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Abstract 

The multi downscaled-scenario products allow us to better assess the uncertainty of the 

variations of precipitation and temperature in the current and future periods. Joint 

Probability distribution functions (PDFs), of both the climatic variables, might help better 

understand the interdependence of the two, and thus in-turn help in accessing the future 

with confidence. In the present study, we have used multi-modelled statistically 

downscaled ensemble of precipitation and temperature variables. The dataset used is multi-

model ensemble of 10 Global Climate Models (GCMs) downscaled product from CMIP5 

daily dataset, using the Bias Correction and Spatial Downscaling (BCSD) technique, 

generated at Portland State University. The multi-model ensemble PDFs of both 

precipitation and temperature is evaluated for summer (dry) and winter (wet) periods for 

10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to 

establish the joint distribution of two variables on multi-model ensemble data. Results have 

indicated that the probabilistic distribution helps remove the limitations on marginal 

distributions of variables in question and helps in better prediction. The joint distribution 

is then used to estimate the change in trends of said variables in future, along with 

estimation of the probabilities of the given change. The joint distribution trends are varied, 

but certainly positive, for summer and winter time scales based on sub-basins. Dry season, 

generally, is indicating towards higher positive changes in precipitation than temperature 

(as compared to historical) across sub-basins with wet season inferring otherwise. 

Probabilities of changes in future, as estimated by the joint precipitation and temperature, 

also indicates varied degree and forms during dry season whereas the wet season is rather 

constant across all the sub-basins.  
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1 Introduction 

1.1 Background about climate change influence 

Many global services are closely related/dependent on climate of the region e.g. 

agriculture, water, ecosystem, and energy, amongst others. Climate change, resulting from 

increasing emission of carbon dioxide, will threaten these services by increase in 

temperature, changes in the amount and intensity of precipitation, among others, and thus 

affecting variability of climatic variables (IPCC 2007, IPCC 2013). 

 Agriculture strongly relies on specific climate condition. Warm temperature will cause 

many crops to grow fast. High CO2 level will increase the yield of crops. However, to 

understand the overall effect of climate on agriculture is much more difficult. Warm 

temperature will benefit crops in some area, but if warm temperature exceeds the optimal 

level, the yield will reduce. More extreme temperature and precipitation will harm the 

growth of crops. Extreme events, especially floods and drought, will directly reduce the 

crop yield. For example, in 2008, the Mississipi experienced a flood just before the harvest 

period for many crops, causing an estimated loss of 8 billion for farmers (Karl et al, 2009). 

Drought along with warmer temperature and less precipitation will threaten the water 

supplies for the crop irrigation, which will directly reduce the production of crops.  

Water is important to human. Reliable and clean water supply is necessary to sustain our 

health. Climate change is likely to shrink the supply of water and simultaneously extend 

the demand for it. For example, many areas of the United States, especially the west, 

currently face the water shortage issue. The amount of water in this area is already limited 

and demand will continue to rise with the growth in population. In addition, the west has 
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faced less rainfall over the last 50 years, as well as increase in the severity and length of 

the drought. (Karl et al. 2009). Furthermore, we also need water for other purposes, such 

as energy production, agriculture, navigation, recreation. Many of these uses will put more 

pressure on the availability of the water supply. As for water quality issue, it can be already 

seen in areas with excessive precipitation. Heavy precipitation will increase not only the 

amount of runoff into lake, stream and other water bodies, but also will wash sediment, 

pollutants, trash, animal waste and other materials into water supplies. Overall, our water 

supplies will become unsafe and unusable.  

Climate change plays an important role on the ecosystem, which will lead to the changes 

of the habitat and range of species. Take an aquatic species as an example, warm air 

temperature will directly raise the water body temperature. Warmer water temperature will 

harm the aquatic organisms that only live in cold water environment, such as salmon and 

trout. In addition, warmer water temperature will also expand the range of non-native 

species, allowing them to move to the places that previously have cold environment. Such 

migration will break the balance among species living in these areas. The population of 

native-species often decrease as the non-native species appear as prey and competence. 

(Backlunk et al. 2008). Combined with other factors, like excessive precipitation, which 

will bring adverse impact on water quality, these factors will exacerbate the problems on 

the aquatic ecosystem.  

Energy production also highly depends on climate and changes in climatic variables are 

very likely to increase the risk of energy supply issue. Warmer temperature in the winter 

create more precipitation as rain fall rather than snow. In addition, warmer temperature will 
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cause snow to melt earlier in the year and thus affecting spring flow to streams. For 

example, some areas in United States, particularly the Northwest, use water to produce 

energy by hydropower. The amount of energy generated through hydropower will reduce 

if climate change results in low stream flow in this area.  

The climate of the 21st century will very likely be quite different from the climate we 

observed in the past. The changes will continue to be large in the future period with 

increasing carbon dioxide emissions. Analyzing and quantifying the signal of climate 

change will be much in demand considering the above sectors, which are highly relating to 

the sustainability and human living.  

1.2 Purpose of this study 

Temperature and precipitation are two main climatic variables, changes in these is highly 

indicative of climate change, and it is difficult to simulate rainfall and temperature 

simultaneously due to the interdependence (correlation) between them. On the other hand, 

as we discussed above, cumulative effects of these two have influenced various services. 

Typically most of the research have focused on study of temperature and precipitation 

independently. Interdependence between temperature and precipitation is somewhat 

neglected topic in the literature. However, there is obvious physical relationship between 

temperature and precipitation; warm temperature will increase the rate of evaporation into 

atmosphere and in turn the capacity of atmosphere to hold water, leading to excessive 

precipitation in few areas and droughts in others. In this study, Copula is applied to develop 

the joint distribution of temperature and precipitation since it allows us to model the joint 

multivariate distributions easily by estimating the marginal distributions of variables and 
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their correspondence separately. In addition, Copula has been widely used in different areas 

to simulate the interdependence among variables (Zhang and Singh 2007; Salvadori and 

De Michele 2006; Kao and Govindaraju 2008; Favre et al. 2004, Zhang and Singh 2007; 

Salvadri and De Michele 2010; Shiau 2006; Dupuis 2007; Kao and Govindaraju 2010; 

Wong et al. 2010; Madadgar and Moradkhani 2011; Madadgar and Moradkhani 2013; 

Madadgar and Moradkhani 2013; Risley, J. et al. 2011), including drought analysis, rainfall 

analysis, flood analysis etc. Through this study, we are employing Copula to develop the 

joint distribution of temperature and precipitation and ultimately filling the void of 

negligence of climate change impact using interdependence of the two variables. The 

results will further provide more useful and comprehensive information to various service 

sectors of this region, like water resource, agriculture, ecosystem, energy to adapt their 

managements in facing future climate change.   

The study is conducted over Columbia River Basins (CRB); the largest river in the Pacific 

Northwest region of North America. It drains an area of about 567000 km2 consisting of 

portions of seven states in the western USA (Washington, Oregon, Idaho, Montana, 

Wyoming, Nevada, and Utah), contributing to almost 85% of the basin and part of British 

Columbia, in western Canada (15% of the basin). Nearly two–thirds of precipitation occurs 

during half of the year (October-March) in CRB. The amount of precipitation declines from 

later spring to early fall with high pressure system dominating west, generally keeping the 

Northwest fairly dry. Contrasts in Pacific Northwest climate can be stark owing to the 

region’s mountains, especially the Cascade mountain range. The Cascades create a barrier 

between the maritime climate influencing the west, where temperatures are generally mild 
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year-round, and the continental climate influencing the east, with more sunshine and less 

precipitation (Littell et al. 2009).  Historical climate variability has already been indicated 

to significantly alter mean and extreme hydro-climatic conditions of the Columbia River 

(Gershunov and Barnett, 1998; Mantua et al., 1997; Cayan et al., 1999, Leung et al. 2004). 

Temperature and precipitation changes resulting from climate change can significantly 

alter snowpack and stream flow in Columbia River (Leung and Wigmosta, 1999; Hamlet 

and Lettenmaier, 1999; Mote et al,. 1999; Leung et al. 2004; Halmstad, A. et al. 2012; 

Najafi M.R. and H. Moradkhani 2013; Najafi, M.R. and H. Moradkhani 2014) and in turn 

bring adverse impacts on agriculture, water resource, ecosystem and energy, especially 

within the rapid growth of economy and population in this region. Information produced 

by CRB climate change impact studies can therefore be helpful in providing options for 

various sectors to adapt to climate change.  
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2 Literature Review 

2.1 Climate change impact on temperature and precipitation respectively 

It is difficult to simulate temperature and precipitation simultaneously due to their 

interdependence, researchers have focused their resources to study the (future) changes in 

temperature and precipitation separately across the world.. Piao et al. 2010 studied the 

projected change and trends of temperature and precipitation respectively under future 

climate change and assessed the impacts on water resource and agriculture in China. Feng 

et al. 2014 studied the change of temperature and precipitation separately over the global 

range based on 20 global climate models (GCMs) of the Coupled Model Inter-comparison 

project (CMIP5) and examined shifts in climate regimes over the global land area. 

Wuebbles et al. (2014) studied the climate extremes in the contiguous United States using 

CMIP5 dataset. Future climate and impact studies based in USA are also conducted by 

many researchers including (Leung et al. 2004; Brunsell et al. 2010; Moradkhani H. et al. 

2010; Jung, I. et al. 2011; Halmstad et al. 2012; Jung, I. et al. 2012; Pierce et al. 2013; Rana 

and Moradkhani. 2014- Submitted; Rana et al. 2015- submitted; among others). Leung et 

al. (2004) studied the impacts of climate change on water resource in the western U.S. 

using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) 

Parallel Climate Model (PCM) and their results indicated towards significant effects on 

water resources in the western U.S. Brunsell et al. (2010) studied seasonal trends in air 

temperature and precipitation patterns from 21 global climate models, under the Special 

Report on Emissions Scenarios A1B scenario used by Intergovernmental Panel of Climate 

Change (IPCC) in assessment report 4, for six grid cells representing Kansas. Results 

indicated that temperature is likely to warm in all seasons, with the largest trends of the 
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order of 0.04 oC/year in summer and fall. Precipitation is likely to increase slightly in winter 

and decrease in summer and fall. Halmstad et al. (2012) analyzed precipitation extremes in 

Willamette River Basin, USA with 12 different combinations of General Circulation Model 

(GCM)-regional climate model (RCM). The extreme value analysis results showed 

significant differences between models runs for both historical and future periods with 

considerable spatial variability in precipitation extremes. Pierce et al. (2012) used 16 

GCMs with two statistical downscaling techniques and three nested dynamical regional 

climate models to develop probabilistic projections of temperature and precipitation 

changes over California by the 2060s.  

2.2 Researches on the interdependence between temperature and precipitation 

As listed in the above section, most of research considers the change of temperature and 

precipitation separately (Leung et al. 2004; Brunsell et al. 2010; Najafi, M. et al. 2011 

Halmstad et al. 2012; Pierce et al. 2013; Feng et al. 2014; Wuebbles et al. 2014;). Their 

interdependence is somewhat neglected topic in the literature on climate change impact 

studies (Buishand et al. 1999). Attention should be directed towards the combined effects 

of temperature and precipitation changes and associated impacts. Limited studies have 

looked into this aspect, e.g., Zhao et al. 1992 studied the correlation between monthly total 

precipitation and monthly mean temperature at nearly 1000 stations in the contiguous 

United States. Over most of the United States, summer precipitation and temperature were 

negatively correlated, which indicates that warm summers tended to be drier. Buishand et 

al. 1999 studied dependence of precipitation and temperature at Florence and Livorno and 

their results indicated a marked increase in the mean wet-day precipitation amount with 
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increasing temperature (Buishand et al. 1999). Temporal relationships between the two 

variables have been studied by Rajeevan et al. (1998) (monthly basis) and Huang et al. 

(2009)  (annual basis). Collins and Knight (2007) studied the possibility of ensembles and 

probabilistic projections for prediction of climate change. Tebaldi et al. (2007) established 

the joint projections of future temperature and precipitation trends and changes by applying 

a Bayesian hierarchical model to the simulated date sets from general circulation models. 

In this study, after establishing the correlation between temperature and precipitation, we 

will focus on the joint changes of temperature and precipitation under climate change 

impact in CRB.  

2.3 Copula application in different areas 

Statistical methods for probabilistic projections have been applied since the joint behavior 

of two or more correlated variables has been established in the distant past. Hydrologic and 

climatological variables are usually correlated to each other and thus statistical methods 

could be used to explain interdependence. In literature, over past years, Copula has been 

widely used to develop the joint distribution for various applications; including rainfall 

analysis (Zhang and Singh 2007; Salvadori and De Michele 2006; Kao and Govindaraju 

2008), flood analyses(Favre et al. 2004, Zhang and Singh 2007; Salvadri and De Michele 

2010), drought analyses (Shiau 2006; Dupuis 2007; Kao and Govindaraju 2010; Wong et 

al. 2010; Madadgar and Moradkhani 2011; Madadgar and Moradkhani 2013). Madadgar 

et al. (2013) employed Copula to develop the conditional distribution for post processing 

of hydrologic forecast and results indicated that using Copula could efficiently improve the 

stream flow predictions, reduce the uncertainty and increase the reliability of forecast. 
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Recently, Madadgar et al. (2014) improved Bayesian Model Averaging (BMA) by 

inserting Copula for hydrologic forecasts and results demonstrated that predictive 

distributions are more accurate, reliable, and more confident with small uncertainty after 

Cop-BMA. In respect to temperature and rainfall interdependence, Schӧlzel et al. (2008) 

used a simple statistical model based on the Copula approach. They found that cold periods 

were accompanied by small precipitation amounts. Recently, Cong et al. (2012) applied 

Copula to develop the joint distribution between them in historical data and consequently 

studied their interdependence in historical period. Copula has advantage in joining 

variables with diverse correlation and dependence structure since it develops the joint 

distribution based on the variables’ marginal distributions, which are not restricted to any 

parametric distribution (like Gaussian distribution). Based on this advantage, Copula is 

applied to develop the joint relationship between temperature and precipitation in this 

study.  

2.4 Multi model ensemble and bootstrap sampling 

Global Climate Models (GCM) can be used to obtain the projections of climate variables, 

such as temperature and precipitation and in turn help us to analyze the climate change 

impact in the future period. A large number of GCMs have been provided so far. 

Advantages of using multi-model ensemble instead of single scenario/projection from 1 

GCM have been pointed out in various studies previously (Krishnamurti, Kishtawal et al. 

2000; Raftery et al. 2005; Duan et al. 2007, Tebaldi and Knutti 2007, Duan and Phillips 

2010, Sillmann, Kharin et al. 2013; Samadi S.Z. et al. 2013). Multi-model ensemble 

provides an alternative to improve projections, in terms of reduction of spread from large 
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datasets of climate projections, requires less computation capacity, and improves accuracy 

in model predictions. It takes different models’ strengths into consideration, and is able to 

capture various aspects of the prediction processes, and thus more reliable simulations and 

consequently less uncertainty. Various studies on multi-model ensemble have been 

conducted with different techniques (e.g. Giorgi and Mearns 2002, Knutti et al. 2010, Feng 

et al. 2014). Even though several advanced methods have been proposed to combine multi-

model ensemble (e.g. Duan and Phillips 2010; Sillmann, Kharin et al. 2013), research have 

indicated that ensemble mean outperforms all or most of the individual ensemble (e.g. 

Tebaldi and Knutti 2007; Knutti et al. 2010). It has the advantages of simplification, 

efficiency, and computationally less demanding. Additionally, there is empirical evidence 

from various areas that multi models average performs better in prediction or behaves more 

favorably to observations than any single model (Knutti et al 2010, Thomson et al. 2006).  

Examples include predictions of the El Niño-Southern Oscillation (ENSO), health, 

agriculture, sea level pressure (SLP) (Palmer et al. 2005, Thomson et al. 2006, Cantelaube 

and Terres 2005, Gillett et al. 2005, Knutti et al 2010).  

In order to consider the variability and confidence level of ensemble mean as well as the 

strength of multi models combination, ensemble mean using bootstrap sampling will be 

applied to pre process our multi-model ensembles. The bootstrap sampling method was 

published by Bradley Efron in “Bootstrap methods: another look at the jackknife (1979)” 

(Efron 1979). Bootstrap sampling procedure will be applicable to the below situations: 

when the theoretical distribution of a statistic of interest is complicated or unknown; when 
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the sample size is insufficient for straightforward statistical inference and when power 

calculations have to be performed, and a small pilot sample is available (Ader et al. 2008).  
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3 Thesis Overview 

In the present study, we have tried to establish probabilistic future (copula based) with 

multi-model ensemble (bootstrap sampling). We have established joint distribution 

between temperature and precipitation climate variables in historical dataset (1970-1999) 

using Copula, owing to its wider application in literature and other advantages. The method 

is applied over 10 sub-basins in Columbia River Basin (CRB) using multi-model ensemble 

of 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset. 

The multi-model ensemble Probability Density Functions (PDFs) of both precipitation and 

temperature are evaluated for dry (dry i.e. April-September) and wet (i.e. October-March) 

periods in historical data. The joint PDFs are then used to evaluate the trends over sub-

basins in future multi-model ensemble scenario period (2070-2099) along with estimation 

of the likely occurring of the given change. The study is organized in following manner: 

Introduction section 1 is followed by Section 2 literature review. Section 3 describes thesis 

overview. Section 4 introduces study area and data used. Section 5 lists methodology 

(multi-model ensemble and joint distribution) applied for analysis. Section 6 (results) 

presents multi-model ensemble product and for application of Copula in studying the joint 

change of temperature and precipitation. Section 7 deals with discussion of obtained 

results. Section 8 provides concluding remarks.   
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4 Study Area and Data set 

4.1 Study Area 

This study aims to analyze the multi-model ensemble climate projections over Columbia 

River Basin (CRB) (Figure 1, adopted from Rana et al. 2015), in the northwestern region 

of USA, using a probabilistic joint distribution. The Columbia River is the largest river in 

the Pacific Northwest region of North America. It drains an area of about 567000 km2 

consisting of portions of seven states in the western USA (Washington, Oregon, Idaho, 

Montana, Wyoming, Nevada, and Utah), contributing to almost 85% of the basin and part 

of British Columbia, in western Canada (15% of the basin). The climate varies from moist, 

maritime conditions in the western parts of the basin to semi-arid and arid conditions in the 

south-eastern part with topography playing an important role on precipitation within the 

basin. Mean annual precipitation varies from as much as 2500 mm/year along the crest of 

the Washington Cascades, to between 1000 and 1800 mm/year in the northern Rocky 

Mountains, the west slope of the continental divide in western Montana, and the Canadian 

portion of the basin. The driest parts of the basin, with about 200 to 400 mm of annual 

precipitation, lie on the Columbia Plateau in Washington and the Snake River Plain in 

Idaho. The river’s annual discharge rate fluctuates with precipitation and ranges from 

120000 cfs (cubic feet per second) in a low water year to 260000 cfs in a high water year. 

The Columbia has ten major tributaries: the Kootenay, Okanagan, Wenatchee, Spokane, 

Yakima, Snake, Deschutes, Willamette, Cowlitz, and Lewis rivers. 

Accordingly, based on user interest from various stakeholders in the study area and 

hydrological/climatological regimes, the 10 specified sub-basins (Figure 1) are delineated 

using 30 arc-second data DEM from National Elevation Dataset (available at 
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http://ned.usgs.gov/), resampled at 1/160 for consistency with the climate variables 

resolution in the study. The delineation was based on the flow accumulation and direction 

maps for 10 specific stream flow location points in the CRB to include/support planning at 

geographic scales ranging from relatively small river basins (Mica Basin) to main-stem 

planning studies (The Dalles Basin) for the CRB as a whole. The 10 sub-basin delineated 

are namely, brackets represent their name used during this entire study, The Dalles (dalles), 

TW Sullivan (sul), Priest Rapids (pr), Ice Harbor (ib), Oxbox (oxbow), Chief Joseph (cj), 

Waneta (wan), Corra Linn (cor), Revelstoke (rev), and Mica (mica) (Table1).  This strategy 

would further assist in for hydrological model calibration for the sub-basins in the study 

area. 
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Figure 1 Columbia River Basin and its 10 sub basins 
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Table 1 Description of different sub-basins delineated and used in this study (Refer to Figure 1 for details on geographical locations of each) 

 

S.No. 

Sub-basin 

name 

Representative 

Name 
Area (1000km2) 

Avg. Annual P 

(mm) 

Avg. Annual 

TMax (0C) 

Avg. Annual 

TMin (0C) 

1 Chief Joseph cj 193.6 1024 9 -3 

2 Corra Linn cor 121.7 1188 7.4 -4.3 

3 The Dalles dalles 614.3 684 12.2 -1.7 

4 Ice Harbor ib 278.5 578 13.4 -1.7 

5 Mica mica 8.4 1164 6 -5.3 

6 Oxbow oxbow 187 493 13.7 -2 

7 Priest Rapids pr 245.2 915 9.8 -2.3 

8 Revelstoke rev 13.4 1189 6 -5.1 

9 TW Sullivan sul 24.6 1661 13.9 2.1 

10 Waneta wan 151.9 1132 7.9 -4 
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4.2 Data set 

In the present study, statistically downscaled climate data for 10 Global Climate Models 

(GCMs) from CMIP5 dataset over Columbia River Basin was used for all the analysis. 

They were all downscaled using the Bias correction and spatial downscaling (BCSD) (Rana 

et. al. 2014- Submitted). The analysis of multi-modelling techniques was done on historical 

data, 1970-1999, whereas scenario RCP 4.5 is considered for analysis of climatic 

parameters in future data period 2070-2099. Daily records of precipitation (P) and near 

surface temperature (T) in the study region (Figure 1) were collected for 10 GCMs (Table 

1) of the CMIP5 data (Taylor et al. 2012). Readers are referred to Taylor et al. 2012 and its 

references for details about the scenarios and CMIP5 dataset. Details of the models, 

institution, GCM resolution and scenario used are provided in table 2, along with total other 

information used in the present study. Observational data (Livneh et. al. 2013) for 

precipitation (P), temperature minimum (TMin) and temperature maximum (TMax) at 

gridded spatial resolution of 1/160 is used for evaluation of particular multi-modelling 

method in the historical data period (1970-1999), as same was used for downscaling BCSD 

data. Therefore, the spatial and temporal resolution is same and comparative analysis is 

done for a multi-model method BCSD data set. 
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Table 2 GCM Models used in this study and their characteristics. All the models used were statistically downscaled using BCSD technique for 

entire CRB for RCP 4.5 in future period (2070-2099) 

S.No. Model Center 

Atm. 

Resolution 

(Lon x Lat) 

Vertical 

levels in 

Atm. 

1 BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration 2.8 × 2.8 26 

2 CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8 × 2.8 35 

3 CCSM4 National Center of Atmospheric Research, USA 1.25 × 0.94 26 

4 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

5 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

6 inmcm4 Institute for Numerical Mathematics, Russia 2.0 × 1.5 21 

7 IPSL-CM5A-LR Institut Pierre Simon Laplace, France 3.75 × 1.8 39 

8 IPSL-CM5A-MR Institut Pierre Simon Laplace, France 2.5 × 1.25 39 

9 IPSL-CM5B-LR Institut Pierre Simon Laplace, France 3.75 × 1.8 39 

10 MIROC5 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science and Technology 

1.4 × 1.4 40 
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5 Methodology 

5.1 Bootstrap Sampling for multi models ensemble 

Before deducing marginal distributions of climatic variables (temperature and 

precipitation), we ought to select the most suitable theoretical distributions. In case of 

climate change scenarios, it is advisable to do so on ensemble of simulations to be able to 

quantify uncertainty in climate in a probabilistic way. Advantages of using multi-model 

ensemble instead of single scenario/projection from 1 GCM have been pointed out in 

various studies (Krishnamurti et al 2000, Raftery et al. 2005, Duan et al. 2007, Tebaldi et 

al. 2007, Knutti et al. 2010, Duan and Phillips 2010, Sillmann et al. 2013, Shahrbanou et 

al. 2014). Here we will apply ensemble mean using bootstrap sampling to pre-process our 

multi-model GCM simulations in historical period (1970-1999). The same approach would 

be applied to future dataset (2070-2099) for multi-model ensemble, on satisfactory 

application in historical dataset, to analyze the trends of changes in temperature and 

precipitation as compared to historical ones.  

The basic idea of bootstrap sampling is to infer the estimates or statistics, like mean and 

variance, about population from sample datasets. It is simply random sampling from 

population with replacement based on the desired statistics by users (means in this case 

and thus reduction of variance). For bootstrap sampling, the existence sample represents 

“population” (10 GCM projections) and resample data set (multi-model ensemble) is 

regarded as sampling from “population”, which enables us to measure the quality of 

inference (mean) from resample data to “population”. Furthermore, bootstrap sampling can 

provide with the typical distribution, uncertainty and confidence level inherent in the 
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estimation of statistics and avoids a single estimation from the only original sample without 

confidence level. Suppose we had a sample with ��, ��, ⋯ , �� n points. For this dataset, we 

are interested in the statistical estimation:  

 � = 	
��, ��, ⋯ , ��� (1) 

Where � is the statistical estimation from sample; 	 is statistical estimation function of the 

samples provided.  

In the present study, bootstrap sampling method will be used to resample our dataset 

(temperature and precipitation of dry and wet seasons in yearly step) for 200 times and thus 

creating a new multi-model ensemble time series for the period for both the climatic 

variables.  Each of these resamples is obtained by randomly sampling n points from original 

sample 
��, ��, ⋯ , ��� with replacement. In turn, each resample dataset will be constructed 

by ��∗, ��∗, ⋯ , ��∗  n points. It is quite likely that some of the original sample elements are 

selected more than once but others are omitted, which is the intention behind bootstrap 

sampling to resample large times in order to take all the elements into consideration.  

Mathematically, we will be able to compute its statistical estimation: 

 ��∗ = 	
���∗ , ���∗ , ⋯ , ���∗ � (2) 

Where i = 1, ⋯ N, N is the total number of resamples and i represents each resample. 

���∗ , ���∗ , ⋯ , ���∗  represent randomly sampled n points from original sample set. 	  is 

statistical estimation function, which is the mean of  resample. In addition to a set of 

statistical estimation �� ∗ constructed, a distribution of statistical estimations �∗  will be 
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obtained and in turn be used to approximate the distribution of the actual statistical 

estimation (s). The statistical estimation in consideration for the study is representation of 

mean of the population for each time step (year). Thus, the resampled dataset is 

representative of the mean of 10 GCM simulations at that time step (year) and the 

procedure is repeated for each year for entire period both in historical and future data as 

well as dry and wet seasons. 

5.2 Copula 

Various methods can be deployed to establish the joint projections/distribution, Copula 

being one such statistical method. Its advantages includes, not limited to, ability to join 

several variables with diverse correlation and dependence structure. It develops the joint 

distribution by estimating the marginal distributions of variables and their correspondence 

separately, which are not restricted to any parametric distribution (e.g. Gaussian 

distribution). Copula is a statistical procedure to join multivariate distribution functions by 

their marginal distribution functions uniform (Nelson 2007). The method has received of 

great interest lately and have been applied widely in hydrological and climatological 

studies, as discussed in introduction section. The physical relationship 

(interdependence/correlation) between temperature and precipitation will determine the 

inherent relationship between these two climatological variables. The interdependence of 

these two climatic variables using Copula have not been extensively investigated (Scholzel 

and  Friederichs  2008; Cong et al. 2012).  In the present study, we have investigated the 

same using five parametric copula families (discussed below) to establish correlation 

between the two variables. We have established the joint distribution of temperature and 
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precipitation to study the changes in trends and probabilities of future multi-model 

ensemble scenario in respect to historical multi-model ensemble scenario, for all 10 sub-

basin. The analysis is performed in dry (April-September) and wet (October-March) season 

across CRB. Thus, the changes across sub-basin are studied with joint distribution and 

probabilities instead of considering them independently. 

Mathematically, assume a pair of random variables X and Y, with cumulative distribution 

functions (CDFs)  �
�� = �
� ≤ �� and  G
�� = �
� ≤ �� , respectively, and a joint 

distribution of �
�, �� = �
� ≤ �, � ≤ �� are given. Each pair of (x, y) is associated with 

three numbers: �
��, �
��, and �
�, �� (each of these numbers falls in the range of [0,1]). 

To be specific, each pair (x, y) of real numbers associates with a point �
�
�� , �
���, and 

in turn this ordered pair corresponds to a number �
�, �� in [0,1] (Nelson 2007).  

The Copula a function to describe this correspondence, i.e. assigning the value in [0, 1] 

equal to the value of the joint distribution function �
�, ��, can be written as below 

function: 

 �
�, �� = �
���
���, 
���
 �� = !
�,  � (3) 

where � and   are equal to CDFs of X and Y respectively: � = �
��,  = �
��, ranging 

from 0 to 1 (here � and   are strictly increasing functions);  C is the Copula function;  ��� 

and ��� are the inverse CDFs of X and Y respectively.  

Sklar’s theorem states that any multivariate joint distribution can be written in terms of 

cumulative distribution function of each variable and Copula is used to describe the 
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dependence or any level of correlation between variables (Sklar 1959).  Copula function 

satisfies the following properties: 

a) The joint probability density function: 

 "
�,  � = #!
�,  �
#�#  (4) 

 $
�, �� = #!
�,  �
#�# ∗ #�

#� ∗ # 
#� = "
�,  � ∗ $%
�� ∗ $&
�� (5) 

 

b) The conditional probability density function: 

 $
�|�� = (
%,&�
(
&� = )
*,+�×(-
%�×(.
&�

(.
&� = "
�,  � ∙ $%
�� (6) 

 

c) The boundary condition: 

 0 ≤ !
�,  � ≤ 1 (7) 

 !
� = 0,  � = !
�,  = 0� = 0 (8) 

 !
� = 1,  = 1� = 1 (9) 

 !
�,  = 1� = � (10) 
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 !
� = 1,  � =   (11) 

Here we just show two random variables situation, the joint distribution of multivariables 

has the same properties.   

Here we have shown just show two random variables situation, the joint distribution of 

multiple variables has the same properties. There are many parametric copula families 

available, which usually have parameters that control the strength of dependence. Below 

are five copula functions that are used in the present study: 

(1) Gaussian Copula: 

!
�,  �

= 1 1 1
23
1 − 5��� �6

∅89
+�
�:

∅89
*�
�:

;�< =− �� + �� − 25��
2
1 − 5�� ? @�@� 

(12) 

�, � ∈ B 

Where 5 linear correlation coefficient and ∅ is standard normal cumulative distribution 

function 

(2) T Copula: 

!
�,  � = 1 1 1
23
1 − 5��� �6

CD89
+�
�:

CD89
*�
�:

;�< =1 + �� + �� − 25��
 
1 − 5�� ?

�
+E�� �6
@�@� 

(13) 

�, � ∈ B 

where 5 linear correlation coefficient, tv is cumulative distribution function of t distribution 

with v degree of freedom 

(3) Gumbel Copula: 
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!
�,  � = ;�< F−G
− ln ��J +  
− ln  �JK� J6 L (14) 

where M measures dependency between u and v 

(4) Clayton Copula: 

!
�,  � = 
��J +  �J − 1��� J6  
(15) 

where M measures dependency between u and v 

(5) Frank Copula: 

!
�,  � = − 1
M ln N1 + 
;�J* − 1�
;�J+ − 1�


;�J − 1� O (16) 

where M measures dependency between u and v 

The joint distribution (of multi-model ensemble data) after  Copula is then used to get 

probabilistic projections/scenarios for future and historical data which in-turn is used to 

study changes, trends and probabilities of those variables in future climate change scenario. 
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6 Results 

6.1 Verification of bootstrap sampling in multi model ensemble 

We intended to generate multi-model ensemble to compute the mean statistics of models 

for combining the strength of each model; i.e. to get a series of mean values from a set of 

resample datasets instead of obtaining only one mean from single sample. Thus, estimates 

of mean statistics and variance would be tested in order to judge performance of multi-

model ensemble scenario against 10 individual GCMs, both in historical and future data. 

For both historical and future data, the performance is tested in 2 different seasons, namely 

wet season (October to March) and dry season (April to September), for both precipitation 

and temperature variables. Thus seasonal averages for the 30 years period in consideration 

for multi-model ensemble was tested against the individual GCMs. 

Mean absolute error (MAE) is calculated for the both of the original multi-model ensemble 

and multi-model ensemble with bootstrap sampling ensemble datasets regarding to the 

observation dataset from the same historical period:   

 PQR = ∑ ∑ |	TUC� − VW�C|X�Y�ZCY� [ ∗ \  (17) 

Where T represents each year from the historical period and here \ = 30. N is the total 

number of elements included in each year. For original ensemble dataset, N is equal to 10 

and for the bootstrap sampling ensemble dataset, N is equal to 200. 	TUC� is the value of 

each ensemble member from each year and VW�C is the observation value of each year.  

Figure 2 represents MAE values for precipitation and temperature in all sub-basins across 

CRB. It can be observed that bootstrap sampled multi-model ensemble outperforms the 

original multi-model ensemble against the observations in both season/climatic 
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variables/Sub-basins. The percentages of MAE improvement averaged over 10 sub basins 

of CRB from bootstrap sampled ensemble compared to mean-original ensemble data sets 

is 14.56% for precipitation in dry season and 12.56% in wet seasons, whereas it is 19.29% 

and 18.15% for dry and wet season for temperature respectively. Thus it could be 

concluded that bootstrap sampled ensemble data sets have an advantage of combining multi 

models’ strengths and result in decreasing the bias between simulations and observations 

than using original multi-model ensemble. 

 

Figure 2 Mean absolute value (MAE) for bootstrap sampled multi-model ensemble and original 

GCMs ensemble data sets in the historical period against observation data for precipitation (A- 

Dry Season and B-Wet Season) and temperature (C- Dry Season and D-Wet Season). 



 

28 

 

Further, frequency based histogram of bootstrap sampled multi-model ensemble is 

compared to 10 GCMs in all 10 sub-basins of CRB, to compare mean and variance 

statistics. Figure 3 and 4, represent the frequency based histograms of precipitation for 

bootstrap sampled multi-model ensemble against original GCMs ensemble in historical 

period (1970-1999) for dry and wet season respectively whereas figure 5 and 6 represents 

the same for temperature. It can be noted from Figure. 3, 4, 5, and 6 that histograms of 

bootstrap sampled ensemble are narrow in spread compared with original GCMs ensemble 

in all 10 sub basins in both season and variables in consideration. The narrow spread 

histograms of bootstrap sampled multi-model ensemble reduce the uncertainty/variance 

due to its shorter tails as compared to those of the histograms in original ensemble datasets, 

which in turn provides more accurate assumption of mean and variance of the dataset from 

10 GCMs in consideration.
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Figure 3 Frequency based histograms of precipitation seasonal average data sets in dry season for original GCMs and bootstrap sampled multi-

model ensemble over the historical period (1970-1999) in 10 sub basins of CRB. The pink color represents the original GCMs dataset and the 

blue color represents the bootstrap sampled multi-model ensemble dataset. 
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Figure 4 Frequency based histograms of precipitation seasonal average data sets in wet season for original GCMs and bootstrap sampled multi-

model ensemble over the historical period (1970-1999) in 10 sub basins of CRB. The pink color represents the original GCMs dataset and the 

blue color represents the bootstrap sampled multi-model ensemble dataset. 
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Figure 5 Frequency based histograms of temperature seasonal average data sets in dry season for original GCMs and bootstrap sampled multi-

model ensemble over the historical period (1970-1999) in 10 sub basins of CRB. The pink color represents the original GCMs dataset and the 

blue color represents the bootstrap sampled multi-model ensemble dataset. 
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Figure 6 Frequency based histograms of temperature seasonal average data sets in wet season for original GCMs and bootstrap sampled multi-

model ensemble over the historical period (1970-1999) in 10 sub basins of CRB. The pink color represents the original GCMs dataset and the 

blue color represents the bootstrap sampled multi-model ensemble datase
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6.2 Copula based joint relationship between temperature and precipitation 

6.2.1 Marginal distribution selection  

Since bootstrap sampled multi-model ensemble (herein called as multi-model ensemble) is 

found to be sufficient representation of the mean and variation of 10 GCMs in both 

historical and future period’s, thus application of Copula would be performed on the same. 

The joint distribution/projections of both temperature and precipitation variables is 

developed for both historical and future periods and both seasons. 

Application of Copula starts with fitting the theoretical distributions to temperature and 

precipitation multi-model ensemble datasets. Seven distributions including Gamma, 

Generalized Extreme Value (GEV), Lognormal, Gaussian, Weibull, Gumbel, and 

Exponential distributions are fitted to temperature and precipitation in both dry and wet 

seasons; both for historical (1970-1999) and future period (2070-2099) respectively. This 

is performed separately for each of the sub-basins. The parameters of marginal distributions 

are estimated by Maximum Likelihood Estimation method. Kolmogorov-Smirnov (K-S) 

test based on hypothesis test is used to find the appropriate theoretical distributions 

according the p-value at the selected significance level ^ = 0.05 (If p-value is large than 

0.05, the ensemble dataset belongs to this reference theoretical distribution. Otherwise we 

will reject the null hypothesis that the dataset belongs to this reference theoretical 

distribution). 

The Kolmogorov-Smirnov test (K-S test) is nonparametric test that will be used to choose 

the reference distribution suitable to the dataset. The K-S statistics quantifies the maximum 
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distance between the empirical cumulative distribution function (CDF) of the dataset and 

the reference distribution‘s CDF.   

 D = Maxe|�
�� − �
��|f (18) 

where F(x) and G(x) are the empirical and reference CDFs, respectively. Here our null 

hypothesis that our dataset follows the reference distribution and the alternative hypothesis 

is that our dataset doesn’t follow it. Based on the chosen significance level (like α=0.05), 

the calculated p-value if larger than α then we accept our null hypothesis otherwise reject 

the null hypothesis.  

Furthermore, Akaike Information Criterion (AIC) values are used to choose the best 

theoretical distribution from the approved theoretical distributions. Theoretical distribution 

with minimum AIC value is the best fitted one. (Madadgar et al. 2012 and Akaike et al. 

1974 ).  

Akaike information criterion (AIC) works with the trade-off between the goodness of fit 

of the model and the complexity of the model. For any statistical model, the AIC value is 

 AIC = 2 × k − 2 × ln
k� (9) 

where k is the number of parameters in the model, and L is the maximized value of 

the likelihood function for the model. The minimum value of AIC indicates the most 

suitable statistical model. AIC value not only rewards the goodness-of-fit, but also 

penalizes the overfitting of the statistical model with increasing number of parameters.  
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This selection is made separately for each of the sub-basin, season and climatic variables. 

Figures 7 8, 9 and 10 represent the frequency based histograms of temperature and 

precipitation in future period for both dry and wet seasons respectively. Similar to the 

observations of historical period, the histograms of bootstrap sampled ensemble are narrow 

in spread compared with original GCMs ensemble in all 10 sub basins in both season and 

variables in consideration. Table 3 lists the marginal distribution selection results for each 

of the sub-basins separately. 
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Figure 7 Frequency based histograms of temperature seasonal average data sets in dry seasons of original ensemble and bootstrap sampling 

ensemble over the future period (2070-2099) in 10 sub basins of CRB. The pink color represents the original ensemble dataset and the blue color 

represents the bootstrap sampling ensemble dataset. 
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Figure 8 Frequency based histograms of precipitation seasonal average data sets in dry seasons of original ensemble and bootstrap sampling 

ensemble over the future period (2070-2099) in 10 sub basins of CRB. The pink color represents the original ensemble dataset and the blue color 

represents the bootstrap sampling ensemble dataset. 
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Figure 9 Frequency based histograms of temperature seasonal average data sets in wet seasons of original ensemble and bootstrap sampling 

ensemble over the future period (2070-2099) in 10 sub basins of CRB. The pink color represents the original ensemble dataset and the blue color 

represents the bootstrap sampling ensemble dataset. 
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Figure 10 Frequency based histograms of precipitation seasonal average data sets in wet seasons of original ensemble and bootstrap sampling 

ensemble over the future period (2070-2099) in 10 sub basins of CRB. The pink color represents the original ensemble dataset and the blue color 

represents the bootstrap sampling ensemble dataset. 
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Table 3 Best marginal distributions selection for precipitation and temperature in dry and wet season respectively. The selection is separately 

made for historical and future data over all 10 sub basins of CRB (Distributions with least AIC values are chosen amongst the accepted 

distributions, indicated by bold below for each basin/season/variable). 

Sub-Basin Period 
Distribution 

/ Season 

Dry Season- P Dry Season- T Wet Season- P Wet Season- T 

p-value Hypothe. AIC  
p-

value 
Hypothe. AIC  

p-
value 

Hypothe. AIC  
p-

value 
Hypothe. AIC  

Chief Joseph 

Historical 

Gamma 0.30 Accept 38.15 0.75 Accept 64.36 0.97 Accept 65.75 NaN NaN NaN 

GEV 0.74 Accept 36.77 0.78 Accept 66.44 0.95 Accept 67.51 0.98 Accept 87.30 

Lognormal 0.26 Accept 39.58 0.77 Accept 64.28 0.97 Accept 65.95 NaN NaN NaN 

Gaussian 0.46 Accept 36.25 0.66 Accept 64.74 0.85 Accept 66.49 0.64 Accept 89.64 

Weibull 0.73 Accept 35.01 0.29 Accept 70.78 0.74 Accept 67.64 NaN NaN NaN 

Gumbel 0.63 Accept 36.25 0.22 Accept 73.25 0.45 Accept 72.20 0.95 Accept 86.29 

Exp 0.00 Reject 110.94 0.00 Reject 199.10 0.00 Reject 132.29 NaN NaN NaN 

Future 

Gamma 0.62 Accept 503.45 0.40 Accept 721.38 0.90 Accept 611.24 NaN NaN NaN 

GEV 0.87 Accept 503.67 0.85 Accept 698.05 0.95 Accept 613.26 0.84 Accept 869.68 

Lognormal 0.25 Accept 513.04 0.35 Accept 725.43 0.76 Accept 612.76 NaN NaN NaN 

Gaussian 0.90 Accept 499.26 0.42 Accept 714.50 0.32 Accept 617.62 0.86 Accept 870.57 

Weibull 0.79 Accept 508.22 0.68 Accept 700.72 0.17 Accept 643.35 NaN NaN NaN 

Gumbel 0.04 Reject 563.30 0.61 Accept 705.18 0.01 Reject 698.16 0.05 Reject 894.25 

Exp 0.00 Reject 1156.38 0.00 Reject 2094.78 0.00 Reject 1403.92 NaN NaN NaN 

Corra Linn Historical 

Gamma 0.37 Accept 55.49 0.88 Accept 74.78 0.42 Accept 81.06 NaN NaN NaN 

GEV 0.70 Accept 55.40 0.97 Accept 76.46 0.49 Accept 82.81 0.96 Accept 89.33 

Lognormal 0.27 Accept 57.35 0.93 Accept 74.54 0.56 Accept 81.01 NaN NaN NaN 

Gaussian 0.65 Accept 53.35 0.81 Accept 75.62 0.22 Accept 82.62 0.76 Accept 90.01 

Weibull 0.72 Accept 52.99 0.52 Accept 81.86 0.18 Accept 83.65 NaN NaN NaN 

Gumbel 0.42 Accept 56.00 0.37 Accept 85.70 0.08 Accept 89.20 0.98 Accept 88.43 

Exp 0.00 Reject 118.33 0.00 Reject 189.57 0.00 Reject 140.65 NaN NaN NaN 



 

 

 

4
1

 

Future 

Gamma 0.44 Accept 694.14 0.22 Accept 767.14 0.90 Accept 734.02 NaN NaN NaN 

GEV 0.41 Accept 689.41 0.78 Accept 746.38 0.96 Accept 736.79 0.71 Accept 905.98 

Lognormal 0.41 Accept 687.06 0.15 Accept 772.09 0.91 Accept 737.23 NaN NaN NaN 

Gaussian 0.04 Reject 736.31 0.31 Accept 759.11 0.46 Accept 738.26 0.78 Accept 907.06 

Weibull 0.01 Reject 759.15 0.78 Accept 747.83 0.29 Accept 760.91 NaN NaN NaN 

Gumbel 0.00 Reject 925.37 0.45 Accept 753.90 0.01 Reject 818.68 0.03 Reject 930.74 

Exp 0.00 Reject 1240.55 0.00 Reject 2016.08 0.00 Reject 1498.52 NaN NaN NaN 

The Dalles 

Historical 

Gamma 0.56 Accept 13.31 0.86 Accept 67.58 0.94 Accept 34.76 NaN NaN NaN 

GEV 0.76 Accept 13.18 0.75 Accept 68.89 0.99 Accept 35.26 0.93 Accept 81.93 

Lognormal 0.58 Accept 14.03 0.82 Accept 67.81 0.97 Accept 34.04 NaN NaN NaN 

Gaussian 0.64 Accept 12.70 0.83 Accept 67.29 0.83 Accept 37.10 0.78 Accept 87.65 

Weibull 0.75 Accept 12.19 0.47 Accept 69.29 0.63 Accept 40.52 NaN NaN NaN 

Gumbel 0.82 Accept 13.78 0.39 Accept 70.38 0.37 Accept 47.45 0.98 Accept 80.71 

Exp 0.00 Reject 85.27 0.00 Reject 211.08 0.00 Reject 108.78 NaN NaN NaN 

Future 

Gamma 0.04 Reject 204.49 0.22 Accept 761.14 0.97 Accept 316.11 NaN NaN NaN 

GEV 0.41 Accept 193.72 0.71 Accept 746.90 1.00 Accept 318.17 0.92 Accept 880.63 

Lognormal 0.01 Reject 218.37 0.21 Accept 763.74 0.86 Accept 318.96 NaN NaN NaN 

Gaussian 0.34 Accept 189.02 0.26 Accept 756.85 0.89 Accept 317.80 0.89 Accept 882.00 

Weibull 0.84 Accept 188.60 0.55 Accept 752.82 0.52 Accept 339.55 NaN NaN NaN 

Gumbel 0.24 Accept 220.18 0.45 Accept 758.47 0.04 Reject 383.57 0.14 Accept 909.14 

Exp 0.00 Reject 913.40 0.00 Reject 2198.96 0.00 Reject 1163.12 NaN NaN NaN 

Ice Harbor Historical 

Gamma 0.83 Accept 12.50 0.92 Accept 72.36 0.69 Accept 27.41 NaN NaN NaN 

GEV 0.80 Accept 14.00 0.90 Accept 72.99 0.86 Accept 25.57 0.65 Accept 84.17 

Lognormal 0.86 Accept 12.74 0.88 Accept 72.72 0.73 Accept 26.14 NaN NaN NaN 

Gaussian 0.82 Accept 13.04 0.91 Accept 71.83 0.68 Accept 30.94 0.61 Accept 92.31 

Weibull 0.81 Accept 13.14 0.84 Accept 72.45 0.50 Accept 34.83 NaN NaN NaN 
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Gumbel 0.74 Accept 16.44 0.79 Accept 73.32 0.21 Accept 43.29 0.95 Accept 82.86 

Exp 0.00 Reject 74.21 0.00 Reject 214.20 0.00 Reject 98.60 NaN NaN NaN 

Future 

Gamma 0.44 Accept 112.73 0.34 Accept 802.66 0.82 Accept 260.98 NaN NaN NaN 

GEV 0.31 Accept 113.66 0.70 Accept 791.52 0.91 Accept 263.39 0.92 Accept 920.74 

Lognormal 0.19 Accept 123.75 0.28 Accept 804.70 0.59 Accept 265.61 NaN NaN NaN 

Gaussian 0.75 Accept 104.87 0.40 Accept 799.51 0.93 Accept 261.61 0.76 Accept 920.31 

Weibull 0.59 Accept 116.44 0.29 Accept 802.35 0.28 Accept 282.81 NaN NaN NaN 

Gumbel 0.05 Reject 172.63 0.27 Accept 809.27 0.02 Reject 333.24 0.12 Accept 953.93 

Exp 0.00 Reject 807.12 0.00 Reject 2229.01 0.00 Reject 1053.53 NaN NaN NaN 

Mica 

Historical 

Gamma 0.63 Accept 53.07 0.78 Accept 63.87 0.59 Accept 90.85 NaN NaN NaN 

GEV 0.83 Accept 52.95 0.89 Accept 65.37 0.57 Accept 87.05 0.99 Accept 93.66 

Lognormal 0.49 Accept 54.99 0.83 Accept 63.74 0.38 Accept 94.59 NaN NaN NaN 

Gaussian 0.88 Accept 50.82 0.68 Accept 64.38 0.86 Accept 86.55 0.67 Accept 96.41 

Weibull 0.83 Accept 50.90 0.41 Accept 68.62 0.75 Accept 85.96 NaN NaN NaN 

Gumbel 0.54 Accept 54.02 0.34 Accept 71.05 0.38 Accept 87.14 0.98 Accept 92.21 

Exp 0.00 Reject 121.65 0.00 Reject 182.32 0.00 Reject 138.66 NaN NaN NaN 

Future 

Gamma 0.53 Accept 580.37 0.40 Accept 662.34 0.87 Accept 714.37 NaN NaN NaN 

GEV 0.67 Accept 578.22 0.99 Accept 643.56 0.97 Accept 716.68 0.82 Accept 820.73 

Lognormal 0.21 Accept 592.26 0.32 Accept 667.14 0.92 Accept 714.53 NaN NaN NaN 

Gaussian 0.90 Accept 571.66 0.64 Accept 654.51 0.57 Accept 725.00 0.92 Accept 820.31 

Weibull 0.63 Accept 577.93 0.46 Accept 645.90 0.08 Accept 755.58 NaN NaN NaN 

Gumbel 0.06 Accept 626.23 0.23 Accept 652.75 0.00 Reject 828.19 0.08 Accept 847.34 

Exp 0.00 Reject 1239.08 0.00 Reject 1956.20 0.00 Reject 1476.33 NaN NaN NaN 

Oxbow Historical 

Gamma 0.71 Accept 15.22 0.91 Accept 75.90 0.55 Accept 25.85 NaN NaN NaN 

GEV 0.78 Accept 16.84 0.90 Accept 76.18 0.94 Accept 21.74 0.72 Accept 91.27 

Lognormal 0.69 Accept 15.65 0.88 Accept 76.30 0.67 Accept 24.12 NaN NaN NaN 
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Gaussian 0.83 Accept 15.90 0.91 Accept 75.29 0.38 Accept 30.49 0.38 Accept 97.39 

Weibull 0.86 Accept 15.37 0.86 Accept 75.34 0.41 Accept 33.52 NaN NaN NaN 

Gumbel 0.78 Accept 19.14 0.82 Accept 76.13 0.19 Accept 43.48 0.93 Accept 88.20 

Exp 0.00 Reject 64.68 0.00 Reject 215.35 0.00 Reject 89.42 NaN NaN NaN 

Future 

Gamma 0.77 Accept 64.12 0.32 Accept 825.01 0.99 Accept 218.49 NaN NaN NaN 

GEV 0.79 Accept 66.42 0.45 Accept 815.86 0.97 Accept 221.07 0.82 Accept 952.23 

Lognormal 0.45 Accept 72.59 0.27 Accept 826.67 0.80 Accept 222.70 NaN NaN NaN 

Gaussian 0.90 Accept 62.74 0.47 Accept 822.62 0.84 Accept 222.21 0.92 Accept 950.52 

Weibull 0.36 Accept 75.66 0.13 Accept 830.15 0.29 Accept 243.84 NaN NaN NaN 

Gumbel 0.02 Reject 141.09 0.11 Accept 838.20 0.00 Reject 303.30 0.08 Accept 990.58 

Exp 0.00 Reject 716.53 0.00 Reject 2237.11 0.00 Reject 956.54 NaN NaN NaN 

Priest Rapids 

Historical 

Gamma 0.42 Accept 31.55 0.77 Accept 65.37 0.77 Accept 58.22 NaN NaN NaN 

GEV 0.77 Accept 30.52 0.77 Accept 67.47 0.77 Accept 60.00 0.98 Accept 88.55 

Lognormal 0.38 Accept 32.88 0.78 Accept 65.31 0.88 Accept 58.32 NaN NaN NaN 

Gaussian 0.60 Accept 29.84 0.68 Accept 65.68 0.61 Accept 59.13 0.75 Accept 90.63 

Weibull 0.82 Accept 28.72 0.29 Accept 71.50 0.53 Accept 60.49 NaN NaN NaN 

Gumbel 0.56 Accept 30.08 0.22 Accept 73.74 0.31 Accept 65.24 0.97 Accept 87.29 

Exp 0.00 Reject 103.97 0.00 Reject 203.79 0.00 Reject 125.83 NaN NaN NaN 

Future 

Gamma 0.49 Accept 452.79 0.29 Accept 726.43 0.70 Accept 543.49 NaN NaN NaN 

GEV 0.62 Accept 455.60 0.85 Accept 705.14 0.82 Accept 545.46 0.72 Accept 870.40 

Lognormal 0.17 Accept 461.72 0.29 Accept 730.09 0.73 Accept 545.05 NaN NaN NaN 

Gaussian 0.88 Accept 451.40 0.31 Accept 720.22 0.20 Accept 549.59 0.74 Accept 871.30 

Weibull 0.37 Accept 464.45 0.84 Accept 708.05 0.10 Accept 575.17 NaN NaN NaN 

Gumbel 0.01 Reject 533.75 0.62 Accept 712.69 0.01 Reject 628.95 0.09 Accept 895.14 

Exp 0.00 Reject 1094.75 0.00 Reject 2132.44 0.00 Reject 1340.62 NaN NaN NaN 

Revelstoke Historical Gamma 0.54 Accept 55.17 0.82 Accept 62.91 0.49 Accept 93.63 NaN NaN NaN 
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GEV 0.80 Accept 53.53 0.87 Accept 64.62 0.74 Accept 89.01 0.99 Accept 93.51 

Lognormal 0.40 Accept 57.74 0.85 Accept 62.82 0.28 Accept 97.93 NaN NaN NaN 

Gaussian 0.82 Accept 51.79 0.71 Accept 63.34 0.87 Accept 88.47 0.78 Accept 96.15 

Weibull 0.89 Accept 51.11 0.35 Accept 67.70 0.89 Accept 87.87 NaN NaN NaN 

Gumbel 0.64 Accept 53.28 0.26 Accept 70.23 0.51 Accept 88.65 0.99 Accept 92.08 

Exp 0.00 Reject 122.36 0.00 Reject 182.67 0.00 Reject 140.30 NaN NaN NaN 

Future 

Gamma 0.31 Accept 591.53 0.37 Accept 652.13 0.87 Accept 732.45 NaN NaN NaN 

GEV 0.53 Accept 586.42 0.97 Accept 630.11 0.95 Accept 734.79 0.68 Accept 815.82 

Lognormal 0.12 Accept 603.90 0.28 Accept 657.14 0.88 Accept 732.74 NaN NaN NaN 

Gaussian 0.87 Accept 581.92 0.60 Accept 643.82 0.65 Accept 742.88 0.96 Accept 815.31 

Weibull 0.58 Accept 586.70 0.64 Accept 631.12 0.08 Accept 773.06 NaN NaN NaN 

Gumbel 0.10 Accept 629.40 0.35 Accept 636.70 0.00 Reject 845.08 0.07 Accept 840.97 

Exp 0.00 Reject 1248.09 0.00 Reject 1957.04 0.00 Reject 1492.99 NaN NaN NaN 

Sullivan 

Historical 

Gamma 0.84 Accept 44.69 0.90 Accept 65.00 0.90 Accept 107.48 0.75 Accept 75.41 

GEV 0.90 Accept 45.51 0.85 Accept 67.22 0.99 Accept 108.02 0.98 Accept 70.34 

Lognormal 0.89 Accept 44.09 0.87 Accept 65.17 0.96 Accept 106.59 0.53 Accept 79.40 

Gaussian 0.78 Accept 46.96 0.92 Accept 64.80 0.75 Accept 110.64 0.98 Accept 70.18 

Weibull 0.82 Accept 48.71 0.54 Accept 68.06 0.68 Accept 114.53 1.00 Accept 68.97 

Gumbel 0.42 Accept 55.23 0.46 Accept 69.48 0.28 Accept 124.70 0.95 Accept 69.49 

Exp 0.00 Reject 108.76 0.00 Reject 213.26 0.00 Reject 175.81 0.00 Reject 136.76 

Future 

Gamma 0.11 Accept 548.25 0.92 Accept 798.39 0.95 Accept 1137.80 0.62 Accept 858.20 

GEV 0.53 Accept 541.75 0.94 Accept 794.87 0.89 Accept 1141.40 0.87 Accept 851.74 

Lognormal 0.02 Reject 562.21 0.88 Accept 799.18 0.88 Accept 1139.23 0.35 Accept 865.87 

Gaussian 0.86 Accept 538.69 0.90 Accept 797.75 0.25 Accept 1154.13 0.99 Accept 850.67 

Weibull 0.59 Accept 541.56 0.07 Accept 819.75 0.06 Accept 1183.04 0.45 Accept 858.07 

Gumbel 0.02 Reject 587.92 0.03 Accept 831.07 0.00 Reject 1293.43 0.07 Accept 886.27 
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Exp 0.00 Reject 1141.02 0.00 Reject 2226.17 0.00 Reject 1782.91 0.00 Reject 1701.21 

Waneta 

Historical 

Gamma 0.65 Accept 44.85 0.93 Accept 63.05 0.95 Accept 73.98 NaN NaN NaN 

GEV 0.84 Accept 43.02 0.94 Accept 64.99 0.91 Accept 75.50 0.97 Accept 87.66 

Lognormal 0.56 Accept 46.45 0.93 Accept 62.92 0.97 Accept 74.49 NaN NaN NaN 

Gaussian 0.86 Accept 42.69 0.85 Accept 63.55 0.83 Accept 74.27 0.54 Accept 89.98 

Weibull 0.92 Accept 41.34 0.43 Accept 69.77 0.63 Accept 74.95 NaN NaN NaN 

Gumbel 0.69 Accept 42.51 0.33 Accept 72.59 0.32 Accept 78.98 0.98 Accept 86.65 

Exp 0.00 Reject 117.62 0.00 Reject 192.60 0.00 Reject 137.72 NaN NaN NaN 

Future 

Gamma 0.65 Accept 555.23 0.33 Accept 711.30 0.94 Accept 673.34 NaN NaN NaN 

GEV 0.96 Accept 550.47 0.84 Accept 685.88 0.97 Accept 675.57 0.89 Accept 866.68 

Lognormal 0.34 Accept 565.82 0.26 Accept 715.81 0.84 Accept 674.65 NaN NaN NaN 

Gaussian 0.90 Accept 548.23 0.45 Accept 703.71 0.43 Accept 680.35 0.96 Accept 867.75 

Weibull 0.82 Accept 553.14 0.61 Accept 689.18 0.18 Accept 707.07 NaN NaN NaN 

Gumbel 0.08 Accept 594.75 0.49 Accept 693.70 0.00 Reject 764.68 0.08 Accept 891.06 

Exp 0.00 Reject 1215.12 0.00 Reject 2042.28 0.00 Reject 1461.80 NaN NaN NaN 
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6.2.2 Goodness-of-fit test for Copula  

The cumulative distribution functions (CDFs) of temperature and precipitation are linked 

with copula. As discussed in methodology section, we have employed five copula functions 

for the same, namely Gaussian and T Copulas from Elliptical copulas; and Gumbel, 

Clayton and Frank from Archimedean copulas. Goodness-of-fit (GOF) test is employed to 

access the Copula function which describes the relationship between temperature and 

precipitation. GOF is based on the statistics relating the distance between the empirical and 

theoretical Copulas. Eventually, the parametric bootstrap procedure was employed to 

estimate the Cramér-von Mises statistics (Sn) and the related p-value in order to choose the 

best copula function (Genest and Rémillard, 2008, Madadgar et al. 2014). If the variable’s 

dataset fits to the parametric Copula, representing null hypothesis, (�l: !� ∈ !Jn), with p-

value greater than the significance level ^  = 0.05, then null hypothesis is accepted; 

otherwise rejected.  

In terms of these five theoretical copula function, we are going to select the most suitable 

Copula to stand for datasets. Naturally, goodness-of-fit test tends to measure the distance 

between empirical and theoretical Copulas. Genest and Remllillard (2008) implemented a 

bootstrapping process to obtain the Cramer-von Mise of distance and K-S statistics as the 

measures of distance between the empirical and parametric copulas.  

 
	� = 1 ∆!�
���@!�
��

*
 

 

(10) 

Where 	� is Cramer-von Mise statistics, and ∆!�
��is expressed as: 
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 ∆!�
�� = √q 
!� − !Jn� (11) 

Where !� is the empirical copula with a sample size n, and !Jnis the theoretical copula 

estimated for a sample size of n. Here the null hypothesis is that the empirical Copula !� 

belongs to this theoretical copula. If our p-value obtained from bootstrap sampling is larger 

than the significance level (^�, then we will accept our null hypothesis. Otherwise we will 

reject it and support our alternative hypothesis that !� doesn’t belong to this theoretical 

Copula.  

Therefore, among a group of Copula, the one with the greatest p-value is preferred. Table 

4 and 5 represent the statistics for choosing best copula to represent the relationship 

between temperature and precipitation in dry and wet seasons. Copula selection is done on 

seasonal data sets for all sub-basins in both historical and future period. One copula 

selection is performed, the same copulas are used to evaluate the changes on seasonal basis 

in future multi-model ensemble data and observed multi-model ensemble data. It can be 

observed from Table 4 that in historical dataset for dry season, T Copula is selected in 4 

sub-basins followed by Frank (3), Gaussian (2) and Clayton (1). Whereas, in future dataset, 

T copula is describing the relationship between temperature and precipitation in 7 sub-

basins, Frank, Gaussian and Clayton are chosen in 1 sub-basin each. Gumbel Copula is not 

found appropriate to describe the temperature and precipitation relationships in any of the 

data periods. There is no co-relation between the size and location of the sub-basin and the 

chosen copula (the relationship between temperature and precipitation is not related to size 
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and location of the sub-basin in CRB). The same phenomenon will be observed in wet 

seasons in both historical and future period.  
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Table 4 Best Copula selection in historical and future periods over all 10 sub basins of CRB 

(Preferred copula is with greatest p-value) in dry seasons. Values in bold are the selected Copula 

for respective period for joint distribution of temperature and precipitation. 

Sub-Basin Copula Statistics Guassian T Clayton  Gumbel Frank  

Chief Joseph 

Historical 

Period 

p-value 0.975 0.965 0.965 0.896 0.995 

Sn 0.019 0.018 0.015 0.023 0.020 

Future 

Period 

p-value 0.064 0.114 NaN NaN 0.025 

Sn 0.051 0.041 NaN NaN 0.044 

Corra Linn 

Historical 

Period 

p-value 0.748 0.797 NaN NaN 0.797 

Sn 0.032 0.028 NaN NaN 0.028 

Future 

Period 

p-value 0.035 0.163 NaN NaN 0.025 

Sn 0.044 0.041 NaN NaN 0.044 

The Dalles 

Historical 

Period 

p-value 0.272 0.411 NaN NaN 0.312 

Sn 0.044 0.038 NaN NaN 0.039 

Future 

Period 

p-value 0.046 0.050 0.111 0.047 0.050 

Sn 0.062 0.049 0.136 0.054 0.052 

Ice Harbor 

Historical 

Period 

p-value 0.629 0.579 NaN NaN 0.450 

Sn 0.035 0.035 NaN NaN 0.035 

Future 

Period 

p-value 0.252 0.391 NaN NaN 0.153 

Sn 0.038 0.032 NaN NaN 0.034 

Mica 

Historical 

Period 

p-value 0.262 0.738 0.777 0.173 0.411 

Sn 0.037 0.025 0.022 0.041 0.034 

Future 

Period 

p-value 0.066 0.065 0.025 0.005 0.068 

Sn 0.071 0.061 0.082 0.057 0.061 

Oxbow 

Historical 

Period 

p-value 0.738 0.559 NaN NaN 0.658 

Sn 0.031 0.034 NaN NaN 0.033 

Future 

Period 

p-value 0.153 0.144 NaN NaN 0.045 

Sn 0.043 0.042 NaN NaN 0.043 

Priest 

Rapids 

Historical 

Period 

p-value 0.906 0.837 0.837 0.807 0.946 

Sn 0.024 0.024 0.020 0.026 0.024 

Future 

Period 

p-value 0.045 0.074 NaN NaN 0.025 

Sn 0.089 0.073 NaN NaN 0.081 

Revelstoke 

Historical 

Period 

p-value 0.153 0.688 0.520 0.153 0.322 

Sn 0.041 0.027 0.028 0.043 0.038 

Future 

Period 

p-value 0.658 0.698 NaN NaN 0.579 

Sn 0.028 0.025 NaN NaN 0.025 

TW Sullivan 

Historical 

Period 

p-value 0.252 0.292 NaN NaN 0.252 

Sn 0.048 0.045 NaN NaN 0.045 

p-value 0.074 0.203 NaN NaN 0.094 
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Future 

Period 
Sn 

0.051 0.036 NaN NaN 0.038 

Waneta 

Historical 

Period 

p-value 0.748 0.876 0.827 0.876 0.896 

Sn 0.026 0.023 0.019 0.026 0.026 

Future 

Period 

p-value 0.292 0.718 NaN NaN 0.550 

Sn 0.034 0.024 NaN NaN 0.026 
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Table 5 Best Copula selection in historical and future periods over all 10 sub basins of CRB 

(Preferred copula is with greatest p-value) in wet seasons. Values in bold are the selected Copula 

for respective period for joint distribution of temperature and precipitation 

 

Sub-Basin Copula Statistics Guassian T Clayton  Gumbel Frank  

Chief 

Joseph 

Historical 

Period 

p-value 0.866 0.470 NaN NaN 0.550 

Sn 0.034 0.044 NaN NaN 0.038 

Future 

Period 

p-value 0.490 0.649 NaN 0.381 0.421 

Sn 0.027 0.025 NaN 0.032 0.030 

Corra Linn 

Historical 

Period 

p-value 0.500 0.411 NaN NaN 0.282 

Sn 0.047 0.048 NaN NaN 0.044 

Future 

Period 

p-value 0.827 0.688 0.639 0.658 0.748 

Sn 0.017 0.021 0.023 0.021 0.021 

The Dalles 

Historical 

Period 

p-value 0.698 0.411 NaN NaN 0.411 

Sn 0.033 0.035 NaN NaN 0.034 

Future 

Period 

p-value 0.045 0.045 0.005 0.203 0.124 

Sn 0.047 0.048 0.089 0.033 0.040 

Ice Harbor 

Historical 

Period 

p-value 0.827 0.569 NaN NaN 0.589 

Sn 0.041 0.045 NaN NaN 0.041 

Future 

Period 

p-value 0.114 0.163 NaN NaN 0.084 

Sn 0.041 0.041 NaN NaN 0.039 

Mica 

Historical 

Period 

p-value 0.193 0.332 NaN NaN 0.094 

Sn 0.053 0.047 NaN NaN 0.050 

Future 

Period 

p-value 0.787 0.688 0.233 0.609 0.847 

Sn 0.018 0.018 0.033 0.024 0.018 

Oxbow 

Historical 

Period 

p-value 0.490 0.470 NaN NaN 0.460 

Sn 0.044 0.038 NaN NaN 0.039 

Future 

Period 

p-value 0.104 0.025 NaN NaN 0.065 

Sn 0.043 0.050 NaN NaN 0.047 

Priest 

Rapids 

Historical 

Period 

p-value 0.777 0.401 NaN NaN 0.401 

Sn 0.035 0.044 NaN NaN 0.038 

Future 

Period 

p-value 0.074 0.015 0.005 0.233 0.064 

Sn 0.037 0.047 0.076 0.031 0.040 

Revelstoke 

Historical 

Period 

p-value 0.272 0.321 NaN NaN 0.124 

Sn 0.056 0.047 NaN NaN 0.050 

Future 

Period 

p-value 0.361 0.431 NaN NaN 0.371 

Sn 0.028 0.028 NaN NaN 0.029 

TW 

Sullivan 

Historical 

Period 

p-value 0.391 0.530 NaN NaN 0.361 

Sn 0.039 0.038 NaN NaN 0.040 



 

52 

 

Future 

Period 

p-value 0.065 0.025 NaN NaN 0.015 

Sn 0.056 0.052 NaN NaN 0.053 

Waneta 

Historical 

Period 

p-value 0.668 0.658 NaN NaN 0.431 

Sn 0.040 0.037 NaN NaN 0.038 

Future 

Period 

p-value 0.282 0.203 0.015 0.441 0.153 

Sn 0.028 0.032 0.057 0.026 0.032 
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6.3 Future joint trends of temperature and precipitation 

The following section would deal with trends in multi-model ensemble future dataset as 

compared to multi-model ensemble historical dataset from combined distribution of 

temperature and precipitation. We would also be evaluating the future probabilities of 

precipitation and temperature based on their joint distribution. This would be done 

separately for dry and wet season and for all the sub-basin. 

6.3.1 Dry season 

Trends and changes in joint distribution of temperature and precipitation: Figure 11 

represents the changes and trends with joint distribution of temperature and precipitation 

for all the 10 sub basins in CRB in dry season for both historical and future periods based 

on their joint CDFs. Copula based relationship (CDFs) of temperature and precipitation are 

depicted for 10 sub-basins. For each of the sub-basin, e.g. first sub-plot top left (Chief 

Joseph Sub-basin), the solid lines represent the future period (2070-2099) and the dash 

lines represent the historical period (1970-1999) with color of the line indicating the 

probability associated with each color (refer to figure color bar). In all of the sub-basin it 

was noted from Figure 11 that the trends are positive in future scenario for both the climatic 

variables. There is variation amongst the sub-basins for degree of that change from 

historical values. Similar observations about the trends and changes were reported by Rana 

et. al. 2015. It can also be observed that every sub-basin has its own change characteristics 

i.e. change in precipitation as compared to temperature for particular sub-basin. Since 

temperature as climatic variable is believed to be better predicted than precipitation and 

also some sub basins have similar temperature ranges (based on geographical location, 
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Fig.1), we would categorize them (Sub-basin) into 5 classes, according to temperature 

ranges for further evaluation of trends and changes. Same categorization would be followed 

in wet season as well for comparison. The classification of this 10 sub basins are also 

displayed in Figure 11. For example, category 1 includes T.W. Sullivan, Oxbow and Ice 

Harbor, which have highest dry season average temperature; category 5 includes Mica and 

Revelstoke, which have lowest dry season average temperature. The locations of this 5 

categories’ sub basins are also shown in the map, referring to Figure 12.  
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Figure 11 Comparison of joint Cumulative Distribution Functions (CDFs) of temperature and precipitation, using multi-model ensemble, for 

dry season over the 10 sub basins of CRB. The solid lines represent the future period (2070-2099) and the dash lines represent the historical 

period (1970-1999). Color of the line indicates the probability of values for temperature and precipitation. The probabilities associated with 

each color line refer to figure color bar.
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Figure 12 Spatial locations of 10 sub basins’ 5 categories in CRB for dry season. The color of 

outline indicates the associated category, as right-hand side legend shown.  



 

57 

 

Category 1 (sub-basins with highest temperature ranges): 

Ice Harbor, Oxbow and TW Sulliwan are the sub-basins with highest seasonal average 

temperatures among all the sub basins in dry season. For historical period (1970-1999), 

temperature ranges among these three basins vary around between 11 to 14 oC; however, 

for future period (2070-2099), temperatures vary around between 14 to 18 oC, predicting. 

The lowest seasonal average temperature rises 3 oC and the highest seasonal average 

temperature rises 4 oC in the dry seasons of future period compared to historical one.   

In terms of precipitation, Ice Harbor and Oxbow share similar characteristics, both of these 

sub-basins have relatively high temperature but less amount of precipitation. Seasonal 

average precipitation for these two sub basins in dry seasons ranges from 1-2mm in the 

historical period. Joint CDFs of temperature and precipitation in the historical period have 

sharper slope with temperature axis, indicating sharp and higher changes in temperature 

with small/negligible changes in precipitation. Geographical location of these sub-basins 

in CRB, southwest of CRB, where Cascade mountain range creates a barrier from receiving 

much precipitation is primary reason behind low precipitation and higher temperature 

ranges. This also corresponds to observations in the area. In the future period, the joint 

CDFs of temperature and precipitation shows a positive and upward trends in temperature. 

Even slope is relatively flat, change in temperature is still much higher than that in 

precipitation in the future period. Additionally, the ranges of precipitation in these two sub-

basins only have changed slightly from 0.5-2.5 mm (0.5 mm increase from historical). It 

could be conclusively said that these two sub basins will potentially experience drought in 

the future scenario, with sharp rising temperatures.  
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TW Sulliwan sub basin has relatively high temperature, similar to the above two sub basins, 

but also has quite high precipitation in the range of 1.5-3.5mm, for the historical period 

with similar slope inclination towards temperature. In the future period, in addition to 

moving upward (positive trend), the joint CDF hints towards increase in ranges of 

precipitation (1-4.5mm) and flatter slope to both variables. Temperature and precipitation 

changes are more synchronized in future scenario with former affecting later with more 

likelihood. TW Sullivan sub-basin receives relatively high precipitation in the CRB along 

with highest temperature due to its southwestern location close to ocean. The sub-basin 

will potentially be wetter and warmer in future scenario compared to Ice Harbor and 

Oxbow sub basins. 

Category 2 (sub-basins with second high temperature range): 

Dalles sub basin has the second highest seasonal average temperature in dry season with 

historical temperature range around 10.5-13.5 oC, whereas temperatures vary from 13.5-

16.5 oC in future period. The lowest and highest seasonal average temperature rises 3 oC in 

the dry seasons of future period compared to the historical period.  

As per precipitation, Dalles share similar characteristics as two above sub-basins (Ice 

Harbor and Oxbow). Dalles has relatively high temperature but less precipitation with 

seasonal average of 1-2mm. Joint CDFs of temperature and precipitation, in the historical 

period, exhibit similar behavior as the above mentioned sub-basins (sharper slope to 

temperature) indicating the change range of temperature is wider than that of precipitation. 

In the future period, the joint CDFs of temperature and precipitation is predicting positive 

and upward in comparison to historical one with slight change in ranges of seasonal 
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average precipitation (1.5-2.5mm, ~0.5mm increase). This sub-basin is also indicating that 

the temperature rise would be sharper than in precipitation, for future scenario, in dry 

season, this may also be attributed to very large size of the basin (covering most parts of 

CRB and thus depicting the overall scenario in CRB). 

Category 3 (sub-basins with medium temperature ranges): 

Chief Joseph and Priest Rapids sub-basins have medium seasonal average temperatures in 

dry seasons among all the sub basins. For Chief Joseph, in the historical period, seasonal 

average temperature ranges from 9-11.5 oC, and in the future period, seasonal average 

temperatures vary around from 11-14 oC. Thus, the lowest seasonal average temperature 

in the dry season rises 2 oC and the highest seasonal average temperature rises around 2.5 

oC.  For Priest Rapids basin, in the historical period, temperature ranges from 10-12.5 oC, 

whereas it varies from 12-14.5 oC in future scenario indicating 2 oC rise in both the lowest 

and highest average temperature values. 

For precipitation, both the sub-basins exhibit the same ranges of 1.5-3mm in the historical 

dataset which shows a sharp rise of range to 1-4.5mm in future scenario. Joint CDFs of 

temperature and precipitation is similar to above noted features in all sub-basins (sharp 

slope inclined towards temperature) in historical data. Whereas, the joint CDFs, for future 

period, is more inclined towards precipitation i.e. more precipitation change as compared 

to temperature changes. This indicates that the two sub-basins would be warmer and wetter 

as compared to historical scenario. 

Category 4 (sub basins with second lowest temperature ranges): 
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Corra Linn and Waneta have the second lowest seasonal average temperatures in dry 

season. For Corra Linn basin, in the historical period, seasonal average temperatures ranges 

from 7.5-10.5 oC and 9.5-12.5 oC for future period. Both the lowest and highest average 

temperatures in the area is indicating towards 2 oC rise.  For Waneta basin, in the historical 

period, temperature ranges from 8-10.5 oC and 10-12.5 oC for future data. The rise in lowest 

and highest temperature exhibit similar range as Corra Linn (2 oC). 

As per precipitation, both the sub-basin provides similar variations as compared to 

temperature in historical period (Slope inclined towards temperature). Ranges for Corra 

Linn varies from 2-4mm and that for Waneta is 2-3mm, in historical data. Joint CDFs, 

depicting changes and trends, hints towards positive and upward trends but with varying 

degree for both the sub-basins. The changes in precipitation are more profound for Corra 

Linn sub-basin ranging from 2-6mm (~2mm increase)with the joint distribution slope 

inclined highly towards precipitation i.e. changes in precipitation would be higher with 

every degree change in temperature. Whereas, in case of Waneta, the changes are positive 

(ranges from 1.5-4.5mm, ~1.5mm increase) but the slope is not as skewed towards 

precipitation as was in Corra Linn. The CDFs for Waneta suggests equal changes in both 

climatic variables. This, it can be conclusively deduced that both the sub-basins would be 

warmer and wetter with Corra Linn projecting higher precipitation amounts, in future 

scenario. 

Category 5 (sub basins with lowest temperature ranges): 

Mica and Revelstoke sub-basins have the lowest seasonal average temperatures in dry 

seasons. For Mica basin, in the historical period, temperature ranges from 6.5-9 oC and 9-
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11 oC in the future period. The lowest average temperatures rise is around 2.5 oC and the 

highest temperature rise is 3 oC. For Revelstoke sub-basin, in the historical period, 

temperature ranges from 7-9 oC and 9-11 oC in the future period with 2 oC rise in both the 

lowest and highest average temperature. 

Mica and Revelstoke are smallest sub-basins with lowest temperatures, located in the far 

north of CRB. In historical period, precipitation ranges of Mica sub-basin is 1.5-4mm and 

that of Revelstoke sub-basin is 2-4 mm, with similar slope distribution in joint CDFs for 

temperature and precipitation. For the future period, both of Mica and Revelstoke sub-

basins indicate a positive and upward changes, as was case in all sub-basins. The slope of 

joint CDFs is becoming flatter and inclined towards precipitation (more so the case in Mica 

than in Revelstoke). Although precipitation change range in both the sub-basin is 2-5mm 

but Mica is predicted to show more increase in precipitation with every degree rise in 

temperature in future scenario and thus wetter and warmer than historical ones. 

Overall, we can deduce that categories close together i.e. similar spatial distribution 

(geographic space) and seasonal average temperature, in dry season, will have positive 

change temperature which is relatively decreasing from north to south of CRB. Sub basins 

in category 1 and category 2 with high seasonal average temperature in dry season are 

located in southern CRB exhibit higher increases in temperatures, around 3 to 3.5oC. 

Category 3 to Category 5, which are located from center to north of CRB will have less 

increasing in temperature,  around 2 oC. Precipitation change will vary in all the 10 sub 

basins with increase of temperature. The north part of CRB, category 4 and 5 will have 

more increase of precipitation, around 1.5 to 2mm, with increasing temperature. The south 
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part of CRB, category 1 to 3, may have less increase of precipitation, or even decrease in 

precipitation, with increasing temperature. 

Probabilities of joint distribution of temperature and precipitation in future scenario: 

Figure 13 represents the likeness of two variables with joint distribution for all the 10 sub 

basins in CRB in dry season for future period based on their joint CDFs. For each of the 

sub-basin, e.g. first sub-plot top left (Chief Joseph Sub-basin), a series of conditional 

probability density functions (PDFs) of precipitation ranges given a particular temperature 

in future data (2070-2099) during dry season are plotted and scaled from 0 to 1 (based on 

the mode of each conditional PDFs)for visualization purpose. Red color represents most 

likely occurring and blue color least likely occurring of amount of precipitation given a 

particular temperature in future scenario. 

Thus it can be said that the areas with dark blue colors indicate the tails of the precipitation 

conditional PDF, at given temperature, which shows the least likely occurring precipitation 

given certain temperature and vice-versa in case of red color. Therefore, if given 

temperatures are expected, precipitation magnitudes associated with the red areas (closely 

surrounding the mode of the condition PDFs of precipitation given temperature) are most 

likely to happen.    

From Fig. 10 it can be noted that 7 out of the 10 sub-basins (namely Chief Joseph, Ice 

Harbor, Oxbow, Priest Rapids, Revelstoke, TW Sullivan and Waneta) depicts a negative 

relationship between the most likely occurrence of precipitation with temperature i.e. the 

amount of precipitation in dry season is decreasing with increasing temperature for most 

likelihood scenarios. The geographic locations of these 7 sub-basins do not show any 
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obvious pattern. It also indicates that the temperature is more dominant variable in the joint 

probabilities and is in inverse relation to precipitation in dry season. Thus, during this 

season we can expect higher temperatures and drier conditions in future scenario (as 

already pointed out that temperatures are increasing in future scenario and thus 

precipitation would relatively be lower increase). It should be pointed out that there is 

increase in amount and intensity of both variables in future scenario but their 

interdependence is varied in different sub-basins. 

For 2 sub-basins i.e. Dalles and Mica, the most likely occurrence of precipitation at a given 

temperature is constant. This indicates that the precipitation increase is constant in these 

sub-basins irrespective of increase in temperature. Thus, the expected increase (discussed 

above) in precipitation would be independent of increase in temperature. In case of Corra 

Linn, the precipitation doesn’t show any specific patterns. For higher temperatures (more 

than 9 oC) the precipitation amounts are relatively constant whereas the probabilities of 

precipitation are very varied for lower temperatures. The precipitation amount (likelihood 

of getting that – red color) is depicting both increase and decrease with temperatures from 

7-9 oC, with wider ranges towards the lower temperatures. The inverse relationship across 

most of the sub-basin could be related to water holding capacity of clouds with particular 

temperatures and vice-versa.
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Figure 13 Likelihood of precipitation ranges given a particular temperature in future data (2070-2099) during dry season in each of the 10 sub-

basins in CRB. Conditional Probability density Function of precipitation against certain temperature is plotted and scaled for probability (0 to 

1), for visualization purpose (red color- most likelihood and blue color- least likelihood). The conditional probability density associated with 

each color line refers to this figure color bar. 
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6.3.2 Wet season 

Trends and changes in joint distribution of temperature and precipitation: Figure 14 

represents the changes and trends with joint distribution of temperature and precipitation 

for all the 10 sub basins in CRB in wet season for both historical and future periods based 

on their joint CDFs. The figure presented here is similar to Figure 11. For each of the sub-

basin, e.g. first sub-plot top left (Chief Joseph Sub-basin), the solid lines represent the 

future period (2070-2099) and the dash lines represent the historical period (1970-1999) 

with color of the line indicating the probability associated with each color. Similar 

observations as Figure 11 can be made in Figure 14 in reference to trends and changes in 

future scenario i.e. positive and upwards changes and trends in both variables. There is 

variation amongst the sub-basins for degree of that change from historical values. 

Similarly, for comparison within sub-basin same categorization of temperature is studied 

in wet season as well (not necessarily same sub-basins would fall in same category). Figure 

14 will indicate 10 sub basins’ 5 categories in terms of wet seasonal average precipitation 

range as well. Category 1 here includes T.W.Sullivan, which has highest seasonal average 

temperature in wet season. Category includes Mica and Revelstoke, which have lowest 

seasonal average temperature in wet season. Figure 15 presents these 5 categories’ spatial 

locations in the map.  
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Figure 14 Comparison of joint Cumulative Distribution Functions (CDFs) of temperature and precipitation, using multi-model ensemble, for 

wet season over the 10 sub basins of CRB. The solid lines represent the future period (2070-2099) and the dash lines represent the historical 

period (1970-1999). Color of the line indicates the probability of values for temperature and precipitation. The probabilities associated with 

each color line refer to figure color bar. 
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Figure 15 Spatial locations of 10 sub basins’ 5 categories in CRB for wet season. The color of 

outline indicates the associated category, as right-hand side legend shown. 
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Category 1 (sub basins with highest temperature ranges): 

TW Sullivan depicts the highest seasonal average temperatures among all the sub basins in 

wet seasons which is 3-5 oC for the historical period (1970-1999) and 5.5-9 oC for future 

period. There is rise of 2.5 oC and 4 oC in lowest and highest temperature respectively for 

the future scenario. In addition, TW Sullivan sub-basin has maximum amount of average 

seasonal precipitation among all of the 10 sub basins in the wet seasons of historical period 

ranging from 5-12mm whereas it increases to 5-15mm in future scenario. The slope of joint 

CDF is not changing in the historical and future data but the ranges (upwards increase) are 

becoming higher. The slope is more inclined towards precipitation and thus indicating 

higher changes of precipitation amounts than temperature. The sub-basin depicts the likely 

possibility of higher precipitation along with rising temperature events in future period. 

Increased intensity of precipitation would lead to the high possibility of flood in the area.   

Category 2 (sub basins with second highest temperature ranges): 

Dalles, Ice Harbor and Oxbow sub-basins have second high seasonal average temperatures 

in wet seasons ranging from -2 to 0.5 oC in the historical period (1970-1999), however, for 

the future period (2070-2099), temperatures vary around from 0-4 oC for Ice Harbor and 

Oxbow sub-basins and from -0.5 to 3 oC for Dalles sub-basin. For Ice Harbor and Oxbow 

sub-basins, the rise in lowest and highest seasonal average temperature is 2oC and 3.5oC 

respectively, whereas for Dalles it is 1.5 oC and 2.5 oC respectively. All these 3 sub-basins 

share similar characteristics i.e. they have relatively high temperature but lower amounts 

of precipitation. Seasonal average precipitation for Dalles and Ice Harbor sub-basins ranges 

from 2-3mm and for Oxbow it is 1-2mm, with around 0.5 mm increase in future for all 



 

69 

 

three. The joint CDFs of temperature and precipitation for all of these three, both in 

historical and future periods, have sharper slope to temperature axis indicating that the 

changes in range of temperature is higher than that of precipitation. In the future period, 

the joint CDFs of temperature and precipitation is depicting a positive change but still 

higher changes in temperature than in precipitation.  

Category 3 (sub basins with medium temperature ranges): 

Chief Joseph and Priest Rapids have medium seasonal average temperatures, with Chief 

Joseph historical temperatures ranging -5 oC to -2 oC, and -3 to 1 oC for future, whereas 

Priest Rapids historical temperature ranges from -4 to -1.5 oC, and -2 to 1.5 oC for future. 

The changes/rise in lowest and highest average temperature for both the sub-basin is 2 oC 

and 3 oC respectively. For Precipitation, Chief Joseph have 2.5-5mm range in historical 

period (1-2mm increase in future) and Priest Rapids have 2.5-4.5mm range in same period 

(~1mm increase in future). The joint change trends (CDFs) of temperature and precipitation 

are quite similar to the sub-basins discussed in category 2 of wet season i.e. for both sub-

basins changes in temperature are more pronounced than in precipitation for both historical 

and future period. For future period, the CDFs indicate a higher rise in temperature ranges 

with slight increase in precipitation ranges. It hints towards a similar fate of these sub-

basins in future as was for category 2 wet season but with lower temperatures than those 

three sub-basin in category 2. Thus, in future scenario, the temperature rise dominates the 

precipitation rise. 

Category 4 (sub basins with second lowest temperature ranges): 
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Corra Linn and Waneta belongs to category of sub-basins with second lowest seasonal 

average temperatures in wet seasons. For Corra Linn, in the historical period, seasonal 

average temperatures ranges from -6 oC to -4 oC whereas for the future period the ranges 

are -4 oC to 0 oC. The lowest seasonal average temperature rises 2 oC and the highest 

seasonal average temperatures rises 4 oC in Corra Linn. For Wan basin, the historical 

temperature ranges are from -6 to -3.5 oC; and future temperatures vary from -4 to 0 oC 

depicting 2 oC and 3.5 oC rise in lowest and highest temperatures. Historical precipitation 

ranges for Corra Linn are 2.5-6mm and 2.5-5mm for Waneta which increases to 4-7.5mm 

and 3.5-6.5 in future for the two sub-basins respectively. The joint change trends of 

temperature and precipitation in both the historical and future periods are similar in both 

of these two sub basins. The CDFs depict similar behavior as category 2 and 3 for wet 

season i.e. higher increase in temperature ranges than in precipitation values. Thus, wetter 

and warmer scenario should be expected in future. 

Category 5 (sub basins with lowest temperature): 

Mica and Revelstoke sub-basins have the lowest seasonal average temperatures in wet 

seasons, located in the far north of CRB. For both Mica and Revelstoke, in the historical 

period, temperature ranges from -8 to -5 oC and -5.5 to -2 oC in the future period. The 

lowest average temperatures rise 2.5 oC and the highest temperature rises 3 oC in the wet 

seasons of future period. In historical period, precipitation ranges of both Mica and 

Revelstoke are 2.5-5mm which increase to 3-7.5 mm in future scenario. Both sub-basins 

depict similar properties of joint changes of precipitation and temperature in the historical 

and future periods indicating towards higher precipitation accompanied with increasing 
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temperature events in future as compared to historical. The joint CDFs are different from 

all the categories discussed in wet season and is not inclined to any of the climatic variables. 

The positive changes in precipitation are accompanied with similar degree of positive 

changes in temperature, as depicted from joint CDFs in future scenario. 

Overall, the categories for wet season are almost same to the ones for dry seasons, except 

categories 1 and 2. Seasonal average temperature in wet seasons will be increasing in all 

of the 10 sub basins in the future period. Except category 5, will increase 2.5 oC on average. 

The rest categories will increase 3 oC on average. Category 1 sub basin has largest 

precipitation amount as well as highest temperature because of its southwest location close 

to ocean. Category 3 to 5 will have increase of precipitation around 1.5 to 2 mm with 

increasing temperature. Category 2 will have smallest increase of precipitation, around 

0.5mm with increasing temperature.  

Probabilities of joint distribution of temperature and precipitation in future scenario: 

Figure 16 represents likeliness of two variables with joint distribution for all the 10 sub 

basins in CRB in wet season for future period based on their joint distribution functions. 

The figure should be read in similar context to Figure 13, as it projects the similar 

parameters in similar pattern for wet season. In wet season, the most likely occurrence of 

precipit5ation ranges at a given temperature range is relatively constant for all the 10 sub 

basins in CRB, but the ranges of precipitation are different for different sub-basins. For 

Mica, at higher temperatures the range in precipitation is relatively higher than any of the 

sub-basins otherwise a constant range is almost maintained (within a particular sub-basin) 

irrespective of temperature changes. Thus it can be conclusively said that the ranges of 
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precipitation (mainly red color ranges) are not influenced by temperature values.  In other 

words, the most likely happening precipitation is nearly constant within temperature 

changes. This can be attributed to the fact that although the temperatures are rising but 

average temperatures are still sub-freezing and thus the holding capacity of clouds won’t 

change in that case. There are insignificant variations with some of the sub-basins where 

precipitation ranges are increasing with temperature but comparatively very low changes 

e.g. Priest Rapids, Revelstoke and Waneta. This would have a severe consequence on 

spring flooding or harvesting seasons in the area.
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 Figure 16 Likelihood of precipitation ranges given a particular temperature in future data (2070-2099) during wet season in each of the 10 sub-

basins in CRB. Conditional Probability density Function of precipitation against certain temperature is plotted and scaled for probability (0 to 1), 

for visualization purpose (red color- most likelihood and blue color- least likelihood). The conditional probability density associated with each 

color line refers to this figure color bar.
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7 Discussion 

7.1 Summary of current studies 

We have applied Copula based coupling (probabilistic distribution) to temperature and 

precipitation as climatic variables across 10 sub-basins in CRB for future scenario (2070-

2099). Trends and changes in these climatic variables are compared with Copula based 

coupled distribution from historical, and probabilities of one variable in relation to other 

are also studied for future changes using conditional PDFs. All the analysis was performed 

on multi-model ensemble of 10 GCMs (downscaled with BCSD) across CRB (divided into 

sub-basins) using ensemble mean with bootstrap sampling for generating multi-model 

ensemble. The multi-model ensemble was advantageous due to simplification, efficiency, 

and computationally less demanding; and efficiently produced statistics of mean and 

variance of the sample GCMs. Bootstrap sampling helped to combine the strengths of 

multiple models together and consider the uncertainty inside the multi-models combination 

for temperature and precipitation. The method was helpful in producing mean statistics and 

variability from 10 GCMs in terms of MAE and frequency based analysis, both in dry and 

wet season across the sub-basins. 

We further explored the relationship between temperature and precipitation in each of the 

sub-basin using Copula based joint distribution, which enabled us to study/model any level 

of correlation, dependence or independence regardless of each variable’s suitable 

theoretical distribution and complex relationships. The main summary from Joint CDFs of 

precipitation and temperature are: 

1. The temperature and precipitation is depicting positive and upwards trends in all 

sub-basins and all time scales considered. 
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2. Geographical location of sub-basins plays an important roles in degree of changes 

observed in both the parameters. 

3. South-east of the basin is usually projecting warmer and drier conditions. 

4. South-west projections hints towards wetter and warmer trends. 

5. Trends of positive (wetter) and warmer conditions are significant in north of the 

CRB with south or southeast parts predicting higher temperatures with little 

changes in precipitation. 

6. Interdependence of temperature and precipitation is varied during dry season with 

most of the sub-basins predicting inverse relation i.e. with increasing given 

temperature the ranges of precipitation (most likely occurring) received would 

decrease. 

7. Whereas in wet season, precipitation ranges (most likely occurring) seemed to be 

almost constant within temperature changes i.e. the most likely occurring range of 

precipitation is not affected by how much the temperature rises.  

The most important application of the above study is to analyze the impact of climate on 

the CRB with combined relationships of precipitation and temperature and overcoming the 

usual impasse that is mostly worked on by providing only separate projections of 

temperature and precipitation. For most impact studies/applications the joint behavior of 

said climatic variables is especially used, e.g. drought analysis, agriculture production, 

irrigation amongst others. The results of this study provides additional and valuable 

information about how precipitation and temperature are jointly affected under climate 

change scenario, which in turn will provide sufficient management and strategies to meet 
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the challenges in future. It would be helpful in improvising decision making abilities under 

different levels of risks with high level of certainty/confidence. 

7.2 Further works 

Climate change signals have been continuously observed so far and historical resource 

management strategies will not be sufficient to meet the challenges of future changes in 

climate.  Rather, these changes demand new strategies. The present study considers the 

combined relationship of temperature and precipitation under future climate change impact 

and thus would provide additional and valuable information for various management 

practices e.g. agriculture, ecosystem, water resource and energy. This would further assist 

them to adapt future climate change’s influence instead of relying on the individual change 

trends of temperature and precipitation.  

In continuation to this study, we would like to concentrate our efforts on two-fold approach: 

Firstly, we would like to study the spatial distribution of  various sectors (agriculture, 

ecosystem, water resource and energy) that could be influenced by these projected changes 

in CRB; secondly, identify and quantify the impacts of  climate changes on certain key and 

strategic areas that are important for CRB e.g. water resource, agriculture, ecosystem, using 

joint relationship between various variables involved. 
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8 Concluding remarks 

In order to understand the consequence of climate change for the region we usually rely 

upon information from past events, observations and forecast to understand our natural and 

human resources. Forecast have been improved by various GCM but impact studies still 

considers interdependent variables separately. Application of the combined relationship of 

climatic variables (e.g. temperature and precipitation) will be additionally useful and 

significant way to understand climate change impact comprehensively. In the present study 

we have established combined relationship of temperature and precipitation and studied 

future changes in the relations. 

Warmer temperature with increasing amount of precipitation have been depicted in several 

sub basins in CRB for the wet seasons (from October to March) in future period (2070-

2099), especially TW Sullivan exhibit significant increasing precipitation with warmer 

temperature among all the sub basins. Warm temperatures will result in more winter 

precipitation falling as rain rather than snow throughout CRB. The primary impact from 

this combined change will be a shift in the timing of snowmelt and in turn the peak river 

flow from late spring to winter or even lead to river flood for cold season whereas drought 

for warm season. This combined change will further continue to affect the water quality, 

salmon living and snowpack availability and so on. This situation is especially obvious in 

the Pacific Northwest.  

For dry seasons (from April to September) in the future period, warmer temperature with 

slightly changes in precipitation have been presented in several basins in CRB, especially 

Dalles, Ice Harbor, Oxbow sub basins. The mainly impact from this combined change will 
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rise the occurring probability of wild fire and drought in these regions, due to higher 

temperature companied with less precipitation. Fire frequency and intensity have already 

increased in the past 50 years. Drought and hotter temperatures have also led to increase 

the risk of fire. This combined change will further continue to affect the hydropower 

production and fish production. The amount of water stored in reservoir will be lower from 

late spring through early fall, affecting water supply for hydropower production and the 

ability of the system to operate lower flow for fish production (Littell et al. 2009).  
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