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CHAPTER I

INTRODUCTION

The analysis and design of structures has advanced greatly in
recent years, due in large part to the use of digital computers. Pro-
blems requiring complex derivations for theilr solution may now be
handled relatively easily using numerical methods in an iterative
(trial and error) form. In an iteration procedure a trial solution
is made and then checked for correctness. If the solution is not
correct an error exists and the problem must be solved again with
changed parameters. If the iteration is to converge, each successive
solution must be closer to the correct solution. This process is
continued until the error is acceptable. The procedure just described
is referred to as the open form approach, and is commonly used by
computer programs for the analysis of non-linear structural systems,

The primary goal of this project was the determination of the
ultimate load capacity of a circular steel tube loaded as a beam—column,
i.e., a loading condition consisting of both axial load and flexure.
Methods for calculating the combination of axial load and bending mom-
ent at failure in wide-flange members have been developed (11) and are
currently employed in design practice. Previous investigators (4, 6, 16,
17) have shown that tubular members exhibit structural characteristics
markedly different than wide~flange shapes when subjected to loads
causing stresses above the elastic range. Since a systematic technique

to determine the ultimate strength of tubular members is so far not



avallable, an investigation was launched to develop an analytic tool
in the form of a computer program which could be used to gener. e
‘load displacement histories and calculate failure loads for circular
steel tubes,

The computer model involves two separate phases of calculations,
Figure 1. First, the moment-thrust-curvature (M-P-@) relationship
for the member cross section is obtained. Using this as input, the
ultimate strength of the beam-column is determined for a selected
pattern of loading. The computer model is capable of accounting for
the effects of residual stresses during the generation of the M-P-{
relationship. The inclusion of any configuration of stress—-strain
relationship may be accomplished by providing appropriate input data
in tabular form. It should be noted that while this investigation
includes the determination of M-P-f data, those provided by other
investigators may also be used. The calculation of failure loads is
accomplished by a numerical technique which increases the load by a
variable step incrementing procedure until no further load can be
supported, At this point the beam-column is considered to have re-
ached failure.

The major use of the computer model in this investigation is
the development of curves giving combinations of axial load and end
moments which cause failure, These curves are commonly referred to
as interaction diagrams, Figure 2. Interaction diagrams for wide-
flange members are available and design equations based on these have
been developed (3), however, it is generally believed that they give

excessively conservative results when applied to tubular members .,



PHASE I

Determination of Moment-Thrust-Curvature
(M-P-@)Relationships for Member Cross Section

!

PHASE II

Calculate Failure Loads for the
Specific Beam-Column Configuration

Figure 1 Block diagram of the computer model
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The aconomical design of tubular members is of special interest
to engineers involved in the design of offshore facilities. Ci.cular
tubes are commonly used in offshore construction because of their
ability to resist bending equally well in any direction. They also
exhibit a greater flexural reserve strength beyond first yield thau
the wide-flange shape, and are not subject to lateral-torsional buck-
ling. Engineers will be limited to available design equations de-
veloped for wide-flénge sections until acceptable criteria specifically
for circular tubes is established. Information dealing with the
overall column stability of circular tubes will provide a basis for
the development of a design specification for such members.

The analytical investigation was supplemented by a testing
program which consisted of loading four model tubes to failure by an
eccentric axial load. The results of these tests and published test
results of other investigators were used to check the validity of the
computer model used in this study.

The following discussion includes a brief review of research
related to tubular members, a documentation of both the computer model
and the testing program, and a comparison of the analytical and exper-

imental results.



CHAPTER II

REVIEW OF LITERATURE

A great deal of work has been done on the analysis of wide-
flange members loaded as beam-columns (8,11), however there seems to
be a scarcity of published information concerning the response of
round steel tubes subjected to the combined effects of bending and
axial load. Work by Ellis (5) consisting of both an analytical and
experimental investigation has been reported. Another analytical
invest4{gation by Snyder and Lee (18) is available, however, the appli-
cation of the method proposed is limited to specialized beam-column
configurations.

Results of experimental studies include the report of tests on
square tubes by Dwyer and Galambos (4). The major thrust of the report
was to compare the relative strengths of the square tube and wide-
flange cross sections. Tests of circular tubes in pure bending have
been carried out by Sherman (16,17) with the major objective b;ing
the determination of a limiting diameter to thickness ratio to pre-
vent local buckling. In vigw of the somewhat limited nature of the
reported investigations concerning circular tubes, a computer model
which has applicability to a wide variety of support and loading
conditions would be useful.

The beam-colummn analysis technique used in this investigation

(Matlock's Recursive Technique) has been modified by previous invest-



igators to perform advanced beam-column analysis. For example,
Mueller (15) modified the technique to handle beam-colummns on non
linear foundations. Also, the technique was used by Matlock and
Taylor (14) in a computer program to analyze beam-columns under move-
able loads. However, so far as can be determined, the technique has

not been applied to the ultimate strength analysis of beam-columns.



CHAPTER III

COMPUTER MODEL

The initial portion of this paper documents the development
of the computer model used fo determine the ultimate load capacities
of tubular beam~colums. Also included are design applications in
the form of interaction diagrams, and a comparison of the analytical

results with published test results of other investigators.
PROBLEM DEFINITION

The collapse of a beam-column may be classified as either elastic
instability (no yielding at any cross section) or plastic instability
(partial or complete yielding at some or all cross sections). While
the determination of the elastic buckling load is normally accomp-
lished by a closed form solution technique (i.e., Euler's Equation),
the determination of the plastic buckling load involves non-linear
relationships and is most readily handled by an open form approach.
The major difficulty arises from the fact that once plastic action
starts, Hooke's Law is no longer valid. The computer model developed
in this investigation may be used to predict the ultimate strength
of tubular beam-columns which fail by either elastic or plastic in-
stability.

Other factors considered in this study include residual stresses

due to the manufacturing processes of the tube and the effect of the



actual stress-strain relationship of the material. Local buckling
was not investigated, however, reports of other investigators :i.e

referenced to be used as a separate check. The problems of initial
crookedness of the member and ovalization of the cross section were

beyond the scope of this project.
OVERVIEW

As mentioned previously, the computer model consists of two
major components; generation of moment-thrust-curvature (M~-P-@)
relationships and determination of fallure loads. The moment-thrust—-
curvature relationships are a property of the member cross section
and define, for a given strain condition, the stress distribution and
magnitude necessary for equilibrium. The M-P-@ curves are the basic
data from which overall column stability can be determined in that
they define the behavior of the member in both the elastic and in-
elastic range. The M-P-f} relationships are a direct input into the
failure load program (Figure 1). This allows M-P-@ data developed by
other investigators to be used in calculating failure loads, Details

of each phase of the computer model are now presented.
MOMENT-THRUST-CURVATURE RELATIONSHIPS

General

The determination of the M-P-@ relationship is accomplished by
an open-form solution technique. As noted by previous investigators
(6), closed form solutions for determining M-P-@ relationships are

often tedious and time consuming since several special derivations
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must be made. Also, because of the complexity of the derivations
involved, closed form solutions use an idealized bilinear stre:s.-
strain diagram and have limited ability to incorporate residual stress
patterns into the analysis. An open-form solution technique to de-
termine M~P-@ relationships for circular tubes by dividing the cro.s
section into horizontal sectors has been previously developed (6).
However, it is believed that the method presented herein is more
accurate and complete for element idealization, allows the invest-
igation of more general residual stress patterns, and contributes to
the overall efficiency of the computer model.

The open-form technique developed in this investigation divides
the cross section of the circular tube into layers of elements dis-
tributed around the circumference as shown in Figure 3a. The number
of layers and elements per layer are limited only by the size of the
specified arrays in the computer program. This technique permits the
inclusion of any configuration of material stress-strain relationship
and residual stress distribution patterns directly into the solutiom.
To maintain maximum flexibility for the user, one of two forms of
input for the inclusion of residual stresses may be used:

1. An assumed stress pattern consisting of a linear variation

between three peak values (Figure 3b).

2. Any distribution of stresses in matrix form.

Although the assignment of any residual stress value to each
element 1s possible, it is required that the final distribution be
statically admissible by satisfying basic con&itions of static equil-

ibrium. (See Appendix III for adjustment of an assumed stress pattern.)
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Figure 3 Element configuation and assumed residual stress distribution
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Analytical Procedure for Determining M-P-f§ Data

The technique used to generate the M~-P-} data uses three .ate-
gories of stress and strain; those due to residual stress, axial
load, and bending. The loads are applied in the following order.
First, the applicable residual stress and strain value is assigned
to each element. A percentage of the stub-columm yield load, Py, is
then applied to the cross section. This axially stressed cross section
is then given a value of curvature and the moment corresponding to a
state of equilibrium is calculated. The result is a value of moment,
thrust and curvature (M-P-@) satisfying equilibrium. The process is
repeated with different combinations of axial load and curvature to
obtain an adequate number of points to describe the family of M-P-@
curves .

The calculation of the M-P-f relationship uses two iteration
loops as shown in the flow chart of Figure 4. The first determines
the correct axial strain value due to the applied percentage of Py.
This 1s necessary because it is possible for the sum of the axial
strain, P/AE, and the residual strain to exceed the yield value on
some elements. In such cases the elemental stress available to resist
axlal load is less than that predicted by elastic theory. Since the
residual stress distribution 1s an initial condition, its value can-
not be changed. Therefore, the additional force must be provided by
other elements. It should be noted that the stress distribution and
its magnitude are calculated by allowing the strain on all elements
to be increased by the same amount, The resultihg stresses are ob-

tained from the material stress-strain information; The second iter-
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Figure 4 Flow diagram for calculation of M-P-@ data
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ation determines the correct location of the neutral axls given a value
of curvature. It is initlally assumed to be at the centroid o1 the
cross section., As mentioned earlier, with an axial load applied to
the column section, a value of curvature is assumed; then the bending
moment and thrust necessary to hold this state of strain are calculated.
If the calculated thrust does not agree with the applied axial load,
the locatlion of the neutral axis 1s shifted until agreement within a
specified tolerance is obtained. The M-P-f data calculated by this
procedure are ncrmally depicted as a family of curves such as those
in Figure 5. These curves represent the correct combination of bending
moment, axlal load and curvature for a circular tube. As may be ob-
served, the M~P-@ data have been normalized by dividing each quantity
by its value at first yield. Normalization is helpful in presenting
data of this typé since the data represent circular tubes in general
rather than one specific circular tube. A family of curves for per-
centages of Py ranging from 0.0 to 1.0 make up the M-P-@ data used by
the beam-column analysis program.

The M-P-@ relationship shown in Figure 5 were calculated for a
standard weight round structural tube with a 10 inch nominal outside
diameter (ID/OD = 0.932) without considering residual stress effects.
The material properties were approximated by a bilinear stress-strain
relationship with a modulus of elasticity of 30 x 103 ksi and a yield
stress of 35 ksi. These values are the minimum specified in the
American Soclety for Testing and Materials standard A53 for Grade B
pipes of types E and S. Although the M-P-@ data presented in Figure

5 were calculated for a particular circular tube, they may be used to
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represent the moment-thrust-curvature characteristics of all thin
walled circular tubes with an average shape factor of 1.30.

It is important to note that local buckling criteria and oval-
ling effects have not been incorporated in the moment-thrust-curvature
calculations. A separate check for local buckling should be made for
the specific tubular section under consideration. Suggested methods
for determining the limiting diameter to thickness ratio (D/t) have

been previously outlined (13, 16, 17).

Consideration of Residual Stresses and Nonbilinear Stress-Strain

Relationships

As noted earlier the computer model may be used to determine
the effect of residual stresses and nonbilinear stress~strain relation-
ships on the predicted failure load. The approach selected was to
incorporate the particular residual stress pattern and/or stress-
strain relationship into the moment-thrust-curvature data which was
then used in the failure load analysis. The effect on the M-P-§
curves 1s an indication of what change to expect in the ultimate load
value, i.e., M-P-0 curves which exhibit relatively higher bending
moment capacities will result in relatively higher ultimate load values.

Consider first the effect of residual stresses. Since no test
data on the actual residual stress distribution in a circular tube was
avallable, the stress distribution shown in Figure 3b was assumed;
This stress distribution is the assumed result of the longitudinal
welding of the tube. The cross section used in this.comparison is the
same as that used for the generation of the M-P-@} curves shown in

Figure 5. In determining the moment-thrust-—curvature relationship it
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was assumed that the axis of bending passed through the weld although
any axis orientation could have been chosen. A comparison of t.e
M-P-@ curves with and without the effect of the assumed residual stress
pattern is shown in Figure 6. Notice that for a constant value of
axial load and curvature the calculated value of bending moment s
significantly lower for the case which used the assumed residual stress
pattern. The relative difference is especially large at combinations
of low curvature and high axial load.

As developed, the computer model permits either an idealized
bilinear stress-strain relationship or stress-strain values obtained
from the results of coupon tests to be used in the development of the
moment-thrust-curvature relationship. M=-P-@# curves using the stress-
strain data depicted in Figure 7 are presented in Figure 8. The cross
section considered had an outside diameter of 10,752 inches and a wall
thickness of 0.194 inches. Note, for low strain values the bilinear
stress~strain relationship overestimates the actual strength. As the
strain values increase the effects of strain hardening become notice-
able as the curve representing the actual stress~straln data shows a
greater bending moment capacity than the curve déveloped using the
bilinear stress-strain relationship.

The procedure for including the actual stress-strain data in-
volves interpolating a stress value for a given strain value from
tabular data. The tangent modules approach was used with the inter-
polation performed by a second order divided difference. Unequally
spaced points may be used thus permitting a better idealization in

areas of special interest, such as the initial part of the stress~
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strain curve. Details of the interpolation procedure are given in

Appendix IV.

DETERMINATION OF FAILURE LOADS

General

The determination of the ultimate load capacity of a beamcolumn
1s accomplished by a numerical method which increments the load until
failure., For each value of load the beam—column 1s analyzed and a
check for fallure is made. Next, the bending stiffness is adjusted
as required. The member is then reanalyzed until the adjustment is
negligible at which time the load is increased and the process continued.
The following are required to implement this procedure:

a) method for analyzing beam-columns

b) detection of yielding and appropriate adjustments

c) mathematical definition for buckling

d) iterative procedure for incrementing the load

A detailed explanation of each of these follows.

Beam Columm Analysis

The beam-column analysis employs Matlock's recursive solution
technique (9, 14, 15). The following discussion deals only with the
fundamental characteristics of Matlock's technique. A complete deriv-
ation of the recursion equations is given in Appendix I.

Matlock's method is a general purpose elastic beam~column anal~-
ysis technique. The method conveniently handles a wide variety of
support and loading conditions, and accounts fof the P-Delta effect.

The bending stiffness can vary along the member-iength in any conceivable
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configuration. Since plastic action essentially changes the bending
stiffness, the latter characteristic of this method allows it 1. be
employed in an iterative analysis of beam~columns with stress con-
ditions above the elastic range. However, the method is limited to
a planar problem, i.e. all loads and support reactions pass througa
the vertical axis of the member.

The method of analysis may be characterized as a finite diff-
erence approach which divides the member into a number of equal length
segments, as shown in Figure 9, Each segment 18 assumed rigid with
the bending stiffness (EI) concentrated at the joints which, hereafter,
are referred to as stations. All distributed load and support values
are input to the computer program as concentrated values at the sta-
tions. The solution procedure 1s to first calculate the transverse
deflection at each station and then perform a finite difference
differentiation to calculate slope and curvature. As the curvature
values are calculated the bending moment at each station is determined

from the equation of the deflected elastic beam:

- d? (1)
Mj = (EI)4 (ﬁ) {
where 1 = station number

M = bending moment

EI= bending stiffness

42
E§§ = (} = curvature

The differentiation 1s then continued to calculate shear and net load.
For beam-type members the calculated net load provides a positive

check on the solution, that is, if the calculated net load is equal
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to the input load, then the solution is correct. However, if axial
load is present, the P-Delta contribution to the bending moment will
show up in the net load making it differ slightly from the input load

(see Appendix I for a detailed explanation).

Detection of Yielding and Appropriate Adjustments

The method of analysis just described is an elastic solution,
however for beam-columns of short and intermediate length there will be
some yielding before failure. The procedure used to account for yleld-
ing is to adjust the bending stiffness (EI) at all stations where
ylelding has occurred. The approach used is the '"Secant Stiffness"
method. The adjustment results in a member with a variable stiffness
along its length, which Matlock's method is capable of handling. It
should be noted that the adjustment 1s to the data describing the mem-
ber being analyzed and not to the basic analytical procedure.

The moment-thrust-curvature relationship represents the correct
combination of bending moment, axial load, and curvature. Note that
equation (1) represents the initial straight-line portion of the M-P-@
curves with the slope equal to the bending stiffness. As the M-P-§
curve in Figure 10 indicates, the relationship between moment and curv-
ature is not linear after the cross section starts to yleld. At this
point the bending moment calculated from equation (1) will not agree
with the bending moment determined by the M-P-@ curve for given values
of axial load and curvature. (The procedure for interpolating the
bending moment from the M-P-@ curves is given in Appendix IV.) To
achieve agreement a '"'secant stiffness" value is substituted for the

old stiffness so that the bending moment on the M-P-@ curve equals the
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product of the secant stiffness and the curvature. The procedure is
repeated for each station which is not in agreement with the M-P- 3
data, and the beam-columm then reanalyzed. The whole process is con-
tinued until all stations along the beam—column are in agreement with

the moment-thrust-~curvature relationship.

Buckling Criteria

A major concern of this study was the determination of a mathe-
matical definition for buckling. The analysis of a member, using the
recursive technique, for load values up to and beyond the buckling load
will produce a point of discontinuity at the critical load value. While
this sudden change in the sign of a deflection, as shown in Figure 11,
could possibly have been used as a test for buckling it was necessary
to have a more fundamental definition. To achieve this, the equations
used in the beam-column analysis were examined.

The two basic recursion equations in Matlock's method are:

ay Yy o tby vy gty vy tdy ity vy =f @

(Eq. 1.15, Appendix I)

and

Yi = Ay ¥ By Vi Y Gy Vi (3)
where

Ay =Dy (@83 By p +Bp) Ay +a; 4, £

By =D; ((a; By , +by) Cy 3 +dyp)

Ccy = Di (ei)

Di = —1.0/(ci + (ai Bi—2 + bi) Bi-l + ay Ci—2)
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If equation (2) is repeated for each station 'i' along the member
and the result written in matrix form, the coefficients aj - e; make
up a stiffness matrix with a bandwidth of five. Furthermore, if the
alements below the diagonal of this stiffness matrix are driven to
zero by a Gaussian Elimination procedure, the resulting equations ure
described by equation (3). Solving equation (3) for each statiom
amounts to back substituting for calculating deflectomns. Therefore,
since Matlock's method is equivalent to a Gaussian Elimination with
back substitution the checks for stability used in classical matrix
methods may be applied.

In classical matrix analysis stability requires that the stiff-
ness matrix be positive definite (12). Mathematically this condition
exists when all terms on the diagonal of the stiffness matrix are
positive after elimination (12). Therefore, if a negative or zero
term appears as a diagonal element of the stiffness matrix after the
elimination process, the structural system is unstable or buckling has
occurred. Note that Dy 1s the negative reciprocal of the diagonal
element for each row of the stiffness matrix after elimination. There-
fore, as a diagonal term approaches zero Dy approaches infinity and 1f
a diagonal term is negative the corresponding Dy value will be positive.

Figure 12 shows the behavior of Dy as the buckling load is approached.

Itergtiﬁe Procedure for Incrementing the Load

A variable step load incrementing procedure was used to determine
the ultimate load value. In order to save computer time, a large
load increment was chosen to start the process. It was decreased by

one-half, and the member solved again if one of the following conditions
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occurred:

a) instability was reached

b) the number of iterations to achieve agreement with the

M-P-f data exceeded a limit set in the program.

The process of decreasing the load increment was continued until it
became sufficiently small. At this point failure was considered to
have occurred. It should be noted that any load including axial load,
applied moment, or transverse load may be incremented to failure. A
flow chart summarizing the procedure is shown in Figure 13, Appendix

(IV) contains a detalled flow chart of the beam-column analysis.
DESIGN APPLICATIONS

The computer model used in this investigation is very flexible
and thus allows the systematic study of the change in the ultimate
strength of tubular beamcolumns caused by varying different parameters.
The program can account for the effect of a nonbilinear material stress-—
strain curve and longitudinal residual stresses in the generation of
the M-P-f@} data and consequently can calculate the resulting change
in failure load. In addition to the effect of these material imper-
fections, the changes in failure load capacity caused by varying
support and/or loading conditions may be studied. The program can
analyze beam~columns with any combination of axial and transverse
loads and discrete moments applied along the member, Supports may
consist of rollers,'fixed ends or transverse and rotational springs.
Intermediate supports and varying stiffness along the member may also

be studied.
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Figure 13 Flow diagram for determination of failure load,
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The presentation of the ultimate load capacity of beam-columns
is normally accomplished by interaction diagrams which provide the
maximum combination of axial load and bending moment that can be sup-
ported for specified slenderness ratios (L/r), Although the program
is capable of developing interaction diagrams for a wide range of
slenderness ratios, end conditions and loading configurations, the
scope of the project dictated that only a few be developed. The inter-
action curves selected were for loading patterns most common in design
applications and consisted of axial load and the following end-moment
configurations:

a. Equal end moments causing single curvature (Figure 14)

b. Moment at one end only (Figure 15)

c. Equal end moments causing double curvature (Figure 16)
The loading sequence was to apply the end moment(s) first and then
increment the axial load until failure. Slenderness ratios of L/r =
40 and L/r = 120 were selected to depict the behavior of short and
long beam~columns. The M-P-f) data used in developing these interaction
curves are those presented in Figure 5.

The effect of residual stresses on the ultimate load capacity
of a beam-column was also determined. Using the M-P-f data shown in
Figure 6, corresponding interaction diagrams were generated for a
circular tube with equal end moments causing single curvature. The
resulting interaction diagrams are shown in Figure 14 and indicate
that residual stresses cause a reduction of the ultimate stremgth of
the circular tubes. This effect appears to be more prominent for the

higher values of P/Py.
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COMPARISON WITH PUBLISHED TEST RESULTS

The M~P—@ data represent the correct combination of bending
moment, axial load and curvature which a given section of tube will
sustain when subjected to a loading condition consisting of bending
moment and thrust. As mentioned previously the first phase in cal—l
culating failure loads is the generation of M-P-# data. An orderly
check of the computer model should thus begin with a comparison of the
M-P-@ data calculated and that obtained experimentally. Sherman (16)
presents ﬁoment-curvature data developed from tests of tubes subjected
to bending only i.e., P/Py = 0, Figure 17 shows a comparison between
Sherman's results and those predicted by the computer model presented
in this paper. The test values lie below the analytical curve indi-
cating a lower load carrying capability which is expected since no
attempt was made to account for residual stresses, ovalling or member
imperfections during the generation of the calculated values. However,
the comparison reveals that the computer model is capable of representing
actual behavior with reasonable accuracy. To obtain an indication as
to the reliability of the computer model used in the failure load
calculations, a comparison was made with laboratory results by other
investigators. Plotted with the interaction curves of Figure 18 are
the results of beam—column tests by Ellis (5) which agree closely with
the values predicted by the computer model assuming zero residual stress.
A cursory review might suggest that these test results should lie
closer to curve b of Figure 18 plotted from values calculated using

an assumed residual stress distribution. However, it should be noted
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CHAPTER IV

EXPERIMENTAL PROGRAM

The remainder of this paper documents the testing of model beam-
columns. Attention is given to the experimental setup and the models
selected. Also, each test 1s considered individually with a compar-
ison made between the experimental results and the load-displacement

history predicted by the computer model.

OVERVIEW

The experimental program consisted of loading four model beam-
columns to fallure by appling an eccentric axial load. A schematic
of the loading patterms is shown in Figure 19, The values of Beta
chosen were ~1.0 (single curvature), 0.0, and 1.0 (double curvature).
For Beta equal to -1.0 one long column and one column of intermediate
length were tested. One column of intermediate length was tested for

each of the other values of Beta.

EXPERIMENTAL SETUP

The experimental setup is shown in Figure 20. A load frame was
supported horizontally on rollers with the axial load applied by the
actuator of the MIS Electrohydraulic Testing Machine. As shown in
Figure 21 the base of the actuator was securely bolted to the load

frame with the other end supported on rollers. This configuration









Figure 21 Actuator supports

A
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may be idealized as a three-hinge condition as shown in Figure 22.
Adjustment rods attached to the actuator (center hinge) were us d
during the test as necessary to maintain alignment of the three hinges.

The eccentricity of the axial load, P, was provided by welding
end plates to the specimens with the desired offset. Special care
was taken to assure that the end plates were perpendicular to the
colums. The end plates provided the connection between the specimens
and the load frame and were held in place with high st;ength bolts
(ASTM A325).

Since the specimens were to be loaded to failure safety consider-
atiops dictated that deflections rather than load be controlled during
the tests, The specific deflection chosen was the stroke of the
actuator which was set during the tests at 0.0005 in./sec.. The
actuator stroke was held constant at predetermined intervals to fac-
ilitate reading the desired measurements. The test was terminated

when an increase in stroke resulted in no increase in load.
DESCRIPTION OF MODELS

The models were constructed of AISI C 1018 cold drawn steel
tubing which was selected because of the close dimensional tolerances
maintained during its manufacture. To prevent the occurrence of local
buckling during the tests values of D/t were chosen as outlined by
Marshall (13). Two sizes of tubing were tested. The nominal dimen-
sions were 2 inch outside diameter, 1/4 inch wall thickness. Boﬁh
out-of-roundness and initial crookedness were checked for each beam-

column and found to be negligible quantities when compared to the

dimensions of the models.
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INSTRUMENTATION

The instrumentation was similar for each of the models tes :ed,
the only difference being the locations along the member length at
which measurements were taken. The measured quantities included load
and end rotation; transverse deflections and curvature. The load
value was read directly from the MIS control panel. Dial gages were
used to obtaln transverse deflections; end rotations were measured by
two dial gages located on arms perpendicular to the beam-column at the
hinge, Figure 22. Rotation is determined by dividing the dial gage
reading by the arm length, L. Strain gages located on opposite sides of
the tube were used to measure curvature, curvature being equal to the

difference in the strain values divided by the outside diameter of the tube.
STEEL PROPERTIES AND COUPON TESTS

To provide consistency, all test specimens of a given diameter
were cut from a single plece of tubing. This eliminated the necessity
of testing a set of coupons for each specimen. ASTM Standard coupons
were cut in the longitudinal direction from a section of tubing. Two
coupons for each size of tube were tested with results as shown in
Table 1. The yleld stress indicated was determined on the basis of a
0.2% offset. The coupons were tested on the MIS Testing Machine using
load control with a load rate of 75 1lb./sec. which corresponds to a
stress rate of 777 psi/sec. for the coupon from the 2 inch tube and
585 psi/sec. for the coupon from the 3 inch tube. All coupons tested
exhibited the gradual ylelding stress—-strain curve typical of cold-

worked material. The average stress—-strain relationship for each size



Table 1 Results of coupon tests.

Yield Ultimate 3
Stress Stress : Elongétion
2" 0.D.
#1 75.7 ksl 85.2 ksi 32,400 ksi 10.5
i#2 73.9 ksi 85.3 ksi 28,800 ksi 11.0
Average 74.8 ksi 85.3 ksi 30,600 ksi 10.8
3" 0.D.
i1 83.8 ksi 89.7 ksi 34,300 kei- 11.0
#2 85.2 ksi 91.8 ksi 27,900 ksi 8.0
Average 84.5 ksi 90.8 ksi 31,100 ksi 9.5

9y
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of tube are shown in Figures 23 and 24,
MOMENT - THRUST - CURVATURE DATA

The moment-thrust—-curvature relationship was determined for
each size of tube with the stress-strain values as shown in Figurec
23 and 24 included in the calculations. No attempt was made to in-
corporate a residual stress distribution since seamless tubes are
generally believed to have low residual stresses. A slight difference
was observed between the M-P-( relationships for the two tube sizes,
This was caused by the relative difference in Fy/Fy as indicated in the
stress~strain relationships. Also note that stress values may exceed
the yield value thus some bending moment capacity is realized for P/Py
equal to 1.0. The M-P-¢ relationships shown in Figures 25 and 26 were
used by the computer model to determine the load-displacement history

for each test.
COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

Test 1T2

The model used in test 1T2 was constructed of a 2.0 inch out-
side diameter tube. The length of the tube was 58.0 inches resulting
in a slenderness ratio of 90.3. The loading consisted of axial load
and equal end moments causing single curvature, Figures 27 and 28.
The eccentricity of the axial load was 0.75 inches.

The load was applied by slowly increasing the étroke of the
actuator. No adjustment to the lateral reaction rods was required

during the test.
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Test 1T2

Figure 27
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A comparison is made between the test results and the load-
displacement history predicted by the computer model in Figures "9
thru 31. The deflection plotted in Figure 29 and the curvature
plotted in Figure 31 were measured at the center of the beam—colum.
The end rotation was measured at the end of the beam-column opposite
the actuator. The results of all three measured values show a similar

trend and agree well with the values predicted by the computer model.

Test 1T3

In test 1T3 a 3.0 inch outside diameter tube was loaded to fail-
ure by a combination of axial load and equal end moments causing single
curvature. The length of the tube was 60.0 inches and the resulting
slenderness ratio was 61.4. This is an indication that the colum
will undergo considerable yilelding before failure. The eccentricity
of the axial load was 1.50 inches.

The load was applied by programming a slow increase in the stroke
of the actuator. As was the case’with test 1T2 no adjustment of the
lateral reaction rods was required during the test.

Figures 32 through 34 deplct a comparison of the test results
and the corresponding values determined by the computer model. The
deflection and curvature values shown in Figures 32 and 34 were meas-
ured at the midpoint of the beam—-column. The end rotation was meas-
ured at the end opposite the actuator. The results of all three

measured values show good agreement with the analytical values,

Test 2T3

The model tested in Test 2T3 was constructed from a 3.0 inch
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outside diameter tube with a 1/4 inch wall thickness. The tube was
60.0 inches long corresponding to a slenderness ratio of 61.4. The
loading configuration consisted of axial load with bending moment
at one end. The eccentricity of the axial load with bending moment
at one end. The eccentricity of the axial load was 1.50 inches,

The load was applied by Increasing the actuator stroke. No
adjustment of the lateral reaction rods was required during the test.

A comparison is made between the test results and the load-dis-
placement history predicted by the computer model in Figures 35 through
37. The deflection plotted in Figure 35 is the maximum lateral deflec-
tion predicted by the computer model. The curvature was measured at
the point of maximum lateral deflection and the end rotation measured
at the end opposite the actuator. The results of all measured values

agree well with the analytical values,

Test 3T3

The model used in Test 3T3 was constructed from a 3.0 inch out-
glde diameter, 1/4 inch wall thickness tube. The tube was 60.0 inches
long which corresponds to a slenderness ratio of 6l1.4. The loading
was a combination of axial load and equal end moments causing double
curvature. The eccentricity of the axial load was 1.50 inches. The

test setup is shown in Figure 38,

The load was applied by slowly increasing the stroke of the
actuator, After each load increment a slight adjustment of the lateral
reaction rods was made. However, as the fallure load was approached,

the deflected shape drifted into single curvature.
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Figures 39 through 41 present a comparison of the test results

and the load-displacement history predicted by the computef moc. 1.

The curvature was measured at the point of maximum lateral deflection

and the end rotation at the end opposite the actuator, The agreement

is good between the analytical and measured results up to just befure

failure, however, as the beam~column drifted into single curvature,

it rapidly lost its ability to support additional load.

The following table 1s a summary of the experimental results.

Table 2 Comparison of Predicted and Measured Ultimate
Load Values

Test L/t Wall Ultimate Load Values, Kips ?meas.

Number Thickness, in. Calculated Measured cal.
iT2 90.3 0.193 18.2 17.5 0.96
1T3 61.4 0.257 50.3 44.2 0.88
2T3 61.4 0.257 65.3 59.1 0.91
3T3 61.4 0.257 85.8 74.0 0.86
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

The primary purpose of this paper was to provide a basis for
the development of design interaction curves for beam-columns made
of circular tubes and to check the validity of the computer model by
test results. Based on the material presented herein the following
conclusions appear valid,

1. The computer model described in this paper predicts

both the load-displacement history and the ultimate
strength of circular tubes subjected to the combined
effects of axial force and flexure within the require-
ments of engineering accuracy.

2. It is possible to incorporate non-bilinear stress-strain
relationships and statically admissible residual stress
patterns into the model.

3. Interaction diagrams suitable for design use may be
developed for various loading patterns.

4, As also noted by Ellis (3), beam-columns tested in this
program which were initially deflected in double curvature
tended to drift into single curvature at or near failure
load.

However, it 1s apparent that there exists a need for further

research to provide additional experimental data on the residual stress
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follows:

a.

The

APPENDIX 1

MATLOCK'S RECURSIVE SOLUTION

FOR ELASTIC BEAM~-COLUMNS

assumptions in this method of beam-column analysis are as

Plane sections before bending remain plane after bending
Hooke's Law is valid

Deflections are small

Loads are applied in the plane of the vertical axis of the

member (i.e., no torsion)

following discussion is broken into five major areas:
Derivation of the recursive solution

Specifying desired deflections

Specifying desired slopes

Finite difference determination of slope, curvature,
bending moment, shear and net load

A check of the net load for axially loaded members

DERIVATION OF THE RECURSIVE SOLUTION

A beam-column subjected to a general loading and support con-

figuration is shown in Figure 42. Consider an infinitesimal increment

of this member to be loaded and restrained as shown in Figure 43. All

quantities in Figure 43 are positive as shown and are defined as fol¥ows:
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Figure 42 Beam of variable stiffness subjected to general
loading condition.
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Symbol Description Dimension

P axial load on cross-section : (F)

M bending moment on cross-section (F-L)

v total shear on cross-section (F)

q transverse load (F/L)

t externally applied moment Eik

T stiffness of spiral springs F.L
(rotational restraint) Angle.L

s stiffness of coil springs _F_
(translational restraint) L-L

It should be noted that q,r,t and s are considered to be uniformly dis-
tributed over each element, and the cross section of each element 1is
considered constant. As will be shown later when a finite increment
is considered, these values are taken as the average of the distributio

which actually exists on the element. Since the element is in equili-

brium, the net moment about point A in Figure must be zero, 1i.e.,
(dx}2 dx 2 d
-dM + Pdy + Vdx + ¢ 5 syi-il- + rdxaz + tdx = 0 (1

Neglecting higher order differentials and dividing this equation by dx

results in

a _ dy

dx V+t+ (r+P) I (1.
Taking the derivative of Eq. (1.2) once with respect to x gives

a’M _av , d d

a‘z’=a‘;+'&;[t+ (r + P) a‘i] (1.

When the equilibrium of the element in the vertical direction is

considered the equation of equilibrium of vertical forces on the elemen

is

9}

.1)

2)

3)

t
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V+ qdx -~ sydx - V ~dV = 0 (1.4)
dy
from which it i1s seen that I -4 -8y
Therefore,
2
aM _ d dy
T2 =9-8y + ix (t + (r +P) dx] (1.5)

Expressing the left side of Eq. (1.5) in finite difference form

gives the following:

a2 - My - 2M + M (1.6)
dx2 12 :

where h is the .length of the finite increment and the subscript i 1s the
number designation of a particular finite increment. (Note that the
beam shown in Figure 42 is divided into m finite increments). In this
derivation all increments are considered to have the same length h.
Also, the number of a particular increment, i, will hereafter be referred
to as the station or station number of the increment.

From elementary strength of materials comes the well known di-

fferential equation of the deflected elastic beam

2
d
M F a{‘ (1.7)
d2
where F is the flexural stiffness (EI) of the beam and E;§ is the beam

curvature.
Assuming F is constant through the length of increment i, the

finite difference expression for Eq. (1.7) is

Yima ~ &y Yy

M, =F, [ 1 (1.8)
i i hz

Substituting Eq. (1.8) into Eq. (1.6) and collecting terms results in:




78

o
=

1
= - + +
75 [Py Yy ~ 2(Fg g +Fyy g+ (Fy g +4F +F 00y

d

-2(F, + F (1.9)

1410141 ¥ FraViseg]

The above equation represents the left side of Eq. (1.5) in finite
difference form.
Now consider the right side of Eq. (1.5) which is rewritten for

convenlence.

2
ao d_ dy
Fevaall sy + ix [t + (r + P)dx]

First, considering the differential inside the brackets:

Vi1 T Vi
2h

(r + O = (x + P)( ) (1.10)

Now writing the whole right side of Eq. (1.5) in finite difference form:
Vi TieYie2 Pia¥e o PiiVien

M .\

1
ax? - Y4 " 8Yy ton [ty - Tia T 2h " 2h TR

L T BT O R NRE T L T B C L

ty - 7w 7h 7h TR

(1.11)

Removing a factor of 1/h4 and collecting terms gives the result:

3 3 2 2
sz 1 4 h ti+1 h ti-l h T h Pi-l

axZ ~pe (hal +—3 i et e e e S S

2 2 2 2
hriyg WPy bhrg WP

4
Chisy ——— ~—% "% TR ot

2 2
h°r h“P
i+1 i+l
( 3 +—3 )yi+2] (1.12)

Eq. (1.12) represents the right side of Eq. (1.5) in finite difference
form.
Before writing the entire Eq. (1.5) in finite difference form the

following substitutions will be made:
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PH, = h/4(R;+ hP,)

Ri = hr1
- nh

s; =h's; (1.13)
_ .4

Q =hay

T, = h3/2 t

1 1

The entire Eq. (1.5) may now be rewritten with all terms having a

deflection coefficient on the left:
(Fyq ~ BHy PIyy o~ 2(Fy ) + Py, g+ (Fy_ +4F) + Fy) + 8 + P D

Vg ~2Fg + Fy Wit Py ~ P )0 = v Ty - Ty

The above equation is commonly written in the form

By Yy PPy Yy ey Yyt Vi ey Vi T 5 (1.15)
where
33 = Fyp ~ P
o by = ~2(F;_; + Fy)
~
ey = F,_, v4F +F . +S +PH . +PH (1.16)
dy = =2(Fg + Fipp)
e =Fiy ~ Py
= v T - T
The coefficients a; - e; make up a stiffness matrix with a band-

width of five and the coefficients fi make up the load matrix. Note

that the axial load term appears in coefficients a, c and e. It is inter-

+ T -T (1.14)
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esting to observe that the problem of instability may be detectcd by
an examination of the stiffness matrix and axial load is the only
applied load that can cause elastic instability in an otherwise stable
structure.

Assume that the deflection at a given station can be expressed

as a linear function of the deflectlons at the two following stations,

il.e.,
Yip = A1 ¥ B ¥y Y C0Yy
and
Vi1 T A By TG Yin
where A, B and C are constants to be determined.
Substituting Eqs. 1.17 and 1.18 into Eq. 1.15 yields
Yi A ¥ BVt OV
where
Ay =D (ByA  *+ay Ay 5 - £)
Bi = Di(EiCi—l + di) (1.20)
Ci = Di(ei)
in which
Di = 1/(ci + EiBi_l + a, Ci»Z)

B, =a B, *h

It 1s therefore seen that the assumption of Eqs. 1.17 and 1.18 is valid.
If Eqs. 1.16 are substituted into Eqs. 1.20 the following equations
result:

-T + T

Ay = Dy (B A ~Q ~ Ty T

Ay Ai—l + G

i

(1.17)

(1.18)

(1.19)
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By = Dy(ByCyy ~ TFyyg - 2Fy)
(1.21)
C; = Dy (Fyyy — PHL)
where
Gy =Fyj 4y - FHy,
E, =GB, , - 2(F,_, +F)
1)1 = -1/(Fi_l + 4Fi + Fi+1 + si + Pl-li_l_l + EiBi_l + Gi Ci—2)

Hence it is seen from Egs. 1.21 that A Bi’ and C, are determined

1’ i
as functions of these same three constants at the two preceeding stations
in addition to known loads and restraints. Also, the only unknowns

needed to calculate the coefficients A B, and Ci at all beam stations

L §

are the values of these coefficients at stations -1 and -2. From
boundary conditions (Figure 42) it is seen that stations -1 and -2 do
not exist on the beam itself. However, if one considers the beam to
extend beyond the end (station zero) but to have no stiffness and no
loads or restraints, the coefficients can be calculated by beginning
at station -1 and proceeding down the beam to station m 1, Station =1
was chosen as a starting point because it has the quality that nothing
before it affects the beam. This can be seen by considering Eq. 1.2
Likewise, nothing beyond station m 1 affects the beam; thus it 1is the
last station at which A, B and C are calculated.

Once all of the coefficients, A,, B, and Ci are determined, de-

i’ 71
flections can be calculated by simply substituting into Eq. 1.19,

starting at station m 1 and continuing along the beam to station -1.
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SPECIFYING DESIRED DEFLECTIONS

Usually in beam analysis the deflection is known at one or more
points along the beam. For example, one knows that the deflection at
each end of a simple beam is zero, or perhaps one knows the settlemcnt
of one or more supports of a continuous beam. Known deflections such
as these must be introduced into the recursive solution.

The introduction of this known information into the recursive

solution is relatively easy. If it is desired to specify the deflection

at some point on the beam, say at station 1, one needs only to set Ai

equal to the desired deflection and Bi and Ci equal to zero.* The

reason for setting the coefficients equal to these values becomes

obvious upon considering Eq. 1.19. Note that the coefficlents must be

set at the special values before one proceeds to calculate the coefficients
for the following stations because the coefficients at the following
stations depend on those preceeding. Hence it is not correct to merely

substitute the desired set of coefficlents at the particular station after

all coefficients for the beam have been calculated.

SPECIFYING DESIRED SLOPES

Sometimes it is desired to speclify a particular slope at one or
more points along a beam; such a case is the fixed-end beam., As was
done in specifying deflections, slopes can alsoc be specified by proper
adjustment of the coefficlents A, B and C. However the operations of

setting a slope are somewhat more involved as will be seen.

*Primes are used to designate specially determined coefficients.
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A slope is set at a given station, say station i, by prov:ding
at that station the necessary external moment to resist the efforcs of
other beam loads to change the slope. The necessary external moment,
which will in general be unknown, is applied to the beam by means of

a force Z acting at stations i~1 and i+l as shown in Figure

Z
Z AL
h | h .
- |l ~
} | |
i-1 i i+1

Figure 44 Couple acting to set the slope at station 1
Clearly then, the problem is to establish the adjusted coefficients
A, B and C which include the effect of the 2hZ couple. To do this
consider the finite difference expression for the slope, 6, at station
i, 1i.e.,

-y +y
dy i-1 © 7i+1
ax/i = 8 = 2h (1.22)

Thus the necessary coefficients at station i~1 are

' =
A = 2h9,

7
Bi-1
! =
Ci—l 1
Now let it be desired to find the magnitude of the force Z.

Assume that A, B and C have been calculated for stations 1 and i+l in

the ordinary manner after the coefficients have been properly adjusted
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at station i-1. Notice in Eqs. 1.16 that the only equation whic has

a transverse load term is

£ + T - T

1 2 * Ty - T

Also, the term fi appears in Egs. 1.20 only in the equation

Ay =Dy(EA L, +ay A, - )

In light of these two equations it is seen that a load Z may be intro-
duced at station i-1 by combining its effect with the ordinarily cal-

culated Ai~ Thus,

L
3
Yy = Ay ¥ Dy (WD) + By 1y, +Cy Vi (1.24)

Substituting Eq. 1.23 for Yi-1 into Eq. 1.24 and solving for Z gives

-1
o3 R
1-1

Z= + ZhQi) + B (1.25)

1-171 ¥ Cyg ~ Dyl

In the same manner the Eq. 1.24 was obtained, the load Z can be

applied at station i~1 (as indicated in Figure ) to get the equation

(h3Z)] + B (1.26)

Yier = Ay ~ Dy 141 Y142 T G Y143

Substituting Eq. 1.19 for Yy into Eq. 1.25 and substituting that result

into Eq. 1.26 gives

= Al + +C]

1
Yier T 2441 T Biwd Yivo T Ciag Vi3 (1.27)

where D
1+1
A —
141 T b, , (ay ) + 200, + B, ; A))
. -
Ai+1 D
1 - 2 g B o+ -1
D 1-1°1 7 “1-1

i-1



85

i+1
b, . Bi1C) * B
R Lo |
i+l D
i+l
1~ P (Bi__lBi + Ci__1 1)
i-1
o - Cinl
1i+1 D
1+1
15— B 4By +C ;- D
i-1
T 1 ]
Ai+l’ Bi+1 and Ci+1 should now be-substitutedvfor the originally
calculated Ai+1’ Bi+1 and Ci+1 and the coefficlent calculations contin-

ued in a normal manner on down the beam.

It should be specifically pointed out that a deflection cannot
be specified at a station adjacent to a station at which the slope has
been specified. Also, there must be at least two stations between

stations at which it is desired to specify the slope.

FINITE DIFFERENCE DETERMINATION OF SLOPE, CURVATURE, MOMENT, SHEAR AND LOAD

Once the deflected shape of the loaded beam has been determined it
is easy to determine the slope, curvature, moment, shear and transverse
load at any desired station by using finite difference techniques;
Solving for these quantities requires only the substitution of the pre-
viously computed beam deflections into finite difference expressions
of well known differential equations. These differential equations,
which relate beam properties and loads, and their finite difference

counterparts are listed below.

' - +
o = &Y o = i1 Yiwl
dx i 2h

Slope:
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2 Vi ~ Wy YV

d
Curvature: ¢ = "%; di = )
dx h
2 y -2y, +y
- i i+l
Monment : M= FQ—X- M, = F [ i-1 ]
2 i i 2
dx h
. V' = g_}i V' = -.Mi-l * M1+1
Shear: dx 1 7h
4 ., a2 co Mg oM My
Load: W= ~—E- w:.L 2
dx h

It has been found more convenient to work with the concentrated
load

' o '
Wi hwi

rather than the uniform load, w Therefore only W] will be considered

1
i° i

hereafter.

NET LOAD CHECK

The procedure used by the recursive technique is to first calcu-
late the deflection at each station, With the deflection at each
station known a finite difference differentiation is performed to de-
termine the slope and curvature at each station. The bending moment
at a given station is obtained by the product of the curvature and
flexural stiffness at that station. The differentiation is then con-
tinued to determine.shear and net load. This procedure creates a unique
situation in which the net load calculated from thé deflections may be
compared with the load input, If the two load values agree then the

solution must be correct,
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In pure flexure the comparison 1s direct, however when axial load
is present a P-Delta contribution to the bending moment 18 incli ded
in the net load calculated. The relationship used to calculate bending
moment from curvature does not consider axial load, therefore the net
load does not agree with the transverse load input. To demonstrate
this partial results of a problem are shown in Figures 45 and 46,
Figure 47 shows how the net load may be determined 1f the effect of
axial load is omitted. Therefore, the net load is a combination of
the axial load contribution to bending moment and the transverse load

input.
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TABLE 1. CONTROL DATA. -

a0

NUM INCREMENTS M =, -
INCREMENT LGTH H = 0.500E 00
NUM CARDS TABLE 2 = - 4 . . -
NUM CARDS TABLE 3 = 2

=

NUM CARDS TABLE 4

~

0

" TABLE 2. DATA ADDED THRU SPECIFIED INTERVAL.

STA THRU F . e .S
0. 0 0.500E 04 0. 0.
1 39 0-100E 05 O» 0. @ .
. 40 ° 40 0.500E 04 O« 0.
20 20 0.

0-100E-01 O.

TABLE 3. SPECIFIED DEFLECTIONS

o
STA Y SPEC. "
0 0.
40 0.

1

TABLE 4. SPECIFIED SLOPE VALUES.

STA  DY/DX SPEC. .

tr . R

"0 Qe -
0. C0e
0. B 0.
0. R ¢ X

t

Figure 45 Example problem ~ net load check

P

~0+120E 03
"=0+240E 03"
-0.120E 03

. 0e
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TQELE S;A RESULTS

STA  X. DEFL . MOMENT
=1 =05 =0.4576867E-03 0. .
0 O« - O -0+2742007E-01
1. 0e5 004563157E-03 ~-0+1119301E 00
2 1«0 0+9098332E-03 =-0.2231076E 00
3 1.5 0.1357773E-02 -0.3329483E 00
.4 20 0¢1797389E-02 =04407944E 00
'S5 25 0+2225985E-02 ~0+5459997E 00
6 . 3.0 0+2640931E-02 -0+6479339E 00
7 - 3¢5 - 0¢3039679E-02 =0.7459863E 00
'8  4e0 0.3419777E-02 -0.8395695E 00
9 4¢5 0+3778886E-02 -0.9281228E 00
10 _Se0__0.411 -02 =Q. :
11 55 0e4425420E~02 -0.1088051E 0!
12 . 640 0+470B847E-02 -0.1158468E 01
13 645 0¢4963312E=-02 =0.1221944E 01
14 7.0 0.5187228E-02 =-0.1278100E 01
15 75 0¢5379192E~02 =0.1326599E 01
16 840 0¢5537991E=02 =0.1367149E 01
17 . BeS .0¢5662612E-02 =0.1399510E 01
18 940 0¢5752244E-02 =0+1423486E 01
19 . 9.5 0.5806289E-02 -0.1438933E 01
20 10«0 0+5824361E-02 -0.1445760E 01
21 -10e5 D«5806289E-02 -0.14338933E 01
22, 110 065752244E-02 =0.1423486E 01
23 11+5: 0+5662612E-02 -0+1399510E 01
R4 12.0 0NS537991E=-02 =0.13A7149F 01

' SHEAR

=0.2742007E-01 =-0.5484014E-01

LOAD

-0.2249845E~02 ~0.1141800E 00

0+.2267247E-01
~0+4668473E=02
~0+4673470E-02
=0+ 4680423E-02
-0+4689291E-02
-0.4700020E~02
-0+4712547E-02
=0¢4726795E-02
~0+4742681E-02
=0+4778972E~02
=0+47991 60E-02
-0.4820552E=-02
-0+4843019E-02
=0+ 4866426E=-02

-0+4890633E-02

=0.4915496E-02
-0.4940865E=-02

=0.4966588E-02.
0«3564T21E~-15

0+4966568E-02

0+4940865E-02 -
0.4915496E-02 .

0+4890633E~02

Figure 46 Example problem - net load check

=05333472E-01

0.2673281 E-02
0.3989396E-02
0.5281611E-02

. 0e¢6542183E-02
07763561 E-02 -
0«8938428E-02

0+1005974E-01
0¢1112079E-01

2121 1582k=01_

0.1303706E-01
0.1388079E-01
0«1464137E=-01
0.1531423E-01
0¢1589534E-01
0.1638122E-01
0.1676896E=-01
0+1705624E-01
0.1724134E-01
0.2730816E=-01
0+1724134E-01
0.1705624£-01
0.1676896E-01

-01638122E-01
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Figure 47 Calculation of net load
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APPENDIX II

INTERPOLATION ON THE MOMENT-THRUST-

CURVATURE DATA

It is necessary for the beam-column analysis program to have the
ability to determine the bending moment from the moment-thrust—curv-
ature data for any combination of axial load and curvature. The most
straightforward way to accomplish this was to interpolate between tab-

“ulated values on the M-P-@ data. A divided difference interpolation
as described by Hildebrand (10) was selected because it easily allows
the use of unevenly spaced points. Orders of interpolation from first
order to fourth order were investigated to determine which was the
most efficient. The M~P-f curve used in the investigation was that
for a solid rectangular cross section for which an exact solution is
available (2). The results showed that the linear interpolation had
large errors in the sharply curved portion of the M-{ cﬁrve (1.e.,
GIOY between 1.0 and 2.0). Interpolatiomns of third and fourth order
had larger errors in the initial part of the M-@ curve (i.e., #/dy
less than 1.0). This error was developed because the number of points
required for the higher order of interpolation dictated that points
from the curved portion of the curve be used when interpolating on
the straight line portion. The second order interxpolation gave sat-
isfactery results over all portions of the M-@ curve and was there-

fore selected,
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The interpolation procedure uses two values (axial load and
curvature) to determine a third value (bending moment). A thr. e-
dimensional interpolation was required to have the ability to decer—
mine bending moment for any combination of axial load gnd curvature,
Figure 48. The procedure used was to first select three curvature
ratios and three axial load ratios to be used in the interpolationmn.
Next, a bending moment value corresponding to the given curvature
value was determined for each P/Py curve (points a, b and c, Figure
48). Finally these bending moment values were used to interpolate
between the P/PY curves to determine the bending moment value corres-—
ponding to the given axial load ratio (point d Figure 48). The
ability to interpolate anywhere on the M-P-@ Data, rather than follow
one P/PY curve, was especially useful in the analysis of the model
beamcolumns to be tested, since the loading procedure was to incre-

ment an eccentric axial load.



31D,

PIR,

Figure 48 Interpolation on the M-P-¢ data.



APPENDIX III
CONSIDERATION OF RESIDUAL STRESS

In the manufacture of fabricated structural tubing a common
procedure 1is to roll a flat plate into a cylindrical can and then weld
the longitudinal seam. The residual stresses considered here are
caused by the welding of the seam. At this time there is no exper-
imental data available on the residual stress developed by longltud-
inal welding, however, some i1deas on a possible residual stress dis-
tribution have been expressed (13). A linear idealization of the
residual stress distribution over the cross section is shown in Figure

50.

Since there are no applied loads the residual stresses must
satisfy equilibrium (i.e., both the net force and the net moment on
the cross section must be zero.). This is not a trivial problem first
due to the circular cross section involved and second because the data
must be in the form of a stress and strain value for each element.
Therefore, a computer program was developed to adjust the assumed
residual stress distribution shown in Figure 49 such that equilibrium

would be satisfied.

The procedure used in the computer program is as follows. First
the location of the maximum compressive stress 'C' is adjusted to

achieve zero net force, Then, if rotational equilibrium is not satis-
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98
BEAM-COLUMN ANALYSIS PROGRAM

DATA INPUT

Note: Numbers at left indicate card columms.

Two blank cards will stop program,

A, Control Card (Omit for batch processing)
FORMAT (I5)
1-5 IWRT1:
+15 = Results for each station will be saved in
file "15".

=15 = Results for each station will not be saved.

B, Title of Problem
FORMAT (80H )

1-80 Problem Title.

C. Control Data
FORMAT (4I5,E10,3)
1-5 Number of cards in table 2,
6-10 Number of cards in table 3.
11-15 Number of cards in table 4.
16=20 Number of beam—column increments.

21-30 Increment length.

D. Data Added Through Specified Intervals
FORMAT (215,6E10,3,I5)
1-5 Station
6-10 Through

11-20 Flexural stiffness (EI)



21-30 Transverse load

31-40 Transverse spring stiffness
41-50 Applied moment

51-60 Rotational spring stilffness
61-70 Axial load

71-75 Stiffness code

Specified Deflections
FORMAT (215,6E10.3,15)
1-5 Station
10 Enter O

11-20 Specified deflection

Specified Slope Values
FORMAT (215,6E10.3,15)
1-5 Station
10 Enter O

11-20 Specified slope value

Control Card
FORMAT (E10.3)
1-10 4+10.0 = Elastic solution.
=10.0 = Moment-Thrust-Curvature Data required.
Moment-Thrust-Curvature Data
(Omit if the previous entry was +10.0)
1. Control Card
FORMAT (15)

1-5 Number of sets of M-P-f) Data

99



Date and time of M-P-@ Data calculatiom.

FORMAT (4I5)
1-5 Month
6-10 Day
11-15 Year
16-20 TIME

Values of First Yield
FORMAT (3E15.6)

1-15 Axial load
16-30 Curvature
31-45 Bending Moment
Control Data

FORMAT (2I5)

1-5 Number of axial load (P/Py) values.
6-10 Number of curvature (@/@y) values.
P/Py values.

FORMAT (6E10,3,1, 6E10.3)

1-10 P/Py (1)

11-20 P/Py (2)
21-30 etc.
31-40

41-50

51-60

100



101
6. @/@ and M/My values. (Do for each @#/@y value,)
FORMAT (7E10.4, 6E10.4)
1-10 @/dy
11-20 M/My for P/Py (1)
21-30 M/My for P/Py (2)
31-40 etc.
41-50
51-60
61-70
Return to item 2 and repeat for each set of
moment~thrust-curvature data.
I. Load Incrementing Data
FORMAT (3E10.3)
1-10 Eccentricity of axial load
11-20 Ratio of end moments
21-30 Load increment.
J. Results to be Printed at Terminal
(Omit for batch processing)
1. Control Card
FORMAT (I5)
1-5 Results for how many stations at terminal?
2, Stations for which results are desired.
FORMAT (1015)

1-5 List station numbers,
(more than one card may be used.)

6-10
11-15

etc.,
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FLOW DIAGRAM - MAIN

Read member properties; loading and

support configuration - SUBROUTINE INPUT 1

Y

Is the number \\\\\\
of stations (M) greater No

than zero?

r g

4

Yes ( STOP )

Y

Will this solution No
use M-P-@ Data?

Yes
Go To 40

Is this the No
first problem?

Yes
Go To 40
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Read Moment - Thrust - Curvature Data -
SUBROUTINE INPUT 2

Y

Calculate divided differences -
SUBROUTINE DDT

(<9

Read ECC, BETA, XINCR

Have more than 30 Yes
laod values been tried?

No
STOP
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Has the number of iterations for Yes

3o this load value exceeded 50%
1 Y
Analyze the beam-column - Write current
SUBROUTINE BMCOL stiffness values

Y

No N\, Yes
Has buckling occured? ,//, h

Y

k4
Go To 60 >

Y
First solution v
for this problem? es

V
No
A Go To 998

~_Yes _
Elastic solution ? - e

No
¥ . Go To 55
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Yes
First Iteration?
¥

No

Go To 55

Reset stiffness values to those
used in the last successful solution.

Go To 55

)

<:::>Elastic solution? :::>Yes >

No
Go To 70

Check this solution with the
)'I—P-¢ Da ta .
SUBROUTINE SOLCHK

Is this solution No

correct?
k 4

+Yes ' Go To 500
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|

Save the stiffness values
for this solution.

()

Print results for this load value =~
SUBROUTINE OUTPUT

Increment the load -
SUBROUTINE LDING

Has failure occurred? No

Yes

Go To 600

Proceed to the next
problem - Go To 15







FLOW DIAGRAM - SUBROUTINE INPUT 1

START

Read: Problem title, NCT2,
NCT3, NCT4, M, H

Is M greater No
than zero?

Yes

Go To 999

Read member stiffness,
load and support information.

!

Calculate the stiffness, load
and support terms to be used
in the recursive solution.

108
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FLOW DIAGRAM = SUBROUTINE INPUT 2

( START >

Y

Read NEI

Read the following for each
set of M-P-@ Data:

Date and time of
M-P-@ calculation

Py, @y and My
Number of P/Py curves
Number of @/@y values

M-P-@ Data




FLOW DIAGRAM - SUBROUTINE DDT

( START >

Y

Do 10 for each EI value

/

Do 15 for each axial load ratio

Do 20 for first and second
order interpolation

!

Do 25 for each curvature ratio

!

Calculate divided differences

RET

g@@@@
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FLOW DIAGRAM ~ SUBROUTINE BMCOL

( START )

[

Do 50 for each station (J)

Calculate GJ, EJ and DJ
(Gi, E{ and Dy, Eg. 1.21 Appendix I)

Is DJ positive? j::>> No -

Yes
 §

This 18 a bad run (i.e. the
critical load has been passed) )
if this station is not affected

by specified slopes or deflections,
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Calculate C(J), B(J) and A(J)
(Eq. 1.21 Appendix I)

Any specified No
deflections

Yes

il

Y

Is the deflection No
at this station
specified?

Yes

Adjust A(J), B(J) and C(J),
The check for buckling is
not to be considered at
this sta tion.

A




Any specified
slopes?

Yes
Y

Is the slope at
the next station
specified?

Yes

No

-
-

Go To 15

No

Adjust A(J), B(J) and C(J).
The check for buckling is
not to be considered at
this station.

Y

Go To 15

A 4

Was the slope at
the previous station
specified?

Yes

No

Go To 15
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Calculate "D - Revised"

Is "D - Revised"
Negative?

No

Yes

This is a
bad run

Adjust A(J), B(J) & C(J)

Is this a
bad run?

(o)

No

Calculate the deflection
at each station.

|

Calculate the curvature
and bending moment
at each statiom.

(: RETURN j)

Y

(: RETURN :)

Yes
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FLOW DIAGRAM - SUBROUTINE SOLCHK

START

Double the bending
moment and axial load
values at the end stations

Do 50 for each station.

!

Calculate @/@y and P/Py

h ]

Is @/@y greater than
the largest @/@y value in the
M-P-@ Data?

Yes

No

Set @#/@y equal to the largest
@/¢y value in the M-P-@) Data.

4
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Select three P/Py curves and
three @/@y values to be
used in the interpolation.

For each P/Py curve interpolate
a bending moment value

corresponding to the given curvature.

Using the three bending moment
values just determined, interpolate
the bending moment corresponding

to the given axial load.




Does the interpolated
bending moment agree with
the calculated bending
moment?

Y

No

Adjust the flexural
stiffness at this

station.

Yes

118
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FLOW DIAGRAM - SUBROUTINE OUTPUT

START

Write the deflection,
slope, bending moment,
shear, net load, curvature,
flexural stiffness and
axlsl load at each stationm.
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FLOW DIAGRAM - SUBROUTINE LDINC

( START )

Was the previous No
run a "Bad Run''?

Yes

Is the load
increment approximately
equal to zero?

Yes

No
Go To 60 V

Decrease the load.

Go To 50

Is the load
increment approximately
equal to zero?

Yes

Go To 60 No
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11

140

12

15

DIMENSION F(207) oFTEMP(207) +Q(207)¢5(207) oT(207)+PH(207)
DIMENSION P(207) o ISTAY(15)4YSP(15)+ISTAD(15)+DYSPI(]15)
DIMENSION A(207)+8(207)C(207)

DIMENSION Y(207)8M(207) +PHI(207)

DIMENSION NP (1) eNPHI(1)ePY (1) ePHIY(1)BMY(])
DIMENSION JSTAI(LO)

REAL MTPHI(25438,1)

INTEGER FCODE(20T)

DOUBLE PRECISION AsBaCoF osFTEMP4QeSeToPHIBM,
+RMP sBMM s DBMePHI oY s DY 2 D2BMH

IBATCH=~1

IBATCH=1]

IPROB=0

IF(IBATCH) 11+999912

IREAD=10

IWRITE=6

READ(IREAD140) IART1

FORMATI(IS5)

GO TO 15

IREAD=2

IWRITE=S

IWRT1=IWRITE

CONT INJE

NRUN=0

IFAIL=1

BR2=1.0

RR=1.0

CALL INPUTI(HoMeF9QeSeToPHeAIBsCoMP5oeNCTIWNCT 4
+ISTAY s YSPoISTADDYSP P+ IREADGIWRITE «FCODE)
IF(M) 9994999430

30 MP3=M+3

100

MP&=M+ 4

IPRIB=1PR0OB+}
RFAD(IREADs100) ELAST
FORMAT(E10Q0e3)

[4AS



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61
62
63
b4
65
66
67
68
69

IF (ELAST+GT«0.0) GO TO 40
IF(IPRIB.GTel) GO TO 40
CALL INPUT2(NEI«NPoNPHI sPHIYsPY4aBMYIMTPH] ¢
+IREADIWRITE)
CALL DDT(NEI ¢NPeNPHI ¢MTPHI)
40 READ(IREAD+110) ECCBETAWXINCR
110 FORMAT(3E10.3)
IF(IBATCHeGTa0) GO TO 600
READ(IREAD+120) NSTA
120 FORMAT(IS)
PEAD(IREADe130) (USTA(I) o I=1eNSTA)
130 FORMAT(1015)
600 NIT=0
NRUN=NRUN+1
IF (NRUNeGT«100) GO TO 999
500 NIT=NIT+1
IF(NIT=50) 75475476

76 ER2==140
WRITE(IARITE200)
200 FORMAT(1Hls* NUMBER OF ITERATIONS EXCEEDS 50%")
WRITE(IWRITE.204)
204 FORMAT(/o? STA "+5X+'EI")
WRITE(IWRITEZ205) (JaF (J) o J=4eMP4)
205 FORMAT(1H ¢I54E15e5)
GO TO 50
75 CALL BMCOL (HoeMsF 930S eTsPHeAWBeCoMPS54NIT3eNCT 4
+ISTAYsYSPeISTADsDYSPeYsEMePHI 4BR2)
IF(BR2) 504999+60
50 IF(NRUN.EQel) GO TO 998
IF(ELAST.GTe0s0) GO TO 55
IF(NIT.EQel) GO TI 55
DD B0 J=4.MP4
FI() =FTEMP ()
80 CONTINUE

£7T



70
171
T2
73
T4
75
76
17
78
79
80
81
82
83
84
85
Bé6
87
88
89
90

GO TO 55
60 CONTINUE
IF(ELAST«GT«0.0) GO TO 70
CALL SOLCHX (NPeNPHI +BMYsPYsPHIY+FCODE
+MoeBMyPoPHI +MTPHI o ICORSNEI oF)
IF(ICOR) 5004854500
85 CONTINUJE
DO 90 J=44MP4
FTEMP (J) =F (J)
S0 CONTINUE
70 CALL OUTPUT(HeMPS59JSTAsYsBMePHI sF eTaP-H9PsIWRTL
+IWRITESsIBATCHWNIT)
55 CALL LDINC(HoMsBRIBRZ2 s IFAIL T 4PHsP+QsECCBETAY
+XINCRSIWRITE)
IFCIFAIL) 99549954600

998 WRITE(IWRITE,L210)
210 FORMAT(/+*INSTABILITY ON FIRST RUN')
995 CONTINUE

GO TO 15

599 STOQOP

END

%1
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SUBIOUTINE INPUT L (HeMoF aQoSeToPHIA BT sMPSeNCT34NCT4 0
+1STAYsYSPaISTADIDYSPeP«IREAD S IWRITE«FCODE)
DIMENSION F(207) «2(207)8S5(207) +T(207) «P-H(207)+ISTAY(15)
DIMENSION YSP(15) oISTADI(15) +DYSP(15)eA(207)B(20T)
DIMENSION P(207)
DIMENSION C(20T)
INTEGER FCODE(207) '
DOUBLE PRECISION AsPsCoF920SeTePH
READ(IREAD101)
WRITE(IWRITEWZ104)
104 FORMATI(]1HL)
WRITF(IWRITEL101)
101 FORMAT(80H
+ )
READ(IREADs1) NCT2eNCT3eMCT4oeMgH
[F(M) 99349994102

1 FORMAT(4]5+E10e3)
., 2 FORMAT(215s 6E1043415) .

4 FORMAT(/// 30H TABLE 1. CONTROL DATA /7
+ 30H NUM INCREMENTS M = 15+ ¢
+ 30H INCREMENT LGTH H = E10.3s /
+ 30H NUM CARDS TABLE 2 = 159 /
+ 30H NUM CARDS TABLE 3 = Is )

103 FORMAT( 30H NJUM CARDS TABLE 4 = I5¢ 7 )

5 FORMAT(// 49H TABLE 2« DATA ADDED THRU SPECIFIED INTERVAL /
+ 634 STA THRU F Q S . T R
+ 4 P )

6 FORMAT(// 36H TABLE 3., SPECIFIED DEFLECTIONS //
+ Z22H STA Y SPEC, )

7 FORMAT (5Xe I4e 4Xe AEL10.3)

8 FORMAT(// 37TH TABLE 4o SPECIFIED SLJIPE VALUES //
+ 24H STA DY/DX SPEC. )

102 WRITE(IWRITE«4) MeHoNCT2oNCT3
WRITE (IWRITE«103) NCT4
MP5=M+5

6C1



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
564
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

11

12

105

13
106

MPTM+ 7

DO 11 J=14P7

F(J)}=0e0

FCODE(J)=0

Q(J)=0.0

S{J)=0.0

T(J}=0e0

P(J)=0.0

A{J)=0e0

B(J)=0e0

C(J)=0.0

PH(J)=0.0

WRITE(IWRITE+S)

DO 12 N=1,NCT2

READ(IREAD2) 116120716224 230724¢25026412
WRITE(IWRITES2) Ile12eZ210Z22e234724425+26
Ji=11+4

Jezl2+4

DO 12 J=J1eJ2
FCODE(J)=FCODE(J)+12
FLJ)=F(J)+2Z1

Q(J)=Q(J) +Z2nH*x%3
S(J)=5(J)+Z3nHER3

TN =T(J)+24% (HRH/240)
P{J)=P(J)+26
PH(J)sPH{J) + (H/4,0) % (Z25+H#*76)
WRITE(IWRITE +6)

IF(NCT3) 999,1064105
CONTINJVE

DO 13 N=1oNCT3

READ(IREAD+2) I14NONESsYSP(N)
WRITE(IWRITEWT) T1leYSPI(N)
ISTAY(N)=11+4
WRITE(IWRITE«8)

97T
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SUBRQUTINE INPUT2(NE] ¢NP ¢NPHI ¢PHIY ¢PY oBMY ¢MTPHI o
+READIWRITE)
DIMENSION NP (1) oNPHI(1) oPY (1) 4PHIY(1) ¢BMY (1)
REAL MTPHI(25+3841)
READ(IREAD100) NEI
100 FORMATI(IS)
WRITE(IWRITEL110) NEI
110 FORMAT(1H1+43HNUMBER OF STIFFNESS VALUES IN THIS PROBLEM=+12)
DN 10 K=1.NEI
READ(IREAD120) ID1+ID2+ID3sID4
120 FORMAT(415)
WRITE(IWRITES130) ID1+ID2+ID3,1D4
130 FORMAT (/s DATE="0]20%/'9120°%/%¢124/9" TIME="415)
READ(IREAD+140) PY(K) +PHIY (K) ¢BMY (K)
140 FORMAT(3E1546)
WRITE(IWRITE«+150) PY(K) sPHIY(K) +BMY (K)

150 FORMAT (/+25H AXTAL LOAD (PY) ZeEL12e50/
+ 25H CURVATURE (PHIY) =9E12e50/
+ 25H MOMENT (BMY) =9E1245)

READ(IREADs160) NP (K) sNPHI(K)
160 FORMAT(215)
NPK=NP (K)
NPK3=NPK %3
NPHIK=NPHI (X)
READ(IREADy180) (MTPHI (I sl eK) sI=1sNPK)
180 FORMAT(6E10e39/96E10.3)
DO 15 I=14NPHIK
READ(IREAD»190) MTPHI(I924K) o (MTPHI (I 9JeK) s J=39NPK3,43)
190 FORMAT(TE1Oe4 9/ 96E10e4)
15 CONTINUE
WRITE(IWRITE200)
200 FORMAT(// +28BHMOMENT=THRUST=CURVATURE DATA)
WRITE(IWRITEL210)
210 FORMAT(///+ xx%x% M/MY FOR A GIVEN COMBINATION OF P/PY AND PHI/PHI
+Y  ERERE,//90  PHI/ P/PY="45(6Xe'P/PY="))

8¢1
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37
38
39
40
41
42
43
44
45

WRITE(IWRITE$220) (MTPHI (IeleK)s]I=1sNPK)
220 FORMAT(7H PHIY 32XeF5e205(6XeF5e2) 9/

+7TH #r G 2XeF5e295(6XeF5.2))

DO 40 I=1NPHIK

WRITE(IWRITE4230) MTPHI(I42¢K) o (MTPHI(IeJeK) e J=34NPK343)

230 FORMAT(/aFbe292XeFTata5(aXokTo4)e/aTH
40 CONTINVE
10 CONTINUE
RETJRN
END

* %

o1 XoFTeteS5(4XeFToth))

62T
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25
20
15
10

SUBRQUTINE DDTI(NEI «NP«NPHI«MTPHI)
DIMENSION NP (1) «NPHI(1)
REAL MTPAHI(2543841)

DD 10 K=1eNEI]
MPK3=NP (K) *3

DO 15 J=34NPK3+3

D0 20 L=1e2

Ld=L+J

NPHIL=NPH] (K) =L

DO 25 I=14NPHIL

IT=1+1

JLL=J+L=1

IL=1+L

MTPHI (ToLJoK)=(MTPHI (JToJLL oK) =MTPHI(ToJLL X))/

+ (MTPHI(IL+2¢K)=MTPHI (I 429K))
CONTINUE

CONT INVE

CONTINUE

CONT INUE

RETJRN

END

Otl
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SUBROUTINE BMCOL (HoeMeFsQeSeT ¢sPHeAsBesToMPSeNCT34NC T4
+ISTAYeYSP s ISTADsDYSPaY «BMesPHI 4BR2)

DIMENSION F(207)+2(207)95(207)T(207) ¢PH(207) +A(207) o
+B{207) aC(20T7) s ISTAY(15) +YSP(15) +«ISTAD(15) sDYSP(15),
+Y(207)eBM(207) «PHI(20T7)

DOUBLE PRECISION PHIJP«PMsBMP 4BMMsPHI vGQJsEJeDJvABCo
+Fa095eT oY s PHeDREVIZDYSPsATEMP+BTEMP +CTEMPDTEMP

DOUBLE PRECISION BMJ

DO 50 J=34.MP5S

GJ=F(J=1)=PH(J~1)

EJ=GJURB(J=2) =208 (F(J=1)+F (J))

DI==1e0/(EJRB(J=1) +GIRC(J=2) +F (J=1) +LO%F (J)
++F(Jel)+S(I)+PH(J=1)+PH(J+1))

IF(DJ) 31431432

32 RR2==l.0
GO TO 35
31 BR2=1e0
35 C(J)=DJIR(F(J+1)=PH(J+1))

B{J)=DJIR(EJRC(J=1) =208 (F(J)+F(J+1)))

AJ)SDIR(EIRA(JI=1) +GIRA(J=2)=Q(J) +T(J=1)
+=T(J+1))

IF(NCT3) 18+18+109

109 CONTINUE

DO 16 I=1eNCT3

L=l

IFCISTAY(I)=J) 16917416

16 CONTINUE

GO TO 18

17 A(J)=YSP(L)

B(J)=0.0

C(J)=0.0

BR2z1.0

18 CONTINJE
IF(NCT4) 154159110
110 CONTINUE

1eT



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

19

20

21

22
23
41

42

15
50

24

DO 19 I=1sNCT4
L=1
IF(ISTAD(I)=(J+1)) 19420019
CONTINUE

GO TO 21
ATEMP=A(Y)
BTEMP=B(J)
CTEMP=C(J)
DPTEMP=DJ
ZDYSP=DYSP (L)
AlJ)==(H+H)RZDYSP
B(J)=0Q.0

ClJ)=1.0

BR2=1.0

GO T0 15

CONTINUE

CO 22 I=14NCT4

IFCISTAD(I)={J=1)) 2223422

CONTINUE

GD TO 15
DREV=1¢0/(1le0=-(BTEMPXR (J=-1) +CTEMP=-1,0)#DJ/DTEMP)
TF(DREV) 4le42942

BR2==1.0

GD TO 999

BR2=]140

A(J)=DREVR (A(J) + ((H+H)RZDYSP+ATEMP+BTEMPH®

+A(J=-1)) #*DJ/DTEMP)

B{J)=DREV® (B(J) « (BTEMPRC (J=1) ) 2DJ/DTEMP)
C(J)=DREV®RLC ()

IF(BR2) 9994999450

CONTINUE

DD 24 L=34MP5

J=M+8=L
Y(JI=A(D)+B3(J)RY(Jel)+C{IIRY(Je2)

(4%}
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T1
12
73
T4
15
76
17
78
19
80
81
B2
83
84
85
86
87

25
399

~Y{(4)

(2)=2.0%Y(3) =Y
:(5*6)=2o0*Y(M*5)'Y:m:;:
Y{M+T7)=2,0RY (M+6) =Y

PHIJP=0,0

AMJ=0.0

EMP=0,0

0O 25 J=34MP5

I=J=4

Z21=1

X=Z1%H I o
g:ijglis?b)-Y(J*l)-Y(J*l)*Y(J+2))/(H -
BMM=BMJ

BMJ=BMP

BM(J)=BMJ

BMPz=F(J+ 1) XPHIJP

RETJRN

END

EET
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52
51

11
10

SURROUTINE SOLCHK (NP ¢NPHI ¢BMYsPYsPHIY»FCODE»

+MeBVUyP ¢PHI sMTPHI o ICORINE T o)

DIMENSION NP (1) oNPHI (1) sPHI(207) P (207) 4BM(207) oNVAL (2)
DIMENSION F{207)

CIMENSION ITABIE2)sPY (1) sPHIY (1) +sCHK (2)
DIMENSION BMY (1)

PEAL MTPHI(2543841) sMMY (3) ¢ MMY ]
INTEGER FCODE(207)

DOUBLE PRECISION FeBM4PHI

1COR=0

MP4&z=M+ 4

BM(4)=BM(4) +BM(4)

BM(MP4) =BM(MP4) «BM(MP4)
P(4)=P(4)+P(4)
PIMP4) =P (MP4) +P (MP4)

DO 50 J=&44MP4

K=FCODE(J)

PHPAY=PHI (J) /PH]Y (K)

PPY=P(J) 7/PY(K)

PHPHY=ABS (PHPHY)

PPY=ABS (PPY)

NVAL (1) =NP (K)

NVAL (2) =NPHIT (K)

MPHIK=NPH] (K)

IF(PHPHY-MTPHI (NPHIKs23sK)) 51451452
PHPAY=MTPHI (NPHIK +2sK)

CONTINUE

CHK (1) =PPY

CHK (2) =PHPHY

DO 20 L=1+2

IST=NVAL (L)

CO 10 I=2.15T
IF(MTPHI(TolL oK) =CHK (L)) 11412412
CONTINUE

CONTINUE

BeT



34
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68
69

12 ITA3(L)=1=1
IF(ITAB(L)) 41941942
41 ITAB(L)=1
GO TO &5
42 IX=ITAB(L)+2
IF(NVAL (L) =IX) 46445445
46 IX=NVAL(L)=IX
ITAB(L)=1TAB(L) +IX
45 CONTINUE
20 CONTINUE
I=ITAB(2)
[1=1+1
L=ITAB(l)#%3=3
DO 30 LM=1.3
L=L+3
LL=L+1
L2=L+2

MMY (LM) =MTPH]I (1oL oK) + (PHPHY=MTPHI (192 +K) ) ®MTPHI (1oL sK)
++ (PHPHY=«MTPH]I (1 929K) ) % (PHPHY=MTPHI (11 92+K) ) RMTPHI ([ 4L 2 ¢K)
30 CONTINUVE

I=1TAB(1)

[1=1+1

12=1+2

DD11=(MMY (2)=MMY (1)) Z(MTPHI (Il 41 eK)=MTPHI(I414K))

DD12= (MMY (3) =MMY (2)) / (MTPHT (1241 4K) =MTPHI(I]+1lsK))
DD2=(DD12=DD11) /(MTPHT (1291 oK) =MTPHI(Tel»K))

MMY ]I =MMY (1) + (PPY=-MTPHI (T +1sK))%DD11
++ (PPY=MTPHI(I41leK))®(PPY=MTPH]I(]1s1eK))*DD2
RMJI=MMY | #8MY (K)

BMJU=ABS (BM(J))

IF(BMJ«LT404000001) GO TO 70

X=1=-BMJ]I /BMJ

X=A35(X)

IF(X=04005) 70970971

CET
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SUBRQUTINE OUTPUT(HeMP5 ¢ JS5TAsY sBMePHI oF s TePHePsI1WRT] s
+TWRITESIBATCHWNIT)
DIMENSION JSTA(IO)9Y(207)9F(207)oT(ZO?)oPH(?O7)oP(ZO7)
DIMENSION BM(207)sPHI(207)
DOUBLE PRECISION YeDBMePHIsFoToPH
IF(IBATCH) 114999912
11 WRITE(IWRITE.100) NIT
100 FORMAT (/// o+ " RRKRRIESULTORRRRRL 3/ /4% NJMBER DJF ITERATIONS=?4130//0
+1Xe"STAY 43X e * X" o6 Xe"DEFL"»
+BX o "SLOPE® 46X *MOMENT? 46X "SHFAR " 48Xe'"LIAD 4/ »
+20X 9 YCURVI 26X o *STIFFNESS " 92X s *AXIAL LDAD')
IF(IWRT1.LT«Q) GO TO 30
12 WRITE(IWRT1+110) NIT
110 FORMAT(1H1 o " %R XRXRESULTORRNRRK 4/ /9 NIJMBER OF ITERATIONS=?413¢//
+1Xo"STA43Xe "X
+6X o "DEFL " 48X *SLOPE " 96X e "MOMENT 96X e *SHEAR ' 4BXe*LOAD® 49X
+9CURV Y 26X+ "STIFFNESS ' e 2Xe*AXIAL LOADY)
30 11=1
JSTA4=JSTA(I]) +4
SMDY=0+0
DD 25 J=3,MP5
[=J=4
Z1=1
X=ZI*H
DY=(=Y(J=1)+Y (J+1)) / (H+H)
SMDY=SMDY+ABS(DY)
DRM= (=BM(J=1) +BM(J+1) )/ [H+H)
DRM=DBM=(T(J)%2¢ )}/ (HXX3) =DH(J) 2% (Y (J+1) =Y (J=1))/ (H¥%%3I)
D2BMH= (BM(J=]1)=BM(J)=BM(J) +BM(J+1)) /H
IF(IWRT1.LTe0) GO TO 40
WRITE(IWRT1+120) IvXoY(J)ODYOBM(J)ODBWQDZBWHQPH](J)QF(J)QP(J)
120 FORMAT(J4eF6,148E1243)
40 CONTINUE
IF(IBATCH) 16499925
16 TF{JsEQJSTAL) GO TO 50

LeY



36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
130

25

140

60
150
999

G0 TO 25

WRITE(IWRITE$130) TeXeY{J)} DY 4BM(J) yDBMsD2Z2BMAPHI(U)oF(J) sP(J)
FORMAT(/9149F6el45E12639/916Xe3E1263)

IT=11+1
JSTA4=JSTA(I])
CONTINUE

+4

IF({IBATCH4GT40) GJ TO 60

IF(IWRT1,LTe0)

GO TO 60

WRITE(IWRT19140) 5SMDY

FORMAT (/!

SUM OF SLOPE VALUES=',E10.3)

WRITE(IWRITEL150) SMDY

FORMAT (/4"
RETJRN
END

SUM OF SLOPE VALUES='4E10.3)

8ET



DN W

16
100

25

17
110

30
50

20

SUBROQUTINE LDINC(HeMsBRIBR2+IFAILTePHsPsIsFCCeBETA,

+XINCRsIWRITE)

DIMENSION T(207)+PH(207)+P(207)+3(207)
DOUBLE PRECISION PHsTsQ

MP3=M+3

MP4=M+4

IF(BR2) 16940417

WRITE(IWRITES100) P(5)

FORMAT(/Q'BAD RUN eeceses AXIAL LOAD='"+E10.3)
BR=0D.5

IF(ABS(XP) +ABS(XINCR) ,LT+04000001) GO T2 60
IF(XPeLTe0s000001) GO TO 25

STOP=ABS (XINCR/XP)

IF(STOP«0.005) 60960425

XINCR=ABS (XINCR) #3R

GO TO 50

WRITE(IWRITES110) P(5)

FOR“AT(/Q'GOOD RUN LN N NN ] AXIAL LOAD=.9E10.3)
BER=1,0

XP=ABS(P(5))

IF(XPelLTe0.000001) GO TO 30
STOP=ABS(XINCR/XP)

IF(STOP-0,005) 60960+30
XINCR==1,0*ABS(XINCR) #BR

CONTINUVE

DD 20 J=5.MP3
PH(J)2PH(J) + (H/4.0) * (HEX]INCR)
P(J)=P(J)+XINCR

CONTINUE
PH(4)=PH(4) +(H/440) # (H®XINCR/2,0)
P(4)=P{4) +XINCR/240

PH(MP4) =PH (&)

P(MP4)=P(¢4)

Z4=zXINCR#*ECC

T(a)=T(4)eZa4n(H®H/2,0)

6tT






Note:

A.
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MOMENT-THRUST-CURVATURE FROGRAM

DATA INFPUT

The last data card must assign the outside diameter a value

of zero to stop the program.

Numbers at left indicate card columms.

Control Data; Crose Section and Material Properties.

6-10

11-15

16-20

21-35

36-50

51-65

66-80

FORMAT (415,4E15,5)

Actual stress-strain data used?
(+=Yes; —1=No)

Residual stresses used?
(+1=Yes; -1=No)

Number of layers of elements,
(Max. = 5)

Number of elements in 1/4 circle of one layer.

(The product of the last two numbers must not exceed 30,)
Outside diameter (in,)

Wall thickness (in.)

Modulus of elasticity. (ksi)

Yield stress, (ksi)

Date and Time of Run

1-5
6-10
11-15

16-20

FORMAT (415)
Month

Day

Year

Time (001 - 2400)
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C. Control Data
FORMAT (21I5)

1-5 Number of P/PY values.
(max. 12)

6-10 Number of PHI/PHIY values,
(max, = 25)
D. Axial Load Values
FORMAT (6F10.5)
1-10 P/PY values (Always Positive)
11-20
21-30
31-40
41-50
51-60
E. Curvature Values
FORMAT(5El0.5,/,5E10.5,1,5F10.5,1,5F10.5,15F10,5)
1-10 PHI-PHIY values (Always Positive)
11-20
21-30

31-40
42-50

Note: The data for one problem is now complete if the actual
- stress-strain data and residual stresses are not used,
If both options are used, the stress-strain curve data is
read in first.
F. Stress-Strain Curve Data
1. Control Card
FORMAT (I5)
1-5 Number of tabulated points on stress—-strain curve.

2. TFor each tabulated point
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FLOW DIAGRAM -

CALCULATION OF MOMENT~-THRUST~CURVATURE DATA

START

998

Read: NBS, IRS, NLYR, NELE
OD, WT, E, FY

Is OD greater No
than 0.07?

Yes ( stor )

Read IDI1,ID2, ID3, ID4

V

Read NP, NPHI

Read P/Py values.

Read @#/@y values.
















{

Calculate the total force on
the cross section.

Let "DIFF" = The total force on the
cross section - the applied
axial load.

4
Is "DIFF'" nearly No

equal to 0.07?

eas

149

Adjust the
axial strain

600

Go To 300

Do 400 for each @/@y value.

|

Assume a (a new) curvature value.

Locate the neutral axis at the
centroid of the cross section.

?






Calculate the total force and
bending moment on the
¢ross section.

Y

Go To 89

For each element:
Calculate the strain due
to bending.

Calculate the total strain.
Determine the corredponding

stress value from the
bilinear stress=-strain relationship.

Calculate the total force and
bending moment on the cross
section.

151






153

Save the total moment
calculated.

400 -~ Continue to next @/Q@y
value.

500 -~ Continue to next P/Py value

Print results

Go To 998
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FLOW DIAGRAM - SUBROUTINE INTERP

START

4

IF (X) >

)

SIGN ==1 + Y = 0.0

X==X |

Y

Does X exceed N
the last tabulated o
X-value? Y

Go To 66

Yes

Y

Let Y equal the last
tabulated Y-value * SIGN

Y

(e )
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Select the points to
be used in the interpolation.

Calculate divided differences.

Calculate Y
Y=Y *# SIGN

Y

Comm)













105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

IF(IFSY 16416417

17 CONTINUE
FFAD(IREADS155) IR191K29IR341R4

155 FORVMAT (4]5)
PEAC(IREAD160) (ROTRS (I Uel} o RSTRN(IJal) sl J=1eNETOT)
IF(XSKTIPaLTa2) GO TO 98178
PFAD(IREAD ¢160) (RSOTRS (I J42) ¢RSTRN(IJ92) o1 J=]1 «NETOT)

G878 CONTINUE

160 FORMAT (2E15%.5)

16 TLYR=WT/NLYR
D 25 1=14NLYP
AVGR(I ) =(DD=-2+ 0% XTLYR+ILYR) %045
ARCL(I)=2(34141593%AVGR (1)) /NELE2
AREAE(T)=ARCI(I) ®#iLYR

25 COMNTINUE
STRNY=FY/E
PHIY=2 ,O0%#5TRNY /0D
AREAT=0,0
MY'—'0.0
Z=0e0
PO 30 J=1eNLYR
ARC==ARCI(I) /20
DN 39 Uz14NELFe
[Jd=J+(T=-1)%XNELEZ
ARC=AR(C+ARCI (I}
THETA=ARC/AVGR(])
DISTUIUY=AVGRIU1) *COS{THETA)
EMOMZDIST(IJ) RPHIYRERAREAE (L) %DIST(IJ)
MY=MY+EMOM

35 CONTINUE
AREAT=.,REAT+2,0®8AREAE () #NELLE?
DO 50 JJ=1eNELE
[JJ=dJ+([=1)#NELEZ
L=Z2+DICT(IJI)Y *AREAE (1)

50 CONTINUE

65T









209
210
211
2lz
213
214
215
216
217
218
219
229
221
222
2213
224
225
226
227
22E
229
230
231
232

233

234
235
236
237
238
239
240
241
242
243

300

" ¥% 3
O x
x W %
* %%

22

70

21

31

32
T4
75
76

L3 .2}

MAzNN+ |

IF(NNaGTe40) GO TI 996

FORCL=nN.0

FIND TIE STRESS 0ON BACH ELEMEMT AND THE TOTAL FORCE
FOR THF CURRENT ASTEN VALUE

IF NBS = +1 USE ACTUAL STRESS-STRAIN DATA
IF NBS = <1 USE BILINEAK SIKESS=-STRAIN RELATIDONSHIP
TIF(NBES) 2142102

CONTINUE

DD 70 1J=]1NETOT

I=(1J+NELE2=-1)/NELEZ

0 70 KKK=14,KSKI1P

¥ = ASTRN + RSTRN(1J.KKK)

CALL INTRP(NTP¢XVALsYVAL¢X,Y)
ASTIS({IJeKKK) = ¥ = RSTHS(IJesKKK)

FORCE = FORCE + AREAE(I)*ASIRS(IJeKKK)
CONTLELE

GO TG 76

CONTINUE

DO 75 1J=1oNETOT

IT=(IJ+NELE2=-1) /NELE?

PO 74 XKK=14,KSKIP

X = ASTRN + RSETKRN(IJ4KKK]

[F(STRNY=ABS(X)) 31+31s32

ASTRS{TJGKKK) = SIGMNIFYeX) = RSTRS{]JeKKK)
GO TO 74

ASTRS (] JeKKK) X#E = ROTRS(].JeKKK)

FORCE = FQRCE + AXEAE(l)#ASiIRS{]J4KKK)
CONTINJE

CONTINJE

IF(KSKIPLTa2) FORCE=2,,0U#FORCE
DIFF=FORCE=-P

ANIFF=235(DIFF)

APz AHS(P)

IS THE FORCF EWuAL TC THE ARPPLIED AXIAL LOAD (600 =

YES,

52

-

NO)

291









313
314
315
316
317
31y
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
3413
344
345
346
347

mn

[aNa

48
69
56
89

LE X )

97
96
73

*
®* %
T2

LR
* * %

81

91
31

85

71

430

T=T+EFRC

TMOM=TVOM+EFRC*TDLIST (1)

CONTINUE

FORCE=C+T

C=C*10.0

1C=C

T=T®10.,0

17=T7

IF *Tv AND *C* ARL BOTH SUFFICIENTLY SMALL = ST10P
TF(IC) 96¢97,4,97

IF(IT) 71471496

IF(T) 72472473

CT==C/1

CTA=ABS(1,0=CT)

1S ABS5(C) NFEARLY EQUAL 10 ABSI(T) (71 = YESs 72 = NOQ)
IF(CTA=0.0L1) 71974812

IF NM = 1 THEN XFXC ]S NOT DeFINED
IF{NM,LT«2) GO T0O 91

IF THE TOTAL FORCE HAS CHANGED SIGN THEN THE CORRECT
SOLUTION HAS BEEN PASSEUV
IF(FORCE/XFRC) HleT71491

XD=0.5

XFRC=+CRCE

FIND NEW NEUTRAL AXIS LOCATION,
PINC=STON(DINCRXD s FORCE!

D=p+LINC

DO 85 1J=1oNETOT
IDIST(IMN=DIST(]J)=-D

CONTIKUE

GO TO 450

K2=K+2

MMY=TMOIM/MY

IF(CSK [P Te2) MMYZ2 ,OnIMDIMsMY
MTPHAL ({ 4K 2) =MMY

CANTINJE

G91
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RESIDUAL STRESS PROGRAM

DATA INPUT

Note: Numbers at left indicate card columns,

A, Cross Section and Material Properties
FORMAT (2I5,4E15.5)

1-5 Number of layers of elements.
(Max. = 5)

6-10 number of elements in 1/4 circle of one layer.

(The product of the above two numbers must not exceed 50.)

11-25 Outside diameter (in.)
26~40 Wall thickness (in.)
41~55 Modulus of elasticity (ksi).

56-70 Yield stress (ksi).

B. Date and Time of Run
FORMAT (415)
1-5 Month
6-10 Day
11-15 Year

16~20 Time (001-2400)

c. Initial Stress Values
FORMAT (3E10.3)
1-10 T1 - Tensile stress value (ksi).
11-20 C - Compressive stress value (ksi).

21-30 T2 - Tenslle stress value (ksi).

(The program does not allow the residual stress at any
element to exceed the yleld stress.)
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D. Stress-Strain Option

FORMAT (215)
1-5 Number of tabulated points on stress-strain curve.

(Enter 0 i1f previous response was -1)

Note: Data 18 now complete 1f the actual stress—strain data
is not used,
E. Stress-Strain Data
For each tabulated point on the stress-strain curve:
FORMAT (2E15.5)
1-15 Stress value (ksi).

16-30 Strain value



RESIDUAL STRESS PROGRAM

FLOW DIAGRAM

( START ’

Y

Read: NLYR, NELE, OD, WT, E, FY

Is tabular N
stress-strain data o
used?

Yes
L

Read stress-strain data,

Y

Calculate for each layer:

Average radius
Arc length of elements
Area of elements.

171



Compute the distance from the
bottom of the cross section
to each element.

Locate the max. compressive stress
at the center of the cross
section,

Beginning of iteration to
determine the correct value
of T2.

Have more than Yes

20 iterations been
pexrformed?

No

( STOP >

172



Beginning of iteration to
determine the correct location
of 'C'.

Have more than
20 iterations been
performed? Y

No ( stop )

Y

Yes

Compute the net force
on the cross section.

Is the net force
nearly equal to No
0.07

Yes

Adjust the
location of 'C'

Go To 400

173



Compute the net
bending moment on the
cross section.

Is the net
bending moment
nearly equal to 0,07

No
\!

Yes

Is tabular
stress~strain data
used?

‘Yes

Adjust the
value of T2.

Y

Go To 300

No

Interpolate tne strain
for each element -
SUBROUTINE IWTERP

Stop if the stress
on any element
exceeds the yield
stress.

Calculate the strain
for each element.
using Hooke's Law.

Stop 1f the stress
on any element
exceeds the yield
stress.

i . .

!

—

Print the stress and strain value for each element.

STOP

174



Nolie L VRO S I SN C U S N

WWWUWWWUWRRNRNNNNNNRN o s =
NPV O0OO0OXT~NCFAST W= OO NPT LW —O
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”* % %
#* % 3
”* % %
% % %
”* % %
* % %
% % %
=% %
%
% % 3
LEE
»* % 3%
”* %
”* %
LE.R ¢
* %
* 9
2% 5
* %5
* % %
% % %
L EZ ]
* * »
» %
”* %
2 9% 3¢
* % %
#* % %
”* % %
=
* % %
2. X3
»*% %
LE.2 3
LXK )
%* % %

PESIDUAL STRESS PROGRAM ARNOLD L, WAGNER AUG, 1975
THE PUDRPJISE OF THIS PROGRAM 15 TD MODIFY AN ASSUMED
RESICUAL STRESS DISTRIBUTION IN ORDER TO SATISFY EQUILIBRIUM,
% Rk X MO K X K R R X R O R K K X H H R K X X R OF R X H N R #*
NO ESIDJAL STRESS VALUE MAY EXCEED THE YIELD STRESS
F o O K A R Ok K R OO X O X XK R X K W X K X X W X X X R H K »
VARIABLES
AFRC = ABSOLUTE VALUE OF FORCE
AMOM = ABSOLUTE VALUE OF XMOM
ARC - £RC DISTANCE FROM TOP JF CR0SS SECTION TO ELEMENT
ARCI(I) - ARC LENGTH OF ELEMENT IN LAYER ¢
AREAF (1) - AREA DOF ELEMENT IN LAYER ']
AVGR(I) = AVERAGE RADIUS TO LAYER *I°
C - ASSUMED MAXe COMPRESSIVE STRESS
(NOT CHANGED)

CIST(1J) - DISTANCE FROM BOTTOM OF CROSS SECTION

TO ELEMENT *1J°
E - MOSULUS OF ELASTICITY
FFRC(IJ) = FORCE IN ELEMENT *IJ'
FORCE = TOTAL FORCE ON CRJSS SECTION
FRCP - FORCE VALUE ON LAST ITERATION
FY - YIELD STRESS
TRAT - FLAG TO ALLOW THIS PROGRAM TQ BE RUN IN THE

CATCH MODE AS WELL AS TIMESHARING

N1 - MAX, NUMBER OF ITERATIONS ALLOWED TO OBTAIN

SUMMATION OF FORCES EQUAL TO ZERD
M2 =~ MAYX, NUMBER OJF ITERATIONS ALLOWED TO DBTAIN

SUMMATION OF MCMENTS EQUAL TO ZERO
MAS - +1 = ACTUAL STRESS=-STRAIN DATA USED

-1 = RILINEAR STRESS=STRAIN RELATIONSHIP
MFLE = NJMBER OF ELEMEN1S IN 1/4 CIRCLE IN ONE LAYER
NFLE2 - MUMBER OF ELEMENTS IN 172 CIRCLE IN JINE LAYER
MLYR - NUMBER OF LAYERS
NTP - “~UMBER OF TABULATED POINTS Did STRESS-STRAIN CURVE
OP - OJUTSIDE DIAMETER OF TUBE
FY - AXTAL LOAD AT FIPST YIELD

GLT



37
38
39
40
41
42
43
44
45
46
47
4H
49
50
51
52

53
S4
55
Sé6
57
5k
56
60
61
62
63
b6
&5
Y
67
b8
69
70

aNa¥a¥a¥aNalaNeaXaNalaRaXakakaka!

a¥alalaXaXaXala¥aXakal

* %5
%%
#* % &
%3
* 5~
* *
LR £ 3
* * %
LEK
*R
%* % 2
= x %
* %
* % %
* R
**

* x5
*
* %
* %
% % %
L EX 3
* % 9
LR L
® &
”*x %
L2
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RSTRM(1J) = RESIDJAL STRAIN AT ELEMENT 'IJe

PSTRS(1JY = RFSIDJAL STRESS AT ELEMENT *IJ¢

STOPM = ALLOWABLE DEVIATION +ROM ZERO MOMENT

STOPP ~ ALLOWABLE DEVIAVION FROM ZERO FORCE

STRNT -~ INTERPOLATED STKAIN VALUE

STRSX - RSTRS(IW)

Tl = ASSUMED TENSILE STRESS AT TOP OF CROSS SECTION
(NOT CHANGEL)

T2 - ASSUMED TENSILE STRESS AT BOTTOM OF CR0OSS SECTION

(CHANGED TO ACHIEVE ZFRO MQOMENT)

THETA - ANGLE FRO™M TGP OF CRDSS SECTION TO ELEMENT

TLYR = THICKNESS JF EACH LAYER

T2INC - AMOUNT OF CHANGE IN T2

WT = WALL THICKNESS OF TUBE

XD - CHANGES FROM 1 TO 0.5 AFTER CORRECT XDIST IS PASSED

XDINC - AMOUNT OF CHANGE IN XDIST

XNIST - DISTANCE FROM BOTTOM OF CROSS SECTION TO *C¢
(CHANGED TU ACHIEVE ZERO FORCE)

XID = INSIDE DIAMETER

XM = CHANGES FROM 1 TO 0.5 AFTER CORRECT T2 1S PASSED

XMOM = TOTAL MOMENT ON CROSS SECTION

XMOMP -~ XMOM VALUE OM LAST ITERATION

XMY « V¥OMENT AT FIRST YIELD

XVAL (K} « STRESS VALUE FROM STRESS=STRAIN CURVE
(40TE DIFFERENT MEANING IN MTPHI PROGRAM)

YVAL(K) < STRAIN VALUE FROM STRESS=-STRAIN CURVE
(NOTE DIFFLREMT MEANING IN MTPHI PROGRAM)

DIMENSION RSTRS(100) 4RSTRN(100) ¢DIST(100) +EFRC(100)

DIMENSION AVGR(5) yAREAE (S) 4ARCI (5)

DIMENSION XVAL(20)4YVALI20)

IRAT==]

I1RAT=]

IF(IFAT) 114999412

IREAD=1C

9.1



71
12
73
T4
75
76
17
Ig:]
796
a8d
81
82
83
84
85
86
87
88
£9
90
91
92
93
P
95
96
97
98
99
100
101
102
103
104

IWRT=6
GO TC 14
12 IREAC=2
IWRT=5
14 PFAD(IREAD100) NLYRGNELE+ODsWT4EoFY
100 FORMAT(21544E15e5)
PEAD(IREAD¢105) ID1+ID2+1D34IN%
105 FORMAT(415)
WRITE(1WRT4170)
170 FNORMAT(1H14///7/7941H DEPT, OF ENGINEERING AND APPLIED SCIENCE o/
+26H FOPTLAND STATE UNIVERSITY 4//,
+44H STRUCTJIRAL TUBE RESIDUAL STRESS=STRAIN DATA )
FRITE(IWRT9175) ID141D2+1D341D4
175 FORMAT(/46H DATE=3129¢1H/el2e1H/s12¢/96H TIME=,14)
WRITE(IWRT+185) NELE NLYR
185 FORMAT(/+6H NELE=9134/96H NLYR=412)
WRITF(TWRT+180) ODsWT4EsFY

180 FORMAT (/s 25H QUTSIDRE DIAMETER sE15.5¢5H INe o/

+ 25H WALL THICKNESS = sE154595H INe o/
+ 25H MODJLUS OF ELASTICITY = 4E15,5¢5H KSI 4/
+ 25H YIELD STRESS = +E154595H KSI )

FEAD(IREAD110) T1sCaT2
110 FORMAT(3E10.3)
WRITL(IWRT#135) T1leCyT2
135 FORMAT(/422H INITIAL STRESS VALUES 4/¢4H T1lzeE1O0e343H C=4E10a3,
+4H T2=9E10.3)
READ(IRPEAD+120) NBS.NTP
120 FORMAT(215)
IF(NFS«LT.0) GO TO 16
FEAD(IREAD$130) (XVAL(K) s YVALIK) ¢K=14NTP)
130 FORMAT(2E15.5)
16 NELE2=MNELER2
NETOT=MNLYRRNELEZ
XID=CL=2,0%¢T
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

15

10

20

35
30

C anx

PY=3,141593/4,08 (ID®OD=XID%XID) ®FY
XMY=3,141593/6460%(0D®#4,0=XIDR®4,0) %2,0/0D%FY
STOPP=0.00005%#PY

STOPM=0,001#%XxXMY

PO 10 I=1sNLYR

DO 15 J=1.NELEZ2

IJ=sJ+(I=1)%NELEZ

RSTRS(1J)=0.0

RSTRN(1UJ)=0.0

DIST(I1J)=0.0

CONTINUE

AVGR(I) =040

AREAE(I)=0,0

ARCI(I)=0.0

CONTINUE

TLYR=WT/NLYR

0N 20 I=1.NLYR
AVGR(I)=(0D=2.,0%*TLYR+TLYR) #0,5
ARCI(I)=(3,141593®%AVGR (1)) /NELE?2
AREAE(I)=ARCI(I)#TLYR

CONT INUE

DO 30 I=1.NLYR

ARC==ARCI(I) /2.0

DO 35 J=1.NELEZ2

IJ=J+ ([=1) #NELE2

ARC=ARC+ARCI(Y)

THETA=ARC/AVGR (1) :
DIST(IJ)=AVGR(I) #COS(THETA) «+AVGR(I) +TLYR/2.0¢(I=1)#TLYR
CONTINUE -

CONTINUE

XDIST=0.5%0D

N2=0

XM=1,0

T2INC=0,12T2

XDINC=0,1#2D

START OF T2 ITERATION LOOP =ax
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141
142
143
lLag
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

(@]

300

* %%
400

140

* % %

41

42
46

40
150
N
* % %

52

* %%
% %

53
59

CONTINUE

XD=1.0

N2=NZ+1]

IF(N2.,50T.20) GO TID 969

N1=0

SYART NF XDIST ITERATION LOOP #*xx
CONTINUE

WRITE(IANRTs140) XDIST

FORMAT (/4 *XDIST="sF10,4)

Mi=N1+1

TF(N1.GTa30) GO TO 936

FARCE=CW0

FIND STRESS AT CACH ELFMENT AND TOTAL FORCE ##=x
DO 40 TJ=1eNETOT

I=(IJ+NFLE2~-1) /NELE2
[F(OISTITJY)=XDIST) 4le4leb2

RSTRS(I M) ==(C+T2) /XDISTRDIST(IJ}+T2

GO TO 46

RETRSIII) =(C+TL) /(OD=XDISTI*(DIST(IJ)=XDIST) =C
FFRCIIJI=RSTRS(IJ) *AREAE(T)
FORCE=FORCE+EFRC(1J)

CONTINJE

WRITE(IWRT150) FORCE

FCRMAT (/+'FORCE="9F10.4)

AFRC=APS(FORCE)

IS THE TOTAL FORCE SUFFLCIENTLY SMALL 4¢ SISYES9e52=ND *xx
IF(AFRC=-STOPP) 51351452

IF N1=1 THEN FRCP HAS NOT YET BEEN DEFINED #x»
IF(N1sLT.2) GO TO 59

IF FORCE HAS CHANOJEC SIGN THEN THE CORRECT #x%
¥DIST HAS BEEN PASSED %=

IF(FCRCE/FRCFP) %3451459

XD=0- 5

FRCP=FORCE
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175
176
177
178
179
180
181
182
1813
18¢
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
2013
204
205
206
207
208

#* % %

51
* %%

50
160
* X%
* % %

62

¥* % %
* % %

63
69

3 %%

61
L3

81

XDINC=STON(XDINC® XD 4FORCE)

XDIST=XDIST+XDINC

TRY AGAIN WITH NEW XDIST #*xx

GO TG 400

CONT INUE

SUMMATION JF FORCES=0e NOW FIND MOMENT #xn
XDINC=0,05%0D

XMO"‘:G.O

D0 50 1J=14NETOT

XMOMsXVYOM+EFRC(IJ) *DIST I N

CONTINUE

WRITE(IWRT9160) XMOM

FORMAT (/s YMOMENT="*9F10a4%)

AMOM=ARS (XMOM)

IS THE MOMENT SUFFICIENTLY SMALL ee H1=YES*62=NO
IF (AMOM=STOPM) 61961462

IF N2=1 THEN XMOUMP HAS NOT YET REEN DEFINED ®x*x
IF(N24.LTe2) GO TO 69

1F XMOM HAS CHANGED SIGN THEN THE CORRECT #*xx
T? HAS BEEN PASSED x¥%=x

TFE(XMOVM/XMOMP) 63461469

yM:Oos

YMovp=XxMIM

T2INC=SIGN(T2TNCxXM ¢ XMOM)

T2=T2+T21INC

TRY AGAIN WITH NEW T2 x¥%x

¢0 TO 300

CONTINJE

EQUILIBRIUM SATISFIED eses CALCULATE STRAIN VALUES xxx
IF(NES) 81481+82

CONTINUE

DO 60 1J=14NETOI

IF(ISTRS(TJ) ,GT.FY} GO TO 996
FETIIM(TJN)=RSTRSI(TJ) /E
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209
210
211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228

60

82

10
86
200

210
Q%6

250
999

CONTINUE
GO TO 86
CONTINUE
NPD 70 [J=14METOT
IF(RSTRS{IJ) ,GTFY) GO TO 99¢&
X=RSTRSELT D
CALL INTRPINTPGAVAL sYVAL 4X,4Y)
FETRN(TJY=Y
CONTINUE
WRITE(TWRT 200}
FORMAT(//+28H RESIDUAL STRESSZSTRAIN DATA o/
+35H FLEMe NO, STRESS STRAIN )
WRITE(IWRT ¢210) {1 J4RSTRS(IJ) yRSTRNI(IJ) 4I1J=1NETOT)
FORMAT (' '41543X4s2E15.5)
GO TC 999
WRITE(IWRT ¢250)
FORMAT{/443H RESTJUAL STRESS VALUE EXCEEDS YIELD STRESS
CONTINJUE
STOP
END

)
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O D~ T WA=

% % 3t
* % %
* * %
* %
* K
*

ANANANANANA

62
61
63

70
C =nan

67
66
21
10
23
C unx

31
32

42

43

SURRCUTINE INTRP(NTP e XVALsYVALAXsY)

FOR A GIVEN STRESS VALUE (x) FIND THE CORRESPONDING
STRAIN VALUE (YY) JSING A SECOND ORDER DIVIDED
DIFFERFNCE INTERPIOLATION

IT IS ASSUMED THAT (0»0) IS THE FIRST POINT ON THE
CURVE AND THAT THE PROPERTIFES IMN TENSION AND
COMPRESSIDON ARE IDENTICAL

NIMENSTION XVAL (20)eYVAL(20)

TF(X) 61462463

Y=0.C

GO TC 999

SGN==~1.0

Xz=X

GO TO 70

SGN=1e0

CONTINUVUE

FIND THE INTERVAL CONTAINING eXv¢

[FIX<XVAL (NTP)) 66967461

Y=YVAL (NTP) #SGN

GO TC 999

CONTINUE

CO 10 J=2«NTP

IF(XVAL(J)=X) 21423423

CONTINUE

CONTINUE

[TAB=J=1

[TAB1=1TAB+1

MAKE ADJUSTMENTS IF NECESSARY
IF(X=0s5%#XVAL (ITAD) =0,5*XVAL(ITAEL)) 31432432
ITA3=1TAB=-1

CONTINUVE

JF(ITAR) 424642443

ITAB=ITAB+1

GO TO 45

I¥X=1TAZ2+2

IF(NTP~=IX) 484454945
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37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

46 IX=NTP=IX
ITAB=ITAB+IX
45 CONTINUE .
C x%x CALCULATE DIVIDED DIFFERENCES
ITARL=1TAB+1]
ITA32=1TAB+2
DN11=(YVAL(ITABI)=YVAL(ITAB))
+/ (XVAL(ITABL)=XVAL{ITAB))
DD12=(YVAL(ITAB2)=YVAL (1TAB1))
+/(XVAL(ITAR2)=XVAL(ITAB]))
DL22=(0DD12=-DD11} /7 {XVAL(LITAB2) =XVAL (ITAB))
C %#%xx FIND 'Y?
Y=YVAL(ITAB) « (X=XVAL(ITAB) ) *DD11
++ (X~XVAL(ITAB) ) % (X=XVAL(ITARBL1))*DD22
Y=Y*SGN
999 PETURN

END
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