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AN ABSTRACT OF THE THESIS OF Randi Christine Martin for the Master 

of Science in Psychology presented M9.y 23, 1975. 

Title: Alternative Methods for the .Analysis of Q.irves. 

APPROVED BY MEMBERS OF THE THESIS OOMMITTEE: 

James ?aulson, Chairman 

----· 

The interpretation of data from psychological experiments 

often involves the analysis and comparison of curves, like the 

electrocardiogram, spectral sensitivity, or dose-response curves. 

Existing statistical techniques are often inadequate for making 

this type of analysis. This thesis presents alternative methods 

for handling the data comprising curves and discusses the advantages 

of these techniques against those of existing methods. 

Four types of analysis are discussed: 

1) finding a confidence band around one curve, 

2) finding a confidence band around the difference between two 

curves .• or making an overall comparison between two curves, 



3) decomposing a curve into its components, 

4) making a component by component comparison of two curves. 

The alternative methods presented for the first two types 

of analysis involve finding simultaneous confidence intervals on 

the points making up a curve or on the difference between two 

curves. The first type of analysis, that of finding a confidence 

2 

band around one curve, is not presently used in psychological studies. 

The second type of analysis, that of making an overall comparison 

between two curves, is presently accomplished by visual inspection, 

analysis of variance, or Hotelling's T2• 

For the third and fourth types of analysis the use of a set 

of orthogonal functions known as Haar functions is presented as 

an alternative to the use of ortho gonal polynomials. 

For each type of analysis, two cases are presented, each of 

which makes different assumptions about the shape of t he covariance 

matrix. Case I assumes that the covariance matrix is unknown, while 

case II assumes that the covariance matrix is known except for a scalar. 

To illustrate the alternative techniques for case I, data from ., 
an actual experiment on the effect of £:. -THC ( tetrahydrocannabinol) 

on the p-wave of the electrocardiogram is used. To illustrate case 

II, simulated data is used involving a dose-response curve generated 

by testing independent groups on a memory task at four levels of a 

synthetic analogue of A~-THC . This is compared to a dose-response 

curve testing independent groups on the same task at the same dosage 

~ levels of A -THC. 

As was the case for the examples, the p-wave and the dose- -

response curves, t he alternative techniques provide adequate means 



for the analysis and comparison of curves. In some cases, as in 

the use of Haar functions for the decomposition of the p-wave, 

the alternative teclmiques provide advantages over existing methods. 

It is hoped that the new techniques will be incorporated into the 

analysis of psychological data. 
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I. Il!TROIU CTI ON 

Many problems within psychology deal with the relationship of a 

dependent variable to an independent variable which varies quantita­

tively along some continuum. For example, a learning curve shows the 

relationship between number of correct responses and number of trials . 

.Another example is a waveform such as an electrocardiogram, thought of 

in its digital representation, which shows voltage over .time. A 

third example would be ·spectral sensitivity measured over various wave­

lengths of light. Typically this relationship of independent variable 

to dependent variable is charted as some form of curve and this curve 

compared to another curve obtained under another experimental condi­

tion, or to one predicted by some theoretical relation between the two 

variables. 

The previously mentioned examples would most likely involve re­

peated measures on the same subject, that is, the same sub j ect tested at 

each level of the independent variable. However, experiments involving 

independent groups for the different levels could also give rise to data 

in the form of curves. .An example i·1ould be a study involving perform­

ance on a certain task after administration of differing doses of a 

drug with independent groups at each dosage level. These results 

could be graphed as a dose-response curve. 

Although this type of data is connnon in psychology, the existing 

statistical techniques for dealing with curves are often inadequate and 

for some types of data non-existent. The intent of this thesis will be 
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to propose techniques for dealing with the analysis of curves. A first 

objective will be to review existing methods of curve analysis point­

ing out their assumptions and types of problems to which they are most 

applicable. Secondly, I will propose alternative techniques which for 

some kinds of problems will provide advantages over existing methods. 

Four kinds of analysis are typically made when considering the 

data comprising curves: 

1) finding a confidence interval around each of the points making up a 

curve, or equivalently, finding a confidence band around the entire curve, 

2) finding an overall difference between two or more curves, or the 

confidence band for the difference between two or more curves, 

3) decomposing a curve into its components, 

4) ma.'\.cing a component by component comparison of two or more curves. 

These four kinds of analysis will be discussed in sections II through 

V of this paper. 

Before beginning the discussion of techniques some explanation of 

the notation used will be necessary: 

lower case letters will represent scalars: a, b, x, y, ex. 

lower case letters which are underlined will represent vectors: ~' l'~ 

capital letters will represent matrices: S, X,}:. 

The most commonly used vectors will be l and #: l is the sample 

mean vector which is a set of measurements showing the average value 

of the dependent variable at each level of the independent variable. 

For example if the following values of the dependent variable y 

were found for the following values of x (x = x 1 , Xv x 3 , x't): 



x 

:XI Xa, x~ X4 

98 110 120 126 

y 100 112 113 130 

102 107 115 lhO 

average 100 109.6 116 132 

l would equal (100, 109.6, 116, 132). The elements off wi.11 be la­

belled Yi where z • (y1 , y2, y3 , Yh, •••... ,yp) given p levels of the 

independent variable. In the previous example: 

Yl = 100, Y2 = 109.6, Y-3 • 116, Y4 .. 132. 

~ is the population mean vector and is not a random vector. l is an 

estimate of µ... 
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The most commonly used matrics will be 2. and S. z is the variance-

covariance matrix of J:-and Sis the estimate of this matrix. In all cases 

l will be assumed to have a multivariate normal distribution with mean 

~ and covariance L. . 

Also, the mathematical symbols E: and V will be used. E means 

'is contained in' and V means rfor every.' 

Vector multiplication and matrix multi.plication will be used to 

simplify notation. The appendix gives an explanation of how to perform 

vector and matrix multiplication. 



II. FrnDING A OONFIDENCE BAND AROUND ONE CURVE 

Returning to the types of analysis made when dealing with curves, 

the first to be considered lr.ill. be that of finding a confidence band 

around a curve. This is similar to the univariate problem of finding 

a confidence interval around the mean of a sample. In the univariate 

case, one finds the mean and uses tables of the t-distribution to 

find the interval: 

f-l E: y + ~1 s 
Jn-1 

In the case of curves, one wishes to arrive at a confidence band 

for the entire curve. For e:xarrple, suppose that an experimenter has 

fifty observations of an electrocardiogram and wishes to find a confi-

dence band for the average of these fifty. A natural inclination is to 

calculate the interval described above for each of the points making up 

the curve using an 0( of .05 for each point This is incorrect, however. 

Taking an o<. of .05 means that there is a probability of .05 that t he 

confidence interval will not contain the true mean, fl-~, for that point. 

The probability that any part of the curve could lie outside the confi-

dence band for the entire curve will be greater than.05 because we are 

concerned with the joint probability that one or more confidence inter-

vals will not contain the true mean for that point while the remaining 

confidence intervals could cover their f i.· The value of the joint prob­

ability will depend on the degree to which the points are correlated. 

Only if the points are all perfectly correlated will the G( level for the 
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entire curve be as small as that for each point. If the points are all 

independent, the probability that the confidence band vdll cover all the 

points would be the product of the probabilities for the individual con­

fidence intervals. For a curve comprised of four points with each con­

fidence interval having a probability of .95 of covering the true mean, 

the joint probability for independent points would be 

(.95) x (.95) x (.95) x (.95) - .815 

not an acceptable confidence level. 

Since in actual data the points will most likely not be perfectly 

correlated, the simultaneous probability will be less than 1-<X. .An 

alternative technique should provide confidence intervals for each of 

the points all of which hold simultaneously with probability 1-0(,. The 

simultaneous multivariate techniques to be described in this paper were 

originally developed by Roy and Bose (1953) and are swmnarized in Miller's 

Simultaneous Statistical Inference (1966). 

Miller presents two cases in the discussion of finding a confidence 

interval around a curve. One must determine if his data fit the assump­

tions of the first case or the second. In the first case , the co­

variance matrix is completely unknovm. HJst data encountered in the 

comparison of curve will fall under this case clue to lack of knowledge 

about the shape of the covariance matrix . The second case assumes 

that the covariance matrix is kno'Wil except for a scalar. 

CASE I: COVARIANCE MATRIX UNKNOWN 

Either of two expressions may be used to determine confidence 

intervals about the co-ordinate means: 



(1) i 1, ..... ,p 

i = 1, ..... ,p. 

Expression (1) is based on the Bonferroni inequality. If an overall 

<::\ level of significance is de sired, using an hp confidence level for 

each point (where p is the nuinber of points) ,.Ji.11, according to the 

Bonferroni inequality, assure that the p statements in expression (1) 

hold simultaneously 1-Ii th probability greater than 1-1{·. 

Expression (2) is derived from the results of Roy and Bose(l953) 

and is presented in Miller (1966). EA-pression (1) will generally give 

s maller confidence intervals. For p=l, expression (1) is equal to 

expression (2) since 

For p 2, 

for small n. However, even when the F value is less than t value 

squared, the fact that eA-pression (2) requires multiplication of the 

F value by p/n-1\, results generally in the 
C"n-p/ 

being smaller. If in doubt one should compare 

to determine whether (1) or ( 2) 1-Iill give the smaller intervals. 

6 

An example of Case I ta'l{en from an actual e)cpcriment involves ob-

servations of the electrocardiogram. The Effi was recorded on magnetic 

tape and transformed by a..Dalogue to digital converter to numerical 

data. The mean and variance of the thirty-two points making up t he 
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p-wave are shown in Table I. Figure 1 shows a drawing of the average 

p-wave with confidence band derived using the formula for the Bonferroni 

intervals. 

CASE II: · COVARIANCE MATRIX KNOWN EXCEPT FOR A SCALAR 

The second case is a special case which assumes that the co-

variance ma.trix is known except for a scalar, that is, 

L. = c;"l [ 
/ 

where "/ L is lmown and cr1 is unlmown. For this case, Miller shows that 

the following expression gives Bonferoni intervals around each point 

such that the simultaneous probability that each point lies within the 

confidence band is greater t han 1-~: 

(3) it: l, ..... ,p 

n 
2 1 "'" / /-f . / where s = L (z

1
· - l) (.[ ) (z;· - z) 

p-1 j'::.f I 

and ~~ is the ith diagonal element of the known matrix r. 
Alternatively, one could use: 

(4) i=l, ..... ,p. 

However, as before, the Bonf erroni intervals ·will usually be smaller. 

Examples of this case are much less conunon. One e~ra.mple would 

be where the curve was derived from observations on independent groups 

at each level of the independent variable. In this case t he covariance 

matrix would be diagonal: 



point 

1 
2 
3 
4 
.5 
6 
7 
8 
9 

10 
ll 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
2.5 
26 
27 
28 
29 
30 
31 
32 

TABLE I 

MEAN, VARIANCE, AND CONFIDENCE INTERVAL 
FOR AVERAGE P-WAVE 

mean variance Bonferroni intervals* 

168.92 3.34 168.92 + .87 
169.54 3.03 169 • .54 + .83 
169 • .58 s.02 169 • .58 + 1. o6 
170.02 .5.24 170.02 + 1.08 
171.48 4.70 171.48 + 1.03 
173.62 6.73 173.62 + 1. 23 
176.60 6.82 176.60 + 1,24 
179.30 6.99 1 79. 30 + 1. 26 
180.72 4.98 180. 72 + 1.06 
181.34 4.80 181. 34 + 1. 04 
180.40 7.84 180.40 + 1. 33 
179.46 .5.40 179. 46 + 1.10 
180 • .52 10.91 180 • .52 + 1. .57 
148.72 28.49 184. 72 + 2. 54 
190.92 23.63 190.92 + 2.31 
19).22 9.97 19.5. 22 + 1. so 
196.46 6.99 196.46 + 1. 26 
194.40 10.24 194.40 + 1.52 
189 • .54 34.42 189 • .54 + 2.79 
182.94 51..57 182.94 + 3.41 
176.32 47.6.5 176.32 + 3.28 
170.32 33.80 170.32 + 2.76 
16.5.14 26.69 16.5.14 + 2.4.5 
160.32 21.40 160.32 + 2.20 
1.57.18 10.32 1.57 .18 + 1. 53 
1.5.5.08 .5.50 1.5.5. 08 + 1.11 
1.54.32 3.81 1.54.32 + .93 
1.54.22 3.24 1.54.22 + .88 
1.54.96 J.7.5 1.54.96 + .92 
1.55 • .56 J.64 1.5.5 • .56 + .91 
1.5.5.90 2.62 1.5.5. 90 + • 77 
1.56.42 2.66 1.56. 42 + • 77 

*o<.. = .05 

8 
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a, 0 0 • • •• 0 

O a;i,.O • • 0 
= 

0 • • a~ • • • 0 

0 0 • 

Assuming that the ~ were equal or that they were all nrultiples of 

some common value {ai "' ci 0-
1 where the ci are known), t hen the assump­

tions of case II would be met: 

1 0 0 • • •• 0 

0 1 0 . . 0 
{a .. ~) = a 

0 • . 1 • • • 0 

0 0 • • 1 

c,O O • • 0 
or 

0 c2 0 • . 0 

O • • c ... · • • • 0 

0 0 • 

For instance, suppose that the l represented performance meas­

ures on a memory task at four equally spaced dosages ( 0.0 mg/kg, 

0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg) of a drug which is a synthetic ana­

logue of CJ.'L tetrahydrocannabinol ( syn. LJ.9-rnc ) . If the e:xper-

imenter had considerable experience with data derived from these 

dosage levels of this drug, he could possibly arrive at estimates of 

t he a .. 
J. 

Suppose that he noted twice as much variance in the perform-



ance at the upper two levels of the drug as at the lower two. Then, 

1 0 0 0 

0 l 0 0 

0 0 2 0 

0 0 0 2 

assuming that independent groups were used at each dosage level. 

11 

Table II shows the raw scores for each of ten subjects used at 

each dosage level (data simulated). Table III gives the values of yl 

and the confidence interval around each point which was computed using 

expression (3) (s2 was calculated to be 56.43 and c<was set at .05). 

Figure 2 shows the confidence band around the mean curve. 



Total 

o.o mg/kg 

58 
60 
63 
SS 
52 
58 
57 
59 
58 
60 

580 

point 

1 

2 

3 

4 

TABLE II 

PERFORMANCE OF INDEPENDENT GROUPS 
ON MEMORY TASK AT FOUR LEVELS 

OF SIN. A'-THC 

0.5 mg/kg 1.0 mg/kg 1.5 mg/kg 

62 48 
60 39 
65 38 
61 45 
64 52 
60 55 
55 37 
61 32 
63 47 
62 51 

613 444 

TABLE III 

AVERAGE SOORE AND CONFIDENCE INTERVAL 
AROUND EACH POINT FOR 

SIN. AQj -THC 

43 
39 
27 
46 
43 
35 
31 
41 
28 
36 

369 

Y.· Bonf erroni confidence interval 
---i.. 

58.o 58.o + 6.23 

61.3 61.3 + 6.23 

44.4 44.4 + 8.85 

36.9 36.9 + 8.85 

12 



80 

CD 

~60 
0 
ID 

G> 
0 

~ 
0 
t40 
a> 
p.. 

20 

o.o o.5 
Syn. 

1.0 
-THC mg/kg 

1.5 

Figure 2. Confidence band around performance scores 
at four dosage levels of a synthetic analoq11e of A'-THC. 
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III. FINDING A CONFIDENCE BAND FOR THE DIFFERENCE BETWEEN TWO ClJRVES 

The second type of analysis to be considered is that of finding a 

confidence interval around the difference between two or more curves. 

This analysis has as its univariate analogue t he comparison of the means 

of two groups, or finding a confidence interval for the difference be-

tween t wo groups. In the univariate case, one finds the mean for each of 

t he two samples and then finds the confidence interval for the differ-

ence using t he following formula: 

where 
I 

-I (nrl)s2 + (n~l)s2 
n,+ ~- 2 

_/-1 1 --+--n, n"2-

In the case of curve comparisons, one wishes to find a confidence 

band on the difference between two average curves. An example would 

be comparing the average Ecn of an animal before administration of a 

drug to the average ECG after administration (see below). 

Ecn before 

Current methods of making such comparisons are visual inspection of 

the graphs, analysis of variance or Hotelling 1 s T2• 

Visual inspection has been commonly used in the comparison of 

wavefo:nns like the ECG. In such -w-aveforms there are often regularly 

occUITing phenomena which can easily be identified by visual inspection 

as in the above drawings. The difficulty with visual inspection for 

curve comparison is similar to inspection of single values in the uni-
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variate case: the variance about each point may be so large, that appar­

ent differences are not statistically significant; that is, the differ­

ences could be due to chance alone. 

Existing statistical techniques, on the other hand, may obfuscate 

real differences, hiding differences that would be significant by the 

alternative techniques to be presented. Use of the analysis of var­

iance for the comparison of two curves may often hide real differences. 

Analysis of variance can be used for t he comparison of curves 

by considering each point as one column in t he analysis , and each sampl e 

of curves as a row. The design would be interpreted a s a two-way 

ANOVA, with repeated measures on t he row variables. Only an overall 

difference will be apparent. If a difference e:;d.sts i n a small por­

tion of the total number of points , it may be t hat t here will be no 

significant difference between rows. Differences in different seg­

ments will show up as significant interaction, but will not indicate at 

which points the differences occur, thus obscuring a difference that 

would be obvious to visual inspection • 

.Another difficulty with t he use of ANOVA presents itself when the 

points of the curve represent repeated measures on the same sub j ects. 

In using ANOVA, it is assumed that t he variance-covariance matrix has 

compound symmetry, that is, that: 

.. 
1 f 

~ 1 

F 
r . 

. f 

1 



In the case of independent groups, ~ • o, and this assumption amounts 

to saying that the treatment means have equal variance. Box (1954) 

has shown that in the usual ANOVA (not repeated measures), the F-test 

is relatively insensitive to violations of the assumption of compound 

symmetry. However, in the case of repeated measures (or whenever 

observations are correlated) violation of t his assumption will result 

in a positive bias (an F value which is too low). 
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Therefore, before performing ANOVA with repeated measures, it is 

necessary to test that X has the above form. This involves testing the 

hypothesis that the covariance matrices for each sample are equal and 

then testing that the pooled matrix has variances equal to the average 

variance of the pooled estimate and covariances equal to the average 

covariance of the pooled estimate (Winer, 1971). The computations 

involve finding the matrix of the average variance and covariances, the 

determinant of the pooled estimate, and the natural log of the deter­

minant. If the matrix is found to have the required form, then one 

can proceed with the ANOVA. This procedure of determining if L. has t he 

proper form is already more difficult computationally than proceeding 

with Miller's simultaneous techniques to be presented below. Also , 

if one can proceed with ANOVA, this will still involve the limit­

ations described above regarding the analysis of differences in dif­

ferent portions of the curves. 

If the matrix does not have the required shape, the usual pro­

cedure is to use Hotelling's T2 to determine if there are column 

differences (Winer, 1971). However, this is a test of column effects 

only, not of row differences or interaction. When considering differ­

ences between two or more curves like the Ecn or spectral sensitivity 
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curves, one already knows that there are differences in level between 

the points of the curve inherent in the shape of the curve. One · 

would be interested in differences in shape between different groups, 

that is, in row differences and interaction. 

The T2 test can still be used to test for differences between 

curves by using the procedure described in Morrison's Mlltivariate 

Statistical I.fethods (1967). Computation of T2 is difficult, in-

valving the calculation of a matrix inverse. The confidence regions 

that can be determined are p-dimensional ellipsoids. With p > 3, 

these regions become difficult to visualize. Also, this test, like 

ANOVA, gives just an overall difference rather than a difference at 

each point. 

An alternative technique presented by Miller provides for the 

determination of a confidence interval for the difference between the 

means of each co-ordinate of the curve, allowing one to distinguish 

at which points the curves differ and at which they are the same. 

Roy and Bose (1953) developed this method by determining the point by 

point implication of the p-dimensional ellipsoid derived from Hotelling1 s 

T2• The computations involved in this technique are much simpler than 

those required for Hotelling 1 s T2 (T2 does not have to be calculated) 

or those required for ANOVA. All that is required is an estimate of 

the variance about each point for case I or an estimate of the un-

known scalar for case II. Since case I makes no assumption about the 

shape of the covariance matrix, there is no need to make the tests 

for compound synnnetry. 
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CASE I: COVARIAJWE MA.TRIX UNKNO\VN 

In the general case where the covariance matrix is unknmm, the 

formula for finding the confidence interval about the difference be-

tween two curves based on the Bonferoni inequality is: 

'}._, 
where s i. is the pooled estimate of the variance at each point and 

where the Y, ~ are co-ordinate means of the first sample and the y1 ~ 

are the co-ordinate means of the second sample. 

An example of this case would be the comparison of the p-wave 

before administration of a drug to the p-wave after administration. 

Data from an actual experiment gave the values shovm in Table IV for 

the mean and variance of the p-waves before and after administration of 

~ 
.6.-THC. A sample of fifty was taken in each case. The difference be-

tween the two curves and the confidence band about the difference 

is also .shown in table IV. Figure 3 shows the average curves of the 

two curves being compared. Shown in figure 4 is the confidence band 

about the difference between the two curves. The two curves are dif-

ferent at all points except 24 and 25 where the confidence bands 

include zero, with the largest differences occurring between points 14 

and 20. This analysis provides statistical validation of what would be 

obvious to visual inspection. 

CASE II: COVARIANCE MATnIX KNWON EXCEPI' FOR A SC.A.LAH. 

The second case assumes that the covariance matrix is known 
I / 2.. 

except for a constant ( L::. 01..L. where L. is known and cr unlmown). 



pt. Y,~ 

1 168.92 
2 169.54 
3 169.58 
4 170.02 
5 171.48 
6 173.62 
7 176.60 
8 179.30 
9 180.72 

10 181.34 
ll 180.40 
12 179.46 
13 180.52 
14 184. 72 
15. 190.92 
16 195.22 
17 196.46 
18 194.40 
19 189.54 
20 182.94 
21 176.32 
22 170.32 
23 165.14 
24 160.32 
25 157.18 
26 155.08 
27 154.32 
28 154.22 
29 154.96 
30 155.56 
31 155.90 
32 156.42 

TABLE IV 

CONFIDENCE BAND ABOUT DIFFERENCE BETWEEN 
AVERAGE P-WAVES BEFORE AND AFTER 

ADMINISTRATION OF -THC 

19 

confidence 
Y,.; Y:,, - y._, 52, s~. pooled s~ interval* 

h ' ~ 

159.54 9.48 3.34 8.58 5.96 9.48 + 1.59 
159.94 9.60 3.03 13.98 8.50 9.6o + 1.90 
159.58 10.00 5.02 10.29 7.66 10.00 + 1.80 
159.42 10.60 5.24 6.5'3 5.89 10.60 + 1.58 
159.68 ll.80 4.70 5.20 4.95 11.80 + 1.45 
159. 78 13.84 6.73 6.54 6.64 13.84 + 1.68 
158.98 17.62 6.82 '7.:98 7.40 17.62 + 1.77 
157.96 21.34 6.99 9.39 8.19 21.:34 + 1.87 
156.82 23.90 4.98 18.88 11.93 23.90 + 2.25 
155.66 25.68 4.80 22. 72 11.84 25.68 + 2.24 
154.46 25.94 7.84 28.87 18.35 25.94 + . 2.79 
152.52 26.94 5.40 42.05 23. 72 26.94 + 3.17 
149.46 31.o6 10.91 51.27 31.09 31.06 + 3.63 
146.70 38.02 28.49 85.89 57.19 38.02 + 4.93 
143.88 47.04 23.63 93.70 58.66 47.04 + 4.99 
142.14 53.08 9.97 93.80 51.89 53.08 + 4.70 
141.36 . 55.10 6.99 61.95 34.47 55.10 + 3.82 
142.16 52.24 10.24 43.44 26.84 52.24 + 3.37 
143.JO 46.24 34.42 . 50.91 42.67 46.24 + 4.26 
145.24 37.70 51.57 53.86 52.71 37.70 + 4.73 
148.16 28.16 47.65 50.14 48.89 28.16 + 4.56 
150.46 19.86 33.80 43.40 38.60 19.86 + 4.05 
153.64 11.50 26.69 38.32 32.51 11.50 + 3. 72 
157.10 3.22 21.40 43.23 32.31 3.22 + 3.71 
160.34 -3.15 10.32 48.15 29.23 -3.15 + 3.53 
162.66 -7.58 5.50 63.54 34.52 -7.58 + 3.83 
164.64 -10.32 3.81 58.97 31.39 -10.32 + 3.65 
166.88 -12.66 3.24 47.74 25.49 -12.66 + 3.29 
168.84 -lJ.88 J.75 28.72 16.24 -13.88 + 2.63 
169.80 -14.24 J.64 22.86 lJ.25 -14.24 + 2.37 
170.22 -14.32 2.62 20. 79 ll.71 -14.32 + 2.23 
170.06 -13.64 2.66 26.87 14. 76 -13.64 + 2.50 

* « ... 05 
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Figure 4. Confidence band about difference between average 
p-waves shown in figure 3. 
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For this case the confidence bands for the difference between two 

curves can be found by the use of the following: 

(6) 

where s2 • 2Pf n-l) { t,<!!; - '!!1 {<LT' (y,) - ~· l 
+ f. ('5-• - !°'1 )/ (Z 'r 1 

(-!"'-i - Y.J. 
j;:1 I Jj 

I 
and where ~i. is the ith diagonal element of the knol'm matrix 2.. 

An example of this case would be the comparison of the t wo dose­

response curves shoim in figure L where syn. A "-THC was t he drug used in 

obtaining curve 1 and ~"-THC was used in obtaining curve 2. Assuming 

t hat independent groups were used at each dosage level and that the 

variance was known to be t wice as large at the two higher levels as at 

the two lower levels for both drugs, the covariance matrix would have 

the form: 

1 0 0 0 

0 1 0 0 r. • a').. 
0 0 2 0 

0 0 2 

The raw data for the scores obtained using t he first drug is shown in 

table II, while table V gives the raw scores for drug 2 (data simulated 

in both cases). Table VI gives the mean difference between the curves 

at each dosage level and a confidence band about t his difference . 

Figure Sa shows the two average curves and figure Sb the · confidence band 

for the difference between the t wo curves. The two curves differ sig-

nificantly at dosage levels 1.0 and 1.5 mg/kg. There was no signifi-

cant difference at 0.0 and 0.5 mg/kg. 
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TABLE V 

PERFORMANCE OF INDEPENDENT GROUPS 
ON MEM)RY TASK AT FOUR LEVEIS 

OF ~-THC 

O.O mg/kg 0.5 mg/kg 1.0 mg/kg 1.5 mg/kg 

61 6o 32 19 
64 62 30 28 
65 63 38 17 
68 61 42 15 
63 58 27 31 
69 57 26 31 
60 59 39 15 
58 61 31 27 
66 56 u3 16 
59 59 24 19 

Total 633 596 332 218 

-
TABLE VI 

CONFIDENCE BAND AIDJND DIFFERENCE 
BE!WEEN AVERAGE SYN. -THC 

SCORES AND A VERA.GE 
-THC SCORES 

point 1, ~ Y4~ y .- Y. . 
I~ 'l.• 

Bonf erroni confidence interval 

1 58.0 63.3 -5.3 -5.3 + 1.29 

2 61.3 59.6 1. 7 1. 7 + 1.29 

3 44.4 33.2 n.2 11.2 + 10.27 

4 36.9 21.8 15.1 1s.1 + 10.21 
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Figure 5a. Ol.rve 1 shows average performance score at four 
dosage levels of syn. ~ -THC. Curve 2 shows the same for 
8-THC. 
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Figure 5b. Confidence band about the difference between 
the two curves shown in figure 5a. 



IV. DECOMPOSITION OF A aJRVE INTO ITS COMPONENTS 

This section deals with a type of analysis which attempts to 

define the shape of a curve or the form of relationship between 

the independent variable and the dependent variable. First to be 

discussed will be the general idea of a component of a curve as being 

a linear combination of co-ordinate means. Next to be presented 

will be the determination of orthogonal components and two special 

sets of orthogonal components knovm as orthogonal polynomials and 

Haar functions. Finally, techniques for making simultaneous tests 

on the significance of a set of components will be outlined. 

Besides finding a confidence band about a mean curve or mean 

difference between curves, one may wish to analyze the shape of a 

curve. This type of analysis has no univariate analogue since one 

cannot talk about shape or form in one dimension. In the case of 

curves, one would like to be able to say, for instance, that curve 

6a (figure 6) shows a difference in level between first half and 

second half, while curve 6b shows a linear trend. The means of making 

this type of analysis depend on making comparisons between weighted 

combinations of the co-ordinate means. For e;y.ample, to compare the 

first half of curve 6a to the second half one could look at the 

difference between the sum of means of the first half and the sum of 

means of the second half: 

(7) 
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/0 

6a 

2. 3 

6b 

Figure 6. Curve 6a shows a difference in level between 
the first half and the second half. curve 6b shows a linear 
trend. 
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Then this difference can be tested for statistical significance. 

Thinking of the co-ordinate means as being colunm ·means in an analysi·s 

of variance, the statistical test for the significance of combi-

nations of co-ordinate means has close relationship to the test of 

column effects in one-way .ANOVA. 

A component of the sum of squares for co-ordinate means is 

defined by 

SS "' c 

p 

where U i • O. 
i,.: I 

or, in vector notation where c1 • (c,, C.v c3 , ••••••• , cp) 

In the foregoing example, c1 = c2 = 1, c3 • ~ • -1, and SSc • 25/n. 

A component of the sum of squares has one degree of freedom because 

it represents the squared difference between two basic observations 

each of which is a weighted sum of treatment means (Winer, 1971). 

The expected value of a component of sum of squares is: 

Under the hypothesis that £'l • o, that is, that t he weighted 

diff erence equals zero, 

Therefore, the ratio SSc has an F distribution with 1 
MS error 

and p(n-1) degrees of freedom. 

Many different combinations of the co-ordinate means could be 
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derived meeting the requirement that LCj_ • O. HOllever, only certain 

sets of these combinations will provide non-overlapping information 

about the shape of the curve. Returning to curve 6a, one could com-

pare the first co-ordinate mean to the fourth by taking the combin-

ation: 

(8) 

However, the information obtained from doing so would be redundant 

with that obtained in taking the combination in (7). On the other 

hand, one could look at the difference between the first co-ordinate 

and the second by taking the combination: 

(9) 

This would not overlap with (7) since (7) tells us nothing about re-

lationships in the first half, only about relationships between the 

first half and the second. 

An easy means of determining whether two linear combinations are 

uncorrelated and therefore provide non-overlapping information is to 

take the vector product c •c , where c ' is the set of weights for 
- 1- :i. - 1 

one combination and c is the set of weights for the other. If 
- :i... 

c ' c • O, the combinations are orthogonal {i.e., uncorrelated). 
- 1- 1 

For example, 

(1, 1, -1, -1) (1, o, o, -1) • 2, 

and these two combinations would not be orthogonal, while 

(1, 1, -1, -1) (1, -1, o, 0) = o, 

and these combinations would be orthogonal. 

If the combinations are orthogonal, then the sums of squares for 
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the components will also be orthogonal. For a curve comprised of p 

points ( or a design with p columns), one can detenn:i..ne p-1 compo­

nents all of which are orthogonal to each other. F.ach component 

of the sums of squares for these p-1 components covers a different 

portion of the total variation of the co-ordinate means. The sum 

of these p-1 components of the sum of squares will account for all 

the variation between groups. Non-orthogonal components do not 

have this additive property. (Winer, 1971) 

Therefore, by taking orthogonal linear combinations of the 

co-ordinate means one can arrive at k-1 non-overlapping bits of 

information about the shape of the curve. Two sets of components 

which provide useful information about the shape of a curve are 

orthogonal polynomials and Haar functions. The first to be dis­

cussed will be orthogonal polynomials. 

ORTHOGONAL POLmOMIALS 

The only method discussed in most texts on psychological statis­

tics for the charaterization of the components of a curve is the 

method of orthogonal polynomials (eg. Hays, 1973). The weights to 

be used in taking linear combinations of means for finding orthogonal 

components have been tabled. The weights have been chosen so that 

each of the p-1 sets of coefficients in combination with the co­

ordinate means represent exactly one polynomial trend in the data. 

The first set of coefficients allows one to test for a linear trend, 

the second for a quadratic trend, the third for a cubic trend, the 

fourth for a quartic trend and so on. (See figure 7.) 
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linear quadratic 

cubic quartic 

Figure 7. ilirves show the first four polynomial trends. 



31 

A curve may have one or more significant trends, up to p-1, 

or it may have no significant trends. For example, a curve of 

shape Ba (see figure B) would show a small linear trend; a curve of 

shape 8b would show a larger linear trend; curve Be would show a 

quadratic trend and no other; and curve Bd lTOuld show a significant 

linear trend as well as a significant quadratic trend. 

Difficulty with this method arises if the curve involves a 

number of significant trends. This can occur even if the curve is 

relatively simple but non-symmetric as in the case of figure 9. 

Suppose that for this curve there were 10 observations at each 

point and that the mean squares for error (MS error) was equal to 

40.0. The symbol cf;,~ will be defined as follows: 

(10) 'tr: • E.f l 

where p~ is the set of orthogonal polynomial coefficients for the 

i th component. The SSC' s for the '{N were found to be: 

SS( 'fr) 
SS( t/(,2-) 

SS( l/fr:J) 

• 2B81 

• 0 

• 969 

SS( '/ft) • 0 

SS( </fr.5 ) • 46B 

·with an o(. of .05 and with 1 and 72 degrees of freedom, the ratio of 

SS( l{p;)/ Ms error would be compared to the F value of 3.9B. Trends 

1, J, and 5 would be significant. It is also quite likely that the 

seventh trend would also be significant. However, coefficients for 

trends beyond the fifth are not usually tabled. 

The problem with this method lies in the physical meaning to 

accord to the various significan trends beyond quadratic. This 



Ba 8b 

Be 8d 

Figure 8. Curve 8a shows a small linear trend. Curve 8b 
shows a larger linear trend. Be shows a quadratic trend. 
8d shows a linear trend as well as a quadratic trend. 

40 

20 

1 2 3 4 5 6 

Fi~ 9. The first, third, and fifth polynomial trends 
wolldbe significant in this simple, but non-symmetric curve. 

32 



difficulty in interpretation of the higher trends is evidenced by 

the fact that tables do not usually give coefficients beyond the 

fifth. Even stopping at the fifth it would be difficult to guess 

that the curve had the given shape from the knowledge that the 
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first, third, and fifth components were significant. Using orthogonal 

polynomials for this example does not clarify the shape of the curve, 

but rather confuses the is sue. 

HAAR FUNCTIONS 

Orthogonal polynomials are not, however, the only set of orthog­

onal functions which can be used to analyze a curve into its compon­

ents. For example, Fourier analysis is a teclmique for analyzing 

periodic functions into simple trigonometric components. Another 

set of orthogonal functions which are easy to use computationally 

and also easy to interpret are Haar functions (Harnroth, 1972). 

Haar functions are step functions which take on one of three 

values - 1, -1, and 0 - at any value of the independent variable. 

Figure lOa through lOd show the first four Haar functions. The 

first Haar function is a constant function having the value one 

at every point. The second Haar function equals one for the first 

half and minus one for the second half. A curve which had a posi-

tive component of the second Haar function would be higher in the first 

half tha.n in the second. See figure lla through lie. 

The third Haar function is one for the first quarter of the 

curve, minus one for the second quarter and zero for the second 

half. A curve having a positive component of the third Haar 

function would be higher in its first quarter than the second. 
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lOa. The first Haar function 

lOb. The second Haar function 

lOc. The third Haar function 

lOd. The fourth Haar function 

Figure 10. The first four Haar functions. 
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lla 

llb 

lie 

Figure ll. Figure lia would show a significant positive 
component of the second Haar function, while llb would show 
a significant negative component. Curve lie would not show 
a significant component of the second Haar function since it 
is the same height in both halves on the average. 
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The shape of the second half of the curve does not influence whether 

or not this third component is significant. See figure 12a and 12b. 

The fourth Haar function is equal to zero for the first half, 

one for the third quarter and minus one for the fourth quarter. A 

curve having a significant positive component of the fourth Haar 

function would have a third quarter which is higher than the fourth. 

The fifth through eighth Haar functions are equal to one for 

one-eighth, minus one for the adjacent one-eighth, and ~era for the 

rest of the curve. Curves which have a significant component of 

the fifth Haar function have a first eighth higher than the second 

eighth; a significant sixth Haar function implies a third eighth 

which is higher than the fourth eighth; and so on. The ninth 

through sixteenth Haar functions are used to determine if adjacent 

sixteenths of the curve differ in height. Similarly, the 17th 

through 32nd Haar functions are used to determine if neighboring 

thirty-seconds are different in height. 

To determine which Haar components are significant one nru.st 

take the linear combination of the appropriate Haar coefficients 'W:i. th 

the co-ordinate means: 

where h; is the set of Haar coefficients for the ith component. The 

Haar coefficients are not tabled in statistical text, but can easily 

be determined. Table VII. shows the Haar coefficients to use for a 

curve comprised of four points, eight points, and sixteen points. 

For a number of points equal to 2n the coefficients can be deter-

mined analogously. 



37 

12a 

12b 

Figure 12. Curve 12a would have a significant positive component 
of the third Haar function. ::Urve 12b would have a significant 
negative component of the third Haar function. 
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TABLE VII 

HAAR COEFFICIENTS FOR ClJRVES COMPRISED 
OF FOUR, EIGHT, OR SIXTEEN POINTS 

point point 
1 2 3 4 1 2 3 4 5 6 7 8 

h, . 1 1 1 1 h, 1 1 1 1 1 1 1 1 

§ h2 1 1 -1 -1 h;i.. 1 1 1 1 -1 -1 . -1 -1 •rl 
~ 
0 

hJ 1 0 0 h3 1 1 -1 -1 0 0 0 0 e -1 

h.q 0 0 1 -1 ~ 
h<t 0 0 0 0 1 1 -1 -1 0 

"ri 
~ 
0 

h5 1 -1 0 0 0 0 0 0 e 
h<. 0 0 1 -1 0 0 0 0 

h7 0 0 0 0 1 -1 0 0 

h~ 0 0 0 0 0 0 1 -1 

6 
point 

13 14 15 16 1 2 3 4 5 1 8 9 10 11 12 

h, 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 
h1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
h3 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 
h4 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1 -1 -1 
hs- 1 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 
hi., 0 0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0 
h7 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 

§ hs o 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 
:;j h9 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 § h, ~ 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 
C'+-1 h;, 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 

h1i. 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 
h,3 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 
hNO 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 
h,,, 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 
h;(. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



39 

If the rrumber of points does not equal t1, the Haar coeffi­

cients may be determined as follows. The first function is rep­

resented by all ones, as before. Suppose that tc is the largest 

power of 2 which is less than p, the number of points. The second 

Baar function is one for the first 2k points and minus one for the 

remaining p-tc points. The coefficients for comparing the mean 

levels in the two segments are p-~ for the first tc points and 

-(~) for the remainder, reflecting the unequal number of points 

in the two portions ·of the curve. Coefficients for subsequent 

functions within the segment with tc points (the first segment) 

can be determined in the usual way. If p-~ is an integral power 

of 2 (for example, if p=l2, p-~=4), then coefficients for functions 

within this second segment can also be determined in the usual way. 

If not, repeat the process described above for the segment of p-~ 

points, finding the largest power of 2 which is less than p-~. 

For example, if p a 7, the coefficients would be as shown in 

table VIII. 

After finding the linear combination of the Haar components with 

the co-ordinate means, the sum of squares for the linear combination 

will be found and this value divided by the mean squares for error. 

As a numerical example, consider again the curve used in the 

discussion of orthogonal polynomials, where l • (40,40,40,40,20,20,20,20) 

and where MS error • 40. (See figure 9.) The sum of squares for the 

eight conponents and ss(f'>i.: )/ MS error is given in table IX. Compar-

ing the value of the ratios SS/MS to the F.oS" value of 3.98, only 

components 1 and 2 would be significant. 

Finding ~d(!!( ~ will give the magnitude and direction of 
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TABLE VIII 

HAAR OOEFFICHNTS FOR A mRVE 
OOMPRISED OF SEVEN POINTS 

point 
1 2 3 4 s 6 7 

h 1 1 1 1 1 1 1 

h 3 3 3 3 -4 -4 -4 

h 1 l -1 -1 0 0 0 
~ 
0 •n h 0 0 0 0 1 1 -2 +» 
0 

§ 
h l -1 0 0 0 0 0 ..... 

h 0 0 1 -1 0 0 0 

h 0 0 0 0 1 -1 0 



h, 

h2. 

h3 

h4 

h) 

h,_ 

h-, 

hs 

TABLE IX 

SUM OF SQUARES FOR HAAR OOMPONENTS 
OF aJRVE m FIGURE 9 

ss(IPh~) 

(1·4o+l · ho+l · 40+1·4o+1 .- 20+1 · 20+1·•2o+l • 20) .• 7200 

2 
(1· 40+1<40+1· 4o+l·40-1·20-1•20-1•20-1•20) - 800 

2 
(1·40+1 • 40-1·40-1·4o+o~2o+o·2o+0·20+0-20) • 0 

2 
(0 · 40+o·40+o -40+o·40+1·20+1·20-1·20-1 ~ 20) - 0 

2 
(1 ·40-1· 4o+o·4o+O• 40+o ·2o+o ··2o+o·2o+o ·20) • 0 

2 
(0·40+0·40+1·40-1·40+0 •20+o·20+o•20+0-20) • 0 

2 
(0·40+0•4o+o·40+o ·4o+l·20-1· 2o+0·20+0-20) - 0 

2 
(0 · 40+0•40+0"4o+o -40+o·2o+o·· 20+1·20-1-20) - 0 

SS~~,·) 
MS error~ 

180 

20 

0 

0 

0 

0 

0 

0 

*MS error • 40 



the significant components. l/{,;s gives the overall level of the 

curve which is 30. t./l,.~/8 = 10, being positive indicates that the 

first half is higher than the second, and that on the average, the 

42 

first half is ten units above the mean while the second half is ten 

units below. From the lmowledge of the significant Haar components, 

one could easily determi..~e the shape of the curve. For this example, 

the Haar components provide a simple and more easily interpretable 

decomposition of the curve. 

The procedure used above for determining i·Thich orthogonal 

components (Haar or polynomial) are significant is the procedure 

outlined in most texts (Winer, 1971; Hays, 1973). However, as 

Hays points out, unless one is solely interested in determining 

whether one particular component is significant, one should perform 

a sir:mltaneous test on the components of interest. As noted in the 

discussion on finding a confidence band around one curve (p. 5), the 

probability that a set of statements will hold will be less tha.D that 

of each individual statement unless the random variables (in this 

case linear combinations) are perfectly correlated. 

LD order to perform a simultaneous test with an overall 

level of sigp.ificance, one again turns to Miller for the formula. 

Two cases will again be considered. 

CASE I: COVARIANCE MA.TRIX UNKNOHN 

For the general case with~ unlrnown, expression (11) gives 

Bonfer:roni intervals for all possible linear combir1ation !' l_, k of 

which hold sinmltaneously with probability > 1-0\.: 
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1 1 s 1 )y~ 

(11) 1' 1 1 - + t°'f .U. ( - -- !:!.: E. - l - 0 - 1 n 

where k is the number of combinations under consideration. 

statement (11) is written in .terms of a confidence band. It 

could be re1-n-:itten as a significance test: 

(12) 

( 

!'g - !'i 
p l 1 S 1 

n 

L to/:.z.k. ) n-1 
• 1-oe.. 

One would reject the null hypothesis that !'g a 0 if 

(13) > t t></.:2 \( 
n-1 

By substituting the !!~for the !' and squaring both sides 

(13) becomes: 

(14) 

(15) 

> ' htS h~ 

( too-/.:2.1<. ) 2 
n-1 

n 

Alternatively one could use the expression 

L ( pF:n-p )y~; = 1-c( vi t.;f_ where L 
' is the set of 

all possible linear 
combinations, 

which translates into the significance test: 

(16) (l•z.)2 .. lf 1i. : )2 > 
n-1) (.ht S h~ ) 
n-p \ n 

One would reject the null hypothesis if the left side is greater than 

t he right. Once again the value ct;~-~ )2 will usually be less than 



than(n-11 {pF;: ,,_) unless k is very large. 
n-p 

As a numerical example from actual data consider again the 

p-wave shown in figure 1 with mean and variance shown in table I. 

( tf,,,· /· 
Table X shows i/(,:, h, S h , t.. cf, and lJ!ti:/.z..c2 values for this 

curve. With OC. = .01, n 

Using expression (14), significant components were determined, and 

are shown with an asterisk (*) in table X. 

In order to construct t he shape of the curve from knowledge 

of the significant Haar components, we will look at the <(n.l c2 

values for these components. First for It,..,, the overall level is 

ii/ 2 found to be 172.85. ~~1/lc4 • 5.42 indicating that the first half 
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is on the average 5.42 units above the average while the second half 

is 5.42 units below the average. 

Since there are so many components we will look at quarters of 

the curve separately. ~/Zc~ • -5.09, indicating that the first 

quarter is lower than the second quarter. Within the first quarter, 

the first eighth is 2.85 (~~- -2.85) units lower than the average 
I 

for that quarter, while the second eighth is 2.85 units above 

indicating an increase to the right in the first quarter. Breaking 

this into finer details, we see that the first sixteenth and the 

second sixteenth do not differ significantly, while the third six-

teenth is 2.70 units below the average for that eighth and t he fourth 
' 2 

sixteenth is 2.70 units above (4~o/.lc • -2.70). The pattern of 

the first eight thiry-seconds confirms the pattern of the sixteenths , 

with l//i, and\{-( not being significant while the negative values of \{~ '1 •S 



lK,s and l/{14l show an increasing trend to the right in the second 

eighth of the curve. 

45 

The second quarter was found to be 5.42 units above the average 

for the first half. Within this quarter, the third eighth is lower 

than the fourth since 'k'b/.lc~ = -J.68. The comparison of the fifth 

sixteenth to the sixth c'K,,/.t..c~ •• 55) indicates a small decrease 

in level from the fifth sixteenth to the sixth, while the comparison 

of the seventh sixteenth to the eighth cl/(~.Lcr • -5.23) indicates 

that the curve again increases to the right in the next eighth. 

Comparisons between neighboring thirty-seconds show no significant 

difference between the ninth and tenth and between t he eleventh and 
. 2 1,/ 

twelth thirty-seconds, while the values 'f,,1.J/Zc.- • -2.10 and 't'i.4'1._c: 

= -2.15 reflect a generally even increase to the right in the third 

eighth of the curve. 

Therefore in the second quarter, while the curve generally 

increases to the right, there is a slight downturn in the third 

eighth with the fourth eighth again increasing to the right. 

In the third quarter, all components ( (/1,,
7

, '(,,,.,, ~;-t ,\f;,:zf, 

f//..i~,1/4~1 ,)Jl;. 1 ~) are significant and positive indicating a relatively 

rapid decrease to the right in this quarter. 

In the fourth quarter, the fact that l/lns is not significant 

indicates that the curve is rather fiat in this quarter. Within 

eighths, however, there is a decrease between the thirteenth and 

fourteenth sixteenths (t/{a,f/2:.c~ • • 93) , while the fifteenth sixteenth 

is lower than than the sixteenth (/f(~/.lc 2 • -.45). Of the components .. 
relating to the difference between thirty-seconds, only the component 
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TABLE X 

HAAR OOMPONENTS OF P-WAVE BEFORE 
ADMINISTRATION OF &-THC 

2.. l/(· 
'-¥~: 

(~ .. ;) 
Zc·2 comparison i ~[S bri • ~c,'4 

t\ 

1 5531.44 483, 700.86* 32 172.85 level 
2 173.28 439.63* 32 5.42 1st~ - 2nd~ 
3 -94.24 2555.42* 16 -5.09 1st ~ - 2nd ~ 
4 191.Bo 17o6.82* 16 11.99 3rd~ - 4th~ 
5 -22.94 366.14* 8 -2.85 1st Yz - 2nd Yg 
6 -29.46 161.97* 8 -3.68 3Td >i - 4th~ 
7 91.24 2638.98* 8 11.40 5th Ys - 6th 'Is 
8 -2.04 2. 72 8 7th Y8 - 8th Ys 
9 -1.14 8.17 4 1st x~ - 2nd v," 

10 -10.80 573.02* 4 -2.70 3rd Yi" - 4th Yii, 
11 2.20 16.33* 4 .55 5th Yi" - 6th Y,c, 
12 -20.90 643.80* 4 -5.23 7th ~'c - 8th '/11. 

13 18.38 130.66* 4 4.89 9th 1
/11o - loth Y." 

14 21.18 975.91 * 4 5.29 11th Y.<.. - 12th % •• 
15 3.72 36. 75* 4 .93 13th Xi. - l4thX1P 
16 -1.80 27.22* 4 -.45 15th Yi" - 16th Yii.. 
17 -0.62 8.17 2 1st x2. - 2nd "3:l.. 
18 -0.44 2. 72 2 3rd~- 4th Ki.. 
19 -2.14 93.92* 2 -1.07 5th Y:i2.- 6th •1:,~ 
20 -2.70 118.42* 2 -1.35 7th Y!>~ 8th v~2.._ 
21 -0.62 8.17 2 9th ~1. - 10th ~l 
22 0.94 10.89 2 11th )ln. - 12th ~z. 
23 -4.20 63.97! 2 -2.10 13th Y:i~- 14th Yn 
24 -4.30 102.08* 2 -2.15 15th Y:ia. - 16th t3i.. 
25 2.06 21,.78* 2 1.03 17th Y32. - 18th Yn 
26 6.60 185.ll* 2 3.30 19th ~~- 2oth ~~ 
27 6.oo 230.03* 2 3.00 21st ~~- 22nd Y.n_ 
28 4.82 317.14 2 1.05 23rd ~L- 24th ~ 
29 . 2.10 so.36* 2 25th Y>i- 26th Yn 
30 0.10 o.oo 2 27th Xz.- 28th Yn. 
31 -0.6o 9.52 2 29th y,l _ 3oth ~ 
32 -0.52 6.81 2 31st >3.t - 32nd h1.. 

*significant at the .01 level 



l/1.~is significant, indicating a decrease from the twenty-fifth 

thirty-second to the twenty-sixth (f.(,,~~/ c2 • 1.05). 

Therefore, while the last quarter is relatively flat in 

comparison to the other quarters, the curve continues to decrease 

in the seventh eighth, but shows a flattening out and slight up-

turn in the last eighth. 

Figure 13 shows a reconstruction of the curve from using the 

values of the ~(. /.t_c? for the significant components. Also shown .. 
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is the mean curve as sho~m in figure 1. While the use of all thirty-

two Haar components can provide a very accurate fit to the curve, as 

in this case, the use of only eight or sixteen may give a good rep-

resentation of the curve without bringing in the complications of 

fine divisions. However, even the highest order Haar component 

does lend itself to interpretation. 

Using orthogonal polynomials, the follov..r:i.ng values were found 
/ 

~or the '1~.,· / P.i ~ 12.;· f th f. t r· t "'f ~ or e irs ive componen s: 

clfr. )2 {V~l-~2 ( lfr~} 2 
p 1 S P • 1747.44 i's = 5950.77 p'S P ... = 75.47 
- 1 - I .P J.: Ei., -3 - .:> 

n n n 

{ ~ )2 {*".> )2 

.E;s ~ = 6735.48 E_~S P( c 1049.48 
n n 

All five orthogonal components would be significant for this curve. 

It would be very difficult to assign physical meaning to this fact. 

For this example, the Haar components provide a more meaningful de-

composition of this curve. 
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CASE II: COVARIANCE MATRIX KNOWN EXCEPT FOR A SCALAR 

In the special case where the covariance matrix is known ex-

cept for a scalar <r. = c?-z! where L.' is knmm and c'-unknown), the 

formula for detennining which components are significant is derived 

from: 

(17) 

where s
2 

is the estimate of cr1- and k is the number of linear combi-

nations. fubstituting the !:!_lfor the ! and re-writing in terms of 

a significance test this becomes -

!'l (18) 

~ l' ( ~')l . n- -

p • 1-CI(.. 

One would reject the hypothesis that !' ~"' 0 if 

(19) 

(20) 

2 <!•r) 
s2 
- 1 1 ~'1 

n -'--

> 

Alternatively, one could use 

rejecting the null hypothesis if 

(21) 
s2 

l '.t'l n - -

ol/2)( 2 
(t,c.ll-1)) 
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Once again the equation based on the Bonferroni inequality (17) will 

provide the better test, unless k is very large. 

As an example, use again the data from the experiment on the 

effect of drug dosage on performance of a task where independent 

groups were used at each level of the independent variable (p.10). 

Here it was assumed that the covariance matrix had the form: 

1 0 0 0 

0 1 0 0 

0 0 2 0 

0 0 0 2 

The mean vector of the curve representing the effects of the syn. 

J1 -THC was found to be 

I a c 58.o, 61.3, 44.4, 36.9) 

with s2 •• 56.43. Table XI gives the values of tf,,;, !!'.l1!!, 

and ( l/-t1i.: )
2 /(8! !!'1.'!!) for this example. With p • 4, <X • .05, 

n • 10, and k • 4, 

Using expression 19, the first and second Haar components are sig-

nificant, while the third and fourth would not be significant. cal­

culating 1/4.,;tc; and tk,.;z.c~· gives: 

l/1., - 200.6 - 50.12 <!,. .. • 38.0 • 9.50 , 4 l. Caj 
4 fr,C1j ,:, 

This shows that the overall level is 50.12 and that the first half is 

9.5 units above this average while the second half is 9.5 units below 



51 

50.12. The fact that the third and fourth components were not sig-

nificant would indicate that the difference between the first quarter 

and the second and between the third quarter and fourth quarter were 

not significant. A reconstruction of the curve from this information 

would appear as in figure 14. Also shown is t he mean curve. 

Using orthogonal polynomials for this example would give the 

. ;// z·t (l// )2 s2 /.r' values shown J.ll table XII for '#1,· ' E.~ ~ and 'f ,,~ I n B: B:· 

Using expression 19 to determine which components are significant, 

only the first or linear component exceeds the t value. Since 

lfp j - -20.2 
.Le/-

is negative, this indicates that the curve has a downward linear 

trend from left to right. 

For this example, the orthogonal polynomials provide at least 

as good if not simpler characterization of the curve as that pro-

vided by the Haar functions. This will be the case when the curve 

can be closely fitted by a simple combination of polynomials, such 

as by a linear function, a quadratic function or a combination of 

the two. 
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TABLE Il 

HAAR OOMPONENTS OF SYN. A'-THC 
PERFORMANCE ClJRVE 

~~ 
{th.·)~ 

i h'l'h. %.bf~'!i• comparison 
--' -l 

1 200.6 6 n88.5 * level 

2 38.o 6 42.68* 1st~ - 2nd~ 

3 -3.3 2 .96 1st~ - 2nd~ 

4 7.5 4 2.49 3rd~ - 4th~ 

TABLE XII 

POLYNOMIAL OOMPONENTS OF SIN. ~-THC 
PERFORMANCE CURVE 

'/If~ 
( </f t>i") 2. 

i E.! 1.' E.~ SYn £[~'.f; trend 

1 -80.2 30 37.82* linear 

2 -10.8 6 -1.89 quadratic 

3 29.6 30 2.27 cubic 

*significant at .05 level 
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,6.4>-THC and reconstruction of the curve from the significant 
Haar components. 
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IV. COMPONENT BY COMPONENT COMPARISON OF TWO aJRVES 

A natural extension of the detennination of the components of 

one curve is the comparison of the components of two or more curves. 

This is a useful procedure when one wishes to compare the shape of 

two curves. It may be, for example, that two curves differ greatly 

in their overall level but have similar shapes as in figure 15. A 

confidence band for the difference between the two curves would indi­

cate that there is .a significant difference between the two curves at 

each point, but would not indicate that the two curves were of 

similar shape. Or, perhaps one would like to say that the first 

half of two curves are the same shape, but after that diverge as 

in figure 16. 

The method presently used for making this kind of comparison 

would be comparing the polynomial components of the curves. How­

ever, the difficulties presented in interpreting t he polynomial 

components of one curve are only compounded when comparing the com­

ponents from two or more curves. If one or more of the curves had 

components beyond the first and second which are significant, compar­

ing the Haar components rather than polynomial components may pro­

vide a more meaningful analysis. 

Whether using Haar components or orthogonal polynomial com­

ponent~ making a component by component comparison involves taking 

the linear combination of co-ordinate means of one curve and sub­

tracting it from the same linear combination of the co-ordinate 
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15a 

15b 

Figure 15. The curves in 15a are of similar shape but different 
level. 15b shows the confidence band for the difference be­
tween the curves in 15a with a significant difference at each 
point. 



Figure 16. Curves with the same shape in the first half but 
with divergent shapes in the second half. 
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means of the second curve. A statistical test is then made of this 

difference by dividing it by a factor of the covariance matrix and 

comparing this to a test statistic. 

CASE I: COVARIANCE MATRIX UNKNOWN 

For this case ·with unknown, the following expression holds: 

(22) p 

where S is the pooled estimate of the covariance matrix and where k 

is the number of components being compared. One would reject the 

null hypothesis that !'z, - !'!i • 0 if 

(23) 

For example, consider the case of the tl-;o p-waves sho~m in 

figure 2 (p. 20). The difference between respective Haar components 

Table XIII gives values of h1v., htv.,, (ht.'v - h',v.,), 
-tK..f -~IZ.~ -LL- I -LL. .... 

Using expression (23), the significant differences 

n 

were determined and are shown with an asterisk in table XIII. 

Since the difference between the first Haar component in each 

curve was significant, the two curves differed in overall level. 

Since the difference was positive, the first curve was higher on the 

average than the second. The difference between the second Haar 

component of each curve was also significant, with the first curve 
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TABLE XIII 

COMPARISON OF HAAR COMPONENTS OF P-WAVES 
BEFORE AND AFTER ADMINISTRATION 

OF t:: -THC 

/ / 
h,~, - Ii y_.,. 

i ~z.. h'-tl'L !!\f, - !!{!~ (:Z. .!lr; 11~ I Y,. 

1 5531.44 4991.08 .540.36 49.8* 

2 173.28 -38.24 211.52 12.0* 

3 -94.24 73.14 -167.38 -23.35* 

4 191.80 -151.82 343.62 42.19* 

s -22.94 1.98 -24. 92 -12.60* 

6 -20.46 37.28 -66.74 -16.29* 

7 91.24 -37.30 128 • .54 32.99* 

8 -2.04 -24.20 22.16 7.30* 

*significant at .01 level 
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showing a greater difference in level between first half and second 

half than is evident in the second curve. In fact, as can be seen 

from the values of !!.;I, and !!.i!l..' the difference is one of direction 

as well as size, with the first curve having a higher first half 

and the second curve a higher second half. 

The difference betwe:en the third Haar components is also sig-

nificant, the first curve having a negative value for h•v. while 
-3¥..f' 

the second curve has a positive value. Hence, the first curve rises 

from the first quarter to the second, while the second curve de-

creases. Looking at the difference between the fourth Haar com-

ponents, one sees that there is also a significant difference here 

with the first curve showing a decrease from the third quarter to 

the fourth and the second curve showing an increase from third 

quarter to fourth. 

From the analysis so far, it can be seen that these two 

curves differ significantly in level as well as shape. Curve 2 

seems to be a rough reversal of curve 1 with curve 1, however, show-

ing a greater difference in level between first half and second 

half than is evident in curve 2 • 

.Analysis of the remaining differences in components will add 

more detail to the difference in shape. One notes that curve 1 

shows a greater change in level from the first eighth to the second 

than is shown in curve 2. Curve 2 remains rather nat in this 

region (~~J.. = 1. 98). Differences in the si;::th and seventh com­

ponents reflect the reversed trends in the two curves mentioned 

earlier. Differences in the eighth components of the two curves 

indicate that the second curve shows a much greater change in 
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level from the seventh eighth to the eighth eighth than that shovm 

in curve 2. 

These two curves differed markedly in shape with all of the 

eight components which were compared showing significant differ­

ences. The confidence band for the difference between the two 

curves (see figure 3) showed a difference at all but two points. 

Doing the component by component analysis of these two curves 

allows one to say more about how the two curves differ. For 

this experiment, this analysis of the components allows one to say 

that the administration of Ll"-THC lowered the overall level of the 

p-wave and actually effected a reversal in the shape of the curve. 
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CASE II: COVARIANCE MATRIX KNOWN EXCEPT FOR A SCALA.R 

I 
For this case, ·with ~.c;t.1_;., the following expression is 

true: 

(24) p 

where s1.. is the pooled estimate of e5J... One would reject the null 

hypothesis that (!.'#• - !.'J!..) • 0 if 

(25) ) 

For an example, we will again use the data from the experiment 

on the dosage level effects on performance of a task (p. 22). The 

mean curve for the syn. &~THC was found to be l.. • (58.o, 61.3, 44.4, 
,-

36. 9) and for the ~1-THC was y_ • (63.3, 59.6, 33.2, 21.8). The 
}... 

pooled estimate of S would be 53.61. Table XIV shows the value of 

h I J: , h I Z, , h \ V - h '· V _ and 
-i I -;, '1. -tll..1 ... ~ 

--1~ For 0( • .05, t ;i.('i) = 2.81. Thus the difference between the first 

Haar components and between the second Haar components ·would be sig-

nif icant. Since, 

41;, - ~I • 22. 7 • 5.67 
~ c., '1.. ---r-

cr,1.. -\{/,_"\.. . -29. 9 • -7.h7 

L. . L 4 
L l 

the overall level of the first curve is 5.67 units higher than the 
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TABLE XIV 

COMPARISON OF HAAR OOMPONENTS OF DOSE-RESFQNSE 
CURVES OF sm. ~-THC AND A., -THC 

I 1/ fJ.;,~.- 'Yt. 
i h{i1 h•- !!.~l. - h !i'J- (~s}:. b(Z'b;)Ys. l~'L 

1 200.6 177.9 22.7 2.83* 

2 38.0 67.9 -29.9 -3.73 * 
3 -3.3 3.7 -1.0 -1.51 

4 7.5 11.4 -3.9 -.59 

*significant at .05 level 
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second, and the second curve showed a greater difference between the 

first half and the second that the first curve showed. 

In an interpretation of these results with reference to this 

particular experiment, it could be said that the performance scores 

were on the average higher with the syn. ~<?-THC than ·wi. th ~~-THC, 
and that the two higher dosage levels of the second drug effected a 

greater change in performance than the two higher levels of drug 1. 



VI. CONCLUSION 

The interpretaion of data from psychological experiments 

often involves the analysis and comparison of curves. This paper 

has summarized methods presented in texts on psychological statis­

tics for the comparison of curves and has presented some altern­

ative methods. 

The first kind of analysis discussed was that of finding a 

confidence band around one curve. There are no methods commonly 

in use for finding this confidence band. It was mentioned that one 

might be tempted to find a confidence interval around each point 

using an q level of significance for each interval. Doing so does 

not ta1ce into account the degree of correlation between the co­

ordinate means and will result in an overall significance level 

which would be JJIUch too low. The alternative discussed allowed 

one to determine simultaneous intervals such that all of the 

intervals would cover their respective mean with l..l;l\ probability. 

The second kind of analysis discussed was finding a confi­

dence band around the difference between two curves. Current methods 

presented were visual inspection, analysis of variance, and 

Hotelling';:; T2• Visual inspection of curves presents the same dif­

ficulty as visual inspection of single values, in that variance 

and covariances may be so large that observed differences would not 

be statistically significant. Visual analysis can however point out 

obvious differences in different portions of the curve which would 

be obscurred by the global analysis of ANOVA or Hotelling•s T2• 
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Al.so, in the case of repeated measure, the use of A.NOVA requires a 

prior test on the shape of the covariance matrix which involves 

difficult and computer time-consuming computations. 

The alternative method discussed involved finding simultaneous 

confidence:· intervals about the difference betl1een co-ordinate means. 

This method allows one to detennine rather easily at which points 

two curves differ significantly and at which points the difference 

is not significant. This method eliminates the need for f inding 

the determinant of the covariance matrix which is necessary for 

A.NOVA with repeated measures. 

Next discussed was finding the significant components of a 

curve. The best method presently discussed in texts on psychological 

statistics is the method of orthogonal polynomials. The problem with 

this is the difficulty in interpreting the meaning of significant 

trends beyond quadratic. When trends such as cubic and .quartic and 

beyond a.re significant, it becomes difficult to visualize the shape 

of the curve from lmowledge of the significant trends. The alterna­

tive presented was the use of Haar functions. All of t he signifi­

cant Haar functions may be interpreted and t he shape of the curve 

determined no matter how many components a.re significant. In some 

cases, however, using Haar components may provide less easily inter­

preted results if the curve can be characterized by a simple combi­

nation of low degree polynomials. 

The last type of analysis discussed was that of comparing the 

components of two or more curves. The comparison of orthogonal 

polynomial components was discussed as the method presently in use. 

The results of this method are difficult to interpret if one or more 



of the curves has several significant components. The comparison 

of Haar components may in such cases provide a more easily under­

stood summarization of the differences in shape of two curves. 

66 

As discussed above, the new methods can in some cases provide 

advantages over e:xisting techniques. It is hoped that these new 

techniques will be incorporated into the analysis of psychological 

data. 
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APPENDIX 

The following is an explanation of the vector and matrix 

multiplication which is used throughout the text to simplify not-

ation and calculation. 

Let ! and ;r be vectors. A vector as it is normally written 

(!) is usually considered to be a column vector, that is, with its 

elements arranged in a colunm: 

x c:: (~). 
A vector written with a prime (~1 ) is a row vector: 

x' • (x,, xi., ~' x"t). 

By definition, a column vector can be multiplied on the left by 

a row vector. The product is found by multiplying corresponding 

elements and surilming these products: 

x•v = {x 
- L I' 

For e=mple if ~ • (:~) , 

= (1, 1, -1, -1) 

W) = 36 + 39 - 43 - 35 = -3 

The multiplication of a vector time s a matrix is similar. A 

matrix can be multiplied on the left by a row vector and on the right 
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by a column vector: 

x 1 ·S or S·x 

Let S be a matrix such that 

S II s,z... si 3 s ,-t 

s:l, Szz.. s2J s.z.t 
s = 

s3, s 3-Z SJ3 SJi 

s'I, s~ z.. s,,..3 S44 

S could be considered to be made up of four colunm vectors of four 

elements each, or four row vectors of four elements each: 

s ,, s,J.. s,3 S It 

s • s i , Szz. S i.~ S2.ti 

s3, s ; i s)3 s 3'/ 

Stj I S~ i,. s 'i3 Si<f 

(s ,, s ''- s,?. s,"f) 

(s i., s Zl. 5-z3 5it) 
or S"' 

{s~ , s ·31- s:J> s 3'!) 

(s1, s 't z. s41 s,.'l) 

C.Onsidering S to be composed of 4 column vectors, lef t multipli-

cation by a row vector consists of multiplying the row vector times 

ea ch of the columns. The result is a row vector with 4 elements : , 
s !2.. S I 3 (' 

(xf x~ x:) x 1 ) . 
s 22.. s 23 s l'f x•. S = 

s J 1- S33 
\ s Jt 

s '1:.- 5 4 3 s-t1 



• 

\ 

= 

s (/ Sn. 

(x1 ~ x_, x~ ) 
s2f 

' (x, ~ y., ) s 2.2. 
x 
'-

s1, s 3i 

s41 s '1 

s 13 SI~ 

( X I X1. X 3 X Lf ) 
s Jj 

(x r x
2 

x 
3 

x 4 ) 
s J.i.f 

' 
s33 s J'f 

s3'-f s 4't 

(J<t s11 + :JS..S2.1 + x3 ~i + x1 s,,,, x, s 1i. + JS._s,'1..+ x~s_,'Z..+ x~~2-' 

x,s,?>+ ~5z 3 + x~sn+ ~s'f3 , :>:;s,'f+ Y'""Zs2.'"1+ ~s~+ ~sv-4) 

For example: 

6 8 7 s 6 

3 2 4 9 
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9 
(1, 1, -1, -1) ::s (1, 1, -1, -1) ' (1, 1, -1, -1) 

8 6 1 s 8 

7 6 2 3 7 

7 5 

2 4 
(1, 1, -1, -1) ' (1, 1, -1, -1) 

1 5 

2 3 

8 

3 

6 

6 

. (<6 + 9 _ 8 _ 7), (8 + 3 _ 6 _ 6), (7 + 2 _ l _ 2), (5 + h _ 5 _ 3v 
= (2, -1, 6, 1) 

A matrix can be right multiplied by a column vector. In this 
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case, consider the matrix to be composed of rows. Ea.ch row is multi­

plied separately times t he column vector, with the result being a 

column vector: 

S·~ .. 

( s,, , ~ ~, s13, s1.y) 

(Si, , s 7 " Si.3' s;iq) 

( 53p 5~ZJ 53.v ~ 

( &;1' s4J! ~3' s~ 

For example: 

7 5 

2 4 

8 6 1 5 

7 6 2 3 

l 

1 

-1 

-1 

"' 

5uX1+ ~L+ SuX>+ ~ 

s,,x, + 5>r-z. + ~'lx, + ~ 

S,qiX, + ~z..xt..+ ~.,x) + Sq.(C'f 

+ 8 - 7 - 5 

9 + 3 - 2 - 4 

8 + 6 - l - 5 

7 + 6 - 2 - 3 

2 

6 

9 

8 

It should be noted that x•·S does not necessarily equal S·2£: 

As an example of vector and matrix nrultiplication involving 

the Haar coefficients, consider a curve having an average curve of 

l = (7, 12, 15, 10) 

and covariance matrix of: 

12 5 8 2 

5 14 9 3 
s .. 

8 9 15 4 

2 3 4 6 

The linear combinations of the Haar coefficients with the vector means 
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are written as h'l 
"""'l ' !!QL h'L '!14°i. and would be computed as follows: 

-3 
I 

7 

h'°i. "" (1, 1, 1, 1) 12 
-')_ 

1~ 

10 

~- (1, 1, -1, -1) 

h'°i. = -3 
(1, -1, o, 0) 

~l s (O, O, 1, -1) 

h! Sh would be found by 
-1 """i. 

h ' Sh • (11l1) 
-i -1 

• 7 + 12 + 15 + 10 = 44 

·' 
7 

12 
• 7 + 12 - 15 - 10 • 

15 

10 

7 

12 
• 7 - 12 + 0 + 0 • -5 

15 

10 

7 

12 
• 0 + 0 + 15 - 10 • 5 

15 

10 

~ 

12 s 8 2 1 

5 14 9 3 1 

8 9 15 4 1 

2 3 4 6 1 

-6 
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,. 

• (12 + 5 + 8 + 2, 5 + 14 + 9 + 3, 8 + 9 + 15 + 4, 2 + 3 + 4 + 6) l 

• (27,31,36,15) 1 

1 

s 27 + 31 + 36 + 15 • 109 

1 

1 

~2S!!2 = (1, 1, -1, -1) (12 5 8 2 

~ 
5 14 9 3 

8 9 15 4 

2 3 4 6 

1 

1 

-1 

-1 

l 

l 

l 

= (12 + 5 - 8 - 2, 5 + 14 - 9 - 3, 8 + 9 - 15 - 4, 2 + 3 - 4 - 6) 1 

l 

-1 

-1 

.. (7,7,-2,-5) 1 ,. 7 + 7 ... 2 + s • 21 

1 

-1 

-1 

/ 

h 1 Sh = (1, -1, o, 0) 12 5 8 2 1 
-3 -3 

5 14 9 3 -1 

8 9 15 4 0 

2 3 4 6 0 

I 
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I 

= (12-5, 5-14, 8-9, 2-3) 1 

-1 

• (7,-9,-1,-1) 1 • 7 + 9 = 16 

-1 

0 

0 

~~ = (o, o, 1, -1) 2 5 8 2 0 

= ( 8-2, 9-3, 

514 9 3 0 

8 9 15 4 1 

2 3 4 6 -1 

15-4, 4-6) Io 
I o 

\ _: 

~ (6,6,11,-2) 0 

0 

1 

-1 

0 

0 

:: 11 + 2 = 13 
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