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AN ABSTRACT OF THE THESIS OF Robert Hadley Cravens for the Master of 

Science in Applied Science presented July 29, 1977. 
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Td!tle: Error Codes in Digital Data Communication Systems 

APPROVED BY MEMlfERS OF THE THESIS d . 

C. Riley, Chairman ~ 

Pah I. Chen 

Todayts digital communication systems perform data transfers at 

the rate of millions of bits per minute, with data errors in the order 

of l/6th error per day. This magnitude of errorless communication is 

now possible because of sophisti.cated error correcting codes. Many types 

of error codes are employed today in three distinct areas of digital 

data collli~unication: human to computer; data source to computer; 

computer to computer; and intra-computer; we are concerned here with 

l.ntra-computer communication. 

This research is primarily a mathematical study of error codes in 

general to explore the possibilities of each major type for the purpose 

of implementation in real systems. The author was inspired toward this 

goal by several people and self feelings. The first, was a definite 



affin~ty toward orderliness and the logical sequence of formal mathematics. 

Secondly, the thrusting of being assigned to a work project where 

computer maintenance and where all types of errors became important. 

And, finally an advisor who believes in °practical things". 

The original portion of this endeavor is .to be found in the con

clusions drawn from each group of mathematical facts disclosed in the 

research. The particular bend of the author toward the cost/reliability/ 

efficiency of the system was not the intent of the theoretical mathe

maticians. who did the majority of the work quoted herein. The author's 

contribution was to draw these ideas and works together and to form the 

conclusions based upon his experience and training as an Engineer. 

The primary conclusion is that multi-residue systematic codes appear 

to be the best choice for implementation of all around error correction 

and general hardware configurations. This conclusion is within the 

constraints that were laid down in the introduction of the research; 

1) to not increase the cost of hardware, 2) to maintain or improve the 

system reliability, and 3) to maintain or increase the processing speed. 

I 
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INTRODUCTION 

The research reported here concerns the theory and the application 

of error generation codes as used for error correction in the arithmetic 

operations of digital computers. These codes of varying types and 

designs are used by small microprocessors up through the·huge data pro-· 

cessing machines used for number manipulations. The errors may be due 

to transient or permanent component failures, to malfunctions due to 

electrical noise, or to both. The relevance of this topic is justified 

by the increased reliability requirements of modern arithmetic and logical 

processors, due to the state-of-the arts' 'growth in size, speed and the 

interest for Real Time operation. This endeavor will only cover binary 

processes' and therefore, only binary codes. 

The greatest majority of today's digital code communication is 

intra-computer. It quite probably approaches 95% of all digital 

communications. Today's trend is to move toward large scale digital 

data conununications to interface directly with computers and for long 

range telecommunications. Digital communications will offer many 

advantages as long as it is immune to errors or has the ability to 

correct those errors which do occur. 

The recent history of methods to improve the reliability of digital 

processors shows three basic trends: 1) Computer Users have increased 

the reliability of the given system at the component level by using the 

best components and providing multi-level redundancy of component sub

systems to be switched in place of a faulty one, 2) reliability of 

the processor. is improved by providing alternate units, either to be 
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switched in placa of a faulty one, or to be operated simultaneously with 

some majority decision elements operating from the outputs of the 

duplicated units, or finally 3) the reliability is achieved by redundant 

information processing so that certain kinds of faults can be detected 

and/or corrected by non-complex circuitry. In the case of correction, 

the circuitry uses the redundant information to produce a result in 

which the effects of the malfunction are eliminated. 

The goal of any error code· generation scheme for arithmetic and/or 

logical operations is to provide correct results in the presence of 

component(s) failures without unduly increasing the cost, decreasing 

the system reliability, or slowing down its processing speed. 



CHAPTER I 

ARITHMETIC· CODES 

In.this chapter the arithmetic codes are defined and classified, 

the fundamental definitions of arithmetic weight and distance are given, 

and the relationship between binary arithmetic distance and the error-

correcting capabilities of the code are discussed. The treatment of 

arithmetic weight and distance differs·from the orthodox approach 

shown.by Massey [l] in that the binary operations are taken among the 

elements of a finite ring. This leads to the concepts of modular 

binary arithmetic weight and distance. Finally the most common digital 

architectures for the implementation of arithmetic codes are considered 

and evaluated. 

DEFINITIONS 

Arithmetic Weights and Distance 

The following definition of binary arithmetic weight is from 

·--.. 
Peterson '[2 J. Let Z be an infinite ring of ~ntegers. 

Definition 1.1 Arithmetic Weight: 

Let N be an element of Z. The binary arithmetic weight of N, 

denoted BAW(N), is the minimum possible number of non-zero terms in the 

representation 

n n-1 
N = a 2 + a 

1
2 + . . . + a 

n n- o (1.1) 

where n may be as large as needed, and a
1

.is 1,0, or -1 for i = O, 1, 
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EXAMPLES: 5 BAW(N1) = 2 N = 31 = 2 -1 
1 ' 

4 2 Nz = 11 = 2 ~2 -1, BAW(Nz) = 3 

It should be noted that the minimum weight representation of an 

integer, i.e., the representation with the minimum number of non-zero 

terms in the expression (1.1) is not unique. For example, 

4 2 N = 11 = 2 -2 -1 = 23 + 22-1. 

Reitwiesner [3] has shown that if an integer is given in such form that 

the product (a.) (a. 1) = 0 in (1.1) for all i = 1, •.• , n then it is 
1 1-

expressed in minimal weight form. An algorithm to.determine by inspect-

ion the arithmetic weight of an integer expressed in binary form is 

given in APPENDIX A. 

Definition 1.2 Arithmetic Distance: 

Given N1 and N2 in the infinite ring of integers Z, the binary 

arithmetic distance between N1 and N2 denoted BAD(N1N
2

) is given by 

BAW(N1 '"'Nz) BAW(N
2

·-N
1

) 

which also comes from Peterson [2]. If a number N1 is transmitted and 

(1.2) 

N1 # N2 is d, then a d-fold arithmetic error (E) is said to have occurred. 

In other words, let N2 = N1 + E and then BAW(E) = d. The minimum d 

occurs when one bit position fails but when the failure is in one of 

·the cells of a register or accumulator several consecutive bit positions 

will be affected due to propagation. The definitions of arithmetic 

weight and distance treat errors only as single errors. 
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Definition 1.3 n-Tuples: 

Consider n-tuples, like 

X =[X ,X1 , •.• ,X 1J 
o n- (1.3) 

where each component X. is an element of a ring of integers modulo m. 
1 1 

for i = O,l,.~.,n-1. Garner [4] shows for example, X = [0,-3,5] is a 

triple where the components 0,-3,5 are elements of rings of integers 

modulo 30,5,6 respectively. 

From this point of view we could then treat the n bit binary 

expansion of an n-tuple for which m. = 2 for i = 0,1, ••• ,n-1. An example 
1 

would be as follows, a binary sequence like 10110111 representing the. 

integer 183 is equivalent to [l,0,1,l,0,1,1,l] where m. = 2 for i = 
1 

0,1, ••• ,7. In what follows the integer (183) will be treated as a 

sequence [10110111] or as an n-tuple [l,0,1,1,0,l,l,l] as needed. The 

appropriate interpretation should be clear from the context in which it 

is used. 

Comparison and operations between n-tuples will be defined only 

when they have the same number of components and the corresponding 

components belong to the same ring of integers modulo m. for i = 0,1, •.. , 
1 

n-1. 

·Definition 1.4 Congruency: 

An .integer N is said to be congruent to an integer N
2 

modulo qi' 

denoted N1 = N2 mod qi' if 

Nl = kqi + N2 (1.4) 

for some integer k. Garner [4] again, shows how to prove congruency. 



Two n-tuples X and Y are equal if all their corresponding com-

ponents are congruent, i.e., if xi= yi for i = 0,1, •.• ,n-1. 

Operations between n-tuples are defined component wise, i.e., 

as operations in the ring of integers modulo mi for the corresponding 

components. Further two operations denoted ~ and g, are meaningful 

6 

between n-tuples, they correspond exactly to the operations of addition 

and multiplication in the rings of integers of the components. 

Given an integer n, the least non-negative integer congruent to 

N modulo m. is represented by JNI and is usually called the residue 
i m. 

1 

of N modulo m;. Then we can write, using (1.2) 

X • Y = fJ x + Y I ••·•'I xn-1 + yn-1 m 1 
. . I J L o o m0 n-

where + is used for ordinary addition. 

The concepts of BAW and BAD given before differ from the concepts 

of Hamming Weight (HW) and Hamming Distance (HD) which are also very 

useful in communication codes~ From Hamming [5], then the following 

definitions. 

Definition 1.5 Hamming Weight: 

Given an n-tuple X = [x ,x
1

, .•• ,x 1 ] defined from (1.3) its o n-

Hamming Weight, represented HW(X), is the number of non-zero components 

in 

x = [1 x I ; t x11 , . · · , I~ n-1f m J 
o mo ml n-1 (1.5) 

From the previous definitions and the interpretation of the binary 

expansion of any integer N as an n-tuple we deduce, with the insight 

of Rao [6], that 
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HW(N). = BAW(N). 

Definition 1. 6 Hamming Distance:. 

The Hamming Distance between two n-tuples X and Y is 

HD(X-Y) = HW[(xo - yo),(xl - yl), ••. ,(xn-1 - yn-1)] (1.6) 

There is a margin of error in finite ring arithmetic as used in 

generating error codes but it can be dealt with by using certain con-. 

straints. For deeper mathematical'involvement the reader should adjourn 

to APPENDIX B. 

CLASSIFICATIONS AND DEFINITIONS OF ARITHMETIC 
CODES IN A FINITE RING 

An error code can be used to detect ·and/or correct errors in basic 

arithmetic and arithmetic related operations. All error codes depend on 

some form of redundancy; only error codes which are finite number systems 

are considered because ~he application to computers and other digital 

communication schemes is finite. Any useful arithmetic code would have 

to at least check addition since the basic computer operation is 

addition: related operations needing error correction are shift, rotation, 

and complimentation. Although this paper is concerned only with the 

correction of addition errors, work has also been done on multiplication 

errors. 

Garner [4] has shown that when the error code is an ideal in a 

finite ring of integers, it is possible to detect and/or correct errors 

in multiplication as well as in addition. Binary radix and diminished 

radix complement codes form additive groups modulo m 
0 

2 or m 
0 

n = 2 -1 

respectively, and Garner [7] has also shown how to model these codes as 
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rings for multiplication. 

Separate and Non-Separate Codes 

We can classify the error codes into two broad groups according 

to how the arithmetic is performed on the n bits representing the code 

words, If exactly the same arithmetic rules are applied to all n bits 

with the possible exception of an additive or multiplicative correction 

after· the operation is performed, then we have a non-separate code. 

If however, different, independent, arithmetic is specified for the k 

information carrying bits and for the redundant (m-k) remaining bits, 

such that there is no transfer of carries (or overflows) from one oper

ation to the other, then we have a separate code. 

A general type of non-separate error code is the AN+B code 

originally considered by Diamond [8] and Brown [9]. In these codes, 

the information represented by a number N is multiplied by a constant 

A; the additive constant B is sometimes used to make. the complimentation 

of the coded words simpler, but in the following cases we will set B = 0. 

There is also a requirement that A must have at least some non-trivial 

factor relatively prime to the ba~e b of the system in which the error 

code is represented. This is to circumvent the single errors going 

unnoticed. A theorem credited to Fisher by Szabo and Tanaka [10] shows 

that a non-separate code, as defined above, must be of the type AN if 

the code is to be preserved under addition and subtraction. Garner [4], 

more precisely, gives the necessary and sufficient conditions for the 

existence of a non-separate code. However, existence alone does not 

give any information of the error correcting ·capabilities of the code. 

A very interesting sub~lass of non-separate codes called "Systematic 
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Codes" was discovered by Henderson [11]; they will be considered in 

detail in the next section. 

A general type of separate code is the multi-residue code in 

which the information representation by the number x in the ring of 

integers modulo m is coded as a (k + 1)-tuple X, and the moduli m. 
0 i 

for 0 < i < k are pairwise relative prime integers. This is actually 

a generalization of the bi-residue code as defined by Rao [6]. The 

arithmetic of multi-residue coded words is performed as in Definition 

1.2. · The independent arithmetic of the residues allows a separation 

between the operation being monitored and the error detecting and error 

correcting processes. Peterson [12] has shown that modular arithmetic 

is the only way of separately checking addition with fewer digits than 

are used in the adder. Garner [4] extended the same result to include 

multiplication. 

Systematic and Non-Systematic Codes 

The use of the wor4 systematic comes to arithmetic coding theory 

from codes used in communication. Unfortunately, it has been used by 

Szabo and· Tanaka [10] as a synonym of separate, which is not correct 

if we extend its meaning from that accepted for communication codes. 

Garner [4] clearly has pointed out that in separate codes there is no 

interaction between the arithmetic of the information part and the 

redundant checks; he also points out that it is possible to have some 

arithmetic interaction from the information part to the redundant 

checks and yet preserve intact the information portion. It is for these 

codes, in which the information bits always remain intact after coding, 

that the term systematic is reserved. 
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Definition 1.7 Systematic Code: 

Let Ca
1

,a
2

, ••• ,ak) be a sequence of information symbols which when 

coded, form a code word (b
1

,b2 , •.. ,bn) for n>k. If we can identify each 

symbol a. in the information sequence with a distinct b. in the code 
i J 

word, and the correspondence i-+j in positions is fixed for all code 

words, then the code words form a systematic code. And conversely, 

any code not satisfying Definition 1.6 is therefore non-systematic. 

Now it can be stated that systematicity cannot exist if there is 

the possibility of carries from the check positions flowing into the 

information positions. This is a very important consideration in design 

of the correction circuits for typical adders and checkers. 

From this definition and Von Neuman's [13] work it can be shown 

that all separate codes are trivially systematic. What is more inter-

· esting however, is the fact that there exists a class of non-separate 

codes which are systematic; these codes are formed by a left concatenation 

of the check symbols. Unqer the usual assumption that carries flow to 

the left, except perhaps out of the most significant bit position, we 

see that the check symbols must be to the left of the information symbols 

to preserve systematicity. Systematic codes are particularly attractive 

because the information symbols are readily available without processing, 

except where error corrections are to be made on them. 

Distance and Error Correction Capabilities 

Peterson [2] remarked that the arithmetic error code must be an 

ideal in Z ; furthermore, he says that it must be a principal ideal since m 
0 

Z is a ring which contains only ideals generated by a single element, m 
0 

Le., principal ideals. The following is f°rom and by Peterson [2]: 
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LEMMA I: Z is a principal ideal ring (P.I.R.), i.e., a ring in 
m 

0 

which any proper ideal is generated by a single element of the 

ring. 

PROOF: Assume that there is a proper ideal in Z , generated m 
0 

by two elements, say p and q of Z • 
m 

If GCD(p,q) = d· then there 
0 

would exist .integers m and n such that 

mp + nq = d 

and where mp = l£.+P~·. ·~ and nq = \.~~~~ 

m times n times 

and then d would be in the ideal; but this then, would be the 

ideal generated by d, a single element, .contrary to the hypothesis. 

If d ·= 1 then the ideal is not proper. We could easily extend 

the argument to any finite number of elements. Therefore, the 

only proper ideals in Z are principal ideals. 
m 

This relationship is visualized in AN codes in which A is the 

generator of the ideal in the ring of integers modulo m • This 
0 

implies that A divides m
0 

and then, given any two words AN
1 

and 

AN2 in the code 

IANl - AN2f m = AN3 
0 

is also in the code. The minimum MBAD (Modular Binary Arithmetic 

Distance) between two code words is equal to the minimum MBAW 

of the code word ~3 • 

If an erroneo.us result, as in Definition B .1 (see APPENDIX B), 

occurs due to one or more failures, it can be said that MBAW(E) = t 

errors have occurred, or that E is a pattern of t errors. In general 

in parallel adders, the independence of the paths allows for the 
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correlation of the number of errors so obtained with at least the same 

number of failures of electronic components in the adder, as software 

errors. 

Ma~sey [l] proved that an AN (Arithmetic Product) code could 

correct all patterns E of tor fewer errors, if and only if, the 

minimum weight of all code words is equal to or larger than two times 

the number of errors plus one, or (2t + 1). The following notation is 

by Peterson and Rakin [12] who did some of the' first work in error codes. 

If A is a generator of an AN code in base b representation, then 

~(A,d) is the smallest non-negative .integer whose product with A has 
. . 

a BAW less than d. And if b = 2 (binary) the subscript will be dropped; 

the integer is denoted by M(A,d). Now Brown [9] added two theorems 

and a third theorem was proven independently by Henderson [11] and 

Peterson [2] which when used in conjunction brings us to the codes 

being used today in the more advanced correction schemes. These theorems 

basically state that: 1) any positive odd integer A generates a code 

which detects all error patterns for large values of information, 

2) given the conditions of Theorem 1 then M(A,3) is the least positive 
k 

integer which results from 2 ! 1 . for some positive integer k, 3) if 

A > 1 is an odd prime and if all the non-zero elements of the field 

of integers modulo A may be generated by 21 or by (-2)i for suitable 

integer values of i. 

The use of separate codes for error detection has been known for 

a long time. The procedure of "casting out nines" is actually an error 
~~ 

detecting residue code for the decimal system. It is generally known 

that any odd ~l will give a single residue code capable of single error 
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detection in the ~rithmetic of a binary number system. If m
1 

is of the 

form 2x - 1 there are simplifications in the computation of the residues. 

The choice m
1 

= 3 is the most popular. 

The errors in separate code arithmetic may originate in either 

the adder or the checker. The use of single residue codes makes error 

correction impossible because the determination of the error location 

is not possible. The fault might be in the checker but would erroneously 

indicate a fault in the adder. However, Rao [6], developed a means of 

, single error correction using bi-residue codes that will be introduced 

in Chapter II. 

IMPLEMENTATION OF SEPARATE AND 
NON-SEPARATE CODES 

The selection of a good arithmetic· code means one which can 

detect and correct the error patterns which are most likely to occur 

with as simple a·detection and correction implementation as feasible. 

If the implementation of the code requires an excessive amount of 

additional hardware, it is conceivable that the overall reliability of 

the coded system will be lower and the cost higher than that of the 

original non-redundant system. 

Computer Architecture for Separate and Non-Separate Codes 

The implementation of AN codes requires: 1) an encoder which forms 

the product of the constant A and the information N; 2) an arithmetic 

unit which performs the addition of two encoded words AN
1 

and AN
2

; 3) a 

decoder which given the result A(N1 + N2) + E finds IACN1 + N2)+ElA 

and implements a correction if IEIA is non-zero and is a correctable 
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error, or perhaps sets some error procedure for having detected the 

error, This procedure is shown in block form in Figure 1. 

INPUT ~ ENCODER I ""14 ARITHMETIC ~ DECODER t JI*" OUTPUT ENCODER 

Figure 1. Implementation of AN codes 

The system of Figure 1 may be capable of controlling both transient 

and permanent faults in a computer system, but the slower speed and the 

added cost over the original system is not an equitable trade-off in 

view of the limited error correction provided. The relatively small 

range of values allowed for N especially would make the cost and time 

factors when considering the word size of todays' large computer systems. 

Several previous researchers have suggested utilizing the arithmetic 

unit to encode and decode. This approach suffers from two major draw-· 

backs: 1) it still will show transient failures but does not retain 

the ability to accurately handle permanent failures, and 2) it slows 

down the system operation further. The drawbacks of non-separate codes 

far outweigh the advantages. 

A second possibility for error control using a multi-residue code 

is shown in Figure 2. 



CHECKER 
1 

INPUT BUS 

DECODER 

OUTPUT BUS 

CHECKER 1'11111 1 
k 

ARITHMETIC 
UNIT 

15 

Figure 2. Implementation of multi-residue codes 

Here, addition is also slowed since we must wait for the result to be 

·formed and then decide and select a correction if needed. The arithmetic 

.. unit or adder as it is called in the use of multi-residue codes, though 

it may have other arithmetic functions, contains the m component of the 
. 0 

coded word. The other k units which perform arithmetic modulo m. for 
1 

i = 1,2, ••• ,k ar~ called the modulo m. checkers or checkers for their 
-- -1 

-respective value of i. Still this code and hardware does not, under test, 

give us the best values possible. 

The final case for non-separate codes is helped by Garner's [4] 

investigation of a method of forming the residue of the sum by starting 

with the least significant bits, at a speed very close to the velocity 

of carry propagation. For preselected moduli this scheme could improve 

the correction time for the non-separate configuration. This approach 

and a fast table-look-up procedure for the correction corresponding to 

each syndrome could reduce even further the loss of processing time for 

correction. 

It should be pointe~ out that the·non-separate systematic codes 



are, in fact, partially modular, since there is only one-directional 

interaction, from the information bits to the check bits. The Figure 

3 block diagram shows one possible design for the implementation of 

these "hybrid" codes. 

INPUT BUS 

,---·--
1 ·' 

-- --- -- -- -- - -- -- -- -- -- -- ---, ARITHMETIC UNIT 

I 
I 
I 
L-

CHECK BITS FOR 
CARRIES 

INFORMATION BITS 

f 

I 
I 

-------~----1---~ 
[ DECODER 1.llQilP-------:. 

OUTPUT BUS 

Figure 3. Implementation of non-separate systematic codes 
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The separate codes as compared to the non-separate AN codes have several 

advantages. Rao [6],[14] in his articles on computer processors and bi-

residue codes pointed out these four: 1) the arithmetic unit and the 

checkers operate independently in the sense that faults in any one unit 

"~- will ·not normally contaminate the others; 2) error control of both 

transient and permanent faults is possible; 3) the range of values of 

the information N under error control is now 0 ~ N < AM much larger than 

0 ~ N < M for nonseparate codes; and 4) implementation is relatively easy, 

especially so if the arithmetic unit uses one's complement system (i.e., 

m = 2n-l), and the moduli m. of the checkers are of the type 2x-1 such 
0 . 1 

that x divides n exactly. 

One distinct advantage of separate codes is that in general the 
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theory relating tµeir distance properties and error correcting capabilities 

has been well developed. This along with the above mentioned advantages 

and lower time requirements in terms of CPU time make them an ideal 

choice for correcting codes. 



CHAPTER II 

CYCLIC CODES 

In·this Chapter a class of codes called cyclic are defined and 

studied. The special advantages are noted and discussed; the primary 

importance being that this class of codes is capable of multiple error 

correction. The results of the error correcting capabilities of these 

cyclic codes is important because more practical, separate codes have 

been constructed with properties which are analogous to them. And 

finally a discussion about the theory of codes capable of multiple. 

error corr~ctions (large distance codes) completes.the Chapter. 

DEFINITION OF CYCLIC CODES 

The consideration here is the finite AN codes useful for binary 

arithmetic operations. If .the arithmetic ·registers are of the size n 

bits (or of n gates), then. each AN code word is represented ~s a binary 

n-tuple and N will have a range 0 ~ N· < M where AM< 2n. Then the code 

is said to be of length n. A cyclic AN c~de can now be defined as 

follows: 

Definition 2.1 An AN code of length n is said to be cyclic if and only 

if for any code word X = [X
0

,X1 , ••• ,Xn-l], the word Y = [X1 ,x2 , ••• ,Xn-l' 

X ] obtained by rotating the bits of X to the left once, is also a code 
0 

word. 

This definition and the theorem that follows are quite analogous 

to the cyclic.codes for communication theory, for examples see Peterson [2], 
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page 137. Peterson [2] also puts forth this theorem with the partial 

objective of bridging the "algebraic foundations" of the arithmetic 

codes and the communication codes. For this reason, and the convenience 

in arithmetic operations, he used this restrictive definition rather 

than to define all finite AN codes that are closed under addition (which 

form a cyclic subgroup in the additive group of integers mod AM) as 

cyclic. 

The necessary and sufficient conditions for a code to be cyclic 

are given in this theorem. 

Theorem 2.1 An AN code of length n is cyclic if and only if A generates 

an ideal in R, the ring of integers modulo 2n-l. 

Proof: Let the AN code by cyclic. That is, if the word X = [X
0
,Xi,···, 

2n-1 . 
X 

1
] =AK for some K, 0 ~ K <~A~, then Y = [Y

1
,Y2 , ••• ,Y 

1
,Y] is 

n- · n- o· 

also a code·word and hence a multiple of A. 

Let 

then 

n-1 
y = L 

i=o 

n-1 
x L 

i=o 

i 
x 2 =AK 

i 

= 0 t .if xn-1 
i+l + x = - 1 

xi2 n-1 Af< -(2n-l)if xn-1 -

Since Y is a code word for either case, and this can be true only if A 

divides 2n-1, then, it follows from elementary theory of rings, A 

generates an ideal in R. 

Conversely, if A generates an ideal in R, then A divides 2n-l. 

Then for all X = AK, the cyclic shift to the left of X gives us a Y 
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such that 

y =~AK 
~AK n 

- (2 -1) 

for x 1 = o 
n-

for x 
1 

= 1 
n-
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In any case A divides Y and hence Y is a code word, thus proving that AN 

is cyclic. 

Cyclic codes lend themselves very well to both rotation and com-

plementation operations and are often involved in those arithmetic 

operations. From the definition of .cyclic codes it is clear that 

rotation (both left and right) is a closed operation when performed on 

AN cyclic code words. Since this operation may be considered as a. 

transmission operation, the number of errors which may be detected, or 

corrected under rotation, is determined by the minimum Hamming Weight (HW) 

of the code words, which is no smaller than the minimum Modular Binary 

Arithmetic Weight (MBAW) of the code words. Complementation of cyclic 

AN codes is also.closed and therefore its complement is also a cyclic 

code word. The detectable and correctable errors in complementation are 

specified by the minimum Hamming Weight. 

LARGE DISTANCE CYCLIC CODES 

The codes that have been discussed so far have been single error 

correcting, i.e., of distance 3. The term "large distance" is not 

specifi~, so for this remaining discussion a distance of 4 or greater 

will be termed large. 

Mandelbaum-Barrows Codes 

Mandelbaum [.15], and independently, Barrows ·[16] have analyzed non-
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separate codes with A of the form 

(2.2) 

where Bis a prime for which e(B) = (B-1). Under these circumstances, 

Barrows found that 

M(A, ~ ; 1
] ) = B (2. 3) 

where the integer part of B ; 1 , denoted by fB + i1 . t 3 j ' 18 
the minimum 

weight of all the code words in the ring of integers modulo m = 2B-l_l. 
0 

Since then Hong [17] and Chang, with Tsau-Wu [18], reached the same goal· 

from a different approach. 

These codes are cyclic since they satisfy the condition of 

Theorem 2.1. Some examples of these codes are shown in TABLE I: giving, 

the generation A, in smallest prime factors; the prime B; and d min, 

h . . d . . h . f . d 1 2b-l 1 t e ~inimum istance in t e ring o integers mo u o - • 

TABLE I 

MANDELBAUM-BARROWS LARGE DISTANCE CODES 

A 
(3) (31) 

(3)(3)(5) (7) 
' (3) (3) (7) (73) 
(3)(5)(43)(113)(127) 

B 
11 
13 
19 
29 

dmin 
4 
4 
6 

10 

The range for these AN codes is exactly 0 < N < B while they of fer 

correction of ~ ; 1j errors is (B-1) bits. However, there is a draw-

oack on this type of correction code, the usual number of information 

bits used in general purpose computers is 30 to 40 bits and therefore 

the amount of ·redundancy required is prohibitive. The number of redun-
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dant bits is given approximately by Rao [19] as 

log A = B - 1 - log B 2 2 (2.4) 

It is now shown clearly that despite their large distance properties 

these non-separate codes are impractical because of their limited range 

and high level of required redundancy. 

GENERALIZED LARGE DISTANCE CODES 

Generalized large distance codes.can be represented by 

M 
0 

m 
n = (2 -1) = 1f 

i=l 
p.a.. 

1 1 
(2. 5) 

For a given n let the prime factorization of 2n-l be as shown above in 

(2. 5). The number of proper ideals in the ring of integers modulo m 
0 

is equal to· the number of proper divisors of m • All of these ideals are 
0 

cyclic codes. If B is one of these divisors, of m = 2n-l and if its 
0 

order of 2 is a proper divisor of n, we will find that the code obtained 

is a repetition of eCB). times the basic binary patterns of a code of 

8 length e(B). For example: let m = 2 -1=3x5x17 and B = 5. Then 
0 8 

. 2 -1 e(B) = B-~ = 4 and the generator if A = ~5~ = 51. Therefore the code· 

words are (0,51,102,153,204). The non-zero code words have the following 

binary expansions 

00110011 
01100110 
10011001 
11001100 

in which each word repeats the pattern in groups of four bits. This is 

v~ry important because codes with repeating patterns are trivial in the 

sense that the increase in distance is obtained by replication. This 

generalization that B is prime allows us to consider a generator of the 
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form (2.2) with e(B) # B-1, then we obtain codes with less redundancy 

than the Mandelbaum-Barrows codes, which therefore are more desirable 

codes in the light of cost and equipment. 

' j. 



---

CHAPTER III 

THE CONSTRUCTION OF MULTI-RESIDUE CODES 

In this Chapter the fundamental results which allow the construc

tion of multi-residue codes corresponding to AN codes are given in such 

a way that under some natural restrictions their error correcting capa

bilities are alike. As discussed in Chapter I, the computer organizations 

necessary for separate and non-separate codes are quite different. 

It is, therefore, to be expected that the error-correcting ~apabilities 

of corresponding codes have to be considered with regard to their . 

different organization. This is accomplish~d by establishing a working 

hypothesis on the failures and where they occur at the beginning of 

this Chapter. The two categories of errors are analyzed separately 

and then combined under the working hypothesis. In conclusion, some 

examples are given and the advantages of the separate codes obtained 

are enumerated upon. 

THE WORKING HYPOTHESIS 

In non-separate, non systematic arithmetic codes it is impossible 

to distinguish the information bits from the check bits, and therefore, 

it is meaningless to consider whether the error occurs in the information 

bits or in the redundant bits, 

This is not so in the case of systematic codes. In the case of 

non-separate systematic codes the capabilities of the code are not a 

function of whether the possible error is ~ocated in the information part 

or in the check part. But, in separate codes, it is of fundamental 
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importance whethe.r the error occurs in the information part or in the 

redundant checkers. 

As before, the circuit handling the first component of the multi-

residue coded word will be called the adder, although it also could have 

other arithmetic functions. The adder will perform modulo m arithmetic. 
0 

The arithmetic of the k redundant components of the multi-residue word 

is modulo m~ arithmetic, for i = 1,2, •.• ,k. Tliis arithmetic is carried 
i 

out in independent units which we will designate as the checkers. 

In the arithmetic of separate codes three categories of errors can 

be distinguished: 1) errors in the adder and 2) ~rrors in one or more 

of the checkers and 3) errors in both categories o~e and two simultaneously. 

The following hypothesis is valid for the next section of this 

discussion: errors may occur either in the adder or in the checkers, 

but errors in both categories will not occur simultaneously. 

CORRESPONDENCE BETWEEN SEPARATE AND NON-SEPARATE CODES 

The first consideration will be the relationship between errors 

in the arithmetic modulo AM of non-separate coaes and errors of the 

first category of separate codes in which m = AM and the m. are pairwise 
k 0 i 

relative prime factors of A= TI mi. The second consideration will be 
i-1 

the possibility of distinguishing between the two kinds of errors and of 

correcting errors in the second category. 

Errors in the Adder 

There is a complete correspondence between errors in a non-separate 

AN code and errors of category 1 of a multi-residue code as specified 

by Peterson (12] as follows: 
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k 
LEMMA 3.1 Let A.= n m., where them are pairwise relatively prime 

i=l l 

integers •. Then given a non-separate (AN) code capabJe of correction all 

E in U(AM,d) there exists a separate multi-residue code [x1 ,x2 , ... ,~] 

for a x in the ring of integers modulo m = AM and them. as given, which 
0 1 

has a distinct syndrome corresponding to each E in U(M ,d) which may 
0 

occur in the adder. Conversely if ·we are given a multiple residue code 

with distinct syndromes corresponding to each E in U(m ,d) in the adder, 
0 

then the corresponding AN code has the same error-correcting capabilities. 

PROOF: Let s = IEIA and s' = 1.E'r A be the syndromes corresponding to 

any E and E' in U(m ,d). 
0 

Given 

we will have 

IEIA ~ l'E'I A 

IEI .# IE'I 
mi mi 

for some i, for 1 ~ i ~ k, because otherwise if 

f El mi = IE'I mi 

(3.1) 

(3 .• 2) 

for all i where 1 ~ i ~ k, this would imply that there exists a positive 

integer· k such that 

(E - E ' ) = K (ml 'm2 ' • • • '~> (3.3) 

but since the m. are pairwise relative prime their least common multiple 
l 

equals their product 
k 

(Ml,m2, ... ,~)=i:l mi= A (3.4) 

and from (3.3) f E - E'I = KA 

w~ich contradicts our hypothesis (3.1). But then, since (3.2) is true, 

we have the syndromes 
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(.I EI m1 , . • • , I E I mi) :f ( IE ' [ m1 , • • • , I E ' I TI\) (3.5) 

This proves the first segment of the LEMMA 3.1, now conversely, let (3.5) 

hold, then (3.2) is true and (3.1) will hold since otherwise (3.4) would 

be true, which would imply (3.3) true, which means that 

CfEI , ... ,fEf ) = cfE'f , ... ,fE'I ) 
ml ~ ml ~ 

which is contrary to the hypothesis but proves the second segment of 

the LEMMA 3.1. 

Error In The ·checker 

Under the .hypothesis stated at the beginning of the chapter,·we 

can now predict the total number of checkers which may be corrected if 

they fail. A failure in the ith checker is any malfunction which makes 

the.corresponding component·of the syndrome si ~ f x - xilm.' where xis 
1 

the first component of the result (in the adder) being checked and x. 
1 

is the (i + 1) component of the same multi-residue codes result. Rao [15] 

shows how all possible errors can be predicted. 

LEMMA 3·~ 2 If s of the k checkers involved in the arithmetic of a multi
k 

residue code with m = 
0 

~ .m. (the m. are pairwise 
i=l 1 

1. 

relative prime) can 

independently detect all errors E in U(m ,d), then all simultaneous 
0 

malfunctions in (s - 1) or fewer checkers are detectable. 

PROOF: If a checker module m. can detect all errors E in U(m ,d) then 
1 0 

we are assured that for all such Ethe components. = JEI is non-zero. 
1. m. 

1 

Now we ~ave (under the hypothesis that no errors of both categories will 

occur simultaneously) a criteria for localizing the error; since all 

errors E in the adder have at least s non-zero components in their 

corresponding syndromes, then any error with less than s non-zero com-



28 

ponents in their ~orresponding syndromes, then any error with less than 

s non-zero components must have been due to malfunction of the correspon-

ding number of checkers. 

Error In The Adder Or Checker 

Now by sunnnarizing the results of the previous LEMMAS and their 

philosophies the following is predictable for errors occurring in the 

adder and in the checker. 

THEROEM 3.1 Let all errors E in U(AM,d) be correctable by an AN code 
k 

such that A 1T 

i=l 
m. where the m. are· pairwise relatively prime. 

l. ]_ 
The 

corresponding multi-residue code with m = AM and the m. as specifies 
0 ]_ 

for 1 ~ i ~ k is capable of correcting all E E U(AM,d) in the adder, or 

all errors in (s-1) or fewer checkers if s of the checkers may each 

independently detect all E in U(m ,d), under the assumption that if 
0 

errors occur in the adder they do not occur in the checkers and vice-

versa. 

PROOF: LEMMA 3.1 guarantees distinctiveness of the syndromes of E for 

the multi-residue code, which suffices for their correctability. 

Unde~ the hypothesis that errors of both categories do not occur simultan-

eously, detection of errors in the checkers is guaranteed for (s-1) or 

fewer checkers in error by LEMMA 3.2. 

APPLICATIONS AND SOME EXAMPLES 

From what Chapter II covered about predicting the error-correcting 

properties of cyclic non-separate codes and THEOREM 3.1, we can predict 

most of the properties of a large class of separate codes, namely those 

formed with the pairwise relatively prime factors of the corresponding 
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generator A. 

Bi-Residue Codes 

For single error correction the hypothesis given at the beginning 

of this Chapter is automatically fulfilled; a single error cannot affect 

the adder and the checkers at the same time. For correction, however, 

a minimum of two checkers are needed; because with only one checker, a 

failure in it could produce a syndrome corresponding to an error in the 

adder which has not actually occurred. 

Two ch~ckers, therefore, are the most economical configuration 

in number of modules for error-correction~ and it is then reasonabie to 

ask which are the most desirable moduli for single'error correction. 

Rao [6] has investigated this problem and has found that a single error 

correcting bi-residue code may be constructed for integers in the ring 

m = 2n-l with m = 2a-l and m 
0 1 2 = 2b-1 (m

1 
and m2 are not necessarily 

prime integers but only pairwise relatively prime) provided n is equal 

to the least common multiple of a and b, i.e., 

N = <a, bj (3 • 6) 

. The most efficient use of the redundant information is when GCD(a,b) 

= 1, and then n = a·b. The choice of modulo of this type greatly simpli-

fies the implementation of the code. Since LEMMA 3.1 guarantees also 

the same correcting capabilities of a non-separate code corresponding 

to a separate code as explained, we can affirm that AN codes with A = 

(2a-1)•(2b-l) for n as in (3.6) have 

M(A,3) = 2n-1 
A 

(3. 7.) 

These codes,.however, are not of .great practical interest as separate 
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codes because of their limited range, but they may be easily implemented 

as bi-residue codes. 

From Henderson [11] we know that given a certain A= p1 ·p2, we 

can find M(A,3) from e
1 

and e
2

. This presents an immediate way of con

structing single error correcting bi-residue codes. Given that the codes 

p1n and p2n are both single error detecting (and this is true for any 

odd p
1 

and p 2), we can actually correct a single error E in the range 

0 < E < AM~ AM(A,d) in the adder or any error· in one of the checkers. 

When considering the practical implementation of these separate 

codes it is advantageous to have the prime moduli of the form 2x-l, 

n and also AM = 2 -1. For example, let 

Pl = 7 

e = 3 
1 

P2 = 31 

e2 = 5 d = (3,5) = 1 (odd) 

Then the lowest common multiple denoted(,') of L(A) according 

to Henderson [11] is going to be L(A) = (e1 ,e2)= 15. Then 

M = M(A,3) 
2n-1 2L(A)_l 
-A- = (pl ·p2) 

32768 - 1 
(7) (31) 

32767 
217 = 151 

Thi·s code as a bi-residue code of the form [N, INly' tNl 31 ] will 

correct all single errors =}2iJA in the adder for 0 ~ i < is and for 

0 ~ N < 32767, and since the only requirement for single error detection 

is an odd modulus, we can also correct all errors in any one of the two 

checkers. 

When p1 and Pz are not in the form of 2n-l the matter of use or 

imple~entation is open to question. Using Theorem 3.1, however, we can 

determine their error detecting and correcting capabilities. For example, 
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[N,rNl
3

,!Nj
29

J is also a bi-residue code capable of single error 

correction in a 28 bit adder or correction of any possible error in one 

of the two checkers. Notice e
1

(3) = 2, e2 (29) = 28, L(A) = 87, and 

0 ~ N ~ 268,435,455. 

Any of the Mandelbaum-Barrows codes, as those given in Table I, 

or any generalized large distance codes, may be used to form large 

distance bi-residue codes by suitably partitioning the generator A 

into two relatively prim'e factors. 

It is important to notice that from these large distance non-

separate codes, for which the range was.so limited, we can now construct. 

separate codes with a range many orders of magnitude greater. In the 

Mandelbaum-Barrows codes, for example, the range is given by the prime B; 

its corresponding multi-residue code has a range of 2B-l_l. 

When the generator A is a composite number with more than two 

different prime factors, we have a certain flexibility in the way we 

may partition the factors to form the relatively prime moduli m
1 

and m
2

• 

The considerations are important in making this choice: 1) simplicity 

of implem~ntation and 2) capability of error-correction. The former 

consideration is a problem presently open to question, unless the 

possibility of moduli of the type 2x-l exists, in which case this is the 

most desirable one. The latter consideration is uot significant under 

our prevailing hypothesis, but will be taken up in the next chapter. 

Other Multi-Residue Codes 

Similarly, other separate codes may be constructed from non-separate 

codes where A has more than 2 distinlt prime factors, using more than 2 

checkers, one per each pairwise relatively prime factor. Under the 



..__ 

32 

hypothesis on the location of the errors, this would mean possibly 

greater capacity for error-correction. The option of how to group the 

factors of A remains open if A has more distinct prime factors than 

there are checkers since the only requirement is that the moduli be 

pairwise relative prime. The only other consideration is as before, 

the simplicity of implementation . 



. CHAPTER IV 

ARITHMETIC ERROR CORRECTIONS 

The fact of simultaneous failures of adders and checkers will be 

addressed in this chapter. Also, the implementation of bi-residue codes 

to correct errors in addition and other operations related to computer 

arithmetic will be considered. We are self restricted, of course, to 

failures which produce errors of the type ~2i in the result of the 

arithmetic operation. Single component failures originate errors of this 

type in the adder, in which the bits of the numbers to be added flow in 

independent parallel paths. This also includes single failures in the 

carry circuitry. Once the sign and magnitude are known, there are several 

possible strategies to correct the results in the accumulator. This 

chapter also evaluates the logical implementation of these different 

methods for correction. 

SIMULTANEOUS FAILURE OF ADDERS AND CHECKERS 

The assumption, made in Chapter III, that errors occur in either 

the adder or checkers, but not in both simultaneously, is based on the 

fact that the size of the adder is comparable with the size of all the 

checkers together, up to around three or four well chosen moduli. But, 

that assumption was only for the special cases of Chapter III and, if 

multiple errors are considered, they would distribute themselves among 

the adder and the checkers simultaneously. 

The checker is assume.d to have the same probability of failing 

as the adder, even though it is much smaller. This leads to a new concept 
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of (k + 1) indepe~dent uriits with equal failure probability. Under this 

assumption a limit on the number of c~eckers which may fail and be 

corrected, while simultaneously having errors of a certain class in the 

adder, can be precisely determined. If Hamming [5] did his work 

correctly the number of correctable errors is given by 

F = k -. r(t) 
2 

(4 .1) 

where the right portion of the expression is the integer part of one-

half of the minimum Hamming Weight of the syndromes associated with all 

EE U(m ,2t)~ Now, in a multi-residue code with k moduli, the maximum 
0 

number of correctable checkers is [~]. This occurs when r(t) = O,· 

which occurs when the only error is found to be in the checker section 

of the correction scheme. 

CORRECTIONS OF SINGLE ERRORS 

Introduction 

The basic system to be checked and corrected for single component 

failures is shovm in Figure 4 in block diagram format. The transfer 

from.memory is done in parallel through the memory buffer register (MBR) 

to the accumulator register designated as ACCUM. The accumulator does 

the addition by means of the special hardware connection and decoding of 

the ADD instruction, .but on the figure it has been depicted as a separate 

block; the results are stored in the ACCUM after the addition is complete. 
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MEMORY 

e • • • • • • • • • • • • • • • • • • • • • • • • • • ml 

PARALLEL ADDER 

• •.. • . • . . . . . . . . . . . . . . • . . . . . r 1 

Figure 4. Basic system 

The system suggested for the correction of errors due to single 

component failures in the adder and in the accumulator is shown in 

Figure 5. An integer N is represented· in a bi-residue code as a triple 

[N,I N{A,INIBJ where [NfA and fNIB are the residues modulo A and B 

respectively and A and B are relatively prime integers. We use the 

property that the residue of the sum and product of two words is equal 

to the corresponding sum and product of the residues of two words in 

the given residue system. When this equality is not maintained, the 

difference (called the syndrome of the separate code as given in 

Appendix C) is used to point to a single component failure in either 

the arithmetic circuitry or the residue checking circuitry (called the 

checkers, one per residue). Single component failures in the arithmetic 

circuits are uniquely characterized by discrepancies in both residues 

of the code; since the residues are formed independently, discrepancy 

in only one residue indicates a failure in the associated checker unit. 

The two res~dues of a binary word [mn, ••• ,m
1

J are formed (Figure 5) 
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by the checkers A and B; since the words to be added must pass through 

the MBR, the needed residues are guaranteed. When the ADD instruction 

is executed, the corresponding residues are added in the checkers, their 

sum being stored in place of the residue that corresponded to the word 

that was stored in the ACCUM. After execution of the ADD instruction, 

the accumulator (ACCUM) contains the sum; the residues of the sum in 

ACCUM are now formed by the checkers A and B and compared with the sum 

of the residues. The result of this comparison is the syndrome, which 

when decoded, gives the sign and magnitude of the error to the corrector. 

The convention, has been adopted, that if N is the value of the sum if 

no error occurred; then 

[r ,r 1 , .•• ,r1 ] =·N + e 
n n-

where e defines the sign and magnitude of a possible error, and the 

(4.2) 

contents of the accumulator R represents a binary number. The output 

of the syndrome decoder, which is also applied to the corrector, 

(c , •.• ,c1 ,c) is defined as follows: 
n o 

if lei= 0 c. = 0 for i=O,l, •.• ,.n 
1 

if I e I= 2i-1 c. = 1 c. = 0 
1 J 

for j=l, .•• ,i-1,i+l, •• n 

if e > 0 c = 0 
0 

if e < 0 c == 1 
0 

The corrected sum is obtained at the output of the corrector and 

is denoted [r' ,r' 
1

, .•• ,r
1
']. 

n n-



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The research reported here considered the mathematical application 

of codes to the correction of errors originated by malfunctions of the 

hardware associated with the arithmetic operations of a digital computer. 

The same principals and applications can be applied to the entire 

digital communication field, even today with the advanced state-of-the-

art, ninety-five percent of the digital data .transmissions are intra-

computer. 

The ~pplication of basic error codes to computer arithmetic is 

analyzed, in some detail, by considering the concept of modular binary 

arithmetic weight (MBAW). Chapter I relates the concepts of (MBAW) to 

the arithmetic operations of a finite ring of integers, while defining 

these operations. 

A classification of the arithmetic codes due to Garner [4], points 

the way to the evaluation of the practical implementation of these codes. 

.____ In p~rticular, it is found that the AN codes are not very practical, 

that the non-separate systematic codes are partially modular, and that, 
I 

the modularity of the separate codes is very desirable. The distance 

properties of A..~ codes are discussed at some length which leads to 

Chapter II. 

In Chapter II, the analogy between arithmetic and cyclic communica-

tion codes is put on a firm basis; the cyclic large distance codes of 

Mandelbaum [15] and Barrows [16] are generalized, and a number of examples 

are given. 



The problem of predicting the error correcting properties of 

separate codes is solved here, when the correspondence between the 

separate and non-separate codes is established. This ~orrespondence 
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is analyzed in detail, particularly with regard to the possibility of 

errors also occurring in the modules (checkers) which check the operation 

of the aritlunetic unit. Results are predicted on how many of these 

checkers may be corrected if they failed at the same time the arithmetic 

unit fails. 

The significance of the above results is that now the theory of 

the less practical AN codes, which has developed methods of determining 

their distance properties, may be applied 'to the multi-residue (separate) 

codes. Th~ latter are much more attractive for practical implementation 

because of their much larger range. 

The bi-residue single error-correcting codes are the least complex 

of the multi-residue codes, and the alternatives to their implementation 

have been considered here. One alternative has been used to show, by 

Figure 5, a scheme where single errors are corrected with satisfactory 

results. 

· · This research has dealt only with addition, since it is the basic 

arithmetic operation used in digital manipulations. This research also 

has only dealt with the case of the single error. The single error 

is definitely the most basic of all the possible conditions, but once 

the error-correction process is proven, it takes no imagination to move 

directly to the more complex conditions. These are left, along with 

the remaining arithmetic operations, to further research and to the 

interested obs~rver now involved with this research. 
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APPENDIX A 

A DIRECT ALGORITHM TO DETERMINE THE 
BINARY ARITHMETIC WEIGHT 

Algorithms are available for the determination of the arithmetic 

weight of a number [25],[14]. These algorithms require successive 

transformation of the number whose arithmetic weight we want to determine 

and in that sense could, perhaps be called "iterative". An algorithm 

is presented here that allows the determination of the arithmetic weight 

of a number without changes in the representation of the number. Its 

simplicity and the absence of required manipulations make this algorithm 

superior to the others for either hand or machine computation. 

BACKGROUND 

The binary arithmetic weight of an integer (BAW), as given in 

Definition 1.1, is the same as the BAW of its largest odd divisor. 

(If the integer N is odd, then its largest odd divisor is N itself.) 

This statement is a direct consequence of the definition of BAW since 

the low order position with a zero coefficient in the binary expansion 

of a number does not contribute to its BAW. 

Reitwiesner [25] has shown that if N is represented in a form 

n 
N = L 

i=O 
a.2i 

1 
(1) 

where ai is 1, 0, or -1, such that ai • ai+l = 0 for i = 0, 1, ••• ,n-1, 

then the number of non-zero ai gives the BAW of N. Furthermore, he 

proved that for any 



m 

N=L 
i=o 

b 2i 
i 
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(2) 

where b. is either 0 or 1, for i = O, 1, •.. , m-1, and b. = i, a repre-
1 1 

sentati9n of the same integer in form (1), is always possible with n - m. 

Massey [17], more precisely, shows that n, as in (1), will not have to 

exceed m + 1, as in (2), for such a representation. 

We will call a run of (k - j + 1) ones a sequence of bk = bk-l = 

= bj+l = bj = 1 for k > j > = 0 in the binary representation (2) 

of N, where no coefficients are missing in the consecutive order from 

j to k. 

Reitwiesner's algorithm to find the BAW of a number N consists 

in systematically substituting all runs of (k - j + 1) ones that may 

exist (or originate in the process) starting with the smallest j, by 

2k+l - 2j 

Evidently, this has to be a sequential process since this substitu-

tion may create _new runs of ones in the higher order positions (if, for 

exam~le bk+2 = 1). 

This algorithm creates a representation of N of the form (1), as 

desired, and a count of the non-zero coefficients yields BAW(N). 



I 

APPENDIX B 

ERRORS IN FINITE RING ARITHMETIC 

The binary arithmetic weight of an integer in the infinite ring 

Z is not affected by the sign of the number, i.e., BAW(N) = BAW(-N) as 

follows from Definition 1.1. 

In finite ring arithmetic modulo m the complement of a· number N 
0 

for 0 < N < m, denoted N is (m - N). ·It is clear that N = -N modulo m 
0 0 

The question arises then, of what is the BAW or a given number N in ring 

arithmetic; is it BAW(N) of the BAW of its complement with opposite sign~ 

Since both N and its complement with opposite sign are equivalent in 

ring arithmetic, and we are interested in the minimal binary represen-

tation, the following definition is appropriate. 

Definition B.l The modular binary arithmetic weight of an integer 

N for 0 ~ N <min the ring of integers modulo m, denoted MBAW(N), 
0 

is given by 

MBAW(N) =min ( BAW(N), BAW(N) ) 

Example: In the ring of integers modulo 33 the number N - 17 has MBAW(l7) 

= 1 although BAW(l7) = 2, because N = 33 - 17 = 16 and BAW(16) = 1. 

Similarly in finite ring arithmetic the modular binary arithmetic 

distance between two numbers N
1 

and N
2 

in the ring is given by MBAW(N
1 

N2). This should, of course, be the same as MBAW(N
2 

- N
1
). One 

important property of the bi.nary arithmetic weight of the sum of two 

integers N1 and N2 in the (infinite) ring of integers Z is that 

BAW(N
1
· + N2) ~ BAW(N

1
) + BAW(N

2
) (Bl) 
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This is clear if we consider addition of the numbers N1 and N2 
n 

expressed 
i 

as L a.2 (where a. is one of 0, 1, or -1), in a minimum 
i=l 1. 

1 

number of terms. Cancellations of non-zero terms or carries may occur, 

but the number of non-zero terms of the sum cannot possibly exceed 

the sum of the number of non-zero terms of N1 and N2 . In a ring of 

integers modulo m it is not true, in general, that 
0 

MBAWcf N1 + N2 lm ) ~ MBAW(N1) + MBAW(N2) 
0 

Example: m = 51 N = N = 32 
o. ' 1 2 

MBAWcf 64 f 51) MBAW(l3) 

=min (BAW(13), BAW(38)) = 3 

while MBAW(32) = 1 and the contradiction of (B2) follows.· 
I 

(B2) 

LEMMA Bl.l In conventional binary number systems when M = 2 (i.e., 
0 

in a radix binary number system) or when m = 2n - 1 (i.e., in a diminished 
0 

radix binary number system), the inequality (B2) is valid. 

Let N1' be either N. or -N. for i = 1, 2, 
1 1 

PROOF: 

correspondingly, whichever has the smallest BAW. From elementary modular 

·--addition we can say: 

Then 

and 

IN + N21m 
1 0 

- fN' + N2' Im - 1 0 

MBAW(fN1 + N2 1m) MBAWCINi + Nilm) 
0 0 

MBAW(INi +NZ Im) < MBAwCINi + N2(m) 
0 0 

as a consequence of Definition B.l. 

In a sum, a carry into the (n + 1) bit position when m = 2n will 
. 0 

be neglected since it has magnitude 2n and l2nf = 0 in this case. If . m 
0 



m = 2n-l a carry. into the (n + 1) bit position will be equivalent to 
0 
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adding 1 to the sum (of ten called an "end around carry") while removing 

the bit from the (n + 1) position, since now J2nl = 1 form = 2n - 1. 
m o 

0 

Consequently, in a radix binary system the possible extra carry 

is lost and in a diminished radix binary system it is carried around to 

the least significant bit position. In either case Ni + Ni does not 

increase its· BAW by taking IN!+ N21m • Then: 
0 

BAW(!Ni + Nilm) ~ BAW(Ni + N2) 
! 0 

but by (Bl) above 

BAW(Ni + NZ) ~ BAW(Ni) + BAW(Nz) 

and because of our choice of N' for i = 1, we have 

BAW(Ni) = MBAW(Ni_) 

for. i = 1, 2 which proves· (B2). 

When an error pattern E occurs in the transmission of an element 

N
1 

of a ring of integers modulo m
0 

or in the addition of two elements 

of the ring which would have had a correct result N1 , then the erroneous 

result N
2 

is given by 

N2 =INl +El (B3) 
mo 

where E is also restricted to 0 ~ E < m with the understanding that E = 0 

only if there is no error. 

Definition B.2 The set of all error patterns E in the ring of integers 

modulo m co-responding to all errors in the ring, of MBAW less than 
0 

or equal to dis denoted by U(m ,d). 
0 

More formally 

U(m
0

,d) = -[EfO ~ E < m
0 

and MBAW(E) = ~ (B4) 
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• 
LEMMA Bl.2 If by U(m ,d

1
) + U(m ,d ) we mean the set formed by the sum 

0 0 2 

modulo m = 2n - 1, for some n, of each of the elements of U(m ,d
1

) with 
0 0 

each of the elements of U(m
0

,d2) in all possible ways,. then we can establish 

the equality of the sets: 

• U(m ,d
1

) + U(m ,d2) = U(m ,d) 
0 0 0 

where d =min (d1 + d2 , [~]) and [~] is the integer part of ~· 

PROOF: For any E
1 

£ U(m
0

,d
1

) and E2 £ U(m
0

,d2) by Lennna Bl.1 

MBAW(IE1 + E2fm) = MBAW(E1) + MBAW(E2) = dl + d2 
0 

The maximum possible MBAW of any n bit word is the integer part 

n n n l f of Z' denoted [2]. If d1 + d2 < [2] then E1 + E2 m £ U(m
0

,d1 + d2); 
. 0 

otherwise if a1 + d2 ~ ~ , then (E1 + E2lm E U(m
0

,[I]) which contains 
0 

all possible error patterns. 

n Conversely any element of U(m
0

,d1 + d2) for d1 + d2 ~ [2] may be 

decomposed in the sum modulo m of an element from U(m ,d
1

) and another 
0 . 0 

from U(m
0

,d2). · 



APPENDIX C 

NECESSARY AND SUFFICIENT CONDITIONS FOR ERROR CORRECTION 

Peterson [2] has given the following: 

THEOREM C.l An AN binary code is capable of single error correction 

for all numbers in the range 0 ~ N < M if and only if the residues of. 

±2i modulo A are distinct and non-zero for all i such that 2i - AM. 

This result can then be extended. 

Definition Cl.l The syndrome of a non-separate code word.AN which has 

been corrupted by an error pattern E is defined by 

S(ANl + E) = IANl + EIA = fEIA (Cl.l) 

·The syndrome of a s~parately coded word X = [x,x1 , ... ,xk]' where 

x is the ring of integers modulo m , is defined by the k-tuple 
0 . 

. S (X) = (s 1' • • • 'sk) (Cl. 2) 

wheres. = f x - x. [ for i = 1,2, .•• ,k. 
i i m. 

;i. 

Consider Z, the· correct result of the addition of multi-residue 

coded words. If an error of pattern E has occurred in the arithmetic 

corresponding to the first component of the word Z, then clearly 

s (Z + E) ;; (IE I ' ... ' IE I ) 
mi 11\ 

(Cl. 3) 

In either kind of code, separate or non-separate, the necessary 

and sufficient condition for the detection of all error patterns E of 

positive weight no greater than d is that 

S(X + E) :f S(O) (Cl.4) 



for all·E 1 0 in U(m ,d)~ and any code word X. 
0 

Similarly, the necessary and sufficient conditions for the 

correction of all error patt.erns E of positive weight on greater than 

d is that S(X + E1) 1 S(X + E
2

) for any pair E
1 

1 0 and E
2 

1 E
1 

in 

U(m ,d), and any code word X. 
0 

so· 
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