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CHAPTER I 

INTRODUCTION 

The analysis and design of structures has advanced greatly in 

recent years, due in large part to the use of digital computers. Pro­

blems requiring complex derivations for their solution may now be 

handled relatively easily using numerical methods in an iterative 

(trial and error) form. In an iteration procedure a trial solution 

is made and then checked for correctness. If the solution is not 

correct an error exists and the problem must be solved again with 

changed parameters. If the iteration is to converge, each successive 

solution must be closer to the correct solution. This process is 

continued until the error is acceptable. The procedure just described 

is referred to as the open form approach, and is commonly used by 

computer programs for the analysis of non-linear structural systems. 

The primary goal of this project was the determination of the 

ultimate load capacity of a circular steel tube loaded as a beam-column, 

i.e., a loading condition consisting of both axial load and flexure. 

Methods for calculating the combination of axial load and bending mom­

ent at failure in wide-flange members have been developed (11) and are 

currently employed in design practice. Previous investigators (4, 6, 16, 

17) have shown that tubular members exhibit structural characteristics 

markedly different than wide-flange shapes when subjected to loads 

causing stresses above the elastic range. Since a systematic technique 

to determine the ultimate strength of tubular members is so far not 



available, an investigation was launched to develop an analytic tool 

in the form of a computer program which could be used to gener ... ~e 

load displacement histories and calculate failure loads for circular 

steel tubes. 

2 

The computer model involves two separate phases of calculations, 

Figure 1. First, the moment-thrust-curvature (M-P-0) relationship 

for the member cross section is obtained. Using this as input, the 

ultimate strength of the beam-column is determined for a selected 

pattern of loading. The computer model is capable of accounting for 

the effects of residual stresses during the generation of the M-P-~ 

relationship. The inclusion of any configuration of stress-strain 

relationship may be accomplished by providing appropriate input data 

in tabular form. It should be noted that while this investigation 

includes the determination of M-P-0 data, those provided by other 

investigators may also be used. The calculation of failure loads is 

accomplished by a numerical technique which increases the load by a 

variable step incrementing procedure until no further load can be 

supported. At this point the beam-column is considered to have re­

ached failure. 

The major use of the computer model in this investigation is 

the development of curves giving combinations of axial load and end 

moments which cause failure. These curves are commonly referred to 

as interaction diagrams, Figure 2. Interaction diagrams for wide­

flange members are available and design equations based on these have 

been developed (3), however, it is generally believed that they give 

excessively conservative results when applied to tubular members. 
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PHASE I 

Determination of Moment-Thrust-Curvature 
(M-P-~)Relationships for Member Cross Section 

•I 

PHASE II 

Calculate Failure Loads for the 
Specific Beam-Column Configuration 

Figure 1 Block diagram of tne computer model 
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The economical design of tubular members is of special interest 

to engineers involved in the design of offshore facilities. CL'cular 

tubes are commonly used in offshore construction because of their 

ability to resist bending equally well in any direction. They also 

exhibit a greater flexural reserve strength beyond first yield tha·l1 

the wide-flange shape, and are not subject to lateral-torsional buck­

ling. Engineers will be limited to available design equations de­

veloped for wide-flange sections until acceptable criteria specifically 

for circular tubes is established. Information dealing with the 

overall column stability of circular tubes will provide a basis for 

the development of a design specification for such members. 

The analytical investigation was supplemented by a testing 

program which consisted of loading four model tubes to failure by an 

eccentric axial load. The results of these tests and published test 

results of other investigators were used to check the validity of the 

computer model used in this study. 

The following discussion includes a brief review of research 

related to tubular members, a documentation of both the computer model 

and the testing program, and a comparison of the analytical and exper­

imental results. 



CHAPTER II 

REVIEW OF LITERATURE 

A great deal of work has been done on the analysis of wide-

f lange members loaded as beam-columns (8,11), however there seems to 

be a scarcity of published information concerning the response of 

round steel tubes subjected to the combined effects of bending and 

axial load. Work by Ellis (5) consisting of both an analytical and 

experimental investigation has been reported. Another analytical 

investigation by Snyder and Lee (18) is available, however, the appli­

cation of the method proposed is limited to specialized beam-column 

configurations. 

Results of experimental studies include the report of tests on 

square tubes by Dwyer and Galambos (4). The major thrust of the report 

was to compare the relative strengths of the square tube and wide­

flange cross sections. Tests of circular tubes in pure bending have 

been carried out by Sherman (16,17) with the major objective being 

the determination of a limiting diameter to thickness ratio to pre­

vent local buckling. In view of the somewhat limited nature of the 

reported investigations concerning circular tubes, a computer model 

which has applicability to a wide variety of support and loading 

conditions would be useful. 

The beam-coluum analysis technique used in this investigation 

(Matlock's Recursive Technique) has been modified by previous invest-



igators to perform advanced beam-column analysis. For example, 

Mueller (15) modified the technique to handle beam-columns on non· 

linear foundations. Also, the technique was used by Matlock and 

Taylor (14) in a computer program to analyze beam-columns under move­

able loads. However, so far as can be determined, the technique has 

not been applied to the ultimate strength analysis of beam-columns. 

7 



CHAPTER III 

COMPUTER MODEL 

The initial portion of this paper documents the development 

of the computer model used to determine the ultimate load capacities 

of tubular beam-columns. Also included are design applications in 

the form of interaction diagrams, and a comparison of the analytical 

results with published test results of other investigators. 

PROBLEM DEFINITION 

The collapse of a beam-column may be classified as either elastic 

instability (no yielding at any cross section) or plastic instability 

(partial or complete yielding at some or all cross sections). While 

the determination of the elastic buckling load is normally accomp­

lished by a closed form solution technique (i.e., Euler's Equation), 

the determination of the plastic buckling load involves non-linear 

relationships and is most readily handled by an open form approach. 

The major difficulty arises from the fact that once plastic action 

starts, Hooke's Law is no longer valid. The computer model developed 

in this investigation may be used to predict the ultimate strength 

of tubular beam-columns which fail by either elastic or plastic in­

stability. 

Other factors considered in this study include residual stresses 

due to the manufacturing processes of the tube and the effect of the 



actual stress-strain relationship of the material. Local buckling 

was not investigated, however, reports of other investigators : .. ·e 

referenced to be used as a separate check. The problems of initial 

crookedness of the member and ovalization of the cross section were 

beyond the scope of this project. 

OVERVIEW 

9 

As mentioned previously, the computer model consists of two 

major components; generation of moment-thrust-curvature (M-P-0) 

relationships and determination of failure loads. The moment-thrust­

curvature relationships are a property of the member cross section 

and define, for a given strain condition, the stress distribution and 

magnitude necessary for equilibrium. The M-P-~ curves are the basic 

data from which overall column stability can be determined in that 

they define the behavior of the member in both the elastic and in­

elastic range. The M-P-0 relationships are a direct input into the 

failure load program (Figure 1). This allows M-P-0 data developed by 

other investigators to be used in calculating failure loads. Details 

of each phase of the computer model are now presented. 

MOMENT-THRUST-CURVATURE RELATIONSHIPS 

General 

The determination of the M-P-0 relationship is accomplished by 

an open-form solution technique. As noted by previous investigators 

(6), closed form solutions for determining M-P-0 relationships are 

often tedious and time consuming since several special derivations 
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must be made. Also, because of the complexity of the derivations 

involved, closed form solutions use an idealized bilinear stref_­

strain diagram and have limited ability to incorporate resiqual stress 

patterns into the analysis. An open-form solution technique to de­

termine M-P-0 relationships for circular tubes by dividing the cro~s 

section into horizontal sectors has been previously developed (6). 

However, it is believed that the method presented herein is more 

accurate and complete for element idealization, allows the invest­

igation of more general residual stress patterns, and contributes to 

the overall efficiency of the computer model. 

The open-form technique developed in this investigation divides 

the cross section of the circular tube into layers of elements dis­

tributed around the circumference as shown in Figure 3a. The number 

of layers and elements per layer are limited only by the size of the 

specified arrays in the computer program. This technique permits the 

inclusion of any configuration of material stress-strain relationship 

and residual stress distribution patterns directly into the solution. 

To maintain maximum flexibility for the user, one of two forms of 

input for the inclusion of residual stresses may be used: 

1. An assumed stress pattern consisting of a linear variation 

between three peak values (Figure 3b). 

2. Any distribution of stresses in matrix form. 

Although the assignment of any residual stress value to each 

element is possible, it is required that the final distribution be 

statically admissible by satisfying basic conditions of static equil­

ibrium. (See Appendix III for adjustment of an assumed stress pattern.) 



(a) 

Figure 3 

12.3 ksi 

(b) 

Element configuation and assumed residual stress distribution 

..... ..... 
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Analytical Procedure for Determining M-P-0 Data 

The technique used to generate the M-P-0 data uses three .ate­

gories of stress and strain; those due to residual stress, axial 

load, and bending. The loads are applied in the following order. 

First, the applicable residual stress and strain value is assigned 

to each element. A percentage of the stub-column yield load, Py, is 

then applied to the cross section. This axially stressed cross section 

is then given a value of curvature and the moment corresponding to a 

state of equilibrium is calculated. The result is a value of moment, 

thrust and curvature (M-P-0) satisfying equilibrium. The process is 

repeated with different combinations of axial load and curvature to 

obtain an adequate number of points to describe the family of M-P-0 

curves. 

The calculation of the M-P-0 relationship uses two iteration 

loops as shown in the flow chart of Figure 4. The first determines 

the correct axial strain value due to the applied percentage of Py. 

This is necessary because it is possible for the sum of the axial 

strain, P/AE, and the residual strain to exceed the yield value on 

some elements. In such cases the elemental stress available to resist 

axial load is less than that predicted by elastic theory. Since the 

residual stress distribution is an initial condition, its value can­

not be changed. Therefore, the additional force must be provided by 

other elements. It should be noted that the stress distribution and 

its magnitude are calculated by allowing the strain on all elements 

to be increased by the same amount. The resulting stresses are ob­

tained from the material stress-strain information. The second iter-



START 

Assign appropriate residual stress and strain (Er) value J 
to each element. 

Apply axial load (P) and 
calculate the strain (E ~ P/AE) 

a 

Calculate the total strain (E ·E-+E ) for each element 
t r a 

Using et and the stress-strain relationship find the 
total force on the cross section (F). 

No 
Adjust 

Assign a value of curvature 

Determine the strain on each element due to 
curvature ( Er/J ) 

Calculate the total strain for each element 

E 
a 

Using Et and the stress-strain relationship; determine the 
total force (F) and the bending moment (M) on the cross section 

No 

STOP 

Adjust the location 
of the neutral axis. 

Figure 4 Flow diagram for calculation of M-P-~ data 
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ation determines the correct location of the neutral axis given a value 

of curvature. It is initially assumed to be at the centroid Ol the 

cross section. AB mentioned earlier, with an axial load applied to 

the column section, a value of curvature is assumed; then the bending 

moment and thrust necessary to hold this state of strain are calculated. 

If the calculated thrust does not agree with the applied axial load, 

the location of the neutral axis is shifted until agreement within a 

specified tolerance is obtained. The M-P-0 data calculated by this 

procedure are normally depicted as a family of curves such as those 

in Figure 5. These curves represent the correct combination of bending 

moment, axial load and curvature for a circular tube. AB may be ob­

served, the M-P-0 data have been normalized by dividing each quantity 

by its value at first yield. Normalization is helpful in presenting 

data of this type since the data represent circular tubes in general 

rather than one specific circular tube. A family of curves for per­

centages of Py ranging from 0.0 to 1.0 make up the M-P-0 data used by 

the beam-column analysis program. 

The M-P-~ relationship shown in Figure 5 were calculated for a 

standard weight ro\Dld structural tube with a 10 inch nominal outside 

diameter (ID/OD= 0.932) without considering residual stress effects. 

The material properties were approximated by a bilinear stress-strain 

relationship with a modulus of elasticity of 30 x 103 ksi and a yield 

stress of 35 ksi. These values are the minimum specified in the 

American Society for Testing and Materials standard A53 for Grade B 

pipes of types E and S. Although the M-P-0 data presented in Figure 

5 were calculated for a particular circular tube, they may be used to 
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Figure 5 Moment-thrust-curvature relationship 
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represent the moment-thrust-curvature characteristics of all thin 

walled circular tubes with an average shape factor of 1.30. 
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It is important to note that local buckling criteria and oval­

ling effects have not been incorporated in the moment-thrust-curvature 

calculations. A separate check for local buckling should be made ior 

the specific tubular section under consideration. Suggested methods 

for determining the limiting diameter to thickness ratio (D/t) have 

been previously outlined (13, 16, 17). 

Consideration of Residual Stresses and Nonbilinear Stress-Strain 

Relationships 

As noted earlier the computer model may be used to determine 

the effect of residual stresses and nonbilinear stress-strain relation­

ships on the predicted failure load. The approach selected was to 

incorporate the particular residual stress pattern and/or stress­

strain relationship into the moment-thrust-curvature data which was 

then used in the failure load analysis. The effect on the M-P-0 

curves is an indication of what change to expect in the ultimate load 

value, i.e., M-P-0 curves which exhibit relatively higher bending 

moment capacities will result in relatively higher ultimate load values. 

Consider first the effect of residual stresses. Since no test 

data on the actual residual stress distribution in a circular tube was 

available, the stress distribution shown in Figure 3b was assumed. 

This stress distribution is the assumed result of the longitudinal 

welding of the tube. The cross section used in this comparison is the 

same as that used for the generation of the M-P-0 curves shown in 

Figure 5. In determining the moment-thrust-curvature relationship it 
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was assumed that the axis of bending passed through the weld although 

any axis orientation could have been chosen. A comparison of l1.e 

M-P-0 curves with and without the effect of the assumed residual stress 

pattern is shown in Figure 6. Notice that for a constant value of 

axial load and curvature the calculated value of bending moment is 

significantly lower for the case which used the assumed residual stress 

pattern. The relative difference is especially large at combinations 

of low curvature and high axial load. 

As developed, the computer model permits either an idealized 

bilinear stress-strain relationship or stress-strain values obtained 

from the results of coupon tests to be used in the development of the 

moment-thrust-curvature relationship. M-P-0 curves using the stress­

strain data depicted in Figure 7 are presented in Figure 8. The cross 

section considered had an outside diameter of 10.752 inches and a wall 

thickness of 0.194 inches. Note, for low strain values the bilinear 

stress-strain relationship overestimates the actual strength. As the 

strain values increase the effects of strain hardening become notice­

able as the curve representing the actual stress-strain data shows a 

greater bending moment capacity than the curve developed using the 

bilinear stress-strain relationship. 

The procedure for including the actual stress-strain data in­

volves interpolating a stress value for a given strain value from 

tabular data. The tangent modules approach was used with the inter­

polation performed by a second order divided difference. Unequally 

spaced points may be used thus permitting a better idealization in 

areas of special interest, such as the initial part of the stress-
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strain curve. Details of the interpolation procedure are given in 

Appendix IV. 

DETERMINATION OF FAILURE LOADS 

General 

21 

The determination of the ultimate load capacity of a beam-column 

is accomplished by a numerical method which increments the load until 

failure. For each value of load the beam-column is analyzed and a 

check for failure is made. Next, the bending stiffness is adjusted 

as required. The member is then reanalyzed until the adjustment is 

negligible at which time the load is increased and the process continued. 

The following are required to implement this procedure: 

a) method for analyzing beam-columns 

b) detection of yielding and appropriate adjustments 

c) mathematical definition for buckling 

d) iterative procedure for incrementing the load 

A detailed explanation of each of these follows. 

Beam Column Analysis 

The beam-column analysis employs Matlock's recursive solution 

technique (9, 14, 15). The following discussion deals only with the 

fundamental characteristics of Matlock 1s technique. A complete deriv­

ation of the recursion equations is given in Appendix I. 

Matlock's method is a general purpose elastic beam-column anal­

ysis technique. The method conveniently handles a wide variety of 

support and loading conditions, and accotmts for the P-Delta effect. 

The bending stiffness can vary along the member length in any conceivable 
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configuration. Since plastic action essentially changes the bending 

stiffness, the latter characteristic of this method allows it 1. \ be 

employed in an iterative analysis of beam-columns with stress con-

ditions above the elastic range. However, the method is limited to 

a planar problem, i.e. all loads and support reactions pass throug:1 

the vertical axis of the member. 

The method of analysis may be characterized as a finite diff-

erence approach which divides the member into a number of equal length 

segments, as shown in Figure 9. Each segment is assumed rigid with 

the bending stiffness (EI) concentrated at the joints which, hereafter, 

are referred to as stations. All distributed load and support values 

are input to the computer program as concentrated values at the sta-

tions. The solution procedure is to first calculate the transverse 

deflection at each station and then perform a finite difference 

differentiation to calculate slope and curvature. As the curvature 

values are calculated the bending moment at each station is determined 

from the equation of the deflected elastic beam: 

(1) 

where i • station number 

M = bending moment 

EI= bending stiffness 

h dXZ = 0 • curvature 

The differentiation is then continued to calculate shear and net load. 

For beam-type members the calculated net load provides a positive 

check on the solution, that is, if the calculated net load is equal 
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to the input load, then the solution is correct. However, if axial 

load is present, the P-Delta contribution to the bending moment -.,ill 

show up in the net load making it differ slightly from the input load 

(see Appendix I for a detailed explanation). 

Detection of Yielding and Appropriate Adjustments 

The method of analysis just described is an elastic solution, 

however for beam-columns of short and intermediate length there will be 

some yielding before failure. The procedure used to account for yield­

ing is to adjust the bending stiffness (EI) at all stations where 

yielding has occurred. The approach used is the "Secant Stiffness" 

method. The adjustment results in a member with a variable stiffness 

along its length, which Matlock's method is capable of handling. It 

should be noted that the adjustment is to the data describing the mem­

ber being analyzed and not to the basic analytical procedure. 

The moment-thrust-curvature relationship represents the correct 

combination of bending moment, axial load, and curvature. Note that 

equation (1) represents the initial straight-line portion of the M-P-0 

curves with the slope equal to the bending stiffness. As the M-P-0 

curve in Figure 10 indicates, the relationship between moment and curv­

ature is not linear after the cross section starts to yield. At this 

point the bending moment calculated from equation (1) will not agree 

with the bending moment determined by the M-P-0 curve for given values 

of axial load and curvature. (The procedure for interpolating the 

bending moment from the M-P-0 curves is given in Appendix IV.) To 

achieve agreement a "secant stiffness" value is substituted for the 

old stiffness so that the bending moment on the M-P-0 curve equals the 
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product of the secant stiffness and the curvature. The proaedure is 

repeated for each station which is not in agreement with the M-P-.~ 

data, and the beam-colunm then reanalyzed. The whole process is con­

tinued until all stations along the beam-column are in agreement with 

the moment-thrust-curvature relationship. 

Buckling Criteria 

A major concern of this study was the determination of a mathe­

matical definition for buckling. The analysis of a member, using the 

recursive technique, for load values up to and beyond the buckling load 

will produce a point of discontinuity at the critical load value. While 

this sudden change in the sign of a deflection, as shown in Figure 11, 

could possibly have been used as a test for buckling it was necessary 

to have a more fundamental definition. To achieve this, the equations 

used in the beam-column analysis were examined. 

The two basic recursion equations in Matlock's method are: 

ai yi-2 + bi yi-1 + ci Yi + di Yi+l + ei Yi+2 = fi (2) 

(Eq. 1.15, Appendix I) 

and 

(3) 

where 

Bi = Di ((ai Bi-2 +bi) ci-1 + di) 

Ci = Di (ei) 

Di = -1.0/(ci + (ai Bi_2 +bi) Bi-1 + ai ci-2) 
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If equation (2) is repeated for each station 'i' along the member 

and the result written in matrix form, the coefficients ai - ei make 

up a stiffness matrix with a bandwidth of five. Furthermore, if the 

elements below the diagonal of this stiffness matrix are driven to 

zero by a Gaussian Elimination procedure, the resulting equations ure 

described by equation (3). Solving equation (3) for each station 

amounts to back substituting for calculating deflectons. Therefore, 

since Matlock's method is equivalent to a Gaussian Elimination with 

back substitution the checks for stability used in classical matrix 

methods may be applied, 

In classical matrix analysis stability requires that the stiff­

ness matrix be positive definite (12). Mathematically this condition 

exists when all terms on the diagonal of the stiffness matrix are 

positive after elimination (12). Therefore, if a negative or zero 

term appears as a diagonal element of the stiffness matrix after the 

elimination process, the structural system is unstable or buckling has 

occurred. Note that Di is the negative reciprocal of the diagonal 

element for each row of the stiffness matrix after elimination. There­

fore, as a diagonal term approaches zero Di approaches infinity and if 

a diagonal term is negative the corresponding Di value will be positive. 

Figure 12 shows the behavior of Di as the buckling load is approached. 

Iterative Procedure for Incrementing the Load 

A variable step load incrementing procedure was used to. determine 

the ultimate load value. In order to save computer time, a large 

load increment was chosen to start the process. It was decreased by 

one-half, and the member solved again if one of the following conditions 
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occurred: 

a) instability ~as reached 

b) the number of iterations to achieve agreement with the 

M-P-0 data exceeded a limit set in the program. 

The process of decreasing the load increment was continued until it 

became sufficiently small. At this point failure was considered to 

have occurred. It should be noted that any load including axial load, 

applied moment, or transverse load may be incremented to failure. A 

flow chart summarizing the procedure is shown in Figure 13. Appendix 

(IV) contains a detailed flow chart of the beam-column analysis. 

DESIGN APPLICATIONS 

the computer model used in this investigation is very flexible 

and thus allows the systematic study of the change in the ultimate 

strength of tubular beam-columns caused by varying different parameters. 

The program can account for the effect of a nonbilinear material stress­

strain curve and longitudinal residual stresses in the generation of 

the M-P-0 data and consequently can calculate the resulting change 

in failure load. In addition to the effect of these material imper­

fections, the changes in failure load capacity caused by varying 

support and/or loading conditions may be studied. The program can 

analyze beam-columns with any combination of axial and transverse 

loads and discrete moments applied along the member. Supports may 

consist of rollers, fixed ends or transverse and rotational springs. 

Intermediate supports and varying stiffness along the member may also 

be studied. 
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The presentation of the ultimate load capacity of beam-columns 

is normally accomplished by interaction diagrams which providE the 

maximum combination of axial load and bending moment that can be sup­

ported for specified slenderness ratios (L/r). Although the program 

is capable of developing interaction diagrams for a wide range of 

slenderness ratios, end conditions and loading configurations, the 

scope of the project dictated that only a few be developed. The inter­

action curves selected were for loading patterns most common in design 

applications and consisted of axial load and the following end-moment 

configurations: 

a. Equal end moments causing single curvature (Figure 14) 

b. Moment at one end only (Figure 15) 

c. Equal end moments causing double curvature (Figure 16) 

The loading sequence was to apply the end moment(s) first and then 

increment the axial load until failure. Slenderness ratios of L/r • 

40 and L/r • 120 were selected to depict the behavior of short and 

long beam-columns. The M-P-0 data used in developing these interaction 

curves are those presented in Figure 5. 

The effect of residual stresses on the ultimate load capacity 

of a beam-column was also determined. Using the M-P-0 data shown in 

Figure 6, corresponding interaction diagrams were generated for a 

circular tube with equal end moments causing single curvature. The 

resulting interaction diagrams are shown in Figure 14 and indicate 

that residual stresses cause a reduction of the ultimate strength of 

the circular tubes. This effect appears to be more prominent for the 

higher values of P/Py• 
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COMPARISON WITH PUBLISHED TEST RESULTS 

The M-P-~ data represent the correct combination of bending 

moment, axial load and curvature which a given section of tube will 

sustain when subjected to a loading condition consisting of bending 

moment and thrust. As mentioned previously the first phase in cal­

culating failure loads is the generation of M-P-~ data. An orderly 
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check of the computer model should thus begin with a comparison of the 

M-P-~ data calculated and that obtained experimentally. Sherman (16) 

presents moment-curvature data developed from tests of tubes subjected 

to bending only i.e., P/Py • O. Figure 17 shows a comparison between 

Sherman's results and those predicted by the computer model presented 

in this paper. The test values lie below the analytical curve indi­

cating a lower load carrying capability which is expected since no 

attempt was made to account for residual stresses, ovalling or member 

imperfections during the generation of the calculated values. However, 

the comparison reveals that the computer model is capable of representing 

actual behavior with reasonable accuracy. To obtain an indication as 

to the reliability of the computer model used in the failure load 

calculations, a comparison was made with laboratory results by other 

investigators. Plotted with the interaction curves of Figure 18 are 

the results of beam-column tests by Ellis (5) which agree closely with 

the values predicted by the computer model assuming zero residual stress. 

A cursory review might suggest that these test results should lie 

closer to curve b of Figure 18 plotted from values calculated using 

an assumed residual stress distribution. However, it should be noted 
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that neither the orientation of the bending axis during the te~1ts with 

respect to the weld nor the nature of the residual stresses in _he 

specimens tested, were specified in reference (5). 



CHAPTER IV 

EXPERIMENTAL PROGRAM 

The remainder of this paper documents the testing of model beam­

columns. Attention is given to the experimental setup and the models 

selected. Also, each test is considered individually with a compar­

ison made between the experimental results and the load-displacement 

history predicted by the computer model. 

OVERVIEW 

The experimental program consisted of loading four model beam­

columns to failure by appling an eccentric axial load. A schematic 

of the loading patterns is shown in Figure 19. The values of Beta 

chosen were -1.0 (single curvature), O.O, and 1.0 (double curvature). 

For Beta equal to -1.0 one long column and one column of intermediate 

length were tested. One column of intermediate length was tested for 

each of the other values of Beta. 

EXPERIMENTAL SETUP 

The experimental setup is shown in Figure 20. A load frame was 

supported horizontally on rollers with the axial load applied by the 

actuator of the MI'S Electrohydraulic Testing Machine. As shown in 

Figure 21 the base of the actuator was securely bolted to the load 

frame with the other end supported on rollers. This configuration 
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may be idealized as a three-hinge condition as shown in Pigure 22. 

Adjustment rods attached to the actuator (center hinge) were us d 

during the test as necessary to maintain alignment of the three hinges. 

The eccentricity of the axial load, P, was provided by welding 

end plates to the specimens with the desired offset. Special care 

was taken to assure that the end plates were perpendicular to the 

columns. The end plates provided the connection between the specimens 

and the load frame and were held in place with high strength bolts 

(ASTM A325). 

Since the specimens were to be loaded to failure safety consider­

ations dictated that deflections rather than load be controlled during 

the tests. The specific deflection chosen was the stroke of the 

actuator which was set during the tests at 0.0005 in./sec •• The 

actuator stroke was held constant at predetermined intervals to fac­

ilitate reading the desired measurements. The test was terminated 

when an increase in stroke resulted in no increase in load. 

DESCRIPTION OF MODELS 

The models were constructed of AISI C 1018 cold drawn steel 

tubing which was selected because of the close dimensional tolerances 

maintained during its manufacture. To prevent the occurrence of local 

buckling during the tests values of D/t were chosen as outlined by 

Marshall (13). Two sizes of tubing were tested. The nominal dimen­

sions were 2 inch outside diameter, 1/4 inch wall thickness, Both 

out-of-roundness and initial crookedness were checked for each beam­

column and found to be negligible quantities when compared to the 

dimensions of the models. 
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INSTRUMENTATION 

The instrumentation was similar for each of the models tes :ed, 

the only difference being the locations along the member length at 

which measurements were taken. The measured quantities included load 

and end rotation; transverse deflections and curvature. The load 

value was read directly from the MTS control panel. Dial gages were 

used to obtain transverse deflections; end rotations were measured by 

two dial gages located on arms perpendicular to the beam-column at the 

hinge, Figure 22. Rotation is determined by dividing the dial gage 

reading by the arm length, L. Strain gages located on opposite sides of 

the tube were used to measure curvature, curvature being equal to the 

difference in the strain values divided by the outside diameter of the tube. 

STEEL PROPERTIES AND COUPON TESTS 

To provide consistency, all test specimens of a given diameter 

were cut from a single piece of tubing. This eliminated the necessity 

of testing a set of coupons for each specimen. ASTM Standard coupons 

were cut in the longitudinal direction from a section of tubing. Two 

coupons for each size of tube were tested with results as shown in 

Table 1. The yield stress indicated was determined on the basis of a 

0.2% offset. The coupons were tested on the MTS Testing Machine using 

load control with a load rate of 75 lb./sec. which corresponds to a 

stress rate of 777 psi/sec. for the coupon from the 2 inch tube and 

585 psi/sec. for the coupon from the 3 inch tube. All coupons tested 

exhibited the gradual yielding stress-strain curve typical of cold­

worked material. The average stress-strain relationship for each size 



Table 1 Results of coupon tests. 

Yield Ultimate % 
E 

Stress Stress Elongation 

2" O.D. 

fil 75.7 ksi 85.2 ksi 32,400 ksi 10.5 

fi2 73.9 ksi 85.3 ksi 28,800 ksi 11.0 

Average 74.8 ksi 85.3 ksi 30,600 ksi 10.8 

3" O.D. 

Ill 83.8 ksi 89.i ksi 34,300 ksi' 11.0 

112 85.2 ksi 91. 8 ksi 27,900 ksi 8.0 

Average 84.5 ksi 90.8 ksi 31,100 ksi 9.5 
I 
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of tube are shown in Figures 23 and 24. 

MOMENT - THRUST - CURVATURE DATA 

The moment-thrust-curvature relationship was determined for 

each size of tube with the stress-strain values as shown in Figure~ 

23 and 24 included in the calculations. No attempt was made to in­

corporate a residual stress distribution since seamless tubes are 

generally believed to have low residual stresses • .A slight difference 

was observed between the M-P-0 relationships for the two tube sizes. 

This was caused by the relative difference in Fu/Fy as indicated in the 

stress-strain relationships. Also note that stress values may exceed 

the yield value thus some bending moment capacity is realized for P/Py 

equal to 1.0. The M-P-0 relationships shown in Figures 25 and 26 were 

used by the computer model to determine the load-displacement history 

for each test. 

COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS 

Test 1T2 

The model used in test 1T2 was constructed of a 2.0 inch out­

side diameter tube. The length of the tube was 58.0 inches resulting 

in a slenderness ratio of 90.3. The loading consisted of axial load 

and equal end moments causing single curvature, Figures 27 and 28. 

The eccentricity of the axial load was 0.75 inches. 

The load was applied by slowly increasing the stroke of the 

actuator. No adjustment to the lateral reaction rods was required 

during the test. 
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Figure 27 Test 1T2 

Figure 28 Test 1T2 
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A comparison is made between the test results and the load­

displacement history predicted by the computer model in Figures "'9 

thru 31. The deflection plotted in Figure 29 and the curvature 

plotted in Figure 31 were measured at the center of the beam-column. 

The end rotation was measured at the end of the beam-column opposite 

the actuator. The results of all three measured values show a similar 

trend and agree well with the values predicted by the computer model. 

Test 1T3 

In test 1T3 a 3.0 inch outside diameter tube was loaded to fail­

ure by a combination of axial load and equal end moments causing single 

curvature. The length of the tube was 60.0 inches and the resulting 

slenderness ratio was 61.4. This is an indication that the column 

will t.mdergo considerable yielding before failure. The eccentricity 

of the axial load was 1.50 inches. 

The load was applied by programming a slow increase in the stroke 

of the actuator. As was the case with test 1T2 no adjustment of the 

lateral reaction rods was required during the test. 

Figures 32 through 34 depict a comparison of the test results 

and the corresponding values determined by the computer model. The 

deflection and curvature values shown in Figures 32 and 34 were meas­

ured at the midpoint of the beam-column. The end rotation was meas­

ured at the end opposite the actuator. The results of all three 

measured values show good agreement with the analytical values. 

Test 2T3 

The model tested in Test 2T3 was constructed from a 3.0 inch 
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outside diameter tube with a 1/4 inch wall thickness. The tube was 

60.0 inches long corresponding to a slenderness ratio of 61.4. ~he 

loading configuration consisted of axial load with bending moment 

at one end. The eccentricity of the axial load with bending moment 

at one end. The eccentricity of the axial load was 1.50 inches. 

60 

The load was applied by increasing the actuator stroke. No 

adjustment of the lateral reaction rods was required during the test. 

A comparison is made between the test results and the load-dis­

placement history predicted by the computer model in Figures 35 through 

37. The deflection plotted in Figure 35 is the maximum lateral deflec­

tion predicted by the computer model. The curvature was measured at 

the point of maximum lateral deflection and the end rotation measured 

at the end opposite the actuator. The results of all measured values 

agree well with the analytical values. 

Test 3T3 

The model used in Test 3T3 was constructed from a 3.0 inch out­

side diameter, 1/4 inch wall thickness tube. The tube was 60.0 inches 

long which corresponds to a slenderness ratio of 61.4. The loading 

was a combination of axial load and equal end moments causing double 

curvature. The eccentricity of the axial load was 1.50 inches. The 

test setup is shown in Figure 38. 

The load was applied by slowly increasing the stroke of the 

actuator. After each load increment a slight adjustment of the lateral 

reaction rods was JI\&de. However, as the failure load was approached, 

the deflected shape drifted into single curvature .• 
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Figure 36 Load vs. end rotation - Test 2T3 
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Figure 37 Load vs. curvature - Test 2T3 
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Figure 38 - Test 3T3 



65 

Figures 39 through 41 present a comparison of the test tesults 

and the load-displacement history predicted by the computet moc.,•l. 

The curvature was measured at the point of maximum lateral deflection 

and the end rotation at the end opposite the actuator. The agreement 

is good between the analytical and measured results up to just befure 

failure, however, as the beam-column drifted into single curvature, 

it rapidly lost its ability to support additional load. 

The following table is a summary of the experimental results. 

Table 2 Comparison of Predicted and Measured Ultimate 
Load Values 

Test Wall Ultimate Load Values, kips I,/r 
Number Thickness, in. Calculated Measured 

1T2 90.3 0.193 18.2 17.5 

1T3 61.4 0.257 50.3 44.2 

2T3 61.4 0.257 65.3 59.1 

3T3 61.4 0.257 85.8 74.0 

p 
_meas. 
p 
cal. 

0.96 

0.88 

0.91 

0.86 
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Figure 39 Load vs. maximum deflection - Test 3T3 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The primary purpose of this paper was to provide a basis for 

the development of design interaction curves for beam-columns made 

of circular tubes and to check the validity of the computer model by 

test results. Based on the material presented herein the following 

conclusions appear valid. 

1. The computer model described in this paper predicts 

both the load-displacement history and the ultimate 

strength of circular tubes subjected to the combined 

effects of axial force and flexure within the require­

ments of engineering accuracy. 

2. It is possible to incorporate non-bilinear stress-strain 

relationships and statically admissible residual stress 

patterns into the model. 

3. Interaction diagrams suitable for design use may be 

developed for various loading patterns. 

4. As also noted by Ellis (3), beam-columns tested in this 

program which were initially deflected in double curvature 

tended to drift into single curvature at or near failure 

load. 

However, it is apparent that there exists a need for further 

research to provide additional experimental data on the residual stress 



distribution of circular tubes as well as data pertaining to the 

ultimate strength of tubular beam-columns. 
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APPENDIX I 

MATLOCK'S RECURSIVE SOLUTION 

FOR ELASTIC BEAM-COLUMNS 

The assumptions in this method of beam-column analysis are as 

follows: 

a. Plane sections before bending remain plane after bending 

b. Hooke's Law is valid 

c. Deflections are small 

d. Loads are applied in the plane of the vertical axis of the 

member (i.e., no torsion) 

The following discussion is broken into five major areas: 

a. Derivation of the recursive solution 

b. Specifying desired deflections 

c. Specifying desired slopes 

d. Finite difference determination of slope, curvature, 

bending moment, shear and net load 

e. A check of the net load for axially loaded members 

DERIVATION OF THE RECURSIVE SOLUTION 

A beam-column subjected to a general loading and support con­

figuration is shown in Figure 42. Consider an infinitesimal increment 

of this member to be loaded and restrained as shown in Figure 43. All 

quantities in Figure 43 are positive as shown and are defined as foltows: 



~-

·1 ' 0 1 1-4 l?.3 i-2 i-1 1 1+1 1+2 1+3 1+4 •-1 • IDf-1 

Figure 42 Beam of variable stiffness subjected to general 
loading condition. 



75 

• 



76 

Symbol 

p 

M 

v 

q 

t 

r 

s 

Description 

axial load on cross-section 

bending moment on cross-section 

total shear on cross-section 

transverse load 

externally applied moment 

stiffness of spiral springs 
(rotational restraint) 

stiffness of coil springs 
(translational restraint) 

Dimension 

(F) 

(F·L) 

(F) 

(F/L) 

F·L 
L 

Angle•L 

It should be noted that q,r,t and s are considered to be uniformly dis-

tributed over each element, and the cross section of each element is 

considered constant. As will be shown later when a finite increment 

is considered, these values are taken as the average of the distribution 

which actually exists on the element. Since the element is in equili-

brium, the net moment about point A in Figure must be zero, i.e., 

~2 (dx) 2 d 
-dM + Pdy + Vdx + q ~ - s~ + rdxd~ + tdx = 0 (1.1) 

Neglecting higher order differentials and dividing this equation by dx 

results in 

:: == V + t + (r + P) * (1.2) 

Taking the derivative of Eq. (1.2) once with respect to x gives 

2 
d M = dV + L [ t + (r + P) ~] 
dx2 dx dx dx (1.3) 

When the equilibrium of the element in the vertical direction is 

considered the equation of equilibrium of vertical forces on the element 

is 
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V + qdx - sydx - V - dV = 0 (1.4) 

from which it is seen that dV -= 
dx q - sy 

Therefore, 

d
2
M d ~ 

dx2 = q - sy + dx [t + (r + P) dx] (1.5) 

Expressing the left side of Eq. (1.5) in finite difference form 

gives the following: 

d2M 
dx2 = 

Mi-1 - 2Mi + Mi+l 

h2 
(1.6) 

where his the.length of the finite increment and the subscript i is the 

number designation of a particular finite increment. (Note that the 

beam shown in Figure 42 is divided into m finite increments). In this 

derivation all increments are considered to have the same length h. 

Also, the number of a particular increment, i, will hereafter be referred 

to as the station or station number of the increment. 

From elementary strength of materials comes the well known di-

fferential equation of the deflected elastic beam 

2 
M=FU dXZ (1. 7) 

d2 
where F is the flexural stiffness (EI) of the beam and dx~ is the beam 

curvature. 

Assuming F is constant through the length of increment i, the 

finite difference expression for Eq. (1.7) is 

yi-1 - 2Yi + Yi+l 
Mi = Fi [ 2 J 

h 
(1. 8) 

Substituting Eq. (1.8) into Eq. (1.6) and collecting terms results in: 
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(1.9) 

The above equation represents the left side of Eq. (1.5) in finite 

difference form. 

Now consider the right side of Eq. (1.5) which is rewritten for 

convenience. 

d.M2 d dv 
dx2 == q - sy + dx [ t + (r + P)~] 

First, considering the differential inside the brackets: 

-y + y 
(r + P)~ == (r + P)( i-12h i+l) (1.10) 

Now writing the whole right side of Eq. (1.5) in finite difference form: 

(1.11) 

Removing a factor of l/h4 and collecting terms gives the result: 

2 h3
t h3

t h2
r h

2
P 

dM 1 [h4 i + i+l i-1 + ( i-1 + i-1) + 
dxZ - il4 q 2 2 4 4 yi-2 

2 
4 h ri+l 

(-h Si - 4 

2 
h pi+l 

4 

(1.12) 

Eq. (1.12) represents the right side of Eq. (1.5) in finite difference 

form. 

Before writing the entire Eq. (1.5) in finite difference form the 

following substitutions will be made: 
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PHi = h/4(Ri+ hPi) 

Ri = hri 

4 
Si = h Si (1.13) 

Qi 
4 = h qi 

Ti = h3/2 ti 

The entire Eq. (1.5) may now be rewritten with all terms having a 

deflection coefficient on the left: 

The above equation is commonly written in the form 

where 

= f. 
1 

(1.14) 

(1.15) 

(1.16) 

The coefficients ai - ei make up a stiffness matrix with a band­

width of five and the coefficients f i make up the load matrix. Note 

that the axial load term appe~rs in coefficients a, c and e. It is inter-
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esting to observe that the problem of instability may be detect1d by 

an examination of the stiffness matrix and axial load is the only 

applied load that can cause elastic instability in an otherwise stable 

structure. 

Assume that the deflection at a given station can be expressed 

as a linear function of the deflections at the two following stations, 

i.e., 

and 

where A, B and C are constants to be determined. 

Substituting Eqs. 1.17 and 1.18 into Eq. 1.15 yields 

where 

in which 

Yi =Ai+ Biyi+l + Ciyi+2 

Ai= Di(EiAi-1 + ai Ai-2 - fi) 

Bi= Di(EiCi-1 +di) 

Ci= Di(ei) 

Di= l/(Ci + EiBi-1 + ai ci-2) 

Ei = ai Bi-2 + bi 

(1.17) 

(l.18) 

(1.19) 

(1.20) 

It is therefore seen that the assumption of Eqs. 1.17 and 1.18 is valid. 

If Eqs. 1.16 are substituted into Eqs. 1.20 the following equations 

result: 



where 

Bi= Di(EiCi-1 - 2Fi+l - 2Fi) 

Ci= Di(Fi+l - PHi+l) 

Gi = Fi-1 - PHi-1 

Ei = GiBi-2 - 2(Fi-l + Fi) 
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(1.21) 

Di = -1/(Fi-l + 4Fi + Fi+l + Si + PHi+l + EiBi-1 + Gi Ci-2) 

Hence it is seen from Eqs. 1.21 that Ai, Bi, and Ci are determined 

as functions of these same three constants at the two preceeding stations 

in addition to known loads and restraints. Also, the only unknowns 

needed to calculate the coefficients Ai' Bi and Ci at all beam stations 

are the values of these coefficients at stations -1 and -2. From 

boundary conditions (Figure 42) it is seen that stations -1 and -2 do 

not exist on the beam itself. However, if one considers the beam to 

extend beyond the end (station zero) but to have no stiffness and no 

loads or restraints, the coefficients can be calculated by beginning 

at station -1 and proceeding down the beam to station m 1. Station -1 

was chosen as a starting point because it has the quality that nothing 

before it affects the beam. This can be seen by considering Eq. 1.2 

Likewise, nothing beyond station m 1 affects the beam; thus it is the 

last station at which A, B and C are calculated. 

Once all of the coefficients, Ai, Bi and Ci are determined, de­

flections can be calculated by simply substituting into Eq. 1.19, 

starting at station m 1 and continuing along the beam to station -1. 



82 

SPECIFYING DESIRED DEFLECTIONS 

Usually in beam analysis the deflection is known at one or more 

points along the beam. For example, one knows that the deflection at 

each end of a simple beam is zero, or perhaps one knows the settlement 

of one or more supports of a continuous beam. Known deflections such 

as these must be introduced into the recursive solution. 

The introduction of this known information into the recursive 

solution is relatively easy. If it is desired to specify the deflection 

at some point on the beam, say at station i, one needs only to set A' 
i 

equal to the desired deflection and Bi and Cf equal to zero.* The 

reason for setting the coefficients equal to these values becomes 

obvious upon considering Eq. 1.19. Note that the coefficients must be 
. 

set at the special values before one proceeds to calculate the coefficients 

for the following stations because the coefficients at the following 

stations depend on those preceeding. Hence it is not correct to merely 

substitute the desired set of coefficients at the particular station after 

all coefficients for the beam have been calculated. 

SPECIFYING DESIRED SLOPES 

Sometimes it is desired to specify a particular slope at one or 

more points along a beam; such a case is the fixed-end beam. As was 

done in specifying deflections, slopes can also be specified by proper 

adjustment of the coefficients A, B and C. However the operations of 

setting a slope are somewhat more involved as will be seen. 

*Primes are used to designate specially determined coefficients. 



83 

A slope is set at a given station, say station i, by prov: iing 

at that station the necessary external moment to resist the effor•3 of 

other beam loads to change the slope. The necessary external moment, 

which will in general be unknown, is applied to the beam by means of 

a force Z acting at stations i-1 and i+l as shown in Figure 

.~ 
z 

z 

~ 4 h h 

i-1 i ttl 

Figure 44 ~~~ acting to set the slope at station i 

Clearly then, the problem is to establish the adjusted coefficients 

A, B and C which include the effect of the 2hZ couple. To do this 

consider the finite difference expression for the slope, e, at station 

i, i.e., 

Thus the necessary coefficients at station i-1 are 

A' = 2h0i i-1 

B' • 0 i-1 

Now let it be desired to find the magnitude of the force z. 

(1.22) 

Assume that A, B and C have been calculated for stations i and i+l in 

the ordinary manner after the coefficients have been properly adjusted 
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at station i-1. Notice in Eqs. 1.16 that the only equation whic has 

a transverse load term is 

Also, the term fi appears in Eqs. 1.20 only in the equation 

In light of these two equations it is seen that a load Z may be intro-

duced at station i-1 by combining its effect with the ordinarily cal-

culated Ai_1 . Thus, 

(1.24) 

Substituting Eq. 1.23 for yi-l into Eq. 1.24 and solving for Z gives 

(1.25) 

In the same manner the Eq. 1.24 was obtained, the load Z can be 

applied at station i-1 (as indicated in Figure ) to get the equation 

(1. 26) 

Substituting Eq. 1.19 for yi into Eq. 1.25 and substituting that result 

into Eq. 1.26 gives 

(1. 27) 

where 
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8r+l = 

Al+l' Bi+l and Cl+l should now be substituted for the originally 

calculated Ai+l' Bi+l and Ci+l and the coefficient calculations contin-

ued in a normal manner on down the beam. 

It should be specifically pointed out that a deflection cannot 

be specified at a station adjacent to a station at which the slope has 

been specified. Also, there must be at least two stations between 

stations at which it is desired to specify the slope. 

FINITE DIFFERENCE DETERMINATION OF SLOPE, CURVATURE, MOMENT, SHEAR AND LOAD 

Once the deflected shape of the loaded beam has been determined it 

is easy to determine the slope, curvature, moment, shear and transverse 

load at any desired station by using finite difference techniques. 

Solving for these quantities requires only the substitution of the pre-

viously computed beam deflections into finite difference expressions 

of well known differential equations. These differential equations, 

which relate beam properties and loads, and their finite difference 

counterparts are listed below. 

Slope: 9 = ~ 
dx 
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2 yi-1 - Zyi + Yi+l 
~=ii ~ = Curvature: 

dx2 i h2 

2 y - Zy i + Yi+l 
Moment: M= FU Mi = F [ i-1 2 ] 

dx2 i h 

V' dM V' 
-Mi-1 + Mi+l 

Shear: =- = 
dx i 2h 

w' 
d2M 

w! = 
Mi-1 - 2Mi + Mi+l 

Load: =--
h2 dx2 1 

It has been found more convenient to work with the concentrated 

load 

W' = hw' 
i i 

rather than the uniform load, wt. Therefore only Wi will be considered 

hereafter. 

NET LOAD CHECK 

The procedure used by the recursive technique is to first calcu-

late the deflection at each station. With the deflection at each 

station known a finite difference differentiation is performed to de-

termine the slope and curvature at each station. The bending moment 

at a given station is obtained by the product of the curvature and 

flexural stiffness at that station. The differentiation is then con-

tinued to determine_saear and net load. This procedure creates a unique 

situation in which the net load calculated from the deflections may be 

compared with the load input. If the two load values agree then the 

solution must be correct. 
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In pure flexure the comparison is direct, however when axial load 

is present a P-Delta contribution to the bending moment is incl\ ~ed 

in the net load calculated. The relationship used to calculate bending 

moment from curvature does not consider axial load, therefore the net 

load does not agree with the transverse load input. To demonstrate 

this partial results of a problem are shown in Figures 45 and 46. 

Figure 47 shows how the net load may be determined if the effect of 

axial load is omitted. Therefore, the net load is a combination of 

the axial load contribution to bending moment and the transverse load 

input. 
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BMCOL CHECK••••••P••240 

... 

TABLE 1. CONTROL DATA. 

NUM INCREMENTS M • 40 
INCREMENT LGTH' H • O•SOOE 00 
NUM CARDS TABLE 2 = 4 
NUM CARDS TABLE 3 • 2 
NUM CARDS.TABLE 4 • 0 

TABLE 2• DATA ADDED THRU SPECIFIED INTERVAL 

STA THRU F . Q s 

... 

0 ~. 0 O·SOOE 04 o. O• 
1 

40 
20 

39 o··tOOE OS 0· o •. • • 

400•500E 04 o. o. 
20 o. O•lOOE•Ol o. 

TABLE 3• SPECIFIED DEFLECTIONS 
_,,,,.; 

STA . Y. SPEC• . 
0 o. 

40 0· 

' . . 
TABLE. 4• SPECifI"ED SLOPE VALUES. 

STA DY l'DX SPEC• . 

T 
O• 
O· 
O· 
0· . 

R .. 
0 •. · 
0!" 
O• 
o. 

" . 

Figure 45 Example problem - net load check 
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·O·l20E 
-0•240E 
-O•l20E 
, O• 

03 
03· 
03 

·' 

00 
00 



TABLE 5• RESULTS 

STA x. . . DEFL . MOM.ENT / SHEAR LOAD 
-1 -0·5 •0•4576867E•03 0· -0•2742007E·OI ·0•54S4014E•Ol / 0 o. . o. -0•2742007E•01 -0·2249845E-02 •O•l141800E 00 

l. ' 0·5 0·4563157E-03 -0·1119301E 00 0.'2267247E-01 ·0•5333472E-01 
2 1.0 0•9096332E-03 ·0·2231076E 00 -0·4668473£-02 0 •267 3281 E-02 
3 1·5 o·.1. 35777 3E-02 -0·3329483E oo. -0·4673470E-O~ 0·3989396E-02 
4 2·0 0•1797389E-02 -0·4407944E 00 -0·4680423£-02 0•5281611E-02 

·s 2·? o·. 222.598 5E-O 2 -0·5459997£ 00 -0•4689291E-02 . 0· 6542183£-02 
6 3·0 0•2640931E-02 -0·6479339E 00 •0•4700020E-02 0 • 77 63561 E-02 · 
7 3.5 . 0·3039679£-02 -o.74's9B63E 00 -0·4712547£-0·2 .0 • 893842fSE-.02 
8· .q.o 0·3419777£-02 -0·8395695E 00 -0·4726795£-02 ·o • 1005974.E-O 1 
9 4.5 0•3776886E-02 •0•9281228E 00 -0·4742681E-02 0•1112079E-01 

lD 510 C·~ll!J122I:;-Q2 -Q·101lll2f; IH -g. ~2fHl l !J'1J;;-Q2 Q• Uli,l~~~-01 
11 5.5 Oe4425420E-02 -O•l088051E 01 -0·4778972E-02 0·1303706E-01 
12 . 6·0 O• 470881t7E-02 -0• l l 58Lt68E 01 •O•lt799160E-02 O• l 388079E-OI 
.13 6·5 0•4963312E-02 -0·1221944E 01 -0·4820552E-02 0•1464137E-01 
14 7.(j O. 51872.28E-02 -O•l278100E 01 -0·4843019E-02 Oel531423E-01 
1.5 7,.5 0•5379192£-02 -0·1326599E 01 •0•4866426E-02 O• 1589534E-01 
16 8·0 ()•5537991E-02 -O·l367149E 01 -0·4890633E-02 0 • 1 6381 22E-01 
17 8·5 .0•5662612E-02 -0·1399510E 01 -0·4915496E-02 0• 1676896E-O1 
18 9.0 0•57~2244E-02 ·0·1423486E 01 -0·4940865E-02 0 • l 70.5624E...;01 

. 19 . 9·.5 Oe.5806.289E-02 ·-0· 1438933E 01 -o ·4966588£•02: 0 •I 724134E-01 
20 · 10·0 0 •5824361 E-02 · -0 • l 44'57.60£ 01 0·3564721£-15 0•2730816E-01 
21 -.1 O •S 0•5806289E-02 -0•143S933E 01 o ·49665s8s-·02 0 • 1724134 E-0 l 
22. :11' ~.o 0~57S224~E~02 •0·1423486E 01 0•4940865&-02 . 0· 1705624?:•01 
23 11 ·5 : 0•566~612E~02 -o~1J~9510E 01 o.491s496E-oa. 0• 1676tS96E•01 
Rll 12.n n.5~37991F.•na -n.1a~1149F. 01 Oe4890633£.;.02 · 0· 1638122E-01 

Figure 46 Example problem - net load check 
a> 

"° 



STA. 9 STA. 10 STA. 11 

A+ B = 0.0121164 

Figure 47 Calculation of net load 



APPENDIX II 

INTERPOLATION ON THE MOMENT-THRUST­

CURVATURE DATA 

It is necessary for the beam-column analysis program to have the 

ability to determine the bending moment from the moment-thrust-curv­

ature data for any combination of axial load and curvature. The most 

straightforward way to accomplish this was to interpolate between tab­

ulated values on the M-P-0 data. A divided difference interpolation 

as described by Hildebrand (10) was selected because it easily allows 

the use of unevenly spaced points. Orders of interpolation from first 

order to fourth order were investigated to determine which was the 

most efficient. The M-P-~ curve used in the investigation was that 

for a solid rectangular cross section for which an exact solution is 

available (2). The results showed that the linear interpolation had 

large errors in the sharply curved portion of the M-~ curve (i.e., 

~10y between 1.0 and 2.0). Interpolations of third and fourth order 

had larger errors in the initial part of the M-0 curve (i.e., ~l~y 

less than 1.0). This error was developed because the number of points 

required for the higher order of interpolation dictated that points 

from the curved portion of the curve be used when interpolating on 

the straight line portion. The second·order interpolation gave sat­

isfactol'Y results over all portions of the M-0 curve and was there­

fore selected. 
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The interpolation procedure uses two values (axial load and 

curvature) to determine a third value (bending moment). A thr. ~­

dimensional interpolation was required to have the ability to deter­

mine bending moment for any combination of axial load and curvature, 

Figure 48. The procedure used was to first select three curvature 

ratios and three axial load ratios to be used in the interpolation. 

Next, a bending moment value corresponding to the given curvature 

value was determined for each P/Py curve (points a, b and c, Figure 

48). Finally these bending moment values were used to interpolate 

between the P/Py curves to determine the bending moment value corres­

ponding to the given axial load ratio (point d Figure 48). The 

ability to interpolate anywhere on the M-P-~ Data, rather than follow 

one P/Py curve, was especially useful in the analysis of the model 

beam-columns to be tested, since the loading procedure was to incre­

ment an eccentric axial load. 
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Figure 48 Interpolation on the M-P-~ data. 



APPENDIX III 

CONSIDERATION OF RESIDUAL STRESS 

In the manufacture of fabricated structural tubing a common 

procedure is to roll a flat plate into a cylindrical can and then weld 

the longitudinal seam. The residual stresses considered here are 

caused by the welding of the seam. At this time there is no exper­

imental data available on the residual stress developed by longitud­

inal welding, however, some ideas on a possible residual stress dis­

tribution have been expressed (13). A linear idealization of the 

residual stress distribution over the cross section is shown in Figure 

50. 

Since there are no applied loads the residual stresses must 

satisfy equilibrium (i.e., both the net force and the net moment on 

the cross section must be zero.). This is not a trivial problem first 

due to the circular cross section involved and second because the data 

must be in the form of a stress and strain value for each element. 

Therefore, a computer program was developed to adjust the assumed 

residual stress distribution shown in Figure 49 such that equilibrium 

would be satisfied. 

The procedure used in the computer program is as follows. First 

the location of the maximum compressive stress 'C' is adjusted to 

achieve zero net force. Then, if rotational equilibrium is not satis-
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fied, the value of 'T2' is changed to achieve zero net moment. A 

new value of 'T2' requires a new location for 'C', etc. The pl . cess 

is continued tmtil both translational and rotational equilibrium are 

satisfied. 



APPENDIX IV 

COMPUTER PROGRAM DOCUMENTATION 



BEAM-COLUMN ANALYSIS PROGRAM 

DATA INPUT 

Note: Numbers at left indicate card columns. 

Two blank cards will stop program. 

A. Control Card (Omit for batch processing) 

FORMAT (IS) 

1-5 IWRTl: 
+15 • Results for each station will be saved in 

file "15". 

-15 • Results for each station will not be saved. 

B. Title of Problem 

FORMAT (80H ) 

i-ao Problem Title. 

C. Control Data 

FORMAT (4IS,El0.3) 

1-5 Number of cards in table 2. 

6-10 Number of cards in table 3. 

11-15 Number of cards in table 4. 

16-20 Number of beam-column. increments. 

21-30 Increment length. 

D. Data Added Through Specified Intervals 

FORMAT (2IS,6El0,3,I5) 

1-5 Station 

6-10 Through 

11-20 Flexural stiffness (EI) 

98 
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21-30 Transverse load 

31-40 Transverse spring stiffness 

41-50 Applied moment 

51-60 Rotational spring stiffness 

61-70 Axial load 

71-75 Stiffness code 

E. Specified Deflections 

FORMAT (215,6El0.3.I5) 

1-5 Station 

10 Enter 0 

11-20 Specified deflection 

F. Specified Slope Values 

FORMAT (215,6El0.3,I5) 

1-5 Station 

10 Enter 0 

11-20 Specified slope value 

G. Control Card 

FORMAT (El0.3) 

1-10 +10.0 • Elastic solution. 

-10.0 a Moment-Thrust-Curvature Data required. 

H. Moment-Thrust-Curvature Data 
(Omit if the previous entry was +10.0) 

1. Control Card 

FORMAT (15) 

1-5 Number of sets of M-P-0 Data 
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2. Date and time of M-P-~ Data calculation. 

FOBMAT (415) 

1-5 Month 

6-10 Day 

11-15 Year 

16-20 TIME 

3. Values of First Yield 

FORMAT ( 3El5 • 6) 

1-15 Axial load 

16-30 Curvature 

31-45 Bending Moment 

4. Control Data 

FORMAT (215) 

1-5 Number of axial load (P /Py) values. 

6-10 Number of curvature ('/J/~) values. 

5. P /Py values • 

FORMAT (6El0.3,l, 6El0 .3) 

1-10 P/Py (1) 

11-20 P/Py (2) 

21-30 etc. 

31-40 

41-50 

51-60 



6. ~/~ and M/My values. (Do for each ~/~y value.) 

FORMAT (7El0.4, 6El0.4) 

1-10 ~/fly 

11-20 M/My for P/Py (1) 

21-30 M/My for P/Py (2) 

31-40 etc. 

41-50 

51-60 

61-70 

Return to item 2 and repeat for each set of 
moment-thrust-curvature data. 

I. Load Incrementing Data 

FORMAT (3El0. 3) 

1-10 Eccentricity of axial load 

11-20 Ratio of end moments 

21-30 Load increment. 

J. Results to be Printed at Terminal 
(Omit for batch processing) 

1. Control Card 

FORMAT (15) 

1-5 Results for how many stations at terminal? 

2. Stations for which results are desired. 

FORMAT (1015) 

1-5 List station numbers. 
(more than one card may be used.) 

6-10 

11-15 

etc. 
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FLOW DIAGRAM - MAIN 

START 

Read member properties; loading and 

support configuration - SUBROUTINE INPUT 1 

Is the number 
of stations (M) greater 

than zero? 

Yes 

Will this solution 
use M-P-'6 Data? 

Yes 

Is this the 
first problem? 

Yes 

No 

STOP 

No 

Go To 40 

No 

Go To 40 

102 



Read Moment - Thrust - Curvature Data -
SUBROUTINE INPUT 2 

Calculate divided differences -
SUBROUTINE DDT 

Read Ecc. BETA, XINCR 

Have more than 30 
laod values been tried? 

No 

Yes 

103 

STOP 



Has the number of iterations for 
this load value exceeded so? 

Analyze the beam-column -
SUBROUTINE BMCOL 

No 

Go To 60 

Has buckling occured? 

First solution 
for this problem? 

No 

Elastic solution ? 

No 

Write current 
stiffness values 

Yes 

Yes 

Go To 998 

Yes 

Go To 55 

104 



Yes 
First Iteration? 

No 

Go To 55 

Reset stiffness values to those 
used in the last successful solution. 

Go To 55 

Elestic solution? 

No 

Check this solution with the 
M-P-~ Data. 
SUBROUTINE SOLCHK 

Is this solution 
correct? 

Yes 

Yes 

Go To 70 

No 

Go To 500 

105 



Save the stiffness values 
for this solution. 

Print results for this load value -
SUBROUTINE OUTPUT 

Increment the load -
SUBROUTINE LDING 

Has failure occurred? 

Yes 

Proceed to the next 
problem - Go To l.,5 

106 

No 

Go To 600 
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Write "Instability on First Run" 

Go To 15 



FLOW DIAGRAM - SUBROUTINE INPUT 1 

START 

Read: Problem title, NCT2, 
NCT3, NCT4, M, H 

Is M greater 
than zero? 

Yes 

Read member stiffness, 

No 

load and support information. 

Calculate the stiffness, load 
and support terms to be used 
in the recursive solution. 

108 

Go To 999 



Read specified deflections 
and specified slopes 

RETURN 

109 



FLOW DIAGRAM - SUBROUIINE INPUT 2 

START 

Read NEI 

Read the following for each 
set of M-P-~ Data: 

Date and time of 
M-P-~ calculation 

Py, ~Y and My 

Number of P/Py curves 

Number of 0/0y values 

M-P-- Data 

RETURN 
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FLOW DIAGRAM - SUBROUTINE DDT 

START 

Do 10 for each EI value 

Do 15 for each axial load ratio 

Do 20 for first and second 
order interpolation 

Do 25 for each curvature ratio 

Calculate divided differences 

RETURN 

111 



FLOW DIAGRAM - SUBROtrl'INE BMCOL 

START J 

Do 50 for each station (J) 

Calculate GJ, EJ and DJ 
(Gi,, Ei and Di, Eg. 1.21 Appendix I) 

Is DJ positive? No 

Yes 

This is a bad run (i.e. the 
critical load has been passed) 
if this station is not affected 
by specified slopes or deflections. 

112 



Calculate C(J), B(l) and A(J) 
(Eq. 1.21 Appendix I) 

Any specified 
deflections 

Yes 

Is the deflection 
at this station 
specified? 

Yes 

No 

Adjust A(J), B(J) and C(J), 
The check for buckling is 
not to be considered at 
this sta tion. 
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Any specified 
slopes? 

Yes 

Is the slope at 
the next station 

specified? 

Yes 

Adjust A(J), B(J) and C(J). 
The check for buckling is 
not to be considered at 
this station. 

Go To 15 

Was the slope at 
the previous station 

specified? 

Yes 

114 

No 

Go To 15 

No 

No 

Go To 15 



Calculate "D - Revised" 

Is "D - Revised" 
Negative? 

No 

Adjust A(J) 1 B(J) & C(J) 

Is this a 
bad nm? 

No 

Calculate the deflection 
at each station. 

Calculate the curvature 
and bending moment 
at each station. 

RETURN 

Yes 

This is a 
bad run 

RETURN 

Yes 

RETURN 

115 
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FLOW DIAGRAM - SUBROtrrINE SOLCHK 

c START 

, 

Double the bending 
moment and axial load 
values at the end stations 

, 

Do 50 for each station. 

, 

Calculate "''1rl and P/Py 

Is 0/'/Jy greater than 
No the largest 0/r/Jy value in the 

M-P-" Data? 

Yes , 

' 
Set 0/r/Jy equal to the largest 
"/'/Jy value in the M-P-0 Data. 

t 

, , 



Select three P/Py curves and 
three ~/~y values to be 
used in the interpolation • 

. 

For each P/Py curve interpolate 
a bending·moment value 
corresponding to the given curvature. 

'. 

Using the three bending moment 
values just determined, interpolate 
the bending moment corresponding 
to the given axial load. 
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Does the interpolated 
bending moment agree with 

the calculated bending 
moment? 

No 

Adjust the flexural 
stiffness at this 
station. 

RETURN 

118 

Yes 



FLOW DIAGRAM - SUBROUTINE OUTPUT 

START 

Write the deflection, 
slope, bending moment, 
shear, net load, curvature, 
flexural stiffness and 
axial load at each station. 

RETURN 

119 



Yes 

Go To 60 

Yes 

Go To 60 

FLOW DIAGRAM - SUBROUTINE LDINC 

START 

Was the previous 
run a "Bad Run"? 

Yes 

Is the load 
increment approximately 

equal to zero? 

No 

Decrease the load. 

Go To 50 

Is the load 
increment approximately 

equal to zero? 

No 

120 

No 
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Increase the load. 

RETURN 

The member has failed. 

RETURN 



1 DI MENS IO~ FC207),FTEMPC207Jt0(207)tSC207),TC207),PHC207) 
2 DIMENSION PC207>,ISTAYC15>tYSPC15>tISTADC15JtDYSPC15) 
3 DJMENSIO"t A(207) tBC207J tCC207J 
4 DIMENSION Y (207> tBM (207> tPHI (20 7) 

5 DIMENSION ~p ( 1) tNPHI ( l> tPY <l) tPHIY ( 1) tB~Y ( U 
6 DIMENSION JSTAClO) 
7 REAL MTPHIC25t3Btl) 
R INTEGER FCODEC207> 
9 DOUBLE PqECISION A,P,c,F,FTEMP,OtStTtPHtBM, 

10 +~MPtBM~•DB~•PHltYtDY•D2RMY 
11 IBATCH=-1 
12 IBATCH=l 
13 IPROB=O 
14 IFCIBATOO llt999tl2 
15 ll IREAD=lO 
16 IWRITE=6 
17 READCIREAD•l40> I wRT 1 
18 140 FOR"1ATCl5) 
19 GO TO 15 
20 12 IREAD=2 
21 IWRITE=5 
22 IWRTl=IWRITE 
23 15 CONTJNJE 
24 NRUt-4=0 
25 IFAIL=l 
26 BR2=1•0 
27 AR:l.O 
28 CALL INPUTlCHtMtF•Q•StTtP~tA•BtCtMP5tNCT3tNCT4t 
29 +I5TAYtYSP,JSTADtDYSP,P,IREADtJWRITEtFCODE> 
30 IF C ~ > 999,999,30 
31 30 MP3=M+3 
32 MP4=M+4 
33 JPROB=IP~OB+l 
34 RFAD<IREAD•lOO> ELA ST t-' 

35 100 FOR\1AT<El0e3) N 
N 



36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

IFCELAST.GT.o.o> GO TO 40 
IF<IPRJB.GTel) GO TO 40 
CALL INPJT2<NEltNPtNPHl•PHIYtPYtBMYtMTPHI• 

+IREADtlWRITE> 
CALL DDTCNEI,NPtNPHitMTPHI> 

40 REA)(JQEADtllO> ECCtBETAtXINCR 
110 FOR~AT<3El0e3> 

IF<IBATCH.GT.o> GO TO 600 
RFAD<IREADtlZO) NSTA 

120 FOR..,AT(15> 
PEAD<P<EADtl30> (JSTA(I> •l=l•"lSTA> 

130 f~R\tAT(lOJ5> 
600 NIT=O 

NRU~=NRU~+l 
IF<~RUN.GTelOO) GO TO 999 

500 NIT=NIT+l 
IF<'iIT-50> 75t75t76 

76 ER2=-l•O 
WRITE<IwRITE,200) 

200 FOR~AT<lHl•' NUMBER OF ITERATIONS EXCEEDS 50'> 
WRITE<IWQJTE,204) 

204 FOR~AT<I•' STA •.sx.•EI'> 
WRITE(JWRITE,205) <JtF (..J) tJ=4t"1P4> 

205 FOR~AT<lH tl5tE15·5> 
GO TO 50 

75 CALL BMCOL(H,Mtft~tStTtPHtAt8tCt~P5.N(T3·~CT4t 
+I5TAYtYSPtlSTADtDYSP,y,BM•P~I,BR2> 

IF<BR2> 50•999t60 
50 IF(~RUNeEOel) GO TO 998 

IF<ELAST.GT.o.o> GO TO 55 
IF<~IT.EO.l> GO TJ 55 
DO AO J=4,"1P4 
F(J):fTE\tP(J) 

80 CONTINUE 



70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
Bl 
82 
83 
84 
A5 
86 
87 
88 
89 
90 

GO TO 55 
60 CONTINUE 

IF(ELAST.GT.o.o> GO TO 70 
CALL SOLCH<CNP•NPHI,BMYtPYtPHJY,FCODEt 
+~,9~,PtP~l•MTPHI,ICORtNEltF> 

IF<ICOR> 500,A5•500 
85 CONTINUE 

DO 90 J:4,\1P4 
FTE"1P(J):f(J) 

90 CONTINUE 
10 CALL OUTPUT<H,MP5•JSTAtYtBMtPHJtftTtP~tPtIWRTl• 

+IWRITE•IBATCH,NIT> 
55 CALL LDINC<H,Mt8RtBR2tIFAILtTtPH,PtOtECCtBETAt 

+XINCR•IWRITE> 
IF<IFAIL> 995,995•600 

998 wqITECIWRITE,210) 
210 FOR~AT(/,•INSTABILITY ON FIRST RUN'> 
995 CONTINUE 

GO TO 15 
999 STOP 

END 



l 
2 
3 
4 
5 
6 
7 
A 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3~ 

SUB~OUTI~E INPUTl<H•~tF•O•S•TtPHtAtB•C•~P5•~CT3•NCT4t 
+ISTAYtYS~tlSTADtOYSPtPtlREADtlWRITEtFCOJE> 
Dt~ENSIO"J F(207) ,J(207) •5<207> tT(207> ,P .. H207> .ISTAY<l5) 
DTMENSIO"' YSP<l5) tlSTADC15> •DYSP<l5> tA(207> t8C207) 
DIMENSIO~ P<207> 
DIMENSION C<207) 
I~TEGER FC~DE<207> 
bOUBLE P~ECISION AtPtCtFtJtStTtPH 
PEA)( IREADtlOU 
wQITE<IWRITEtl04) 

104 fOR'YIAT<lHl> 
WRITF(lWRITEtlOl> 

101 FOR~ATC80H 
+ ) 

PEAOCIREAOtl) NCT2tNCT3•NCT4tMtH 
IF<~> 999,999,102 

l fOR~ATC415•El0•3> 
. 2 FORtt1AT(215• 6El0e3tl5> 

4 FOR~ATC/// 30H TARLE le CONTROL DATA 
+ . 30H NUM INCREMENTS M : 
+ 30H l"'CRE4ENT LGT4 H : 
+ 30H NJM CARDS TABLE 2 = 
+ 30H NJM CARDS TABLE 3 = 

103 fOR~AT< 30H NJM CARDS TABLE 4 = 
5 FOR~AT(// 49H TABLF 2. DATA ADDED THRU 

+ 63~ STA THRU F Q S 
+ 6'-f p 

II 
15• I 
fl0.3, I 
15• I 
15 
15• I > 

SPECIFIED 
T 

6 FOR~AT(// 36H TAALE 3. SPFCIFIED DEFLECTIONS // 
+ 22H STA Y SPEC. > 

1 POR~ATC5Xt l4t 4Xt 6El0.3) 

INTERVAL I 
R 

8 F~R..,ATC// 37H TABLE 4. SPECIFIED SL~PE VALUES II 
+ 24H STA DY/DX SPEC. > 

102 WRITECIWRITE,4) MtHtNCT2t~CT3 
WQITECIWQITE,103> NCT4 
~P5=M+5 



36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
'51 
52 

53 
54 
55 
'5 6 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

~P7=M+7 
DO 11 J=l,'1P7 
FCJ>=O•O 
FCOOECJ>=O 
Q(J)::OeO 
SCJ):O.O 
T(J):OeO 
P(J):OeO 
A<J>:OeO 
BCJ>=O•O 
C<J>=O·O 

11 PH(J):O.O 
W~ I TE: (I WR I TE, 5) 
DO 12 N=l.NCT2 
READCIREADt2) 11.12.z1.z2.z3,z4,z5,z6.IZ 
WRITECIWRITE.2> 11.12.z1.z2.z3,z4,z5,z6 
Jl=Il+4 

J2=12+4 
00 12 J=Jl•J2 
fCODE<J>=FCOOE(J)+IZ 
f(J):f (J)+Zl 
0(J):Q(J>+Z2*H**3 
5CJ):5(J)+Z3•H**3 
T<J>:T(J)+Z4*CH*Hl2.0) 
P(J):P(J)+Z6 

12 PH<J>=PH(J)+(H/4.0>*CZ5+H*Z6) 
W~ITE<hlRITE,6> 
IF<~CT3) 999.106.105 

105 CONTINJE 
DO 13 N=l•"CT3 
READ<IREADt2) 11.~0NE,YSP<N> 
WRITf (IWRITE,7) Il•YSP<N> 

13 ISTAYCN>=Il+4 
106 WRITE<IWRITE,e> 



70 
71 
72 
73 
74 
75 
76 
17 
78 

IFPKT4) 999,108,107 
107 CONTINUE 

DO 14 N=ltNCT4 
READ<IREA0t2J lltNONftDYSP(N) 
WRITE<Iw~ITE,7> lltDYSP<N> 

14 ISTAD<N>=Il+4 
108 CONTINUE 
q9q RETURN 

ENO 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
1 , 
18 
19 
20 
21 
22 
23 
24 
25 
2b 
27 
28 
29 
30 
31 
32 
33 
34 
35 

SUB~OUTINE INPUT2<NEltNPtNPHltPHIYtPYtB~Yt"TPHlt 
+IQEAOtlWRITE> 

DIMENSION NP(l) tNPHI (I> tPY(l) tPHIY<U tB\1Y<l) 
PEAL MTP~l(25t38tl> 
RfA)<IREAD•lOO) NEI 

100 roR..,AT(l5) 
WRITE<IWRITEtllO> NEI 

110 FOR'1AT<1Hlt43HNUMBER OF STIFFNESS VALJES IN THIS PROBLEM:tl2J 
DO 10 K::lt~EI 
READ<IREA0tl20J 1DltlD2tlD3tlD4 

120 FOR'1ATC415> 
WRITECIWRITEtl30> IDltlD2tlD3tlD4 

130 FOR'1AT<t•' DATE='•l2t 1 /
1 tl2•'1'•12t/t 1 TIME='•l5> 

READCIREA0tl40) PY<K>tPHIYCK>tBMY(K) 
140 FOR"ATC3El5e6J 

WRITECIWRITE,150> PYCK>tP~IY<K>tBMY<K> 
150 FOR..,ATC/t25H AXIAL LOAD (PY> =tE12e5t/t 

+ 25H CURVATURE <PHIY> =•El2e5t/t 
+ Z5H ~OMENT <BMY) =tE12e5) 

REAO<IREADtl60) NP<K>tNPHl(K) 
160 FOR'tAT(215) 

NPK=NP(K) 
NPK3=NPK*3 
NPHIK=NPHl(K) 
READ< I READ t 180) ( MTPH I (It l tK > •I= l tNPK) 

180 FOR'1AT(6El0e3tlt6El0.3) 
DO 15 I=l•~PH(K 
READ(IREAOtl90) MTPHI<l•2tK>t(MTPHl<l•JtK)tJ=3tNPK3t3) 

190 FOR'1AT(7El0e4tlt6El0.4> 
15 CONTINUE 

WRITECIWRITEt200) 
200 FOR..,Al(//t28HM0MENT-THRU5T-CURVATURE DATA> 

WRITECIWRITEt210) 
210 F~R..,AT(//I•'**** M/MY FO~ A GIVEN CO~BINATI~N OF P/PY AND PHI/PHI 

+Y ****'•llt~ PHI/ P/PY='t5C6Xt 1 P/PY='>> 
..... 
N 
00 



36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

WRITECIWRITEt220) CMTPHI<l•l•K>•I=l•NP() 
220 FOR~ATC7H PHIY ,2XtF5.2t5C6XtF5.2),/, 

+7H ** t2XtF5e2t5(6XtF5.2>> 
DO 40 I=lt"IPHIK 
WRITE< IW~ITE,230) MTPHI CI t2•K>, CMTPHI ( J ,J,K.) ,J:3,NPK3t3> 

230 FOR~ATC/,f6e2t2X,F7.4t5<4Xt~f.4)t/t7H ** tlXtF7e4t5C4XtF7.4)) 
40 CONTJNiJE 
10 CONTINUE 

RET JRN 
END 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

SUB~OUTINE DDT<NEltNPtNPHitMTPHI) 
DIMENSION NP(l>tNPHI<l> 
PF.AL MTP1IC25t38tl> 
DO 10 K=ltNEI 
MPK3:NP(l()*3 
DO 15 J=3tNPK3•3 
DO 20 L=lt2 
LJ:L+J 
NPHIL=NPHI<K>-L 
DO 25 1:1,NPHIL 
IT:I+l 
JLL=J+L-1 
IL=l+L 
~TP~J(l,LJtK):(MTPHI<II•JLL•K>-MTPHl(J,JLLtK))/ 
+(~TPHl(ILt2tK)-MTPHJ(J,2tK)l 

25 C~NTINUE 
20 CONTINUE 
15 CONTINUE 
10 CONTINUE 

PETJRN 
f ND 

..... 
w 
0 



1 
2 
3 
4 
5 
f, 

7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

SUBROUTl~E BMCOL (HtMtF•O•StltPHtAtB•C•~P5tNCT3tNCT4• 
+ISTAYtYSPtISTADtOYSPtYtBMtP~l.BR2) 
DIMENSIO~ F<207),~(207)•5<207>•T<207) ,p~(207)tAC207)t 

+RC207) t((207) tISTAY(l5) .vsP<l5) tl5TAD(l5) tDYSPCl5). 
+YC207>•8~(207)tPHIC207) 

DOUBLE PRECISION PHIJPtRM,BMPtBM~tPHltGJ,fJ,OJtAtB•C• 
+FtO•S•TtYtPHtDREVtZDYSP•ATEMP,BTEMPtCTE~PtDTEMP 

DOUBLE PRECISION BMJ 
00 50 J:3,t.1P5 
GJ:F(J•l>-PH(J-1) 
EJ:GJ*B<J-2>•2•0*<F<J-l)+F(JJ) 
DJ=-l•Ol<EJ*B<J-l>+GJ*C<J-2)+f(J-1>+4.0*F<J> 

++F(J+l)+S(J)+PH(J•l)+PHCJ+l)) 
IFCDJ> 3lt3lt32 

32 RR2=-l.O 
GO TO 35 

31 RR2=l•O 
35 CCJ>=DJ*CF(J+l>-P~CJ+l>> 

B<JJ:OJ*<EJ*C<J•l>-2.0*<F<J>+FCJ+l>>> 
AfJ>=DJ*CEJ*ACJ-l>+GJ•ACJ-21-Q(J)+TCJ-l> 

+-TCJ+l)) 
IFPKT3> 18tl8tl09 

109 CONTINUE 
00 16 l=lt~CT3 
L=I 
IFCISTAYCl>•J) l6•17tl6 

16 CONTINUE 
GO TO 18 

17 A(J):YSPCL> 
B<J>=o.o 
CCJ):O.O 
BR2=1.o 

18 CONTINUE 
IF<~Cl4) l5tl5•110 

110 CONTINUE 



36 DO 19 I:lt~CT4 
37 L=I 
38 IF<ISTAD<I>-<J+l>> 19t20tl9 
39 19 CONTINUE 
40 GO TO 21 
41 20 ATE"1P=A(J) 
42 8TE~P=B<J> 
43 CTE'1P=C<J> 
44 DTE'1P=DJ 
45 ZDYSP=DYSP(l) 
46 ACJ>=-<H+H>*ZDYSP 
47 B<J>=o.o 
48 CCJ>=l.O 
49 8R2=l•O 
50 GO TO 15 
51 21 CONTINUE 
52 co 22 l=lt~CT4 

53 IF<ISTAOCl>-<J-1>> 22t23t22 
54 22 CONTINUE 
5S GO TO 15 
56 23 DREV=l•O/CleO-<BTEMP*BCJ-ll+CTEMP-1.0>*DJ/DTEMP> 
57 TFCDREV> 4lt42t42 
58 41 BR2=-l•O 
59 GO TO 999 
60 42 P.R2=1.o 
61 A<J>=DREV•CACJ)+(CH+H>*ZDYSP+ATEMP+BTEMP* 
62 +A(J-1>) •DJ/DTEMP> 
63 B<J>=DREV•<B<J)+(dTEMP•CCJ-l)l*DJ/DTE~P> 
64 CCJJ:DREV•CCJ) 
65 15 IF<BP2> 999,999,50 
66 50 CONTINUE 
67 DO 24 L:3,'1P5 
68 J:M+B•L ...... 

c...:> 
69 24 Y<J>=A<J>+SCJ>*YCJ+l)+((J)*Y<J+2) N 



70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 

Y(2)=2•0*YC3)-Y(4) 
Y(M+6)=2.0*YC~+5)•YCM+4) 

Y(M+7>=2.0*Y(M+6)-Y(M+5J 
PHIJP=O.o 
flt.11J=o.o 
PMP=o.o 
DO 25 J:3,..,p5 
l=J-4 
ZI=I 
X=ZI*H 
PHJ(J>=PHIJP 
PHIJP=(Y(J)-y(J+l)-Y(J+l)+Y(J+2J)/(H*~) 

BMM=BMJ 
BMJ:BMP 
R'-1CJ>=BMJ 

25 AMP=FlJ+l)*PHJJP 
999 PETJRN 

f NO 

..... 
w 
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SUBROUTI~E SOLCHK(NPtNPHltBMYtPYtPHIYtFCODEt 
+MtB~tP,P.;JtMTPHltlCORtNEltt) 

OIMENSIO\J \IP(l) tNPHI (}) tPHI (207) tP(207) ,13MC207) tNVAL(2) 
DJMFNSI0"-1 FC207> 
CtMENSION ITAB(2) tPY(l) tPHIY(l) tCHK(2) 
DJ MENSI ON BMY Cl> 
PEAL MTPl-fl(25t3&tl>tMMY<3>tMMYI 
INTEGER FCJDEC207> 
DOUBLE P~ECISION FtAMtPHI 
JCOR=O 
MP4=M+4 
BM(4)=8M(4)+8M(4) 
BMC~P4>=BMCMP4)+B~CMP4> 
P<4>=PC4>+PC4> 
PfMP4>=PCMP4)+PCMP4> 
DO 50 J:4,'1P4 
K=FCODE(J) 
PHP~Y=PHICJ)/PHlY<K> 
ppy:p(J)/PYCK> 
p4p.;y:ABSCPHPHY) 
PPY=ABSCPPY> 
NVAL(lJ:,,.PCKJ 
NVAL<2>=NPrHCKJ 
MPHIK=~PHl<K> 
IF(PHPYY·MTPHl(NP11Kt2tK>> 5lt5lt52 

52 PHP~Y=MTPHJ(NPHIKt2tK> 
51 co~TINUE 

CHK(l):ppy 
CHK(2J=P1-iPHY 
DO 20 L=lt2 
JST=NVAL<L> 
DO 10 1=2tl5T 
JFC~TPHJ(ltLtK>-C1K<L>> lltl2tl2 

11 CONTINUE 
10 ClNTJNUE 
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64 
65 
66 
67 
68 
69 

12 ITA:3CL>=I-l 
IFCITABCL>> 4lt4lt42 

41 ITA9CL>=l 
GO TO 45 

42 IX:ITABCL>+2 
IFC~VAL<L>-IX> 46•45t45 

46 IX=~VALCL>•IX 
ITA9CL>=ITABCL)+JX 

45 CONTINUE 
20 CONTINUE 

I::: IT AB ( 2 > 
11=1+1 
L=ITABC1>*3-3 
DO 30 LM=l•3 
L=L+3 
LL:L+l 
L2=L+2 

MMYCLM>=MTPHJCltLtK)+(PHPHY-MTPHIClt2tK>>*~TPHICltLL•K> 
++CPYPHY-~TPHJClt2•K>>*CPHPHY-MTPHICllt2tK>>•~TPHI<Itl2tK> 

30 CO~TINUE 
I=ITAB<l> 
II=I+l 
12=1+2 
DDll=CMMVC2>-MMY<l>>ICMTPHIClltltK>-MTP~ICltltK)) 
DD12=C~MYC3>-MMYC2))/(MTP~ICl2tltK>-MTPHICII•ltK)) 
DD2=<DD12-)Dll)/(~TPHICl2•l•K>-MTPHICl•l•K>> 
MMYl=MMY(l)+(PPY-~TPHICltltKl)*DDll 

++CPPY-MTPHICJtltK>>*CPPY-~TPHICll•ltK))*DD2 
~MJJ:MMVI*BMYCK> 
BMJ=AB5CBMCJ>> 
IFCBMJeLT.OeOOOOOll GO TO 70 
X=l-BMJI/B~J 
X=A3SCX> 
IFCX-0.0051 70t70t71 



70 
71 
72 
73 
74 
7 r; 
76 
77 
78 
79 

71 F<J>=F<J>*B~JI/BMJ 
ICOR=Icoq+1 

70 CONTINUE 
50 CONTINUE 

RM(4):BM<4)/2e0 
n~<~P4>=8M(MP4)/2e0 

P<4>=P<4)/2.0 
P<MP4>=P<MP4)/2eO 
RETJRN 
END 
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SUB~OUTI~E OUTPUT<H,MP5tJSTAtYtA'1•PHltFtTtP~tPtlWRTlt 
+tW~ITE•IBATCHtNIT> 

DIMENSION JSTA<lOl tY(207ltF(207ltT(207ltPH(207ltP<207l 
DIMENSION 8M<207>•PHl(207l 
DOU3LE PRECISION YtBMtPHltFtTtPH 
IF <I BATCH> 11,999t12 

11 WRITE<IWRITE,100> NIT 
100 FOR'-1AT(///t 1 *****RESULTS*****'•l/t 1 NJMBER JF ITERATIONS=' tI3t//, 

+1x.•s1A•,3x,•x 1 .6Xt'DEFL't 
+AX, 1 SLDPE 1 t6Xt 1 MO~ENT't6Xt 1 5HFAR't8Xt 1 LJAD'•I• 
+20Xt 1 CURV'•6Xt 1 STIFFN(55't2X•'AXIAL LJAD'l 

JF<IWRTl.LTeO) GO TO 30 
12 WRITE< lWRTltllOl NIT 

110 FOR\1ATC1Hl•'*****RESULT5***** 1 t//t' NJMBER OF ITERATIONS=• •l3t//t 
+1Xt'STA 1 t3Xt•X'• 
+6X,'DEFL 1 .ex,•SLOPE 1 t6Xt 1 '10~E~T't6X,'5HEAR 1 t8Xt'L0AD 1 t9Xt 
+1 CURV'•6X•'5TIFFNESS 1 t2Xt'AXIAL LOAD'> 

30 I I= 1 
JSTA4=JSTA<II>+4 
5"10Y=O·O 
DO 25 J:3,\1P5 
I=J-4 
ZJ:J 
X=ZI*H 
DY=C-Y<J-ll+Y(J+l)l/(H+H) 
~~DY=SMDY+ABSCDY> 
DPM=t-BMCJ•ll+BMCJ+lll/(H+Hl 
D~M=DBM-(T(J)*2el/(H**3l-PH(Jl*2•*(Y(J+ll-Y(J-1))/(H**3) 
D2BMH=(B\1(J-l>-BM<Jl-BM<Jl+B~(J+lll/H 
IFCIWRTl.LT.Ol GO TO 40 
WRITE< IWRTltl20l I tXtYCJl tOYtBMCJl tDB'-1tD2B'1HtPHI CJ) tf(J) tP(J) 

120 FOR\1AT(l4tF6.lt8El2.3l 
40 C:lNTINUE 

IF<IBATCHl 16t999t25 
16 lF(J.EJ.JSTA4) GO TO 50 
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GO TO 25 
50 WRITFCIW~ITE,130) 1,x,YCJ) .ov.BM(J) .DBMtD2BM-1tPHJ (J) tF(J) ,p(J) 

130 FOR~AT(/,J4tF6elt5El2.3•/•16X,3fl2e3> 
II=II+l 
JSTA4=JSTA<II>+4 

25 C'.)NTJNUE 
IFCIBATC~.~T.O> GO TO 60 
IF<lWRTl.LTeO) GO TO 60 
WRJTEllWRTltl40) SMDY 

140 FOR~AT<1,• SUM OF SLOPE VALUES='•El0.3> 
bO WRITECIWRITE,150) SMDY 

150 FOR~AT(/,• SUM OF SLOPE VALUES='tEl0.3> 
999 PFTJRN 

E~D 
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SUBROUTINE LDINC(~tMtBR•BQ2,JFAIL•TtPrltP•O•FCCtBETAt 
+XINCRtlWRITE> 

DIMENSION f(207),PHC207>tPC?07)t~(207) 
D~UBLE PRECISION PHtTtO 
~P3=M+3 

MP4=M+4 
IF<BR2> lbt40tl7 

16 WRITECIWQITE,100) P<5> 
100 FOR~ATC/,'BAD RUN •••••• AXIAL LOAD='•El0.3) 

BR:0.5 
IF<ABS<XP>+ABS<XI~CR>.LT.O.OOOOOlJ GOT~ 60 
IFCXP.LT.0.000001> GO TO 25 
STOP=ABS<XINCRIXP> 
IF<STOP-0.005> 60tb0t25 

25 XINCR=ABS<XINCRJ*BR 
GO TO 50 

17 WRITECIWQITEtllO> PCS> 
110 FOR~AT<t.•Gooo RUN •••••• AXIAL LOAD='•El0.3) 

BR=l.O 
XP=ABS<P<5>> 
IF(XP.LT.0.000001> GO TO 30 
STOP=ABSCXINCRIXP> 
JF(STOP-o.005J b0t60t30 

30 ~INCP=•leO*ABS<XI~CR>*BR 
50 CONTINUE 

DO 20 J:5,'1P3 
PH(J):PH(J)+(H/4.0>*<H*XINCR> 
P<J>=P<J>+XINCR 

20 CONTINUE 
PH(4J:PH(4)+(H/4e0)*(H*Xl~CR/2e0) 

PC4J=P<4>+XINCR/2•0 
PHC'1P4J=PH(4) 
PCMP4J=PC4J 
Z4=XINCR*ECC 
TC4J=TC4J+Z4•CH*Hl2.0> 
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T (MPt+) =T (4) *.BET A 
GO TO 40 

60 IFAIL=O 
WRITC<IWQITE,120> P<5> 

120 F~R~AT<l•'~LTIMATE LOAD='•El0.3> 
40 RFTJRN 

END 



MOMENT-THRUST-CURVATURE 'PROGRAM 

DATA INPUT 

Note: The last data card must assign the outside diameter a value 
of zero to stop the program. 

Numbers at left indicate card columns. 

A. Control Data; Cross Section and Material Properties. 

B. 

FORMAT{4I5,4El5.5) 

1-5 Actual stress-strain data used? 
{+-Yes; -l•No) 

6-10 Residual stresses used? 
{+l•Yes; -l•No) 

11-15 Number of layers of elements. 
{Max. • 5) 

16-20 Number of elements in 1/4 circle of one layer. 

{The product of the last two numbers must not exceed 30.) 

21-35 Outside diameter {in.) 

36-50 Wall thickness {in.) 

51-65 Modulus of elasticity. {ksi) 

66-80 Yield stress. {ksi) 

Date and Time of Run 

FORMAT{4I5) 

1-5 Month 

6-10 Day 

11-15 Year 

16-20 Time (001 - 2400) 

141 



c. 

D. 

E. 

Control Data 

FORMAT(2I5) 

1-5 Number of P /PY values. 
(max. 12) 

6-10 Number of PHI/PHIY values. 
(max. • 25) 

Axial Load Values 

FORMAT (6Fl0 .5) 

1-10 P/PY values (Always Positive) 
11-20 
21-30 
31-40 
41-50 
51-60 

Curvature Values 

FORMAT(5El0.5,/,5El0.5,l,5Fl0.5,l,5Fl0.5,15Fl0.5) 

1-10 PHI-PHIY values (Always Positive) 
11-20 
21-30 
31-40 
42-50 

Note: The data for one problem is now complete if the actual 
stress-strain data and residual stresses are not used. 

If both options are used, the stress-strain curve data is 
read in first. 

F. Stress-Strain Curve Data 

1. Control Card 

FORMAT (IS) 

1-5 Number of tabulated points on stress-strain curve. 

2. For each tabulated point 
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G. 

FORMAT (2El5 • 5) 

1-15 Stress value 

16-30 Strain value 

Residual Stress Data 

1. Time of Residual Streaa · Calculation 

FORMAT(4I5) 

1-5 Month 

6-10 Day 

11-15 Year 

16-20 Time 

2. For each element 

FORMAT(2El5.S) 

1-15 Stress value 

16-30 Strain value 

143 



FLOW DIAGRAM -

CALCULATION OF MOMENT-THRUST-CURVATURE DATA 

START 

Read: NBS, IRS, NLYR, NELE 
OD, WT, E, FY 

Is OD greater 
than 0.0? 

Yes 

Read ID1,ID2, ID3, ID4 

Read NP, NPHI 

Read P/Py values. 

Read ~/0y values. 

No 

144 

STOP 



Is tabular 
stress-strain data 

used? 

Yes 

Read 'stress-strain data. 

Are residual 
stresses used? 

Yes 

Read residual stress data. 

Calculate for each layer: 

Average radius 

No 

Arc length of elements 
Area of elements. 

145 



Calculate the following: 

Strain, curvature, bending 
moment and axial load at 
first yield. 

The distance from each element 
to the centroid of the 
cross section. 

The total cross sectional 
area, plastic modulus, 
flexural stiffness, plastic 
hinge moment and shape 
factor. 

Do 500 for each P/Py value. 

' I 

Apply an (a new) axial load and 
calculate the corresponding axial 
strain (P/AE). 

I I 

Is tabular 
stress-strain data 
used? 

No I Go To 300 

146 
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Comment: 

Are residual 
stresses used? 

No 

Axial stress = P/A 

Go To 600 

This is the beginning of an 
iteration to determine the 
correct axial strain. 

Is tabulated 
stress-strain 

used? 

Yes 

147 

Go To 300 

No 

Go To 21 



,, 

For each element: 

Calculate the total strain 
(Axial strain + residual strain) 

Interpolate the corresponding 
stress value -

SUBROUTINE INTERP 

Calculate the force on the 
element. 

Calculate the total force on 

the cross section • 

. 

Go To 75 

For each element: 

Calculate the total strain 
(Axial strain + residual strain) 

Determine the corresponding stress 
value from the bilinear 
stress-strain relationship. 

Calculate the force on the element. 

148 



Calculate the total force on 
the cross section. 

Let "DIFF" = The total force on the 
cross section - the applied 
axial load. 

Is "DIFF" nearly 
equal to 0 .O? 

Do 400 for each ~/0y value. 

No 

Assume a (a new) curvature value. 

Locate the neutral axis at the 
centroid of the cross section. 

Adjust the 
axial strain 

Go To 300 

149 



Comment: 
This is the beginning of 

iteration to determine the 
correct location of the 
neutral axis. 

Have 30 iterations 
been performed? 

No 

Is tabulated 
stress-strain 

used? 

es 

For each element: 
Calculate the strain due 
to bending. 

an 

Calculate the total strain. 

Yes 

No 

Interpolate the corresponding 
stress value-SUBROUTINE 
INTERP 

150 

STOP 

Go To 23 



' I 

Calculate the total force and 
bending moment on the 
cross section. 

, 

I Go To 89 I 

23 

For each element: 
Calculate the strain due 
to bending. 

Calculate the total strain. 

Determine the corredponding 
stress value from the 
bilinear stress-strain relationship. 

I 

Calculate the total force and 
bending moment on the cross 
section. 

'' 
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Let "FORCE" be the net force 
on the cross section. 

Is "FORCE" nearly 
equal to 0.0? 

No 

Adjust the location of the 
neutral axis. 

Go To 450 

152 

Yes 

Go To 71 



153 

? 
Save the total moment 
calculated. 

, 

400 - Continue to next f/J/0y 
value. 

~' 

500 - Continue to next P/Py value 

1 

Print results 

'. 

' 
Go To 998 I 



x = ,..,x 

FLOW DIAGRAM - SUBROUTINE INTERP 

START 

+ 

SIGN = +l 

Does X exceed 
the last tabulated 

X-value? 

Yes 

0 

Let Y equal the last 
tabulated Y-value * SIGN 

RETURN 
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y = 0.0 

RETURN 

No 

Go To 66 



Select the points to 
be used in the interpolation. 

Calculate divided differences. 

Calculate Y 
Y=Y * SIGN 

RETURN 
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Ci 
lj 

L 0 
11 
12 
13 
14 
15 
16 
I l 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
31+ 
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c *** 
c fl** 
c *** 
c **"' 
c *** 
c *** 
c *** 
( *** 
c , ** 
c *** 
c *** 
c "'** 
( *** 
c *** 
c **'* 
c *** 
c *** 
( *** 
( *** 
c *** 
( *** 
( *** 
c *** 
( *** 
c *** 
c *** 
c *** 
c *II-* 
c *** 
( *** 
( *** 
c *** 
c *** 
( *** 
c ***' 

AD - 'f £li$i'H 
ADJff - At3~. 0LUTt VALLE. UI- 011-t­
/\JNC - A~OJNT QI- lHA~GE IN ~5TPN 
f>P - A:1S:JLJTL VALUI:. Cl- µ 

fd~ C I ( I l - A R C L t. "I C1 1 h GI- f:. L t r>-1 t N T H~ L A y f_ r? ' I ' 
AREAE<I> - AREA Ot- lLEMtNT IN LAYER •J• 
A.REAl - TOTAL AkEA CJt- 0<055 5ECTJQ;~ 

A~T - P/AREAT 
1'5T~n - Sl'~AIN i.JUt TO AXIAL LOAD 
/\VG~(IJ - AVERA~E RADIU~ 10 LAYEk •l• 
C - TOTAL COMPRl551Vf FGRCt 
CT - -C./T 
CtFF - DlFFERE~CE efTWf:.tN 1-0~CE A~D P 
CTA - ~d50LUTE ~ALUE OF er 
f!INC - A"'IOU"'JT Ot- lHANC1E l"I U 
r - r':J CULUS OF ELA511Cl I y 
EFRC - lLf MENTAL t-O~Ct 
E~O~ - ELL~ENTAL ~OMf:.NT 

I- - FLlXURAL ST1Ft-NE55 
FnRCE - TOTAL FGRLI:. CN LR05~ SECTION 
FY - YIELD STRE55 
IPAT - +l = BATCH P~OCE~SI~G 

-1 = TIMLS~ARlNG 
IPS - +2 = RESl~U~L 51Pt55t~ U5E0 

-1 = RESl~UAL 5Tkt5St~ NOT USED 
r·5y~f\' - ~T~tlll'l DUt TO CURVAIURF 
~ · rr ~n ( 1,J) - \10ME"ll-THRU5f-lJ~VATURL '.)AfA 
~y - MJMENT AT rl~ST YltLO 
r'RS - +l =ACTUAL SH'E5~-51R~IN DATA JSEl> 

-1 = BILI~EAR STRtSS-~lRAlN ~ELATIONS~IP 
NFLE - ~JM8ER Or tlEMf:.NIS lN l/4 llRlLE IN ONE LAYER 
~ELE2 - ~U~8[R ~f ELl~E~TS IN 1/2 CIRCLE IN JNE LAYEQ 
r fTJT - lOTtlL i'JU!\ldtk Ur l::U_'·1t'H~ lr-i 1/2 CIRC: .. F 
~·LY~ - \JJM'.1f~ 01- LA YEFS Ot- t. LF'-lENT S 
f ,p - i <!'HE~ OF ._,/t-'Y \:Alut5 1"4 THIS RU'l 

....... 
VI 

°' 



36 C *** NPHI - N~MBER Of ~Hl/PHIY VALUES IN frllS RUN 
37 C *** NTP - '·! lJ~UER Of TAHULATtlJ PU!NTS ON STRESS-STRAIN CURVE 
38 C *** OD - OJ T5IDf DlAMt:TER O~ TUHt 
39 C *** r - AµPLlED AXIAL LOAD 
40 C fl-** PHJY - CJRVATURE Al FlR~T Ylt:LD 
41 C *** P5T~N CIJl - RE5IDJAL STMAJN AT ELEMENT •IJ• 
42 C *** 1<5TR5C!Jl - RESIDLJAL SP<ESS AT ELEMENT 'IJ' 
43 C *** SFACT - SHAPE fACIOH 
44 C *** STR~Y - STRAIN AT FIRST YltLU 
45 C *** T - TOTAL TENSILE FOPCE 
46 C fl-*fl- TDJSTCIJl - DISTA~CE FR UM tLtMENT TO NEUTRAL AXIS 
47 C *** THETA - ANGLE FRO~ TOµ UF (MUSS SECTlJN TO ELEME~T 
48 C *** TLY~ - THICKNES~ JF EACH LAYtR Of ELEMENTS 
49 C *** T~O~ - TOTAL MOMENT ON LRJS~ SECTION 
50 C *** WT - WALL THICKNE~5 OF TU~t 
51 C *** X - STRAIN VALUE 
52 C *** XO - iJ~$$$$$ 

53 
54 
55 
56 
57 
58 
59 . 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

c *** 
c *** 
c *** 
( *** 
c *** 
( * ** 
c *** 
c *** 

XDJFF - VALUE Of UIFF ON PHtVIOUS ITERATION 
XFRC - VALJE Of FiJRCE ON PHtVIOUS !Tt:RATION 
xvp - rLASTIC HIN~t MOMtNT 
XVAL(K) - STRAIN VALUE UN SIRE55-5TRAIN CURVE 

<NOTE OlFFtRE ~ T MtA~ING lN RESIDUAL STRESS PROGRAM> 
Y - INTERPJLATlD ~TMf55 VALUt: 
YVALCK) - STRESS VALL 1E UN SIRESS-STRAIN CURVE 

<NOTE Dl~~FRENT MtANI~G IN RESIDUAL STRESS PROGRAM 
(11 ME t,i SI ON ~ 5 TR::> < 1U0 , ;:> l • f< 5 TR N l 10 O, 2 l 
DIMENSION ASTRS<lUO,l) 
DIMENSION )IST<lOUl • TDISTllOOl ,XVAL<20l ,YVAL<20> 
DIME~SJQ~ AVGR(~) tAR[A[l5ltAMCI<5> 
REAL MJPHI<2s.1~l ,MY,M~Y.~~r~S.MSTRN 

IPAT=-1 
I RAT= l 

I<' SK IP = l 
KSKlf' = 2 



IO 
I l 
72 
73 
f4 
f5 
f6 
77 
78 
f9 
80 
81 
82 
83 
84 
8? 
86 
87 
88 
89 
90 
91 
92 
93 
94 
9? 
96 
97 
98 
99 

100 
101 
102 
103 
104 

IF<IPAT> 9,999,~ 

O I PEAD= 10 
IWRT=6 
(.r) TO 998 

9 IREAD=2 
IWRT=5 

998 PfAD<IREAD,100> N~S.IRS.NLYR,NELE.oo.~r.E.FY 
100 FOR~ATC415,4El5e5J 

IFC:)Dl 999,999,3 
3 RfAD<l REA0,103> l~l•l~2•103t1D4 

10 3 FOR"1Al <415) 
~ : FLE2= '-· ELE*2 
NfTJT: \1 LYR*"iELE2 
DO 5 1=1'NLYR 
ro 10 J=l.NELE2 
IJ:J+(I-l>*MELt.2 
DI5l(IJ>=o.o 
TD I ST< IJ> :O.O 

10 CONTINJE 
AVGR<I>=O.O 
AREAE<I>=o.o 
APCI<I>=o.o 

5 C 0 NT I ~i '.J E 
RfA)(l ~ EAD,ll.Jl Ni-'t f'I J-'HI 

11 0 FOR \'!AT I 2 l 5 l 
F-' EAD<I~EADtlZO> <MIPHI <I •l> ,1:1,NP> 

120 F0R~Al(6fl0.5•/•6~10.5) 
PF.AD(l :.;' [A.0'13 0 ) ( l"HPHI (J.2l ,1=1,NnlI> 

130 FOR~Af (5Fl0.5,/t5~l0.5,1,s~1u.s.1.?Fl0.5,1.sF10.5) 
IF(\JHSI 11•11•1 2 

12 RFAu<l ~ EAD,140) NIP 
140 FOR'v1A.l(15) 

PfA0(I PEAD•l50l CYVAL<I> •XVAL<Il ,I=1 9 NTP> 
l~O F JQ~ff 12El5.Sl 

I 1 C)~H l l\l ~J E 



105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
l '3 l 
132 
133 
134 
135 
136 
137 
138 
139 

IF(lf;SJ 16tl6tl7 
17 CONTINUE 

RFAD(lREAD,155) IKl,lk2•1KJt1R4 
155 FORl.1ATl415> 

p r AD ( p E A D ' 1 6 0 ) (R ~ rn s ( I J ' l ) ' !-( 5 T R ''J ( I J ' 1 ) • I J = 1 ' N t T 01 ) 
lf((5KIP.LT.2> ~OTO 98f8 
PFA0<IREADtl60) (R~rnS<IJ,z> ,RSTRN(!J,2> .1J=1.f'-it::.TOT> 

9878 CQNTIN~JE 
160 FDR~Al(2El5.5J 

lh TLYR=v.JT/!\ILYR 
rC'I 25 I=l,NLYP 
AVGR(l)=<oo-2.0*I*TLYR+ILY~>•o.5 
AR(l(l):t3.l41~93*AVGR<ll)/NELE2 
ADEAE(J):ARCI<ll*ILYH 

25 cm1TINUE 
5TR°"Y=FY/E 
P4JY=2.o•STRNY/OD 
APEAT=o.o 
~"'Y=O.O 
z=o.o 
DO 30 I=ltNLYR 
ARC=-ARCI<ll/2.0 
D0 3':> J=l,~ELF' 
IJ:J+IJ-l)*NELE~ 
ARC=ARC+ARCI<I> 
THETA=ARC/AVGR(l) 
DIST(JJ)=AVGR(l)•tOS<THtTAl 
fMO~=DIST<IJ>•PHIY*t•ARtAElll•DISl<lJl 
~·Y=MY+~M:JM 

35 CONTINUE 
AREAT=tREAT+2.0*A~EAE!lJ•NELt2 
D'.::i 50 JJ=l,~ELE 
IJJ:JJ+<I-ll•NEL~l 

Z=Z+Ol~T<IJJl*AREA~<I> 
5 0 C 0 NT I i-.. ~' E 



l 4 0 
141 
142 
143 
144 
145 
146 
14 7 
148 
149 
l '::> 0 
1 ':) l 
1'::>2 
153 
1 '::>4 
l '::i 5 
l '::i 6 

157 
158 
159 
160 
161 
162 
163 
164 
16? 
166 
167 
168 
169 
l /O 
171 
l 72 
173 

30 CONTINUE 
PY:AREAT*fY 
~·v=~Y*2.o 

l=Z*4eC 
f=E•<M'*JU)/(2.0itt-Y> 
IF('-WS> 18•18•19 

18 X~P=fYrrZ 

00 TG 7 
19 XMP=YV4L(NTP>*Z 

7 SFACT=XMP/._.Y 
~ .. ; R I TE t J vJ RT • l 9 0 > 

190 F8R"1AT(1Hl,//////•41H DU'T. UF HiCili~EEKING AND APPLJfD SCIErKE •/• 
+?6H POPTLA~D STATt U~lVtRStrY ,//, 
+45H STRUCTJRAL TUdE MOMtNT-IHRUST-CUHVATURE DATA 
~QITE<IWRT,195) 1u1,1u2.103,1D4 

195 FOR~A1</•6H DATE=.12,lH/,1£.lH/,12•/•oH Tl~E=,15) 
WPJlE(IWRT.205) NtLE•NLYR 

205 FOR~AT<l•6H NELE=•l3•/,bH NLYR=•l2> 
WPJTE<I~MT.200) oo.wT.E•fY 
WPJTE<I~RT,210) PY,MY,PHIY,t-,SFACT 

200 FQR~AT(/, 25H OUT~lDE 01AM~lt~ 
+ 25H WALL THICl<NE~~ 

+ 25H MODULUS U~ ELA~TICITY 

= ,El5.5,5H 
= ,El5.5,'::>H 
= .El5.5,5H 

+ 25H YlELU STRt~S = •El5.5,5H 
210 FORY1AT<' '•24HAXll\L LGAU (PYJ : ,E15.5,3H 

+ 25H MO'•itNT tMYJ = •El5.5•7H 
+ 25H CURVATURE (PHlY) : •El5.5,9H 
+ 25H FLEXURAL ~Tlt-t-!'JE55 (f) = •El5.5,9H 
+ 25H SHA~E FACIOR : ,El5.5 > 

IF(:\Jr:O S> 33,39,39 
39 WPJTE(l~RT,220) 

220 ~OR~AT!//,25H STRt55-5T~AIN lURVE DATA •II• 
+4X,23h 5T~E5S ~T~AlN ,/, 
+ 5 X , 2 3 H ( K 5 I l ( l N I l ~. l ) 

IN. •I• 
IN. •I• 
KSJ ,,, 
K 51 ) 

K •I• 
K-IN. ,;, 
RAC'/Jf~• •I• 
K-IN**2 •I• 



l 7 4 
l '5 
116 
177 
l ''d 
l 19 
180 
I P l 
1H2 
183 
184 
18~ 

LH6 
18 7 
18~ 

189 
190 
191 
192 
193 
194 
195 
196 
l 9., 
l9H 
L99 
~00 

201 
202 
203 
204 
205 
206 
I. 0 7 
!OF 

w p I T E ( T w rn • 2 3 0 ) ( y v A L ( I ) • x v A L ( I ) • I = l • N T p ) 
230 ~0R~ATl2El5.5) 

38 CQMTIN~1 E 

JF(IJ:S> 36t36t31 
37 wRJTl<Iw~T.240) 1~1.1R2tlR3.JR4 

240 F()R"1AT\//t2RH RLS1Dl!t'L ST~ESS-STRAIN L>ATA t//t 
+hH )AT E=•l2tlH/tlLtlH/t12t/•bH TlME=tl~t//• 
+4X,34HfLEM. N8. STRESS STRAl~ •I• 
+13Xt22~(K5J) <JN/INJ > 

y.qJTf(}v.;"<r.2so> (JJ,RSTRSllJtl) ,RSTRN(lJ.1) .IJ=l.NETOT) 
250 fnR~AT<l5t3X~2El5.5l 

JF((SKIP.LT.2) liO 10 36 
~RJTF<J~KTt9879) 

9879 fOR '"1AT(// 9 ' RF:SIDJ.A.L SH<ES!:>-STRAltl DATA <OTHER SIDE> '> 
WRITEIIW"Tt250> (JJ,RSTRS(lJtL> ,K5TRN<IJ,2) ,JJ=l.NETOT> 

36 CONT lN »lE 
C * * * F 0 R EA C rl AX I AL L 0 A lJ I~ AT l 0 

D 0 5 0 0 K = l t ~JP 

AD= 1.0 
r ·N:O 
P=-PY*~TµHllKtl> 

A5T~N=r;<A~EAT•E> 
AINC=O.l*STR"JY 

c *** JF ~EITHER oµTlON 15 us~o (NHS AND IRS = -1> ASTRN 15 CORRECT. 
JF(~~Sl 3l0t310t3UO 

310 JF(IRSl 350t350t3UO 
C *** CAL:~LDTE STRESS OUE TO AXIAL LOAD. 

350 A5T=P/ .~REAT 
GO 60 TJ:l,NETUl 
AST~SllJ•ll : AST 
A5T~5<TJt2l : AST 

60 CQrJT I f\i 'JE 
GO TO 600 

C *** 5TA -H TTERATl:lh T:J FlM) C.W~t. CT ASTRN. 
C *** (40 ITERATIONS ~LLO~~Dl 



209 
210 
211 
212 
213 
21 1t 

21~ 

216 
217 
218 
219 
220 
221 
222 
22 3 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
2 ~16 
237 
238 
239 
240 
241 
242 
243 

300 I''"!= ~N+ 1 
lf (~N.GT.40> GO TJ 996 
FORCC=o.o 

c *** f IND TIE STRESS o~ f:ACH ELE:''1UJT Arm Pit TJTAL fORCE 
C •** FOR THE CUQRENT A~T~~ VALUt 
C *** IF NBS = +l USE AlTUAL ~JRt~~-5TRAIN DATA 
c *** IF ~BS = -1 USE Blll~EAk sr~tSS-STRAI~ RELATIONSHIP 

IFl"J~S) 2lt21•2...: 
22 CONTiflJJE 

DO 70 IJ=l•NETOT 
I=llJ+~ELE2-l)/hELE2 
ro 70 KKK=l.KSKlP 
X = ASTRN + RSTRNllJ,KKK) 
CALL INTRPCNJP,XVAL,YVAL,X,Yl 
A5T~S(IJ•K<K) = Y - RSTH5(1J•KKKl 
FORCE = rORCE + A~EAECI!*A~IRSCIJ•KKKl 

70 CONT HUE 
GO TO 76 

21 CONT Ir~UI::: 
DO 75 IJ=l,NETOT 
l=<IJ+~ELE2-ll/~ELE2 
ro 74 KK(=l.KSKIP 
X : ASTR~ + RSTkNlJJ,KKKJ 
IF(5TR~Y-ABS(Xl) 3lt3lt32 

31 l'ST~5(IJ,K<Kl = SlC:il'dFYtXl - f~STRS<IJ,K<Kl 
c;o ro -,4 

32 AST~S(JJ,K<Kl = X*E - R~T~~lIJ,KKKl 
74 FORCE = FORCE + A~EAE<lJ*ASIKSlIJ,KKK> 
75 C:)NTlf'.JE 
76 CONTINJE 

IF(<SKIP.LT.2> fO~CE=2.U*FO~~E 
f)IFF=F:1RCE-P 
t.T)l FF = .~ '3 5 < D l FF } 
,I\ f': l\!-55 ( p) 

c *** 15 lHE r JRCF EuuAL TC ft1E. Aµi->L I ED AX 1 AL L0AD ( 600 = YES. 52 = "'W) 



244 IFCADIFF-o.oon1•PYl 600•600.~2 
24~ C *** CALCUL~TE ~EW A~T~N 
246 t *** IF ~N: l, XDJFF 15 NOT DEFINED. 
247 52 IFC~~.LT.2> GO ro 3AC 
248 C *** IF XDIF~ HAS CHAN~~U SIGN !Ht CORRECT SJLUTIJN HA5 8EEN PASSED. 
249 IF(~lfF/XDIFFl ~9•600,360 

2?0 59 AD=O.? 
251 360 XD!Ff= : IFF 
252 ~TNC=SIGNCAINC*ADtDlff) 
253 AST~N=ASTRN-ATNC 
2?4 ~O TO 300 
255 C *** FrR EACH CURVATURt VALUt 
2?6 600 CONTINUE 
257 DO 400 L=l•NPHI 
258 XD:l.O 
2?9 DTNC=O.l*AVGRCll 
260 

261 
262 
263 
264 
265 
266 
267 
268 
269 
2 fO 
2 71 
272 
273 
2 7 <+ 
2 l5 
2 76 
2 77 

N"'1:Q 

D=o.o 
DO €-15 IJ=t.NETOT 
TDJSTCIJ>=DISTCIJ> 

65 CClNTliYJE 
P H l = t-'' Tr-' H I ( l , 2 ) *I-' H 1 Y 

4 5o r·!""=~m+ i 
IFC'lM.GT.JOl GO TJ 997 
c=o.o 
r=o.o 
TM0\1=0.0 

C *** FOR EACH ELEMENl 
C *** FIND THE STR/IIN DJE TO LU~VAlURE OillY• THE TJTAL STRAIN, 
C *** THE TOTAL STRfS~ AND THt ST~tSS DUE TJ CURVATJME ONLY. 
C *** IF ~~S = +l USE ACTUAL ~l~E~~-SlRAIN DATA 
C *** JF ~~5 = -1 USL Hlll~EAM ~1Mt55-5TRA1~ ~ELATl~~SHIP 

IFC'lBSl 23, 23.24 
24 cnr-H I NUE 



278 
279 
280 
2Bl 
282 
283 
284 
285 
286 
287 
2~8 

2H9 
290 
291 
292 
293 
294 
295 
296 
l97 
298 
299 
30() 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
3 L l 
312 

DO 80 IJ=l•NETOT 
I= (I J+~IELE.2-1 l /NELC:2 
fv'5TR~l=TDI ST< IJ> *Pi-fl 
DO AO ~KK=l,KSKIP 

X : ASTRN + RSTh~(lJ,KKKJ + MST~N 
Cflll 1·~TRP(f\TP,XVAL,YVAL,X,Yl 

~ST~S = Y - ASTMS<IJ,KKK) - HSTRS<lJ,<KKl 
[FRC=AkEAECll*M5T~S 

( *** FIND THE TJTAL CO~PRfSS!VE AND TENSILE fORCES ON THE 
( *** CR055-5ECTION ANO 1~~ TOTAL MOMENT 

c 
c 

c 
c 

IFCEFRC> 6lt6lt62 
61 C=C+lFRC 

GO TO 67 
6 2 T = T + E. F ,.., C 
67 T~O~=T~O~+EFRC•TDlST <IJJ 
BO CONTlN i'E 

G'.) TO H9 
23 CONTINUE 

*** 
**'* 

41 

42 
84 

*** 
*** 

66 

DO 90 IJ=l,NETOT 
I=CIJ+NELE2-ll/NELE2 
~STRN=TDlSTCIJ>•PHl 
DO 90 ~K~=l,KSKIP 
X = A51R~ + RSTkNlIJ,KKK) + MSTRN 
IS THE TJTAL STRAIN GREATER lHAN THE ST~AIN AT FIRST YIELD 
< '+1 = YE 5, 4 2 = ~l J l 
IFCSlRNY-ABS(Xll 41,41,42 
~ST~S = SIGN(FY.XJ - ASIRS(JJ,KKK) - RSTRS<IJtKKKl 
l~O TO R.4 
M5TR5 : X*E - AST~SlIJ,KKK) - RSTHS(IJ,KKK) 
rFRC=AREAE<ll*MST~~ 
FIND THE TOTAL lQMPHE551VE AND TENSILE FORCES ON THE CROSS SECTION 
MlD THE r OT AL MOIYltN T 
l~CEFRC> 66,66tbH 
C=C+Ef·.; c 
G'.1 TO r.9 



313 
314 
.:H5 
316 

3 l ' 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
32.9 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
·345 
346 
34' 

68 T::T+EF~C 

69 TMOM=T~O~+EFRC*TD1STC1J1 
90 CONTINJE 
89 FORCE=C+T 

c=c1qo.o 
TC=C 
r=r•10.o 
IT=T 

c *** IF 'T' A~D •c• ARt ~OTH SUrrlCIENTLY SMALL - SlOP 
IF!ICI 96,97,97 

97 IFCITl 71.71,96 
96 IFCT> 7z,72,73 
73 CT=-C/T 

CTA=AU5<1.0-CT> 
C *** Jc; AHSCCl ~[ARLY tLlUt\L 10 At:j5(T) <71 = YESt 72 = NQ) 

IFCCTA-0.0ll 11,71,12 
C *** IF NM :: 1 THE~ XF~C 15 NOT DtFl~ED 

7 2 IF I '!r-1. LT. 2) GO 1 0 91 
C *** JF THE TJTAL FORCt HAS LHANG~D SIGN T~EN THE CORRECT 
C *** SnLUTI8N HAS BEEN PASSEU 

IF<FORCE/XFRCJ Ul•71,9l 
HI Xf\:O.? 
91 XFRC=r CRCE 

C ***FIND NFW NEUTRAL ~XIS LUCAllON. 
rJNC=SJGN<DINC*XD.rUR(f} 
D=D+DI\C 
00 H? iJ=l•~ETOT 
TDISTIIJ>=DIST<!JJ-D 

85 CONTIN~'E 
G('! TO 450 

71 IC2=i<+2 
,_.MY=TM~"M/!'YlY 

IFC<SKJ~.LT.2l M~Y=2.0*IMJM/MY 
~11 TP-ll (L ,i<z) =MMY 

4JO CnNT PUE 



34~ 5JO 
349 
350 ) 70 
J51 
352 
3?3 175 
354 
3~? 
J56 lHO 
357 93 
358 
359 996 
360 245 
361 
~62 997 
3h3 255 
3 (i 4 999 

365 
366 

CONT Ir~UE 
WRITE ( I it.' ;H • 1 70 l 
FOR"1AT!///• ' *** it M/t'. Y t-Oi-l A GIVEN CU\lt:HNATIJN OF P;PY AND PHI;PHI 

+ y * * * * •• I I • • PH! I p I I-' y = • • ? ( 6 x • I p Ip y = I )) 
'I! q I TE ( I vi R T • l 7 5 ) ( .. 1 r I-'~ I I ( I • 1 ) • l = l • Np ) 
FOR'-1/\l <6'-i DHIY t 3Xtf5 . 2 • 5(6X t f5 . 2) •/ t brl ** t3XtF5 . 2,5(6X • f5e2l) 
D~ 93 I=lt~PHI 
V•Pilf<lwRT,loOl (..,TPHI (1.,J> ,J:2 , K2l 
F0R~PT<1.Fi . 2.2x,i-r.4,5<4X,~t.4) •/t6H ** , 2X,F7 . 4,5(4X , F7 . 4)) 
CONT ltdE 
Gn TO 998 
~v Q I T E < I w R T • 2 4 -:: l 
FOP~AT{//,35H AXIAL ~TRAIN txCEECS 4U trERATIONS 
(,C' TO 999 
~RITF<JWRT,255> 
F~RMAl (// 9 4~H NCUIPAL AX!~ ll[RATION EXC~EDS 30 ITERATIONS 
CONTlN 1 IE 

STOP 
f ~D 



l 5~8~0Ull~E lNTk~(~TP,XVAL,YVAL,X,Y} 

2 C **'* CTVEl'J !\ 5TRAl:'-J \iALUf (XI t-l~W THE COR~E':>POND11'4G STRESS VALUE (y) 

3 C • * * l I c, l'l (1 t, 5 E CJ N !) 0 R J E:. R D I V l l) E L1 D J F F E R EN CE:. 1 N T E q P 0 L A T I O N 
t+ C * • * I T l 5 fl 5 '> U w, ED Th A I < CJ , O 1 I S I HE F l R 5 T 1-' J I NT JN THE CUR VE AN D 
~ C. *** THA.T Tr- iE PKOPfRllt.5 lN 1£'\IS!JN AN() (0"11-'~ESSTJI\ ARE. IDENTICAL 
b UJMfrJSIO~J XVAL UO> ,YVAL 1201 
7 IF(Xl 61•62,63 
H 
9 

l 0 
11 
12 
13 
14 
15 
l& 
l l 
18 
19 
20 
21 
22 
23 
24 
2? 
26 

z ' 
~h 

29 
30 
31 
32 
.n 
34 
j ~) 

c , 
'-

c 

r -
'-

62 -r=o.c 
(J'I 10 9'-U 

61 C:.G~J=-1.tJ 
X:-X 

63 
70 

*** 
*** 

67 

66 
**ii 

21 
10 
?3 

*** 
31 
32 

4? 

l+ 3 

C10 TO 70 
5C!\J=l.') 
CONT 1 i'UE 
IF STf<lll~ EX(f[u5 Tl-4f LAST IA9ULATED STRAIN VALUE, LET THE 
5TRt:~S EQUAL THl LAST 1 !\l1JLA I ED :)Ji<l:.55 VALUE. 
IF<X-XJAL(~TPll 66•67,6f 
Y=YVl\L ('.\JJPl *SGN 
C,O TO ._:;99 
CJNTIN:..JE 
FJN0 fH[ PHEQVAL (l1f;J"AlNHJC1 •X•. 
DO lCJ J=?,~HP 

IF(XVAL<Jl-Xl 21,23,23 
cor~ TI IL.IE 
CNiT I i~JE 
TTA~=J-1 
ITll:H=lTA.o+l 
1-'AKE AC1 JiJSP.1E'\IT5 !F r 'E.Ct55ARY. 
TF<X-0.5•XVALCITA.dl-0.5*XVAL<ITABlll 31,3z,32 
Jrtd=IT"H-1 
C0NT I ;\rJE 
IFcITA'.3l 42,4?,-.3 
I T M~ = l T A '.h 1 
C." H: .-..5 
IX:ITA:·. +2 



36 IFPHP-IX> 46•4~>94~ 
37 46 JX=~lP-IX 
38 ITA~=ITA8+IX 
39 45 CONTINUE 
40 C *** CALCULATE DIVIDtO Ulf~EKENCE~. 
41 ITA5l=I fAB+l 
42 ITA92=ITAB+2 
43 DD11=<YVAL<IT~Bl>-YVAL<ITAH>> 
44 +/(XVAL!ITABI>-XVAL<ITAHI) 
45 DD12=<rVAL(ITAB~>-YVAL<lTAHl>> 
46 +/CXVAL!ITA92>-XVALllTABl)) 
41 DD22=< S ~l2-DDll)/lXVAL(lTAHl>-XVAL<iTA~l> 

48 C *** FIN) 'Y'• 
49 Y=YVAL<ITAB>+<X-XVAL<lTAB>>*DDll 
~O ++CX-XVAL<ITAB>>*<X-XVALlITAHl))*DD22 
51 Y:y~$~~ 

~2 999 Pf TJRN 

53 END 



169 

RESIDUAL STRESS PROGRAM 

DATA INPtrr 

Note: Numbers at left indicate card columns. 

A. Cross Section and Material Properties 

FORMAT (2I5,4El5.5) 

1-5 Number of layers of elements. 
(Max. = 5) 

6-10 number of elements in 1/4 circle of one layer. 

(The product of the above two numbers must not exceed 50.) 

11-25 Outside diameter (in.) 

26-40 Wall thickness (in.) 

41-55 Modulus of elasticity (ksi). 

56-70 Yield stress (ksi). 

B. Date and Time of Run 

FORMAT(4I5) 

1-5 Month 

6-10 Day 

11-15 Year 

16-20 Time (001-2400) 

C. Initial Stress Values 

FORMAT (3El0.3) 

1-10 Tl - Tensile stress value (ksi). 

11-20 C - Compressive stress value (ksi). 

21-30 T2 - Tensile stress value (ksi). 
(The program does not allow the residual stress at any 
element to exceed the yield stress.) 



D. Stress-Strain Option 

FORMAT(2I5) 

1-5 Number of tabulated points on stress-strain curve. 
(Enter 0 if previous response was -1) 

Note: Data is now complete if the actual stress-strain data 
is not used. 

E. Stress-Strain Data 

For each tabulated point on the stress-strain curve: 

FORMA.T(2El5.5) 

1-15 Stress value (ksi). 

16-30 Strain value 
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RESIDUAL STRESS PROGRAM 

FLUW DIAGRAM 

START 

• 

Read: NLYR, NELE, OD, WT, E, FY 

' 

Read Tl, C, T2 

Is tabular 
No stress-strain data 

#' 

useci? 
" 

,,Yes 

Read stress-strain data. 

·~ 
~ 

' 

Calculate for each layer: 

Average radius 
Arc length of elements 
Area of elements. 

1 ~ 



Compute the distance from the 
bottom of the cross section 
to each element. 

Locate the max. compressive stress 
at the center of the cross 
section. 

Beginning of iteration to 
determine the correct value 
of T2. 

Have more than 
20 iterations been 

performed? 

No 

Yes 
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STOP 



Beginning of iteration to 
determine the correct location 
of 'C'. 

Have more than 
20 iterations 
performed? 

No 

Compute the net force 
on the cross section. 

Is the net force 
nearly equal to 

0.0? 

Yes 

No 

STOP 

Adjust the 
location of 'C' 

Go To 400 
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Yes 

Interpolate tne strain 
for each element -
SUBROUTINE INTERP 

Stop if the stress 
on any element 

exceeds the yield 
stress. 

Compute the net 
bending moment on the 

cross section. 

Is the net 
bending moment 

nearly equal to 0.0? 

Yes 

Is tabular 
stress-strain data 

used? 

No 

No 

Adjust the 
value of T2. 

Go To 300 

Calculate the strain 
for each element. 

using Hooke's Law. 

Stop if the stress 
on any element 

exceeds the yield 
stress. 

Print the stress and strain value for each element. 

STOP 
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l 
2 
3 
4 
5 
6 
7 
H 
9 

10 
11 
12 
13 
14 
15 
16 
1 7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

c *** 
c *** 

*** 

PESIDUAL STRESS P~OGRAM ARNOLD L. WAGNER AUG. 1975 
THE ruoPJSE OF THIS PRO~RAM IS TD MODIFY AN ASSUMED 
RFSICUAL STRESS DISTRIBUTIO~ IN ORDER TO SATISFY EQUILIBRIUM. c 

c *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
C *** NO ~ESIDJAL STRES5 VALUE ~AY EXCEED T~E YIELD STRESS 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c **it 
c *** 
c *** 
c *** 
( *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
( *It* 
c *** c **It 
c *** 
c *** 
c *** 
c *** 
c *** 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
VARIABLES 
AFRC - A'3S:lLUTE VALUE OI- FORCE 
A~O~ - ABSOLUTE VALUE O~ XMOM 
APC - ~RC DISTANCE FROM TDP OF CROSS SECTIO~ TO ELEMENT 
ARCI<I> - ARC LENGTH OF ELEMENT I~ LAYER •I• 
APEAE<I> - ~REA OI- ELEMENT IN LAYER 'I' 
AVGRCIJ - AVERAGE RADIU~ TO LAYER 'I' 
C - ASSU~ED MAX• COMPRE5SIVE STRESS 

(NOT CHANGED> 
CJSTclJ) - DISTANCE FRO~ Borro~ OF CROSS SECTION 

TO F.:LE"'IENT 'I J' 
E - MODULUS OF ELASTICITY 
EFRC<IJJ - FORCE JN ELEMENT 'IJ' 
FORCE - TOTAL FORCE ON LROSS SECTION 
FqCP - FORCE VALUE ON LAST ITERATION 
FY - YIELD STRESS 
TRAT - FLAG TO ALLOW THJS PROGRAM TO BE RUN IN THE 

GATC~ MODE AS WELL AS TI~ESHARING 
Nl - MAX. ~UMBER OF ITERATIONS ALLOWED TO OATAIN 

SUMMATION OF FORCES EQUAL TO ZERO 
r' 12 - MAx. "'JUMBER OF ITE~ATIONS ALLO~ED TO OBTAIN 

SUM~ATION OF MCMENTS EUUAL TO ZERO 
~es - •l = ACTUAL STRES~-STRAIN DATA JSED 

-1 = AILlhEAR STR~SS-STRAIN RELATIONSHIP 
rFLE - NJMBER oF ELf~ENlS IN 1/4 CIRCLE IN ONE LAYER 
~FLE2 - ~U~BER OF ELEMENTS IN 1/2 CIRCLE I~ 3NE LAYER 
NLY~ - NJMBER OF LAYERS 
~HP - ~1U'1BER OF TA!:3ULATED POI~HS 01• STRESS-STRAIN CURVE 
O~ - OJTSIDE DIAMtTER QI- TUBE 
ry - AXIAL LOAD AT FJPSl YIELD 



37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
4! 
4b 
49 
50 
51 
~2 

53 
54 
55 
56 
57 
5f< 
59 
60 
61 
62 
63 
64 
t-5 
66 
67 

. 68 
69 
70 

c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c It** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *"'* 

c *** 
c *** 
c 
c 
c 
c 
c 
c 
c 
c 
c 

*** 
*** 
*** 

*** 
*** 
*** 
*** 

P.c;T~~HJJ> - RESlDJAL STRAIN AT ELEMENT 'IJ• 
PST~5(JJ> - RF~lDJAL ST~ESS AT ELEMENT •IJ• 
STOP~~ - ALLOWABLE DEV I A Tl ON t-ROM ZERO MOMENT 
STOPP - ALLJW~BLE DEvlAllON FROM ZERO FORCE 
~TR~J - INTERPOLAIED STkAIN VALUE 
STRSX - RSTRS(l~> 
Tl - ASSUMED TENSILE ST~ESS AT TOP OF CROSS SECTION 

( r .. oT CriANGEC) 
TZ - ASSUMED TE~SILE STRESS AT BOTTOM OF CROSS SECTION 
( CHA~~GfD T:> ACHIEVE ZFRO ~0-.,E'iT > 
THETA - ANGLE FRO~ TOP OF t~oss S[CTl~N TO EL[MENT 
TLY~ - Trl1CKNES5 ~F EACH LAYtR 
TZI~C - AMOUNT OF CHANGE IN T2 
WT • WALL THICKNE~S OF TUBE 
xn - CHA~GES FROM 1 TO 0.5 AFTER CORRECT XDIST IS PASSED 
XDJ~C - AMJUNT OF CHANGt IN XDIST 

xn1ST - DISTANCE t-RO~ BOTTO~ OF CROSS SECTION TO •c• 
<CHANGFD TO ACHIEVE ZERO FORCE) 

XID - I~SIDE DIAMtTER 
XM - C~A~GES FROM 1 TO 0.5 AFTER CORRcCT TZ IS PASSED 
XMQ'-1 - TOTAL MOME"'-'T ON <:.ROSS SEC TI ON 
XMJ~P - XMJM VALUE ON LAST ITERATION 
x~y - ~o~E~T AT FIRST YlELD 
XVAL(K) - STRESS VALUE ~R~M 5TRESS-STRAIN CURVE 

<~OTE DIFFERENT MEANIN~ JN MTPHI PROGRA~> 
YVAL(K> - STRAlh VAL~E ~ROM 5TRESS-STRAIN CU~VE 

<~OTE DIFFLREMT ~EANIN~ IN MTPHI PROGRA~> 
DIME~SIO~ ~STRS<100>,RSTRN<lOO>,DIST<100>,EFRC<lOO) 
~J~E~SIO~ AVGR<5>tAREAE<5),ARCI<5> 
DI~EtiSJO'J XVAL<20>,YVAL<20> 
IBAT=-1 
IPtiT=l 
tr(IFAT) llt999tll 

11 I ~E AC·= 10 



7 1 
72 
73 
74 
75 
76 
l7 
78 
79 
80 
81 
82 
83 
84 
85 
86 
H7 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 

IWRT=6 
(;() TO 14 

12 IREAC=2 
IWRT=5 

14 PfADCI~EADtlOO> NLYR,NELEtODtWTtEtFY 
100 FOR..,AT!2I5t4El5e5> 

PEADCIREADtl05) IJltlD2tID3tID4 
105 FOR\1ATC415) 

WPITFCh~~Ttl70) 
170 FnR~AT<t~lt//////t4lH DEPT. OF ENGINEERING AND APPLIED SCIENCE t/t 

+26H POPTLAND STAT~ UNIVERSITY ,//, 
+44H ST~UCTJRAL TUdE RESIDUAL STRESS-STRAIN DATA 

v'PITE<IWRTtl75> IDl,ID2tlD3tlD4 
175 FOR\1AT!/,6H DATE=•l2,1H/,J2,1H/,I2t/t6H TI~E=tI4> 

WPITF<IWRTtl85> NELEtNLYR 
185 FrRViAT!/,6H NfLE=tl3t/thH NLYR=tl2) 

WRJTF(J~RT.180) oD.WTtEtFY 
180 FOR~AT(/, 25H OUTSIDE DIAMETER : 9 El5.St5H 

+ 25H WALL THICKNESS = tEl5.5t5H 
+ 25H MODJLUS Of ELASTICITY = tE15.5t5H 
+ 25H YIELD STRESS = tEl5.5t5H 

µEADClQEAD.110> TltCtT2 
110 FnR~AT<3El0.3) 

wqJT[ClWQTtl35) TltCtT2 

IN. 
IN. 
KSI 
KSI 

'I• 

135 FOR~AT!/t22H INITIAL STHESS VALUES t/t4~ Tl:,El0.3,3H C: 9 El0.3, 
+4H T2=•El0.3) 
REAJCI~EADtl20> N~S,NTP 

120 Ft"\R'v1ATl215) 
IFC"JfS.LT.0) GO TJ 16 
f:.'EADIIQEADtl30) CXVALCK) tYVAL(K) ,K=l 9 NTP) 

130 FOR~ATC2EJ5.5) 
16 NELE2=~;ELE*2 

NFTJT=~LYR*~ELE2 

l< J D=ClJ-2. O*•"'T 



105 
106 
107 
L08 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
1_40 

PY=3.l41593/4.0*(0D*OD-XID*XID>*FY 
XMY=3.141593/64.0*(0D**4•0·XID**4•0>*2•0/0D*FY 
sroPP=o.oooos*PY 
STOPM=O.OOl*XMY 
DO 10 I=lt~LYR 
DO 15 J=ltNELE2 
IJ:J+(I-l)*NELE2 
RSTRS(IJ>:O.O 
PSTRN(JJ):O.O 
DIST(IJ>=o.o 

15 CONTINUE 
AVGR(I>=o.o 
AREAE(I>=o.o 
ARCI<I>=o.o 

10 CONTINUE 
TLYR=WT/!14LYR 
DO 20 l=lt"iLYR 
AVGR(J):(QD-2.0*I*TLYR+TLYR>*0•5 
ARCI(J):(3.141593*AVGR(l))/NELE2 
AREAE(l>=ARCJ([)*TLYR 

20 CONTINUE 
DO 30 l=ltNLYR 
ARC=-ARCl(l)/2.0 
t10 35 J= 1, r.JELE2 
IJ=J+CI-l>*NELE2 
ARC=ARC+ARCl(l) 
THETA=ARC/AVGR(l) 
DISTCIJ>=AVGR(l)*COS(THETA>+AVGR(l>+TLYR/2.0+<I-l>*TLYR 

35 CONTINUE 
30 CONTINUE 

XOIST=0.5*00 
N2=0 
XM=l.O 
T2I 1'K=O. l*·T 2 
XDI"K=O. l•:JD 

C *** STAKT OF T2 ITERATION LOOP *** 

..... ...... 
00 



141 300 CONTINUE 
142 XD:l.O 
143 N2:~2+1 

l 4 4 I F < ~? • 0 T • 2 0 ) GO T J 9 9 9 
145 ta=o 
146 C *** ~TA~T ~F XDJST lTEPATION LOOP *** 
147 400 CONTINUE 
148 WRITECIIJRT,140) XJIST 
149 140 FORMAT<J,•XDIST=••Fl0.4l 
150 ~1=~1+1 
151 JF(~l.GT.30) GO TJ qq9 
152 FORCr=o.o 
1?3 C *** FIND STRESS AT E.ACtl ELE'MENT AND TOTAL FORCE *** 
154 DO 40 IJ=l•NETOT 
155 I=<IJ+NELE2-l)/NELE2 
156 IF<JJST<IJ>-XDIST> 41,41,42 

157 
158 
159 
160 
161 
162 
16~ 

l 1>4 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

c 

c 

c 
c 

41 

42 
46 

40 

150 

*** 

*** 
52 

*** 
*** 

RST~S(IJ>=-<C+T2)/XDIST*DIST<IJ)+T2 
f.O TO 46 
PST~S<IJ>=<C+Tl)/(0D-XDIST>*<DI5TlIJ>-XDIST>-C 
fFRC<IJ>=RSTRSCIJ)*AREAE(J) 
FORCE=FO~CE+EFRC(lJ> 

CONT H"LJE 
~'PJTE<Ivv'RT•l50) F:::>RCE 
FCR~ATC;,•FORCE=••Fl0.4> 
~FRC=APSCF:::>RCE> 
IS THE TJTAL FORCE SUfFlClE~TLY SMALL •• 5l=YES•52=NO *** 
IF(AFRC-5T:::>PP) 51•51•52 
IF Nl=l THEN FRCP HAS NOT YET BEEN DEFINED *** 
IFc~n.Lr.2> GO TO 59 
JF FORCE HAS CHAN~ED SIGN THEN THE CO~RECT *** 
YDIST HA5 BEEN PASSFD *** 
IFCFORCE/F~CP) 53,51,59 

53 Xl)=~.5 
59 FP(P:f ,JR(E 



175 XDINC=SIGN(XDJNC•XD,FORCE) 
176 XOIST=XDIST+XDINC 
171 C ***TRY AGAI~ WITH NEW XDIST *** 
178 GO TO 400 
179 51 CONTINUE 
180 C *** 5UM~ATIO~ JF FORCES=O• NOW ~IND MOMtNT *** 
181 XDI~C=0.05*00 
1e2 XMo~=o.o 

183 ~O 50 lJ=ltNETOT 
18~ XMQ~:XVQ~+fFRC<IJ)*DIST(IJ) 

185 50 CONTINUE 
186 WPITE(IWRT.160) x~o~ 

187 160 FOR~AT<l•'MOMENT='•Fl0.4) 
l8A A~O~=A85(X~OM> 
189 C *** IS THE MJMENT SUFFICIENTLY 5MALL •• 6l=YESt62=NO 
190 lF(A~O~-STJP~) bl•61,~2 
191 C *** IF N2=1 THEN xMQMP HAS NOT YET BEEN DEFINED *** 
192 62 IF<~2.LT.2> GO TO 69 
193 C *** IF XMO~ ~AS CHANGED SIGN THEN THE CORRECT *** 
194 C *** T? HAS 9EEN PASSED *** 
195 JF(XM0¥/XMOMP) b3t6lt69 
196 63 XM:0.5 
197 69 X¥O~P=XMJM 
198 T2INC=SIGN<T2INC*XNtXMOM) 
199 T2:T2+T21NC 
200 C *** TPY AG~IN wlTH NEW T2 *** 
201 ~O TO 300 
202 61 CONTINJE 
203 C *** EQUILIRRIU~ SATISfIEO •••• CALCULATE STRAIN VALUES *** 
204 IF<~ES) 8lt8lt82 
205 81 CONTINJE 
206 DO 60 IJ=ltNETOT 
207 IF(~STRS<IJ>.GT.FY) GO TO 996 
208 PST~~,(JJ)=~STRS(JJ)/E 



209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 

60 CO"JTINJE 
(;Q TO 86 

82 CONTINUE 
~n 70 IJ=l.NETOT 
JF(~STRS(JJ).GT.FY) GO TO 996 
)t':RSTRS<IJ> 
CALL l~TRP<~TP,XVAL.YVAL,X,Y) 
P5T=<N(JJ):y 

70 CONTINUE 
86 ~OJTE<l~~T.200) 

200 FOR~AT(//,28H RESIDUAL STRESS-STRAIN DATA •I• 
+35H ELEM. ~O. ~lRfSS STRAIN ) 

WRITE (l'l"JRT •210> (I J,RSTRS (IJ) ,RSTRN ( IJ) • IJ=l .NETOT> 
210 FOR~ATC' •,y5~3X,2E15.5> 

GO TO 999 
99~ WRJTE<I~RT,250) 
250 FOR~Al(/,43H RESJJUAL STRESS VALUE EXCEEDS YIELD STRESS 
999 CONTINUE 

STOP 
END 

..... 
00 ..... 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
2 f; 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

SUB~OUTl~E INTRP(NTPtXVALtYVAltXtY) 
c *** 
c *** 

FOR A GIVEN 5TRl55 VALUE (X> FIND THE CORRESPONDING 
STRAIN VALUE <Y> JSING A SECOND ORDER DIVIDED 
PIFFERfNCE INTtHPJLATION c 

c 
c 

*** 
*** 
*** 

c *** 

IT IS ASSU'-"ED THAT IOtO> IS THE FIRST POINT ON THE 
CURVE 4ND THAT THE pRQpERTIFS IN TENSION AND 
COMPPESSIO~ ARE IJENTICAL 
rIMENSJO~ XVAL(20>•YVALl20) 
JF(X) 6lt62t63 

62 v=o.o 
GO Tc 999 

61 SGN=-1.0 
X=-X 
C:O TO 70 

63 SGN=l.O 
70 CONTINUE 

C * * * F 1 ND THE I NT ERV AL C 0 f-i TA I N I NG • X • 
IF<X-XVAL<NTP>> 66t67,6/ 

67 Y=YVAL<NJP>*SGN 
GO TO 999 

66 CONTINUE 
to 10 J=2tNTP 
IF<XVAL(J)-X) 2lt23t23 

21 CONTINUE 
10 CONTINUE 
23 ITAB=J-1 

c *** 
ITABl=ITAB+l 
MAKE ADJUSTMENTS IF NECESSARY 
JF(X-0.5*XVAL(ITAd>-0.5*XVAL<ITA81)) 3lt32t32 

31 ITA3=1TAB-l 
32 CONTI N:JE 

JF<ITAe> 42t42t43 
42 ITAB:ITAB+l 

U"l TO 45 
43 IX=ITA'.3+2 

IF<~TP-JX) 46.4?,45 



37 46 JX=~TP-IX 
38 ITAB=ITAB+IX 
39 45 CONTINUE 
40 C *** ~ALCULATE DIVIDED DIFFERENCES 
41 JTAAI=TTAB+l 
42 ITA32=IT~B+2 
43 D~Il=<YVAL(ITAtll)•YVAL<ITAB>> 
44 +/(XVAL<lTABl)-XVAL<ITABJ> 
45 DDI2=<YVAL(ITAB2>-YVAL<ITAB1>) 
4h +/(XVALCITA82)-XVALCITAB1)) 
47 or22=<0012-DD11>1<XVALCITAB2>-XVAL(IJA8)) 
48 C *** FIND 'Y' 
49 Y=YVAL<ITAB)+(X-XVAL<ITAB>>*DDll 
50 ++(X-XVAL<ITAB>>*<X-XVAL<ITA9l>>*DD22 
51 Y=Y*SG~ 
52 999 PFT~RN 
53 FND 
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