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Abstract 

 

Incremental growth rings in X-rays of salmon vertebrae have been used since the 

1980s to age Pacific salmon (Oncorhynchus spp.) remains from archaeological sites in 

the Pacific Northwest.   These age estimates, paired with generalized life history patterns, 

have been used to determine salmon species, season of capture and in turn season of site 

occupation.  This approach relies on a variety of assumptions, the most fundamental of 

which is that rings represent true years.  Archaeologists using vertebral age determination 

techniques have failed to adequately test this assumption and present their methodologies.  

This thesis assesses the validity of using incremental growth structures in Chinook 

salmon (Oncorhynchus tshawytscha) vertebrae to determine the age at death of fish 

represented in archaeological sites. This project develops criteria and a protocol for the 

identification of true annuli and tests these identifications on a collection of modern 

Chinook salmon of known age.  Finally, this protocol is applied to archaeological remains 

of Chinook from Cathlapotle (45CL1). 

Three collections of modern known age fish (N=121) were used to evaluate and 

test approaches to aging Chinook salmon with vertebrae.  These collections contained 

juvenile and adult Chinook from Washington and Oregon. I evaluated a variety of 

methods for viewing rings including magnified surface images, X-ray images and thin 

sections to determine which is the most accurate, reliable and efficient, also considering 

the extent of specimen destruction.  Rings visible in X-rays were found to reflect the 

internal structure of vertebrae rather than annular growth.  The number of these internal 

walls did not correspond to the known ages of fish and are therefore not true annuli.    
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Criteria previously described by salmon fisheries biologist were used to isolate 

annuli (on the centrum surface) on the Hanford reach collection (N=46).  In a test for 

accuracy 39 (85%) were aged correctly.  In a test of reliability utilizing five additional 

readers all but 14 cases showed discrepancies among readers.  Results of the test of 

reliability were not as successful as other researchers in fisheries biology but given the 

high accuracy rate the method remains valid.  

The final goal of this project was to determine the feasibility of applying the 

surface ring method of age determination to archaeological collections.  Archaeological 

salmon vertebrae from Cathlapotle (45CL1) on the lower Columbia River, Washington 

state were utilized. One hundred salmon vertebrae were selected and classified to species 

according to Huber et al. (2011); 89 were identified as Chinook.  Of these, 39 had 

sufficient preservation of the surface to view and interpret incremental rings.  Three ages 

were identified 3, 4 and 5 year olds.  This ageing protocol can be applied to 

archaeological Chinook salmon vertebrae to estimate age of ancient Chinook salmon.  

Additional work is needed on other salmon species to demonstrate the methods validity 

across all salmonid species.  

This analysis has great potential for modeling salmon paleo-life history by 

contributing data from salmon populations prior to the major impacts of the 19th and 20th 

century.  This is particularly valuable for salmon conservation because information on 

size, the timing and duration of freshwater emigration as well as the age of spawning and 

death is critical to the management of hatchery and wild salmon populations.  
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Chapter 1. 

 

 

 

Introduction 

 

 

 

This thesis assesses the validity of using incremental growth structures in 

Chinook salmon (Oncorhynchus tshawytscha) vertebrae to determine the age at death of 

fish represented in archaeological sites.  This ageing method has valuable applications for 

both archaeology and fisheries biology.  Incremental growth structures, or growth rings, 

are found within the skeletal framework of many organisms such as the vertebrae and 

otoliths of fish, teeth of mammals and the exoskeletons of bivalves.  These growth 

structures are marked by changes in topography, color or opacity within elements and are 

the result of daily, monthly or seasonal fluctuations in the conditions conducive to 

growth.  

In archaeology, seasonality studies use incremental growth structures such as 

vertebrae, scales, otoliths and spines to determine the season of death and ages of 

organisms at death.  This information is used to infer the time of year (month or season) 

of resource procurement and site occupation, contributing to our understanding of 

prehistoric mobility and land use (Andrus 2011; Brewer 1987; Cannon and Burchell 

2009; Casteel 1972; Colley 1990; Higham and Horn 2000; Monks 1981; Morey 1983; 

Stutz 2002; Van Neer et al. 1999; Wheeler and Jones 1989).  This is typically achieved 

by determining or estimating the amount of growth within one year of the increment and 
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measuring the proportion of a year's growth past the last increment.  However, 

archaeologists have lacked rigor in testing and presenting the validity of these methods. 

In the Pacific Northwest, age determination from the incremental growth 

structures in fish vertebrae has been used for seasonality studies as well as to assign 

species classification to Pacific salmon (Oncorhynchus spp.) remains from archaeological 

sites.  Cannon (1988) was the first to use incremental growth rings on vertebrae to 

determine age at death and in turn infer species.  Cannon suggested, as did others 

(Carlson 1988; Wheeler and Jones 1989), that rings were often not visible on the surface 

of archaeological specimens.   As an alternative Cannon employed X-ray technology, 

suggesting that X-rays were a superior way to observe the incremental rings of vertebrae.   

Cannon connected the age of archaeological vertebrae with the species that tended to 

spawn at that age, assuming that each species spawned at a specific age and in a distinct 

season.  These species identifications were used to suggest the season of site occupation 

at Namu (ElSx-1) a coastal British Columbia archaeological. Others have followed 

Cannon in using fish age estimated from vertebrae for species identification (Berry 2000; 

Orchard and Szpak 2011; Trost 2005). Such applications rely on various assumptions 

including that incremental bands on vertebrae in fact represent annual growth.  

Archaeologists using vertebral age determination techniques have failed to adequately 

test this assumption and present their methodologies. Fisheries research (e.g. Campana 

and Thorrold. 2001) even suggests that fish vertebrae may not share the unique ageing 

properties of other elements, thus reinforcing the need for validation studies.  
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The use of incremental growth structures, usually on scales and otoliths, for age 

determination is an integral area of fisheries biology because it contributes to our 

understanding of fish population dynamics. Campana and Thorrold (2001) estimated 

from an informal survey of 30 fisheries laboratories from around the world that at least 

800,000 otoliths and close to 2 million fish were used in ageing studies in 1999 alone.  

The information from such studies is used to calculate growth rate, mortality rate and 

productivity which informs fisheries management options (Campana 2001). Overly 

optimistic estimates of growth and mortality rates have led to catastrophic effects on 

populations of fish species (Campana 2001).  Generally, these problems arise from 

underestimates of fish maturity rates which result in overharvesting of populations before 

they reach reproductive maturity (e.g. Beamish and McFarlane 1995; Smith et al. 1995).   

A critical component of fisheries ageing studies concerns validation and 

controlling for sources of error.  The formation of yearly growth rings, or annuli, for 

northern temperate fish populations has been primarily attributed to differences between 

slow winter growth (seen as dark narrow bands under reflected light) associated with low 

water temperature and reduced food supply and more rapid summer growth (seen as 

broad white bands) associated with an increase in water temperature and a more abundant 

food supply (Beckman and Wilson 1995; Kusakari 1969; Rojo 1987).  However, other 

factors including reproductive cycles, population densities, local water conditions, the 

availability of food and temperature variation have also been suggested as determinates 

of ring growth that may not reflect annual patterns (Beckman and Wilson 1995; Irie 

1960; Morey 1983).  Incremental growth rings can represent one year of growth but other 
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rings called false annuli or growth checks, caused by these other factors, can be present.  

True age assessment thus requires distinguishing such checks from true annuli.  Even 

within professional ageing laboratories, mistakes are made and fish ages are inaccurate.  

Campana (2001) noted interpretation error resulting in the mis-ageing of haddock 

(Melanogrammus aeglefinus) by as much as 50%.  Because of these potential sources of 

variation in the formation and interpretation of incremental rings in fish vertebrae, 

validation including blind studies are needed to better understand annulus formation and 

to substantiate age determination.  

The validation of vertebral age determination of Pacific salmon and its application 

to archaeological materials has the potential to inform current fisheries research.  This 

research will allow age to be used in conjunction with other analyses to create detailed 

life history profiles (e.g. morphometric species identification [Huber et al. 2011], stable 

isotopes [Zazzo et al. 2006], and skeletal element analysis [Miller et al. 2011; Robinson 

et al. 2009] to model salmon paleo-life history.  This will enable fisheries managers to 

use this understanding of the variability in age and growth of salmon populations for the 

management of hatchery and wild salmon populations. 

 The primary goal of this project was to firmly establish if incremental growth 

rings present on Chinook salmon vertebrae represent years of growth.  My thesis 

develops criteria and a protocol for the identification of true annuli and tests these 

identifications on a collection of modern Chinook salmon of known age.  To accomplish 

this, I evaluate a variety of different methods for viewing rings including magnified 

surface images, X-rays images and thin sections to determine which is the most accurate 
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and reliable.  The secondary goal of this project is to determine the feasibility of applying 

this method of age determination to archaeological collections by identifying protocol, 

criteria of ring identification and defining limitations of this methodology.   I apply this 

new method of age determination to archaeological collections of salmon vertebrae from 

Cathlapotle (45CL1) on the lower Columbia River, Washington state. 

 This thesis is organized into six chapters.  In Chapter 2, I describe the life history 

of Pacific salmon including distribution, habitat and the timing of migrations to and from 

freshwater.  I follow this with a review of ageing studies in fisheries biology, covering 

the process of validating the accuracy and reliability of methods.  I conclude with an 

overview of ageing studies in archaeology.  In Chapter 3, I present the methods and 

materials used in this project, which includes acquisition of a control sample, specimen 

preparation and the development of my ageing protocol.  Additionally I discuss the 

archaeological application of my technique including a review of the methods of vertebra 

selection, species identification and age determination.  In Chapter 4, I evaluate the 

validity of using rings visible in X-ray images of Chinook salmon vertebrae to determine 

age.  To do this, I compare X-rays, thin sections and surface images to identify 

specifically what X-ray images highlight.  In Chapter 5, I present the results of a blind 

test of my protocol for accuracy and precision.  I also apply my method of age 

determination to archaeological vertebrae from Cathlapotle.  In Chapter 6, I present the 

conclusions of this project and directions for future research.   
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Chapter 2. 

 

 

 

Ageing Studies in Archaeology and Fisheries Biology 

 

 

 

Archaeological Fish remains and Conservation Biology 

Archaeology has the potential to provide a long history of fisheries prior to major 

impacts of the 19th and 20th century (e.g. Baisre 2010; Betts et al. 2011; Jackson et al 

2001; Pauly 1995; McKechnie et al. 2014).  Data concerning fisheries prior to the 

development of land, rivers and fisheries is limited and although historical records may 

offer a mention of historic fisheries, these records are often brief and potentially 

unreliable (Hewes 1973).  Fish bones from archaeological sites can be used to reconstruct 

details about prehistoric fish populations in a quantitative fashion, including the age, size, 

distribution and life history patterns informing the decisions and management strategies 

of conservation biologists (Butler and Delacorte 2004; Whyte 2004). 

This information can be particularly useful for salmon conservation because 

information on size, the timing and duration of freshwater emigration as well as the age 

of spawning and death is so critical for the management of hatchery and wild salmon 

populations. Some researchers have used archaeological salmon remains to understand 

demography and life history of populations prior to industrial development.  Robinson et 

al. (2009) used strontium/calcium ratios of archaeological salmon vertebrae to 

differentiate sea-run from landlocked salmon life history patterns.  Stevenson (2011) and 
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Butler et al. (2010) used a geochemical analysis and mDNA to determine the native 

status of salmon of the Upper Klamath Basin.  Miller et al. (2011) compared the 

structural and chemical composition of archaeological Chinook salmon otoliths to 

modern ones to provide information on Chinook salmon life history before and after local 

population extirpation in the upper Columbia River in North Central Washington.   

Historically, most salmonid demographic and life history research has relied 

primarily on scales (Bali 1959; Campbell 2010; Connor et al. 2005; Dahl 1911Gilbert 

1913; Koo 1962; Rich 1920) with some use of otoliths (Murray 1994; Nielson and Geen 

1982) and fin rays (Chilton and Bilton 1986) for ageing fish, but little emphasis on 

exploring the relationship between incremental rings and age in vertebrae (but see Hesse 

1994; Wesley 1996).   In archaeological contexts, scales and otoliths are rare, but 

vertebrae are well preserved, abundant and commonly recovered.  They offer great 

potential to investigate life history patterns for prehistoric salmon populations.  Reaching 

this potential requires that we develop valid approaches to determining fish age using 

vertebrae. 

Pacific Salmon Life History  

 The genus Oncorhynchus includes seven anadromous species distributed today 

along the west coast of North America from Los Angeles, California (34º 03' N) to the 

Arctic Ocean in Alaska (66º 30' N), and in the northwest Pacific from the Sea of Okhotsk 

(59º N) to the eastern Korean Peninsula (34º 11' N) (Groot and Margolis 1991; Nelson 

1994).  Pacific salmon spawn in gravel beds of rivers and streams, or along lake shores.  

After emerging from the gravels, most young salmon migrate to sea after varying periods 
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of freshwater residency (a few weeks to three years).  Maturation occurs during marine 

residence lasting one to seven years after which adults return to their natal breeding 

grounds to spawn.  As shown in Table 2.1, there is considerable variation in life history 

between and within species.  For example, Chinook salmon migrate to sea during their 

first year of life, normally within three months of emerging from the spawning gravel 

(Groot and Margolis 1991). They spend the majority of their lives in coastal waters and 

return to their natal streams a few days to a few weeks before spawning. Most Chinook 

salmon return to spawn in the fourth or fifth years of life but some may return as early as 

the third or as late as the eighth (Hart 1973). This variation in the juvenile and adult 

behavior of Chinook salmon has developed as an adaptive strategy to spread the risk of 

mortality across habitats and years (Groot and Margolis 1991; Quinn 2005). 

 

Table 2.1 Life history of Pacific salmon (Oncorhynchus spp.) (from Groot and Margolis     

1991 unless otherwise noted) 

 

Species Freshwater Residency Age at Spawning Spawning Season 

Sockeye (O. nerka) 1 month-3 years 2-7 years Late summer-Fall 

Pink (O. gorbuscha) 1 month 2 years August-November 

Chum (O. keta) 1 month 2-7 years  May-January 

Chinook (O. tshawytscha) 3 months-2 years  3-8 years Generally May to October 

Coho (O. kisutch) 1 year or more 1-3 years of age1 March to August 

Rainbow/steelhead (O. 

mykiss) 

1-3 years1 1-5 years1 Highly Variable1 

Cutthroat (O. clarkii) 1-6 years1 Highly Variable1 Feburary-March1 

1 Wydoski and Whitney 2003  
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Age Determination in Fisheries Biology 

 As previously discussed, age determination from incremental growth structures in 

fish is widely used in fisheries biology to learn about age, growth and population 

dynamics.   Age data form the basis for calculations of growth rate, mortalilty rate and 

productivity and many models used in decisions regarding populations are based on age 

stock assessments (Campana 2001; Campana and Thorrold 2001).  Fisheries research 

focuses on otoliths and scales, but other elements including fin rays, opercula, cleithra 

and vertebrae are sometimes used.  Otoliths are generally favored because of the 

precision of age estimates they provide based on annuli and the relative ease of otolith 

preparation and annuli enumeration (Campana and Thorrold 2001).  Whichever element 

is used, ageing studies emphasize the need to validate methods (Beamish and MaFarlane 

1983, 1987; Campana 2001). 

The process of validating fish ageing techniques involves minimizing two main 

sources of error (Beamish and McFarlane 1983; Campana 2001).  The first is accuracy or 

process error and is associated with establishing whether alternating incremental growth 

structures are in fact annular.  Evaluation of this type of error is generally achieved by 

comparing age estimates from growth structures to the known ages of fish. These known 

ages are independently determined through captive rearing, the recapture of fish tagged at 

birth with a coded wire tag (CWT), radiochemical dating or mark-recapture utilizing 

oxytetracycline (OTC) injection.  CWTs are small pieces (0.25 x 0.5 or 1.0 mm) of 

stainless steel wire that are injected into the snouts of juvenile salmon. Each tag is etched 

with a binary code that identifies its release group which includes date and location of 
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release.  For OTC marking, OTC is injected into a captured fish and is incorporated into 

the tissue and identifiable upon recapture making it possible to observe the formation of 

increments since it was marked.  The second source of error is interpretation error and is 

associated with the replicability/reliability of the method or what Beamish and McFarlane 

(1983) call precision.  In other words, do multiple observers produce the same results?  

This type of error is evaluated by comparing age estimates made by multiple analysts 

reviewing the same specimen (e.g. scales or otoliths) utilizing the same method to 

estimate age. 

Ageing Fish Vertebrae 

As with other elements that grow incrementally, growth rings in fish vertebrae 

result from variations in the density and cellular structure of the ossified elements.  On 

the surface of vertebrae viewed microscopically under reflected light, these annular 

patterns on vertebrae centrum are seen as an alternate pattern of translucent (dark, 

absorptive zones) and opaque (white, reflective zones) bands (Kusakari 1969).  In his 

observations of the flatfish, Kareius bicoloratus, Kusakari (1969) was the first to note 

that the most central part of the centrum, the focus, is dark and is followed by the first 

white band (annuli being formed during the summer months) formed at age one.  A 

second dark band starts to appear during the fall and each successive dark band becomes 

thinner.  This pattern continues until the fish dies. 

This pattern has been observed in salmonids as well. Two studies used vertebra 

growth rings to estimate age for Chinook salmon introduced into Lake Michigan (Hesse 

1994; Wesley 1996).  The accuracy and reliability of age estimates were tested against 
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Chinook salmon of known ages which were measured through the use of a CWT and 

OTC marking.  Both studies achieved exceptional results, correctly identifying the age of 

Chinook salmon over 93% of the time.  Wesley noted that most of the error was 

associated with younger fish (two years or younger) which may be because vertebrae do 

not yet have strong areas of opaque and translucent zones or that the zones representing 

the first annulus may be confused with smolt checks.  Smolt or accessory checks, also 

known as growth checks, are rings not associated with a year of life but rather result from 

slow growth periods as a result of shifting residence locations (Wesley 1996). These 

smolt checks can appear as one-to-three accessory checks (thin white rings) within the 

first dark area and are common in individuals less than one year and in some age 1 

Chinook salmon.  Accessory checks are much thinner than the annular bands and are not 

visible in Chinook salmon, age 2 and older (Hesse 1994).  Wesley also noted that there 

was some error associated with ageing fish older than four years but because of small 

numbers of older fish, the accuracy of ageing these fish is still in question. Although life 

cycles and environmental conditions are different between the introduced species of 

Chinook salmon in Lake Michigan studied by Hesse and Wesley and the anadromous 

Chinook salmon in the Pacific Northwest, similarities in age and growth are likely.  

Overall, these studies give credence to the possibility of using vertebrae for age 

determination of anadromous Chinook salmon.  

Age Determination of Fish in Archaeology 

 Archaeologists have used the incremental growth of a variety of elements from 

fish, including vertebrae, to estimate their season of death since the 1970s (e.g. Brewer 
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1987; Carpenter 2002; Colley 1990; Higham and Horn 2000, Morey 1983; Wheeler and 

Jones 1989). Casteel (1972; 1976) was the first to discuss using the annuli in fish 

vertebrae not only for age determination but also for estimating the approximate season 

of death.  Although innovative for the time, Casteel (1972) did not identify the species of 

fish used in his seasonality study, other than to limit them to temperate freshwater 

species, and he did not consider validation of his method. More recently, Carpenter 

(2002) refined the use of fish remains for seasonality studies using a modern collection of 

Sacramento pikeminnow (Ptychocheilus grandis). He developed a marginal increment 

analysis (MIA) to more precisely determine season of death of archaeological 

Sacramento pikeminnow using a modern collection of known age individuals to relate 

increments to true years. MIA analysis assumes that growth zones are formed yearly and 

by estimating the percentage of completion in the outermost zone of growth yearly, an 

oscillating cycle of annulus growth will be present when plotted against the season 

(Carpenter 2002).  At least in part because these growth structures are not clearly visible 

on the surface, researchers have used thin sectioning or radiographic (X-ray) images to 

recognize and document ring formation.   

Cannon (1988, 1991) used radiographic images (Figure 2.1) to observe 

incremental growth rings on vertebrae from the 7,000 year old archaeological site of 

Namu located in coastal British Columbia to determine species, estimate season of 

capture and in turn season of site occupation.  He did this by counting growth rings 

visible in the radiographic images that were assumed to be true annuli, and then matching 

the estimated fish age to the species which best matched the life history profile.  Cannon 
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considered the potential that five species of Pacific salmon were present and each had a 

specific life history, spawning at a unique age and predictable time of year.  Cannon 

presumed that Pacific salmon were mostly available to native fishers only at the time of 

their return to spawning streams and therefore, when procured, salmon would be of 

spawning age.  After estimating the age of salmon vertebrae from Namu, Cannon 

attempted to identify specific species by correlating the species of salmon whose 

common spawning age most readily fit the estimated age of the vertebra.  For example, 

Cannon states that in British Columbia, chum (O. keta) spawn in their third or fourth year 

of life, sometime in the late summer or fall.  Therefore, a salmon vertebra recovered from 

an archaeological assemblage with an age of three or four years would likely be a chum 

salmon that was procured sometime in late summer or fall.   

 

 

Figure 2.1 Radiographic image used by Cannon (1988, pg. 105) in his original age 

estimates of salmon vertebrae from the archaeological site at Namu, B.C. (ElSx 1) with 

rings labeled (from the Journal of Field Archaeology).  They were identified as 2 (A), 

3 (B), and 4 (C) year olds.   

B A C 
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Cannon's method relies on a multitude of assumptions.  Initially, it relies on the 

central tendency of the timing of Pacific salmon spawning age.  However, as discussed 

previously there is considerable overlap in many aspects of the life history of these fishes.  

For instance, a fish said to be three years of age could possibly be represented by four of 

the five species discussed in Cannon's original study (Table 2.1).  This logic also relies on 

an assumption that the timing of the life history of salmon has remained consistent over 

thousands of years.  This seems doubtful in light of the variation observed in the timing 

of modern salmon life histories which have likely evolved as adaptations for survival 

(Groot and Margolis 1991). Perhaps the most fundamental assumption that Cannon 

makes in his argument is that one ring observed in his X-rays is in fact equivalent to one 

year of life. Although in his initial study Cannon mentions validating his method with a 

modern collection of individuals of known age, the particulars of this study were not 

presented; rates of error remain unknown. 

Recent work using ancient DNA has demonstrated problems with Cannon's 

approach. Yang et al. (2004) tested Cannon’s species identifications from Namu through 

ancient DNA (aDNA) analysis.  Among other discrepancies, sockeye salmon (O. nerka) 

was identified in assemblage from ancient DNA, but not from the X-ray approach.  In the 

archaeological salmonid assemblage from the Keatley Creek site, on the British 

Columbia Plateau, Speller et al. (2005) found no evidence of pink salmon from DNA, 

which Berry (2000) had identified as present using the radiographic method. Because of 

overlapping age profiles, the radiographic method was unable to differentiate three of the 

four species identified at Namu using aDNA. 
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Despite these problems, researchers have continued to apply Cannon's approach 

using rings seen in X-rays to estimate fish age, then identify salmon species and finally 

infer season of use.  Trost (2005) employed Cannon's method to attempt species 

identification of a small sample of salmon vertebrae from the Cove Cliff site in British 

Columbia.  Recently, Orchard and Szpak (2011) have taken the use of radiographic 

techniques a step further by employing digital imaging technology to obtain X-rays and 

assign specimens to a year class.  By combining this technology along with classifying 

vertebrae into size classes associated with each species, they attempted to more 

accurately determine species. These studies rely on the assumptions outlined previously, 

the most fundamental being that one year of life is in fact represented by one growth ring 

visible on an X-ray.   
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Chapter 3 

 

 

 

Methods and Materials 

 

 

 

Sample Collection and Preparation  

I focus on Chinook salmon in my study for several reasons.  First, because of its 

importance to people of the Pacific Northwest and its threatened/endangered status, 

Chinook are the focus of considerable research which has resulted in substantial 

knowledge of its life history, which will aid in the understanding of the formation of 

incremental rings.  In addition, Chinook salmon are the longest-lived species of Pacific 

salmon allowing me to evaluate age and growth from a broad range of age categories. 

Chinook salmon also display considerable variation in early life history patterns allowing 

me to examine age and growth in the context of a variety of residence patterns (Table 

2.1).  Historically, they are also the most abundant species of salmon in the Columbia 

River system (Craig and Hacker 1940) and are likely the most abundant species in 

archaeological sites.   

 The Oncorhynchus vertebral column is comprised of 67-75 vertebrae (Butler 

1990) that have been divided into four main types based on distinctive morphology 

(Butler 1993; Morales 1984) (Figure 3.1).  These vertebra types are unique and useful in 

referencing which area of the column vertebrae are located.  Type I is the atlas vertebra 
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and can be easily identified because of the asymmetry between the rostral and caudal 

surfaces and its two dorso-rostral facets that articulate with the exoccipital of the 

neurocranium.  Type II vertebrae have two holes on the dorsal and ventral surfaces where 

un-fused neural and haemal spines articulate. Type III vertebrae have fused, lightly built 

neural and haemal spines whereas type IV vertebrae have more robustly built, fused 

neural and haemal spines.  Initial viewing of vertebrae with radiographic images during 

my pilot study (Hofkamp and Butler 2011) revealed that the rings were more difficult to 

interpret on atlas vertebrae than on more caudal vertebrae.  These X-rays appeared blurry 

and ambiguous, likely due to the fact that atlas vertebrae are not symmetrical on the 

rostral and caudal surfaces (Figure 3.1 A and B).   Because of this, I focused on Types II 

through IV vertebrae. 

 

 

Type I. Type II. Type III. Type IV. 

 

 

    

Figure 3.1 Rostral (A) and caudal (B) view of a type I vertebrae.  Vertebrae types II, III 

and IV used in X-ray assessment.  

 

A

. 

B
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The collections of modern, known-age Chinook salmon used in this study came 

from three different sources.  The first collection was the VLB-85 collection which was 

created by Dr. Virginia Butler in 1985.  The second collection was comprised of Chinook 

salmon from the Hanford Reach portion of the Columbia River in Washington (hereafter 

referred to as the Hanford Reach collection).  The third, and final, collection was 

provided by the National Oceanic and Atmospheric Administration (NOAA) as part of 

their coastal trawls (NOAA collection). 

VLB-85 Modern Collection 

 The VLB-85 collection consisted of 20 Chinook salmon specimens procured from 

the Washington Department of Fish and Wildlife (WDFW) in February 1985. This 

collection was mainly used in the present research to evaluate Cannon’s X-ray method 

for determining fish age.  This collection represents voluntary sports catch returns for 

which coded wire tags (CWT) information was available (Table 3.1).  Specimens were 

recovered between July 1984 and January 1985 from locations throughout Washington.  

All but one (#VLB-85-50) of the recovered Chinook salmon specimens were hatchery-

raised.   
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Table 3.1 VLB-85 Chinook salmon collection used in X-ray assessment. 

Case # Brood Year Release Site 
Recovery 

Date 
CWT Age 

85-32 1982 Big Beef Creek 1-27-85 3 

85-33 1981 Purdy Creek 1-26-85 4 

85-35 1981 Deschutes River 1-29-85 4 

85-37 1982 Portage Bay 1-05-85 3 

85-40 1981 Green River 1-28-85 4 

85-42 1982 Big Beef Creek 1-13-85 3 

85-43 1982 Spring Creek 1-14-85 3 

85-45 1982 Big Quilcene River 1-22-85 3 

85-47 1981 Issaquah Creek 1-28-85 4 

85-48 1981 Cowlitz River 9-24-84 3 

         85-50 (wild) 1981 Nooksack River 1-26-85 4 

85-52 1980 Little Qaulicum River 9-07-84 4 

85-53 1982 Portage Bay 1-12-84 2 

85-54 1981 Finch Creek 10-8-84 3 

85-55 1981 Skookum Creek 1-26-85 4 

85-56 1982 Big Beef Creek 11-11-84 2 

85-70 1982 Big Beef Creek 1-26-85 3 

85-73 1982 Cowlitz River 11-7-84 2 

85-78 1982 Big Beef Creek 1-13-85 3 

85-83 1982 Cowlitz River 8-05-84 2 

 

 

 To facilitate my study, residual soft tissue on the vertebrae needed to be removed.  

Soaking in water for one week did not help remove the tissue.   Next, each vertebrae was 

soaked in a solution of 0.02 grams of trypsin, a digestive enzyme, and 3.5 ounces of 

water for 48 hours.   This worked only slightly better; many of the vertebrae had been 

permanently stained over the years.  Despite this staining, incremental rings were still 

distinguishable on the surface of most vertebrae.   
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 The VLB-85 collection has its limitations.  It is comprised primarily of hatchery-

raised fish.  Because incremental rings are formed by cessations in growth related to 

annual availability of food sources, consistent hatchery conditions may not be conducive 

to incremental growth.   If this occurred it would mean a salmon, reared in the hatchery, 

which is the same age as a wild salmon may have a different number of incremental rings 

than a fish of the same age born in the wild. A deeper understanding of the process of 

growth and ring formation during this early life history of hatchery reared fish is needed.  

Understanding the differences in incremental growth between wild and hatchery 

populations especially important when examining prehistoric populations represent wild 

fish. 

Hanford Reach Collection  

The Hanford Reach collection was utilized mainly for the development and 

testing of my ageing protocol but was also used in my evaluation of the X-ray method of 

ageing.  This collection was obtained in fall of 2011 in collaboration with the WDFW 

who have a long term program to track fall run Chinook salmon which spawn in the 

Hanford Reach portion of the Columbia River (Figure 3.2). This roughly 50 mile (80.5 

km) portion of the river in central Washington, from the Priest Rapids dam to the city of 

Richland, is free flowing and contains the largest remaining population of naturally 

spawning fall Chinook salmon in the Columbia River.  This collection was ideal since it 

allowed me to study wild fish and compare patterns with hatchery-reared individuals.  

Also, the fish are part of the CWT program, providing information on “true” age; scales 

were also collected providing an opportunity to compare-contrast incremental growth on 
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different structures.  Finally, because I was able to collect and prepare complete carcasses 

I was able to examine growth along the entire vertebral column.  

 

Figure 3.2 Location of the Hanford Reach of the Columbia River in Washington State. 

 

 

 The Hanford Reach collection consisted entirely of fall run adults (Table 3.2), 

which had been marked with CWTs.  The WDFW provided me with all details regarding 

each individual’s life history including origin, age, recovery and release date, and sex.  

These fish were collected by WDFW crews (Paul Hoffarth, supervisor) and myself in 

November 2011 during the annual fall spawning ground surveys. As each fish was 

retrieved it was assigned an identification number, fork length, species, and sex was 

recorded and a scale sample was removed.  All collected scales were affixed to a scale 

      0              80             160 kilometers 
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card and given a unique scale card number.  For those fish with a CWT, the cranium was 

removed, then taken back to a lab so the CWT could later be located and retrieved. For 

each cranium, a unique identification tag called a snout card was filled out with 

information about that individual such as fork length, sex, the location of recovery, 

species and generally the unique scale card number.  Once the fish were harvested and 

the crania collected, most of the trunk soft tissue was removed from each spinal column 

and discarded back into the Columbia River.  Each spinal column was individually 

bagged, sealed and later frozen.  A label with the corresponding head tag number and 

scale card number was affixed to each bag so that all specimens could later be matched to 

their CWT and scale age.  All of these specimens were transported back to Portland and 

placed in a freezer in the Portland State University (PSU) Biology department.  To 

facilitate blind-testing I assigned a “case number’ to each fish, which corresponded to 

each fish’s formal identification number, so no reader had knowledge of the collection. 
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Table 3.2 CWT and scale age details for Hanford Reach Chinook.  

 

ID# Stock 
Brood 

Year 

Recovery 

Date 

Fork 

Length 

CWT 

Age 

Scale 

Age 

1058-1 Ringold Springs Hatchery 2007 11/9/2011 78 4 41 

1061-1 Ringold Springs Hatchery 2007 11/13/2011 81 4 41 

1061-12 Oxbow Hatchery 2009 11/13/2011 49 2 21 

1061-2 Lyons Ferry Hatchery 2007 11/13/2011 79 4 41 

1061-9 Lyons Ferry Hatchery 2008 11/13/2011 58 3 32 

1063-19 Hanford URB Wild 2006 11/13/2011 90 5 51 

1063-20 Umatilla Hatchery 2008 11/15/2011 58 3 32 

1064-11 Lyons Ferry Hatchery 2006 11/13/2011 75 5 52 

1064-12 Ringold Springs Hatchery 2007 11/13/2011 78 4 41 

1064-13 Priest Rapids Hatchery 2009 11/13/2011 53 2 21 

1067-16 Bonneville Pool 2007 11/18/2011 90 4 41 

1068-7 Priest Rapids Hatchery 2007 11/16/2011 79 4 41 

1071-18 L White Salmon 2007 11/20/2011 69 4 41 

1091-14 Hanford URB Wild 2006 11/17/2011 87 5 51 

1092-2 Hanford URB Wild 2007 11/18/2011 75 4 41 

1092-4 Priest Rapids 2008 11/18/2011 72 3 31 

1102-2 Priest Rapids Hatchery 2009 11/21/2011 45 2 21 

1102-3 Umatilla Hatchery 2008 11/21/2011 70 3 31 

1123-10 Priest Rapids Hatchery 2009 11/10/2011 52 2 21 

1123-11 Priest Rapids Hatchery 2009 11/10/2011 43 2 21 

1123-12 Hanford URB Wild 2008 11/10/2011 69 3 31 

1123-13 Priest Rapids Hatchery 2008 11/10/2011 71 3 31 

1135-7 Hanford URB Wild 2007 11/10/2011 N/A 4 41 

1139-5 Hanford URB Wild 2007 11/13/2011 84 4 41 

1139-6 Priest Rapids Hatchery 2009 11/13/2011 54 2 21 

1141-20 Umatilla Hatchery 2007 11/15/2011 80 4 41 

1142-11 Hanford URB Wild 2007 11/15/2011 99 4 41 

1144-1 Priest Rapids Hatchery 2009 11/16/2011 48 2 21 

1144-13 Hanford URB Wild 2007 11/16/2011 91 4 41 

1151-14 Hanford URB Wild 2007 11/18/2011 89 4 41 

1151-15 Umatilla Hatchery 2008 11/18/2011 67 3 31 

1152-15 Ringold Springs Hatchery 2007 11/18/2011 85 4 41 

1157-17 Umatilla Hatchery 2008 11/21/2011 79 3 31 

1239-3 Irrigon Hatchery 2008 11/20/2011 74 3 31 

1241-3 Ringold Springs Hatchery 2007 11/20/2011 73 4 41 

1241-8 Hanford URB Wild 2007 11/20/2011 81 4 41 

1241-9 Irrigon Hatchery 2008 11/20/2011 80 3 31 

1449-14 Hanford URB Wild 2007 11/15/2011 N/A 4 41 

1449-15 Umatilla Hatchery 2008 11/15/2011 53 3 32 

1450-4 Hanford URB Wild 2007 11/13/2011 85 4 41 

1450-5 Hanford URB Wild 2007 11/13/2011 85 4 41 

8232-1 Hanford URB Wild 2007 11/20/2011 88 4 41 

8238-2 Hanford URB Wild 2008 11/17/2011 67 3 31 

8233-13 Hanford URB Wild 2007 11/14/2011 86 4 41 

8237-5 Irrigon Hatchery 2008 11/17/2011 77 3 31 

8241-4 Priest Rapids Hatchery 2007 11/14/2011 80 4 41 
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A total of 55 fish with CWTs were recovered during the Hanford Reach surveys.   

Of these, five had blank CWT’s, which meant they lacked independent age records and 

thus could not be included in my control study.  Four of the fish originally identified in 

the field as Chinook were actually coho (O. kisutch).  Of the remaining 46 fish, 16 (35%) 

were wild fish known as Hanford Upriver Brights (Hanford URB) and 30 (65%) were 

hatchery fish originating from eight different hatcheries across Washington and Oregon 

(Table 3.3).  The collection of 46 fish consisted of 23 (50%) females and 23 (50%) males, 

including 8 jacks (male Chinook which return to freshwater after only 1 year in the 

ocean).  

 

Table 3.3 Summary of stock/age class for Hanford Reach Chinook salmon specimens. 
 

Stock 

Age Class  

2 year 3 year 4 year 5 year Total 

Hanford URB Wild  2 12 2 16 

Priest Rapids Hatchery 6 2 2  10 

Umatilla Hatchery   5 1  6 

Ringold Hatchery   5  5 

Irrigon Hatchery   3   3 

Lyons Ferry Hatchery  1 1 1 3 

Oxbow Hatchery 1    1 

Bonneville Pool   1  1 

L. White Salmon   1  1 

Total 7 13 23 3 46 

 

 

 One goal was to obtain the widest range of age classes possible from extant wild 

populations so it would be possible to validate across all age classes as stressed by 

Beamish and McFarlane (1983; 1987). The CWT records show the age structure of this 

sample is represented by four age classes with 4 year olds dominant.  It is possible for 
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Chinook salmon to exceed the age of 5, but I assume the age range of the fish in this 

collection was adequate for identifying criteria for annular growth.  

 Scale ages were determined (under the supervision of Lance Campbell, WDFW) 

for all 46 fish at the WDFW ageing laboratory in Olympia, WA (Table 3.2).  Ages were 

reported using the Gilbert-Rich system, which uses an Arabic numeral followed by a 

subscript numeral (e.g. 42 and 31, described as "4 sub 2" and "3 sub 1").  The first numeral 

indicates the total age of the fish and the subscript indicates the time spent in freshwater 

prior to saltwater immigration.  The assigned scale ages of the Hanford Reach 

assemblage matched the CWT ages 100% of the time.  Scale patterns make it possible to 

determine the total age of the fish as well as the period of time a fish spent in freshwater 

prior to immigration to saltwater giving further insight into life history patterns.  A total 

of 42 fish in my assemblage had a freshwater residency of one year, denoted "sub 1", and 

four of the fish had two year freshwater residencies, denoted "sub 2".  

NOAA Collection 

 To learn details about the structure of vertebrae during emergence and in the first 

year, additional younger fish also of known age were needed.  Such fish were obtained 

from the NOAA coastal test trawls (Hatfield Marine Science Center, Newport, OR) with 

the assistance of Dr. Jessica Miller (Oregon State University), harvested in June 2011.  

The collection consisted of 55 individuals of mixed age: juveniles, yearlings and 

subyearlings (Table 3.4); whether they are hatchery or wild is unknown.  Age categories 

were assigned by NOAA personnel according to length, which is common practice (Dr. 

Jessica Miller; personal communication).  I acquired these fish during a "cutting party" at 
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the NOAA research station/ Hatfield Marine Science Center in Newport, Oregon in 

October of 2011.  All specimens which had been frozen were thawed.  Next, the 

volunteers removed the otoliths and internal organs, then sampled scales and muscle for 

DNA.  I then collected and bagged the remaining portions of each fish and returned them 

to Portland State University for maceration.  
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Table 3.4 Fork length (mm) and age class for NOAA Chinook salmon.  

 
ID# Age Class ( length) Fork Length (mm) 

29763 subyearling 87 

29693 subyearling 88 

29759 subyearling 89 

29707 subyearling 93 

29695 subyearling 96 

29675 subyearling 100 

29690 subyearling 103 

29710 subyearling 103 

29782 subyearling 104 

29678 subyearling 106 

29678 subyearling 106 

29713 subyearling 107 

29706 subyearling 108 

29669 subyearling 109 

29712 subyearling 110 

29676 subyearling 111 

29760 subyearling 112 

29623 subyearling 118 

29714 subyearling 122 

29605 subyearling 126 

29716 subyearling 132 

29423 subyearling 134 

29657 yearling 141 

29614 yearling 144 

29681 yearling 146 

29729 yearling 148 

29632 yearling 151 

29633 yearling 153 

29680 yearling 153 

29635 yearling 158 

29645 yearling 158 

29700 yearling 160 

29539 yearling 162 

29640 yearling 162 

29436 yearling 163 

29731 yearling 167 

29658 yearling 168 

29734 yearling 173 

29737 yearling 174 

29739 yearling 187 

29751 yearling 193 

29789 yearling 195 

29480 yearling 207 
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29701 yearling 217 

29703 yearling 218 

29626 yearling 226 

29794 yearling 250 

29615 yearling 263 

29685 mixed age juvenile 278 

29686 mixed age juvenile 284 

29770 mixed age juvenile 305 

29468 mixed age juvenile 339 

29518 mixed age juvenile 354 

29688 mixed age juvenile 390 

29705 mixed age juvenile 391 

29472 mixed age juvenile 435 

 

 

Hanford Reach and NOAA Specimen Preparation 

 To remove flesh and isolate vertebrae in both the Hanford Reach and NOAA 

collections, salmon carcasses were prepared using a simple warm water maceration 

procedure. All maceration took place in the PSU Zoology Lab facilitated by Dr. Deborah 

Duffield and Dalin D'Alessandro.  Each carcass was placed in a large glass jar or plastic 

bucket.  The original identification card created in the field was affixed to the side of the 

jar or bucket and kept with the specimen at all times. Warm tap water was added to each 

container covering the carcass.  These were allowed to sit for a period of two-to-four 

weeks at ambient temperature (~65○F).  After this time period, the water was decanted 

and clean water was added.  This process was repeated two-to-three times until all 

residual soft tissue was removed from the skeleton.  Next, the contents of each jar was 

poured through fine mesh window screen.  Next, each specimen was rinsed with fresh tap 

water, then soaked in a 15% ammonia and water solution for 10 minutes to reduce odor.  

Each specimen was rinsed one more time with tap water to remove trace ammonia, 
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placed on a paper towel lined tray and allowed to dry for several days.  Next, each 

specimen was placed in a plastic bag along with its original identification card and 

cataloged by its unique scale card number or NOAA salmon identification number.   

Documenting Rings 

 To identify the best method of viewing incremental rings, I examined a collection 

of vertebrae comparing surface images, X-ray images and thin sections. These methods 

all vary in difficulty of preparation, extent of specimen destruction and aspect of vertebra 

highlighted.   The simplest approach, which is completely nondestructive, involves 

examining the centrum surface and then taking an image for permanent documentation.  

This method only allows viewing of the surface rings.  The more difficult, but also 

nondestructive approach, uses X-ray technology to view internal rings in vertebrae.  The 

most time consuming method, which also permanently destroys most of the specimen, 

involves thin sectioning the vertebra by cutting it in half, mounting it on a glass slide and 

then polishing the surface.  In thin sections, a view of both the profile of rings visible on 

the surface as well as the internal structure of vertebrae is obtained.  All three of these 

techniques were attempted on at least a sample of vertebrae to determine which was the 

most practical in terms of degree of difficulty, efficiency, extent of specimen destruction, 

and most importantly, which one revealed annular growth rings.  

 The surface images of the VLB-85 vertebrae were taken with a microscope (Leica 

MZ 125) at 10X magnification and digital camera (Leica DFC 320) housed in the 

Portland State University Biology Department in Dr. Luis Ruedas's lab.  Vertebrae were 
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placed on the microscope stage as level as possible and both the rostral and caudal 

surfaces were photographed.   

 The Hanford Reach vertebrae were viewed with either the naked eye or with a 

1.5X magnification.   A 95% ethanol solution was applied to each vertebra during the 

development of this ageing protocol and during testing to enhance incremental rings.  

 Radiographic images of the VLB-85 collection of vertebrae were taken at Oregon 

Health and Science University (OHSU) with the help of Dr. Raymond Friedman using a 

Holologic Mammographic Selina with HTC technology at double magnification with a 

radiographic exposure of 25kV and 100 mAs.  Images were saved as a Dicom file on a 

compact disk and were later viewed in Photoshop 8.0. 

 Thin sections were cut using an Isomet slow speed saw housed in Dr. Martin 

Streck's petrology lab at Portland State University or an X-ACTO fine tooth pull saw.  

Both methods worked equally well; the hand saw was used when the Isomet saw was not 

available.  Thin sections were cut one of two ways, either on the sagittal plane or on the 

frontal (Chiasson 1966) plane also known as the longitudinal plane (Cailliet et al. 1986) 

(Figure 3.3).  All of the VLB thin sections were cut sagitally.  However, after completing 

these, for type II vertebrae, I discovered that the foramen where the unfused neural and 

haemal spines articulate can distort certain growth features.  Therefore, the remainder of 

the thin sections were cut frontally to avoid these foramen.  Thin sections were created by 

first cutting the vertebrae perpendicular to the centrum face, just to one side of the 

notochord opening.  The side which retained the notochord opening was wet sanded 

down with 400 and 600 grit waterproof sandpaper until the center of the vertebra was 
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exposed, just barely sanding into the notochord opening.  Next, the sanded surface was 

polished on 12, 3 and 0.05 micron lapping film.  This polished surface was then fastened 

to a glass slide using a two-part epoxy resin.  After twenty-four hours for the resin to 

cure, another cut was made parallel to the first, leaving only a thin strip of vertebra left 

the glass slide.  This new surface was then sanded with 400 and 600 grit sandpaper 

followed by the 12, 3 and 0.05 micron lapping film to polish.  Completed specimen 

thickness (0.15 to 0.25 mm) was very close to those obtained by Carpenter (2002), in his 

Sacramento pikeminnow study.  Thin section images were photographed using a 

microscope (Zeiss Accuscope) at 10X magnification and a digital camera (Ziess 

AxioCam ERc5s) utilizing ZEN 2012 imaging software housed in the Department of 

Anthropology at Portland State University. 

 

 

 
 

 

 

 

Figure 3.3 Position of sagittal (A) and frontal/longitudinal (B) thin sections on a type III 

modern vertebra (2 year old, catalog # 1064-13).     
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Developing a Protocol of Ring Identification 

 The protocol for ring identification used in this study was developed with the help 

of Lance Campbell and John Sneva from the WDFW Fish Ageing Unit, Olympia, WA.  

We drew on the work of Hesse (1994) (based on  Kusakari 1969) and Wesley (1996) 

whose work with landlocked Chinook salmon demonstrated the feasibility of using 

vertebral growth rings to age salmonids, with some subtle protocol adjustments 

concerning the location of growth checks to account for the differences in landlocked vs. 

anadromous life history patterns.   

 The centrum surface of Chinook vertebrae, seen with reflected light, presents a 

multitude of rings of various thicknesses and color that encircle the notochord opening 

(Figure 3.4).  My goal was to try to identify which of these rings correlated with annular 

growth.  Using the Hanford Reach and NOAA assemblages this was done through an 

iterative process of comparing rings thought to be annular, on the vertebrae of known age 

fish, to the life history data of these same fish obtained from the CWTs.  Through this 

process, I was able to determine which rings correlated with annular growth and what the 

characteristics of these "annular" rings were.   
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I used a generalized Chinook salmon life history model, based on Groot and 

Margolis (1991) and Quinn (2004), to relate growth to incremental rings.  At the focus of 

the centrum face is the notochord opening (Figure 3.4).  Surrounding this hole is a dark 

central core (DCC).  The DCC is present when the young Chinook emerges from the 

Figure 3.4    Vertebra from a five year old fish with the DCC and annuli labeled. 

(catalog number 1063-19, type III) 
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gravels as free swimming fish in spring and can be observed in vertebrae from 

subyearling Chinook salmon from the NOAA collection that emerged from the gravels 

just months before they were collected (Figure 3.5).  Fisheries protocol assigns the age of 

the fish at emergence as “age 1” (Cailliet et al. 1986).  After emergence during its first 

spring and summer the young Chinook accumulates a zone of opaque (white) growth.  

During its first winter, after emerging from the spawning gravels, the salmon experiences 

slower growth expressed as a narrow dark zone. This pattern continues throughout the 

individual’s lifetime until it returns to spawn, accumulating additional dark bands in 

winter and white bands in spring and summer.  
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Figure 3.5 Modern subyearling vertebra with no growth beyond the dark central core 

(DCC) (Catalog number 29716, type III)  

 

 

 In many fish populations there is a strong correlation between vertebrae size and 

fish size as well as between age and fish size (Casteel 1976; Cailliet et al. 1986; Wheeler 

and Jones 1989).  For further development of the protocol I modeled the relationship 

between vertebrae diameter (VD) and fork length (FL) using a scatterplot (Figure 3.6).  A 

single type II vertebra was selected from each of the Hanford Reach fish carcasses.  The 

diameter of each vertebra was measured using digital calipers (details in Appendix A).  

VD was plotted along the X-axis.  The corresponding FL for each vertebra was plotted 
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along the Y-axis.  The age class for each fish, known from CWT's, is differentiated in the 

scatterplot. 

 

 

Figure 3.6 Scatter plot between fork length and type II vertebrae diameter for Hanford Reach 

collection (r=.951, p=.000). 

 

 

Salmon from the Hanford Reach appear to have grown in a rapid and linear 

manner up through their third year of life, at which point growth significantly slows.  

Most of the overlap between age groups is between the 4 and 5 year old fish.  This is 
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demonstrated in the scatterplot in Figure 3.6 where all three year olds have a greater FL 

than all two year olds and all four year olds have a greater fork length than all three year 

olds.  This suggests that annular rings formed in the first three years of life, a period of 

rapid growth, will tend to be further apart than rings formed during the 4th or 5th year of 

life when growth is much slower.    

This relationship between age and growth was used as a check to help recognize 

obscure or difficult-to-identify rings by estimating the likely amount of growth that 

should take place between rings, either farther apart in early life or closer together in later 

life. This size-age study was helpful in distinguishing true annuli from false checks. For 

example, additional rings or accessory checks were occasionally observed (Figure 3.7).  

These are smaller and thinner than what I have defined as annuli.  Hesse (1994) noted 

these as common in Chinook salmon age 1 and younger from Lake Michigan.   I 

observed these accessory rings occasionally in the Hanford Reach and VLB-85 collection 

as thin white bands in the DCC and as darker bands visible in the first spring/summer’s 

growth.   
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Figure 3.7 Vertebra from a two year old fish with accessory rings, DCC and assumed ring 

labeled. (Catalog number 1123-11, type II)  

 

 Age was assigned to vertebrae according to the following rules (labeled in Figure 

3.4).  The DCC is counted as age one.  If there was significant growth after the DCC but 

no obvious dark bands then an annular ring is assumed and the individual is said to be a 

two year old.  After the first period of spring/summer growth, comes a period of dark 

winter growth. These were counted as subsequent annular rings, and in my modern 

control samples, range in number from 0 to 3.  For example, a 6 year old salmon would 
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have 4 winter growth bands. A final ring is always assumed because all of these 

individuals were harvested in the fall of their final year of life before they accumulated a 

winter’s growth band for that year (Cailliet et al 1986).  The total age of the fish is 

combined as: 

DCC(1) + Subsequent Dark Rings(0-3) + Assumed Ring(1)  = Age of Fish (2-5) 

 

 

Test of Accuracy and Precision  

 After developing my protocol I conducted an initial test of accuracy. I used the 

ageing method described above to age type II Chinook salmon vertebrae and compared 

these ages to the known CWT age in the Hanford Reach collection.  Although I had used 

the Hanford Reach assemblage to develop the protocol, the CWT age of any particular 

fish was unknown to me during testing.  Fisher’s exact tests were used to test whether 

discrepancies between CWT age and vertebrae annuli age varied by age class, sex, and 

early freshwater residency patterns or between hatchery and wild stocks.  A Fisher’s 

exact test is used in lieu of a chi square test when sample sizes are small and some cells 

have values less than five (Zar 1974).   

 To test the reliability or precision (sensu Beamish and McFarlane 1983) of this 

method, I designed an experiment wherein five readers estimated the ages of the same set 

of control samples.   These readers, all PSU anthropology graduate students, had varying 

levels of familiarity with archaeological fish remains.  I explained the protocol in a one 

hour workshop during which the readers were allowed to examine several vertebrae from 

one each of a 2, 3, 4 and 5-year old fish.   
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 To estimate precision in age estimations across the readers, I applied a method 

commonly used in fisheries biology ageing laboratories, average percent error (APE) 

(Beamish and Fournier 1981).  It is calculated for a repetitive series of determinations, 

either by the same reader or by different readers.  The calculation is defined as: 

 

𝑨𝑷𝑬 =  
 𝟏

𝑹
 ∑

|𝑿𝒊𝒋 − 𝑿𝒋|

𝑿𝒋

𝒏

𝒊=𝟎

 

 

 The average age of each fish (Xj) is calculated from all age estimates from all 

readers (R).  R in this case is 5.  Xij is the ith determination of the jth fish and is calculated 

for every age determination.    

Archaeological Application 

 The goal of this aspect of the project was to assess the feasibility of applying the 

ageing protocol to archaeological specimens.  Fish remains from Cathlapotle (Appendix 

B), located on the lower Columbia River near Ridgefield, WA, were available for my 

study (Figure 3.8). Cathlapotle is a ~600 year old Chinookan plank-house village 

excavated by Dr. Kenneth M. Ames in the 1990's (Ames et al. 1999).  Because my ageing 

protocol focused on Chinook salmon, I needed to insure that archaeological samples were 

from Chinook. Huber et al. (2011) have suggested that Chinook salmon can consistently 

be identified to species using a simple morphometric technique utilizing the ratio between 

vertebra length and height (Figure 3.9).  Moss et al. (2014) challenged this method, 

testing it against aDNA analysis of archaeological specimens from the Coffman Cove site 
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(49-PET-067) in southeast Alaska, and found it correctly identified species only 57% of 

the time.  Their study mainly showed the morphometric method misidentified pink 

salmon as sockeye.  Moss et al.'s archaeological samples did not include Chinook salmon 

for which Huber et al. had the best results.  Therefore, I will use the Huber et al. method 

to isolate Chinook salmon vertebrae, recognizing there may be some non-Chinook 

included.   

 

 

 

Figure 3.8 Location of Cathlapotle (45CL1) in Washington State. (from Shepard 2014) 
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Figure 3.9 Illustration of length (left) and height (right) measurements obtained to 

determine salmon species in Cathlapotle samples.  (From Huber et al. 2011, used with 

permission from Elsevier publishing)  

 

 

I selected 100 type II (31) and type III (69) vertebrae, chosen because of their 

high level of preservation, with a complete central margin of the centrum face.  Vertebrae 

were from one of two proveniences; either level 9, Feature 728 in the SW quadrant of 

unit N160 W91or level 8 in the SE quadrant of unit N52 W101. Vertebrae should be 

considered “grab” samples, not representative of the fish assemblage overall.  Vertebrae 

were next cleaned with a dry brush.  The length and height was measured for each 

vertebra using digital calipers to the nearest 0.01mm.  Using vertebral length, height, and 

the ratio of length/height all vertebrae were classified using a classification and 

regression tree (CART) in the statistical package R according to Huber et al. (2011) 

utilizing a preloaded workspace: 

http://conserver.iugocafe.org/user/jorg/Salmonid%20verebrae%20identification.   
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The salmon vertebrae classified as Chinook were then aged using the protocol developed 

using modern fish.  
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CHAPTER 4 

 

 

 

Results: Ageing Chinook Salmon Vertebrae Using Radiographic Images. 

 

 

 

 As noted previously, Cannon (1988) and others have assumed vertebral rings 

from X-rays represent true years or annuli.  Here, I evaluate the validity of this 

assumption using the Hanford Reach and VLB-85 modern reference collections by 

comparing and contrasting vertebral architecture visible in X-rays with vertebral thin 

sections of known age fish.  These comparisons have revealed that white bands, visible in 

X-rays, do not actually represent annular growth. 

To reveal the internal architecture X-rays highlight, I compared thin sections to 

X-rays of the same vertebrae from 13 fish from the VLB-85 collection.  One of these 

comparisons is shown in Figure 4.1, the white bands visible in X-rays correspond to the 

internal walls visible in thin sections.  These walls, made of bone, separate multiple 

internal compartments which are likely filled with fluid or soft tissue during the fish's 

life.  These walls create a series of nested cylinders encircling the notochord opening 

(Figure 4.1). The question still remains though, do these rings reflect the age of a 

particular fish? 
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Figure 4.1 Two views of the same vertebra (VLB-85-47).  X-ray image (A) and sagittal thin 

section profile (B) of a 4 year old, type II vertebra showing the corresponding notochord opening, 

rings/internal walls and vertebral walls.    
 

 If the internal walls are annular, I would expect the number of these walls to 

match the known age based on CWTs.  Comparing the number of internal walls from 

vertebrae (either thin sections or X-rays) with known CWT reveals that they are 

unrelated.  As shown in Figure 4.2, two fish of different ages have the same number of 

internal walls and this expectation is not met.  A 5 year old and a 2 year old individual 

both have three internal walls, at least on one portion of the centrum.  According to 

Cannon’s (1988) method, the 5 year old fish (A) should have four internal walls and the 2 

year old fish (B) should have one internal wall. 

 

Discontinuous Ring 
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Figure 4.2 (A) A 5 year old fish (#1063-19, type III) with 3 internal walls and (B) a 2 

year old fish (#1123-11, type III) with 3 internal walls. 
 

 

My working hypothesis is that the internal walls are formed and set early in 

development, possibly at some point in the juvenile stage of their life cycle or even at 

emergence.  This would account for why a 2 year old and a 5 year old both have the same 

number of internal walls.    

Using the number of internal walls to estimate fish age is also a problem because 

there are varing numbers of internal walls between vertebrae on a single fish and in fact 

within a single vertebra (Figure 4.3, Table 4.1).  As seen in Table 4.1 the number of 

internal walls varies by type, age and the face being examined.  None have a consistent 
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number of internal walls for all three vertebra types. This problem is illustrated in Figure 

4.3, which shows a type II, III and IV vertebrae from the same fish.  The type II and III 

have three internal walls and the type IV vertebra has four internal walls.  In some cases 

there are even a differeing number of walls on different faces of the same vertebra.  This 

can be seen in Figure 4.2B, in which a type IV vertebra from a 2 year old fish has three 

walls on one half of the centrum and two on the other.   

 

 

 

         

  

Figure 4.3 Thin sections of three different vertebrae from the same fish (types II[A], 

III[B] and IV[C]), specimen #1063-19 showing a differing number of internal walls.  
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Table 4.1 Number of internal walls by vertebra type from six Chinook salmon from the 

Hanford Reach.  

 

 Vertebra Type 

Fish Catalog Number II  III IV 

1123-11   (2 yr old) 2 2,3 2,3 

1063-20   (3 yr old) 2,3 2,3 3 
8241-4     (4 yr old) 3 3,4 4 
1058-1     (4 yr old) 3,4 3 3 
1063-19   (5 yr old) 3 3 4 
1091-14   (5 yr old) 4 3 3,4 

 

 

Several factors may be contributing to the variation in the number of walls.  First, 

it may be that there are true differences in the number of walls between vertebrae of the 

same fish.  It may also be that there are actual differences in the number of rings in 

different portions of the same vertebra. However, this would requre that some walls are 

discontinuous around the circumference of the vertebra and seems unlikely.  Some of the 

walls, especially those most internal and closest to the notochord opening, are ambigous 

and can appear discountinous in X-rays (e.g. Figure 4.1 A).  These innermost rings are 

likely not discontinous but rather in some areas are so gracile and fenestrated that their 

density is not detected in X-rays.  Additionally, thin sections may be too crude a method 

for preserving these fragile innermost rings.  Improper preparation as well as specimen 

fragility could affect the number of walls visible. 

As described earlier, my work building on Hesse (1994) and Wesley (1996), 

suggests rings visible on the centrum surface reflect yearly growth.  With this in mind, 

demonstrating that the surface rings are completely independent of the internal walls 

would further challenge that the internal walls are linked in any way to yearly growth.  A 
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30X magnification of one thin section reveals that the internal walls of vertebrae do not 

correspond with surface rings (Figure 4.4).  Indeed, the internal wall is separated from the 

centrum surface rings by a barrier, further indicating that growth rings on the centrum 

face and the internal walls are part of different developmental processes.   

 

 

Figure 4.4 Magnified (30X) image of a thin section (catalog # 1063-19, 5 year old), 

highlighting the boundary between internal walls and the centrum surface.  
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In sum, comparing X-rays and thin sections of Chinook salmon shows the white 

rings visible in X-rays that correspond to internal walls, which separate multiple 

compartments inside the vertebrae. These internal walls are unrelated to fish age and are 

therefore not annuli.  These walls do not appear to exhibit developmental connection to 

surface rings visible in the profile of thin sections and although they are most likely 

related to growth and bone development it is in a matter independent of any kind of 

annular cycle.  Furthermore, the CWT ages of the fish used in this study do not correlate 

with the number of wall visible in X-rays or thin sections. 
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Chapter 5 

 

 

 

Results: Ageing Modern and Ancient Chinook Salmon Using Annular Rings on the 

 

Centrum Surface 

 

 

 

This chapter reviews the results from testing the accuracy and reliability of my 

protocol for aging fish using growth rings on the centrum surface on modern fish of 

known age.  I then apply this protocol to archaeological salmon vertebrae from 

Cathlapotle (45CL1). 

Test of Accuracy 

 For the first part of my ageing study, I aged one type II vertebra from each of the 

46 Chinook salmon from the Hanford Reach collection (Table 5.1).  Of the 46 fish aged, 

39 (85%) were aged correctly using the protocol developed with the Hanford Reach 

Chinook salmon.   Five of the seven discrepancies were under-aged and two were over-

aged.  All errors were within one year of the actual age.  A deviation by more than one 

year would have indicated poor precision because Chinook salmon in this collection only 

achieved a maximum age of 5 years 
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Table 5.1 Assigned vertebral ages for 46 Chinook salmon using my aging protocol. 

 

 

 

 

Case # ID # Sex Origin Scale Age CWT Age Hofkamp 

1 8241-4 F Wild 41 4 4 
2 8238-2 M Wild 31 3 3 
3 8237-5 M Hatchery 31 3 3 
4 8233-13 F Wild 41 4 4 
5 8232-1 F Wild 41 4 4 
6 1450-5 M Wild 41 4 4 
7 1450-4 F Wild 41 4 4 
8 1449-15 M(jack) Hatchery 32 3 2* 
9 1449-14 M Wild 41 4 4 
10 1241-9 F Hatchery 31 3 3 
11 1241-8 F Wild 41 4 4 
12 1241-3 F Hatchery 41 4 3* 
13 1239-3 M Hatchery 31 3 3 
14 1157-17 M Hatchery 31 3 3 
15 1152-15 F Hatchery 41 4 4 
16 1151-15 M Hatchery 31 3 3 
17 1151-14 F Wild 41 4 4 
18 1144-13 M Wild 41 4 4 
19 1144-1 M(jack) Hatchery 21 2 2 
20 1142-11 M Wild 41 4 5* 
21 1141-20 F Hatchery 41 4 4 
22 1139-6 M(jack) Hatchery 21 2 2 
23 1139-5 M Wild 41 4 4 
24 1135-7 M Wild 41 4 4 
25 1123-13 F Hatchery 31 3 3 
26 1123-12 M Wild 31 3 3 
27 1123-11 M(jack) Hatchery 21 2 2 
28 1123-10 M(jack) Hatchery 21 2 3* 
29 1102-3 F Hatchery 31 3 3 
30 1102-2 M(jack) Hatchery 21 2 2 
31 1092-4 F Hatchery 31 3 3 
32 1092-2 M Wild 41 4 4 
33 1091-14 F Wild 51 5 5 
34 1071-18 F Hatchery 41 4 4 
35 1068-7 F Hatchery 41 4 4 
36 1067-16 F Hatchery 41 4 4 
37 1064-13 M(jack) Hatchery 21 2 2 
38 1064-12 F Hatchery 41 4 4 
39 1064-11 F Hatchery 52 5 4* 
40 1063-20 M Hatchery 32 3 2* 
41 1063-19 F Wild 51 5 5 
42 1061-9 F Hatchery 32 3 3 
43 1061-2 F Hatchery 41 4 3* 
44 1061-12 M(jack) Hatchery 21 2 2 
45 1061-1 F Hatchery 41 4 4 
46 1058-1 M Hatchery 41 4 4 

* denotes errors in vertebrae age estimate 
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 These results were comparable to other projects ageing Chinook salmon elements 

(Table 5.2).  My results are slightly better than Godfrey (1968) who aged the scales of 

Chinook salmon from the Pacific Ocean correctly at a rate of 75% and were consistent 

with Murray (1994) who aged adult Chinook otoliths successfully 83% of the time.  

Other researchers have achieved slightly better results using the surface rings of Chinook 

salmon vertebrae such as Hesse (1994) who aged 365 Chinook and mis-aged only 11, 

achieving an accuracy rate of 97%, and Wesley (1996) who aged 181 Chinook and mis-

aged 11 achieving an accuracy rate of 93.9%.  These higher success rates may be due to 

their projects using collections that had a less variable, less complex non-anadromous life 

history pattern, as was noted by Hesse (1994).  Rates of the WDFW ageing laboratory 

which have achieved of 90-95% using Chinook scales (Lance Campbell personal 

communication) are also slightly higher than those demonstrated in this study.   

 

 

Table 5.2 Comparison of success rates in Chinook salmon ageing projects.   

Reference Element Success Rate (%) 

Godfrey  (1968) Scales 75 

Murray (1994) Otoliths 83 

Hesse (1994) Vertebrae 97 

Wesley (1996) Vertebrae 94 

Hofkamp (this thesis) Vertebrae 85 

 

 

A Fisher’s exact test [two-tailed, conducted at a 95% level of confidence (alpha of 

0.05)] was performed to examine whether the error was either random, or associated with 

any particular age class, origin, sex or freshwater residency type (Table 5.3).  Results for 
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age class (p = 0.8571), origin (p = 0.4075) and sex (p = 0.7534) were not significant. 

Given my previous concerns with the effect of hatchery rearing on incremental growth 

rings, that error is not linked to origin is noteworthy.   

   

 

 

 

  

Table 5.3 Number and percentage of errors per age class, origin, sex, residency type and 

P value. 

Age Class 
# of 

Individuals 
# of Errors % of Error p value= 

2 7 1 14%  

3 13 2 29%  

4 23 3 43%  

 5  3 1 14%  

Total 46 7 100% .8571 

     

Origin     

wild 16 1 14%  

 hatchery  30 6 86%  

Total 46 7 100% .4075 

     

Sex     

male 15 2 29%  

female 23 3 42%  

 jack  8 2 29%  

Total 46 7 100% .7534 

     

Freshwater Residency (yrs)     

1 42 4 57%  

2 4 3 43%  

Total 46 7 100% .0406 
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The one variable that showed significant error was related to duration of 

freshwater residency (p = 0.0406).  Of the seven errors, three were classified as “sub-

twos”, based on scale age determinations.  Two of these “sub-two” errors were 32 (having 

only spent one year in the ocean) and one was a 52.  The remaining four errors were "sub-

ones".  A total of 75% of all sub 2s in the collection were miss aged.  The 

disproportionate error associated with extended freshwater residency highlights the need 

for additional criteria development for this life history pattern so that it can be identified.  

My method preformed well in terms of accurately aging specimens with the exception of 

those individuals that spent a longer period rearing in freshwater.  

Test of Reliability 

 To examine how well the annulus criteria on the centrum surface can be applied 

by other researchers, I carried out a test of reliability.  One type II vertebra from each of 

the 46 individual Chinook salmon in the Hanford Reach assemblage was also 

independently aged by 5 readers.  Of the 46 fish, all but 14 cases showed discrepancies 

among readers (Table 5.4).  The resulting index of APE was 8.38%. 
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Table 5.4   List of estimated vertebral ages and associated APE from five readers for 46 

Chinook salmon. 

Fish # 

Reader  

#2 #3 #4 #5 #6 APE 
33, 41 5 5 5 5 5 0 

1,7,11,23,35,45 4 4 4 4 4 0 

2, 14, 25 3 3 3 3 3 0 

27, 30, 37 2 2 2 2 2 0 

3 3 4 3 3 3 0.1 

4 4 5 4 4 4 0.076 

5 5 5 4 5 4 0.104 

6 3 4 4 4 4 0.084 

8 2 3 2 2 2 0.145 

9 4 4 4 4 3 0.084 

10 3 4 3 3 3 0.1 

12 4 3 4 4 4 0.084 

13 3 3 4 3  3 0.1 

15 4 4 4 4 5 0.076 

16 3 3 4 3 3 0.1 

17 5 5 5 4 5 0.067 

18 4 5 4 4 4 0.076 

19 2 2 4 3 2 0.277 

20 5 5 5 4 5 0.067 

21 4 4 5 5 4 0.109 

22 2 3 3 3 2 0.185 

24 4 4 4 3 3 0.133 

26 3 4 3 3 3 0.1 

28 3 3 3 2 3 0.114 

29 3 5 3 3 3 0.188 

31 3 3 4 4 3 0.141 

32 3 4 4 4 4 0.084 

34 4 5 4 4 4 0.076 

36 4 4 5 5 5 0.104 

38 4 4 4 4 5 0.076 

39 3 4 4 3 4 0.133 

40 2 3 2 3 2 0.2 

42 2 3 3 3 2 0.184 

43 4 3 3 5 3 0.2 

44 3 2 3 3 3 0.114 

46 3 3 4 5 4 0.168 

Total  8.38 
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 This APE was much higher than that noted for other ageing projects.  Hesse 

(1994), in a reliability test using three readers on 100 vertebrae achieved an APE of 2.17, 

with only 8 discrepancies.  Wesley (1996) did not test his vertebral ageing method for 

reliability but did test three readers in the application of their scale age method.  On an 

assemblage of 76 modern known age fish, only 10 discrepancies occurred, achieving an 

APE of 3.63. 

 One likely explanation for the high error rate for my study is the inexperience and 

limited training of the readers, who were graduate students in archaeology, not fisheries. 

Hesse (1994) noted that it takes less time to become a proficient reader with vertebrae 

than with scales.  The relatively low error rate I achieved in aging the modern specimens 

after considerable study suggests that with more training and review, mis-aging would 

diminish for other readers.   

Archaeological application 

 Of the 100 vertebrae from the Cathlapotle site measured and assigned to species 

using the Huber et al. (2011) morphometric method, 89 were identified as Chinook: 25 

were type II vertebrae, 64 were type III vertebrae (Appendix C and D).  Once again, this 

should not be considered representative of the Cathlapotle assemblage. Although all 89 

vertebrae classified as Chinook salmon were complete, not all were sufficiently preserved 

to interpret incremental rings.  For 39 of the Chinook vertebrae, rings were prominent 

and, in some cases, more so than in modern specimens (Figure 5.1).  However, centrum 

surfaces on 50 vertebrae were too eroded to identify rings (Figure 5.2), a problem 

previously noted by Cannon (1988), Carlson (1988) and Wheeler and Jones (1989).  In  
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fact, it was this problem which initially led Cannon (1988) to begin experimenting with 

X-rays.  

 

 

 
 

 

 

 

Figure 5.1 Image showing rings visible in archaeological vertebra (left) (photo by 

Shoshana Rosenberg) and a modern vertebra (right).   
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Age 1 (DCC)  
 

 

 

Figure 5.2 Archaeological salmon vertebra showing eroded centrum which precludes 

ageing. 
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I assigned ages to the 39 Chinook vertebrae with sufficient preservation to view 

rings (Figure 5.3).  Most of the vertebrae were age 4 (46%) and age 5 (44%) with many 

fewer age 3 (10%).   

 
 

Figure 5.3 Frequency of type II and III Chinook salmon vertebrae by age class, 

Cathlapotle site.  
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Chapter 6 

 

 

 

Discussion and Conclusions 

 

 

 

I have demonstrated that using vertebral rings visible in X-rays as a proxy for age 

is not a valid method for determining salmonid species.  In the course of my research I 

have evaluated the method of using X-rays of salmon vertebrae to determine fish age, 

determining that rings visible in X-rays are not associated with annular growth.  I 

developed and tested a protocol of ageing fish using rings visible on the centrum surface 

of Chinook salmon vertebrae.  I evaluated the feasibility of applying this method to 

archaeological collections by ageing a portion of Chinook salmon vertebrae from 

Cathlapotle (45CL1).  This application of my vertebra ageing protocol to archaeological 

collections will allow archaeological salmon remains to contribute to our knowledge of 

long term trends on the life history and demography of salmon populations. 

 Researchers in Pacific Northwest archaeology have drawn many conclusions 

related to Native American salmon fisheries based on untested assumptions linking 

salmon age to vertebral rings observed in X-rays (Berry 2000; Cannon 1988, 1991; 

Orchard and Szpak 2012; Trost 2005).  These assumptions have probably led to 

inaccurate interpretations concerning prehistoric economies and patterns of salmon use.  

Specifically the season of site occupation (based on estimating salmon age, then linking 

that with likely species, then spawning season) and duration has been challenged by my 
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study.  Rings visible in X-rays of salmon vertebrae are not connected to incremental 

growth rings on the centrum surface and thus are not useful for estimating fish age.  I 

observed that rings visible in X-rays correspond to internal bone walls and these walls are 

likely formed early in life.    

I evaluated the several methods of viewing vertebrae.  I found that examining the 

centrum surface was the quickest, least destructive method of viewing incremental 

growth.  More importantly, this method proved to also be the most accurate for 

examining annular growth rings.   

Drawing on previous studies by Hesse (1994) and Wesley (1996) that had 

suggested the feasibility of ageing salmonids using centrum surface rings, I obtained 

modern reference materials for anadromous salmonids, particularly Chinook salmon.  I 

developed a protocol for separating true annuli from other incremental rings.  I tested this 

protocol for accuracy and reliability substantiating that using surface rings is a valid 

approach for ageing Chinook salmon.    

This contributes to a larger goal of accountability in zooarchaeology.  Researchers 

have suggested that zooarchaology as a discipline has generally lacked efforts from 

analysts to validate and substantiate their results (Driver 1992; Gobalet 2001; Wolverton 

2014)   Procedures for faunal analysis are rarely explicit nor are they susceptible to 

testing or critical evaluation (Driver 1992).  By presenting my protocol for ring 

identification and presenting my results for accuracy and reliability other researchers are 

able to evaluate, compare or attempt to repeat my results.  

The ultimate goal of this project was to access the feasibility of applying the 
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ageing protocol to archaeological specimens.  Contrary to what other researchers have 

suggested (Cannon 1988; Carlson 1988; Wheeler and Jones 1989), I demonstrated that 

rings are visible on the surface of archaeological vertebrae.  After identifying Chinook 

salmon vertebrae from the Cathlapotle assemblage, I aged those which were in a 

reasonably good state of preservation.   

If we can further refine this method, it will be possible to study life history 

variation using salmonid vertebrae from archaeological sites all along the Pacific Rim, 

dating to the last 10,000 years or more.  Specifically, it will be possible to model changes 

in salmon life history, focusing on timing and duration of juvenile estuary residence, 

timing of ocean migration and the age of spawning and death  Some efforts have been 

made to do this using historic records (Campbell 2010) but utilizing older archaeological 

collections [e.g. Dallas Roadcut site, 7500-9500 BP (Cressman 1960; Butler 1993)] 

would allow fisheries managers to evaluate salmon life history associated with 

environments that pre-date hatcheries, intensive commercial fishing and hydroelectric 

dams.   

Simply further establishing that age can be determined from vertebrae has value 

to fisheries ageing projects, especially as an alternative to scales, where the edges can be 

eroded on older individuals (Hesse 1994).  Vertebral age determination can also be useful 

to fisheries biologists by allowing them to use a combination of multiple elements for 

ageing which may reduce errors resulting in the improper management of fish stocks 

(Chilton and Bilton 1986).   
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Additional work needs to be carried out to substantiate these findings.  

Specifically, a larger sample of known-age modern specimens are needed to address 

errors associated with longer initial freshwater residency.  More sub-two individuals are 

needed to further characterize this error and could make it possible to isolate patterns for 

identification and interpretation. Excluding the sub- two residency pattern errors, the 

accuracy rate for my readings in this study would have been 93%, comparable to rates 

achieved by Hesse and Wesley.  A reliable protocol for identifying these sub-twos will be 

especially important to use archaeological vertebrae to reconstruct the early life history 

patterns of salmon.  

The additional samples should also include fish > 5 years old, as Chinook are 

known to attain higher ages (Groot and Margolis 1991; Hart 1973; Quinn 2005).  

Beamish and McFarlane (1983; 1987) stress the importance of validating across all 

possible age classes. 

In order for this method to be used by others, additional time needs to be spent 

testing the reliability of the method in terms of inter-observer error.  The majority of 

ageing done with fish elements is undertaken by professionals, and potential analysts 

need more time than just my hour long workshop to practice and become more proficient 

interpreting the rings on vertebrae.  A larger sample of known age fish would allow for 

the development of a larger, more complete teaching collection.    
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APPENDIX 

Appendix A.  Type II and type III vertebrae widths and fork lengths of Hanford Reach 

collection. 
 

Scale Card # Fork Length Type II width (mm) Type III width (mm) 

1058-1 78 10.74 11.61 

1061-1 81 11.49 11.8 

1061-12 49 7.07 7.1 

1061-2 79 12.13 12.59 

1061-9 58 8.49 8.65 

1063-19 90 12.47 13.65 

1063-20 58 8.09 8.54 

1064-11 75 11.48 12.29 

1064-12 78 11.83 12.54 

1064-13 53 7.59 8 

1067-16 90 12.49 13.68 

1068-7 79 10.88 11.74 

1071-18 69 11.97 13.49 

1091-14 87 12.46 12.7 

1092-2 75 10.74 11.21 

1092-4 72 10.24 10.02 

1102-2 45 5.86 6.27 

1102-3 70 9.51 10.64 

1123-10 52 8.06 8.13 

1123-11 43 5.75 6.28 

1123-12 69 9.31 10.31 

1123-13 71 10.19 10.87 

1135-7 85 11.96 11.59 

1139-5 84 11.22 12.71 

1139-6 54 7.11 7.86 

1141-20 80 12.22 12.52 

1142-11 99 14.28 15.15 

1144-1 48 6.81 7.55 

1144-13 91 12.1 13.5 

1151-14 89 13.66 13.89 

1151-15 67 9.86 9.77 

1152-15 85 13.04 13.75 

1157-17 79 10 10.45 

1239-3 74 10.71 10.7 

1241-3 73 9.8 10.33 

1241-8 81 10.62 12.28 

1241-9 80 11.63 11.76 

1449-14 74/78 Did not include Did not include 

1449-15 53 8.22 8.13 

1450-4 85 12.83 13.28 

1450-5 85 11.12 12.27 

8232-1 88 12.6 13.24 

8233-13 86 11.7 12.74 

8237-5 77 10.63 11.54 

8238-2 67 9.81 9.84 

8241-4 80 11.16 11.74 
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Appendix B Summary of Cathlapotle vertebrae provenience. 

 

Catalog # Provenience Species Vert Type Age 

1 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

2 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

3 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II UC 

4 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

5 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II UC 

6 N160 W91, SW quad, lvl 9, Fea. 728 Steelhead II N/A 

7 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

8 N160 W91, SW quad, lvl 9, Fea. 728 Steelhead II N/A 

9 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 4 

10 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

11 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II UC 

12 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 4 

13 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

14 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 4 

15 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 4 

16 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

17 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 3 

18 N160 W91, SW quad, lvl 9, Fea. 728 Chinook II 5 

19 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

20 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

21 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

22 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

23 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

24 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

25 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

26 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

27 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

28 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

29 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

30 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

31 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

32 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

33 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

34 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

35 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

36 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

37 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

38 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 3 

39 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

40 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 
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41 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

42 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

43 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

44 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

45 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

46 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

47 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

48 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

49 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

50 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

51 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

52 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

53 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

54 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

55 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

56 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

57 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

58 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

59 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

60 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

61 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

62 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

63 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

64 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

65 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

66 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

67 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

68 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

69 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

70 N160 W91, SW quad, lvl 9, Fea. 728 Chum III N/A 

71 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

72 N160 W91, SW quad, lvl 9, Fea. 728 Steelhead III N/A 

73 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 4 

74 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III 5 

75 N160 W91, SW quad, lvl 9, Fea. 728 Chinook III UC 

76 N52 W101, SE quad, lvl 8 Steelhead II N/A 

77 N52 W101, SE quad, lvl 8 Chinook II 4 

78 N52 W101, SE quad, lvl 8 Chinook II UC 

79 N52 W101, SE quad, lvl 8 Chinook II UC 

80 N52 W101, SE quad, lvl 8 Coho II N/A 

81 N52 W101, SE quad, lvl 8 Chum II N/A 

82 N52 W101, SE quad, lvl 8 Steelhead II N/A 

83 N52 W101, SE quad, lvl 8 Chinook II UC 

84 N52 W101, SE quad, lvl 8 Chinook II UC 
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85 N52 W101, SE quad, lvl 8 Chinook II UC 

86 N52 W101, SE quad, lvl 8 Chinook II 4 

87 N52 W101, SE quad, lvl 8 Chinook II UC 

88 N52 W101, SE quad, lvl 8 Chinook II 4 

89 N52 W101, SE quad, lvl 8 NA III NA 

90 N52 W101, SE quad, lvl 8 UC III UC 

91 N52 W101, SE quad, lvl 8 NA III NA 

92 N52 W101, SE quad, lvl 8 UC III UC 

93 N52 W101, SE quad, lvl 8 NA III NA 

94 N52 W101, SE quad, lvl 8 UC III UC 

95 N52 W101, SE quad, lvl 8 4 III 4 

96 N52 W101, SE quad, lvl 8 5 III 5 

97 N52 W101, SE quad, lvl 8 UC III UC 

98 N52 W101, SE quad, lvl 8 5 III 5 

99 N52 W101, SE quad, lvl 8 UC III UC 

100 N52 W101, SE quad, lvl 8 UC III UC 
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Appendix C. Results of Morphometric Classification, Type II vertebrae from Cathlapotle 
 

Index Mean L Mean H L_H_ratio R species 

1 10.02 14.81 0.67657  [1,] "Chinook"   

2 8.82 13.09 0.673797  [2,] "Chinook"   

3 10.01 14.2 0.70493  [3,] "Chinook"   

4 10.09 14.38 0.701669  [4,] "Chinook"   

5 9.8 14.73 0.665309  [5,] "Chinook"   

6 9.87 12.48 0.790865  [6,] "steelhead" 

7 8.05 11.6 0.693966  [7,] "Chinook"   

8 9.04 11.54 0.783362  [8,] "steelhead" 

9 6.94 12.12 0.572607  [9,] "Chinook"   

10 8.72 12.41 0.702659 [10,] "Chinook"   

11 8.19 12.04 0.680233 [11,] "Chinook"   

12 9.35 13.32 0.701952 [12,] "Chinook"   

13 9.21 12.73 0.723488 [13,] "Chinook"   

14 8.76 12.83 0.682775 [14,] "Chinook"   

15 6.93 11.77 0.588785 [15,] "Chinook"   

16 8.57 12.4 0.691129 [16,] "Chinook"   

17 6.9 9.88 0.698381 [17,] "Chinook"   

18 10.24 14.42 0.710125 [18,] "Chinook"   

76 8.69 10.55 0.823697  [1,] "steelhead" 

77 7.87 10.12 0.777668  [2,] "Chinook"   

78 7.39 11.06 0.668174  [3,] "Chinook"   

79 7.77 10.89 0.713499  [4,] "Chinook"   

80 6.06 8.38 0.72315  [5,] "coho"      

81 7.72 9.74 0.792608  [6,] "chum"      

82 9.67 10.74 0.900372  [7,] "steelhead" 

83 7.65 10.66 0.717636  [8,] "Chinook"   

84 7.63 11.77 0.648258  [9,] "Chinook"   

85 8.21 11.53 0.712056 [10,] "Chinook"   

86 7.56 10.05 0.752239 [11,] "Chinook"   

87 7.7 11.45 0.672489 [12,] "Chinook"   

88 7.75 11.21 0.691347 [13,] "Chinook"  
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Appendix D.  Results of Morphometric Classification, Type III vertebrae from 

Cathlapotle 
 

Index Mean L Mean H L_H_ratio R species 

19 9.65 12.39 0.778854 [1,] “Chinook” 

20 10.33 14.12 0.731586 [2,] “Chinook” 

21 9.62 12.4 0.775806 [3,] “Chinook” 

22 12 15.66 0.766284 [4,] “Chinook” 

23 12.03 15.79 0.761875 [5,] “Chinook” 

24 9.64 13.23 0.728647 [6,] “Chinook” 

25 10.03 12.7 0.789764 [7,] “Chinook” 

26 10.3 14.94 0.689424 [8,] “Chinook” 

27 12.63 16 0.789375 [9,] “Chinook” 

28 9.88 15.21 0.649573 [10,] “Chinook” 

29 9.81 13.47 0.728285 [11,] “Chinook” 

30 12.18 15.73 0.774317 [12,] “Chinook” 

31 8.59 12.63 0.680127 [13,] “Chinook” 

32 9.52 12.43 0.765889 [14,] “Chinook” 

33 9.98 13.44 0.74256 [15,] “Chinook” 

34 10.68 14.2 0.752113 [16,] “Chinook” 

35 9.39 14.17 0.662668 [17,] “Chinook” 

36 9.52 12.35 0.77085 [18,] “Chinook” 

37 12.17 15.97 0.762054 [19,] “Chinook” 

38 9.67 12.66 0.763823 [20,] “Chinook” 

39 9.65 13.9 0.694245 [21,] “Chinook” 

40 12.62 15.62 0.807939 [22,] “Chinook” 

41 9.17 12.91 0.710302 [23,] “Chinook” 

42 9.69 12.38 0.782714 [24,] “Chinook” 

43 10.31 13.46 0.765973 [25,] “Chinook” 

44 9.77 12.55 0.778486 [26,] “Chinook” 

45 11.14 15.17 0.734344 [27,] “Chinook” 

46 10.22 13.89 0.735781 [28,] “Chinook” 

47 9.33 12.26 0.761011 [29,] “Chinook” 

48 8.75 13.84 0.632225 [30,] “Chinook” 

49 8.37 11.97 0.699248 [31,] “Chinook” 

50 8.66 12.71 0.681353 [32,] “Chinook” 

51 9.28 12.82 0.723869 [33,] “Chinook” 

52 9.55 12.46 0.766453 [34,] “Chinook” 

53 9.72 13.66 0.711567 [35,] “Chinook” 

54 8.73 13.15 0.663878 [36,] “Chinook” 

55 9.32 13.34 0.698651 [37,] “Chinook” 

56 10.47 14.98 0.698932 [38,] “Chinook” 

57 9.72 13.04 0.745399 [39,] “Chinook” 

58 8.62 11.06 0.779385 [40,] “Chinook” 
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59 9.41 12.42 0.757649 [41,] “Chinook” 

60 9.78 12.77 0.765857 [42,] “Chinook” 

61 12.15 15.6 0.778846 [43,] “Chinook” 

62 9.43 13.09 0.720397 [44,] “Chinook” 

63 8.55 11.1 0.77027 [45,] “Chinook” 

64 9.92 13.35 0.743071 [46,] “Chinook” 

65 8.82 12.48 0.706731 [47,] “Chinook” 

66 11.09 15.14 0.732497 [48,] “Chinook” 

67 8.74 12.38 0.705977 [49,] “Chinook” 

68 9.67 12.13 0.797197 [50,] “Chinook” 

69 9.09 12.31 0.738424 [51,] “Chinook” 

70 7.29 9.19 0.793254 [52,] “chum” 

71 6.83 9.72 0.702675 [53,] “Chinook” 

72 6.48 7.48 0.86631 [54,] “steelhead” 

73 9.63 13.32 0.722973 [55,] “Chinook” 

74 8.82 13.11 0.672769 [56,] “Chinook” 

75 11.12 14.5 0.766897 [57,] “Chinook” 

89 6.93 8.97 0.772575 [1,] “coho” 

90 8.18 10.98 0.744991 [2,] “Chinook” 

91 9.35 10.71 0.873016 [3,] “steelhead” 

92 9.06 12.78 0.70892 [4,] “Chinook” 

93 7.34 8.6 0.853488 [5,] “steelhead” 

94 8 12.44 0.643087 [6,] “Chinook” 

95 9.56 13.94 0.685796 [7,] “Chinook” 

96 10.74 14.66 0.732606 [8,] “Chinook” 

97 7.89 11.4 0.692105 [9,] “Chinook” 

98 10.81 15.35 0.704235 [10,] “Chinook” 

99 8.12 12.42 0.653784 [11,] “Chinook” 

100 8.82 12.06 0.731343 [12,] “Chinook” 
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