
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Winter 2-10-2015 

Chemical Reaction Network Control Systems for Chemical Reaction Network Control Systems for 

Agent-Based Foraging Tasks Agent-Based Foraging Tasks 

Joshua Stephen Moles 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Biomedical Commons, and the Other Electrical and Computer Engineering Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Moles, Joshua Stephen, "Chemical Reaction Network Control Systems for Agent-Based Foraging Tasks" 
(2015). Dissertations and Theses. Paper 2203. 
https://doi.org/10.15760/etd.2200 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/267?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/278?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2203&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2203
https://doi.org/10.15760/etd.2200
mailto:pdxscholar@pdx.edu


Chemical Reaction Network Control Systems for Agent-Based Foraging Tasks

by

Joshua Stephen Moles

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

Thesis Committee:
Christof Teuscher, Chair
Marek A. Perkowski

Eric Wan

Portland State University
2015



c� 2014 Joshua Stephen Moles

This work is licensed under the Creative Commons Attribution 4.0

International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


Abstract

Chemical reaction networks are an unconventional computing medium that

could benefit from the ability to form basic control systems. In this work, we

demonstrate the functionality of a chemical control system by evaluating classic

genetic algorithm problems: Koza’s Santa Fe trail, Je↵erson’s John Muir trail, and

three Santa Fe trail segments. Both Je↵erson and Koza found that memory, such

as a recurrent neural network or memories in a genetic program, are required to

solve the task. Our approach presents the first instance of a chemical system acting

as a control system. We propose a delay line connected with an artificial neural

network in a chemical reaction network to determine the artificial ant’s moves.

We first search for the minimal required delay line size connected to a feed

forward neural network in a chemical system. Our experiments show a delay line

of length four is su�cient. Next, we used these findings to implement a chemical

reaction network with a length four delay line and an artificial neural network. We

use genetic algorithms to find an optimal set of weights for the artificial neural

network. This chemical system is capable of consuming 100% of the food on a

subset and greater than 44% of the food on Koza’s Santa Fe trail.

We also show the first implementation of a simulated chemical memory in two

di↵erent models that can reliably capture and store information over time. The

ability to store data over time gives rise to basic control systems that can perform

more complex tasks. The integration of a memory storage unit and a control

system in a chemistry has applications in biomedicine, like smart drug delivery.

We show that we can successfully store the information over time and use it to act

as a memory for a control system navigating an agent through a maze.
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Chapter 1

Introduction

Chemistry as an alternative computer paradigm provides a means to perform de-

cision making in areas that conventional systems are unable to operate. As an

example, Complementary Metal-Oxide-Semiconductor (CMOS) is fairly impracti-

cal for use in a wet system at a biological cellular level. At present, chemistry

lacks a means to represent some of the more mature models found in systems like

CMOS. Many of these components are in their infancy. Chemistries also provide

an interesting alternative computing means with their natural parallelism because

all reactions and changes in concentration of species occur concurrently [1].

Developing and demonstrating the application of some of these seemingly sim-

ple blocks are fundamental to build more complex systems. As an example, mem-

ory storage is a fundamental building block for calculation and processing [2].

Retrieving previous results or observations are necessary to build more complex

control systems and devices. Once we have memories, it opens the door to imple-

menting systems capable of more complicated processing. Memory is a necessary

building block to store data for processing and storing things like data or instruc-

tions for operations. In addition, memory is a useful block when constructing

automata. Arkin and Ross emphasized the need for “bu↵er” between the phases

of the Boolean logic elements they construct [3]. A data structure, such as a

memory, could meet the bu↵er Arkin and Ross call for.

Decision making ability is just as crucial as memory when building larger sys-

tems. Modeling decision making with neuron models connected together to form
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systems known as Artificial Neural Network (ANN), leads to greater system com-

plexity. Chemistry could benefit from more models of memories, calculation blocks,

and control systems to demonstrate the complex decision making capability of the

medium. The demonstration of a system like we are proposing is essential to

form systems capable of more complex tasks such as dynamic length memories,

First-In, First-Outs (FIFOs), networking protocols [4], logic circuits [3] [5] [6] [7],

arithmetic [8], signal processing [9], or games [10] [11].

1.1 Objectives

This thesis is meant to perform an investigation of the use of chemistry to solve

a control system problem. At present, there are few examples of implementing

control systems as chemistries. The control system problem implemented is the

ant trail task originally presented by Je↵erson to solve the John Muir trail [12].

In this task a control system, represented as an ant, must navigate through

a trail consuming as many pieces of food as possible with 200 moves. The food

elements starts out one after another, but quickly gets more di�cult as the trail

continues on by adding turns and gaps. Je↵erson’s original work on this subject

found that memory is necessary to solve this task, such as recurrence in a ANN.

Since this type of recurrence is presently unimplemented in chemistry, we used

memories. This requires figuring out the needed size of the memory as well as

what type of network best performs the actual computation. The objective is

to use a series of reactions and species that model a real world chemistry in a

simulated, computer environment to represent the ant’s decisions. This set of

reactions and species is also known as an Chemical Reaction Network (CRN),

which is an instance of an Artificial Chemistry (AC). We will discuss CRNs later

2



in the next chapter. Such a system requires the ability to store information over

time and is more complex than present systems implemented a chemistry.

The first step is the chemistry implementation of a memory. Our goal is to have

a minimal length memory that can accurately capture the information for later ac-

cess in navigating the trail. This gives us the ability to perform random memory

access as well as form more complex data structures in a chemistry environment.

We will show two di↵erent models that trade o↵ complexity for accuracy. One pro-

vides greater storage length requiring the user to manually signal every movement

of data within the delay line. The other provides a limited storage length with less

user intervention to signal the transition of the values.

1.2 Approach

Our approach was to first look at the necessary elements to solve the problem.

Figure 1.1 shows our process described here. Based o↵ the work by Je↵erson and

Koza, we found that we required a memory and the ability to represent ANNs

and perceptrons in a chemistry. Without models of memory in a chemistry, we

first designed the chemical delay lines to store previous trail information. Next,

an evaluation outside of the chemistry is done to determine the minimal network

layout and memory size for a chemical implementation. The optimization in the

non-chemical environment is an essential step due to the drastically larger simu-

lation time when moving into a chemistry simulator. In addition, the ANN that

Je↵erson directly uses would require a significant amount of time to simulate so

a study to simplify the system is required. Finally, taking this layout and mem-

ory, we use existing chemical perceptron models that are modeled with a set of

reactions and species [13] [14] to simulate the system in a chemical environment.

3



Want to Demonstrate Control System in a Chemistry

Identify Ant Trail as Control System Problem

Find or Develop Memory and ANN Models

Build Chemical Memory Model

Evaluate Outside of Chemistry

Assess Performance in Chemistry Environment

Figure 1.1: Chart showing approach we took to address problem. First, we seek
implementation of a control system, as a CRN. We identify the ant trail problem as
one to approach. Then, we find or construct the blocks needed for our system. We
identify existing ANN models. We do not find a chemical memory, so we develop
that block. Then, determine the best performance outside of a chemistry before
testing the system in an artificial chemistry environment.

1.3 Significance

The work presented here shows for the first time that data has been stored in a

directed fashion within a chemistry for later processing. This delay line created

here is a building block to larger control systems. This is exemplified by connecting

the delay line to an artificial neural network composed of chemical perceptrons [7]

that are capable of finding solutions to the ant trail problems. Combining the delay

line with a perceptron in a system like the trail solving shows how we can take two

modular systems, connect them together, and create more complex agent-based

systems in chemistries. As an example, a delay line paired with an XOR allows

construction of systems like a Linear Feedback Shift Register (LFSR). Fields like

signal processing, networking, smart medication delivery, and harmful bacteria

detection all could benefit from a chemistry-based memory.

An autonomous agent capable of making control decisions is a building block for

4



larger, more complex systems [15]. Demonstration of the delay line in combination

with a system like the trail problem allows problems that were once unsolvable in

a chemistry are now implementable. In addition, the construction of the delay line

independently of the construction of the chemical perceptron [7] shows how the

blocks are added or removed to build a more complex system.

Others have implemented systems in CRNs that act similar to a bu↵er or mem-

ory. Jiang et al. introduced the concept of a delay element [9]. The delay element

is primarily used as a storage area for holding data in between each computation

cycle. The data then returns and is examined in computing during the next iter-

ation of the calculation. Jiang’s bu↵er is primarily a signal processing application

looking only at the previous value. Our delay line has the ability to delay not only

multiple steps in time, but also allows access to any of the past values besides the

most recent. We could create a FIFO [2] out of the delay line by removing the

intermediate output values and providing only the final output.

Other areas, such as networking, use chemical reaction networks as a mechanism

to control scheduling and queuing of packets [4]. The work discusses a methodology

to use the law of mass action as a means to schedule packets. Meyer’s work did not

actually implement the data structure for the packets in a chemistry, but only the

control with the memory stored outside of a chemical system. With a bu↵er like

the one we are describing, then Meyer’s systems could also be extended to actually

implement a means to queue packets in a chemical environment. This method

would reduce cost and complexity by having a single implementation medium. The

available of a memory in chemistry would be helpful to address several potential

applications.
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One such example in the field of biomedicine is smart medication like drug de-

livery [16], injury assesment [17], “sense-act-treat” systems [18], or others [19] [20].

For drug delivery, rather than have a fixed dosage of a specific type of medicine, a

patient could be observed over a time window and then adapt the drug (in quantity

or species) to best respond to their needs [21] [22]. Another use in the biochem-

istry field would be the detection of harmful species, e.g., chemicals produced by

cancer cells in a host. With a time delay line, the detection would not be limited

to a simple yes or no, but can get extended to measure a chemical concentration

as well as capture at what point the event occurred. Combination of the delay

line with a control system, like the ant trail, demonstrates a system reacting from

these inputs.

The biomedical examples are not just limited to cancer or diabetes. There

are numerous other types of detection that could benefit compared to the tradi-

tional methods that either require long periods of time or handling of potentially

dangerous samples. Another example is a modern Salmonella detection system

still requires the analysis of samples overnight [23]. An OR-like perceptron con-

nected to a delay line system in a CRN could detect and react to the presence of

Salmonella immediately. Another is the ability to monitor blood sugar levels over

time with a closed-feedback system monitoring the patient and adjust the dosage

of delivered insulin [19].

1.4 Structure

This work is divided into 8 chapters. In chapter 2, we provide a background of

CRNs, ANN, the trail problems, and previous work related to this thesis. Next,

chapter 3 discusses the implementation and results of the two models of delay

6



line designed for this task. Then, chapter 4 covers the ANN solver applications

written to test the trail problems in a non-CRN environment. We then use the

ANN applications to find the optimal length delay line in Chapter 5. Chapter 6

goes over the combination of a CRN delay line and perceptron and presents those

results. Next, we discuss the possibility of implementing the system as a wet

chemistry in Chapter 7. The paper wraps up with some concluding remarks in

Chapter 8.
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Chapter 2

Background

This chapter discusses the background to several topics used throughout our work.

We start by introducing the original artificial ant trail problem proposed by Je↵er-

son and Koza. Next, we will discuss a model for biological neurons, the perceptron.

The perceptron is used as the computational unit in the larger networks that per-

form computations to form Artificial Neural Networks (ANNs). Then, we discuss

the use of Genetic Algorithms (GAs) as a means to optimize the function of pre-

ceptrons. A discussion on Chemical Reaction Networks (CRNs) concludes this

background chapter.

2.1 Trail Problems

Je↵erson et al. introduced the trail navigation problem in [12]. In this task, an

artificial ant is placed in a 32⇥ 32 grid. The goal is for the ant to collect as many

pieces of food on the trail in a limited number of moves. Figure 2.1 shows the

original John Muir trail proposed by Je↵erson. The trail is toroidal, meaning that

the top row of the trail is adjacent to the bottom row and the left and right rows

are also adjacent. Starting in the top-left corner facing right, the only input the

ant receives is if there is food placed directly in front of the space that the ant is

facing.

The ant makes a decision for the next action based o↵ the only input of if

there is food ahead. The actions that the ant can take are move forward, turn

left, turn right, or do nothing. Taking any of these four actions (including turns)
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counts as a move. As as an example, turning left followed by a forward more is

two moves. The score of the ant is measured by the number of pieces of food it

consumes within a limited number of moves, which was 200 in Je↵erson’s work.

After an ant steps on a piece of food, that food is considered “consumed” so that

it only receives credit for navigating over that part of the trail one time. The trail

gets progressively more di�cult adding gaps of increasing length and additional

turns. Je↵erson and Koza both designed an initial system and then evolved the

parameters on it to search for an optimal control system.

Je↵erson’s work tested the decision making capability of the ant through Finite

State Machines (FSMs) and ANNs. These FSMs were hand-designed initially and

then later evolved to search for a better solution with a GA. Using FSMs, the

authors found that a simple four state FSM could get a score of 42 in 200 moves.

Adding a single state (to form a five-state FSM) allowed the FSM to achieve a score

of 81 in 200 time steps. Given more time, Je↵erson found it actually consumed all

of the food in 314 time steps. After 100 generations, Je↵erson found the “Champ-

100” FSM that was capable of scoring an 89 (max score) through GAs.

Using the same GA configuration as the FSM, an ANN capable of scoring

the maximum of 89 was found in generation 94 by Je↵erson. The network they

used was a recurrent ANN with two input perceptrons, five hidden units, and

four output units. Figure 2.2 shows the recurrent ANN. The network featured

two input perceptrons, a single hidden layer with five hidden perceptrons, and an

output layer with four perceptrons. The neurons were fully forward connected,

including a connection from the input layer to the output layer. Additionally,

there is a recurrent connection from the hidden layer back to itself. The two

inputs indicated if there was food ahead and the other was an inverse of the first.

9



Figure 2.1: The original John Muir trail proposed by Je↵erson [12]. This trail is a
32 ⇥ 32 toroidal grid and contains 89 pieces of food (represented by squares with
circles in them). The ant is represented by an arrow in the top left corner (0, 0)
facing to the right. The shaded squares that are empty are visual aids to indicate
the optimal path proposed by Je↵erson.
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Food

No Food

H1

H2

H3

H4

H5

None

Forward

Left

Right

Hidden
layer

Input
layer

Output
layer

Figure 2.2: The ANN used by Je↵erson in. This recurrent ANN features two input
(that are the inverse of each other), five hidden, and four output units. Each of
the four outputs represents an action the agent can take. The recurrent network
features connections from the hidden layer back to itself (e.g., H1 back into H1)
that are not shown to reduce clutter.

This is necessary since the ANN would not activate with just an input of 0 in the

case of no food. The four output neurons were compared and the one with the

largest output would determine the move.

Koza expanded Je↵erson’s work by studying the artificial ant navigating through

the Santa Fe Trail [24]. According to Koza, the Santa Fe trail is a more di�cult

trail and is shown in Figure 2.3. The actions and task are the same as Je↵erson’s

John Muir trail. Koza also performed analysis using evolving LISP programs in-

stead of ANNs or FSMs like Je↵erson. With the evolving LISP programs, Koza

found a solution scoring the maximum (89) in generation 21.

Koza’s work on the Santa Fe trail has created an entire new field of research

with the optimization of evolution of these programs, also known as Genetic Pro-

gramming (GP). As a result, thee Santa Fe trail tends to be a more popular trail for
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Figure 2.3: The Santa Fe Trail proposed by Koza [24]. This trail (like the John
Muir Trail, Figure 2.1) is 32⇥32 and toroidal. The trail contains 89 pieces of food
(same as trail segments in Je↵erson) and are represented by squares with circles
in them here. Shaded squares are provided as a visual aid to indicate the optimal
route proposed by Koza. The ant is an arrow in the top left corner facing to the
right.
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analysis in recent research. Doucette and Heywood present an improved novelty-

based fitness algorithm that they then tested against the Santa Fe trail [25]. Chris-

tensen and Oppacher presented a set of trees that e�ciently search the solution

space of Koza’s GPs requiring less computational power [26]. The Santa Fe trail

has also been used as a basis to prove implementation in reservoir computing [27].

The use of a FSM or GP seem to dominate the recent literature that we have

found for directly solving the trail problem. Wilson and Kaur work on a GP

representation and a modified function to improve the rate at which the system

learns the task [28]. The authors develop a more e↵ective GP to solve the problem

by evaluating and improving the fitness landscape.

Chivilikhin et al. extend Wilson and Kaur’s work with their new algorithm

(MuACOsm) that performs well at the task of optimizing the FSM implemen-

tation [29]. Other improvements on the implementations using Koza’s LISP pro-

grams were performed by Christansen and Oppacher [26] and Karmin and Ryan [30].

The algorithms for solving the trail problem we have discussed thus far are aimed

more towards improving the FSM or GP implementations.

Silva et al. published work that discusses a hybrid combination of ANN and

GP to form what they call a Genetically Programmed Network (GPN) [31]. In a

GPN, the structure is laid out similar to what you would find in a ANN, but rather

than have the nodes do processing that you would typically find in an ANN (like

a perceptron), they are modeled by a specific program. So from an architectural

layout, they follow ANNs, but the transfer function of each node is actually more

akin to a GP. The authors prove functionality by consuming all pieces of food on

the Santa Fe trail with a GPN.

The ANN implementation lends itself well for applications that may not have
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the robust architecture or infrastructure necessary to implement such solutions.

One such field is the use of chemistry to solve this problem. First, we will discuss

an explanation into perceptrons and the ANN that formed Je↵erson’s solution to

the John Muir trail.

2.2 Perceptrons and Artificial Neural Networks

McCulloch and Pitts were the pioneers of the field with their early models of neu-

rons [32]. They presented a basic model to represent a neuron based o↵ biological

systems. Combining several of these neurons and connecting them together forms a

basic ANN. Since the original work by McCulloch and Pitts, others have developed

more refined models of neurons.

One such model is the perceptron presented by Rosenblatt [33] and later refined

by Minsky and Papert [34]. The perceptron can act as a binary classifier. An

example binary classification perceptron has multiple inputs that are transformed

to one or more outputs. Each of these outputs would get converted to a binary

value, such as 0 and 1, if a specified bias is met. Each of the input connections

has an associated weight that determines the relative strength of that input to a

di↵erent input [35]. Figure 2.4 shows a perceptron with three inputs and a single

output.

The perceptron in Figure 2.4 takes three input values, x1, x2, and x3 to perform

a binary classification to the output, Y . Equation 2.1 shows the function that

classifies a perceptron with n inputs.

Y =

8
>><

>>:

1, if (
nP

i=1
x
i

w
i

)� ✓ > 0

0, otherwise

(2.1)
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x1
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Perceptron
✓

Y
w1
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w3

Figure 2.4: A model of a binary threshold perceptron with three inputs. This
particular perceptron multiplies the weights (w

n

) by each corresponding input
(x

n

). If the sum of these values exceeds a bias value (✓), the output (Y ) is 1,
otherwise, it is 0.

Perceptrons typically contain a bias, represented by ✓, that allows is the ad-

justment for the threshold point. In other words, if the sum of the weights is not

greater than the bias, then this perceptron’s output will result in 0.

Perceptrons can act as more than just binary classifiers. Perceptrons can also

behave in an analog fashion where the output is any range of values [33]. For

example, rather than assigning the values to binary values, they could map to

values on a step, sigmoid, or hyperbolic tangent function [35] to perform a desired

transformation that may translate closer to the behavior of biological neurons.

The weights on the perceptron are user definable, but this is generally imprac-

tical when connecting several perceptrons together to form a larger network. One

way the weights are set is by a process known as learning. In learning, the weights

of the perceptron are adjusted to obtain the desired output. A basic method to

learn is to randomly generate a set of test vectors and map them to the desired

output [35]. Then, run each of these test vectors through the perceptron. If the

desired output is obtained, no action is necessary on the weights. If the output

is not the expected output, then the weights are either increased or decreased in

proportion to the error in an attempt to get closer to the desired result.
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An alternative means to search for the weight values is through the use of

Genetic Algorithm (GA). Through the process of selecting the top performers,

the weights are initially randomly set and the best performing weights are carried

forward in an evolutionarily process. This type of process allows arrival at an

optimal solution modeled after biological evolution rather than the user having to

specify or search for values. For larger networks, this is even impractical. The

weights on the networks of perceptrons later are optimized using GAs which we

will discuss in the next section.

Now, taking several of the perceptrons and connecting them together forms

what is referred to as an Artificial Neural Network (ANN). An ANN is a system

that connected together several of these perceptrons (or another neuron model)

that can adapt to a particular task and elicit a desired response. An ANN is an

alternative model for computation on information [35]. They are typically formed

by connecting the output of one perceptron to the input of another. This cascading

of the perceptrons forms what are referred to as layers. Recall the weights on each

of a perceptron’s inputs allows us to control the output, so by cascading these

elements together, it is possible to form complex networks of perceptrons. A

typical ANN may look like that in Figure 2.5.

Input #1

Input #2

H1

H2

H3

Output #1

Output #2

Hidden
layer

Input
layer

Output
layer

Figure 2.5: Example ANN with an input layer, single hidden layer, and output
layer. Each layer has two, three, and two perceptrons, respectively.
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The ANN in Figure 2.5 is composed of seven perceptrons in three layers. This

example network is also known as a feedforward network where signals only prop-

agate forward and there is e↵ectively no tracking of state or previous values. A

recurrent network is one with connections back to itself or somewhere else in the

network [35]. This recurrence gives a ANN a form of memory storage of previous

state information. Passing the present value back to the perceptron acts e↵ectively

as a length one memory into the previous calculation.

The hidden layer of an ANN is the levels that are between the input and

output layer. Some networks may contain numerous hidden layers or none at all.

The connections between the perceptrons have associated weights. For example,

neuron H1 has one arrow coming from Input #1 and Input #2 that would each

have an associated, unique weight. As the size of the network continues to grow,

so does the complexity for determining the weights to appropriately accomplish a

desired task. The weights of the network are adjusted by hand (for small networks),

through use of a GA, or also updated in some instances with a method known

as backpropagation. In short, the method calculates an error from ideal output

through the neural network and updates the weights in a way to attempt to arrive

at a more accurate solution [36].

The weights for the ANNs in this work are set using a GA because it was

the same method that Je↵erson used when optimizing the ANN in the ant trail

task. They are set randomly to start and then optimized through an evolutionary

process. As discussed in the previous section, Je↵erson conducted a similar process

to arrive at the best weights for the ANN. Now, we will discuss GAs in greater

detail.
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2.3 Genetic Algorithms

Genetic Algorithms (GAs) are used to search for optimal solutions to the delay

line and agent navigating through the trails. GAs were first proposed by Hol-

land [37] [38]. In this work, Holland outlined GAs as a means to take biological

adaptation and use it as a means to adapt and evolve systems in a computer.

Holland’s approach was more a mathematical one rather than attempting to tar-

get a specific applications for the use of GAs [39]. In the last few decades, GAs

have served as a method of optimization in countless applications such as control

systems [40], image enhancement [41], and neural networks [42].

A GA is a type of evolutionary computation meant to model the behavior

of biological evolution through adaption [43]. Like the biological counterparts,

GAs are made up of a population and have a set of functions to model behaviors

to obtain variation in future populations: selection, crossover (also refereed to

as recombination [39]), and mutation. By evaluating a population, producing

o↵spring, evaluating the o↵spring, and repeating this cycle, a solution is derived

where a population is adapted to solve our particular application.

A population is made up of individuals composed of chromosomes. Each chro-

mosome is a set of values that provide variation in control for a system. Holland

originally proposed chromosomes that are made up of bit strings; however, other

work has shown that a makeup of real-valued parameters and LISP symbolic ex-

pressions are also viable representations [43]. LISP symbolic expressions are a way

to represent nested or recursive list of data based o↵ the LISP programming lan-

guage. Many of the problems that Koza solves in his text are represented by LISP

symbolic expressions [24]. For our work, the chromosomes are typically made up of

arrays in floating point values which are functionally equivalent to a bit stream. As
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an example, the weights on inputs to the perceptrons making up the trail systems

are represented by an array of floating point values that cause each individual to

respond di↵erently to a set of inputs.

The evaluation of performance of a individual is known as its fitness. In biologi-

cal terms, this is the tendency of an individual to reproduce in an environment [39].

In GAs, the fitness is calculated by observing the actual output of a chromosome

compared to the ideal or objective output of the function [43]. For instance, in

the fitness of the delay line (discussed in section 3.3), individuals are measured by

taking the di↵erence between the observed value on a delayed version of the input

versus the actual copy of the input.

Selection is the process of taking individuals with the higher fitness as a basis

for forming o↵spring. There are several methods available for selection such as

proportional selection generates o↵spring from individuals directly

proportional to their respective fitnesses [38];

roulette wheel selection assigns a probability distribution to population where

the probability of selection is proportional to the fitness and then selects, one

at a time, an individual from the pool [43];

tournament selection selects a specified number of individuals randomly from

the population, choose the individual with the highest fitness in this group

(or tournament), and repeat as desired [44] [45];

rank-based selection selects the desired number of individuals from the entire

population based only o↵ a ranking of their fitness [46];

(µ,�) selection form an o↵spring basis by generating individuals for each mem-

ber of the population through mutation and/or crossover and save a defined
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set of them for subsequent crossover [47];

(µ+ �) selection similar to (µ+�) selection, but select the top performers from

both the pool of o↵spring and population [47].

Combining a method with elements of rank-based selection (showing prefer-

ence towards higher fitnesses) adds elitism. Elitism is a means to carry forward

members with a high fitness either directly or as a basis to form a new set of o↵-

spring. Selection methods that combine more than one of these means are known

as MultiObjective Evolutionary Algorithmss (MOEAs). An example of such an

algorithm is NSGA-II by Deb et al. [48]. NSGA-II builds an algorithm similar to

(µ+ �) selection, but uses tournament selection in addition to determine the best

individuals for later formation of the o↵spring.

Crossover is where individuals are combined to produce o↵spring. A couple of

common means to perform crossover are n-point crossover and uniform crossover.

An n-point crossover e↵ectively splits the parents at n points where genetic ma-

terial is alternated to the two o↵spring from the two parents [49]. While n only

must be greater than one, one is rarely used in practice where n = 2 is the com-

monly selected value [43]. The uniform crossover [50] [51] traverses bit by bit down

a parent and probabilistically determines if a crossover will occur at the current

position. A p
x

= 0.5 is a commonly selected value for uniform crossovers [43] [50].

The last GA operation we will discuss here is mutation. Like selection and

crossover, there are numerous works on just the discussion of mutation and its

importance in GAs. There are algorithms that utilize FSMs [43], parse trees [52],

or k-opt from travelling salesman problem [53]. Throughout this work, the basic

mutation utilized is a basic mutation randomly selecting bits in an individual to

get flipped [39]. As a small example, you could have an individual represented by
20



0001 that after mutation is 1001 where the first bit was mutated.

There are a few ways that all of these steps get ordered to form a GA. Also,

varying the probability of each of the actions to occur will have an impact on how

rapidly the population evolves. An example GA, proposed by Bäck [43], may

1. initialize a population of individual chromosomes,

2. evaluate the population to calculate the fitness of the individuals,

3. perform crossover,

4. mutate the population,

5. evaluate fitness,

6. select next members of population,

7. repeat from step 3 until desired number of generations are evaluated.

Figure 2.6 shows a flow chart of this particular GA. Later on, we will discuss the

genetic algorithms used to optimize the delay line and trail systems in section 5.1.

Now, with an understanding of the trail problem, how it was solved as an ANN,

and how it was optimized with a GA, we now shift focus to discuss CRNs.

2.4 Chemical Reaction Networks

Portions of this section are borrowed from [54]. The systems we use to model

chemistry are known as Chemical Reaction Networks (CRNs), which is an instance

of an Artificial Chemistry (AC) [55]. CRNs give us a mean to model a set of

chemical species and the way in which they react with each other to form new
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Figure 2.6: A simple genetic algorithm proposed by Bäck [43]. This algorithm
builds a population and then evaluates it. Next, it uses crossover to produce a pool
of o↵spring and then mutates and evaluates the o↵spring. The best individuals
are selected and this process is repeated until the specified number of generations
are met.
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products. We model the chemistries by using several observations of nature, such

as chemical kinetics and the law of conservation of mass.

A CRN consists of a set of species and reactions with associated rates. In

our system, molecular species are symbolic and unstructured, and there is no

notion of space because we assume the solution is well stirred. In other words,

the concentration of a given species is uniform throughout the solution and not

unequally distributed. Actually, we do not need to handle the position of individual

molecules, but rather transform all molecules of the same type (species) using

rates generated by kinetic laws: mass-action [56] [57] for regular and Michaelis-

Menten [58] [59] [60] for catalytic reactions.

Dittrich [55] describes an Artificial Chemistry (AC) made up of a finite set of

molecular species and a finite set of reactions. The set of molecular species are

represented by symbols. For example, the symbols representing the two reactants

and products in our chemical example here are S1, S2, and P , respectively. The

reactions are formed through multiple sets of species (reaction left side) that react

to form products (reaction right side) [7]. A reaction looks like S1+S2 ! P where

reactants S1 and S2 form the product P .

We combine mass action kinetics with the ideas of AC to express reaction rates

for ordinary (non-catalytic) reactions. Epstein [61] expresses this through a series

of di↵erential equations. Given a generic chemical reaction aS1 + bS2 ! cP , the

rate of reaction, v, is expressed by

v = �1

a

d[S1]

dt
= �1

b

d[S2]

dt
=

1

c

d[P ]

dt
= k[S1]

a[S2]
b, (2.2)

where [S1], [S2], and [P ] are the concentrations of the reactants, S1 and S2, and the

product, P . Symbols a and b are stoichiometric constants, and k is the reaction rate
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constant. Reactions could also be reversible, but in this paper, for simplification,

we assume the reverse rate is always zero.

Michaelis-Menten kinetics describes the rate of a catalytic reaction where a

substrate (S) is transformed into a product (P ) through the use of an enzyme or

catalyst (E) in a reaction modeled as E + S *) ES ! E + P . The catalyst E

speeds up the rate of the reaction without being consumed in the process. The

rate of a catalytic reaction is defined by

v =
k
cat

[E][S]

K
m

+ [S]
, (2.3)

where k
cat

and K
m

are rate constants [62].

The simulations of CRNs were performed with COllective cELlular computing

(COEL). COllective cELlular computing (COEL) is a tool developed by Banda et

al. that allows the simulation and evolution of CRNs using GAs [63]. The chemical

simulations, as we will show later, take a longer period of time to run than a non-

CRN simulation so distribution of the work across a High-Performance Computing

(HPC) cluster allows the simulations to execute faster. We have confidence in

the results produced with multiple papers being published using the same tool.

Building blocks, like perceptrons and ANNs as chemistries are also already modeled

in COEL.

Various models of perceptrons that are constructed in a CRNs already exist.

Banda et al. have presented multiple models of the preceptron such as the Asym-

metric Signal Perceptron (ASP) [64] and Analog Asymmetric Signal Perceptron

(AASP) [13]. These two models of perceptrons both have a definition that allows

direct mapping to a biological implementation. The AASP is an improved version

of the ASP that o↵ers greater precision with a fewer number of reactions. Blount
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et al. has shown that more than one of these pereceptrons, forming an ANN, in

the same chemistry are possible with the use of chemical compartments [14].

These chemical compartments are a means to isolate the reaction of a series

of reactions from another set of reactions. From a modularity perspective, they

also allow some sense of recursion by re-using the same species and reactions set

by inserting multiple copies of the same compartment. Blount’s compartments use

a membrane to control the flow of interactions between each of the layers of an

ANN. This gives way to allow multiple perceptrons to co-exist in the same solution

without interfering with the processing of another perceptron. Now, in the next

chapter, we will discuss the implementation of two di↵erent models of the delay

line as a CRN.
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Chapter 3

Delay Line

With the knowledge of Chemical Reaction Networks (CRNs) and Genetic Algo-

rithm (GA), we now move on to discuss the two models of delay line implemented

as a CRN. First, a model of the delay line that has greater precision, but requires

more control signals. Then, the second model requires fewer control signals, but it

comes at the cost of precision. Both models are then connected with a Asymmet-

ric Signal Perceptron (ASP) to demonstrate functionality and modularity. This

chapter is based o↵ our accepted paper [54].

3.1 Delay Line Concept

A delay line is a way to store data in an ordered fashion over time. The delay line

we design operates similar to a First-In, First-Out (FIFO) data bu↵er, but allows

random access to any element of the FIFO. Figure 3.1 shows an example of a delay

line shifting values down. Table 3.1 shows an example of how values shift down

with increasing time, t.

x x(t) x(t� 1) x(t� 2) . . . x(t� n)

Figure 3.1: Diagram of an example delay line. The circle, x, is the input value
and box x(t) represents the value of x at current time step. Box labeled x(t � 1)
represents one time step ago, x(t� 2) represents two time steps ago, and so on.
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t x x(t) x(t� 1) x(t� 2) x(t� 3)
0 15 15
1 19 19 15
2 12 12 19 15
3 14 14 12 19 15
4 11 11 14 12 19

Table 3.1: Table of values for a given input value, x, and how they shift through
a delay line. Each value, t� n, represents the value n time steps ago.

3.2 Delay Line Design

To introduce the time delay line design, we will first examine a delay line con-

structed of only two stages in two di↵erent styles. One is a Manual copy Delay

Line (MDL) that requires experimenter participation to indicate when it is time

to move values between stages. The second model automatically propagates the

signaling species backwards, hence it is more autonomous, but it comes at the cost

of additional and cumulative error in the resulting output values.

3.2.1 Manual Copy Delay Line

First, we will introduce the delay line of two stages with manual copy of the sig-

naling species shown in Figure 3.2. A delay line of two stages is composed of seven

species: X, X1C, X1, X2, X2C, X2
signal

, and X1
signal

. The species X represents

the input value of the delay line. The signaling species, X1
signal

and X2
signal

, are

the catalysts that start the reaction conversion of X into corresponding stages.

The primary function of X1
signal

is to trigger and accelerate the copy reaction

which converts of X to X1C and X1. Species X2
signal

performs a similar action

for the conversion of X1C to X2.

Species X1C and X2C are delayed copies of X that move to the next stage

of the system (for example, X1 to X2 and X2C). Species X2C is shown for
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completeness and is used to cascade the system to a delay line of more than two

stages. For a two stage delay line, X2C is waste and flushed. The outputs of the

system are the X1 and X2 species, i.e., X1 and X2 represent the current and

previous values of X that are consumed as the inputs of another system.

X

X1X1C

X2X2C

X2
signal

X1
signal

�

�

Figure 3.2: Manual copy Delay Line (MDL) with two stages. The syringe is used
to indicate the species where inputs are presented and X1 and X2 represent the
output species from the delay line. Species X2C is used to cascade a value to a
delay line of greater than two stages. The signal species, X1

signal

and X2
signal

,
catalyze the copy reactions and are removed from the system by decay (�).

Species X1C is the internal transition storage species. The storage species

acts as a bu↵er for the value that will transition into X2 on next activation of

the system with an X2
signal

passed in. Ideally, the concentration of X1C will be

the same as X1 prior to its consumption. This process is represented by a set of

reactions using the previously mentioned species. Reactions 3.1 and 3.2 (below)

represent the conversion of the input species, X, through to the output species,
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X1 and X2.

X
X1signal�����!X1 +X1C (3.1)

X1C
X2signal�����!X2 +X2C (3.2)

Reactions 3.3 and 3.4 show the decay (represented by lambda, �) of the catalyst

species, X1
signal

and X2
signal

.

X2
signal

!� (3.3)

X1
signal

!� (3.4)

Now, using these reactions, we can examine data moving through the delay

line. For this MDL, actions must occur at two moments (in time). First, at time

zero, we present a random value to the input X and reset X1 and X2 to zero. The

reset of X1 and X2 simulate consumption by the underlying system the delay line

is integrated with. Species X2
signal

is set to one to copy the value stored in X1C to

X2. In the ideal case for the initialization and first run of the delay line, X2 should

be zero until these actions repeat. After 25 time steps, X1
signal

is injected to the

system. The wait is to fully allow the transition of X1C to X2 before beginning

the transformation of X to X1C. These injections repeat every 1,000 time steps

and are summarized in Table 3.2. Table 3.3 shows an example of these injections

repeating every 1,000 time steps with example data moving through.

Figures 3.3 and 3.4 shows the results of running the actions in Table 3.2 for 10

iterations (10,000 time steps). Valid data is available for examination on output

species X1 and X2 every time steps after each cycle. Figure 3.3a shows the input

values injected to the manual delay line. During the first cycle, species X2 remains
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Table 3.2: Actions for two stage MDL simulations.

Time Species Value
0 X 0.0  rand()  1.0
0 X1 0
0 X2 0
0 X2

Signal

1
25 X1

Signal

1

Table 3.3: Pipeline view of data moving through manual signaling delay line from
Table 3.2. Bold items show those injected to the system. A, B, and C are inputs
and 1 is a concentration (presence) of Xm

signal

.

Species Time=0 25 1000 1025 2000 2025
X A A ! 0 B B ! 0 C C ! 0
X1signal 1 ! 0 1 ! 0 1 ! 0
X2signal 1 ! 0 1 ! 0 1 ! 0
X1 0 0 ! A 0 0 ! B 0 0 ! C
X1C ! A A ! 0 0 ! B B ! 0 0 ! C
X2 0 0 ! A A 0 ! B B
X2C ! A A A ! B B

at zero since there is no previous value as seen in Figure 3.3b. Figure 3.4a shows

the catalysts, X2
signal

and X1
signal

, sequentially injected each cycle. Figure 3.4b

presents the sequence of actions where X2
signal

is injected at time zero followed by

X1
signal

25 time steps later.

3.2.2 Backwards Signal Propagation Delay Line

The Backwards signal Propagation delay Line (BPL) handles the signal species

di↵erently. More specifically, the only input signaling species is X2
signal

and rather

than decay, X2
signal

reacts to X1
signal

. The advantage of this model is that the

user is only required to perform actions at the beginning of the cycle and then the

system transforms the species internally (without external help). Figure 3.5 shows

a revision of the MDL for this model. This reduces the number of injections to
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two: the input (X) and the final copy signal (X2
signal

for two stage). The change

leaves reactions 3.5 and 3.6 unchanged.

X
X1signal�����!X1 +X1C (3.5)

X1C
X2signal�����!X2 +X2C (3.6)

Revising the remaining reactions requires modifying only reaction 3.3. Remov-

ing the decay from reaction 3.3 so that X2
signal

reacts to X1
signal

gives the updated

reactions 3.7 and 3.8.

X2
signal

!X1
signal

(3.7)

X1
signal

! � (3.8)

All actions in the system occur instantaneously and are the same as actions

employed by the manual delay line at time zero. At the beginning of every cycle,

X1 and X2 are set to zero to simulate the next block of the system consuming

their values. Also, a random value (X) and signal (X2
signal

) are injected to the

system. Table 3.4 summarizes these actions, which repeat every 1,000 time steps

to ensure enough time for all reactions to reach steady state.

The simulations of the Backwards signal Propagation delay Line (BPL) run for

10,000 time steps (same as for the manual delay line). Valid data is also produced

at the same point (every 50 steps) on the output species X1 and X2. The value

produced on the first cycle of X2 ideally should be zero, but leakage from X1C is

generally seen from steps zero to 1,000 (see Figure 3.6b). An input is introduced
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Table 3.4: Actions for two stage back propagation delay line simulations. These
actions repeat every 1000 similar to Table 3.3.

Time Species Value
0 X 0.0  rand()  1.0
0 X1 0
0 X2 0
0 X2

Signal

1

to the system at species X (Figure 3.6a) and then is reacted in the same cycle

to species X1 (Figure 3.6b). After the next cycle (i.e., the next introduction of

X2
signal

), the value injected at X previously is now presented at X2 (Figure 3.6b).

Notice that the backwards propagation introduces an error to the system with

some of the X2 values not lining up exactly with the previous X1. This di↵erence

is due to the time window that the reactions for X to X1 and X1 to X2 are

simultaneously active. Looking at Figure 3.7b, X1
signal

and X2
signal

are large

enough for both catalyses to occur. So, for this small window of time, there is

e↵ectively a direct path from X to cascade down to X2. This overlap is not

inherently a problem. It allows the desired parallelism of this system. We can

a↵ord this error in a small number of stages, but the inaccuracy can grow with a

larger number of stages.

3.2.3 Inherit Single Instruction, Multiple Data

With the nature of chemistry, one of the advantages of our unconventional delay

line implementation is the ability to perform single instruction, multiple data [65]

operations. The main factor is finding a unique set of species to hold each delay

line that will not react with surrounding bu↵ers to allow such parallel operations.

Figure 3.8 shows an example of a two-stage set of backwards propagation and

MDLs that are producing a vector of three values for the current and previous
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cycles.

3.2.4 More than Two Stages

Extending the bu↵er for more than two stages is straightforward. For each stage

we add one output species (Xm), transition species (XmC), and catalyst species

(Xm
signal

). This allows the system to flexibly provide a bu↵er of desired length. As

an example, Figure 3.9 shows a BPL with three stages. The total number of species

required in the system grows at a rate of 3m+ 1, where m is equal to the number

of stages in the system. One trade-o↵ to note is that as the number of stages in the

system increases, so does the period of time to cascade values through the delay

line. Ideally, each reaction runs to full completion prior to Xm
signal

propagating

backwards to begin the next conversion.

The reaction set of the delay line also scales in a straightforward fashion. Each

intermediate delay stage has a reaction similar to reaction 3.5 and the final delay

stage (the mth delay) has a reaction similar to reaction 3.6. This remains true for

extending both the manual and backwards propagating delay line. Extension of

the catalysts depends on the implementation. For the MDL, simply adding the

species and a subsequent input is required. Extending the backward propagating

delay line has the advantage that it does not increase the number of injections,

but it still increases the overall number of species.
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3.3 Results

We will highlight the results for the two stage bu↵er and its extension beyond two

stages. We employed GAs [39] to optimize the rate constants (mapped to chromo-

somes) of the backwards propagation model. We only used the algorithm to opti-

mize the backwards propagation model since the manual copy was straightforward

to optimize by hand. The GA used an elite selection of the top 20 chromosomes

from the population of 100, which undergo cross-over and mutation to form the

next generation. The goal (fitness function) of this evolutionary algorithm was to

minimize the error of the delay line.

We defined error as the di↵erence between the actual input value (X) and the

value occurring at X1 on this cycle and then X2 on the next cycle. We performed

this test 50 time steps after X is injected into the delay line. Equation 3.9 shows

the calculation of this error where X[n] represents the current value of X and

X[n � 1] represents the value of X on the previous input cycle. Adding both

di↵erences for the two stage delay line provided the overall error.

error = |X1 �X[n]|+ |X2 �X[n� 1]| (3.9)

The genetic algorithm performed perturbation mutation that changed each

chromosome’s element with 30% chance by ±30% using a uniform distribution.

We ran the GA for 100 generations to produce the results for the two stage delay

line. The algorithm was configured to target a transition of the input species, X,

to the current time species, X1, as fast as possible, and convert the intermediate

species, X1C to the previous time species, X2, as fast as possible while minimizing

the amount of leakage between the phases of the design.
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3.3.1 Two Stages

Table 3.5 shows the rate constants for the manual propagation delay line reactions.

Rates for the conversion of input species, X, down the chain is the same rate with

the presence of X1
signal

and X2
signal

both increasing the rate by the same amount

because the forward copy reactions should be as fast as possible. Figures 3.3 and

3.4 shows the plots using these rate constants in a two stage system, which can be

replicated for a manual copy system of any size.

Table 3.5: Rate constants of two stage MDL found by GA.

Reaction Forward Rate K
m

X
X1signal�����! X1 +X1C 0.0757 2.0000

X1C
X2signal�����! X2 +X2C 0.0757 2.0000

X2
signal

! � 0.5643 (None)
X1

signal

! � 0.5643 (None)

For a di↵erent size, the back propagation delay line has di↵erent rate constants.

In addition, the rate constants were not grouped like the manual propagation

delay line because it would drastically decrease the performance. Looking at the

constants in Table 3.6, the reaction for species X1C to X2 is the fastest. This

is directly due to the rapid rate that X2
signal

is reacting to X1
signal

. E↵ectively,

to meet the first requirement of getting X into X1 as fast as possible, the lower

level transition of species (Reaction 3.6) must complete before. Figures 3.6 and

3.7 shows the output of a two stage BPL with the rate constants in Table 3.6.

To compare the accumulated error of the two delay lines we used Symmetric

Mean Absolute Percentage Error (SMAPE) defined as

SMAPE = 100 ⇤ h |y � ŷ|
y + ŷ

i, (3.10)
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Table 3.6: Rate constants of two stage BPL found by GA.

Reaction Forward Rate K
m

X
X1signal�����! X1 +X1C 0.0020 0.0225

X1C
X2signal�����! X2 +X2C 0.0706 2.0000

X2
signal

! X1
signal

1.3648 (None)
X1

signal

! � 0.0039 (None)

where h.i is the mean of a set of multiple values, y is the actual value, and ŷ is the

expected value. We calculated an average SMAPE per stage (unit size) by dividing

cumulative SMAPE with m. More specifically, using n to represent a discrete time

series sample and m to represent the number of stages:

SMAPE =
100

m
⇤

mX

k=1

h |Xk �X[n� (k � 1)]|
Xk +X[n� (k � 1)]

i. (3.11)

For instance, SMAPE for two stages (m = 2) is given by

SMAPE =
100

2
⇤ h |X1�X[n]|

X1 +X[n]
+

|X2�X[n� 1]|
X2 +X[n� 1]

i. (3.12)

We evaluated performance (error) over 10,000 runs, each repeating the sequence

of actions defined in Table 3.2 and Table 3.4 for 200 iterations (200,000 time steps).

Figure 3.10 shows the results for a delay line of size two as well as for larger sizes

(discussed in next section). The di↵erence in values from expected values for the

two stage delay line are quite small. This shows that for a two stage delay line,

both types operate well. One thing to note is that the backwards delay line has a

larger initial error which can accumulate over time.

36



3.3.2 Over Two Stages

In this section, we will examine the use of a delay line with five stages. Five stages

was selected and executed for both the manual copy and back propagating delay

line. Figure 3.10 shows the final error when evaluated for 10,000 runs for 200

iterations each (same as for m = 2 in previous section). The maximum error over

the entire evaluation is shown in Table 3.7. There are a few observations to note

on this plot. The error on a backwards propagation delay line (B) increases as the

number of stages in the delay line increases. For a smaller delay line, this error

would generally be negligible, but for larger sizes this could be a concern. The

manual copy has a significantly smaller error as shown in Figure 3.10.

Table 3.7: Maximum and average SMAPE obtained through performance runs of
200 iterations and varying configurations of stages and manual copy and backwards
propagation. Maximum and average excludes the initial values where the delay
line is filling (first m points with low SAMP).

Backwards DL Max Average Manual DL Max Average
B5 14.35% 14.09% M10 0.0059% 0.0016%
B4 11.66% 11.25% M5 0.0049% 0.0024%
B3 5.26% 4.84% M2 0.0033% 0.0008%
B2 2.28% 1.97%

As for the backwards propagating delay line, the error starts to accumulate to a

noticeable value rapidly. Even by phase three, the delay line is starting to produce

error that is in excess of the MDL with ten stages. Looking back to Figure 3.7b

there is a period of time where bothX1
signal

andX2
signal

overlap which can explain

how error that starts quite small in stage one of the delay system accumulates to a

large value by the time it reaches the later stages of the bu↵er. Depending on the

desired properties of the delay line, this is worth considering for the application.
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3.3.3 Time Series Perceptron Integration

To demonstrate the capabilities of the delay line to fit into other designs, we inte-

grated it with a chemical perceptron called a threshold asymmetric signal percep-

tron introduced by Banda [64]. This perceptron learns through reinforcements and

is inspired by biological neurons. Integration with the delay line and the perceptron

shows how the delay line can easily fit with other systems to act as an input stream

without any design modifications. Previously, the perceptron received both values

simultaneously as two inputs. Now, we are showing that, without change to the

perceptron or delay line, the two integrate together and function well. Figure 3.11

shows an example of this integration.

We trained the perceptron using reinforcement learning on 14 linearly separable

binary functions. Figure 3.12 shows the results of this learning. The binary time

series perceptron learns 11 of the 14 functions with an accuracy of greater than

85%. Figure 3.13 shows the bu↵er and perceptron accurately producing the output

for OR.

NAND, IMPL, and NOTX1 are all heavily dependent on the last input to

resolve in the time delay line, X1. In this case, the input speciesX1 is not provided

to the system until typically 50 time steps later than value X2. The original model

of the perceptron was optimized for instantaneous and simultaneous injection of

both inputs. Because input X1 is not ready, the performance is lower because that

input plays a larger role on the correct performance for these logic functions. This

makes the system capable of obtaining an average success rate of approximately

90% compared to the perceptron’s 99% success rate [64].
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3.4 Discussion

We have presented a novel implementation of a delay line as a chemical reaction

network capable of storing past concentrations. By arranging our delay lines in a

SIMD-like layout, we could delay multiple segments of data simultaneously with a

shared control signal for either model of delay line. We have introduced two types

of a chemical delay line: manual copy delay line and backwards propagation delay

line. A manual copy delay line can precisely carry values in a delayed state, but

requires more intervention from the user (growing at a rate of m) to propagate

values through the system. The second model, backwards propagating delay line,

automatically moves values through the system with a single signaling injection

with reasonable accuracy.

The integration of the backwards propagating delay line with the threshold

asymmetric signal perceptron resulted in the first chemical model capable of learn-

ing binary time series. Also, this example is a proof-of-concept that our delay line

is a modular block ready for use in other systems. For systems requiring a smaller

window of past values, either model of the delay line gives su�cient accuracy for

data storage. The manual copy delay line shows potential for longer chains with

the amount of calculated SMAPE passed between phases remaining below 0.01%

for a delay line of 10 stages. The backwards propagating delay line provides a

much simpler user interface at the sacrifice of accuracy. A backwards propagation

of five stages keeps the calculated SMAPE below 15%. Systems requiring a large

number of delays will have to weigh accuracy and simplicity to make a selection

for a particular implementation.

The BPL and MDL tied with a ASP demonstrate how these two systems can

modularly connect to other elements in a CRN to form a memory. This connection
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of our delay line model shows how the delay line can modularly connect to an

independently developed component, like an ASP, to solve larger problems. Using

Blount’s compartments [14] as an XOR Artificial Neural Network (ANN) combined

with a model of our delay line would allow for the development of a block like a

Linear Feedback Shift Register (LFSR). Now that we have the building blocks to

provide data storage in a CRN, we discuss the work to find the optimal size of

memory and layout of ANN to solve the ant trail task when paired with a delay

line.
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Figure 3.3: Two stage MDL showing input and output signals. Data arrives as
input (3.3a) and is available on outputs (3.3b) with X1 being the current and X2
being the previous X.
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Figure 3.4: Two stage MDL showing the copy signals. The copy of this data
is triggered by X1

signal

and X2
signal

(3.4a). Figure 3.4b shows the copy signals
zoomed in from Figure 3.4a.
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X

X1X1C

X2X2C

X2
signal

X1
signal

�

Figure 3.5: Backwards propagating delay design with two stages. The syringe is
used to indicate an injection of the input species X and the copy signal X2

signal

.
The species X1 and X1 represent the output species from the delay line. The
signal X2

signal

is propagated backwards to X1
signal

without user intervention and
then decays (�).
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Figure 3.6: Two stage backwards propagation delay line showing inputs and out-
puts. Data arrives as input (3.6a) and is available on outputs (3.6b) with X1 being
the current and X2 being the previous X.

44



0 2 4 6 8 10

·103

0

0.2

0.4

0.6

0.8

1

1.2

Time

C
on

ce
nt
ra
ti
on

X1signal
X2signal

(a) Copy Signals

5 5.01 5.02

·103

0

0.2

0.4

0.6

0.8

1

1.2

Time

C
on

ce
nt
ra
ti
on

X1signal
X2signal

(b) Copy Signals (Zoomed on Figure 3.7a)

Figure 3.7: Two stage backwards propagation delay line showing copy signaling.
The copy is started by X1

signal

and X2
signal

(3.7a). Figure 3.7b shows the signals
controlling propagation zoomed in from Figure 3.7a.
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Figure 3.8: Time delay design Single Instruction, Multiple Data (SIMD) represen-
tation showing simultaneous output of previous (X[�1][n]) and current (X[0][n])
X for parallel data processing. The signaling can be used with multiple instances
of a delay line, both for the manual copy and the back propagation type.
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�

Figure 3.9: BPL with three stages. The syringe is used to indicate an injection of
the input X and the signal X3

signal

. Species X1, X2, and X3 represent the output
species from the delay line. Lambda (�) shows decay of backwards propagation
signal.
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Figure 3.10: SMAPE calculated for delay lines. Mm and Bm are the mth stage of
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Figure 3.11: Perceptron integration with backwards propagating delay line of two
stages. The delay line outputs (X1 and X2) are fed to the perceptron without
modification of the delay line.
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Figure 3.12: Success rate of binary time series chemical perceptron. The perceptron
learns 11 of the 14 linearly separable functions with an accuracy of greater than
85%.

48



0 2,000 4,000 6,000 8,000
0

0.5

1

1.5

Time

C
on

ce
nt
ra
ti
on

(a) Input Stream

0 2,000 4,000 6,000 8,000
0

0.5

1

1.5

Time

C
on

ce
nt
ra
ti
on

(b) Output Stream

Figure 3.13: Example concentration traces of binary time series chemical percep-
tron that successfully learns OR function. Left shows input stream 0,1,0,1,0,0,1,1.
Right shows correct output stream of 0,1,1,1,1,0,1,1. Two zeros on the input stream
at 4,000 and 5,000 successfully produce zero at time 5,000 on output stream.
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Chapter 4

Trail Runner and Trail Viewer

This chapter discusses the pair of tools developed for simulation and analysis of

the John Muir, Santa Fe, and other trails prior to moving to a Chemical Reaction

Network (CRN) environment. We found no other application that readily per-

formed the evaluation required for our work so we developed two applications to

aid in our research. The two applications, trail runner and trail viewer, are built on

published, open-source tools and were designed with extensibility in mind. Trail

runner is a parallel Genetic Algorithm (GA) trail evaluator that manipulates pa-

rameters of the simulations and records the runs to a database. Trail viewer is a

web-based application that allows users to filter, browse, and view the results from

various types of trail simulations. This framework allowed us to easily sweep across

di↵erent parameters to locate an ideal configuration for later implementation in a

CRN. In this chapter, we will discuss both tools, some of the advantages of these

tools, and their framework.

4.1 Trail Runner

Trail runner is responsible for evaluation of di↵erent networks to see performance

against navigating the agent through di↵erent trails (like the John Muir, Santa

Fe, and more). Trail runner also performed evolution of the parameters on the

networks with GAs working towards the maximum performance possible. We

have also published trail runner under an open source license and it is available

for download at https://github.com/jmoles/trail-runner. The application is
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a command line-based Python tool that uses published tools for evaluation of the

Artificial Neural Networks (ANNs) through evolutions in a GA.

The ANNs in trail runner were modeled with PyBrain, a machine learning li-

brary for Python [66]. PyBrain served as the basic model for the di↵erent flavors

of ANNs. The evolution of the parameters on the ANNs is performed with Dis-

tributed Evolutionary Algorithms in Python (DEAP) [67]. DEAP is a powerful

toolbox allowing straightforward evaluation of GA in Python. One of the primary

reasons for the selection of DEAP was the tightly integrated use of a distributed

computing framework, Scalable COncurrent Operations in Python (SCOOP) [68].

SCOOP allowed the distributing of work across multiple servers in the lab cluster

for reduced run time. With the use of PyBrain, DEAP, and SCOOP, we then had

to build a series of tools to evaluate the di↵erent trails and report the results.

The intent of trail runner is to allow evaluation of di↵erent GA and ANN pa-

rameters to attempt and find an ideal solution prior to implementation in a CRN.

Evaluating the same ANN in a CRN (with a tool like COllective cELlular comput-

ing (COEL) [63]) can take a substantially longer amount of time. Performing the

same optimization in a CRN from the beginning would have caused the amount

of time to simulate this project to increase dramatically. Later, we will show some

examples of the speedup with SCOOP and running the same network in COEL.

Easily sweeping across di↵erent parameters in trail runner allowed us to narrow

the set of potential parameters to run simulations against.

Running the trail runner application is relatively straightforward after users

have configured a database for the application to record results and retrieve avail-

able configuration parameters. Trail runner uses PostgreSQL [69] and includes a

script to create the initial database and populate it with the networks and trails
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(a) Test trail 1 (b) Test trail 2

Figure 4.1: The two trails used for initial testing of trail runner. They are designed
for fast evaluation as well as a small complication (turns, gaps) so that some GA
optimization is necessary. Test trail 1 is simpler than the test trail 2 on the right.

used in this work. A safe set of defaults are specified for many of the GA param-

eters, but they are all customizable by the user using command line flags. A few

of the key parameters as an example include the trail ID, population size, maxi-

mum moves, network ID, and generations to run for. A full list of the available

parameters are available in the application’s help (--help).

Trail runner took advantage of these tools for evaluation of the trail task.

Testing on the tools was performed by first starting with a smaller trail shown in

Figure 4.1. Afterwards, we moved on by testing the larger John Muir trail and

got results similar to that of Je↵erson’s. Section 5.2 discusses the results of testing

against test trail 1, test trail 2, and the John Muir trail.

4.2 Trail Viewer

Trail viewer is a Flask [70] web-based application that allows viewing of results

from trail runs over their GA evaluation. Diagrams of results are rendered with

the help of matplotlib [71] and Plotly [72]. The trail diagrams (like the ones

in Figure 4.1) used throughout this work are also rendered using trail viewer.

At the time of this writing, an instance of trail viewer is operating at http://
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codeboxide.joshmoles.com. Figure 4.2 shows a screen shot of the trail viewer

application. Trail viewer is also available under an open source license for download

at https://github.com/jmoles/trail-viewer.

Early versions of trail viewer were a desktop-based Graphical User Interface

(GUI). The application was migrated to a web-based tool for greater compatibility

with di↵erent operating systems as well as allowing interaction with other web-

based tools (like COEL [63] and Plotly [72]). Trail viewer also interacts with the

same database that trail runner writes results from each run. Trail viewer only

consumes information from the database and does not perform any modification.

Animation of the agent navigating through the trail is also available in trail viewer.

Trail viewer uses JavaScript to render the agent navigating through the trail with

a specified trail and moves. The diagrams showing the moves the agent traveled

(for example, Figure 5.5) were captured with the help of this capability.

The pair of these applications provide an environment to evaluate di↵erent

types of networks and trail problems with numerous sets of parameters and view

the results. The integration of PyBrain, DEAP, and SCOOP create a platform

that allows others to easily run research similar to that of Je↵erson or Koza on

the John Muir, Santa Fe, or other trail of choosing. Users can easily add their

own databases, networks, or GA parameters and generate plots showing a single

configuration run, an average of all runs with these parameters, or evaluate a sweep

of di↵erent parameters, such as delay line length.

In the next chapter, we present the use of trail runner and trail viewer to arrive

at the minimal delay line length for implementation in a CRN.
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Figure 4.2: Screen shot of the trail viewer application showing the results of a
single simulation run. The information of the trail and simulation configuration is
shown at the top with the partial charts of results shown below.
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Chapter 5

Non-Chemical Reaction Network Simulations

This chapter looks at the testing performed using trail runner and trail viewer in

a non-Chemical Reaction Network (CRN). We will go over a set of test cases that

were first preformed to validate that trail runner and trail viewer were presenting

accurate results. The next set of tests will move toward identifying the minimal

length of delay line necessary to evaluate the trail for later implementation as a

CRN. We first cover the methodology we used for the testing and present the

results. The chapter concludes with a discussion of the results.

5.1 Methodology

In this section, we will outline how we verified that trail runner functioned as

expected and later used to find the optimal length of delay line. We did the

evaluation testing on three trails: test trail 1, test trail 2 (Figure 4.1), and the

John Muir Trail (Figure 2.1). We developed a genetic algorithm based o↵ a simple

straightforward algorithm proposed by Bäck [43]. A version of this algorithm was

already implemented in Distributed Evolutionary Algorithms in Python (DEAP),

known as varAnd [67]; however, the algorithm did not have all of our desired

functionality. Namely, we wanted the ability to monitor the progress of the Genetic

Algorithm (GA) in real time, so we used it as a basis for our GA. It also did not

directly support the selection method we used, (µ + �) selection [47]. Figure 5.1

shows a flowchart of this process discussed that you may find helpful while reading

this section.
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Figure 5.1: Flowchart of the GA used to test the trails. Based o↵ the algorithm
proposed by [43] and [67]. The boxes to the right and left each represent an
individual through each phase of the GA. An X indicates the fitness is unknown
and a number represents a fitness (higher is better). The pool to the left of crossover
population represents the individuals selected and looping back on the “No” path
from “Generations Done”.
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The GA we used started by generating a population with a size, P , defined by

the user. The individuals in this pool are a set of real-valued vectors that are in the

period between the minimum weight and maximum weight, or [w
min

, w
max

]. Each

of these values corresponded to a weight connecting perceptrons on the Artificial

Neural Network (ANN). Each individual is then evaluated to determine their fitness

by running them for M moves through the specified trail. The intent was to find

all pieces of food before focusing on minimizing the number of foods. We wanted to

place greater emphasis on the amount of food consumed, so fitness (f) is calculated

by:

f = 1.0⇥ food consumed� 0.1⇥moves taken (5.1)

Afterwards, we crossover the population with a two-point crossover [49] with

a specified probability of undergoing crossover, p
x

. If an individual does not get

selected for crossover, it is copied to the pool of o↵spring.

Next, a Gaussian mutation method is used on the pool of o↵spring because of

it’s common use for real-valued vectors [43]. All individuals enter mutation in this

algorithm and each real value of the chromosome is adjusted with a probability

of mutation, p
m

. Then, these o↵spring are evaluated and assigned their fitnesses

before entering selection. Our selection selected the best P individuals from the

pool of o↵spring and the original population. This selection method is also known

as (µ + �) [47]. We then continue to repeat this process until one of the three

criteria for exiting are met:

• the user specified number of generations (G) are evaluated,

• all food in the trail is consumed, or
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• or there has been no change in the standard deviation of the mean fitness

(m
g

) of the individual pool for the previous g generations.

The final termination criteria was added to save processing time for this task.

We found that if the average was stuck at this point for a long period of time, the

likelihood of one of these runs proceeding to increase fitness was low. Also, the

amount of time in general to solve this problem was rather large so terminating an

evaluation that is not progressing is more advantageous than waiting. Note that

by terminating when all food is consumed means no optimization for the number

of moves taken. The goal was to consume all of the food in the provided number

of moves. We will show an example in the results where we terminated a run early

with no change in mean fitness.

The algorithm itself had several parameters, such as population, probabilities,

and generations, that we must specify. Values were selected based of recent pub-

lications as a starting point for evaluation of the GA. We selected a population,

P , of 100 with a probability of crossover, p
x

, of 0.6 based o↵ work by De Jong et

al. [73]. For the test trails, we selected a smaller population of 10 to reduce the

probability of a solution at generation 1. In other words, we wanted to force the

GA to operate rather than potentially randomly finding a good candidate on the

first run for such a small trail. We selected a probability of mutation, p
m

, of 0.05

from De Jong’s thesis work [49]. Weights in the range of [�5.0, 5.0] were selected

for the ANNs. We set the number of generations (G) to a relatively high value

of 5000 generations because we generally found that either all food was consumed

or the value of m
g

settled and exited early prior to reaching 5000 generations. A

summary of these parameters is shown in Table 5.1.

Using this GA configuration, we tested the GA against test trail 1, test trail
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Parameter Value
Population (P ) 100 (10 for Test Trail)
Probability of Mutation (p

m

) 0.05
Probability of Crossover (p

x

) 0.6
Generations (G) 5000
Mean Fitness Generations (g) 300
Weight Range ([w

min

, w
max

]) [�5.0, 5.0]

Table 5.1: This table summarizes the parameters used for the test runs in this
chapter. The population and probabilities are based of work by De Jong in [73]
and [49]. The generations, mean fitness generations, and weight range are set to
allow ample exploration.

2, John Muir trail, and performance evaluations on the Santa Fe trail. For each

trail, we limited the number of moves to 10, 20, 100, and 200, respectively. The

test trail values is based o↵ the minimum number of moves necessary plus a small

overhead. The values for the John Muir and Santa Fe trail are the same used by

Je↵erson [12] and Koza [24]. These values are summarized in Table 5.2. For this

verification exercise, we use an ANN with the same structure as Je↵erson’s when

he solved the John Muir trail.

Trail M Min. Moves Food Max. Fitness
Test 1 10 7 5 4.3
Test 2 20 14 9 7.6
John Muir 200 147 89 74.3
Santa Fe 400 165 89 72.5

Table 5.2: We show the statistics for the trails used in this chapter. The move
limits (M) for test trails are slightly more than the minimum number of moves for
each and the John Muir and Santa Fe the same values as Je↵erson and Koza. The
maximum fitness is calculated with Equation 5.1.

Next, we were looking to find the minimal length of delay line connected to

the smallest ANN for consuming the most amount of food in the trail. To reduce

the time required for each evolution, we started evaluation on three trails that are

a subset of the Santa Fe trail [24] as well as testing on the full trail. The Santa
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(a) Santa Fe Trail Segment 1 (Easy) (b) Santa Fe Trail Segment 3 (Medium)

(c) Santa Fe Trail Segment 2 (Hard)

Figure 5.2: The three trails with increasing di�cult that were used for the delay
line length optimization. The number of gaps and turns increases with each trail
is the determination for the di�culty.

Fe trail was selected as the main evaluation trail in a chemistry because Koza

claimed it is a more di�cult trial. It is also a more common trail in literature

today for testing. Figure 5.2 show segments 1, 2, and 3 of the Santa Fe trail. They

were extracted as the first portions of the full Santa Fe trail that the agent would

normally navigate through.

We used the same GA configuration as mentioned above. The moves limit was

divided by four (M = 400/4 = 100) since each trail segment represents a 16 x 16

area which is a quarter of the full Santa Fe trail. Keeping all other parameters the

same, we then started going across delay line lengths of N = 2 all the way up to

N = 16 to search for the minimal length of delay line.

Like Je↵erson’s neural network, we had to have a “food ahead” and “not food

ahead” to activate the ANN in the case of no food ahead. Every delay line segment
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Figure 5.3: This figure shows the ANN combined with a 2-input (N = 2) delay line
(on left). This feedforward ANN has full connections from the input to the hidden
layer, input to the output layer, and hidden to the output layer. They delay line
has two input neurons for each stage: one that is the actual value (black line) and
one that is the inverted value (red line) of if there is food ahead. Values shift down
the delay line where X[0] represents the current input and X[�1] represents the
previous input.

required two input nodes to hold values. An example ANN with a delay line of

length two is shown in Figure 5.3. There are a couple of changes from the neural

network originally used by Je↵erson (see Figure 2.2). Our experiments found that

only one hidden node in the ANN was su�cient to solve the task when paired with

a delay line. Like Je↵erson and Koza, we also found that the “None” (meaning no

move) output from the ANN was not used by the best individuals [12] [24]. So,

the number of total nodes in the system is represented by Equation 5.2.

n = 2⇥ delay line length+ 4 (5.2)

5.2 Results

This presents the results from running testing against test trail 1, test trail 2, John

Muir trail, Santa Fe trail, and the three segments. For all of the food consumption
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plots in this section, “Max” shows the food consumed by the best individual,

“Min” shows the food consumed by the worst individual, and the average of the

maximum of the entire population represented by “Avg”. “Available” shows the

maximum amount of food available in the trail.

The first set of results are from test trail 1. Test trail 1 was configured to run

with the configuration specified in tables 5.1 and 5.2. We executed a small set

of runs (five) with the same configuration. In many cases, an optimal GA was

found after the first couple generations, but we have presented one here that has a

diverse population with varying maximum, mean, and minimum. Figure 5.4 shows

the food consumed versus generations and Figure 5.5 shows the path that the agent

at elite individual at the final generation (eight in this case) took to consume the

maximum amount of food.
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Figure 5.4: Plot showing the food consumed over each generation for test trail 1.
With this relatively simple trail, it takes only eight generations to find an individual
capable of consuming all the food.
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Figure 5.5: This figure shows the path the best individual took with test trail 1
indicated with the dark line. Note this trail has two optimal paths (left or right at
first turn). The particular solution from the GA here took the right turn. Video
available at http://goo.gl/MUktKs.
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Next, we evaluated test trail 2. Test trail 2 is a slightly more complicated

version of test trail 1 featuring two turns, three gaps, and nine pieces of food. This

trail is also larger than test trail 1 and the optimal path is to turn left at the first

turn versus test trail 1 the agent can turn left or right. This trail was executed with

the same configuration with test trail 1 except for allowing twice as many moves,

twenty instead of ten. Figure 5.6 shows how much food the agent consumed and

Figure 5.7 shows the path that the final individual took through the maze. Note

in this case, the agent actually took extra, unnecessary steps to consume all of the

food.
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Figure 5.6: Plot of food consumed over each generation on test trail 2. This slightly
more complicated trail takes a few more generations, but finds a solution after ten
generations.
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Figure 5.7: Path of agent consuming food in test trail 2 in final generation. In this
case, the ant found a solution consuming all food, but did it with a non-optimal
number of moves. As we mentioned before, we stop when a solution that finds
all food is found and do not continue to optimize for moves. Video available at
http://goo.gl/jDO7p1.
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The next GA evaluation was performed on Je↵erson’s John Muir trail. This is

a complicated trail compared to the two test trails and serves as a good starting

benchmark for the performance of the GA. Figure 5.8 shows the food consumption

over generations. Generation 443 contained an individual that consumed all of the

food on the trail. Figure 5.9 shows the path this individual took through the John

Muir trail.
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Figure 5.8: Plot showing the consumption of food for each generation on the John
Muir trail. This trail took more generations compared to test trail 1 and test
trail 2 to reach a solution because of the larger size. It finds a solution after 443
generations.
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Figure 5.9: Path of the agent through Santa Fe Trail in final (443) generation. The
agent did turn within some squares before moving forward like the first left turn on
the trail. This individual required 199 moves and consumed all 89 pieces of food.
The weights on this GA run evolved an interesting behavior. This individual never
took a left turn and only made right turns through the trail. Video available at
http://goo.gl/OaGsyh.
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Using the same configuration on the John Muir trail, Figure 5.10 shows an

example of a run that was terminated early. This run did not go to completion

because there was no change in the standard deviation of the maximum amount

of food consumed across the population.
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Figure 5.10: Plot showing a GA run on the John Muir trail that is no longer
progressing. This run was terminated early because it did not have a change
in the standard deviation of the maximum food conumsed for the previous 300
generations starting at around generation 90.
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Now, we will show the results of a performance sweep to see the advantage

of using a parallel processing environment, like Scalable COncurrent Operations

in Python (SCOOP). We performed this evaluation using the Santa Fe Trail and

and used the GA parameters specified in Table 5.1. For these trials, we disabled

the automatic termination if all food was consumed for a fair comparison. All of

these runs ran for the full 100 generations. Then, the number of moves was ran

with a value of 100, 200, 300, and 400 across a maximum number of processes of

1, 2, 4, and 8. Figure 5.11 shows this plot. This benchmark was performed on a

DigitalOcean Virtual Private Server (VPS) featuring a 160 GB Solid State Drive

(SSD), 16 GB of memory, and an eight core processor [74].

1 2 4 8
0

100

200

300

400

500

600

700

Number of Processes

R
u
n
T
im

e
(s
ec
on

d
s)

Max. Moves
100
200
300
400

Figure 5.11: Run time benchmark for trail runner on Santa Fe trail. Benchmark
swept the number of processes and maximum number of moves to collect time for
each one. Notice how more processes speeds up the simulation and more moves
requires more time to process.
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Figure 5.12 shows a run where the “None” move option was enabled to show

how it is not used by the best individual at the end of the run. This run goes for

89 generations until an individual evolves that consumes all pieces of food. This

was performed on the full Santa Fe trail.
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Figure 5.12: Plot showing the moves the best individual took over a run of 89
moves where it ended with an individual who consumed all food. Notice how the
individuals starting around generation 70 took no “None” actions. This individual
also evolved a final strategy where it only took left turns. This was a common
theme in the Je↵erson ANN solutions where optimal individuals would be biased
to make only one type of turns, left or right.
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We next swept the delay line length from N = 2 up to N = 16 on each of the

three segments of the Santa Fe Trail. Figure 5.13 shows the results on the food

collected by the best individual for each of the three segments and the full Santa

Fe trail. This chart is showing the best individual run out of a minimum of 70

GA evaluations for every delay line length and every trail segment. There are a

minimum of 25 evaluations for each length of the full Santa Fe trail. The values

are normalized by dividing the food obtained by the maximum amount of food on

the trail.
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Figure 5.13: This plot shows the normalized food gathered by the best individual
for a given run with varying delay line lengths. Each segment is a subset of the
Santa Fe trail. Values were normalized by dividing the food gathered by maximum
available for each trail. Notice how a Manual copy Delay Line (MDL) of length 2
or 3 is not su�cient. At length 4, the agent start collecting at least 60% of the
available food for all segments and the full trail. The full trail is a more di�cult
task compared to the segments because there is a much larger trail to explore
provided a larger chance for the agent to make poor moves.
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Figure 5.14, Figure 5.15, Figure 5.16, and Figure 5.17 show the normalized

mean for the food collected across each GA evaluation’s best individual. Fig-

ure 5.18 shows all four stacked without error bars. The error bars on each chart

represent the standard deviation from the means for the food collected across each

GA evaluation’s best individual. These charts are useful when determining the

minimum delay line length for each trail.
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Figure 5.14: Plot showing the normalized food gathered with the average of the
best individual across each GA run on the easy trail segment. Values are normal-
ized by dividing the food gathered by the maximum amount on the trail. Local
maximums are at 5 and 12, but the wide standard deviations make it hard to draw
conclusions of this chart alone.
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Figure 5.15: Plot showing the normalized food gathered with the average of the
best individual across each GA run on the medium trail segment. Values are
normalized by dividing the food gathered by the maximum amount on the trail.
There is an overall maximum at length four for this segment with fairly consisent
standard deviations.
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Figure 5.16: Plot showing the normalized food gathered with the average of the
best individual across each GA run on the hard trail segment. Values are normal-
ized by dividing the food gathered by the maximum amount on the trail. There is
a local maximum around 6, 10, and 16 for these lengths. Note that wide standard
deviation through for the majority of these values, in particular at length 4.
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Figure 5.17: Plot showing the normalized food gathered with the average of the
best individual across each GA run on the full Santa Fe trail. Values are normalized
by dividing the food gathered by the maximum amount on the trail. There is a
local maximum around delay line length 4, 6, 11, and 13 in this figure. This chart
also shows a wider standard deviation for a delaly line of length 4, as seen in the
maximums for this trail (Figure 5.13).
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Figure 5.18: Plot showing the normalized food gathered with the average of the
best individual across each GA run for all trail segments. Values are normalized
by dividing the food gathered by the maximum amount on the trail. There is not
a consistent local maximum for all the trails, but all trails have a sizable increase
in performance from length three to four.
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5.3 Discussion

Test trail 1, test trail 2, and the John Muir trail all found a solution consuming all

food on the trails through the GA configuration as shown in Figure 5.4, Figure 5.6,

and Figure 5.8, respectively. The criteria for a solution in this case was to consume

all of the food within the specified number of moves without regard to optimization

of number of moves through the trail. As a result, the path the agent took in test

trail 2 (Figure 5.7) and the John Muir trail (Figure 5.9) are both valid solutions, but

not necessarily the most e�cient means through the trail. Because the simplicity

of test trail 1, the agent actually found an optimal solution in Figure 5.5.

Figure 5.10 shows an evaluation that was no longer progressing after around

generation 90. This evaluation shows how some runs are terminated early in the

non-CRN simulations because the population of individuals grows stale. Even

with further mutation and crossover, which is occurring in this diagram, there is

no longer variation in the population after 300 generations. As such, this particular

run as well many of the others used in our testing were terminated in a similar

fashion.

The benchmark on the Santa Fe trail also show the importance of SCOOP in

the evaluation of these tasks. Without some form of parallelism, the evaluation of

the GA (as expected) takes more than three times as long with 400 moves on the

Santa Fe trail (see Figure 5.11). There is an upper bound on the amount of gain

which is practically the population size. The maximum number of parallel tasks

we could ever have on this task is the size of the population. This is because the

fitnesses of the entire population and o↵spring must be evaluated prior to entering

the selection phase.

Figure 5.12 confirms that removal of the no move option was not an issue for
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the ANN. Je↵erson and Koza both observed the same behavior [12] [24]. Like

this chart, they both found that the elite individuals at the end of a simulation

would have never used the no move option. A second common theme here is this

individual made no right turns. Very often, the elite individuals would eventually

evolve to only make left or right turns throughout the trail. As a full example of

this behavior on the trail, Figure 5.9 shows a di↵erent individual who evolved to

only make right turns throughout the John Muir trail.

The next chart, Figure 5.13 shows how we arrived at the desired length of delay

line for implementation in a CRN. All four trails agree that a delay line of length

two or three is insu�cient to solve the task. At length four, the easy trail hits the

first point that it is capable of consuming all the food. In addition, the hard trail

and the medium trail also make a large jump between the values on a delay line of

length three. The same jump occurs on the full Santa Fe trail for the length of the

delay line. The objective is to find the least complex trail that will consume the

maximum amount of food. From the maximum chart alone, the conclusion that a

length four is su�cient is drawn for the easy, hard, and full Santa Fe trail. The

medium trail requires more investigation because at first glance, it appears a delay

line of length six is the best choice.

Notice the medium trail’s best performance, on average (see Figure 5.15), occurs

when the delay line length equals four. This is confirmed looking at the standard

deviation showing that the deviation is lower compared to that of a delay line

length six. With this data, the conclusion that a delay line of length equals four,

on average, will perform better than a delay line of length six on the medium

trail. Using the mean and standard deviation, the results conclude that a delay

line length of four is su�cient across all trails to consume the most amount of
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food from these results. In the next chapter, we now take this delay line length of

N = 4 and move it into a CRN.
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Chapter 6

Chemical Reaction Network Trail Simulations

In this chapter, we discuss how we integrated the delay line with an Artificial Neural

Network (ANN) to solve the navigation of an agent through modified versions of

the Santa Fe trails in a Chemical Reaction Network (CRN). We carry over the

Genetic Algorithm (GA) shown in the previous chapter and the minimal delay line

length of N = 4 to implement them as a CRN. We will also show in here that the

increased run time of a CRN versus a non-CRN makes the optimization prior to

going to a CRN an important step.

This chapter starts out by discussing the methodology we used to gather the

data, presents the results, and then provides a discussion on the data presented.

6.1 Methodology

After finding the minimal length of delay line in the non-CRN simulations, we

moved with this length of N = 4 into the CRN simulations. We performed these

simulations represented in a CRN with COllective cELlular computing (COEL) [63].

Each trail and ANN was evaluated 10 or more times in COEL. The CRN ANN was

constructed with a network similar to the one in Figure 5.3 with a few di↵erences.

Figure 6.1 shows an example of this modified neural network for the chemistry

simulations. The node model we use in the CRN does not require the inverted

input so there is a single input node for each delay line stage. Another exception

is the presence of a hidden perceptron. We wanted to evaluate performance to see

if the hidden perceptron was necessary in the ANN in Figure 5.3. We evaluated
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Figure 6.1: This figure shows the ANN combined with a 4-input (N = 4) delay
line (on left). This feedforward ANN has full connections from the input to the
hidden layer, input to the output layer, and hidden to the output layer. The delay
line has a single input neuron for each stage in a chemistry. Values shift down the
delay line where X[0] represents the current input, X[�1] represents the previous
input, and so on.

performance both with the presence of a hidden layer (a single perceptron) and

without a hidden layer completely.

The perceptrons were modeled with Banda’s Analog Asymmetric Signal Per-

ceptron (AASP) [13] and the ANN in a chemistry was modeled after Blout’s com-

partmental chemistries [14]. Using these two systems allowed us to construct a

network that is comparable to the one in Figure 5.3 and the current state of the

art in a CRN. Further simplification from Figure 5.3 is possible because there is a

single connection from the delay line to the input layer, so we remove the formal

perceptron layer and have the delay line itself act as the input layer as shown in

Figure 6.2. Each of the nodes in this diagram are represented with a four or five

input AASP. Table 6.1 shows the reactions and rate constants of the AASP used

to model these perceptrons. The Manual copy Delay Line (MDL) reactions and

rates are extended as discussed in Chapter 3 and are shown earlier in Table 3.5.

With the modified input layer, this means the total number of nodes in the CRN
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Layer
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Figure 6.2: This figure shows the actual model of the neural network simulated in
a chemistry. The evolved parameters were the weights indicated by each individual
between nodes. The AASP4 and AASP5 are the Banda’s AASP and the left input
column of X[n] boxes represent the length 4 MDL. The syringe on X is the input
to the system. Compared to Figure 6.1, the single connection between the delay
line and input layer allows us to directly connect to the two in our CRN.

ANN is four with a hidden neuron and three without a hidden neuron.

We chose to represent the delay line in a CRN with a MDL. We did not simulate

the system with a Backwards signal Propagation delay Line (BPL) because the

average error for a BPL of over two stages is significant compared to a MDL of the

delay length (see Section 3.3.2). The additional complication of having to manually

signal copy between stages of the MDL was not a concern for our testing. We were

not constrained with the number of inputs and outputs we can have, like other

chemical systems.

After finding the best set of CRN ANN structures, we wanted to find if the

resulting ANN for that particular trail is specialized or is a generalized solution to
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these types of tasks. We take the best individual from each trail and then evaluate

it on the three other trails as well as Je↵erson’s John Muir trail (see Figure 2.1)

and measure the food consumed. As an example, for the easy trail, we take that

individual and run it on the medium, hard, full Santa Fe trail, and full John Muir

trail to compare the results. The John Muir trail was limited to 200 moves to

match Je↵erson’s evaluations on the trail where he successfully evolved an ANN

that consumed 89 pieces [12].
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Reaction Rate Km Reaction Rate Km

S
in

+ Y ! 0.1800 (None) X3 + Y ! 0.3905 (None)

S
in

W0��! S
in

Y + Y 2.5336 0.5521 X3
W3��! X3Y + Y 0.1227 0.4358

X1 + Y ! 0.3905 (None) W X3Y��! W 
3 1.6788 0.1889

X1
W1��! X1Y + Y 0.1227 0.4358 W3 +W 

3 ! 0.2416 (None)

X2 + Y ! 0.3905 (None) W� X3Y��! W3 5.0000 0.2744

X2
W2��! X2Y + Y 0.1227 0.4358 X4 + Y ! 0.3905 (None)

T
SL�! E� 1.9613 0.1155 X4

W4��! X4Y + Y 0.1227 0.4358

Y
SL�! E 1.9613 0.1155 W X4Y��! W 

4 1.6788 0.1889
T + Y ! 5.0000 (None) W4 +W 

4 ! 0.2416 (None)

W SinY���! W 
0 1.6697 0.6000 W� X4Y��! W4 5.0000 0.2744

W0 +W 
0 ! 0.2642 (None) X5 + Y ! 0.3905 (None)

W� SinY���! W0 2.9078 0.5023 X5
W5��! X5Y + Y 0.1227 0.4358

W X1Y��! W 
1 1.6788 0.1889 W X5Y��! W 

5 1.6788 0.1889
W1 +W 

1 ! 0.2416 (None) W5 +W 
5 ! 0.2416 (None)

W� X1Y��! W1 5.0000 0.2744 W� X5Y��! W5 5.0000 0.2744

W X2Y��! W 
2 1.6788 0.1889 B

E

�
��! E� +W� 1.0000 1.0000

W2 +W 
2 ! 0.2416 (None) B

E

 
��! E +W 1.0000 1.0000

W� X2Y��! W2 5.0000 0.2744 E + E� ! 5.0000 (None)

Y
SF�! F 0.1000 3.0000

Table 6.1: This table shows the reactions and rate constants for the AASP. The
“Rate” column shows the forward reaction rate and “K

m

” shows the catalyst rate.
The catalyst is the species shown above the arrow. This table shows an AASP
with five inputs. Removing the reactions containing W5 and X5 make this a four
input AASP. Notice how each input (X

n

) is “weighed” like a classical perceptron
through varying concentrations of weights (W

n

). Each W
n

is the concentration
that was set to a random starting value and then varied during the GA process in
the CRN. These reactions are based o↵ work from Banda and Teuscher [75].
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6.2 Results

In the previous chapter, we arrived at the conclusion that a delay line of length

N = 4 is su�cient for this task. We mention that the segments were used because

they ran faster than the full Santa Fe trail. Figure 6.3 show the run time for a

selected run for all three segments and then run time for the full Santa Fe trail in

a CRN with a MDL of length N = 4.
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Figure 6.3: Plot showing the run time for each of the trail segments for a full run
of 100 generations. Notice how the 400 maximum number of moves causes the full
Santa Fe trail to take a much longer time than the four other trail segments that
only have a maximum moves of 100.

We also show a table of the first ten generations of a full Santa Fe trail run in

Figure 6.4 and Table 6.2. Each run was executed with the same GA parameters

and same CRN. The only di↵erence was the changing trails and the full Santa Fe

trail had a maximum moves of 400 compared to the typical 100 for each of the

segments. These 300 additional moves cause the time for the full trail execution

to be approximately 3.5 times longer than the three trail segments.

85



1 2 3 4 5 6 7 8 9 10

4

6

8

10

12

Generation

R
u
n
T
im

e
(m

in
)

Figure 6.4: Plot showing the run time for the first 10 generations of a full Santa Fe
trail run with GA configuration similar to non-CRN configuration. These results
are itemized in Table 6.2.
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Generation Run Time ((HH:)MM:SS)
1 03:45
2 06:01
3 11:55
4 08:51
5 08:46
6 03:54
7 08:37
8 07:15
9 03:30
10 05:22

Mean First 10 Generations 06:48
Total First 10 Generations 01:07:56

Mean 100 Generations 08:45
Total 100 Generations 14:42:56

Table 6.2: Table showing generation run times for COEL CRN on the first 10
generations and summary of full run of Santa Fe trail with similar non-CRN GA
configuration. Compare table to results of Figure 5.11 to see that an entire run can
finish in a single generation of the CRN simulation. The individual generations
are plotted in Figure 6.4.
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Now, presenting a delay line length of N = 4 in a CRN. We executed tests both

with a hidden neuron and without a hidden neuron once implemented in a CRN

to see if the hidden neuron was a necessity for solving this task. The next series

of charts show the food consumed for each version of the trail and compares it to

Koza’s original results and the results from the non-CRN come from Figure 5.13

where MDL length is 4. Figure 6.5 shows the maximum individual performance of

the trail versus the non-CRN implementation for each trail segment and the full

Santa Fe trail. Figure 6.6 show the mean and standard deviation. These charts are

normalized using the maximum food available on a given trail and both composed

of 10 or more CRN runs.
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Figure 6.5: Plot showing the normalized maximum food consumed for each trail
and each ANN configuration on the Santa Fe trail. The maximum food obtained
for each trail seems meet or exceed the performance of that with a hidden layer
with the exception of the easy trail.
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Figure 6.6: Plot showing the normalized average food consumed for each trail and
each ANN configuration on the Santa Fe trail. Error bars are standard deviation.
It appears, on average, that a hidden layer helps the system find more food for
each run. The removal of the hidden layer also seems to produce a wider set of
possible values versus the hidden layer having a tighter standard deviation which
implies more consistent results.
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We now show the probability of finding food on each of the trail segments that

tests were ran against. Figure 6.7 takes the pieces of food on each trail and divides

it by the total number of squares on the trail. For the segments, there are 256

squares and the full Santa Fe trail contains 1024 squares. The John Muir trail

with the same pieces of food in the same area has the same probability as the full

Santa Fe trail.
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Figure 6.7: Plot showing the probability of finding food on each trail. This is
calculated by taking the maximum amount of food on each trail and dividing it by
the total number of squares on each trail. Notice how the full Santa Fe trail has
the lowest probability of randomly finding food and the medium has almost twice
the probability of randomly finding food compared to all three other trails.
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Figure 6.8 and Figure 6.9 show the percentage error calculated using two dif-

ferent methods. The first is is the percent error from the maximum food available.

The second percent error is the percent error from the CRN results. The results for

the non-CRN simulations and the CRN simulations are summarized in Table 6.3.
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Figure 6.8: Plot showing the percent error from maximum amount of food available
on each trail segment. Even the the non-CRN implementation struggles with some
of the trails with larger amounts of food like the medium and full trails.
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Figure 6.9: Plot showing the percent error from the maximum performance of the
non-CRN. On the segments, the CRN version with a hidden layer seems to beat
or perform at the same level as the version without a hidden layer. For the full
trail, it seems that the hidden layer does not provide an advantage.
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Trail Koza Non-CRN CRN
CRN No
Hidden

Easy Max 24 24 24 11
Mean 24.00 20.33 14.75 11.00
Std. Dev 0.00 3.64 3.52 0.00
% Error
(Max)

n/a 0.00% 0.00% 54.17%

% Error
(from CRN)

n/a n/a 0.00% 54.17%

Medium Max 38 33 32 32
Mean 38.00 31.47 23.40 24.60
Std. Dev 0.00 2.09 6.24 8.80
% Error
(Max)

n/a 13.16% 15.79% 15.79%

% Error
(from CRN)

n/a n/a 3.03% 3.03%

Hard Max 23 22 11 11
Mean 23.00 11.68 8.00 4.60
Std. Dev 0.00 3.64 1.35 4.72
% Error
(Max)

n/a 4.35% 52.17% 52.17%

% Error
(from CRN)

n/a n/a 50.00% 50.00%

Full Trail Max 89 62 40 51
Mean 89.00 45.80 30.70 18.30
Std. Dev 0.00 13.73 5.58 14.11
% Error
(Max)

n/a 30.34% 55.06% 42.70%

% Error
(from CRN)

n/a n/a 35.48% 17.74%

Table 6.3: Table showing the summary of food consumed for each trail and each
network type. The percent error is calculated in two parts. The first is from the
total amount of food available in each segment and the second is the percent error
from the CRN configurations. The CRN with a hidden layer (“CRN”) performs
better or the same as each trail than the no hidden layer configuration except for
the full trail. The lack of a hidden layer on the easy trail negatively a↵ects the
agent’s ability to gather food.
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Figure 6.10 shows an evaluation of taking the best individual from each evalu-

ation in the CRN with a single hidden neuron and evaluating that individual on

the other trails. Figure 6.11 shows the same without the hidden neuron.
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Figure 6.10: Plot comparing the best individuals performance from each trail
against evaluation on other trails for the ANN in a CRN with one hidden per-
ceptron. Each group of bars, such as “Easy” on x-axis, correspond to the same
individual ran on a di↵erent trail.
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Figure 6.11: Plot comparing the best individuals performance from each trail
against evaluation on other trails for the ANN in a CRN without a hidden layer.
Each group of bars, such as “Easy” on x-axis, correspond to the same individual
ran on a di↵erent trail.
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Figure 6.12 and Figure 6.13 show histograms of the count of evolution runs

that consumed each amount of food.
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Figure 6.12: Set of charts showing the number of evolution runs with elite indi-
viduals from CRN with a hidden layer collecting each amount of food. The top
performers on each trail are only one individual, but there are other values not far
below the top performer. Out of all the runs on each trail, only one GA run lead
to the top performer.
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Figure 6.13: Set of charts showing the number of evolution runs with elite individ-
uals from CRN without a hidden layer collecting each amount of food. For easy,
no GA run lead to varying performance. On medium and hard, more than a single
GA evaluation lead to a top performing individual and the full trail has a spread
of values with three outliers above the typical food consumed of 11. This suggests
further GA refinement may improve the results.

97



6.3 Discussion

The timing evaluation in Figure 6.3 and Table 6.2 shows the importance of the

preliminary research of these simulations in the non-CRN environment. One fact

we mentioned earlier in this chapter is the long run time that the CRN simulations

can take compared to the time it takes to perform a similar simulation in a non-

CRN environment. A single generation of a run in a CRN takes longer than an

entire run of 100 generations in trail runner. Even the fastest generation in the

CRN simulation took more than one and a half times longer than the tests with

the non-CRN tools. We can determine an approximate time frame it would have

taken to perform this same optimization in a CRN.

As an example calculation, assume that we take the minimum number of GA

evaluations for each the three trail segment, 70 runs, and the full Santa Fe trail, 25

runs. This is performed across 15 delay line lengths from 2 all the way up to 16.

We can approximate the total run time by using the minimum time for all three

segments (239 minutes) to arrive at 15⇥ (70⇥3⇥ (239)+25⇥ (902)) = 1, 091, 100

minutes. This is over two years. If we assume that we could run ten of these

jobs in parallel, this still results in around eleven weeks to complete the same set

of simulations we accomplished in a fraction of the time by evaluating the GA

performance in trail runner prior to moving the networks to a CRN.

We now take the delay line of length four and look at the results in a CRN.

The two charts with these results are the normalized maximum food consumed and

the normalized average food consumed in Figure 6.5 and Figure 6.6, respectively.

Looking at the maximums first, we get the same performance as the non-CRN

ANN only on the easy trail for the CRN ANN with one hidden layer. From the

maximums, there is not a clear advantage to the addition of the hidden neuron. In
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the medium and hard trails, the performance of no hidden layer is able to match

that having a hidden layer. In the case of the full Santa Fe trail, no hidden neuron

even outperforms the ANN with a hidden neuron.

For the medium and hard trail, the hidden neuron does not seem to lend an

advantage from the maximum values in Figure 6.5. Looking at the means (Fig-

ure 6.6), the maximum performance for that particular individual on the hard trail

seems to be an outlier compared to the average performance on the trail. With the

wide standard deviation on all of the no hidden layer CRN networks, except for the

easy, it seems that individuals may perform that well, but vary widely within the

tests. For the medium, the average food consumed without a hidden perceptron

seems to outperform having the perceptron with only a slightly wider standard

deviation. Why is this the case? A potential explanation is the probability of even

finding food on the medium trail.

Figure 6.7 shows the probability of finding a food on any of the given trails.

Notice that the medium has a probability that is almost twice as large as any

of the other trails. This means that a non-optimal individual on the trail has a

higher possibility of collecting some amount of food on the trail. With the wide

standard deviations for the no hidden layer CRN individuals, it seems that some

of the performers in this group could be low performing individuals wandering and

finding food on the trail. This may be the case for some of the CRN with a wider

standard deviation. That said though, there are other instances for both with and

without a hidden layer in a CRN that a random search seems less likely with a

tighter mean.

Next, we show the percent error for the non-CRN and both CRN models cal-

culated from Koza’s results in Figure 6.8. We see that the non-CRN perform
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decently on the three segments, only getting over 20% error on the full trail. An-

other view to look at this data is using the non-CRN results as the baseline for the

percent error and that is shown in Figure 6.9. These results are also summarized

in Table 6.3.

Looking at Figure 6.9 and Table 6.3, it seems that for the CRN with a hidden

neuron, we achieve a percent error of 50% or less for all of the trails. Excluding

the hard and full trail, the CRN with a hidden neuron is able to navigate the trail

with less than 10% error. For the CRN ANN without a hidden neuron, the percent

error is less than 60% across all trails. At least for the easy trail, where probability

of randomly finding food seems less at play, we can conclude that our CRN with

a hidden neuron in the ANN has solved a simpler version of this problem. Now,

we will examine performance for the best network on other trails.

Figure 6.10 shows the performance of taking the best individual from each ANN

and trail evaluation and grading performance on the other trails. Looking at the

results with a hidden neuron first, it seems that the strategies evolved are rather

specific to each of the trails. The top performer for each group is the individual

who was evolved on the trail, with the exception of the full trail. In the full trail,

the individual evolved for this trail actually consumes a greater percentage of the

trail. This is likely due to the decreased area of the trail: 16⇥ 16 in the easy trail

versus 32 ⇥ 32 in the full trail. The smaller area means that an agent can wrap

around the edge of the trail with fewer moves thus consuming more food in the

limited number of moves.

Figure 6.11 shows the same results without a hidden layer. Results for the

medium are similar to the CRN with a hidden layer where it performs the best,

but this is not the case for the other trails. With the easy, it seems that the agent
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consumes all food in front of it and at the first gap, it gets stuck and spins. The

percentages of food consumed correspond exactly to the amount of food until the

first gap for each trail. The hard results seem more likely that a wandering search

is at play. With medium having the highest probability of finding food, it makes

sense that wandering the trail for pieces and some reasonable turning strategy

would find food. For the full trail, it is not as clear to make a conclusion.

On the full trail evaluation without a hidden layer, it seems that there are a

couple possibilities with these results. One is that the agent actually learned a

method to solve the trail, but this seems unlikely. If this was the case, we would

expect to see greater performance on the easier John Muir trail or the same on

the easy segment of the Santa Fe trail. The more likely scenario is there was a

wandering agent who got particular lucky on the full Santa Fe trail. This makes

sense for the other trails, but this does not seem consistent in the medium trail.

For the agent to get as much food as it did on the full Santa Fe trail, it would

have had to make turns of some sort when it encountered food or a pattern of food

then with food going away. It seems possible that if an agent got caught on a row

that contained now food, it may just continue forward until it runs out of moves

because it will never consume any more food on the row. Getting stuck on the

wrong row seems like a potential explanation for these particular results.

Figure 6.12 and Figure 6.13 show the number of individuals consuming each

amount of food for with and without a hidden perceptron. In the results with a

hidden peerceptron, we see that only one individual accounted for the top per-

former on each trail. Others were not far behind of achieving the top performance

though with the easy trail being the largest gap. The hidden trail shows similar

results with the exception of the full trail. The lack of a hidden neuron neuron
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on the hidden trail seems to point more towards a wandering individual scenario

where the top two individuals at 37 and 51 pieces of food consumed had a lucky

wandering strategy.

In summary, it seems that we have shown that we can partially solve the trails.

In the case of the easy trail, we can conclude that we did solve this trail with

the CRN with a hidden neuron consuming 100% of the available food. For the

medium, hard, and full trails, it is di�cult to conclude if there was an individual

who actually solved the trail or if there is strategic wandering of the trail leading to

optimal values of food consumed. Based o↵ the results, it seems that the addition of

a hidden neuron seems to provide a slight edge in terms of strategic food gathering

rather than wandering with luck. With the evolution charts presented by Je↵erson

and Koza, it seems that strategic wandering did occur to an extent early in their

algorithms, but was eventually optimized out of the best individual.

Another factor to consider is the GA used on these trails. The GA is similar to

the one used on the non-CRN and did not go through the thorough optimization

that the non-CRN GA did to arrive at the ideal values. With the di↵erence in how

these two systems are implemented in a non-CRN and CRN environment, further

optimization of the GA in a CRN would likely lead to better results. As shown in

Figure 6.3 and discussed earlier in this section, such an optimization consumes a

substantial amount of time with present models for CRNs. In addition, the non-

CRN simulations were permitted to run for more than the limited 100 generations

we did in a CRN due to computational time. As the models and computational

power continue to mature, this optimization may be more practical at a future

time.
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Chapter 7

Chemical Reaction Network Realization

This chapter discusses the potential implementation of the systems we discuss as a

physical, chemical system. It is also possible to design as a sensor that connects to a

traditional architecture, like Complementary Metal-Oxide-Semiconductor (CMOS),

but we focus on a exclusively chemistry implementation here. We believe that the

examples we discuss at the beginning of this work would benefit more as a full

chemical system rather than a hybrid or sensor-system approach. We will first

talk about various ways to map the system to a wet chemistry and how then fast

the system would operate with state of the art.

7.1 Chemical Representation

In Chapter 3 and Chapter 6, we used a set of reactions and species to represent

our systems using the models of Michaelis-Menten [58] [59] [60] and mass-action

kinetics [56] [57]. Present work has mapped these set of rate reactions to di↵erent

physical realizations. One such work is by Arkin and Ross, who implement a series

of enzymatic gates that correspond to a truth table for a given logic function [3].

Arkin and Ross show that it is possible to implement both a logical AND and

OR using a Glycolysis/Gucoeogensis mitocondrial TiCarboxylic Acid (GGTCA)

model. Kompa and Levine use di↵erent chemical compounds that react at a faster

rate to build similar types of logic gates to Arkin and Ross [76].

Another applicable mapping for our work a DeoxyriboNucleic Acid (DNA)

strand displacement model from Zhang and Seelig [77]. In this paper, Zhang and
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Seelig demonstrate the construction of a DNA walker that is capable of decision

making with the use of only proteins. Similarly, Semenov et al. [78] showed a more

complex version of the walkers (that they called spiders) that have the ability to

move along DNA and manipulate or read values. Qian et al. builds linear threshold

circuits that also operate in DNA strand displacement models to solve logic gates

like AND, OR, NOT, and XOR through the use of Artificial Neural Network

(ANN)-like structures. All three of these works demonstrate that it is possible

to create a mapping of chemical reactions to physical, chemical systems. Using

similar principles from these works, we could take our equations from Chapter 6

to a set of DNA strand displacement models that could achieve our desired result.

Stojanovic and Stefanovic have also shown how deoxyribozyme catalysis can

be used to solve games like tic-tac-toe using 23 logic gates built at a molecular

scale [10] [79]. Their system was capable, in a wet chemistry, of playing successful

games of tic-tac-toe with human players using fluorescence as a detection method.

Liu et al. has also used dexoyribozyme catalysis to implement antibody and nucleic

acid detectors [80]. This technology is likely the best candidate of mapping our

system to a wet chemical implementation. As a small example, we can show how

something like the delay line would look mapping with similar technology to this.

Figure 7.1 shows an example of a length two Manual copy Delay Line (MDL)

with the signals being the deoxyribozymes X1
signal

and X2
signal

, which cleave the

substrate X at the embedded ribonucleotide. This produces X1 ready for the next

system to consume. Subsequently, X1C embedded with another ribonucleotide

is able to get cleaved by deoxyribozyme X2
signal

to form the next input to the

system, X2. This system is at a similar scale to that discussed in the work by

Stojanovic et al. Let us now take a look at implementation of a full trail solving
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system.

Figure 7.1: Deoxyribozyme cascading example. Deoxyribozyme X1
signal

cleaves X
at embedded ribonucleotide (rA) to form X1 and X1C. A similar process occurs
on X1C to produce X2 and X2C.

We have discussed works operating typically on only a small region of DNA

or representing only a few chemical reactions. The size of the system necessary

to construct our full ant solver is much larger than these. For example, take

the MDL connected to the perceptrons in the previous chapter to form the ANN

for our ant trail system. Each four- and five-input Analog Asymmetric Signal

Perceptron (AASP) is composed of 33 and 38 reactions and 37 and 42 unique

species, respectively. Recall from Chapter 3, a four-input delay line requires eight

reactions and 13 species. So, for an entire trail system with a hidden layer, this

results in 8 + 33 + 3 · 38 = 155 reactions and 13 + 37 + 3 · 42 = 176 species for our

system. This number of reactions and species is greater in complexity than other

systems we have found presently implemented in a chemical system.

As an example, the four-neuron Hopfield associative memory from Qian et al.

contained around 160 reactions with 72 initial DNA species [81]. While this system

contained more reactions, the number of species co-existing in this system is less

than half the number predicted for full computation of our trail system. One issue

that Qian et al. discuss in their work is that scaling up the system can amplify leak

reactions that occurred and degrade performance of the overall system. Adding
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the increased number of species we require could have this type of issue. Another

observation by Stojanovic and Stefanovic in their work was erroneous output by

gates that should not be signalling. The authors mention that this behavior may

lead to errors cascading in larger networks that may lead to undesired behavior [10].

Taking a system, such as this today into a wet chemistry is not impossible, but

perhaps di�cult based on the current state of the art for the field. It seems that

there is not a system of this scale presently implemented as a wet chemistry and

other work by Qian et al. mentions potential issues as their systems continued

to grow in size. One area of improvement is perhaps looking at a way to reduce

the complexity of the network in a Chemical Reaction Network (CRN). With more

work on complex network implementation in a CRN, in theory, it should be possible

to map the trail system reactions with the methods used by Zhang and Seelig,

Semenov et al., Stojanovic and Stefanovic, or Liu et al. to a physical chemistry.

Components of the system, like the delay line by itself, require a smaller number

of reactions and may be more feasible for present implementation. If implemented

in a wet chemistry, let us now discuss if we can predict the speed at which this

system would operate based o↵ current work.

7.2 Processing Speed

As discussed in the previous section, the applicable mapping of our work is likely

the deoxyribozyme catalysis [10] [79] [80]. Stojanovic and Stefanovic specifically

find that 15 minutes is a reasonable time to cleave and accurately observe the

results from the reactions in their tic-tac-toe system. The authors did observe

that changing the size of the gates in the chemistry or the concentration of inputs

did have an impact on the reaction time, but did not elaborate beyond that. Zhang
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and Seelig [77] also observe times in the scale of several minutes to compute similar

systems in a DNA strand displacement model.

The advantage of the chemistry is the chemical reactions (for example, each

calculation of output layer peceptron in our ANN controlling the ant) can occur

in parallel. This of course assumes separation using the compartmental chemistry

by Blount et al. [14]. As an example, if we take the 15 minute time found by

Stojanovic and Stefanovic per reaction, we can predict the cycle time for a single

calculation in our trail system.

Let us start with the network in Figure 6.2 and predict the time to complete a

movement for the trail system. With a length four MDL, that requires waiting on

four steps to occur for shift and store the input value to each block of the delay

line. Then, there is a required period of calculation at the hidden neuron followed

by one in the output layer. The output layer perceptrons are all able to calculate

their results in parallel unlike the delay line, which depends on previous inputs.

So, in total, that gives six stages of calculation. With the 15 minutes found

by Stojanovic and Stefanovic, that means approximately 90 minutes for a single

calculation step for the full ANN. Running a full system with 200 steps of the John

Muir trail would take approximately 12.5 days with this current technology. It is

important to note as well that the time we are discussing here is the estimated

time to reach a steady state. In a wet chemistry, all of the reactions are occurring

in parallel, so a separation between the nodes represented in our ANN diagram is

critical.

Catalysts or other signaling methods are required to prevent the later nodes

from consuming the species too early. For example in the delay line, we use our

Xn
signal

species to perform this separation. Also, unlike in an electrical system,
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the inputs are consumed, meaning, that as we perform the calculation, we are

actually decreasing the value of the input as the calculation occurs.

Even though the value is over 12 days for this example, other architectures in

chemistry may provide a faster run time. Kompa and Levine [76] discuss the use of

di↵erent chemicals like aberchromes (I), fulgides, and merocyanines (II) that show

dynamics faster than discussed from Stojanovic and Stefanovic. The authors even

predict that with continued development of their work, it may be possible to see

chemical reactions with photophysicochemical processes operating on a picosecond

range.
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Chapter 8

Conclusion

In this work, we have shown the feasibility of using Chemical Reaction Networks

(CRNs) as a means to implement control systems. We have demonstrated a partial

solving of the Santa Fe trail in a CRN. We have also shown the ability of a CRN

to partially navigate three sub-segments of the Santa Fe trail. We successfully

navigate the easy Santa Fe trail easy segment consuming 100% of the food. For

the medium and hard segments and full Santa Fe trail, we are able to consume

more than 44% of the available food. This shows that it is possible to solve simpler

versions of the trail without a need for Artificial Neural Network (ANN) recurrence.

Koza’s genetic programs were able to consume all of the food on the Santa Fe trail.

With further Genetic Algorithm (GA) optimization, ANNs in a CRN capable of

consuming all food seems plausible.

We have also designed a flexible size memory necessary to provide storage for

such control systems. The integration of our Manual copy Delay Line (MDL) with

the trail system ANN and Asymmetric Signal Perceptron (ASP) demonstrate the

ability to hold values over time for later consumption by another system. With

the Backwards signal Propagation delay Line (BPL) delay line, we have shown

the ability to learn 11 of the 14 linearly separable functions with an accuracy of

greater than 85%. Connecting these two delay line models with other systems also

demonstrates the modular nature of the delay line system. A MDL can precisely

store values at the expense of manual signaling and our BPL can do the same for

smaller length memories without the need of manual control signaling. Our MDL
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also demonstrates a model capable of storing values with less than 0.01% error.

8.1 Contributions

This work has made the following contributions to the field, ordered by appearance

in this work:

• a new type of memory implemented in a Chemical Reaction Network, Manual

copy Delay Line, in Chapter 3;

• a new type of memory implemented in a Chemical Reaction Network, Back-

wards signal Propagation delay Line, in Chapter 3;

• the first chemical model capable of learning binary time series with the com-

bination of the delay line and Asymmetric Signal Perceptron, in Chapter 3;

• a framework capable of simulating ant trail problems with user customizable

parameters on Artificial Neural Network and Genetic Algorithm parameters,

in Chapter 4;

• a web based application capable of navigating, filtering, and viewing data

from simulations on ant trail problems with ease, in Chapter 4;

• a novel architecture with a single hidden perceptron for solving the ant trail

problems with the addition of a delay line as a memory, in Chapter 5;

• an investigation into the minimal length of delay line length of four to solve

the artificial ant problem in a non-Chemical Reaction Network configuration,

in Chapter 5;
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• the first Chemical Reaction Network implementation to solve the artificial

ant problem, in Chapter 6;

• the first Artificial Neural Network implemented in a Chemical Reaction Net-

work to compare system level functionality against other work, in Chapter 6;

• evidence that a single hidden neuron when paired with a Manual copy Delay

Line of length 4 is capable of solving 47% of the John Muir trail, 44% of

the full Santa Fe trail, 100% of the easy Santa Fe trail segment, 84% of the

medium Santa Fe trail segment, and 47% of the hard Santa Fe trail segment,

in Chapter 6;

• proof that a Artificial Neural Network without a hidden neuron when paired

with a Manual copy Delay Line of length 4 is capable of solving 47% of the

John Muir trail, 57% of the full Santa Fe trail, 45% of the easy Santa Fe trail

segment, 84% of the medium Santa Fe trail segment, and 47% of the hard

Santa Fe trail segment, in Chapter 6.

8.2 Future Work

As discussed in Chapter 6, the GA used on CRN simulations was based o↵ the

GA optimization performed in the non-CRN environment. Further optimization

of the the GA once the system is implemented as a CRN may yield better results

for the overall system. The downside with such optimization is the long time to

run simulations as discussed in Chapter 6. As the speed to run the simulations

decreases, such evaluations may be more feasible in the future.

Banda has recently introduced a new type of delay line known as the parallel-

accessible delay line [75]. This delay line behaves similar to the MDL, but adds
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a clock signal that does not require the manual signaling of the MDL. The use of

this delay line may in some instances reduce the complexity of the CRN reaction

series.

We also believe that an implementation as a wet chemistry is a good next

step. The current technology may limit a full implementation, but starting with a

smaller system like the MDL, BPL, or the preceptron models presented by Banda

et al. [7] [64] [13], would provide a first step towards a full wet chemistry realization.

Further work could also look at other areas of using the delay line to build more

complex systems for interesting applications. As an example, one could pair the

delay line with a chemical system acting as XOR to build a Linear Feedback Shift

Register (LFSR). Development of a LFSR would lead to the ability to perform

random number generation [82] in a CRN.
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