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CHAPTER I

INTRODUCTION

The analysis and design of structures has advanced greatly in
recent years, due in large part to the use of digital computers. Pro-
blems requiring complex derivations for theilr solution may now be
handled relatively easily using numerical methods in an iterative
(trial and error) form. In an iteration procedure a trial solution
is made and then checked for correctness. If the solution is not
correct an error exists and the problem must be solved again with
changed parameters. If the iteration is to converge, each successive
solution must be closer to the correct solution. This process is
continued until the error is acceptable. The procedure just described
is referred to as the open form approach, and is commonly used by
computer programs for the analysis of non-linear structural systems,

The primary goal of this project was the determination of the
ultimate load capacity of a circular steel tube loaded as a beam—column,
i.e., a loading condition consisting of both axial load and flexure.
Methods for calculating the combination of axial load and bending mom-
ent at failure in wide-flange members have been developed (11) and are
currently employed in design practice. Previous investigators (4, 6, 16,
17) have shown that tubular members exhibit structural characteristics
markedly different than wide~flange shapes when subjected to loads
causing stresses above the elastic range. Since a systematic technique

to determine the ultimate strength of tubular members is so far not



avallable, an investigation was launched to develop an analytic tool
in the form of a computer program which could be used to gener. e
‘load displacement histories and calculate failure loads for circular
steel tubes,

The computer model involves two separate phases of calculations,
Figure 1. First, the moment-thrust-curvature (M-P-@) relationship
for the member cross section is obtained. Using this as input, the
ultimate strength of the beam-column is determined for a selected
pattern of loading. The computer model is capable of accounting for
the effects of residual stresses during the generation of the M-P-{
relationship. The inclusion of any configuration of stress—-strain
relationship may be accomplished by providing appropriate input data
in tabular form. It should be noted that while this investigation
includes the determination of M-P-f data, those provided by other
investigators may also be used. The calculation of failure loads is
accomplished by a numerical technique which increases the load by a
variable step incrementing procedure until no further load can be
supported, At this point the beam-column is considered to have re-
ached failure.

The major use of the computer model in this investigation is
the development of curves giving combinations of axial load and end
moments which cause failure, These curves are commonly referred to
as interaction diagrams, Figure 2. Interaction diagrams for wide-
flange members are available and design equations based on these have
been developed (3), however, it is generally believed that they give

excessively conservative results when applied to tubular members .,



PHASE I

Determination of Moment-Thrust-Curvature
(M-P-@)Relationships for Member Cross Section

!

PHASE II

Calculate Failure Loads for the
Specific Beam-Column Configuration

Figure 1 Block diagram of the computer model
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The aconomical design of tubular members is of special interest
to engineers involved in the design of offshore facilities. Ci.cular
tubes are commonly used in offshore construction because of their
ability to resist bending equally well in any direction. They also
exhibit a greater flexural reserve strength beyond first yield thau
the wide-flange shape, and are not subject to lateral-torsional buck-
ling. Engineers will be limited to available design equations de-
veloped for wide-flénge sections until acceptable criteria specifically
for circular tubes is established. Information dealing with the
overall column stability of circular tubes will provide a basis for
the development of a design specification for such members.

The analytical investigation was supplemented by a testing
program which consisted of loading four model tubes to failure by an
eccentric axial load. The results of these tests and published test
results of other investigators were used to check the validity of the
computer model used in this study.

The following discussion includes a brief review of research
related to tubular members, a documentation of both the computer model
and the testing program, and a comparison of the analytical and exper-

imental results.



CHAPTER II

REVIEW OF LITERATURE

A great deal of work has been done on the analysis of wide-
flange members loaded as beam-columns (8,11), however there seems to
be a scarcity of published information concerning the response of
round steel tubes subjected to the combined effects of bending and
axial load. Work by Ellis (5) consisting of both an analytical and
experimental investigation has been reported. Another analytical
invest4{gation by Snyder and Lee (18) is available, however, the appli-
cation of the method proposed is limited to specialized beam-column
configurations.

Results of experimental studies include the report of tests on
square tubes by Dwyer and Galambos (4). The major thrust of the report
was to compare the relative strengths of the square tube and wide-
flange cross sections. Tests of circular tubes in pure bending have
been carried out by Sherman (16,17) with the major objective b;ing
the determination of a limiting diameter to thickness ratio to pre-
vent local buckling. In vigw of the somewhat limited nature of the
reported investigations concerning circular tubes, a computer model
which has applicability to a wide variety of support and loading
conditions would be useful.

The beam-colummn analysis technique used in this investigation

(Matlock's Recursive Technique) has been modified by previous invest-



igators to perform advanced beam-column analysis. For example,
Mueller (15) modified the technique to handle beam-colummns on non
linear foundations. Also, the technique was used by Matlock and
Taylor (14) in a computer program to analyze beam-columns under move-
able loads. However, so far as can be determined, the technique has

not been applied to the ultimate strength analysis of beam-columns.



CHAPTER III

COMPUTER MODEL

The initial portion of this paper documents the development
of the computer model used fo determine the ultimate load capacities
of tubular beam~colums. Also included are design applications in
the form of interaction diagrams, and a comparison of the analytical

results with published test results of other investigators.
PROBLEM DEFINITION

The collapse of a beam-column may be classified as either elastic
instability (no yielding at any cross section) or plastic instability
(partial or complete yielding at some or all cross sections). While
the determination of the elastic buckling load is normally accomp-
lished by a closed form solution technique (i.e., Euler's Equation),
the determination of the plastic buckling load involves non-linear
relationships and is most readily handled by an open form approach.
The major difficulty arises from the fact that once plastic action
starts, Hooke's Law is no longer valid. The computer model developed
in this investigation may be used to predict the ultimate strength
of tubular beam-columns which fail by either elastic or plastic in-
stability.

Other factors considered in this study include residual stresses

due to the manufacturing processes of the tube and the effect of the



actual stress-strain relationship of the material. Local buckling
was not investigated, however, reports of other investigators :i.e

referenced to be used as a separate check. The problems of initial
crookedness of the member and ovalization of the cross section were

beyond the scope of this project.
OVERVIEW

As mentioned previously, the computer model consists of two
major components; generation of moment-thrust-curvature (M~-P-@)
relationships and determination of fallure loads. The moment-thrust—-
curvature relationships are a property of the member cross section
and define, for a given strain condition, the stress distribution and
magnitude necessary for equilibrium. The M-P-@ curves are the basic
data from which overall column stability can be determined in that
they define the behavior of the member in both the elastic and in-
elastic range. The M-P-f} relationships are a direct input into the
failure load program (Figure 1). This allows M-P-@ data developed by
other investigators to be used in calculating failure loads, Details

of each phase of the computer model are now presented.
MOMENT-THRUST-CURVATURE RELATIONSHIPS

General

The determination of the M-P-@ relationship is accomplished by
an open-form solution technique. As noted by previous investigators
(6), closed form solutions for determining M-P-@ relationships are

often tedious and time consuming since several special derivations
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must be made. Also, because of the complexity of the derivations
involved, closed form solutions use an idealized bilinear stre:s.-
strain diagram and have limited ability to incorporate residual stress
patterns into the analysis. An open-form solution technique to de-
termine M~P-@ relationships for circular tubes by dividing the cro.s
section into horizontal sectors has been previously developed (6).
However, it is believed that the method presented herein is more
accurate and complete for element idealization, allows the invest-
igation of more general residual stress patterns, and contributes to
the overall efficiency of the computer model.

The open-form technique developed in this investigation divides
the cross section of the circular tube into layers of elements dis-
tributed around the circumference as shown in Figure 3a. The number
of layers and elements per layer are limited only by the size of the
specified arrays in the computer program. This technique permits the
inclusion of any configuration of material stress-strain relationship
and residual stress distribution patterns directly into the solutiom.
To maintain maximum flexibility for the user, one of two forms of
input for the inclusion of residual stresses may be used:

1. An assumed stress pattern consisting of a linear variation

between three peak values (Figure 3b).

2. Any distribution of stresses in matrix form.

Although the assignment of any residual stress value to each
element 1s possible, it is required that the final distribution be
statically admissible by satisfying basic con&itions of static equil-

ibrium. (See Appendix III for adjustment of an assumed stress pattern.)
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Figure 3 Element configuation and assumed residual stress distribution
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Analytical Procedure for Determining M-P-f§ Data

The technique used to generate the M~-P-} data uses three .ate-
gories of stress and strain; those due to residual stress, axial
load, and bending. The loads are applied in the following order.
First, the applicable residual stress and strain value is assigned
to each element. A percentage of the stub-columm yield load, Py, is
then applied to the cross section. This axially stressed cross section
is then given a value of curvature and the moment corresponding to a
state of equilibrium is calculated. The result is a value of moment,
thrust and curvature (M-P-@) satisfying equilibrium. The process is
repeated with different combinations of axial load and curvature to
obtain an adequate number of points to describe the family of M-P-@
curves .

The calculation of the M-P-f relationship uses two iteration
loops as shown in the flow chart of Figure 4. The first determines
the correct axial strain value due to the applied percentage of Py.
This 1s necessary because it is possible for the sum of the axial
strain, P/AE, and the residual strain to exceed the yield value on
some elements. In such cases the elemental stress available to resist
axlal load is less than that predicted by elastic theory. Since the
residual stress distribution 1s an initial condition, its value can-
not be changed. Therefore, the additional force must be provided by
other elements. It should be noted that the stress distribution and
its magnitude are calculated by allowing the strain on all elements
to be increased by the same amount, The resultihg stresses are ob-

tained from the material stress-strain information; The second iter-
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Figure 4 Flow diagram for calculation of M-P-@ data
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ation determines the correct location of the neutral axls given a value
of curvature. It is initlally assumed to be at the centroid o1 the
cross section., As mentioned earlier, with an axial load applied to
the column section, a value of curvature is assumed; then the bending
moment and thrust necessary to hold this state of strain are calculated.
If the calculated thrust does not agree with the applied axial load,
the locatlion of the neutral axis 1s shifted until agreement within a
specified tolerance is obtained. The M-P-f data calculated by this
procedure are ncrmally depicted as a family of curves such as those
in Figure 5. These curves represent the correct combination of bending
moment, axlal load and curvature for a circular tube. As may be ob-
served, the M~P-@ data have been normalized by dividing each quantity
by its value at first yield. Normalization is helpful in presenting
data of this typé since the data represent circular tubes in general
rather than one specific circular tube. A family of curves for per-
centages of Py ranging from 0.0 to 1.0 make up the M-P-@ data used by
the beam-column analysis program.

The M-P-@ relationship shown in Figure 5 were calculated for a
standard weight round structural tube with a 10 inch nominal outside
diameter (ID/OD = 0.932) without considering residual stress effects.
The material properties were approximated by a bilinear stress-strain
relationship with a modulus of elasticity of 30 x 103 ksi and a yield
stress of 35 ksi. These values are the minimum specified in the
American Soclety for Testing and Materials standard A53 for Grade B
pipes of types E and S. Although the M-P-@ data presented in Figure

5 were calculated for a particular circular tube, they may be used to
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represent the moment-thrust-curvature characteristics of all thin
walled circular tubes with an average shape factor of 1.30.

It is important to note that local buckling criteria and oval-
ling effects have not been incorporated in the moment-thrust-curvature
calculations. A separate check for local buckling should be made for
the specific tubular section under consideration. Suggested methods
for determining the limiting diameter to thickness ratio (D/t) have

been previously outlined (13, 16, 17).

Consideration of Residual Stresses and Nonbilinear Stress-Strain

Relationships

As noted earlier the computer model may be used to determine
the effect of residual stresses and nonbilinear stress~strain relation-
ships on the predicted failure load. The approach selected was to
incorporate the particular residual stress pattern and/or stress-
strain relationship into the moment-thrust-curvature data which was
then used in the failure load analysis. The effect on the M-P-§
curves 1s an indication of what change to expect in the ultimate load
value, i.e., M-P-0 curves which exhibit relatively higher bending
moment capacities will result in relatively higher ultimate load values.

Consider first the effect of residual stresses. Since no test
data on the actual residual stress distribution in a circular tube was
avallable, the stress distribution shown in Figure 3b was assumed;
This stress distribution is the assumed result of the longitudinal
welding of the tube. The cross section used in this.comparison is the
same as that used for the generation of the M-P-@} curves shown in

Figure 5. In determining the moment-thrust-—curvature relationship it
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was assumed that the axis of bending passed through the weld although
any axis orientation could have been chosen. A comparison of t.e
M-P-@ curves with and without the effect of the assumed residual stress
pattern is shown in Figure 6. Notice that for a constant value of
axial load and curvature the calculated value of bending moment s
significantly lower for the case which used the assumed residual stress
pattern. The relative difference is especially large at combinations
of low curvature and high axial load.

As developed, the computer model permits either an idealized
bilinear stress-strain relationship or stress-strain values obtained
from the results of coupon tests to be used in the development of the
moment-thrust-curvature relationship. M=-P-@# curves using the stress-
strain data depicted in Figure 7 are presented in Figure 8. The cross
section considered had an outside diameter of 10,752 inches and a wall
thickness of 0.194 inches. Note, for low strain values the bilinear
stress~strain relationship overestimates the actual strength. As the
strain values increase the effects of strain hardening become notice-
able as the curve representing the actual stress~straln data shows a
greater bending moment capacity than the curve déveloped using the
bilinear stress-strain relationship.

The procedure for including the actual stress-strain data in-
volves interpolating a stress value for a given strain value from
tabular data. The tangent modules approach was used with the inter-
polation performed by a second order divided difference. Unequally
spaced points may be used thus permitting a better idealization in

areas of special interest, such as the initial part of the stress~
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strain curve. Details of the interpolation procedure are given in

Appendix IV.

DETERMINATION OF FAILURE LOADS

General

The determination of the ultimate load capacity of a beamcolumn
1s accomplished by a numerical method which increments the load until
failure., For each value of load the beam—column 1s analyzed and a
check for fallure is made. Next, the bending stiffness is adjusted
as required. The member is then reanalyzed until the adjustment is
negligible at which time the load is increased and the process continued.
The following are required to implement this procedure:

a) method for analyzing beam-columns

b) detection of yielding and appropriate adjustments

c) mathematical definition for buckling

d) iterative procedure for incrementing the load

A detailed explanation of each of these follows.

Beam Columm Analysis

The beam-column analysis employs Matlock's recursive solution
technique (9, 14, 15). The following discussion deals only with the
fundamental characteristics of Matlock's technique. A complete deriv-
ation of the recursion equations is given in Appendix I.

Matlock's method is a general purpose elastic beam~column anal~-
ysis technique. The method conveniently handles a wide variety of
support and loading conditions, and accounts fof the P-Delta effect.

The bending stiffness can vary along the member-iength in any conceivable
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configuration. Since plastic action essentially changes the bending
stiffness, the latter characteristic of this method allows it 1. be
employed in an iterative analysis of beam~columns with stress con-
ditions above the elastic range. However, the method is limited to
a planar problem, i.e. all loads and support reactions pass througa
the vertical axis of the member.

The method of analysis may be characterized as a finite diff-
erence approach which divides the member into a number of equal length
segments, as shown in Figure 9, Each segment 18 assumed rigid with
the bending stiffness (EI) concentrated at the joints which, hereafter,
are referred to as stations. All distributed load and support values
are input to the computer program as concentrated values at the sta-
tions. The solution procedure 1s to first calculate the transverse
deflection at each station and then perform a finite difference
differentiation to calculate slope and curvature. As the curvature
values are calculated the bending moment at each station is determined

from the equation of the deflected elastic beam:

- d? (1)
Mj = (EI)4 (ﬁ) {
where 1 = station number

M = bending moment

EI= bending stiffness

42
E§§ = (} = curvature

The differentiation 1s then continued to calculate shear and net load.
For beam-type members the calculated net load provides a positive

check on the solution, that is, if the calculated net load is equal
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to the input load, then the solution is correct. However, if axial
load is present, the P-Delta contribution to the bending moment will
show up in the net load making it differ slightly from the input load

(see Appendix I for a detailed explanation).

Detection of Yielding and Appropriate Adjustments

The method of analysis just described is an elastic solution,
however for beam-columns of short and intermediate length there will be
some yielding before failure. The procedure used to account for yleld-
ing is to adjust the bending stiffness (EI) at all stations where
ylelding has occurred. The approach used is the '"Secant Stiffness"
method. The adjustment results in a member with a variable stiffness
along its length, which Matlock's method is capable of handling. It
should be noted that the adjustment 1s to the data describing the mem-
ber being analyzed and not to the basic analytical procedure.

The moment-thrust-curvature relationship represents the correct
combination of bending moment, axial load, and curvature. Note that
equation (1) represents the initial straight-line portion of the M-P-@
curves with the slope equal to the bending stiffness. As the M-P-§
curve in Figure 10 indicates, the relationship between moment and curv-
ature is not linear after the cross section starts to yleld. At this
point the bending moment calculated from equation (1) will not agree
with the bending moment determined by the M-P-@ curve for given values
of axial load and curvature. (The procedure for interpolating the
bending moment from the M-P-@ curves is given in Appendix IV.) To
achieve agreement a '"'secant stiffness" value is substituted for the

old stiffness so that the bending moment on the M-P-@ curve equals the



24

STATIONS

L

Figure 9 Physical beam-column model

| /o= INITIAL STIFFNESS

/
| ;SECANT STIFFNESS
/N /

Figure 10 Stiffness adjustment
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product of the secant stiffness and the curvature. The procedure is
repeated for each station which is not in agreement with the M-P- 3
data, and the beam-columm then reanalyzed. The whole process is con-
tinued until all stations along the beam—column are in agreement with

the moment-thrust-~curvature relationship.

Buckling Criteria

A major concern of this study was the determination of a mathe-
matical definition for buckling. The analysis of a member, using the
recursive technique, for load values up to and beyond the buckling load
will produce a point of discontinuity at the critical load value. While
this sudden change in the sign of a deflection, as shown in Figure 11,
could possibly have been used as a test for buckling it was necessary
to have a more fundamental definition. To achieve this, the equations
used in the beam-column analysis were examined.

The two basic recursion equations in Matlock's method are:

ay Yy o tby vy gty vy tdy ity vy =f @

(Eq. 1.15, Appendix I)

and

Yi = Ay ¥ By Vi Y Gy Vi (3)
where

Ay =Dy (@83 By p +Bp) Ay +a; 4, £

By =D; ((a; By , +by) Cy 3 +dyp)

Ccy = Di (ei)

Di = —1.0/(ci + (ai Bi—2 + bi) Bi-l + ay Ci—2)
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Figure 11 Load vs., lateral deflection.



27

If equation (2) is repeated for each station 'i' along the member
and the result written in matrix form, the coefficients aj - e; make
up a stiffness matrix with a bandwidth of five. Furthermore, if the
alements below the diagonal of this stiffness matrix are driven to
zero by a Gaussian Elimination procedure, the resulting equations ure
described by equation (3). Solving equation (3) for each statiom
amounts to back substituting for calculating deflectomns. Therefore,
since Matlock's method is equivalent to a Gaussian Elimination with
back substitution the checks for stability used in classical matrix
methods may be applied.

In classical matrix analysis stability requires that the stiff-
ness matrix be positive definite (12). Mathematically this condition
exists when all terms on the diagonal of the stiffness matrix are
positive after elimination (12). Therefore, if a negative or zero
term appears as a diagonal element of the stiffness matrix after the
elimination process, the structural system is unstable or buckling has
occurred. Note that Dy 1s the negative reciprocal of the diagonal
element for each row of the stiffness matrix after elimination. There-
fore, as a diagonal term approaches zero Dy approaches infinity and 1f
a diagonal term is negative the corresponding Dy value will be positive.

Figure 12 shows the behavior of Dy as the buckling load is approached.

Itergtiﬁe Procedure for Incrementing the Load

A variable step load incrementing procedure was used to determine
the ultimate load value. In order to save computer time, a large
load increment was chosen to start the process. It was decreased by

one-half, and the member solved again if one of the following conditions
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Flgure 12 Stability criteria
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occurred:

a) instability was reached

b) the number of iterations to achieve agreement with the

M-P-f data exceeded a limit set in the program.

The process of decreasing the load increment was continued until it
became sufficiently small. At this point failure was considered to
have occurred. It should be noted that any load including axial load,
applied moment, or transverse load may be incremented to failure. A
flow chart summarizing the procedure is shown in Figure 13, Appendix

(IV) contains a detalled flow chart of the beam-column analysis.
DESIGN APPLICATIONS

The computer model used in this investigation is very flexible
and thus allows the systematic study of the change in the ultimate
strength of tubular beamcolumns caused by varying different parameters.
The program can account for the effect of a nonbilinear material stress-—
strain curve and longitudinal residual stresses in the generation of
the M-P-f@} data and consequently can calculate the resulting change
in failure load. In addition to the effect of these material imper-
fections, the changes in failure load capacity caused by varying
support and/or loading conditions may be studied. The program can
analyze beam~columns with any combination of axial and transverse
loads and discrete moments applied along the member, Supports may
consist of rollers,'fixed ends or transverse and rotational springs.
Intermediate supports and varying stiffness along the member may also

be studied.



30

‘ START >

\ -

Analyze the beam—column. Save calculated values for curv-
ature and bending moment (MCAL) for each station.

Has

Buckling
Occurred

Using the axial load and curvature values interpolate a
bending moment (Myyr) for each station (i) from the M-P-@
curves,

Yes >
V
Substitute new '"'secant Successful solution -
stiffness" values at all Increment the load !
stations not in agreement.

Too
many iterations

No

Reget the load to that used in the last
successful solution and increase it
with a smaller increment

Figure 13 Flow diagram for determination of failure load,
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The presentation of the ultimate load capacity of beam-columns
is normally accomplished by interaction diagrams which provide the
maximum combination of axial load and bending moment that can be sup-
ported for specified slenderness ratios (L/r), Although the program
is capable of developing interaction diagrams for a wide range of
slenderness ratios, end conditions and loading configurations, the
scope of the project dictated that only a few be developed. The inter-
action curves selected were for loading patterns most common in design
applications and consisted of axial load and the following end-moment
configurations:

a. Equal end moments causing single curvature (Figure 14)

b. Moment at one end only (Figure 15)

c. Equal end moments causing double curvature (Figure 16)
The loading sequence was to apply the end moment(s) first and then
increment the axial load until failure. Slenderness ratios of L/r =
40 and L/r = 120 were selected to depict the behavior of short and
long beam~columns. The M-P-f) data used in developing these interaction
curves are those presented in Figure 5.

The effect of residual stresses on the ultimate load capacity
of a beam-column was also determined. Using the M-P-f data shown in
Figure 6, corresponding interaction diagrams were generated for a
circular tube with equal end moments causing single curvature. The
resulting interaction diagrams are shown in Figure 14 and indicate
that residual stresses cause a reduction of the ultimate stremgth of
the circular tubes. This effect appears to be more prominent for the

higher values of P/Py.
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Figure 14 Interaction diagram, Fy = 35 ksi
Equal end moments - Single curvature
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Figure 16 Interaction diagram, Fy = 35 ksi
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32
T4
75
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MAzNN+ |

IF(NNaGTe40) GO TI 996

FORCL=nN.0

FIND TIE STRESS 0ON BACH ELEMEMT AND THE TOTAL FORCE
FOR THF CURRENT ASTEN VALUE

IF NBS = +1 USE ACTUAL STRESS-STRAIN DATA
IF NBS = <1 USE BILINEAK SIKESS=-STRAIN RELATIDONSHIP
TIF(NBES) 2142102

CONTINUE

DD 70 1J=]1NETOT

I=(1J+NELE2=-1)/NELEZ

0 70 KKK=14,KSKI1P

¥ = ASTRN + RSTRN(1J.KKK)

CALL INTRP(NTP¢XVALsYVAL¢X,Y)
ASTIS({IJeKKK) = ¥ = RSTHS(IJesKKK)

FORCE = FORCE + AREAE(I)*ASIRS(IJeKKK)
CONTLELE

GO TG 76

CONTINUE

DO 75 1J=1oNETOT

IT=(IJ+NELE2=-1) /NELE?

PO 74 XKK=14,KSKIP

X = ASTRN + RSETKRN(IJ4KKK]

[F(STRNY=ABS(X)) 31+31s32

ASTRS{TJGKKK) = SIGMNIFYeX) = RSTRS{]JeKKK)
GO TO 74

ASTRS (] JeKKK) X#E = ROTRS(].JeKKK)

FORCE = FQRCE + AXEAE(l)#ASiIRS{]J4KKK)
CONTINJE

CONTINJE

IF(KSKIPLTa2) FORCE=2,,0U#FORCE
DIFF=FORCE=-P

ANIFF=235(DIFF)

APz AHS(P)

IS THE FORCF EWuAL TC THE ARPPLIED AXIAL LOAD (600 =

YES,

52

-

NO)

291
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344
345
346
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48
69
56
89
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97
96
73

*
®* %
T2

LR
* * %

81

91
31

85

71

430

T=T+EFRC

TMOM=TVOM+EFRC*TDLIST (1)

CONTINUE

FORCE=C+T

C=C*10.0

1C=C

T=T®10.,0

17=T7

IF *Tv AND *C* ARL BOTH SUFFICIENTLY SMALL = ST10P
TF(IC) 96¢97,4,97

IF(IT) 71471496

IF(T) 72472473

CT==C/1

CTA=ABS(1,0=CT)

1S ABS5(C) NFEARLY EQUAL 10 ABSI(T) (71 = YESs 72 = NOQ)
IF(CTA=0.0L1) 71974812

IF NM = 1 THEN XFXC ]S NOT DeFINED
IF{NM,LT«2) GO T0O 91

IF THE TOTAL FORCE HAS CHANGED SIGN THEN THE CORRECT
SOLUTION HAS BEEN PASSEUV
IF(FORCE/XFRC) HleT71491

XD=0.5

XFRC=+CRCE

FIND NEW NEUTRAL AXIS LOCATION,
PINC=STON(DINCRXD s FORCE!

D=p+LINC

DO 85 1J=1oNETOT
IDIST(IMN=DIST(]J)=-D

CONTIKUE

GO TO 450

K2=K+2

MMY=TMOIM/MY

IF(CSK [P Te2) MMYZ2 ,OnIMDIMsMY
MTPHAL ({ 4K 2) =MMY

CANTINJE

G91
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RESIDUAL STRESS PROGRAM

DATA INPUT

Note: Numbers at left indicate card columns,

A, Cross Section and Material Properties
FORMAT (2I5,4E15.5)

1-5 Number of layers of elements.
(Max. = 5)

6-10 number of elements in 1/4 circle of one layer.

(The product of the above two numbers must not exceed 50.)

11-25 Outside diameter (in.)
26~40 Wall thickness (in.)
41~55 Modulus of elasticity (ksi).

56-70 Yield stress (ksi).

B. Date and Time of Run
FORMAT (415)
1-5 Month
6-10 Day
11-15 Year

16~20 Time (001-2400)

c. Initial Stress Values
FORMAT (3E10.3)
1-10 T1 - Tensile stress value (ksi).
11-20 C - Compressive stress value (ksi).

21-30 T2 - Tenslle stress value (ksi).

(The program does not allow the residual stress at any
element to exceed the yleld stress.)
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D. Stress-Strain Option

FORMAT (215)
1-5 Number of tabulated points on stress-strain curve.

(Enter 0 i1f previous response was -1)

Note: Data 18 now complete 1f the actual stress—strain data
is not used,
E. Stress-Strain Data
For each tabulated point on the stress-strain curve:
FORMAT (2E15.5)
1-15 Stress value (ksi).

16-30 Strain value



RESIDUAL STRESS PROGRAM

FLOW DIAGRAM

( START ’

Y

Read: NLYR, NELE, OD, WT, E, FY

Is tabular N
stress-strain data o
used?

Yes
L

Read stress-strain data,

Y

Calculate for each layer:

Average radius
Arc length of elements
Area of elements.
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Compute the distance from the
bottom of the cross section
to each element.

Locate the max. compressive stress
at the center of the cross
section,

Beginning of iteration to
determine the correct value
of T2.

Have more than Yes

20 iterations been
pexrformed?

No

( STOP >

172



Beginning of iteration to
determine the correct location
of 'C'.

Have more than
20 iterations been
performed? Y

No ( stop )

Y

Yes

Compute the net force
on the cross section.

Is the net force
nearly equal to No
0.07

Yes

Adjust the
location of 'C'

Go To 400
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Compute the net
bending moment on the
cross section.

Is the net
bending moment
nearly equal to 0,07

No
\!

Yes

Is tabular
stress~strain data
used?

‘Yes

Adjust the
value of T2.

Y

Go To 300

No

Interpolate tne strain
for each element -
SUBROUTINE IWTERP

Stop if the stress
on any element
exceeds the yield
stress.

Calculate the strain
for each element.
using Hooke's Law.

Stop 1f the stress
on any element
exceeds the yield
stress.

i . .

!

—

Print the stress and strain value for each element.

STOP
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2. X3
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LE.2 3
LXK )
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PESIDUAL STRESS PROGRAM ARNOLD L, WAGNER AUG, 1975
THE PUDRPJISE OF THIS PROGRAM 15 TD MODIFY AN ASSUMED
RESICUAL STRESS DISTRIBUTION IN ORDER TO SATISFY EQUILIBRIUM,
% Rk X MO K X K R R X R O R K K X H H R K X X R OF R X H N R #*
NO ESIDJAL STRESS VALUE MAY EXCEED THE YIELD STRESS
F o O K A R Ok K R OO X O X XK R X K W X K X X W X X X R H K »
VARIABLES
AFRC = ABSOLUTE VALUE OF FORCE
AMOM = ABSOLUTE VALUE OF XMOM
ARC - £RC DISTANCE FROM TOP JF CR0SS SECTION TO ELEMENT
ARCI(I) - ARC LENGTH OF ELEMENT IN LAYER ¢
AREAF (1) - AREA DOF ELEMENT IN LAYER ']
AVGR(I) = AVERAGE RADIUS TO LAYER *I°
C - ASSUMED MAXe COMPRESSIVE STRESS
(NOT CHANGED)

CIST(1J) - DISTANCE FROM BOTTOM OF CROSS SECTION

TO ELEMENT *1J°
E - MOSULUS OF ELASTICITY
FFRC(IJ) = FORCE IN ELEMENT *IJ'
FORCE = TOTAL FORCE ON CRJSS SECTION
FRCP - FORCE VALUE ON LAST ITERATION
FY - YIELD STRESS
TRAT - FLAG TO ALLOW THIS PROGRAM TQ BE RUN IN THE

CATCH MODE AS WELL AS TIMESHARING

N1 - MAX, NUMBER OF ITERATIONS ALLOWED TO OBTAIN

SUMMATION OF FORCES EQUAL TO ZERD
M2 =~ MAYX, NUMBER OJF ITERATIONS ALLOWED TO DBTAIN

SUMMATION OF MCMENTS EQUAL TO ZERO
MAS - +1 = ACTUAL STRESS=-STRAIN DATA USED

-1 = RILINEAR STRESS=STRAIN RELATIONSHIP
MFLE = NJMBER OF ELEMEN1S IN 1/4 CIRCLE IN ONE LAYER
NFLE2 - MUMBER OF ELEMENTS IN 172 CIRCLE IN JINE LAYER
MLYR - NUMBER OF LAYERS
NTP - “~UMBER OF TABULATED POINTS Did STRESS-STRAIN CURVE
OP - OJUTSIDE DIAMETER OF TUBE
FY - AXTAL LOAD AT FIPST YIELD

GLT
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67
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69
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RSTRM(1J) = RESIDJAL STRAIN AT ELEMENT 'IJe

PSTRS(1JY = RFSIDJAL STRESS AT ELEMENT *IJ¢

STOPM = ALLOWABLE DEVIATION +ROM ZERO MOMENT

STOPP ~ ALLOWABLE DEVIAVION FROM ZERO FORCE

STRNT -~ INTERPOLATED STKAIN VALUE

STRSX - RSTRS(IW)

Tl = ASSUMED TENSILE STRESS AT TOP OF CROSS SECTION
(NOT CHANGEL)

T2 - ASSUMED TENSILE STRESS AT BOTTOM OF CR0OSS SECTION

(CHANGED TO ACHIEVE ZFRO MQOMENT)

THETA - ANGLE FRO™M TGP OF CRDSS SECTION TO ELEMENT

TLYR = THICKNESS JF EACH LAYER

T2INC - AMOUNT OF CHANGE IN T2

WT = WALL THICKNESS OF TUBE

XD - CHANGES FROM 1 TO 0.5 AFTER CORRECT XDIST IS PASSED

XDINC - AMOUNT OF CHANGE IN XDIST

XNIST - DISTANCE FROM BOTTOM OF CROSS SECTION TO *C¢
(CHANGED TU ACHIEVE ZERO FORCE)

XID = INSIDE DIAMETER

XM = CHANGES FROM 1 TO 0.5 AFTER CORRECT T2 1S PASSED

XMOM = TOTAL MOMENT ON CROSS SECTION

XMOMP -~ XMOM VALUE OM LAST ITERATION

XMY « V¥OMENT AT FIRST YIELD

XVAL (K} « STRESS VALUE FROM STRESS=STRAIN CURVE
(40TE DIFFERENT MEANING IN MTPHI PROGRAM)

YVAL(K) < STRAIN VALUE FROM STRESS=-STRAIN CURVE
(NOTE DIFFLREMT MEANING IN MTPHI PROGRAM)

DIMENSION RSTRS(100) 4RSTRN(100) ¢DIST(100) +EFRC(100)

DIMENSION AVGR(5) yAREAE (S) 4ARCI (5)

DIMENSION XVAL(20)4YVALI20)

IRAT==]

I1RAT=]

IF(IFAT) 114999412

IREAD=1C

9.1



71
12
73
T4
75
76
17
Ig:]
796
a8d
81
82
83
84
85
86
87
88
£9
90
91
92
93
P
95
96
97
98
99
100
101
102
103
104

IWRT=6
GO TC 14
12 IREAC=2
IWRT=5
14 PFAD(IREAD100) NLYRGNELE+ODsWT4EoFY
100 FORMAT(21544E15e5)
PEAD(IREAD¢105) ID1+ID2+1D34IN%
105 FORMAT(415)
WRITE(1WRT4170)
170 FNORMAT(1H14///7/7941H DEPT, OF ENGINEERING AND APPLIED SCIENCE o/
+26H FOPTLAND STATE UNIVERSITY 4//,
+44H STRUCTJIRAL TUBE RESIDUAL STRESS=STRAIN DATA )
FRITE(IWRT9175) ID141D2+1D341D4
175 FORMAT(/46H DATE=3129¢1H/el2e1H/s12¢/96H TIME=,14)
WRITE(IWRT+185) NELE NLYR
185 FORMAT(/+6H NELE=9134/96H NLYR=412)
WRITF(TWRT+180) ODsWT4EsFY

180 FORMAT (/s 25H QUTSIDRE DIAMETER sE15.5¢5H INe o/

+ 25H WALL THICKNESS = sE154595H INe o/
+ 25H MODJLUS OF ELASTICITY = 4E15,5¢5H KSI 4/
+ 25H YIELD STRESS = +E154595H KSI )

FEAD(IREAD110) T1sCaT2
110 FORMAT(3E10.3)
WRITL(IWRT#135) T1leCyT2
135 FORMAT(/422H INITIAL STRESS VALUES 4/¢4H T1lzeE1O0e343H C=4E10a3,
+4H T2=9E10.3)
READ(IRPEAD+120) NBS.NTP
120 FORMAT(215)
IF(NFS«LT.0) GO TO 16
FEAD(IREAD$130) (XVAL(K) s YVALIK) ¢K=14NTP)
130 FORMAT(2E15.5)
16 NELE2=MNELER2
NETOT=MNLYRRNELEZ
XID=CL=2,0%¢T

LLT



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

15

10

20

35
30

C anx

PY=3,141593/4,08 (ID®OD=XID%XID) ®FY
XMY=3,141593/6460%(0D®#4,0=XIDR®4,0) %2,0/0D%FY
STOPP=0.00005%#PY

STOPM=0,001#%XxXMY

PO 10 I=1sNLYR

DO 15 J=1.NELEZ2

IJ=sJ+(I=1)%NELEZ

RSTRS(1J)=0.0

RSTRN(1UJ)=0.0

DIST(I1J)=0.0

CONTINUE

AVGR(I) =040

AREAE(I)=0,0

ARCI(I)=0.0

CONTINUE

TLYR=WT/NLYR

0N 20 I=1.NLYR
AVGR(I)=(0D=2.,0%*TLYR+TLYR) #0,5
ARCI(I)=(3,141593®%AVGR (1)) /NELE?2
AREAE(I)=ARCI(I)#TLYR

CONT INUE

DO 30 I=1.NLYR

ARC==ARCI(I) /2.0

DO 35 J=1.NELEZ2

IJ=J+ ([=1) #NELE2

ARC=ARC+ARCI(Y)

THETA=ARC/AVGR (1) :
DIST(IJ)=AVGR(I) #COS(THETA) «+AVGR(I) +TLYR/2.0¢(I=1)#TLYR
CONTINUE -

CONTINUE

XDIST=0.5%0D

N2=0

XM=1,0

T2INC=0,12T2

XDINC=0,1#2D

START OF T2 ITERATION LOOP =ax

8L1
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142
143
lLag
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

(@]

300

* %%
400

140

* % %

41

42
46

40
150
N
* % %

52

* %%
% %

53
59

CONTINUE

XD=1.0

N2=NZ+1]

IF(N2.,50T.20) GO TID 969

N1=0

SYART NF XDIST ITERATION LOOP #*xx
CONTINUE

WRITE(IANRTs140) XDIST

FORMAT (/4 *XDIST="sF10,4)

Mi=N1+1

TF(N1.GTa30) GO TO 936

FARCE=CW0

FIND STRESS AT CACH ELFMENT AND TOTAL FORCE ##=x
DO 40 TJ=1eNETOT

I=(IJ+NFLE2~-1) /NELE2
[F(OISTITJY)=XDIST) 4le4leb2

RSTRS(I M) ==(C+T2) /XDISTRDIST(IJ}+T2

GO TO 46

RETRSIII) =(C+TL) /(OD=XDISTI*(DIST(IJ)=XDIST) =C
FFRCIIJI=RSTRS(IJ) *AREAE(T)
FORCE=FORCE+EFRC(1J)

CONTINJE

WRITE(IWRT150) FORCE

FCRMAT (/+'FORCE="9F10.4)

AFRC=APS(FORCE)

IS THE TOTAL FORCE SUFFLCIENTLY SMALL 4¢ SISYES9e52=ND *xx
IF(AFRC=-STOPP) 51351452

IF N1=1 THEN FRCP HAS NOT YET BEEN DEFINED #x»
IF(N1sLT.2) GO TO 59

IF FORCE HAS CHANOJEC SIGN THEN THE CORRECT #x%
¥DIST HAS BEEN PASSED %=

IF(FCRCE/FRCFP) %3451459

XD=0- 5

FRCP=FORCE
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175
176
177
178
179
180
181
182
1813
18¢
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
2013
204
205
206
207
208

#* % %

51
* %%

50
160
* X%
* % %

62

¥* % %
* % %

63
69

3 %%

61
L3

81

XDINC=STON(XDINC® XD 4FORCE)

XDIST=XDIST+XDINC

TRY AGAIN WITH NEW XDIST #*xx

GO TG 400

CONT INUE

SUMMATION JF FORCES=0e NOW FIND MOMENT #xn
XDINC=0,05%0D

XMO"‘:G.O

D0 50 1J=14NETOT

XMOMsXVYOM+EFRC(IJ) *DIST I N

CONTINUE

WRITE(IWRT9160) XMOM

FORMAT (/s YMOMENT="*9F10a4%)

AMOM=ARS (XMOM)

IS THE MOMENT SUFFICIENTLY SMALL ee H1=YES*62=NO
IF (AMOM=STOPM) 61961462

IF N2=1 THEN XMOUMP HAS NOT YET REEN DEFINED ®x*x
IF(N24.LTe2) GO TO 69

1F XMOM HAS CHANGED SIGN THEN THE CORRECT #*xx
T? HAS BEEN PASSED x¥%=x

TFE(XMOVM/XMOMP) 63461469

yM:Oos

YMovp=XxMIM

T2INC=SIGN(T2TNCxXM ¢ XMOM)

T2=T2+T21INC

TRY AGAIN WITH NEW T2 x¥%x

¢0 TO 300

CONTINJE

EQUILIBRIUM SATISFIED eses CALCULATE STRAIN VALUES xxx
IF(NES) 81481+82

CONTINUE

DO 60 1J=14NETOI

IF(ISTRS(TJ) ,GT.FY} GO TO 996
FETIIM(TJN)=RSTRSI(TJ) /E
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209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228

60

82

10
86
200

210
Q%6

250
999

CONTINUE
GO TO 86
CONTINUE
NPD 70 [J=14METOT
IF(RSTRS{IJ) ,GTFY) GO TO 99¢&
X=RSTRSELT D
CALL INTRPINTPGAVAL sYVAL 4X,4Y)
FETRN(TJY=Y
CONTINUE
WRITE(TWRT 200}
FORMAT(//+28H RESIDUAL STRESSZSTRAIN DATA o/
+35H FLEMe NO, STRESS STRAIN )
WRITE(IWRT ¢210) {1 J4RSTRS(IJ) yRSTRNI(IJ) 4I1J=1NETOT)
FORMAT (' '41543X4s2E15.5)
GO TC 999
WRITE(IWRT ¢250)
FORMAT{/443H RESTJUAL STRESS VALUE EXCEEDS YIELD STRESS
CONTINJUE
STOP
END

)
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O D~ T WA=

% % 3t
* % %
* * %
* %
* K
*

ANANANANANA

62
61
63

70
C =nan

67
66
21
10
23
C unx

31
32

42

43

SURRCUTINE INTRP(NTP e XVALsYVALAXsY)

FOR A GIVEN STRESS VALUE (x) FIND THE CORRESPONDING
STRAIN VALUE (YY) JSING A SECOND ORDER DIVIDED
DIFFERFNCE INTERPIOLATION

IT IS ASSUMED THAT (0»0) IS THE FIRST POINT ON THE
CURVE AND THAT THE PROPERTIFES IMN TENSION AND
COMPRESSIDON ARE IDENTICAL

NIMENSTION XVAL (20)eYVAL(20)

TF(X) 61462463

Y=0.C

GO TC 999

SGN==~1.0

Xz=X

GO TO 70

SGN=1e0

CONTINUVUE

FIND THE INTERVAL CONTAINING eXv¢

[FIX<XVAL (NTP)) 66967461

Y=YVAL (NTP) #SGN

GO TC 999

CONTINUE

CO 10 J=2«NTP

IF(XVAL(J)=X) 21423423

CONTINUE

CONTINUE

[TAB=J=1

[TAB1=1TAB+1

MAKE ADJUSTMENTS IF NECESSARY
IF(X=0s5%#XVAL (ITAD) =0,5*XVAL(ITAEL)) 31432432
ITA3=1TAB=-1

CONTINUVE

JF(ITAR) 424642443

ITAB=ITAB+1

GO TO 45

I¥X=1TAZ2+2

IF(NTP~=IX) 484454945

Z81



37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

46 IX=NTP=IX
ITAB=ITAB+IX
45 CONTINUE .
C x%x CALCULATE DIVIDED DIFFERENCES
ITARL=1TAB+1]
ITA32=1TAB+2
DN11=(YVAL(ITABI)=YVAL(ITAB))
+/ (XVAL(ITABL)=XVAL{ITAB))
DD12=(YVAL(ITAB2)=YVAL (1TAB1))
+/(XVAL(ITAR2)=XVAL(ITAB]))
DL22=(0DD12=-DD11} /7 {XVAL(LITAB2) =XVAL (ITAB))
C %#%xx FIND 'Y?
Y=YVAL(ITAB) « (X=XVAL(ITAB) ) *DD11
++ (X~XVAL(ITAB) ) % (X=XVAL(ITARBL1))*DD22
Y=Y*SGN
999 PETURN

END
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