Portland State University PDXScholar

Dissertations and Theses

Dissertations and Theses

Winter 2-14-2014

The West Tidewater Earthflow, Northern Oregon Coast Range

Barry A. Sanford Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Geology Commons, and the Geomorphology Commons Let us know how access to this document benefits you.

Recommended Citation

Sanford, Barry A., "The West Tidewater Earthflow, Northern Oregon Coast Range" (2014). *Dissertations and Theses.* Paper 2497. https://doi.org/10.15760/etd.2494

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

THESIS APPROVAL

The abstract and thesis of Barry A. Sanford for the Master of Science in Geology were presented March 1, 2002 and accepted by the thesis committee and the department.

COMMITTEE APPROVALS:

Christina L. Hulbe

Trevor D. Smith Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:

Michael L. Cummings, Chair Department of Geology

ABSTRACT

An abstract of the thesis of Barry A. Sanford for the Master of Science in Geology presented March 1, 2002

Title: The West Tidewater Earthflow, Northern Oregon Coast Range.

The West Tidewater earthflow, one of the largest in Oregon's history, occurred in December of 1994. The earthflow is located approximately 15 km north of Jewel, Oregon near the summit of the Northern Oregon Coast Range Mountains. The earthflow is 900 m long and 250 m wide, giving it a surface area of 9 ha, or 22 acres. Volume is 3.5 million m³. The earthflow occurred in low strength, well-bedded, tuffaceous, carbonaceous, micaceous, clay-rich mudstone, and very fine-grained, feldspathic, clay-rich siltstone of the lower Miocene age Northrup Creek Formation. The soil clay fractions contain up to 90% smectite with indications of halloysite. This earthflow is a reactivation of a 650-year-old landslide (C-14 dating of uncovered buried trees). The failure mode is examined using a Janbu slope analysis and includes double wedge failure near the headscarp. High soil pore water pressure is one of the major causes of this slope failure. Rainfall levels for October, November, and December of 1994 were twice the previous five-year average. Present day groundwater level within the basin is less than one meter below ground surface. The earthflow is partially controlled by two faults of regional extent that dissect the basin

near the headscarp in NW-SE and NE-SW directions. The Inceptisol soils in the basin remain moist below 20 cm year around. Soil in the basin may have been further weakened due to loss of root strength following timber harvest on the site in 1991. Soil liquid limits range from 42% to 95%, with PI values ranging from 2% to 77%. Soil clay content ranges between 18% and 30%. Direct shear tests on the mudstone and siltstone bedrock in both drained and undrained conditions produced internal friction angles of 14-18°, with cohesion values of 4 - 8 kPa. Back calculation of study area soil strength using the modified Bishop method results in a residual friction angle of 20.7°. The failure mode of the earthflow is from the headscarp downward and is modeled using Janbu methods. The study includes a detailed topographic map and a failure analysis of the earthflow basin.

THE WEST TIDEWATER EARTHFLOW, NORTHERN OREGON COAST RANGE

by

BARRY A. SANFORD

A thesis submitted in partial fulfillment of the requirements for the degree of

~

MASTER OF SCIENCE in GEOLOGY

Portland State University 2004

ACKNOWLEDGEMENTS

Many thanks to Associate Professor Ken Cruikshank and the students of his Landslide Anatomy class of 1996 at Portland State University for their assistance in mapping the West Tidewater earthflow. Jared May provided extensive field assistance for the surveying, mapping, and soil investigation. Dave Michael and the Oregon Department of Forestry office in Forest Grove, Oregon provided access to their aerial photo library. Dr. Trevor Smith and the Civil Engineering Department of Portland State University allowed me to use their soils laboratory and test equipment. Dr. Christina Hulbe helped me organize my thoughts and edit my writing. Special thanks to Dr. Scott Burns, for his role as advisor, and his never-ending enthusiasm, encouragement, and dedication to education.

i

TABLE OF CONTENTS

ACKNOWLEDGMENTS	ii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF PLATES	vii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: STUDY AREA Location Description Similar Earthflows in Oregon Geology Hydrology Soils	3 3 8 11 15 15
CHAPTER 3: METHODS	19
CHAPTER 4: RESULTS Atterberg Limits Penetration Test Particle Size Analysis Direct Shear Tests Bulk Density Clay Mineralogy Groundwater Precipitation Base Map and Earthflow Features Tree Raft Soil Mounds	21 21 22 24 25 32 32 35 38 41 50 51
CHAPTER 5: STABILITY ANALYSIS Pre-Failure Analysis	55 56
CHAPTER 6: DISCUSSION Physical Strength of Soil Earthflow Models	63 63 65

.

Clay Mineralogy	66
Clay Content	74
Geometry of the Earthflow	75
Woody Debris Factor	78
Failure Mode	79
Influence of Structural Features	80
Vegetation Removal Factor	86
CHAPTER 7: CONCLUSIONS	89
Future Work	92
REFERENCES	93
APPENDIX	98
Appendix A: Air Photos	99
Appendix B: Soils	107
Appendix C: Atterberg Limits	109
Appendix D: Gradation Data	115
Appendix E: Direct Shear Testing	122
Appendix F: X-ray Diffraction Analysis	153
Appendix G: Radiocarbon Dating	164

LIST OF TABLES

Table 1 Soil horizons	18
Table 2 Atterberg Limits	21
Table 3 Penetration Test data	22
Table 4 Direct Shear tests	30
Table 5 Bulk density	32
Table 6 Clay percentages	33
Table 7 Water table levels	37
Table 8 Rainfall levels	39
Table 9 Soil strength calculations	59
Table 10 Janbu pre-failure spreadsheet	60
Table 11 Janbu Toe-failure spreadsheet	67
Table 12 Janbu undrained spreadsheet	70

iv

LIST OF FIGURES

J

Figure 1 Location Map	4
Figure 2 Study Area	6
Figure 3 Base Map	7
Figure 4 Earthflow drawing and classifications	10
Figure 5 Geologic map	13
Figure 6 Coast Range Stratigraphic section	14
Figure 7 View of the earthflow	16
Figure 8 Penetration test	23
Figure 9 Gradation curve sample STA-1	26
Figure 10 Gradation curve sample A3	27
Figure 11 Gradation curve sample A5	28
Figure 12 Mohr-Coulomb diagram	31
Figure 13 X-ray diffraction chart	34
Figure 14 Carbon bonding to clays	36
Figure 15 Precipitation bar chart	40
Figure 16 Colluvium deposition	42
Figure 17 Colluvium deposition and fault trace	43
Figure 18 Headscarp	44
Figure 19 Soil block	45
Figure 20 Structural feature	46
Figure 21 Sag pond	47

.

v

Figure 22	Basalt exposure in headscarp	49
Figure 23	Tree raft	51
Figure 24	Soil mounds	52
Figure 25	Infinite slope model	57
Figure 26	Pre-failure slip circle	61
Figure 27	Pre-failure force diagram	62
Figure 28	Toe failure slip circle	68
Figure 29	Toe failure force diagram	69
Figure 30	Slip circle, undrained	71
Figure 31	Force diagram, undrained	72
Figure 32	Soil block force diagram	73
Figure 33	Clay reorientation	77
Figure 34	Soil crack with roots	82
Figure 35	Fault evidence, east margin	84
Figure 36	Fault evidence, west margin	85
Figure 37	Aerial photo of fault	86
Figure 38	Aerial photo of fault	87
Figure 39	Double wedge failure diagram	88

.

Plate 1

.

.

•

West Tidewater Earthflow Base Map

Pocket

.

•

CHAPTER 1

INTRODUCTION

Landslide is the general term for various modes of catastrophic mass wasting including mudflow, earthflow, debris flow, and rock fall (Chassie and Goughnour, 1976). Although landslides occur naturally, human impacts can substantially increase their frequency and scope.

The West Tidewater earthflow was remobilized in December of 1994. This was one of the largest landslides to occur in the Oregon Coast Range and one of the largest in Oregon's modern history. The duration of the actual movement has been estimated at between four and 24 hours (personal communication, Dave Michael, Oregon Department of Forestry, 1995). Small, one to two meter soil blocks have continued to separate from the main scarp sporadically since the remobilization. These smaller failures were observed in late winter, spring, and summer of 1996.

The goals of this project are to determine what happened to the soils of the Tidewater Summit region of the Oregon Coast Range Mountains to cause them to fail and to discover how they failed. A 1 : 3000 scale map of the earthflow describes the geometry and topography of the slide. The chemical and physical properties of the soils are examined using Atterberg limits, particle size gradations, and a clay mineralogy determination. The soil cohesion and internal friction angles were quantified by direct shear testing on drained and undrained samples. Other workers

have examined the regional geology, structure, and formation relations through previously published material. The groundwater characteristics in the basin were examined using several monitoring wells installed during the course of this project. The data gathered by the above mentioned methods were used to perform a stability analysis of the earthflow basin. The purpose of this earthflow characterization and study is to map the earthflow, to examine engineering properties of the soils, to investigate soil behavior during a large earthflow event, and to perform a stability analysis of the slopes in order to determine the overall failure mode.

CHAPTER 2

STUDY AREA

LOCATION

The Tidewater earthflow is located in Clatsop County, Oregon approximately 15 km northwest of Jewel, Oregon on State Highway 202, milepost 22 (Figure 1). This part of the crest of the Coast Range is known as the Tidewater Summit. Map coordinates of the earthflow study area are; SE 1/4, NE 1/4, Section 18, Township 6 North, Range 7 West, Wickiup Mountain, Oregon, U.S.G.S. 7.5 minute quadrangle, or 46° 00' 42" north latitude, 123° 35' 50" west longitude.

DESCRIPTION

The drainage basin that contains the West Tidewater earthflow has been subject to at least one, and possibly several historic failures. Aerial photos suggest older earthflow events in nearly the same location as the current failure (Figure 2). Lighter colored new growth vegetation can be seen extending down the drainage basin to the south and west. The standing timber within most of the study area and slide margins was harvested by clear-cut logging methods in 1991 (personal communication, Dave Michael, Oregon Department of Forestry, 1995). The eastwest timber cut boundary, also visible in Figure 2, roughly parallels and lies just

north of the apex of the structural ridge that forms the headscarp and northern study

area margin.

Figure 1. Tidewater earthflow location map. The earthflow basin and study area is outlined at the figure center.

The earthflow is approximately 250 m at the widest point and 900 m long,

with a calculated surface area of 8.7 ha (Figure 3). About 100 meters of logging road

embankment drained with a single corrugated steel culvert was destroyed by the earthflow event. Remnants of this road can be seen on the map (Figure 3), along contour 447 m on both lateral margins of the earthflow. A small pond has formed just downslope, south, from where the road previously crossed the earthflow basin. The orphaned portion of this road continues northward, upslope, beyond the western margin of the slide, passing an abandoned basalt rock crushing quarry along the ridge just above the head scarp along contour 580 m. A stream consolidates towards the distal toe of the slide basin near contour 430 m. It is fed by numerous seeps and springs exposed in the major and minor scarps on the earthflow. This zero-order stream drains the earthflow basin and joins the headwaters of the Klaskanine River as it crosses Oregon Highway 202 about 500 m downstream of the toe area. The colluvial soils are being deeply and rapidly eroded as base level of this stream is reestablished.

Appendix A contains aerial photographs dating from the 1960's to the most current photos available. The photos in this series suggest a previous landslide in the study area. The photos also serve as a visual vegetative and human impact history of timber harvest, road building, and plant succession in the Tidewater Summit region of the Oregon Coast Range. Regional structural and geologic features are also visible in these photographs and are discussed in the course of this study.

Figure 2. Aerial photo of the Tidewater earthflow study area. Black lines indicate current earthflow features, access roads, and rock quarry. The area of new growth suggests a previous slope failure in the basin. The east west timber cut boundary (AB) parallels the ridge that is the northern margin of the study area. Photo is courtesy of the Oregon Department of Forestry, I.D. # NOW-CLATS-08, 20-30, 04-27-1980.

Trees that appear to have been buried at some time in the past are evidence of a previous slope failure in this basin. Two of these trees are now protruding from a 3-4 m high soil thrust front about 1 m north of well 4 near contour 465 m (Plate 1). Samples of these trees have been C-14 dated to 700 +/- 50 BP (Beta-132479) and are explained in the Results section.

SIMILAR EARTHFLOWS IN OREGON

Landslide investigations in other parts of Oregon have identified earth movements with failure histories of hundreds and even thousands of years (Swanston and Swanson, 1976). Slope failures are classified using criteria set forth and published by a number of workers in engineering geology such as Varnes (1996). These criteria are as specific as possible but classification of landslides still remains somewhat subjective. Landslides are classified in terms of the type of earth materials involved, the rates of movement, water content, topography, vegetative content, and time. The West Tidewater failure is classified as an earthflow due to the predominance of fine-grained soil materials, areas of well defined lateral boundaries, and the presence of a discreet shearing surface (Easterbrook, 1993). The term "earth flow" (Varnes, 1978) is the most appropriate formal classification (Figure 4B) for this event.

Landslides and small earth movements are relatively common to the Oregon Coast Range. Even so, relatively little work has been published concerning earthflows in the region. One of the largest earthflows in the Oregon Coast Range was the Drift Creek slide that occurred in 1975. This failure was a deep-seated, fast moving earthflow within a timber harvest boundary that began moving while logging operations were in progress (Thrall et al., 1980). There had been a previous failure at that site, and rainfall for the week prior to the event was reported as very heavy. The geology at the site is described as thinly bedded, slightly dipping, low shear strength

siltstone of the Tyee Formation. Thrall et al. (1980) state that even though this particular failure may have occurred without the timber harvest activity, it is very likely that road building and disruption of the natural drainage and soil conditions accelerated the processes leading to the failure event.

В

			TYPE OF MATERIAL				
TYPE OF MOVEMENT			ENGINEERI	NG SOILS			
		BEUMULN	Predominantly coarse	Predominantly fine			
FALLS			Rock fall	Debris fall	Earth fail		
TOPPLES		Rock topple	Debris topple	Earth topple			
ROTATIONAL		FEW	Rock slump	Debris slump	Earth slump		
SLIDES	DES TRANSLATIONAL MANY	MANY	Rock block slide Rock slide	Debris block slide Debris slide	Earth block slide Earth slide		
LATERA	LSPREADS	h ayaa ahaa ahaa ahaa ahaa ahaa ahaa aha	Rock spread	Debris spread	Earth spread		
FLOWS		Rock flow (deep creep)	Debris flow Earth flow (soil creep)				
COMPLEX			Combination of	two or more principal (ypes of movement		

Figure 4. (A) Drawing of an earthflow with typical features labeled (Schuster and Kristed, 1978). (B) Landslide classifications based on soil material type and movements (Varnes, 1958).

Another substantial Cascade landslide is the Lookout Creek earthflow, (Pyles et al., 1987). Lookout Creek is located in the H. J. Andrews Experimental Forest about 70 km east of Eugene, Oregon. This failure is part of a relatively large earthflow complex covering approximately 4 km^2 . This slide often remobilizes during the winter months when normal winter-time precipitation causes pore water pressure within the shear zone to reduce effective stress and thereby reduce soil strength. The regional groundwater regime at this site is reported to be very complex and poorly understood (Pyles et al., 1987).

The Lookout Creek flow is similar to the West Tidewater earthflow in several respects. It moves on a discrete shear zone and the materials involved are in a finegrained matrix. Lookout Creek has an arcuate, slumping headscarp form and sits against a basalt intrusive body just as the West Tidewater earthflow. Both study areas have a history of timber harvest and previous failure, contain numerous springs and seeps, have a road embankment distal to the failure scarp within the slide boundary, and both failed during the high-rainfall winter months.

GEOLOGY

The West Tidewater earthflow lies within the Northrup Creek Formation (Niem and Niem, 1985). The formation is a lower Miocene sedimentary unit consisting of about 500 m of well-bedded, carbonaceous and micaceous, laminated, medium to dark gray mudstone, with subordinate thin, fine-grained to very finegrained feldspathic, minor tuffaceous, yellow-gray siltstone. The Northrup Creek Formation is currently classified as an informal sub-unit of the Astoria Formation (Cooper, 1981). The Astoria Formation as originally described by Howe (1926), included a large portion of northwestern Oregon and the northern Oregon Coast Range. The Coast Range has been consistently described by many workers as extensively faulted and intruded, as can be seen in a recent map (Figure 5) by Niem and Niem (1985). Local structure and regional tectonics can play an important role in the mobilization of landslides, and as we will see, the Tidewater region is no exception. A right-lateral fault traverses the basin in a NW-SE direction. Since Howe's original work in 1926, other workers have further refined the formation descriptions (Lowry and Baldwin, 1952) and rock associations (Pease and Hoover, 1957; Dodds, 1963; Rau, 1967; Snavely et al., 1969) in the Astoria basin (Figure 6).

The surficial geology of the earthflow site consists of approximately 1.5 m of poorly developed soil material resting on about 4 m of pebbly to bouldery colluvium derived from siltstone and mudstone bedrock. A ridge-forming basalt intrusion that was being quarried until the time of failure is exposed on the northwest face of the headscarp. The structural ridge forms the northern boundary of the study section and bears NW-SE. Many of these basalt intrusives in the Astoria basin have a chemical composition very similar to the Miocene age Grand Ronde flood basalts (Niem and Niem, 1985), found in the Columbia Gorge. Most of the basalt dikes and sills seen in outcrop in the Northern Oregon Coast Range have been reclassified as invasive basalt flows by Beeson et al. (1979) and Wells (1989).

Figure 5. Geologic map of the Tidewater Summit area. The study area including the earthflow is outlined in black. Highway 202 runs north and south at figure left, (Niem and Niem, 1985). Figure scale is approximately 1 : 30 000

EXPLANATION

- Faults bar and ball on downthrown side, dashed where inferred, dashed where concealed.
- Tn Northrup Creek Formation
- Tpb Pittsburg Bluff Formation
- Tgri Intrusive Grand Ronde Basalt

Figure 6. Cross-section diagram showing stratigraphic relationships of a portion of the Northern Oregon Coast Range. The section shown lies about 3 km NE of the study area. The Tidewater study lies within the Northrup Creek Formation. (Niem and Niem, 1985). Scale is approximate.

EXPLANATION

- Tgri Intrusive Grand Ronde Basalt (middle Miocene)
- Tgrp Grand Ronde Basalt pillow palagonite (middle Miocene)
- Tn Northrup Creek Formation (lower Miocene)
- Tpb Pittsburg Bluff Formation (Oligocene)
- Tsc Sager Creek Formation (upper Eocene)
- Tkj Kesey Formation (upper Eocene)
- Tc Cowlitz Formation (upper Eocene)

HYDROLOGY

The groundwater investigation for the project is limited to the immediate drainage basin containing the earthflow. The regional hydrology of the Tidewater Summit area was not characterized. Most of the local seeps and springs emerge near the eastern margin of the study area. These outflows form numerous marshy bogs ranging from 2 - 20 m^2 on the earthflow colluvial surface. The majority of the springs were observed to flow year-round with some seasonal variation. Outflow disappears and resurfaces randomly along most of the length of the earthflow. The study area groundwater regime appears to flow from northeast to southwest, feeding the zero-order gaining stream that drains the basin. One groundwater source appears to be perched on the ridge of invasive basalt (Beeson et al., 1979) that extends to the east across the northern margin of the study area. A horizontal line of springs flows from the soil block face on the eastern margin approximately 10-15 m from the ground surface (Figure 7). A significant amount of groundwater flows from the colluvial slopes on the eastern flank of the study basin near contour 495 m forming a small stream. A single, ephemeral seep emerges near the northwest margin, originating near the basalt to siltstone contact exposed on the headscarp face.

STUDY AREA SOILS

Many of the local soils are residual Inceptisols, immature poorly developed soils lacking distinct B horizons or accumulation zones (Birkeland, 1984). The soil in the earthflow basin is thin, immature, poorly developed and originates from the

weathered surface of Northrup Creek siltstone. The taxonomy of the soil in the study area is determined to be a fine-loamy mixed, isomesic Andic Humitropept of the Skipanon series (Smith, and Shipman, 1988). Exposures of the Northrup Creek mudstones and siltstones commonly display a 'popcorn' textured subaerial weathering surface throughout the study area. A detailed description of the local soil type is excerpted from the Soil Conservation Service soil survey (Smith and Shipman, 1988) and can be found in Appendix B.

Figure 7. View of the earthflow looking north from instrument station one(Plate 1). Areas of spring outflow are indicated by **k** symbols. X's indicate piezometers. The ridge at figure right is a groundwater source area. The distance to the headscarp is 400 m.

In this portion of the Coast Range the soils are poorly developed due to constant overturning. The soils here rarely lie undisturbed long enough for distinct accumulation horizons to develop. The steep slopes, strong winds, and abundant rainfall contribute to frequent timber blow down in this densely forested environment. The resulting pit-and-mound surface morphology, sometimes mistaken for earth movements, demonstrates the thin soils and shallow tree root systems that are common throughout the coastal forests of Oregon (personal communication, Dr. Scott Burns, Portland State University, 1995).

Field soil-trench observations within the study area are sited on the east side of the study area access road, approximately one half mile north of the milepost 22 junction with Highway 202. The excavation reveals a thin, dark brown surface zone, an umbric epipedon, with an 'O' organic horizon, less than one centimeter thick. The uppermost 'A' horizon ranges from 3 - 5 cm and has medium brown Munsell color of 5YR 2.5/1, with indistinct upper and lower boundaries. The next lower 'AB' layer ranges from 40 - 50 cm thick, has medium brown Munsell color of 2.5 YR 2.5/2, and contains an abundance of yellow to gray subangular rock fragments ranging from 1 - 15 mm in diameter. No definable accumulation horizons are observed within the soil study pit. With increasing depth, the rock fragments increase in size and frequency and gradually consolidate into a highly oxidized and fragmented upper bedrock zone of yellow-gray siltstone. This markedly altered contact zone is designated the 'Cox' or oxidation horizon. It contains gravel and

cobbles that are predominately subangular to sub round with diameters to 40 cm, and Munsell colors ranging from 10 YR 4/4 in the matrix, to 2.5 YR 6/3 in the pebbles and cobbles (Table 1).

SOIL	HORIZON	MUNSELL	SOIL
HORIZON	THICKNESS	COLOR	DESCRIPTION
0	0 - 3 cm	NA	black to dark brown, sandy,
			crumbly, 50% pine needles and
			wood chips
A	3 - 5 cm	5YR 2.5/1	dark brown, moist, sandy, wavy
			lower boundary, abundant plant
			roots
AB	40 - 50 cm	2.5YR	light brown, sandy, silty, 1-13 mm
		2.5/2	yellow-brown pebbles, some plant
			roots, indistinct lower boundary
Сох	40+ cm	10YR 4/2	mixed light and dark brown, gray to
			yellow orange to red, 1 mm - 40 cm
,			subangular rock fragments with
			overall Munsell color 2.5YR 6/3.

Tab	le	1.	Soil	horizons	observed	in	the	study	area	test	pit.
-----	----	----	------	----------	----------	----	-----	-------	------	------	------

(These are surface horizons and do not represent the probable slide plane)

CHAPTER 3

METHODS

The West Tidewater earthflow site was mapped during the fall and winter of 1996. The study basin was surveyed using a Sokkia Total Station with the absolute elevations determined using GPS. Ground features and topography were mapped using control stations established during the survey. The numbered control stations were organized using Excel© and plotted on D-size plotter paper using the Surfer© software application. The plots were taken to the study area, where the topography and earthflow features were drawn. A final map was drafted from the field version (Figure 3).

Soil samples for laboratory testing were collected at locations and depths determined to be representative of the site in general and below the surface weathering zone. Sample locations are indicated on the project map (Figure 3). A Shelby tube sample of carbonaceous mudstone bedrock was collected for shearstrength testing. The Shelby tube was driven into a previously undisturbed and unremolded bed of mudstone by hand using a sledge hammer and block of wood. Mudstone and siltstone samples were collected for bulk density and natural water content determinations. Samples were selected for laboratory testing based on their suitability for cross testing.

Four monitoring wells were installed in order to determine the phreatic surface and flow regime of the study area (Figure 3). Three of these piezometers

were constructed of threaded sections of 02.5 cm O.D. steel pipe. Holes were drilled in the lower sections of the pipes to allow water to infiltrate and collect in the pipes. Pointed metal ends were fabricated to allow the pipes to be driven into the ground. The drive-probe capped piezometers were installed at selected locations using a Forest Service-approved slide hammer (Hall et al., 1994). Blow counts were recorded during the installations to detect the presence and determine the depth of a subsurface shearing zone (Table 7). Well 3, located about 10 m beyond the eastern earthflow boundary, was installed with a hand-held gasoline- powered auger. A 10 cm diameter auger hole was excavated to a depth of about 4 m, lined with PVC tubing and backfilled. The fieldwork taught us that the steel pipe drive-probe type monitoring well installation was the superior method for a small scale, low budget field investigation (Hall et al., 1994).

Soil testing conducted in the Portland State University Geology Department includes Atterberg limits (Casagrande, 1948) and gradation analyses by sieve and pipette (Galehouse, 1971). Clay mineralogy of the earthflow soil materials was determined by x-ray diffraction analysis (Chen, 1977; Moore, and Reynolds, 1989). Direct shear testing was performed in the Portland State University Civil Engineering Department Laboratory (Das, 1985) in accordance with ASTM standards (ASTM, 1988).

CHAPTER 4

RESULTS

ATTERBERG LIMITS

The Atterberg test results are shown in Table 2. Soil samples for all testing methods were collected at depths greater than 25 cm from the sites indicated on the project base map (Figure 3). The liquid limits of the carbonaceous mudstone samples are somewhat higher than the liquid limits of the siltstone samples. The plasticity indices follow the same general trend. Laboratory data for Atterberg tests can be found in Appendix C.

SOIL TYPE	MUDSTONE	MUDSTONE	SILTSTONE	SILTSTONE
SAMPLE I.D.	STA-1	A - 2	A - 3	A - 5
IN SITU WATER CONTENT	28 %	30 %	NA	NA
LIQUID LIMIT	53 %	95 %	46 %	43 %
PLASTIC LIMIT	25 %	18 %	34 %	41 %
PLASTICITY INDEX	28 %	77 %	12 %	2 %

	Table 2.	Atterberg	limits test	results in	percent moisture.
--	----------	-----------	-------------	------------	-------------------

PENETRATION TEST

Blow counts were recorded during the groundwater monitoring well installation using drive probes and are reported in Table 3. The blow count is the number of blows per foot required to advance the drive probe into the soil.

Well Scarp	l #1 well	Well Upper	#2 slide	Well Lower	Well #3 Lower slide		
Depth, ft	Blows	Depth, ft	Blows	Depth, ft	Blows		
0		0		0			
1	15	1	8	1	8		
2	22	2	7	2	7		
3	44	3	10	3	9		
4	55	4	3	4	8		
5	85	5	7	5	12		
6	75	6	15	6	22		
7	123	7	19	7	26		
8	107	8	18	8	31		
9	134	9	33	9	31		
10	147	10	51	10	51		
11	250	11	57	11	60		
		[·] 12	48	12	-65		
		13	48	13	98		
		14	7 9	14	132		
		15	150	15	88		
				16	120		
				17	95		
				18	135		
,				19	200		
				20	210		

Table 3. Drive Probe Penetration Test Data

Figure 8. Graph of drive probe penetration test data for Well 2. Top of mudstone appears at 220 cm (7 ft) depth. Zone of weakness appears at 340 cm (11 ft) depth.

Zones of weakness are indicated by a decrease in the number of blows required to advance the probe. Three such decreases can be seen in Figure 8. The greatest decrease in blow count appears at a depth of 3 - 4 m below the present ground surface. This zone of weakness is interpreted as the shearing plane of the earthflow. From the surface morphology of the earthflow it appears that from 35-45 m of soil has been displaced from the surface of the basin where the penetration test of well 2 was performed. The failure surface is interpreted to be at a depth ranging from 40 - 50 m below the pre-failure ground surface in this location (personal communication, Arvid M. Johnson, Purdue University, 1996).

PARTICLE SIZE ANALYSIS

The soil samples used for the particle size gradation analysis have variable gross characteristics. Particle size analysis for three samples thought to be representative of the study area soils are shown in Figures 9, 10 and 11. Particle analysis developed from sample STA-1, undisturbed dark gray mudstone collected at a depth of 1m below the bedding surface using a Shelby tube is shown in Figure 9. This mudstone sample is cohesive, uniformly very fine grained, has a very slight gritty, silty component, slightly friable, markedly sticky, and fragments can be fractured by hand. Pebble to boulder sized, competent, subangular mudstone fragments were excavatable using a shovel or rock hammer.

Particle size analysis developed from yellow-gray siltstone samples collected from two locations within the study area (Figure 3) are shown in Figures 10 and 11. Sample A-3 (Figure 10) was collected from one of several colluvial wedges exposed on the headscarp face. Sample A-5 (Figure 11) is from a colluvial deposit near contour 475 m. The siltstone samples are slightly friable, brittle, have yellow-gray color and sandy, silty texture with moderate to marked stickiness when moist. Gravel to boulder sized fragments were excavated using hand tools.

Surface colluvium in the study area appears to be in a weathered state and ranges in size from sand to cobbles. Popcorn texture is common to both mudstone and siltstone when exposed. Pebble and gravel sized siltstone material displays a range of colors from yellow to orange to red to brown. The mudstone remains dark

gray upon exposure. The variable textural characteristics apply equally to materials examined on the earthflow surface as well as the samples collected from the subsurface.

The majority of the surface colluvium deposits on the earthflow surface consist of the yellow to yellow-gray, gravelly, sandy siltstone derived material, with very minor amounts of the gray mudstone. Appreciable quantities of dark-colored, presumably mudstone-derived colluvium occur only in the down slope portions of the earthflow below the failed road embankment near contour 440 m and near the tree raft and soil mound areas.

Initial particle-size analysis using a hydrometer appeared to be flawed, with a large step in the gradation curve at 65 μ m. The pipette method (after Galehouse, 1971), resulted in a more continuous gradation curve. Laboratory data for the gradation analysis are reported in Appendix D.

DIRECT SHEAR TESTING

Direct shear tests were performed on samples collected in undisturbed, 10 cm blocks. Sample A-3 is from a colluvial wedge exposure in the headscarp. Sample A-5 is colluvium consisting predominantly of yellow-gray siltstone. Sample STA-1 is dark-gray mudstone bedrock, collected in a Shelby tube (Table 4). Direct shear test methods conform to ASTM D3080-72 standards (ASTM, 1988).

Figure 9. Gradation curve of sample STA-1, dark-gray mudstone. Composition is 10% sand, 60% silt, and 30% clay.

Figure 10. Gradation curve of sample A-3, yellow-gray siltstone. Composition is 35% sand, 50% silt, and 15% clay.

Figure 11. Gradation curve of sample A-5, yellow-gray colluvium. Composition of sample is 15% sand, 62% silt, and 23 % clay.

Laboratory techniques as described by Das (1985), MacIver and Hale (1970), and Dr. Trevor Smith, (personal communication, Department of Civil Engineering, Portland State University, 1997) were used in the determination of residual cohesion and residual internal friction values. Shear tests were performed on five different samples using a Soiltest direct shear apparatus in the Portland State University Civil Engineering soil-testing laboratory. The procedures were carried out in a straincontrolled method in which shearing strain is applied to the samples at a constant rate. The advantage of strain-controlled tests is that both peak and residual soil strengths can be measured. Stress-controlled tests allow only the determination of peak strengths (Skempton, 1985). Soil samples were consolidated for a minimum of 24 hours in a drained condition prior to same-state shear tests. The consolidateddrained tests are designed to reproduce the strain conditions occurring within the earthflow shear zone prior to failure. It is assumed that by shearing samples at a constant, slow rate in a drained condition and a constant volume, negligible levels of pore water pressures are generated during the tests. The test stresses are therefore taken to be effective stresses and reflect the frictional strength of the soil skeleton unsupported by water pressure. Because the West Tidewater failure is a reactivation of a previous landslide, and soil block and colluvium displacements are considered to be large, the relevant measurement of soil strength is ultimate, or residual friction (Skempton, 1985). Samples were therefore repeatedly sheared, reversed, and sheared again until it was apparent that a residual condition had been reached.

Some samples were tested in an undrained state in order to examine soil conditions during shear failure. If the soil movement along the shear plane lasted for more than just a few seconds, the remolding and associated volume changes would put the earthflow soils into and undrained state.

Sample and Description			Residual Cohesion	Residual Friction
STA-1	mudstone	CD	4 kPa	17°
A3	siltstone	CD	8 kPa	18°
A5	siltstone	CD	5 kPa	14º
A5 CD : cor	siltstone solidated dra	CU ained	4 kPa CU : consolidated undrain	17° ned

Table 4. Results of direct shear tests.

The drained samples show effective cohesions ranging from 4 to 8 kPa. The drained effective residual friction angles range from 17° in the clay-rich mudstone to 14-18° in the sandy siltstone. The undrained siltstone sample shows a residual friction angle of 17° and residual cohesion of 4 kPa. The Mohr-Coulomb failure envelope developed from direct shear tests on mudstone sample STA-1 is shown in Figure 12A. The relationship between the size of the clay fraction versus the empirically-derived residual friction value is shown in Figure 12B as a check for reasonable values. The West Tidewater earthflow samples are indicated by labeled stars.

А

Figure 12. 12A shows the Mohr-Coulomb failure envelope from direct shear tests on sample STA-1. Residual friction angle is 17°, residual cohesion is 3.7 kPa. 12B from Skempton (1964) compares values of ultimate or residual friction angle and the sizes of clay fractions.

31

Laboratory data and stress/strain curves for direct shear tests can be found in Appendix G.

BULK DENSITY

The dry bulk density, or unit weight, of two samples of mudstone from the study area ranges between 1.25 g/cm³ and 1.34 g/ cm³ (Table 5).

	Sample A	Sample B	
volume	115.5 cc	115.5 cc	
moist weight	204.4 g	216.2 g	
dry weight	144.70 g	154.80 g	
water weight	59.70 g	61.40 g	
water %	41.3 %	39.7 %	
Dry Bulk Density	1.25 g/cm3	1.34 g/cm3	
Dry Unit Weiaht	12.3 kN/m ³	13.1 kN/m ³	
Moist Unit Weight	17.4 kN/m ³	18.4 kN/m ³	ι

Table 5. 1	Results of	dry	bulk d	lensity	analy	sis of	dark	k gray	mudstone.

CLAY MINERALOGY

X-ray diffraction analysis of samples of siltstone and mudstone indicates major amounts of smectite with minor amounts of illite and kaolinite clays (Table 6). The clay analysis was performed using laboratory methods specified by Moore and Reynolds (1989) and diffraction patterns determined by Chen (1977). An example diffraction analysis trace is shown in Figure 13. Laboratory data and graphs for the entire X-ray diffraction workup can be found in Appendix G.

Clay Species	mudstone Sample STA-1	siltstone Sample A-5	
Smectite	90%	80%	
Illite	5%	15%	
Kaolinite	5%	5%	

Table 6. Clay species and percent of total clays.

The interlayer spacing of a clay, or *d*-spacing, governs its ability to deform by shear. Expected results for hydrated smectites typically range from 15 to 17Å (Velde, 1992). Smectites in the West Tidewater samples show a *d*-spacing of 20.5Å. Smectite interlayer spacings of up to 50Å are possible. Expanded interlayer distances attenuate the electrical forces that hold clays in their typical layered habits, thus weakening the fine-grained portion of a clay soil. One possible explanation for increased *d* spacing is interlayer absorption of organic carbon compounds. Smectite and other clay species may swell as a result of the formation of cation-organic molecule complexing (Velde, 1992). Carbon-based compounds have the ability to bond to the oxygen in the interlayer spaces of clays (Figure 14A). These organic compounds bond in several different orientations depending on the quantity

Figure 13. X-ray diffraction pattern of the sample A-5 clay fraction. The smectite peak shows a d-space of 20.5 angstroms.

of cation substitutions within the clay species host (Velde, 1992), (Figure 14B). An attendant reduction in soil strength due to oriented organic carbon compounds within the clay interlayers is therefore possible. If organic carbon is present in the local mudstone, it could be the cause of the expanded interlayer spacing and the dark gray coloration.

GROUNDWATER

The initial water table depth readings were taken in August of 1996 after the monitoring wells had been allowed to equilibrate for approximately 30 days following their installation. A Fisher battery-powered well measurement e-tape was used for water level data collection. Table 7 contains the groundwater data collected during the study. The data demonstrate the seasonal variability of the water table within the study area (<u>http://www.ocs.orst.edu/pub ftp/climate data/pcp</u>). The water table surface in well 3 rose from 51 cm to within 18 cm of the ground surface between October of 1996 and February of 1997. The data give an indication of the groundwater regime within the study area. Sediments buried well 2 installed in the alluvial-colluvial depositional area of the upper slide shortly after the first rains in the fall of 1996. During the course of soil sampling and installing monitoring wells, it was noted that the soils and colluvium in all the areas that were examined were moist to very moist below depths of 20 cm from ground surface. This observation

Figure 14. Drawing of carbon compounds (A) bonding to cations in clay interlayers and (B) showing different possible orientations, (Velde, 1992).

A

B

continued to be true throughout the summer months right up to the beginning of winter rain season. The study area soils apparently never completely dry out below a depth of 20 cm despite the absence of any appreciable precipitation during the summer months (<u>http://www.ocs.orst.edu/pub ftp/climate data/pcp)</u>.

The springs and seeps along the eastern slide margin continued to flow but at a diminished level during the summer and fall of 1996. Many small stream channels are being cut into the earthflow surface as a combined result of winter rainfall and groundwater flowing up onto the colluvial surface (Figure 3).

DATE	SCARP	WELL #1	WELL #2	WELL #3
10/11/96	302.0	83.0	51.0	NA
2/9/97	292.1	BURIED	NA	NA
2/28/97	305.1	BURIED	17.5	30.2
3/8/97	304.8	BURIED	14.6	NA
3/15/97	305.4	BURIED	16.5	48.9

Table 7. Water table depths in cm from ground surface.

The only groundwater source observed on the western side of the earthflow emerges from the head scarp near the basalt to sandstone contact approximately 10 m below the rim. This seep flowed until about mid-July of 1996. There is a stream drainage and marsh area approximately 20 m east of the eastern earthflow margin just below well 3, crossing contour 495 m. The runoff from this spring and wetland flows into a stream channel that defines a 200 m-long section of the eastern margin of the earthflow. This larger outflow joins numerous minor outflows to become the principle drainage of this basin. Cut banks up to 4 m, lying at roughly 30° from vertical, have developed in many areas of the mid and lower slide. Stream waters are heavily clouded with sediment for several days after rainstorms. Colluvial materials are being redeposited in depressions on the upper and middle surfaces of the earthflow (Figures 16, 17). Colluvial gravel is also being deposited beyond the distal toe of the earthflow creating stretches of stream braiding and small gravel bars below contour 390 m.

PRECIPTATION

The Oregon coastal mountains receive most of their yearly precipitation during winter months from October to March. The yearly precipitation in the Coast Range averages over 250 cm. The monthly rainfall levels (<u>http://www.ocs.orst.edu/pub_ftp/climate_data/pcp</u>) recorded at the Astoria airport weather station approximately 15 km west of the West Tidewater study area are shown in Table 8 and Figure 15. The December rainfall for the five years previous to 1994 averages 18 cm. In December of 1994 when this earthflow occurred, Table 8 shows that rainfall for the month was 38 cm, more than twice the five-year average. Rainfall for the two months previous to the earthflow event increased by 100% in October, and 40% in November over their respective five-year monthly averages.

Rainfall intensity and duration have a significant influence on the stability of soils on slopes and embankments (Bishop et al., 1964). When the rate and quantity of rainfall exceeds the natural drainage capacity of a soil, some of the water runs off as overland flow. The water that infiltrates results in increased pore pressure that will significantly reduce the strength of a soil and reduce effective stress (Casagrande, 1948). The greater than average 1994 rainfall must therefore one of the critical factors in the West Tidewater failure.

YEAR	JAN	FE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OC	NOV	DEC
1989	21	17	26	6	10	7	4	2	1	13	17	19
1990	41	30	13	11	8	9	1	4	2	21	29	13
1991	17	22	14	24	10	5	1	6	0	6	27	17
1992	24	14	30	19	6	2	0.5	2	7	10	26	15
1993	16	4	NA	NA	· 1	9	5	2	0	6	17	24
5 YR AVG	24	17	21	15	7	6	2	3	2	11	23	18
1994	17	29	17	11	NA	6	2	4	7	24	32	38

Table 8. Rainfall recorded at the Astoria, Oregon airport in cm.

Human impacts on the water budget are also a factor in slope failures. Soil water loss through evapotranspiration in coniferous forests decreases by as much as 66% in summer and 50% in winter after timber clear cutting (Waring et al., 1981).

Figure 15. Bar chart of rainfall in NW Oregon Coast Range Mountains. The rainfall totals for October, November, and December of 1994 are the bars on the far right of each group. Data was collected by Oregon State University Climate Data Center (http://www.ocs.orst.edu/pub_ftp/climate_data/pcp).

Research in New Zealand has shown that transpiration of water by forest cover effectively reduces monthly rainfall by as much as than 30 mm in winter and 90 mm in summer (Pearce et al., 1987). Rainfall interception by the forest canopy has been shown to effectively reduce the total yearly rainfall by an average of 35 % (Marden et al., 1992). The studies just cited indicate that the combined effects of reduced vegetative transpiration and interception could effectively increase in situ soil water content, and thus could decrease overall slope stability.

BASE MAP & EARTHFLOW FEATURES

The major earthflow features and the topography of the study area are shown on the project base map (Figure 3). Noteworthy features include several areas of alluvial deposition (Figures 16, 17), the major headscarp (Figure 18), soil blocks (Figure 19), lateral ridging on portions of both margins, several soil thrust fronts and minor scarps (Figure 20), sag ponds (Figure 21), a tree raft and soil mound area, and numerous seeps and springs.

Figure 16. Colluvium being deposited on the earthflow surface. X is the collection site for dark gray mudstone STA-1. O is Piezometer well #3.

Figure 17. Colluvium being fluvially deposited (lower figure) on the upper earthflow surface near contour 500 m. The black arrow indicates a fractured area of alteration that indicates a fault zone (fault trace, plate 1). The white X at the bottom is the location of well #2.

Figure 18. View of the headscarp looking north. Areas labeled 'B' are exposures of ridge forming invasive basalt. Area labeled 'W' is a colluvial wedge. The 'P' indicates the location of Piezometer well 1.

Figure 19. A view looking northwest showing one of the upper soil blocks surfaces along contour 545 m, and the NW margin of the earthflow. The headscarp extends to the figure right.

Figure 20. Structural feature located along contour 495 m near the western margin of the earthflow about 40 m downslope from well 2 (Figure 3). The 2 - 3 m height exposes yellow-gray siltstone and colluvium.

The earthflow has total vertical relief of about 175 m and covers a horizontal distance of about 900 m, resulting in an average surface slope angle of 10°. The adjacent, undisturbed slopes exhibit an overall slope angle of 11 - 12°. The surface terrain of the flow is very hummocky and irregular with extensive ground cracking, soil mounds, dense clear-cut slash, steep stream cutbanks, thick brush, denuded soils, and thrust toes. Fieldwork and foot travel within the slide boundary is both difficult and hazardous.

Figure 21. Sag pond along contour 530 m near the eastern earthflow margin. Also visible is the surface of one of the upper soil blocks with a cover of new growth hemlock.

The 15 - 20 m headscarp exposes the massive, yellow-gray siltstone and portions of the ridge forming invasive basalt. The scarp also exposes two colluvial wedges ranging from 3 - 6 m wide at the rim, with depths ranging from 3 - 4 m. The

margins of the wedges are well-defined and form sharp downward apexes. The wedges are composed of siltstone and basalt boulders and gravels in a yellow-gray, sand and silt matrix. The boulders and gravels comprise roughly 30% of the total wedge volumes.

The ridge-forming basalt had been quarried and crushed into gravel about 40 m northwest of the headscarp until the lower portion of the haul road was destroyed by the earthflow (Figure 22). This basalt body strikes N 75° W, 5°E. Extensive jointing in the quarry exposure is oriented at N 75° W, 75° S. This bedding trend reflects the overall tectonic regime of the Astoria basin and most of northwestern Oregon (Niem and Niem, 1985). This orientation also closely matches the bearing of the suspected fault shown on the Niem and Niem (1985) map that dissects the upper earthflow at contour 540 m (Figure 3). The contacts between the basalt and siltstone exposed in the quarry are indistinct, irregular, range from subvertical to subhorizontal, and show extensive alteration. There are zones of weathering along the basalt to siltstone contact with alteration colors that vary from yellow to redbrown to black. The orphaned haul road parallels the ridge 5-10 m upslope from the headscarp rim. Road-fill material cracks nearly 10 m long are forming on the downslope side of the road adjacent to the abandoned quarry. One of these cracks grew from a width of 5 cm to 22 cm between February 9 and March 14, 1997. The grade crack propagation is facilitated by poor logging road construction methods and is evidence that the road prism and possibly the adjacent road cutbank are not stable.

Figure 22. Exposure of invasive basalt that delineates the northern structural margin of the study area. The rocks are extensively weathered, fractured, and jointed. Rock was being quarried here until the earthflow removed the access road.

Three structural soil surface features are mapped on the earthflow surface (Figure 3). They lie along contours 495 m, 475 m, and 465 m. The convex colluvial

soil surfaces alternating with concave alluvial accumulation basins and breaks in slope give the earthflow surface an undulating, stair-step longitudinal profile. The soil front with the greatest relief is in the central slide area above the old haul road near contour 450 m. This thrust contains the exposure of historically buried trees adjacent to well #4. Two of these trees are nearly a meter in diameter and lie with their long dimension subparallel to the flow direction. Portions of the outer surfaces of the two buried trees display a two or three cm weathering rind. Other surfaces of the same trees appear fresh and are barely discolored, with minimal alteration. Most of the wood in the two trees appears to be well preserved. In order to obtain a piece of fresh wood, a sample was taken about 50 growth rings inward from the bark. Carbon-14 dating shows that the tree died 700 +/- 50 years BP (Beta 132479). Subtracting 50 years from the C-14 date yields an approximate age of 650 years.

No buried soil horizons were found anywhere in the study area. Such surfaces could help confirm or rule out a burial event or establish age

TREE RAFT

A 'tree raft' (Swanston and Swanson, 1976) approximately 150 m long and 25 m wide sits near the middle of the earthflow between contours 490 m and 470 m. The most likely source for the raft is from the northwest margin of the slide, near the trace of the transverse fault (Figure 3). This portion of the study area contains similar 10-20 cm diameter trees and was not subject to clear cutting during the

timber harvest in 1991. The root systems of the unharvested trees and brush on the surface of the raft have held the upper 1 - 2 m of soil nearly intact. Most of the vegetation on the raft is relatively undisturbed with the exception of the toppling of a few of the taller trees (Figure 23). The surface relief of the tree raft area varies by 1 - 2 m. The intact raft demonstrates the substantial tensile strength that root systems contribute to soils (Ziemer, 1981; Riestenberg et al., 1983).

Figure 23. A portion of a tree raft, outlined in black, resting on the earthflow surface near the western margin. Distance to the raft is about 150 m.

SOIL MOUNDS

A number of features described as "soil mounds" are located on and around the tree raft surface and for some 25 m upslope of the upper end of the raft. These mounds are rounded, serpentine, and range from 1-10 m long, 1-2 m in width, and from 20 cm to over 1 m in height. The mounds are composed primarily of yellowgray colluvium, with minor amounts of dark-gray mudstone pebbles (Figure 24). Most of these mounds are arranged in a multicurved or sinusoid form. The long axes of some mounds are roughly parallel to others, but most lie at random angles to one another with no discernable orientation to the rest of the earthflow. The soil mound

Figure 24. A 6 - 8 m long, 1 m high soil mound on the surface of the earthflow. Note the multicurved, sinusoid configuration. The ground in this area is marshy with sedges and grasses emerging from the colluvial surface.

colluvium is indistinguishable from the colluvium on the rest of the earthflow. In the same general area, 10-15 cm diameter cobbles are found balanced on the tops of 0.5

m tall by 1 m wide cone-shaped mounds. The capstone cobbles are yellow siltstone or dark gray mudstone. The capstones are weathering in place, slaking down to popcorn textured pebbles that lie on the surface of the cones and mounds. This is one of the few areas of the earthflow where dark gray mudstone is exposed in any quantity or form other than a few centimeter-sized chips.

The origin of the soil mounds and cones is unclear. In an attempt to determine the origin of the mounds, a 1 m wide by 2 m long trench was excavated across the axis of one of the mounds near contour 485 m. About a meter of the yellow-gray colluvium and about 30-cm of underlying, dark gray mudstone were removed from the trench. No evidence of vertical cracking, loading, or soil extrusion was seen in either layer. The colluvium to mudstone contact was an indistinct 10 cm zone, wavy and slightly intermixed. The underlying mudstone showed a random pattern of arcuate; submillimeter-sized hairline cracks with a spacing of about 5 mm and no observable orientation. The moisture content of the dry surface colluvium increased steadily with depth until it became viscous yellow fluid at the mudstone contact. At the base of the colluvium, a steady flow of groundwater seeped from the contact zone at the top of the mudstone. Water began to flow freely from a 5 by 5 cm conduit as the excavation cut 10-20 cm into the underlying mudstone layer. The exact orientation of this water conduit through the mudstone was indeterminate due to the random nature of the mudstone cracks. The saturated mudstone around the water conduit was weaker and easier to excavate than the surrounding mudstone. A

drainage channel was dug on the downslope side to drain the trench in hopes of further excavations. The outflow was observed to continue at a steady rate for more than one hour. Further exploration of this trench was abandoned due to the muddy conditions and continued flow of groundwater.

CHAPTER 5

STABILITY ANALYSIS

The fundamental indicator of slope stability is the factor of safety. The factor of safety (FS) can be defined as: "that factor by which the shear strength parameters may be reduced in order to bring the slope into a state of limiting equilibrium along a given slip surface" (Turner and Schuster, 1996). Simply stated, the factor of safety is the ratio of the average sum of resisting forces to the average sum of driving forces. A factor of safety of unity indicates critical stability and incipient slope failure, while greater than one indicates stability and less than one indicates model or property instability.

The concept used to describe the effect of water pressure on soil strength was termed effective stress by Terzaghi (1924). The total vertical stress exerted by a given volume of soil is the product of the unit weight of the soil and the given thickness or depth. The pressure exerted by the pore space water in a given soil volume is the product of the height of the water table surface above a given subsurface point and the unit weight of water. Effective stress is taken to be the force exerted by the friction of the soil grains against each other, minus the buoyant force exerted by the water in the pore spaces (Lambe and Whitman, 1969). To determine the stress acting on a soil, water and soil are assumed to be incompressible, and the volume of the system must remain constant. The values for cohesion and internal friction are derived from laboratory test results using Mohr-Coulomb theory and methods. The effective stress concept is then used to determine soil shear strength in terms of effective stress.

The models used to simulate the West Tidewater slope failure rely on the effective stress concept. The assumed semi-circular shape of the upper failure surface of the Tidewater earthflow is modeled by the friction circle method of slices first presented by Fellenius (1936). Janbu (1973) modified Fellenius' method of slices in subsequent work. The Janbu method is used in this study to determine the factor of safety, to examine the failure mode, and to quantify the forces acting on the earthflow shear surfaces. Inputs for the computer model include values of residual internal friction, cohesion, water table depth, depth to the failure surface, and soil moist unit weight determined from laboratory studies.

PRE-FAILURE MODEL & ANALYSIS

A pre-failure stability analysis was performed using an infinite slope model and the soil and study area characteristics derived from laboratory and field work. The fundamentals of an infinite slope model are shown in Figure 25. This type of model is not as accurate as some other methods, but is used here to check for reasonableness. The critical thickness, t_c , of the soils in the study area is also determined using this method. Critical thickness is the calculated thickness of the soil body above which a slope will fail. Based on the penetration data and observed geometry of the basin, a failure surface depth, t, of 50 m is assumed. Submerged soil conditions are also assumed due to the known high rainfall levels in the study area in October,

- t distance from surface to shear plane
- θ slope angle
- x -distance along slope.

Figure 25. Simplified drawing of an infinite slope model.

November and December of 1994. The pre-failure FS is calculated using a procedure from Lambe and Whitman, (1969) and Dr. Ken Cruikshank, (Portland State University, personal communication, 1996).

 $FS = \overline{c + t (\gamma_t \gamma_w) \cos(\theta) \tan(\phi)} \\ t (\gamma_t \gamma_w) \sin(\theta)$

Given:

t = depth to shear plane50 m \overline{c} = cohesion4,000 Nm⁻² γ_t = unit weight of soil17,400 Nm⁻² γ_w = unit weight of water9810 Nm⁻² θ = slope angle10° ϕ = residual friction angle17°

The calculated infinite slope pre-failure factor of safety is 1.79.

Critical thickness is calculated in a similar manner using the same assumptions and values as above:

 $t_{c} = \frac{\bar{c}}{(\underline{\gamma_{t}},\underline{\gamma_{w}})\cos(\theta) \{\tan(\theta) - \tan(\phi)\}}$

The pre-failure critical thickness, t_c , is calculated to be 8.3 m.

These infinite slope calculations indicate that a submerged 10° slope in the Tidewater study area with a soil layer 8.3 m thick would be stable with a FS of 1.79.

A residual friction angle of Tidewater mudstone can also be "back

calculated" using the modified Bishop (1955) method of slices where

$$tan(\Phi) = \frac{\Sigma W_i sin(\theta i)}{\Sigma Ni}$$
 in which

 $Ni = Wicos(\theta i) - (ui)(b)(\delta x)$ cos(di)

This calculation results in a residual friction angle of 20.7° (Table 9).

A Janbu (1973) circular slip surface model of the pre-failure study basin using software for the method of slices (personal communication, Dr. Ken Cruikshank, Portland State University, 1996), is shown in Table 10. Figure 26 is the assumed slip circle profile for the earthflow, and Figure 27 is the force parameters graph.

The Janbu model of the Tidewater study area calculates a pre-failure factor of safety

of **0.85**, indicating unstable slope conditions.

Table 9. Back Calculations of Residual Friction Angle.

Units	SLICE	SLICE	SLICE	SLICE	SLICE	SLICE	SLICE
	1	2	3	4	5	6	7
kPa	4	4	4	4	4	4	4
kN/m3	17.4	17.4	17.4	17.4	17.4	17.4	17.4
m	100	100	50	50	100	95	5
kN	14485	52505	23762	-11772	57046	-40489	-865
kN	-16765	-208825	-27538	36188	43840	-27959	-1112
deg	-4	8	15	26	44	54	90
kN	7297	201186	9487	-43804	13197	61536	1499
	Units kPa kN/m3 m kN kN kN deg kN	Units SLICE <u>1</u> kPa 4 kN/m3 17.4 m 100 kN 14485 kN -16765 deg -4 kN 7297	Units SLICE SLICE <u>1</u> 2 kPa 4 4 kN/m3 17.4 17.4 m 100 100 kN 14485 52505 kN -16765 -208825 deg -4 8 kN 7297 201186	Units SLICE SLICE SLICE <u>1</u> <u>2</u> <u>3</u> kPa <u>4</u> <u>4</u> <u>4</u> kN/m3 <u>17.4</u> <u>17.4</u> <u>17.4</u> m <u>100</u> <u>100</u> <u>50</u> kN <u>14485</u> <u>52505</u> <u>23762</u> kN <u>-16765</u> <u>-208825</u> <u>-27538</u> deg <u>-4</u> <u>8</u> <u>15</u> kN <u>7297</u> <u>201186</u> <u>9487</u>	Units SLICE <th< td=""><td>Units SLICE <th< td=""><td>Units SLICE <th< td=""></th<></td></th<></td></th<>	Units SLICE <th< td=""><td>Units SLICE <th< td=""></th<></td></th<>	Units SLICE <th< td=""></th<>

sum V	Vi sum Ni	Wi / Ni	Tangent Wi/Ni degrees
9467	2 250398	0.38	20.71
(slices are from	the Janbu	model in	n Table 10)

Figure 27. Force parameter diagram of the pre-failure earthflow basin using Janbu methods and Excel© inputs.
CHAPTER 6

DISCUSSION

PHYSICAL STRENGTH OF SOIL

The most important quantitative property in slope failure analysis is the physical strength of the soil materials involved (Lambe and Whitman, 1969). Currently, the most widely accepted measure of soil strength or resistance to deformation is internal friction angle and cohesion. In landslide analysis, large spatial displacements dictate the use of the ultimate, or residual soil frictional strength to accurately assess failure potentials. Peak soil strength is only relevant to first-time failure events and to engineering design constraints in the construction of embankments and foundations.

A series of drained tests on consolidated specimens is required to accurately measure effective residual soil strength (personal communication, Trevor Smith, Civil Engineering Department, Portland State University, 1996). The soil samples in the West Tidewater study were consolidated and repeatedly sheared in both drained and undrained conditions using a series of increasing test loads until an ultimate, or residual condition was reached. The value for cohesion is also empirically determined from the same series of shear tests. In nature, soil cohesion may be influenced by capillary force within soil samples, and negative effective stresses are sometimes induced by partial saturation of the soils above the phreatic surface. There is therefore some question as to the validity of including residual

cohesion in total strength computations for remolded soil materials. Soil suction force created by adsorption of pore space water into smectite clay interlayers can also be a factor in determining and interpreting the strength of clay soils (Warkentin and Yong, 1962). Stresses due to the swelling soil pressure may increase effective shear strength by creating negative pore pressure within the soil matrix when the soil volume remains constant. It is conceivable that the absorption of water into smectite clay interlayers will actually increase soil strength by creating negative pressure within the pore spaces. In a subsurface shear zone with substantial overburden pressure, volumes may or may not remain constant.

The primary cause of earthflow is the attenuation of grain-to-grain contact of the fine-grained fraction of the soil material due to excess soil water content (Turner and Schuster, 1996). Elevated pore water pressure reduces the soil frictional strength as well as the interparticle cohesion. Additional factors affecting soil mobility are: clay content; clay mineralogy; slope angle; particle size and gradation; vegetative root strength; soil layer thickness; colloidal contents; consolidation pressure; void ratio; groundwater level and subsurface flow; and any previous movement of the soil mass in question (Taylor, 1948). When the combined effect of the many combinations of these individual stability factors approaches a critical level, the FS reduces to unity, and slope failure occurs. It is important to note that equilibrium conditions at one point on a hillside may be very different from stable conditions elsewhere on the same hillside. The interdependence of factors that modify soil

behavior and control mobility must be kept in mind when dealing with earth movement problems.

EARTHFLOW MODELS

The infinite-slope earthflow model calculations indicate a pre-failure FS of 1.79 when the shearing surface is at a depth of 8.3 m or less. As the shearing surface is determined to be 40-50 m deep, this model indicates slope failure with the given soil conditions in the study area in December of 1994.

The pre-failure Janbu model (Table10, Figures 26, 27) represents the circular slip surface of the upper 500 m of the earthflow. The water table is set at the ground surface to simulate the saturated soil conditions present during October, November and December of 1994. Under these conditions, the Janbu model calculates a FS of 0.85, also indicating unstable conditions in the upper 500 m of the study area slope. This result suggests that the lower portion of the earthflow basin had an overall stabilizing effect on the hillside by anchoring the toe area of the earthflow basin. The second Janbu model (Table 11, Figures 28, 29) represents a toe failure at the logging road crossing. The FS for this model is 0.80. Although the decreased FS indicates a more unstable overall condition for the slip circle, the forces diagram in Figure 29 indicates increased resisting forces in the toe area of the model. These two model results suggest that toe failure mode is unlikely with the given conditions in the study area.

The third Janbu model (Table 12, Figures 30, 31) represents the slip circle in a dry or undrained state. The FS of this model is 1.89, indicating very stable slope conditions. This result points out the destabilizing effect of increased pore water pressure, in this case due to the very heavy rainfall during the winter months of 1994. Figure 32 illustrates the forces acting upon the individual slices or assumed soil block margins in the Janbu force diagrams.

CLAY MINERALOGY

The presence of smectite clay in the West Tidewater soil samples is consistent with work by Istok and Harward (1982) correlating clay species with failure modes. In their study of slope instability in the Oregon Coast Range, smectite was the clay species most often found in soil samples from large, rotational slumps in mudstones. Their study also found halloysite clay and amorphous gel material consistently present in earthflow soils. Halloysite is not specifically identified in the West Tidewater samples, but dehydrated halloysite and kaolinite cannot be differentiated by XRD methods, so the species cannot be ruled out. Additionally, the presence of halloysite or gels is strongly suspected in light of the observation that the West Tidewater soils generally do not dry out below a 20-cm depth. Soil water retention is not only precursor to the formation of smectites, amorphous gels, and both hydrated and dehydrated forms of halloysite, it is also an indicator of their presence.

Figure 28. Slip surface profile of the Janbu model with the toe down slope of the logging road crossing . Toe failure model.

Figure 29. Force parameter diagram based on Janbu Excel© inputs. This

model simulates toe failure at the road crossing.

Figure 30. Profile of the undrained Janbu earthflow model with the 📜

Figure 31. Force diagram of the undrained Janbu model with the water table set at the slip surface.

}

Explanation:

- T Interslice Shear Force
- E Interslice Normal Force
- S Shear Stress Slip Surface (tau)
- N Normal Stress Slip Surface (sigma)

Figure 32. Diagram of forces acting on a slice in the Janbu computer model of the earthflow. Forces correspond to the diagrams in Figures 27, 30 and 33.

An alternate or additional explanation for the soil moisture retention in the Tidewater soils may be related to smectite shrinkage. As a soil containing smectite loses water, the associated reduction in volume partially preserves the volume ratio of water to soil. Consequently, the soil appears to maintain fairly constant moisture content. The rate of soil shrinkage is so slow as to be perceptible only by precise methods of laboratory measurement that are beyond the scope of this project.

CLAY CONTENT

Clay mineralogy and content are important and sometimes controlling elements of soil strength. Soils with clay contents of 25 % or less exhibit very low cohesion values and generally have friction angles similar to sands or silts (Skempton, 1985). In soils with clay contents greater than 50 %, strength is controlled predominately by the friction angle of the clay mineral species present. In soils with total clay percentages between 25 and 50 %, which includes West Tidewater earthflow soils, soil strength is a combined function of clay content, mineralogy, and the physical characteristics of the soil matrix. Soil strengths in this latter case are understandably variable. Friction angles for common clay minerals have been experimentally determined to be approximately 15° for kaolinite, 10° for illite and mica, and 5° for smectite (Warkentin and Yong, 1962). Because smectite clay is the dominant clay species in the earthflow soil samples, lowered friction angles are to be expected in the West Tidewater samples. The orientation and dilatency of soil materials controls their strength. In laboratory shear tests and field studies of failure events, the clay minerals within shear zones have been shown to reorient themselves parallel to the direction of shearing forces (Skempton 1985). The shear force required to reorient clay and soil particles is reflected in laboratory tests as the peak strength value. Once the soil particles are in a more parallel configuration (Figure 33), strength falls to the residual level. Laboratory tests show that displacements of as little as 4 - 10 mm will reduce internal friction in a clay soil to the residual level (Skempton 1985). There is also evidence that shearing of clay soils induces a natural increase in water content that further reduces shear strength (Lambe and Whitman, 1969).

The large number of variables affecting soil strength makes characterizing slope failures difficult. The choice of methods and the precision of laboratory techniques can be the limiting factors and significant sources of error during testing and subsequent analysis.

GEOMETRY OF THE EARTHFLOW

The depth and geometry of the Tidewater earthflow headscarp slump and shear plane are interpreted from field study. The vertical offsets of the uppermost soil block surface ranges from 15 to 20 m. There is no exposure of dark-gray mudstone on the headscarp face. The vertical displacement of the upper 500 m of the earthflow containing the assumed semi-circular failure surface is approximately 70 m.

Figure 33. Drawing of particle reorientation during shear. Peak and residual strengths are affected by spacial alteration during soil movement, from Skempton (1985).

A penetration test was performed during the monitoring well 2 installation, located between map contour 500 and 505 m, at a horizontal displacement of 290 m from the apex of the main scarp. The penetration data indicate a zone of weakness 3-4 m below the present ground surface. With the topography and the assumption that the penetration test data are the expression of the primary shearing surface, failure arc geometry and depth are interpreted and used to model the earthflow (personal communication, A.M Johnson, Purdue University, 1996).

The lower third of the earthflow starting about 600 m from the scarp apex, bounded above by contour 455 m, has different characteristics from the upper portion. There is a significant increase in slope angle and a pronounced narrowing of the earthflow lateral boundaries. There is also a greater proportion of tree and plant material mixed into, and resting on top of, the colluvium of the lower slide. The tree and plant material is not just clearcut slash as in the upper portion, but includes dozens of live trees up to 30 m tall with diameters of up to 1 m. It appears that as the earthflow toppled live trees, the uprooted trees knocked down additional trees as they were carried down hill. The evidence is in the number of partially uprooted trees leaning downslope with recently uprooted trees lying against them on the upslope side. Despite these differences, the lower portion is still defined as earthflow because the material involved is predominantly fine-grained soil (Varnes, 1996).

WOODY DEBRIS FACTOR

Discussion of the stability of forested slopes should include the role of woody vegetation and root strength on overall stability. Plant roots enhance the resistance to movement of soils and slopes by virtue of their substantial tensile strength. Tree roots lose the bulk of their strength within three years of the death of the tree (Riestenberg and Sovonick-Dunford, 1983). Vertical and horizontal stability of slopes are enhanced by the vegetative mat resident in the upper two meters of soil or colluvial cover (Bishop and Stevens, 1964; Zaruba and Mencl, 1969; Nakano, 1971). Even on slopes subject to deep-seated failures, tree roots provide substantial horizontal anchoring of overburden materials across zones of weakness (Swanston and Swanson, 1977). Vegetative cover reduces the rate and quantity of water infiltration, chemical and physical soil alteration, and subsurface piping and erosion. The water control function provided by plants increases overall slope stability by attenuating the rate and magnitude of pore pressure fluctuations within underlying soils and zones of failure (Gray, 1970). It is significant that the West Tidewater earthflow occurred three years after the clear-cutting timber harvest in the basin (Figure 34).

FAILURE MODE

Landslides can fail at the toe and propagate headward, or they may fail at the head and flow out to form a distal toe. Neither the morphology nor the structure of the West Tidewater earthflow gives strong indications of failure mode. The steep structural ridge at the headscarp apex and numerous soil thrust toes within the body of the flow suggest a downward-propagating failure mode. The multiple soil toes along contour 465 m are the obvious result of soil flowing down slope over the top of the previous ground surface. The soil forming the thrust toes had to be moving at a faster rate than the surface it now covers. The earthflow becomes more flat and open between contour 470 m and 445 m suggesting an extensional mode in this area. This level area divides the earthflow into an upper zone above 470 m and a distal earthflow below contour 445 m. Shortly before the failure, the culvert under the destroyed logging road crossing at contour 450 m was reported to be clear with stream-water freely flowing, and with no ponded water against the embankment (personal communication, Dave Michael, Oregon Department of Forestry, 1997). The slope angle of the basin increases significantly just down slope of the road along contour 445 m. The width of the basin also begins to constrict just above the road crossing. A small, 5 m wide sag pond lies along contour 445 m, suggesting slumping just below the road crossing. Extensional features such as minor scarps, cracks, or slumps are absent from the earthflow below contour 445 m. The logging road prism

resting on the narrowing stream basin with an increasing slope angle makes this the most likely area for a possible toe failure to occur. These observations are reflected in the Janbu model for toe failure (Table 11).

Soil cracks and secondary slumps are found within the large 20 to 30 m wide soil blocks at the head of the flow above contour 500 m. A reverse scarp along contour 545 m suggests possible retrograde failure near the headscarp. The soil thrust feature along contour 495 m, seen in Figure 19 has a low potential of being an area of earthflow initiation due to its limited size and width.

The Janbu models indicate initial headscarp failure and downslope propagation of the Tidewater earthflow. The toe failure model in Table 11 has a lower average FS, but the forces diagram in Figure 29 shows an increase in the interslice normal force in the toe area, making toe failure mode unlikely.

INFLUENCE OF STRUCTURAL FEATURES

Local structure is probably the secondary contributing cause of this earthflow after rainfall. At least one, and possibly two, faults of regional extent intersect within or very near to the earthflow boundaries (Figure 3, Figure 5). A fault bearing N 75° W cuts across the upper part of the slide basin about 120 m below the main scarp along contour 540 m, subparallel to the ridge, and subnormal to the outflow (Niem and Niem, 1985). The location of this fault across the earthflow basin is adjacent to a parallel line of springs emerging from the soil block faces along contour 515 m on

Figure 34. Soil crack within one of the upper soil blocks near the main scarp along contour 530 m. This crack is about two meters wide at the surface. Root diameters range from 1 mm to about 10 cm.

both eastern and western margins (Figure 3).

Figures 35 and 36 show locally-exposed features that indicate faulting within the upper basin. Lineaments through the study area that are interpreted as regional fault traces are visible in aerial photos (Figure 37). A major fault adjacent to a groundwater source would allow significant seepage into the siltstone and mudstone bedrock at the base of the structural ridge and headscarp. The presence of two intersecting faults and a groundwater source adjacent to the basalt ridge strongly suggest structural control of this earthflow (Figure 38).

The morphology of the upper most soil block and headscarp suggests the possibility of a double-wedge failure or some part of a retrograde movement near the scarp. Triangular, apex downward driving blocks drop and drive lower soil blocks in double wedge failures (Figure 39). The soil block face on contour 545 m, (Figure 3) is probably too small to have controlled this entire slope failure, but does show a reverse scarp that could be the driving wedge portion of small double wedge component of the upper portion. It seems more likely that some retrograde movement occurred shortly after the largest soil blocks moved.

Figure 35. Exposed soil block face forming part of the eastern slide margin. The arrow indicates a zone of alteration and suspected fault. The $O \rightarrow$ indicates groundwater outflow.

Figure 36. Soil block face on the western margin of the earthflow. The arrow points to the suspect fault curving toward the main scarp. The headscarp is in the background.

Figure 37. Aerial photo of the study area dated 1973. Possible lineaments corresponding to the faults mapped my Niem and Niem (1985) are outlined in white. The earthflow basin is outlined at lower figure. Photo courtesy of The Oregon Department of Forestry, Astoria, Oregon.

Figure 38. The Tidewater Summit region with the earthflow circled. The faults mapped by Niem and Niem (1985) are approximated with white lines. Aerial photo dated 3-30-1970; scale is 1 cm: 250 m. Photo courtesy of The Oregon Department of Forestry, Astoria, Oregon.

VEGETATION REMOVAL FACTOR

Removal of the dominant vegetative cover from the study basin very likely reduced the overall slope stability. The effect of removal of vegetative cover from steep or colluvial terrains has been the subject of many studies for at least three decades (Swanston and Walkottaen, 1969). It is now widely accepted that denuded or graded slopes represent a greater risk of slope failure than undisturbed slopes (Swanston and Swanson, 1976). Road building and clear-cut timber harvesting also have a documented detrimental effect on the stability of steep, forested slopes

Figure 39. Drawing of a double wedge type slope failure. The upper wedge drives the lower wedge along a nearly horizontal failure plane. Drawing is from Cornforth and Vessely (1992).

(Swanston and Swanson, 1976). Slopes destabilized by clear-cut timber harvesting also produce lower quality timber from subsequent plantings and harvests (Jared May, MayCo, personal communication, 1994). Trees grown out of their normal vegetation succession are good for paper pulp only and are therefore of much less value. The increased sediment load in local streams induced by denuded slopes creates further negative environmental impacts on water quality and fisheries (Kelsey, 1978).

In the Tidewater Summit region and throughout the northwest, clear cutting has been the harvest method of choice since the turn of the century. The air photo series in Appendix A documents some of the road building, vegetative succession, and timber harvest history within the region. The photos document the fact that the study area was stable from 1971, the date of the oldest photo, until the failure event of December 1994. Three years after harvesting by clear-cutting in 1991, the basin was subject to a large slope failure event.

CHAPTER 7

CONCLUSIONS

The West Tidewater earthflow occurred in December of 1994 in the Oregon Coast Range Mountains. It is believed to be one of the largest earthflows in the Oregon coastal mountains in modern history. Morphologic evidence of previous failures in the study area in the form of new-growth trees is documented in aerial photos dating back to the 1970's. Aerial photos show disturbed slopes in the area surrounding the project study area now covered in similar new growth.

The earthflow dimensions are approximately 250 m wide by 900 m long, giving it a surface area of about 8.7 hectares, or nearly 22 acres. Taking into account the depth of the failure surface, the height of the headscarp, and the final position of the largest soil toe, the volume of earth materials involved in the initial failure is about 3.5 million m^3 .

The materials involved in this earthflow are low-strength micaceous siltstone and clay-rich carbonaceous mudstone of the Northrup Creek Formation. The clay content of both rock types ranges from 18 - 30 %, 90 % of which are smectite. There are indications that halloysite and colloidal gels are present in these soils as well. The liquid limits of the soils vary from 42 - 95 %, with accompanying plasticity indexes ranging from 2 - 77 %. The laboratory-determined internal friction angles range from 14° in the clay rich samples to 18° in the siltstone samples. Soil cohesion values were determined to vary from 4 - 8 kPa. The slope failure reactivation time as determined from C-14 dating of previously buried trees is 600 +/- 50 years. New vegetative growth in the study basin suggests a shorter reactivation time. The overall mode of the current failure is most likely from the headscarp propagating downward to the toe area. There are minor indications of either retrograde or double wedge failure on one of the upper soil blocks. The contrasting morphology of the upper and lower portions of the earthflow does not in itself suggest a dominant failure mode. A number of factors contributed to the reactivation of this earthflow. Greater than normal precipitation is a primary factor. Rainfall levels during October, November, and December of 1994 were twice the previous five year average.

The earthflow has some degree of structural control. The headscarp sits against an invasive basalt ridge. The steep slope angle here would create a significant amount of shear stress on the soils. There is strong evidence that a NW -SE trending fault crosses the earthflow basin subparallel to the structural ridge. The fault would be a natural vertical slip surface and would allow water infiltration, thereby promoting weakening of the siltstone and mudstone bedrock and elevated soil pore water pressures. There is evidence of a second NE - SW trending intersecting fault (Niem and Niem, 1984) within the basin, subnormal to the traversing fault. The second fault may be part of the eastern earthflow lateral margin above contour 490 m. The intersection of these two faults appears on the Niem and Niem (1984) map to be within the earthflow basin.

Computer generated models of the earthflow slip surface calculate an average FS of 0.84 at the time of failure. The Janbu models also suggest that upper 500 m of the earthflow was the most unstable portion of the original basin surface. The force diagrams of the models indicate that the portion of the basin around the destroyed logging road crossing was more stable than the upper basin and headscarp.

Human impacts in the form of road building and timber harvesting may also have had a role in this earthflow. The timber in the earthflow basin was harvested approximately three years prior to the failure. The loss of the vegetative canopy and ground mat must have reduced evapotranspiration and allowed increased amounts of water to infiltrate the underlying soils, thereby decreasing the effective strength of the soil in the basin. The loss of living plant and tree roots diminished the anchoring effect that vegetative cover affords. Road building within the study area may have had an adverse effect on the overall stability of the basin. The oversteepened road cut bank above the headscarp and the road through the middle of the basin surely contributed to the deterioration of the natural slope equilibrium by increasing water runoff velocity and accelerating erosion in some areas.

A third major cause of the earthflow is parent material that is weak and prone to landslides. The soils in the basin are clay-rich with smectite clay as the dominant species. The earthflow that occurred in 1994 is a reactivation of at least one, and possibly several, previous slope failure events. The combination of greater than average rainfall on a previously failed slope, smectite-rich soils, multiple fault zones, timber harvesting with accompanying loss of root strength, and destabilization of the natural slopes with logging road construction, has created a recurring earthflow complex.

FUTURE WORK

A number of issues regarding the earthflow may be worthy of additional study. Questions remain about the clay species present in the soil samples tested. The presence of halloysite and gel could be confirmed or ruled out. The provenance, depositional environments, weathering, and diagenetic histories of the mudstone and siltstone in the study area may also be productive subjects for further study. The increased interlayer distance of the smectites found in the West Tidewater soils is not fully understood. Additional work would be needed to identify and quantify the orientation of clay interlayer organic components and their effects on soil strength. The soil mound features seen on the earthflow midsection are poorly understood. Further investigative work on these mound features may include more trenching in hopes of finding conclusive evidence of loading structures or soil extrusion.

REFERENCES

- ASTM, 1988, Annual Book of ASTM Standards: Soil and Rock, Building Stones, Geotextiles, Vol. 04-08, Designation D-3080-72, pp. 371-373.
- Beeson, M., Perttu, R., and Perttu, J., 1979, The origin of the Miocene basalts of coastal Oregon and Washington: an alternative hypothesis: Oregon Geology, Vol. 4, No.10, pp. 159-166.
- Birkeland, P.W., 1984, Soils and Geomorphology, Oxford University Press, New York, 372 p.
- Bishop, A.W., 1955, The use of the slip circle in the stability analysis of slopes. Geotechnique, Vol. 5, pp. 7-17.
- Bishop, D.M., and Stevens, M.E., 1964, Landslides on Logged Areas in Southeast Alaska: U.S. Department of Agriculture Forest Service Research Paper NOR-1,18 p.
- Cassagrande, A., 1948, Classification and Identification of Soils: Transactions of the American Society of Civil Engineers, Vol. 113, p. 901.
- Chassie, R.G., and Goughnour, R.D., 1976, National Highway Landslide Experience: Highway Focus, Vol. 8, No. 1, pp. 1-9.
- Chen, Pei-Yuan, 1977, Table of Key Lines in X-ray Powder Diffraction Patterns of Minerals in Clays and Associated Rocks: Department of Natural Resources, United States Geological Survey Occasional Paper 21, 68 p.
- Cooper, D.M., 1981, Sedimentation, stratigraphy, and facies variation of the lower to middle Miocene Astoria Formation in Oregon: Corvallis, OR, Oregon State University Doctoral Dissertation, 524 p.
- Cornforth, D.H., and Vessely, D.A., 1992, Pelton Landslide, An Unusual Double Wedge Failure: Stability and Performance of Slopes and Embankments, II Proceeding, Geotechnical Division, ASCE, July 1, 1992, pp. 310-324.
- Das, B.M., 1985, Principles of Geotechnical Engineering:, Prindle, Weber, & Schmidt, Duxbury Press, Boston, Mass., 571 p.

- Dodds, R.K., 1963, Geology of the western half of the Svenson Quadrangle, Oregon: University of Oregon master's thesis, 1963, 114 p.
- Easterbrook, D.J., 1993, Surface Processes and Landforms, MacMillan Publishing Company, New York, NY, 520 p.
- Fellenius, W., 1936, Calculations of the Stability of Earth Dams: Transactions of the 2nd Congress on Large Dams, Washington, D.C., Vol. 4, 445 p.
- Galehouse, J.S., 1971, Procedures in sedimentary petrology: in R. S. Carver, ed., Sedimentation Analysis, University of Georgia, Athens, Georgia, John Wiley & Sons, pp. 69-90.
- Gray, D.H., 1970, Effects of forest clear-cutting on the stability of natural slopes: Bulletin of the Association of Engineering Geologists, Vol. 7, pp. 45-65.
- Hall, D.E., Long, M.T., Rembolt, M.D., Prellwitz, R.W., Koler, T.E., Steward, J.E., 1994, Slope Stability Reference Guide for National Forests in the United States, Volume I, United States Department of Agriculture, Forest Service Engineering Staff, Washington, D.C., Publication Number EM-7170-13, pp. 179-180.

Howe, H.V., 1926, The Pan-American Geologist, Vol. 45, No. 5, pp. 295-306.

- Istok, J.D., and Harward, M.E., 1982, Clay mineralogy in relation to landscape instability in the Coast Range of Oregon: Soil Science Society of America Journal, Vol. 46, No. 6, pp. 1326-1331.
- Janbu, Nils, 1973, Slope-stability computations, in Hirschfield, R.C. and Poulos, S.J., Editors, Embankment-dam Engineering, Casagrande volume: New York, John Wiley, p. 47-86.
- Kelsey, H.M., 1978, Earthflows in Franciscan Melange, Van Duzen River Basin, California: Geology, Vol. 6, pp 361-364.
- Kenny, T.C., 1959, Discussion: Proceedings of the American Society of Civil Engineering, Vol. 6, pp. 224-231.
- Krohn, J.P., and Slosson, J.I., 1976, Landslide potential in the United States: California Geology, Vol. 29, No.10, pp. 224-231.
- Lambe, T.W., and Whitman, R.V., 1969, Soil Mechanics, John Wiley & Sons, New York, NY, 553 p.

- Lowry, M.D. and Baldwin, E.M., 1952, Late Cenozoic geology of the Lower Columbia River Valley, Oregon and Washington: Geologic Society of America Bulletin, Vol. 63, pp. 1-24.
- MacIver, B.N., and Hale, G.P., 1970, Laboratory Soils Testing, U.S. Army Corps of Engineers, Embankment and Foundation Branch, U.S. Army Corps of Engineers Waterways Experiment Station, Appendix IX, 20 pp.
- Marden, M., Phillips, C.J., Jackson, R.J., Zhang, X.B., and Ekanayake, J., 1992,
 A decade of earthflow research and interrelated studies in the North Island
 of New Zealand: Proceedings of the Chengdu Symposium, China,
 July,1992,IAHS Publication no. 29, 1992, pp. 263-271.
- Moore, D.M., and Reynolds, R.C., 1989, X-ray Diffraction and the Identification and Analysis of Clay Minerals: New York, Oxford University Press, 332 p.
- Nakano, H., 1971, Soil and Water Conservation Functions of Forest on Mountainous Land: Report on Forest Influences by Developing Governments. (Japan), Forest Experiment Station, 66 p.
- Niem, A.R., and Niem, W.A., 1985, Oil and Gas Investigation of the Astoria Basin, Clatsop and Northernmost Tillamook Counties, Northwest Oregon: Department of Geology and Mineral Industries, Portland, OR, publication number OGI-14, geologic map with well logs.
- Pease, M.H, Jr. and Hoover, Linn, 1957, Geology of the Doty-Minot Peak area, Washington: United States Geologic Survey Oil and Gas Investigation Map OM-188.
- Pearce, A.J., O'Loughlin, C.L., Jackson, R.J., and Zhang, X.B., 1987,
 Reforestation: on-site effects on hydrology and erosion, eastern Raukumara
 Range, New Zealand. In: Forest Hydrology and Watershed Management,
 Proceedings of the Vancouver Symposium, Vancouver, B.C., 1987, pp. 489-497.
- Pyles, M.R., Mills, K., and Saunders, G., 1987, Mechanics and stability of the Lookout Creek earth flow: Association of Engineering Geologists Bulletin, Vol. 24, No. 2, pp. 267-280.
- Rau, W.W., 1967, Geology of the Wynoochee Valley Quadrangle, Grays Harbor County, Washington: Washington Division of Mines and Geology Bulletin, Vol. 56, pp. 21-28.

- Riestenberg, M.M., and Sovonick-Dunford, S., 1983, The role of woody vegetation in stabilizing slopes in the Cincinnati area, Ohio: Geological Society of America Bulletin, Vol. 94, pp. 506-518.
- Schuster, R.L., and Krized, R.J., 1978, Landslides, Analysis and Control; Transportation Research Board Special Report 176, National Research Council, National Academy of Sciences, Washington, D.C., 234 p.

Skempton, A.W., 1964, Long term stability of clay slopes: Geotechnique, Vol. 14, p. 77.

- Skempton, A.W., 1985, Residual strength of clays in landslides, folded strata, and the laboratory: Geotechnique, Vol. 35, No. 1, pp. 3-18.
- Smith, P.R and Shipman, J.A., 1988, Soil Survey of Clatsop County, Oregon, USDA, Soil Conservation Service, Washington, D.C., 272 p.
- Snavely, P.D., Jr., Wagner, H.C., and MacLeod, N.S., 1969, Geology of western Oregon north of the Klamath Mountains, in Mineral and Water Resources of Oregon: Oregon Department of Geology and Mineral Industries Bulletin, Vol. 64, pp: 32-46.
- Swanston, D.N., and Swanson, F.J., 1976, Timber harvesting, mass erosion, and steepland forest geomorphology in the Pacific Northwest: in Coates, D.R., ed., Geomorphology and Engineering, Stroudsberg, Pa., Dowden, Hutchinson and Ross, Inc., pp. 199-221.
- Swanston, D.N., and Walkotten, W.J., 1969, The effectiveness of rooting as a factor of shear strength in the karta soil: Study Number Fs-PNW1604:26, Nov. 21, 1969 Progress Report, 16p.
- Taylor, D.W., 1948, Fundamentals of Soil Mechanics: John Wiley and Sons, 700 p.
- Terzaghi, K., 1924, Die Theorie der Hydrodynamischen Spannungerscheinungen und ihr Erdbautechnishces Anwendengsgebiet: International Congress on Applied Mechanics, 1st, Delft, 1924, Proceedings, pp. 288-294.
- Thrall, G.F., Jack, R., Johnson, J.J., and Stanley, D.A., 1980, Failure Mechanisms of the Drift Creek Slide, [abs.], Geologic Society of America Abstracts with Programs, Vol. 12, No. 3, p. 165.

- Turner, A.K., and Schuster, R.L., 1996, Landslides, Investigation and Mitigation; Transportation Research Board Special Report 247, National Research Council, National Academy of Sciences, Washington, D.C., 673 p.
- Varnes, D.L., 1958, Landslide Types and Process: in E.B. Eckel, ed., Landslides and Engineering Practice, Highway Research Board Special Publication 29, Washington, D.C., pp. 20-47.
- Varnes, D.L., and Cruden, D.M., 1996, Landslide types and process: in Turner, A.K., and Schuster, R.L., 1996, Landslides, Investigation and Mitigation; Transportation Research Board Special Report 247, National Research Council, National Academy of Sciences, Washington, D.C., 673 p.
- Velde, B., 1992, Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance: Chapman and Hall, 198 p.
- Waring, R.H., Rogers, J.J., and Swank, W.T., 1981, Water relations and hydrologic cycles: in Reichle, D.E., ed., Dynamic Properties of Forest Ecosystems, Chapter 4, Cambridge University Press, Cambridge, MA, pp. 204-264.
- Warkentin, B.P., and Yong, R.N., 1962, Shear strength of montmorillonite and kaolinite related to interparticle forces: Clays and Clay Minerals, Vol. 9, pp. 210-218.
- Wells, R., 1989, Correlation of Miocene Flows of the Columbia River Basalt Group from the Central Columbia River Plateau to the Coast of Oregon and Washington: Geologic Society of America, Special Paper 239, pp. 113-128.
- Zarbu, Q., and Menel, V., 1969, Landslides and Their Control: Elsevier, New York, 205 p.
- Ziemer, A. A., 1981, Roots and the stability of forested slopes: International Symposium on Erosion Sediment Transport in Pacific Rim Steepland, Christchurch, New Zealand, 19 p.

APPENDICES

WEST TIDEWATER EARTHFLOW

Appendix A – Aerial Photos

Appendix B - Soil Characteristics

Appendix C- Atterberg Limits

Appendix D – Particle Size Analysis

Appendix E – Direct Shear Testing

Appendix F - X-ray Diffraction

Appendix G- Radiocarbon Dating

.

Appendix A

West Tidewater Earthflow

Air Photos of the Study Area.

.

.

1966 to 1991

•

1970 Tidewater earthflow is outlined.

1974 Tidewater earthflow is outlined.

1980 Tidewater earthflow is outlined.

Appendix B

West Tidewater Earthflow

Soil characteristics of the study area.

Excerpts from the

Soil Survey of Clatsop County, Oregon

Appendix 2 Skipanon Series Soils

Skipanon Series

The Skipanon series consists of deep, well drained soils in mountainous areas. These soils formed in mixed colluvium. Slopes are 3 to 60 percent. The mean annual precipitation is 70 to 100 inches. The mean annual air temperature is 45 to 51 degrees F. Arial extent is 32,440 acres.

Typical pedon of Skipanon gravelly silt loam, 3 to 30 percent slopes, on a roadcut along spur landing road in the NW1/4NW1/4NE1/4 of sec. 34, T.5N., R.9 W., Willamette Meridian:

0-2inches to 0; needles, twigs, moss, and woody material.

- A-O to 14 inches; dark brown (7.5YR3/2) gravelly silt loam, dark brown (7.5YR3/3) dry; moderate fine subangular blocky structure and moderate medium granular structure; slightly hard, friable, slightly sticky and slightly plastic; slightly smeary; many very fine roots; many very fine irregular pores; 15 percent gravel and 5 percent cobbles; very strongly acid; clear wavy boundary.
- AB-14 to 19 inches; dark brown (7.5YR3/3) gravelly silt loam, brown (7.5YR4/4) dry; moderate medium and fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; many very fine tubular pores; 15 percent gravel; very strongly acid; clear wavy boundary.
- Bw- 19 to 36 inches; brown (7.5YR4/4) cobbly silt loam, brownish yellow (10YR6/6) dry; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; many very fine tubular pores; 15 percent gravel, 15 percent cobbles, and 5 percent soft fragments; very strongly acid; clear wavy boundary.
- C-36 to 53 inches; variegated light yellowish brown and yellowish brown (10YR6/4, 5/6) silty clay loam, yellow and brownish yellow (10YR7/6, 6/8) dry; massive; sticky and slightly plastic; few very fine roots; common very fine tubular pores; 15 percent soft gravel; extremely acid; gradual wavy boundary.
- Cr-53 inches; weathered siltstone.

Appendix C

West Tidewater Earthflow

Atterberg Limits

Laboratory Data

Sample STA-1

Blows	Moisture
17	56.6
30	46.5
32	56.7
50	36

Liquid Limit = 53%

Sample A-3

Blows	Moist %
15	51.2
26	44.2
28	46.5
32	42.4
50	47.8

Liquid Limit = 48%

sample A-2

Blows	Moist %
16	94
21	99
28	96
45	91

Liquid Limit = 95%

Sample A-8

Blows	Moisture
10	42.3
11	47.2
21	43
40	38.6

Liquid Limit = 41%

West Tidewater Earthflow Plastic Limit Data

Sample A-1			r	Sample A-2		
Trial #	1	2		Trial #	1	2
Dish #	11	18		Dish #	23	31
dish + wet	8.45	10.85		dish + wet	6.75	4.30
dish + dry	7.00	9.30		dish + dry	6.10	3.90
wt. dish	1.90	1.90		wt. dish	1.85	1.90
wt water	1.45	1.55		wt water	0.65	0.40
wt. Soil	5.10	7.40		wt. Soil	4.25	2.00
% water	41.30	20.90		% water	15.30	20.00
Avg = PL	24.70			Avg = PL	17.65	
Sample A-3				Sample A-5		
Trial #	1	2		Trial #	1	2
Dish #	a3-1	a3-2		Dish #	12	11c
dish + wet	28.10	28.40		dish + wet	6.30	9.70
dish + dry	27.55	27.75		dish + dry	5.00	7.45
wt. dish	25.80	26.00		wt. dish	1.85	1.90
wt water	0.55	0.65		wt water	1.30	2.25
wt. Soil	1.75	1.75		wt. Soil	3.15	5.55
% water	31.43	37.14		% water	41.30	40.50
Avg = PL	34.28			Avg = PL	40.9	
Sample A-8						
Trial #	1	2				
Dish #	1	12				
dish + wet	8.70	10.55				
dish + dry	6.90	8.40				
wt. dish	1.90	1.85				
wt water	1.80	2.15				•
wt. Soil	5.00	6.55				
% water	36.00	32.80				
Avg = PL	34.4					

Appendix D

West Tidewater Earthflow

Particle Size & Gradation Analysis

Sieve and Pipette Data

Sample	West Tidewater Earthflow	Soil Gradation
STA-1		
sand	8/12/97	
fraction		

wt passing	weight	weight %	Cum. Wt.	Cum. %.
59.94	0.06	0.999	0.06	0.1
59.74	0.2	0.996	0.26	0.43
59.03	0.71	0.984	0.97	1.62
58.47	0.56	0.975	1.53	2.55
57.92	0.55	0.965	2.08	3.47
57.42	0.5	0.957	2.58	4.3
56.46	0.96	0.941	3.54	5.9
54.28	2.18	0.905	5.71	9.53

West Tidewater Earthflow Soil Gradation Silt-Clay fraction 8/12/97 STA-1

size mm	draw wt	wt / L	norm wt	wt%	cum wt w/ sand added
0.0625	0.0124	0.496	1.21	2.02	11.55
0.031	0.0093	0.372	0.91	1.51	13.06
0.0156	0.0956	3.824	9.36	15.61	28.68
0.0078	0.1231	. 4.924	12.06	20.10	48.79
0.0039	0.0704	2.816	6.89	11.49	60.28
0.002	0.0579	2.316	5.67	9.45	69.74
0.00098	0.0308	1.232	3.01	5.03	74.77
0.00049	0.1533	6.132	15.02	25.03	99.81

West Tidewater Earthflow 8/12/97 Gradation Curve data from sieve and pipette analysis combined Sample STA-1 Dark gray mudstone

size mm	Cum.
	%.
0.42	0.1
0.25	0.43
0.149	1.62
0.125	2.55
0.106	3.47
0.09	4.3
0.074	5.9
0.063	9.53
0.031	13.06
0.0156	28.68
0.0078	48.79
0.0039	60.28
0.002	69.74
0.00098	74.77
0.00049	99.81

WEST TIDEWATER EARTHFLOW GRADATION

sample wt =	100gr	Sample A	-3	9/20/97	<u>^</u>
Mesh size	Size mm	net wt	weight %	cum wt	cum %
20	0.840	0.650	0.91	0.65	0.9
40	0.420	1.550	2.18	2.200	3.1
60	0.250	5.550	7.81	7.750	10.9
80	0.177	3.100	4.36	10.850	15.3
120	0.125	3.500	4.93	14.350	20.2
140	0.106	3.100	4.36	17.450	24.6
170	0.090	2.400	3.38	19.850	27.9
200	0.074	3.150	4.43	23.000	32.4
230	0.063	2.125	2.99	25.125	35.4
4.5 phi	0.044	1.340	1.89	26.465	37.2
5 phi	0.031	6.350	8.94	32.815	46.2
5.5 phi	0.022	5.195	7.31	38.010	53.5
6 phi	0.015	7.040	9.91	45.050	63.4
7 phi	0.007	7.160	10.08	52.210	73.5
8 phi	0.004	1.740	2.45	53.950	75.9
9 phi	0.002	5.200	7.32	59.150	83.3
10 phi	0.001	11.9	16.75	71.050	100.0

WEST TIDEWATER EARTHFLOW GRADATION

CURVE sample wt = 100gr Sample A-3 Size mm cum %

9/20/97

0.001	100.0
0.002	83.3
0.004	75.9
0.007	73.5
0.015	63.4
0.022	53.5
0.031	46.2
0.044	37.2
0.063	35.4
0.074	32.4
0.090	27.9
0.106	24.6
0.125	20.2
0.177	15.3
0.250	10.9
0.420	3.1
0.840	0.9

WEST TIDEWATER EARTHFLOW GRADATION CURVE SILT-CLAY FRACTION Pinette

SILT-CLAY FRACTION			Pipette	
Tot wt	25.756	8/12/97	Sample A	-5
Size mm	net wt	wt / L	norm wt	cum %
0.0625	0 0209	0.836	1 672	2 787
0.0310	0.0683	2.732	5.464	9.107
0.0156	0.1270	5.08	10.160	16.933
0.0078	0.1254	5.016	10.032	16.720
0.0039	0.0796	3.184	6.368	10.613
0.0020	0.0776	3.104	6.208	10.347
0.0098	0.0345	1.38	2.760	4.600
0.0049	0.1106	4.424	8.848	14.747

MESH	SIZE mm	SAMPLE	WEIGHT	WEIGHT	CUM	CUM
		WEIGHT	PASSING	%	WEIGHT	%
20.000	0.840	0.040	59.960	99.933	0.040	0.067
40.000	0.420	0.280	59.720	99.533	0.320	0.533
60.000	0.250	0.710	59.290	98.817	1.030	1.717
100.000	0.149	1.130	58.870	98.117	2.160	3.600
120.000	0.125	0.650	59.350	98.917	2.810	4.683
150.000	0.106	0.680	59.320	98.867	3.490	5.817
170.000	0.090	0.730	59.270	98.783	4.220	7.033
200.000	0.074	1.290	58.710	97.850	5.510	9.183
230.000	0.063	2.920	57.080	95.133	8.430	14.050

.

Sample A-5						
Size mm cum %						
0.84	0.07					
0.42	0.53					
0.25	1.72					
0.15	3.60					
0.13	4.68					
0.11	5.82					
0.09	7.03					
0.07	9.18					
0.06	11.97					
0.03	21.08					
0.02	38.01					
0.01	54.73					
0.00	65.34					
0.00	75.69					
0.00	80.29					
0.00	95.04					

Appendix E

West Tidewater Earthflow

)

Direct Shear Testing

Data Tables

Consolida	ted Drair	ned test		trial one	16 kg N fo	rce
Direct Shear	Testing	8/27/97	max in bold	face		
sample ST	-	gray muc	dstone, Shelb	y tube samp	le	test speed 3
strain rate =	0.063 in. p	per min.				
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0	0.300	0.652	0.000	0.000	0	0.000
0.5	4.700	1.230	4.400	0.578	19.58	6.183
1	8.200	1.917	7.900	1.265	35.155	11.100
1.5	11.200	2.640	10.900	1.988	48.505	15.316
2	13.700	3.385	13.400	2.733	59.63	18.829
2.5	15.400	4.144	15.100	3.492	67.195	21.217
3	17.300	4.925	17.000	4.273	75.65	23.887
3.5	17.600	5.696	17.300	5.044	76.985	24.308
4	18.100	6.476	17.800	5.824	79.21	25.011
4.5	18.500	7.246	18.200	6.594	80.99	25.573
5	18.500	8.015	18.200	7.363	80.99	25.573
5.5	18.100	8.780	17.800	8.128	79.21	25.011
6	17.400	9.676	17.100	9.024	76.095	24.027

Consolidated Drained test			trial two	16 kg N ford	e	
Direct Shear	Testing	8/27/97		max in bold	face	
sample ST	-	gray mud	stone, Shelby	/ tube sampl	e	Reversed
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0	0.500	0.442	0.000	0.000	0.000	0.000
0.5	9.000	1.200	8.500	0.758	37.825	11.943
. 1	12.800	1.965	12.300	1.523	54.735	17.283
1.5	14.300	2.745	13.800	2.303	61.410	19.391
2	15.200	3.455	14.700	3.013	65.415	20.655
2.5	15.300	4.278	14.800	3.836	65.860	20.796
3	15.500	5.015	15.000	4.573	66.750	21.077
3.5	15.700	5.859	15.200	5.417	67.640	21.358
4	15.800	6.551	15.300	6.109	68.085	21.498
4.5	15.400	7.393	14.900	6.951	66.305	20.936
5	15.400	8.155	14.900	7.713	66.305	20.936
5.5	14.600	8.955	14.100	8.513	62.745	19.812
6	14.400	9.776	13.900	9.334	61.855	19.531

Consolidat	ted Drair	ned test		trial three	16 kg N for	ce
Direct Shear	Testing	8/27/97		max in bold	face	
sample ST	•	gray mud	stone, Shelby	v tube sample	ibe sample	
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0	2.300	0.994	0.000	0.000	0.000	0.000
0.5	3.300	1.655	1.000	0.661	4.450	1.405
1	7.800	2.421	5.500	1.427	24.475	7.728
1.5	10.200	3.161	7.900	2.167	35.155	11.100
2	11.900	4.025	9.600	3.031	42.720	13.489
2.5	13.100	4.706	10.800	3.712	48.060	15.175
3	14.100	5.484	11.800	4.490	52.510	16.580
3.5	14.700	6.216	12.400	5.222	55.180	17.423
4	14.700	7.058	12.400	6.064	55.180	17.423
4.5	15.000	7.821	12.700	6.827	56.515	17.845
5	15.300	8.643	13.000	7.649	57.850	18.266
5.5	15.300	9.401	13.000	8.407	57.850	18.266
6	15.300	10.216	13.000 .	9.222	57.850	18.266
6.5	14.800	11.068	12.500	10.074	55.625	17.564
7	14.700	11.875	12.400	10.881	55.180	17.423

Consolidated Drained test			trial four	16 kg N for	ce		
Direct Shear	Testing	8/27/97		max in bold f	ace		
sample ST	-	gray mud	stone, Shelby	tone, Shelby tube sample Reversed			
			corrected	corrected	Normal	Shear	
Time, min	Load	Strain	load	Strain	force,	Stress trial 1	
	lbs	mm	lbs	mm	newtons	kPa	
0	0.400	-0.053	0.000	0.000	0.000	0.000	
0.5	9.400	0.556	9.000	0.609	40.050	12.646	
1	13.300	1.274	12.900	1.327	57.405	18.126	
1.5	14.400	1.985	14.000	2.038	62.300	19.672	
2	14.600	2.727	14.200	2.780	63.190	19.953	
2.5	14.900	3.488	14.500	3.541	64.525	20.374	
3	15.300	4.204	14.900	4.257	66.305	20.936	
3.5	15.400	4.921	15.000	4.974	66.750	21.077	
4	15.500	5.686	15.100	5.739	67.195	21.217	
4.5	15.200	6.476	14.800	6.529	65.860	20.796	
5	15.100	7.156	14.700	7.209	65.415	20.655	
5.5	15.000	7.919	14.600	7.972	64.970	20.515	
6	15.100	8.683	14.700	8.736	65.415	20.655	
6.5	15.200	9.450	14.800	9.503	65.860	20.796	

Consolida	ted Drai	neđ				
test				trial five	16 kg N for	ce
Direct Shear	Testing	8/27/97		max in bold	face	
sample ST	· ·	gray mud	stone, Shelb	y tube sampl	е	Reversed
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0	0.400	0.903	0.000	0.000	0.000	0.000
0.5	8.500	1.672	8.100	0.769	36.045	11.381
1	11.300	2.337	10.900	1.434	48.505	15.316
1.5	13.000	3.125	12.600	2.222	56.070	17.704
2	13.400	3.954	13.000	3.051	57.850	18.266
2.5	14.100	4.716	13.700	3.813	60.965	19.250
3	14.400	5.565	14.000	4.662	62.300	19.672
3.5	14.500	6.234	14.100	5.331	62.745	19.812
4	14.700	7.052	14.300	6.149	63.635	20.093
4.5	14.300	7.835	13.900	6.932	61.855	19.531
5	14.500	8.596	14.100	7.693	62.745	19.812
5.5	14.600	9.410	14.200	8.507	63.190	19.953
6	14.300	10.216	13,900	9.313	61.855	19.531
6.5	14.000	11.018	13.600	10.115	60.520	19.110
7	14.000	11.857	13.600	10.954	60.520	19.110

.

159

,

.

West Tidewater Earthflow Direct Shear Test Results

Strain Controlled STA-1 Consolidated Drained method

Trial	Normal	Shear
Number	Stress, kPa	Stress, kPa
1, 16 kg	49.561	17.477
2, 32 kg	99.122	37.068
3, 64 kg	148.683	47.999

West Tidewa	ter Earthflo	w	8/27/96				
		Consolida	ated		NI		
Direct Shear	test	Drained		,	Normal lo	ad = 16kg	
Trial one	A-3	Strain Co	ontrolled		test speed 3		
			corrected	corrected	Normal	Shear Stress trial	
Time, min	Load	Strain	load	Strain	force,	1	
	ibs	mm	lbs	mm	newtons	kPa	
0.000	0.000	0.812	0.000	0.000	0.000	0.000	
0.500	0.000	0.812	0.000	0.000	0.000	0.000	
1.000	4.300	1.096	4.300	0.284	19.135	6.042	
1.500	6.800	1.570	6.800	0.758	30.260	9.555	
2.000	8.600	2.048	8.600	1.236	38.270	12.084	
2.500	9.900	2.510	9.900	1.698	44.055	13.911	
3.000	10.900	2.997	10.900	2.185	48.505	15.316	
3.500	10.500	3.377	10.500	2.565	46.725	14.754	
4.000	12.200	3.866	12.200	3.054	54.290	17.142	
4.500	13.000	4.342	13.000	3.530	57.850	18.266	
5.000	13.500	4.848	13.500	4.036	60.075	18.969	
5.500	13.800	5.311	13.800	4.499	61.410	19.391	
6.000	14.300	5.806	14.300	4.994	63.635	20.093	
6.500	14.600	6.280	14.600	5.468	64.970	20.515	
7.000	14.900	6.789	14.900	5.977	66.305	20.936	
8.000	15.400	7.289	15.400	6.477	68.530	21.639	
8.500	15.600	8.075	15.600	7.263	69.420	21.920	
9.000	16.100	8.796	16.100	7.984	71.645	22.622	
9.500	16.200	9.656	16.200	8.844	72.090	22.763	
10.000	16.300	10.315	16.300	9.503	72.535	22.903	
10.500	16.200	11.086	16.200	10.274	72.090	22.763	
11.000	16.300	11.774	16.300	10.962	72.535	22.903	
11.500	16.300	12.445	16.300	11.633	72.535	22.903	
12.000	16.700	13.250	16.700	12.438	74.315	23.465	
12.500	16.400	13.989	16.400	13.177	72.980	23.044	
13.000	16.300	14.577	16.300	13.765	72.535	22.903	

West Tidewa	ter Earthflo	W	8/27/96			
Direct Choor	toot	Consoli	dated		Normalia	od - 22 ka
Direct Shear	lesi	Draineu			Normano	au – 52 ky
Trial two	A-3	Strain C	controlled		test speed	13
			corrected	corrected	Normal	Shear Stress trial
Time, min	Load	Strain	load	Strain	force,	1
	lbs	mm	lbs	mm	newtons	kPa
0.000	1.000	0.796	0.000	0.000	0.000	0.000
0.500	15.900	1.110	14.900	0.314	66.305	20.936
1.000	20.900	1.547	19.900	0.751	88.555	27.962
1.500	25.000	1.994	24.000	1.198	106.800	33.723
2.000	27.700	2.443	26.700	1.647	118.815	37.517
2.500	29.200	2.885	28.200	2.089	125.490	39.624
3.000	30.000	3.355	29.000	2.559	129.050	40.748
3.500	30.400	3.807	29.400	3.011	130.830	41.310
4.000	30.500	4.270	29.500	3.474	131.275	41.451
4.500	30.700	4.696	29.700	3.900	132.165	41.732
5.000	30.800	5.170	29.800	4.374	132.610	41.872
5.500	30.900	5.690	29.900	4.894	133.055	42.013
6.000	30.700	6.077	29.700	5.281	132.165	41.732
6.500	30.700	6.549	29.700	5.753	132.165	41.732
7.000	30.400	6.993	29.400	6.197	130.830	41.310
8.000	30.300	7.430	29.300	6.634	130.385	41.170
8.500	30.200	7.908	29.200	7.112	129.940	41.029

West Tidewate	r Earthflow		8/27/96			
		Consolic	lated			
Direct Shear te	st	Drained			Normal lo	ad = 48 kg
Trial three	A-3	Strain C	ontrolled		test speed	13
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0.000	1.200	0.673	0.000	0.000	0.000	0.000
0.500	20.200	0.906	19.000	0.233	84.550	26.697
1.000	33.900	1.536	32.700	0.863	145.515	45.947
1.500	38.200	2.323	37.000	1.650	164.650	51.989
2.000	39.800	3.107	38.600	2.434	171.770	54.237
2.500	40.600	3.916	39.400	3.243	175.330	55.362
3.000	40.700	4.666	39.500	3.993	175.775	55.502
3.500	41.000	5.475	39.800	4.802	177.110	55.924
4.000	40.800	6.233	39.600	5.560	176.220	55.643
4.500	41.100	6.976	39.900	6.303	177.555	56.064
5.000	40.800	7.801	39.600	7.128	176.220	55.643
5.500	41.000	8.584	39.800	7.911	177.110	55.924
6.000	41.000	9.332	39.800	8.659	177.110	55.924

.

West Tidewater Earthflow Direct Shear Test Results

Direct Shear test		Consolidated Drained	Sample
Strain Controlled		test speed = 3	A-3
Trial	Normal	Shear	
number	Stress	Stress, kPa	
1, 16 kg	49.561	23.465	
2, 32 kg	99.122	42.013	
3, 48 kg	148.683	56.064	

Consolidated Drained test				trial one	16 kg N loa	ad	
Direct Shear Testing 8/27/97				max in bold	old face		
sample A-5	-	yellow-gray colluvium				test speed 3	
			corrected	corrected	Normal	Shear	
Time, min	Load	Strain	load	Strain	force,	Stress trial 1	
	lbs	mm	lbs	mm	newtons	kPa	
0.000	1.800	0.756	0.000	0.000	0.000	0.000	
0.500	10.200	1.390	8.400	0.634	37.380	11.803	
1.000	13.200	2.194	11.400	1.438	50.730	16.018	
1.500	14.900	2.886	13.100	2.130	58.295	18.407	
2.000	15.900	3.674	14.100	2.918	62.745	19.812	
2.500	16.900	4.424	15.100	3.668	67.195	21.217	
3.000	17.500	5.234	15.700	4.478	69.865	22.060	
3.500	17.500	5.998	15.700	5.242	69.865	22.060	
4.000	17.600	6.755	15.800	5.999	70.310	22.201	
4.500	18.600	7.544	16.800	6.788	74.760	23.606	
5.000	18.800	8.331	17.000	7.575	75.650	23.887	
6.000	18.900	9.052	17.100	8.296	76.095	24.027	
6.500	18.300	9.842	16.500	9.086	73.425	23.184	
7.000	18.500	10.664	16.700	9.908	74.315	23.465	
7.500	18.800	11.450	17.000	10.694	75.650	23.887	
8.000	18.800	12.206	17.000	11.450	75.650	23.887	

.

Consolidated Drained test				trial one	32 kg N for	ce	
Direct Shear Testing 9/25/97 Yellow-gray			ay	max in bold face			
sample A-5		colluvium	-	test speed 3			
			corrected	corrected	Normal	Shear	
Time, min	Load	Strain	load	Strain	force,	Stress trial 1	
	lbs	mm	lbs	mm	newtons	kPa	
0	2.300	1.086	0.000	0.000	0.000	0.000	
0.5	10.500	1.679	8.200	0.593	36.490	11.522	
1	14.400	2.470	12.100	1.384	53.845	17.002	
1.5	17.200	3.175	14.900	2.089	66.305	20.936	
2	18.800	3.977	16.500	2.891	73.425	23.184	
2.5	20.600	4.724	18.300	3.638	81.435	25.714	
3	21.700	5.485	19.400	4.399	86.330	27.259	
3.5	22.600	6.224	20.300	5.138	90.335	28.524	
4	23.200	7.009	20.900	5.923	93.005	29.367	
4.5	23.500	7.777	21.200	6.691	[.] 94.340	29.788	
5	24.000	8.556	21.700	7.470	96.565	30.491	
5.5	24.100	9.345	21.800	8.259	97.010	30.632	
6	24.400	10.097	22.100	9.011	98.345	31.053	
6.5	24.100	10.906	21.800	9.820	97.010	30.632	
7	24.300	11.655	22.000	10.569	97.900	30.913	
7.5	23.600	12.395	21.300	11.309	94.785	29.929	

Consolida	ted Drair	ned test		trial two	32 kg N for	се
Direct Shear	Testing	9/25/97		max in bold	face	
sample A-5	-	Yellow-gr	ay colluvium	test speed	3	
strain rate =	217 cm pe	er day				
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0.0	4.100	1.733	0.000	0.000	0.000	0.000
0.5	15.000	2.322	10.900	0.589	48.505	15.316
1.0	17.900	3.062	13.800	1.329	61.410	19.391
1.5	20.000	3.847	15.900	2.114	70.755	22.341
2.0	21.000	4.607	16.900	2.874	75.205	23.746
2.5	22.000	5.377	17.900	3.644	79.655	25.152
3.0	22.400	6.171	18.300	4.438	81.435	25.714
3.5	22.700	6.957	18.600	5.224	82.770	26.135
4.0	22.900	7.719	18.800	5.986	83.660	26.416
4.5	23.800	8.519	19.700	6.786	87.665	27.681
5.0	23.800	9.302	19.700	7.569	87.665	27.681
5.5	23.700	10.106	19.600	8.373	87.220	27.540
6.0	23.400	10.866	19.300	9.133	85.885	27.119

Conso	lidated	Draine	ed test
COLISC	nualeu	Dialite	

trial three 48 kg N force max in bold face

.

					.		
Direct Shear Testing		9/25/97 max in bold face					
		Yellow-gr	ay				
sample A-5		colluvium		test speed 3	3		
strain rate =	217 cm pe	er day					
			corrected	corrected	Normal	Shear	
Time, min	Load	Strain	load	Strain	force,	Stress trial 1	
	lbs	mm	lbs	mm	newtons	kPa	
0	3.900	0.970	0.000	<i>`</i> 0.000	0.000	0.000	
0.5	12.900	1.665	9.000	0.695	40.050	12.646	
1	15.100	2.407	11.200	1.437	49.840	15.737	
1.5	16.500	3.167	12.600	2.197	56.070	17.704	
2	17.900	3.911	14.000	2.941	62.300	19.672	
2.5	19.100	4.638	15.200	3.668	67.640	21.358	
3	20.200	5.437	16.300	4.467	72.535	22.903	
3.5	20.900	6.197	17.000	5.227	75.650	23.887	
4	21.200	6.957	17.300	5.987	76.985	24.308	
4.5	21.500	7.757	17.600	6.787	78.320	24.730	
5	22.100	8.484	18.200	7.514	80.990	25.573	
5.5	22.400	9.229	18.500	8.259	82.325	25.995	
6	22.900	10.066	19.000	9.096	84.550	26.697	
6.5	22.900	10.803	19.000	9.833	84.550	26.697	
7	22.700	11.622	18.800	10.652	83.660	26.416	
7.5	22.600	12.394	18.700	11.424	83.215	26.276	

.

.

Consolidated Drained test				trial one	48 kg N for	ce
Direct Shear Testing 9/25/97		9/25/97		max in bolo	face	
		Yellow-gra	ау		•	
sample A-5		colluvium		test speed	3	
strain rate = (0.063 mm p	per min.				
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0	5.500	0.838	0.000	0.000	0.000	0.000
0.5	16.900	1.541	11.400	0.703	50.730	16.018
1	23.900	2.211	18.400	1.373	81.880	25.854
1.5	27.700	2.967	22.200	2.129	98.790	31.194
2	30.900	3.733	25.400	2.895	113.030	35.690
2.5	33.200	4.506	27.700	3.668	123.265	38.922
3	34.500	5.267	29.000	4.429	129.050	40.748
3.5	35.200	6.085	29.700	5.247	132.165	41.732
4	35.600	6.850	30.100	6.012	133. 945	42.294
4.5	35.300	7.616	29.800	6.778	132.610	41.872
5	35.000	8.441	29.500	7.603	131.275	41,451

Consolida	leu Diali	ieu test		trial two	48 KG IN TO	orce
Direct Shear	Testing	9/25/97		max in bol	d face	
	-	Yellow-gra	ау			
sample A-5		colluvium		test speed	3	
strain rate =	0.063 mm	per min.				
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0	4.000	0.858	0.000	0.000	0.000	0.000
0.5	20.400	1.389	16.400	0.531	72.980	23.044
1	24.900	2.192	20.900	1.334	93.005	29.367
1.5	27.200	2.956	23.200	2.098	103.240	32.599
2	29.200	3.723	25.200	2.865	112.140	35.409
2.5	30.200	4.462	26.200	3.604	116.590	36.814
3	32.000	5.243	28.000	4.385	124.600	39.343
3.5	32.800	5.995	28.800	5.137	128.160	40.467
4	33.100	6.792	29.100	5.934	129.495	40.889
4.5	33.300	7.557	29.300	6.699	130.385	41.170
5	33.000	8.336	29.000	7.478	129.050	40.748
55	33 100	9 1 1 1	29 100	8 253	129 495	40 889

. . . .

40

nealidated Drained test

0-

Direct Shear	r					
Testing		9/25/97		max in bold	face	
sample A-5	١	ellow-gray	colluvium	test speed 3		
strain rate =	0.063 mm	per min. 🕖				
			corrected	corrected	Normal	Shear
						Stress trial
Time, min	Load	Strain	load	Strain	force,	1
	lbs	mm	lbs	mm	newtons	kPa
0	3.900	0.429	0.000	0.000	0.000	0.000
0.5	19.500	1.017	15.600	0.588	69.420	21.920
1	22.700	1.806	18.800	1.377	83.660	26.416
1.5	25.200	2.584	21.300	2.155	94.785	29.929
2	27.000	3.362	23.100	2.933	102.795	32.458
2.5	28.100	4.110	24.200	3.681	107.690	34.004
3	29.100	4.905	25.200	4.476	112.140	35.409
3.5	30.200	5.664	26.300	5.235	117.035	36.955
4	30.400	6.436	26.500	6.007	117.925	37.236
4.5	31.200	7.185	27.300	6.756	121.485	38.360
5	31.700	7.975	27.800	7.546	123.710	39.062
5.5	32.200	8.744	28.300	8.315	125.935	39.765
6	32.400	9.546	28.500	9.117	126.825	40.046
6.5	32.500	10. 296	28.600	9.867	127.270	40.186
7	32.200	11.125	28.300	10.696	125.935	39.765

•

.

.

West Tidewater Earthflow Direct Shear Test Results

Sample A-5-2

Consolidated Drained method Strain Controlled

Trial	Normal	Shear
Number	Stress, kPa	Stress, kPa
1, 16 kg	49.561	16.908
2, 32 kg	99.122	28.477
3, 64 kg	148.683	41.217

Normal Stress vs Shear Stress

Consolidated Undrained test			trial one	16 kg N loa	ad		
Direct Shear	Testing	8/27/97		max in bold	max in bold face		
		yellow-gr	ay				
sample A-5		colluvium	1	16 kg		test speed 3	
			corrected	corrected	Normal	Shear	
Time min	l oad	Strain	bad	Strain	force	Stress trial 1	
1.110, 11.11	lbe	mm	lbs	mm	newtons	kPa	
0.000	1 800	0.756	0.000	0.000	0.000	0,000	
0.000	10 200	1 300	8 400	0.634	37 380	11 803	
1,000	13 200	2 10/	11 400	1 / 38	50 730	16.018	
1.000	14 000	2.104	13 100	2 130	58 205	18 407	
2,000	14.900	2.000	13.100	2.130	50.235 62 745	10.407	
2.000	10.900	3.074	14.100	2.910	67 105	19.012	
2.000	17,500	4.424	15.100	3.000	60.965	21.217	
3.000	17.500	5.234	15.700	4.470	09.000	22.000	
3.500	17.500	0.369	15.700	5.242	09.000	22.060	
4.000	17.600	6.755	15.800	5.999	70.310	22.201	
4.500	18.600	7.544	16.800	6.788	74.760	23.606	
5.000	18.800	8.331	17.000	7.575	75.650	23.887	
6.000	18.900	9.052	17.100	8.296	76.095	24.027	
6.500	18.300	9.842	16.500	9.086	73.425	23.184	
7.000	18.500	10.664	16.700	9.908	74.315	23.465	
7.500	18.800	11.450	17.000	10.694	75.650	23.887	
8.000	18.800	12.206	17.000	11.450	75.650	23.887	

Consolidated Undrained test Direct Shear Testing 8/27/97 vellow-grav			trial one max in bold	32 kg N loa I face	d	
sample A-5	sample A-5 colluvium				test speed 3	
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0.000	3.100	0.784	0.000	0.000	0.000	0.000
0.500	12.600	1.292	9.500	0.508	42.275	13.349
1.000	16.300	2.049	13.200	1.265	58.740	18.548
1.500	18.400	2.835	15.300	2.051	68.085	21.498
2.000	19.600	3.565	16.500	2.781	73.425	23.184
2.500	20.900	4.345	17.800	3.561	79.210	25.011

3.000	22.000	5.079	18.900	4.295	84.105	26.557
3.500	22.900	5.835	19.800	5.051	88.110	27.821
4.000	23.600	6.621	20.500	5.837	91.225	28.805
4.500	24.400	7.413	21.300	6.629	94.785	29.929
5.000	25.600	8.176	22.500	7.392	100.125	31.615
6.000	26.400	8.944	23.300	8.160	103.685	32.739
6.500	27.800	9.760	24.700	8.976	109.915	34.706
7.000	28.800	10.527	25.700	9.743	114.365	36.111
7.500	29.200	11.355	26.100	10.571	116.145	36.674
8.000	29.900	12.110	26.800	11.326	119.260	37.657
8.500	30.600	12.890	27.500	12.106	122.375	38.641
9.000	30.900	13.730	27.800	12.946	123.710	39.062
9.500	31.600	14.560	28.500	13.776	126.825	40.046
10.000	31.100	15.430	28.000	14.646	124.600	39.343
10.500	30.900	16.326	27.800	15.542	123.710	39.062
11.000	31.100	17.378	28.000	16.594	124.600	39.343

Consolida	ted Und	rained te	st	trial one	48 kg N loa	ad
Direct Shea	r Testing	8/27/97	i.	max in bolo	face	
sample A-5		yellow-gray colluvium				test speed 3
			corrected	corrected	Normal	Shear
Time, min	Load	Strain	load	Strain	force,	Stress trial 1
	lbs	mm	lbs	mm	newtons	kPa
0.000	3.100	0.707	0.000	0.000	0.000	0.000
0.500	19.500	1.316	16.400	0.609	72.980	23.044
1.000	24.000	2.103	20.900	1.396	93.005	29.367
1.500	26.400	2.835	23.300	2.128	103.685	32.739
2.000	27.700	3.640	24.600	2.933	109.470	34.566
2.500	29.700	4.387	26.600	3.680	118.370	37.376
3.000	31.200	5.168	28.100	4.461	125.045	39.484
3.500	31.900	5.943	28.800	5.236	128.160	40.467
4.000	32.400	6.703	29.300	5.996	130.385	41.170
4.500	32.700	7.452	29.600	6.745	131.720	41.591
5.000	33.700	8.243	30.600	7.536	136.170	42.997
6.000	34.500	9.001	31.400	8.294	139.730	44.121
6.500	35.700	9.832	32.600	9.125	145.070	45.807
7.000	35.800	10.586	32.700	9.879	145.515	45.947
7.500	36.100	11.323	33.000	10.616	146.850	46.369
8.000	35.700	12.083	32.600	11.376	145.070	45.807
8.500	36.000	12.901	32.900	12.194	146.405	46.228
9.000	35.400	13.743	32.300	13.036	143.735	45.385
9.500	34.700	14.622	31.600	13.915	140.620	44.402

West Tidewater	Direct Shear Test Results Strain Controlled	
Consolidated Undrained Test		
Sample A-5		1
	Normal	Shear
	Stress, kPa	Stress, kPa
1, 16 kg	49.561	15.649
2, 32 kg	99.122	40.046
3, 48 kg	148.683	46.369

Shear Stress vs Normal Stress, sample A-5

Appendix F

West Tidewater Earthflow

X-ray Diffraction Analysis

2

Clay Mineralogy

September 17, 1997

Report on the Clay Mineralogy of Samples A1 and A5

Prepared by Sean D. Wilson, Portland State University Dept. of Geology

INTRODUCTION AND METHODS

The fine grained fraction of samples A1 and A5 had been obtained by the wet sieve method and were kept in a hydrated state before preparation on clay tiles. The clay-size fraction ($<2\mu$) for each sample was separated from the silt fraction by centrifuging the samples in containers filled with deionized water.

Oriented clay samples were prepared by delivering the $<2\mu$ clay slurries to ceramic tiles. The ceramic tiles were placed over a fritted disc filter hooked up to a vacuum. The vacuum system removed the water from the sample by drawing it through a porous ceramic tile. The clay minerals were oriented on the tile with the (001) face parallel to the tile surface (Moore and Reynolds, 1989).

Three ceramic tiles were prepared for each sample so that the clay fraction of each sample was separated into three subsamples consisting of: 1) an untreated subsample; 2) a potassium saturated subsample; and 3) a magnesium saturated subsample with glycerol treatment. For the potassium-saturated subsamples, drops of 1N potassium chloride were placed on the tile and after 20 minutes the potassium chloride was sucked through the sample on the vacuum. This step was repeated twice. The magnesium treated subsamples were treated in the same manner but used a solution of 0.1 M magnesium chloride. The magnesium saturated samples were treated with glycerol by coating the clay tile and letting it air dry. A total of six tiles were prepared for analysis.

The untreated samples were run through the X-ray first, followed by the magnesium-saturated, and the potassium saturated samples. Each sample was run on a Norelco X-ray diffractometer at a scan speed of 1° per 30 seconds. The goniometer had a 0.2 receiving slit and used a copper tube. After the first run of the potassium-saturated samples, they were heated in a furnace for 1 hour at 500° C and were re-run in the X-ray diffractometer.

The diffractograms from all the samples were analyzed for peak location, intensity, shape, and width. The clay mineralogy was determined from this data and a qualitative analysis of the clay minerals was done by using the peak height normalization technique of untreated samples' (001) peak.

RESULTS

By observing the X-ray diffraction patterns and using the table from Chen (1977), the clay fractions of sample A1 and A5 were determined (Table F1).

Table]	F1.
---------	-----

Clay Fraction	Sample A1 (%)	Sample A-5 (%)	
Smectite	87	80	
Illite	7	15	
Kaolinite	6	5	

Figure F1. Sample A5 untreated.

Figure F2. Sample A5 heat treated 650°

Figure F3. Sample A5 Mg + glycol saturated.

Figure F4. Sample A5 K saturated

Figure F5. Sample A1 untreated.

Sample F6. Sample A1 heat treated

Figure F7. Sample A5 Al-K saturated.

Figure F8. Sample A1 Mg + glycol saturated.

Appendix G

West Tidewater Earthflow

Radiocarbon Dating

Buried Trees

BETA ANALYTIC INC.

DR. M.A. TAMERS and MR. D.G. HOOD

UNIVERSITY BRANCH 4985 S.W. 74 COURT MIAMI, FLORIDA, USA 33155 PH: 305/667-5167 FAX: 305/663-0964 E-MAIL: beta@radiocarbon.com

REPORT OF RADIOCARBON DATING ANALYSES

Dr. Scott Burns

July 20, 1999

Portland State University

August 6, 1999

Sample Data	Measured C14 Age	C13/C12 Ratio	Conventional C14 Age (*)	
Beta-132479	700 +/- 50 BP	-25.0* 0/00	700 +/- 50* BP	
SAMPLE # 98-5C-3				

ANALYSIS: radiometric-standard MATERIAL/PRETREATMENT:(wood): acid/alkali/acid

NOTE: It is important to read the calendar calibration information and to use the calendar calibrated results (reported separately) when interpreting these results in AD/BC terms.

Dates are reported as RCYBP (radiocarbon years before present, "present" = 1950A.D.). By International convention, the modern reference standard was 95% of the C14 content of the National Bureau of Standards' Oxalic Acid & calculated using the Libby C14 half IIIe (5558 years). Quoted errors represent 1 standard deviation statistics (68% probability) & are based on combined measurements of the camela heating and and deviation. of the sample, background, and modern reference standards.

Measured C13/C12 ratios were calculated relative to the PDB-1 Measured C13/C12 ratios were calculated relative to the PDB-1 international standard and the RCYBP ages were normalized to -25 per mil. If the ratio and age are accompanied by an ("), then the C13/C12 value was estimated, based on values typical of the material type. The quoted results are NOT calibrated to calendar years. Calibration to calendar years should be calculated using the Conventional C14 area. the Conventional C14 age.