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Abstract 

 The recurring theme of this dissertation is the correlation between FeS2 surface 

chemistry and key electrical and electronic properties of FeS2.  Efforts have been made to 

identify and characterize the FeS2 surface, investigate the photoelectrochemistry of FeS2 

photoanodes under anhydrous and anoxic conditions, and investigate the influence of 

deliberate surface chemistry on FeS2 photoelectrochemistry. 

 Infrared reflection-absorption spectroscopy (IRRAS) was used to investigate a 

thin adsorbate layer on pyrite. The results showed that the combination of angle-

dependent studies and computational efforts are a powerful tool for characterizing the 

pyrite surface. 

 The photoelectrochemistry of FeS2 photoanodes was investigated in an I
–
/I3

–
 

acetonitrile electrolyte.  The results revealed that the non-aqueous system was suitable for 

strictly anhydrous and anoxic photoelectrochemical studies.  A model was proposed to 

explain the observed influence of concentration of dissolved I2 on the photovoltage.  A 

central component of the proposed model was that shunting was assumed to take place at 

physically distinct regions of the electrode and that mass-transport to and from these 

regions could be treated separately from mass-transport to the regions responsible for the 

rectifying behavior of the FeS2/liquid junction.  The implication of the agreement 

between experimental and calculated J–E curves is that macroscopic 

photoelectrochemical investigations may underestimate the quality of FeS2 photoanodes 

due to the presence of defects. 



 ii 

 The influence of surface treatments on FeS2 photoelectrochemistry was further 

studied using non-coordinating redox species. A statistically significant increase of 

photovoltage was observed after treating FeS2 surfaces with KCN.  X-ray photoelectron 

spectroscopy was used to study chemical bond formation between the electron donating 

ligands and iron(II) centers on the pyrite surface. The results were discussed in terms of 

charge recombination models and surface coordination chemistry. 

 Unfinished work is also presented.  Cathodic polarization in acidic media is a 

prerequisite for any detectable photoresponse.  The exact function of the electrochemical 

activations was further investigated by electropolishing pyrite electrode under different 

experimental conditions including etchant identity and applied bias. The results suggested 

that the electrochemical treatment removes the damaged surface layer caused by 

mechanical polishing, and might also stabilize the surface states. Further experiments can 

be focus on anhydrous etching of pyrite photoanode.    

 The research presented in this dissertation guides future studies of thin film FeS2 

photovoltaics.  
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I. THESIS STATEMENT 

 Single crystalline FeS2 surface chemistry can be correlated with FeS2 

photoelectrochemistry. 

 Specifically: 

1. Infrared reflection-absorption spectroscopy holds promise as a technique to 

identify and fully characterize FeS2 surface bonds. 

2. Photoelectrochemistry of FeS2 can be investigated under anhydrous and anoxic 

conditions. 

3. The influence of surface chemistry on FeS2 photoelectrochemistry can be further 

understood using non-coordinating redox species. 
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II. INTRODUCTION 

A) Solar energy 

1) Renewable energy  

 Global energy consumption increases rapidly year by year due to the fast growth 

of the world’s population and the development of its inhabitants.  It has been predicted 

that by 2050, more than 30 terawatts new power will be needed.
1
 The carbon emissions 

and other environmental pollutions associated with current fossil-fuel-based energy 

supply therefore constitute a serious problem today.
2, 3

  As a result, renewable energies 

have attracted more and more attention in recent decades.  Solar energy is one of the most 

promising renewable energy resources due to its abundance and environmental 

friendliness.  The sun provides more than enough energy and utilizing solar energy is 

already competitive from the perspective of CO2 emission per kWh.  The sun provides 

approximately 6,000 times the current annual energy needs to the Earth’s surface.  A 

currently commercially available solar cell has a CO2 emission lifecycle of less than 200 

g / kWh, which is significantly lower than coal (~910 g / kWh).
4
 

  

2) Principle of solar cells 

 A solar cell, or a photovoltaic (PV), is a device that harvests photons, converting 

solar energy into electrical energy. The process for solar to electrical energy conversion 

can be roughly divided into two steps: (1) photogeneration and (2) charge separation.
5
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 In the photogeneration step, the incoming photons are absorbed by semiconductor 

materials and electron-hole pairs are generated. The key parameter of this step is the 

bandgap energy (Eg) of the semiconductor material.
5
 In an ideal case, all photons with 

energy equal or greater than the bandgap will each generate an electron-hole pair; the 

photons with energy less than the bandgap will not contribute to any photogeneration. 

The excess energy (hν - Eg) of those absorbed photons, however, cannot be converted to 

electricity.  Instead, it will be lost rapidly as heat.  As a result, the open-circuit voltage, 

Voc, (which is the maximum attainable voltage) cannot exceed Eg/q (q is the elementary 

charge). The short circuit current Isc, on the other hand, is determined by the number of 

photons that have an energy hν ≥ Eg.  Therefore, the greater Eg is, the smaller Isc is.  

Since the power output of a PV device is the product of photovoltage and photocurrent, 

there is no energy production at either open-circuit or short-circuit point and the 

maximum power point is somewhere in between on an I-V curve as shown in Figure II-1 

(c).
2
  

 The band gap of a semiconductor material can be obtained using optical or 

electronic measurements.  Qualitatively speaking, the optical bandgap represents the 

minimum energy absorbed photons; the electronic bandgap is correlated to the maximum 

expected photovoltage. For most inorganic semiconductor materials, the electronic 

bandgap is approximately the same as the optical bandgap.  However, low-densities of 

near band-edge states may not contribute significantly to the absorption profile of a 

material but can significantly affect its electronic properties.  In this case, the electronic 

bandgap may be lower than the measured optical bandgap.  
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Figure II-1. Typical I-V characteristics of an ideal solar cell. MPP stands for the 

maximum power point.   

 

3) Challenges of solar cells  

 Providing large-scale energy supply with competitive pricing by photovoltaics 

remains a challenge.  One problem with solar energy usage is that the power density of 

solar radiation is low.  On average, the Earth receives approximately 1,300-1,400 W per 

square meter.  The direct available solar power, however, varies depending on locations 

due to the latitude, status of atmosphere, and the season of the year and the time of day.  

In the U.S., the national average is dramatically lower at 100–150 W m
–2

.
6
 Therefore, 

solar devices with very large areas are required to meet our energy needs.  This might be 
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a serious problem especially for indirect bandgap semiconductors, which require more 

material to absorb all incoming radiation.  Take crystalline silicon, the dominating 

material in the PV market, as an example.  Due to its low absorption coefficient, a 

relatively thick (~100 µm) layer is required to absorb all useful incident photons.
5, 7

 This 

not only requires a lot of raw material, but also makes the manufacturing process more 

difficult and expensive. 

 To address these issues, many efforts have focused on thin film technologies.  The 

basic concept is to use a thin layer (< 100 nm) of a highly absorbing semiconductor 

material to absorb light and to inject the photo-generated electron into another conducting 

material to generate a photopotential.  The advantages of this technology are: (1) less 

material consumption; (2) rapid charge extraction from the absorber material allowing 

lower charge recombination rates. 

 Another opportunity to improve the performance of solar devices is to raise the 

theoretical efficiency by replacing single-junction devices with multiple absorber cells.
8, 9

  

A typical schematic representation of a multiple-absorber cell is shown in Figure II-2. In 

general, it consists of several photovoltaic cells of progressively smaller Eg. The incident 

irradiation first reaches the largest bandgap (Eg,1) material and high energy photons with 

hν ≥ Eg,1 are absorbed. The photons with lower energy are then transmitted through to a 

lower bandgap absorbing layer and absorbed there. Since the photovoltaic cells are 

connected in series, the total Vph is limited by the sum of photovoltage of each cell, and 

the total current flow is limited by the least photocurrent among all cells. A maximum 
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efficiency of 56 % has been predicted for an ideal three-junction solar cells under intense 

illumination.
10

 

 

Figure II-2. Schematic representation of a three-junction solar cell. SC stands for 

semiconductor.  The bandgap energy, Eg of each absorber is qEg. Vx and Jx are 

photovoltage and photocurrent densities generated by the x
th

 layer, respectively. Vtotal and 

Jtotal are the output photovoltage and photocurrent for the whole device.  

 

 Recently, researchers have made significant progress on thin-film solar cells using 

non-silicon materials as an absorbing layer.
11

 The main drawbacks of several leading 

thin-film materials (e.g. CdTe, GaAs) are the high cost and potential environmental 
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hazards.
9, 12

 Thus, materials that are abundant, highly absorbing, and have low toxicity 

are obviously more desirable.  A promising alternative material is iron pyrite (FeS2). 

 

B) Iron pyrite as a potential material for solar energy conversion 

 FeS2 has attracted considerable attention over the past decades as an energy-

conversion material, as a common by-product of mining, and as a factor in some origin-

of-life theories.  Pyrite is commonly encountered during mining operations and it is found 

in both gold and coal among many other materials.  The extraction cost of its constituent 

metallic element, iron, is only $0.03/kg, which is significantly lower than the extraction 

cost of ~$1.70 for silicon.
12

  Pyrite also has low toxicity.
7
  Thus, pyrite is very attractive 

for economic and environmental reasons. 

 

1) Crystal strucure 

 Pyrite has a cubic structure in which Fe ions are located at the corners and face 

centers of the cube and S-S divalent anions are at the cube centers and the midpoints of 

cube edges as shown in Figure II-3.  As a transition metal compound ，  the 

semiconducting properties of FeS2 can be understood by considering FeS2 as a 

coordination compound with Fe centers in octahedral coordination by six sulfur dimers.
13

  

The iron center in pyrite is in a low-spin d
6
 configuration and the d-orbitals are split into 

eg and t2g energy levels.  According to the ligand field theory, pyrite can be anticipated as 

a semiconductor with a band gap of 0.9 eV.
14

  By way of contrast, the other crystal form 

of iron disulfide, namely marcasite, has an orthorhombic structure. As a result, the 
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splitting of the t2g orbitals increases, resulting in a decrease in the semiconducting band 

gap to 0.4 eV.
15

 Therefore marcasite is less interesting than pyrite as a solar-energy 

conversion material. In addition, pyrite is more thermodynamically favorable than 

marcasite across all temperatures.
16

 

 

 

Figure II-3. Crystal structure of iron pyrite.
17

 

 

2) Optical and electrical properties 

 Pyrite is a promising material for solar-energy conversion due to its suitable band 

gap (optical bandgap of 0.95 eV and electronic bandgap of 0.8 eV), and strong absorption 

coefficient, , which is greater than 10
5
 cm

-1 
for hν > 1.3 eV.

18-20
 Furthermore, near unity 

(0.923) photon-to-electron conversion efficiency under intense illumination (4–5 W cm
-2

) 

has been reported for monocrystalline n-type FeS2 in contact with an aqueous solution 
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containing an I3
-
/I

-
 redox couple.

20
 (The schematic of such a pyrite photodiode/liquid 

junction is shown in Figure II-4.)  Reported charge-carrier diffusion lengths (0.1 – 1 m) 

match the materials thickness required based on the extinction coefficient of FeS2.
21-26

 

There is also some evidence that polycrystalline FeS2 may be relevant for solar-to-

electrical energy conversion.
27

 

 

 

Figure II-4. Schematic of FeS2/I3
-
,I

-
 junction. The dashed line represents the pyrite/liquid 

interface. 

 

3) Main challenge of pyrite based solar devices 

 By evaluating the theoretical maximum power conversion efficiency and raw 

material cost, it has been predicted that pyrite has the potential to offer electricity at < 2 × 

10
-6

 ȼ/W.
12

 However, FeS2 is not presently a viable solar-energy-conversion material.  

While pyrite-based photoelectrodes have shown large currents under intense illumination, 

the reported photovoltages of approximately 200 mV were considerably lower than what 
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is expected to be theoretically achievable (~500 mV) under normal operating conditions 

and accounting for thermodynamic losses.20, 28-31 The low photovoltage was likely a result 

of one or more of the following, previously identified,
32-34

 causes: (1) Bulk, and 

interfacial defects including bulk sulfur vacancies,
13, 21, 35-37

 surface and interfacial 

defects,
38-40

 line defects,
41

 and point defects,
33

 (2) Intrinsic surface states, owing to 

termination of the crystal lattice,
26, 38

  and (3) The presence of FeS and FeS2 in phases 

other than the pyrite phase. Concerning the latter, several studies have suggested that 

marcasite, pyrrhotite, and amorphous iron sulfides affect the photovoltaic performance of 

pyrite.
21, 42

  These causes can all result in electronic states that facilitate electron-hole pair 

recombination and Fermi-level pinning. Fermi-level pinning refers to a phenomenon that 

the band bending in a semiconductor is fixed to a constant value because of the presence 

of surface states.  In a semiconductor/liquid junction device, when Fermi-level pinning 

occurs, the junction properties are independent of the solution potential. In practice, 

Fermi-level pinning has the disadvantage of limiting photovoltage.  Since surface states 

can play a crucial role in Fermi-level pinning, surface reactions that changes the nature of 

the surface states might improve the photovoltage.
43

 

 The photoactivity of pyrite has been shown to be improved by specific pre-

treatment protocols in acidic media.
44

 The electrochemical dissolution of pyrite in an 

aqueous solution has been shown to depend on pH.
45

 The presence of some chemicals, 

including silanes and humic acids, have been shown to decrease electrochemical 

corrosion rate by forming an insulating passivation layer.
46

 Furthermore, corrosion has 

been shown to be inhibited by the presence of halogens and coordinating groups, 
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including CO, in solution.
47-49

 It was suggested that facilitating inner-sphere electron 

transfer processes (possibly through kinetically shutting down the corrosion pathways) 

inhibited corrosion. Some organic ligands, for instance pyrazine and 4,4’-bipyridine, 

were shown to decrease the anodic dark current of an n-pyrite/electrolyte junction; and 

treatment with pyrazine was also shown to increase the difference between current-

voltage curves obtained under illumination and in the dark.
50

  It was suggested that the 

organic ligands passivated the surface by coordinating Fe
2+

 to form Fe(II)-ligand 

complexes, and that charge transfer proceeded via the ligand bridge. However, the 

chemical identity of the surface was never determined experimentally. 

 The experimental aim of my doctoral research was to explore the relationship 

between FeS2 surface chemistry and photoelectrochemistry. The studies presented in this 

dissertation provided a fundamental understanding of FeS2 surface identity, and 

illustrated their influences on energy-conversion performance of FeS2. The 

methodologies established should benefit the future study of FeS2 solar devices. 
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III. INFRARED REFLECTION-ABSORPTION SPECTROSCOPY AS A 

PROMISING TECHNIQUE TO CHARACTERIZE FES2 SURFACE 

BOND 

A number of techniques, all having specific strengths, have been used for pyrite 

surface characterization including Auger electron spectroscopy (AES),
51, 52

 grazing 

incidence X-ray diffraction (GIXD),
53-55

 Raman spectroscopy,
56, 57

 electron energy loss 

spectroscopy (EELS),
58

 scanning electron microscopy (SEM),
59, 60

 and X-ray 

photoelectron spectroscopy (XPS).
37, 61

 Infrared (IR) spectroscopy is an important tool in 

the characterization of surfaces due to its non-destructive sampling, ability to identify 

chemical compounds, high sensitivity, and compatibility with a range of environmental 

conditions.
62

 

Transmission and attenuated total reflection (ATR) IR spectroscopy are 

frequently employed with great success for studying monolayers on surfaces. ATR-IR 

spectroscopy has been employed to study polycrystalline films and powder samples of 

FeS2 where the sample was deposited onto an ATR crystal.
63-65

 However, neither 

transmission- nor ATR-IR spectroscopy is ideal for studying single-crystal FeS2 surface 

chemistry. Transmission IR spectroscopy is not ideal for characterizing overlayers on 

FeS2 single crystals because of the relatively high intrinsic absorption in the mid-IR 

(greater than 10 cm
-1

).
66

 This results in an almost threefold attenuation of the probing 

light even at a thickness of only 1 mm, making background subtraction when comparing 

two different samples, or comparing the same sample at different stages of a chemical 

process, difficult.  The same physical property, a high extinction coefficient in the mid-IR, 
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also makes using a FeS2 crystal as an ATR substrate a poor choice. Grazing angle 

attenuated total reflectance (GATR), commonly achieved by close contact between a Ge 

hemisphere and the sample, has successfully been used to increase the signal by 

enhancing the local electric-field strength to probe sub-monolayer chemistry on Si.
67, 68

 

However, this technique is not suitable either because of the high refractive index of 

pyrite.
69

 The interest in studying single-crystal pyrite surface chemistry as opposed to that 

of polycrystalline films or (nano) particles, both of which are easier to prepare and have 

higher surface area and have been studied extensively using IR spectroscopy,
22, 63-65, 70, 71

 

arises from the fact that good photovoltaic performance has only been demonstrated 

using single-crystal pyrite.
20

 Angle-dependent IRRAS provides an opportunity to study 

not only the chemical information relating to the surface and thin adsorbate layer, but 

also the surface orientation of adsorbate molecules.
72

   

A unique feature of IRRAS spectra is that the directions and the intensities of 

absorbance bands varies with the incident angle, polarization of incident radiations and 

optical properties of both adsorbate and substrate. The complicated spectral behavior can 

help confidently interpret the spectrum, especially weak absorption bands, since signals 

arising from the spectrometer would not show the same complex dependency on angle of 

incidence.  To understand the optical behavior of thin films on metallic and non-metallic 

substrates, several theoretical approaches have been developed for the general case of 

adsorbate films of variable symmetry. In extension of older treatments for isotropic 

media,
73

 a rigorous 4×4 transfer matrix method was established to simulate adsorbate 

reflection spectra on a variety of substrates (e.g., Au, Cu, CuS2, Si, and H2O) as a 
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function of molecular orientation.
74-76

 A treatment based on the longitudinal and 

transverse optical (LO and TO, respectively) modes was also developed to simulate the 

infrared spectra of isotropic polymeric thin films on Si and Au.
62

 However, pyrite has not 

benefitted from angle-dependent IRRAS investigations coupled to computational efforts, 

which could provide chemical information to understand effects of surface chemistry on 

photovoltage. 

In this chapter a thin isotropic surface layer on FeS2 was studied by combining 

angle-dependent IRRAS spectroscopic and computational efforts. 1-dodecanethiol was 

chosen as a model adsorbate because: (1) the extinction coefficient spectrum of alkyl 

chain has been previously reported in the literature; and (2) it is easily reacted with the 

FeS2 surface. Comparisons are made between theoretical predictions and experimental 

results and the two are discussed in terms of the general utility of IRRAS for studying 

oligo-, and monolayer-chemistry of FeS2 surfaces. 

 

A) Experimental section 

1) Materials and methods   

 All chemicals were used as received.  Pyrite samples were purchased from 

Ward’s Natural Science (Rochester, NY). 

 Sample preparation. Natural pyrite cubes (Spain, ~15×15×15 mm
3
) were 

polished using a progression of diamond lapping films (9 μm, 3 μm, 1 μm and 0.25 μm) 

with a TechPrep™ polishing system (Allied High Tech Products, Inc.) at a rotational 

speed of 60 rpm.  The cubes were polished with each diamond lapping film until any 
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scratches from polishing with the previous, coarser, lapping film had been removed 

completely. Each cube was cut using an IsoMet® Low Speed Saw (Buehler) to give a 2 

mm thick slide having the polished face as one of its sides.  The slides were then etched 

for 15 minutes in NH4F(aq) (Transene Company, Inc., 40%, 10.9 M) that had previously 

been sparged with N2 for 30 min to remove O2. The etched pyrite slides were annealed in 

a vacuum sealed (5×10
-7

 Torr) ampoule in the presence of 50 mg elemental sulfur 

(Aldrich, 99.999%) at 600 °C for 12 hours (Linderg/Blue M* Tube Furnace, Thermo 

Scientific).  Adsorption of 1-dodecanethiol onto the FeS2 was carried out by immersing 

the FeS2 slides in 1-dodecanethiol for 2 hours under inert atmosphere followed by 

quickly rinsing with 1 mL of absolute ethanol three times to remove loosely bound alkyl-

thiol.  Finally, the pyrite slides were dried under N2. 

2) Instrumentation   

 IRRAS spectra were collected using a Nicolet 6700 FT-IR spectrometer equipped 

with a variable-angle reflectance unit (Seagull, Harrick Scientific) and a liquid-nitrogen 

cooled MCT/A detector. The sample-chamber was purged with purified air (Parker 

Balston FT-IR purge gas generator, Model 75-52 equipped with additional hydrocarbon 

filters) to minimize levels of CO2, moisture, and hydrocarbons.  A wire grid polarizer 

(Model PWG-SEA, Harrick Scientific) was used for selecting p-polarized or s-polarized 

radiation. Interferograms were collected with an optical velocity of 0.6329 cm s
-1

, and 4 

cm
-1

 spectral resolution.  For both clean and functionalized surfaces 2000 consecutive 

scans were collected and averaged to ensure adequate signal-to-noise ratio.  A 2
nd

 order 
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baseline correction was applied to all the spectra presented in this paper. Collection was 

started 30 minutes after sample insertion to allow time for purging the sample chamber. 

The thickness of the adsorbed 1-dodecanethiol layer was measured using a 

Gaertner Model L116A ellipsometer (Gaertner Scientific Co.) with a He/Ne laser (632.8 

nm, 2 mW, Melles Griot) at an incidence angle of 70.  The refractive index n0 and 

extinction coefficient k0 values of each clean substrate were measured right before 

immersing the slide into 1-dodecanethiol.  A value of 1.46 was used as the refractive 

index of 1-dodecanethiol, ns.
77, 78

 

The surface roughness of the clean FeS2 substrate was evaluated using an atomic 

force microscope (Nanoscope II, Veeco) in tapping mode with a scan rate of 1 Hz.  SEM 

imaging employed a Zeiss Sigma VP FEG SEM operating at 1 kV and a chamber 

pressure of 10
-5

 Pa.  

X-ray photoelectron spectra were collected using a ThermoScientifc ESCALAB 

250 instrument equipped with a monochromatized Al X-ray source and at a chamber 

pressure less than 10
-7

 Pa.  The spot size was 500 μm, the pass energy 20 eV for 

composition scans, and all binding energies were referenced using 284.8 eV as the 

binding energy for the C 1s peak associated with aliphatic hydrocarbons.  

Surface crystal structure was studied using SEM-based electron backscatter 

diffraction analysis (EBSD).  No carbon coating was applied prior to EBSD.  All 

crystallographic data was collected using a Zeiss Sigma VP FEG SEM operating at 

accelerating voltage of 20 kV and a chamber pressure of 10
-5

 Pa. The sample was tilted 

70 degrees and electron backscatter patterns were collected on a phosphor screen. Point 
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scans were collected with a binning mode of 1×1 and a frame averaging of 16. Map scans 

were collected with a binning mode of 4×4 and a frame averaging of 8. The step size of 

map scans was 0.66 μm.  The number of ‘Kikuchi’ bands required for pyrite indexing 

was 8. All EBSD data were processed using the AZtecHKL software package (Oxford 

Instruments, UK). 

 

 

Figure III-1. Schematic diagram for light incident at an angle θ on a thin film of thickness 

d on a substrate. ε0 and εs are the complex dielectric functions of the substrate and the 

film, respectively. n0 and ns are the refractive indices of the substrate and the film, 

respectively. k0 and ks are the absorption coefficients of the substrate and the film, 

respectively. 
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3) Calculations  

 Calculations were carried out using an existing three-phase model.
62

  In brief, the 

system was modeled as a thin layer (the 1-dodecanethiol) sandwiched between air and 

FeS2 (Figure III-1). Furthermore: the clean pyrite slide was treated as an ideal dielectric 

substrate, meaning that it was assumed to be non-absorbing in the region of interest. The 

influence of the adsorbate layer was characterized by the ratio of the reflectivities of a 

functionalized surface vs. an unfunctionalized surface (Rs/R0).  For the two polarizations, 

the reflectivities of the substrate (R0), and substrate + sample (Rs), were calculated using 

equations III-1-4 (below) where Im(ε) and Im(-1/ε) are the energy-loss functions for the 

TO and LO modes, respectively.
62

  

For s-polarization:   𝑅0 = (
√𝜀0−𝑠𝑖𝑛2 𝜃−𝑐𝑜𝑠 𝜃

√𝜀0−𝑠𝑖𝑛2 𝜃+𝑐𝑜𝑠 𝜃
)

2

    III-1 

   𝑅s = (
√𝜀0−𝑠𝑖𝑛2 𝜃−𝑐𝑜𝑠 𝜃

√𝜀0−𝑠𝑖𝑛2 𝜃+𝑐𝑜𝑠 𝜃
)

2

[1 +
8𝜋𝜈𝑑 𝑐𝑜𝑠 𝜃

𝜀0−1
𝐼𝑚(𝜀𝑠)]   III-2  

For p-polarization:   𝑅0 = (
√𝜀0−𝑠𝑖𝑛2 𝜃−𝜀0 𝑐𝑜𝑠 𝜃

√𝜀0−𝑠𝑖𝑛2 𝜃+𝜀0 𝑐𝑜𝑠 𝜃
)

2

    III-3  

 𝑅s = (
√𝜀0−𝑠𝑖𝑛2 𝜃−𝜀0𝑐𝑜𝑠 𝜃

√𝜀0−𝑠𝑖𝑛2 𝜃+𝜀0𝑐𝑜𝑠 𝜃
)

2

[1 +
8𝜋𝜈𝑑

𝑐𝑜𝑠 𝜃

(𝜀0−𝑠𝑖𝑛2 𝜃)𝐼𝑚(𝜀𝑠)−𝜀0
2 𝑠𝑖𝑛2 𝜃𝐼𝑚(

−1

𝜀𝑠
)

(𝜀0−1)(𝜀0−𝑡𝑎𝑛2 𝜃)
]  III-4 

Here, d is the film thickness, ν is the wavenumber of interest, θ is the incidence 

angle with respect to the surface normal, and ε0 and εs are the complex dielectric 

functions of the substrate and the film, respectively. In general, the dielectric function ε 

can be expressed in terms of the optical constants as ε = (n + ik)
2
, where n is the real 

refractive index, and k is the extinction coefficient.  It has been reported that over the 
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wavenumber range of interest, the refractive index of pyrite (n0) is 4.60 while the 

adsorption coefficient of pyrite (k0) is 0.
79

  Hence ε0 = n0
2
 = (4.60)

2
 = 21.16. A literature k 

spectrum for a long-chain alkyl salt (polycrystalline C19H39CO2Na) in 3000-2800 cm
-2

 

region was used to calculate the n spectrum based on Kramers-Kronig relations, and from 

which the dielectric function ε(ν) of the C-H vibration modes was derived.
75

 The energy-

loss function for TO mode of the adsorbate, Im(εs), is the imagination part of the optical 

constant εs and thus equals to 2nsks.  Likewise, the energy-loss function for LO mode of 

the adsorbate, Im(-1/εs) was calculated as 2nsks /(ns
4
 + 2ns

2
ks

2
 + ks

4
).  

 

B) Results 

1) Experimentally obtained angle-dependent external reflectance spectra  

 Figures III-2 a and c show the angle-dependent external reflection-absorption 

spectra for functionalized FeS2 surfaces referenced to unfunctionalized surfaces.  Peaks 

were observed at 2854 cm
-1

, 2925 cm
-1

, and 2954 cm
-1

 with p-polarized light, and were 

most easily observed at higher degrees of incidence angle.  Peaks were observed at 2854 

cm
-1

 and 2925 cm
-1

,
 
with a weak band at around 2954 cm

-1
, with s-polarized light.  All s-

polarized bands were “negative”, and the absolute value of band intensities decreased 

with increasing incidence angle.  The peak assignments from IRRAS results are 

summarized in Table 1. 
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Table 1. Assignment of IR peaks 

Peak frequency (cm
-1

) Vibration 

2854 CH2, sym. str. 

2925 CH2, asym. str. 

2954 CH3, asym. str. 
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Figure III-2. Experimental (Exp) and calculated (Cal) IR reflection spectra of a thin 

alkane-layer on FeS2. 
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The FeS2 substrate’s Brewster angle was determined by plotting the intensity of 

reflected light as a function of incident angle for s-polarized and p-polarized light (See 

Figure III-3). A Brewster angle is an incident angle at which the p-polarized radiation 

perfectly transmits through the substrate and thus the reflected radiation is only s-

polarized. At an incidence angle of 76 ± 2 degrees, the reflectivity of p-polarized 

radiation is close to 0.  This is consistent with the calculated Brewster angle of pyrite (θB 

= tan
-1

 n0 =78 degrees). In theory, the reflectivity of a clean substrate should increase 

monotonically with increasing incidence angle for s-polarized radiation. However, the 

experimental results show a decrease in the intensity of the reflected s-polarized light due 

to experimental conditions; the beam is partially clipped by the experimental setup at 

high angles. 

 

Figure III-3. Reflectivities of clean pyrite as a function of the incidence angle for s-

polarized and p-polarized radiation. Each data point was an average of 3 samples. 
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2) Calculated angle-dependent external reflectance spectra 

 

Figure III-4. (a) Calculated absorbance at 3000 cm
-1

 of a hypothetical adsorbate on pyrite. 

(b) Zoomed in view of (a). 

 

Figures III-2 b and d show the angle-dependent external reflection-absorption 

spectra of the functionalized FeS2 calculated using equations III-1-4.  In general, good 

agreement was found between the measured and calculated spectra.  The spectral features 

were further investigated by calculating the absorbance at a single wavelength as a 

function of angle of incidence. 

Figure III-4 shows calculated changes in “Absorbance” (-log Rs/R0) as a function 

of incidence angle at a single wavelength (3000 cm
-1

) for both p-polarized and s-

polarized light.  The adsorbate layer was modeled as ns = 1.45, ks = 0.001 and a thickness 

of 30 Å, and the pyrite surface was modeled as a dielectric with n0 = 4.60, k0 = 0.
79
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(1) Absorption of s-polarized light always lead to inverted (“negative”) absorption 

bands with relatively low intensity that increased with decreasing incidence angle. 

(2) Absorption of p-polarized light results in both positive and negative 

absorption bands depending on incidence angle with an inversion at the Brewster angle of 

the substrate.  A second band inversion is predicted for p-polarized light according to 

equation III-5.
62

 

 𝑠𝑖𝑛2 𝜃2𝑖 = (
𝜀0

|𝜀𝑠|2
+

1

𝜀0
)

−1

      III-5 

In our cases 𝜃2𝑖  is approximately 27 degrees. Thus, there are three regimes 

(a) 𝜃 > 𝜃B; (b) 𝜃B > 𝜃 > 𝜃2𝑖 ; (c) 𝜃 < 𝜃2𝑖  that should be discussed separately. For (a), 

absorption bands are “negative”, and the absolute value of band intensities decrease with 

increasing incidence angle.  For (b), absorption bands are positive, and their intensities 

increase with increasing incidence angle. For (c), absorption bands are inverted 

(“negative”), and the absolute value of their intensities decrease with increasing incidence 

angle. 

 

3) Surface - properties of the substrate. 

 Alkane overlayer thickness.  The thickness of the adsorbed dodecane thiol layer 

was 30 ± 2 Å as measured by elipsometry. 

 Surface preparation by polishing, etching and annealing in a sulfur atmosphere.  

Slides that were polished and etched using the procedure outlined in the experimental 

section went from having a dull face, with an inhomogeneous color, to mirror-like finish 
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and metallic luster, the color of the sample now silver. The final step before the alkane 

overlayer adsorption, the sulfur anneal, resulted in observable changes to the optical 

properties of the clean FeS2 substrate (Table 2); the refractive index, n0, increased and 

became more consistent from sample to sample. There was no color change observed 

after sulfur anneal. The surface morphology of as-prepared pyrite slides was studied 

using SEM and AFM imaging (Figure III-5). The surfaces contained two types of 

irregularities: scratches and point-like defects.  The scratches were 100 nm or less wide.  

The point-like defects were also on the 100 nm scale.  A 10 by 10 μm
2
 AFM image of the 

surface provided a root mean square roughness of 1.56 nm and the total Z (height) range 

of the image was 20.46 nm. 

 

Table 2. The dielectric functions of pyrite slides before and after annealing in a S 

atmosphere (each data was an average of five spots on the same slide). 

 Pre annealing Post annealing 

 n0 k0 n0 k0 

Slide 1 3.98 ± 0.18 -3.10 ± 0.02 4.05 ± 0.16 -2.86 ± 0.04 

Slide 2 3.25 ± 0.03 -3.03 ± 0.01 4.43 ± 0.12 -3.02 ± 0.03 

Slide 3 1.79 ± 0.04 -3.29 ± 0.02 4.54 ± 0.02 -2.96 ± 0.02 
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Figure III-5. (a), (b) and (c) are SEM images of the clean FeS2 substrate. (d) shows an 

AFM image of the clean substrate. 

The surface of the pyrite slides before and after sulfur-anneal was also studied by 

XPS. Figure III-6 displays representative Fe 2p and S 2p spectra. The binding energies 

and full width at half magnitude (FWHM) were summarized in Table 3, which are 

consistent with literature values.
26, 80-83

 

 

Table 3. Binding energies and FWHM of representative pyrite slides 

 Pre annealing Post annealing 

 Binding energy FWHM Binding energy FWHM 

Fe 2p3/2 707.47 0.83 707.69 0.77 

S 2p3/2 162.78 0.77 162.96 0.72 

0 5 10 µm 

0  

5  

10 
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2 µm 
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(d) (c) 
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Figure III-6. Normalized Fe 2p and S 2p spectra of pre- and post-anneal pyrite slides. 
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2
 area for pre- and post-anneal slides were 12.70 ± 8.93% and 93.12 ± 

5.28% (Figure III-8), respectively (both values are an average of three slides).  
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Figure III-7. EBSP (kikuchi patterns) of a pyrite slide (a) pre- and (b) post-sulfur anneal. 

(c) and (d) are auto index results of two different spots on the annealed slide. 

 

 

Figure III-8. Representative EBSD map scans of  (1) pre-annealed slide and (2) post –

annealed slide. The colored spots are the area that can be indexed as pyrite, while the 

(a) (b) 

(c) (d) 
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black areas could not be indexed.  More than one database entry for pyrite was used to 

ensure that both perfectly cubic and weakly distorted pyrite could be indexed. 

C) Discussion 

Previously a number of experimental techniques including XPS,
81, 84, 85

 EELS,
86

 

and infrared spectroscopy to a lesser degree,
87

 have been used to investigate single-

crystal FeS2 surfaces; infrared spectroscopy has been used more frequently when 

investigating FeS2 powders.
39, 64, 65, 88

 The present work has evaluated the utility of angle-

dependent infrared reflection absorption spectroscopy for investigating thin alkane layers 

on single-crystal FeS2. The utility of angle-dependent reflectance absorption spectroscopy 

studies coupled to computational efforts has been demonstrated for other materials 

including Si, SiO2, and CuS2,
62, 72, 76, 89

 but has not been demonstrated for FeS2 previously. 

 

1) Experimentally obtained angle-dependent external reflectance spectra   

 The experimentally obtained external reflectance spectra are in qualitative 

agreement with what has been reported before at a single angle of incidence.  However, 

these studies show that previously used angles of incidence (e.g. 45°) might not have 

been optimal from a signal-to-noise consideration.
87

 Furthermore, we have demonstrated 

that the direction and intensity of the absorption bands reported show a complex 

relationship with incidence angle.  For an incidence angle greater than the Brewster angle 

(i.e. 85 degrees), all bands for p-polarized light pointed in the negative direction.  For an 

incidence angle of 68 degrees p-polarized absorption bands were positive.  For an 

incidence angle of 45 degrees absorption bands pointed in the positive direction for p-
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polarized light and in the negative direction for s-polarized light for which bands were 

only observable at or below an incidence angle of 45°.  The intensity of the absorption 

bands was higher at 68 degrees than at 45 degrees for p-polarized light, but no 

experiments aimed at experimentally determining the angle of maximum signal-to-noise 

were undertaken.  Unfortunately we were not able to reliably distinguish bands at 

incidence angles below 45 degrees for p-polarized light while absorption peaks were 

reliably detectable only at 45 degrees or less for s-polarized light.  The relatively low 

absorbance of s-polarized absorption bands makes them difficult to detect.  According to 

literature,
75

 a relatively good estimation for the absorption strength in transmission mode 

can be obtained from a Beer-Lambert type relationship (equation III-6):   

 −𝑙𝑜𝑔(𝑅s 𝑅0⁄ ) = 4𝜋𝑘𝜈𝑑/2.303       III-6 

At 2925 cm
-1

, k ~ 0.2, and d ~ 30 Å, the absorbance is approximately 1×10
-3

, 

while the intensity for s-polarized light is only 2×10
-4

, smaller by a factor of 5 compared 

to a transmission spectrum. 

The biggest advantage of angle-dependent infrared reflection-absorption 

spectroscopy is in the complicated behavior of the observed absorption peaks as a 

function of angle.  It is well known and often encountered by infrared spectroscopists 

trying to detect and characterize monolayers on flat surfaces (i.e. in the absence of signal-

enhancement due to a large surface area) that adventitious carbon present at varying 

concentrations at varying times makes it hard to confidently assign peaks in the C-H 

stretching region.  A series of spectra that must exhibit a certain dependence on angle of 

incidence gives an additional means to determine the origin of observed peaks.  If, as in 
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this case, the absorbance spectra are in good agreement with theoretical predictions then 

one can have confidence that the spectra are related to the overlayer since carbon 

contaminations in any other part of the spectrometer or sample chamber should not give 

rise to the same complicated spectral dependence on incidence angle. 

 

2) Calculated angle-dependent external reflectance spectra   

 According to previous studies,
62, 90

 there are in general two types of vibrations 

that have to be considered in order to understand the behavior of an anisotropic film on a 

dielectric substrate. These two vibrations are longitudinal (LO) and transverse optical 

(TO) modes. For s-polarization only TO bands can be observed. Based on equation III-2, 

it is easy to find out that the TO term [
8𝜋𝜈̅𝑑 𝑐𝑜𝑠 𝜃

𝜀0−1
𝐼𝑚(𝜀𝑠)] is always positive over the whole 

incidence angle range (theoretically 0-90 degree), that is, absorption of s-polarized light 

by the adsorbate leads to an increase in reflectivity (𝑅s > 𝑅0). Hence, the adsorption 

bands of s-polarization spectra are negative regardless of θ. Since this TO term decreases 

with the increasing incidence angle, the absolute intensities of TO bands should be largest 

at normal incidence (0 degree) and then decrease with increasing θ. It is worthwhile to 

note that the absolute band intensities of s-polarized spectra are on the order of 10
-4

. We 

were unsuccessful in obtaining reproducible and resolvable spectra at lower (i.e. 2 

degree) or higher (i.e. 68 and 85 degree) incidence angles due to the low signal-to-noise 

ratio but expect that theory accurately predicts future experimental spectra at these angles 

as well. 
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  P-polarized light, on the other hand, has components of the electric vector both 

parallel and perpendicular to the surface. As a result, both the TO and LO modes make 

contributions to the final spectra, and their relative intensities are θ-dependent. For 𝜃 >

𝜃B, the TO term contributes negatively to the calculated absorption band, while the LO 

term contributes positively to the absorption band. Since the TO term dominates the LO 

term, the spectra display negative absorption bands. At the Brewster angle the intensity of 

reflected p-polarized light approaches zero and even though Figure III-4 predicts an 

infinitely large absorption band at the Brewster angle this is not observed as the total 

amount of reflected light, and thus the signal-to-noise ratio, approaches zero.
72

 For 𝜃 <

𝜃B, the situation is the opposite: TO term shows positive absorbance, while LO term 

shows negative absorbance. However, the TO and LO terms compete in intensity over 

this incidence angle range and a second inversion will occur when the LO term is once 

again able to dominate the TO term at an angle θ as determined by equation III-5.  The 

second inversion angle 𝜃2𝑖  depends on the value of εs relative to ε0.  Since the dielectric 

function of natural pyrite is dependent on its inherent characteristics (e.g. level of 

impurities, surface defects, etc.) (Table 2), the angle of the second inversion is expected 

to vary from sample to sample. As mentioned in the experimental section, a value of 

21.16 was used as the ε0 for all the calculations, and thus 𝜃2𝑖 was calculated as 27 degrees. 

For 𝜃B > 𝜃 > 𝜃2𝑖, the overall spectra show positive absorption bands, since the TO term 

plays a leading role in this case. For 𝜃 < 𝜃2𝑖 , the absorption bands are calculated to be 

“negative” but, as mentioned above, we failed to obtain reproducible spectra at this range 

due to the low signal-to-noise ratio.  
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3) The combination of angle-dependent IRRAS spectroscopy and computational 

efforts   

 The good agreement between experimental and calculated reflection spectra of a 

thin adsorbate layer on pyrite indicates that angle-dependent IRRAS is a sensitive method 

appropriate for investigating pyrite surface chemistry. It has previously been shown that 

pyrazine and 4,4’-bipyridine affected charge transfer and corrosion rates for pyrite in 

contact with an aqueous electrolyte.  It was assumed that light-induced charge transfer 

was facilitated by pyrazine and 4,4’-bipyridine acting as a bridge between pyrite Fe(II) 

centers and the electrolyte.  However, though infrared spectroscopy was identified as a 

suitable candidate for understanding the resulting interface this was not possible due to an 

insufficient signal-to-noise ratio.
50

 The combination of angle-dependent IRRAS 

spectroscopic and computational efforts provides a tool to study these important surfaces, 

and therefore gaining a better understanding of the relationship between surface 

chemistry and the photoresponse of single crystalline pyrite/electrolyte junctions.  

 

4) Surface properties of the substrate   

 The polishing, etching and annealing procedure produced mirror-like surfaces.  A 

number of methods have been reported in literature for producing flat FeS2 (100) surfaces 

including electropolishing,
91

 polishing with 0.5 µm alumina,
92

 and polishing with 0.25 

µm diamond paste.
93

  Only a few examples exist of studies focusing explicitly on the 

effects of varying polishing procedures on surface quality,
94

 so the full identity is not 
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generally known for any reported polishing procedure. The procedure reported herein 

produces a mirror-like surface well suited for external reflectance infrared spectroscopy.  

The goal of the polishing and etching step was to produce a macroscopically flat 

pyrite surface. However, these treatments left some scratches and point-like defects, the 

latter ones appear randomly on the substrate surface. Those defects might be caused by 

preferential etching of impurity inclusions or the removal of small FeS2 particles from the 

surface. The XPS spectra of polished and etched slides are consistent with literature.
26, 80-

82
 Peaks at 161.3 eV and 167.5-169.5 eV were not detected indicating the absence of S

2-
 

and SO4
2-

; however, a shoulder at approximately 708.9-711.3 eV indicated that small 

amounts of Fe-O species were present.
26, 80, 82

  

The sulfur-anneal step was important for obtaining consistent reflectance spectra. 

The vapor pressure of S in the ampoule can be estimated at approximately 6080 torr by 

extrapolating from existing data.
95

 The vapor pressure of S was thus much higher than the 

equilibrium pressure of S over FeS2 which has been reported as approximately 15 Torr at 

a temperature of 600 °C.  As the temperature was lowered after annealing, the end of the 

ampoule opposite the FeS2 slide was kept slightly cooler by positioning the ampoule at 

the edge of the tube furnace.  This prevented S deposition onto the FeS2 slide.  

After annealing, the XPS spectra of Fe 2p and S 2p were very similar to those of 

pre-anneal slides.  However, the sulfur-anneal step did affect the surface crystal structure. 

In contrast to the blurred Kikuchi patterns of pre-annealed slides, consistent with an 

amorphous top layer, much clearer Kikuchi patterns were obtained after annealing, and 

thus the hit rate of map scans increased significantly. The EBSD map scan data were 
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collected and processed using an automated procedure without further manual treatment.  

The significantly improved detectability of surface crystal structure suggests that the S 

anneal resulted in improved near-surface crystal structure.  Furthermore, the complex 

refractive index after sulfur annealing matched literature values well,
79

 in contrast to 

values obtained for slides that had not been annealed.  This is consistent with a non-pyrite 

top layer on the surface after polishing and etching; and recovered surface crystallinity 

after the sulfur anneal. 

 

D) Conclusions 

 Mirror-like FeS2 (100) surfaces were prepared with an alkane thiol overlayer.  In 

accordance with previous results a simple polish and etch procedure produced a mirror-

like surface, but sulfur annealing improved near-surface crystallinity.  Angle-dependent 

infrared reflection absorption spectroscopy was used to investigate the alkane overlayer 

and very good agreement was found between experimental and calculated spectra.  We 

demonstrated that external reflection infrared spectroscopy is a powerful tool for studying 

thin films on pyrite.  The complex relationship between band intensities, band directions, 

incidence angle and dielectric properties of a substrate allows even weak absorption 

bands to be confidently assigned to surface species since adventitious carbon on other 

parts of the spectrometer, including the KBr windows and beam splitter, would not show 

the same complex dependency on incidence angle.  However, there is still room for 

improvement. As we discussed in chapter II, some organic and inorganic ligands have 

been reported to passivate FeS2 surface. Take cyanide as an example, the expected 
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absorbance of a monolayer of –CN on FeS2 surface was calculated to be on the order of 

10
-5

, which is one order of magnitude lower than the detection limit for our current setup. 

The technique presented in this chapter holds promise to fully characterize monolayer 

species on FeS2 surface if the signal to noise ratio were to be increased.   



 37 

IV. PHOTOELECTROCHEMICAL BEHAVIOR OF SINGLE-CRYSTAL 

FES2 UNDER ANHYDROUS AND ANOXIC CONDITIONS  

 The most promising results indicating the potential of FeS2 as an energy-

conversion material have been obtained through photoelectrochemical studies.  However, 

it was shown that FeS2 photoelectrochemistry was critically dependent on experimental 

conditions including redox-couple identity and electrochemical pre-treatment of the FeS2 

electrode;
44, 48, 96, 97

 the choice of redox couple affected both photon-to-electron 

conversion efficiency and the extent of FeS2 corrosion,
48, 98

 and electrochemical 

pretreatment by cathodic polarization in H2SO4(aq) of the FeS2 photoanode was 

consistently necessary to realize any significant photoresponse.
20, 44

 

 It has been shown that aqueous FeS2 corrosion was not responsible for the 

observed photocurrent of FeS2 electrodes in contact with an aqueous I
–
/I3

–
 electrolyte.

20, 98
 

Monocrystalline n-type FeS2 electrodes maintained 77% of initial current densities after 

passing 6.23 × 10
5
 C cm

-2
 (at 1 V vs. a carbon reference) without microscopic evidence 

of corrosion damage.  However, it is generally known that surface chemistry is often 

linked to photoelectrochemical performance, and it has been shown that aqueous 

chemistry involving the FeS2 surface can take place even in the potential range where 

continuous corrosion of FeS2 is not observed.
99

  It is not known what effect surface-

limited aqueous FeS2 chemistry has on the photoresponse of FeS2 electrodes in contact 

with an I
–
/I3

–
 electrolyte.  Therefore, it is desirable to test the photoelectrochemistry of 

FeS2 in a nonaqueous system where a minimum of undesired chemical reactions are 

expected. 
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In this chapter, we compare the photoelectrochemistry of FeS2 in contact with 

aqueous and nonaqueous I
–
/I3

–
 electrolytes and propose an explanation for the observed 

relationship between photovoltage and the concentration of oxidized species using a 

simple model.  We highlight some important aspects of the system that warrant further 

investigation.  

 

A) Experimental section 

1) Materials  

 All chemicals were used as received unless mentioned specifically.  Concentrated 

sulfuric acid (Certified ACS Plus) was obtained from Sigma-Aldrich.  Acetonitrile 

(anhydrous, 99.8%) was obtained from Sigma-Aldrich, and was further purified using a 

MB-SPS Manual Solvent Purification System to remove oxygen and moisture.  The dried 

acetonitrile was transported in a Schlenk flask into a LABstar glovebox (MBRAUN) 

having a N2 atmosphere containing less than 0.5 ppm O2 and 0.5 ppm H2O.  KI (99%) 

and LiI (99%) were purchased from VWR and I2 (>99.8%) was purchased from Sigma-

Aldrich.  Single-crystalline pyrite samples were natural, originating from Turkey. 

 

2) Electrode preparation 

 Electrode fabrication. 3 mm thick pyrite slides exposing the (100) surface were 

cut into several smaller pieces (~6×6×3 mm
3
) using a diamond pen.  Each piece was 

attached to a tinned copper wire using Ga/In eutectic and silver paint.  The electrically 
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contacted pyrite pieces were sealed to a glass rod (Pyrex® 7740 glass, 6 mm outer 

diameter, Corning Inc., NY) using epoxy (Loctite Hysol 1C Epoxi-Patch Adhesive) to 

form an electrode.  The electrode was polished using a progression of diamond lapping 

films from 9 μm down to 0.25 μm and epoxy was re-applied to mask the edges of the 

sample leaving a flat surface of 0.1 - 0.3 cm
2
 exposed. The area of the exposed surface 

was determined for each electrode (Cannon scanner and ImageJ software) to convert 

measured currents to current densities. 

 Electrochemical pretreatment. Pyrite electrodes were cathodically polarized in 

0.5 M H2SO4(aq) that had been sparged with N2 for 30 min prior to any experiments to 

remove O2.  A constant current density of -15 mA cm
–2

 was maintained to pass a total of 

2.7 C cm
-2

 prior to photoelectrochemical measurements.
44

  A standard three-electrode cell 

configuration was used with a Pt mesh counter electrode and a Pt wire reference electrode. 

 

3) Photoelectrochemical data 

  Solutions.  Aqueous solutions were prepared from a base electrolyte (0.5 M 

H2SO4(aq)) that had been sparged with N2(g) for 30 min.  They were prepared to 0.5 M 

KI(aq) and 0.004, 0.01, 0.02, 0.03, or 0.05 M I2(aq).  Nonaqueous solutions were 

prepared in the glovebox.  LiI was dissolved in acetonitrile to a concentration of 0.5 M in 

a sealed electrochemical cell.  The cell was removed from the glove box and connected to 

a N2(g) purge.  I2 was added to the solution to a final concentration of 0.004 M. 

 Open-Circuit Potential (Eoc) and Current Density versus Potential (J–E) 

Measurements.  A three-electrode setup was used for all photoelectrochemical 
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experiments.  A Pt mesh counter electrode and a Pt wire reference electrode were used in 

all cases with a Gamry Reference 600 potentiostat.  All potentials were measured with 

respect to the solution potential and an inert Pt-disc working electrode was used to 

characterize the system before and after experiments.  For both Eoc and J–E 

measurements the FeS2 working electrode was left in the electrolyte for at least 10 min 

before any measurement, until the rest potential of the FeS2 electrode had stabilized from 

at most ± 1 mV to within ± 0.5 mV of the solution potential.  Eoc and J–E data were 

collected in the dark and under illumination (ABET solar simulator, model 10500) under 

vigorous stirring.  Light intensities were either 0.1 or 0.5 W cm
–2

, as determined using a 

UV005 photodiode (OSI optoelectronics) electrode that was placed at the same position 

as the FeS2 electrodes.  The UV500 photodiode electrode had been calibrated using a 

Melles-Griot 13PEM001 broadband power meter equipped with a water filter.  For each 

electrode and experimental condition, J–E data were collected without illumination 

before and after collection under illumination. The statistical significance of the 

differences of measured open-circuit potentials for the aqueous and nonaqueous 

electrolytes was determined using the standard t-test.
100

 The level of significance was set 

as 0.05.  

 Current-Voltage (I–V) calculations.  I–V curves were calculated using two 

simple models (Scheme 1) both incorporating a current source (Isc), diode characterized 

by a reverse saturation current, and shunt resistance (Rsh).  The model in Scheme 1a 

assumed shunting to occur at distinct locations of the electrode surface and therefore the 

kinetic and mass-transfer limitations on the current (I = f(ƞ)) were evaluated 
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independently for the current arising from the rectifying part (photocurrent source and 

diode) and from shunting.  The net current was calculated as the sum of the two 

components.  This model implies that chemically distinct regions can establish within the 

stagnant layer near the electrode surface (Figure IV-1), affecting charge-transfer to and 

from corresponding electrode regions to different degrees.  For example: consider the 

case where the concentration of oxidized species is much lower than the concentration of 

reduced species in solution.  At a small applied negative bias (vs. the bulk solution 

potential) cathodic shunt currents may quickly become mass-transfer limited while an 

anodic photoinduced current from the rectifying region is not affected significantly by 

mass-transfer; the contribution of the shunt current to the net current is suppressed by 

mass-transfer limitations.  The simpler model, Scheme 1b, evaluated the effects of mass-

transfer limitations on the net current only.  In this case the stagnant layer near the 

electrode surface will be chemically constant across the electrode surface (Figure IV-1 b).  

In both cases, the dashed lines in Scheme 1a and 1b represent the electrode/electrolyte 

interface.  The effect of mass transfer on current as a function of applied potential was 

evaluated using Equation IV-1, which is based on the current-overpotential equation.
101

 

  
𝐼

𝑖0
=  (1 −

𝐼

𝑖𝑙,𝑎
) 𝑒(1−𝛼)𝑓𝜂 −  (1 −

𝐼

𝑖𝑙,𝑐
) 𝑒−𝛼𝑓𝜂    IV-1 

Here, i0, il,a, and il,c are the exchange current, limiting anodic current, and limiting 

cathodic current, respectively.   is a transfer coefficient that was assumed to be 0.5,  is 

overpotential, and f = F/RT where F is the Faraday constant, R is the gas constant, and T 

is the temperature (assumed to be 298 K).  It should be noted that this equation does not 
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technically describe mass-transfer in a complicated system like the one proposed in 

Scheme 1a but serves only as an approximation. 

 Practically, the calculations were performed as follows for each voltage point.  

The I–V relationship for each circuit component was calculated for the entire voltage 

range of interest (e.g., the I-V relationship for the diode was calculated using the ideal 

diode equation).  The voltage drop across any branch had to be equal to the sum of the 

voltage drops across the components in that branch subject to the constraint that the 

current across these components were equal.  Finally, the currents calculated for the two 

parallel branches were added together (Figure IV-1a) or used directly (Figure IV-1b). 
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Figure IV-1. Two models for calculating I-V curves.  Both models are composed of a 

current source (Isc), a diode, a shunt resistance (Rsh), and current limitations by mass 

transfer as two independent components (a) or one single component (b).  If the 

rectifying and shunting parts of the semiconductor electrode are physically distinct, then 

chemically distinct regions in the near-surface stagnant layer can be established (c) while 

a uniform electrode surface contacts only one, chemically homogenous, stagnant layer (d). 
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B) Results 

1) Open-circuit potential (Eoc) 

 All open-circuit potentials were measured with respect to the solution potential 

for both the aqueous and nonaqueous systems.  The recorded open-circuit potentials 

under illumination are summarized in Tables 4 and 5.  The open-circuit potential in the 

dark, measured for both FeS2 and Pt-disc electrodes in the aqueous and nonaqueous 

electrolytes was within 0.5 mV of the solution potential.  The averages of the measured 

open-circuit potentials were slightly different for the aqueous vs. nonaqueous electrolytes 

but the differences were not statistically significant for low illumination intensities. For 

high illumination intensities, the open-circuit potentials in both cases were within one ± 

standard deviation. A more detailed T-test was performed later; and the result indicated 

that the higher open-circuit potential using the aqueous electrolyte compared to the non-

aqueous electrolyte under 0.5 W cm
–2 

illuminations was statistically significant. 

Illumination intensity, as expected, affected the open-circuit potentials in both aqueous 

and nonaqueous electrolytes.  Open-circuit potentials decreased by 59 and 53 mV in the 

aqueous and nonaqueous electrolytes, respectively, when the illumination intensity was 

reduced from 0.5 to 0.1 W cm
-2

 (Table 4); the difference between the aqueous and 

nonaqueous case was again statistically insignificant.  The open-circuit potentials under 

illumination were dependent on the concentration of dissolved I2 (Table 5).  The overall 

trend was a negative correlation between the open-circuit potential and I2 concentration 

([I2]).  The trend is emphasized if the open-circuit potential data for each individual 

electrode was normalized to the maximum open-circuit potential recorded with that 
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electrode (Table 6).  Two sets of calculated open-circuit potential data were normalized 

in the same way as the experimental data (Table 6). Different trends were observed 

depending on whether Scheme 1 a or b were used.  No dependence of calculated open-

circuit potential (Eoc) on il,c was observed if mass-transfer limitations were applied to the 

net current (Figure IV-1b).  However, if mass-transfer limitations were considered to 

apply independently to the currents associated with the shunt resistance and photodiode 

(Figure IV-1a), calculated Eoc were observed to depend on il,c.  The above values were 

calculated using il,a = 0.2 A, Isc =  0.01 A, i0 = 0.03 A, a reverse saturation current = 5 × 

10
-5

 A, and a shunt resistance Rsh = 15 Ohm.  The experimentally determined cathodic 

limiting current (il,c) was 0.0025, 0.006, 0.012, 0.02 and 0.03 A for [I2] of 0.004, 0.01, 

0.02, 0.03, 0.05 M, respectively.  The anodic and cathodic limiting currents were based 

on experimental data obtained with a FeS2 electrode in the dark.  Isc = 0.01 A was chosen 

because it closely matches the short-circuit current density for a typical FeS2 electrode 

under 1 sun illumination.  i0 = 0.03 was chosen to match calculated I–V data (equation 

IV-1) to that of experimental data.  A reverse saturation current = 5 × 10
-5

 A was chosen 

to produce a photovoltage of ~200 mV for Isc = 0.01 A.  The shunt resistance of 15 Ohm 

was chosen by fitting a small region around E = 0 of the dark J–E curves obtained with 

FeS2 electrodes; this provided an upper, most conservative, estimate of Rsh as it ascribes 

the entire effective resistance to the shunt resistance.  The observed trend where 

calculated Eoc varied as a function of the cathodic limiting current was robust.  It was not 

dependent on residing within some narrow range of anodic limiting current, 

photocurrents, exchange-currents, or shunt resistance.  
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Table 4. Open-circuit potentials under high (0.5 W cm
–2

) and low (0.1 W cm
–2

) 

illumination intensities in aqueous and nonaqueous electrolytes prepared to 0.5 M I
–
 and 

0.004 M I2.  The data is presented as the mean ± 1 standard deviation. 

Intensity(W cm
-2

) 

Eoc (mV) 

Aqueous electrolyte Nonaqueous electrolyte 

0.5 195 ± 12 177 ± 7 

0.1 136 ± 12 124 ± 8 

 

 

Table 5. Open-circuit potentials under illumination (0.1 W cm
-2

) in aqueous electrolytes 

prepared to 0.5 M I
–
 and different concentrations of I2 ([I2]).  The data is presented as the 

mean ± 1 standard deviation. 

[I2] (M) Eoc (mV) 

0.004 115 ± 7 

0.01 113 ± 14 

0.02 99 ± 12 

0.03 90 ± 6 

0.05 81 ± 3 
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Table 6. Normalized open-circuit potential data under illumination (0.1 W cm
-2

) in 

aqueous electrolytes prepared to 0.5 M I
–
 and different concentrations of I2 ([I2]).  The 

data is presented as the mean ± 1 standard deviation (second column).  Calculated open-

circuit potential data are a function of limiting cathodic current (two rightmost columns). 

[I2] (M) 

Normalized open-circuit potentials 

Experimental data 

Calculated data 

(Scheme 1a) 

Calculated data 

(Scheme 1b)
 

0.004 0.98 ± 0.03 1.00 1.00 

0.01 0.96 ± 0.05 0.93 1.00 

0.02 0.84 ± 0.03 0.88 1.00 

0.03 0.77 ± 0.02 0.87 1.00 

0.05 0.69 ± 0.04 0.87 1.00 

 

2) Current-density vs. potential (J–E).  

 Representative J–E data for FeS2 electrodes in contact with the aqueous and 

nonaqueous I
–
/I3

–
 electrolytes are shown in Figure IV-2.  The J-E response for any 

individual electrode was unchanging over the course of any experiment.  Data were 

collected in the dark, under illumination, and then again in the dark; the dark traces 

consistently overlapped well.  The photoelectrochemical behavior was similar using the 

aqueous and nonaqueous electrolyte.  Dark J–E curves show no clear evidence of 

rectification and the cathodic current quickly becomes mass-transfer limited.  As 
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expected, both Eoc and short-circuit current density (Jsc) were affected by illumination 

and illumination intensity.  However, the cathodic current was affected to a much greater 

degree using the nonaqueous electrolyte.  Figure IV-3 shows J–E data for FeS2 and Pt 

electrodes in the aqueous and nonaqueous electrolytes. The aqueous electrolyte data show 

a greater increase in both anodic and cathodic current density at low overpotentials for 

the Pt compared to the FeS2 electrode; the cathodic currents quickly became mass-

transfer limited in both cases.  In the nonaqueous system a greater increase in both anodic 

and cathodic current density at low overpotentials was observed for FeS2 compared to Pt 

electrodes.  However, at larger overpotentials the anodic current density quickly became 

greater for the Pt electrode than for the FeS2 electrode.  In contrast to the aqueous system 

there is no easily identified potential region in the nonaqueous electrolyte where the 

current was mass-transfer limited. 

 The concentration of dissolved I2 in the aqueous electrolyte affected the J–E 

response (Figure IV-4).  As expected, greater limiting cathodic current densities were 

reached as larger amounts of oxidized species were present.  Consistent with the direct 

Eoc measurements reported above, open-circuit potential decreased as I2 concentration 

was increased. I-V curves calculated using the model in Figure IV-1a (Figure IV-4 (c) 

and (d)) showed the same qualitative shape as the experimental data. 
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Figure IV-2. Representative J–E data for FeS2 electrodes in contact with aqueous (a) and 

nonaqueous (b) I
–
, I3

–
 electrolytes.  The three traces in each graph were collected in the 

dark, under intense illumination (0.5 W cm
-2

) and under approximately 1 sun illumination 

intensity (0.1 W cm
-2

).  The scan rate was 100 mV s
-1

. 

 

 

Figure IV-3. J-E curves for FeS2 and Pt electrodes in aqueous and nonaqueous 

electrolytes without illumination.  (Scan rate: 100 mV s
-1

) 
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Figure IV-4. Representative experimental J–E data for a FeS2 electrode in contact with a 

solution containing 0.5 M I
–
 and 0.004 M I2 (a), or 0.5 M I

–
 and 0.05 M I2 (b).  The three 

traces of experimental data in panels (a) and (b) were collected in the dark, under 

illumination (0.1 W cm
-2

) and directly again in the dark. The scan rate was 20 mV s
-1

.   

Dark and light curves of calculated data in panels (c) and (d) were calculated using the 

parameters mentioned earlier.   
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3) FeS2 electrode corrosion   

 FeS2 corrosion in the aqueous electrolyte was indirectly measured based on the 

concentration of dissolved Fe ions.  The working electrode was kept at the solution 

potential or open-circuit potential under illumination or in the dark for 30 minutes. No 

precipitation was observed during any experiments. The amount of Fe ion dissolved into 

the electrolyte was measured at Oregon Health and Sciences University using an 

inductively coupled plasma mass spectrometer (ICP-MS).  The amounts of dissolved Fe 

at the end of each experiment are given in Table 7.  An upper limit on the faradaic 

efficiency of FeS2 corrosion can be calculated using the total number of electrons passed, 

combined with the assumption that the reaction proceeds according the most electron-

intensive chemical reaction: 

   FeS2 +  8H2O →  Fe2+ +  2HSO4
− + 14H+ +  14𝑒−   IV-2 

Therefore, the average cathodic current generated by corrosion of pyrite electrode from 

reaction IV-2 is given as 

   i ̅ =  
Z∙F∙[Fe]∙V

t
       IV-3       

where z is the number of electrons involved in the reaction; in this case, z equals 14. F is 

the Faraday constant, [Fe] is the dissolved Fe concentration, V is the total volume, t is the 

total reaction time.  Without illumination or external bias, an average of 37.2 nmol pyrite 

was released into the 20 mL aqueous electrolyte after 30 min.  The calculated corrosion 

current is only 28 μA. Under intense illumination (0.5 W cm
-2

) with the electrode held at 

the solution potential, the corrosion current increased to 46 μA. Compared to short circuit 
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current for FeS2/I
-
, I3

-  
half cell, the current generated by photocorrosion and corrosion of 

the electrolyte was two orders of magnitude lower.  Nonetheless, it seemed that 

illumination had a slight effect on rate of FeS2 corrosion. 

 

Table 7. Dissolved Fe-ion concentration after 30 min.  Each data is an average of three 

trials and is presented as the mean ± 1 standard deviation. 

 [Fe] (μM) 

Illuminated at Esolution 3.09 ± 1.39 

Illuminated at Eoc 3.18 ± 0.84 

Dark at Esolution 1.86 ± 0.47 

 

C) Discussion 

1) Influence of I2 concentration on the current-voltage characteristics of single-

crystalline pyrite 

The concentration of iodine affected the observed photovoltage through the 

cathodic limiting current (il,c). The observed relationship between Eoc and iodine 

concentration, supported by calculated I–V curves, suggests that shunting may have been 

a localized phenomenon in our system, in agreement with previous reports where 

photoactivity has been shown to vary across the FeS2 electrode surface.
48, 96, 102

 Other 

models exist that explain how photovoltages are affected by electroactive-species 

concentration for ideal and non-ideal semiconductor/liquid junctions.  For an ideal n-type 
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semiconductor/liquid junction the photovoltage remains unaffected by a varying 

concentration of oxidized species (while maintaining the concentration of reduced species) 

even though the solution redox potential is affected.
103

  Current understanding of 

FeS2/liquid junctions as non-ideal semiconductor/liquid junctions is supported by the fact 

that they do not behave as ideal semiconductor/liquid junctions.  The model first derived 

to describe ideal semiconductor/liquid junctions
103

 has been applied towards Fermi-level 

pinned semiconductor/liquid junctions where the barrier height is invariant with the 

concentration of redox species and Eoc is limited by recombination via redox species in 

solution.
104

  In this case, Eoc is expected to decrease with increasing concentration of 

oxidized species which is the same result obtained with the model presented in this paper.  

However, the previous model connects Eoc and the concentration of oxidized species 

(when it is the limiting species) through the majority-carrier current from the 

semiconductor to the solution, which is dependent on the concentration of oxidized 

species.  The model presented in this paper treats the rectifying junction as a buried 

junction, with strong Fermi-level pinning, which is likely the case for current FeS2/liquid 

junctions.  In this case, the concentration of oxidized species would not determine the 

forward majority-carrier current across the rectifying junction and, based on this alone, 

Eoc would not depend on the concentration of oxidized species. 

 The insights gained using the model presented in Scheme 1a are generally useful.  

They add more evidence in addition to the previous literature of the benefits with J–E 

data obtained using an electrolyte having significant amounts of both reduced and 

oxidized species and J–E data obtained using an electrolyte having low amounts of 
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reduced or oxidized species.  The former will generally give the best understanding of the 

system as a whole while the latter may suggest the extent to which ohmic shunt 

resistances are affecting J–E data.  In this study, the model presented in Scheme 1a 

suggests that the Eoc observed using low [I2] provides a good estimate of the maximum 

achievable photovoltage using our present experimental system.  However, the model 

does not address whether photovoltages in excess of 200 mV are achievable using FeS2. 

 

2) Influence of electrolyte-identity on the current-voltage characteristics of single-

crystalline pyrite   

It is well known that surface chemistry is frequently correlated to semiconductor 

photoelectrochemistry, and surface chemical treatments have, as mentioned in the 

introduction, consistently been reported as a prerequisite for FeS2 photoactivity though 

their exact influence on the surface remains undetermined.  Furthermore, detailed studies 

have shown that the FeS2 surface interacts with aqueous solutions even when bulk 

decomposition is absent,
105

 and that applied potential determines what species are 

formed.
107

 We hypothesized that transitioning from an aqueous to a nonaqueous 

electrolyte would affect the photoelectrochemical response of a FeS2/I
–
, I3

–
 liquid 

junction by virtue of greatly reducing the opportunities for surface-limited aqueous FeS2 

chemistry (in contrast to aqueous corrosion chemistry which may not be surface-limited).  

The presented data show that transitioning from an aqueous electrolyte with a high 

concentration of H
+
 to a nonaqueous electrolyte without H

+
 was possible while 

preserving a significant photoresponse that remained qualitatively unchanged; the 
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photoresponse was not dependent on a high activity of protons or bulk amounts of H2O.  

However, it also showed that chemistry resulting from interactions with the aqueous 

electrolyte was not limiting the photoresponse of the FeS2/ I
–
, I3

–
 half-cell.  A hypothesis 

of narrower scope can be proposed, and should be tested next: aqueous and oxic surface 

chemistry resulting from the cathodic pretreatment or transport of electrodes through an 

ambient environment chemically modifies the surface such that the photoelectrochemical 

performance is affected. 

The results shown herein further support previous conclusions that FeS2 

photocorrosion is not directly related to the observed photoresponse, but do not speak 

conclusively to the importance of surface-limited aqueous and oxic chemistry as the 

electrodes were all etched in 0.5 M H2SO4(aq).  Several studies have previously 

investigated aspects of the role of corrosion on FeS2 photoelectrochemistry.
20, 45, 99

  The 

photocorrosion of FeS2 was studied by polarizing pyrite electrode at a high anodic 

potential (1.0 V vs. a carbon reference electrode) for a prolonged time. No significant 

morphological signs of corrosion were detected after several days of continuous 

operation.
20

 Similar experiments were performed using FeS2 particles.
106

 It was proposed 

that water, or more specifically, OH
-
 plays an essential role in photoelectrochemical 

dissolution of FeS2 by transferring the light-generated holes in the valence band of FeS2 

to the S2
2-

 cites.
106

 The presented results add in addition to previous knowledge a 

quantitative measure of the faradaic corrosion yield near relevant operating conditions 

with the aqueous I
–
, I3

–
 electrolyte.  

  



 56 

D) Conclusions 

 In this chapter, we reported the photoelectrochemical behavior of a FeS2/I
–
, I3

–
 

half-cell as a function of I2 concentration and electrolyte identity (H2SO4(aq) or 

acetonitrile).  We demonstrated that shunting may predominately occur only at distinct 

locations of the electrode surface; and that varying the relative concentrations of reduced 

and oxidized species can be used to provide insights into specific aspects of the 

photoelectrochemical system such as maximum attainable Eoc.  We report a simple model 

that explains the observed phenomena. 

 We also demonstrated that pyrite exhibited qualitatively similar photoresponses in 

the aqueous and nonaqueous system indicating that aqueous chemistry involving FeS2 

and the electrolyte did not determine the junction properties.  This was further supported 

by the quantitative studies of the faradaic corrosion yield, which showed that while some 

corrosion occurred the corrosion current density was low compared to observed 

photocurrents. 
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V. THE INFLUENCE OF CHEMICAL TREATMENT ON THE 

PHOTOELECTROCHEMICAL PROPERTIES OF PYRITE 

INVESTIGATED USING NON-COORDINATING REDOX SPECIES 

 With the aim of improving the photo-conversion efficiency as well as photo 

stability, many efforts have been made to modify pyrite surfaces. For instance, 

electrochemical etching has been consistently reported as a prerequisite for any 

detectable photoresponse of FeS2.
20, 44

 Furthermore, it has been demonstrated that 

significant increases in photovoltage can be observed by treating pyrite electrode surface 

using inorganic (i.e. KCN) or organic ligands (i.e. pyrazine).
48, 97

 However, those 

experiments were carried out in aqueous electrolyte with coordinating redox species (e.g. 

I3
–
/I

–
, Fe

3+/2+
). It has been shown that FeS2 surface can easily react with electrolyte under 

those conditions.
37, 99, 107

 The possibility of undesired reactions makes it difficult to 

clearly understand the exact functions of the surface treatments on pyrite surface.  In 

addition, even though infrared spectroscopy efforts have been made to study the structure 

of complexes forming on FeS2 surface, the chemical identity of the surface was not been 

determined experimentally due to the lack of instrumental sensitivity.
97

 

 Therefore, in order to gain a clearer picture about how surface adsorbate improves 

the solar performance of pyrite electrodes, we chose a non-aqueous system with non-

coordinating redox species (Fc
+/0

) for photoelectrochemical studies. Our previous work 

has shown that a significant photoresponse of pyrite can be retained when transitioning 

from an aqueous electrolyte with a high concentration of H
+
 to a nonaqueous electrolyte 



 58 

without H
+ 

in the present of I3
-
/I

-
.
108 

Similar results have also been performed using non-

coordinating redox couple, CoCp2
+/0

 , in acetonitrile.
37

 

 In this chapter, we studied the photoelectrochemical behavior of pyrite electrode 

after surface ligand (-CN) treatments in contact with non-coordinating redox couple 

(Fc
+/0

) in acetonitrile. The pyrite surface bonds were investigated using X-ray 

photoelectron spectroscopy. The improvement in photovoltage was discussed in terms of 

charge recombination models and coordinated surface chemistry. 

 

A) Experimental section 

1) Materials  

 Concentrated sulfuric acid (ACS grade), ferrocene (98%), and ferrocenium 

tetraflouroborate (technical grade) were purchased from Sigma-Aldrich.  Acetonitrile 

(>99.8%, anhydrous) was purchased from EMD.  Potassium cyanide (98%) was 

purchased from J.T. Baker.  Lithium perchlorate (99.99%, anhydrous) was purchased 

from VWR.  Hydranal
®

-Formamide was purchased from Fluka.  Chemicals were used as 

received unless otherwise specified.  Ferrocene was purified by sublimation.  Potassium 

cyanide was purified by recrystallization from a mixture of H2O and CH3CH2OH (1:3).
109

 

All chemicals except sulfuric acid were stored in a nitrogen-filled glovebox (LABstar 

MBRAUN, less than 0.5 ppm O2 and H2O). Natural single-crystal pyrite samples were 

originated from Turkey. 
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2) Electrode preparation 

 Electrode fabrication. The electrode fabrication procedure has been reported 

previously.
108

 In brief, a pyrite slide (~ 3 mm thick) was cut into small pieces (~ 0.5 × 0.5 

cm
2
) and connected to a tinned copper wire with Ga/In eutectic and silver paint.  The 

wire was threaded through a glass rod and sealed in place using epoxy (Loctite Hysol 1C 

Epoxi-Patch Adhesive); the epoxy also served to mask the sample to expose the (100) 

face only, masking any edges.  The exposed face was progressively polished using 

diamond lapping films (particle size from 9 µm to 0.25 µm). After polishing, the edge of 

polished pyrite electrode was again covered with epoxy.  Electrode surface areas ranged 

from 0.15 to 0.30 cm
2
, determined with a Cannon scanner and ImageJ software.  Prior to 

measurements, all pyrite electrodes were electrochemically etched in 0.5 M H2SO4 by 

passing a constant current density of -15 mA/cm
2
 for 3 min.  The H2SO4(aq) electrolyte 

was deoxygenated prior to experiments by purging with N2 for at least 30 min.  

Following the cathodic etch, electrodes were quickly transferred into the glovebox to 

minimize air exposure. 

 Electrode-surface modification. Electrodes were chemically modified by 

immersion for 1 h in 0.5 M KCN solution in formamide.  Electrodes were then in turn 

soaked in neat formamide to remove excess KCN and acetonitrile to remove traces of 

formamide. 
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3) Photoelectrochemical measurements 

  Electrolyte and cell setup. The electrolyte was prepared by dissolving 20 mM 

ferrocene, 2 mM ferrocenium tetraflouroborate  and 100 mM LiClO4 in 20 mL of 

acetonitrile inside the glovebox. A three-electrode configuration with a Pt wire as the 

reference electrode, poised at the solution potential, and a Pt flag as the counter electrode 

was used for all electrochemical experiments. The electrolyte was characterized using a 

glassy carbon electrode as the working electrode before and after experiments. 

 Open-Circuit Potential (Eoc), and Current Density versus Potential (J–E) data. 

Open circuit potential (Eoc) and current density vs. potential (J–E) data were collected 

before and after KCN treatment, with and without 0.1 W/cm
2 
illuminations. Short circuit 

current (Jsc) was obtained from the y-intercept of the J–E curves under illuminations. 

Light intensities were determined by placing a calibrated UV005 photodiode (OSI 

optoelectronics) electrode at the same position as the pyrite electrode. All potentials were 

measured vs. the solution potential and reported as such. The statistical significance of 

the differences of Eoc and Jsc before and after surface treatments were evaluated by 

performing t-tests.
100

  A significance level of 5% was used for the calculation. 

 

4) Surface characterization 

 Sample preparation. The pyrite samples for X-ray photoelectron spectroscopy 

measurements are prepared in a slightly different way due to the difficulties of 

disassembling pyrite photodiodes. The thin pyrite slide was directly connected to a piece 

of copper wire using an alligator clip and then cathodically etched in 0.5 M H2SO4 right 
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after polished. The etched slide was quickly transferred to a glovebox for further 

treatments. KCN treatment was carried out by immersing etched slide in 0.5 M KCN in 

formamide in a glovebox for 1 h. Control experiments was carried out by immersing 

etched slide in neat formamide for the same amount of time. The treated slide was then 

rinsed with formamide and acetonitrile in order to the match the working condition of 

photoelectrochemical experiments.   Before any XPS analysis, the slides were dried in a 

roughing-vacuum-pump chamber for at least 4 hours to get rid of any volatile species. 

 X-ray photoelectron spectroscopy.  Spectra were collected using a PHI 

VersaProbe II Surface Analysis instrument equipped with an Al Kα X-ray source (1486.6 

eV photo energy). The measurements were taken at 45° take-off angle with a beam size 

of 200 µm. A neutralizer was operated at 1.0 V and 20.0 µA through all experiments. The 

resolution of elemental scans was 0.05 eV. The pass energy was 187.5 eV for survey 

scans and 23.5 eV for detailed scans. All spectra were calibrated using the Fe 2p2/3 peak 

at 707 eV. Peak fitting was done using the MultiPak (version 9.5.0.8) software package.  

 

 Coverage calculations. The surface coverage of surficial CN
–
 species was 

estimated using a previously reported “substrate-overlayer model” (Equation V-1).
110

 

 Φov = (
λ sin θ

𝑎ov
) (

𝑆𝐹sub

𝑆𝐹ov
) (

𝜌sub

𝜌ov
) (

𝐼ov

𝐼sub
)      V-1 

 λ is the escape depth of photoelectrons through the cyanide absorbed layer, θ is 

the take-off angle, aov is the diameter of the overlayer species (-CN), SFx is the modified 

sensitivity factor,
111

 ρx is the density of species x, and Ix is the raw signal intensity.  Here, 

θ was 45° for all experiments. aov is approximately equal to the inverse cube root of the 
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overlayer’s atomic number density.  We assumed that overlayer species were packed in 

such way that its density corresponded to the molar volume of CN
-
 in LiCN (19.05 cm

3
 

mol
-1

). We neglected the effect of Li
+
 on volume.  aov was calculated as ~0.32 nm. 

 ρsub and ρov are the density of the atoms in the substrate and overlayer, 

respectively. In this study, the density of pyrite of 4.2 × 10
-2

 mol cm
-3

 was used for ρsub, 

and the density of LiCN of 5.2 × 10
-2

 mol cm
-3

 was used for ρov. Iov was the raw intensity 

of each component of N 1s peak and Isub was the raw intensity of Fe 2p3/2 peak.  The 

Iov/Isub values were summarized in Table 9.  

 The modified sensitivity factors were given by the MultiPak software. For 

detailed scan, SFov = SFN 1s = 11.029; SFsub = SFFe 2p3 = 48.646. 

  The last unknown parameter in equation V-1, λ, can be approximated using the 

equation V-2: 

λ = 0.41𝑎1.5𝐸k
0.5       V-2 

where Ek is the electron kinetic energy of Fe. This gives the escape depths of Fe atom 

though overlayer of 2.1 nm.  

 

B) Results 

1) Photoelectrochemistry. 

 J–E and Eoc and Jsc characteristics of FeS2 photoanodes were determined as a 

function of two chemical treatment procedures: 1) immersion in 0.5 M KCN in FA, and 2) 

immersion in neat FA.  Thus, J–E and Eoc data were collected following three separate 

sample histories:  1) after electrochemical etching, 2) after electrochemical etching and 
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immersion in 0.5 M KCN in FA, and 3) after electrochemical etching and immersion in 

FA.  Representative J–E data are shown in Figure V-1 and the results are summarized in 

Table 8. The improvement in Eoc and Jsc are emphasized if the data for each individual 

electrode was normalized to the open-circuit potential recorded with that electrode before 

chemical treatment (equations V-3-5).  KCN treatment had a statistically significant 

effect on both Eoc and Jsc, increasing both by over 25 % on average.  FA treatment 

correlated positively with a small, positive change in Eoc by approximately 5 %.  FA 

treatment did not significantly affect Jsc.  

∆𝐸oc,n (%) =
(𝐸oc,n−post−𝐸oc,n−pre)

𝐸oc,n−pre
× 100%     V-3 

∆𝐸𝑜𝑐(%)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∑ ∆𝐸oc,n(%)𝑛
𝑖=1

𝑛
       V-4 

Standard deviation: SD =  √∑ (∆𝐸oc,n(%)−∆𝐸𝑜𝑐(%)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑛

𝑖=1

𝑛−1
    V-5 

∆𝐸oc,n (%) is the percentage increase in Eoc of the n
th

 trial. 𝐸oc,n−pre and 𝐸oc,n−post are 

the open-circuit potentials recorded before and after the chemical treatment.  ∆𝐸𝑜𝑐(%)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is 

the average of ∆𝐸oc,n (%).  
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Figure V-1. Representative J–E data for FeS2 electrodes before and after treatment in (a) 

0.5 M KCN solution in formamide, and (b) neat formamide.  J–E data were collected in 

the dark or under 0.1 W cm
–2

 illumination at a scan rate of 20 mV s
-1

. 

 

Table 8. The changes in Eoc and Jsc after surface treatment.  The data is presented as the 

mean ± 1 standard deviation. Each experiment was reproduced at least three times. 

 

∆Eoc (mV) ∆Eoc (%) ∆Jsc (mA/cm
2
) ∆Jsc (%) 

After KCN treatment 27.0 ± 4.2 28.2 ± 3.8 0.49 ± 0.16 29.2 ± 12.1 

After solvent (FA) treatment 4.9 ± 1.1 5.3 ± 1.2 0.04 ± 0.22 4.5 ± 14.7 

 

2) Surface characterizations 

 The chemical identification of pyrite surfaces was investigated using X-ray 

photoelectron spectroscopy. Figure V-2(a) shows representative N 1s spectra for samples:  

1) after electrochemical etching, 2) after electrochemical etching and immersion in 0.5 M 

KCN in FA, and 3) after electrochemical etching and immersion in FA. In the cases of 
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KCN treatment, three components can be resolved at ~ 397.6 eV, 399.3 eV and 401.2 eV 

(Figure V-2(b)). The relative intensities of each components compared to Fe 2p3 spectra 

are shown in Table 9. According to equation V-1, the coverage of low binding energy 

nitrogen at 397.6 eV on pyrite surface was calculated to be ~0.55 monolayer. The 

coverage of high binding energy nitrogen at 401.2 eV was calculated to be ~0.39 

monolayer. For the solvent treated samples, the majority spectral contribution is at 

~399.1 eV. Only a small contribution appeared at lower binding energy region (~397.4 

eV), which gives ~ 0.06 monolayer coverage on pyrite surface.  

 For the etched only samples, although there seems to be a hump at ~ 396-404 eV, 

it is very difficult to be resolved due to the low signal-to-noisy ratios. Therefore, this 

hump was not considered as an indicator of significant absorption of nitrogen on the 

etched FeS2 surface. 
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Figure V-2. (1) N 1s  spectra for iron pyrite surface right after cathodic polarization (blue 

line), further immersed in 0.5 M KCN solution in formamide (orange line) or neat 

formamide (red line) for 1 h. (2) Peak fitting results for the top two N 1s spectra in (1).  
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Table 9. Peak fitting results of N 1s spectra. The intensity of each peak is normalized to 

the intensity of Fe 2p3/2 peak. Each data was presented as an average of three trials ± 1 

standard deviation.  

FA KCN/FA 

Peak (eV) Intensities (%) Peak (eV) Intensities (%) 

397.39 ± 0.18 0.39 ± 0.26 397.57 ± 0.13 3.33 ± 0.96 

399.14 ± 0.07 5.34 ± 1.55 399.26 ± 0.22 3.63 ± 1.74 

  401.18 ± 0.59 2.31 ± 1.57 

 

C) Discussion 

1) Theoretical models 

 The photovoltage of semiconductor/liquid junction solar devices is critically 

controlled by recombination of photoexcited electrons and holes. Two major 

recombination pathways at interfaces between n-type semiconductors and electrolyte are: 

(1) recombination via redox species in solution; and (2) recombination at the interface via 

surface trapping levels. 

 Our previous studies have shown that the photovoltage decreases with increasing 

concentration of oxidized species.
108

 We proposed a model to explain this phenomenon. 

The model treated the rectifying junction as a buried junction, with strong Fermi-level 

pinning, which is likely the case for current FeS2/liquid junction. When shunting only 

occurs in distinct regions, the photovoltage is affected by [1]: the concentration of 

oxidized species in electrolyte through the mass transport; [2] shunt resistance. However, 
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in this study, the concentrations of redox species remain constant. Therefore one possible 

explanation for the observed increase in photocurrent and photovoltage is that CN
-
 

reduced the dangling bonds on the FeS2 surface caused by mechanical polishing and 

electrochemical etching. As a result, the photovoltage was improved due to the larger 

shunt resistance.  

 Other models exist that explain charge recombination process at 

semiconductor/liquid interfaces.
104

 For non-ideal semiconductor/liquid junctions, when [1] 

the Fermi-level is pinned at semiconductor/liquid junctions where the barrier height is 

invariant with the concentration of redox species and [2] the interfacial charge transfer 

controls the recombination current, the open-circuit photovoltage can be described as 

equation V-6: 

𝑉oc = n (𝜙b −
𝑘𝑇

𝑞
ln

𝑞𝑘c𝑐ox𝑁c

𝐽ph
 )      V-6 

where cox is the concentration of oxidized species, kc is the rate constant, Nc is the 

effective density of states of the semiconductor conduction band, n is diode quality factor, 

q is the electronic charge, k is Boltzmann's constant, T is temperature. Jph is the 

photocurrent density.  𝜙b is the barrier height. In this case, the most possible explanation 

for the improvement of the photovoltage is that electron donating groups (CN
-
) draw 

positive charges from the iron centers and push the sulfur deficient defect levels to the 

FeS2 valence band. Therefore, the available states in the conduction band of pyrite 

allowing for the electrons through the junction barrier decrease.
13

 As a result, the 

photovoltage increases due to a reduction of the recombination rate.   
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 It is also possible that surface recombination via trapping states plays a dominant 

role in recombination process. Then the surface-recombination-limited photovoltage can 

be expressed as: 

𝑉oc = n (𝜙b −
𝑘𝑇

𝑞
ln

𝑞𝑆r𝑁c

𝐽ph
)       V-7 

where Sr is the surface recombination velocity, which is dependent on the quality of the 

semiconductor surface. The ligand treatment would tend to stabilize the FeS-like defects. 

The decreasing of the recombination centers for electrons on FeS2 surface then results in 

an enhancement of photoactivity by decreasing Sr in equation V-7.  

 

2) Chemical identification of treated pyrite surface 

 The XPS results indicate the chemical absorption of CN
-
 onto pyrite surface via 

both chemical treatments. The peak component at ~397.6 eV on KCN treated slides is in 

good agreement with the N 1s spectrum of K4Fe(CN)6.
112, 113

 The tiny peak at ~397.4 eV 

on FA treated surfaces has been reported for nitrogen bonding to iron.
114

 The higher 

coverage of ligands on the KCN treated surfaces than the formamide treated ones is 

consistent with the trend of improvement in photovoltage due to those surface treatments. 

The peak at ~399.1-399.3 eV on both treated slides is from N of acetonitrile used in the 

final wash step.
115

 The peak at ~401.2 eV has been attributed to the nitrogen bounded to 

oxygen.
116, 117

  However, it does not explain the absence of this peak on the formamide 

treated surfaces.  The binding energy at 400 - 401 eV was also reported for CN groups 

interacting with Pt and Si, as well as Fe(CN)6
3−

 incorporated in polymer films.
118-120

 In 

this study, another possible explanation for this high binding energy peak is the 
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physically absorbed HCN, which might be the by-product of the purification process.
121, 

122
  As a matter of fact, the surface coverage of the high binding energy N species on the 

surfaces which were treated using unpurified KCN was much diminished as shown in 

Figure V-3. However, the results do not speak conclusively to the possibility of 

decomposition of ferrocyanide.
123

   

 

 

Figure V-3. N 1s spectra of samples after KCN solution treatment (top three) and neat 

formamide treatment (bottom three). The KCN used in trail (a) and (b) was unpurified. 

The KCN used in trail (c) was purified by recrystallization from a H2O-ethanol mixture 

(1:3). 
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  It has to be mentioned that Sn was found on some of the slides. It is possible that 

Sn is an intrinsic impurity in those particular samples. Sn contamination might also occur 

during the transportation or degassing process in the roughing-vacuum-pump chamber. 

The presence of Sn was not correlated to improvement in photovoltage. 

 

D) Conclusions 

 In this article, we reported the photocharacteristic of FeS2 with non-coordinating 

redox species as a function of surface chemical treatments. We demonstrated that the 

anhydrous and anoxic electrolyte with non-coordinating redox species is suitable for 

strict studies on photoelectrochemistry of FeS2. We also demonstrated that the surface 

chemical treatment improved the photoactivity of FeS2 photoanode. X-ray photoelectron 

spectroscopy data demonstrated the chemical bonding formation between the ligands and 

FeS2 surface.  Three models have been discussed to explain the observed improvement of 

photovoltage after KCN treatment.  
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VI. POSSIBLE FUTURE STUDIES ON THE INFLUENCE OF 

ELECTROCHEMICAL ETCHING ON FES2 PHOTOELECTROCHEMISTRY 

USING AQUEOUS AND NONAQUEOUS ETCHANTS 

 Understanding the surface properties of FeS2 yields valuable information for 

improving its photovoltage.
7
  It has been consistently reported that surface chemical or 

electrochemical pre-treatments are prerequisites for FeS2 photoactivity. Chemical etching 

with strong oxidizing acids (HF/CH3COOH/HNO3, 1:1:2 by volume) resulted in a 

photocurrent density of more than 40 mA cm
-2

 at 1 V vs. Hg2SO4.
20

 However, a relatively 

high dark current density of about 10 mA cm
-2

 was also observed. Later on, chlorine 

evolution under illumination during cyclic voltammetry tests was reported to enhance the 

photocurrent as well as decease the dark current.
102

 Up to now, the most common surface 

activation method is cathodic polarization in an aqueous media with a pH of ~0.5. The 

exact function of the electrochemical activation on pyrite surface, however, is still 

undetermined. 

 The present work in this chapter aims at the chemical origin for the improvement 

of photoactivity of pyrite photoanode after different electrochemical etching treatments 

and at the optimization of the surface pre-treatment process to further enhance the solar 

performance.  
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A) Experimental 

1) Materials 

 All chemicals were used as received. Concentrated sulfuric acid (Certified ACS 

Plus), potassium iodide (99%) and iodine (>99.8%) was purchase from Sigma-Aldrich. 

Potassium hydroxide pellet (Certified ACS grade, 88%) and concentrated hydrochloride 

acid (Certified ACS grade, 36.9%) were obtained from Fisher Scientific. Pyrite samples 

originated from Turkey. 

 

2) Electrode preparation  

 Electrode fabrications. The preparation and the structure of the FeS2 photoanode 

have been described in earlier sections (Section  II, IV and V) In brief, a pyrite slide 

(~6×6×3 mm
3
) exposing the (100) surface was attached to a tinned copper wire using 

Ga/In eutectic and silver paint. The wire was then sealed to a glass rod using epoxy to 

form an electrode.  The electrode was then polished using a progression of diamond 

lapping films from 9 μm down to 0.25. Epoxy was again applied to cover the edges. The 

exposed surface area of each electrode (Cannon scanner and ImageJ software) was used 

to convert measured current (I) to current densities (J).  

 Electrochemical pretreatment. Pyrite electrodes underwent electrochemical 

etching under four different conditions listed below: 

i. Cathodic/acidic: the electrode was polarized at a constant current of -15 mA cm
-2

 

for 3 min in deoxygenated 0.5 M H2SO4;
20
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ii. Anodic/acidic: the electrode was polarized at a constant potential of 1.2 V (vs. 

SCE) for 15 min in a 3: 1 mixture of H3PO4 with concentrated HCl;  

iii. Cathodic/alkaline: the electrode was polarized at a constant potential of -1.2 V 

(vs. Hg/HgO) for 1 h in 4.24 M KOH;  

iv. Anodic/alkaline: the electrode was at a constant potential of 0.74 V (vs. Hg/HgO) 

for 5 min in 4.24 M KOH.  

 

3) Photoelectrochemical experiment 

 The electrolyte was prepared by dissolving 0.5 M KI and 0.004 M I2 in 0.5M 

H2SO4(aq) that has been sparged with N2 for 30 min. A standard three-electrode setup 

was employed in all photoelectrochemical experiments. A Pt mesh electrode was used as 

the counter electrode and a Pt wire electrode was use as the reference electrode. All 

potentials were measured with respect to the solution potential. Eoc and J–E data were 

collected in the dark and under illumination by an ABET solar simulator (model 10500) 

under vigorous stirring.  Light intensities were 0.5 W cm
–2

.  

 

4) Surface characterization 

 The surface morphology and surface chemical composition of etched FeS2 

electrode was evaluated using a scanning electron microscope (SEM) alone with an 

energy dispersive spectrometer (EDX). All SEM and EDX data was collected using a 

Zeiss Sigma VP FEG SEM instrument operating at accelerating voltage of 20 kV and a 

chamber pressure of 10
-5

 Pa. Surface crystal structure was studied using SEM-based 
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electron backscatter diffraction analysis (EBSD). The sample was tilted 70 degrees for all 

EBSD experiments. All EBSD data were processed using the AZtecHKL software 

package (Oxford Instruments, UK) with default settings.  

 

B) Results. 

1) Photoelectrochemistry 

 Representative J-V data are shown in Figure VI-1. The open-circuit potentials and 

the short-circuit current densities under illumination are summarized in Table 10. 

Without electrochemical polarization, the polished FeS2 electrode can barely show any 

photoresponse. The cathodic polarization of FeS2 photoanode in acidic media 

significantly improved the photoactivity of FeS2 / I
-
 , I3

-
 half-cells, which is in agreement 

with previous studies.
20

 Interestingly, the FeS2 electrode after anodic polarization in 

acidic media showed photoresponse though the electrode underwent very different 

surface reactions. The photocurrent density in this case, however, was significantly lower. 

Moreover, after electropolishing FeS2 electrode in a strong alkaline electrolyte which 

contains less than 10
-14

 mol/L free protons, the photoactivity was also enhanced. 
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Figure VI-1. Representative J-E data for FeS2/I
-
, I3

-
 half cell after: (1) cathodically 

polarized in acidic media; (2) anodically polarized in acidic media; (3) cathodically 

polarized in alkaline media; (4) anodically polarized in alkaline media; and (5) no pre-

treatment. (Light intensity: 0.5 W cm
-2

) 
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Table 10. Photovoltage and short-circuit current under illumination (0.5 W cm
-2

) after 

different surface treatments. 

Electrolyte Bias Vph (mV) Jsc (mA cm
-2

) 

Acidic  Cathodic  195 15.7 

Acidic  Anodic 133 5.32 

Basic Cathodic 114 9.00 

Basic Anodic 150 12.4 

/ / 5 0.10 

 

2) Surface-properties of the electrode 

 The polished FeS2 has mirror-like finish and metallic luster.
124

 The 

electrochemical treatment, under all four conditions, resulted in observable changes to the 

appearance of FeS2 electrode. Pits and scratches can easily be observed by naked eyes. In 

particular, red rust was formed on the surface of electrode during anodic polarization in 

KOH electrolyte, those species were removed by rinsing electrode with DI H2O before 

further surface characterization.  

 The SEM images of FeS2 surfaces after electrochemical modifications in all four 

cases are shown in Figure VI-2. It is appeared that the dissolution of FeS2 started at 

certain “active sites” on the surfaces. These sites are ascribed to local impurities in the 

sample (e.g. Si, Al, Mg and etc.) and scratches caused by mechanical polishing. In 

addition, the surfaces after electropolishing in acidic electrolyte showed needle-like 

features arranged in the same direction, while the one after anodic etching in alkaline 
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electrolyte showed diamond shape features. In all cases, the stoichiometry of polarized 

electrode surface was close to FeS2 (Figure VI-3 (4)). 

 

 

Figure VI-2. SEM images of pyrite electrodes after: (1) cathodically polarized in acidic 

media; (2) anodically polarized in acidic media; (3) cathodically polarized in alkaline 

media; (4) anodically polarized in alkaline media. 

 

 Electron backscatter diffraction (EBSD) was employed to study the surface 

crystal structure. In contrast to the blurred Kikuchi patterns of polished slides, some 

clearer Kikuchi patterns can be obtained and indexed as pyrite after polarization in 

relatively smooth area (Figure VI-3 (2) and (3)). It has to be mentioned that in the rough 

area, the acquired Kikuchi patterns were mostly shadowed, and thus cannot be solved 



 79 

either.  For those Kikuchi patterns that can be solved, no other phases (e.g. sulfur-

deficient impurities, iron oxide) were indexed.  

 

 

Figure VI-3. Kikuchi patterns of pyrite slide after (1) polishing; and (2) cathodic 

polarization in acidic media. (2) was automatically solved by software as shown in (3). 

(4) is the EDX  spectrum for (2). 

 

C) Discussion 

 Previous studies have shown that mechanical polishing can severely damage the 

pyrite surface and result in a metal-like response;
37, 44

 which is in agreement with the 

extremely low photovoltage observed in this study. It has been previously hypothesized 
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that the cathodic etching in acidic media restored the surfaces that are destroyed through 

the polishing.
7, 44

 The main electrochemical reactions were described as: 

FeS2 + 4H+ + 2𝑒− → Fe2+ + 2H2S      VI-1 

2H+ + 2𝑒− → H2       VI-2 

 The generated H2, in turn, passivates the sulfur-deficient defects by forming FeSH. 

It has also been suggested that this H2 evaluation process is orientation dependent.
13

 The 

new (100)-surfaces produced by etching are kinetically and sterically more favored than 

(111)-surfaces for the penetration of hydrogen. As a result, the dark current density of on 

initial (111)-surfaces gradually decreased during electrochemical treatment. 

 In this study, electrochemical treatments were shown to remove impurities and 

amorphous surface layer result from mechanical polishing. The enhancement of 

photoactivity indicated that surface stoichiometry and preferred surface structure also 

play a role in photoelectrochemistry of FeS2. 

 However, the influence of hydrogen penetration is still undetermined. Hydrogen 

evolution is not expected under conditions other than cathodic polarization in an acidic 

electrolyte. Therefore observed photoresponse in the other three cases cannot be 

contributed to hydrogen diffusion. 

 To investigate the exact functions of electrochemical pre-treatment on FeS2 

surface, possible future work can be designed as: 

i. Electrochemically polarize pyrite surface in strict anhydrous and anoxic 

conditions.  
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ii. Investigate the influence of electrochemical treatments on FeS2 

photoelectochemistry in non-aqueous and anoxic electrolyte with non-coordinating redox 

species. 

iii. Fully characterize FeS2 surface after etching using a variety spectroscopy methods. 

 

D) Conclusions 

 In this chapter, we reported the photoelectrochemical behavior of a FeS2/I
-
, I3

-
 half 

cell as a function of electrochemical treatments. We demonstrated that the hydrogen 

penetration is not the only reason for the improvement in photoactivity of FeS2 after 

electrochemical pretreatments. We also linked surface stoichiometry and surface crystal 

structure to FeS2 photoelectrochemistry. 

 Future experiments can be focus on non-aqueous etching of FeS2 electrode and 

their influence on photoelectrochemical properties of pyrite/electrolyte junctions under 

anhydrous and anoxic condition with non-coordinating redox species.  
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