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Abstract 

Elevated levels in blood serum (>10µmol/L) of the amino acid homocysteine is 

strongly correlated with the incidence of heart failure (HF). We present evidence 

that the cyclic thioester, homocysteine thiolactone (HTL), a metabolic product of 

homocysteine, irreversibly modifies proteins that regulate the contractile process 

in cardiac muscle. Two proteins found in the sarcoplasmic reticulum (SR), the 

Ca2+ pump (SERCA2), and the ryanodine receptor (RyR2), are responsible for 

controlling the cytosolic Ca2+ concentration and hence the contractile state of the 

heart. While both improper Ca2+ handling and elevated homocysteine levels have 

been considered bio-markers in HF, a direct connection between the two has not 

previously been made. We show that HTL reacts with lysine residues on RyR2, 

generating a Nε-homocysteine-protein, which results in carbonyl formation and a 

change in the Ca2+ sensitivity of RyR2. This is a new molecular mechanism 

linking elevated levels of Homocysteine, improper Ca2+ handling and heart 

failure. This work was supported by NIH 1 R41 HL105063-01 to J. Abramson and 

R. Strongin. 
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Chapter 1:  Background 

1.1 The Contraction of a Muscle Cell 

Vertebrate muscle provides mechanical force upon stimulation and can be 

separated into three types: skeletal, cardiac and smooth. In muscle cells, 

filaments called myofibrils are surrounded by the sarcoplasmic reticulum (SR), a 

net-like membrane that is periodically penetrated by the transverse tubular 

system (T-tubules)1 at intervals of approximately 1.2µm in skeletal muscle fibers 

and 2.5µm in cardiac ventricles. The initiation of contraction is caused by an 

electrical excitation, called an action potential, which travels along the surface 

membrane of the muscle cell and down the T-tubules, allowing the action 

potential to travel across the surface of the entire muscle fiber rapidly. The time 

that it takes skeletal muscle to contract is approximately 2-5ms, whereas cardiac 

muscle is slightly slower, taking 20-50ms.  

 

 

Figure 1: The sarcoplasmic reticulum and transverse tubule system of  
striated muscle cells2. 
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T-tubules are separated from the terminal cisternae3 of the SR by 

approximately 10nm and the interaction between them is referred to as 

excitation-contraction coupling (ECC). In this process, three things must happen: 

the detection of the propagation of an action potential along the T-tubules, the 

transmission of the information by the Dihydrophridine Receptor (DHPR) to the 

Calcium Release Channel (CRC), and the release of calcium from the SR. Figure 

2 shows a schematic of the flow of calcium out of the SR through the CRC, 

where it binds to Troponin C at micro molar concentrations, causing tropomyosin 

to change its shape and move away from its blocking position. This change 

uncovers the binding sites on the actin filament for myosin, so that the myosin 

and actin filaments slide past each other resulting in contraction of the muscle 

fibers. After calcium is released from the SR, the Ca2+-Mg2+-ATPase (Ca2+ 

pump), a 110kDa protein, pumps the calcium back into the lumen of the SR, 

causing the muscle to relax4.  
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.  

Figure 2: Excitation-contraction model5. During the action potential, Ca2+ enters 
into the cell through the voltage-dependent Ca2+ channel (DHPR) resulting in an 
increase of cytosolic Ca2+ concentrations to micromolar levels. In human cardiac 
myocytes, removal of the excess of Ca2+ out of the cytoplasm is accomplished as 
follows; 70% by the Sarco/Endoplasmic Reticulum Ca2+ pump, 28% by the Na+/ 
Ca2+ exchange protein, and the remaining 2% is accomplished by the 
plasmalemmal Ca2+- ATPase and mitochondrial uniporter11.  
 
 
 

One of the major differences between cardiac and skeletal muscle is that 

ECC in cardiac muscle requires a small amount of Ca2+ to cross the T-tubule, 

whereas in skeletal muscle ECC is independent of extracellular calcium6. The 

activation of the CRC by calcium in cardiac muscle proceeds by a mechanism 

known as Calcium Induced Calcium Release.7  
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1.2 Impact of Abnormal Intracellular Ca2+ Cycling 

In cardiac muscle there are additional proteins not found in skeletal muscle. 

Since Ca2+ enters the cell through the DHPR to initiate cardiac muscle 

contraction, there must be a mechanism for purging Ca2+ from the cell. The Na+/ 

Ca2+ exchange protein (NCX) moves three Na+ ions into the cell and one Ca2+ 

ion out of the cell. This is the primary mechanism for maintaining low intracellular 

Ca2+ concentrations in spite of the fact that Ca2+ enters the cell on each beat of 

the heart.  

Problems with intracellular Ca2+ cycling have been associated with heart 

failure, ischemic heart disease, and several genetic forms of arrhythmias8. Heart 

failure is characterized by abnormal intracellular Ca2+ cycling that leads to 

progressive deterioration of cardiac function. Associated with heart failure is the 

inability of the SR to build up an adequate Ca2+ load required for generating 

contraction, due to an increased Ca2+ leak connected with the Ca2+ release 

channel. An abnormal Ca2+ leak from the SR during the relaxation phase of the 

heart, when the cytosolic Ca2+ concentrations should be low, have been shown 

to cause arrhythmias known as delayed afterdepolarizations (DADs)9. When 

intracellular Ca2+ levels rise the NCX assists in removing the Ca2+ from the cell, 

which results in the influx of sodium and can lead to a depolarization of the 

extracellular membrane. This unsynchronized action potential can generate 

arrhythmias. CRCs that have a diastolic Ca2+ leak have consequently become a 

therapeutic target. 
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1.3 Calcium Release Channel 

The calcium release channel is a cation-selective trans-membrane protein that is 

thought to be a homotetramer, with each of its subunits having a molecular mass 

of about 565kDa. These subunits are arranged in a quatrefoil shape, 22 to 27nm 

on each side, with a 2nm hole in the center10. The plant alkaloid ryanodine binds 

to this protein with high affinity and high selectivity when the channel is in its 

open state11. Because of this, the channel is commonly referred to as the 

ryanodine receptor (RyR). The RyR has three isoforms known as RyR1, RyR2 

and RyR3, each encoded by a separate gene. All three isoforms appear in brain 

tissue; however, RyR1 is found predominately in skeletal muscle, while RyR2 is 

found primarily in cardiac muscle. These three isoforms share a 66-70% 

homology in amino acid sequence12. 

 
 

 

Figure 3: 3D reconstruction of the calcium release channel protein  
(commonly known as the ryanodine receptor)13 

 
 
 

1.4 Modification of Ca2+ Release 

Ca2+ has a biphasic role in the regulation of RyR. Low micromolar concentrations 

of cytoplasmic Ca2+ stimulate the channel while high concentrations (>1mM) 

inhibit the channel14. This bell shaped Ca2+ dependence curve has been 
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hypothesized to result from two different binding sites: a high affinity site that 

opens the channel and a low affinity site that inhibits release.15 While a rise in 

Ca2+ concentration in the cytosol is the principle factor stimulating the CRC16 in 

cardiac muscle, in skeletal muscle, where ECC is independent of extracellular 

Ca2+, another mechanism of information transfer must be present. It is generally 

believed that there is some type of conformational coupling between the DHPR 

and the Ryanodine Receptor in skeletal muscle, but the precise mechanism is 

unknown.  

There is direct evidence, however, for the existence, location and function 

of hyperreactive thiols, which have been reported in both skeletal17 and cardiac 

muscle18. Figure 4 shows a proposed model of the Ca2+ release channel that is 

regulated by several classes of sulfhydryl groups existing in close proximity and 

able to form mixed disulfides. Oxidation of these hyperreactive sulfhydryl groups 

to a disulfide linkage, which opens the channel (S1-S2), is then followed by thiol-

disulfide exchange (S2-S3) that closes the channel, and finally, reduction of the 

disulfide bond by the cellular reduced (redox) environment, which resets the 

redox status.  

In support of this model, it has been shown that the CRC has a well-

defined reduction potential that is sensitive to the cellular environment.19 Channel 

activators lower the redox potential, making the value more negative, which 

favors the oxidation of thiols and the opening of the channel, while channel 

inhibitors increase the redox potential to more positive values, which favors the 
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reduction of disulfides and the closure of the channel. During oxidative stress or 

ischemia, these hyperreactive thiols could oxidize and alter the Ca2+ sensitivity of 

the CRC, allowing small changes in the calcium concentrations to contribute to 

significant activation and release of Ca2+. 

 

Figure 4: Model of the Ca2+ release protein gated by SH oxidation  
            and reduction of three endogenous SH groups20 
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Glutathione (GSH) is part of an antioxidant system and plays an important 

part in maintaining the cellular redox status. Along with antioxidant vitamins and 

enzymes it shares the job of scavenging peroxide, singlet oxygen and other free 

radicals, and it is the most abundant non-protein thiol source in the muscle cell21. 

The eye lens has the highest GSH concentrations at ~10mM, whereas muscle 

has about 1-2mM22. During excessive production of reactive oxygen species 

(ROS), GSH donates a pair of electrons to a hydroperoxide, resulting in 2 GSH 

being oxidized to 1 glutathione disulfide (GSSG). The GSSG can then be 

reduced back to GSH by NADPH, which is catalyzed by glutathione reductase 

(GR). When production of the ROS overwhelms the recycling capacity of the GR, 

GSSG levels rise, resulting in a decrease of the GSH/GSSG ratio and a more 

oxidized environment.  

While GSSG by itself is an activator of the channel, and GSH is a known 

inhibitor, it has been reported that the ratio of GSH/GSSG rather than the total 

GSH or total GSSG concentrations determine the response of the RyR23. The 

typical mammalian cell ratio of [GSH]/[GSSG] in the cytosol is ≥30:1, resulting in 

a reduction potential of approximately -230mV24.  Trans-membrane redox 

potential differences are on the order of 50mV, with the lumen of the SR being 

more oxidized than the cytosol30. 

 

 

 



9 
 

1.5 Homocysteine and Homocysteine Thiolactone 

Circulating molecules, commonly referred to as biomarkers, can serve as a 

means for diagnostics during the diseased state or can identify the perturbations 

that precede the disease. One of these biomarkers, Homocysteine (Hcy), is an 

accepted independent risk factor for several pathologies including cardiovascular 

disease, osteoporosis, Alzheimer’s disease and renal failure25,26. First observed 

by Kilmer McCully in 196927, Hcy, has been the subject of numerous clinical, 

experimental, and epidemiological studies seeking to explain the molecular 

mechanisms underlying the link between the rise (a mild case of 

hyperhomocysteinemia has a range of concentrations in plasma of 15-50µmol/l28) 

in concentration of Hcy and this vast array of diseases.  

Over 30 studies have been conducted by different groups including; the 

Homocysteine Studies Collaboration group, and the Vitamin Intervention for 

Stroke Prevention group, often with conflicting results. As an example of the 

conflicting results published, a study performed in 1999 found a 5µmol/l rise in 

plasma Homocysteine levels leads to a 19% increase in stroke risk and a 25% 

rise in coronary artery disease28. However in 2004, the trial of 3,680 randomized 

subjects found no change for risk of coronary events with a reduction of a 

baseline plasma Homocysteine level by 2µmol/l. Moreover, homocysteine is a 

universal intermediate in methionine metabolism and is formed in all human 

organs. In mammals, dietary methionine, an essential amino acid, is the only 

source of Hcy. Elevated levels of Hcy can be caused by a variety of factors, 
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including genetic defects or nutritional and dietary status such as methionine-rich 

diets.29 Although the cytotoxic effects of Hcy excess have been confirmed in 

many biological model systems, the underlying mechanisms are unknown, and 

whether toxicity is caused by Hcy itself or by a Hcy metabolite, is not entirely 

clear.  

 

 

 

Figure 5: Metabolic conversions of Homocysteine and the chemical 
structures of methionine, Homocysteine, and Hcy-thiolactone.30 

 
 

 
The thioester Homocysteine Thiolactone (HTL) is one of many metabolites 

of Homocysteine and is generated via an error-editing mechanism of methionine 

tRNA synthetase. Due to its ability to create a 5-membered ring, HTL is 

remarkably stable (with a half life of ~25 hours31) to hydrolysis at physiological 

temperatures and pH. Like all thioesters, HTL absorbs UV light with a maximum 

at 240nm and ε ~5000 M-1cm-1 in water, and has an unusually low pKa of 7.1 for 

its alpha amino group, which allows it to freely diffuse through cell membranes32. 
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HTL reacts readily with the ε-amine of Lys residues to form isopeptide bonds, as 

shown in figure 6.  

 
 

 
Figure 6: The reaction of HTL with the ε-amine moiety of 

protein lysine residues results in a post-translational 
modification known as N-Hcy-protein. 

 
 
 
1.6 Chemical Mechanism of Oxidative Damage to Proteins 

Two possible mechanisms have been proposed to explain how homocystamides 

can lead to oxidative damage and loss in protein function. One hypothesis 

postulates free radical and oxidative damage to proteins via reactive oxygen 

species (ROS) generation upon disulfide bond formation. The other hypothesis 

involves αC amino acid radical formation2. It is widely accepted that a majority of 

protein backbone cleavage and related damage occurs via alpha-carbon radicals 

of amino acid residues. It has also been shown that cysteinyl residues and 

glutathione may aid the formation of alpha-carbon radicals on protein residue33. 

The alpha-carbon radical can also go on to create a reactive carbonyl species 

(RCS) as depicted in figure 7. In this scheme, homocystamides may serve as 

sites of protein-radical initiation followed by kinetically-favored hydrogen atom 

transfer (HAT), which should promote carbonyl formation.  
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Figure 7: Homocystamides serve as sites of protein 
radical initiation and concomitant structural changes. 
 
 
 

1.7 Previous studies of carbonyl modification of SR proteins 

In 2011 Marks and colleagues published a study that implicated carbonyl 

modification of RyR1 to age related loss of muscle mass and force in the ageing 

mouse model34. They observed an increase of 4 fold of the amount of carbonyls 

found on the RyR1 isolated from 24 month old mice as compared to the younger 

3-6 month old mice. They concluded that this oxidative damage plays an 

important role in the aging mechanism. Carbonyl formation is irreversible. There 

are currently no known enzymes that are capable of breaking RCS adducts after 

they are formed on proteins in mammalian cells35.  

RCS however, will not react indiscriminately with all available residues and 

certain residues have been shown to be more susceptible to carbonylation than 

others33. Bidasee and colleagues have studied the formation of RCS in a diabetic 
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rat model where the RCS are found in the serum and urine of the animal due to 

an increased glucose and fatty acid oxidation, increased degradation of ketotic 

products, and increased triose pathway flux36. They have identified via mass 

spectrometry and site-directed mutagenesis that in the case of the SERCA2a 

Ca2+-pump, the major protein found in the SR, four key residues (Arg 164, Lys 

476, Lys 481, and Arg 636) are more susceptible to carbonylation and that the 

carbonylation of these residues contributes to the Ca2+-pump activity loss 

(decrease in ATPase activity) and diastolic dysfunction37. They hypothesized that 

these basic residues, with low pKa values, would be more likely to undergo 

carbonylation than residues with a higher pKa values, because a greater fraction 

would exist in the deprotonated state at a physiological pH of 7.4, which would 

render them more susceptible to modification38. In the same model, Bidasee and 

colleagues have simulated the effect that carbonyl adducts could have on RyR2 

by site-directed mutagenesis mimicking the simultaneous charge neutralization 

and increase in bulk induced by carbonylation that would be expected to occur. 

They chose amino acids from fragments that had be improperly digested by 

trypsin39, indicating a modification due to streptozotocin (STZ)-induced diabetes 

that would mimic carbonyl adduct formation. They found that mutations that 

simulated carbonylation at Lys2190 or Lys2887 (lysine to tyrosine or tryptophan) 

would enhance the Ca2+ sensitivity of RyR2 and mutations at Arg4462 or 

Arg4682 (arginine to tyrosine or tryptophan) likely would reduce the Ca2+ 

sensitivity of RyR234.  
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Chapter 2: Materials and General Methods 

2.1 Materials 

Tritium-labeled ryanodine ([3H]-ryanodine) was purchased from PerkinElmer Life 

& Analytical Sciences, Boston Massachusetts, and stored in the freezer at -18˚C 

and shielded from light. Unlabeled ryanodine was purchased from Calbiochem (a 

division of Merck KGaA, Darmstadt, Germany). A stock solution was prepared at 

10mM in 50% Methanol/deionized distilled nanopure water. Sheep hearts were a 

gift from Dr. Kent Thornburg, Heart Research Center, Oregon Health and 

Science University, Portland, Oregon.  

Ethylene Glycol Tetraacetic Acid (EGTA) was purchased from Research 

Organics, Cleveland, Ohio, and prepared in deionized distilled nanopure water, 

adjusted to pH 7.0 with the addition of potassium hydroxide (KOH) and stored at 

room temperature. CytoScint scintillation fluid was purchased from MP 

Biomedicals, Costa Mesa, California. Homocysteine Thiolactone (HTL) was a gift 

from Dr. Robert M. Strongin, Department of Chemistry, Portland State University, 

Portland, Oregon. HTL stock solution was freshly prepared at ~30µM in buffer 

containing 250mM KCl, 15mM NaCl, and 20mM Piperazine-1,4-bis(2-

ethanesulfonic Acid (PIPES) set to pH 7.4 with KOH unless otherwise noted.  

Acrylamide/Bis 37.5:1 premixed powder, Immun-Blot PVDF membrane for 

protein blotting, detergent compatible (DC) Protein Assay kit, and dual color 

precision plus protein standards were obtained from Bio Rad. Oxyblot™ Protein 

Oxidation Detection Kit was purchased from Chemicon/Millipore. Anti-Ryanodine 
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Receptor 2 antibody (C3-33) was obtained from GeneTex, and horseradish 

peroxidase labeled goat anti-mouse secondary antibody was obtained from 

Santa Cruz Biotech. Glutathione in both its oxidized and reduced form was 

prepared on ice in ice-cold deionized distilled nanopure water containing 10µM 

EGTA at a concentration of 0.5M. Once the pH was adjusted to pH 7.0, aliquots 

were frozen in liquid N2. All other chemicals were purchased from Sigma-Aldrich 

Corporation, St. Louis. 

 

2.2 Cardiac SR Preparation 

Cardiac SR vesicles were isolated from sheep hearts obtained from OHSU 

based on the method of Meissner and Henderson.40 Unless otherwise stated, all 

procedures were carried out in at 4˚C. Once the heart was removed from the 

sheep, it was briefly immersed in ice cold buffer containing 300mM Sucrose, 

10mM PIPES, 0.5mM PMSF, 1µg/ml Leupeptin at pH 7.4 with KOH (Cardiac 

Buffer A). The atria and other connective and fatty tissue were removed and the 

remaining ventricles were minced into small pieces to be blended at high speed 

in a waring blender for 20 seconds.  

After a 30-second rest period, the solution was blended again on high for 

20 seconds. The resultant solution was centrifuged at 9,000 x g in the large 

Fiberlite F-14 rotor at 4˚C. The supernatant was then filtered through two layers 

of cheesecloth and spun at 44,000 x g for 75 minutes in a type 19 rotor at 4˚C. 

The resultant pellet was homogenized in Cardiac Buffer A and spun at 25,000 x g 
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for 30 minutes at 4˚C. The resulting SR pellet was homogenized in a buffer 

containing 100 mM Sucrose, 5 mM HEPES and adjusted to pH 7.2 with 

tris(hydroxymethyl) aminomethane-base (Tris-base). Once protein concentration 

was determined, and diluted if needed to approximately 20mg/ml, the crude 

cardiac SR aliquots were stored in liquid N2. 

 

2.3 Protein Determination 

Large volume, crude protein concentrations of the SR were determined by the 

method of Kalckar41. The absorbance peak at 280nm is mainly due to the 

presence of tyrosine and tryptophan and the peak at 230nm is mainly due to the 

peptide bond of the protein backbone. Using this information, absorption was 

measured on an Agilent 8453 UV-Visible photodiode array spectrophotometer at 

230nm and 280nm. Data were also collected at 260nm in order to correct for 

nucleic acids using equations 1 and 2. The process was repeated twice, and the 

average protein concentration was calculated. 

 

[SR]mg/ml = 1.45 x Abs280 – 0.74 x Abs260                        (Equation 1) 

 

[SR]mg/ml = 0.185 x Abs230 – 0.748 x Abs260                              (Equation 2) 

 

When determining the protein concentrations of small volumes (˂200µl) an 

assay kit called, Bio-rad DC (detergent compatible) assay, based on the method 
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of Lowry42 was used. Small aliquots of the crude protein, and purchased BSA 

protein standard were diluted to a final volume of 100µl. The volume was then 

reacted with solutions provided in the kit and incubated on an orbital shaker for 

15min. Absorbance at 740nm was then recorded for each sample and a standard 

curve equation was calculated.  

 

2.4 Determination of Ca2+ stock solutions 

Free Ca2+ in experimental solutions were determined using a Ca2+ ion selective 

electrodes that consisting of a liquid ion exchanger embedded in a polyvinyl 

chloride (PVC) membrane which has direct contact with a graphite rod43,44. 

When the functionalized membrane end is immersed into a solution with free 

Ca2+ ions, the Ca2+ ions diffuse into the membrane causing an internal positive 

charge within the membrane. At the same time, a negative charge builds up on 

the solution side of the membrane (due to the loss of positive Ca2+ ions) until 

eventually, the diffusion pressure and the electrostatic forces are balanced and 

the diffusion stops. The resulting difference in charge across the membrane is 

the membrane potential and when compared to a reference electrode in the 

solution without the functionalized membrane, the membrane potential can be 

measured by a high impedance electrical meter with mV capability.  

In the case of potentiomeric measurements with ion selective electrodes 

where there aren’t any redox reactions occurring, the modified Nernst equation, 

shown as Equation 3, can be used.  
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𝐸 = 𝐸° + (
𝑅𝑇

𝑧𝐹
) ln[𝐶𝑎2+]          (Equation 3) 

 

Where E is the measured membrane potential, E0 is the sum of the potentials on 

the electrode side of the membrane and any other junction potentials in the 

system. The (
𝑅𝑇

𝑧𝐹
) term includes; R the gas constant (8.31 J/mol*K), T the 

temperature (295K), z the species charge (2 for Ca2+), and F the Faraday 

constant (96,485 Coulomb/mol). The result of that term including a 2.3 factor for 

conversion to base log10, is 0.029 V resulting in the following equation. 

 

 𝐸 = 𝐸° + 29 ∗ log10[𝐶𝑎
2+](𝑚𝑉)         (Equation 4) 

 

Where E  is the measured potential in mV. This equation describes a line with a 

slope of 29 mV / decade change of [Ca2+]. Each time a new probe is put into use 

for the first time after fabrication and conditioning, the response to [Ca2+] is 

verified to be linear and with a near Nernstian slope value of 29 mV.  

 

2.5 Equilibrium Ryanodine Binding Assay 

The molecule ryanodine binds with nanomolar affinity to a single class of proteins 

near the junctional region of the SR45 under certain conditions. With a few 

exceptions, such as silver, CRC activators stimulate ryanodine binding, whereas 

compounds that inhibit the CRC inhibit binding. Tritium-labeled ryanodine ([3H]-
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ryanodine) binding assays were carried out at a [3H]ryanodine concentration of 

1nM, and 14nM unlabeled ryanodine for skeletal SR, and a [3H]ryanodine 

concentration of 2nM, and 13nM unlabeled ryanodine for cardiac SR.  

SR vesicles (0.5mg/ml) were incubated in a buffer containing 250mM KCl, 

15mM NaCl, and 20mM Piperazine-1,4-bis(2-ethanesulfonic Acid (PIPES), set at 

pH 7.4 and 37˚ Celsius for at least 3 hours. The binding reaction was quenched 

by rapid filtration through Whatman glass fiber filters using a Brandel cell 

harvester. Filters were washed twice with approximately 4ml of buffer containing 

250mM KCl, 15mM NaCl, 20mM tris-(hydroxymethyl)- aminomethane (TRIS), 

and 100µM CaCl2 at pH 7.1 (HCl). These filters were then dried in an oven at 

50˚C for two hours, then incubated with agitation in 3ml of CytoScint scintillation 

fluid for one hour.  

Radioactivity was counted by a Beckman LS 6000 scintillation counter 

with an efficiency of approximately 55%. Nonspecific binding was measured in 

the presence of 200nM unlabeled ryanodine, and 4mM ethylene glycol tetra 

acetic acid (EGTA). Total specific activity was determined by adding an aliquot of 

experimental [3H]-ryanodine buffer solution to scintillation fluid and counting the 

sample. 

 

2.6 Hill Analysis 

Calcium dependent ryanodine binding measurements were fit to the Hill equation  
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


                                                  

(Equation 5) 

where Bmax is the maximum binding, [x] is the free Ca2+ concentration determined 

with the computer program “Bound and Determined” or measured with a Ca2+ 

electrode, kd is the dissociation constant of the Ca2+ binding site, and n is the Hill 

coefficient. The graphing software SigmaPlot was used to determine the best fit 

parameters for the half maximal binding concentration (EC50), which was 

calculated by equation 6. 










 n

dkEC

1

50                                                 (Equation 6) 

 

2.7 Four Parameter Logistic Curve 

The Kd values obtained from the calcium dependent ryanodine binding 

measurements as a function of HTL concentration were fit to the four parameter 

logistic curve equation. 

𝑌 = 𝑚𝑖𝑛 +
𝑚𝑎𝑥 −𝑚𝑖𝑛

1 + (
𝑥

𝐸𝐶50
)𝐻𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒

 
(Equation 7) 

2.8 Redox Potential 

To study the effects of channel modulators in more reduced or oxidized 

environments, it is possible to mimic the cellular redox status by using various 

concentrations of GSH and GSSG determined by the following equation46: 
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                                                                                                            (Equation 8) 

where Esolution is the redox potential of the solution, E˚ is the standard potential of 

glutathione (-0.24V), pHactual is the pH of the buffer, R is the gas constant (8.31 

deg-1 mol-1), T is the absolute temperature (K), n is the number of electrons 

transferred (n =2 for glutathione) and F is the Faraday constant (96406 J/V).  

 

2.9 Detection of carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH) 

2,4-Dinitrophenylhydrazine (DNPH) can be used to detect the carbonyl 

functionality of a ketone or aldehyde functional group in the protein side chains 

by derivatization to 2,4-dinitrophenylhydrazone (DNPhydrazone). DNPH does not 

react with other carbonyl-containing functional groups such as carboxylic acids, 

amides, and esters.  

 

Figure 8: Derivatization of protein carbonyls with DNPH 
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All procedures for derivatization of protein carbonyls with DNPH and 

subsequent detection using the Oxyblot™ Protein Oxidation Detection Kit 

(Millipore) follow the procedure as outlined in the kit brochures with the following 

two exceptions. The 10X-DNPH derivatization solution was prepared as 100mM 

in 100% trifluoroacetic acid (TFA) and diluted ten times with the addition of 9 

volumes of water just prior to use, instead of in 2N hydrochloric acid (HCl)47. The 

second exception was the use of a non-commercial neutralization solution, which 

was prepared containing 2M TRIS/30% Glycerol (same as in kit).  

The protein sample was briefly washed three times with deionized/distilled 

water and then was derivatized by adding 1mM DNPH solution. The reaction was 

allowed to proceed at room temperature for 20 minutes before an equal volume 

of neutralization solution was added to the 1X DNPH solution. Care was taken to 

not allow the reaction to proceed for more than 30 minutes to prevent side 

reactions other than hydrazone linkages to occur.  

 

2.10  SDS-PAGE   

Protein samples were prepared for separation via SDS-PAGE by addition of SDS 

solution to sample, resulting in a final concentration of 8% (w/v) SDS. After 

vortexing, samples were spun on a table top centrifuge at 14,000 rpm for 5 

minutes to spin down any non-solubilized proteins. The resultant supernatant 

was split into two fractions. One fraction was used to determine the total protein 
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concentration, and the second fraction was loaded on the gel after sample 

preparation.  

Due to the loss of sensitivity of the DNPH labeling when the protein 

sample was boiled before separation by SDS-PAGE, an alternative method of 

sample preparation was used. This method consisted of solubilizing the sample 

at a final concentration of 8% (w/v) SDS followed by a one hour incubation at 

room temperature with 3% (v/v) β-mercaptoethanol. This allowed the RyR2 to 

enter the gel during electrophoreses. 

 

 

 

Figure 9: β-mercaptoethanol is required to visualize the Ryanodine Receptor. 
The signal in lane 1 shows the antibody labeling of RyR2 from a sample that 
underwent the alternative method described with 8% (w/v) SDS followed by a 
one hour incubation at room temperature with 3% (v/v) β-mercaptoethanol. In 

lane 2 the sample was prepared only with 8% (w/v) SDS. After the sample was 
separated on the 3-8% SDS-PAGE, the protein was electrophoretically 

transferred to the PVDF membrane at a constant 15V for 16 hours at 5˚C. 
Membrane was then blocked for 1 hour with Tris Buffered Saline (TBS) 

containing 5% nonfat dry milk at 23°C with agitation. Membranes were then 
incubated overnight at 1:7000 with a monoclonal antibody to RyR2 residues. 

Washing was performed in TBS containing 0.1% Tween-20, 4 times, each time 
for 5 minutes at room temperature. The membrane then was incubated with a 

Horse Radish Peroxidase (HRP) conjugated secondary antibody against mouse 
(1:10,000) for 1 hour. After washing, the membrane was then incubated with 

enhanced chemiluminescence detection reagent, before being imaged. 

RyR2 

Lane    1           2 



24 
 

After each sample’s total protein was determined, 15µg per condition was 

loaded on a Bis-Tris 3-8% gradient gel. In addition to the appropriate 

acrylamide/bis acrylamide to water ratio, each separating gel consisted of 

400mM Tris, 0.1% SDS, 1mg of ammonium persulfate (APS) and 5mM 

Tetramethylethylenediamine (TEMED) at pH 8.8 and was poured with a Hoefer 

Scientific Instruments (San Francisco, CA) gradient maker. The stacking gel 

consisted of 3% acrylamide/bis acrylamide to water ratio along with 5mM Tris, 

0.1% SDS, 1mg of APS and 5mM TEMED at pH 6.8. Along with samples, 8µl of 

Precision plus, pre-stained, high molecular weight protein standard (Bio-Rad) 

was loaded in one well of each gel. The gel was run at 200V for 50 minutes for 

protein separation in an ice bath. Under these conditions the dye front runs off 

the gel.  

 

2.11 Western Blot 

Pre-wet polyvinylidene difluoride (PVDF) membrane (Bio-Rad) via analytical 

grade Methanol, gel, filter paper, and sponges were soaked in Towbin Transfer 

Buffer48  (25mM Tris-base, 192mM glycin, 20% Methanol (v/v), 0.025% SDS 

(w/v)) for 20 minutes. Protein bands were electrophoretically transferred to the 

membrane at a constant 15V for 16 hours using a Tank Blot Transfer Apparatus 

(Bio-Rad Laboratories, Hercules, CA) at 5˚C. Once transferred, the membrane 

was blocked for 1 hour with a Tris Buffered Saline (TBS) containing 200mM Tris, 

500mM NaCl at pH 7.5 and 5% nonfat dry milk at 23°C with agitation. 
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Membranes were then incubated overnight at 1:150 with a monoclonal antibody 

to 2,4-dinitrophenyl residues (part #90451) that accompanied the OxyBlot Protein 

Oxidation Detection Kit purchased from Millipore. A standard membrane washing 

was performed in TBS containing 0.1% Tween-20 (TBST), 4 times, each time for 

5 minutes at room temperature. 

After washing with TBST, the membrane was incubated with the 

appropriate Horse Radish Peroxidase (HRP) conjugated secondary antibody 

against rabbit (1:300) (part #90452 – OxyBlot Protein Oxidation Detection Kit, 

Millipore) for 1 hour. The membrane was then washed again in TBST and 

incubated with enhanced chemiluminescence detection reagent, from a  

SuperSignal West Pico Luminescent Kit (Thermo Fisher Scientific, Waltham, 

MA). HRP catalyses oxidation of luminal with peroxide, which then illuminated 

the tagged proteins. The image was captured with a Roper Scientific CCD 

camera that was then processed using the Alpha Innotech Fluorchem SP system 

(Quansys Biosciences, Logan, UT). 

 

2.12 Re-probing 

To establish loading controls and verification of ryanodine receptor band location 

and density, each PVDF membrane was re-probed for total RyR2. Before re-

probing for RyR2, quenching of the goat, anti-rabbit secondary antibody that was 

attached to Rabbit Anti-DNPH antibody was accomplished by incubation of 

membranes in TBST with 3% w/v sodium azide (NaN3) for a minimum of 3 hours. 
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Sodium azide inhibits HRP activity of secondary antibodies and has been 

successfully used to quench the previous antibodies for re-probing with another 

antibody49. Membranes were then incubated overnight at a dilution of 1:7,000 

with a mouse monoclonal antibody against RyR2 (C3-33, GeneTex), followed by 

washing and incubation for one hour at a dilution of 1:10,000 with a HRP-

conjugated secondary antibody against mouse (Santa Cruz Biotech) for 1 hour. 

After washing, the membrane was then incubated with enhanced 

chemiluminescence detection reagent and imaged. 

 

2.13 Western Blot Analysis 

Using the AlphaEaseFC software, an overlay of the Bio-Rad protein ladder and 

image produced from the anti-DNPH antibodies, as shown in figure 10, allowed 

for the relative mass and density of major bands that had been carbonylated to 

be determined. Once these bands had been identified spot density analysis was 

performed by drawing a box around the bands as well as a box used to subtract 

out the background as shown in figure 11. 
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Figure 10: Determination of the molecular mass of significantly carbonylated 
bands. A) Overlay of the image obtained using white reflective light that shows 
the Bio-Rad protein ladder (dark red tint) and the image produced from HRP 
antibody using the chemiluminescence filter showing carbonylation (dark green 
tint). B) Calculations shown include band number which was assigned by the 
user, pixel position from the top of the image, user assigned molecular mass in 
the Markers window, and software calculated molecular mass in the queries 
window, and modified retention value (Rf) where Rf=1 at the bottom of the gel 
and Rf=0 at the top of the gel. 
 
 

 

 

Figure 11: Spot density tool in the analysis tab found in the AlphaEaseFC 
software. 
 

 

 

A B 
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The band density when imaged with the anti-DNPH antibodies was then 

standardized to the band density when imaged with the anti-RyR2 antibodies. 

This was done by dividing the integrated density values that had the background 

subtracted from the total carbonylation image, with the integrated density values 

that had the background subtracted from the total ryanodine receptor image. This 

value, carbonylation per ryanodine receptor, was then normalized to the control 

condition before being reported.  

 

2.14 Statistics 

Average data is shown as mean ± standard error. Significance of the difference 

between control and test values from individual sets of experiments was 

calculated by a paired student’s t test.  
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Chapter 3: Results  

3.1 The Cardiac Ryanodine Receptor is Sensitive to Homocysteine 

Thiolactone. 

Problems with intracellular Ca2+ cycling have been associated with heart failure, 

ischemic heart disease, and several genetic forms of arrhythmias. Our 

hypothesis, supported by the following results, is that treatment of SR with HTL 

results in carbonyl formation on RyR2 and as a result RyR2 is sensitized to 

activation by Ca2+. This is likely to result in spontaneous cardiac arrhythmias and 

heart failure. This observation provides the first link between elevated 

homocysteine levels in humans and alteration to sarcoplasmic reticulum function. 

As shown in Figure 12, and summarized in Figure 13 and Table 1, increasing 

levels of Homocysteine Thiolactone decreases the amount of calcium needed for 

activation of Ryanodine Binding. At 100nM, a physiologically relevant 

concentration, HTL shifts Ca2+ dependent ryanodine binding in cardiac muscle 

SR from a kd of 129.7 ± 3.4 to a kd of 102.0 ± 2.7 when the solution redox 

potential has been set to -210mV at pH 7.4. This change in Ca2+ dependent 

activation was consistently observed in multiple cardiac SR preparations derived 

from multiple hearts.  



30 
 

Free Ca
2+

 (M)

0 1e-7 2e-7 3e-7

R
y
a
n

o
d

in
e
 B

o
u
n

d
 (

p
m

o
l/
m

g
)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

Figure 12: HTL sensitizes RyR2 to Ca2+ dependent activation. Control cardiac 
muscle SR (●); +10nM HTL (●); +50nM HTL (▼); +100nM HTL (▲); +300nM 
HTL (■); +500nM HTL (■)  Ryanodine binding assay was carried out over a 

period of 3 hours at pH 7.4, 37◦C, a redox potential of -210mV and final protein 
concentration of 0.5mg/ml. Buffer contained 250mM KCl, 15mM NaCl, and 20mM 

PIPES with various EGTA/CaCl2 concentrations calculated to result in various 
free Ca2+ values that were later verified with the calcium electrode. The binding 

reaction was quenched by rapid filtration through Whatman glass fiber filters 
using a Brandel cell harvester. Filters were washed twice with approximately 4ml 
of buffer containing 250mM KCl, 15mM NaCl, 20mM TRIS, and 100µM CaCl2 at 
pH 7.1 (HCl). These filters were then dried in an oven at 50˚C for two hours, then 

incubated with agitation in 3ml of CytoScint scintillation fluid for one hour. 
Radioactivity was counted by a Beckman LS 6000 scintillation counter with an 
efficiency of approximately 55%. Data shown as average ± standard error with 

n=6. Data was fit using a four parameter Hill curve (equation 5). 
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Figure 13: Shift in Ca2+ concentration needed to half maximally activate 
ryanodine binding in cardiac muscle as a function of HTL concentration. Data 
shown is derived from Figure 12. The data was fit to equation 7, the four 
parameter logistic curve resulting in an EC50 of 90.4±15.5nM. 

 
 
 

[HTL] Control 10nM 50nM 100nM 300nM 500nM 

Kd Ca2+ 
(nM) 

129.7±3.
4 

130.8±4.
0 

130.1±3.
5 

102.0±2.
7 

92.2±3.
3 

89.6±1.
8 

Hill 
Numbe

r 

7.0±1.0 
 

4.6±0.7 5.9±0.8 6.0±0.8 7.3±1.5 8.5±1.1 

Table 1: Comparison of Kd Ca2+ values and Hill numbers for different HTL 
concentrations. 
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3.2 The adduct formed between Homocysteine Thiolactone and excess 

Glutathione does not cause functional changes to RyR2. 

Previous studies have shown that HTL reacts with a range of free amino acids 

and reducing agents31. What is known, comes from kinetic studies that follow 

these reaction using UV absorption. These studies were carried out by 

monitoring the absorbance of 100µM HTL at 240nm in a 100mM HEPES buffer 

at pH 7.4 and 37˚C with each amino acid at a concentration of 1.25mM. It was 

reported that the HTL-lysine reaction has a half-life of 3 hours as opposed to 8.5 

hours when incubated with Glutathione or the control half-life of 25 hours.  

To determine if the large excess of GSH (~2mM) present in our 

experiments (and in the cell environment) results in the formation of an HTL-GSH 

adduct which then reacts with and causes functional changes to the RyR2, the 

following experiment was performed: Two concentrations of HTL, (200nM & 

600nM) were incubated at 37˚C, with 4mM GSH in ryanodine binding buffer for 

24 hours. A solution of SR and 3H-Ryanodine was then added to both these 

solutions, at various free Ca2+ concentrations for an additional 3 hours. As shown 

in Figure 14, and summarized in Table 2, there was no change to the 

concentration of free Ca2+ needed to half maximally activate ryanodine binding 

when GSH is pre-incubated at different concentrations of HTL, and control 

conditions in the absence of HTL. 
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Figure 14: HTL and GSH adducts formed after 24 hours do not change the 
sensitivity of RyR2. Control Cardiac SR (●), +100nM HTL (●), +300nM HTL (▼). 
4mM GSH and various concentrations of HTL were incubated in ryanodine 
binding buffer for twenty four hours before being used in the ryanodine binding 
assay that was carried out over a period of 3 hours at pH 7.4, 37◦C, and a final 
protein concentration of 0.5mg/ml. Data shown as average ± standard error with 
n=6. Data was fit using a four parameter Hill curve (equation 5). 
 

 

[HTL] Control 100nM 300nM 

Kd Ca2+ (nM) 99.8±4.2 104.5±3.7 97.4±3.2 

Hill number 6.0±1.2 7.3±0.8 7.9±1.3 

Table 2: Comparison of Kd Ca2+ values for different concentrations of HTL. 
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3.3 Functional changes on RyR2 by Homocysteine Thiolactone are redox 

sensitive. 

The effect of 100 nM HTL sensitizing the RyR2 to activation by Ca2+ was 

observed to a greater extent with a reducing solution potential than in an 

oxidizing one. At a solution redox potential of -210mV, the Kd of the Ca2+ 

dependent curve with 100nM HTL is 49.2±4.1nM further to the left than the 

control condition. At solution redox potential of -100mV, the Kd of the Ca2+ 

dependent curve with 100nM HTL is only 36.4±4.6nM further to the left than the 

control condition. 

Another item of note is that the maximal binding of ryanodine is less at the  

-100mV redox solution potential than the -210mV solution redox potential. This is 

an artifact due to the high sensitivity of ryanodine binding to salt concentration in 

the sample buffer. In order to achieve a solution redox potential of -100mV, 

almost half of the total sample volume must be the oxidized glutathione stock 

solution. This results in a decrease in the salt concentration and a decrease in 

ryanodine binding.  
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Figure 15: Solution redox potential alters the ability of HTL to sensitize RyR2 to 
Ca2+ dependent activation. Control Cardiac SR set at -100mV (●), +100nM HTL 
set at -100mV (●), Control Cardiac SR set at -210mV  (▼), +100nM HTL set at -
210mV (▲). GSH/GSSG concentrations were incubated with the SR for one hour 
before various concentrations of HTL and 3H-Ryanodine were added to start the 
ryanodine binding assay that was then carried out over a period of 3 hours at pH 
7.4, 37◦C, and a final protein concentration of 0.5mg/ml. Data shown as average 
± standard error with n=6. Data was fit using a four parameter Hill curve 
(equation 5). 

 
 

Redox 
Potential 

 Kd Ca2+ 
(Control)  

 

Hill 
number 

Kd Ca2+ 
100nM HTL 

(nM) 

Hill 
number 

Total shift 
in Kd  
(nM) 

No GSH/ GSSG 133.3±4.3 5.3±0.8 102.4±4.8 5.7±1.3 30.9±6.4 

-100mV 140.7±3.8 9.3±1.4 104.3±1.8 7.0±0.6 36.4±4.6 

-150mV 136.0±1.7 9.8±1.0 98.5±1.3 8.2±0.7 37.5±4.2 

-210mV 139.9±2.5 10.4±1.6 90.7±3.2 9.3±0.9 49.2±4.1 

Table 3: Shift in Ca2+ dependent ryanodine binding kd, as a function of redox 
potential and HTL concentration 
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3.4 Homocysteine Thiolactone causes a functional change in RyR2 in a time 

dependent manner. 

As shown in Figure 16, and summarized in Table 4, the longer the incubation 

period, the further the HTL can shift the Ca2+ dependent activation curve. With a 

2 hour incubation containing 100nM HTL, 0.5mg/ml SR, 3H-Ryanodine at various 

free Ca2+ concentrations, the average Kd was only changed by 9.4±11.6nM. 

When the HTL and 3H-Ryanodine had been incubated with the SR for 4 hours, 

the average Kd was reduced by 25±7.1nM, and with a 6 hour incubation the 

average Kd was reduced by 28±5.2nM. However, the error bars on the values 

determined from the two hour incubation condition are large. This is possibly due 

to ryanodine binding not yet having researched equilibrium after 2 hours of 

incubation, and or HTL not yet having completed the reaction with the ryanodine 

receptor.    
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Figure 16: Shift in Ca2+ dependent ryanodine binding after 6 hours of incubation 
with or without 100nM HTL. Control Cardiac SR (●), +100nM HTL (●).The 
ryanodine binding assay that was carried out over a period of 6 hours. During the 
6 hours, 3H-ryanodine with or without HTL, at pH 7.4, 37◦C, -210mV redox 
potential and a final protein concentration of 0.5mg/ml were incubated at various 
free Ca2+ concentrations. Data shown as average ± standard error with n=6. Data 
was fit using a four parameter Hill curve (equation 5). 
 
 

 2 hours Hill 
number 

4 hours Hill 
number 

6 hours Hill 
number 

Kd Ca2+- 
Control 

105.4±8.6 4.3±1.0 110.0±5.2 4.0±0.7 108.2±3.0 4.8±1.3 

Kd Ca2+-
100nM 
HTL 

95.6±7.9 3.4±1.5 85.3±4.9 5.5±1.5 80.5±4.3 5.9±1.5 

 
Table 4: Shift in Ca2+ dependent ryanodine binding Kd, as a function of time and 

HTL concentration. 
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3.5 Homocysteine Thiolactone causes carbonylation of RyR2 in a 

concentration dependent manner. 

Formation of carbonyl functional groups was quantified by addition 2,4-

dinitrophenylhydrazine (DNPH) to form 2,4-dinitrophenylhydrozone (DNPH-

hydrazone). Formation of carbonyls on the RyR2 can be followed specifically by 

first separating the SR proteins by polyacrylamide gel electrophoresis followed by 

Western Blot transfer, and quantified using antibodies to DNPH-hydrazone by 

ECL. A representative western blot image showing an increase in carbonyl signal 

as a function of HTL is shown in figure 17.  

 

 

 

 

 

Figure 17: Western blot image of RyR2 treated with increasing concentrations of 

HTL showing increased carbonylation. Protocol is described in the caption to 

figure 18. 

 

Lane 1: Control  

Lane 2: 10nM HTL 

Lane 3: 30nM HTL 

 

Lane 4: 100nM HTL 

Lane 5: 200nM HTL 

Lane 6: 300nM HTL 

 

Lane 7: 700nM HTL 

Lane 8: 1µM HTL 

 

 

Lane      1               2            3               4             5            6                7            8  
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Each blot was analyzed to determine carbonylation of RyR2. It was then re-

probed for total RyR2 for standardization, followed by normalization to the control 

condition. This was done by dividing the integrated density values that had the 

background subtracted from the total carbonylation image, with the integrated 

density values that had the background subtracted from the total ryanodine 

receptor image. This value, carbonylation per ryanodine receptor, was then 

normalized to the control condition before being collated with multiple trials and 

summarized in Figure 18. 
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Figure 18: Carbonylation of RyR2 as a function of HTL concentration. RyR2 from 
sheep cardiac SR were incubated with various concentrations of HTL for 14-16 

hours in a solution at a redox potential of -210mV (2mM GSH & 238µM GSSG), 

37˚C and 300nM free Ca2+ (30µM CaCl2 & 35.3µM EGTA) in ryanodine binding 

buffer (250mM KCl, 15mM NaCl, 20mM PIPES pH 7.4) before the reaction was 
stopped with a series of washes with nano-pure water. Protein was then probed 
for carbonylation using 10mM DNPH followed by neutralization (2M TRIS/30% 

Glycerol) and solubilized with 8% (w/v) SDS and 3% β-mercaptoethanol. 15µg of 

protein per lane were then run on a 3-8% SDS-PAGE gel followed by a 16 hour 

transfer onto PVDF membrane at 15V at 4◦C. Monitoring of carbonylation was 

done using anti-DNPH residue antibodies (1:150) and standardization was done 
using anti-RyR2 antibody (C3-33 at 1:7,000). Three experiments, each with a 
different cardiac SR prep, generated 2 PVDF membranes that were imaged and 
analyzed and this value, carbonylation per ryanodine receptor, was then 
normalized to the control condition before being averaged and reported ± 
standard error. The data was fit to equation 7, the four parameter logistic curve 
resulting in an EC50 of 108.8±20.3nM.  
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3.6 Reducing redox potential enhances Homocysteine Thiolactone 

carbonylation on RyR2 

 We have shown in Figure 15 that at a more negative redox potential, the shift in 

the Ca2+ dependence is larger. In Figure 19 we delve into the question of 

whether or not carbonylation of the protein is correlated with the redox potential.  
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Figure 19: Carbonylation as a function of solution redox potential with or without 
100nM HTL. RyR2 from sheep cardiac SR were incubated at various solution 

redox potentials with and without 100nM HTL for 14-16 hours at 37 ◦C before the 

reaction was stopped with a series of washes. Percent carbonylation was then 
determined as described previously. One experiment, generating 4 PVDF 
membranes that were imaged and analyzed and this value, carbonylation per 
ryanodine receptor, was then normalized to the control condition before being 
averaged and reported ± standard error. 
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Figure 20: Enhancement of carbonylation by HTL as a function of solution redox 
potential. Data shown is derived from Figure 19 by taking the difference 
between the average amount of carbonylation with or without HTL. Error is 
propagated by taking the square root of the sum of the square error values. 
There is no statically significant difference between any of these determination.  
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3.7 Carbonylation on RyR2 increases as a function of time, with or without 

HTL 

As shown in Figure 21, carbonylation increases as a function of time with or 

without HTL. This figure also illustrates that either natively or due to sample 

handling the Ryanodine Receptor has carbonyl groups present. The reason for 

measuring carbonyls before solublization is to measure carbonyl formation in the 

native (non-denatured) state. Quantifying the signal was also easier when 

measuring carbonyls before solublization due to the high number of carbonyls 

exposed after solublization that created a large background signal. While under 

the control conditions carbonyl formation appears to reach saturation after four 

hours. HTL dependent carbonyl formation appears to increase at 6 hours.  
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Figure 21: Carbonylation increases as a function of time and HTL. Sheep cardiac 
SR vesicles were incubated with or without 100nM HTL for various amounts of 
time in ryanodine binding buffer at a solution redox potential of   
-210mV and 37˚C before the reaction was stopped at one time with a series of 
washes. One experiment, generating 4 PVDF membranes that were imaged and 
analyzed and this value, carbonylation per ryanodine receptor, was then 
normalized to the control condition before being averaged and reported ± 
standard error. 
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Figure 22: Enhancement of carbonylation by HTL as a function of time. Data 
shown is derived from Figure 21. The enhancement by 100nM HTL of carbonyl 
formation is significant at 4 and 6 hours. (P˂0.1 at 4 hours and P˂0.05 at 6 
hours.)  
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3.8 Carbonylation on RyR2 increases as a function free Ca2+, with or without 

HTL 

Carbonylation increases as a function of free Ca2+ concentration with and without 
100nM HTL. 
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Figure 23: Carbonylation increases as a function of free Ca2+ with (■) or without 
(■) 100nM HTL. Sheep cardiac SR vesicles were incubated with or without 
100nM HTL at various free Ca2+ concentrations in ryanodine binding buffer at 
solution redox potential of -210mV and at 37˚C. The reactions were stopped with 
a series of washes after 14 hours. Each value of the HTL condition contains 
three experiments, each from three different cardiac SR preparations and 
generating 1-3 PVDF membranes each that were imaged, analyzed and this 
value, carbonylation per ryanodine receptor, was then normalized to the control 
condition before being averaged and reported ± standard error. The condition 
without HTL were derived from two experiments, from two different sheep cardiac 
SR preparations and both generating 2 PVDF membranes.   
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Figure 24: Enhancement of carbonylation by HTL as a function of Ca2+ 
concentration. Data shown is derived from Figure 21. The enhancement by HTL 

of carbonyl formation, as defined in figure 20, is significant at 300nM & 1µM free 

Ca2+. (P˂0.05)  
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Carbonylation of other proteins as a function of free Ca2+ 

The Ryanodine Receptor is not the only protein present in the SR prep that 

increases carbonylation as a function of free Ca2+ conditions. One such protein 

has a molecular mass of 205kDa and is shown in figure 25. It’s carbonylation as 

a function of free Ca2+ is quantified in figure 26. This band did not react with an 

antibody to Sarcalumenin, a Ca2+ binding protein of molecular mass 170kDa. It is 

most likely heavy chain myosin (molecular mass 223kDa). The Kd Ca2+ 

associated with carbonyl formation of the 205kDa Protein is 77±8nM. 

 

 

Figure 25: Western blot image of SR treated with DNPH at increasing 

concentrations of free Ca2+ shows increased carbonylation of multiple proteins. 
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Figure 26: Carbonylation of the 205kDa protein as a function of free Ca2+ 
concentration. Sheep cardiac SR was incubated with 100nM HTL at various free 
Ca2+ concentrations in ryanodine binding buffer at a solution redox potential of 

-210mV at 37˚C for 14 hours. The reaction was stopped with a series of washes. 
Two experiment, producing 2-4 PVDF membranes that were imaged and 
analyzed and this value, carbonylation per ryanodine receptor, was then 
normalized to the control condition before being averaged and reported  

± standard error. 
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3.9 Standardization of Carbonyl formation 
 

Using a protein ladder that has a known amount of DNPH residues attached to 

bovine serum albumin, it was possible to estimate how many carbonyl groups are 

formed on the RyR. The oxy-blot kit claims that there are 100 fmols of DNPH 

residue in 2.5µl of protein ladder provided. It was found via comparison of the 

integrated density values of the ladder and of the RyR2 bands found on three 

different PVDF membranes, that 88 fmol of carbonyls were formed above 

background. Since there are 15µg of SR loaded on each lane, and using the 

reference from a high salt (1M KCl) binding assay (ryanodine receptor is 

saturated) carried out on the same SR50, there are 4.8 fmol of RyR2 per µg of 

SR, it is possible to calculate that under the following conditions; 1µM free Ca2+, -

210mV redox potential, and 500nM HTL, there are ~90 fmol of carbonyl’s are 

formed on ~300 fmols of RyR monomers. This works out to be approximately one 

in three ryanodine receptors monomers being carbonylated. The active 

ryanodine receptor is a tetramer, therefore each tetramer contains ~1.3 carbonyls 

under these experimental conditions. At 100nM HTL, this works out to be ~0.43 

carbonyl/tetramer or ½ of the receptors are carbonylated.  
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Chapter 4: Conclusions & Discussion  

In the present study, we show that physiological relevant levels of homocysteine 

thiolactone, decreases the amount of free calcium needed for activation of the 

Ryanodine Receptor which precedes muscle contraction. This change can cause 

defects in function characterized by heart failure, ischemic heart disease, and 

several forms of arrhythmias. We propose here that the RyR2’s response to HTL 

is caused by the formation of N-Hcy-protein complex which in turn leads to 

irreversible carbonyl formation. 

 This proposal is supported by the similarities in the following experiments. 

The similarity between HTL ability to shift Ca2+ dependent ryanodine binding, 

IC50=90.4±15.5nM (figure 13) and to induce the formation of carbonyls on RyR2, 

EC50=108.8±20.3nM (figure 18) is remarkable. The case for carbonylation being 

the underlying mechanism of this functional change is supported by the 

functional studies that delved into the question of redox sensitivity (figure 15). It 

was observed that there is a greater change from the control condition in a 

reduced environment than in an oxidized one. This leads us to speculate that the 

RyR2’s response to HTL is potentiated by an interaction with sulfhydryl groups in 

a reduced state. This supports our hypothesis that the Nε-Hcy-protein complex 

can lead to either formation of a carbonyl or a disulfide. In a reduced environment 

the carbonyl formation should be favored. In contrast, measurements of carbonyl 

formation, showed no preference for the redox state of the receptor (figure 19 & 

figure 20).  
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An alternate hypotheses that we have disproven is that the formation of 

HTL adduct(s) with the large excess of GSH present in our experiments and in 

the cell environment, would form “downstream” products that serve as RyR 

modulators (figure 14). Since these studies are done with 700nM HTL or less, 

with an excess of 2mM GSH, an argument could be made for the presence of 

hyperactive lysine or a preferential condition that pushes the HTL to react with 

the RyR2 and not with the other free amine groups available. Since physiological 

conditions include a large excess of glutathione and other free amines, and only 

a small number of carbonyls are formed on RyR2, there appears to be something 

special about the environment that favors carbonyl formation with these hyper 

reactive lysines. 

The largest discrepancy we have found between the functional change 

and the formation of carbonyls is when looking at the time scale over which these 

changes happen. Carbonyl formation peaks at 4 hours (figure 21) while the 

functional change is still increasing at 6 hours (figure 16 & table 4).  

 The concentration of free Ca2+ on carbonyl formation had a significant 

effect (figure 23). This may be due to Ca2+ acting as a catalyst, or more likely it is 

caused by a Ca2+ dependent conformational change in RyR2 which exposes 

site(s) at which carbonyls form. This question should be explored further. Further 

investigation will also have to be done with respects to the number of receptors 

being modified. With approximately one in three ryanodine receptor monomers 

being modified in a 14 hour time scale the question is raised whether or not a 
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modified ryanodine receptor will exist for enough time to impact heart health in 

the body. The ryanodine receptor is usually turned over every 9-12 days51, 

however this could happen faster if proteases in the body recognize it functioning 

improperly. Is HTL reacting with so few sites on the RyR2 or is the formation 

carbonyl groups just an intermediary step and downstream products have not yet 

been identified? On a more basic, mechanistic level, future experiments could be 

done into how carbonyl formation is altered in the presence of other activators 

and inhibitors. These questions can be answered using the protocols outlined 

here with the antibodies to DNPH.  

Marks and colleagues52 have shown that RyR1 is carbonylated in the 

aging mouse model and Bidasee33 has shown that RyR2 is carbonylated in the 

diabetic rat model. This is the first time that it has been shown that increasing 

HTL concentrations results in the formation of carbonyls on RyR2 and that this 

appears to result in a Ca2+ dependent  shift in ryanodine binding. This is a new 

molecular mechanism linking elevated levels of Homocysteine, improper Ca2+ 

handling and heart failure. 
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