
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Fall 11-19-2014 

Detection of Variable Retention Time in DRAM Detection of Variable Retention Time in DRAM 

Neraj Kumar 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Other Computer Engineering Commons, and the Other Electrical and Computer Engineering 

Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Kumar, Neraj, "Detection of Variable Retention Time in DRAM" (2014). Dissertations and Theses. Paper 
2103. 
https://doi.org/10.15760/etd.2101 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2103
https://doi.org/10.15760/etd.2101
mailto:pdxscholar@pdx.edu


 

 

Detection of Variable Retention Time in DRAM 

 

 

 

 

 

by 

Neraj Kumar 

 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the  

requirements for the degree of 

 

 

 

Master of Science  

in  

Electrical and Computer Engineering 

 

 

 

 

 

 

Thesis Committee: 

W. Robert Daasch, Chair 

Glenn Shirley 

Marek Perkowski 

 

 

 

Portland State University 

2014 



Abstract

This thesis investigates a test method to detect the presence of Variable Retention

Time (VRT) bits in manufactured DRAM. The VRT bits retention time is modeled

as a 2-state random telegraph process that includes miscorrelation between test

and use. The VRT defect is particularly sensitive to test and use conditions.

A new test method is proposed to screen the VRT bits by simulating the use

conditions during manufacturing test. Evaluation of the proposed test method

required a bit-level VRT model to be parameterized as a function of temperature

and voltage conditions. The complete 2-state VRT bit model combines models for

the time-in-state and for the retention-time including miscorrelation. A copula is

used to model the effect of miscorrelation between test and use. The proposed

VRT test algorithm runtime is estimated as a function of VRT test coverage, test

temperature and test voltage.

i



Acknowledgements

I wish to express my thanks to Prof. Robert Daasch, for his advice and encour-

agement. I also thank my father Nand Kishore Prasad, my whole family and loved

ones, for their constant support and having faith in me.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 DRAM and Variable Retention Time . . . . . . . . . . . . . . . . . 2

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 History: Variable Retention Time . . . . . . . . . . . . . . . . . . . 7

2.2 Modeling of VRT Phenomenon . . . . . . . . . . . . . . . . . . . . 11

2.3 Two-state VRT (mis)correlation . . . . . . . . . . . . . . . . . . . . 11

3 Strategy: Identifying the Test for Detecting VRT Phenomenon 17

3.1 VRT Bit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 RTN Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Fitting Marginal Distribution of Retention Time . . . . . . 20

3.1.3 Fitting RTN Time-in-state Model . . . . . . . . . . . . . . . 23

iii



3.2 Copula Model for Miscorrelation in Two Retention Times . . . . . . 27

3.3 Synthesized VRT Bit . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 DRAM Memory Array . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Results: VRT Test and Detection 34

4.1 VRT Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Two Retention Times . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Time-in-state . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Test and Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Time-in-state Dependence on Temperature . . . . . . . . . . 37

4.2.2 Time-in-state Dependence on Voltage . . . . . . . . . . . . . 39

4.3 VRT Bits in a DRAM Array . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Two Retention times . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Test and Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Time-in-state . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Time-in-state Dependence on Temperature . . . . . . . . . . 47

4.4.3 Time-in-state Dependence on Voltage . . . . . . . . . . . . . 50

4.5 Number of Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Survey of Existing DRAM Test Programs . . . . . . . . . . . . . . . 54

4.6.1 March Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6.2 IFA-9 and IFA-13 March Test . . . . . . . . . . . . . . . . . 56

4.7 Proposed VRT Test Algorithm . . . . . . . . . . . . . . . . . . . . . 58

4.8 Determination of the VRT Test Length (K) . . . . . . . . . . . . . 61

4.9 Figures-of-merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Revised Figures-of-merit after Including Time-in-state . . . . . . . . 64

iv



5 Conclusions and Recommendations 71

References 75

v



List of Figures

1.1 DRAM Subarray [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Refresh mechanism in DRAM . . . . . . . . . . . . . . . . . . . . . 4

1.3 2-state VRT waveform at 100◦C [2] . . . . . . . . . . . . . . . . . . 5

2.1 Waveform of single VRT bit retention states with time . . . . . . . 8

2.2 Thermal activity of retention states . . . . . . . . . . . . . . . . . . 9

2.3 Energy diagram of VRT bits [3]. The data is from Restle [3] . . . . 10

2.4 Silicon defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Retention test pass/fail data record of a DRAM bit at 18 different

environmental conditions. . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Retention time data collected in PSU experiment at T=125◦ C and

Voltage=1.2V [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Retention time miscorrelation . . . . . . . . . . . . . . . . . . . . . 16

3.1 2-state RTN waveform at T = 105◦C, Voltage = 1.2V [2] . . . . . . 18

3.2 Histogram of Time-in-state maximum and time-in-state minimum [5] 20

3.3 Weibit plot for retention time marginal distribution at T = 125◦C

and Voltage = 1.2V . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Average time-in-state maximum (τmax) and average time-in-state

minimum (τmin) at different voltages and different temperatures [5]. 24

3.5 A 4000 sample scatterplot of the 2D (bivariate) Clayton copula( [4]). 28

3.6 A Clayton dependent 4000 sample scatterplot with Weibull marginal

retention time distributions. . . . . . . . . . . . . . . . . . . . . . . 30

vi



3.7 Marginal distribution of retention time obtained by sampling with

rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 2-state VRT waveform at T = 100◦C, Volatge = 1.2V [2] . . . . . . 35

4.2 Example: Retention time of the VRT bit at test and use. Black

arrows: Instantaneous measurement of retention time at test. The

continuous red arrows are retention time measurements in use. . . . 36

4.3 Example: Detection of minimum retention state with the help of

refresh mechanism in DRAM . . . . . . . . . . . . . . . . . . . . . 37

4.4 Synthetic VRT waveform at two different temperatures, Voltage

=1.2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Synthetic VRT waveform at two different voltages, T=105◦C . . . . 41

4.6 Two retention time measurements of 100 VRT bits at 105◦C and

1.2V. The VRT bit inside the red circle represents the VRT bit

in Figure 4.4b. The VRT bit inside the blue circle has maximum

retention time 5200µs and minimum retention time 3200µs. . . . . . 42

4.7 Transformation of retention time measurements to test and use

model (Eq 4.1 and Eq 4.2) at 105◦C and 1.2V. The VRT bit inside

the red circle (Figure 4.4b) is at the same place after transformation

and the VRT bit inside the blue circle got shifted. . . . . . . . . . . 45

4.8 Transition of the VRT bits at different time intervals. T=105◦C and

Voltage =1.2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Transitions of the VRT bits in 10sec at three different temperatures.

Voltage = 1.2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.10 Transition of the VRT bits in 10sec at three different voltages. T =

105◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



4.11 VRT Test Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Figures-of-merit of a test program. Test-set (Blue horizontal line)

is 1200µs and use-set (Green vertical line) is 1000µs . . . . . . . . . 63

4.13 Retention state of VRT bits after different number of reads. . . . . 65

4.14 Transition of the VRT bits during test. Sample size: 4000. T=125◦C,

Voltage =1.2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 TE vs OK for test runtime 10sec and 20sec at temperatures 115◦C

and 125◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



List of Tables

3.1 Parameters and their fitted values for lnα model [4]. . . . . . . . . . 23

3.2 Average values of τmax and τmin at different voltages (a) and at

different temperatures (b) collected from Figure 2.3 [5]. Reference

temperature 93◦C, reference voltage 1.4V . . . . . . . . . . . . . . . 25

3.3 Description of parameters of time-in-state model. . . . . . . . . . . 26

4.1 Number of VRT bits making transition in the given test runtime

and temperature. 105◦C (τmax = 29sec, τmin = 24sec), 115◦C (τmax

= 13sec, τmin = 11sec), 125◦C (τmax = 6sec, τmin = 5sec) . . . . . . 53

4.2 Fault models covered by different March Test Algorithms [6]. . . . . 54

4.3 Description of different March Test Algorithms [6]. . . . . . . . . . 55

4.4 Notations of March Test . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Fault models covered by IFA-9 and IFA-13 March test [7]. . . . . . 57

4.6 Description of IFA-9 and IFA-13 March test [7]. . . . . . . . . . . . 57

4.7 Example: Screening of VRT bits with VRT test algorithm. Ticks

represent the fails during read from DRAM bit. . . . . . . . . . . . 60

4.8 Count of Pass, Fail, Overkill and Test Escape of 100 VRT bits in

Figure 4.12.Test set-point= 1200µs, use set-point = 1000µs . . . . . 63

4.9 Count of Pass, Fail, Overkill and Test Escape. Average of 10 samples

of 4000 VRT bits were taken. T=125◦C, voltage =1.2V. Test set-

point =1200µs, use set-point = 1000µs . . . . . . . . . . . . . . . . 64

4.10 Average DPM of Overkill and TE for 10 samples of 4000 bits. . . . 68

ix



4.11 Test Escape vs Overkill as a function of test set-point, test runtime

and temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



Chapter 1

Introduction

1.1 Problem Statement

This thesis detects the presence of failing variable retention time (VRT) bits in

manufactured DRAM specification. The VRT bits are sensitive to test and use

environments (In Section 4.2, the sensitivity of the VRT bits to test and use envi-

ronments is detailed). The VRT bits failing in test behave as hard error but the

VRT bits failing in use behave as soft error. There is a need of a test algorithm

which mimics the use condition to screen these bad VRT bits at the manufacturing

test.

This thesis extends the previous study of DRAM retention time (See Section 1.2 for

the definition of retention time) at PSU’s ECE ICDT laboratory [4]. In this thesis,

the effects of time-in-state of variable retention time will be added to PSU’s DRAM

retention time study. A model of time-in-state of the VRT bits will be presented

as a function of environmental conditions such as temperature and voltage. This

thesis models the VRT bits by the combination of Weibull model for marginal

distribution of retention time, Copula model for retention time miscorrelation and

time-in-state model (See Chapter 3 for the details of models). A DRAM array of

1Gb was assembled from the combination of marginal distribution of retention time

model, Copula model of miscorrelation in retention times and time-in-state model.

The assembled DRAM array was used to develop and evaluate a test algorithm for

the VRT detection at temperature and voltage set points.
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1.2 DRAM and Variable Retention Time

In the fast growing computer world, memory is the key to fast and improved

performance of any computer system. Random Access Memory is used primarily in

computer systems because of the faster read and write operations. Static Random

Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) are two

types of Random Access Memory. Each bit of SRAM has 6 transistors. For a

DRAM bit only one transistor and a tiny capacitor is required. Although DRAMs

have longer access time but because of the higher density of bits on DRAM chips,

cost per bit of DRAM is very low compared to SRAM. DRAMs are widely used

in all computer systems as main memory. In recent years, DRAMs are also used

in wireless mobile devices such as smart phones, tablets, modems and printers.

Increasing density of bits on DRAM chips has also helped to reduce the size of

electronic devices.

Figure 1.1 shows a DRAM subarray. The horizontal lines (labeled as Row0, Row1)

in Figure 1.1 are row lines or word lines of DRAM subarray. The vertical lines

(labeled as bit0, bit1) are bit lines of DRAM subarray. Each bit of a DRAM is

a combination of one CMOS transistor and one capacitor. Information is stored

as charge on the capacitor. DRAM bits connected to a single row line make one

word. To write on a DRAM bit, the bitlines are pre-charged and the desired row

line is selected to turn on the transistor. Then the capacitor is charged high or

low. To read a DRAM bit, the bitlines are pre-charged to a different voltage and

the row line is selected to turn the transistor on. Then charge on the capacitor is

sensed by the sense amplifier through bitlines.

2



Figure 1.1: DRAM Subarray [1]

The capacitor leaks charge, so a DRAM bit can retain data for a certain time. After

some time, the stored data on the DRAM bits become invalid. Each bit’s data

retention time is known as its characteristic data retention time. The characteristic

retention times of DRAM bits vary from a few milliseconds to seconds. To retain

the data for a longer duration, until a bit is read or written again, DRAM bits

are refreshed periodically. Refresh is a simple operation where data is read from

a bit and written back to the same DRAM bit. Figure 1.2 shows the leakage of

charge on a DRAM bit and periodic refreshes to retain the data. When data is

stored to any DRAM bit, it is stored as charge on its capacitor. Stored charge on a

capacitor leaks with time. Before the remaining charge on a capacitor goes below

the threshold, a refresh signal refreshes the bit and charge on the capacitor of the

DRAM bit is restored again.

3



Figure 1.2: Refresh mechanism in DRAM

The time duration between two refresh signals is called refresh cycle time. Gener-

ally, refresh cycle time is less than the shortest retention time of all DRAM bits,

so refresh mechanism can refresh all DRAM bits before they lose their charge from

a capacitor.

In 1987, Yaney [8] reported for the first time that some bits in DRAM memory have

variable retention time due to one or more atomic level defect [8]. Such defective

bits are different from the normal bits because they have multiple data retention

times. In this thesis, DRAM bits having single retention time at a particular

environmental condition (temperature, voltage, etc.) are named as single retention

time (SRT) bits and bits having variable retention time are named as variable

retention time (VRT) bits. In Section 3.1, this thesis models the VRT bits with a

2-state Retention Telegraph Noise (RTN) model.

The VRT bits have two retention times associated with two retention states. The

VRT bits have the longest retention time in maximum retention state and the

shortest retention time in minimum retention state. Figure 1.3 shows a 2-state

4



VRT waveform of a VRT bit. The horizontal axis is time in hours and the vertical

axis is retention time in seconds. The y-axis in the Figure 1.3, represents the

maximum and minimum retention states. The VRT bit has maximum retention

time of about 10sec in maximum retention state and minimum retention time of

about 1sec in minimum retention state. The time spent by the VRT bit in one

retention state is plotted on the x-axis.

The VRT bits stay for a longer time in one retention state. Retention time of

DRAM bits at manufacturing test is measured only once. So, a VRT bit may be

in maximum retention state or minimum retention state during test.

The duration of use of a DRAM bit is usually in years. During Use, VRT bits

will definitely come to minimum retention state, where the VRT bits will have

retention time less than refresh cycle time. When retention time of a DRAM bit is

smaller than the refresh cycle time, data will be lost from the VRT bits before bits

get refreshed. Loss of data from a DRAM bit will result as the faulty operation of

a computer system and hence, reduces the performance of the system.

Figure 1.3: 2-state VRT waveform at 100◦C [2]
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1.3 Thesis Organization

In this thesis, Chapter 2 reviews the origin of VRT behavior and defects causing

VRT behavior in DRAM bits. Chapter 2 also highlights the PSU ECE ICDT

laboratory retention time study and retention time marginal distribution model as

a function of temperature, supply voltage and bias voltage. Chapter 3 explains the

step-by-step strategy to assemble a DRAM array with VRT bits at some proportion

by including the concept of time-in-state of the VRT bits. The strategies discussed

in Chapter 3 will be implemented in Chapter 4. The results driven by the strategies

are presented in Chapter 4. A new VRT test algorithm for improved VRT screening

will be presented in Chapter 4 and then the figures-of-merit of this test algorithm

will be evaluated. The conclusions and recommendations are presented in Chapter

5.

6



Chapter 2

Background

This chapter presents the detailed summary of the origin of the variable retention

time in DRAMs. The defects causing the VRT phenomenon will be discussed in

this chapter. This chapter also talks about the DRAM study at PSU ECE ICDT

laboratory (See Section 2.3 for the details) [4].

2.1 History: Variable Retention Time

The variable retention time defect has been present in DRAM memories since the

beginning and has been observed in every technology node (See the definition of

technology nodes at [9]). The VRT was reported for the first time in 1987 by

Yaney [8]. The VRT defect and the impact of the VRT defect on the performance

of the DRAM was explained in detail in 1992 by Restle [3]. In the DRAM retention

time experiment, Yaney [8] found that some bits in DRAM memory were showing

variable retention time (Figure 2.1). In Figure 2.1, the x-axis is time in seconds

and the y-axis is retention time (µs) of a VRT bit. The VRT bit stays in one

retention state for minutes before it makes the transition to the other retention

state. The VRT bit in Figure 2.1 has the longest retention time of around 3000µs

in the maximum retention state and the shortest retention time of 1300µs in the

minimum retention state.

7



Figure 2.1: Waveform of single bit retention states with time,T=77◦C. [3]

The retention time and the time spent by a VRT bit in one retention state was

observed to be varying with environmental temperature and supply voltage. Figure

1.3 and Figure 2.1 shows the behavior of a VRT bit at two different environmental

conditions.

Using Figure 2.1, the average time spent by a VRT bit in one retention state (ei-

ther maximum or minimum) is the sum of time when a VRT bit is in one retention

state (either maximum or minimum) divided by the total time. In Figure 2.1, the

average time spent by the VRT bit in the maximum retention state (τmax) would

be the sum of the time (8 peaks in maximum retention state), when the VRT

bit was in the maximum retention state, divided by the total time 4000 seconds.

Similarly, the average time spent by the VRT bit in the minimum retention state

(τmin) would be the sum of the time (8 peaks in minimum retention state), when

the VRT bit was in the minimum retention state, divided by the total time 4000

seconds. Following is the example of calculating τmax and τmin from Figure 2.1.

For example, the first entry for τmax of 130 is the first peak in Figure 2.1.

8



τmax(sec) =

(
130 + 145 + 670 + 270 + 380 + 20 + 140 + 120

8

)
= 235

τmin(sec) =

(
700 + 40 + 210 + 25 + 500 + 210 + 10 + 140

8

)
= 228

The thermal activity of τmax and τmin are shown in Figure 2.2(a). The τmax and

τmin vary with change in environmental temperature. The average time spent by a

VRT bit in the maximum retention state (τmax) and the average time spent in the

minimum retention state (τmin) are the functions of environmental conditions such

as temperature and voltage. The transition rate between retention states with

a change in temperature is shown in Figure 2.2(b). The transition rate between

retention states increases with increasing temperature [3] [8] (Figure 2.2(b)).

Figure 2.2: (a) Thermal activity of average time in retention states [3], (b) Tran-
sition rate between retention states with temperature [8]

The VRT phenomenon can be described also with the help of the bistable energy di-

agram. The activation energy level diagram is shown in Figure 2.3. The activation

9



energy for the maximum retention state ranges from 0.93±0.03 eV to 1.02±0.02 eV

and for the minimum retention state from 0.87±0.03 eV to 1.01±0.07 eV. Gen-

erally, the activation energy for the maximum retention state is greater than the

activation energy of the minimum retention state.

Figure 2.3: Energy diagram of VRT bits [3]. The data is from Restle [3]

The variability in the retention time of a DRAM bit is caused by the defect related

to different leakage rates at the capacitor [10]. The silicon defect in the DRAM

bit causing variable retention time is shown in Figure 2.4. The higher the leakage

rate is at the capacitor, the retention time of that DRAM bit would be lower.

There are many leakage mechanisms at the capacitor node but junction leakage

is the one which is responsible for VRT phenomenon [10]. The fluctuation in the

leakage current is caused by the silicon valence oxygen complexes. This atomic

defect possesses two Si dangling bonds with different energy levels in the energy

band gap. The activation energy levels are changed when any strain is provided.

In the good state the VRT bit has a stable orientation with attached Si and oxygen

bond. In the bad state, the VRT bit has an unstable orientation because of the

dangling Si bond. In Figure 2.4, the two levels represent two different junction

leakage currents at the capacitor; hence two different retention times.

10



Figure 2.4: Silicon defect [2]

2.2 Modeling of VRT Phenomenon

This VRT phenomenon is a simple Markov process which has no memory for the

preceding transitions or history. The VRT phenomenon is an example of Random

Telegraph Noise (RTN) which will be discussed in detail in Chapter 3.

2.3 Two-state VRT (mis)correlation

Previously, at Portland State University ECE ICDT laboratory, a retention time

experiment was done for embedded DRAM (eDRAM) [4]. The eDRAMs are

DRAMs integrated with processors on the same die. The eDRAMs are logic pro-

cess builders. The eDRAM bits have a metal stack capacitor.

At ICDT laboratory, the eDRAM arrays were tested on a Credence Quartet tester

with temperature controlled by a Silicon Thermal Powercool LB300-i controller.

11



Temperature was measured by a calibrated sensor on the silicon die. Retention

time of the eDRAM bits were measured at 12 different steps. The bits having

data retention time greater than retention time set were pass and the bits having

retention time less than retention time set were fail. The physical location (x,y)

of each failing and passing bit in the array was recorded for each retention test.

Pass/fail was recorded at 12 different retention steps for each eDRAM bit for 18

different environmental conditions. The environmental conditions were:

• Temperatures: 105◦ C, 115◦ C, 125◦ C

• Supply Voltage,Vd: 0.8 V, 1.0 V, 1.2 V

• Substrate bias,Vp: 0.4 V, 0.45 V

Retention times were measured in twelve steps starting from 262 µs to 2659 µs.

Five repetitions of the retention time measurement were done for each bit to cap-

ture any variability in the retention time. There was a time interval between the

two iterations of retention time measurement. Time interval between measure-

ments ensures that both retention states of VRT bits have been detected.

Figure 2.5 is the table for the pass/fail data record experiment at different en-

vironmental conditions. The left half of the table represents the environmental

conditions and the right half of the table is the record of pass and fail. In the table

(Figure 2.5), identity column presents the unique identification of the eDRAM bit

by recording skew, chip, macro, PX and PY. The column environmental condition

is the combination of Vp,Vd and temperature. In the results of test column, the

maximum retention time (IRetMax) and minimum retention time (IRetMin) were

recorded in retention time steps. The variability in the retention time of a bit was
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also recorded (IRetDelta). Retention times were measured in loop for five times.

Pass is represented by 0 and fail by 1.

Figure 2.5: Retention test pass/fail data record of a DRAM bit at 18 different
environmental conditions.

Figure 2.6 shows a table for the count of bits in different retention time bins at

one environmental condition. In the PSU ICDT DRAM experiment, the size of

eDRAM was 48 Mb, which is the sample size here. The retention times of bits for a

sample size of 48 Mb were measured twice. The last 3 rows in the table describe the

marginal distribution of retention time for the first retention time measurement and

the first three columns in the table describe the marginal distribution of retention

time for second retention time measurement.

The retention time measurements were divided into 12 steps from 264 µs to 2658

µs, each column on the axis is the record of fail for the given retention time. The

retention time set is represented by r (µs). The count of the bits which failed

13



retention test for retention time set r (µs) is represented by N. Cumulative N is

the sum of fails at all retention tests less than r (µs).

N =
x∑
i=1

Ni

Fail fraction in part per million (ppm) for the given retention time r (s) is listed

in the last row on both of the axis.

For example, for retention time 700µs, 38 bits have same retention time in both

measurements. In 1st retention time measurement (x-axis of Figure 2.6), 61 bits

have retention time of 700µs. The cumulative number of bit having retention time

700µs is 109 (sum of 5, 13, 30 and 61). The cumulative fraction (F) of bits having

retention time 700µs is 2.2.

Figure 2.6: Retention time data collected in PSU experiment at T=125◦ C and
Voltage=1.2V [4]
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Similarly, retention time marginal distribution data was collected for 18 different

environmental conditions in PSU’s DRAM retention time study. The collected re-

tention time data was fitted to Weibull distribution to present a model for marginal

distribution of retention time for the given environmental condition. The cumu-

lative probability distribution of Weibull distribution is given by Eq 2.1. Size

parameter of Weibull distribution is represented by α and the shape parameter by

β.

F (r) = 1− Exp
[
−
( r
α

)β]
(2.1)

where r = retention time, α = scale parameter and β = shape parameter.

The fit of data to the Weibull distribution can be visually accessed by plotting

Weibit plot. A Weibit plot is a plot of ln(-ln(1-F(r)) versus ln(r). A straight line is

expected on the Weibit plot if the data is a good fit for Weibull distribution (See

Section 3.1.2 for the details of fitting).

Figure 2.7 shows the miscorrelation in the retention time of DRAM bits. Retention

time of DRAM bits recorded in the first measurement is plotted on the x-axis and

retention time recorded in the second measurement is plotted on the y-axis. The

good bits have the same retention time at both measurements and termed as

static retention time (SRT) bits. The SRT bits are populated on the diagonal of

this plot. The bits having different retention times at two measurements lie off

diagonal, these bits are VRT bits.
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Figure 2.7: Retention time miscorrelation

The retention time experiment at PSU did not include the concept of TIS of VRT

bits.
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Chapter 3

Strategy: Identifying the Test for Detecting VRT Phenomenon

This chapter assembles a DRAM array of 1Gb with VRT bits in the proportion ob-

served in Chapter 2, 18% ( [4]). The assembled DRAM array allows the evaluation

of the possible methods to screen the VRT bits in the next chapter.

This thesis presents a time-in-state model (See Section 3.1.3) for the VRT bit.

This thesis also integrates the time-in-state model with marginal distribution of

retention time model (See Section 3.1.2 for details) and (mis)correlation model

(See section 3.2 for details) to get a complete VRT bit model.

3.1 VRT Bit Model

This section introduces the necessary elements to model a VRT bit. The VRT

bit has four attributes: maximum retention time, minimum retention time, aver-

age time-in-state maximum and average time-in-state minimum. The VRT model

models the attributes of a VRT bit by combining the time-in-state model, marginal

distribution of retention time model and (mis)correlation model. This section de-

scribes each model in detail.

3.1.1 RTN Model

The VRT phenomenon is an example of Random Telegraphic Noise (RTN) model.

The VRT phenomenon in DRAM can be modeled by the RTN model. Time-in-

state in the RTN model of the VRT bit is memoryless process. The memoryless
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process is special because it does not remember the time of the last transition.

Figure 3.1 shows a 2-state (maximum and minimum state) RTN waveform of a

VRT bit at 105◦C and 1.2V [2]. The RTN waveform of the VRT bit in Figure 3.1

has two important elements: time-in-states (x-axis) and retention times (y-axis).

Figure 3.1: 2-state RTN waveform at T = 105◦C, Voltage = 1.2V [2]

In the RTN model, the individual samples are drawn from exponential distribution

for time-in-state maximum and time-in-state minimum. The time-in-state maxi-

mum and the time-in-state minimum of a VRT bit can be generated by sampling

the cumulative exponential distribution. The RTN model synthesizes the x-axis of

Figure 3.1 which are the time-in-states (time-in-state maximum and time-in-state

minimum) of a VRT bit.

Eq 3.1 shows the general expression of the cumulative exponential distribution. Eq

3.1 can be solved to get the sample value of the cumulative exponential distribution

(Eq 3.2).

F (t) = 1− exp(−t/λ) (3.1)

t = −λ ∗ ln(1− F (t)) (3.2)
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where t = time and λ = parameter of distribution.

Eq 3.2 can be parameterized to get the distribution of time-in-state maximum and

the distribution of time-in-state minimum. A sample value of time-in-state maxi-

mum can be obtained from Eq 3.3 and a sample value of time-in-state minimum

can be obtained from Eq 3.4.

TISmax = −τmax ∗ ln(1− rand) (3.3)

TISmin = −τmin ∗ ln(1− rand) (3.4)

where rand = random number between 0 and 1, τmax = average time-in-state

maximum and τmin = average time-in-state minimum.

With the help of Eq 3.3 and Eq 3.4, 100 sampled values were generated for time-in-

state maximum and time-in-state minimum respectively. The 100 sampled values

of time-in-state maximum and time-in-state minimum were plotted to get the VRT

waveform of a VRT bit (Figure 3.1).

Figure 3.2 shows the histogram of measured data of time-in-state maximum (Fig-

ure 3.2(a)) and time-in-state minimum (Figure 3.2(b)) of a VRT bit [5]. The

superimposed lines (red line) on the histograms are the exponential fitted model.

To model the time-in-state with RTN, the histogram in Figure 3.2 should be a

good fit to the exponential model. The histogram data of time-in-state maximum

and time-in-state minimum are visually good fits to the exponential model [5] [8].

The author did not provide any statistical curve fitting data. The RTN model can

be used to model the time-in-state of a VRT bit.
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Figure 3.2: Histogram of Time-in-state maximum and time-in-state minimum [5]

The two retention times of a VRT bit can be obtained by sampling the marginal

distribution model of retention time (See Section 3.1.2 for details).

3.1.2 Fitting Marginal Distribution of Retention Time

The samples of retention time pair can be obtained by sampling the marginal

distribution of retention time model. In [4], a Weibull model on retention time

was presented to sample the pair of independent retention times of a VRT bit. A

VRT bit’s retention time is sampled from the empirical cumulative distribution

function (Eq 3.5a) for the given environmental condition. [4].

In [4], the temperature and voltage dependence of the shape and size parameters

of the Weibull model on retention time were investigated. The values of β and

α of the Weibull model for a particular environmental condition are obtained by

plotting the Wiebit plot. Figure 3.3 is a Weibit plot for T=125◦C and voltage
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1.2V. The x-axis of the Weibit plot is the log of retention times and the y-axis is

Weibit (Eq 3.5b). The value of β is obtained from the slope of the line and the

value of α is obtained from the intercept (Eq 3.5c).

F (r) = 1− exp
[
−
( r
α

)β]
(3.5a)

W = ln(−ln(1− F )) (3.5b)

W = βlnr − βlnα (3.5c)

where r = retention time, α = scale parameter and β = shape parameter.
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Figure 3.3: Weibit plot for retention time marginal distribution at T = 125◦C and
Voltage = 1.2V

In [4] similarly, pairs of β and α were obtained for each of the 18 environmental

conditions by fitting each marginal distribution retention time data to a Weibit

plot. In [4], the studies showed that the value of shape parameter (β) was constant

for different environmental conditions. The scale parameter (α) was well fitted by

Arrhenius temperature and exponential voltage (Eq 3.6) [4]. The fitted parameters

are listed in Table 3.1.

α = α0 ∗ Exp(a(Vp − Vpref )) ∗ Exp((Vd − Vdref )) ∗ Exp
(
Q

kB

(
1

T
− 1

Tref

))
(3.6)
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Parameter lnα0 a b Vpref (V) Vdref (V) Q(eV) Tref (◦C)
Fitted Value 11.55 -5.85 -1.57 0.45 1.2 0.60 125

Table 3.1: Parameters and their fitted values for lnα model [4].

3.1.3 Fitting RTN Time-in-state Model

The average time-in-state data of a VRT bit at different temperatures and voltages

were collected from the Kim, et. al paper (Figure 3.4) [5]. Figure 3.4 plots the

values of τmax and τmin of a VRT bit at different voltages and temperatures. The

solid circles (black) are τmax obtained by simulation and the solid squares are τmin

obtained by simulation. The circles and the squares (red) represent the measured

τmax and τmin respectively for a VRT bit. The left side in Figure 3.4 is the variation

of τmax and τmin with the changing voltages and the right side is the variation in

τmax and τmin with changing temperature.

The y-axis in the plots are average time-in-state. In these plots, the value of

τmax or τmin is given for either temperature or voltage. So, it took some effort

to interpolate the reference voltage and temperature for the data collected from

Kim’s paper.
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Figure 3.4: Average time-in-state maximum (τmax) and average time-in-state min-
imum (τmin) at different voltages and different temperatures [5].

To get the final average value of τmax and τmin irrespective of delay between two

measurements, the average of τmax and τmin for different delays was taken.

For example, the values of τmax measured with different delays at 1.2V (Figure

3.4(a)) were 80sec, 76sec, 76sec, 81sec, 75sec and 75sec. The average of these

values (77sec) are taken to get the final τmax. The average value (77sec) of τmax

for 1.2V is shown in Table 3.2(a). Similarly, all other values of τmax and τmin have

been calculated for different voltages and different temperatures.

The average values of τmax and τmin at different voltages and temperatures collected

from Figure 3.4 are shown in Table 3.2. Table 3.2(a) shows the values of average
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τmax and average τmin at different voltages obtained from plots 3.2(a), 3.2(b) and

3.2(c). Table 3.2(b) shows the values of average τmax and average τmin at different

temperatures obtained from plots 3.2(d), 3.2(e) and 3.2(f).

The reference temperature and reference voltage in Kim’s paper for this data col-

lection were 93◦C and 1.4V respectively.

Voltage (V) τmax (Sec) τmin(Sec)

1.2 63 77

1.3 63 78

1.4 68 77

1.5 63 78

1.6 64 75

(a)

Temp(◦C) τmax (Sec) τmin (Sec)

80 208 228

85 127 158

90 80 95

93 68 78

97 43 55

(b)

Table 3.2: Average values of τmax and τmin at different voltages (a) and at differ-
ent temperatures (b) collected from Figure 2.3 [5]. Reference temperature 93◦C,
reference voltage 1.4V

Arrhenius temperature and exponential voltage gave an excellent fit for the average

time-in-state model (Eq 3.7). Eq 3.8 and Eq 3.9 shows the logarithmic time-in-

state maximum and logarithmic time-in-state minimum model respectively. The
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description of the parameters is given in Table 3.3.

τ = A ∗ exp [B(V − V ref)] ∗ exp
[
Qref

kB

(
1

T
− 1

Tref

)]
(3.7)

lnτmax = lnAmax +Bmax(V − Vref ) +
Qrefmax

kB

(
1

T
− 1

(Tref )

)
(3.8)

lnτmin = lnAmin +Bmin(V − Vref ) +
Qrefmin

kB

(
1

T
− 1

(Tref )

)
(3.9)

Parameter Description

Amax(Temperature co-efficient for lnτmax) 76.76

Amin (Temperature co-efficient for lnτmin) 64.06

Bmax (Voltage co-efficient for lnτmax) -0.05

Bmin (Voltage co-efficient for lnτmin) 0.04

Qrefmax (Activation energy for lnτmax in eV) 0.98

Qrefmin (Activation energy for lnτmin in eV) 0.98

kB(eV K−1) 8.617 ∗ 10−5

Vref (Reference voltage in Volt) 1.4

Tref (Reference temperature in Kelvin) 366

Table 3.3: Description of parameters of time-in-state model.

In Kim’s [5] paper, the time-in-state measurements were done in the range of 80◦C

to 97◦C. The VRT screening requires the screening of the VRT bits outside this

range (80◦C to 97◦C) as well.

26



With the help of the parameters in Table 3.3, the average time-in-state (τmax and

τmin) of the VRT bits were extrapolated to both higher and lower temperatures

and voltages.

3.2 Copula Model for Miscorrelation in Two Retention Times

The samples of retention time obtained from the Weibull model (Eq 3.5) are statis-

tically independent of each other. In [4], the miscorrelation in the retention times

were studied for different environmental conditions. In [4], the two independent

retention times of a VRT bit were correlated using the Clayton Copula. In the

Copula approach, the two correlated numbers (x,y) are generated between 0 and

1 to get the two correlated retention times of a bit.

Clayton Copula density function is given by the Eqn 3.10. Clayton Copula has

two random variables, x and y.

C(x, y) =
(
x−θ + y−θ − 1

)−1
θ (0,∞) (3.10)

where θ = (0,∞)

To get the correlated pair of x and y, Eqn 3.11 is derived from Eqn 3.10. In Eqn

3.11, w is an independent random variable uniformly distributed on [0,1],

w =
∂C(x, y)

∂x
= x−θ+1

(
x−θ + y−θ + 1

) θ+1
θ (3.11)
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Eqn 3.11 is solved to get Eqn 3.12. A sampled correlated pair (x,y) can be obtained

from Eqn 3.12. In Eqn 3.12, x and w are independent random numbers, uniformly

distributed on [0,1].

y =
[(
w( −θ

θ+1) − 1
)
∗ x−θ + 1

](−1
θ )

(3.12)

where w = random [0, 1], x = [0,1] and θ = correlation constant.

The 4000 pairs of correlated numbers are obtained by Clayton Copula model ( Eqn

3.12). The sampled pairs of correlated numbers are plotted on Figure 3.5. The

x-axis is the first number (x) of the correlated pair and the y-axis is the second

number (y) of the correlated pair.
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Figure 3.5: A 4000 sample scatterplot of the 2D (bivariate) Clayton copula( [4]).
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A pair of two retention times of a VRT bit can be obtained with the help of

correlated pairs (x, y) returned from the Clayton Copula model (Eq 3.12).

The cumulative correlated pairs can be used to generate a value from a selected

marginal distribution. The first retention time is obtained by using the value of x

in the inverted Weibull marginal distribution (Eq 3.13) and the second retention

time is obtained by using the value of y in the same inverted Weibull marginal

distribution.

r = exp

[
(ln(α) +

ln(−ln(1− F (r)))

β

]
(3.13)

The 4000 pairs of retention time are obtained from the Weibull equation by putting

the values of x, y pairs obtained from the Clayton Copula model. The 4000 pairs of

Clayton dependent retention times are plotted on Figure 3.6. The x-axis in Figure

3.6 is the 1st retention time and the y-axis is the 2nd retention time. Most of the

VRT bits have retention times much larger than the test limits. This thesis focuses

on the bits which fall on the tail of the Copula distribution (Figure 3.6). To get

the DRAM bits at the tail, the Clayton Copula is sampled with rejection. Some

of the random samples do not meet the requirements. For the DRAM retention

time, the sample from the Clayton is rejected if do not meet the requirements.
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Figure 3.6: A Clayton dependent 4000 sample scatterplot with Weibull marginal
retention time distributions.

Figure 3.7 is the distribution of the tail of Figure 3.6. The Clayton copula is

sampled for 100PPM on both x and y axis to get the truncated distribution of

retention time at the tail of Figure 3.6.
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Figure 3.7: Marginal distribution of retention time obtained by sampling with
rejection.

The copula based approach of modelling the retention time of VRT bits gives a

pair of correlated retention times. The correlated retention time pairs will be used

to synthesize VRT bits and then a DRAM array with VRT bits.

3.3 Synthesized VRT Bit

The VRT bit could be characterized by the four attributes: maximum retention

time, time-in-state maximum, minimum retention time and time-in-state mini-

mum. The parameterized model discussed in the earlier sections can be used to

generate a VRT bit.
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3.4 DRAM Memory Array

In the manufacturing testing of DRAM, though each bit of DRAM is screened, but

DRAMs are built in arrays. The strategy to screen the VRT bits in DRAM has to

be associated with the DRAM arrays instead of DRAM bits. The DRAM arrays

are assembled from the DRAM bits. The remaining of this section talks about the

necessary steps for assembling an array and introduces the mechanisms of testing

an array.

By using the independent time-in-state and the Copula dependent retention times,

a common size 1Gb DRAM array will be assembled. The 1Gb DRAM array will

have independent bits including VRT bits and SRT bits. Notice that the VRT bits

are off diagonal in Figure 3.6 and the SRT bits are on the diagonal.

The 1Gb DRAM array will be used to evaluate the screening of VRT bits at

different temperatures and voltages. The bits in the DRAM array will be screened

as pass/fail. The bits (including VRT bits) having retention time longer than test

retention time will be passes otherwise fails. The largest fraction of the bits in

the DRAM array have a minimum and maximum retention time much longer than

Test and Use limits of the screen. The screen for the VRT bits will be evaluated

for the smallest (smaller retention time) few percent of all bits in the DRAM array.

A thorough survey of different existing memory tests will be done. The screen for

the VRT bits will be evaluated for different March tests. The screen will also be

evaluated for IFA-9 and IFA-13 test (Section 4.6).
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A new test algorithm for VRT screening will be introduced (Section 4.11). A set,

pause, and repeat test algorithm will be developed using the concept of time-in-

state to effectively screen the bad VRT bits in the DRAM array.

The figures-of-merit for the presented VRT test algorithm will be calculated at

different temperatures, voltages, test limits and test runtimes. A tradeoff will be

done between temperatures, voltage, test limit and test runtime to get the desired

VRT coverage from the new test algorithm.
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Chapter 4

Results: VRT Test and Detection

Chapter 3 discussed about synthesizing the VRT bits and DRAM arrays. This

chapter talks about the testing of synthesized VRT bit and DRAM arrays for pass

and fail for specific test and use conditions.

4.1 VRT Bit

Each VRT bit in a DRAM has four attributes: maximum retention time, min-

imum retention time, average time-in-state maximum and average time-in-state

minimum.

4.1.1 Two Retention Times

Each VRT bit in a DRAM has maximum retention time and minimum retention

time. Figure 4.1 shows a 2-state waveform of a VRT bit with maximum and

minimum retention times at 100◦C and 1.2V. The x-axis in Figure 4.1 is time in

hours and the y-axis is the retention time in seconds. The VRT bit in Figure

4.1 keeps changing its retention time from maximum retention time to minimum

retention time and from minimum retention time to maximum retention time.

Notice that the maximum and minimum retention times of a VRT bit remain

constant at the given environmental condition.
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4.1.2 Time-in-state

The VRT bit has two retention states: maximum retention state and minimum

retention state. The VRT bit has maximum retention time in the maximum re-

tention state and minimum retention time in the minimum retention state.

The amount of time spent in maximum retention state is termed as the time-

in-state maximum and the amount of time spent in minimum retention state is

termed as time-in-state minimum. The maximum and minimum retention times

of a VRT bit are always constant but the time-in-state is variable.

Figure 4.1: 2-state VRT waveform at T = 100◦C, Volatge = 1.2V [2]

4.2 Test and Use

The variable retention times of a VRT bit produce miscorrelation at the retention

time measurement during manufacturing test and use period. Figure 4.2 shows an

example of the behavior of a VRT bit during test and use. The two black arrows

represent the instantaneous measurement of retention time during test. Test 1

detects the VRT bit in maximum retention state and Test 2 detects the VRT

bit in minimum retention state. The red arrows represent the measurements of
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retention time during use.

Test is an instantaneous measurement of retention time, so the VRT bit could be

in either maximum retention state or minimum retention state during test. The

period of use of a DRAM bit is normally in years and the retention time of the

VRT bit is measured billions of times. The VRT bit surely comes to minimum

retention state during use.

Figure 4.2: Example: Retention time of the VRT bit at test and use. Black arrows:
Instantaneous measurement of retention time at test. The continuous red arrows
are retention time measurements in use.

Figure 4.3 shows an example of the detection of minimum retention state with the

help of refresh mechanism in the DRAM. If a VRT bit makes transition to the

minimum retention state then the rate of leakage increases at the capacitor.

After writing Logic 1 (w1) to a capacitor, the stored charge on the capacitor

gradually leaks with time. The refresh signal restores the charge on the capacitor

before the charge goes below the threshold. When a VRT bit makes the transition

to minimum retention state, suddenly the leakage rate at the capacitor increases

and the charge at the capacitor goes below the threshold before the refresh signal

36



arrives. The next refresh signal senses the charge at the capacitor as Logic 0 and

restores Logic 0 at the capacitor. The following refresh signals will keep restoring

Logic 0 on the capacitor. When the data at the capacitor is read (r1), the expected

data does not match with the stored data on the capacitor and fail is detected.

Figure 4.3: Example: Detection of minimum retention state with the help of refresh
mechanism in DRAM

The refresh cycle time is programmable and can be adjusted according to the

testing requirements.

4.2.1 Time-in-state Dependence on Temperature

The time-in-state dependence on temperature was calibrated in Chapter 3 with

the help of the time-in-state model (Eq 3.6). The time-in-state maximum at the

given temperature can be predicted with the help of Eq 3.7 and the time-in-state
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minimum can be predicted with the help of Eq 3.8. The fitted parameters of the

time-in-state model are listed in Table 3.3.

The VRT waveform of a VRT bit at different temperatures can be generated with

the help of the RTN model of retention time described in Chapter 3. The param-

eters of the RTN model (maximum retention time, τmax, minimum retention time,

τmin) were calculated at different temperatures to plot the VRT waveforms.

Figure 4.4 shows the waveform of a VRT bit at two different temperatures but the

same voltage 1.2V. Figure 4.4a shows the VRT waveform with average time-in-

state maximum (τmax ) 13sec and average time-in-state minimum (τmin) 11sec at

115◦C. The maximum retention time is 2520µs and the minimum retention time

is 1080µs.

Figure 4.4b shows the VRT waveform with average time-in-state maximum (τmax)

29sec and average time-in-state minimum (τmin) 24sec at 105◦C. The maximum

retention time is 3950µs and the minimum retention time is 3220µs.

The maximum and minimum retention times of a VRT bit are decreasing with

the rise in temperature. The rate of transition between the two retention states is

increasing as well with the rising temperature. The higher transition rate decreases

the average time-in-state (τ of a VRT bit).

Notice that the maximum and minimum retention times of the VRT bit in Figure

4.4 are also decreasing with the increasing temperature.
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Figure 4.4: Synthetic VRT waveform at two different temperatures, Voltage =1.2V

4.2.2 Time-in-state Dependence on Voltage

The time-in-state dependence on voltage was also calibrated in Chapter 3 with the

help of the time-in-state model (Eq 3.6). The time-in-state maximum of a VRT bit

at the given voltage can be predicted with Eq 3.7 and the time-in-state minimum

can be predicted with Eq 3.8. The parameters of the time-in-state model are listed

in Table 3.3.
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The VRT waveforms of a VRT bit at different voltages were generated with the

help of the RTN model of retention time described in Chapter 2. The parameters

of the RTN model (maximum retention time, τmax, minimum retention time, τmin)

were calculated to plot the VRT waveforms at different voltages.

Figure 4.5 shows the waveform of a VRT bit at two different voltages but the same

temperature 105◦C. Figure 4.13a shows the VRT waveform with average time-in-

state maximum (τmax ) 29sec and average time-in-state minimum (τmin) 24sec at

1V. The maximum retention time is 5430µs and the minimum retention time is

4460µs.

Figure 4.13b shows the VRT waveform with average time-in-state maximum (τmax)

29sec and average time-in-state minimum (τmin) 24sec at 1.2V. The maximum

retention time is 3950µs and the minimum retention time is 3220µs.

Figure 4.5 and Figure 4.4 suggest that the time-in-state of the VRT bit is a strong

function of temperature and a weak function of voltage. Figure 4.5 and Figure 4.4

also suggest that the retention time of the VRT bit is a strong function of both

temperature and voltage.
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Figure 4.5: Synthetic VRT waveform at two different voltages, T=105◦C

4.3 VRT Bits in a DRAM Array

4.3.1 Two Retention times

With the help of the PSU’s model for miscorrelation in retention times, two re-

tention times of 100 bits at the given environmental condition were generated

synthetically. The two retention times of the 100 VRT bits at 105◦C and 1.2V

are plotted in Figure 4.6. The x-axis of Figure 4.6 is the 1st retention time in
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micro-seconds and the y-axis is the 2nd retention time in micro-seconds. Each dot

in the figure represents the 1st and 2nd measurements of the retention time of a

VRT bit.

The VRT bit inside the red circle in Figure 4.6 has its own attributes like maximum

retention time, minimum retention time, time-in-state maximum and time-in-state

minimum. The Waveform of the VRT bit (inside red circle) is shown in Figure

4.4b. The VRT bit inside the blue circle has maximum retention time 5200 µs and

minimum retention time 3200µs. Similarly, the other VRT bits in Figure 4.6 have

their own attributes and VRT waveforms.
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Figure 4.6: Two retention time measurements of 100 VRT bits at 105◦C and 1.2V.
The VRT bit inside the red circle represents the VRT bit in Figure 4.4b. The
VRT bit inside the blue circle has maximum retention time 5200µs and minimum
retention time 3200µs.
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4.4 Test and Use

To represent the behavior of the VRT bits during test and use, the two retention

time measurements of the 100 VRT bits at 105◦C and 1.2V in Figure 4.6 are plotted

in Figure 4.7 with the help of the test and use model. The x-axis is use and the

y-axis is test.

Test is an instantaneous measurement of retention time. A VRT bit has maximum

or minimum retention time at test and always minimum retention time at use

(Figure 4.2).

The VRT bit in the red circle in Figure 4.7 is the same bit shown in Figure 4.4b and

in Figure 4.7 inside the red circle. At test (the black arrows in Figure 4.1), the red

circled VRT bit was in maximum retention state, so the retention time at test in

Figure 4.7 is the maximum retention time and retention time at use is the minimum

retention time. The VRT bit in the blue circle was also in maximum retention state

during test, so maximum retention time was recorded during test. Similarly, the

retention time of other VRT bits were measured at test with the help of their

VRT waveforms. If the black arrow (Test 1 in Figure 4.4b) falls on the maximum

retention state of the VRT waveform then the VRT bit has maximum retention

time at test and if the black arrow (Test 2 in Figure 4.4b) falls at the minimum

retention state of the VRT waveform then the VRT bit has minimum retention

time at test (Eq 4.1). Notice that VRT bits have always minimum retention time

at use (Eq 4.2).
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Test =


Max( 1st R.T., 2nd R.T.), Test 1 (Figure 4.4b)

Min( 1st R.T., 2nd R.T.), Test 2 (Figure 4.4b)

(4.1)

Use = Min( 1st R.T., 2nd R.T.), Always (4.2)

In the transformation of retention time physics (Figure 4.6) to retention time

engineering (Figure 4.7), the VRT bits which were below diagonal got shifted to

either above diagonal or on the diagonal depending on the retention time at test.

The VRT bits which have maximum retention time at test are above diagonal in

Figure 4.7 and the VRT bits which have minimum retention time at test fall on

the diagonal.

The time-in-state of the VRT bits remain unaffected of this transformation to

test and use retention time. The RTN waveforms of the VRT bits also remain

unchanged of this transformation.
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Figure 4.7: Transformation of retention time measurements to test and use model
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4.4.1 Time-in-state

Time-in-states (time-in-state maximum and time-in-state minimum) were also cal-

culated for the 100 VRT bits shown in Figure 4.6. Figure 4.8 shows the transition

of VRT bits after different time intervals. The x-axis in Figure 4.8 is use in micro-

seconds and the y-axis is test in micro-seconds.

At t=0, a fraction of the 100 VRT bits were found in maximum retention state

during test and the rest of the VRT bits were found in minimum retention state.

The VRT bits found in the maximum retention state are shown with the red colored

dots and the VRT bits found in the minimum retention state are shown with the

green colored dots in Figure 4.8.
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At t=10sec, the retention times of the VRT bits were measured again. In the

duration of 10sec, some of the VRT bits have made the transition to minimum

retention state from maximum retention state. Similarly, some of the VRT bits

have made transition to maximum retention state from minimum retention state.

Some of the VRT bits have made two transitions in the duration of 10sec and have

come back to the same retention state. It is also possible that some VRT bits have

made more than two transitions in the duration of 10sec.

The VRT bits, which were in maximum retention state at t=0sec, and after 10sec

are still in maximum retention state, are shown with the red colored dots. The

VRT bits, which were in minimum retention state, and after 10sec are still in

minimum retention state, are shown with the green colored dots. The VRT bits

which have made at least one transition are shown with orange colored dots.

The retention times of the VRT bits were measured again at t=20sec and at

t=30sec. The VRT bits which are still in maximum retention state are represented

with red colored dots and the VRT bits which are still in minimum retention state

are represented with green colored dots. The VRT bits which have made at least

one transition are shown with the orange colored dots.

In Figure 4.8, the number of VRT bits making the transition is increasing with

time. At t=30sec, the majority of the VRT bits have made at least one transition

and the minimum retention time of the VRT bits have been recorded at test.
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(d) Transition at time = 30sec

Figure 4.8: Transition of the VRT bits at different time intervals. T=105◦C and
Voltage =1.2V

4.4.2 Time-in-state Dependence on Temperature

Time-in-state of a VRT bit is a strong function of temperature (Figure 4.4, Table

3.2(b)). The average time-in-state maximum and average time-in-state minimum

gets shorter with rising temperature. The number of transitions between retention

states at higher temperature increases due to shorter average time-in-state.

Figure 4.9 shows the transition of the VRT bits in 10sec at three different temper-

atures. The x-axis in Figure 4.9 is the use axis and the y-axis is the test axis. Each
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dot in Figure 4.9 represents a single VRT bit which has its own attributes. The

VRT bits which remained in the maximum retention state after 10sec are repre-

sented with the red dots. The VRT bits which remained in the minimum retention

state after 10sec are represented with the green dots. The VRT bits which made

transition to other retention state in the duration of 10sec are represented with

yellow dots.

Figure 4.9(a) shows the VRT bits at t=0sec and Figure 4.9(b) shows the transition

of the VRT bits in the duration of 10sec at 105◦C. In Figure 4.9(b), the yellow dots

represent the VRT bits which have made the transition to other retention state in

the duration of 10sec.

Figure 4.9(c) shows the VRT bits at t=0 and Figure 4.9(d) shows the transition

of the VRT bits in the duration of 10sec at 105◦C. Similarly, Figure 4.9(e) shows

the VRT bits at t=0sec and Figure 4.9(f) shows the transition of the VRT bits in

the duration of 10sec at 125◦C.

The fraction of bits in maximum retention state at t=0sec is the same for all three

temperatures. The number of VRT bits making transition (yellow dots) is increas-

ing with the increasing temperature. Notice that the maximum and minimum

retention time of the VRT bits are also decreasing with increasing temperature.

Since time-in-state of the VRT bits is highly sensitive to temperature, testing of

VRT bits at different temperatures will give different results. The retention time

of the VRT bits is also sensitive to temperature, so test limits should be adjusted

accordingly during testing.
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(f) t=10sec, T=125◦C, τmax = 6sec,
τmin =5sec

Figure 4.9: Transitions of the VRT bits in 10sec at three different temperatures.
Voltage = 1.2V
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4.4.3 Time-in-state Dependence on Voltage

Time-in-state of a VRT bit is a weak function of voltage (Figure 4.5, Table 3.2

(a)). The average time-in-state maximum and average time-in-state minimum do

not change much with rising voltage. The number of transitions between retention

states at different voltages remains unaffected.

Figure 4.10 shows the transition of VRT bits in 10sec at three different voltages.

The x-axis in Figure 4.10 is the retention time during use and the y-axis is the

retention time observed during test. Each dot in Figure 4.10 represents a single

VRT bit which has its own attributes. The VRT bits which remained in the

maximum retention state after 10sec are represented with the red dots. The VRT

bits which remained in the minimum retention state after 10sec are represented

with the green dots. The VRT bits which made transition to other retention state

in the duration of 10sec are represented with yellow dots.

Figure 4.10(a) shows the VRT bits at t=0sec and Figure 4.10(b) shows the tran-

sition of VRT bits in the duration of 10sec at 0.85V. In Figure 4.9(b), the yellow

dots represent the VRT bits which have made transitions to other retention state

in the duration of 10sec.

Figure 4.10(c) shows the VRT bits at t=0 and Figure 4.10(d) shows the transition

of the VRT bits in the duration of 10sec at 1V. Similarly, Figure 4.10(e) shows

the VRT bits at t=0sec and Figure 4.10(f) shows the transition of VRT bits in the

duration of 10sec at 1.2V.
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The fraction of bits in maximum retention state at t=0sec is the same for all three

voltages. Since the time-in-state is a weak function of voltage, the number of VRT

bits making transition (yellow dots) is not changing for different voltages. Notice

that the maximum and minimum retention times of VRT bits are decreasing with

increasing voltage.
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Figure 4.10: Transition of the VRT bits in 10sec at three different voltages. T =
105◦C
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4.5 Number of Transitions

The rate of transition of VRT bits from maximum to minimum retention state

and minimum to maximum retention state increases with time and temperature

(Figure 4.8, Figure 4.9). Table 4.1 lists the count of the 100 VRT bits which made

transition in the given time intervals and temperatures.

The x-axis of Table 4.1 is temperature and the y-axis is the test runtime. Each

cell in the table represents the number of VRT bits which made transition in the

given test runtime and temperature.

The rate of transition of the VRT bits can be increased by increasing the temper-

ature or by allowing more time to make transition.

Time Temp 105◦C Temp 115◦C Temp 125◦C Temp 130◦C

10 sec 29 52 79 89

20 sec 50 77 95 99

30 sec 64 89 99 100

Table 4.1: Number of VRT bits making transition in the given test runtime and
temperature. 105◦C (τmax = 29sec, τmin = 24sec), 115◦C (τmax = 13sec, τmin =
11sec), 125◦C (τmax = 6sec, τmin = 5sec)

53



4.6 Survey of Existing DRAM Test Programs

4.6.1 March Tests

March tests are common type of tests for DRAMs and SRAMs. Different March

tests have been designed to address a set of fault models effectively. Table 4.2

shows the examples of March tests for different fault models of a DRAM. For

example, MATS+ March test covers SAF and AF. A test program based on the

March tests gives higher memory fault coverage and minimal test runtime.

Algorithm
Fault coverage

O.C.
SAF AF TF CFin CFid CFdyn SCF Linked

faults

MATS All Some 4.n

MARCHC- All All All All All All All 10.n

MARCHY All All All All All TF

linked

with

CFins

8.n

Table 4.2: Fault models covered by different March Test Algorithms [6].

The right column in the table is the operation count of each March test. Operation

count is the sum of the total number of reads and writes operations in a March

test. Description of read and write operations of different March tests are given in

Table 4.3. Table 4.4 describes the notations of March test.
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Algorithm Description

MATS {m (w0);m (r0, w1);m (r1)}

MARCHC- {m (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);m (r0)}

MARCHA {m (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓

(r0, w1, w0)}

Table 4.3: Description of different March Test Algorithms [6].

Notation Instruction

⇑ Increasing address order

⇓ Decreasing address order

m Address order is either increasing or decreasing

w0 write logic 0 to all the bits in DRAM array

w1 write logic 1 to all the bits in DRAM array

r0 read logic 0 from all the bits in DRAM array

r1 read logic 1 from all the bits in DRAM array

Table 4.4: Notations of March Test

The March test is made up of March elements. March elements in the March test

are separated by semicolons. One element is applied to each DRAM bit in DRAM

array before moving to the next element of the March test.

MATS+ March test is chosen for example, to explain the notations of the March

tests. MATS+ March test has three March elements and five operation counts

since the sum of total reads and writes is five in the test pattern. The first March
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element m(w0) specifies to fill out the memory subarray with logic 0 in either

increasing or decreasing order of row lines. The second March element ⇑(r0,w1)

specifies to read the expected logic 0 and then write logic 1 to the row 0 and the

process is repeated in increasing row order till row 255. The third March element

⇓(r1,w0) asks to read expected logic 1 and write logic 0 to the row 255 and the

process is repeated in decreasing row order till row 0. Fail is detected if read logic

from a bit is not the same as expected. In MATS+ March test, while r0 operation,

if the read logic from a bit is not logic 0, which is expected, then fail is detected.

Similarly, while r1 operation, if read logic from DRAM bits is not logic 1, which is

expected, then fail is detected and a DRAM bit is marked as a defective bit.

4.6.2 IFA-9 and IFA-13 March Test

To address the data retention faults in DRAMs, the IFA-9 and IFA-13 March tests

were proposed by Dekker [7]. Fault models covered by the IFA-9 and IFA-13 March

tests are listed in Table 4.5. In these March tests a new element ’Delay’ was added

to detect any data retention fault. Delay was inserted between write and read

instructions. Table 4.6 shows the description of the IFA-9 and IFA-13 March tests.

To detect the data retention fault, first, all the bits in a DRAM array are written

with logic 1 (charge on capacitor) and then a certain amount of delay is applied

before the data is read from the bits. All the refresh mechanisms are turned off

while delay is applied.

In IFA March tests, layout of DRAM chips is analyzed using the inductive fault

analysis method. The IFA-9 March test has operation count of 12.n + delays. The

IFA-13 March test has operation count of 16.n + delays. The IFA-9 March test
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and the IFA-13 March test have the same number of March elements. The IFA-13

March test provides fault coverage for SOF as well.

Algorithm
Actual physical defect fault coverage

O.C.
SAF TF AF SOF SCF CFid DRF

IFA-9 All All All All All All 12.n + Delays

IFA-13 All All All All All All All 16.n + Delays

Table 4.5: Fault models covered by IFA-9 and IFA-13 March test [7].

Algorithm Description

IFA-9 {⇑ (w0); ⇑ (r0, w1); ⇑ (r1, w0); ⇓ (r0, w1); ⇓

(r1, w0); Delay;⇑ (r0, w1);Delay;⇑ (r1)}

IFA-13 {⇑ (w0); ⇑ (r0, w1, r1); ⇑ (r1, w0, r0); ⇓ (r0, w1, r1); ⇓

(r1, w0, r0); Delay;⇑ (r0, w1);Delay;⇑ (r1)}

Table 4.6: Description of IFA-9 and IFA-13 March test [7].

None of the March tests understands the concept of time-in-state. There is a need

of a special test pattern which stresses the concept of time-in-state to screen the

VRT bits effectively during manufacturing test.

4.7 Proposed VRT Test Algorithm

The following modifications have been done to the MARCHC- test (Table 4.3):

• More than one write-read is required to detect the VRT behavior, so test

pattern would have repeated write-read operations.
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• Capacitors of DRAM bits should always be charged to track the change in

retention time.

• Address order must be preserved during entire test runtime. Preserving the

address order ensures the same time interval between write and read for all

bits.

• During the VRT test, the refresh mechanism of the DRAM could be on or off

depending on the number of rows in the array. If the specified refresh cycle

time of the DRAM is shorter than the time to write all rows of the DRAM

then the refresh mechanism should be on.

• The runtime of the VRT test pattern should be long enough to allow the VRT

bits to change their retention state to achieve the desired fault coverage at a

given condition.

• The VRT test pattern should be run at the end of all other memory tests.

Running the VRT pattern in the end ensures that fails are retention fails.

The proposed VRT algorithm is shown in the Figure 4.11. In the test algorithm, K

is the number of pairs of write-read. The number K depends on the time required

to achieve the desired fault coverage at a given temperature.

{⇑ (w1);⇑ (r1);⇑ (w1);⇑ (r1); .......... ⇑ (w1);⇑ (r1)}︸ ︷︷ ︸
K

Figure 4.11: VRT Test Algorithm
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The VRT bits which passed at all reads ( read data matches with expected

data) during VRT testing are considered passing bits and the VRT bits which

failed even at one read during VRT testing are considered failing bits. The VRT

bits making transition to the maximum retention state do not matter since it has

already been recorded as fail in the minimum retention state. Table 4.7 shows

an example of screening the VRT bits with the help of the proposed VRT test

algorithm. The columns in the table are the bit addresses and the rows in the

table are the reads during VRT testing. Tick in Table 4.7 for Bit number 1 and

read number 5 represents a fail. Similarly, each tick in the Table 4.7 represent the

fail during read from a bit.

In Table 3.7, the DRAM bits which pass at all reads during test are considered

passing bits. There are three possible cases for always passing bits. First, the bit

has single retention time (SRT bits) which is longer than test limit. Second, the

bit is a VRT bit and has minimum retention time longer than test limit. Third,

the bit is a VRT bit and has minimum retention time less than test limit but never

made transition to minimum retention state during test.
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ss

1 2 3 4 5 6 7 8 9 10 11 12 Bit

0 PASS

1
√ √ √ √ √

FAIL

2 PASS

3
√ √ √ √ √ √ √ √ √ √ √ √

FAIL

4 PASS

5
√ √ √ √ √

FAIL

6
√ √ √ √ √ √ √ √ √ √ √ √

FAIL

7 PASS

N
√ √ √ √ √ √

FAIL

Table 4.7: Example: Screening of VRT bits with VRT test algorithm. Ticks
represent the fails during read from DRAM bit.

In Table 3.7, the DRAM bits which pass at some reads and fail at other reads are

bad VRT bits and considered failing bits. These VRT bits pass reads in maximum

retention state but fail when they make transition to minimum retention state.

In Table 3.7, the DRAM bits which fail all reads during test are also considered

failing bits. There are three possible cases for always failing bits. First, the DRAM

bit has single retention time which is smaller than the test limit. Second, the bit

is a VRT bit and has maximum retention time smaller than the test limit. Third,

the bit is a VRT bit and has maximum retention time longer than the test limit

but never made transition to maximum retention state during test.
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The length of the introduced VRT test algorithm should be long enough to allow

VRT bits to make transitions during test and should have enough write-read pairs

(K) to detect the transition made by the VRT bits.

4.8 Determination of the VRT Test Length (K)

The runtime of the VRT test algorithm is determined based on the average time-in-

state at the given temperature. The number of refresh signals is calculated for the

target test runtime. The refresh cycle time at test can be programmed according

to the test set-point.

The time required to perform each write-read operation depends on the size of the

DRAM array. The value of K is chosen to accommodate the number of refresh

signals during targeted test runtime at the given temperature.

4.9 Figures-of-merit

By introducing the concept of the use set-point (use refresh cycle time) and the

test set-point (test refresh cycle time), the VRT bits can be characterized into four

categories.

Figure 4.12 shows a scatter plot of VRT bits at test and use. The horizontal line

(blue) on the Figure 4.12 is the test-set. The vertical line (green) on the Figure

4.12 is the use-set.

During use, the VRT bits having retention time longer than the use set-point are

passing use and the VRT bits having retention time smaller than the use set-point
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are failing use(Figure 4.12).

During test, the VRT bits having retention time longer than the test set-point are

passing test and the VRT bits having retention time smaller than the test set-point

are failing test (Figure 4.12).

The VRT bits which fail both in use and test are termed as Fails. The VRT bits

which fail in use and pass in test are termed as Overkills (OK). The VRT bits

which pass both in use and test are termed as Good bits. The VRT bits which fail

in use but pass in test are termed as Test Escapes (TE)(Figure 4.12).

Figure 4.12 shows the characterization of 100 VRT bits into four quadrants by

introducing test set-point and use set-point. The test set-point was chosen to be

1200µs and use set-point 1000µs.

Figure 4.12: Figures-of-merit of a test program. Test-set (Blue horizontal line) is
1200µs and use-set (Green vertical line) is 1000µs
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The count of Pass, Fail, Overkill (OK) and Test Escape (TE) in Figure 4.12 is

listed in Table 4.8.

Pass Fail Overkill Test Escape

93 4 2 1

Table 4.8: Count of Pass, Fail, Overkill and Test Escape of 100 VRT bits in Figure
4.12.Test set-point= 1200µs, use set-point = 1000µs

Similarly, 4000 VRT bits were generated 10 times with the PSU’s retention time

marginal distribution model at T=125◦C and voltage =1.2V. Table 4.9 lists the

average count of Pass, Fail, Overkill (OK) and Test Escape (TE) for the given test

set-point (1200µs) and use set-point (1000µs) at 125◦C.

FOM Avg. Count Std. Dev.

Pass 2464 42

Fail 1146 24

Overkill 386 12

Test Escape 4 1

Table 4.9: Count of Pass, Fail, Overkill and Test Escape. Average of 10 samples
of 4000 VRT bits were taken. T=125◦C, voltage =1.2V. Test set-point =1200µs,
use set-point = 1000µs

4.10 Revised Figures-of-merit after Including Time-in-state

Figure 4.12 shows the retention states of VRT bits after one write and read (K=1).

After K=1, the number of bits in each quadrant are counted (Good, Bad, Overkill

and TE).
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The VRT bits keep making transition from one retention state to other retention

state. At the second read (K=2), some of the VRT bits have made transitions to

other retention state. The number of bits are counted again in the four quadrants.

The yellow dots are those VRT bits which have made transitions to other retention

state(Figure 4.13(a)).

At the third read (K=3), more VRT bits have made transitions to other retention

state and now represented with yellow dots. The number of dots in each quadrant

is counted again (Figure 4.13(b)).
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Figure 4.13: Retention state of VRT bits after different number of reads.
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Multiple reads (k) allow VRT bits to change their retention state. The reads are

continued till most of the dots on the plot become yellow. The maximum and

minimum retention time of the yellow dots get recorded. If the minimum retention

state of the VRT bit is greater than test limit then it is screened as passing bits;

otherwise, fail.

Figure 4.14 shows the transition of VRT bits from maximum to minimum retention

state. The Good bits which make transition to minimum retention state during

test are now either Overkill (rectangle 2 to rectangle 5 in Figure 4.14) or Pass

(rectangle 3 in Figure 4.14) at test. If the minimum retention of a Good bit is less

than the test set-point then the Good bit is overkill after transition to minimum

retention state.

The TE bit which makes transition to minimum retention state is fail now (rect-

angle 1 to rectangle 4 in Figure 4.14).

The VRT bits making transition from minimum retention state to maximum reten-

tion state do not matter because Test Escape and Overkill come from only going

to minimum retention state from maximum retention state.
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Figure 4.14: Transition of the VRT bits during test. Sample size: 4000. T=125◦C,
Voltage =1.2V

The proposed VRT test algorithm screens the VRT bits in rectangle 1 and 2 of

Figure 4.14. The VRT bits in rectangle 3 of Figure 4.14 will always pass the test

because even the minimum retention time of these VRT bits is greater than the test

set-point. The VRT bits in rectangle 4 will always fail the VRT test because even

the maximum retention time of these VRT bits is smaller than the test set-point.

By using the Monte-carlo method, the DPM rate of Overkill and TE was calculated

for the VRT test algorithm of 5sec runtime. The DPM was calculated for the

sample size of 4000 VRT bits. The process was repeated 10 times to get the

average DPM of Overkill and Test Escape. Table 4.10 lists the DPM of Overkill
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and Test Escape for test set-point =1200µs and use set-point = 1000µs at 125◦C

and 1.2V.

FOM Avg. DPM Rate

Overkill 3 DPM

Test Escape 0.8 DPM

Table 4.10: Average DPM of Overkill and TE for 10 samples of 4000 bits.

Table 4.11 shows the number of Overkills (OK), and Test Escapes (TE) at 4

different test set-points, 4 different test runtimes and 3 different temperatures.

The size of the DRAM used to calculate the figures-of-merit was 1.2 Gb and the

refresh cycle time was 2000µs (Chapter 3.4).

The retention time of the VRT bits decreases with change in voltage or tempera-

ture. The settings of test also changes with the change in temperature. The test

set-point and use set-point are adjusted accordingly with the temperature. The

equivalent test set-point and use set-point can be calculated by Eq 4.3.

r115◦C =

(
α115◦C

α105◦C

)
∗ r105◦C (4.3)

where r105◦C = retention time at ◦C , α115◦C = scale parameter at 115◦C and

α105◦C = scale parameter at 105◦C.

Table 4.11(a) shows the count of OK and TE at 125◦C, Table 4.11(b) shows the

count of OK and TE at 115◦C and Table 4.11(c) shows the count of OK and TE at

105◦C. The test set-points at 105◦C in Table 4.11(c) are 2000µs, 2100µs, 2200µs
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and 2400µs. The test set-points in Table 4.11 (a) at 125◦C and Table 4.11(b) at

115◦C are equivalent to 105◦C. For example, the test set-point 789µs at 125◦C is

equivalent to the test set-point 2000µs at 105◦C.

In Table 4.11, TE is improving with increasing the test runtime. The TE’s bits

are also decreasing with increasing test set-point. The TE can be significantly

improved by increasing the temperature. Improvement in TE always comes at the

cost of higher OK.
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Test runtime−→

←
T

es
t

se
t-

p
oi

n
t(
µ

s) 5sec 10sec 20sec 30sec

T=125◦C

OK TE OK TE OK TE OK TE

789µs 0 116 0 53 0 11 0 2

829µs 359 58 395 26 419 5 424 1

868µs 778 18 835 8 872 2 879 2

947µs 1521 9 1577 4 1614 1 4098 0

(a) 125◦C

Test runtime−→

←
T

es
t

se
t-

p
oi

n
t(
µ

s) 5sec 10sec 20sec 30sec

T=115◦C

OK TE OK TE OK TE OK TE

1250µs 0 149 0 102 0 48 0 22

1312µs 258 108 286 74 318 35 333 16

1375µs 557 54 612 37 676 17 706 8

1500µs 1759 7 1838 5 1930 2 1972 1

(b) 115◦C

Test runtime−→

←
T

es
t

se
t-

p
oi

n
t(
µ

s) 5sec 10sec 20sec 30sec

T=105◦C

OK TE OK TE OK TE OK TE

2000µs 0 218 0 183 0 129 0 91

2100µs 206 116 229 98 265 69 290 49

2200µs 566 37 604 31 662 22 703 15

2400µs 1463 13 1511 11 1585 8 1637 6

(c) 105◦C

Table 4.11: Test Escape vs Overkill as a function of test set-point, test runtime
and temperature.
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Chapter 5

Conclusions and Recommendations

Time-in-state of the VRT bits has been studied to identify the bad VRT bits

during the manufacturing test. The VRT defect is particularly sensitive to the

difference between test and use conditions. The retention times of the VRT bits are

measured instantaneously during test. The test can capture either the minimum

or the maximum retention time of the VRT bits. In use, the retention times of

the VRT bits are measured millions of times during the lifetime of the DRAM

bit. The minimum retention time of the VRT bits is always recorded in use. The

introduced VRT test algorithm simulates the use condition to screen the failing

bits during the manufacturing test.

The introduced test algorithm tries to record both the maximum and minimum

retention times of the VRT bits by taking the repeated measurements like in use.

The time to see both the maximum and minimum retention time during test de-

cided the test runtime. The retention times of the VRT bits are sensitive to both

voltage and temperature. The settings of test change with voltage and tempera-

ture. A weibull distribution was found to be a good fit to the measured retention

times. The temperature and voltage dependence were determined for the Weibull

distribution parameters. The retention time of the VRT bits decreases with voltage

and temperature, so test set-point and use set-point are changed accordingly [4].

The test runtime is an important factor which decides the cost of test and DRAM.

The exponential distribution was found to be a good fit for the time-in-state data
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obtained from the Kim paper [5]. The time-in-state of the VRT bits was insensitive

to voltage [Table 3.2a]. The change in voltage did not help to reduce the test

runtime to see both the maximum and minimum retention times of the VRT bits.

The time-in-state was found to be a very strong function of temperature. The

time-in-state of the VRT bits decreases with the increasing temperature [Table

3.2b]. The smaller time-in-state of VRT bits at higher temperature allows the

test to see both the minimum and maximum retention time of the VRT bits in

smaller runtime. The test escape of the VRT bits improves by more than 50% by

increasing the temperature from 105◦C to 125◦C for the test set-point 2400µs, use

set-point 2200µs and test runtime 10sec [4].

There is a tradeoff between overkill, test escape and test runtime. In the manu-

facturers point of view, the overkill can be decreased by decreasing the difference

between test and use set-points. The overkill can also be decreased by running the

test at a lower temperature with a smaller test runtime. In the users point of view,

the test escape can be decreased by increasing the difference between test set-point

and use set-point. The test escapes are also significantly decreased by running test

at a higher temperature with a longer test runtime. Figure 5.1 shows the tradeoff

curve between the Test escapes and Overkills. The x-axis is the difference between

the test set-point and use set-point. The primary y-axis is the overkill and the sec-

ondary y-axis is the Test Escape. The recommended use set-point is 2000µs, test

set-point 2075µs, temperature 125◦C and test runtime 20sec for optimal results.
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Figure 5.1: TE vs OK for test runtime 10sec and 20sec at temperatures 115◦C and
125◦C

The test escape improves with the increase in temperature but it should not go over

20-30◦C than the specified operational temperature in the datasheet. The excessive

temperature can burn the chip or might introduce some new fail mechanism.
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The introduced VRT test algorithm should be run at the end of the test flow after

running the other DRAM tests. Running the VRT test at the end confirms that

the failed bits are failing VRT bits not the other functional fails.

This thesis extended the previous study of DRAM retention time at PSU’s ECE

ICDT laboratory [4] by adding the time-in-state of the VRT bit. A model of

time-in-state of the VRT bits was presented as a function of environmental condi-

tions such as temperature and voltage. This thesis modeled the VRT bit by the

integrating of Weibull model for marginal distribution of retention time, Copula

model for retention time mis(correlation) and the presented time-in-state model.

A DRAM array of 1Gb was assembled from the combination of marginal distri-

bution of retention time model, Copula model of miscorrelation in retention times

and time-in-state model. The assembled DRAM array was used to develop and

evaluate a test algorithm for the VRT detection at temperature and voltage set

points. The time-in-state of VRT bit was found to be a strong function of tem-

perature and weak function of voltage. Temperature can be used to increase the

VRT fault coverage.
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