jellyfish (siphonophores). 

4. 	 Methane oxidation by OH Radicals in the troposphere. 

Other sources are lightning storms; seed germination; injured, 

cut 	or dried green vegetation; bladders of a number of species of 

brown marine algae; and photodissociation of carbon dioxide in the 

upper atmosphere. 

Ambient concentrations of carbon monoxide in the earth's atmos­

phere has been estimated to vary between 0.04 to 0.90 parts per million 

(2). To this ambient concentration, the world's production of carbon 

monoxide is globally adding over two hundred million metric tons an­

nually (2,3). Using this conservative production estimate, the am­

bient concentration of carbon monoxide would be expected to double 

every four or five years. However, due to its relatively short resi ­

dence time in the atmosphere (approximately 0.1 years) (4) the ambient 

concentration of carbon monoxide is surprisingly constant. 

This unexpected result strongly suggests that there are sinks 

operating in nature to produce this effect. Three major sinks are: 

1. 	 Chemical reactions of carbon monoxide in the 
atmosphere 

2. 	 Plant activity 

3. 	 Soil microorganisms activity 

Of particular interest is the ability of certain microorganisms (Bacil-

Ius oligocarbophilus and Methano-sarcina barkerii) to convert carbon 

monoxide into carbon dioxide or methane (5). Recent work reported 

by Inman (6) demonstrates that soil can remove carbon monoxide from 
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the atmosphere and as such constitutes a major sink. Inman further 

demonstrated that the "soil's ability to remove carbon monoxide from 

the atmosphere is ascribed to the activity of soil microorganisms". 

A major question,. unanswered by Inman's work, deals with the 

method by which the amounts of carbon monoxide in the atmosphere are 

concentrated in the soil such that its conversion, by soil microorganisms, 

will represent a major sink. Therefore, a major purpose of this re­

search is to determine the adsorptive capacity (via physical or 

chemical means) of various soils. 

If strong adsorptive forces are operative a mechanism could be 

established by which large amounts of atmospheric carbon monoxide 

are concentrated in the soil thereby being made accessible to micro­

organisms. 

In order to determine the magnitude of this effect, the adsorp­

tive characteristics of various test soils in the Willamette Valley 

River Basin were measured. Furthermore, experiments were carried 

out in order to determine whether the adsorption of carbon monoxide 

by various test soils was physical or chemical in nature. [Attempts 

were made to isolate, through a non-soil-destructive sterilization, 

the adsorptive characteristics of the microorganisms as well as of 

the test soil.] It is of interest to point out that the absorptive 

properties of dried azotobacter have been measured (7). However, no 

literature has been found on the adsorption studies of carbon monoxide 

on soils or its microorganimsm prior to this work. 

The adsorptive characteristics of the test soils were determined 

by the method established by Brunauer, Emmett, and Teller (8). The 

t 

L 
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work up of all data was carried out using their standardized methods. 

In addition to the carbon monoxide studies, preliminary results 

obtained with nitrogen, oxygen, ammonia, and argon on the test soils 

will be discussed. 

A good estimate of the precision of the apparatus can be seen 

from the repro'ducibility of points in the nitrogen and argon runs 

on silica gel. The largest deviation between the adsorption and 

desorption points shown is 0.004 cc/sample and 0.04 cc/sample in 

Figures 16 and 17, respectively. 

All temperatures recorded in this work are in degrees centigrade. 



CHAPTER II 

EXPERIMENTAL 

APPARATUS 

The adsorption apparatus used throughout this work is shown in 

Figures 1 and 2, and consists of the following (9, 10): 

Calibrated gas buret 
Cenco high vacuum two-stage mechanical pump 
Constant temperature bath 
Constantan versus copper multijunction thermocouple 
Gaertner M-9ll cathetometer 
Honeywell potentiometer 
Kontex/Martin three-stage oil diffusion pump 
Mercury manometer 
Sample bulbs 
Televac vacuum gauge 

EXPERIMENTAL PROCEDURE 

The method of operation is not complicated and will be discussed 

in detail (10). The sample bulb (see Figure 1) containing a sufficient 

amount of soil or standard (Copper or Silica Gel) is connected to the 

apparatus below stopcock (T). The sample bulb is then evacuated to 

one micron pressure. If the sample b~lb contained a new soil, evacua­

tion would continue for a period of not less than three days at ~oom 

temperature to insure the removal of liquid water, water vapor, and 

other physically adsorbed gases. If the sample bulb contained a 

sample that has been previously exposed to a test gas (i.e., carbon 

monoxide, nitrogen, helium, oxygen, or argon), evacuation would con­

tinue for a period of not less than eight hours. 
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The volume of gas admitted to the B.E.T. system is then deter­

mined by the following procedure. The entire system is evacuated to 

one micron at room temperature for the appropriate length of time. 

Stopcock (T) is then closed (see Figure 2) and the helium is admitted 

through the three-way stopcock (X) into the buret up to a pressure 

not greater than that exceeding the capacity of the manometer (about 

80 cm-Hg). The level of mercury in the buret is adjusted to the 

appropriate calibrated mark by the use of stopcocks (B-1) and (B-2). 

The telescope on the cathetometer is set at 20.000 cm. The level of 

mercury in the reference leg of the manometer can be accurately set 

on the telescope's cross hair by careful manipulation of stopcocks 

(M-2) and (M-3). Stopcock (M-1) is open to the vacuum pumps during 

any run to insure a vacuum over the column of mercury that is not 

greater than five microns. The mercury in the buret or in the mano­

meter is always moved in the same direction, from lower to higher 

pressure, so that the shape of its meniscus remains as uniform as 

possible, thereby insuring a con~istent volume in the capillary 

tubing between the reference mark in the reference leg of the mano­

meter and the stopcocks (T) and (X). The pressure can now be recorded 

by setting the cross hairs on the mercury in the column leg and' 

reading the scale on the beam of the cathetometer. The temperature. 
of the scribed bar on the cathetometer, the mercury in the manometer, 

the pyrex glass tubing, and the sample bulb's water bath are all 

recorded by the use of a calibrated constantan versus copper mu1ti­

junction thermocouple in reference with a crushed ice and distilled 

water bath in concert with a Honeywell potentiometer (11). 
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With stopcocks (X) and (T) closed, the level of mercury in the 

buret can be lowered to a different calibration mark and the pressure 

in the enclosed system can be read as previously discussed. Contin­

uing on to lower mercury levels in the buret and their corresponding 

pressures, it is possible with slight modifications (i.e. changes 

in expansion of the mercury, glassware, and cathetometer due to 

changing temperatures in the room) to determine accurately the volume 

of gas at standard temperature and pressure contained in the closed 

system as given in equation (1). 

V (Vb T P./TbP + V1T P./TP ) 	 (1)t 	 • 0 L 0 0 L 0 
L 

V total volume of gas admitted to the system at STPt 

= volume in the buret at each calibration markVb. 
L 

= average volume in the capillary tubing from theV1 manometer reference mark to stopcocks (T) and (X) 
to the highest calibration mark in the buret

= pressure corrected for the thermal expansion ofPi 
mercury in the closed system for each corresponding 
calibration mark 

T = temperature of the capillary tubing 

= temperature of the gas buret 

T ,P = standard temperature and pressure
o 0 

The correction for the nonideality of all gases used at 25.0 0 

is not significant except for ammonia where it must be taken into ac­
count for all volumes (10). 

The volume required to fill the space not occupied by soil or 

the compact glass wool in the sample bulb is now determined in the 

adsorption and desorption mode using helium gas. With the level of 
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mercury in the buret corresponding to a pressure of about 0.1 atmos­

pheres, the stopcock (T) is opened. The system is allowed to come 

to equilibrium; generally 10 to 30 minutes. Then the calibrated mark 

of mercury in the buret, the pressure in the adjusted manometer, and 

the temperature is recorded. The I'evel of mercury in the buret is 

then raised to the next significantly higher pressure level, allowed 

to attain equilibrium, and then recorded. 

In a similar manner, this process is continued until the next 

higher level of mercury in the buret would exceed the maximum pres­

sure for the manometer. This completes the adsorption run for a par­

ticular gas. The desorption run is performed in a very similar 

manner. 

The average volume of helium required to fill the empty space 

to a unit pressure for the adsorption and desorption process can 

be calculated by using equation (2). 

= - (Vb T P./TbP ) - (V.T P./TP ))/P. (2)(Vt i 010 101 0 1 

average volume of helium to fill the empty 
space per unit pressure 

Vt'Vb ,T ,P ••• same as in equation (1)
i 0 0 

The value of V for the adsorption and desorption run should be theHe 

same within experimental error since helium does not adsorb but merely 

fills the unoccupied space in the sample bulb. 

The volume of a particular gas adsorbed by the soil can now be 

determined. The entire system is evacuated to one micron at room 

temperature for a period of not less than eight hours. 
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With stopcock (T) closed, admission of the desired gas (nitrogen, 

carbon monoxide, oxygen, argon or ammonia) to the buret can be accom­

plished through stopcock (X). In a similar manner as described for 

helium the level of mercury in the buret is varied and the correspond­

ing pressure and temperature recorded so that the average total volume 

of desired gas admitted to the closed system can be calculated using 

equation (1). The stopcock (T) is now opened to the sample bulb and 

the adsorption and desorption runs are then recorded in a manner pre­

viously discuss~d. 

The volume of adsorbed gas is then calculated via equation (3): 

V a = Vt - (Vb.ToPi/TbPo) - (VlToPi/TPo) - [VHePi(l + a (Pi/Po))] 
~ 

(3) 

v a = volume of gas absorbed 

a = correction factor required to take into account 
the imperfection of the gas at the temperature of 
the sample bulb bath (10) and at 1 atmospheric 
pressure 

By plotting the volume of gas adsorbed versus pressure, one obtains 

curves from whose shape it is possible to determine whether physical 

or chemical adsorption is occurring. 

In order to determine the surface areas of soils and standards, 

adsorption studies with nitrogen are performed at -195.8°. The 

volume of a monolayer of nitrogen adsorbed at that temperature is 

calculated using equation (4): 
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P./V (PO - P.) l/V C + «C-l)/V C) (P./pO) (4*) 
~ 	 a ~ m m ~ 

V the volume of gas, usually N ' required to cover 
m 	 Zthe surface of the soil to a depth of one monolayer 

C constant at a given temperature 

the vapor pressure of the gas at the temperature 
of the sample bulb bath 

Plotting P./V (PO - P.) versus P./po should give a straight line with 
~ a ~ ~ 

a slope of (C-l)/V C and an intercept of l/V C. From the volume of 
m 	 m 

a monolayer, the average surface area of the soil can be calculated (10). 

MATERIALS 

Helium, nitrogen, and argon gases were obtained from Airco, 

chemically pure. The gases were passed through a drying tube con­

taining Drierite for removing any water vapor. The oxygen gas used 

was obtained also from Airco at a purity of U.S.P. The research 

grade carbon monoxide was obtained from Matheson Gas Products with 

a list of impurities as follows: 

Hydrogen less than 10 ppm 
'Oxygen 20 ppm 
Argon 20 ppm 
Nitrogen 100 ppm 
Carbon dioxide 10 ppm 
Methane 2 ppm 

This gas was passed through a trap cooled to -78 0 and then through a 

drying tube containing sodium hydroxide pellets and anhydrous calcium 

chloride to insure removal of carbon dioxide and water vapor. 

* 	This is the standard equation used for calculating surface areas. 
For derivation see reference (8). 
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respectively. Anhydrous ammonia gas was obtained from the Matheson 

Company Inc., with a designated purity of 99.99%,. 

Copper and silica gel were used in order to standardize proce­

dures and compare results with other published data. The Copper, 

Purified, Powder, CX 1925 CB 963 obtained from Matheson Coleman and 

Bell, with a purity for other metals of 99.95% was oven dried in air 

at 100 0 for 24 hours. Silical Gel 6-12 mesh, SX 144 CB 963 was obtained 

from Matheson Coleman and Bell, with no indication of purity listed. 

This standard was treated to the same procedure as that for the 

sterilization of soils, in order to check the reproducibility of the 

apparatus. 

The soils used in this work were obtained from the Soil Testing 

Laboratory, Oregon State University, Corvallis, Oregon, 97331. The 

soil was collected in the desired area from the first seven inches of 

surface soil. The samples were air dried at room temperature, mech-

anically pulverized in a mortar and rotating pestle then passed 

through a 1.0 to 1.5 rom sieve (12). A sufficient amount of soil was 

transferred into sample bulbs, sealed, weighed and evacuated to one 

micron for a period of not less than three days. 

The soils chosen were the Benchmark series soils which occur 

most frequently in the Willamette Valley River Basin. A brief des­

cription of each series soils used in this work will be given next (13). 

However, a more complete description of the soils can be obtained from 

the Soil Testing Laboratory, Oregon State University or the Soil Con­

servation Service, U.S. Department of Agriculture, P.O. Box 497, 

Hillsboro, Oregon, 97123 (14,15). 
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The Amity series consists of very deep, somewhat poorly drained 

soils, formed in old water-deposited silty material on nearly level 

or slightly convex valley floor terraces of the Willamette Valley. 

Slopes may range up to five percent. Typically it has very dark 

grayish brown, friable, silt loam surface layers and grayish brown 

or light olive brown, firm, silty clay loam subsoil. The soil varies 

from medium to slightly acidic. 

The Dayton series consists of very deep, poorly drained, light 

colored soils formed in old water-deposited materials on nearly level 

and somewhat concave valley floor terraces, predOminantly in the 

southern part of the Wi11amette Valley. Typically it is dark gray, 

friable, silt loam surface layers with the rooting depth of plants 

restricted by the clay subsoil. The soil varies from medium to slightly 

acidic. 

The Jory series consists of very deep, well drained soils formed 

on generally stable old upland surfaces in the low foothills of the 

Wil1amette Valley. Most areas have slopes of less than 12 percent, 

but slopes may range up to 30 percent. Jory soils typically hav~ very 

dark, reddish brown, friable, silty clay surface layers and dark red­

dish brown, firm clay subsoils. The surface layers are medium acidic 

and the s~bsoils are strongly acidic. 

The Willakenzie series consists of moderately deep, well drained 

somewhat reddish soils formed on gently sloping to steep foothills 

generally along the marginal areas of the Wil1amette Valley. Most 

areas have slopes less than 30 percent. Typically, these soils have 

dark brown, friable, silty clay loam surface layers and brown, to 
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reddish brown, friable, silty clay loam subsoils that are underlain 

at depths greater than 30 inches by fractured sedimentary bedrock. 

Willakenzie soils are moderately acidic. 

The Woodburn series consists of very deep, moderately well 

drained soils formed in old water-deposited silty material on nearly 

level broad terraces in the Willamette Valley_ Slopes may range up 

to 20 percent. These soils typically have very dark brown, friable 

silt loam surface layers and dark brown silty clay loam subsoil, 

generally with a firm, slightly brittle layer. The Woodburn woils 

are slightly acidic. 

Listed in Table I is an analysis of the organic carbon, nitrogen, 

and hydrogen in the Willakenzie test soil. Test II lists some of the 

chemical data that has been previously reported in the literature for 

these soils. 

TABLE I 

ORGANIC MATTER IN THE WILLAKENZIE TEST SOIL (15) 

Organic Carbon 1.46% 

Organic Hydrogen 0.84% 

Organic Nitrogen 0.16% 

CIN Ratio 9.1 % 



TABLE II 

CHEMICAL DATA ON SAMPLES OF REPRESENTATIVE SOILS (16). 

EXTRACTABLE CATIONS 
Series Depth pH ORGANIC MATTER Meq/100g soil 
Soils Inch H2O 1:1 Carbon Nitrogen C/N Ca Mg H Na K 

Amity 0-7 5.3 3.01% 0.227% 13.3 9.4 2.6 15.2 0.1 1.1 

Dayton 0-9 5.1 1.51% 0.128% 12 3.6 1.7 9.7 0.2 0.1 

Jory 0-5 5.4 3.59% 0.232% 15.5 9.8 2.2 20.9 0.1 0.9 

Wi11akenzie* 0-4 6.0 3.44% 0.247% 14 20.2 3.3 12.9 0.2 0.7 

Woodburn 0-9 6.5 1.78% 0.127% 14 7.3 2.6 8.2 0.5 0.3 

*The two Wi11akenzie soils listed in Table I and II are different samples of the same soil series. 
The differences in the organic matter could be due to the degree of cultivation, fertilization, and 
nonhomogeneity of the general soil series. 

...... 
0\ 



CHAPTER III 

RESULTS AND DISCUSSION 

Surface Area of Soils 

In order to measure the adsorptive capacity of soils, the five 

most frequently occurring soils in the Willamette Valley River Basin 

described previously in Table II were studied (these soils are Amity, 

Dayton, Woodburn, Jory, and Willakenzie). 

Figure 3 gives the results for the nitrogen adsorption isotherm 

studies carried out with these five soils. As can be seen from the 

curves, the soils seem to fall into two groups. The first group con­

sisting of Amity, Dayton, and Woodburn possess similar nitrogen adsorp­

tion which is probably due to their geomorphical similarities. The 

second group, consisting of lory and Willakenzie, possess similar 

nitrogen adsorption as well as being related geomorphically. 

The surface areas for the five soils are listed in Table III. 

The values for the surface areas fall into the same groups mentioned 

earlier. The largest surface areas obtained are with Jory and 

Wil1akanzie soils. These soils are from the foothills o"f the Wil1amette 

Valley River Basin where drainage is high. The lowest surface areas 

were obtained with Amity, Dayton, and Woodburn soils. These soils 

are from the valley floor and as such have poor drainage. 
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Figure 3. Surface area measurements of the test soils. 



Soil 

Amity 

Dayton 

Woodburn 

Jory 

Wi11akenzie 

TABLE III 

SURFACE AREA OF SOILS* 

Air Dried 
wt. of soil 

(g) 

Vm from Data 
(cc of N2) 

STP V Igram 
m 

Surfac2 Area 
(m Ig) 

1'.1355 g 2.18 cc 1.92 cc/g 
2

8.41 m Ig 

1.0495 g 2.18 cc 2.08 9.11 

0.8685 g 2.37 cc 2.73 12.0 

1.0445 g 7.08 cc 6.78 29.7 

1.0216 g 7.81 cc 7.64 33.5 

* For a rough comparison: Previous work on Barnes and Cecil soils 
gave respectively 44.2 m2/g and 32.3 m2/g, surface areas (17,18). 
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~dsorption Studies on Nonsteri1ized Soils 

Due to the large surface area of Wi11akenzie, more detailed 

studies were carried out with nitrogen and carbon monoxide. A 50 gram 

sample of Wi11akenzie soil was tested with a variety of gases at room 

temperature in order to determine the adsorptive characteristics of 

this soil at 25.0°. 

Figure 4 compares successive adsorption runs of helium, carbon 

monoxide, and nitrogen gases with the same soil at the same temperature. 

The sequence of events for this study was as follows: 

1. Evac to 1 micron for 3 days at room temperature. 

2. He 	 1st exposure at 25.0° v = 1.0317 + 0.0001 m1/cm HgHe 

3. Evac 	 18 hours at room temperature. 

4. CO 	 1st exposure at 25.0° V at 76 cm Hg = 5.86 m1 STP a 

5. 	 Evac 19 hours at room temperature. 

1st exposure at 25.0° V at 76 cm Hg 3.65 m1 STP a 

7. Evac 	 91 hours at room temperature. 

8. CO 	 2nd exposure at 25.0° V at 76 cm Hg 7.78 m1 STP a 

9. Evac 	 15 hours at room temperature. 

10. CO 	 3rd exposure at 25.0° Va at 76 cm Hg = 8.85 m1 STP 

11. 	 Evac 18 hours at room temperature. 

2nd exposure at 25.0 0 V at 76 cm Hg = 4.80 ml STP 
a 

13. Evac 	 17 hours at room temperature. 

14. He 	 2nd exposure at 25.0° 1.0318 + 0.0001 m1/cm Hg 

As can be seen from Figure 4 and the ~bove sequence, there"is an apparent 

increase in the volume of gas adsorbed between the first and second 
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exposures. In the case of the nitrogen adsorption run, there is an 

increase in 31.5% and in the case of the carbon monoxide adsorption 

there"isan increase of 32.8%. Since the helium values at the beginning 

and end of this sequence of gaseous exposures did not change, the 32% 

increase in the volume of gas adsorbed between first and second expo­

sures of both carbon monoxide and nitrogen and the 13.8% increase in 

the volume of carbon monoxide absorbed between the second and third 

exposures could possibly be due to a change in the accommodation 

coefficient which in turn could be caused by varying evacuation times. 

Huang (19) observed increased adsorptions on samples of Silica Alumina 

that had been initially evacuated at 250°, 440°, and 800°. This would 

suggest that long periods of evacuation at a low temperature has the 

same effect as short periods at higher temperatures (18). 

In addition to the increased adsorption. with repeated exposure 

there was found a significant difference between the adsorption and 

desorption process for carbon monoxide and nitrogen on Willakenzie soil. 

This adsorption-desorption hysteresis effect was larger for carbon 

monoxide than for nitrogen. It was thought that since the soil in 

these runs was about two centimeters deep in the sample bulb there 

might exist a nonuniform pressure throughout the soil resulting in 

retention of residual carbon monoxide or nitrogen gas in the soil. 

In order to determine if the nonuniform pressure in the soil could 

have caused this hysteresis effect, a smaller sample of Willakenzie soil, 

approximately 30 grams, and a No. 440c stainless steel stirring bar 

was placed in the sample bulb. Adsorption-desorption runs were carried 

out with nitrogen, carbon monoxide, and oxygen and magnetically stirred 

I 



at 3 rev/min. The results of these runs (see Figure 5) showed that 

the hysteresis effect was not eliminated. 

Adsorption-desorption runs were now carried out with Jory and 

Dayton soils in order to see if similar hysteresis effects were present. 

The results (see Figures 6 and 7) of the runs demonstrated that a 

similar hysteresis effect was present. 

It is of major interest to compare the relative adsorptive 

behavior of carbon monoxide and nitrogen over Willakenzie, Jory, and 

ccDayton soils (see Table IV). In all runs the volume (--) of carbon 
g 

ccmonoxide adsorbed is greater than the volume (g-) of nitrogen or 

oxygen adsorbed. This relative behavior is in good agreement with 

previous adsorption studies of carbon monoxide, nitrogen, and oxygen 

on catalytic surfaces (20,21). These results strong~y suggest that the 

adsorptive process is largely physical in nature. The greater values 

found for carbon monoxide could be due to its having a small finite 

dipole moment which would enhance physical adsorption. However, the 

evidence indicates that no unusually large amount of carbon monoxide 

is physically adsorbed by the Willamette Valley soils tested. 

Adsorption Studies, on Sterilized Soil 

In order to determine if the sterilization proc'e"dure affects the 

surfac~ area, the same one gram sample of Willakenzie soil in Table II 

was used. The only difference in procedure was the inclusion of a 

cavity packed tightly with glass wool made in the capillary tubing be­

low the stopcock so as to act as a barrier against external micro­

organisms once the sample had been sterilized. 
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Figure 5. Carbon monoxide, nitrogen, and oxygen adsorption at 25.0o on a 30 gram sample of 
nonsterilized and stirred Willakenzie soil. 
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Figure 6•. Carbon monoxide, nitrogen, a~d oxygen adsorption at 25.0o on a 30 gram sample of 
nonsterilized and stirred Dayton soil. 
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TABLE IV 

ADSORPTION OF CARBON MONOXIDE, NITROGEN, AND OXYGEN ON 
WILLAKENZIE, JORY, AND DAYTON SOIL SAMPLES 

Volume (cc at STP) ad- Volume (cc at STP) ad-
Gas Exposure sorbed at 25.0 0 and sorbed per gram at 

_~~_c~-Hg 25.0 0 and t6 cm~Hg 

Wi11akenzie, Nonsteri1ized, Nonstirred, 50 grams 

CO 1st 5.86 cc 
CO 2nd 7. 78 cc 
CO 3rd 8.85 cc 

1st 3.65 ccN2 
2nd 	 4.80 ccN2 

Wi11akenzie, Nonsteri1ized, Stirring, 30 grams 

CO 	 1st 
1stN2 

O2 	 1st 

Jory, Nonsteri1ized, Stirring 

CO 	 1st 
1stN2 

O	 2nd2 

Dayton, Nonsteri1ized, Stirring 

CO 1st 
1stN2 

O2 	 1st 

3.58 cc 
2.41 cc 
2.26 cc 

4.51 cc 
2.98 cc 
3.07 cc 

3.36 cc 
1.47 cc 
2.13 cc 

0.119 cc/g 
0.158 cc/g 
0.180 cc/g 
0.074 cc/g 
0.098 cc/g 

0.121 cc/g 
0.082 cc/g 
0.077 cc/g 

0.151 cc/g 
0.100 cc/g 
0.103 cc/g 

0.095 cc/g 
0.040 cc/g 

N0.060 cc/g ....... 
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The vessel was evacuated and then filled to a 
pressure of 40.5 cm-Hg with Helium gas. The 
vessel was placed in a preheated tube furnace 
so that the glass wool was not less than three 
centimeters inside the door of the furnace. 
The vessel remained in the furnace at a tempera­
ture of 178 0 for not less than 20 hours (22). 
The vessel was then connected to the pumps and 
evacuated at room temperature for 48 hours before 
any adsorption runs were performed. While the 
vessel was being sterilized, the entire apparatus 
(manometer, manifold, buret, and capillary tubing) 
was also heated with a hot air gun for 2 hours 
while being evacuated. 

The surface area of the sterilized one gram sample of Willakenzie soil 

is shown in Table V along with the nonsterilized Willakenzie soil 

from Table III. As can be seen from this table, the surface areas 

of the sterilized and nonsterilized Willakenzie soil samples are the 

same within experimental error for B.E.T. measurements (10,18). 

In order to determine the roles played by the soil and its 

microorganisms on the uptake of carbon monoxide, a larger sample 

of soil was sterilized: 

28 grams of Willakenzie soil was placed in a 
sample bulb along with a stainless steel 
stirring bar and connected to the vacuum line. 
The capillary tubing below the stopcock was 
tightly packed with the glass wool. The soil 
was then sterilized and the volume of carbon 
monoxide and nitrogen gases adsorbed was 
measured. (See Figures 8,9 and Table VI). 

In an attempt to differentiate between the magnitude of the 

carbon monoxide uptake by the soil and the uptake by the soil's 

microorganisms the following experiments were carried out: 
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TABLE V 

SURFACE AREAS FOR STERILIZED AND 
NONSTERILIZED WILLAKENZIE SOIL 

Series Soil 

Wi11akenzie 

Wi11akenzie 

Condition 

Nonsteri1ized 

Sterilized 

V --m 

7.64 cc/g 

7.50 cc/g 

Surface Area 

33.5 m 2/g 

232.9 m /g 

TABLE VI 

ADSORPTION OF CARBON MONOXIDE AND NITROGEN 
ON STERILIZED WILLAKENZIE SOIL 

Exposure Gas 
Volume (cc at STP) 
adsorbed at 25.0° 

and 76 cm-Hg 

Volume (cc at STP) 
adsorbed per gram 

at 25.0° and 
76 cm-Hg 

Wi11akenzie 28g, Sterilized soil, Stirring, 25.0° 

1st expo CO 2.54 cc 0.091 cc/g 

2nd expo CO 2.77 cc 0.099 cc/g 

•1st expo 2.44 cc 0.087 cc/gN2 

2nd expo 2.03 cc 0.072 cc/gN2 
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Figure 8. Carbon monoxide adsorption at 25.~on a 28 gram sample of sterilized and w 
stirred Willakenzie soil. o 
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Experiment 1 

A 30 g sample of nonsterilized Willakenzie soil (Figure 5 and 

Table IV.) was: 

a. 
b. 
c. 
d. 

evacuated for 5 days at room temperature 
exposed to helium for 3 hours 
evacuated for 21.5 hours at room tempera
exposed to carbon monoxide for 3.8 hours 

to 

ture 

2 microns 

to 2 microns 

Experiment 2 

A 28 g sample of sterilized Willakenzie soil (Figure 8 and 

Table VI) was: 

a. 	 after sterilization, evacuated for 5 days at room tempera­
ture to 2 microns 

b. 	 exposed to helium for 2 hours 
c. 	 evacuated for 24.8 hours at room temperature to 2 microns 
d. 	 exposed to carbon monoxide for 2.7 hours 

From experiment 1, the volume of carbon monoxide adsorbed was 

0.121 cc/g (first exposure, Table IV). From experiment 2, the volume 

of carbon monoxide adsorbed was 0.091 cc/g (first exposure, Table VI)~ 

Assuming that the sorptive characteristics of the dead or damaged 

soil microorgapisms present in the sterilized soil contribute only 

slightly to the total volume of carbon monoxide adsorbed then the 

differenc~ in the volume of carbon monoxide adsorbed (0.030 cc/g) 

between nonsterilized and sterilized soil might be an indication of 

the effec& of the activity of the soil microorganisms present in the 

nonsterilized soil. However~ it seems likely that the soil rather than 

the 	microorganisms adsorbs most of the carbon monoxide. 

In the above experiments the only significant difference appears 

to be the exposure time with carbon monoxide. However, hysteresis 

studies (see below) on nonsterilized and sterilized Willakenzie soil 



33 

demonstrated that by varying the exposure procedure (different or same 

gases in varying sequence), or varying the exposure or evacuation time, 

no significant changes in 	the magnitude of the hysteresis effect was 

observed. 

Hysteresis Studies 

(1) 	 Exposure Procedure - From Figure 4 (50 g sample of non­
sterilized Willakenzie Soil) 

First 	Exposure of co: Magnitude of hysteresis effect 
between adsorption and desorption 
run was 33% by volume at l8.0cm-Hg. 

(2) 	 Exposure Procedure - From Figure 5 (30 g sample of non­
sterilized Willakenzie Soil) 

First 	Exposure of co: Magnitude of hysteresis effe~t 
between adsorption and desorption 
run was 32% by volume at l7.5cm-Hg. 

(3) 	 Exposure Procedure - From Figure 8 (28 g sample of steri ­
lized Willakenzie Soil) 

First Exposure of co: 	 Magnitude of hysteresis effect 
between adsorption and desorption 
was 22% by volume at l8.7cm-Hg. 

Second 	Exposure of CO: Magnitude of hysteresis effect 
between adsorption and desorption 
was 22% by volume at l6.6cm-Hg. 

For each of the soil samples studied, (50 g, 30 g, and 28 g 
samples) different exposure and evacuation times were used. 

These studies would suggest that the difference in exposure time for 

carbon monoxide in experiments 1 and 2 is not significant. 

In addition tonitrogen and carbon monoxide runs, adsorption 
. 

studies were also carried out with oxygen on sterilized Willakenzie 

soil. Oxygen was exposed to 28 grams of sterilized Willakenzie soil

for 70 hours. The results of the first 3 hours are shown in Figure 10. 

The volume of total oxygen adsorbed versus exposure time is shown in 

Figure 11 for the entire 70 hours. The total volume of oxygen adsorbed 
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Figure 10. Oxygen adsorption at 25.0·on the 28 gram sample of sterilized and stirred 

Willakenzie soil. 
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at a pressure of 58.346 cm-Hg was 19.74 ml at STP. The volume of oxygen 

that was physically adsorbed was 1.63 ml at STP and the volume chemically 

adsorbed was 18.11 m1 at STP. The 18.11 ml of oxygen chemical~y adsorbed 

corresponds to a weight increase of 23.7 mg. In this experiment the 

adsorption vessel containing the soil was also weighed before and after 

oxygen exposure. The weight increase which corresponds to chemically 

adsorbed oxygen was found to be 23.7 mg. This is in excellent agree­

ment to the previously given value found from the volume of oxygen 

adsorbed. 

The oxygen adsorption on sterilized Willakenzie soil is due to 

two different adsorption processes. The first process (also the smallest 

'adsorption effect) is due to physical adsorption. The magnitude of 

this phy&ical adsorption as judged by the slope of the upper most curve 

in Figure 10 is comparable to that found for nonsterilized Willakenzie 

soil (see Table IV). The second process (the largest adsorption effect) 

is due to either a chemical adsorption or reaction. It is interesting 

to note that chemical adsorption of Dxygen by sterilized soil has not 

been reported in the literature. 

It is believed that the chemisorption of oxygen by sterilized 

Willakenzie soil is due to the dead or damaged soil microorganisms. 

The oxidation of the dead or damaged microorganisms could possibly 

produce acid sites in the soil. 

In an attempt to acquire additional information on the chemical 

adsorption of oxygen by sterilized Willakenzie soil, the 28 gram sample 

of Willakenzie sotl was exposed to gaseous ammonia. Also, another one 

gram sample of sterilized Willakenzie soil was exposed to :gaseous 
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ammonia. This second sample was not pretreated with oxygen and 

therefore was considered a control sample. 

B.E.T. plots of adsorption isotherms for the ammonia adsorption 

on the two samples of Willakenzie soil are shown in Figures 12 and 13 

respec t i vely. The oxygen exposed s teril iz.ed soil was exposed to am­

monia for 64 hours and its total volume of ammonia adsorbed was 

477.9 ml (see Figure 14). Furthermore, it was found that of the total 

volume of adsorbed ammonia, 338.6 ml was physically adsorbed while 

140.0 ml was chemically adsorbed. The relative volumes of physically 

and chemically adsorbed ammonia were determined in the following manner: 

The oxygen exposed s.terilized soil which had been 
exposed to ammonia for 64 hours weighed 137.1436 
grams (at a pressure of 35.819 cm. Hg and a tempera­
ture of 25.0°). Subtracting the weight of gaseous 
ammonia present at the end of the 64-hour run 
(0.0250 grams) and the weight of the exposed soil 
sample (136.8795 grams) after a 24-hour evacuation 
period gives the weight (0.2391 grams) of the ammonia 
that is physically adsorbed (this weight corresponds 
to an ammonia volume of 338.6 ml or 12.1 cc per gram 
of soil). Subtracting from the weight of the exposed 
soil sample (136.8795 grams) after a 24-hour evacua­
tion period, the weight of the evacuated soil (136.7806 
grams) prior to adding ammonia gives the weight of 
ammonia that was chemically adsorbed (0.0989 grams). 
This weight corresponds to an ammonia volume of 
140.0 ml or 5.0 cc per gram of soil. 

The .otal volume of ammonia adsorbed as calculated from the 

weight increase was 478.6 ml STP. This value is within 0.7 ml STP 

(1.5 PPT) of the value arrived at from the ammonia adsorption 

(477.9 ml STP) as reported in Figure 14. 

The one gram control sample that was not exposed to oxygen was 

exposed to ammonia for 50 hours. The amount of e:b~mic_ally a(lso.r~"d 
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ammonia corresponds to 2.2. cc per gram and was determined in the 

following manner: 

After a 50-hour exposure the one gram sample was 
evacuated for one hour. The weight of the evacuated 
sample was 35.6006 grams while the weight prior to 
the amonia exposure was 35.5990 grams. The dif­
ference in weight was 0.00l6 gram and represents that 
weight of chemically adsorbed ammonia. This cor­
responds to 2.2 cc of ammonia per gram of soil. 

It was also found that the amount of chemically adsorbed ammonia was 

essentially the same for a 2 hour or 50 hour exposure time. 

Therefore, the results of these runs strongly suggest that the 

oxygen exposed sterilized soil sample will chemically adsorb about 

twice as much ammonia as the sterilized soil sample that was not ex­

posed to oxygen. This result would also support the idea that the 

addition of oxygen produced additional sites (possibly acid groups) 

in the soil that will chemically bind ammonia molecules.* 

Further Hysteresis Studies 

For the adsorption runs of carbon monoxide, nitrogen, and oxygen 

on sterlized and nonsterilized soils at 25.0° an unexplained hysteresis 

effect has been present. It was ~f interest to see if the hysteresis 

effect was present with argon. Argon was exposed to the 28 gram 

sterilized Whllakenzie soil sample that was previously treated with 

oxygen and ammonia. Each pressure reading on the adsorption and de-

sorption curves (see Figure 15) was recorded after a 15 min. and 

30 min. interval. The last pressure reading (17.204 cm-Hg) of the 

* From the carbon monoxide runs on Willakenzie soils, it was shown 
that stirring does not have a significant effect on the volume of 
gas being adsorbed. 



0.80 

" 


Va 

ml 

0.40 

(17.204 em-Hg) 

! I 

0.000 ~o 40 60 P em 
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desorption curve was recorded for a 4-hour interval, during which the 

pressure did not change. As shown in this figure the hysteresis effect 

is operative even with argon (not previously recorded in literature). 

Since there were no significant pressure changes during a four­

hour interval the hysteresis effect could not be due to a slow diffu­

sion process in the sterilized soil such as a pore-size soil effect or 

a solubility of the gas in any of the constituents of the sterilized 

soil. 

It should be noted that after the above argon run on the 28 

gram sample of oxygen and ammonia exposed sterilized Willakenzie soil 

was performed, the average volume of helium required to fill the 

empty space to a unit pressure had increased by about 1% as compared 

to V after sterilization and before any gas exposure. This increaseHe 

in unoccupied space could be due to the lengthy evacuation times 

which might remove residual water vapor or oxidized organic matter. 

In order to determine whether the hysteresis effect was due 

to either the equipment or the soil the following adsorption runs 

were carried out. Two, three gram samples of silica gel were placed 

in a 5cc and 95cc sample bulb. The silica gel samples were sterilized 

in essentially the same manner as reported earlier for the Willakenzie 

soil. 

The 5cc sterilized silica gel sample was exposed to nitrogen 

and the results are shown in Figure 16. The 95cc sterilized silica 

gel sample was exposed to argon and the results are shown in Figure 17. 

With both silica gel samples no hysteresis effect was found. 
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In order to determine if the hysteresis effect was caused by 

living microorganisms that might have survived the sterilization 

procedure, a portion of the 28 gram sample of sterilized Willakenzie 

soil that had been exposed to oxygen and ammonia was tested along 

with a sample of nonsterilized Willakenzie soil. The nonsterilized 

Willakenzie soil showed signs of growth within 24 hours at room 

temperature whereas the sterilized sample showed no visible growth 

even after 6 days at room temperature. Therefore, the hysteresis 

effect appears to be characteristic of the constituents of the soil 

sample and represents a new and as yet unexplained phenomenon. 

Summary 

Adsorption studies of carbon monoxide do not show any adsorption 

effects on soils in excess of the amount that would be expected as 

a physical adsorption. Carbon monoxide, nitrogen, and oxygen show 

physical adsorptions equivalent to the coverage of a few per cent of 

the surface area of the various soils at 25.0°, which is in agreement 

with prior observations that have been made for nitrogen and oxygen 

on various soils (17,18). 

Adsorption studies for carbon monoxide also show that the soil 

rather then the microorganisms adsorbs most of the carbon monoxide. 

Adsorption studies of oxygen on sterilized soil indicates the presence 

of a chemisorption process which could be the result of the oxidation 

of dead or damaged soil microorganisms. 

In all of the adsorption studies at 25.0° on the sterilized and 

nonsterilized soils, the presence of a hysteresis effect was observed 

between the adsorption and desorption modes of the same gas run. The 
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hysteresis effect was not due to any observable experimental error. 

Therefore, the hysteresis effect appears to be characteristic of the 

constituents of the soil sample and repre~ents a new and as yet 

unexplained phenomenon . 

• 
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