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Abstract 

Global Sensitivity Analysis (GSA) approach helps to identify the effectiveness of 

model parameters or inputs and thus provides essential information about the model 

performance. The effects of 14 parameters and one input (forcing data) of the Sacramento 

Soil Moisture Accounting (SAC-SMA) model are analyzed by using two GSA methods: 

Sobol’ and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out 

over five sub-basins within the Columbia River Basin (CRB) for three different periods: 

one-year, four-year, and seven-year. The main parameter sensitivities (first-order) and the 

interactions sensitivities (second-order) are evaluated in this study. Our results show that 

some hydrological processes are highly affected by the simulation length. In other words, 

some parameters reveal importance during the short period simulation (e.g. one-year) while 

other parameters are effective in the long period simulations (e.g. four-year and seven-

year).  

Moreover, the reliability of the sensitivity analysis results is compared based on 1) 

the agreement between the two sensitivity analysis methods (Sobol’ and FAST) in terms 

of highlighting the same parameters or input as the most influential parameters or input  

and 2) how the methods are cohered in ranking these sensitive parameters under the same 

conditions (sub-basins and simulation length). The results show that the coherence between 

the Sobol’ and FAST sensitivity analysis methods. Additionally, it is found that FAST 

method is sufficient to evaluate the main effects of the model parameters and inputs. This 

study confirms that the Sobol’ and FAST methods are reliable GSA methods that can be 

applied in different scientific applications. Finally, as a future work, we suggest to study 
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the uncertainty associated with the sensitivity analysis approach regarding the reliability of 

evaluating different sensitivity analysis methods.  

Keywords: Sensitivity Analysis, Sobol’, FAST, Columbia River Basin (CRB)  
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1. Introduction 

1.1 Background about the Sensitivity Analysis Approach  

Computer-based models have a vital trend in different science and engineering 

aspects in recent decades. As a result of developing more complex hydrological models, 

reliable statistical and mathematical methods are required to enhance the modeling 

precision (Ebtehaj et al., 2010). In hydrological field, there is what is known as a conceptual 

model that its parameters are linked indirectly to the physical properties of the real-world 

case. Also, since these parameters are not visible, the calibration is needed to simulate the 

model outputs to match the observations (Gan et al., 2014). Some of these models are 

complex models that have a large number of parameters (e.g. more than 10 parameters), 

which in turn influence the model performance (Gan et al., 2014). Also, the large number 

of parameters requires a large number of model runs to find an optimum in solution space 

(Dobler and Pappenberger, 2013). Massmann and Holzmann (2012) state that the model of 

high dimensionality, has large number of parameters, is preferable since it gives more 

flexibility to set its parameters to fit the observed data. Nevertheless, the problem of over-

parameterization will occur and increases model complexity. However, the calibration is a 

hard task for some models, especially for a non-linear model of 10 or more parameters (Li 

et al., 2013). Furthermore, there is another reason for model complexity which is the 

uncertainty associated with the model inputs (parameters, forcing data, initial conditions) 

and model structure. For the aforementioned reasons, the interest of the modelers is to 

simplify the complexity of the model using different techniques. One of the most recently 

popular ways is the sensitivity analysis (SA) methods.  
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The basic idea is to apply a statistical method on the model inputs to specify the 

most influential inputs in that specific model. Sensitivity analysis (SA) is a simple way to 

attribute the variation of the model output to partial variations in the model inputs (Shin et 

al., 2013). Evidently, the researchers concluded that sensitivity analysis (SA) technique 

improves the model results by reducing its variance. To do so, the unimportant parameters 

or inputs are fixed as constant values, whereas only the important ones are included in the 

calibration procedure as an example (Song et al., 2015). 

In research, there is a remarkable interest to study the SA as it enhances our 

understanding about the model behavior, the joint effects between different model inputs, 

and how all these are connected to the real-world (Saltelli et al., 1999). Nevertheless, the 

computational cost is still a critical factor in applying the SA methods in different 

applications (Razavi and Gupta, 2015). Thus, the effectiveness and efficiency are both 

required to achieve the modeler’s goal.  

In general, SA can be classified into two classes: local sensitivity analysis methods 

(LSA) and global sensitivity analysis (GSA) methods. The main difference between these 

two groups that the LSA evaluates the sensitivity at specific point in the model space, while 

the GSA evaluates the sensitivity over the entire space (Massmann and Holzmann, 2012). 

The LSA evaluation depends on the estimated derivatives at certain points in the parameter 

space, however, the selected points may affect the sensitivity analysis results under highly 

uncertain effects. Therefore, these methods are only applied in linear applications. On the 

other hand, the GSA methods account for including the whole model space to estimate the 

sensitivity of the inputs. Moreover, all the inputs are altered at the same time considering 
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the interactions between the model inputs (Lilburne and Tarantola, 2009). Since most of 

the hydrological models are non-linear and influenced by the interactions between the 

inputs, the GSA methods are more proper than LSA to use in these applications. There are 

many GSA methods in the literature, however two reliable methods, widely used in the 

research, are: Sobol’ method (Sobol’, 1993) and Fourier amplitude sensitivity test (FAST) 

(Cukier et al., 1978). These methods are variance-based methods that apportion the total 

variance in the model output to partial variances in the inputs following the ANOVA-like 

decomposition analysis (Reusser et al., 2011). The main effects (first-order sensitivity) can 

be evaluated in both methods, however, FAST is more efficient than Sobol’ in terms of 

computational expense. On the other hand, Sobol’ is effective in estimating the higher 

interaction effects (second-order sensitivity or more) by calculating the total sensitivity of 

each parameter, whereas FAST is limited in this aspect (Saltelli et al., 1999). Estimating 

the joint effects between the model parameters can highlight the model processes that are 

considerably connected (Nossent et al., 2011). Furthermore, an attractive property of 

Sobol’ method is its ability to estimate the partial variance of each input directly by using 

Monte Carlo integral (Confalonieri et al., 2010).  

The application of Sobol’ method has been avoided in hydrology due to its drawback 

in the computational needs (Zhan et al., 2013). However, it is considered as a robust method 

that comes through the dimensionality dilemma. Therefore, in this study the 

aforementioned SA methods (Sobol’ and FAST) are conducted on the conceptual 

hydrologic model: Sacramento Soil Moisture Accounting Model (SAC-SMA) to evaluate 

the relevance of its parameters and the precipitation as the only forcing input in the model.  
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The SAC-SMA model is a popular non-linear hydrological model that is widely used in 

research. The model considered as a complex model with 16 parameters, thus this model 

demands a high number of model evaluations to cover the entire model space. The focus 

of the current study is to investigate three of factors that influence the sensitivity analysis 

results. The first factor is the effect of the simulation length, so the sensitivity analysis is 

evaluated for three different periods: one-year (Oct 2000-Oct 2001), four-years (Oct 2000- 

Oct 2004), and seven-years (Oct 2000- Oct 2007). Secondly, the reliability and robustness 

of the applied sensitivity analysis method and thus two GSA methods are compared. 

Finally, the effect of different geographic locations on the sensitivity analysis, and thus five 

sub-basins with different characteristics from the Columbia River Basin (CRB) are 

included in this study.  

The thesis is organized as follows: Introduction and study approach are described in 

chapter 1; study area and datasets are explained in chapter 2; methodology of sensitivity 

analysis, hydrological modeling, and the application of sensitivity analysis methods on the 

hydrological model using GSAT are described in chapter 3; results are provided in chapter 

4; discussion and physical interpretations and the consistency of the sensitivity analysis 

results are covered in chapter 5; and finally conclusion and outlook are summarized in 

chapter 5. 
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1.2 Study Approach 

 

          The goal of this study is to evaluate two global sensitivity analysis (GSA) methods 

(Sobol’ and FAST) by applying these methods on a hydrological model (Sacramento Soil 

Moisture Accounting Model). The study area is the Columbia River Basin (CRB) in the 

USA including the British Columbia in the Canadian part. The study will cover five 

different sub-basins within the CRB during three different time periods. 

2. Study Area and Data 

2.1 Study Area 

 

The Columbia River Basin (CRB) is one of the largest rivers within the United 

States. The CRB area is about 258,500 square miles, with 85 percent of the basin area lies 

in USA and the rest in Canada (Davidson and McClain, 2014). The river passes through 

seven states in the western part of the USA (Washington, Oregon, Idaho, Montana, 

Wyoming, Nevada, and Utah), and the western part of Canada (British Columbia) as shown 

in Figure 1. Geographically, most of the area of the basin lies between the Rocky 

Mountains (East and North) and the Cascade Mountains (West). Figure 2 displays the 

topography along the CRB, which plays a major role controlling the precipitation within 

the basin. The climate over the basin experience wet weather conditions in the western 

parts and arid conditions in the south-eastern parts (Matheussen et al., 2000).  

From a hydrological stand point, the CRB is mainly governed by the snow 

accumulation in winter season and snow melt in spring season (Hamlet and Lettenmaier, 

1999). Five sub-basins of the CRB are the focus of this study. Four of them distributed 
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throughout the USA (Hungry Horse, White Bird, Milner, and TW Sullivan) and the last 

one (Mica) lies in Canada.The Hungry Horse sub-basin located in western Montana. The 

South Fork of the Flathead River, which originates nearby the Continental Divide in the 

USA, flows through the Hungry Horse sub-basin (Bureau of Reclamation, 2012). The 

White Bird sub-basin lies in western Idaho in which the Salmon River, originating in the 

central and eastern mountains of Idaho, flows through the sub-basin (Sridhar et al., 2013). 

The Snake River, the 12th largest river in the USA and the largest tributary of the Columbia 

River, flows through the Milner sub-basin in southern Idaho. The forth sub-basin is the TW 

Sullivan sub-basin which lies in the north-western part of Oregon. The Willamette River, 

the 13th largest river in the continental USA, flows in the TW Sullivan sub-basin (Halmstad 

et al., 2013). The last region of interest is the Mica sub-basin in Canada which is the main 

tributary of the CRB in British Columbia (Jost et al., 2012).  

The reason behind choosing these five sub-basins is to cover different regions in 

the CRB. Some of these sub-basins experience the same climate and topography conditions 

while other sub-basin do not. For example, the Mica sub-basin lies in the Northern part of 

the CRB (snow dominated) while TW Sullivan sub-basin lies in the Western part of it 

(rainfed area). 
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Figure 1 Study Area (Columbia River Basin) 
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 Figure 2 Topographic map of the Columbia River Basin (CRB) 

 

Mica Sub-basin  

The Mica sub-basin, which is considered as a main tributary of the CRB in British 

Columbia in Canada, covers an area of 20,742 km2 (Figure 1). The mean annual 

precipitation is 1075 mm; about 70% of it falls as snow. In winter, the mean annual 

temperature reaches about -9.4◦C and increases in summer season to 13.4 ◦C. As a result 

0 60 120 180 24030

Miles
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of climate change effects, the glaciers in the sub-basin have decreased by 101 km2 within 

the period from 1985 to 2000. Also, about 80 km2 of glaciers within the sub-basin 

disappeared during the period (2000-2005) (Bolch et al., 2010).  The land cover of the sub-

basin varies between different kinds of plants like (alpine areas, range lands, agricultural 

lands, recently logged areas) and forests (Jost et al., 2012). 

 

Hungry Horse Sub-basin 

The Hungry Horse sub-basin, which has a length of 34 miles, lies on the South Fork 

of the Flathead River. The sub-basin is located in the Rocky Mountains and is surrounded 

by 25 mountains, covering a drainage area of about 23,800 acres (Figure 1). The sub-basin 

lies at elevation of 900 m in a rainfed forested area in Montana (Risley et al., 2011). Hungry 

Horse Dam was built in 1953 and is about 15 miles from Glacier National Park in the west 

and 44 miles from Canada. During spring season, the Hungry Horse sub-basin is used to 

store the snowmelt and fill a pool of elevation 3560 feet. In contrast, in fall and winter 

seasons, the sub-basin is used for power generation and therefore, is discharged to prepare 

it for the flood management in spring time (State of Montana, 2011). 

 

Milner Sub-basin 

The Milner sub-basin covers an area of 4000 acres, and is located in the south-

eastern part of Idaho, western Wyoming State, and northern of Utah and Nevada States. 

The Snake River, the largest tributary of the Columbia River, passes through the sub-basin. 
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The capacity of the sub-basin is about 36,300 acre feet. For power generation and irrigation 

purposes, Milner Dam was constructed in south central Idaho. The Rocky Mountains, 

covered by snow in winter, lie on the east side of the sub-basin as shown in Figure 2. The 

climate conditions vary in the sub-basin from snowy, cold in the eastern side to semi-arid 

and arid conditions in the western side. The arid portions of the sub-basin are mostly 

agricultural areas with low moisture, therefore, these areas are mainly irrigated by 

groundwater (Hoekema and Sridhar, 2011).  

 

White Bird Sub-basin  

The White Bird sub-basin, 13,421 square miles, is located in Idaho. The Salmon 

River, River of No Return, flows through the sub-basin to the North to merge with the 

Snake River in Idaho. Most of the sub-basin area lies in the Rocky Mountains which 

provides the Salmon River with snowmelt water (Figure 2).  The forests and grasslands 

dominate the vegetation in the sub-basin. Depending on the elevation within the sub-basin, 

50% of the precipitation in winter season is snow with a depth varying from 50 to 300 cm 

(Sridhar et al., 2013). 

 

TW Sullivan Sub-basin 

The TW Sullivan sub-basin is located in Oregon City at the Willamette Falls which 

is mostly forested as shown in Figure 2. The Willamette River has a drainage area of about 

31,080 km2 and length of about 474 km (Fierke and Kauffman, 2005). The climate 
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conditions in the area are cold and wet in winter season and warm and dry in summer 

season (Halmstad et al., 2013; Chang et al., 2011; Chang and Jung, 2010). The mean 

precipitation over the sub-basin is about 110 cm/year and the mean temperature varies 

between 4.4-26.7 ºC (Fierke and Kauffman, 2005).  

 

2.2 Data  

 

The observed daily meteorological dataset of the Columbia River Basin (CRB), 

from University of Washington (Livneh et al., 2013), is used in this study. The dataset is 

for five sub-basins, which have different hydroclimatic conditions and geographic 

locations, four of them are in the USA and one in Canada. The dataset is gridded at a 1/16 

degree spatial resolution (6*6 km) for the period (1915-2011). The dataset provides 

information of four meteorological variables: precipitation, maximum and minimum 

temperature, and wind speed. For this study, the potential evaporation variable is estimated 

from monthly normal potential evaporation on the 15th of each month, then linearly 

interpolated to all other time-steps. The monthly normals are estimated by the National 

Weather Service based on monthly pan evaporation rates (Farnsworth and Thompson, 

1983).
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3. Methodology 

3.1 Sensitivity Analysis  

The role of SA can help model users to interpret the outcomes and distinguish the active 

parts of the model, and thus the model can be improved (Confalonieri et al., 2010). Sensitivity 

analysis provides information that address the relationships between individual model 

inputs (Confalonieri et al., 2010), which can be the models parameters, forcing data, and 

initial conditions.                         Figure 3 Figure 3 shows a conceptual framework of the 

study. The first step is to define the sub-basins over the CRB and define the hydrologic 

model (SAC-SMA) input and parameters with their acceptable ranges. The second step is 

to apply the sensitivity analysis methods on the SAC-SMA model: Sobol’ and FAST. 

Finally, the output will be the Sobol’ and FAST indices. This section covers: a brief 

overview of the Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis (GSA) 

methods, the Sobol’ and FAST methods, the hydrological modeling, GSAT toolbox, and 

sampling algorithms. 

 

 

 

                        Figure 3 Conceptual framework of the study 

 

3.1.1 Local Sensitivity Analysis  

This method is known as a One-At-a-Time (OAT) Sensitivity Analysis that estimates 

the sensitivity at one point in the parameter space (Massmann and Holzman, 2012). The 

benefit of using LSA that it requires a few model runs and gives a reliable outcome when 

the model behavior is linear (Peeters et al., 2014). On the other hand, the drawback of this 

method that the interaction effects are not considered. In reality, the non-linearity of the 

Sobol’ and 

FAST 

sensitivity 

indices 

SAC-SMA input 

(P) and parameters 

for each sub-basin 

Apply Global 

Sensitivity 

Analysis (GSA) 

methods on 

SAC-SMA 

model 

Sobol

FAST 

Define sub-basins 



    13 

   

 

 

hydrological models show that combining the main parameter effect and its interactions 

with other parameters is needed to capture the model response behavior. For these reasons, 

the LSA is inapplicable in non-linear problems (Sun et al., 2012).  In conclusion, Global 

Sensitivity Analysis is more appropriate than the Local Sensitivity Analysis (LSA) for the 

non-linear hydrological applications.  

3.1.2 Global Sensitivity Analysis 

The attractiveness of this method is that the parameter space is explored within a 

specific region and the parameter sensitivity is estimated globally by varying all the 

parameters at the same time in the parameter space (Saltelli et al., 1999).   Li et al. (2013) 

state that Global Sensitivity Analysis (GSA) is better than Local Sensitivity Analysis 

(LSA) in which the LSA traps in type I or type II errors, for example: the sensitive 

parameters are distinguished as insensitive (type I error) or the insensitive ones are 

sensitive (type II error). Using complex models like the 2-D  hydrological models, which 

have many inputs, the GSA is preferred over the LSA to use to simplify the model 

complexity (Cannavó, 2012).  

In the literature, there are many GSA methods, however, Sobol’ Sensitivity 

Analysis and Fourier Amplitude Sensitivity Test are the most robust approaches (Cannavó, 

2012). These methods are also called variance-based methods and are applied in many 

different studies (Lilburne and Tarantola, 2009). In this study, Sobol’ and FAST SA 

methods are used, however, the focus is more on Sobol’ SA, since this method is able to 

estimate the sensitivity of higher order (interactions between the parameters).  
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3.1.2.1 Sobol’ Global Sensitivity Analysis Method 

Sobol’ GSA is one of the most robust quantitative methods to calculate the 

sensitivity indices of the model inputs (van Werkhoven et al., 2008). By using Sobol’ GSA, 

the main effect “first-order sensitivity index” by Sobol’(1990) and total effect of the input 

can be quantified. Also, the interactions between the model inputs can be calculated if there 

is any. However, because the Sobol’ interaction indices increase exponentially with the 

number of parameters, only the first and second order Sobol’ effects are studied (Gan et 

al., 2014). This approach by Sobol’ (1990) is based on the Analysis of Variance (ANOVA) 

decomposition to calculate the variance of the inputs (Cannavó, 2012). The decomposition 

is as  � = ∑ �� + ∑ ��� �	�
�	����� + ⋯ + ��,�,..,� , where n is the number of variables, and 

Vi is the explained part of outcome variance by the ith variable, Vij is the explained part of 

outcome variance by the interaction between the ith and jth variables, V1,2,…,n  is the 

explained part of outcome variance by the interaction of all the variables (Li et al., 2013). 

Furthermore, Li et al. (2013) state that the Sobol’ sensitivity index is Si1, …,is = Vi1,…,is/V, 

where Vi1,…,is is the variance of (i1,…, is), and s is the dimension of Sobol’ index. The 

Sobol’ main effect (first-order effect) and interaction effect (second-order effect) can be 

obtained by Eq.(1), Where the sum of all the non-negative values in Eq.(1) is equal to one 

(Sobol, 2001). 

� ��
�

���
+  � ����	�
�	�

+ ⋯ + ��,�,…,� = 1                                                (1) 

Another expression presented by Lilburne and Tarantola, (2009) of the Sobol’ first-order 

indices can be written as: 
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�� = �����(�|��)�
���(�)                                                                   (2) 

Where, the term �����(�|��)� is the expected conditional variance of the model 

output(�). While the term ���(�) is the unconditional variance of the model(�).  

The Sobol’ index is a unitless index varies between zero and one. Higher values 

close to one, indicate higher variances showing more important parameters which are 

highly affecting the model output variance. In other words, the value of the index will show 

the degree of importance of that parameter. Although Sobol’ is a robust quantitative 

method that valuable information about the model inputs can be obtained, it has some 

drawbacks like any other method. The Sobol’ procedure needs a large number of model 

runs (e.g. > 104-105) (Li et al., 2013). Therefore, since Sobol’ requires sampling the 

parameter space, it is considered a computationally intensive method (Wainwright et al., 

2014). In this study, 104 model runs are conducted to evaluate the sensitivity of 15 

variables, 14 of them are SAC-SMA model parameters and one input (precipitation).  

 

3.1.2.2 FAST Global Sensitivity Analysis Method 

 The Fourier Amplitude Sensitivity Test (FAST) is another popular robust GSA 

method. The method was first presented by Cukier et al. (1973).  The basic concept behind 

this method is to convert the multi-dimensional integral into a one-dimensional integral by 

applying the ergodic theorem (Gan et al., 2014). Ergodic theory is a mathematical study of 

a system behavior that develops over time (Dajani and Dirksin, 2008). Once again, the 

FAST procedure follow the ANOVA decomposition of the function like Sobol’ method. 
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Moreover, the model output can be extended into a Fourier series, so that the variance 

expected of the model output can be estimated (Reusser et al., 2011). Using Bayesian rule, 

the FAST index is given by Saltelli et al, (1999): 

� = ��� ��(�|�)�
���(�)                                                                    (3) 

Where Y is the output, X is the input, �(�|�) is the expected value of Y given the input X, 

and ���  is the variance that is accounted for all the possible values of the input X.  

The evaluation of the analysis is based on the sum of the input indices: the closer 

to 1 gives the better result (Saltelli et al, 1999), considering that the FAST indices also are 

dimensionless indices vary between zero and one. The FAST method can estimate the main 

effect of variance contribution of each input to the output variance (Saltelli et al., 1999), 

and thus FAST indices are equivalent to the Sobol’ first order indices (Cannavó, 2012). 

FAST method, unlike the Sobol’ method, is unable to estimate the higher-order interaction 

terms. Since most of the hydrological applications have non-linear relationship between 

the inputs, considering the effects of interactions between these inputs is important (Zhan 

et al., 2013). Therefore, the Sobol’ method is more practical than FAST for non-linear 

applications that it is able to evaluate the higher order interactions between the model 

inputs. 
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3.1 Hydrologic Modeling 

3.1.1 Sacramento Soil Moisture Accounting (SAC-SMA) Model 

The Sacramento (SAC-SMA) model, one of the most popular conceptual 

hydrological models, was first introduced by Burnash et al. (1973).  

Figure 4 shows the SAC-SMA model and its parameters. It is mainly used as a 

rainfall-runoff model by the National Weather Service (NWS) River Forecast Centers 

(RFCs) in USA to forecast rivers (van Werkhoven et al., 2008; Van Werkhoven et al., 

2009; DeChant and Moradkhani, 2012; Shin et al., 2013). Nowadays, the SAC-SMA model 

is used also for long term predictions as described by Shin et al., (2013). Furthermore, the 

model is also known in regionalization studies (Vaze et al., 2010). It should be noted that 

the lumped version of SAC-SMA model is applied in this study. The lumped hydrologic 

model simulates the streamflow only at the outlet of the basin (Moradkhani and 

Sorooshian, 2008). 

 

 

 

 

 

 

 

Figure 4 Conceptualization of the SAC-SMA, after Burnash et al. (1973) 
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3 of the 16 SAC-SMA model parameters (RIVA, SIDE, and RSERV), which stand for 

(riparian vegetation area, ratio of deep recharge to channel baseflow, and fraction of lower 

zone free water not transferrable to lower zone tension water, respectively), are set to have 

constant values (Shin et al., 2013). Another parameter is added in this study which the 

routing parameter, which route the quick flow component with three linear Nash Cascade 

sub-basins. And finally, the model input (the precipitation) is also included to have a total 

number of 15 input and parameters. Only the 14 SAC-SMA model parameters are 

presented in Table 1 with their acceptable ranges used in the SA process (Shamir et al., 

2005). The model consists of two soil layers: upper soil layer and lower soil layer. The 

upper layer represents the short-term storage near the soil surface, while the lower one 

represents the long-term storage as baseflow play a role (Najafi et al., 2011).  
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Table 1 Summary of SAC-SMA parameters.  

Parameter Unit Description 
Range 

(min-max) 

UZTWM mm Upper zone tension water maximum storage 1.0-150.0 

UZFWM mm Upper zone free water maximum storage 1.0-150.0 

UZK day-1 Upper zone free water lateral depletion rate 0.1-0.5 

PCTIM  Impervious fraction of the basin 0.0-0.1 

ADIMP mm Additional impervious area 0.0-0.4 

ZPERC --- Maximum percolation rate 1.0-250.0 

REXP --- Exponent of the percolation equation 1.0-5.0 

LZTWM mm Lower zone tension water maximum storage 1.0-1000.0 

LZFSM mm Lower zone free water supplemental maximum storage 1.0-1000.0 

LZFPM mm Lower zone free water primary maximum storage 1.0-1000.0 

LZSK day-1 Lower zone supplemental free water depletion rate 0.01-0.25 

LZPK day-1 Lower zone primary free water depletion rate 0.0001-0.025 

PFREE --- Fraction of water percolating from upper zone to the lower zone 0.0-0.6 

kq day Route quick flow component with 3 linear basins in series 

 

0.2-0.25 

 

3.1.2 Applying Sobol’ and FAST Methods on SAC-SMA model using GSAT 

Cannavó (2012) developed a Matlab toolbox named GSAT (Global Sensitivity 

Analysis Toolbox). This toolbox is a set of code routines for estimating the sensitivity 

indices of Sobol’ (first and second orders) and FAST (main effects) SA methods. It is found 

that the algorithm is time consuming due to the fact that it is affected exponentially by the 

number of inputs (Cannavó, 2012). The logic flowchart as presented by Cannavó (2012) is 

shown in Figure 5. 
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Figure 5 GSAT Toolbox for performing the Sensitivity Analysis 

 

3.1.2 Monte Carlo and quasi-Monte Carlo Algorithms 

 

Marcov Chain Monte Carlo is a simple procedure to simulate the stochastic 

processes by estimating a probability densities from a known distribution. Using a Monte 

Carlo approach, sampling from a very large number of samples is possible (Geyer, 1992). 

In this approach, each sample is considered as a new Markov chain which is repeated in a 

Create a Project 

pro_Create 

Add Input to the Project and 

Define its Distribution 

pro_AddInput 

Make the Analysis 

GSA_GetSy 

Initialize the Analysis 

GSA_Init 

Set the Model f(x) 
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sampling series including steps of approval or disapproval (Moradkhani et al., 2012).  The 

Monte Carlo method is widely used in the literature for solving integral and differential 

problems. For instance: in integration, Monte Carlo method is able to sample randomly 

from a known distribution and then the sample points considered to be the integration nodes 

(Morokoff and Caflisch, 1993). Also, this technique is considered as an accurate and 

efficient approach by the hydrologic modelers (DeChant and Moradkhani, 2014). 

However, Morokoff and Caflisch (1993) concluded that exchanging the Monte Carlo 

random sampling by a uniform distribution, can improve the convergence of the method 

and this new approach is known as Quasi-Monte Carlo approach.  

The quasi-random sequences are introduced by Sobol’ (1967) within a Quasi-

Monte Carlo approach. Moreover, Cannavó (2012) mentioned a drawback about the 

random sampling of Monte Carlo method that it encounters clustering dilemma in the 

sample space. In other words, in the sample space, there will be areas filled with points and 

others are empty. Therefore, it is quite possible that some areas in the sample space might 

be uncovered during the sampling process. For the mentioned reasons, the quasi-random 

sampling technique is preferred in this study. 
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4. Results  

4.1 Importance of Model Input and Parameter Sensitivities (First-Order Effects) 

4.1.1 Effect of Simulation Length on the Inputs Sensitivity of SAC-SMA Model 

 The study covers three different simulation length: one-year period (Oct 2000-Oct 

2001), four-year period (Oct 2000-Oct 2004), and seven-year period (Oct 2000-2007). The 

results of the main sensitivity effects for the one-year period for both sensitivity analysis 

methods (Sobol’ and FAST) have almost the same trend for the five sub-basins. Figure 6 

consists of bar-chart results for each sub-basin and one year period comparing Sobol’ and 

FAST methods. From the figure, it can be seen that the tension water (LZTWM) and the 

primary withdrawal rate (LZPK) parameters in the lower zone are the most relevant 

parameters over all the sub-basins with maximum sensitivity values of 0.22 and 0.39, 

respectively. It should be noted that the sensitivity index is a unitless index which ranges 

from zero to one (see section 3). However, the TW Sullivan has a slightly different result 

where the tension water maximum storage parameter in the upper zone (UZTWM) is also 

a sensitive parameter with sensitivity index of (0.17). The range of the sensitivity indices 

of both sensitivity analysis methods within this period varies from zero to 0.39.  

Figure 7 displays the results for the four-year period sensitivity analysis (main input 

effect). The four-year simulation results highlight some new parameters and input for some 

sub-basins as main contributors. For example, Sobol’ method shows the precipitation input 

(P) as a sensitive parameter in Milner and White Bird sub-basins (sensitivity indices of 0.4 

and 0.37, respectively). Another effective parameter over this time period is the UZTWM 

in TW Sullivan, Hungry Horse and White Bird sub-basins. The rest of the results are similar 
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to the one-year period where the LZPK parameter is important in all sub-basins. The 

sensitivity indices within the four-year period reaches a maximum of 0.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 First-order sensitivity indices evaluated by the Sobol’ and FAST sensitivity analysis 

methods for the one-year simulation period of the five sub-basins: Hungry Horse Sub-basin, Mica 

Sub-basin, Milner Sub-basin, TW Sullivan Sub-basin, and White Bird Sub-basin in CRB 
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Figure 7 First-order sensitivity indices evaluated by the Sobol’ and FAST sensitivity analysis 

methods for the four-year simulation period of the five sub-basins: Hungry Horse Sub-basin, 

Mica Sub-basin, Milner Sub-basin, TW Sullivan Sub-basin, and White Bird Sub-basin in CRB 
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Figure 8 describes a comparison between the Sobol’ and FAST methods results for 

the seven-year period. Generally, From Figure 8, it is noted that the SAC-SMA model 

parameters and input sensitivity results are closer to the four-year period results (Figure 7). 

The reason can be the effect of model warming up. The warming up period of a model is 

the initial phase that is required for the system to stabilize (Kolahi, 2011). Apparently, the 

four sub-basins: Hungry Horse, Milner, TW Sullivan, and White Bird sensitivity analysis 

results are quite similar to the four-year period results, however the LZPK sensitivity 

degree is less in Milner and White Bird sub-basins. For Mica sub-basin, the results are 

different than the other time periods where the UZTWM and P are marked as sensitive. The 

maximum sensitivity value reached in this period is about (0.56) for the (P) in Milner sub-

basin. 

Color maps are used to compare the Sobol’ and FAST main effect sensitivities. 

Figure 9 shows the main effects of Sobol’ and FAST for different simulation lengths over 

all the sub-basins. In most cases, the results show coherence in highlighting the same 

parameters and input as the major contributors to the model output variance. However, the 

one-year simulation period results are different than the other periods by introducing the 

LZTWM parameter as the sensitive parameter. Furthermore, the LZPK parameter is the 

sensitive parameter in all sub-basins especially in Mica sub-basin for the one-year and four-

year periods (Figure 9). The P input is marked to be important within the four-year and 

seven-year simulations in Milner and White Bird sub-basins. Also, most of the sub-basins 

have the UZTWM parameter as sensitive except during the one-year length period. One 

more point to highlight in Figure 9 is that the range of the sensitivity indices (the degree of 
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parameter importance) differs from sub-basin to sub-basin and even differs during different 

simulation periods. For example, the highest sensitivity index is reached during the seven-

year period (0.56) in Milner sub-basin for the P input while it is about (0.4) for the P in the 

four-year period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 8 First-order sensitivity indices evaluated by the Sobol’ and FAST sensitivity analysis 

methods for the seven-year simulation period of the five sub-basins: Hungry Horse Sub-basin, 

Mica Sub-basin, Milner Sub-basin, TW Sullivan Sub-basin, and White Bird Sub-basin in CRB 



    27 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Parameter sensitivity calculated with the Sobol’ and FAST sensitivity analysis methods 

for five sub-basins for different simulation lengths: Oct 2000-Oct 2001, Oct 2000-Oct 2004, and 

Oct 2000-Oct 2007 
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4.1.2 Comparing the Reliability of Sobol’ and FAST Sensitivity Analysis Methods 

 

One of the objectives of this study is to evaluate the robustness and reliability of 

the GSA methods (Sobol’ and FAST) that are used in this research. The reliability of the 

sensitivity methods is based on the comparison of the differences between the sensitivity 

indices which are estimated using Sobol’ and FAST methods. Figures 10, 11, and 12 

display the differences between sensitivity indices of FAST and Sobol’ methods over all 

the sub-basins within different periods: (Oct 2000-Oct 2001), (Oct 2000-Oct 2004), and 

(Oct 2000-Oct 2007). In general, it is seen that both sensitivity analysis methods have 

agreement on the important parameters and input. The Sobol’ sensitivity indices are higher 

than FAST in most cases (Figure 10), however, it does not mean FAST indices are 

systematically lower than Sobol’ indices.  For the one-year period, the difference between 

Sobol’ and FAST indices is less than 0.1 (slight difference) in TW Sullivan sub-basin as 

shown in Figure 10. Whereas the difference is about 0.5 in Milner and White Bird sub-

basins during the four-year and seven-year simulation periods. A difference of (0.5) is 

considered a large difference that affects the sensitivity analysis result. In other words, such 

difference can change the degree of importance of certain parameter from being 

unimportant to be a very important parameter.  

Other ways to evaluate the robustness of the sensitivity analysis methods are 1) to 

see the agreement between the two sensitivity analysis methods (Sobol’ and FAST) in 

terms of highlighting the same parameters or input as the most sensitive ones and 2) how 

the methods are alike in ranking these sensitive parameters or input under the same 

conditions (sub-basins and simulation length). Table 2, 3, and 4 represent a comparison of 
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the sensitivity mismatching results between the two methods obtained within different 

evaluation periods and sub-basins in the CRB.  The tables show that for each sensitivity 

analysis method results, the important parameters and input are introduced regarding their 

degree of importance within the three simulation periods. For different simulation periods, 

only 5 of SAC-SMA parameters (UZTWM, LZTWM, LZFPM, LZPK, and PFREE) and the 

input (P) are pop-up as sensitive ones. However, not all of these parameters and input are 

marked as important simultaneously. For example, from Table 2, only 3 or 4 parameters 

are important in each sub-basin. The numbers in the mentioned tables represent the rank of 

that parameter or input in each analysis. 

The results of one-year evaluation period show no discrepancy in marking and 

ranking the important parameters and input for Sobol’ and FAST methods (Table 2). 

Nevertheless, for the four-year and seven-year periods, five mismatching results appeared; 

two of them are a result of highlighting discrepancy and the other three as a result of 

ranking discrepancy. For instance, from Table 4, Sobol’ method highlighted three 

parameters (UZTWM, LZPK, and PFREE) and the input (P) as sensitive in Mica sub-basin 

whereas FAST only highlighted one parameter (UZTWM) and the input (P). That was a 

mismatching between the two methods regarding to mark the same parameters or input as 

relevant. In addition, the order of the UZTWM and P in both methods was different and 

thus, this was the second mismatching criterion in this study. In the mentioned example, 

the total number of mismatching criteria is 3 and so forth. Although there are few 

differences, the overall results of the reliability and robustness of the sensitivity analysis 

methods, are consistent for both Sobol’ and FAST methods. 
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Figure 10 Difference between sensitivity indices of FAST and Sobol’ methods during the 

period of (Oct 2000-Oct 2001) 
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Figure 11 Difference between sensitivity indices of FAST and Sobol’ methods during the period 

of (Oct 2000-Oct 2004) 
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Figure 12 Difference between sensitivity indices of FAST and Sobol’ methods during the 

period of (Oct 2000-Oct 2007) 
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Table 2 Comparison of sensitivity evaluation based on the number of  mismatching ranking or highlighting of sensitive parameters and 

input between the two sensitivity analysis methods obtained within one-year evaluation period for the five sub-basins in the CRB. Note 

that the numbers in the table indicate the rank/order. 

 

Table 3 Comparison of sensitivity evaluation based on the number of  mismatching ranking or highlighting of sensitive parameters and input 

between the two sensitivity analysis methods obtained within four-year evaluation period for the five sub-basins in the CRB. Note that the numbers 

in the table indicate the rank/order. 
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Table 4 Comparison of sensitivity evaluation based on the number of  mismatching ranking or highlighting of sensitive parameters and input 

between the two sensitivity analysis methods obtained within seven-year evaluation period for the five sub-basins in the CRB. Note that the 

numbers in the table indicate the rank/order. 
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4.2 Effect of Input and Parameter Interactions on the Inputs Sensitivity of SAC-SMA 

Model 

 

Since the results of the four-year simulation period are close to the seven-year 

period, the interaction effects only are compared between the one-year and the seven-year 

periods. The interaction effects are estimated for the (15) hydrological model (SAC-SMA) 

parameters and one input for the two periods. The outcomes of the Sobol’ second order 

sensitivity (interactions between two parameters) are similar to the Sobol’ first order 

sensitivity (main parameter effect) within the periods of interest. Therefore, the four-year 

simulation period interactions results are not included in the thesis. The reason behind the 

coherence between the main and interaction parameter effects is that the combined effects 

of two important parameters are also important. Figure 13 and Figure 14 show color maps 

for the Sobol’ interaction sensitivities for (15) parameters and one input during the one-

year and seven-year simulations, respectively.  

 From the main effects results for the one-year period, it is highlighted that 

(LZTWM) and (LZPK) parameters are the most relevant ones for all basins and the 

parameter (UZTWM) is another important parameter in the TW Sullivan sub-basin. 

Apparently, the results in this section confirm that the combined effects of two sensitive 

parameters are also important. From Figure 13, The joint effects of (LZTWM) and (LZPK) 

parameters are the most sensitive for all sub-basins, in which the sensitivity index exceeds 

(0.75) in Milner sub-basin. Also, the interactions effects between these parameters 

(LZTWM and LZPK) and the other insensitive parameters are also marked as effective 

interactions as explained above (Figure 13). The sensitivity indices ranges (the degree of 
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importance) are close for most sub-basins except for the TW Sullivan sub-basin which its 

maximum sensitivity range is less than the other sub-basins which is about (0.5). 

For the seven-year period, evidently, the precipitation (P), the tension water 

maximum storage parameter in the upper zone (UZTWM) and the primary withdrawal rate 

(LZPK) input and parameters govern the interaction effects in (3) sub-basins: Mica, Milner, 

and White Bird. Moreover, (UZTWM) and (LZPK) parameters dominate the joint effects 

in Hungry Horse and TW Sullivan sub-basins (Figure 14). For this period, other color maps 

are presented for each sub-basin with only the (14) parameters of the SAC-SMA model 

because the (P) input has high sensitivity indices in some sub-basins that prevent other 

parameters to be recognized as sensitive (Figure 15). After excluding the (P) input for the 

seven-year period, new sensitive parameters occur in Milner sub-basin which are: 

(UZTWM) and (LZPK) parameters. However, the sensitivity index (degree of importance) 

for the new parameters are small (about 0.05).  In general, the sensitivity ranges in Figure 

15 are lower than the ones in Figure 14. For example, the sensitivity index is less than 0.6 

in TW Sullivan sub-basin without including the (P) input whereas it is greater than 0.8 in 

Milner sub-basin considering the (P) input. 
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Figure 13 Parameters interactions calculated by the Sobol’ (second-order) method for (15) 

inputs during the one-year simulation period for the five sub-basins of CRB 
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Figure 14 Parameters interactions calculated by the Sobol’ (second-order) method for (15) 

inputs during the seven-year simulation period for the five sub-basins of CRB 
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Figure 15 Parameters interactions calculated by the Sobol’ (second-order) method for (14) 

inputs during the seven-year simulation period for the five sub-basins of CRB 
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5. Discussion  

The idea behind using two sensitivity analysis methods is to study whether their 

results are consistent or not. The results show that FAST method is more reasonable to use 

for evaluating the main effects of the model parameters and input, since it is 

computationally more efficient than Sobol’ method. In this study, the time needed to obtain 

the main sensitivities results of 104 runs by using Sobol’ method on Windows system was 

about two weeks while by using FAST method was about two days. However, Sobol’ 

method is very appealing that it can overcome the dimensionality dilemma (Saltelli et al., 

1999).  

 In general, the results show coherence between the Sobol’ and FAST sensitivity 

analysis methods. The two sensitivity methods reveal almost the same parameters and input 

as sensitive ones, however, the degree of importance is different in some cases. Table 5 

shows the highest sensitivity indices for the one-year period. From the table, it can be seen 

that the results of the Sobol’ and FAST methods are close. In terms of the reliability, only 

few results of the two sensitivity analysis methods do not match and most of these 

discrepancies are due to the ranking differences (Table 3 and 4). Furthermore, it is seen 

from the results in Figures 10, 11, and 12 that the Sobol’ indices are higher than the FAST 

indices. Although both methods (Sobol’ and FAST) are based on the ANOVA 

decomposition theory, the procedure of calculating the sensitivity indices is different for 

each method (section 3). 
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Table 5 Summary of the highest sensitivity indices for the one-year period 

Basins Geographic location Weather 

condition 

Sobol’ 

Main Effect 

FAST 

Main Effect 

Sobol’ 

Interaction 

Effect 

Hungry Horse East CRB in 

Montana/USA 

Rainfed 

area 

0.34 0.31 0.68 

Mica North CRB in British 

Columbia/Canada 

Snow 

dominated 

0.39 0.36 0.69 

Milner Southeast CRB most the 

sub-basin lies in 

Idaho/USA 

Snow 

dominated 

0.3 0.27 0.77 

TW Sullivan Southwest CRB in 

Oregon/USA 

Rainfed 

area 

0.29 0.27 0.49 

White Bird Central Southeast  CRB in 

Idaho/USA 

Snow 

dominated 

0.28 0.26 0.72 

 

Table 6 shows a summary of the highest sensitivity indices for the seven-year period. The 

highest main sensitivity index reached is (0.56) for the precipitation (p) input in Milner 

sub-basin within the seven-year simulation period. The sensitivity index for the main 

effects varies mostly between (0-0.4) except for the (P) input case. On the other hand, the 

indices for the interaction effects are much higher than the main effects where the ranges 

varied between (0-0.7) in most sub-basins and exceed (0.8) at Milner sub-basin during the 

longest period of this study as shown in Table 6. Thus, some parameters may not seem 

crucial by themselves but they can be effective once when they interact with other 

parameters. These results highlight the importance of specific processes of the SAC-SMA 

model as will be discussed in the next section.  
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Table 6 Summary of the highest sensitivity indices for the seven-year period 

Basins Geographic location Weather 

condition 

Sobol’ 

Main Effect 

FAST 

Main Effect 

Sobol’ 

Interaction 

Effect 

Hungry Horse East CRB in 

Montana/USA 

Rainfed 

area 

0.27 0.26 0.49 

Mica North CRB in British 

Columbia/Canada 

Snow 

dominated 

0.23 0.12 0.66 

Milner Southeast CRB most the 

sub-basin lies in 

Idaho/USA 

Snow 

dominated 

0.56 0.08 0.88 

TW Sullivan Southwest CRB in 

Oregon/USA 

Rainfed 

area 

0.31 0.22 0.55 

White Bird Central Southeast  CRB 

in Idaho/USA 

Snow 

dominated 

0.43 0.12 0.66 

 

5.1 Physical Interpretations the Consistency of the Sensitivity Analysis Results  

In the previous sections, the evaluation of the two sensitivity analysis is based on 

the statistical concepts, therefore, this section explains the results using the physical 

interpretations of the screened (sensitive) parameters and input. Jung et al, (2012) state that 

the regional geological and hydroclimatologic properties are highly connected to the 

hydrological process, therefore, understanding the meteorological conditions and the 

geographic nature of the study area is important step to link the results to the real-world 

case. The study area as mentioned earlier covers five sub-basins of the CRB in both sides: 

Canadian and USA. The five sub-basins are: Hungry Horse, Mica, Milner, TW Sullivan, 

and White Bird where all the sub-basins except TW Sullivan lie along the Rocky 

Mountains as shown in Figure 2. It is important to highlight that some hydrological 

processes are highly affected by the simulation length. Therefore, it can be noticed that the 

results of the one-year period are slightly different than the other periods.  

For the one-year period, the lower zone parameters are more sensitive than the 

upper zone ones. Further, all the sub-basins show that the tension water (LZTWM) and the 
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primary withdrawal rate (LZPK) parameters in the lower zone are the most influential 

parameters (Figure 6). The most likely reason is that the soil profile is saturated in these 

regions and with time it is expected to have the overland flow case. Therefore, when the 

simulation length increases (e.g. seven-year period), the tension water maximum storage 

parameter in the upper zone (UZTWM) is highlighted as sensitive where this parameter 

controls the soil moisture of the soil and the surface water runoff (Figure 8). This is from 

the fact that the snow cover increases the runoff amount due to snow melting which means 

it increases the soil moisture content (Massmann and Holzmann, 2012).  

The results for the seven-year evaluation period confirm this finding by 

highlighting the precipitation (P) as an important input in these sub-basins. Other 

interesting results in the seven-year period are that the tension water maximum storage 

parameter in the upper zone (UZTWM) parameter is marked as important parameter in Mica 

and White Bird sub-basin, however, in Milner sub-basin, this parameter is not important 

(Figure 8). This can be from the fact that Milner sub-basin is large and lies within an area 

influenced by complex surface water and ground-water interactions, therefore this could 

be the reason why this sub-basin shows different results than the other sub-basins. For 

Hungry Horse and TW Sullivan sub-basins, the results are similar during the seven-year 

period where the tension water maximum storage parameter in the upper zone (UZTWM) 

and the primary withdrawal rate (LZPK) parameters are relevant ones. The UZTWM 

parameter affects the over land flow and the water storage whereas the LZPK affects the 

baseflow processes.  
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Moreover, these sub-basins are located in forested rainy areas where the water table 

is high and the soil is saturated. Obviously, in humid areas the infiltration capacity is high 

especially in vegetated regions, however overland flow can take place when the soil profile 

is already saturated. This is known as a saturation excess overland flow (Tarboton, 2003). 

One more point to highlight here is that most of the sub-basins lie at high elevations in 

which enhances the surface runoff state.  

In summary, the natural elements of the real-world (e.g. meteorology and 

topography) play a major role in controlling the hydrological processes. As a result, it is 

essential to thoroughly investigate the study area before modeling. This will lead to better 

understanding the model behavior in that specific region. However, understanding all the 

physical behavior in small scale for any region is not an easy task.  
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6. Conclusions and Outlook 

 

In this study, the Global Sensitivity Analysis (GSA) is evaluated for the (SAC-

SMA) hydrological model over the Columbia River Basin (CRB). The study is carried out 

for three different simulation periods by applying two sensitivity analysis methods: The 

Sobol’ and FAST. The importance of 14 SAC-SMA model parameters and one input 

(forcing data) are estimated in five sub-basins within the CRB. As a first step, the main 

parameter sensitivities (first-order) are evaluated by using Sobol’ and FAST methods. 

Then, the parameter interactions sensitivities (second-order) are obtained by Sobol’ 

method. The results indicate coherence between the Sobol’ and FAST sensitivity analysis 

methods. The reliability of the sensitivity analysis results is compared based on the main 

effects results. Here, it is seen that the results of the two methods are consistent in terms of 

highlighting and ranking the effective parameters and input. It is found that the ranges for 

the first-order sensitivities are lower than the second-order sensitivities. The explanation 

for this is that the Sobol’ (second-order) sensitivity is the result of summing up the main 

effects of each parameter and their combined effect (Sobol, 2001).  

For the main effects results, most of the sensitivity indices vary from zero to 0.5 in 

overall results, whereas the interactions indices vary from zero to 0.8 in most sub-basins. 

The results show that FAST method is sufficient to use for evaluating the main effects of 

the model parameters and input, especially, it is computationally more efficient than Sobol’ 

method. Finally, the results of the sensitivity analysis are interpreted regarding their 

consistency with the physical meaning in the real-world case. Here, it is concluded that 

some hydrological processes are highly influenced by the simulation length. The model 
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behavior during the one-year period differs than the other periods (four-year and seven-

year). For instance, the lower zone processes are more effective in the short period 

evaluations. It is explained that the soil profile is saturated and the water table is high in 

most of the sub-basins. Therefore, with time, it is expected to have the saturation from 

below case, it happens when the soil profile is saturated completely and the water table is 

high (Tarboton, 2003). Thus, the upper zone processes reveal to dominate the hydrological 

processes during the long term evaluations. This is explained due to the fact that in a soil 

with high moisture content (saturated), the overland flow process takes place which in turn 

is controlled by the upper zone parameters of the SAC-SMA model.  

In conclusion, the Sobol’ and FAST methods can be considered as reliable methods. 

The attractiveness is in their ability to quantitatively calculate the importance of model 

parameters and inputs. Thus, these sensitivity analysis methods help the modelers in 

decreasing the uncertainty dilemma associated with the model inputs (e.g. parameters, 

forcing data, and initial condition).  

As a continuous work to this study, the focus will be on another important factor 

that can influence the sensitivity analysis results which is the parameter range. This factor 

needs to be studied since it is investigated only by limited studies. In this study, the SAC-

SMA parameter ranges are chosen from the literature. Also, from the reliability stand point, 

it is important to do more research about the uncertainty associated with the sensitivity 

analysis approach.  
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