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Wet chemical analysis and instrJment~ neutron activation analysis 

(INAA) were performed on a suite of samples from three residual ferru­

ginous ba~d te profiles in -·the study area for ab1Uldances of Al 0 ,
2 3



i 	 Si0
2

, Fe 03, Ti0
2

, Na, Sc, Hf, Cr, Co, La, Sm, Yb, Lu; and Th. In 

addition a mineralogical study accompanied this research, using petro-I 	
2

graphic, differential thermal, and x-ray diffraction techniques. In
I 

'each profile, 	the relative mobility of these elements were calculated 

I by empirical methods for comparison with the parent rock and mineral 

I properties in the saprolite. 

This study indicates that the first original constituent of the 
I 

basalt to decompose under the influence of weathering is interstitial 

glass. The second phase results in the decomposition of plagioclase 

and pyroxene. Plagioclase alters mainly to kaolinite and metahalloy-' 

site. Pyroxene and basaltic glass alters mainly to nontronite, hematite, 

limonite, and amorphous clay. Opaques remain nearly unaltered. The 

low grade ferruginous bauxite ore is not derived solely from basalt, 

but also forms by weathering of younger sedimentary strata that overlie 

the basalt flows of the Columbia River Group. .In general, components 

that are progressively depleted under the influence of weathering are 

Si02, Na, La, Sm, and Lu; these losses result in greater concentration 

of Al 0
3

, Fe 0
3

, Ti02 , Sc, Cr, Th, and Hf. Cobalt behaves erratically.2 2

There seems to be no predictable relationship between the ratios of 

rare earth elements in ferruginous bauxite and the parent rock. In 

the most weathered zone, Fe 0 , Ti0
2

, Al 0 , Sc, Hi, Cr, and Th are
2 3 2 3

enriched. Na, Si02 , Sm, and Lu are depleted relative to the parent 

rock. Trace elements associated with iron-rich pisolites are Lu, Yb, 

Th, and Co. Only Th is associated with gibbsite. 
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I. INTRODUCTION 

PURPOSE 

Field studies, geochemistry, and mineralogy' have been employed to 

study bauxitic soils. This study is based on trace element analysis, 

a geochemical approach which has not been widely employed in the study 

of intensively weathered rocks. 

The purpose of this investigation is to exam~ne the geochemistry 

and mineralogy of a residual bauxitic soil in or.der to determine and 

understand the relative mobility of major oxides and trace elements 

during the formation of bauxite from parent rock. 

. LOCATION OF THE STUDY AREAS 

The ferruginous bauxite areas in southwestern Washington and 

northwestern Oregon were selected because: (1) the geology of the 

ferruginous bauxite deposits and underlying rocks has been described 

in published reports, (2) the ferruginous bauxites are considered to 

be a residual soil formed from basalt, (3) little work has been done 

on the trace element analysis of the,ferruginous bauxites, and (4) the 

deposits are located ~elatively close to Portland state University. 

The locations of the major ferruginous bauxite deposits of the 

Pacific Northwest are principally in Marion, Washington, Columbia, and 

Multnomah Counties in Oregon, and Cowlitz and Wahkiakum Counties in 

Washington (Figure 1). Minor deposits have also been reported in 

Clackamas County, Oregon. 

J 
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The deposits lie within the central and northern portions of the 

Willamette Valley physiographic province and eastern extensions of the 

Coast Range Province in Oregon (Dicken, 1965). In the Willamette 

Valley, the known deposits are generally restricted to the Tualatin-

Portland West Hills, Chehalem Mountains, and Salem-Eola Hills to the 

south. In southwestern Washington, the bauxitic soils lie within the 

southeastern flanks of the Willapa Hills (subdivision of the Coast 

Range Province). 

NATURE OF PRESENT WORK 

Field studies were carried out from July to November, 1970. The 

ferruginous bauxite deposits and Tertiary rocks were examined at road-

cuts and natural exposures. During the summer of 1970, the author was 

employed by Reynolds Metals Company to participate in a bulk sampling 

program of the ferruginous bauxite ore in Oregon and Washington. 

Several pits, most deeper than 20 feet (6.1 m), were examined and mapped 

in detail. The ore profiles of two test pits in Columbia County, Oregon 

have been described by the author (Jackson, 1971). 

·Laboratory tests performed on selected samples include instru­

mental neutron activation analysis (INAA) , wet chemical analysis, 

differential thermal analysis, x-ray diffraction analysis, and petro­

graphic analysis. These techniques are described under "Methods of 

Investigation." Data was collected from January 1971 through June 1972. 

Along with field and laboratory studies, a survey of the liter­

ature related to ferruginous bauxite was conducted. 

J 

I 
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LOCATION OF 	FERRUGINOUS BAUXITE PROFILES 
I 

I 

Due to thick vegetation cover and thick soil mantle, there are

I few lateritic exposures from 'which to coll~ct samples. For two profiles

I 	 a truck-mounted cable tool drill rig was utilized to obtain samples. 

These borings, ,nearly one mile (1.6 km) apart, were drilled along theI 
Cathlamet Road in the southeastern portion of Wahl{iakum County, Washington 

in ~ sec. 6 T.8 N. R.4 W. and S~ sec. 1 T.8 N. R.5 W. (Cathlamet 

l5-minute Quadrangle), and have been designated as Wahkiakum County 

profile A and Wahkiakum County profile B, respectively (Figure 2). Both 

borings are located atop a well-rounded ridge which ranges in elevation 

from 250 feet (76 m) to 1000 feet (305.m). Wahkiakum County profile A . 

and \ia14~iakum County profile B are at elevations of 825 feet (252 m) 

and'845 feet (258 m) (sea level datum), respectively. 

The third profile is from a weathered basaltic corestone which 

was taken at 21 feet (6.4 m) below ground level in a test pitl in 

Columbia County, Oregon (elevation 720 feet (220 m), ~A ~A sec. 23 

T.5 N. R.2 W. St~ Helens l5-minute Quadrangle) nearly 4.5 miles (7.2 Km) 

northwest of St. He~ens, Oregon (Figure 2). 

FIELD COLLECTION 

Wahkiakum County profile A and Wahkiakum County profile B are 

borings to depths of 55 feet (16.8 m) and 165 feet (50.3 m), respect­

ively. The drilling was accomplished with a truck-mounted cable tool 

lPits were excavated by Reynolds Metals Company. After excavation 
of the ferruginous bauxite ore, pits were refilled and recontoured to' 
original grade. 
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drill rig mounted with a 4-inch (10.2 cm) I.D. hollow stem barrel. 

Samples were taken continuously from the surface to the bottom. In most 

cases, a two foot (0.6 m) sample was split for wet chemical analysis and 

other laboratory tests. 

Several grab samples were collected from an exfoliated basaltic 

corestone. In addition two basalt sample were collected ,for trace 

element analysis. Sample RLJ-3-71 was obtained from a small roadcut 

in Wahkiakum County, Washington S~A sec. 3 T.8 N. R.5 W. (Figure 2). 

Sample RLJ-2-71 was collected at a small rock quarry (N~ sec. 7 

T.8 N. R.4 W.) approximately 3.5 miles (5.6 km) due west of s~ple 

RLJ-3-71 along Cathlamet Road (Figure 2). 

DEFINITIONS 

Libbey and other (1945) defined 'ferruginous bauxite' as a 

lateritic deposit confined to the Miocene basalt in northwestern 

Oregon. Their study showed that bauxite minerals ~ere common and,' in 

general, the alumina content was higher. than t~ 'iron oxide content. 

In this report, ferruginous bauxite refers to-~ l~terite formed from 

weathering p:t:.9cesses in which the weathered residual-contains a 

relatively high alumina and iron oxide concentration and a low silica 

content. The name ~ is arbitrarily def~ned as a ferruginous bauxite 

that has no more than 10 percent non-reactive silica and no less than 

30 percent alumina. A corestone is spherical to elliptical shaped 

rock that was formed from basalt by weathering processes. 



I II. GECGRAPHY 

I 
I CLIMATE AND VEGETATION OF SOUTHWESTERN WASHINGTON 

AND NORTHWESTERN OREGON 

, 

Th~' maritime climate in western Washington and Oregon is char-

I 
acterized by: mild temperatures and long periods of cloudiness; moist 

and mild winter months; warm and nearly dry summer months; a long frost-

free season; and rainfall mostly between October 1 and March 31 (Franklin 

and Dryness, 1969, p. 31). 

In the Cathlamet-Kelso area and st. Helens area, mean annual pre­

cipitation ranges from 40-100 inches (102-254 cm). The January mean 

ominimum temperature is nearly 0 centigrade. The July mean maximum 

temperature is approximately 270 centigrade. Meteorological data was 

estimated from published charts in "Vegetation of Oregon and Washington" 

(Franklin and Dryness, 1969, p. 33-35). 

The vegetation (Livingston, 1966) in the study area consists 

largely of many varieties of conifers•. Most notably among the coniferous 

trees are Douglas fir (Pseudotsuga menziesii), western heml'ock (Tsuga 

heterophylla), and western red cedar (Thuja plicata). Common decidious 

trees are willows (Salix sp.), big-leaf· maple (Acer macrophyllum), 

Pacific dogwood (Cornus nuttallii), cascara (Rhamnus purshiana), and 

red alder (Alnus rubraJ.. Common shrubs include Pacific poison oak (Rhus 

diversiloba), devils club (Qphopanax horridum), Oregon grape (Berberis 

nervosal blue elderberry (Sambucus cerulea), salal (Gaultheria shallon), 
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and blackberry (Rubus sp.). Herbaceous species, red willowweed (Epilo­

~ latifolium), a common thistle (Arsium vulgare), and bracken fern 

(pteridium aguilinium) dominate burned and logged areas, and abandoned 

fields. 

TOPOGRAPHY 

In the ferruginous·bauxite areas of northwestern Oregon and 

southwestern Washington, the tOP9graphy reflects an eroded upland 

surface that has developed o~ the Columbia River basalt of Miocene age 

(Libbey ruld others, 1945; and Livingston, 1966). The Columbia River, 

the master stream in the Pacific Northwest, dissects this area. Trib­

utaries to the Columbia River are v-shaped in. cross-section. Their 

longitudinal gradients are usually steep near their headwaters and 

gentle near their confluence with the Columbia River. Ridge divides 

are commonly broad and well-rounded. C~iffs and steep-sided slopes are 

part~cularly numerous along the Columbia River where Tertiary volcanic 

rocks crop out. Maximum relief in both areas is approximately 1500 feet 

(427 m) with an average elevation of 700 feet (213 m). The lowest 

elevation occurs along the Columbia River which'is near sea level. 

I 

I 


I 

J 




III. GEOLOGY OF THE FERRUGINOUS BAUXITE DEPOSITS 


PREVIOUS GEOLOGIC IriVESTIGATIONS 


The only detailed published report on the geology of the ferru­

gOnous bauxite deposits in the Kelso-Cathlamet area was done by 

L vingston (1966). The report contains a geologic map (1:62,500) 

t at shows the rock units and favorable bauxite localities. 

Geologic reconnaissance in northwestern Oregon was carried out 

by Warren and others (1945). The report" by Lowry and Baldwin (1952) 

discusses the Cenozoic geology of the lower Columbia River Valley. 

Geologic mapping by Wilkinson and others (1946) defines the general 

occurrences of the bauxite deposits ~~d their relationship to the 

bedroqk geology. Geologic studies related to the bauxite deposits 

are found in reports by Libbey and others (1945, 1946), Allen (1948), 

and Jackson (1971). 

Corcoran and Libbey (1956) have described the deposits in the 

Salem Hills near Salem, Oregon. 

GEOLCGIC SETTING 

A generalized geologic map and a correlation chart of the rock 

units are shown in Figure 2 and F'igure 3. The rocks exposed in the 

St. Helens and Kelso-Cathlamet area range from Eocene to Holocene age. 

The early Tertiary rocks are chiefly a complex interfingering sequence 

of volcanic-rich marine sedimentary and extrusive volcanic rocks. 

J 
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units which have been baulitized. 
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These rocks have been named the Cowlitz Formation (Eocene), Goble 

volcanics (Eocene-Oligocene), and Oligocene sediments. Unconformably 

overlying much o~ the Eocene-Oligocene unit are basalt flows of the 
\. 

Columbia River Group of Miocene age and mino~ amounts of intercalated 

marine and non-marine sedimentary rocks. The basalt flows are gray-

black to black, dense, and fine-grained. Jointing is typically columnar 

and blocky. The thickness of most flows is 30 feet (9:.1 m), although 

some vary up to 50 feet' (15.2 m). Subs~quent to the last basalt out­

pourings, the upper flows were subjected to an intense period of 

. weathering during which the bauxite formed from the basalt. 

Overlying the f~rruginous bauxite is a silt to silty clay unit 

that ranges in thickn~'ss from 10 to 40 feet (3-12.2 m). Typically, 

the upper portion is 1tiff and light brown silt to clayey silt; whereas 

the lower portion is a stiff to very stiff, mottled red and light brown 

silty clay. Scattered well-rounded·chert pebbles and cobbles have been 

observed by the author in the mottled red silty clay. 

Scattered poorly consolidated conglomerate beds with interbeds 

of sandst'one and claystone are perched on the walls of the Columbia 

River Valle~ This assemblage is known as the Troutdale Formation 'of 

Pliocene· age. 

Unconsolidated gravels and sands (terrace deposits and alluvium) 

were deposited during Pleistocene time. 

FIELD RELATIONS AND NATURE OF THE FERRUGINOUS BAUXITE 

DEPOSITS IN NORTHWESTERN OREGON AND 


SOUTHWESTEro~ WASHINGTON 


. The ferruginous bauxite deposits have developed from the later­
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ization of the upper Columbia River basalt flows. Their outline is 

principally governed by topographic controls. The deposits occur as 

blanket-shaped bodies along the tops of well-rounded ridges and hills 

ranging in elevation from 200 to 2000 feet -(61-610 m). On the basis of 

several borings, the deposits in the Kelso-Cathlamet area appear to be 

thickest where the drainage is well developed (John W. Hook, 1971). 

The residual weathered rock ranges in thickness from several feet to 

an estimated 200 feet (61 m). 

The ferruginous bauxites are adequately described in several 

published reports. Information from published studies and field 

investigations conducted by this writer will be summarized here. The 

ove~lying silty clay unit is omitted in this discussion. The char­

acteristics of the bauxite deposits in the St. Helens and Kelso-

Cathlamet axea are very similar. Where a complete residual soil profile 

exists~ the upper 10 to 20 feet (3-6.1 m) usually contains three distinct 

textural layers (Jackson, 1971). The uppermost layer contains abundant 

red-brown pisolites in a gibbsite-rich matrix. The intermediate- zone 

consists of unevenly distributed gibbsite-rich and limonite nodules in 

an orange-brown to brown earthy bauxite matrix. The lowest layer is 

characterized by its brown'color and earthy fine-grained texture. 

Chemically these three soil layers usually have a low Si0
2 

content (less than 10 percent) and relatively high A1 0 and Fe 0
2 3 2 3 

contents (31 ~ and 33 ~ percent, respectively) (Jackson, 1971). The 

contents of these three horizons all satisfy the definitions of 

ferruginous bauxite ore. 
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Several workers (Livingston, 1966 and others) have noted that the 

silica content is commonly higher than 10 percent in the pisolitic zone. 

Chemical and petrographic studies show that the silica is partly in the 

crystalline form (Allen, 1948; Livingston, .1966). 

Underlying the ore horizon is a stiff, varicolored clay zone with 

a silica content often greater than 15 percent. This material is char­

acterized by its relict salt and pepper texture and spheroidal weathering 

pattern with associated fractures,and joints. Commonly distributed 

throughout the ferruginous bauxite are basaltic corestones which 

become prevalent- ,;;ith ',depth. The laterite transitionally changes at 

depth to unaltered ba.salt. 



IV. METHODS OF INVESTIGATION 

MINERALOGICAL" METHODS 

Petrographic Analysis 

Although the altered material was too fine· grained for an 

adequate study by this method, the polarizing microscope was useful 

for observing textural characteristics, mineral alterations, and 

non-clay minerals. Prior to mounting, most specimens were impreg­

nated with a plastic resin that has a refractive index of about 1.54. 

Differential Thermal Analysis 

The ~paratus used for differential thermal analysis was pro­

vided'py the Department of Geology and Mineral Industries at their 

laboratory in Portland, Oregon. Most specimens analyzed represent a 

composite o:f a two foot interval (0.6 m). The air-dried material was 

mechanically split and ground by hand <mortar and pestle) to minus 

100 mesh (Tyler screen). Each specimen, which weighed approximately 

0.3-0.4 gr~s, was carefully packed into a cylindrical-shaped thermo­

couple and heated from room temperature to 10000 centigrade at a 

standard rate. -The sensitivity' of the Heath Serva Chart recorder was 

varied from 1 mv (millivolt) to 50 mv, depending on the mineral content. 

X-ray Diffraction Analysis 

\ Bulk samples were air-dried and hand ground to pass a U. S. 
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Standard,325 mesh screen. The mounting procedures used here were 

introduced to the writer by Nelson S. Higgs (personal communications, 

1971). Diffractograms of the fine fraction were obtained from 

unoriented and oriented mounts using Ni-filtered Cu Kac radiation. 

Unoriented mOQ~ts were prepared by carefully .packing the dry fine 

fraction into a slotted plastic mount. Oriented mounts were prepared 

by mixing the fine fraction with distilled water in a watCh glass and 

the slurry was carefully siphoned-onto a porous tile. Prior to. analysis 

of the laterite samples, several dry runs were perform,ed, on a kaolinite 

standard in order to obtain reproducible and reliable results. 

GEQCHEMlCAL METHODS 

Instrumental Neutron Activiation Analysis (INAA) 

Instrumental neutron activation analysis was used to determine 

the concentration of 10 elements in selected samples. Elements that 

were studied include: sodium, scandium, hafnium, chromium, cobalt, . 

lanthanum, samarium, ytterbium, lutetium and thorium. 

The samples were prepared and irradiated in a similar manner as 

discussed by Gordon and others (1968). Two U.S.G.S. standard rocks, 

BCR-l (basalt) and 0-16 (rhyolite obsidian from southeastern Oregon), 

and a chromium monitor were used as standards. Elemental abundances 

of these standards are listed in Table I. 

Bulk samples, for the most part, were powdered and approximately 

one gram of each was placed in a 2-dram polyethylene vial and sealed• 

. The sample vials and monitors were set on a rotary "lazy susan" and 
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I 
I TABLE I 

ELEMENTAL ABUNDANCES OF STANDARD ROCKS (IN PPM, UNLESS•
SPECIFIED) USED FOR INAA COMPUTER DATA 

(AFrER GORDON ET AL., 1968) 

PREPARED 
ELEMENT BCR-l 0-16 CONCENTRATION 

Na% 2.40 + 0.05 

Be 32.5 .±. 0.5 

Hf 8.6 + 0.8 

Cr 1000.0 

Co 36.3 .±. 0.7 

La 35 :!:. 3 

Sm 5.9 1:. 0.5 

Yb 5.2 1:. 0.4 

Lu 0.65 1:. 0.15 

Th (via Pa) 6.71:. 0.3 
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irradiated for one hour at a flux of about 2 x 1012 n/cm-2 sec in a 

General Atomic TRIGA Mark I reactor at Reed College in Portland, Oregon. 

After irradiation, the samples were transferred and weighed into clean 

vials. A high .resolution lithium-drifted ger~anium detector and 4096­

channel kicksort pulse·height·analyzer were used to count radioisotopes. 

Optimum time for counting species are listed in Table II. In order to 

minimize computation of elemental abundances a computer program, pro­

vided by Dr. Marvin Beeson, was utilized (Table III).. Where applicable, 

more than one gamma ray energy peak of a radioisotope of interest was 

determined. 

Wet Chemical Analysis 

Accompanying the neutron activation analysis, lateritic samples 

were analyzed at Reynolds Metals Company in Longview, Washington for 

Si02 , Al 0
3

, Fe 0
3

, and Ti0 • Determinati9n of oxides contents were2 2 2

by wet chemical analysis. In addition;· non-reactive silica was" 

determined for some samples. 
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TABLE II 

TIME SCHEDULE FOR COUNTING SAMPLES 

Long irradiat~on (1 hour at about 2 x 1012 n cm-2 sec-I) 

ELEMENT 
ANALYZER 

CALIBRATION 
BEST TIME AFrER 

IRRAD. FOR COUNTING 

8m, Lu, La, Yb .3' "Kev/ch 6-12 days 

lif, Cr, Co, Sc, Th (via Pa) 12 E;ev/ch 30-60 days 

Na 12 Kev/ch 1-3 days 

-Note: Time schedule for counting samples from Beeson, 1969 

I 



ISOTOPE MASS NO. 

Na! 24 

NaB 24 

Cr 51 

, SeA 46 

SeB 46 

CoA 60 . 

CoB 60 

La! 140 

Yb 174 

Lu. 177 

Hf 180 

Th ' 233 

TABLE III 

COMPUTER PROORAM DATA 

. NO. OF CHANNELS 
ENERGY (KEV) IN PEAK 

1368 22 

1732 15 

320 6 

889 17 

1120 14 

1173 12 

1332 12 

816 10 

396 6 

208 8 

482 8 

312 9 

WINGS 

6 

6 

4 

6 

6 

6 

6 

6 

2 

4 

6 

2 

HALF-LIFE 

. O.62375d· 

0.62375d 

27.8d 

83.9d 

83.9d 

1913.93d 

1913.93d 

1.676d 

32d 


6.75d 


44.6d 


27.4d 


..... 
\..0 



V. GENERAL DESCRIPrION 

BASALTIC CORESTONE PRQFILE 

A detailed description of the basaltic corestone profile is pre­

sented in Figure 4. This profile illustrates the decomposition of basalt 

within a short distance of the unaltered rock. The corestone'was found 

about 21 feet (6.4 m) below ground level and embedded in the ferruginous 

bauxite. The corestone is roughly spherical in shape, about 6 inches 

(15.2 cm) in diameter, and composed of hard dark,gray b~a1t with sider~ 

ite filled vesicles (Figure 5). Several exfoliated and weathered rinds 

enclose the core~tone. Most rinds are less than 0.1 foot (3 cm) in 

width and bound by concentric joints. Grab samples were selected for 

laboratory analysis. 

WAHKIAKUM COUNTY PROFILE A 

A massive brown clayey silt grading downward to a red silty clay 

extends to a depth of l8'feet (5.5 m)~ The ferruginous bauxite zone 

extends from 18 to 55 feet (5.5-16.8 m) and between depths of 53 and 

55 feet (16.2-16.8 m) basaltic cores~onesl are embedded in the laterite. 

A description. -of profile A is shown in Figure 6. 

WAHKIAKUM COUNTY PROFILE B 

Unlike profile A, the,bauxite ore zone and unaltered rock were 

not penetrated in'this profile. The silt and clay mantle that overlies 
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DESC,R IPT I ON 

'Hard, gray-black, aphanitic microporphyritic, vesicular basalt. 
Vesicles up to 1/8 inch and occasionally filled with siderite 
(unaltered zone) 

2.5 At 2.5 inches: An incipient parting 

2.15 Hard. red-black basalt; red mineraloid very frequent; all 
~v e sic Ie s f i I I ed (i (0 n - ric h zone). r ­
3 25 Medium hard. gray, slightly vesicular basalt. Numerous · plagioclase laths bleached and enl'arged, vesicles commonly r 

fi lied. Concentric joint at 3.25 inches from center 
(sl ightly weathered zone).n 

Medium hard to medium soft. I ight gray to gray-brown, sl ightly 
crumbly basalt with minute clay specks. Concentric joints at 
3.75. 4.25 and 4.15 inches from center (moderately weathered 
lone) . 

4.15 

Medium soft. I ight brown-gray. crumbly, highly weathered 
basalt. Salt and pepper texture; clay ~ommon. 

Grading at 5.5 inches to soft. mottled rust brown, earthy.
clayey silt: cuts easily ,with knife; several concentric 
joints (highly weathered lone). 

7.5 

Soft, mustard-brown, earthy, granular. clayey silt (weathered
basalt). Relict texture'faint; several faint concentric joints 
commonly I ined with black Mn02 (?) stains; crumbles easily and 
some scattered green clay specks (ferrugi~ous bauxite zone). 

10.0 

Figure 4. Summary Jog of basaltic corestone profi Ie. 
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I 
SCALE IN INCHES 

o J 2 3 4 5 

~. 
SCALE IN CENTIMETtRS 

figure 5. Sectional view of basaltic corestone. 
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SAMPLE 
NUMBER 

, 

o~ 
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DESCRIPTION 

2.0 Brown. massive~ clayey si It with numerous roots 
~.-----------------------­----------,­

Stiff, brown to tan. massive, clayey silt with some 
roots and scattered carbonaceous material~ and very 
fine size quartz grains . 

10.0-,--------"---------.­
Stiff, mottled light red brown, !1lClssive ·clayey silt 
with some scattered oolites and pisol ites up to ~-inch 
diameter near bottom. Scattered fine quartz grains 
embedded in matrix and pisol itas and oolites. 

16.0 Dense, red 001 ites and pisol ites in a red, fine-grained
and earthy matrix (pisol itlc ferruginous bauxite ore) 
with snrne fine quartz grains. Specimen aBBA is a concen­
tratlan of only pisolites and 001 ites from specimen BB8.22.0 

26.tt 

Dense, cream"gibbsite nodules up to ~-inch and some 
pisolit~s in red, earthy matrix (nodular ferruginous 
bauxite ore)_ Specimen B91A represents a cream gibbsite
nodule 

35.0 

Orange to shades of brown, slightly nodular clay with 
local ized salt and pepper texture. Some cream gibbsite 
and rust brown I imonite nodules, some brown clay seams 
(fsrriginous bauxits zone). 

42.0 

Varicolored clay with localized color bands and salt and 
pepper patches. Some salt and pepper nodules, black MnO 
st(eaks and numerous fissures from 38.0 to 40.0 feet 
(ferruginous bauxite zo~e). -

Predominaiely ~ustard bro~~, fiss~red, salt and pepper
clay with few clay alte~ed bas~lt fragments up to ~-inch. 

50­

55­

15­ From 51.0 to 53.0 feet: Brown to mustard brown, fissured,
salt and pepper, vesicular clay. 
From 53.0 to 54.0 feet: Brown to mustard brown, fissured 
clay with numerous vesicular, hard -clay nodules (decomposed 

54.0 basalt). salt and pepper texture evident (highly weathered). 
~~ed j u m h a r d , gray. fin e - Graj ned bas a I t (mod era tel y 

I "weathered zone). Bottom of hole, November 3, 1910 

Figure 6. Summary log ,of Wahkiakum County profile A. 
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the laterite extend~ from ground level to 17 feet (5.2 m). From this 

depth to 165 feet (50.3 m) the material consists of laterized basalt 

with minor amounts of intercalated sedimentary rocks (highly decomposed). 

A descriptive log of profile B is given in Figure 7•. 
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DESCRIPTION 

-'JL.1.._B..,Ul!!l.!-~~I~, CIaLe.t~ll.1!l!Ullme1..Q!!..t.!.QQ.ls_/ . ­
""',4 . 0 Ta11, mas S I ve , ITaye y s I It Wit h QII art z gr a ins ,-- - - ­

--[Tghtredbrown.-liiassive.sTi ty ClaywTihscattered quartz 
grains. From 11.0 to 12.0- feet. color changes.to red; near 

17.0 base. few scattered oolites and pisolites. 

Varicolored mustard brown. red. gray clay with some localized 
color banding and brown clay seams; occasional vesicular clay 
nodules up to 4 inch. Nodules angular to well-rounded 
(ferruginous 'bauxite zone). ' 

Relict basalt texture f~inf (ferruginous bauxite zone). 
~LL______________ ________________~ 

Predominantly varicolored red, gray, mustard brown bandod 
clay (laterized basalt) with no corestones; and occasional 
sl ickensided fissures. Banding gently inclined to 

concentric (ferruginous bauxite zone). 

From 64.0 to 67.0 feet: some sl ickensided fissures 


12.0At 68.0 feet:crumbfy salt and pepper nodule 
1-\ Brown with some gray. salt and pepper. vesicular clay r 
\lLL~!!.ug i no~.E..a~l.E~zone)______________I 

Shades of red. gray. mustard brown clay with local ized 
banding and fissures, and some salt and pepper texture 
patches (ferruginous bauxite zone).
From 66.5 to 68.0 feet: scattered vesicular clay. 

r-,.!4.:..!L !~~;.Q",!,~!!, ..!..i,.!.s.!r~~..£~~ !!..t.0,£,._J----- - - - - -- ­
Varicolored to mottled rust brown, fissured clay with 
scattered vesicles (ferruginous bauxite zone). 
From 103.0 to 105.0 feet: numerous vesicles in clay 

114.5 

Dark gray. sl ightly silty, highly plastic clay with 

numerous slickensided fissures and scattered altered 
volcanic pebbles and cobbles (sedimentary interbed). 

J,33.:..P______~___________________________ 
Varicolored to gray, pebble to cobble conglomerate.
Clasts consist of vesicular basalt that are weathered 
to clay; matrix consists of clay; some sl ickensided 
fissures (sedimentary interbed). 

149.0 At 141.0 feet: green nontronite filling fissures. 
Predominantly brown, vesicula~ clay with numerous 
joints and frequent rust brown stains and Mn02 (?)
coatings. Material can be cut with knife (highly 
weathered zone).

165.0 


Bottom of hal e, November 4, 1910 


~igure·7. ~ummary log of Wahkiakum County profile B. 
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VI. MINERALOGY OF THREE SEI~CTED FERRUGINOUS BAUXITE PROFILES 

INTRODUCTION 

A petrographic, x-ray diffraction, and differential thermal 

analysis (DTA) was made on a suite of specimens in three ferruginous 

bauxite sections for purposes of correlating mineralogical and geo­

chemical changes. A total of ten samples were e4amined in the basaltic 

corestone profile (Figure 4); and ten and eight samples were examined 

in profiles A and B (Figure 6 ru1d Figure 7), respectively. The results 

of these tests are presented in Figure 8 through Figure 13. A summary 

of minerals identified trom each of the mineralogical tests are listed 

in Table IV. 

° °BASALTIC CORESTONE PROFILE 

Presentation of Analysis 

Original constituents in unaltered rock. Five original con­

stituents were positively identified using petrographic and x-ray 

analysis: plagioclase, pyroxene, iron~rich glass, magnetite, and 

ilmenite. Magnetite and ilmenite were difficult to distinguish from 

each other under the microscope, but both were distinguished in x-ray 

°diffractograms. Pyroxene, augite and pigeonite, were observed micro­

oscopically and from x-ray diffractograms. Olivine was not positively 

identified. 
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Figure 10. Differential thermal curves of a suite of samples

from Wahkiakum county profile B. See text for discussion. 
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Figure.l1.· X-ray diffractograms of a suite of samples from basaltic corestone profile. 

Px, pyroxene; Pc, plagioclase; M, magnetite; I, ilmenite; Py, pyrolusite; mH, metahalloysite: 

K. kaol inite;· G, gibbsite and S, srnectites. 'd 
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TABLE IV 

IDENTIFICATION OF MINERALS FROM MINERALOGICAL TESTS 

MINERAL 

~lagioclase 

Pyroxene 

Magnetite 
and Ilmenite 

Glass 

Amorphous 

Clay 


Kaolini te 


Metahalloy­
site 

Nontronite 

Gibbsite 

Diaspore 

C1iachite' 

Limonite 

Pyrolusite 

Quartz 

Siderite 

pmROGRAPHICl 

Colorless, euhedral to anhedral, 
commonly lath shaped, 10\'; relief, 
low. bire., albite h!ins common; 
large 2V; Bx (+) or ( - ) • . , 

Colorless to light brown, anhe­
dral ,to euhedral; equant; high 
relief; mod. bire.j 2V=about 
20_60°; Bx (+). 

Purplish black to steel blue 
(reflected light); tabular, "crosses 
and.traino" triangular and rhombic; 
anhedral to subhedral. 

Black, amorphous, with spherulites. 

Varicolored; commonly brown, mod. 
relief. ' 

Cloudy to colorless, platy and 

mosaic aggreg.; low relie~ low 

bire.; unable to obtain ?V and 

optic sign. 


Cloudy to colorless; platy and 

mosaic aggreg.; low relief; very 

low bire.; unable to obtain 2V 

and optic sign. 


Green in r~flected light; some­
times' brown; fiberous aggreg.j 
mod. bire.; unable to obtain 
optic sign and 2V. 

Colorless; fine platy and mosaic 
aggreg.; mod. relief; mod. bire.; 
unable to obtain 2V and optic sign. 

not identified 

Red bro"In; mod. relief; assoc­
iated with other bauxite minerals. 

Yellow brow~ to or~~ge,brown; 
translucent to opaque; mod. relief; 
amorphous. 

May be black coating on ,fracture~. 

Colorless; lew relief; low bire.; 

uniaxial (+). 


Colorless, 1'ills vesicles,. high 
re1~ef; extreme bire.; uniaxial 
negative; does not react to Hel. 

'1
Kerr (1959), and Deer,' Howie, and 
Zusaman (1966). 

DIFFERENTIAL ~HERI1AL 
ANALYSIS . 

not applicabl~ 

not applicable 

not applicable 

not determined 

not determine'a 

Endothebmiq peak: 
550-580 C 
Exothermic peak: 
900-9GOoC 

as above 

not positive 

Endothermic: about0
350 C 

Endothermic: about 
5500C' '. 

not identified 

not determined 

not determined 

not identified 

2Grim ,and Rowland 
(19~2) • 

X-RAY DIFFRACTION3 

(ONLY BEST PEAK) 

3~~00A (labradorite 
andesine) 

2.99°A (augite)02.90 A (pigeonite) 

2.53°A (magnetite) 
2.74°A (ilmenite) 

not determined 

not determined 

about 7.l5°A 

not identified 

not identified 

not determined 

3Grim (1968~Carroll 
. (1970), and ASTM 

(1964) • 
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Clay minerals 

Amorphous clay (allophane) - Amorphous clay was identified petro­

graphically. Its presence was found in specimens 205 and 207. 

Kaolinite - This mineral was" positively identified from thin 

sections and from x-ray diffractograms. Kaolinite was recognized in 

S-20l, S-203, S-205, and 8-207 (Figure "II). The nature of the x-ray 

peaks at 7.l5°A is characteristically"~ow and broad. This may.be 

partly attributed to impurities, poorly crystalline nature, preferred 

orientation, and/or low total kaolinite content. Kaolin1te was not 

positively identified from DTA curves. Although all specimens show a 

typical endothermic reaction betwee~ 5250 and 5600 centigrade, the 

"corresponding exothermic reaction at 9800 centigrade is absent. 

Metahalloysite - This clay mineral was recognized in samples 

201, 203, and 205; and identified under the mi·cr.oscope and from x-ray 

curves. Like its counterpart kaolinite, metahalloysite displays a 

typical low and broad intensity peak. 

Nontronite - Nontronite was petrographically identified in S-200B, 

S-EOOC, S-20l, 8~203, 8-205, and 8-207. A broad and low intensity 

x-ray peak at l3.3°A in specimen 205 is tentatively ~dentified as 

nontronite. Nontronite if? not distinguished in DTA curves, but the 

thermal reactions of several specimens suggests that such a mineral is 

present. 

Bauxite minerals" 

Gibbsite - This hydr~ted oxide, is detected in one specimen 

(8-207) by all three methods. 
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Iron minerals 

Hematite - This oxide was recognized only petrographically in 

8-200B, 8-200C, S~201, 8-203, 8-205, and 8-207. 

Limonite - This amorphous material was detected under the micro­

scope in all specimens studied. 

Siderite - Siderite was identified under the microscope in 

specimens 200A, 200B, and 200C. 

Manganese minerals 

Pyrolu~ite - Pyrolusite was tentatively identified from x-ray 

tracings in S-200C, S-20l, and S-203. 

Weathered Zones 

The decomposition of the basalt in the corestone is indicated by 

modal analysis as shown in Figure 14. This diagram depicts the per­

centage of original constituents remaining in weathered specimens'. ,On 

the basis of this analysis, the basaltic corestone profile is sub­

divided into six weathered zones. They have been named: (1) unaltered, 

(2) iron-rich, (3) slightly weathered, (4) moderately weathered, 

(5) highly weathered, and (6) ferruginous bauxite. These terms were 

selected to i¢ply the relative degree of weathering in'which the basalt 

has undergone. Details of each zone are discussed below. 

(1) Unaltered basalt zone. The unaltered basalt displays a 

vesicular hypocrystalline, aphanitic, microporphyritic and intersertal' 

texture (Figure 15). A modal determination shows that this rock con­
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0.5 mm 

Figure 15. Photomicrograph, plane .polarized I ight, showing 

unaltered basalt. Basaltic corestone prof.i I~ (S-200A). 

Pc, p I a g i 0c I as e ; PX. I P Y r 0x e n e; g, ., ron - r i c·h . g i ass; 0 , 0p a que s 

and S , sid e r i t e . See t ext f oi d. i sc·u s·s ion. 




sists of plagioclase, 47 percent; pyroxene, 23 percent; opaques, 10 

percent; iron-rich glass, 15 percent; and siderite, 5 percent. The 

plagioclase, An27 - An44 , occur as subhedral laths with no preferred 

orientation. Determination of anorthi tOe content of plagioclase was 

by methods described by Tobi (1963). Phenocrysts, ranging between 

1.0 mm and 2.0 mm comprised two to three percent of the total feld­

spars. Feldspar microlites r~ging up to 0.4 mm make up a large part 

(47 percent) of the groundmass. Individual crystals are commonly 

twinned according to the albite law (Deer, Howie and Zussman, 1966). 

Pyroxene is of two varieties, augite and pigeonite. Most crystals 

are grfu~ules but there are scattered phenocrysts (1-2 percent). Iron­

rich glass occupies the interstices. Opaques have-been_ identified as 

magnetite and ilmenite and some are probably intergrown with one 

another. Host grains are anhedral to subhedral, and range up to 0.7 mm 

in length. Siderite occurs as vesicle fillings. 

Some minor weathering alteration is present in this _zone. A 

few primary constituents display impurities and iron oxide stains 

along cleavages and fracture. planes. Along the outer edge of this 

zone, glass is partly altered to hydrated iron oxides and nontronite. 

(2') Iron-rich zone. This zone is characterized by inten~e 

enrichment of secondary iron oxides that fill vesicles and replace 

original and secondary constituents (Figure 5). The secondary iron 

oxid~s consist mainly of "blood red" hematite and yellow brown 

limonite. Both minerals have replaced, in varying ~egrees, siderite 

an-d interstitial glass. Pyroxene and plagioclase crystals. display 
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some alterations to secondary iron minerals and they are commonly iron 

stained along cleavages. Opaques appear to be relatively stable, 

although grain fringes are partly lined with hematite or limonite • 
. 

Nontron~te is not'present. An ~ncipient fracture bordering this zone 

and the unaltered rock may be partly attributed to the enrichment of 

iron (Figure 5). 

(3) Slightly weathered zone. The slightly weathered zone is 

the first rind that megascopically {Figure 5) and microscopically 

(Figure 16) displays a definite alteration of the original constituents. 

All minerals , with the exception of the opaques, show corrosion, cloud­

iness, and min,eral decomposition. J'his zone has this mode:. plagioclase, 

35 percent; pyroxene, 20 percent; opaques, 10 percent; iron-rich glass, 

9 percent; siderite, 1 percent; and alteration products, percent. 

, The .primary weathering products are nontronite, hematite, 

limonite, and siderite. 

The major alterations occur primarily in the interstices, where 

limonite, nontronite, and some hematite have formed from iron-rich 

glass. Plagioclase laths are commonly corroded and appear to be partly 

replaced by limonite, nontronite, and other impurities. Along grain 

boundaries, pyroxene crystals ,have altered mainly to nontronite} 

h~matite, and occasionally to limonite. Opaque grains are unweathered 

as indicated by the modal analysis (Figure l4)~ Siderite is decom­

posing to hematite and limonite. In many places, limonite stains 

cleavages and fractures. 
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0.5 mm 

Figure 16. Photomicrograph, cross polarizers, showing sl ight"iy 

weathered zone. Basaltic corestone profi Ie (S-200C). 

Pc, p I a g i oc I as e ; P x f P Y r 0x e n e ; gfir 0n - ric h g I a 5·S ; 0, 0p a que s : 

N, ·nontronite.and l~ I imonite. See text for discussion. 
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(4) Moderately weathered zone. The moderately weathered zone 

shows a greater degree of alteration than the previously discussed 

zones (Figure 17). Although some minerals are entirely weathered, 

their original crystal shapes are preserv~d in places. The mineral 

composition bf samples 201 and 203, respecti~ely are: plagioclase, 

10 and 8 percent; pyroxene, 13 and 13 percent; opaques, 6 ru1d 9 percent; 

and weathering products 71 and 67 percent. 

Alteration products include kaolinite, metahalloysite, nontronite, 

hematite, limonite, and pyrolusite. 

Plagioclase feldspars display a varied degree of weathering from 

core alterations to total decomposition. Kaolinite and metahalloysite 

(?) are the major alteration products. Limonite, occurring in lesser 

amounts, is also associated with the plagioclase laths. Some pyroxene 

grains have been replaced by nontronite and limonite, while others 

display varying degrees of corrosion. Interstitial glass has wholly 

weathered to nontrqnite, hematite, and limonite. Although the modal 

analysis seems to indicate a depletion of the opaques, these minerals 

exhibited little observable alterations. Hematite lines some secondary 

formed voids. In addition, hematite 'appears to have partly altered to 

limonite. Pyrolusite was not identified petrographically, but its 

oc~urrence is indicated by black st~ns along exfoliation joints. 

(5) Highly weathered zone. The rock has undergone a profound 

mineralogical chrulge as a result of weathering (Figure 18). Alteration 

products comprise about 92 percent of the rock and the remaining eight 

percent is made up of original constituents. Kaolinite, metahalloysite, 
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0.5 ·mm 

Fjgure 17. Photomierograph, ~ross polarizers, showing moderately 

w~athered zone. -Basaltic corestone profi Ie (S-203). Pc, plagioclase; 

Px, pyro~ene; O~ opaques; 'K, kaol inite; mH, metahalloysite;

Nt nontronite and L, limonite. See text for discussion. 
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0.5 rnm 

Figure 18. Photomicrograph, cross polarizers, showing highly
weathered lone. Ba~altic corestone profi Ie (S-205). Dark gray 
areas consist" mostly of cloudy kaot inite and/or metahalloysite 
(?) and I imonite. Pc, plagioclase; Px, pyroxene; 0, opaques;
N. nontronite: K, kaol inite; mH, metahalloysite and L, limonite. 
See text for discussion. 
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nontronite, brown amorphous clays, hematite, and limonite are the 

primary weathering products, and the unaltered constituents consist 

mainly of pyrox~ne (3 percent), opaques (5 percent), and a trace of 

plagioclase. 

Microscopically, 'the basaltic texture is nearly obliterated, and 

megascopically the decomposed rock displays a salt and pepper texture. 

Amorphous material is common, particularly in the form of limonite and 

amorphous clay. 

A few remanent slivers of plagioclase. laths are the only remains 

.of this mineral. The rest have altered to cloudy kaolinite, amorphous 

clay (allophane), and a very low birefringent material (metahalloysite ?). 

Numerous plagioclase laths are altered beyond recognition. Pyroxene 

granules in the groundmass are entirely weathered, but several pheno­

crysts are only partly altered. Pyroxene is altered primarily to blood 

red hematite, amorphous clay, limonite, and.nontronite. Hematite has 

formed around and intruded some pyroxene grains in the form of clots and 

irregular masses. Magnetite and ilmenite display very little alteration, 

except where they are obscured by heavy iron oxide stains. Amorphous 

clay see.mingly is associated with nearly all mine'rals (except opaques). 

Several authigenic min~rals appear to have been precipitated 

'from water solutions. Both nontronite and hematite are lining and 

filling voids; and in places they occur in botryoidal form. - Kaolinite 

is a f'illipg_ in veinl.ets. 

In this zone, some alteration products-may be partially altered. 

Hematite and nontronite appear to be decomposing to limonite. 
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(6) Ferruginous bauxite zone. This zone is more highly weathered 

than the other zones in the profile (Figure 19). Almost all of the 

original silicate minerals are altered with th~ exception of a few 

pyroxene phenocrysts. The original texture is nearly obliterated. 

Ninety-three per~ent of the rock is composed of weathering pro­

s. The remaining seven percent consist of unaltered opaques and 

ace of pyroxene grains. The predominant weathering products, in 

of abundance, are amorphous clay, limonite, and hematite. Other 

minor secondary minerals are nontronite, gibbsi~e, kaolinite, and meta­

"halloysite. 	 Gibbsite lines veinlets and also occurs as patchy masses. 

Microscopically, gibbsite appears to have formed partially from amor­

phous clay. 

WAHKIAKUM COUNTY PROFILE A 

Presentation of Analysis 

Original constituents. Five original const,i tuents were ident­

ified petrographically. They are: plagioclase, pyroxene, iron-rich 

glass, opaques, and quartz. Their optical properties are listed in 

Table IV. 

Alteration constituents. A total of nine ~terati~n products 

were identi~ied-i~ a suite of specimen~ from this profile: kaolinite, 

metahalloysite, nontronite, amorphous clay, gibbsite, diaspore, 

cliachite, ,hematite, and limonite. 
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2.0 mm 

F·igure 19. Photomicrograph, cross polarizers, showing ferruginous
bauxite zone. Basaltic corestone profi Ie (S-207). Dark areas 
cnnsist primari Iy of amorphous clay and limonite. Lighter areas 
consist of kaol inite, gibbsite and hematite. Gibbsite (bright 
white ) lin i n g 've i n let sin c e n t e r 0 f phD tom i'c r0 grap h. 0 rig ina I 
texture is very fa·int. See text for discussion. 
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Clay minerals 

Amorphous clay - This material was identified petrographically in 

samples 954A and 954. It is the opinion of this writer that amorphous 

clay may be present in other samples, but petrographic studies were not 

performed on other specimens. Amorphous clay was not identified by DTA. 

Kaolinite and metahalloysite - These two clay minerals were 

identified under the microscope, from thermal curves, and x-ray diffract­

ograms. Kaolinite and metahalloysite were identified in specimens 954A, 

954, 999, 997, and 895. In x-ray diffraction, these minerals'display 

a typical broad and low intensity peak. Thermal curves of samples 893,. 

895,' 897, and 954 show an endotherm~c reaction between 550°C and 5800 c 

and an associated exothermic reaction between 900-950oC which is much 

the same as that of a kaolinite mineral (Grim and Rowland, 1942). 

Nontronite - This clay mineral was microscopically identified in 

specimens 954 and 954A. Its presence was not detected in the diffract­

ograms. The thermal peaks of specimens 954, 897, and 893 are similar 

to those described by Grim and Rowland (1942). Smectites have an 

o 0 06°endothermic peak between 100 C-250 c, 500 C-5 0 C, and another at 

900°C; and an exothermic reaction between 900°C and,lOOOoC. 

Bauxite minerals 

Gibbsite - Gibbsite was positively identified in specimens 954, 

899,897,893, 89lA, 89l,and 888 by'all three methods. 

Diaspore'- This bauxite mineral was tentatively identifi.ed in 

samples 891 and 89lA from thermal curves. 

http:identifi.ed
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Cliachite - This ~orphous bauxite mineral was pet~ographically 

identified in specimen 888. 

Iron minerals 

Hematite and limonite - These two minerals were identified·under 

the microscope in specimens 954A, 954, and 888. A strong endothermic 

reaction at 3400C in specimens 888 and 891 is partly attributed to 

limonite. Hematite was not identified from x-ray diffractograms. 

I 

'Magnetite - Secondary magnetite was tentatively identified in 

specimen 888 by x-r~y diffraction. Magnetite and ilmenite were 

observed in all specimens examined. 

~ 

'\ Weathered Zones 

I The Wahkiakum Co 

zones: (1) moderately 

ty Profile A is divided into four weathered 

eathered, (2) highly weathered, (3) ferruginous 

bauxite, and (4) ferrug nous bauxite ore •. Unlike the basaltic core-

stone, the unaltered, i 10n-rich, and slightly weathered rocks were 

not detected in this profile. Gray basaltic corestones were penetrated 

at the bottom of the boring, and a microscope examination reveals that 

the rock is moderately weathered. Photomicrographs of specimens 954A, 

-954, and 888 are included to illustrate three of the weathered zones. 

(1) Moderately weathered zone. At the bottom of this section 

. are scattered blocks of gray and moderately weathered basalt, embedded 

in clay (decomposed basalt). The rock is fine-grained, slightly por­

phyritic, and slightly vesicular. A microscopic examination of a 
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corestone reveals an original composition of plagioclase (est. 45 per­

cent), pyroxene (est. 22 percent), iron-rich glass (est. 31 percent), 

and black opaques (est. 2 percent) (Figure 20). 

The alteration of most feldspars prevented determination of their 

composition by petrographic methods. Pyroxene crystals are of two 

varieties, augite and pigeonite, and they are commonly found as equant 

and anhedral granules in the groundmass. A few pyroxene phenocrysts 

are also present. Magnetite and ilmenite are intergrown with one 

another as is indicated by their "crosses and train"s" form. They also 

occur as minute irregular masses and slivers. Interstitial glass is 

highly loaded with impurities (magnetite dust ?). 

A microscopic examination of the weathered basalt shows that 50 

to 60 percent of the original constituents have altered to kaolinite, 

metahalloysite, amorphous clay, or nontronite; however, the original 

texture is well preserved. The dominate ~ineralogical changes as a 

result of weathering are associated with plagioclase and interstitial 

glass. Kaolinite and metahalloysite tend to "form from plagioclase, 

but some kaolinite lines voids. Nontronite and amorphous clay are the 

chief w~athering products from glass and pyroxene. 

(2) Highly weathered zone. The highly weathered zone lies 


within a few inches from the moderately weathered zone (Figure 21). 


Petrographic examination shows that the basalt is altered almost 


, entirely to a variety of weathering constituents. The only remaining 

primary minerals are the opaques and portions of pyroxene phenocrysts. 



0.5 mm 


Figure 20. Photomicrograph, crOS$ palarizers, showing modera~ely 
weathered zone. W~hkiakum County profile A (S~954A). Plagioclase
have altered to kaolinite .minerals, except along some edges.
Pyroxene g~anules are highly corroded. Dark shaded areas consist 
~f amorphous materials that have formed from intersertal glass.
Pc, plagioclase; Px, pyroxene; K, kaolinite and mH, metahalloysite.
See text for discussion. 
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0.5 mm 


figure 21. Photomicrograph, cross polarizers, showing highly 
weat~ered zone. Wahkiakum County profi 'e A (S·954). ,Kaol inite 
and metahal loysite pseudomorphs'after plagioclase (gray areas). 
Shad e d g ray are a s con sis t rna Ln I y 0 f i i m 0 nite. Ve ry I i g h tare a s 
represent mostly nontronite and hematite; and some unaltered 
pyroxenes and remnant piagioclas& sl ivers~ K, kaol inite; mH, 
metahalloysite; Pc, plagioclase; Px, pyroxene; 0, opaques and 
L, li mo nite. See t ext for dis c u s s ion. 
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Alteration products identified are kaolinite, metahalloysite, 

hematite, limonite, nontronite, and amorphous clay. Hematite is a 

paeudomorph of pyroxene grains. Feldspars are decomposed to kaolinite 

and metahalloysite, without much destructi~n of the original laths. 

Limonite stains all minerals and is commonly a product of interstitial 

glass. Nontronite and amorphous clay are scattered in the groundmass. 

Opaque grains do not appear to be decomposed. 

The basalt texture is evident even though the rock has deteriorated 

to clay. 

(3) Ferruginous bauxite zone. Thin sections of this zone were 

not prepared. Megascopically, a salt and pepper texture was common 

throughout this section. 

Alteration minerals identified from x-ray and DTA records are 

kaolinite, metahalloysite, gibbsite, and nontronite. Also, amorphous 

clay is thought to exist in varying amounts, on the basis of other 

prdfiles studied. 

Kaolinite, metahalloysite, and gibbsite are present throughout 

this section. The percentagesof these minerals are not determined, 

but if one assumes that the relative peak intensities from thermal 

curves is a valid indicator, then their amounts are minor. 

(4) Ferruginous bauxite ore zone. Overlying the ferruginous 

bauxite zone is the ore zone which consists of a lower nodular bauxite 

unit and an upper pisolitic unit. The ore zone contains usually less 

·than 10 percent non-reactive silica. Detailed descriptions of this 
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material is described by Livingston (1966) and Jackson (1971). Because 

of the distinct textural appearance of the ore zone, it can readily be 

distinguished f~om the overlying silty clay and the underlying clay 

(ferruginous bauxite zone). 

The ferruginous bauxite ore zone consists primarily of cliachite, 

limoni teO, gibbsite, and diaspore. Gibbsite is the major mineral con­

stituent in the nodules; and cliachite and gibbsite largely occur in 

the earthy bauxite matrix. The pisolitoes and <?oli tes are composed of 

limonite and minor amounts of gibbsite. Diaspore is found in trace 

amounts in the nodular horizon. 

A mineral that has not been given much attention in published 

bauxite literature (Pacific Northwest area) is quartz. Numerous 

quartz grains are embedded in the pisolites and bauxite matrix in 

profile A (pisolitic unit). The grains are mostly ~ilt in size, but 

some reach 0.75 mm, and are angular to subrounded (Figure 22). The 

texture of the grains suggest a detrital origin,- and do not appear to 

be formed from weathering processes. The presence of-residual- quartz 

grains in the ore zone is not completely understood. During bauxiti­

zation, quartz encased in the iron-rich pisolites could be preserved, 

because limonite is relatively stable. However, it does not seem 

~ossible for quartz to survive in the earthy- bauxite matrix for a 

prolonged period of weathering. A possible source rock for the 

pisolitic unit is the lower portion of the Post-Troutdale silty clay. 
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2.0 'mm 

Figure 22. Photomicrograph, plane polarized I ight, showing
pisol itic material characteristic of ferruginous bauxite ore 
zone. Wahkiakum County profi Ie A (S-888). Note the angular to 
subround detrital quartz grains embedded in the iron-rich 
pisolites and bauxite matrix. L, limonite; C, cliachite and 
Qt quartz. See text for discussion. 
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WAHKIAKUM COUNTY PROFILE B 

Presentation of Analysis 

Orisinal constituents. Opaques (magnetite and ilmenite) are the 

only remaining primary constituents identified from diffractograms in 

specimen 880 and under the microscope in specimens 840, 822, and 812. 

Quartz was positively identified in specimen 860 (sedimentary interbed) 

from x-ray diffraction patterns and was observed under a 10-power hand 

lens. 

Alteration constituents. Five alteration constituents identified 

from the mineralogical analysis are kaolinite, metahalloysite, smectite 

mineral (species unknown), gibbsite, and amorphous clay. 

Clay minerals 

Amorphous clay - This material was detected in specimens 840 

and 822, petrog~aphically. In both specimens it appears to'be the 

major component. 

Kaolinite and metahalloysite - Kaolinite and metahalloysite were 

identified from x-ray diffractograms 'in spebimens 880, 860', 840; 822, 

and 812. A'kaolinite-type mineral was identified from DTA curves in 

-specimens 880, 870, 860, 840, 824, 822, 815, and 812. Peaks displayed 

in the thermal and x-ray records are low and broad for" these minerals. 

Smectite - This group was tentatively identified in specimens 

880 and 860. Specimen 860 has a highly expansive property in wat~r. 
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Bauxite minerals 

Gibbsite - This bauxite mineral was tentatively identified in 

specimens 812, 815, and 824 from thermal curves. 

Weathered Zones 

In contrast to the previously discussed profiles, unaltered 

basalt was not penetrated even at a depth of 165.0 feet (50.3 m) (below 

ground surface). In addition, sedimentary rocks ~re interbedded in the 

basalt flows. . 

Wahkiakum County profile B is subjectively divided into three 

major zones: (1) highly weathered zone, (2) sedimentary interbeds, 

and (3) ferruginous bauxite zone. The zones are named on the basis of 

similar material found on the basaltic corestone profile and profile A. 

(1) Highly weathered zone. Minerals identified in this zone are 

magnetite, ilmenite, kaolinite, halloysite, and a smectite mineral. 

Ilmenite and magnetite are probably primary in origin and residual 

minerals fro~ the basalt. Megascopically, the decomposed rock displays 

a relict .basalt texture. Plagioclase laths are enlarged and bleached. 

Probably, plagioclase weathers to kaolinite and metahalloysite. A 

smectite mineral identified in x-ray diffractograms may be an alter­

ation mineral formed from mafic minerals and basaltic glass.' 

(2)· Sedimentary interbeds. Intercalated with the laterized 



basalt are highly weathered sedimentary rocks consisting of a lower 

pebbl~ to cobble conglomerate and an upper silty claystone unit. 

Clasts of volcanic composition are wholly altered to clay. Clay minerals 
. 

present in the ?laystone are kaolinite and a smectite mineral. 

(3) Ferru5inous bauxite zone. The ferruginous bauxite zone 

totals nearly 100 feet (30.5 m) of laterized basalt. Based on petro­

graphic studies, amorphous clay is the major component (.Figure 23). 

Gibbsite in association with kaolinite minerals exists in the upper 

portion of the zone. Residual opaques characterized by' their "crosses 

and tra.:lns" shape were also observed. 
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Figure 23. Photomicrograph, cross polarizers, showing the 
amorphous nature of the ferruginous bauxite zone. Wahkiakum 
County profi Ie B (S-822). Note unweathered opaques. See text 
for discussion. 



VII. GEOCHEMISTRY OF THREE FERRUGINOUS BAUXITE PROFILES 

PRESENTATION OF DATA 

The concentration of four major oxides and ten trace elements 

were determined from a suite of specimens in three ferruginous bauxite 

profiles using instrumental neutron activation (INAA) and wet chemical 

methods. A total of twenty-nine samples were analyzed for abundances 

of Al20 , Si02, Fe203 , Ti02, Na, Sc, Hf, Cr, Co, La, Sm, l~, Lu, and Th.
3

Tables V a-d list the elemental abundances and calculated errors deter­

mihed in the selected samples from each profile and from related samples. 

~ost samples studied for their mineralogical composition were used in 

conjunction with the geochemical analysis. 

METHODS OF INTERPRETING DATA 

A literature study reveals that two approaches are generally used 

to illustrate the elemental behavior during rock weathering. The first 

approach involves a comparison of elemental constituents in an unaltered 

rock to the elemental constituents in any soil horizon. Workers who have 

used this t~~e of approach are Reiche (1943, 1950), Short (1961), Gordon 

and Murata (1952), Butler (1953), Wells (1960), Dennen and Anderson 

'(1962), Goldrich (1938), and Tiller. (1958). The second approach com­

pares the element constituents in surface waters to the chemical com­

position of the rock in the drainage area. Students of this approach 

include Smyth (1913) and Polynov (1937). 
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TABLE V-a 

OXIDES AND ELEMENTAL ABUNDANCES OF A SUITE OF SAMPLES 
FROM BASALTIC CORESTONE PROFILE 

(In ppm, unless specified) 

, 
S-200A 

S-200C 
S:"200B S-201 ~ S-203 

Al203 (%) 
Si02 (%) 

Fe20
3 

(%) 

Ti02 (%) 

Lu 

'rh 
Sm 
Cr 

H! 

Yb 

Se 
Co 

Na (%) 

La 

n.d.1 

n.d. 

n.d. 
n.d. 

0.56 !.9.13 
5.9 !. 1.1 
6.4 !. 0.2 

49 !. 7 
5.4 !. 0.9 
6.3 !. 1.0 
34.4 !. 0.4 

86 !. 3 
1.97 !. 0.02 
19.6 !. 1.3 

n.d. 
n.d. 
n.d. 
n.d. 

0.90 !. 0.15 
7.0 .!. 1.1 
8.8 .!. 0.2 

54 !. 8 
3.1 !. 0.9 
6.~ .!.~.O 

39.4 .!. 0.4 

59 .!. 2 
1.95 .!. 0.02 

30 !. 1.9 

19.9 
45.9 
24.1 
4.50 
1.16 !. 0.17 
5.0 !. 1.2 
13.4 !. 0.3 
67 !. 8 
3.1 !. 1.0 
6.5 !. 1.1 
38.6 !. 0.4 
48 '+ 2 

1.15 !. 0.02 
47 !. 2 

14.72 
50.2' 
23.1 
4.55 
1.8 !. 0.2 
6.6 !..1.2 
29.7 !. 0.6 
69 !. 8 
3.3 !. 1.0 
14.0 !.~.5 
39.7 !. 0.4 

75 .!. 3 
1.23 !. 0..02 
91.:. 4 '. 

15.11 
49.2 
25.7 
4.20 

n.d. 
n.d. 

31.3 !. 0.7 
n.d. 
n.d. 

9.45 !. 0.12 
40.3 !. 0.6 

45!. 3 
1.24 + 0.02 

98 .!: 4 

s-204 S-205 8-206 S-207 

Al203 (%) 
Si02 (%) 

Fe203 (%) 

Ti02 (%) 

Lu 

26.0 
41.2 
22.0 

3.65 
0.90 !. 0.16 

26.3 
34.8 

23.9 
4.60 

1.30 !. 0.19 

26.5 
34.5 
23.9 
4.25 
1.1 !. 0.2 

30.9 
18.4 

30.1 
5.60 
0.4 + 0.2 

~h 

Sm 
Cr 

H! 

Yb 

Se 

Co 

Na 

La 

(%) 

7.2!.1.2 
20.9 !. 0.6 

74 !. 8 
4.7 .:. 1.0 
9.1 !. 1.2 

47 !.1 

52 .±. 2 
0.69 !. 0.01 

66.2 !. 3.0 

4.9 .!. 1.3 
n.d. 

,63 !. 9 
6.1 !. 1.1 

n.d. 

57 .±. 1 

74 .!. 3 
n.d. 
n.d. 

5.7.:.1.6 
21.3 !. 0.4 
68 + 11 

7.6 !. 1.3 
8 ±0.9 . 

47 .±. 1 

59 .±. 2 
0.41 !. 0.01 

52.:. 2 

6.7.:.1.8 
5.76 !. 0.12 
102 !. 13 
7.4.:.1.6 
2.8 + 0.6 

65.:!:.1 

88 £3 
0.11 .:!:. 0.00 

11.7 .:!:. 0.5 

1Elemental abundance nQt determined. 
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TABLE V-b 

OXIDES AND ELEMENTAL ABUNDJI.NCES OF A SUITE OF SAMPLES 
FROM WAF.KIAKUM COUNTY PROFILE A 


5-888 

Al203 (%) 38.17 

8i02 ' (%) 8.51 


(6.09)2 


Fe20 (%) 28.95
3 
Ti02 (%) 3.60 
Lu 0.51 .:!: 0.14 
Th 33..:!:. 1 
8m 1.52 .:!: 0.64 
Cr 238 .:!: 8 
'Hf 17.4 .:!: 1.2 . 
Yb 2.16 .:!: 0.39 
Se 24.2 .:!: 0.3 
Co 3.9 .:!: 0.6 
Na (~) 0.071 ..:!:. 0.002 
La. 4.3 .:!: 0.2 

5-895 

Al203 (%) 31.26 

Si02 

(%) . 24.5 

Fe20 (%) 24.03 

Ti02 (%) 3.90 

Lu 0.64 .:!: 0.15 


Th 11.3 .:!: 1.4 


Sm 1.98 .:!: 0.04 
- Cr 245 .!. 10 

Hf 9.2 .:!: 1.2 
Yb 1.57 .:!: 0.40 
Be 59 .:!: 1­
Co 20.5 .:!: 1.5 
Na (%) 0.10 ~ 0.00 
La 5.4 .± 0.3 

§.::§22. 

35.0 
17.84 

23.2 
5.08 
0.25 ..:!:. 0.15 

18 .:!: 1.5 

1.85 ..:!:. 0.04 

265 .:!: 10 

12.7 ..:!:. 1.·3 
0.24 .:!: 0.41 


63.:!: 1 

12.9 .:!: 0.9 
0.053 .:!: 0.004 

5.8 .:!: 0.3 

5-954A 

n.d. 
n.d. 

n.d. 
n.d. 

0.83 .:!: O.lq 


2.6.:!: 1.1 

7.5 .:!: 0.3 


107.:!: 7 

1.93 .:!: 0.89 
6.2 .:!: 0.9 

3B .:!: 0.4 
_ 41.6 !.1.7 

n.d. 
24.0 !.. 1.4 

• I 

(In ppm,un1ess specified) 

5-888A 

n.d.1 

n.d. 

n.d. 
n.d. 

0.73 .:!: 0.14 
43.2 .::. 2.1 
1.20 .:!: 0.03 
424 .:!: 10 
1.69 .:!: 0.83 
1.94 .:!: 0.43 
21.3 .:!: 0.2 
3.6 .:!: 0.5 
0.033 .:!: 0.009 

5.7 .:!: 0.3 

5-897 

30.5 
24.6 
24.6 

3.85 
0.25 ..:!:. 0.14 

7.6±.1.3 

2.0 + 0.1 

207 .!. 10 
6.9 .:!: 1.2 
1.28 .!. 0.40 

60.:!: 1 
29.5 .:!: 1.4 
.085 .:!: 0.004 

6.3 .:!: 0.3 

5-891 

39.34 
5.6 

26.2 
5.82 
0.51 .:!: 0.15 
27.-8 ..:!:. 1.7 
1.06 .:!: 0.03 
330 .:!: 10 
18.78 .:!: 1.4 
1.18 .:!: 0.40 

59 .:!: 0.0 

5~? .:!: 0.8 
n.d. 

5.3 .:!: 0.2 

5-899 

38.8 
16.2 
22.0 

2.94 
0.22 .:!: 0.14 

7.5.:!:1.3 

1.39 .:!: 0.03 
216 + 10 

8.0 .:!: 1.-2 
1.14 .!. 0.38 
61 + 1 

96.:!: 3 
n.d. 

3.0 .:!: 0.2 

5-891A 

n.d. 
n.d. 

n.d. 
n.d. 

0.015 .!. 0.06 
4~9 .±. 0.6 
0.15 .:!: 0.00 

86 .:!: 5 
3.5 .:. 0.5 
0.06 ~ 0.19 
11.3 .:!: 0.0 
1.97 .:!: 0.29 

n.d. 

0.56 .:!: 0.05 

5-954 

26.0 

30.3 
21.62 

3.60 
1.03 .:!: 0.22 
7.8 .:!: 1.5 

~.6T.:!: 0.39 

250 .:!: 11 
6.6 .:!: 1.2 
7.7.:!:1.3 
66.:!: 1 

67 .:!: 3 
0.134 .::. 0.006 

60.:!: 3 

~Elementa1 abundance not determined 
(8.0) free silica content. 
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TABLE V-a 

OXIDES AND ELEMENTAL ABUNDANCES OF A SUITE OF SAMPLES 
FROM WAHKIAKUM COUNTY PROFILE B 

(In ppm, unless specified) 

5-812 5-815 5-822--a ~ 8-840 

A120
3 

(%) 

Si02 (%) 

Fe20
3 

(%) 

Ti02 (%) 

Lu 

Th 

Sm 
Cr 

Hf 
Yb 

Se 
Co 

Na (%) 

La 

30.8 
31.4 
20.39 
3.28 
0.22 .t 0.14 
9.1 .!. 1.4 
1.90 .!. 0.04 

157 .t 9 
8.2 .:!:. 1.1 
1.41 .t 0.38 

57 .t 1 
9.9 .t 0.8 
0.098 .:!:. 0.003 

6.3 1. 0.3 

28.4 

.34.1 
19.78 
3.72 
0.51 .t 0.13 
7.0 .t 1.2 
1.52 .!. 0.04 
183 .!:. 9 
9.2 .!:. 1.1 
0.90 .t 0.35 
52.4 .t 0.5 

9.5 .:!:. 0.9 
0.12 .:!:. 0.003 
8.04 .:!:. 0.34 

33.3 
37.7 
12.23 
3.28 
0.46 + 0.14 

6.9 .t 1.2 
2.1 + 0.0 

168 .:!:. 9 
9.5 .:!:. 1.1 
2 + 0.4 

54.3 .:!:. 0.5 
117 + 4 

- 1
n.d. 

9.8 1. O.lf 

28.4 

33.1 
20.4 

3.70 
0.38 .t 0.16 
No Peak 

3.2 .t 0.1 
No Peak 

No Peak 

1.61 .t 0.43 

83 .t 1 
2831. 9 

0.12 1. 0.00 
10.3 1. 0.4 

31.6 
38.4 
11.81 

3.90 
0.35 .t 0.14 
8.8 .:!:. 1.3 
1.43 .t 0.03 
213 .!. 10 
6.6 .:!:. 1.2 
L.11 .t 0.38 

78 ;!;. 1 
12.1 ;!;. 1.0 
0.14 ;!;. 0.00 

4.5 .t 0.2 

s-860 s-870 5-880 

Al2°'}- (%) 

Si02 (%) 

Fe2°.., (%) 

Ti02 (%) 

Lu 

Th 

8m 

Cr 

HI 

Yb 

Se 

Co 

. Na (~) 

La 

26.6 

56.1 
6.32 
1.29 
1.67 .:t. 0.20 . 

13.5 ;!;. 1.1 
23.0 .!:. 0.•5 

95 ;!;. 7 
.7.3.!.0.9 
.12.4 .t 1.3 
26.7 ;!;. 0.3 

17.0 .:!:. 1.0 
0.068·.!:. 0.008 

77 .!:. 4 

26.5 
40.0 

18.55 
3.00 

0.99 ;!;. 0.16 
6.6 ;!;. 1.2 

13.3 1. 0.3 
192;!;. 9 
5.5 .!:. 1.0 
6.7 1. 0.7 
48.2 .!:. 0.5 

82 .!:. 3 
0.20 .!:. 0.13 

, 40.1 .!. 1.5 

22.71 
44.4 

18.76 

2.75 
1.36 ;!;. 0.10 

2.8 .t 1.3 
12·.3 .t 0.3 
198 ;!;. 10 
6.4 + 1.1 

8.3 ;!;. 0.8 

56 .!:.1 

71 .:!:. 3 
n.d. 

27.9;!;.1.1 

lElemental abundance not determined. 



TABLE V-d 

ELEMENTAL ABUNDANCES OF COLUMBIA RIVER BASALT COLLECTED 
• 	 IN WAHKIAKUM COUNTY, WASHINGTON 

(IN PPM, UNLESS SPECIFIED) 

RLJ-2-71 ,RLJ-3-71 

Lu 0.29 .!. 0.12 0.54 .!. 0.13 

Th 3.4 .:!:. 1.0 3.6 .!. 0.9' 

Sm 3.8 .!. 0.1 0.80 + 0.02 

Cr 116 + 8 '227 .:!:.'8· 

Hf 5.0 .:!:. 0.9 4.3 .:!:. 0.8 

Yb n.d.1 0.28 .:!:. 0.00 

Se 38.4 .:!:. 0.3 35.2 .:!:. 0.4 

Co 41.2 .!. 1.7 8.0 .:!:. 0.7 

Na (%) l.74 .:!:. 0.00 1.77 .!. 0.206 

La 20.8 + 2.6 :h.d. 

1Elemental abundance not determined. 
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For this study, the first approach will be utilized to illustrate 

the relative behavior of cations in the ferruginous bauxite profiles 

by comparing concentration values in the weathered rock to the unaltered 

rock. A brief review of a few methods are summarized below: 

(1) The concentration ratio method (Gordon and Murata, 1952) 

compares the constituents in any weathered horizon to the parent rock. 

The mathematical expression for concentration ratio is: 

C.R. 	= concentration of element of interest in weathered horizon 
concentration of element of interest in parent rock 

A C.R. value greater than one implies an enrichment; whereas a value 

less than one implies a depletion of a constituent. 

(2) Reiche (1950) proposed a weathering potential index (W.P.I •.) 

to indicate the degree of weathering in terms of mineral stability. 

Weathering potential index is defined as: 

mols. 
x 100 

mols. (Si02 + Al203 + Fe20 o+ CaO + MgO + Na20 + H20)
3 

Short (1961) modified Reiche's weathering potential index by 

dividing the W.P.I. for any weathered horizon into the W.P.I. for the 

parent rock. The quotient is termed weathering index (W.I.). The 

W.I. values range from zero to one; a value of ozero indicates an 

intensively weathered rock and a value of one implies a slightly 

weathered rock. Neither method can be applied in this study, because 

several of the elements necessary to compute Reiche's index were not 

determined. 

(4) Goldrich (1938) and Pettijohn (1957) devised an empirical 

method to demonstate the relative losses and gainB of elements if 
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Al203 is assumed to remain constant during rock weathering. The per­

centage loss or gain of any constituent in a weathered horizon relative 

to 	A1 0 is fou..'I1.d as follows:2 3 

a. 	 Let E = the abundance of an element in the weathered rock 

and Z=the abundance of the same element in the parent rock. 

b. 	 Calculate correction factor (K) : 


Al203 content (%) in parent rock
K = 
Al203 content (%) in any weathered horizon 

c. 	 Calculate percentage net loss or gain, expressed as: 

KE 	 - Z x 100 
Z 

The purpose of the correction factor is to compensate for volumetric 

changes and to reduce the effect of the relative Changes. A negative 

value means that an element is depleted-relative to alumina and a posi­

tive value means that an element is enriched relative to alQ~ina in a 

weathered horizon. 

For this study, the concentration ratio (Gordon and Murata, 1952) 

was chosen to illustrate the relative mobility of elements in the three_ 

ferruginous bauxite profiles, because geochemical data can be easily 

utilize-¢! by this method. 

Assumptions necessary to compute the concentration ratio (C.R.) 

values are: 

(1) Alumina is assumed to be constant during the course of 

weathering. 

(2) The computed relative mobility values for profile A and B 

are based on an unweathered basalt flow, specimen RLJ-2-71, which 

crops out near -the two profiles. 
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(3) Major elements, Si02 , Al20
3

, Fe20
3

, and Ti02' were not 

analyzed in the parent rocks; therefore, the oxide abundances of a 

Columbia River basalt specimen in Wahkiakum County, Washington were 

substituted ,in lieu thereof (Livingston, 1966, p. 32). The FeO and 

Fe 0 of this s~ecimen is computed to total Fe20 •2 3 3

RELATIVE HOBILITY OF INDIVIDUAL ELEMENTS IN THE PROFILES 

Table VI a-c list the concentration ratios of each profile. In 

addition, Figure 24 through Figure 26 graphically depicts the concen­

tration ratio trends. Whenever possible the relative mobility of 

individual elements will be related to the mineralogy and weathered zones 

that have previously been discussed under "Mineralogy.1t 

Basaltic Corestone Profile, 

, '1v'~jor elements 

Alumina (Al 0 ), Ferric iron oxide (Fe 0 ), Titanium oxide (Ti0 )2 3 2 3 2

These elements are enriched relative to the parent rock in all the 

weathered zones (Figure 24). Ti02 and Fe20 display a stronger enrich­
3 

ment than ~203' respectively. The greatest concentration of'these oxides 

is in the ferruginous bauxite zone. During weathering these oxides are 

thought to be precipitated by hydrolysis as authigenic minerals, e.g. 

limonite (Mason, 1966, p. 163). Some oxides tend to remain in the 

unaltered crystalline structure, such as Ti0 in ilmenite.2 

Silica (Si02 ) and Sodium (Na) - Si0 and Na are depleted relative2 


to the parent rock (Figure 24); sodium alw~ys shows the largest loss. 
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TABLE VI-a 

BASALTIC CORE8TONE PROFILE 
CONCENTRATION RATIOS 

BASALT 
S-200A 

COMBINED 
8-200C 
S-200B 8-201 8-202 S-203 

Al20
3 

Si02 
Fe20

3 
Ti02 
Na 
Sc 
Hf 
Cr 
Co 
La 
8m 
Yb 
Lu 
Th 

C%) 

C%) 

C%) 

C%) 

14.841 

51.55
1 

11.631 

1.621 

1.97 
34.4 
5.41 
48.8 
85.7 
19.6 
6.40 
6.26 
0.56 
5.89 

0.99 
1.15 
0.58 
1.10 
0.68 
1.53 
1.37 
1.07 
1.60 
1.19 

. 

1.34 

0.89 

2.07 

2.77 
0.58 
1.12 
0.57 
1.37 
0.56 
2.40 
2.10 
1.04 
2.07 
0.85 

0.99 

0.97 

1.99· 

2.80 
0.63 -
1.15 
0.60 
1.41 
0.88 
4.60 
4.64 
2.24 
3.14 
1.13 

1.02 

0.95 

2.22 

.2.59 
0.64 
1.,17 

0.53 
5.10 
4.99 
1.,51 

-S-204 8-205 8-206 8-207 

Al20
3 

Si02 
Fe20

3 
Ti02·Na 
8c 
Hf 
Cr 
Co 
La 
Sm 
Yb 
Lu 
Th 

C%) 

C%) 

C%) 

C%) 

1.76 

0.79 

1.90 

2.25 
0.35 
1.35 
0.87 
1.51 . 
0.61 
3.40 
3.27 
1.45 
1.60 
1.23 

1.78 

0.68 

2.06 

2.84 

1.66 
1.18 
1.29 
0.86 

2.32 
0.83 

1.78 

0.67 

2.06 

2.62 
0.21 
1.36 
1.40 
1.37 
0.68 
2.60 
3.33 
1.27 
1.92 
0.96 

. 

2.08 

0.36 

2.59 

3.46­
0.06 
1.90 
1.37 
2.08 
1.02 
0.60 
0.90 
0.44 
0.75 
1.14 

I These oxides were determined by Livingston C1966, p. 39) from 
a basalt specimen in Wahkiakum County, Washington. 
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TABLE VI-b 

WAHKIAKUM COUNTY PROFILE A 

CONCENTRATION RATIOS 


BASALT 
,(RLJ-2-71 ) S-954A S-954 , s-899 s-897 s-895 

Al203 (%) 
Si02 (%) 

Fe20
3 

(%) 

Ti02 (%) 
Na 

14.841 

51.55
1 

11.631 

1.621 

1~74 

1.75 

0.58 

1.86 

2.20 
0.08 

2~62 

0.31 

1.90 

1.80 

2.06 

0.48 

2.13 

2.40 
0.05 

2.11 

0.48 

2.07 

2.40 
0.06 

Sc 38.4 1.00 1.73 1.59 1.56 1.55 
.Hf 5.04 0.38 1.30 l.60 1.37 1.81 
Cr 115.8 0.92 2.10 1.90 1.80 2.10 
Co 41.2 1.00 1.60 2.30 0.70 0.50 
La 20.8 1.17 2.90 0.10 0.90 0.30 
Sm 3.80 1.97 0.44 0.37 0.53 0.52 
Lu 0.29 2.86 3.55 0.76 0.86 0.53 
:Th 3.41 2.30 2.19 2.19 2.22 3.26 

s-893 s-891A S-.891 s-888A s-888 

Al203 (%) 2.36 2.65 2.57 
Si02 (%) 0.35 0.10 0.20 

F~203 (%) 2.00 2.26 2.50 

Ti02 (%) 3.12 3.60 2.20 
Na 0.03 0.18 0.04 
Sc 1.65 0.29 1.52 0.56 0.63 
Hf 2.50 0.68 3.70 0.34 3.50 
Cr 2.30 0.74' 2.80 3.70 2.10 
Co 0.30 0.05 0.14 0.09 0.09 
La 0.30 0.02 0.30 0.30 0.20 
Sm 0.49 0.04 0.28 0.30 0.40 
Lu 0.86 0.05 1.76 2.50 1.75 
Th 5.29 1.43 8.15 12.67 9.94 

Note: Yb was not determined in the parent rock (RLJ-2-71) and there­
fore C.R. values were not computed. 

IThese oxides were determined by Livingston (1966, p. 39) from 
a basalt specimen in Wahkiakum County, Washington. 
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Al 0 (%)
2 3 

Si02 
(%) 

Fe 0 (%)
2 3 

Ti02 (%) 
Na 
Se 
Hf 
Cr 
Co 
La 
8m 
Lu 
Th 

A1 0 (%)
2 3 

8i0 (%)
2 

re 0 (%)2 3 

Ti02 (%) 

Na 

Se 

Hf 

Cr 

Co 

La 

Sm 

Lu 

Th 


Note: Yb was 

TABLE VI-e 

WAHKIAKUM COUNTY PROFIIJE B 
CONCENTRATION RA~IOS 

BASALT 
(RLJ-2-71) 

14.841 

1
51.55

111.63
1~621 
1.74 
38.4 
5.04 
115.8 
41.2 
20.8 
3.80 
0.29 
3.41 

8-822 

2.25 

0.73 

1.05 

2.02 

1.41 
1.88 
1.45 
2.84 
0.47 
0.55 
1.59 
2.03 

8-880 8-824 

1.54 1.92 

0.86 0.64 

1.62 1.75 

1.70 2.28 
0.07 

1.46 2.16 
1.27 
1.71 
1.71 6.86 
1.34 0.49 
3.24 0.85 
4.69 1.31 
0.82 

8-815 S-812 

·1.92 2.08 

0.66 0.61 

1.71 1.76 

2 • .30 2.02 
0.07 0.06 

, 

1.37 1.48 
1.82 1.62 
1.58 1.36 
0.23 0.24 
0.39 0.30 
0.40 0.50 
1.76 0.76 
2.06 2.65 

not determined in the parent rock (RLJ-2-71) 
and therefore C.R. values were not computed. 

1These oxide~ were determined by Livingston (1966, p. 39) 
from a basalt specimen in Wruu{iakum County, Washington. 
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The greatest depletion of Na and Si02 occurs in the ferruginous bauxite 

zone (S-207). These elements are removed when glass and feldspar con­

stituents deteriorate under the influence of ,weathering (Figure 14). 

Trace elements 

Scandium (8c) - According to Taylor (1966), scandium commonly sub­

stitutes for Ti+4 and Z~+4 in pyroxene minerals during magmatic crystal­

lization. In the weathering profile, pc is enriched relative to the 

parent rock; it is strongly enriched in the ferru~inous bauxite zone 

(8-207). Scandium in natural water is predicted to' precipitate as 

hydrolysates (Mason, 1966, p. 3) and would be enriched in the weathered 

rock. The concentration ratios in specimen 207, indicate such an enrich­

mente 

Samarium (Sm) and Lanthanum (La) - The concentration ratio trends 

of La and Sm nearly parallel each other during the course of weathering 

as shown in Figure 24. In all samples, except 8-207, these elements 

are enriched relative to the parent rock. La and Sm appear to be 

immobile until the intensity of weather~ng progresses to where they 

are released and are subsequently removed in solution. 

Lutetium (Lu) and ytterbium (Yb) - These rare earth elements 

roughly parallel the concentration ratio trends of·Sm and La. These 

el~ents are enriched in all weathered zones, except in the ferruginous 

bauxite section (most weathered), Lu and Yb are enriched relative to 

the parent rock, but are depleted in sample 207. 

Hafnium (Hf) - Hf is depleted in the slightly weathered and 



moderately weathered zones, but enriched in the highly weathered and 

ferruginous bauxite zon~s (Figure 24). 

Thorium (Th) - Concentration ratios of Th in relation to the 

weathering zones are erratic. In some zones it has been enriched while 

in others it has been depleted. 

Chromium (Cr) - This element has been enriched in all samples 

(Figure 24). The general trend of chromium is a gradual enrichment 

upon weathering of the basalt. 

Cobalt (Co) - In most cases, cobalt is depleted relative to the 

parent rock. Although the curve for cobalt is irregular, the apparent 

slope is to the right. This trend suggests a progressive enrichment 

of cobalt as the rock weathers. 

Wahkiakum County Profile A 

Major elements 

Alumina (Al 0 ), Ferric iron oxides (Fe 0 ), Titanium oxide (Ti0 ) ­
2 3 2 3 2

In all weathered samples, A1 0
3

, Fe 0
3

, and Ti02 , have increased relative2 2

to the parent rock; usually by a factor of two or three (Figure 25). The 

lower conc~ntration ratio v~ue for Ti0 in the ferruginous bauxite ore2 

is probably attributed to a change in parent rock type. Concentration 

values in this profile resemble those in the basaltic corestone profile. 

Silica (Si0 ) and Sodium (Na) - As expected, silica and sodium2


are depleted relative to the parent rock upon weathering (Figure 25). 


" Sodium is depleted more, than Si0 in all weathered horizons. A lower2 

concentration ratio in the pisolitic unit (ferruginous bauxite ore zone) 
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is attributed to quartz grains which are embedded in the iron-rich 

pisolites and bauxite matrix (Figure 22). 

Trace elements 

Scandium (Bc) - Gordon and "Murata (19,52) have shown that scandium 

is concentrated in bauxites and bauxitic clay samples from Arkansas. In 

profile A, Bc is also enriched relative to parent rock except in speci­

men 888 (Figure 25). 'The behavior of Bc in the pisolitic unit may be due 

to a different parent rock which originally had a lowe+ scandium, content. 

Hafnium (Hf) - In the highly weathered zone hafnium is depleted 

relative to parent rock, but it is enriched in the ferruginous bauxite 

and ferruginous bauxite ore zone. A similar C.R. trend is shown in the 

basaltic corestone profile. 

Samarimn (8m) and Lanthanum (La) - Both Bm and La are enriched 

near the parent rock, but are depleted in the mo~e weathered zones. 

Both elements roughly parallel trends observed in the basaltic corestone. 

Lutetium (Lu) and ytterbium (Yb) - Lu is depleted in the ferrug­

inous bauxite section, but is enriched in the moderately and highly 

weathered zones and 'in the or'e 'uhi t. ' Concentration ratios were not 

computed for Yb, but its abundances indicate a high concentration in 

the partly weathered rock &~d low concentrations in the lateritic 

material. 

Thorium (Th) - Thorium is increased relative to the parent rock 

and the strongest enrichment occurs in the 'ferruginous bauxite ,ore 

zone. Hafnium roughly parallels the Th concentration ratio trends. 
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Chromium (Cr) - During magmatic crystallization, Cr+3, may 

substitute for Fe+3 in oxides (Taylor, 1966). In profile A, the 

weathered rock is usually enriched in chromium, particularly in the 

iron-rich pisolites. Possibly chromium substitutes for Fe+3 in iron 

hydrates, e.g. limonite. 

Cobalt (Co) - Geochemical studies of decomposed hornblende gabbro 

by Butler (1953) shows that Co is enhanced. This profile. indicates an 

enrichment of Co only in, the partly altered rock. In the more weathered 

rock, Co is depleted and strongly·depleted in the ore material. 

Wahkiakum County Profile Bl 

Major elements 

Alumina (Al 0 ), Ferric iron oxides (Fe 0 ), Tftanium oxide (Ti0 )
2 3 2 3 2

Relative to the parent rock Al 0
3

, Fe 0 , and Ti02 'are enriched. Silica2 2 3
and sodium are depleted (Figure 26). Concentrati'on ratio values of these 

elements compare with those in profile A and the basaltic corestone pro~ 

file. 

Trace elements 

Scandium (Sc) and Hafnium (Hf) - Scandium and hafnium are. enriched 

relative ~o the parent rock and roughly correlate with findings in the 

other profiles. 

lA geochemical discussion on the sedimentary interbeds is omitted 
in this report. 
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Samarium (Sm) and Lanthanum (La) - The concentration ratio trends 

(Figure 26) of La and Sm roughly parallel each other in profile B. 

This trend also was observed in the other profiles studied. In the 

highly weathered (8-880) zone, La and Sm are enriched relative to the 

·parent rock. 

Lutetium (Lu) and ytterbium (Yb) - Relative to the source rock, 

Lu is enriched in the weathered rock except in specimen 812 (Figure 26) 

Yb is concentrated in the lower third of the profile, but its abundance 

is considerably lower in the upper two-thirds. 


Chromium (Cr) and Thorium (Th) - In most cases c:b..romium and 


thorium are enriched relative to the parent rock. Thorium is depleted 

in specimen 880. 

Cobalt (Co) - Cobalt is very erratic. Its concentration· ratio 

values vary from 0.23 to 6.86. 

TRACE ELEMENTS IN GIBBSITE AND LIMONITE 

Trace element abundances were determined in a gibbsite nodule 
I 

(s-89lA) and several iron-rich pisolites (s-888A) and concentrationI. 
ratios were computed to demonstrate the relative mobility of each trace 

element. 

From the mineralogical examination, the pisolites consist 

mainly of limonite and the nodules are composed of ·gibbsite. 

Trace elements highly depleted in the gibbsite nodules are Sc, 

Hf, Cr, Co, La, Sm, Lu, Yb (interpolated) and only thorium is enriched. 


In the pisolites, Na, Sc, Hf, Co, ~d La are deplete.d Lu, Yb, Th, and. 


Cr are enhanced. Assuming that a trace element associated with a mineral 
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would be enriched implies that thorium is the only studied element 

associated with gibbsite; whereas, Lu, Yb, Th, and Co are associat~d 

with limonite. 

THE RELATIVE MOBILITY OF ELEMENTS IN 
THE MOST WEATHERED ZONES FROM 

EACH PROFILE 

The relative mobility of the studied elements in the most 

weathered zones are summarized in Table VII. The composition of these 

specimens consists primarily of a mixture of clay and bauxite minerals 

(S-207 a~d S-812) or bauxite and iron minerals (s-891). Components 

that are always enriched in these profiles incl.ude Fe2?3' Al203,. Ti02 ,: 

~c, Hf, Cr, and Th; those which are depleted include Na, Si02 , Sm, 

La, and Yb. Elements that are either enriched or depleted include 

Lu and Co. 

RARE EARTH RATIOS 

Ratioa of certain trace elements have. been successfully used to 

aid in the correlation of basalt flows (Nathan and Fruchter, 1974). 

Could trace element ratios be employed to correlate parent rock with 

lateritic'soils? In order to answer this question, rare e~th ratios 

of L~Sm, Sm/Lu, and ~Lu were determined from a suite of samples 

f~om the previously discussed profiles. Table VIII lists the results.­

The L~Sm ratios remain about the same in the basaltic corestone 

profile, but in profile A and profile B they are generally lower. 

Ratios of Sm/Lu and La/Lu are erratic, but are gepe:rally lower than the 

parent rock. It is the opinion of this writer that these ratios would 
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TABLE VIr 

ELEMENTS ENRICHED OR DEPLErED IN THE MOST 
WEATHERED ZONE FROM EACH PROFILE 

sAMPLE 
PROFILE NUMBER ENRICHMENT 	 DEPLETION 

-Corestone 207 	 Fe203' Al2~' Ti02, Na, Si02 , Sm, La, Lu; 
Sc, Hf, Cr, Th, and and Yb. 
Co. 

A 891 	 Fe 203 , Al203' Ti02' Na, Si02 , ~m, Co, and 
Sc, Hf, Cr, Th, and Yb (estlmated). 

. " Lu • 

B 812 Na, Si0 ,'Sm, La, Co,2Lu, and To (estimated). 

;' 
Note: Concentration 	ratios are not determined for Yb-in Profile AI 
and B, but Yb appears to be depleted in specimens 812 and 891. 



TABLE VIII 

RARE EARTH RATIOS 

BASALT 8-200B 
8-200A 8-200C 8-201 8-202 8-203 8-204 8-205 8-206 S-207~ 

8 

La/Sm 3.06 3.41 3.49 3.05 3.13 3.16 2.42' , : 2.02 ' 
~ Sm/Lu 11.4 9.76 11.58 16.87 23.2 19.7 13.71 
0 La/Lu 35.0 33.4 40.6 51.5 73.4 47.7 27.83 

BASALT 
« (RLJ-2-71) 8-954A 8-954 S-899 8-897 S-895 8-893 8-891 

~ 
H La/8m 5.47 3.2 7.64 2.15 3.13 2.72 3.12 4.96 
~ 8m/Lu 13.11 9.01. 16.13 6,,31 8.08 3.09 7~40 2.07 
ffi La/Lu 71.8 29.0 57.6 13.6 25.8 8.45 23.9 10.03 

BASALT 
C.Q (RLJ-2-71) 8-880 8-870 S-824 8-822 S-815 8-812 
~ 
H La/8m 5.47 2.26 ,3.02 3.17 4.71 5.28 3.32 
f:3 8m/Lu 13.11 9.06 . 13.38 8.50 4.52 2~98, 8.63a: La/Lu 71.8 40.3 8.46 10.67 -10.35 28.7 



not be key indicators for correlative purposes, because of dissimilar­

ities between parent rock and laterite ratios. 



VIII. SUMMARY AND CONCLUSIONS 

•
Mineralogical conclusions from this investigation are: 

(1) A modal analysis performed on a ~uite of weathered specimens 

from a basaltic corestone shows that iron-rich glass is the first 

original constituent in the basalt to decompose, and followed by 

plagioclase and pyroxene, in that order (Figure 14). 

(2) Most primary opaques are unaltered. Their 9rystal:, forms 

could be used as an indicator for determining the source rock of the 

laterite. 
. 

(3) All three profiles indicate that kaolinite and metahalloysite 

initially formed as pseudomorphs after plagioclase. 

(4) Alteration minerals associated with iron-rich glass and pyro­

xene include mainly amorphous clay, nontronite, ~ematite, and limonite. 

(5) The most prevalent alteration product in the ferruginous 

bauxite is amorphous clay as indicated by petrographic, x-ray, and 

differential thermal analysis. 

(6) In all cases a clay zon.e ranging from a few inches to 

several tens of feet separates the unaltered basalt from a zone con­

sisting of bauxite minerals'and iron minerals and/or clay and bauxite 

minerals. A two stage process for the formation of bauxi te in Oregon 

and Washington is indicated. 

(7) The ferruginous bauxite is not totally derive~ from basalt. 

In profile A (Wahkiakum County, Washington), the upper layer of 

ferruginous bauxite ore zone consists of numerous Fe-rich pisoli~es. 



A petrographic examination reveals the presenc~ of angular to subangular 

quartz grains embedded in the iron-rich pisolites and earthy matrix. 

The shape of the quartz grains suggests that they are detrital and not 

authigenic in origin. The occurrence of quartz grains in the pisolitic 

material implies that the parent material is not entirely basalt. 

In profile B (Wahkiakum County, Washington) a 30 foo:t (9.1 m) 

thick, highly weathered sedimentary layer is interbedded in.the laterized 

basalt flows. 

(8) The extreme depth of weathering is evid·ent in profile B 


(Wahkia~um County, Washington). The laterite extends from 17.0 feet 


(5.2 m) below ground level to at least 165 feet (50.3 m) and may reach 

to 200 feet (60.5 m). Assuming an average basalt flow is 30 feet (9.1 m) 

thick, then five or six flows are laterized. 

Geochemical conclusions from this investigation are based on the 


abundances of nine trace elements (Sc, Ht, Cr, Co, La, Sm, Yb, Lu, and 


Th) and ~ive major elements (Fe 0 , A120~, Si02 , Ti02 , and Na) which
2 3


were determined by instrumental neutron activation and wet chemical 


analysis qn a suite of samples in three ferruginous profiles. Con­


centration ratios were computed from these abundances using- empirical 


methods described by Goldrich ·(1938) to show the relative mobility 


of each element. 


(1) In general, the mobility of the elements in profile A 

(Wabkiakum County, Washington) and profile B ·(Wahkiakum County, Wash­

ington) show similar trends when compared to the intensity of weather- . 

. ing. Components that are deplete~ progre~sively upon weathering are 

8i0
2

, Na, La, Sm, and Lu; and elements enriched include Al 0
3

, Fe 0
3

,
2 2
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Ti0
2

, Sc, Cr, Th, and Hf. Cobalt behaves erratically. Elemental 

variations within the profiles may possibly be attributed to vari ­

ations in the chemistry of the basalt, variations in the intensity of 

weathe~ing, and variations in the chemicai behavior of the elements. 

(2) The elements in the basaltic corestone profile (Columbia 

County, Oregon) display similar mobility trends as the other profiles 

with the exception 0f 8m, La, Lu, and Yb. The behavior of these elements 

is unpredictable. 

(3) Sm and La are associated with each other in the weathered 

rock as indicated from the mobility patterns. 

(4) 	 Elements enriched in all weathered samples are Fe20
3 

, Al203~ 

Those depleted are Na and Si0 •2

In all specimens of decomposed rock La/Sm, Sm/Lu, La/Lu 

ratios range from 2.15 to 7.64; 2.07 to 23.2; and 8.45 to 73.4, 

respectively. There seems to be no predictable relationship between 

these ratios in weathered and parent rock. 

(6) Samples from the most weathered zone from each profile are 

enriched in Fe 0 , Ti02, Al 0 , Sc, Hf, Cr, and Th relative to the2 3 2 3

basalt; and Na, Si02,.Sm~ and La are depleted. Co and Lu are erratic. 

(7) Trace elements associated in iron-rich pisolites are Lu, 

Yb, Th, and Co. Only Th is associated with gibbsite. 

http:Si02,.Sm
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