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ABSTRACT 

Bicycle transportation has become a central priority of urban areas invested in improving 

sustainability, livability, and public health outcomes. Transportation agencies are striving 

to increase the comfort of their bicycle networks to improve the experience of existing 

cyclists and to attract new cyclists. The Oregon Department of Transportation sponsored 

the development of ORcycle, a smartphone application designed to collect cyclist travel, 

comfort, and safety information throughout Oregon. The sample resulting from the initial 

deployment of the application between November 2014 and March 2015 is described and 

analyzed within this thesis. 616 bicycle trips from 148 unique users were geo-matched to 

the Portland metropolitan area bicycle and street network, and the self-reported comfort 

level of these trips was modeled as a function of user supplied survey responses, temporal 

characteristics, bicycle facility/street typology, traffic volume, traffic speed, topography, 

and weather. Cumulative logistic regression models were utilized to quantify how these 

variables were related to route comfort level within separate variable groups, and then the 

variables were used in a pooled regression model specified by backwards stepwise 

selection.  

The results of these analyses indicated that many of the supplied predictors had 

significant relationships with route comfort. In particular, bicycle miles traveled on 

facilities with higher traffic volumes, higher posted speeds, steep grades, and less 

separation between bicycles and motor vehicles coincided with lower cyclist comfort 
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ratings. User supplied survey responses were also significant, and had a greater overall 

model variance contribution than objectively measured facility variables. These results 

align with literature that indicates that built environment variables are important in 

predicting bicyclist comfort, but user variables may be more important in terms of the 

variance accounted for. This research outlines unique analysis methods by which future 

researchers and transportation planners may explore crowdsourced data, and presents the 

first exploration of bicyclist comfort perception data crowdsourced using a smartphone 

application.  
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1. INTRODUCTION 

Bicycle transportation has become a central priority of urban areas invested in improving 

sustainability, livability, and public health outcomes. Metropolitan areas around the 

county have set aggressive bicycle mode share objectives for their 2030-2040 

transportation plans. The objective of increasing bicycle use for transportation is meeting 

at least two interrelated impediments: constrained transportation infrastructure budgets 

and the difficulty of successfully converting short automobile trips to bicycle trips by 

attracting new cyclists. Constrained infrastructure spending has motivated research into 

understanding where bicycle improvements can be made that can yield the maximum net 

benefit in terms of increased ridership and safety. The goal of encouraging new bicycle 

trips has also motivated research to understand where inadequacies exist in the current 

bicycle network that may be barriers to less competent/confident cyclists; thus increasing 

the success rate of converting auto trips to bicycle trips. Both of these research interests 

have stimulated the development of smartphone applications to crowdsource information 

from regional cyclists to understand empirically where they ride, why they ride, and what 

improvements could make their cycling experience more safe and comfortable.  

In 2014, researchers in the Transportation, Technology, and People Laboratory (TTP 

Lab) began working in conjunction with the Oregon Department of Transportation 

(ODOT) to develop a smartphone application aimed specifically towards ODOT’s desire 

to understand Oregon cyclists’ bicycle infrastructure preferences and safety issues. While 
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ORcycle is not the first smartphone application to collect bicycle travel data, it is the first 

statewide deployment of a smartphone application collecting bicycle specific safety data 

(in addition to travel data). Besides adding this new data objective, ORcycle also 

increases the depth to which transportation planners and researchers can understand 

users’ unique characteristics and their preferences/issues with existing bicycle 

infrastructure.  

This thesis will review results from the initial data collection of the ORcycle smartphone 

application taken between November 2014 and March 2015 in Oregon. Inferences about 

the relationship between cyclist comfort and explanatory factors will be made using 

statistical models of the initial data pool. Methodologies will also be outlined for how 

future data collected using this application may be analyzed to produce increasingly 

robust and useful results. The goals of this project are to describe the initial sample of 

ORcycle data and to use that sample in combination with other data sources to make 

inferences about bicyclist comfort.  

1.1 RESEARCH OBJECTIVES 

Table 1 outlines the specific research questions this thesis addresses and the methods by 

which those questions were investigated. The first goal of this research is to describe the 

expansive initial dataset of ORcycle. The second goal of this research is to use the initial 

ORcycle sample in combination with other data sources to make statistical inferences 

about cyclist comfort. Both of these goals are expanded into specific objectives in Table 

1. 
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Table 1: Research Questions 

Research Questions Methods of Analysis and/or 
Interpretation 

What does the initial data sample look like?  

 What types of users are using the application?  

 What types of trips are being recorded and where 
are they being made?  

 What types of reports are being recorded and 
where are they being documented? 

 How do users in the ORcycle sample differ from 
the Oregon cycling and non-cycling population? 

 Descriptive statistics 

 Histograms 

 Bar plots 

 Chi-square tests  

What inferences can we make about trip and route 
characteristics and their relationships with route 
comfort? 

 How did other trip questions relate to route 
comfort? 

 How did user characteristics relate to route 
comfort? 

 How do bicycle facility differences relate to route 
comfort? 

 How does topography relate to route comfort? 

 How does traffic flow relate to route comfort? 

 How do trip characteristics (speed, distance, 
duration, time of day) relate to route comfort? 

 How do weather characteristics relate to route 
comfort? 

 How does each of these models change when 
another group of variables is controlled for? 

 Cross-tabulations 

 Stacked bar plots 

 Chi-square tests 

 Ordinal logistic regression 

 

1.2 ORGANIZATION 

The remainder of this thesis is organized as follows. First, prior literature pertaining to 

the following research is reviewed. The methodology behind application development 

and data cleaning/analysis is then described. Descriptive statistics for the sample of 

ORcycle data utilized herein are then presented. Statistical models are then utilized to 

explore the variation in cyclist comfort as a function of potential explanatory factors. 
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Finally, lessons learned and future research opportunities are discussed and concluding 

comments are given. 
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2. LITERATURE REVIEW 

Before examining the data obtained from the ORcycle smartphone application, it is 

pertinent to review related research, data collection methods, and data analysis methods. 

Section 2.1 will review methods of evaluating cyclist comfort and relate these methods to 

the goals of this project. Section 2.2 will review typologies that have been developed to 

classify different types of cyclists. Section 2.3 will review studies that have examined 

bicyclist preferences using stated preference surveys. Section 2.4 will review studies that 

have examined bicyclist travel choice behavior using GPS devices. Section 2.5 will 

review other studies that have examined bicyclist travel behavior using smartphone 

applications.  

2.1 UNDERSTANDING CYCLIST COMFORT  

 Bicycle Level of Service 2.1.1

Bicycle Level of Service (BLOS) is a performance measure used to describe the 

performance (comfort, safety, operation, etc.) of bicycle facilities and should reflect 

travelers’ perceptions, be useful to transportation agencies, and be directly measured in 

the field (Figliozzi, Blanc, and Johnson 2014). BLOS methods are formulated using 

statistical analyses to connect a subjective rating of a bicycle facility’s perceived comfort 

with geometric, operational, and other characteristics of the bicycle facility. Some BLOS 

methods are complex and data intensive. Most BLOS methods are simple, user-friendly, 

with readily understandable calculations or scores, and not data intensive. An example of 



6 

 

the former includes the 2010 HCM BLOS; examples of the latter include the Bicycle 

Suitability Score (BSS), Bicycle Compatibility Index (BCI) and the Bicycle Suitability 

Assessment (BSA). More information on how BLOS methods have evolved over the last 

two decades is available in an ODOT report (Figliozzi, Blanc, and Johnson 2014) 

BLOS methods fall into three broad analysis tool groups: segment analysis, intersection 

analysis, and network analysis. Segment and intersection BLOS are computed using 

observed environmental characteristics, while network BLOS measures are computed 

using network models. Two tables are presented, which summarize BLOS methods and 

the characteristics used to calculate each BLOS measure. 

Table 2: Summary of Methods and their Scope (Figliozzi, Blanc, and Johnson 2014) 

Method 
Number 

Name   Acronym Scope Reference Reference 
Year 

1 Bicycle Safety Index Rating BSIR Segment (Davis 1987) 1987 

2 Bicycle Stress Level BSL Segment (Sorton and Walsh 
1994) 

1994 

3 Road Condition Index RCI Segment Epperson 
(Epperson 1994) 

1994 

4 Interaction Hazard Score IHS Intersection (Landis 1994) 1994 

5 Bicycle Suitability Rating BSR Segment (Davis 1995) 1995 

6 Bicycle Level-of-Service BLOS Segment (Botma 1995) 1995 

7 Bicycle Level-of-Service BLOS Segment (Dixon 1996) 1996 

8 Bicycle Suitability Score BSS Segment (Turner, Shafer, 
and Stewart 1997) 

1997 

9 Bicycle Compatibility Index BCI Segment (Harkey, Reinfurt, 
and Knuiman 
1998) 

1998 

10 Bicycle Suitability 
Assessment 

BSA Segment (Emery and Crump 
2003) 

2003 

11 Rural Bicycle Compatibility 
Index 

RBCI Rural 
Segment 

(Jones and Carlson 
2003) 

2003 

12 Compatibility of Roads for 
Cyclists 

CRC Rural 
Segments 

(Noël, Leclerc, and 
Lee-Gosselin 2003) 

2003 

13 Bicycle Intersection Safety 
Index 

BISI Intersection (Carter et al. 2007) 2007 



7 

 

14 Bicycle Level-of-Service BLOS Segment (Zolnik and 
Cromley 2008) 

2007 

15 Bicycle Level-of-Service BLOS Segment (Jensen 2007) 2007 

16 Bicycle Level-of-Service BLOS Segment (Petritsch et al. 
2008) 

2007 

17 Bicycle Environmental 
Quality Index 

BEQI Segment,  
Intersection 

(San Francisco 
Department of 
Public Health 
2009) 

2009 

18 Bicycle Quality Index and 
Cycle Zone Analysis 

BQI & CZA Segment, 
Network, 
Zone 

(Birk et al. 2010) 2010 

19 Bicycle Level-of-Service BLOS Segment & 
Intersection 

(Transportation 
Research Board 
2010) 

2010 

20 Simplified Bicycle Level of 
Service 

BLOS Segment (Ali, Cristei, and 
Flannery 2012) 

2012 

21 Level of Traffic Stress LTS Intersection, 
Segment, 
Network, 
Zone 

(Mekuria, Furth, 
and Nixon 2012) 

2012 

22 Bicycle Level-of-Service at 
Intersections 

BLOS Intersection (Jensen 2013) 2013 

23 Protected Bicycle Lane 
Level of Service 

PBL-LOS Segment (Foster et al. 2015) 2015 

Table 3: BLOS Variables by Category (Figliozzi, Blanc, and Johnson 2014) 

Category Parameter Data Type Methods that Utilize 
Parameter (see 
Table 2 for a reference).  

Bikeway 
Geometric 
Design 

Facility Type Categorical RCI
3
, BLOS

7
, BCI

9
, BISI

13
, 

CZA
18

, BLOS
19

, BLOS
20

, 
LTS

21
, BLOS

22 

Width of Bicycle Facility  Number (feet) IHS
4
, BLOS

6
, BCI

9
, BSA

10
, 

RBCI
11

, CRC
12

, BLOS
15

, 
BEQI

17
, BQI

18
, BLOS

19
, 

LTS
21

 
Topographic Grade Number (% grade) RCI

3
, BSR

5
,
 
BSA

10
, BEQI

17
, 

CZA
18

 

Bikeway 
Environment 

Width of MV Buffer 
(proximity to edge of 
moving traffic lane) 

Number (feet) BLOS
15

, LTS
19

, PBL-LOS
23

 

Bicycle marking 
presence 

Categorical BSA
10

, BEQI
17

 

Presence of bicycle 
signage 

Categorical BEQI
17

 

Presence of trees Categorical BEQI
17

 

Presence of bicycle scale Categorical BEQI
17
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lighting 
Width of Shoulder Number (feet) BSS

8
, BCI

9
, BSA

10
, RBCI

11
, 

BLOS
19

, LTS
21

 
Presence of Sidewalks Categorical BSA

10
, BLOS

15
 

Roadway 
Geometric 
Design 

Number of Vehicle 
Lanes 

Number (count) BSIR
1
, RCI

3
, IHS

4
, BSR

5
, 

BSA
10

, BSA
10

, BLOS
15

, 
BLOS

16
, BEQI

17
, BLOS

19
, 

BLOS
20

,  LTS
21

, PBL-LOS
23

 
Width of Outside Lane Number (feet) BSIR

1
,BSL

2
, RCI

3
, IHS

4
, 

BSR
5
,
 
BLOS

7
, BSS

8
, BCI

9
, 

BSA
10

, RBCI
11

, BLOS
15

, 
BLOS

16
,  BLOS

19
 

Turning Lane 
Configuration 

Categorical BCI
9
, BSA

10
, BEQI

17
 

Physical Median Categorical RCI
3
, BLOS

7
, BSA

10
 

Frequent Curves Categorical BSA
10

 

  Bicycling 
Nuisance/Hazard   

Presence of On-Street 
Parking 

Categorical (2) RCI
3
, BSR

5
,
 
BLOS

7
, BCI

9
, 

BSA
10

, BISI
13

,  BLOS
15

, 
BEQI

17
, BLOS

19
, LTS

21
, 

PBL-LOS
23

 
Occupancy of On-Street 
Parking 

Number (%) BCI
9
, 

Conflicting Transit Stop 
Presence 

Categorical BLOS
15

, 

Presence of a Curb Categorical (2) BSA
10

, BLOS
19

 
Storm Drain Grates Categorical (2) RCI

3
, BSR

5
,
 
BSA

10
,  

Roadside Hazard 
Presence (Sand, gravel, 
vegetation, ditches) 

Categorical CRC
12

 

Restricted Sight 
Distance 

Categorical BSR
5
, BLOS

7
, 

 

BSA
10

, BEQI
17

, 
Access point density  Number (# access points 

per mile) 
IHS

4
, RBCI

11
, CRC

12
, 

BLOS
16

, BEQI
17

, BLOS
20

 
Numerous Driveways Categorical BSA

10
 

Rail Crossings Number (count) RCI
3
, BSR

5
, BSA

10
 

Bike Lane Drop Number (# times within 
segment) 

BQI
18

,
 

Difficult Transition Number per Segment  BQI
18

, 

Bikeway 
Condition 

Pavement Condition Location, Picture, 
Description 

BSIR
1
, RCI

3
, IHS

4
, BSR

5
,
 

BLOS
7
, BSS

8
, BSA

10
, 

CRC
12

, BLOS
16

,  BEQI
17

, 
BLOS

19
 

Roadway Traffic 

Vehicle Traffic Volume  Number (veh/day) BSIR
1
,BSL

2
, RCI

3
, IHS

4
, 

BSR
5
,
 
BSS

8
, BCI

9
, BSA

10
, 

RBCI
11

, CRC
12

, BLOS
15

, 
BLOS

16
, BEQI

17
, BQI

18
, 

BLOS
19

, BLOS
22

, PBL-
LOS

23
 

Right Turning Vehicle Number (veh per hr or day) BCI
9
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Volume 
Vehicle Speed Number (mph) BSIR

1
,BSL

2
, RCI

3
, IHS

4
, 

BSR
5
,
 
BLOS

7
, BSS

8
, BCI

9
, 

BSA
10

, RBCI
11

, CRC
12

, 
BLOS

15
, BLOS

16
, BQI

18
,  

BLOS
19

, BLOS
20

, LTS
21

, 
PBL-LOS

23
 

Percentage of Heavy 
Vehicles 

Number (%) IHS
4
,BCI

9
, RBCI

11
, CRC

12
, 

BLOS
16

, BEQI
17

, BLOS
18

 
Motor Vehicle LOS Categorical (A-F) BLOS

7
 

Bicycle Lane Blockage Categorical LTS
21

 

Bikeway Traffic 

Average 
Speed/Acceleration 

Number(ft/s or ft/s^2) BLOS
6
, BLOS

19
 

Bicycle Volumes Number (bikes/hr or day) BLOS
6
, BLOS

19
 

Pedestrian Volume (for 
multi-use paths) 

Number (bikes/hr or day) BLOS
6
, BLOS

19
 

Intersection 
Specific   

“No Turn on Red” sign Categorical BEQI
17

, BLOS
22 

Intersection Type Categorical BISI
13

, BLOS
22

 
Intersection Quality Categorical  BSA

10
, CZA

18 

Crossing Distance Number (feet) BISI
13

,  BLOS
22

 
Number of lanes crossed 
for cyclist left turn 

 BISI
13

 

Number of lanes crossed 
for cyclist right turn 

 BISI
13 

Signal Delay Number (seconds) BLOS
22

 

Built 
Environment 

Activity Density Number (Pop. + 
Employment per sq. mile) 

IHS
4
 

Adjacent Land Use Type Categorical BSR
5
,
 
BCI

9
, BSA

10
, BLOS

15
, 

BEQI
17

,   
Multi-modal or TOD 
Proximity 

Categorical BLOS
7
 

Bicycle parking presence Categorical BEQI
17

 

Network 

Connectivity Number (connected node 
ratio) 

BEQI
17

, CZA
18

 

Presence of Parallel 
Facility 

Categorical BLOS
7
 

Intersection Density Number (Intersections per 
sq. mile) 

RBCI
11

 

Road Network Density Number (Linear Feet per 
sq. mile) 

CZA
18

 

Bicycle Network Density Number(Linear Feet per sq. 
mile) 

CZA
18

 

Permeability/Barrier Number ("score" per feet-
boundary) 

BLOS
7
, CZA

18
 

Stops Number (# stop signs per 
mile) 

BQI
18

 

Route Simplicity Number (Turns per mile) BQI
18

 

 
Detour  % over shortest path 

distance 
LTS

21
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 Level of Traffic Stress 2.1.2

In the recent literature, level of traffic stress (LTS) primarily refers to a specific 

evaluation method developed by Mekuria et al. (Mekuria, Furth, and Nixon 2012).  Level 

of stress is not a new concept, and previous work/methods have utilized similar language 

(e.g. the Bicycle Stress Level or BSL from 1994 is based on safety levels and 

physical/mental effort as a function of age).  

Unlike BLOS or network BLOS methods, a LTS measure serves as a proxy for 

measuring the desirability of a bicycle facility for segments of the population with 

different levels of age, experience or skill. In this report LTS is defined as a performance 

measure that takes into account not only traffic/geometric characteristics of the riding 

environment but also the suitability of the environment for different user groups within 

the population.  LTS can be used to delineate islands of low-stress network connectivity, 

highlighting disconnections and especially stressful links within a bicycle network. 

 Bikeability 2.1.3

Another term that is commonly used in the bicycle literature is “bikeability”. For 

example, McNeil (McNeil 2011) proposes a methodology that assigns points to various 

destination types, such as grocery stores or restaurants, and calculates a score out of one 

hundred for a given location by totaling up the points for destinations within a twenty 

minute bike ride. The method is similar to the popular Walk Score
®
, which calculates a 
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score out of one hundred for an input address based on the number of destinations within 

walking distance (“Walk Score” 2014).  

Lowry used BLOS in combination with information about relevant destinations to 

develop another measure of the bikeability of areas (Lowry and Callister 2012). The 

primary inputs are the bike/street network with BLOS calculated for each link, the 

locations of destinations, and a weighting scheme outlining the importance or desirability 

of different destinations.  

The Bikeability Checklist (Pedestrian and Bicyle Information Center 2002), developed by 

the Pedestrian and Bicycle Information Center (PBIC) at the University of North 

Carolina, is a simple form to be filled out by any citizen to assess the bikeability of their 

community. The user is asked to take a bike trip to one of their regular destinations and 

answer a series of questions about the comfort and convenience of their experience. 

 Bicycle Friendliness 2.1.4

Some bicyclist advocacy groups have developed the concept of “bicycle friendliness”. 

Perhaps the most well known assessment of bicycle friendliness is conducted by the 

League of American Bicyclists (LAB). Cities or municipalities can submit a paid 

application biannually to the LAB for potential recognition as a “bicycle friendly 

community” at either the platinum, gold, silver, or bronze designation; with platinum 

being the highest designation. The LAB evaluation is based on assessment of the 

municipality with respect to five categories: engineering, education, encouragement, 

enforcement, and evaluation.  
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LAB also has a state level assessment based on five categories: legislation, policies, and 

programs; infrastructure; education; enforcement; and evaluation. Instead of an 

application process, LAB assesses every state in the country on an annual basis and ranks 

them on their statewide bicycle friendliness. LAB also has recently started evaluating 

bicycle friendly businesses and universities. Other national and state organizations 

evaluate bicycle friendliness at various scales. Oregon’s Bicycle Transportation Alliance 

(BTA) developed the Bike Friendly Report Card to compare the bicycle friendliness of 

cities throughout Oregon (Bicycle Transportation Alliance 2014).  

 Terminology Summary 2.1.5

In this thesis, BLOS is defined as any bicycle performance measure that can be computed 

(based on a formula or score) utilizing data/variables that are measured or observed in 

the field (geometric, environmental, nuisance, or traffic variables).   

Network BLOS is a performance measure (or weighted set of performance measures) 

used to describe the performance of bicycle facilities at the network level. Network 

BLOS should also reflect bicyclists’ perceptions but they are not measured in the field 

but using network models (i.e. in networks defined by sets of nodes and links) and are 

usually best calculated using software packages (GIS systems or network algorithms). 

LTS is defined as a performance measure that takes into account not only 

traffic/geometric characteristics of the riding environment but also the suitability of the 

environment for different user groups within the population.  LTS can be used to 
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delineate islands of low-stress network connectivity, highlighting disconnections and 

especially stressful links within a bicycle network. 

Bikeability is a macro-level assessment of a network of bicycle facilities in terms of the 

accessibility to important destinations.   

Bicycle friendliness is a macro-level assessment at the community and government level. 

Friendliness is related to the degree of acceptance of cycling within the community and 

with the adoptions of programs, laws, and policies that protect and promote cycling.  

These terms and their unique features are outlined in Table 4. 

 Table 4 : Overview of Terminology and Keywords (unique feature underlined) 

(Figliozzi, Blanc, and Johnson 2014) 

Term→ 
Feature/Scope ↓ 

BLOS 
Network 
BLOS 

Level of 
Stress 

Bikeability 
Bicycle 
Friendliness 

Segment/Intersection      

Network PMs      

User Group      

Accessibility      

Community & 
Government 

     

2.2 CYCLIST TYPOLOGY 

In order to better understand how to design bicycle facilities that will serve a wide 

population segment, bicycle planners at many different agencies have attempted to 

categorize utility cyclists in their jurisdictions based on their differential preferences.  
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Since the introduction of Cycle Atlanta (as presented in section 2.5.3), many of the 

smartphone applications collecting cyclist travel behavior data have been using a 

modified version of Roger Geller’s typology (see section 2.2.1) as outlined in the four 

cyclist categories in Table 5.A “Comfortable, but cautious” category was added in Cycle 

Atlanta. The “No Way, No How” category is also removed, likely assuming that non-

cyclists will not be using the application to track rides. The goal of this self-reported 

typology is to estimate distribution of difference cyclist types within the application user 

population.   

Table 5: Cycle Atlanta Rider Type Table Schema 

Answer ID Rider Type Category 

0 No data 

1 Strong and fearless 

2 Enthused and confident 

3 Comfortable, but cautious 

4 Interested, but concerned 

However, this language was considered confusing by the researchers and may mean 

something different to transportation researchers than it does to the general population. 

Therefore, the ORcycle project team proposed that more specific questions be utilized to 

elicit precise information about different user groups. These questions are outlined in 

section 3.1.2.2. A brief literature review of cyclist typology and market segmentation 

research applied to bicycling populations is presented below.    

 Geller 2006 (Portland, OR) 2.2.1

One of the most publicized rider categorizations is that of Portland Bicycle Coordinator 

Roger Geller, who estimated that residents of the city of Portland could be categorized 

into four distinct groups (Geller 2006). Geller’s estimates were based largely on his 
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extensive experience in working for the Portland Bureau of Transportation. These 

categories’ estimated proportions within the Portland population were substantially 

validated by research conducted at Portland State University (Dill and McNeil 2012). A 

summary table of both the estimated proportions by Geller and the surveyed proportions 

by Dill and McNeil in the Portland area is shown in Table 6.  

Table 6: Distribution of Rider Types within Portland Area (Dill and McNeil 2012) 

Rider Type City of Portland 
Rest of Portland 

Metro Area 
All 

Geller’s 
estimate for City 

of Portland 

Strong & Fearless 6% 2% 4% <1% 

Enthused & Confident 9% 9% 9% 7% 

Interested but 
Concerned 

60% 53% 56% 60% 

No Way, No How 25% 37% 31% 33% 

Other typologies have also been proposed, generally with a more empirical basis 

predicated on self-segmenting survey results or utilizing cluster or factor analyses.  

 Reid J. 2011 (Victoria, Australia) 2.2.2

In 2010, a market segmentation analysis was conducted in the state of Victoria, Australia 

by a market research agency at the behest of VicRoads, an organization striving to make 

cycling safer in Victoria in the midst of rapidly increasing cycling rates (Reid 2011). 

Both factor and cluster analyses – statistical techniques for quantitatively detecting 

distinct groups within a dataset – were utilized to identify the key cycling segments in 

Victoria. The three segments identified were given the following names: “Let’s go for a 

ride” (LGFAR), “This cycling life” (TCL), and “Catch me if you can” (CMIYC). 

LGFAR represented the largest proportion of cyclists within Victoria (75%), and 

contained cyclists who generally only ride for recreational purposes and are averse to 
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high levels of stress while cycling. TCL corresponded to 20% of cyclists in Victoria, and 

contained cyclists that regularly ride their bicycles in a variety of conditions, on nearly all 

facility types, and for various purposes. Cycling is central to their identity, but they are 

generally respectful of road rules. In opposition, the CMIYC group (representing the 

remaining 5% of Victorian cyclists) is generally not respectful of road rules, and will ride 

anywhere, anytime, and during any condition. These findings helped VicRoads to design 

plans for outreach about increasing cycling safety to each market segment separately, 

likely increasing their outreach success.  

 Damant-Sirois et al. 2014 (Montréal, QC, Canada) 2.2.3

 In 2013, a team of researchers from McGill University in Montréal, QC analyzed survey 

data from over 2,000 Montréal cyclists using factor and cluster analyses to detect four 

distinct groups of cyclists in the city (Damant-Sirois, Grimsrud, and El-Geneidy 2014). 

The goal of the group identification was to obtain a greater understanding of the differing 

needs and wants (in terms of infrastructure provision and advocacy efforts) of the distinct 

cycling groups. The four groups were given the following names: “dedicated cyclists”, 

“path-using cyclists”, “fairweather utilitarians”, and “leisure cyclists”. The analysis was 

based on seven groups of variables identified to effect cyclist preference: weather and 

effort, time efficiency, dislike cycling near cars, bicycle route infrastructure, peer and 

institution encouragement, cycling identity and enjoyment, parental encouragement. The 

groups were determined by their responses related to these variable groups, with different 

relationships emerging in each group. For example, dedicated cyclists’ decision to cycle 

is “not strongly impacted by weather conditions”, and they are motivated to cycle by the 
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“speed, predictability, and flexibility of bicycle trips” (Damant-Sirois, Grimsrud, and El-

Geneidy 2014).  

 Fernanadez-Heredia et al. 2014 (Ciudad Universitaria, Madrid, 2.2.4

Spain) 

Fernandez-Heredia et al. conducted a survey at a large university in Madrid, Spain to 

quantify “psycho-social” factors related to bicyclist perspectives and reasons for bicycle 

use (Fernández-Heredia, Monzon, and Jara-Díaz 2014). Using factor analyses, four major 

groups of variables were identified within the results of the survey. The four factor 

groups are the following: 

1. Convenience: This group includes measures of the efficiency and flexibility of the 

bicycle as a mode of transportation.  

2. Pro-Bike Interests: Set of ideas associated with bicycle riding, such as cost 

savings, environmental friendliness, healthy lifestyles, and enjoyment. 

3. External Restrictions: Exogenous variables effecting ones decision to bike; such 

as perception of danger or the availability of comfortable bicycle infrastructure. 

4. Physical Determinants: Variables related to the physical fitness of the user in 

riding a bicycle.  

While this study did not explicitly outline a typology distribution for cyclist 

categorization, it lent empirical basis to the psychological factors related to bicycle use.  

 Overview 2.2.5

Cycling typologies are important to transportation researchers and planners as they 

clarify how and where divides exist in the population when considering existing and 

potential cyclists. This segmentation of groups is helpful in understanding how cyclists of 

different “types” may respond differently to infrastructure, programming, or other 
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interventions aimed at increasing cycling rates. Three of the reviewed cyclist typology 

population breakdowns are outlined in Table 7.   

Table 7: Comparison of three different cyclist typologies 

Typology Author 
and Reference 

Geographical 
Location 

Segment Name 
Estimated 

percentage of area 
population 

Geller  
(Geller 2006) 

Portland, Oregon, 
United States 

Strong & Fearless <1% 

Enthused & Confident 7% 

Interested but Concerned 60% 

No Way, No How 33% 

Reid  
(Reid 2011) 

Victoria, Australia 

Catch me if you can 5% 

This cycling life 20% 

Let’s go for a ride 75% 

(Damant-Sirois, 
Grimsrud, and El-
Geneidy 2014) 

Montréal, QC, 
Canada 

Dedicated cyclists 24% 

Path-using cyclists 36% 

Fairweather utilitarians 23% 

Leisure cyclists 17% 

2.3 STUDIES USING STATED PREFERENCE SURVEYS 

Studies of stated cyclist comfort preferences using surveys are reviewed in the following 

section.  

 Stated Preference Survey in Portland, OR 2.3.1

In 2005, researchers at Portland State University conducted a random phone survey in 

Portland, OR to explore the relationship between cycling rates and demographics, 

measurable characteristics of the built environment (e.g. bicycle infrastructure 

availability), perceptions about the environment, and attitudes (Dill and Voros 2007). 

Findings from the survey are summarized briefly below. 

1) Demographics 

a) Men and younger adults cycled more and were more likely to want to cycle more. 
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b) Other demographic relationships (household income, vehicle ownership etc.) with 

rates of cycling were inconclusive. 

2) Built environment characteristics 

a) No significant relationship between bicycle infrastructure availability and rates of 

cycling.  

3) Built environment perceptions 

a) Respondents who positively perceived the cycling environment (e.g. felt bicycle 

network was safe and accessible) were more likely to be regular cyclists.  

b) The most common deterrent to cycling rates was the perception of “too much 

traffic”.  

4) Attitudes 

a) People living in households with other adults who cycled regularly, had 

coworkers who cycled regularly, or who saw adults cycling on their street 

frequently were more likely to be regular cyclists themselves.  

  Cycling in Cities Survey in British Columbia, CA 2.3.2

In 2006, researchers at the University of British Columbia (Vancouver, BC, CA) 

conducted a survey of over 1,400 current and potential cyclists in the Vancouver 

metropolitan area. The survey evaluated motivators and deterrents to cycling among the 

sample. Several factors had significant impacts on the stated likelihood of cycling: safety, 

ease of cycling, weather conditions, route conditions, and interactions with motor 

vehicles (Winters et al. 2011).  
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The researchers also analyzed cyclists’ preferences for specific route types and estimated 

the likelihood of cycling based on facility type and cycling frequency within the sample. 

Cycling frequency affects cyclist stress tolerance and thus impacts facility preferences 

and route choice (Teschke and Winters 2013). The results of the analysis are illustrated in 

Figure 1, from which a primary conclusion is that only frequent (in this case being at 

least once per week) cyclists would ride on busy streets without physical traffic 

separation. Occasional and potential cyclists desired facilities on quiet streets or entirely 

separated facilities.  
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Figure 1: Likelihood of choosing facility type vs. cycling frequency (Teschke and 

Winters 2013) 

 An analysis of bicycle route choice in Texas using a web-based 2.3.3

survey 

In 2008, researchers in Austin, TX administered a statewide web-based survey that 

elicited stated preference information on the characteristics informing bicycle route 

choice (Sener, Eluru, and Bhat 2009). The survey functioned by first collecting 
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information about the participant (demographics, bicyclist type) and then asking a user to 

pick from among a set of three hypothetical routes with listed characteristics theorized to 

affect bicyclist route choice. Six groups of variables were analyzed for their contribution 

to bicyclist route choice: (1) bicyclist characteristics, (2) on-street parking characteristics, 

(3) bicycle facility characteristics, (4) roadway characteristics, (5) traffic characteristics, 

and (6) travel time. The route choices and their respective characteristics were then 

incorporated into a multinomial logit model to estimate the relative utility (or disutility) 

of the variables examined. Parking related attributes were found to be significant; 

bicyclists preferred routes with minimal on-street parking. Continuous bicycle facilities, 

lower traffic volumes and speeds, and fewer intersections were all found to increase the 

relative utility of a bike route.  

 Stated Preference Survey in Waterloo, Ontario 2.3.4

A stated preference web survey was conducted by researchers in the Waterloo, Ontario 

area in 2010 (J. Casello et al. 2011). The survey was administered along with a GPS 

bicycle travel study (further discussed in 2.4.3) on the same sample of 100 cyclists. The 

survey focused on seven categories of information:  

1. Demographics and auto ownership 

2. Characteristics of regular cycling route 

3. Cycling behavior 

4. Specific cycling hazards 

5. Cycling economics 
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6. Necessary cycling infrastructure 

7. Use of GPS/cell phone while bicycling and other questions about cycling 

deterrents 

The sample consisted of self-identified “winter cyclists”, which likely resulted in a 

substantial bias of the sample away from the general cycling population; especially when 

considering Waterloo’s harsh winter climate. The sample was also somewhat biased 

towards higher income cyclists, with 57% of cyclists reporting their personal incomes as 

greater than $50,000. This indicated that cycling for transportation was likely a choice, 

rather than a necessity, within the sample.  

The researchers were able to estimate the importance of a number of factors that 

influenced cycling travel behavior by calculating a weighted average of the ordinal 

survey responses. Each survey response was a rating of the importance of some factor 

proposed to effect bicycling behavior on a scale of 1 (least important) to 5 (most 

important). The results are outlined in Table 8. Convenience was the top motivation for 

cycling, while safety was the primary obstacle and consideration used in route selection. 

Accompanying this survey was GPS data collection discussed in section 2.3.4.   

  



24 

 

Table 8: Relative ranking of influences on cycling behavior (J. Casello et al. 2011) 

Motivations for cycling 

Variable Importance 

Convenience compared to other modes 4.26 

Contribution to environment 4.19 

Lower cost compared to other modes 3.80 

Allows for recreation 3.42 

Improves health 3.40 

Obstacles to cycling 

Feels unsafe 2.70 

Poor motorist behavior 2.66 

High traffic volumes 2.65 

Poor road conditions 2.32 

Travel time is long 1.88 

Poor weather 1.63 

Many stops 1.62 

Distance travelled is long 1.54 

Lack of bike parking 1.44 

Route not scenic 1.23 

Factors influencing route choice 

Feels safe 2.91 

Shortest by time 2.90 

Low amount of traffic 2.83 

Best road conditions 2.64 

Shortest by distance 2.55 

Fewest stops 2.10 

Route is scenic 1.99 

2.4 STUDIES USING GPS DEVICES 

Studies of revealed and stated cyclist comfort preferences using survey questions and 

GPS devices are reviewed in the following section.  

 GPS Data Collection in Minneapolis, MN 2.4.1

In the spring of 2006, researchers in Minneapolis, MN used GPS units to study the 

cycling behavior of 55 cyclists over the course of three weeks; focusing specifically on 

commute trips (Harvey, Krizek, and Collins 2008). The study compared the preferred 

route of each cyclist with the calculated shortest route based on trip distance and bicycle 
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facility type (off-street path, on-street bike lane, or a road with no designated bicycle 

facility). Participants also reported demographic characteristics and their “cycling 

comfort” on a 1 through 5 scale; with 1 indicating that the cyclist was only comfortable 

riding on off-street paths, and 5 indicating the cyclist was comfortable on urban streets 

with heavy traffic. A linear regression model was constructed to examine the relationship 

between the distance traveled out of the way (the difference between the distance of the 

chosen route and the shortest route) and several predictive variables, including bicycle 

facility type, historical route safety, traffic control type, number of intersections along 

route, cycling comfort level, gender, and age. The only independent variable found to be 

statistically significant was the rider’s reported cycling comfort level. The authors posit 

that this finding indicates that cyclists with lower comfort levels are more willing to 

travel out of their way to use a preferred route rather than the shortest one.  

The other variables measured were not significant, which could be partly due to a small 

sample size (55 cyclists), but is also likely due to the research design; which instructed 

cyclists to use a single preferred route over the study period rather than allowing the 

cyclists to choose their route based on their individual circumstances, resulting in a 

restricted range for the variables. In later studies, these other variables were found to be 

significant predictors, but riders were able to use a larger number and variety of facilities, 

resulting a much wider range of variability, which likely increased statistical significance 

of the predictive variables.  
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 GPS Data Collection in Portland, OR 2.4.2

 Data Collection  2.3.2.1

In 2007, researchers in Portland, OR used handheld GPS units to examine the cycling 

behavior of 164 participants from March through November of that year in the Portland 

area (Broach, Dill, and Gliebe 2012). Trip purpose was reported by the user for each trip, 

and only utilitarian (non-exercise) trips were kept the in the dataset used for analysis. 

After additional data cleaning, the GPS coordinate traces for the remaining 1,449 trips 

were matched to the bicycle and street network in the Portland area supplied by the local 

MPO (Oregon Metro) and modified to include additional bicycle links observed in the 

GPS data. Attached to the bicycle/street network were facility characteristics (e.g. bicycle 

facility type), environmental variables (e.g. topography), and traffic volumes (e.g. 

AADT), and these were used in a route choice model (multinomial logit) to compare the 

characteristics of the route chosen by the cyclist with those of the shortest route.  

The results indicated the relative utility (or disutility) the cyclists in the sample attributed 

to the predictive variables. For example, cyclists were willing to travel significantly out 

of their way (estimated 17.9% of trip distance) to use bicycle boulevards, while they were 

willing to travel even farther out of their way (estimated 72.3% trip distance) to avoid a 

path with a 2-4% upslope. Overall, the results indicated several significant characteristics 

associated with route choice within the sample; namely distance, turn frequency, slope, 

intersection control type, traffic volumes, and bicycle facility type (e.g. Bicycle 

Boulevard vs. arterial road).   
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 Metro Bicycle Model 2.3.2.2

Oregon Metro is the Portland area’s metropolitan planning organization and manages the 

regional travel demand model, including a bicycle travel demand model. Using the results 

of the study conducted by Broach, Gleibe, and Dill, Metro incorporated route 

characteristics into the travel demand model to more accurately predict what routes 

bicyclists would use – as opposed to the standard motor vehicle approach of simply 

considering trip distance and/or travel time (Stein 2011). They incorporated the following 

variables into the model, most of which are cataloged geographically in Metro’s Regional 

Land Information System (RLIS):  

Table 9: Route characteristics incorporated into Metro's regional bicycle demand 

model 

Variable Impact on bicycle utility of route (+/-) 

Proportion of route on off-street paths, 
bike boulevards, bike lanes  

+ 

Proportion of route on links with grade > 
2%  

- 

Turns, traffic signals, stop signs per mile - 

Traffic volumes of on-street travel and 
opposing links at left turns 

- 

Bridge bike facility type + or - 

Distance - 
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 GPS Data Collection in Waterloo, Ontario 2.4.3

 Initial Sample 2.3.3.1

GPS data was collected for 100 cyclists in Waterloo, Ontario in 2010 (J. Casello et al. 

2011) in combination with the survey data collection discussed in section 2.3.4. A total of 

1,232 trips were recorded over a five-week period. The study applied the GPS and survey 

data collected to four-step travel demand model.  Using a regression model, the 

researchers calculated trip rates based on population and employment density. Trips were 

then distributed throughout the region using an observed distribution of trip lengths. Self-

reported mode and path choice were modeled over the survey responses and the observed 

GPS traces. The development of these models enabled the researchers to highlight 

variables that were predicted to increase cycling rates.    

 Final Sample and Route Choice Model 2.3.3.2

After filtering the initial trip set for very short trips and inaccurate GPS traces, the 

research team had 724 trips from which to construct a route choice model. Five route 

characteristics were used as predictive variables in the route choice model: (1) the length 

of each link in the network, (2) the posted auto speed of each link, (3) the auto volume of 

each link, (4) the gradient (elevation change) of each link, and (5) the presence or 

absence of a cycling lane (J. M. Casello and Usyukov 2014). Using these five attributes, 

the resulting route choice model was able to select the observed route for 65% of the 

trips, and an additional 13% of trips were very close to the observed selection.  
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 GPS Data Collection in Zurich 2.4.4

In 2009 researchers in Zurich, Switzerland analyzed GPS data sourced from a private 

sector data collection effort (Menghini et al. 2010). Unlike the other studies reviewed 

herein, this required the mode of the GPS trace to be imputed so that the bicycle trips 

could be analyzed separate from trips made by other modes. The travel mode imputation 

procedure was outlined in the white paper. After removing non-bike trips, and filtering 

out GPS traces that could not be matched to the Zurich bicycle and street network, 636 

GPS traces remained. After matching the GPS traces, feasible alternative routes were 

generated from each trace’s origin and destination. A descriptive analysis compared the 

chosen routes with the alternative routes on a number of characteristics, and exposed 

differences in the grade of the route chosen (routes chosen were less steep) and the 

proportion of the route chosen along dedicated bicycle facilities (routes chosen included a 

higher portion of dedicated bicycle facilities). These traces were applied to a multinomial 

logit route choice model, which found that topography had a statistically significant 

negative impact on cyclists’ utility (leading them to choose routes with more gentle 

topography). Route length was also found to have a statistically significant impact on 

cyclist utility, though this is typical of nearly all route choice models.  

2.5 STUDIES USING SMARTPHONE GPS 

Studies of revealed and stated cyclist comfort preferences using online computer surveys 

are reviewed in the following section.  
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 CycleTracks (San Francisco, CA - 2009) 2.5.1

 The Application 2.5.1.1

In 2009, the San Francisco County Transportation Authority developed and released a 

smartphone application (CycleTracks for Android and iOS) to collect GPS and travel 

survey data about cyclists in the San Francisco area. CycleTracks uses a smartphone 

device’s Global Positioning System (GPS) sensor to track a user’s time and space 

trajectory.   It can also provide some (optional) user demographic information; the 

demographic information is collected to study self-selection and overrepresentation of 

some user groups. The application is available for download free of charge on the iTunes 

app store or the Android Play app store. 

The development team had several critical criteria to guide the application development 

(Schwartz and Hood 2011): 

1. It must be free and quick to download and install 

2. It must be as easy to use as possible, with minimum tapping/clicking necessary to 

get started, so even causal cyclists can use it 

3. It must upload every track data immediately to [SFCTA’s] central database using 

the phone’s built-in data plan, so the user doesn’t have to manually intervene, 

sync, or upload anything 

4. It must not run down the user’s battery 

5. It needs a catchy name 

 

The application recorded GPS coordinates which could later be geo-matched to road and 

bicycle networks. Trip purpose is recorded at the end of each trip, with the following trip 
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purposes given as options: (1) commute, (2), school, (3), work-related, (4) exercise, (5) 

social, (6) shopping, (7) errand, and (8) other.  

If a trip purpose was considered an “Other”, the user can enter more details about their 

trip purpose into the comments field associated with each trip. A comments field was 

optionally filled in for each trip, and could supplement SFCTA’s information about a 

route or trip. Users could then view their trip on a map. Users also had the option of 

inputting demographic information within the “Settings” sub-menu; this only had to be 

done once.  The optional additional information fields available are: age, e-mail address, 

gender, home ZIP code, work ZIP code, school ZIP code, and cycling frequency.  

The basic application functionality is illustrated in Figure 2. More information about the 

application functionality can be found on CycleTracks’s website
1
  or a 2011 

Transportation Research Board (TRB) paper (Schwartz and Hood 2011).   

                                                 

1
 http://www.sfcta.org/modeling-and-travel-forecasting/cycletracks-iphone-and-android 
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1. The application is opened  2. The user can optionally enter in 

demographic information and 

cycling frequency 

3. The user presses “Start” to begin 

recording a trip. GPS 

coordinates are now being 

recorded.  

   

4. When the user arrives at their 

destination, the trip can be 

recorded by pressing “Save”. 

5. The trip purpose is then entered, 

and the trip is then transferred to 

the server. 

6. The user then can review their 

trip on the Google Maps API. 
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Figure 2: CycleTracks User Interface and Functionality (iOS version shown) 

 Initial Results 2.5.1.2

The initial survey sample collected over 7,000 trips from 1,083 users between November 

2009 and April 2010. SFCTA then developed a bicycle route choice model from this 

sample and incorporated it into their SF-CHAMP regional travel demand model (Zorn, 

Sall, and Bomber 2011). The CycleTracks source code is open source and available free 

to the public
2
. All subsequent smartphone applications reviewed herein are built upon the 

original CycleTracks source code. 

The San Francisco County Transportation Authority manages the San Francisco area’s 

regional travel demand model, including a bicycle demand model. Prior to the data 

collected from CycleTracks (see section 2.5), the SFCTA had assumed cyclists would 

choose the shortest path from their origin to destination. The SFCTA was able to improve 

the route choice portion of the demand model to incorporate cyclists’ differential 

preferences as revealed by the route choice model built from the CycleTracks data. They 

incorporated the following variables into the model (outlined in Table 10).   

                                                 

2
 https://github.com/sfcta 
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Table 10: Route characteristics incorporated into SFCTA's regional bicycle demand 

model 

Variable Impact on bicycle utility of route (+/-) 

Route distance  - 

Turns per unit distance  - 

Proportion of the route going the wrong 
way on a one way street 

- 

Proportion of the route on dedicated bike 
facilities 

+ 

Proportion of the route on signed bike 
routes (shared with motor vehicles) 

+  

Average up-slope - 

 CycleTracks (Austin, TX - 2011) 2.5.2

After the initial success of CycleTracks in San Francisco, the application was deployed in 

Austin, TX in 2011 by researchers at the Texas Transportation Institute (TTI) between 

May and October 2011. Over 3,600 GPS traces were collected from over 300 users, many 

of which provided demographic data so the researchers could evaluate sample bias. The 

results were summarized in a report (Hudson et al. 2012), which cross tabulates many of 

the demographic characteristics with bicycling environment variables, such as bicycle 

facility type. The report also adds valuable information about data cleaning and 

processing procedures.  

The goal of the project was to test if using CycleTracks was feasible to apply in another 

region and would provide useful information for decision making in planning bicycle 
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networks and infrastructure. At the conclusion of the study, the researchers remarked that 

“the amount of information provided by the use of CycleTracks far exceeds what would 

be available using other data collection methods” (Hudson et al. 2012).   

 Cycle Atlanta (Atlanta, GA – 2012) 2.5.3

 The Application 2.5.3.1

In 2012, researchers at Georgia Tech worked with the City of Atlanta and the Atlanta 

Regional Commission to modify CycleTracks for deployment in the Atlanta, GA region. 

Cycle Atlanta includes all of the functions performed by CycleTracks but adds several 

additional features and uses a different user interface.  Screenshots of the user interface 

are presented in Figure 3.  

   

1. Google Maps API fronts 

user interface 

2. “Notes” can be made 

about assets or issues 

3. Demographic 

information is entered in 
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the “Settings” sub-menu 

Figure 3: Cycle Atlanta screenshots (iOS version shown) 

In addition to collecting GPS bicycle route data, Cycle Atlanta can also crowdsource 

information about geo-located bicycle deterrents (e.g. pavement issues, traffic signal 

deficiencies, etc.) or amenities (e.g. bicycle parking, water fountains, etc.) (Misra et al. 

2014). These deterrents and amenities (called “notes”) are selected from a categorical list 

and can be supplemented with descriptive text and/or a photo. The following notes are 

available for selection:  

Table 11: Cycle Atlanta Note Selection 

Issues/Deterrents Assets/Amenities 
Pavement issues 
Traffic signal issue 
Enforcement request 
Bicycle parking request 
Bicycle lane design issue 
Custom entry 

Water fountain 
“Secret Passage”

 3
 

Public restroom 
Bicycle shop 
Bicycle parking  
Custom entry 

 

Cycle Atlanta also can collect additional (optional) user socio-demographic information: 

ethnicity and household income (both categorized). It also breaks the age field into 

categories, instead of requesting a numerical entry. The categories for each field are listed 

below: 

  

                                                 

3
 “Secret Passage” identifies bicycle-navigable paths that are not on map 
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Table 12: Cycle Atlanta Demographic Categories 

Ethnicity Household Income Age 
White 
African American 
Asian 
Native American 
Pacific Islander 
Multi-racial 
Hispanic/Mexican/Latino 
Other 

Less than $20,000 
$20,000 to $39,999 
$40,000 to $59,999 
$60,000 to $74,999 
$75,000 to $99,999 
$100,000 or greater 

Less than 18 
18-24 
25-34 
35-44 
45-54 
55-64 
65+ 

 

Finally, Cycle Atlanta also collects (optional) data about the type of cyclist using the 

application. The rider can indicate their type using a modified version of Geller’s (Geller 

2006) cyclist typology: “Strong & fearless”, “Enthused & confident”, “Comfortable, but 

cautious”, or “Interested, but concerned”. The rider can indicate its level of 

experience/years riding by choosing among these options: “Since childhood”, “Several 

years”, “One year or less”, “Just trying it out/just started”.  

A website
4
 was developed to display the information as a live feed coming from the 

application; displaying trips, notes, and aggregated user statistics to the public. The Cycle 

Atlanta application is also available to the public as an open source codebase
5
. 

                                                 

4
 http://cycleatlanta.org/version2/CATLMaps.php 

5
 https://github.com/cledantec?tab=repositories 
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 Mon ResoVelo (Montreal, QC- 2013) 2.5.4

 The Application 2.4.1.1

In 2013, researchers at McGill University worked with the City of Montréal in Montréal, 

QC, Canada to develop Mon RésoVélo, which was built off of the CycleTracks and 

Cycle Atlanta open source codebases. Mon RésoVélo does not include the “deterrent and 

amenity reporting” present in Cycle Atlanta and RenoTracks (see section 2.5.5)  but their 

authors claim that the app improves several other application functions (Jackson et al. 

2014).  

The first difference between Mon RésoVélo and prior applications is a difference in user 

interface design. User interface screenshots are shown in Figure 4. The application comes 

with a complete French language interface option.  

   

Home navigation screen View trip through Google Maps 
API 

End of trip summary 
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Figure 4: Example screenshots of Mon RésoVélo interface (Android version shown) 

(Jackson et al. 2014) 

The app developers indicate that Mon RésoVélo also restructures the underlying GPS 

data collection model to “break single trips into a series of segments to manage more 

easily stopping, pausing, GPS connection loss, and forgetting to turn off GPS collection 

when finishing a trip” (Jackson et al. 2014). Finally, Mon RésoVélo adds a greenhouse 

gas emissions calculator based on local conditions (Jackson et al. 2014). A calorie 

counter is also included that corrects for cyclist weight. Mon RésoVélo’s codebase is not 

available open source, but was later adapted by Brisk Synergies
6
 to be folded into their 

Brisk Cycle platform, which could be re-branded for other regional deployments, as was 

done in Toronto, ON. 

 Initial Results 2.5.4.2

A paper was presented at the 2014 Transportation Research Board meeting summarizing 

some preliminary results (Jackson et al. 2014). As reported in the other smartphone 

application studies, the sample of users analyzed was biased towards young (24-44) 

males, with ages 24-34 comprising 46% and ages 35-44 comprising 23% of the 

participants, while 73% of the users were male. While no specific data were cited, the 

paper also stated that the relative popularity of different bike routes in Montréal were 

comparable with the proportions observed by the city’s bike counters.  

                                                 

6
 http://www.brisksynergies.com/briskcycle/ 
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 Mon RésoVélo and Safety Data 2.5.4.3

An innovative use of the data collected by Mon RésoVélo was presented at the 94
th

 

Transportation Research Board Annual Meeting (Strauss, Miranda-Moreno, and Morency 

2015) GPS traces sourced from Mon RésoVélo were combined with point bicycle counts 

in the city of Montreal to represent network wide bicyclist exposure rates. These 

exposure rates were combined with geocoded safety and injury data to create an injury 

risk model. This injury risk model can highlight areas of considerable risk taking into 

account both injury rates and exposure rates.  

 Other Bicycle Data Smartphone Applications 2.5.5

Many other smartphone applications were created based on CycleTracks, some 

improving or expanding upon its features (including ORcycle, which this thesis centers 

around).   
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Table 13 outlines all known Cycletracks derived applications that have been deployed in 

various cities across North America.   
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Table 13: CycleTracks and its derivative applications 

Year-Month 
First 
Released 

City/Region 

Re-
branded 
or 
Improved 
App? 

Application 
Name 

Project Link 

2009-11 San Francisco, CA - CycleTracks 

http://www.sfcta.org/modeling-
and-travel-
forecasting/cycletracks-iphone-
and-android 

2011 Lane County, OR Yes Cycle Lane 
http://www.thempo.org/611/C
YCLELANE---Bike-routes 

2011-05 Austin, TX No CycleTracks 
http://ntl.bts.gov/lib/45000/45
700/45731/Hudson_11-35-
69.pdf 

2012-06 
Minneapolis/St. Paul, 
MN 

No CycleTracks 

http://www.minneapolismn.gov
/www/groups/public/@publicw
orks/documents/images/wcms1
p-094499.pdf 

2012-10 Atlanta, GA Yes Cycle Atlanta http://cycleatlanta.org/ 

2012-
Summer 

Fort Collins, CO No CycleTracks 
http://today-
archive.colostate.edu/story.asp
x?id=7744 

2013-07 Montréal, QC Yes 
Mon 
RésoVélo 

http://ville.Montréal.qc.ca/port
al/page?_pageid=8957,1124516
19&_dad=portal&_schema=POR
TAL 

2014-01 Reno, NV Yes RenoTracks 
http://renotracks.nevadabike.or
g/ 

2014-05 Lexington, KY No CycleTracks 
http://www.kentucky.com/201
4/05/04/3227486/lexington-
bicyclists-help-sought.html 

2014-06 Philadelphia, PA Yes CyclePhilly http://www.cyclephilly.org/ 

2014-11 Toronto, Ontario No 
Toronto 
Cycling App 

http://www1.toronto.ca/wps/p
ortal/contentonly?vgnextoid=5c
555cb1e7506410VgnVCM10000
071d60f89RCRD&vgnextchannel
=6f65970aa08c1410VgnVCM10
000071d60f89RCRD&appInstan
ceName=default 

2014-11 State of Oregon Yes ORcycle 
http://www.pdx.edu/transporta
tion-lab/orcycle 

Not 
Available 

Monterey, CA No CycleTracks 
http://www.cycletracksmontere
y.org/home.html 

Not 
Available 

Raleigh, NC No CycleTracks 
http://www.creativisibility.com/
westernblvd/CycleTracks.html 
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Not 
Available 

Seattle, WA No CycleTracks 
http://www.psrc.org/transporta
tion/bikeped/cycletrack/ 

Not 
Available 

Salt Lake City, UT No CycleTracks Not Available 

Not 
Available 

Los Angeles, CA No CycleTracks Not Available 

Not 
Available 

College Station, TX Yes AggieTracks Not Available 

Not 
Available 

Charlottesville, VA Yes 
C-Vill Bike 
mAPP 

http://www.tjpdc.org/cvillebike
mapp/ 

Not 
Available 

Hampton Roads, VA Yes Not Available Not Available 

 

 Cyclist Comfort and Smartphone Data Collection Opportunities 2.5.6

One of the key advantages of smartphone data is the collection of some user demographic 

data and Global Positioning System (GPS) data. The collection of GPS points can be 

matched into segments and intersections of the road and bicycle network. For each trip, 

detailed paths can be constructed.  

As discussed in the previous sections, BLOS and other cyclist comfort evaluation 

methods rely on data collected or measured in the field.  Hence, smartphone detailed 

route data will not provide data that can be input directly into BLOS methods.  However, 

BLOS methods have been calibrated or estimated in most cases finding statistical 

relationships between variables that can be measured or observed in the field and users’ 

perceptions of the facilities. Users’ perceptions are usually stated preference data and 

elicited utilizing video or surveys. Many of the videos of facilities and biking conditions 

may not compare well with Oregon facilities and biking conditions since they are from 

Florida. The smartphone data is revealed preference data that can be potentially used to 
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calibrate or estimate Oregon specific cyclist comfort evaluation methods based on field 

data (Figliozzi, Blanc, and Johnson 2014).  
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3. METHODOLOGY 

This chapter will review the design elements of the ORcycle smartphone application 

utilized for collecting the data this thesis analyzed. First, the development process of the 

application is briefly reviewed. All of the data types collected by the app are then 

reviewed. Data processing methods used are then summarized. Information about the 

sampling techniques and final sample used in analysis is then reviewed. Finally, the data 

analysis methodology is then briefly reviewed.  

3.1 ORCYCLE SURVEY TOOL DESIGN 

The ORcycle smartphone application was the primary data collection tool in this 

research. The application was developed to collect cyclist user, trip, and safety data 

across the State of Oregon. The following sections will review the development of the 

smartphone application.  

 Smartphone Application Development 3.1.1

Development of the applications (Android and iOS) and the web server/interface took 

place primarily between May 2014 and January 2015. The initial public deployment of 

the application took place in November, with the basic features desired available in all 

platforms (e.g. GPS recording, survey questions). However, shortly thereafter, upon 

feedback from users and refinement of our analysis goals, several features were changed 

slightly or added. These included the addition of a reminder feature, an app tutorial, and 

minor bug fixes. The major feature change relevant to this thesis was the changing of the 
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“route comfort” question (see sections 3.1.3.2 and 4.3.3) from optional to mandatory 

upon completion of a trip. This question was necessary to impute in our analysis if the 

user did not respond, but after this feature was changed so the question was mandatory 

(about a month after application release) the question would no longer be necessary to 

impute. This issue informed some of the limitations of our analysis presented in this 

thesis, and will likely become less of a problem in the future as the ORcycle sample 

grows.  

The U.S. smartphone market is (as of late 2014
7
) dominated by Android (53%), with iOS 

comprising 42% of the market and competitors like Microsoft and Blackberry holding the 

remainder. Android’s majority market share and open source development environment 

encouraged the research team to develop the Android application as the first priority, but 

it was later deemed feasible to also develop an iOS version as well. With the addition of 

an iOS version, an estimated 95% of the smartphone market could be reached with the 

ORcycle application.  

                                                 

7
 http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-

states/ 
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 Android Application 3.1.1.1

ORcycle was developed for Android using Eclipse
8
, an open-source Android Integrated 

Development Environment (IDE). Android software is written primarily in the Java 

coding language. 

 

Figure 5 : Home Screen of the Android Version of ORcycle 

The Android version of ORcycle was built off of the open-source Android version of 

Cycle Atlanta (see section 2.5.3), which was built off of CycleTracks (see section 2.5.1). 

The application was re-branded as ORcycle, and then features were modified and added. 

                                                 

8
 Eclipse website: https://www.eclipse.org/ 
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The application was tested numerous times on different Android devices throughout the 

development and debugging process.  

  iOS Application 3.1.1.2

ORcycle was developed for iOS using XCode, Apple’s proprietary IDE. ORcycle was 

written primarily in the Objective-C coding language.  

 

Figure 6: Home screen of the iOS version of ORcycle 

ORcycle was built off of the iOS version of RenoTracks (see section 2.5.5), which was 

built off of the iOS version of Cycle Atlanta (see section 2.5.3), which was built off of the 

iOS version of CycleTracks (see section 2.5.1).  
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 User Attribute Data Collection 3.1.2

User group questions were used to control for differences in behavior and preferences 

over different user grouping factors. The user questions were asked through the screens 

presented in Table 14. The user questions utilized in the final version of the application 

are outlined below. The questions are broken up into two groups: (1) questions about a 

user’s demographics and (2) questions about a user’s biking attitude and cyclist type. All 

user group questions were optional to answer.  

Table 14: User Screens (iOS version) 

Screen # 1 2 3 

iOS 

   

 

 Demographic Information 3.1.2.1

Demographic indicators are often significant covariates with cycling travel behavior (see 

literature review). The demographic data collected by ORcycle includes age, ethnicity, 
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gender, household income, occupation, number of household workers, and number of 

household vehicles.  

Age 

Age was considered in all of the previous CycleTracks-derived smartphone applications 

and is considered in most travel surveys. Cyclists and smartphone users are both 

generally on the younger end of the age spectrum, so it was important to control for this 

factor when making inferences from the application results. The age group stratification 

used in ORcycle is outlined in Table 15.  

Table 15: Age Group Responses (question 1) 

Age Category 

No data 

Less than 18 

18-24 

25-34 

35-44 

45-54 

55-64 

65+ 

Ethnicity 

Ethnicity was another major demographic variable to control for and was considered in 

several of the cycling apps as well as in most travel surveys. Cyclists are generally less 

diverse than the population at large (Pucher, Buehler, and Seinen 2011; Pucher, Dill, and 

Handy 2010; Dill and Voros 2007), and so it was important to control for this factor 

when making inferences from the application results. The ethnicity selection categories 

used in ORcycle are outlined in Table 16.  
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Table 16: Ethnicity group responses (question 4)  

Ethnicity Category 

No data 

African American 

Asian American 

Hispanic 

Native American 

White American 

Other 

Gender 

Gender was also important to control for and has been included in many of the other 

cycling applications and in most travel surveys. Bicycling mode share differs 

considerably by gender, with more males cycling than females on average. The proposed 

categorization schema for gender selection is outlined in Table 17.  

Table 17: Gender group responses (question 3) 

Gender Category 

No data 

Female 

Male 

Other 

Household Income 

Taking into account the income level distribution of the survey group was important, as it 

has been shown that middle to high income groups have so far been more likely to 

commute by bicycle within the U.S. (Pucher, Buehler, and Seinen 2011). The income 

category selection was created to match the Oregon Household Activity Survey (OHAS) 

categories. The proposed categorization schema for income range selection is listed in 

Table 18. 
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Table 18: Income group responses (question 6)  

Income Category 

No data 

Less than $14,999 

$15,000 to $24,999 

$25,000 to $34,999 

$35,000 to $49,999 

$50,000 to $74,999 

$75,000 to $99,999 

$100,000 to $149,999 

$150,000 or more 

Occupation 

It was also proposed by the ODOT Technical Advisory Committee (TAC) that 

information about rider occupation be collected. The available choices for this question 

are outlined in Table 19.  

Table 19: Occupation responses (question 5) 

Occupation Category 

No data 

Employed 

Student 

Retired 

Homemaker 

Other 

Household Workers 

Household size is a typical question for travel surveys, as it is often indicative of the 

number of trips a household makes. Instead of assessing household size, it was decided in 

conjunction with the ODOT TAC that asking for the number of household workers would 

be more pertinent. The proposed categorization schema for household workers is listed in 

Table 20.  
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Table 20: Household workers responses (question 7) 

Household Workers Category 

No data 

0 Workers 

1 Worker 

2 Workers 

3 Workers or more 

Household Motor Vehicle Ownership 

Cycling trip characteristics and preferences likely depend somewhat on the alternative 

travel options of the user. Therefore, it was decided that the application document 

household motor vehicle ownership. The proposed categorization schema for number of 

household vehicles is listed in Table 21.  

Table 21: Household vehicles responses (question 8)   

Income Category 

No data 

0 vehicles 

1 vehicle 

2 vehicles 

3 vehicles or more 

 Cyclist Typology 3.1.2.2

Several questions were asked that attempt to evaluate the “type” of cyclist using the 

application; see section 2.2 for more information on cyclist typology. As mentioned in 

that section, the researchers decided to ask users for several pieces of information related 

to their cyclist type, rather than directly asking them to sort themselves into cyclist types. 

Questions about bicycle ownership, biking preferences, and biking attitudes were asked.  
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Bicycle Ownership 

Similar to vehicle ownership, it was also proposed that the number of bicycles the rider 

owns be quantified. This may indicate a user’s proclivity towards bicycling. The 

available choices for this question are given in Table 22. 

Table 22: Number of bicycles owned responses (question 9)   

Income Category 

No data 

0 bicycles 

1 bicycle 

2 bicycles 

3 bicycles 

4 or more bicycles 

Bicycle Types 

Knowing a user’s bicycle type(s) may reveal information about relationships between 

facility preferences, user characteristics, and different bicycle types. This question was 

asked as the following:  

 What types of bicycles do you own? (can select more than one)  

The available responses are listed in Table 23.  

Table 23: Bicycle Type (question 10) Responses (select multiple) 

Bicycle Type Response 

No data 

Commuter (with gears) 

Commuter (single speed) 

Racing or road 

Cycle Cross or mountain 

Cargo Bike 

Recumbent 

Other 
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General Comfort/Ability Level When Cycling 

Asking for a user’s self-reported general comfort/ability level with riding a bicycle can 

reveal information about the user’s baseline level of comfort, which should be taken into 

account when analyzing comfort/stress level on specific routes and facilities. A Likert-

type scale was used to measure this item. This question was asked as the following: 

How would you rate your overall skill and experience level regarding cycling? 

The available responses for this question are outlined in Table 24.  

Table 24: Cycling Ability responses (question 16) 

General Cycling Comfort Category 

No data 

Very Low 

Low 

Average 

High 

Very High 

Cycling Dedication 

The user’s dedication to cycling can elicit information about a user’s general attitude 

about bicycle use. This information will relate to both cycling frequency and trip 

purposes, which are also asked explicitly. This question is asked as the following:  

I cycle mostly …  

The available responses for this question are outlined in Table 25.  
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Table 25: Cycling Dedication responses (question 17) 

Cycling Dedication Category 

no data 

For nearly all my trips 

To and from work 

For recreation and/or exercise 

For shopping, errands, or visiting friends 

Mainly to and from work, but occasionally for 
exercise, shopping, etc. 

Other 

Weather Tolerance 

The user’s tolerance for adverse weather is important in calibrating their general 

tolerance for external stressors as well as their specific tolerance for weather conditions 

while cycling.  This question is asked as the following: 

 What type of weather do you ride in? 

 The available responses for this item are outlined in Table 26.  

Table 26: Weather Tolerance responses (Question 15)  

Cycling Dedication Category 

no data 

In any kind of weather 

When it does not rain 

Usually warm and dry weather 

Only with warm and dry weather 

Cycling Frequency 

Cycling frequency affects cyclist stress tolerance and thus impacts facility preferences 

and route choice (Teschke and Winters 2013). ORcycle collects cycling frequency 
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information to see how cycling frequency relates to the other information collected. The 

cycling frequency question is asked as the following: 

How often do you cycle? 

The available responses for this question are given in Table 27.  

Table 27: Cycling Frequency responses (Question 14)  

Cycling Frequency Category 

no data 

A few times per year 

A few times per month 

A few times per week 

Nearly every day 

 Trip Data 3.1.3

Table 28: Trip Screens 

Screen # 1 2 3 4 

iOS 

    

Description 
Users can begin 
recording a trip by 
pushing “start trip”. 

Users can then respond to trip questions 
including trip purpose, route frequency, 
and route comfort. 

Trips can then be 
reviewed with 
summary statistics 
and saved 
responses. 
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 Time-Space Trajectory 3.1.3.1

Obtaining the time-space trajectories of cyclists utilizing the application was one of the 

primary objectives of the application. Knowing empirically when and where cyclists 

chose to ride provides a wealth of revealed preference information about cyclist 

preferences. These time-space trajectories were obtained using the Android and iPhone 

devices’ built-in GPS units.  Within the application, a user can start recording GPS 

coordinates by pressing the “Start Trip” button on the “Record” screen, as shown in 

Table 28. This initializes the GPS coordinate recording, which continues until the user 

indicates that they have finished traveling and/or recording GPS coordinates. For the 

remainder of the document, this GPS coordinate trajectory will be referred to as a “Trip”.  

 Trip Questions 3.1.3.2

These questions are asked after each trip to gain more stated preference information 

about the user’s trip characteristics and preferences. Trip questions included trip purpose, 

route frequency, route comfort, and route stressors.  

Trip Purpose 

A majority of cycling advocacy and encouragement focuses on converting motor vehicle 

trips to bicycle trips for work or school commutes. However, commutes are only one 

possible trip purpose, and trip purpose likely contributes to a user’s bicycle facility 

preferences or route choice. For example, a study by Haworth and Schramm (Haworth 

and Schramm 2011) concluded that utilitarian riders were more likely to ride on 
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sidewalks than other users, and they were also the most likely to utilize separated bicycle 

paths.  

Trip purpose was useful in stratifying trip types to see if there is differentiation in 

geographic and temporal bicycle travel patterns for different trip purposes. Following the 

implementation of prior applications, trip purpose can be selected from categories after a 

trip is completed. The available trip purpose categories, descriptions, and corresponding 

icons are outlined in Table 29.  

Table 29: Trip Purpose (Question 20) Responses, Descriptions, and Icons (select 

one) 

Trip Purpose Description Visual Icon  

Commute 
This bike trip was primarily to get between home and your main 
workplace.  

School This bike trip was primarily to go to or from school or college. 
 

Work related 
This bike trip was primarily to go to or from a business related 
meeting, function, or work-related errand for your job.  

Exercise 
This bike trip was primarily for exercise, or biking for the sake of 
biking.  

Social or 
Entertainment 

This bike trip was primarily for going to or from a social activity, 
e.g. at a friend's house, the park, a restaurant, the movies.  

Shopping or 
Errands 

This bike trip was primarily to attend to personal business such 
as buying groceries, banking, a doctor  visit, going to the gym, 
etc.   

Transport 
Access  

The primary reason for this bike trip was to access public transit 
or some other vehicle (private vehicle, car share, etc.)  

Other 
If none of the other reasons applied to this trip, you can enter 
comments below to tell us more.  
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Route Frequency  

How often a user rides a route will likely have an effect on their perception of the route. 

For example, a user will likely be more comfortable with a route if they ride it to work 

every day, rather than if it is brand new to them. This question is asked as the following: 

How often do you ride this route? 

The available answers for this question are given in Table 30.  

Table 30: Route Frequency (Question 19) Responses (select one) 

Route Comfort Response 

No data 

Several times per week 

Several times per month 

Several times per year 

Once per year or less 

First time ever 

Route Choice Preferences 

Having self-reported route choice characteristics can help in understanding the reasons 

for route choice from among a set of viable alternatives. This sort of perspective can give 

bicycle planners greater insight into how route choice decisions are made by bicyclists. 

This question is asked as the following: 

I chose this route because … (can select more than one) 

The available responses are listed in Table 31.  
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Table 31: Route choice preferences (Question 21) responses (select multiple) 

Route Preferences Response 

No data 

It is direct/fast 

It has good bicycle facilities 

It is enjoyable/has nice scenery 

It is good for a workout 
It has low traffic/low speeds 

It has few intersections 

It has few/easy hills 

It has other riders/people (I'm not alone) 

I do not know/have another route 

I found on my phone/online 

Other (indicate in comments) 

Route Comfort  

Route comfort is meant to be analogous to Level of Traffic Stress. Route comfort is an 

ordinal, Likert type rating of a user’s self-reported comfort on a route. It is the dependent 

variable modeled over many other independent variables in section 4.4.2. This question is 

asked as the following: 

In terms of comfort, this route is… 

The available responses for route comfort are given in Table 32. 

Table 32: Route Comfort (Question 22) Responses (select one) 

Route Comfort Response 

No data 

Very bad (unacceptable for most riders) 

Bad (only for confident riders) 

Average 

Good (for most riders) 

Very Good (even for families/children) 
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Route Stressors 

It is important to know which characteristics of a rider’s route may have caused them to 

feel some level of traffic stress. This question is asked as the following: 

 Along this route, you are concerned about conflicts/crashes with… (can select 

more than one) 

The available responses are listed in Table 33.  

Table 33: Route stressors (Question 27) responses (select multiple) 

Route Stressors Response 

Not concerned 

Auto traffic 

Large commercial vehicles (trucks) 

Public transport (buses, light rail, streetcar) 

Parked vehicles (being doored) 

Other cyclists 

Pedestrians 

Other 

Custom Additional Details 

Having an additional details entry gave users a place to write something specific about 

their trip that may not be described by the trip questions available.  

 Crash and Safety Issues Reports 3.1.4

The ability to record “issues” and “assets” (referred to as “notes”) was one of the most 

significant improvements to Cycle Atlanta (as discussed in 2.5.3) This functionality 

combines the uses of a bicycle trip tracking application like CycleTracks (section 2.5.1) 

with the infrastructure crowdsourcing functionality of applications like Citizens Connect 

and PDX Reporter (Figliozzi, Blanc, and Johnson 2014).  
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It was decided that ORcycle would remove the asset recording functionality (deemed to 

be of minimal value to ODOT) in favor of recording crash events and 

infrastructure/safety issues. We chose to call these data objects “Reports” instead of 

“Notes”. There were two types of reports: (1) crash or near-crash events and (2) location 

specific infrastructure/safety issues. 

Both types of reports were uploaded with a location, which could be submitted as either 

the user’s current location or a custom location selected on a map. Reports were also 

uploaded with a date, which could either be the current date or a custom-selected date.  

 Crash or Near-Crash Events 3.1.4.1

Crash event reports were submitted using the screens shown in Table 34. Crash event 

reports asked four mandatory questions: (1) crash severity, (2) vehicle or object related to 

event, (3) crash event actions, and (4) crash event reasons.  

Table 34: Crash Report Screens 

Screen # 1 2 3 4 

iOS 
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Crash Event Severity  

When documenting a crash event report, this was the first question to be answered. The 

user could indicate the relative severity of their crash event. The question was asked as 

the following: 

Severity of the crash event: (choose one) 

The available answers for this question are given in Table 35.  

Table 35: Crash event severity (Question 28) responses (select one) 

Severity Category Report Icon 

Major injuries (required hospitalization) 

 

Severe (required a visit to ER) 

 

Minor injury (no visit to ER) 

 

Property damage only (bicycle damaged 
but no personal injuries) 

 

Near-miss (no damage or injury) 

 

 

Vehicle or Object related to the event 

We also asked the user what transportation mode or physical object they may have had a 

crash or conflict with. This question was asked as the following:  

Vehicle or object related to the event… (can select more than one) 
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The available answers for this question are given in Table 36.  

Table 36: Vehicle or object (Question 29) responses (select multiple) 

Vehicle or object category 

Small/medium car 

Large car/Van/SUV 

Pickup truck 

Large commercial vehicles (trucks) 

Public transport (buses, light rail, streetcar) 

Another bicycle 

Pedestrian 

Pole or fixed object 

Cyclist fell (or almost fell) 

Other 

 

Crash Event Actions 

The user also reported what particular traffic movements led to the crash event they 

experienced. The corresponding question was asked as the following: 

Actions related to the event… (can select more than one) 

The available answers for this question are given in Table 37. 

Table 37: Crash event actions (Question 32) responses (select multiple) 

Vehicle or object category 

Right-turning vehicle 

Left-turning vehicle 

Parking or backing up vehicle 

Person exiting a vehicle 

Cyclist changed lane or direction of travel 

Vehicle changed lane or direction of travel 

Cyclist did not stop 

Driver did not stop 

Cyclist lost control of the bike 

Other 
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Crash Event Reasons 

The user also reported what environmental, traffic, or personal conditions may have 

contributed to the crash event. The corresponding question was asked as the following: 

What contributed to the event? (can select more than one) 

The available answers for this question are given in Table 38. 

Table 38: Crash event reasons (Question 33) responses (select multiple) 

Vehicle or object category 

Debris or pavement quality 

Poor lighting or visibility 

Cyclist was outside the bike lane or area 

Vehicle entered the bike lane or area 

Cyclist did not follow stop sign or red light 

Vehicle did not follow stop sign or red light 

Cyclist did not yield 

Vehicle did not yield 

Cyclist was distracted 

Careless driving or high vehicle speed 

Other 

 

 Location Specific Infrastructure/Safety Issues 3.1.4.2

Crash event reports were submitted using the screens shown in  
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Table 39. Crash event reports asked four mandatory questions: (1) issue type and (2) 

issue urgency.   
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Table 39: Issue Report Screens 

Screen # 1 2 3 4 

iOS 

    

 

Issue Type  

The first question asked when a user reported a “safety/infrastructure issue” was a 

description of the issue type. This question was asked as the following: 

Location specific infrastructure/safety issues… (can select more than one) 

The available “issue types” for documentation are given in Table 40.  
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Table 40: Issue Type (Question 30) responses (select multiple) 

Issue Type 

Narrow Bike Lane 

No bike lane or separation 

High vehicle speeds 

High traffic volumes 

Right/left turning vehicles 

Traffic signal timing 

No traffic signal detection 

Truck traffic 

Bus traffic/stop 

Parked vehicles 

Pavement condition 

Other 

Urgency 

When documenting a safety/infrastructure issue report, the user was asked to indicate the 

urgency level of the location specific infrastructure or safety issue. The user could 

indicate the relative urgency of the issue on a scale of 1 to 5. The question was asked as 

the following: 

Urgency of the problem: (choose one) 

The available answers for this question are given in Table 41.  
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Table 41: Issue urgency (Question 31) responses (select one) 

Severity Category Report Icon 

1 (not urgent) 
 

2 
 

3 (somewhat urgent) 
 

4 
 

5 (urgent) 
 

 

3.2 DATA PROCESSING 

The majority of data cleaning and processing took place in the R Project for Statistical 

Computing environment. Where mentioned, some other software or coding environments 

were utilized. 

For modeling purposes, missing survey responses were filled in using a multiple 

imputation algorithm from the R package missForest
9
. The multiple imputation algorithm 

utilized a case’s (which could be a user, trip, or report) other survey responses to predict 

the response to the missing question based on the response distributions of other cases in 

the overall sample. Filling in the missing responses allowed users, trips, and reports that 

were missing optional responses to still be used in statistical models. 

                                                 

9
 http://cran.r-project.org/web/packages/missForest/index.html 
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 Users 3.2.1

Users filled out optional survey questions about their demographic characteristics and 

cycling preferences/attitudes. Missing survey responses were imputed for the statistical 

modeling in section 5, but the sample description in section 4 describes the raw data. 

 Trips 3.2.2

Trip data came in two groups: the GPS coordinate traces and the survey question 

responses. Raw GPS coordinates would not allow us to connect transportation link 

characteristics with the cyclists’ routes, so the coordinates needed to be geo-matched to a 

network. The GPS coordinate traces were matched to the Portland metropolitan area 

bicycle and street network where possible. An example of the difference between a geo-

matched route and its raw GPS coordinates is given in Figure 7, where a cyclist crossed 

the Willamette River in Portland, OR using the lower deck of the Steel Bridge and 

proceeded onto the Eastbank Esplanade. This kind of detail in the path of the cyclist 

would be difficult to entangle without an accurate and topologically correct cycling 

network and a robust geo-matching script.  
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Figure 7: Example of raw GPS coordinates (red circles) compared with matched 

route (red polyline) 

 The network used for geo-matching was a modified version of Metro’s bicycle and street 

network improved by John Gliebe and Joseph Broach
10

 in 2012
11

 to include additional 

links in the network utilized by bicyclists. Geo-matching was carried out using a group of 

Python scripts developed for the bicycle GPS study conducted by Jennifer Dill and John 

Gliebe at Portland State University in 2007 (Broach, Dill, and Gliebe 2012) and slightly 

                                                 

10
 Joseph Broach; E-mail: jbroach@pdx.edu 

11
 There are new bicycle network links in the Portland area not included in this network, and so in some 

cases these links could not be matched to the correct link (resulting in matching to a nearby link).  
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modified to work with ORcycle’s data structure. The scripts were developed based on 

algorithms from Schuessler and Axhuasen (Schuessler, Axhausen, and Zurich 2009; 

Schuessler and Axhausen 2009) and took several factors into account: 

1. Proximity of the GPS points to eligible links in the network 

2. Topological connectivity of the precedent and antecedent links in the bicycle 

network 

3. Rejection of “spurious” u-turns 

More in-depth description of the geo-matching algorithm is available in (Dill and Gliebe 

2008). Only trips that took place within Metro’s jurisdiction could be matched to the 

bicycle network, and only trips that met filtering criteria (minimum trip length, maximum 

trip speed) were left in the final match set. Of 780 potential trips, only 616 (79%) were 

geo-matched given the above criteria. The 616 geo-matched trips were made by 148 

unique users.    

In addition to the GPS trace, users filled out mandatory and optional survey questions 

after recording a trip. Missing survey responses were imputed for the statistical modeling 

in section 5, but the sample description in section 4 uses the raw data.  

 Reports 3.2.3

Report data came in three primary groups: location, survey question responses, and a 

photo. A report was located either using the GPS location of the smartphone device or by 

allowing users to optionally input a custom location by panning and zooming to the 

position of the report on an interactive map. Users filled out mandatory and optional 

survey questions after recording a report. Users could also optionally upload a photo 
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along with their report, which could potentially provide researchers and planners with 

more information about the nature of the reported problem.  

3.3 SAMPLE SELECTION 

ORcycle was publicized shortly after its release through internet and e-mail campaigns 

led by ODOT and the project PI. Due to time constraints, only users created and 

trips/reports recorded between the initial deployment (November 3
rd

, 2014) and March 

31
st
, 2014 were used for analysis within this thesis. However, the application is still 

collecting data, so the conclusions herein only apply to this specific sample of users, 

trips, and reports.  

3.4 DATA ANALYSIS 

Data analysis also took place primarily within the R coding environment. Data could be 

pulled directly from the remote MySQL database where it is securely stored and then 

statistics and spatial analyses could be automated and conducted repeatedly as new 

information flowed into the SQL database from users.  
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4. SAMPLE CHARACTERISTICS 

4.1 USER CHARACTERISTIC DATA 

Users were asked several optional questions that they could answer upon first opening the 

application or anytime thereafter. The questions consisted of two main groups: one group 

evaluated a user’s bicycling attitudes, and the other documented a user’s demographic 

characteristics.  

Upon downloading ORcycle, each installation was given a unique “user” identity. 

Associated with that user identity were the responses to all the user-related survey 

questions explored below. The user sample considered herein included users that were 

“created” (i.e. downloaded the application and uploaded at least one trip or report) 

between the application release on November 1st, 2014 and March 31
st
, 2015. User 

creation rates and the cumulative number of users created over the study period are 

graphed in Figure 8 and Figure 9. There was an initial surge in user participation just 

after the application release with 226 users by December 1
st
, but the number of new users 

slowed to a nearly constant rate (~1.4 users per day) of creation within a month of the 

release. There were a total of 381 users in the sample considered herein.  
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Figure 8: Users created per day during study period 

 

Figure 9: Cumulative user count over study period 
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 Smartphone platform 4.1.1

Users could download and operate the ORcycle application for either iOS (e.g. iPhone) or 

Android (e.g. Samsung Galaxy, Google Nexus) operating system platforms. When a user 

downloaded ORcycle and submitted at least one piece of data (either a trip or a report), 

we could differentiate between those using Android or iOS devices.  Figure 10 indicates 

that the majority of users (67%) used ORcycle on Android devices. The U.S. smartphone 

market is (as of late 2014
12

) marginally led by Android (53%), with iOS comprising 42% 

of the market and competitors like Microsoft and Blackberry comprising the remainder of 

smartphone devices. Among the initial sample of users of ORcycle, the proportion of 

Android users was higher than the nationwide market average.  

 

Figure 10: User distribution by platform 

 Age 4.1.2

Users were asked to indicate which age group they belonged to from among seven 

options. Age category distribution within the sample is illustrated in Figure 11. Within 

                                                 

12
 http://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-

states/ 
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the sample, the majority of users (52%) are between 25 and 44. There was a negligible 

amount of under-18 users. 17% of users chose not to provide information about their age. 

 

Figure 11: Age distribution of users 

 Gender 4.1.3

Users were asked to indicate which gender group they identified with from among three 

options. Gender distribution among the user sample is illustrated in Figure 12. 68% of 

users identified as males and 15% as females. These results indicated a sample bias 

towards males, which is typical for studies of cycling behavior (see literature review). 

17% of users declined to provide information about their gender group. 

 

Figure 12: Gender distribution among users 

 Ethnicity 4.1.4

Users were asked to indicate which ethnic group they identified with from among six 

options. The ethnicity distribution among the user sample is illustrated in Figure 13. 70% 
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of users identified as “White American”, with less than 5% each of the other available 

ethnicity categories. 20% of users declined to provide information about their ethnicity.  

Portland (where many of the users are located – see sections 4.3.6, 5.3.1.3, and 4.4.1.5 ) 

has a substantial white population (76% in 2010
13

). Oregon also has a large white 

population (84% in 2010). Though cycling studies are typically biased towards white 

demographics (see literature review), the proportion of ORcycle users that are white 

seems to be in order with the ethnicity makeup of Portland and Oregon.  

 

Figure 13: Ethnicity distribution among users 

 Occupation 4.1.5

Users were asked to indicate their occupation from among five choices. The occupation 

distribution among the user sample is illustrated in Figure 14. 68% of users indicated that 

they were employed and 8% of users indicated they were students. 18% of users declined 

to provide information about their occupation. 

                                                 

13
 http://quickfacts.census.gov/qfd/states/41/4159000.html 
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Figure 14: Occupation distribution among users 

 Household Income 4.1.6

Users were asked to indicate which income group their household fell into from among 

eight options. The household income group distribution among the user sample is 

illustrated in Figure 15. The majority of users fell into the middle to high-income 

categories. This indicates a potential sample bias towards higher income households. 

25% of users declined to provide information about their household income. 

 

Figure 15: Household income distribution among users 

 Household Workers 4.1.7

Users were asked to indicate the number of workers in their household from among four 

options. The household worker category distribution among the user sample is illustrated 

in Figure 15. The majority of users (72%) indicated that they lived in one or two worker 
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households. 18% of users declined to provide information about the number of workers in 

their households. 

 

Figure 16: Household workers distribution among users 

 Household Vehicles 4.1.8

Users were asked to indicate the number of vehicles their household owned from among 

four categories. The household vehicle category distribution among the user sample is 

illustrated in Figure 17. The majority of users (64%) indicated that they lived in one or 

two vehicle households. A substantial proportion of users (12%) indicated that they lived 

in zero vehicle households, which may indicate captive users or a sample bias towards 

those very invested in a “bicycling lifestyle”. 16% of the sample declined to provide 

information about the number of vehicles owned in their household. 

 

Figure 17: Household vehicles distribution among users 
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 Household Workers to Vehicles Ratio 4.1.9

The number of household vehicles was divided by the number of household workers to 

calculate a vehicles/workers ratio. This ratio could be used as an indicator of the vehicle 

accessibility within a household. The mean vehicles/workers ratio was close to one, but 

there were a number of users with ratios below one (104 users). The distribution of the 

vehicles/workers ratio is summarized in Table 42 and Figure 18.   

Table 42: Vehicles/Workers Distribution Summary 

Statistic N Mean St. Dev. Min Max 

Vehicles/Workers Ratio 314 1.054 0.579 0.250 4.000 

 

Figure 18: Vehicles/workers ratio distribution among users 
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 Number of Bicycles 4.1.10

Users were asked to indicate the number of bicycles that they personally owned from 

among five options. The number of bicycles distribution among the user sample is 

illustrated in Figure 19.  Proportions among the choices were fairly evenly spread (with 

the exception of those who owned zero bicycles). 15% of users declined to provide this 

information. 

 

Figure 19: Number of bicycles among users 

 Bicycle Types 4.1.11

Users were asked to indicate the types of bicycles that they owned from among seven 

options, with the ability to select multiple choices. The bicycle type distribution among 

the user sample is illustrated in Figure 20. 61% of the sample indicated they owned a 

commuter bicycle (with gears), while 39% of the sample indicated they owned a 

racing/road bike and/or a trail/cyclocross/mountain bike. 18% of the sample indicated 

they owned other types of bicycles not available within the selection set. 15% of the 

sample declined to provide any information about their bicycle types. 
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Figure 20: Bicycle type distribution among users 

 Cycling Frequency 4.1.12

Users were asked to indicate how often they ride a bicycle from among four choices. The 

cycling frequency distribution among the user sample is illustrated in Figure 21. 50% of 

users indicated that they bike “nearly every day” while 22% of users indicated that they 

biked “a few times per week”. This indicates there may be sample bias towards frequent 

cyclists. 15% of users declined to provide information about their cycling frequency. 

 

Figure 21: Cycling frequency distribution among users 

 Preferred Cycling Weather 4.1.13

Users were asked to indicate their preferred cycling weather from among four choices. 

The cycling weather distribution among the user sample is illustrated in Figure 22.  The 

majority of users (67%) indicated that they would bicycle “In any kind of weather”. This 
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may indicate a bias towards more “serious” cyclists. 14% of users declined to provide 

information about their preferred cycling weather. 

 

Figure 22: Preferred cycling weather distribution among users 

 Cycling Ability 4.1.14

Users were asked to indicate their cycling ability from among five choices. The cycling 

ability distribution among the user sample is illustrated in Figure 23.  33% of users 

indicated they had “Very High” cycling abilities 32% indicated they had “High” cycling 

abilities. Less than 2% of users indicated they had “Low” or “Very Low” cycling 

abilities. These results indicate a sample biased towards more skilled and/or experienced 

cyclists. 17% declined to provide information about their cycling ability. 

 

Figure 23: Cycling ability distribution among users 
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 Rider Type 4.1.15

Users were asked to indicate why they rode a bicycle from among six choices. The rider 

type distribution among the user sample is illustrated in Figure 24. 28% of users indicated 

that they rode a bicycle “For nearly all my trips” and 19% of users indicated that they 

rode a bicycle “To and from work”. 15% of users declined to provide information about 

what sort of bicycle rider they are. 

 

Figure 24: Rider type distribution among users 

4.2 USER SAMPLE BIAS 

Where possible, the ORcycle sample was compared with the Oregon Household Activity 

Survey (OHAS) sample to detect statistically significant differences. The OHAS sample 

is assumed to be more representative of the Oregon cycling and general population due to 

a more rigorous sampling methodology. While the OHAS sample could still err from a 

“true” representation of the Oregon population, comparing the two samples can still help 

to estimate where biases exist in the ORcycle sample and how large they are. The entire 

OHAS sample and a subsample of bicycle commuters were compared against to gauge 
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ORcycle’s sample bias. The full tables comparing the two samples are supplied in 

Appendix 9.1. The results of the chi-square comparisons are presented below in  

Table 43.  

Table 43: Chi-square testing of user sample bias 

Demographic 
Characteristic 

Reference 
Table 

ORcycle vs. OHAS Bike 
Commuters 

ORcycle vs. OHAS Entire 
Sample 

Chi-
Square 

DF Significance 
Chi-
Square 

DF Significance 

Age Table 65 89.4 6 p<0.001 592 6 p<0.001 

Gender 
 
Table 66 

28.4 1 p<0.001 157 1 p<0.001 

Ethnicity Table 67 33.3 5 p<0.001 47.5 5 p<0.001 

Household Income 
 
Table 68 

15.5 7 p<0.05 57.6 7 p<0.001 

Household Workers Table 70 61.4 3 p<0.001 67.9 3 p<0.001 

Household Vehicles Table 69 39.5 3 p<0.001 123 3 p<0.001 

All of the tests resulted in statistically significant differences, though some had greater 

differences than others (as gauged by the chi-square statistic). However, the ORcycle 

sample was less different from the OHAS bike commuter sample than it was from the 

entire OHAS sample, which indicates that ORcycle was reaching Oregon’s cycling 

population to some degree.  

4.3 TRIP DATA 

Trip data came in two distinct types: the GPS coordinate trace of the trip and the 

responses to the post-trip survey questions. All the trips considered herein were logged 

between the application release on November 1
st
, 2014 and March 31

st
, 2015. The trip 

recording rate and the cumulative number of trips recorded are graphed in Figure 25 and 

Figure 26. As with user creation, there was an initial surge in trip recording following the 

release of the app, but trip recording activity leveled off to a slower nearly constant rate 
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by the end of December 2014. Overall, the average trip-recording rate was 5.6 trips per 

day. 780 trips are considered in the following sample description.  

 

Figure 25: Rate of trip recording over study period 
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Figure 26: Cumulative number of trips recorded over study period 

 Trip Purpose 4.3.1

Users were asked to indicate for each trip they recorded what their primary trip purpose 

was from among eight choices. This question was mandatory upon recording a trip. The 

trip purpose distribution among the trip sample is illustrated in Figure 27. 55% of trips 

were indicated to be commuting trips, with the next highest category being 

“shopping/errands” at 14%. This indicates that most of the trips in the sample were taken 

for utilitarian purposes.  
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Figure 27: Trip Purpose Distribution among Trips 

 Route Frequency 4.3.2

Users were asked to indicate for each trip they recorded how often they rode that 

particular route from among six choices. This question was mandatory upon the 

recording of a trip. The route frequency distribution among the trip sample is illustrated 

in Figure 28. 47% of the routes taken on trips were indicated as being ridden “several 

times per week” by the user. Other trips were indicated to be ridden several times per 

month (22%) and several times per year (18%).  

 

Figure 28: Route Frequency Distribution among Trips 

 Route Comfort 4.3.3

Users were asked to indicate how comfortable they were with the route they had taken 

upon finishing recording each trip. This question was mandatory. The route comfort 
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distribution among the trip sample is illustrated in Figure 29. 29% of trips did not have an 

indicated comfort level (user declined to provide this information). 24% of trips were 

indicated to have an “average” comfort level, while 28% of trips were indicated to have a 

“Good (for most riders)” comfort level.  

 

Figure 29: Route Comfort Distribution among Trips 

 Route Preferences 4.3.4

Users were asked to indicate why they chose their particular route for each trip they 

recorded. This question was mandatory and could have been answered with multiple 

responses from among the twelve available responses. The route choice preferences 

distribution among the trip sample is illustrated in Figure 30. 59% of trips were indicated 

to have been taken on routes that were chosen because they were “direct/fast”.  Other 

popular choices were “It has good bicycle facilities” (37% of trips), and “It has low 

traffic/low speeds” (30% of trips).  
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Figure 30: Route Preferences Distribution among Trips 

 Route Stressors 4.3.5

Users were asked to indicate what objects or other transportation modes they were 

concerned about conflicts with along the route they had ridden for their recorded trip. 

This question was optional. The route stressors distribution among the trip sample is 

illustrated in Figure 31. 16% of trips did not have any route stressors indicated (users 

declined to provide this information). On 57% of trips, users indicated that they were 

concerned about conflicts with auto traffic. Other high categories of concern included 

large commercial vehicles (27%) and parked vehicles (32%).   
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Figure 31: Route Stressors Distribution among Trips 

 Geography 4.3.6

Geographical analysis was used to determine which state, county, and city the majority of 

the coordinates of a trip fell inside. The geographic distribution of trips among states is 

illustrated in Figure 32. 98% of the trips took place within the state of Oregon. This was 

expected, since the application was marketed to Oregon users. 

 

Figure 32: State Distribution among Trips 

The geographic distribution of trips among counties is illustrated in Figure 33. 80% of the 

trips were taken within Multnomah County.  
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Figure 33: County Distribution among Trips 

The geographic distribution of trips among cities is illustrated in Figure 34. 80% of the 

trips were taken within the city of Portland.  

 

Figure 34: City Distribution among Trips 

The high concentration in Multnomah County and the City of Portland indicates a bias in 

the sample towards Portland area users.  
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 Trip Statistics 4.3.7

Basic statistics for trip times and distances were calculated and separated by trip purpose. 

Several boxplots are presented below, where the solid black line in the middle of the box 

indicates the median value, the box itself indicates the inter-quartile range, and the dotted 

lines indicate the overall range excluding outliers; which are indicated as open circles.  

Trip duration was first calculated, with distributions varying substantially among 

different trip purposes. These distributions are presented in Figure 35. The overall median 

trip time was 29 minutes. Exercise trips had the highest median trip duration with 57 

minutes, while transit access trips had the lowest median trip duration with 11 minutes.  

 

Figure 35: Boxplots of Trip Duration distribution by Trip Purpose 
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Trip distance was then calculated, with distributions varying among different trip 

purposes. These distributions are presented in Figure 36. The overall median trip distance 

was 4.7 miles. Exercise trips had the highest median trip distance with 11.1 miles, while 

transit access trips had the lowest median trip distance with 1.8 miles. 

 

Figure 36: Boxplots of Trip Distance distribution by Trip Purpose 

Average trip speed was then calculated by dividing trip distance by trip duration. The 

distribution of the average speed by trip purpose is presented in Figure 37. The overall 

median average speed was 9.7 miles per hour. The highest median average speed was for 

commute trips at 10.6 miles per hour, and the lowest median average speed was for 

“other” trips at 7.3 miles per hour.  
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Figure 37: Boxplots of Average Speed by Trip Purpose 

Start time distributions for the different trip purposes are presented in Figure 38, with a 

higher concentration of points indicating more trips starting around that time. The 

commute trip distribution was bi-modal, with many trips starting around 8 AM or 5 PM. 

The other trip purpose start times were more evenly distributed throughout the day.  
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Figure 38: Trip Start Time Distribution by Trip Purpose 

Finish time distributions for the different trip purposed are presented in Figure 39 with a 

higher concentration of points indicating more trips finishing around that time. The 

commute trip distribution was multi-modal, with many trips finishing around 8 AM or 5 

PM. The other trip purpose finish times were more evenly distributed throughout the day.  
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Figure 39: Trip Finish Time Distribution by Trip Purpose 

4.4 CRASH EVENT AND SAFETY ISSUE REPORT DATA 

Report data was collected in three distinct pieces: the report time and location, the report 

question responses, and an optionally included report photo. Reports were also divided 

into two categories: safety/infrastructure issues and crash events. The rate of report 

recording and the cumulative number of reports recorded over the study period are 

graphed in Figure 40 and Figure 41. Like users and trips, the rate of report recording 

initially surged with the release of the app but leveled off to a nearly constant rate shortly 

after.  The average report recording rate was 1.7 reports per day. There were 215 reports 

considered in this study, with 153 of them being safety/infrastructure issue reports and 62 

of them being crash even reports.  
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Figure 40: Report recording rate over study period 

 

Figure 41: Cumulative report count over study period 
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 Crash Event Reports 4.4.1

All questions asked for the crash event reports were mandatory upon reporting a crash 

event.  

 Severity 4.4.1.1

When documenting a crash event report, users were asked to indicate the severity of the 

crash event. Users could indicate, on a 1-5 scale, that the crash event was a “near-miss” 

or that it resulted “major injuries”. The distribution of severity among crash event reports 

is illustrated in Figure 42. The majority of crash event reports (62%) were indicated to be 

near misses.  

 

Figure 42: Severity Distribution among Crash Reports 

 Conflict With 4.4.1.2

When documenting a crash report, users were asked to indicate what vehicle or object 

conflicted with them during the crash event from among ten options (with an “other” 

option to indicate a custom response). The conflicting vehicle/object distribution among 

crash event reports is illustrated in Figure 43.  
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Figure 43: Conflict Type Distribution among Crash Reports 

 Actions 4.4.1.3

Upon reporting a crash event, users were asked to indicate the actions of themselves or 

another road user that they felt contributed to the crash event. Users could select from 

among ten options (including an “other” option with custom text input). The crash action 

distribution among crash events is illustrated in Figure 44.  

 

Figure 44: Crash Actions among Crash Reports 
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 Reasons 4.4.1.4

Upon reporting a crash event, users could indicate what reasons they felt contributed to 

the crash event from among eleven options (including an “other” option with custom text 

input). The crash reason distribution among crash events is illustrated in Figure 45.  

 

Figure 45: Crash Reasons among Crash Reports 

 

 Geography 4.4.1.5

Geographic analysis was used to separate crash event reports by state. 95% of the crash 

event reports were located within Oregon. This was expected as the application was 

marketed to Oregon users. The geographic distribution of crash reports among states is 

illustrated in Figure 46. 
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Figure 46: State Distribution among Crash Reports 

Geographic analysis was used to separate crash event reports by county.  92% of the 

reports were located in Multnomah County. The geographic distribution of crash reports 

among counties is illustrated in Figure 47. 

 

Figure 47: County Distribution among Crash Reports 

Geographic analysis was used to separate crash event reports by city. 92% of the reports 

were located within the city of Portland. The geographic distribution of crash reports 

among cities is illustrated in Figure 48. 

 

Figure 48: City Distribution among Crash Reports 

The high concentration of reports in Multnomah County and the City of Portland 

indicates a bias in the sample towards the Portland area.  
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 Safety Issue Reports 4.4.2

Both of the questions asked when reporting a safety issue were mandatory to answer.  

 Issue Type 5.3.1.1

When users reported a safety/infrastructure issue, they were asked to identify what type 

of issue they were reporting. Users could select one or more of fourteen options and 

provide custom text input for the “other” option. The issue type distribution among safety 

issue reports is illustrated in Figure 49. 33% of the reports had “High traffic volume” 

indicated, and 32% of the reports had “other” indicated.  

 

Figure 49: Issue Type Distribution among Safety Issue Reports 
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 Urgency 5.3.1.2

When reporting a safety issue, users were asked to indicate the urgency of that issue. 

Users could select one option on a 1-5 scale of urgency, with 1 being the least urgent and 

5 being the most urgent. The urgency distribution among safety issue reports is illustrated 

in Figure 50.The majority of issues were concentrated in the 3 and 4 categories (53%).  

 

Figure 50: Urgency Distribution among Safety Issue Reports 

Geographic analysis was used to separate issue reports by state. The geographic 

distribution of safety issue reports among states is illustrated in Figure 51. ORcycle was 

developed to collect data in Oregon, but nearly 10% of the issue reports came from other 

states.  

 Geography 5.3.1.3

 

Figure 51: State Distribution among Safety Issue Reports 

Geographic analysis was also used to separate issue reports by county. The geographic 

distribution of safety issue reports among counties is illustrated in Figure 52. The 

majority (67%) of reports were made in Multnomah County (where Portland is located). 
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Nearly 10% of the reports were made in “other” counties, which included reports outside 

of Oregon.  

 

Figure 52: County Distribution among Safety Issue Reports 

Geographic analysis was also used to separate issue reports by city. The geographic 

distribution of safety issue reports among states is illustrated in Figure 53. The majority 

of reports (67%) were made within the city of Portland. 18% of the reports were made in 

the “other” category, which was comprised of both reports outside of Oregon and reports 

in unincorporated areas of Oregon.  
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Figure 53: City Distribution among Safety Issue Reports 

The high concentration of reports in Multnomah County and the City of Portland 

indicates a bias in the sample towards the Portland area.  
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5. TRIP COMFORT ANALYSIS 

5.1 MODEL FORMULATION 

After finishing a trip, users could
14

 indicate how comfortable they felt the route was (see 

section 4.3.3 for more information on this question) on a one (very bad) through five 

(very good) scale. Where the user did not answer this question, the response was imputed 

as a function of their other survey responses (see section 3.2.2 for more info on multiple 

imputation procedure).  The response to the “route comfort” question serves as the 

dependent variable for the following analyses and is meant to be roughly analogous to 

Bicycle Level of Service and Level of Traffic Stress (see section 2.1) measures. Using a 

cumulative logistic regression approach as is used in several level of service models 

(Jensen 2007; Ali, Cristei, and Flannery 2012; Foster et al. 2015), route comfort is 

modeled based on several groups of variables outlined below.  

Logistic regression models are used to model categorical dependent variables, whereas 

standard linear regression models are used to model continuous dependent variables. 

Cumulative logistic regression models (also known as ordinal logistic regression models) 

are used to model categorical dependent variables of an ordered nature. Route comfort is 

clearly ordered, with “very bad” representing a condition worse than “bad”, “bad” 

                                                 

14
 In ORcycle version 2.2.0, released on March 7

th
, 2015, this question was made mandatory to answer 

upon finishing a trip.  
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representing a condition worse than “average”, and so on. The cumulative logistic 

regression model enables interpretations of the direction and magnitude of the change in 

route comfort with respect to some independent variable. Using a standard multinomial 

logistic regression model would result in a loss of information pertaining to the ordered 

nature of the dependent variable, and using a linear regression model may provide an 

incorrect model given the different distribution of residuals
15

 associated with continuous 

data. The cumulative logistic regression models presented herein were constructed using 

the R package “ordinal”
16

, which offers many tools for statistically modeling ordinal 

outcome variables.  

A geo-matching script was used that filtered out trips that did not meet minimum criteria 

(trip length and speed) and then matched the remaining trips to a network model. Only 

trips that passed initial filtering and could be geo-matched to Metro’s bicycle/street 

network were considered within the following models; resulting in a final sample of 616 

trips from 148 unique users.  More details on the geo-matching process are given in 

section 3.2.2.  

Given that this thesis investigates a unique dataset with limited related research, variable 

groups are first explored separately before investigating the use of a pooled regression 

                                                 

15
 Categorical data typically have distributions better modeled by logistic functions (as opposed to linear 

functions). However, with more ordered categories added, the distribution begins to approach normal and is 

thus more eligible for a linear model.  

16
 http://www.cran.r-project.org/package=ordinal/ 
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model. The single variable group model results are presented in section Error! 

eference source not found..  A pooled regression model is considered in section 0. 

Finally, interpretations of the model exploration are given in section 5.4.  

5.2 SINGLE VARIABLE GROUP MODELS 

In all of the models tested, the route comfort rating was the dependent variable. The 

following independent variable groups were first explored separately: (1) trip attributes 

(length, duration, and average speed), (2) trip temporal characteristics, (3) user-reported 

trip characteristics (e.g. trip purpose), (4) user attitudes and socio-demographics (5) 

bicycle facility and street typology, (6) topography, (7) traffic volume, (8) posted traffic 

speed, and (9) weather characteristics.   

For each variable group, the variable definitions are first presented. Within the presented 

variable definition tables, the variable type (e.g. continuous or categorical) is designated 

and the range of possible values of the variable within the model is described. Measures 

of central tendency are then presented (i.e. median for continuous and mode for 

categorical). Stacked bar plots are then referenced that illustrate the relative proportions 

of route comfort ratings among different levels of each independent variable (see 

Appendix 9.2). For continuous variables, a single variable cumulative logit model was 

tested for each variable to assess the relationship of that variable to route comfort (in 

terms of significance, magnitude, and direction) alone. For categorical variables, the Chi-

Square test of independence was used to test for a statistically significant relationship 

between the variable of interest and route comfort. In this test, the null hypothesis would 
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be that the variable of interest has no relationship with route comfort; which would be 

rejected in the case of the Chi-Square statistic being statistically significant. 

Cumulative logistic regression models incorporating all potential variables within each 

variable group were then explored; these exploratory models are presented in Appendix 

A.3. After running backwards stepwise regression (using the Akaike Information 

Criterion) and removing insignificant variables, final cumulative logistic regression 

model specifications are then presented. For all of the models, a description of the 

significant coefficients is presented along with regression tables.  

Odds ratios are also presented along with the model coefficients. Odds ratios are more 

readily interpretable than the model coefficients, as they describe the odds of an increase 

in the independent variable corresponding to an increase in route comfort. For example, 

an odds ratio of 2 is interpreted as “an increase of one unit in the independent variable 

results in twice the odds that a route will be rated more comfortably than a given comfort 

rating”. Conversely, an odds ratio of 0.5 is interpreted as “an increase of one unit in the 

independent variable results in half the odds that a route will be rated more comfortably 

than a given comfort rating, or that there are twice the odds that a route will be rated less 

comfortably than a given comfort rating”. Forest plots
17

 illustrating the direction, 

                                                 

17
 Forest plots are plots of the odds ratios of logistic regression model coefficients and their corresponding 

95% confidence intervals.  
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magnitude (odds ratio), and variability (confidence interval) of the independent variables’ 

relationships with route comfort are also presented. 

 Trip Attributes 5.2.1

Three trip attributes were calculated: trip length (miles), trip duration (minutes), and 

average trip speed (miles per hour). These attributes had to be calculated from the geo-

matched results, as calculations from the raw GPS coordinates yielded erroneous results 

because of the tendency for users to leave ORcycle recording GPS points longer than 

they were actually traveling for. These trip attribute variables were tested for significant 

relationships with route comfort. The corresponding variable definitions are outlined in 

Table 44.
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Table 44: Trip attribute variable definitions 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route Comfort 
Distribution 
Plot (in 
Appendix 0) 

z-statistic in 
single 
variable 
cumulative 
logit 

Statistical 
Significance  

Trip length Continuous Min: 0.30 
miles 
Max: 29.67 
miles 

4.75 miles Figure 65 -2.389 p<0.05 

Trip 
duration 

Continuous Min: 2.51 
minutes 
Max: 166 
minutes 

29.38 
minutes 

Figure 66 0.087 Not 
significant 

Average 
speed 

Continuous Min: 0.63 
mph 
Max: 16.83 
mph 

9.70 mph Figure 67 -2.282 p<0.05 
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After several exploratory models (see section 1.3), a final regression model was selected 

for the trip attribute variables using a backwards stepwise regression approach. 

Statistically insignificant variables were dropped from the final model. The final model 

specification is presented in Table 45, with the odds ratios illustrated in Figure 54. The 

final model only included average speed, resulting in a statistically significant 

relationship (β=-0.09, OR=0.91, p<0.05) that decreased route comfort as average speed 

increased.  

Two interpretations could be given to this result: (1) cyclists that travel faster are less 

comfortable or (2) cyclists that are less comfortable travel faster.  

Table 45: Final trip attribute model specification (cumulative logistic) 

 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
Average Speed -0.092** (0.037) 

 
Observations 616 

Log Likelihood -778.519 

 
Note: *p<0.1; **p<0.05; ***p<0.01 
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Figure 54: Forest plot of odds ratios of coefficients for final trip attributes model 

(whiskers correspond to 95% CI) 

 

 Temporal Characteristics 5.2.2

Temporal characteristics were tested to explore how route comfort varied over time of 

day and day of the week. The time a trip started was used to categorize these temporal 

variables into two groups representing the difference between weekday and weekend 

travel as well as the difference between peak time travel and off-peak time travel. The 

corresponding variable definitions are outlined in Table 46. 
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Table 46: Temporal characteristics variable definitions 

Variable 
Description 

Variable 
Type 

Possible Values of 
Variable (range 
for Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

Chi-
Square, 
DF 

Statistical 
Significance 

Trip day-of-
week 
category 

Categorical  Weekday 

 Weekend 

Weekday Figure 68 10.57, 
8 

p<0.05 

Trip start 
time 
category 

Categorical  Off-Peak 
Night (6:30 
PM to 7:00 
AM) 

 Peak AM 
(7:00 AM-
9:00 AM) 

 Off-Peak Day 
(9:00 AM to 
4:30 PM) 

 Peak PM 
(4:30 PM to 
6:30 PM) 

Off-Peak 
Day 

Figure 69 8.65, 
18 

Not 
significant 
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After several exploratory models (see section 1.A.3.2), a final regression model was 

selected for the temporal characteristics variables using a backwards stepwise regression 

approach. Statistically insignificant variables were dropped from the final model. The 

final model specification is presented in Table 47, with the odds ratios illustrated in 54. 

Trips taking place on a weekday were rated less comfortable than those taken on 

weekends (β=-0.43, OR=0.65, p<0.05). The other variables tested were found to be 

insignificant and were not included in the final model specification.  

Table 47: Final temporal characteristic model specification (cumulative logistic) 

 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
Trip took place on weekday  
(reference = weekend) 

-0.428** (0.212) 

 
Observations 616 

Log Likelihood -779.480 

 
Note: *p<0.1; **p<0.05; ***p<0.01 

 

 

Figure 55: Forest plot of odds ratios of coefficients for final temporal characteristics 

model (whiskers correspond to 95% CI) 
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 Self-Reported Trip Characteristics 5.2.3

The other trip survey question responses (besides route comfort, which was used as the 

dependent variable) were explored for significant effects on route comfort.  The 

corresponding variable definitions are outlined in Table 48 and Table 49. 
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Table 48: Trip question response variable definitions 

Variable 
Description 

Variable 
Type 

Possible Values 
of Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

Chi-
Square, 
DF 

Statistical 
Significance 

Trip purpose Categorical  Commute 

 School 

 Work 
related 

 Exercise 

 Social or 
Entertainme
nt 

 Shopping or 
Errands 

 Transport 
Access 

 Other 

Commute Figure 70 58.96, 
38 

p<0.01 

Indication of 
often the 
user takes 
this particular 
route 

Ordinal 
categorical 

1) First time 
ever 

2) Once per 
year or less 

3) Several 
times per 
year 

4) Several 
times per 
month 

5) Several 
times per 
week 

Several 
times per 
week 

Figure 71 23.91, 
23 

p<0.10 
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Table 49: Trip question response variable definitions (continued) 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

z-statistic in 
variable 
group 
cumulative 
logit model 

Statistical 
Significance 

User indicated 
they chose this 
route because it 
was direct or 
fast. 

Binary 
categorical 

True/False True Figure 72  -8.49 p<0.001 

User indicated 
they chose this 
route because it 
has good bicycle 
facilities. 

Binary 
categorical 

True/False False Figure 72 4.08 p<0.001 

User indicated 
they chose this 
route because it 
is enjoyable or 
has nice scenery. 

Binary 
categorical 

True/False False Figure 72 1.97 p<0.05 

User indicated 
they chose this 
route because it 
is good for a 
workout.  

Binary 
categorical 

True/False False Figure 72 -0.54 Not 
significant 

User indicated 
they chose this 
route because it 
has low traffic or 
low vehicle 
speeds. 

Binary 
categorical 

True/False False Figure 72 3.51 p<0.001 

User indicated 
they chose this 
route because it 
has few busy 
intersections. 

Binary 
categorical 

True/False False Figure 72 2.76 p<0.01 

User indicated 
they chose this 
route because it 
has few and/or 
easy hills. 

Binary 
categorical 

True/False False Figure 72 0.64 Not 
significant 

User indicated 
they chose this 
route because it 
has other 

Binary 
categorical 

True/False False Figure 72 1.64 Not 
significant 
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riders/people. 

User indicated 
they chose this 
route because it 
is good for 
families/kids. 

Binary 
categorical 

True/False False Figure 72 3.71 p<0.001 

User indicated 
they chose this 
route because 
they do not know 
another route.  

Binary 
categorical 

True/False False Figure 72 -3.24 p<0.01 

User indicated 
they chose this 
route because 
they found it 
online or using 
their phone.  

Binary 
categorical 

True/False False Figure 72 1.28 Not 
significant 

User indicated 
they chose this 
route because of 
some other 
reason.  

Binary 
categorical 

True/False False Figure 72 -0.82 Not 
significant 

User indicated 
that on this route 
they were not 
concerned with 
traffic stressors.  

Binary 
categorical 

True/False False Figure 73 4.23 p<0.001 

User indicated 
that on this route 
they experienced 
discomfort as a 
result of auto 
traffic.  

Binary 
categorical 

True/False False Figure 73 -2.81 p<0.01 

User indicated 
that on this route 
they experienced 
discomfort as a 
result of large 
commercial 
vehicles/trucks.  

Binary 
categorical 

True/False False Figure 73 -8.11 p<0.001 

User indicated 
that on this route 
they experienced 
discomfort as a 
result of public 
transport. 

Binary 
categorical 

True/False False Figure 73 -1.57 Not 
significant 

User indicated 
that on this route 

Binary 
categorical 

True/False False Figure 73 0.92 Not 
significant 
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they experienced 
discomfort as a 
result of parked 
vehicles.  

User indicated 
that on this route 
they experienced 
discomfort as a 
result of other 
cyclists. 

Binary 
categorical 

True/False False Figure 73 2.17 p<0.05 

User indicated 
that on this route 
they experienced 
discomfort as a 
result of 
pedestrians. 

Binary 
categorical 

True/False False Figure 73 1.62 Not 
significant 

User indicated 
that on this route 
they experienced 
discomfort as a 
result of auto 
traffic. 

Binary 
categorical 

True/False False Figure 73 0.68 Not 
significant 
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After several exploratory models (see section 1.A.3.3), a final regression model was 

selected for the user question response variables using a backwards stepwise regression 

approach. Statistically insignificant variables were dropped from the final model. The 

final model included trip purpose, route frequency, route choice preferences, and route 

stressors variables. The final model specification is presented in Table 50, with the odds 

ratios illustrated in Figure 56.  

Trip purpose was included in the final model, with the reference case being commute 

trips. Shopping/errand trips were significantly (β=0.856, OR=2.53, p<0.01) more 

comfortable than commute trips. Work-related trips were significantly (β=-0.909, 

OR=0.40, p<0.05) less comfortable than commute trips. School trips were significantly 

(β=-1.01, OR=0.36, p<0.05) less comfortable than commute trips.  

Route frequency was included in the final model, with increased route frequency 

corresponding to increased route comfort (β=0.598, OR=1.82, p<0.05). This result 

indicates that cyclists riding routes they ride often are more comfortable on those routes.  

Several route choice preferences (i.e. self-reported reasons why a user traveled on their 

particular route) were included in the model. Users who indicated they chose their route 

because it was direct or fast rated their trips as less comfortable (β=-2.767, OR=0.06, 

p<0.01). Users who indicated choosing their route because it was “good for a workout” 

also rated their trips as less comfortable (β=-1.66, OR=0.19, p<0.05). Users who 

indicated choosing their routes because it was “good for families/kids” rated their trips as 

more comfortable (β=2.03, OR=7.61, p<0.01). Users who indicated choosing their routes 
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because they did not know another route rated their trips as less comfortable (β=-1.71, 

OR=0.18, p<0.01).  

Route stressors (i.e. self-reported characteristics of the chosen route that made users 

uncomfortable or stressed) were included in the final model. Users who indicated they 

were not concerned about traffic stressors on their route rated their routes as more 

comfortable (β=2.13, OR=8.41, p<0.01). Users who indicated they were concerned about 

large commercial vehicles on their route rated that route as less comfortable (β=-1.87, 

OR=0.15, p<0.01). Users who indicated they were concerned about public transit 

vehicles on their route rated that route as less comfortable (β=-1.93, OR=0.14 p<0.01). 

Users who indicated they were concerned about parked vehicles along their route also 

rated their route as less comfortable (β=-1.05, OR=0.35, p<0.01). Finally, users who 

indicated they were concerned about pedestrians along their route also rated their route as 

less comfortable (β=-0.62, OR=0.54, p<0.01).  
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Table 50: Final trip question response model specification (cumulative logistic) 

 
Route Comfort Rating 

 
Coefficient (Standard Error) Number of Observations 

Route Stressors-'Not Concerned' 2.131*** (0.458) 26 

Route Stressors-'Large commercial vehicles or 
trucks' 

-1.865*** (0.365) 36 

Route Stressors-'Public transport' -1.932*** (0.487) 21 

Route Stressors-'Parked vehicles + being doored' -1.046*** (0.221) 109 

Route Stressors-'Pedestrians' -0.615*** (0.231) 109 

Route Preferences-'It is direct + fast' -2.767*** (0.277) 77 

Route Preferences-'It has good bicycle facilities' -0.507* (0.295) 51 

Route Preferences-'It is good for a workout' -1.661*** (0.352) 34 

Route Preferences-'It is good for families + kids' 2.025*** (0.544) 21 

Route Preferences-'I do not know another route' -1.710*** (0.384) 33 

Reference = Commute   

Trip Purpose-'School' -1.012** (0.432) 21 

Trip Purpose-'Shopping + Errands' 0.856*** (0.282) 97 

Trip Purpose-'Work-related' -0.909** (0.376) 29 

Route Frequency (Ordinal) 0.598** (0.273) 616 

 
 

Observations 616  

Log Likelihood -636.933  

 
 

Note: *p<0.1; **p<0.05; ***p<0.01  
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Figure 56: Forest plot of odds ratios of coefficients for final trip question response 

model (whiskers correspond to 95% CI) 

 

 User Attitudes and Socio-Demographic Characteristics 5.2.4

User survey question responses were explored for significant effects on route comfort. 

User question variable definitions are outlined in Table 51. 
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Table 51: User question response variable definitions 

Variable 
Description 

Variable 
Type 

Possible Values of 
Variable (range for 
Continuous 
variables) 

Median (for 
Continous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

Chi-
Square, 
DF 

Statistical 
Significance 

Age 
category 

Ordered 
categorical 

 Less than 18 

 18-24 

 25-34 

 35-44 

 45-54 

 55-64 

 65+ 

35-44 Figure 74 122.95, 
33 

 

p<0.01 

Gender 
category 

Categorical 

 Female 

 Male 

 Other 

Male Figure 75 81.57, 
13 

p<0.01 

Ethnicity 
category 

Categorical 

 African 
American 

 Asian 
American 

 Hispanic 

 Native 
American 

 White 
American 

 Other 

White 
American 

Figure 76 95.66, 
23 

p<0.01 

Occupation 
category 

Categorical 

 Employed 

 Student 

 Retired 

 Homemaker 

 Other 

Employed Figure 77 94.37,23 p<0.01 

Income 
category 

Ordered 
categorical 

1) Less than 
$14,999 

2) $15,000 to 
$24,999 

3) $25,000 to 
$34,999 

4) $35,000 to 
$49,999 

5) $50,000 to 
$74,999 

6) $75,000 to 
$99,999 

7) $100,000 to 
$149,999 

8) $150,000 or 
more 

$100,000 to 
$149,999 
 

Figure 79 100, 38 p<0.01 
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Number of 
household 
workers 

Ordered 
categorical 

1) 0 Workers 
2) 1 Worker 
3) 2 Workers 
4) 3 Workers or 

more 

2 workers Figure 78 29.04, 
18 

p<0.05 

Number of 
household 
vehicles 

Ordered 
categorical 

1) 0 vehicles 
2) 1 vehicle 
3) 2 vehicles 
4) 3 vehicles or 

more 

2 Vehicles Figure 80 71.21, 
18 

p<0.01 

Number of 
bicycles 
owned by 
user 

Ordered 
categorical 

1) 0 bicycles 
2) 1 bicycle 
3) 2 bicycles 
4) 3 bicycles 
5) 4 or more 

bicycles 

4 or more 
bicycles 

Figure 81 59.11, 
18 

p<0.01 

Cycling 
frequency 
category 

Ordered 
categorical 

1) A few times 
per year 

2) A few times 
per month 

3) A few times 
per week 

4) Nearly every 
day 

Nearly 
every day 

Figure 85 10.96, 
13 

Not 
significant 

Cycling 
weather 
category 

Categorical 

 In any kind of 
weather 

 When it does 
not rain 

 Usually warm 
and dry 
weather 

 Only with 
warm and dry 
weather 

In any kind 
of weather 

Figure 82 13.64, 
18 

p<0.1 

Rider ability 
category 

Ordered 
categorical 

1) Very Low 
2) Low 
3) Average 
4) High 
5) Very High 

Very High Figure 84 59.3, 23 p<0.01 

Rider type 
category 

Categorical 

 For nearly all 
my trips 

 To and from 
work 

 For recreation 
and/or 
exercise 

 For shopping, 
errands, or 

To and from 
work 

Figure 83 61.71, 
28 

p<0.01 
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visiting friends 

 Mainly to and 
from work, 
but 
occasionally 
for exercise, 
shopping, etc. 

 Other 
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After several exploratory models (see section 1.A.3.4), a final regression model was 

selected for the temporal characteristics variables using a backwards stepwise regression 

approach. Statistically insignificant variables were dropped from the final model; many 

of the user variables were dropped. The final model included gender, ethnicity, and 

occupation as independent variables. The final model specification is presented in Table 

52, with the odds ratios illustrated in Figure 57.  

Users identifying as white ethnicities were less comfortable than non-white (β=-1.40, 

OR=0.61, p<0.01), and users who were employed were more comfortable than non-

employed users (β=1.26, OR=3.51, p<0.01).  

Table 52: Final user question response model specification (cumulative logistic) 

 
Route Comfort Rating 

 
Coefficient (Standard Error) Number of Observations 

Ethnicity: White -1.399
***

 (0.25) 523 

Occupation: Employed 1.256
***

 (0.238) 545 

 
 

Observations 616  

Log Likelihood -746.631  

 
 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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Figure 57: Forest plot of odds ratios of coefficients for final user question response 

model (whiskers correspond to 95% CI) 

 

 Bicycle Facility and Street Type 5.2.5

After geo-matching (geo-matching process explained in section 3.2.2) trips to the 

Portland metropolitan area street/bike network, we were able to discern the bicycle 

facility and/or street type of the links used on each trip. Metro’s street categorization 

included over twenty categories, and their bicycle facility categorization included over 

ten categories. These categories were aggregated to test for contrasts of interest to the 

researchers. The typology used was adapted from the link typology used in the bicycle 

GPS study conducted by Dill and Gliebe (Dill and Gliebe 2008). The relevant vocabulary 

used in the typology is defined below:  

 Primary arterials are multi-lane roads that carry high traffic volumes at high 

speeds 

 Minor arterials are multi-lane roads that carry moderate traffic volumes at 

moderate speeds 

 Residential streets are two or one way streets primarily used for residential access 

 “Other” streets are those streets that did not fit into the other three categories 
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 Bicycle lanes are dedicated road space for cyclists delineated only by striping, 

with no lateral separation between bicyclists and motor vehicle traffic 

 Buffered bicycle lanes are similar to bicycle lanes, but they have extra buffer 

space allocated on the roadway using striping to laterally separate bicyclists from 

motor vehicle traffic. 

 Bicycle boulevards are low-traffic streets that have been designated for bicycle 

travel. They feature bicycle route signage and pavement markings, traffic calming 

features such as traffic circles or speed humps, and motor vehicle traffic diversion 

at major intersections.  

 Cycletracks (AKA protected bicycle lanes) have lateral separation enforced using 

some physical buffer, such as planters, plastic posts, parked cars, raised concrete 

barriers, or other treatments.   

 Separated paths are linear transportation facilities where motor vehicle traffic is 

prohibited but bicycle traffic is allowed and/or encouraged.  

 “No Bicycle Facility” means that there was no bicycle facility on the particular 

link matching any of the above bicycle facility descriptions. In these cases, 

bicycles share the traffic lane with motor vehicle traffic and no special 

consideration is given to bicyclists.  

Bicycle facility variables are outlined in Table 53. 
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Table 53: Bicycle Facility variable definitions 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

z-statistic in 
variable 
group 
cumulative 
logit model 

Statistical 
Significance 

Number of 
miles of trip 
ridden on 
primary 
arterials with 
no bike lanes 

Continuous Min: 0.00 
miles 
Max: 6.54 
miles 

0.03 miles Figure 86 
and Figure 
87 

-4.05 p<0.001 

Number of 
miles of trip 
ridden on 
minor 
arterials with 
no bike lanes 

Continuous Min: 0.00 
miles 
Max: 2.97 
miles 

0.00 miles Figure 86 
and Figure 
87 

0.74 Not 
significant 

Number of 
miles of trip 
ridden on 
residential 
streets with 
no bike lanes 

Continuous Min: 0.00 
miles 
Max: 12.08 
miles 

1.38 miles Figure 86 
and Figure 
87 

-0.07 Not 
significant 

Number of 
miles of trip 
ridden on 
other types of 
streets with 
no bike lanes 

Continuous Min: 0.00 
miles 
Max: 5.90 
miles 

0.01 miles Figure 86 
and Figure 
87 

-2.26 p<0.05 

Number of 
miles of trip 
ridden on 
primary 
arterials with 
bike lanes 

Continuous Min: 0.00 
miles 
Max: 9.48 
miles 

0.20 miles Figure 86 
and Figure 
87 

-1.93 p<0.1 

Number of 
miles of trip 
ridden on 
minor 
arterials with 
bike lanes 

Continuous Min: 0.00 
miles 
Max: 4.12 
miles 

0.09 miles Figure 86 
and Figure 
87 

-3.59 p<0.001 

Number of 
miles of trip 
ridden on 
residential 
streets with 

Continuous Min: 0.00 
miles 
Max: 6.28 
miles 

0.34 miles Figure 86 
and Figure 
87 

-0.58 Not 
significant 
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bike lanes 

Number of 
miles of trip 
ridden on 
other streets 
with bike 
lanes 

Continuous Min: 0.00 
miles 
Max: 1.90 
miles 

0.00 miles Figure 86 
and Figure 
87 

0.63 Not 
significant 

Number of 
miles of trip 
ridden on 
cycletracks or 
buffered 
bicycle lanes 

Continuous Min: 0.00 
miles 
Max: 0.80 
miles 

0.00 miles Figure 86 
and Figure 
87 

0.34 Not 
significant 

Number of 
miles of trip 
ridden on 
bicycle 
boulevards 

Continuous Min: 0.00 
miles 
Max: 5.03 
miles 

0.34 miles Figure 86 
and Figure 
87 

1.34 Not 
significant 

Number of 
miles of trip 
ridden on 
separated 
paths 

Continuous Min: 0.00 
miles 
Max: 12.54 
miles 

0.27 miles Figure 86 
and Figure 
87 

4.89 p<0.001 
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After several exploratory models (see section 1.A.3.5), a final regression model was 

selected for the bicycle facility/street type variables using a backwards stepwise 

regression approach. Statistically insignificant variables were dropped from the final 

model. The final model specification is presented in Table 54, with the odds ratios 

illustrated in Figure 58.  

Trip miles on links typed as “no bike facility, primary arterial” detracted from route 

comfort (β=-0.49, OR=0.61, p<0.01). Trip miles on links typed as “no bike facility, 

other” also detracted from route comfort (β=-0.41, OR=0.66, p<0.05). Trip miles on links 

typed as “bike lane, primary arterial” also detracted from route comfort (β=-0.167, 

OR=0.85, p<0.05). Trip miles on links typed as “bike lane, minor arterial” also detracted 

from route comfort (β=-0.54, OR=0.58, p<0.01). Finally, trip miles on links typed as 

separated paths increased route comfort (β=0.33, OR=1.41, p<0.01).  

Table 54: Final bike facility/street type model specification (cumulative logistic) 

 
Route Comfort Rating  

 
Coefficient (Standard Error) 

Mileage within Model 
Sample 

Trip Miles on 'No Bike Facility, Primary 
Arterial' 

-0.487*** (0.114) 
168 

Trip Miles on 'No Bike Facility, Other' -0.410** (0.173) 83 

Trip Miles on 'Bike Lane, Primary Arterial' -0.167** (0.077) 335 

Trip Miles on 'Bike Lane, Minor Arterial' -0.544*** (0.153) 212 

Trip Miles on 'Separated Path' 0.331*** (0.068) 417 

 
Total = 3,200 

Observations 616  

Log Likelihood -743.114  

 
 

Note: *p<0.1; **p<0.05; ***p<0.01  
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Figure 58: Forest plot of odds ratios of coefficients for final bike facility/street type 

model (whiskers correspond to 95% CI) 

These results align with literature indicating that more separation from traffic has a 

positive effect on cyclist comfort (see literature review).  

 Topography 5.2.6

The average slopes of network segments were calculated using a digital elevation model 

provided by Metro’s Regional Land Information System (RLIS). The slope variable 

definitions are outlined in Table 55. 
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Table 55: Topography variable definitions 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 
0) 

z-statistic 
in variable 
group 
cumulative 
logit 
model 

Statistical 
Significance 

Number of 
miles of trip 
ridden on 
slope 
category 
“less than -
2% 

Continuous Min: 0.00 
miles 
Max: 4.49 
miles 

0.67 miles Figure 88 
and Figure 
89 

-2.76 p<0.01 

Number of 
miles of trip 
ridden on 
slope 
category 
“between -
2% and 
+2%” 

Continuous Min: 0.10 
miles 
Max: 24.59 
miles 

3.21 miles Figure 88 
and Figure 
89 

1.20 Not 
significant 

Number of 
miles of trip 
ridden on 
slope 
category 
“between 
+2% and 
+4%” 

Continuous Min: 0.00 
miles 
Max: 2.59 
miles 

0.42 miles Figure 88 
and Figure 
89 

1.74 p<0.1 

Number of 
miles of trip 
ridden on 
slope 
category 
“between 
+4% and 
+6%” 

Continuous Min: 0.00 
miles 
Max: 2.46 
miles 

0.10 miles Figure 88 
and Figure 
89 

0.20 Not 
significant 

Number of 
miles of trip 
ridden on 
slope 
category 
“greater 
than +6%” 

Continuous Min: 0.00 
miles 
Max: 1.27 
miles 

0.05 miles Figure 88 
and Figure 
89 

-4.37 p<0.001 
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After several exploratory models (see section 1.A.3.6), a final regression model was 

selected for the segment grade variables using a backwards stepwise regression approach. 

Statistically insignificant variables were dropped from the final model. The final model 

specification is presented in Table 56, with the odds ratios illustrated in Figure 59.  

Trip miles on network segments with grades less than -2% detracted from route comfort 

(β=-0.38, OR=0.68, p<0.01). Trip miles on network segments with grades between +2% 

and +4% increased route comfort (β=0.53, OR=1.69, p<0.05). Trip miles on network 

segments with grades greater than +6% detracted from route comfort (β=-2.76, OR=0.06, 

p<0.01). 

Table 56: Final segment grade model specification (cumulative logistic) 

 
Route Comfort Rating 

 
Coefficient (Standard Error) Mileage Within Model Sample 

Trip miles on grades <-2% -0.384
**

 (0.150) 490 

Trip miles on grades +2% to 4% 0.525
**

 (0.243) 302 

Trip miles on grades >+6% -2.760
***

 (0.607) 78 

 
Total=3,200 

Observations 616  

Log Likelihood -755.227  

 
 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

 

Figure 59: Forest plot of odds ratios of coefficients for final segment grade model 

(whiskers correspond to 95% CI) 
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 Daily Traffic Volume  5.2.7

Interpolated daily motor vehicle traffic volumes estimated for links in the bike/street 

network were provided courtesy of Joseph Broach; the network volume model was 

developed as part of Dill and Gliebe’s bicycle GPS study (Dill and Gliebe 2008) based on 

City of Portland traffic volumes. Where traffic volumes for links were unavailable, a 

linear regression based on a link’s functional classification (for links where volume was 

estimated) was used to predict the missing traffic volumes. Route comfort was modeled 

over the estimated daily vehicle volumes to discern if estimated daily traffic volumes 

were significantly related.  Traffic volume variable definitions are presented in Table 57. 
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Table 57: Traffic Volume variable definitions 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

z-statistic 
in variable 
group 
cumulative 
logit model 

Statistical 
Significance 

Number of 
miles of trip 
ridden on 
traffic 
category “less 
than 5,000 
vehicles per 
day” 

Continuous Min: 0.00 
miles 
Max: 18.17 
miles 

2.59 miles Figure 90 
and Figure 
91 

4.24 p<0.001 

Number of 
miles of trip 
ridden on 
traffic 
category 
“between 
5,000 and 
10,000 
vehicles per 
day” 

Continuous Min: 0.00 
miles 
Max: 6.58 
miles 

0.45 miles Figure 90 
and Figure 
91 

-1.18 Not 
significant 

Number of 
miles of trip 
ridden on 
traffic 
category 
“between 
10,000 and 
20,000 
vehicles per 
day” 

Continuous Min: 0.00 
miles 
Max: 5.96 
miles 

0.60 miles Figure 90 
and Figure 
91 

-1.70 p<0.1 

Number of 
miles of trip 
ridden on 
traffic 
category 
“between 
20,000 and 
30,000 
vehicles per 
day” 

Continuous Min: 0.00 
miles 
Max: 9.51 
miles 

0.13 miles Figure 90 
and Figure 
91 

-2.53 p<0.05 
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Number of 
miles of trip 
ridden on 
traffic 
category 
“greater than 
30,000 
vehicles per 
day” 

Continuous Min: 0.00 
miles 
Max: 4.04 
miles 

0.00 miles Figure 90 
and Figure 
91 

-4.35 p<0.001 
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After several exploratory models (see section 1.A.3.7), a final regression model was 

selected for the traffic volume variables using a backwards stepwise regression approach. 

Statistically insignificant variables were dropped from the final model. The final model 

specification is presented in Table 58, with the odds ratios illustrated in Figure 59.  

Trip miles on network segments with traffic volumes less than 5,000 vehicles per day 

increased route comfort (β=0.32, OR=1.38, p<0.01). Trip miles on network segments 

with traffic volumes greater than 30,000 vehicles per day decreased route comfort (β=-

0.78, OR=0.46, p<0.01). Controlling for trip length resulted in a significant relationship 

in this model, with route comfort decreasing as trip length increased (β=-0.16, OR=0.85, 

p<0.01) 

Table 58: Final traffic volume model specification (cumulative logistic) 

 
Route Comfort Rating 

 
Coefficient (Standard Error) 

Mileage Within Model 
Sample 

Trip miles on links with 'Less than 5k veh/day' 0.323*** (0.055) 1,740 

Trip miles on links with 'Greater than 30k veh/day' -0.777*** (0.203) 100 

Trip length (miles) -0.164*** (0.037) 3,200 

 
Total = 3,200 

Observations 613  

Log Likelihood -743.328  

 
 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Figure 60: Forest plot of odds ratios of coefficients for final traffic volume model 

(whiskers correspond to 95% CI) 

 Traffic Speed 5.2.8

Posted speed limits were provided by Metro for links in the bike/street network. Where 

posted speeds were missing, a linear regression based on link functional class was used to 

estimate the missing speeds. Route comfort was modeled over the posted traffic speed to 

determine if route comfort was related to traffic speed.  Traffic speed variable definitions 

are presented in Table 78.  

 

 



 

145 

 

Table 59: Speed Volume variable definitions 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 
0) 

z-statistic 
in variable 
group 
cumulative 
logit 
model 

Statistical 
Significance 

Number of 
miles of 
trip ridden 
on speed 
category 
“less than 
or equal to 
20 mph” 

Continuous Min: 0.00 
miles 
Max: 12.84 
miles 

0.40 miles Figure 92 
and Figure 
93 

4.10 p<0.001 

Number of 
miles of 
trip ridden 
on speed 
category 
“between 
20 and 35 
mph” 

Continuous Min: 0.00 
miles 
Max: 
13.34miles 

3.05 miles Figure 92 
and Figure 
93 

-0.64 Not 
significant 

Number of 
miles of 
trip ridden 
on speed 
category 
“greater 
than or 
equal to 35 
mph” 

Continuous Min: 0.00 
miles 
Max: 13.07 
miles 

0.51 miles Figure 92 
and Figure 
93 

-5.64 p<0.001 



 

146 

 

After several exploratory models (see section 1.A.3.8), a final regression model was 

selected for the posted traffic speed variables using a backwards stepwise regression 

approach. Statistically insignificant variables were dropped from the final model. The 

final model specification is presented in Table 60, with the odds ratios illustrated in 

Figure 61.  

Trip miles on network segments with posted speeds less than or equal to 20 mph 

increased route comfort (β=0.25, OR=1.28, p<0.01). Trip miles on network segments 

with posted speeds greater than 35 mph decreased route comfort (β=-0.36, OR=0.70, 

p<0.01).  

Table 60: Final posted traffic speed model specification (cumulative logistic) 

 
Route Comfort Rating 

 
Coefficient (Standard Error) Mileage Within Model Sample 

Trip miles on links with posted speed 
<= 20 MPH 

0.246*** (0.060) 514 

Trip miles on links with posted speed 
>35 MPH 

-0.361*** (0.061) 577 

 
Total = 3,200 

Observations 616  

Log Likelihood -755.374  

 
 

Note: *p<0.1; **p<0.05; ***p<0.01  
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Figure 61: Forest plot of odds ratios of coefficients for final posted traffic speed 

model (whiskers correspond to 95% CI) 

 Weather 5.2.9

Weather data was pulled from airport weather stations in the Portland metropolitan 

region. The weather data for each trip was pulled from the airport weather station nearest 

to the start location of the trip, and the readings attached to each trip pertained to the 

temporally nearest weather record. Temperature, wind speed, wind gust speed, 

precipitation volume, and weather conditions (category provided by weather stations) 

were tested for significant effects on route comfort. The weather variable definitions are 

outlined in Table 61.   
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Table 61: Weather variable definitions 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

z-statistic in 
single 
variable 
cumulative 
logit 

Statistical 
Significance 

Temperature 
(degrees 
Farenheit) 

Continuous  
Min: 26.10 °F  
Max: 66.90 
°F 

45.00 °F Figure 94 1.04 Not 
significant 

Wind speed 
(miles per 
hour) 

Continuous 

Min: 0.00 
mph 
Max: 38.00 
mph 

8.10 mph Figure 96 -1.45 Not 
significant 

Wind gust 
speed (miles 
per hour) 

Continuous  

Min: 0.00 
mph 
Max: 48.30 
mph 

0.00 mph Figure 97 -0.87 Not 
significant 

Hourly 
precipitation 

Continuous 

Min: 0.00 
inches 
Max: 0.10 
inches 

0.00 inches Figure 95 0.73 Not 
significant 

Variable 
Description 

Variable 
Type 

Possible 
Values of 
Variable 
(range for 
Continuous 
variables) 

Median (for 
Continuous) 
Mode (for 
Categorical) 

Route 
Comfort 
Distribution 
Plot (in 
Appendix 0) 

Chi-Square, 
DF 

Statistical 
Significance 

Weather 
conditions 
category 

Categorical 

 Clear 

 Fog 

 Light 
Clouds 

 Heavy 
Clouds 

 Light 
Rain 

 Heavy 
Rain 

Heavy 
Clouds 

Figure 98 28.79, 28 Not 
significant 
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Several exploratory models (see section 1.A.3.9) were constructed to test for significant 

relationships between the weather variables and route comfort. Using a stepwise 

regression approach, no final models were selected because most relationships were 

insignificant. It is likely this is due to the low variation in weather conditions during the 

study period.  

5.3 POOLED MODEL 

There are numerous combinations of the above explanatory variables that could be 

combined to form pooled regression models (i.e. models containing more than one 

variable group), but the following model (specified in Table 62) was selected using a 

backwards stepwise regression approach. A forest plot illustrating the odds ratios 

corresponding to each model coefficient is presented in Figure 62.   
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Table 62: Pooled regression model specification (cumulative logistic) 

 
Route Comfort Rating 

 
Coefficient (Standard Error) 

Number of 
Observations or Trip 
Mileage 

Route Frequency (Ordinal) 0.677** (0.270) 613 

Trip Purpose: Exercise 1.723*** (0.512) 27 

Trip Purpose: Shopping/Errands 1.043*** (0.271) 97 

Occupation: Employed 1.496*** (0.277) 545 

Ethnicity: White -1.369*** (0.265) 523 

Household Vehicles (Ordinal) 2.116*** (0.500) 613 

Route Preferences: It is direct or fast -2.178*** (0.272) 77 

Route preferences: It is good for a workout -1.345*** (0.350) 34 

Route Preferences: It has few busy intersections 0.739** (0.293) 62 

Route Preferences: It is good for families/kids 2.347*** (0.568) 21 

Route Stressors: Not concerned 2.111*** (0.484) 26 

Route Stressors: Large commercial 
vehicles/trucks 

-1.751*** (0.366) 
36 

Route Stressors: Parked vehicles/being doored -0.637*** (0.215) 109 

Trip miles on grades >+6% -2.351*** (0.548) 78 miles 

Trip miles on links with <5k veh/day 0.250*** (0.056) 1,740 miles 

Trip miles on links with posted speed >35 mph -0.242*** (0.066) 577 miles 

Trip miles on links with posted speed 20-35 mph -0.148*** (0.054) 2,056 miles 

 
 

Observations 613  

Log Likelihood -587.259  

 
 

Note: *p<0.1; **p<0.05; ***p<0.01  
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Figure 62: Forest plot of odds ratios of coefficients for final pooled model (whiskers 

correspond to 95% CI) 

Due to non-intuitive sign changes in the bicycle facility and street type variables when 

incorporated into the pooled model, these variables were not incorporated in the final 

pooled model. These sign changes were likely due to other variables controlled for within 

the pooled model, though narrowing down which particular variables caused the sign 

change would require many more model runs. These models are exploratory in nature and 

developing a robust predictive model was not the goal of this thesis.  

In order to gauge the relative contribution of each predictor in the pooled regression 

model, the difference in Log Likelihood when each variable was removed one at a time 

ceteris parabus (all other variables remaining in the model) was calculated. A percentage 

contribution to the model was then calculated by dividing the individual log-likelihood 
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change by the difference between the model log-likelihood and the null log-likelihood 

(i.e. the variance in the dependent variable accounted for by the predictors in the model). 

These results are presented in Table 63.  

Conducting these post-hoc analyses yields several insights.  It illustrates the relative 

importance of the predictive variables included in the model.  For example, the variable 

describing a route choice preference of “It is direct or fast” accounted for 16% of the 

accounted for model variance in route comfort, whereas the number of trip miles on links 

with low traffic volumes (<5k veh/day) accounted for 5.9% of the variance in route 

comfort. If one were to develop a predictive model of route comfort, the variables with 

the highest contribution (top portion of the table) would be the most important to include.  

Another important note is the number of variables that were dropped from the final model 

even though they proved significant in the smaller models. This is likely due to 

correlation between predictors as well as predictors that were confounding the effect of 

some other variable. With more model testing, confounding relationships could likely be 

discovered.  To deal with the correlation between predictors, indices could be developed 

to incorporate multiple correlated factors, such as using a variable that incorporated both 

traffic volume and posted speed (since these variables are correlated). 



 

153 

 

Table 63: Pooled regression model results summary 

 Statistics from full 
pooled model 

Log Likelioods from Ceteris 
parabus removed variable model 

Independent Variable Coeffi
cient 

Odds 
Ratio 

z-
stati
stic 

Log-Likelihood 
Difference 

Contributi
on 

Route Preferences: It is 
direct or fast 

-2.37 0.09 -8.41 57.18 26.5% 

Occupation: Employed 1.60 4.94 5.69 39.72 18.4% 

Ethnicity: White -1.40 0.25 -5.25 38.97 18.1% 

Route Stressors: Large 
commercial vehicles/trucks 

-1.42 0.24 -3.54 36.49 16.9% 

Household Vehicles 
(Ordinal) 

2.10 8.13 4.15 35.56 16.5% 

Trip miles on links with <5k 
veh/day 

0.25 1.29 4.43 34.70 16.1% 

Trip miles on grades >+6% -2.24 0.11 -4.03 34.67 16.1% 

Route Stressors: Not 
concerned 

2.18 8.85 4.49 34.46 16.0% 

Route Preferences: It is 
good for families/kids 

2.35 10.46 4.10 34.43 16.0% 

Trip Purpose: 
Shopping/Errands 

1.08 2.95 3.92 32.45 15.0% 

Route preferences: It is 
good for a workout 

-1.44 0.24 -4.05 32.37 15.0% 

Trip miles on links with 
posted speed >35 mph 

-0.21 0.81 -3.19 31.96 14.8% 

Trip Purpose: Exercise 1.71 5.55 3.35 30.50 14.1% 

Route Frequency (Ordinal) 0.71 2.04 2.62 30.24 14.0% 

Route Stressors: Parked 
vehicles/being doored 

-0.63 0.53 -2.92 29.22 13.5% 

Trip miles on links with 
posted speed 20-35 mph 

-0.17 0.85 -3.03 28.49 13.2% 

Route Preferences: It has 
few busy intersections 

0.66 1.94 2.23 28.28 13.1% 
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5.4 MODEL INTERPRETATION 

The models reviewed above became increasingly complex as additional predictive 

variables were added, and the practical application of these models beyond the analysis of 

this data is limited due to the very unique nature of the dataset. However, the models do 

add further evidence to the growing body of research surrounding factors contributing to 

or detracting from cyclist comfort. In general, the signs of the predictive variables 

reviewed herein align with those presented in the relevant literature. In Table 64, the 

primary trends from each model group are summarized, and it is noted whether these 

trends held in the pooled model. Several variables at the bottom of the table were only 

significant within the pooled model. Those trends that held within the single variable 

group models and the pooled model can be considered most robust. 
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Table 64: Model Interpretation Summary 

Variable Group Significant Variables Influence on 

Route 

Comfort 

Relationship held 

significant in same 

direction in pooled 

model 

Trip Statistics Average speed Decrease No 

Temporal 

Characteristics 

Weekday Trip Decrease No 

Self-reported 

characteristics 

Route Stressors Not concerned Increase Yes 

Large 

commercial 

vehicles 

Decrease Yes 

Public 

transportation 

Decrease No 

Parked vehicles 

+ being doored 

Decrease Yes 

Pedestrians Decrease No 

Route 

Preferences 

It is direct + fast Decrease Yes 

It has good 

bicycle facilities 

Decrease No 

It is good for a 

workout 

Decrease Yes 

It is good for 

families + kids 

Increase Yes 

I do not know 

another route 

Decrease No 

Route Frequency (Ordinal) Increase Yes 

Trip Purpose 

(Reference = 

Commute) 

School Decrease No 

Shopping + 

Errands 

Increase Yes 

Work-related Decrease No 

Self-reported user 

characteristics 

Ethnicity: White (Dummy) Decrease Yes 

Occupation: Employed (Dummy) Increase Yes 

Bicycle facility and 

street type (Trip miles 

on links with…) 

No bike facility, primary arterial Decrease No 

No bike facility, other Decrease No 

Bike lane, primary arterial Decrease No 

Bike lane, minor arterial Decrease No 

Separated path Increase No 

Network segment grade  

(Trip miles on links 

with…) 

Grades <-2% Decrease No 

Grades +2% to +4% Increase No 

Grades > +6% Decrease Yes 

Traffic volume 

(Trip miles on links 

with…) 

< 5,000 vehicles per day Increase Yes 

> 30,000 vehicles per day Decrease No 

Traffic speed 

(Trip miles on links 

with posted speeds…) 

<= 20 mph Increase No 

> 35 mph Decrease Yes 

Weather conditions No significant variables N/A N/A 
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Variables only in 

pooled model 

Trip miles on links with posted 

speeds 20-35 mph 

Decrease - 

Route preferences: it has few busy 

intersections 

Decrease - 

Trip Purpose: Exercise Increase - 
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6. DISCUSSION 

Following the presentation of data in chapters 4 and 5, discussion about the applicability 

of this research is merited. Limitations regarding the conclusions presented herein are 

then briefly discussed. Lessons learned from this research that may prove valuable to 

future researchers are then outlined. Finally, thoughts about the future of this research are 

presented.   

6.1 APPLICATIONS 

For transportation agencies interested in inventorying areas in their transportation 

networks where bicycle facilities require improvement, smartphone applications like 

ORcycle provide a cost-effective and high-resolution crowdsourcing solution. 

Transportation agencies are increasingly turning to smartphone technology to efficiently 

manage transportation assets and communicate with transportation users through 

smartphone applications managing parking supplies
18

, detecting potholes
19

, routing 

transit users
20

, distributing transit tickets
21

, and many more uses. This section proposes 

several applications for ORcycle and its resultant data sets. First, prior applications of 

                                                 

18
 https://itunes.apple.com/us/app/sfpark/id426208076?mt=8 

19
 https://itunes.apple.com/us/app/street-bump/id528964742?mt=8 

20
 https://itunes.apple.com/us/app/transit-app-real-time-bus/id498151501?mt=8 

21
 https://itunes.apple.com/us/app/trimet-tickets/id687943985?mt=8 

https://itunes.apple.com/us/app/street-bump/id528964742?mt=8
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similar datasets are reviewed, and ideas of how ORcycle could reproduce or improve 

these applications considering the unique capabilities of ORcycle are discussed. Then, 

several new applications specific to ORcycle and its unique datasets are proposed.  

 Prior Applications 6.1.1

Three applications of the trip data are highlighted in an M.S. project report from Joel 

Meyer at the University of Texas, Austin (Meyer 2013).  More information about the 

Austin deployment of the Cycletracks smartphone application and its results are reviewed 

in section 2.5.2. After those applications, another interesting application proposed by 

Strauss et al. (Strauss, Miranda-Moreno, and Morency 2015) is discussed. ORcycle data 

could be used for all of these applications and more. 

 Bicycle Network Planning 6.1.1.1

Meyer uses GPS traces in Austin to map both the observed network volumes (collected 

by Cycletracks) and the hypothetical network volumes that would occur if each cyclist 

were to use the shortest path from their origin to destination.  In comparing these two 

flow maps, mismatches between actual use and shortest paths can help to identify where 

adding links to the bicycle network would have the most benefit in terms of cyclist 

volumes. Bicycle network planning relies to some extent on the knowing the desired 

paths of bicyclists. By identifying these desired paths in a comprehensive way, 

transportation planners can be more empirically informed about where future bicycle 

infrastructure improvements are necessary. ORcycle could allow this analysis to be 

carried out in various regions around the State of Oregon.  
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 Barrier Identification  6.1.1.2

Building upon the “bicycle network planning” application, Meyer calculates the 

difference between the actual bicycle volume and shortest path volume for each link in 

the network to quantify the degree to which particular links are being avoided by cyclists. 

This measure of avoidance can help to identify where barriers exist in the street and 

bicycle network. Mitigating these barriers through infrastructure modification or 

provision may be a viable and cost effective method for improving bicycle networks. 

Critical connections made by mitigating barriers can have network-wide benefits for 

bicycle travelers. ORcycle could help planners in Oregon to identify critical barriers in 

their bicycle networks.  

 Before/After Analysis  6.1.1.3

ORcycle and Cycletracks users can record multiple trips, and can record these trips at 

different points in time over the same or different geographies. This type of data presents 

panel applications, of which Meyer highlights the potential for before/after analysis of 

bicycle infrastructure improvements. Planners can quantify the difference in volumes 

using a particular facility after it is improved; though causality of changes in bicycle 

volumes from the facility installation is difficult to determine because smartphone GPS 

collection is passive in nature. Perhaps more importantly, planners can use the 

demographic questions associated with cyclists to see if different types of cyclists are 

using a new facility. Further, in the interest of panel applications, planners could even see 

if the comfort experienced by a single cyclist changed with the provision of new 

infrastructure. This application could be crucial in validating assumptions about what 
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facility types different types of cyclists prefer. ORcycle’s deep investigation of cyclist 

types lends itself well to this particular application.  

 Crash and/or Injury Risk Models 6.1.1.4

 As reviewed in section 2.5.4.3, trip data sourced from Mon RésoVélo were used in 

combination with point bicycle counts and geocoded crash data to develop an injury risk 

model (Strauss, Miranda-Moreno, and Morency 2015). The GPS traces from the 

application were combined with point bicycle counts to form bicyclist exposure rates for 

each link in Montreal’s network. The crash/injury data is then modeled over the exposure 

rates to model the risk of injury in the network. The data from ORcycle in combination 

with bicycle counts and geocoded crash data could be used to reproduce this model in the 

Portland area and other areas in Oregon. ORcycle has the potential to make a crash model 

more effective since it also collects crash information from its users.  

 Newly Proposed Applications 6.1.2

 

There are several other applications for ORcycle’s unique dataset besides those reviewed 

above. ORcycle supplements the trip recording functionality of CycleTracks (which was 

used for Meyer’s analysis in Austin) with many more demographic and cyclist type 

questions, more details about riders’ trips, and adds safety problem reporting 

functionality. Similarly, it also offers many more survey questions than Mon RésoVélo 

which could be exploited for valuable insights. Several additional applications of the 

unique ORcycle dataset are proposed below: 
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 User Typology Analysis 6.1.3.1

Factor and cluster analyses could be used on the wealth of survey data available from 

ORcycle to distinguish specific cyclist types empirically. While Geller’s “Four types of 

cyclists” methodology (Geller 2006) is widely cited as a satisfactory cyclist typology for 

cyclist planning (in Portland and elsewhere), the methodology rests on limited analytical 

rigor. Geller’s original categorization in 2006 made educated guesses at the proportions 

of the Portland population falling with the four categories (see section 2.2.1), and his 

proportions were approximately validated by a randomized phone survey (n=908) 

conducted by Dill and McNeil (Dill and McNeil 2012). However, this typology was not 

validated using revealed preference data, and has not been validated outside of Portland.   

By using statistical techniques to group the data sourced from ORcycle, Portland’s cyclist 

typology (and other regions) can begin to approach a more accurate and empirically 

verified cyclist typology.  

 LTS Analysis Calibration 6.1.3.2

Many transportation agencies in Oregon (including the Oregon Department of 

Transportation and the Portland Bureau of Transportation) are invested in using Level of 

Traffic Stress (LTS) methods (see section 2.1.2) to analyze their bicycle networks and 

determine areas of critical need through a comprehensive, research-based methodology. 

ORcycle could help to calibrate this analysis to the unique conditions of Oregon’s bicycle 

networks and user populations. For example, ORcycle could provide relative comfort 

differences for different bicycle facilities, which could then be modeled in relation to 
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measurable characteristics about those bicycle facilities. In this way, the LTS 

categorization could be better attuned to Oregon cyclists needs and desires.  

 Route Choice Model Improvement 6.1.3.3

Oregon Metro’s bicycle route choice model was developed based on empirical data 

collected in Dill and Gliebe’s landmark bicycle GPS study (Dill and Gliebe 2008). While 

this model is a positive step towards an accurate bicycle route choice model, it is based 

on a relatively small sample of cyclists (164 cyclists) and trips (1,449 trips). The Portland 

metro area’s bicycle network has also changed considerably since 2007, and is planned to 

change even more drastically in the future. By collecting more data about cyclists in the 

Portland metro area, ORcycle could help to improve Metro’s bicycle route choice model. 

In addition, other areas interested in modeling bicycle travel (such as Lane County, OR) 

could use the data from ORcycle to calibrate such models. As ODOT and Oregon’s other 

transportation agencies make cycling an increasingly central focus of their transportation 

planning efforts, it will be important to develop bicycle travel models to effectively 

analyze and predict the needs of growing cycling populations.  

 Safety concern identification 6.1.3.4

Though not analyzed in depth within this thesis, ORcycle’s safety report functionality 

presents critical applications for identifying areas of high safety concern for cyclists. The 

report data presents applications for pinpointing critical areas for bicycle infrastructure 

improvement. The report data also gives cyclists another channel for reporting crash 

events and conflicts, which often go unreported in cases where the crash did not seriously 
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harm anyone (“Pedestrian & Bicycle Information Center” 2015). Using geospatial 

analysis and factor-cluster methods, planners and researchers could prioritize areas in 

critical need of safety improvement based on the safety report data from ORcycle.  

6.2 LIMITATIONS 

There are several limitations to the conclusions presented from the analysis conducted 

herein. First, sample biases will be discussed, then the biases due to the multiple 

imputation algorithm used will be mentioned. Finally, biases due to small category 

frequencies will be briefly discussed.  

  User Sample Biases 6.2.1

The user, trip, and report samples were all collected between the beginning of November 

2014 and the end of March 2015. Though this time period was a relatively mild winter
22

 

in Oregon, winter cyclists are typically different demographically than their fair-weather 

counterparts (Damant-Sirois, Grimsrud, and El-Geneidy 2014; Ahmed et al. 2012). 

Within the user sample, there are potentially biases resulting from the method of data 

collection; namely that it was necessary to have access to an iOS or Android smartphone 

to participate in the data collection.  Among potential users that did own smartphones, 

there were also likely differences among those who would be willing to participate in the 

ORcycle data collection. There were also likely differences among those who uploaded 

                                                 

22
 http://www.ktvz.com/news/as-oregons-warm-winter-ends-snowpack-worries-rise/31718584 
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many trips and/or reports when compared to users who only uploaded minimal data. User 

sample biases are quantified in section 4.2 through comparisons with a travel survey 

dataset from the Oregon Household Activity Survey. All of these discussed biases could 

be potentially mitigated to some degree through a longer and more rigorous sampling 

period.  

 User Participation Biases 6.2.2

As with the other smartphone GPS studies reviewed (Hood, Sall, and Charlton 2011; 

Hudson et al. 2012) some users participated more than others by uploading more 

information. The user level of participation was not considered in the models presented, 

and is consequently biased by over-participation from some users. As illustrated in Figure 

63, a few users had many more trips in the model than others, with one particular user 

having 53 trips included in the model. While some of these trips included by the same 

users were different among that user’s trip set, there were also trips that were very similar 

to other trips they had taken. In future research, it will be necessary to test for the 

similarity of trips and remove these similar trips form the model set so that a certain kind 

of trip (or user) is not over-represented in models.  
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Figure 63: Histogram of number of trips per user in regression model analysis set 
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 Multiple Imputation Algorithm 6.2.3

Where survey responses were missing, a multiple imputation algorithm was used to 

generate likely survey responses (see section 3.2 for more information). Missing survey 

responses were generated based on the other responses that had been made for a trip and 

the responses that had been made for similar trips. This is especially important to 

consider for the dependent variable used (“route comfort”), which was missing 30% of 

the responses among the model set, as illustrated in Figure 64. These missing responses 

were imputed based on the rest of the data in the model set presented in section 5. Model 

specifications where route comfort was not imputed are presented in Appendix 9.4.   

 

Figure 64: Route comfort distribution among model set 

The multiple imputation algorithm could have systematically biased the data by 

reinforcing trends because trip variables were no longer independent of one another. A 

larger sample with more variation could help to mitigate the bias due to multiple 

imputation by broadening the range of responses received. In future research, the bias due 

to multiple imputation of missing responses should be quantified.  
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 Small Category Frequencies 6.2.4

Several of the categories (especially among user variables such as occupation or 

ethnicity) had small frequencies. This resulted in statistically significant coefficients that 

were the result of small-sample bias in the maximum log-likelihood estimation used to 

generate the coefficients for logistic regression models
23

. While these coefficients were 

statistically significant, they may not be practically significant, and the inclusion of them 

in the models may bias the values of other model coefficients. To address this issue, 

categories in gender, occupation, ethnicity, and trip purpose were pooled to make larger 

groups. However, this did not enable interpretations of the effects of these smaller 

categories on route comfort.  In future research, it may be valuable to increase the 

frequency of the small-sample categories through a larger or broader overall sample, or 

specifically targeted sampling efforts. There are also statistical methods available for 

accounting for these biases that could be employed. The coefficients could also be 

removed from the model if not deemed valuable, or categories could be pooled for larger 

frequencies.  

6.3 LESSONS LEARNED 

A project of this size and complexity required a great deal of teamwork and the 

development of new technical skills among all members of the research team. 

                                                 

23
 More info on small-smaple bias in logistic regression: 

http://www3.nd.edu/~rwilliam/stats3/RareEvents.pdf 
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Developing and distributing a smartphone application capable of crowdsourcing the type 

of data analyzed herein is likely a task most transportation agencies are not currently 

equipped to handle without outside consultants; potentially making a project like this 

considerably more expensive. The open source code used to build the smartphone 

application and the web server was crucial; and this factor can help lead to the use of this 

type of application in other regions. 

6.4 FUTURE RESEARCH 

In future research on this topic, several of the limitations discussed above can be 

addressed or mitigated to improve the robustness of the trip comfort models proposed 

herein. While this thesis delves deep into analyzing the results of the trip data obtained 

from ORcycle, the report data obtained was not critically analyzed herein. In addition to 

the analysis of the report data, building a larger sample through well-executed outreach 

could make the conclusions presented much more robust, which opens up more 

possibilities for investigating the applications discussed in section 6.1.  More outreach for 

the ORcycle smartphone application is planned, and this will likely result in a larger and 

more diverse sample of users, trips, and reports. This thesis provides guidance on how to 

utilize future samples from ORcycle and applications like it.  
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7. CONCLUSIONS 

The results of this research present two main sources of value for transportation 

researchers and planners: (1) this research provides further evidence that bicyclists are 

more comfortable on bicycle facilities separated from high traffic/high speed motor 

vehicle centric roadways; and (2) this research outlines innovative methodologies for 

critically analyzing the data obtained from smartphone applications crowdsourcing 

information from cyclists.  

This research utilized statistical methods to model the reported comfort of cyclists along 

GPS trip trajectories. Rich geographic data were joined to these trajectories, and through 

these data combinations we were able to observe statistically significant differences in 

user-reported cyclist comfort as a function of geographic, temporal, and user-reported 

attributes. Bicycle trips taken on weekends were more comfortable than those taken 

during the week. Routes that were indicated to have stressful amounts of parked vehicles 

or commercial vehicle traffic were less comfortable.  Separated bicycle facilities, low 

traffic volumes, and low traffic speeds were found to positively affect route comfort 

within the sample.  These conclusions are in line with the body of literature surrounding 

bicyclist comfort evaluation, lending further evidence to the efficacy of separated, low 

stress bicycle facilities and/or bicycle facilities on low traffic/low speed roadways.  
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The innovative methods used to analyze the unique dataset provided by ORcycle 

provide guidance for regions interested in using bicycle data crowdsourcing applications. 

By outlining the methods by which this data may be analyzed, we have removed a 

considerable technical hurdle from the use of these types of applications elsewhere in the 

world.  
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APPENDIX A  

A.1 USER SAMPLE COMPARISON 

Table 65: Age sample comparison 

Sample OHAS 
OHAS Bicycle 
Commuters 

ORcycle
 

N 45,695 802 339 
< 18 20.0 % 1.6 % 0.3 % 
18-24 4.0 % 5.9 % 4.7 % 
25-34 6.4 % 12.5 % 32.1 % 
35-44 10.8 % 23.8 % 30.2 % 
45-54 16.5 % 29.8 % 19.5 % 
55-64 21.1 % 23.6 % 10.1 % 
65+ 21.2 % 2.9 % 3.1 % 

 

Table 66: Gender sample comparison 

Sample OHAS 
OHAS Bicycle 
Commuters 

ORcycle 

N 46,368 818 335 

Female 52.2 % 33.7 % 17.8 % 

Male 47.8 % 66.3 % 82.2 % 

 

Table 67: Ethnicity sample comparison 

Sample OHAS 
OHAS Bicycle 
Commuters 

ORcycle 

N 19,526 711 332 

African American 0.5% 0.0% 0.3% 

Asian American 1.0% 2.0% 0.3% 

Hispanic 2.8% 2.4% 5.9% 

Native American 0.9% 0.3% 1.6% 

White American 93.8% 94.4% 87.6% 

Other 1.0% 1.0% 4.2% 
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Table 68: Household Income sample comparison 

Sample OHAS 
OHAS Bicycle 
Commuters 

ORcycle 

N 18,637 690 316 

$0-$14,999 6.7% 2.9% 6.3% 

$15,000-$24,999 10.4% 5.5% 4.5% 

$25,000-$34,999 9.8% 7.4% 7.7% 

$35,000-$49,999 14.2% 10.3% 6.6% 

$50,000-$74,999 23.1% 25.9% 20.6% 

$75,000-$99,999 17.2% 23.3% 24.0% 

$100,000-$149,999 12.8% 17.0% 22.0% 

$150,000 or more 5.8% 7.7% 8.4% 

 

Table 69: Household number of vehicles comparison 

Sample OHAS 
OHAS Bicycle 
Commuters 

ORcycle 

N 19,932 736 339 

0 Vehicles 4.3 % 4.9 % 13.8 % 

1 Vehicles 27.8 % 34.6 % 39.2 % 

2 Vehicles 40.5 % 41.4 % 37.6 % 

3 or more Vehicles 27.3 % 19 % 9.4 % 

 

Table 70: Household number of workers comparison 

Sample OHAS 
OHAS Bicycle 
Commuters 

ORcycle 

N 19,932 736 334 
0 Workers 23.9 % 0.4 % 7.4 % 
1 Worker 36.9 % 27.3 % 35.6 % 
2 Workers 34.5 % 61.3 % 52.2 % 
3 or more Workers 4.7 % 11 % 4.8 % 
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A.2 ROUTE COMFORT DISTRIBUTION PLOTS 

A.2.1 Trip Attributes 

 

Figure 65: Trip Length distribution over Route Comfort 

 

Figure 66: Trip Duration distribution over Route Comfort 

 

Figure 67: Average Speed distribution over Route Comfort 

 



 

180 

 

A.2.2 Temporal Characteristics 

 

Figure 68: Route Comfort distribution among Day of the Week Category 

 

Figure 69: Route Comfort distribution among Start Time categories 
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A.2.3 Trip Question Responses 

 

Figure 70: Route Comfort distribution among Trip Purpose 

 

Figure 71: Route Comfort distribution among Route Frequency 
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Figure 72: Route Comfort distribution among Route Choice Preferences 

 

 

Figure 73: Route Comfort distribution among Route Stressors 
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A.2.4 User Question Responses 

 

Figure 74: Route Comfort distribution among Age categories 

 

Figure 75: Route Comfort distribution among Gender categories 
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Figure 76: Route Comfort distribution among Ethnicity 

 

Figure 77: Route Comfort distribution among Occupation 
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Figure 78: Route Comfort distribution among Household Workers 

 

Figure 79: Route Comfort distribution among Household Income Category 
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Figure 80: Route Comfort distribution among Household Vehicles 

 

Figure 81: Route Comfort distribution among Number of Bicycles Owned 
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Figure 82: Route Comfort distribution among Preferred Cycling Weather 

 

Figure 83: Route Comfort distribution among Rider Type 
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Figure 84: Route Comfort distribution among Rider Ability 

 

Figure 85: Route Comfort distribution Cycling Frequency 
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A.2.5 Bicycle Facility and Street Type 

 

Figure 86: Route Comfort vs. distance bicycled on links with different bicycle 

facility types 

 

Figure 87: Route Comfort vs. distance proportion bicycled on links with different 

bicycle facility types 
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A.2.6 Topography 

 

Figure 88: Route Comfort vs. distance bicycled on links with different average 

slopes 

 

Figure 89: Route Comfort vs. distance proportion bicycled on links with different 

average slopes 



 

191 

 

A.2.7 Traffic Volume 

 

Figure 90: Route Comfort vs. distance bicycled on links with different traffic 

volumes 

 

Figure 91: Route Comfort vs. distance proportion bicycled on links with different 

traffic volumes 
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A.2.8 Traffic Speed 

 

Figure 92: Route Comfort vs. distance bicycled on links with different traffic speeds 

 

Figure 93: Route Comfort vs. distance proportion bicycled on links with different 

traffic speeds 
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A.2.9 Weather Variables 

 

Figure 94: Temperature distribution over Route Comfort 

 

Figure 95: Hourly Precipitation distribution over Route Comfort 
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Figure 96: Wind Speed distribution over Route Comfort 

 

Figure 97: Wind Gust Speed distribution over Route Comfort 
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Figure 98: Route Comfort distribution among Weather Conditions 
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A.3 EXPLORATORY MODELS 

A.3.1 Trip Attributes 

Several cumulative logistic regression models were tested, with the results presented in 

Table 71. In the first model, trip length is tested on its own, resulting in a statistically 

significant relationship (β=-0.055, OR=0.95, p<0.05) that lowered the route comfort 

rating as trip length increased. The second model tested trip duration alone, resulting in a 

statistically significant relationship (β=-0.009, OR=0.99, p<0.1) that lowered the route 

comfort rating as trip duration increased. In the third model, average speed was tested 

alone, resulting in a statistically significant relationship (β=-0.092, OR=0.91, p<0.05) that 

decreased route comfort as average speed increased. In the fourth model, all three 

variables were tested, which resulted in no statistically significant relationships.  

Table 71: Cumulative Logit model specification (DV = Route Comfort, IV = Trip 

Attribute Variables) 

 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
(1) (2) (3) (4) 

 
Trip Length 
(miles) 

-0.055** 
  

-0.014 

 
(0.024) 

  
(0.128) 

     
Trip Duration 
(minutes)  

-0.009* 
 

-0.005 

  
(0.005) 

 
(0.025) 

     
Average Speed 
(mph)   

-0.092** -0.076 

   
(0.037) (0.067) 
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Observations 616 616 616 616 

Log Likelihood -778.782 -779.825 -778.519 -777.455 

 
Note: 

*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

A.3.2 Temporal Characteristics 

Several cumulative logistic regression models were tested for the temporal 

characteristics; the results are presented in   
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Table 72. The influence of trips taking place on a weekday (as opposed to a weekend) 

was tested in the first model, resulting a statistically significant (β=-0.428, OR=0.65, 

p<0.05) negative influence. This indicates that trips taken within this sample during the 

week were, on average, less comfortable than trips taken on weekends. The influence of 

trip start time was tested in the second model, with no statistically significant results.  

In the third model, day-of-week category and trip start time were tested simultaneously, 

with the two variable sets interacted. This formulation resulted in mostly statistically 

significant relationships. When controlling for start time, trips taking place on a weekday 

had a larger negative influence (β=-0.963, OR=0.38, p<0.01) on route comfort than in the 

model where day-of-week was considered alone. After controlling for day-of-week, trip 

start time also became statistically significant in two of three categories. Trips starting 

during the AM peak were less comfortable (β=-2.000, OR=0.14, p<0.05) than trips 

starting during the daytime off-peak period. Trips starting during the nighttime off-peak 

were less comfortable (β=-1.500, OR=0.22, p<0.01) than trips starting during the daytime 

off-peak period.  The odds ratios for each statistically significant coefficient in the third 

model are presented graphically in Figure 99.  
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Figure 99: Forest plot of Route Comfort Odds Ratios of coefficients for temporal 

characteristics model 3 (whiskers correspond to 95% CI) 
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Table 72: Cumulative Logit model specification (DV = Route Comfort, IV = 

Temporal Characteristics) 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
(1) (2) (3) 

 
Trip took place on weekday -0.428

**
 

 
-0.963

***
 

 
(0.212) 

 
(0.294) 

    
Trip started between 7:00 AM-
9:00 AM (AM Peak)  

-0.189 -2.000
**

 

  
(0.215) (0.900) 

    
Trip started between 6:30 PM-
7:00 AM (Off-Peak Night)  

-0.285 -1.500
***

 

  
(0.185) (0.517) 

    
Trip started between 4:30 PM – 
6:30 PM (PM Peak)  

-0.143 -0.825 

  
(0.222) (0.543) 

    
(Weekday * AM Peak) 

  
2.080

**
 

   
(0.929) 

    
(Weekday * PM Peak) 

  
1.490

***
 

   
(0.556) 

    
(Weekday * Off-Peak Night) 

  
0.901 

   
(0.596) 

    
 
Observations 616 616 616 

Log Likelihood -779.000 -780.000 -773.000 

 
Note: 

*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.3.3 Trip Question Responses 

Several cumulative logistic regression models were tested using the trip question 

responses as independent variables, with the results presented in 

 

Figure 100: Forest plot of Route Comfort Odds Ratios of coefficients for trip question 

responses model 6 (whiskers correspond to 95% CI) 

Table 73. Trip purpose was tested in the first model, with the reference case being 

commute trips. Shopping/errand trips were significantly (β=0.674, OR=1.96, p<0.01) 

more comfortable than commute trips. Work-related trips were significantly (β=-0.772, 

OR=0.46, p<0.05) less comfortable than commute trips.  

Route frequency was tested in the second model, with no statistically significant results. 

Trip purpose and route frequency were tested simultaneously in the third model, making 

some of the coefficients more statistically significant. Exercise trips were more 

comfortable than commute trips, shopping/errand trips were more comfortable than 

commute trips, and route comfort increased as route frequency increased.  



 

202 

 

Route choice preferences (i.e. self-reported reasons why a user traveled on their particular 

route) were tested in the fourth model. Users who indicated they chose their route 

because it was direct or fast rated their trips as less comfortable (β=-2.940, OR=0.05, 

p<0.01). Users who indicated that they chose their route because it had good bicycle 

facilities also rated their trips as less comfortable (β=-0.994, OR=0.37, p<0.01). Users 

who indicated choosing their route because of enjoyable or nice scenery also rated their 

trips as less comfortable (β=-0.924, OR=0.40, p<0.05). Users who indicated choosing 

their route because it was “good for a workout” also rated their trips as less comfortable 

(β=-1.920, OR=0.15, p<0.05). Users who indicated choosing their route because it had 

few hills also rated their trips as less comfortable (β=-0.929, OR=0.40, p<0.01). Users 

who indicated choosing their routes because it was “good for families/kids” rated their 

trips as more comfortable (β=2.01, OR=7.46, p<0.01). Users who indicated choosing 

their routes because they did not know another route rated their trips as less comfortable 

(β=-2.180, OR=0.11, p<0.01). Users who indicated choosing their routes for some other 

reason not available also rated their trips as less comfortable (β=-0.990, OR=0.37, 

p<0.05). 

Route stressors (i.e. self-reported characteristics of the chosen route that made users 

uncomfortable or stressed) were tested in the fifth model. Users who indicated they were 

not concerned about traffic stressors on their route rated their routes as more comfortable 

(β=2.000, OR=7.39, p<0.01). Users who indicated they were concerned about large 

commercial vehicles on their route rated that route as less comfortable (β=-1.930, 

OR=0.15, p<0.01). Users who indicated they were concerned about public transit on their 
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route rated that route as less comfortable (β=-2.610, OR=0.07, p<0.01). Users who 

indicated they were concerned about parked vehicles along their route also rated their 

route as less comfortable (β=-1.040, OR=0.35, p<0.01). Finally, users who indicated they 

were concerned about pedestrians along their route also rated their route as less 

comfortable (β=-0.638, OR=0.52, p<0.01).  

The final model tested all the previously tested variables together. Overall trends were the 

same, though some coefficients and statistical significances changed by small amounts. 

The odds ratios for each statistically significant coefficient in the third model are 

presented graphically in Figure 100.  

 

    

 

Figure 100: Forest plot of Route Comfort Odds Ratios of coefficients for trip 

question responses model 6 (whiskers correspond to 95% CI) 

Table 73: Cumulative Logit model specification (DV = Route Comfort, IV = Trip 

Question Responses) 
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Dependent variable: 

  
 

routeComfort 

 
(1) (2) (3) (4) (5) (6) 

 
Trip Purpose - Exercise 0.267 

 
0.688

*
 

  
0.805

*
 

 
(0.373) 

 
(0.413) 

  
(0.461) 

       
Trip Purpose - Other -0.345 

 
-0.036 

  
-0.519 

 
(0.401) 

 
(0.425) 

  
(0.488) 

       
Trip Purpose - School -0.604 

 
-0.528 

  
-1.060

**
 

 
(0.381) 

 
(0.382) 

  
(0.436) 

       
Trip Purpose - Shopping/errands 0.674

***
 

 
0.995

***
 

  
0.790

***
 

 
(0.228) 

 
(0.270) 

  
(0.287) 

       
Trip Purpose - 
Social/entertainment 

0.268 
 

0.523
*
 

  
0.241 

 
(0.264) 

 
(0.294) 

  
(0.318) 

       
Trip Purpose - Transportation 
Access 

-1.060 
 

-1.160 
  

1.360 

 
(1.200) 

 
(1.210) 

  
(1.350) 

       
Trip Purpose -Work-related -0.772

**
 

 
-0.587 

  
-0.989

***
 

 
(0.346) 

 
(0.363) 

  
(0.382) 

       
Route Frequency 

 
0.153 0.471

*
 

  
0.594

**
 

  
(0.226) (0.253) 

  
(0.278) 

       
Route Preferences – “It is 
direct/fast”    

-2.940
***

 
 

-2.820
***

 

    
(0.308) 

 
(0.360) 

       
Route Preferences “It has good 
bicycle facilities”    

-0.994
***

 
 

-0.510 

    
(0.321) 

 
(0.380) 

       
Route Preferences – “It is 
enjoyable/has nice scenery”     

-0.924
**

 
 

-0.596 

    
(0.456) 

 
(0.496) 

       
Route Preferences- “It is good 
for a workout”     

-1.920
***

 
 

-1.680
***

 

    
(0.362) 

 
(0.437) 
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Route Preferences – “It has low 
traffic/low speeds”     

-0.464 
 

-0.216 

    
(0.339) 

 
(0.388) 

       
Route Preferences – “It has few 
busy intersections”     

-0.033 
 

0.145 

    
(0.310) 

 
(0.357) 

       
Route Preferences – “It has 
few/easy hills”     

-0.929
***

 
 

-0.549 

    
(0.355) 

 
(0.409) 

       
Route Preferences “It has other 
riders/people”     

-0.283 
 

0.075 

    
(0.291) 

 
(0.358) 

       
Route Preferences – “It is good 
for families/kids”     

2.010
***

 
 

2.060
***

 

    
(0.527) 

 
(0.611) 

       
Route Preferences – “I do not 
know another route”    

-2.180
***

 
 

-1.740
***

 

    
(0.404) 

 
(0.450) 

       
Route Preferences – “I found 
online or using my phone”     

0.148 
 

0.788 

    
(0.478) 

 
(0.566) 

       
Route Preferences – “Other” 

   
-0.990

**
 

 
-0.490 

    
(0.458) 

 
(0.512) 

       
Route Stressors – “Not 
Concerned”     

2.000
***

 2.040
***

 

     
(0.461) (0.487) 

       
Route Stressors – “Auto Traffic” 

    
-0.264 -0.081 

     
(0.268) (0.318) 

       
Route Stressors – “Large 
commercial vehicles/trucks”      

-1.930
***

 -1.980
***

 

     
(0.349) (0.398) 

       
Route Stressors – “Public 
transports (buses, light rail, 
streetcar, etc.) 

    
-2.610

***
 -2.020

***
 

     
(0.440) (0.508) 
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Route Stressors – “Parked 
vehicles/being doored”      

-1.040
***

 -1.090
***

 

     
(0.220) (0.272) 

       
Route Stressors – “Other 
cyclists”     

-0.407 -0.490 

     
(0.350) (0.401) 

       
Route Stressors – “Pedestrians” 

    
-0.638

***
 -0.715

**
 

     
(0.229) (0.284) 

       
Route Stressors – “Other” 

    
-0.330 -0.201 

     
(0.519) (0.570) 

       
 
Observations 616 616 616 616 616 616 

Log Likelihood -771.000 -780.000 -767.000 -692.000 -731.000 -634.000 

 
Note: 

*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.3.4 User Question Responses 

Several cumulative logistic regression models were tested using the user question 

responses, with the results presented in Table 74. The first model tested the variables 

corresponding to user demographics; namely age, gender, and ethnicity. Route comfort 

increase as age increased (β=1.840, OR=6.29, p<0.1). Users identifying as “Other” 

genders were more likely to indicate routes were uncomfortable than males (β=-2.060, 

OR=0.13, p<0.01). Hispanic users (β=0.896, OR=2.45, p<0.1) and Native American 

users (β=2.170, OR=8.76, p<0.01) were more likely to rate routes comfortably than 

White users.  

The second model tested variables corresponding to socioeconomic status; namely 

income, vehicle per worker ratio, and occupation. Neither income or vehicles/workers 

ratio were statistically significant. However, users reporting “Other” (β=-2.160, 

OR=0.12, p<0.01) or “Student” (β=-1.110, OR=0.33, p<0.01) occupations were less 

likely to rate routes comfortably than employed users. Users reporting “Retired” 

occupations were more likely to rate routes comfortably (β=2.020, OR=7.54, p<0.1).  

The third model tested variables associated with bicycling attitudes; namely “preferred 

cycling weather”, “rider type”, “rider ability”, and the number of bicycles owned. 

Preferred cycling weather did not produce any statistically significant coefficients. Users 

identifying with rider types “for recreation and exercise” (β=1.350, OR=3.86, p<0.05) 

and “to and from work” (β=0.788, OR=2.20, p<0.01) were more likely to rate routes as 

more comfortable than users who indicated they bicycled for nearly all their trips. Rider 
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ability and number of bicycles owned did not result in statistically significant 

coefficients.  

In the fourth model, the most significant variable from each of the above models was 

included; namely age, occupation, and rider type. When controlling for occupation and 

rider type, age was no longer significant. Users with “Other” occupations were less likely 

to rate routes as more comfortable than employed users. When controlling for age and 

occupation only riders identifying as “to and from work” rider types were significantly 

different from those riding for all trips, with those riders rating routes more comfortably.  
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Table 74: Cumulative Logit model specification (DV = Route Comfort, IV = User 

Question Responses) 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
(1) (2) (3) (4) 

 
Age (Ordinal) 1.840

*
 

  
1.350 

 
(1.010) 

  
(1.120) 

Gender (Reference = Male) 
    

Female -0.061 
   

 
(0.280) 

   

     
Other -2.060

***
 
   

 
(0.721) 

   
Ethnicity (Reference = White) 

    
Asian American -0.683 

   

 
(0.753) 

   

     
Hispanic 0.896

*
 

   

 
(0.530) 

   

     
Native American 2.170

***
 

   

 
(0.590) 

   

     
Other 0.845 

   

 
(0.593) 

   

     
Income (Ordinal) 

 
-0.408 

  

  
(0.396) 

  

     
Vehicles/Workers Ratio 

 
0.318 

  

  
(0.275) 

  
Occupation (Reference = Employed) 

    
Homemaker 

 
-1.130 

 
-0.187 

  
(1.150) 

 
(1.380) 

     
Other 

 
-2.160

***
 
 

-1.630
***

 

  
(0.355) 

 
(0.345) 

     
Retired 

 
2.020

*
 

 
0.711 
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(1.050) 

 
(1.220) 

     
Student 

 
-1.110

***
 
 

-0.457 

  
(0.428) 

 
(0.399) 

Preferred Cycling Weather (Reference = In any kind of weather) 
    

Usually warm and dry weather 
  

1.780 
 

   
(1.200) 

 
When it does not rain 

  
0.544 

 

   
(0.381) 

 
Rider Type (Reference = For nearly all my trips) 

    
For recreation and/or exercise 

  
1.350

**
 0.543 

   
(0.592) (0.650) 

     
For shopping, errands, or visting friends 

  
0.662 0.693 

   
(1.240) (1.250) 

     
Mainly to and from work, but occasionally for exercise, shopping, 
etc.   

0.318 0.141 

   
(0.215) (0.215) 

     
Other 

  
0.087 0.028 

   
(0.674) (0.836) 

     
To and from work 

  
0.788

***
 0.359

*
 

   
(0.204) (0.213) 

     
Rider Ability (Ordinal) 

  
0.535 

 

   
(1.510) 

 

     
Number of Bicycles (Ordinal) 

  
0.080 

 

   
(0.169) 

 

     
Observations 616 616 616 616 

Log Likelihood 
-
727.000 

-
734.000 

-
742.000 

-
723.000 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.3.5 Bicycle Facility and Street Type 

Cumulative logistic regression models were tested for the relationship between route 

comfort and the miles of a trip ridden on different bicycle facility types. The results are 

presented in  

 

Table 75. In the first model, only the mileages on the different bicycle facility types were 

tested. Trip miles on links typed as “no bike facility, primary arterial” detracted from 

route comfort (β=-0.548, OR=0.58, p<0.01). Trip miles on links typed as “no bike 

facility, other” also detracted from route comfort (β=-0.402, OR=0.67, p<0.05). Trip 

miles on links typed as “bike lane, primary arterial”” also detracted from route comfort 

(β=-0.152, OR=0.98, p<0.1). Trip miles on links typed as “bike lane, minor arterial” also 

detracted from route comfort (β=-0.555, OR=0.57, p<0.01). Finally, trip miles on links 

typed as separated paths increased route comfort (β=0.341, OR=1.41, p<0.01).  

In the second model, trip length is controlled for in addition to all the variables included 

in the first model. Trip miles ridden on links typed as “bike lane, primary arterial” no 

longer had a statistically significant contribution to route comfort. The other coefficients 

changed slightly, but the overall trends remained the same.  The odds ratios for each 

statistically significant coefficient in the second model are presented graphically in 

Figure 101. 
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Figure 101: Forest plot of Route Comfort Odds Ratios of statistically significant 

coefficients for bike facility model 2 (whiskers correspond to 95% CI) 

 

Table 75: Cumulative Logit model specification (DV = Route Comfort, IV =Trip 

miles on different bike facility types) 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
(1) (2) 

 
Trip miles on link type “No Bike Facility, Primary Arterial” -0.548

***
 -0.472

**
 

 
(0.135) (0.193) 

   
Trip miles on link type “No Bike Facility, Minor Arterial” 0.183 0.250 

 
(0.246) (0.275) 

   
Trip miles on link type “No Bike Facility, Residential Street” -0.004 0.071 

 
(0.059) (0.150) 

   
Trip miles on link type “No Bike Facility, Other” -0.402

**
 -0.330 

 
(0.178) (0.221) 

   
Trip miles on link type “Bike Lane, Primary Arterial” -0.152

*
 -0.078 

 
(0.079) (0.157) 

   
Trip miles on link type “Bike Lane, Minor Arterial” -0.555

***
 -0.475

**
 

 
(0.154) (0.212) 
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Trip miles on link type “Bike Lane, Residential Street” -0.050 0.028 

 
(0.086) (0.167) 

   
Trip miles on link type “Bike Lane, Other” 0.273 0.339 

 
(0.433) (0.450) 

   
Trip miles on link type “Cycletrack or Buffered Bike Lane, Total” 0.308 0.408 

 
(0.895) (0.914) 

   
Trip miles on link type “Bicycle Boulevard, Total” 0.119 0.200 

 
(0.089) (0.172) 

   
Trip miles on link type “Separated Path, Total” 0.341

***
 0.416

***
 

 
(0.070) (0.154) 

   
Trip Length 

 
-0.076 

  
(0.139) 

   
 
Observations 616 616 

Log Likelihood -741.000 -741.000 

 
Note: 

*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.3.6 Topography 

Two cumulative logistic regression models were tested for the comparison of route 

comfort and the slope of trip segments; the results are presented in  

Table 76. In both models, the number of miles of a trip ridden on a particular slope 

category is the independent variable over which route comfort is regressed. In the first 

model, the number of miles ridden on each slope category is tested. As the number of 

miles ridden on grades less than -2% increased, a trip was rated less comfortably (β=-

0.433, OR=0.65,p<0.01). As the number of miles ridden on grades greater than +6% 

increased, a trip was rated less comfortably with a higher effect size (β=-2.730, 

OR=0.07,p<0.01). As the number of miles ridden on grades between +2% and +4% 

increased, the comfort rating increased (β=0.442, OR=1.56, p<0.1). The second model 

contains all the variables of the first, but controls for overall trip length. Coefficients 

changed marginally, but the same overall trends are observed. The odds ratios for each 

statistically significant coefficient in the second model are presented graphically in 

Figure 102.  
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Figure 102: Forest plot of Route Comfort Odds Ratios of statistically significant 

coefficients for slope model 2 (whiskers correspond to 95% CI) 

Table 76: Cumulative Logit model specification (DV = Route Comfort, IV = Slope 

categories) 

 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
(1) (2) 

 
Trip miles on <-2% grade -0.433*** -0.342* 

 
(0.157) (0.206) 

   
Trip miles on -2% to +2% grade 0.040 0.132 

 
(0.033) (0.138) 

   
Trip miles on +2% to +4% grade 0.442* 0.534* 

 
(0.255) (0.288) 

   
Trip miles on +4% to +6% grade 0.055 0.130 

 
(0.271) (0.292) 

   
Trip miles on >+6% grade -2.730*** -2.650*** 

 
(0.625) (0.636) 
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Trip length (miles) 
 

-0.091 

  
(0.132) 

   

 
Observations 616 616 

Log Likelihood -754.000 -754.000 

 
Note: *p<0.1; **p<0.05; ***p<0.01 
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A.3.7 Daily Traffic Volume 

Cumulative logistic regression models were tested for the relationship between route 

comfort and the number of miles ridden on network links with various daily traffic 

volume categories. Results of the models are presented in  

Table 77 In the first model, the mileage per trip on the different traffic categories was 

tested. Comfort increased as more miles of a trip were ridden on links with traffic volume 

less than 5,000 vehicles per day (β=0.167, OR=1.18, p<0.01). Comfort decreased with 

greater effect size sequentially as mileage on higher traffic volume links increased, with 

comfort decreasing the most per mile on links with more than 30,000 vehicles/day (β=-

0.864, OR=0.42, p<0.01). The second model included all the independent variables of the 

first but also controls for overall trip length. Controlling for trip length changed 

coefficients and significances slightly, but the same overall trend can be observed.  The 

odds ratios for each statistically significant coefficient in the second model are presented 

graphically in Figure 103. 
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Figure 103: Forest plot of Route Comfort Odds Ratios of statistically significant 

coefficients for traffic model 2 (whiskers correspond to 95% CI) 

Table 77: Cumulative Logit model specification (DV = Route Comfort, IV = Traffic 

volume categories) 

 

 
Dependent variable: 

  

 
Route Comfort Rating 

 
(1) (2) 

 
Miles ridden on links with traffic volume less than 
5,000 vehicles/day 

0.167
***

 0.254
***

 

 
(0.039) (0.086) 

   
Miles ridden on links with traffic volume between 
5,000 and 10,000 vehicles/day 

-0.112 -0.017 

 
(0.095) (0.127) 

   
Miles ridden on links with traffic volume between 
10,000 and 20,000 vehicles/day 

-0.177
*
 -0.087 

 
(0.105) (0.131) 

   
Miles ridden on links with traffic volume between 
20,000 and 30,000 vehicles/day 

-0.231
**

 -0.138 

 
(0.091) (0.123) 

   
Miles ridden on links with traffic volume greater -0.864

***
 -0.788

***
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than 30,000 vehicles/day 

 
(0.199) (0.210) 

   
Trip Length (miles) 

 
-0.092 

  
(0.082) 

   
 
Observations 613 613 

Log Likelihood -743.000 -742.000 

 
Note: 

*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 

 

A.3.8 Traffic Speed 

Cumulative logistic regression models were tested for the relationship between route 

comfort and the number of miles ridden on network links with various posted traffic 

speed categories. In the first model, trip mileage on three different categories of traffic 

speeds was tested.  As trip mileage on links with speeds less than or equal to 20 mph 

increased, users were more likely to rate routes as comfortable (β=-0.248, OR=1.28, 

p<0.01). As trip mileage on links with speeds greater than or equal to 35 mph increased, 

users were more likely to rate routes as less comfortable (β=-0.353, OR=0.70, p<0.01). In 

the second model, trip length is controlled for. The coefficients change slightly as a 

result, but the statistical significances and interpretations remain the same. The odds 

ratios for each coefficient in the second model are presented graphically in Figure 104. 
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Figure 104: Forest plot of Route Comfort Odds Ratios of coefficients for speed 

model 2 (whiskers correspond to 95% CI) 
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Table 78: Cumulative Logit model specification (DV = Route Comfort, IV = Posted 

traffic speed categories) 

 
Dependent variable: 

  

 
Route Comfort 

 
(1) (2) 

 
Trip miles on links with posted traffic speeds 
less than or equal to 20 mph 

0.248
***

 0.284
***

 

 
(0.061) (0.076) 

   
Trip miles on links with posted traffic speeds 
between 20 mph and 35 mph 

-0.023 0.013 

 
(0.036) (0.058) 

   
Trip miles on links with posted traffic speed 
greater than or equal to 35 mph 

-0.353
***

 -0.317
***

 

 
(0.063) (0.078) 

   
Trip Length (miles) 

 
-0.039 

  
(0.050) 

   

 
Observations 616 616 

Log Likelihood -755.000 -755.000 

 
Note: 

*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.3.9 Weather Variables 

Cumulative logistic regression models were tested for several weather variables. None of 

the models had statistically significant variables except for the last one tested, which 

contained all the variables. In the last model, Fog had a statistically significant negative 

influence on route comfort (β=-2.12, OR=0.12, p<0.1). 

 

 

  



 

223 

 

Table 79: Cumulative Logit model specification (DV = Route Comfort, IV = 

Weather variables) 

 
Dependent variable: 

  

 
routeComfort 

 
(1) (2) (3) (4) (5) (6) 

 
Temperature (Deg F) 0.010 

    
0.006 

 
(0.010) 

    
(0.010) 

       
Wind Speed (mph) 

 
-0.013 

   
-0.021 

  
(0.009) 

   
(0.016) 

       
Wind Gust Speed (mph) 

  
-0.005 

  
0.005 

   
(0.006) 

  
(0.010) 

       
Precipitation 

   
5.510 

 
11.900 

    
(7.540) 

 
(8.790) 

Weather Conditions 
(Reference Category = Clear)       

Fog 
    

-2.040 -2.120
*
 

     
(1.260) (1.270) 

       
Heavy Clouds 

    
0.144 0.081 

     
(0.240) (0.248) 

       
Heavy Rain 

    
-0.035 -0.256 

     
(0.318) (0.363) 

       
Light Clouds 

    
0.301 0.311 

     
(0.267) (0.270) 

       
Light Rain 

    
0.198 0.095 

     
(0.553) (0.562) 

       

 
Observations 616 616 616 616 616 616 

Log Likelihood -781.000 -780.000 -781.000 -781.000 -779.000 -776.000 

 
Note: *

p<0.1; 
**

p<0.05; 
***

p<0.01 
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A.4 NON-IMPUTED MODEL SPECIFICATIONS  

In the following model specifications, route comfort (the dependent variable) was not 

imputed. The independent variables were imputed. Backwards stepwise specifications 

were used for each single model group, and the same model specification as used in 

section 5.3 was used for the pooled model. Less observations were used in each model 

because of the loss of imputed data. In general, signs remained the same and were 

intuitive.  
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A.4.1 Trip Attributes 

Table 80: Cumulative logistic regression model specification for trip attributes 

 
Dependent variable: 

 
Route Comfort Rating 

avgLinkSpeed -0.088
**

 (0.043) 

Observations 431 

Log Likelihood -573.882 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.2 Temporal Characteristics 

Table 81: Cumulative logistic regression model specification for temporal 

characteristics 

 
Dependent variable: 

 
Route Comfort Rating 

Trip Start during Weekday (Ref = Weekend) -0.473
*
 (0.246) 

Observations 431 

Log Likelihood -574.085 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.3 Trip Question Responses 

Table 82: Cumulative logistic regression model specification for trip question 

responses 

 
Dependent variable: 

 
Route Comfort Rating 

routeStressors_Not.concerned 2.142
***

 (0.474) 

routeStressors_Large.commercial.vehicles..trucks. -1.695
***

 (0.375) 

routeStressors_Public.transport..buses..light.rail..streetcar. -1.641
***

 (0.469) 

routeStressors_Parked.vehicles..being.doored. -0.807
***

 (0.246) 

routeStressors_Pedestrians -0.511
**

 (0.258) 

routePrefs_It.is.direct.fast -0.824
**

 (0.341) 

routePrefs_It.has.good.bicycle.facilities 1.232
***

 (0.389) 

routePrefs_It.is.enjoyable.has.nice.scenery 0.800 (0.528) 

routePrefs_It.has.low.traffic.low.speeds 1.240
***

 (0.422) 

routePrefs_It.has.few.busy.intersections 1.512
***

 (0.374) 

routePrefs_It.has.few.easy.hills 1.038
***

 (0.397) 

routePrefs_It.has.other.riders.people 1.657
***

 (0.344) 

routePrefs_It.is.good.for.families.kids 3.423
***

 (0.583) 

routePrefs_I.found.it.online.or.using.my.phone 2.130
***

 (0.532) 

routePrefs_Other 1.034
**

 (0.513) 

Observations 431 

Log Likelihood -486.412 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.4 User Question Responses 

Table 83: Cumulative logistic regression model specification for user question 

responses 

 
Dependent variable: 

 
Route Comfort Rating 

Ethnicity: White -0.760
**

 (0.316) 

Occupation: Employed 0.864
***

 (0.266) 

Observations 431 

Log Likelihood -567.882 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.5 Bicycle Facility and Street Type  

Table 84: Cumulative logistic regression model specification for biycle facility and 

street typology 

 
Dependent variable: 

 
Route Comfort Rating 

Trip Miles on 'No Bike Facility, Primary Arterial' -0.628
***

 (0.127) 

Trip Miles on 'No Bike Facility, Other' -0.469
**

 (0.198) 

Trip Miles on 'Bike Lane, Primary Arterial' -0.871
***

 (0.161) 

Trip Miles on 'Bike Lane, Minor Arterial' 0.820
*
 (0.483) 

Trip Miles on 'Bicycle Boulevard' 0.188
*
 (0.104) 

Trip Miles on 'Seperated Path' 0.445
***

 (0.084) 

Observations 431 

Log Likelihood -529.612 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.6 Topography 

Table 85: Cumulative logistic regression model specification for topography 

 
Dependent variable: 

 
Route Comfort Rating 

Trip miles on grades <-2% -0.573
***

 (0.164) 

Trip miles on grades +2% to 4% 0.086
**

 (0.035) 

Trip miles on grades >+6% -2.656
***

 (0.686) 

Observations 431 

Log Likelihood -545.798 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.7 Daily Traffic Volume 

Table 86: Cumulative logistic regression model specification for traffic volume 

 
Dependent variable: 

 
Route Comfort Rating 

Trip miles on links with 'Less than 5k veh/day' 0.325
***

 (0.076) 

Trip miles on links with '5k - 10k veh/day' -0.373
***

 (0.137) 

Trip miles on links with 'Greater than 30k veh/day' -0.504
**

 (0.216) 

Trip length (miles) -0.114
*
 (0.058) 

Observations 430 

Log Likelihood -537.029 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.8 Traffic Speed 

Table 87: Cumulative logistic regression model specification for traffic speed 

 
Dependent variable: 

 
routeComfort 

Trip miles on links with posted speed <= 20 MPH 0.324
***

 (0.071) 

Trip miles on links with posted speed >35 MPH -0.362
***

 (0.066) 

Observations 431 

Log Likelihood -550.207 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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A.4.9 Pooled Model 

Table 88: Cumulative logistic regression model specification for pooled model 

 
Dependent variable: 

 
Route Comfort Rating 

Route Frequency (Ordinal) 0.669
**

 (0.327) 

Trip Purpose: Exercise 2.377
***

 (0.582) 

Trip Purpose: Shopping/Errands 0.841
***

 (0.317) 

Occupation: Employed 1.208
***

 (0.312) 

Ethnicity: White -0.472 (0.353) 

Household Vehicles (Ordinal) 2.217
***

 (0.639) 

Route Preferences: It is direct or fast -1.915
***

 (0.307) 

Route preferences: It is good for a workout -1.297
***

 (0.377) 

Route Preferences: It has few busy intersections 0.487 (0.332) 

Route Preferences: It is good for families/kids 2.103
***

 (0.571) 

Route Stressors: Not concerned 1.902
***

 (0.499) 

Route Stressors: Large commercial vehicles/trucks -1.618
***

 (0.414) 

Route Stressors: Parked vehicles/being doored -0.636
***

 (0.233) 

Trip miles on grades >+6% -3.302
***

 (0.670) 

Trip miles on links with <5k veh/day 0.296
***

 (0.068) 

Trip miles on links with posted speed >35 mph -0.230
***

 (0.070) 

Trip miles on links with posted speed 20-35 mph -0.197
***

 (0.064) 

Observations 420 

Log Likelihood -420.735 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 
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