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Ai.1 ABSTRACT OF THE THESIS OF Thomas Joseph Gavin for the Master of Science 

i n Applied Science presented July 19, 1977. 

Title: Limit Design of Unbraced Reinforced Concrete Frames. 

APPROVED BY MEMBERS OF TilE THESIS COMMITTEE: 

Alan 

Selma Tauber 

The main objective was to determine whether Limit Design 

could be applied to low-rise unbraced concrete frames. The investigation 

was carried out both analytically and experimentally. 

In the analytical part, two mathematical model s were used to determine 

the behavior of unbraced frames. The first method used a nonlinear com

puter program, which takes into account the material and geometric non

linearities of concrete frames. Several cases of frames with different 



2 

reinforcement ratios and under different beam to column load ratios were 

investigated. For each frame the gravity loads were increased proportion

ately to 3/4 of the ultimate frame capacity. Then, lateral load was applied 

to failure while keeping the beam and column loads constant. 

The second mathematical model solved for the frame stability equation 

by assuming elasto-plastic moment curvature relationships for members. 

Also, the stability solution was carried out by reducing the frame to a 

column attached to a linear spring. 

In the experimental part, two frames were designed for the same load

ing conditions but by two different methods; and were tested to failure. 

Frame USD-1 was designed by the Ultimate Strength Design, while Frame LD-1 

by a Limit Design method. The colum...~s were 21-in high while the beam was 

84-in long. The loading procedure consisted of proportionately loading 

the beam and columns up to the design load, and then applying the lateral 

load to failure. 

The computer study and the stability model solution showed that frames 

subjected to low column thrusts remained in stable equilibrium until two 

plastic hinges form, thus constituting a mechanism. The two experimental 

frames remained in stable equilibrium until two plastic hinges formed in 

the beams. The ultimate lateral loads of Frames USD-1 and LD-1 exceeded the 

design lateral load by 66% and 33%, respectively. 

Based on this investigation, it appears that Limit Design may be used 

for low-rise unbraced reinforced concrete structures. 
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND 

During the first half of this century indeterminate reinforced 

concrete structures were analyzed for moments; shears and reactions by 

linear-elastic theory. The members were then designed by assuming a 

straight-line stress-strain relationship and using allowable stresses 

for the concrete and reinforcing steel. This method for proportioning 

members was used primarily because of its mathematical simplicity. 

In 1956, the American Concrete Institute (1) allowed the member cross

sections to be designed according to their inelastic properties, that 

is, their ultimate strengths. In this method, referred to as the Ultimate 

Strength Design Method, the service loads are multiplied by load factors 

depending on the required factor of safety. However, the linear-

elastic theory is still used to calculate the moments, shears, and 

reactions. 

Another method to design structures is the plastic or ultimate 

load method. This method is an inelastic theory for indeterminate 

structures in which internal moment readjustments are taken into 

consideration. This technique has been widely accepted for steel 

structures in recent decades, but lags behind in its application to 

reinforced concrete. This can be attributed to two main causes: 

1. For steel the section response to load may be assumed elasto

plastic with considerable ductility. However, concrete 

is not a perfectly plastic material and is limited in ductility 



unless compression reinforcement or hoops are used. 

2. In reinforced concrete structures, service loads may cause 

unacceptable flexural cracks. 
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Despite the complexities involved in applying an inelastic theory 

to reinforced concrete, there still remains the fact that concrete 

behaves inelastically at ultimate loads. Therefore, linear elastic 

theory is only a convenient method to calculate the design moments. 

As a recognition of the inelastic behavior of reinforced concrete , the 

present Code (1) does allow some moment redistribution by modifying 

the calculated elastic moments. 

1.2 NONLINEAR BEHAVIOR OF REINFORCED CONCRETE 

If an inelastic theory is to be applied to reinforced concrete 

structures, the behavior ·of its members must first be well understood. 

Some of the early investigations were done to verify the existence of 

moment redistribution (2). Later work (3) showed that in addition to 

moment redistribution at or near the ultimate load, significant moment 

redistribution occurred even at service loads. 

Many investigations have been carried out to establish the 

rotational capacity of beams (4,S). These studies have shown that 

concrete compression strains greatly exceed the usually assumed .003. 

Tests on columns (6,7) have shown the affect of a number of 

variables on the strength of hinged and restrained columns. The 

significant variables were the slenderness ratio, end eccentricities, 

and the ratio of end eccentricities. 

Tests on columns were conducted at the University of Texas to 

study the behavior of long columns as part of frames. The frames 

were loaded so as to study the behavior of long columns in reversed 
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curvature (8), single curvature (9), sidesway (10), and in frames where 

restraining beams develop yielding through strain hardening (11). 

In developing an inelastic theory for unbraced frames, an 

assumption is that the structure remain in stable equilibrium as plastic 

hinges form. This is important for unbraced frames because of the 

secondary moments caused by the lateral sway of the frame. As plastic 

hinges form, the overall frame stiffness lowers which decreases the 

structure's resistance against an instability failure. 

Recently, an investigation (12) was carried out to study the 

effects of high column thrusts on the stability of unbraced structures. 

It was concluded, based on analytical and experimental work, that 

unbraced frames subjected to high column thrusts and lateral loads 

remained in stable equilibrium until two hinges formed in the leeward 

joints of the structure. Consequently, Limit or Ultimate Load Design 

may not be applied to frames that carry high column thrusts. However, 

it was shown analytically (12) that a frame will remain in stab!~ 

equilibrium until it reaches its ultimate load by forming a mechanism 

if the columns carry small axial loads. 

If a frame remains in stable equilibrium until it forms a mechanism 

then limit design concepts may be applied. Some internal moment 

readjustment will then occur which will tend to reduce the peak moments 

at beam-column intersections. This decrease will cause moments to 

increase elsewhere. However, the decreased peak moment may help relieve 

the congestion of steel at the beam-column intersection. In addition, 

the inelastic design procedure is more realistic than linear-elastic 

theory. 



If Limit Design is applicable to unbraced frames, some important 

questions have to be answered concerning their behavior: 

1. What is the affect of hinging on the stability of unbraced 

frames loaded to collapse? What affect does the column 

thrust have on frame stability? 
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2. From an economical and detailing point of view, how does a 

frame designed by a limit design method compare to a frame 

designed by the conventional ultimate strength design method? 

3. How do the test behaviors of two frames that are designed 

by two different methods compare? 

In order to answer the above questions, analytical work using 

computers, as well as physical tests on reinforced concrete frames ar e 

needed. 

1.3 PURPOSE OF THIS INVESTIGATION 

Generally, the objective of this study is to determine whether 

Limit Design can be applied to low-rise unbraced reinforced concrete 

structures. Specifically, the objectives are as follows : 

1. To determine analytically the behavior of frames under 

gravity and lateral loading. The specific parameters will 

be the column-to-beam stiffness ratio and the beam- to

column load ratio. 

2. To design two frames for the same load condi tions; however , 

one frame by the Ultimate Strength method while the other by 

a Limit Design method. 

3. To describe the test behavior of the two frames designed by 

different methods. 



4. To compare the two frames from an economical and detailing 

standpoint. 

1.4 ORGANIZATION OF THE REPORT 

The analytical part of this study is discussed in Chapter II. 

Two mathematical models are used; one a program that takes material 
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and geometric nonlinearity into account, and the other a hand calculated 

solution that assumes the members to possess elasto-plastic moment

curvature relationships. In Chapter III, the design methods and calcu

lations are described for the two test frames. The fabrication, 

instrumentation, and testing of the test frames is discussed in Chapter 

IV, while the test results and predicted behavior are given in Chapter 

V. Finally, Chapter VI contains the summary and conclusions of this 

study, and recommendations for further research. 



CHAPTER II 

ANALYTICAL TREATMENT 

In this chapter, the stability of unbraced frames will be discussed, 

using two analytical methods, 

The first method is by using a computer program that takes 

nonlinear geometry and force-deformation properties into account. 

This program is applied to three model frames that possess the same 

overall geometry but different beam and column reinforcement ratios. 

Each frame will be loaded with different values of column thrust. 

The second method is a mathematical solution of an elasto-plastic 

stability model that will define the boundaries where limit design 

can be applied. 

Finally, the computer solution will be compared to the mathematical 

solution. 

2.1 REDUCTION OF UNBRACED FRAME TO MODEL AND TEST FRAME 

There are several loading patterns to consider in designing a 

reinforced concrete building frame. However, the worst loading pattern 

for frame instability occurs when all the floors are fully loaded. 

Shown in Figure 2.1 is a symmetrical n-story unbraced frame under beam 

loads Q, roof loads Q/2 at beam third points and lateral loads. The 

bays have an equal widtn of ~ and a stor}""'to~tory height of Lc. The 

beams and columns are assumed to he rigidly connected. 



7 

The highest column thrusts occur at the first floor level. An 

interior panel is shown in Figure 2.2. The lateral load H is the total 

lateral load that must be resisted by this panel. This panel represents 

all interior panels from the first floor level on up. It also represents 

the first floor panel if the point of inflection is assumed at one-half 

the column height (L /2). This would be true for building footings 
c 

that have soil~structure interaction stiffnesses equivalent to the 

connecting beam stiffness values. Since the frame is antisymmetrical 

about the midheight (L /2) of the columns, a reduced frame may be 
c 

analyzed, as shown in Figure 2.3. 

The column load P at the first floor level for number of stories 

(n) can be expressed as a function of beam loads Q. Therefore, the 

Q/P ratio, excluding the increased column loads caused by the lateral 

load, is 

Q/P = l/(2n-2) (2 .1) 

Likewise, the relationship between the column thrust, T, and the beam 

load, Q, is 

Q/T = l/(2n-l) (2 .2) 

As shown by the above equations, the Q/P and Q/T ratios decrease as 

the number of stories is increased. 

2.2 DESCRIPTION OF FAILURE TYPES 

The main purpose of this work is to s.tudy the response of unbraced 

reinforced concrete frames under tne influence of gravity and lateral 

loads. According to the 71 ACI Code, Art. g.3.2, 75i. of factored 

gravity loads and lateral loads must be considered in desi:gn. Therefore, 

the response of the frames acted on by 75% of the factored gravity loads 
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will be studied. The design of frames, however, will consider both 

loading conditions specified in 71 ACI Code, Art. 9.3.2. The frame 

loading sequence is 

1. Apply gravity loads up to 75% of their design values 

2. Apply lateral load H 

Four types of failures, as described by Rad (12), can occur for 

the reduced model of Figure 2.3 as a result of gravity and lateral loads. 

The four types of failure are shown in Figure 2.4. 

1. Type I: Elastic Frame Instability. This frame, as shown in 

Figure 2.4a, oecomes unstable under large column loads. The frame 

fails within the elastic limits of the material. 

2. Type II: Material Failure. This failure occurs when a column 

section fails by crushing of the concrete, as shown in Figure 2.4b. 

3. Type III: Frame Instability with Partial Plasticity. When the 

lateral load is applied to this structure it remains in stable 

equilibrium until a plastic hinge forms at the peak moment section, 

C. The lateral load that causes this hinge to form is denoted by 

H1 • The frame, due to loss of stiffness, will not stay in a stable 

equilibrium position after the first hinge forms. This frame 

failure is shown in Figure 2.4c. 

4. Type IV: Instability with Combined Mechanism. This structure 

remains in stable equilibrium until two critical sections have 

reached their bending capacity values, M • The extra lateral 
p 

load that is needed to form a mechanism is denoted oy H2 . This 

failure type is sliown in Figure 2.4d. 

In tlii.s section the ooundary between Types III and IV failure will 
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be examined. The difference between these two types of failure is the 

additional lateral load, Hz' that the frame can withstand after the first 

hinge forms. If Type III failures occurs, H2 = O, however, if Type 

IV failures occurs then H
2 

> O. 

A useful index may be defined as the percentage of moment re

distribution B: 

B = (H2/H) x 100 

where H2 = the lateral load after the first hinge forms 

H = Total lateral load capacity 

For Type III failure B = O, and for Type IV failure B > O. 

2.3 PARAMETRIC STUDY OF MODEL FRAME 

(2.3) 

In this section a nonlinear computer program is used to study the 

response of three different interior panels under various Q/P ratios. 

The Q/P ratio relates directly to the number of stories that the panel 

is representing by Equation (2.1). For each panel, the maximum number 

of stories, n, that causes a Type IV failure will be investigated. 

2.3.1 Program Description 

A program called "NONFIX7", (12), which is a modified version of 

program NONFIXS, developed by Gunnin (13), was used to analyze the 

frames. 

The program uses the nonlinear force deformation properties (thrust

moment~urvature relationship) of the memb.ers. Therefore, the change 

in memfier stiffnesses caused oy moments and tfirusts are taken into 

account. The program uses polynomials to describe the thrust-moment

curvature (P-M-0) relationships. The P-M-0 relationsfrlps are generated 



12 

by a subroutine (14) which assumes Hognestad's (15) stress-strain 

relationship for concrete in compression and an elasto-plastic stress-

strain relationship for the steel (without strain hardening). The member 

sections are assumed to be symmetrically reinforced (p = p ') with a 

single steel layer on opposite faces. 

The maximum ordinate on the concrete stress-strain curve was 

assumed as 1.0 f'; and the maximum concrete strain, E , as .0038. 
c u 

In addition to the nonlinear behavior of the material, the program 

includes the p .... ~ moments caused by joint displacements. 

2.3.2 Frame Description 

Three cases of interior panels with overall geometry shown 

qualitatively in Figure 2.2, were analyzed by program NONFIX7. 

The length of the columns (Lc) and beams (~) were 42-in. and 

84-in. respectively. The cross-sections for the columns and beams were 

6-in wide and 4-in deep with reinforcing in a single layer on two 

opposite faces throughout the length of the member (p = p '). Ad /h c 

ratio of .25 was assumed for all sections, where d = distance from the c 

bar centroid to the nearest face. The reinforcement was assumed as 

grade 60 (f = 60 ksi) and the concrete strength f' = 4.0 ksi. 
y c 

The difference between the three cases was the percentage of re-

inforcement. For case I, the beams and columns were reinforced with 

four #3 reinforcing bars which gave a beam reinforcement ratio of 

p = p 1 = .0122, and column reinf orcement ratio of pt= .0183. Case II 

had 4 .... #3 bars in the beam (p = p' = .0122) and 4-414 bars in the columns 

(pt = • 0333}. For Case III, the 6eams included 4""414 bars- (P = P 
1 = . 0222) 

and columns 4...j/3 oars (pt= .0183}. 
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Therefore, the main difference between the three cases was the 

bending moment capacity M and the relative joint stiffness, ~ . However, 
p 

the relative joint stiffness, if based on gross areas, is equal to ~ = nom 

2,0 for all three cases. 

This section describes the computer output. All three cases 

were run on the computer starting with a Q/P ratio of .25 (n = 3 stories). 

The loading sequence, consistent with 71 ACI Code, Art. 9.3.2, was 

applied as followst 

1. Beam and column loads were proportionately applied to 75% 

of the capacity of the frame under gravity loads. The Q/P 

ratio depended on the number of stories the frame represented. 

2. The beam and column loads remained constant as the lateral 

load was increased to failure. 

The output from the computer consisted of joint displacements, member 

forces, and reactions. The above procedure, steps 1 & 2, was repeated 

for a Q/P ratio of .167 (n = 4) and then repeated again with higher values 

of n until a type III failure occured (H2 = 0). Therefore, the maximum 

number of stories was determined for each case in which a panel 

mechanism failure occurred (Type IV). Table 2.1 gives the beam to column 

load ratio (story number) and the beam and column reinforcement ratios 

for each case. 
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TABLE 2.1 

FRAME PARAMETERS 

Case Keep 
Vary Constant 

I p l=.0183 co 
pbm=.0120 n 3 4 5 6 7 8 9 

II p l=.0333 co 
Pbm=.0120 

III p l=.0183 Q/P .25 .167 co .125 .100 .083 .071 .063 

pbm = .OZ22 

2.3.4 Interpretation of Computer Output 

From the computer output, three relationships were studied for 

each frame: column thrust-moment relationship (P-M) for joints B and 

C, lateral load-moment relationship (H-M), and lateral load-deflection 

curve (H-Ll). The column thrust-moment curve gives the eccentricity 

ratios, e/h, for the column under gravity loading. Also, it shows if 

the plastic hinge forms in either the beam or column at corner C. The 

most useful plot is the lateral load-moment curve which is used to study 

the inelastic behavior of different sections. It helps determine the 

level of lateral load (Hz) that causes hinging at corner C. The H-'Ll 

relationship does give some idea about the level of lateral load (Hz), 

but not as accurately as the H~M response. 

The response of each frame was studied by plotting the lateral 

load versus moment for corners B and C, and point M. Three different 

H...,,M curves, whidi represented different Q/P ratios (stod es n), are 
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shown qualitatively in Figure 2.5. These curves describe the behavior 

for case I. Because the bending capacity for the entire beam is M , 
p 

the bending capacity at sections B, C and M is shown as a single value. 

Shown in Figure 2.5, the first case, n = 3-4, will now be examined. 

The moments at zero lateral load are caused by the beam loads Q. With 

increasing lateral load the moments at C, B and M change almost linearly 

until the bending capacity at C is reached. Because the moment curvature 

relationship of beams include a slight transition curve from yield 

moment to the ultimate moment, there is a sligfit knee for moment at C 

as the bending capacity is approached. As more lateral load is applied, 

the moments at B and M increase more rapidly as shown by the change in 

slope. However, the bending moment at corner C remains at M while the 
p 

moment at M reaches its bending capacity. The moments at B and M 

increase more rapidly because of the decreased frame stiffness caused 

by hinging at C. After two sections C and M reach M , the frame deflects 
p 

continuously, signifying instability failure (mechanism motion). 

The response for n = 5-6, as shown in Figure 2.5, is different 

from n = 3-4 after the first hinge forms. This is because of higher 

column thrusts which cause higher P-~ moments in the frame. Therefore, 

the slope of the H-M curve for B and M, after the first hinge forms, is 

flatter than for n = 3-4. Nevertheless, the capacity at M is reached 

which also causes a mechanism (Type IV}. 

The response for n= 8~9, as shown by Figure 2.5, was close to a 

Type IIL failure. The descending part of the. moment curves for B and 

M is determined by specifying a lateral deflection in the input of 

program NON'.FIX7. Therefore, the lateral load needed to · cause tlii~dis-
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placement can be found. These Q/P ratios (or n-values) help distinguish 

the boundary between Types III and IV failure. 

The lateral load capacity for each frame was broken down into two 

parts; I\ and Hz; where H1 is the lateral load that causes the first 

hinge to form, and Hz is the added lateral load causing a mechanism. 

As shown in Figure Z.5, the ultimate lateral load H and Hz decrease 

with increasing stories n. 

The lateral load that causes the first hinge to form, H
1

, was 

determined by studying the H-M plot for the moment at C. Essentially, 

the curve consists of two approximately linear parts which are connected 

by a curved segment. These linear parts were extended until they 

intersected. Value of H1 was defined as the intersection of these two 

lines. 

2.3.5 Results 

The results for each case are shown in Table Z.Z. For each case, 

the table gives the eccentricity ratio e/h under gravity loads, column 

thrust T, lateral load capacity H, H1 , Hz and percentage of moment re

distribution 8 = H2/H. 

For each case, a mechanism failure (Type IV failure) occurred 

for frames up to nine stories. However, the percentage of moment re

distribution decreased with increasing number of stories, n. The 

eccentricity ratio, e/h, decreased to an average value of O.Z6 for 

n = 9. Also, the lateral load capacity of the frames decreased with 

increasing stories. 

Figure 2,6 shows the moment redistribution index, 8 = Hz/H , as 

a function of the number of stories n. The top right liand corner gives 



18 

TABLE 2.2 

SUMMARY OF COMPUTER RESULTS 

T H H1 H2 H~/H 
CASE n (k) e/h (lb) (lb) (lb) %) 

3 8.1 .90 1600 800 800 50 

4 11.6 .64 1300 700 600 46 

5 15.8 .50 900 550 350 39 

I 6 18.7 .41 800 600 200 25 

7 20.6 .33 950 800 150 16 

8 23.6 .29 750 700 50 7 

9 30.0 .25 400 400 0 0 

3 8.1 .88 1600 750 850 53 

4 11.6 .65 1200 700 500 42 

5 14.6 .50 1150 700 450 39 

II 6 17.6 .42 1000 700 300 30 

7 20.5 .34 850 650 200 24 

8 23.6 .30 750 700 50 7 

9 25.5 .28 650 650 0 0 

3 13.1 .88 2550 1500 1050 41 

4 18.6 .65 2000 1200 800 40 

5 24.2 .49 1700 1100 600 35 

III 6 29.1 .40 1450 1100 350 24 

7 33.5 .33 1250 1100 150 12 

8 38.5 .2 9 1030 1000 50 5 

9 42.4 .26 950 950 0 0 
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the. symbols used for each case, 

The. points generally fall in a banded area, shown as the shaded 

area in Figure 2 •. 6.. The shaded part graphically shows the decreasing 

moment redistribution with increasing number of stories, n. 

If limit design is applicable, the frame must have some degree 

of moment redistribition capability, A minimum a of 10% was arbitrarily 

chosen, which indicates a maximum number of stori.es of about 7; as 

shown in Figure 2 .. 6 .. 

2 • .4 ELASTQ ..... PLASTI.C STABH .. TIY MODEL 

In this section, the inelastic ouckling load · for the reduced model of 

Figure 2.3 is investigated using two methods. The first method uses 

an equilibrium equation that includes P-6 moments. The stability 

equation is determined by the principle. of neutral. eq.uilihx:iu.m.. This 

method is appli.ed to two cases; one when the second hinge forms at B and 

the other when the second hinge fonns at M. 

The solution to the inelastic buckling load has been shown by 

Rad (12) for the first case, that is, when the second hinge forms at 

B. The solution will be summarized here so as to introduce the notation 

and method. 

The loading sequence is the same as the computer analysis and 

frame tests. First, the column loads P and beam loads Q are applied 

proportionately up to a certain level. For generality, the. gravity 

loads are. not necessarily· incre.ased to 75%: of their ultimate values. 

Tlien, the.. lateral load is applf..ed until the frame fails. 

Tiie assumptf..ons made in the analysis of tlie reduced model are 

as· foilows · 0.2 } ; 
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1. The beam and column cross section possess elasto-plastic 

moment-curvature relations. Also, the flexural stiffnesses, 

Elb and Elc, do not change along the length of the members. 

2. The change in column thrust caused by the lateral load is 

neglected. 

3, The moment caused by the product of column thrust and the 

column deflection from the chord connecting the column ends 

is neglected. This means that the moment diagram caused by 

frame deflection along each column is linear rather than curved. 

4. Tne beam bending capacity, M , is the same for negative and 
p 

positive bending and is constant throughout the length of 

the beam. 

The reduced frame is studied for two different loading stages. 

The first stage exists until the first hinge forms at corner C. This 

hinge is caused by gravity loads P and Q, and lateral load H
1

. The 

second stage exists after the second hinge forms at B. The second 

hinge forms because of additional lateral load H2 . 

The definitions of symbols used in the following discussion are 

given below: 

P Axial load on the column 

Q Applied load on the beam at third points 

Lb & Lc Lengths of the beam and column 

M Plastic moment capacity of either the beam or column 
p 

E1t:, Flexural stiffness of the beam 

EI Flexural stiffness of tlie column 
c 
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Relative flexural stiffness of the column and beam = 

H Lateral load applied at corner C 

Lateral load needed to form the first hinge 

Additional lateral load needed to form the second hinge 

Lateral deflection of the frame 

Lateral deflection of the frame when the first hinge forms 

Additional lateral deflection of the frame when the second hinge 
forms 

Sign convention: Clockwise moment on the columns at corners B or C is 

position. 

All moments are drawn on the compression side of the members. 

The gravity moments at corners B and C are determined by moment 

distribution. Because the column base is hinged and the beam is bent 

symmetrically, the distribution factor (D.F.) for the column is 

D.F. 

EI 
c <rn) 

c 

Eic Eib 
L /2 + .SO(L/2) 

c b 

The expression for w is substituted into the above: 

D.F. 3w + 1 

This is multiplied by the fixed end moment caused oy the beam loads Q. 

Therefore, tfie moment is 
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( 21)> ) QL = 
91jl + 3 b 

where F 
91)> + 3 

2.4.1 Second Hinge at B 

Figure 2.7 shows the moments up to the first hinge. For ease of 

calculation the moments were broken into two parts and then added 

together. The moments caused by beam loads are shown in Figure 2.7a 

while the moments caused by the lateral load H1 and lateral deflection 

~l are shown in Figure 2.7b. 

Since the peak moment is at corner C the first hinge will form 

here in either the beam or column. The expression for the moment at 

C is set equal to M : 
p 

FQLb + HlLc/4 + (P+Q)~l = 

This is rearranged: 

M 
p 

(2.4) 

After the first hinge forms the additional moments are caused by 

the lateral load H2 and the added deflection ~2 . The loads and moments 

after the first hinge forms are shown in Figure 2.8. As the frame 

deflects, the moment at corner C must remain constant at M • Therefore, 
p 

the added moment (P+Q)~ 2 on column CD must be o~posed by a horizontal 

shear force equal to 2(P+Q)f)./Lc. This shear force is transferred to 

column AB so as to keep the frame in equilibrium. This added shear force 

is shown in Figure 2.8b, 

Tfie moment at corner B, wfiich is caused by lateral load H1 , gravity 

loads Q and P, and lateral deflection Li
1

, is 
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The moment caused by lateral load H2 and lateral deflection ~2 is 

(P+Q)~2 
~ = (H2 + L 12 )Lc/2 + (P+Q)~2 = H2Lc/2 + 2{P+Q)~2 (2.6) 

c 

The total moment at Bis found by adding equations (2.5) and (2.6). Also, 

at collapse, ~ equals ~· This gives 

(2. 7) 

The value of H1Lc/4 + (P+Q)~l from equation (2.4) is substituted into 

the same expression contained in equation (2.7): 

(2.8) 

The lateral load H2 and lateral deflection ~ 2 can be related by 

using the area-moment theorem. This theorem is applied to the triangular 

moment diagram shown in Figure 2.8b. 

ML L ML 2 
b c c 

~2 = 3Elb x 2 + 12Elc (2. 9) 

But 

(2 .10) 

Therefore 

since 

H2Lc
2

{21jl + 1) (2 .11) 
24EI /L - 4(P+Q)L (21/1 + 1) 

c . c c 



Now equation (2.11) is substituted into equation (2.8): 

H
2

Lc 
2 

(2iji + 1) 

FQLb - 2 (P+Q) 24EI /L - 4(P+Q)L (2iji + 1) 
c c c 

2FQ1t, 
or 

2(P+Q)L 2(2 1j! + 1) 

L c /2 + -2..-4E-I--.,./L--~-4L_(,_P_+Q_,)_(,_2_1j! _+_l_) 
c c c 

or FQio 2Lc
2 

H2 = -1- [4 - 3EI (P+Q) (2iji + 1)] 
c c 

The index value for the critical buckling load, PE = 

stituted into the above equation: 

L 2 
c 
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, is sub-

IL = FQio [4 - 2/3 n2(P+Q) (2 1j! + 1) (2.12) 
---z Lc PE 

Now the condition of neutral equilibrium will be applied. If the frame 

is unstable after the first hinge forms then H2 is equal to zero. From 

equation (2.12), H2 is zero when the bracketed expression is zero. 

Therefore 

and 
(2 .13) 

2.4.2 Second Hinge at M 

The second hinge will now be assumed to form at M. The moment at 

M up to the fi r s t hi nge, as shown i n Figure 2.7, is 

(2.14) 

The moments caused by lateral deflection ti2 and lateral load H
2 

is 
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(P+Q)L\ 
~ = (H2 + L /22)Lc/3 + 2/3(P+Q)~2 

c 

The total moment is found by adding equations (2.14) and (2.15). Also, 

at collapse, ~ equals Mp 

4/3(P+Q)~ 2 (2.16) 

The value of H1Lc/4 + {P+Q)~l from equation (2.4) is substituted into 

the expression inside the parenthesis of equation (2.16) 

(2.17) 

The expression for ~ 2 from the moment-area theorem, as given by equation 

(2.11), is substituted into equation (2.17): 

4/3(P+Q) ~Le 2 
(2ijl + 1) 

2/3 ~ - Q1t,/3 + 4/ 3 FQLb - 24EI /L - 4(P+Q)L (2ijl + 1) 
c c c 

This equation is simplified: 
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The equation is solved for ~: 

2/3 ~ - Q1t,/3 + 4/3 FQ1t, 
H = ----------------

2 (P+Q)L 2 (2lji + 1) 
1c 13 + 18EI /L ~ 3(P+Q)L 

c c c (2lji + 1) 

18EI /L - 3(P~)L (2~ + 1) 
c c c 

= {2/ 3 ~ - Q1t, I 3 + 4/ 3 FQLb ][----....,...6E-I-----] 
c 

L (P+Q) (2lji + 1) 
c ] 

2EI 
c 

L 2 (P+Q)(2lji + 1) 
H2 = [2/3 ~ - QLb/3 + 4/3 FQLb] l/Lc [3 - c 2EI ] 

c 

The expression inside the second pair of brackets is now put into the 

same form as equation (2.12): 

2/3 L 2 (P+Q)(2lji + 1) 
c ] [2/3 ~ - Q1t,/3 + 4/3 FQ1t,] 3/4Lc [4 - EI 

c 

The critical buckling load, PE = , is substituted into the above: 

H = [~ _ QLb + FQLb][ 4 _ 2/3 n
2(P+Q)(2p + 1)] 

2 L 41 L PE c c c 
(2.18) 

Because the second pair of brackets has the same expression as 

equation (2.12) the inelastic buckling load is the same. Therefore, 

the stability equation is: 

p + Q = ___ 6 __ 

PE n2(2lji + 1) 
(2.19) 
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The second hinge is more likely to form at M rather than at corner B. 

The following discussion will derive the level of gravity load, Q, that 

will cause hinges to form at M and corner B at the same time. The 

moment diagram for this case is shown in Figure 2.9. 

The first hinge forms at C, and since the gravity moment ordinate, 

QLb/3, must remain constant the dashed line will only rotate about C. 

Therefore, from Figure 2.9, the moment at M which is ~, equals Q~/3 + 

~/3. Thus ~ = QLb/2. 

The gravity moment at C, FQLb' as a percentage of ~' is: 

x = 
FQ~ 

~ 

The expression for~ is substituted into the above: 

x = 2F 

If w = 2, which is the case for the frames studied by the computer, then 

x = (2)(.19) = .38 

which means the gravity moments are 38% of their ultimate. However, 

71 ACI Code, Article 9.3.2, requires that 75% of the ultimate gravity 

loads or moments be applied before any lateral load is added. Thus, 

the second hinge will form at M if the structure is loaded with 75% of 

the ultimate gravity loads. 

2.4.3 Inelastic Buckling Load by Bolton's Method 

Bolton (16), in a recent paper, has shown that elastic critical 

buckling loads can be calculated by using a simple model. The model 
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consists of a linear spring connected to the top of an axially loaded 

vertical bar, The bar is then displaced by a disturbing lateral force 

which causes overturning moments (P-~ moments) and elastic restoring 

forces from the linear spring. Then, an equilibrium equation is written 

which is used to solve for the critical load by the condition of zero 

structural stiffness. This method will be used here to solve for the 

inelastic buckling load of the reduced model. 

The reduced model will first be replaced by an equivalent spring 

and an equivalent column load. The model is shown in Figure 2.10. 

After the first hinge forms the structure must resist the over-

turning moment caused by the added shear force needed to keep column 

CD in equilibrium. This shear force, as d~rived in section 2.4.1, is 

Thus, the total overturning moment on the reduced 
Le 

model after the first hinge forms is 

2(P+Q)~2 
(P+Q)~2 + L x Lc/2 = 2(P+Q)~2 

c 

Therefore, the load on the strut shown in Figure 2.10, is 2(P+Q). 

The stiffness of the spring, K, is found by displacing the 

reduced model a unit distance. The reduced model has a hinge at corner 

C which represents the structure at this stage. The deflection of 

the frame has already been calculated and from equation (2.9) 

~2 = 
ML 2 

c 
12EI 

c 

The value of M from equation (2 .10} is substituted into the above 

equation. Since the. spring is assumed to he linear, the moment is 
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Thus 
H L 3 

2 c 62 = 24EI 
c 

This equation is solved for H2 : 

H = 
2 

24EI /L 3 
. c c 
21); + 1 
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Stiffness, K, is defined as the force needed to cause a unit displacement. 

Therefore, if 62 = 1, then 

24EI /L 3 
K = ___ c_c_ 

21.ji + 1 
(2.20) 

Now, the vertical bar is displaced, 62 , by the load H2 as shown in 

Figure 2.10. Equilibrium is found by taking moments about A: 

The force F is found by multiplying its stiffness, K, by its extension, 

or 

H L 
_1__£ = KL - 4 (P+Q) 

62 c 

The structural stiffness, R
2
Lc/2, is zero when the axial load reaches 

its critical value 

/. 0 = KL - 4(P+Q) 
c 

P+Q = KL /4 
c 

(2.21) 

The stiffness, K, from equation (2.20) is substituted into equation (2.21): 

6EI /L 2 
c c p + Q = ---:---

(2ljl + 1) 



This equation is divided by PE 
L 2 

c 

to result in 

6 

This gives the same equation as the two previous solutions. 

2.4.4 Stability Domains Defined by the Elasto-Plastic Analysis 

The stability of the reduced model will now be presented in 
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(2.22) 

graphical form. The inelastic buckling load, that is, values of (P+Q)/PE 

and ~ where H2 = 0, has been found in previous sections. The elastic 

buckling load exists for cases where H = O. Therefore, the elastic 

buckling load for the reduced model, before a hinge forms at corner C, 

is defined as P = n
2

Eic . The effective length factor, K, can be 
(KL ) 2 

found from the relati~e flexural stiffness of the column and beam by 

using alignment charts. 

The two equations for instability, elastic and inelastic, are 

plotted as functions of (P+Q)/PE and ~ . The elastic stability equation 

is called curve A while the inelastic stability equation is called curve 

B. The curves, as shown in Figure 2.11, divide the figure into 3 parts 

(domains) . 

The first part, Domain I, is to the right of curve A. This r egion 

represents frames that are unstable before any lateral load can be 

applied. Therefore H1 = H2 = 0. The second part, Domain II, lies 

between curve A and B and r epresents cases where the f rame i s s t abl e for 

lateral loads up to H1 • Therefore H2 = 0. Frames that lie to the left 

of curve B, Domain III, are stable until a mechanism forms. Therefore 
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2.4.5 NONFIX7 Results vs. Stability Domains 

The frames studied in Section 2.3 using the computer program can 

be compared to the stability domain of Figure 2.11. For five different 

Q/P ratios from each case, the results given by the elasto-plastic 

stability model are plotted on Figure 2.11. 

The relative column stiffness, $, is calculated from the flexural 

stiffnesses of the beam and column. Computer program PMPHI (14), which 

is a subroutine of NONFIX7, was used to generate the axial thrust-

moment-curvature relationships. The beam flexural stiffness Eib is 

shown in Figure 2.12a. However, the column P-M-0 relationship is non-

linear and changes for different axial load levels. Therefore, the 

stiffness of the column, EI , was defined as the average slope of the 
c 

two lines described below: 

1. A line drawn from the origin through (1/2)~ 

2. A line drawn from the origin through ~ 

The construction, which will be consistently used in this paper, is 

shown in Figure 2.12b. 

Table 2.3 gives the beam flexural stiffness Eib' the column 

flexural stiffness EI , the relative flexural stiffness $, and the 
c 

ratio T/PE. The values $ and T/PE are plotted in Figure 2.11 for 4,6, 

7,8, and 9-story frames of each case. Table 2.1 is a list of the frame 

parameters for each case. 

The results for each case, as shown in Figure 2.11, tend to cluster 

together. Also, each cluster of frames appears to follow the general 

shape of curve B. As the column to beam stiffness ratio ~ decreases, 

the centroid of each cluster (or case of frames) tends to shift to the 
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TABLE 2.3 

COMPARISON WITH ELASTO PLASTIC MODEL 

Case T Eib Eic PE T 
Symbol n Q/P (k) (k-in2) (k-in2) 1jJ (k) "PE 

4 .250 11.6 31000 42000 2. 71 235 .049 

I 
6 .100 18.7 31000 48000 3.10 269 .070 

(0) 7 .083 20.6 31000 . 49100 3.17 275 .075 

8 .071 23.6 31000 50900 3.28 285 .083 

9 .063 30.0 31000 51000 3.29 285 .105 

4 .250 11.6 31000 54000 3.48 302 .038 

II 
6 .100 17.6 31000 56000 3.61 313 .056 

(0) 7 .083 20.5 31000 56000 3.61 313 .065 

8 .071 23.6 31000 59200 3.82 331 .071 

9 .063 25.5 31000 58600 3.78 328 .078 

4 .250 18.6 47000 48000 2.04 269 .069 

6 .100 29.1 47000 51000 2.17 285 .102 
III 

7 .083 33.5 (A) 47000 51700 2.20 289 .116 

8 .071 38.5 47000 52000 2.21 291 .132 

9 .063 42.4 47000 53800 2.29 301 .141 
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right. 

The data points also lie in the same sequence, that is, as the 

number of stories i.ncreases the points move to the right and slightly 

upwards. Clearly, for each case, the 4 and 6 story frames were within 

Domain III (stable for H
1 

and H
2
). The moment redistribution curve 

(Figure 2.6) for the 4 and 6 story frames, as derived from the computer 

study of Section 2.3, shows moment redistribution percentages of about 

33% and 17%, respectively. The 7,8, and 9 story frames were either 

near or beyond curve B. The area represented by the 8 and 9 story 

frames is shaded, as shown in Figure 2.11. This area correlates well 

with the computer analysis which shows that these frames had less than 

5% moment redistribution. 

From the above comparisons it appears that there is good agreement 

between the elasto-plastic model stability domains and the results from 

the nonlinear computer analyses. 

2.5 SUMMARY 

The computer analysis of Section 2.3 showed that frames representing 

up to 9 story buildings remained in stable equilibrium until a mechanism 

occurred. Therefore, moment redistribution occurs which is the basic 

requirement of Limit Design. However, a minimum percentage of moment 

redistribution was arbitrarily selected at 10%. This allows a 7-story 

building to be designed by Limit Design methods. 

The frames representing 4, 6, 7, 8, and 9 story buildings, from 

the computer analyses, were then plotted on Stability Domains that were 

mathematically derived. The two approaches showed good correlation. 



CHAPTER Ill 

DESIGN OF TWO FRAMES FOR TESTING 

This chapter explains the design of Frames USD-1 and LD-1. The 

frames were designed under the same loading conditions. Since the 

frames had the same overall geometry, the major variable was the bending 

capacity M at different locations. This chapter will explain the p 

assumptions and methods used in the design of the two frames. 

3,1 · STORY HEIGHT, LOADS, AND GENERAL ASSUMPTrONS 

The story height was chosen so that limit design could be applied. 

The computer analysis of Chapter II shows that frames modelling a six 

or seven story building will remain in stable equilibrium after the 

first plastic hinge forms. However, little moment redistribution 

will occur. Therefore, a frame was chosen to model the lowest level of 

a five story building. This causes Q/P and Q/T ratios of .125 and .111. 

The index of moment redistribution for the five-story frame of case 1, 

as determined by the computer analysis of Chapter II, was about 39 

percent. 

The frame designed by the Ultimate Strength method, designated 

as Frame USD-1, was analyzed by elastic theory. The ultimate load of 

the frame occurs when the first plastic hinge forms. The frame designed 

by the Limit Design method, designated as Frame LD-1, was designed based 

on moment redistribution. The ultimate load for this frame is based 

on the frame undergoing moment redistribution to form a mechanism. 

Therefore, the two frames are designed according to two different 



principles. 

The design of Frame USD-1 follows the specification "Building 

Code Requirements for Reinforced Concrete" ACI 318-71 (1). The 
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columns of both frames were designed using "Ultimate Strength Design 

Handbook" ACI SP-17A (17). The design of Frame LD-1 uses the provisions 

of ACI 318-71 for detailing and serviceability. Also, the notation 

used in the design calculation are consistent with the ACI 318-71 

notation. 

The assumed service loads are shown in Figure 3.la while the 

ultimate loads are determined by applying code equation 9-1 and 9-2. 

The factored loads for gravity and gravity plus lateral loading are 

shown in Figures 3.lb and 3.lc. 

Since both frames were cast horizontally and a high quality 

control was excercised in frame fabrication, all capacity reduction 

factors (0) were assumed equal to 1.0. Also, no distinction was made 

between top and bottom reinforcing bars for development lengths con 

siderations. Since the frames were chosen to approximate a one-quarter 

scale factor, ties and stirrups were made from #12 gage wire. The 

beam stirrups were closed to account for possible torsional shear. 

Also, the beam sections for both frames were detailed so that the z-numbers 

(ACI 318-71, Art. 10.6) were about the same. This was done to keep the 

cracking serviceability criterion consistent for both frames. 

To prevent plastic hinge formation in the columns the bend i ng 

strength in the column was designed 10 percent stronger than the beam. 

The column reinforcing steel was anchored to top and bottom steel 

plales which also formed the column bearing plate and reaction base 

plate. 
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As permitted by the ACI (Art. 10.11.5), using a precise analysis, 

flexural stiffnesses EI values were calculated (program PMPHI). 

Otherwise, both frames were analyzed and designed by hand; i.e., without 

the use of computers. 

Finally, all calculations are shown for final cross sections. 

However, no iterative steps are shown. 

3.2 ULTIMATE STRENGTH DESIGN OF FRAME USD-1 

3.2.1 Design Method 

The main steps in the design of Frame USD-1 were: 

1. Elastic frame analysis 

2. Column design 

3. Beam flexure design and detailing 

4. Beam shear design 

First, the moments were calculated based on elastic moment dis

tribution. Then the columns were designed and the P-6 moments were 

added to the beam moment diagram. With a complete moment diagram the 

flexural reinforcement and stirrups were designed. The beam steel was 

proportioned according to the envelope moment diagram. Also, cracking 

serviceability conditions were checked at the negative and positive 

moment critical regions. 

A detailed explanation of the above steps is described in the 

following sections. 

3.2.2 Elastic Frame Analysis 

The moments, shears and reactions were calculated from conventional 

elastic theory. The moment distribution formula · M = FQLb, as described 
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in section 2.4, was used to find the moments at corners B and C caused 

by gravity loads Q. The length L is defined as the distance between 

the centerlines of the columns. The factor F was based on gross 

concrete cross sections, excluding all steel. According to elastic 

frame analysis lateral load H was distributed equally to the two columns. 

The column and beam cross section dimensions were 3 3/4 x 6 in. and 

4 x 6 in. 

a) Condition ·1. The loads for this loading condition are shown 

in Figure 3.lb. The moment at the intersection of the member centerlines 

for corners Band C is M = FQLb (.185)(2.61)(84) = 40.6 in-k. The 

moment at the beam load points, Mand N, is M = QLb/3 - FQLb = (2.61)(84)/3 -

40.6 = 32.5 in-k. Since the frame is symmetrical, equilibrium in the 

vertical direction gives vertical reactions at A and D of RAV = ~V = 

P + Q = 20.89 + 2.61 = 23.Sk. The horizontal reactions at A and D are 

found by isolating the column members AB and CD and taking moments 

about B and C. 

M B or C = 0: RAH = -~H = FQLb/21 = 40.6/21 = 1.03 k 

The reactions, shears and moments for this loading condition 

are shown in Figures 3.2a through 3.2c. 

b) Condition II. The loads for condition II are shown in 

Figure 3.lc. The vertical reaction at D, ~V' is found by taking 

moments about A. Likewise, the vertical reaction at A, RAV' is found 

by summing forces in the vertical direction. 

~ = 0: 

FV = 0: 

11>v = 17.97k 

RAV= 17.29k 
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The moments in corners B and C are found by adding the lateral load 

moment HL /4 to the gravity load moment. 
c 
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FQLb - HLc/4 = (.185)(1.96)(84) - (1.37)(42)/4 16.1 in-k 

M = FQLb -t L /4 c c 
(.185)(1.96)(84) + (1.37)(42)/4 = 44.9 in-k 

The two horizontal reactions at A and D are found by isolating the 

column members AB and CD and taking moments about B and C. 

~ = 0: 

M = 0 c 

RAH = , 77k 

~H = 2.14k 

The moment at M was found by isolating the right part of the structure 

ABM and then taking moments about M. This step was repeated for the 

left part of the structure, DCN, to find the moment at N 

0: 

0: 

~ 29.2 in-k 

~ = 19.5 in-k 

The reactions, shears, and moments for this loading condition 

are shown in Figures 3.3a through 3.3b. The moments from the two 

loading conditions, which do not include P-6 moments, are drawn on the 

same figure as shown in Figure 3.4. 

3.2.3 Column Desisn 

Because Frame USD-1 is unbraced, secondary moments caused by 

P-6 effects exist in the columns and beams. Also, shears will increase 

in the beam because of the increased end moments. 

ACI 318-71, Article 10.11 gives provisions for evaluating P..../:i effects 
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in columns. It consists of multiplying the column end moments by a 

magnification factor o. Primarily, two equations are used to determine 

o. The first equation, ACI code equation 10-6, is used to calculate 

the elastic critical buckling load: 

where EI = flexural stiffness of the column 

kl = equivalent length of the column 
u 

(3.1) 

This value is then used to determine the magnification factor o, which 

from ACI code equation 10-5: 

where P column design thrust 
u 

C 1.0 for unbraced frames m 

0 = capacity reduction factor 

c 
m 

l-0P /P 
u c 

Finally, the magnified column moment is M = oM, where M is from the 
c 

first order analysis. 

( 3.2) 

The primary step involved calculating the elastic critical buckling 

load P , which is a function of the equivalent length factor k, 
c 

and the 

column flexural stiffness EI. The equivalent length factor k was de-

termined by first establishing the relative column stiffness ratio $ at 

each end of the column. The expression is: 



where EI = flexural stiffness of the column, including the steel, at 
c 

the beam soffit level 

Elb flexural stiffness of the beam, including the steel, at 

corner C in negative bending 
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With the two values of ~ the equivalent length factor k was determined 

by using the alignment chart of Jackson and Moreland (18). Hence, 

P and o were calculated. c 

The following calculations are shown for the final design cross 

section. The section capacity will be checked for the two loading 

conditions witli the help of the ACI SP17 handbook (17). The column 

critical section is at the beam sof fit level which gives a slightly 

smaller moment than at the centerline of the beam. 

a) Condition I. The cross section capacity is calculated to 

check its adequacy. The cross section is shown in Figure 3.5. 

• • 13.75 ' 
in f = 

.75 c 

• • f y 
in J A = s 

Fig. 3.5. Column cross-section 

The required design strength for the column is P 
u 

(Base shear) = (19)(1.93) = 36.7 in-k. 

4000 psi 

59.1 ksi 

4-113 = .44 in2 

23.5k and M = (1 )x u u 

The flexural stiffness of the column and beam were determined 

by using the computer program"PMPHI": 

El = 37500 k~in2 (P~~0t not shown) 
c 

Eib = 38700 k~in2 (see Figure 3.6) 
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FIG.3.6 COMPUTED P-M-4't, BEAM USO-I 



EI = 37500 (see Figure 3.7) c 

Eib 38700 (see Figure 3.6) 
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The above values give flexural stiffnesses of EI /L = 37500/21 = 
c c 

1785 in~k for the columns, and Eib/Io = 38700/84 = 461 in-k for the beam. 

The flexural rigidity ratios at joints C and D are: 

~c = 1785/461 = 3.87 

~D = oo (Hinge) 

From Jackson and Morelands alignment chart (18) the equivalent 

length factor is k = 3.25. 

With C 

The elastic criti.cal load is 

= m 

This 

ir 2 EI 
c 

Pc = (kl )2 
ir2 x 37500 
(3.25 x 19)2 97.1 k 

u 

1.0 for unbraced frames the moment magnification 
c 

1~:~7/97.1 = 1 •23 0 m 
- p /P = 

1 1 -u c 
gives a design moment of M = oM = (1.23) (48.4) c 

factor is 

= 50.1 in-k. 

The eccentricity ratio is e/h = 50.1/(17.97)(3.75) = .74 and 

ptm = .35. The capacity Pu/f~bh, as found from reference (17), p. 121) 

is .17. The true capacity with 0 = 1 is .17/.7 = .24. The required 

capacity is P /f'bh = 17.97/(4)(6)(3.75) .20 u c 

c•t Design is adequate for Condition II. 

3.2.4 Beam Desi~n and Detailing 

As the frame sways under the applied loads, the columns and beam 

moments will be affected by the. P~~ moments~ Article 10.11.7 of the 

code states that flexural members shall be designed for the total magnified 

end moment~ For the design of Frame USD-1, the moment magnifier o, as 

determined from the column design, was applied to beam end moment. The 
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FIG.3.7 TYPICAL COMPUTED P-M-cpt 
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P-~ moment along the length of the beam was also calculated. 

First, the moment at the support face of corner C was multiplied 

by the moment magnifier. Next, the P-~ moment was calculated as M__ = 
-!'-~ 

oM - M. This P-~ moment increases the moment at corner C and decreases 

the moment at corner B the same amount when the lateral load is directed 

to the left. Likewise, the P-~ moment at M is + ~-~/3 while at N 

it is - ~-~/3. Therefore it was necessary to change the moment diagram 

of Figure 4.4 by either adding or subtracting the P-~ moments. 

For loading condition I the design moment at the critical section 

is 

At support face: ~or C = 40.6 - (1.875)(2.61) 35. 7 in-k 

The magnified moment is (6)(35.7) = (1.32)(35.7) = 47.1 in-k. This gives 

a P-~ moment of 6M - M = 47.1 - 35.7 = 11.4 in-k. The moment at 

corner Blowers to 35.7 - 11.4 = 24.3 in-k while the moments at Mand 

N become 32.5 + 11.4/3 = 36.4 in-k and 32.5 - 11.4/3 = 28. 7 in-k 

respectively. The total moment including the P-~ moments are shown in 

Figure 3.8 as a solid line. 

For loading condition II the design moments at the critical 

sections are: 

At support face: MC 44.9 - (1.875)(2.30) 40.6 in-k 

At support face: MB= 16.1 (1.875)(1.62) = 13.1 in-k 

The magnified moment at corner C is (6)(40.6) (1.23)(40.6) = 49.9 in-k. 

This gives a P~~ moment of oM-M = 49.9 = 40.6 = 9.3 in-k. The moment 

at corner B lowers to 13.1 ~ 9.3 = 3.8 in..-k, while the moments at Mand 

N become 29.2 + 9.3/3 = 32.3 in-k and 19.5 - 9.3/3 = 16.4 in-k respectively. 

The total moment diagram is shown in Figure 3.8 by a dashed line. 
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The design moments for the column and beam at corner C are not 

equal even though the same magnification factor is applied. This is 

caused by differences in the shearing forces at the faces of the joint 

block. 

From Figure 3.8, the maximum negative and positive moments are 

49.9 in-k at C and 36.3 in-k at M. 

Design of Beam Sections: 

Negative moment = 49.9 in-k (see Figure 3.8) 

d=3.2i . . 14" 
-,-_ --, 
-- b=6'' -i 

d = 3.28" (after several trials) 

-T A f = (2)(.11)(79.6) = 17.5 k 
s y 

C = T 

.85 f'ab = 17.5 
c 

a = 17.5 
.85 f'b 

c 

f' = 4.0 ksi c 

f 79.6 ksi y 

A = 2- 113 = s 

17.5 
(. 85) ( 4) ( 6) 

M T = T(d-a/2) 17.5 (3.28 - .858/2) 

M = 49.9 in-k O.K. 

Positive moment 36.3 in-k (see Figure 3.8) 

d=J.llI 14" f' 4 . 0 ksi c 

• • f = 59.1 ksi y 

~ b=6" J A 2~ 113 = s 

d 3.11 (after several trials) 

.22 in 2 

.858 in 

.22 in 2 



-
T = A f s y (2)(.11)(59.1) = 13.0 k 

-C = T 

.85 f tab = 13.0 
c 

a = 13.0 
.85 f'b 

c 

13.0 -------= (.85) (4) (6) 

M TZ = T(d-a/2) = 13.0(3.11-.637/2) 

~ 36.3 in-k O.K. 

.637 

The beam moment envelope for one half the frame is shown in 
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Figure 3.9. This diagram was used to find the cutoff points for positive 

and negative reinforcement, The detailing followed the provisions of 

Chapter 12 of ACI 318-71. Also, as specified in ACI 318-71, Art. 12.1.4, 

the moment diagram was assumed to shift the greater of 12db or d which 

is 4.5 in. The shifted moment diagram is shown in Figure 3.9 by a 

dashed line. For development length calculations the remaining bar 

was assumed to yield at the cutoff point. Since the bars are cut in a 

tension zone the shear requirements will be checked in section 3.2.5. 

As shown in Figure 3.9 for negative reinforcing, one bar can be 

tentatively stopped at 9.83 + 4.5 = 14.33 in (l'-2 1/2") from the support 

face. This gives enough distance for the bar to yield at the support 

face (l'-2 1/2" > ld = 12"). Since the remaining bar is assumed to 

yield at the cutoff point it must extend ld = 12 in. past the cutoff 

point. The remaining bar is stopped at 1 '-2 1/2" + 12 '' = 2 '-2 1/2" 

from the support face. This bar extends 26.50 - 19.66 6.84 in. past 

the point of inflection, which is greater th.an 12d0 or ln/16 as required 

by ACI code, Art. 12.3.3, 

One positive moment bar can be tentatively stopped at 10.24" + 

4.5 11 = 14.74" (l'-3") from point M. This is enough distance for the bar 
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to yield at point M. The remaining bar must extend through the support 

face so as to develop its yield strength at that point. This satis f ies 

ACI Code Articles 12.2.1 and 12.2.2. 

To satisfy cracking serviceability, the z-numbers are calculated 

at the negative and positive moment critical regions (C and M). 

Therefore, according to ACI code equation 10-2, the z-number at corner 

C with a reinforcing steel stress of .6 F is 
y 

z = fs -?J de A = (.6) (79.6) -?J (. 72) (4.32) 69. 7 

Likewise, the z-number at M is 

z = (.6) (59.1) 1 (.89)(5.34) = 59.6 

The z-number for negative and positive moment critical section are 

below the maximum allowable z of 150. 

3.2.5 Shear Design 

The shear diagram for the two loading conditions are shown in 

Figures 3.2b and 3.3b. However, added shear forces will occur in the 

beam because of increased beam end moments caused by lateral deflection 

of the frame. Therefore, the des i gn shears are calculated from the 

moment diagram of Figure 3.8. 

The maximum shear between points B and M and between points C 

and N is 
47.1 + 28.7 

28 2.90 k 

The maximum shear between points M and N is 

VMN = 32.32~ 16.4 = .57 k 

For spans BM and CN the shear stress is v = V /bd = 2900/(6) (3. 11) = 
u u 

155 psi. The shearing stress carved by the concrete is v = 2,lf' = c yi.c 
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2....j40o0 = 127 psi. The excess shear stress (v -v ) is 28 psi, however u c 

the stirrups must carry a minimum stress of 50 psi (ACI, Art. 11.1.2). 

With #12 gage closed stirrups the required spacing is 

s = Avfy _ (2)(.0874)(60000) = 3 . 50 in 
vb - (50)(6) 

s 

However, the maximum spacing must not exceed s = d/2 = 3.11/2 = 1.56 in. 

Therefore #12 gage closed stirrups at 1.56 in. spacing in spans BM 

and CN were used. 

The shear stress in the midspan region is v = V /bd = 570/(6)(3.11) = u u 

31 psi. As stated in the ACI Code, Art. 11.1.1, no stirrups are required 

if the shear stress is less than v /2 = 63 psi. 
c 

As mentioned in section 3.2.4, the cutoff bar must meet added 

shear requirements. The ultimate shear capacity, including stirrups, is 

... rt A f 
v -v +v =2Vf +~ 

ALL - c s c bs 

= 127 + (2)(.00874)(6000) = 239 psi 
(6) (1.56) 

The shearing stress at the cutoff point is 155 psi, which is less than 

two-thirds of 239 psi. Therefore, as permitted by ACI Article 12.1.6, 

the bars may be stopped in the tension zone. 

3.2.6 Frame Details 

Figure 3.10 gives the reinforcement arrangements and dimensions 

for the Frame. The cross-sections of the beam and columns are shown 

in Figure 3.11. A schedule of reinforcement is shown in Figure 3.12, 

while the details of the column cage are shown in Figure 3.13. 
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BAR SCHEDULE, FRAME USO-I 
BAR TOTAL SIZE fy<lllO TYPE DIM. 11A11 TOTAL 

NO. BARS LENGTH 

U-1 2 3 79.6 I 2!1t11 2~6!" 

U-2 2 3 79.6 I 3!-1~" 3!.s~" 
U-3 I 3 59.1 STR - 4~1011 

U-4 I 3 59.I 2 e!s" g!.sH 
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l''t OIM"A" •1 rt DIM "A" '1'1 
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3.3 LIMIT DESIGN OF FRAME LD-1 

3.3.1 Desisn Method 

The main steps in the design of Frame LD-1 were: 

1. Plastic frame analysis 

2. Consideration of P-~ moments 

3. Column design 

4. Beam design and detailing 

5. Shear design 

A five-story frame, as discussed in Chapter II, can redistribute 

moments to less stressed regions after the first hinge is formed. 

Eventually, the frame will form a collapse mechanism. At collapse 

mechanism, plastic analyses can be used to solve for the moments. 

The plastic moments will have to include the additional P-~ moments. 

A semi-empirical formula was used to complete the design moment diagram. 

The beam and columns were then designed and detailed according to the 

moment envelope diagram. Finally, separate checks were made for shear, 

and the rotational capacity at the first plastic hinge. 

3.3.2 Plastic Frame Analysis 

The "mechanism method"(l9) was used to calculate the plastic limit 

load P of the frame. In this method enough plastic hinges are assumed, 
p 

at points of peak moment, to reduce the structure to a mechanism. The 

load, which is needed to form the plastic hinges, is th.en calculated. 

Since this load ignores P~~ effects it .will be called the plastic 

limit load P rather than the ultimate load P . The P-~ effects are 
p u 

included in the next section. 
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Since the frame can form various combinations of mechanisms, it is 

necessary to determine the mechanism which requires the smallest 

plastic limit load P , The following assumptions were made in the p 

plastic analysis of Frame LD-1: 

1. The frame will remain in stable equilibrium after the first 

hinge is formed. This was discussed in Chapter II. 

2. The moment-curvature relations are idealized as elasto-plastic. 

3. Plastic hinges are assumed to occur at a point rather than a 

finite length. 

4. The value of M , both positive and negative, was assumed to 
p 

be the same for the beam. 

5. The strength of the column M col. was overdesigned by 10 
p 

percent to insure beam hinging. 

6. The bending strength of the joint block is greater than the 

bending strength of the connecting beam and column. This is 

shown to be true by earlier investigators (12,14,26). 

7. The equations of equilibrium are based on the original 

frame geometry. 

8. The members of the frame have adequate shear capacity so as 

to allow a flexural mechanism failure. 

9. The first plastic hinge has enough rotational capacity. 

a) Condition I. The loads for condition I, as shown in Figure 3.14a, 

are expressed as a function of column load P. The three mechanisms 

that can form are shown irt Figures 3.140 through 3.14d. The hinges at 

corners B and C are drawn at the support face in accordance with 

assumptions 5 and 6. The first two mechanisms are independent mechanisms 
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while the last one is a combination of the first two. 

For all three mechanisms, the principle of virtual work was applied 

to determine the plastic limit load. 

Mathematically, the expression is 

(3. 3) 

where WE = external virtual work 

w1 internal virtual work 

The moment diagram was drawn to meet the following three conditions: 

1. The structure is in equilibrium. 

2. Enough plastic hinges occur to form a mechanism. 

3. All the moments, except in the joint block region and columns, 

are less than the plastic moment M p 

The beam mechanism, as shown in Figure 3.14b, is one of two 

independent mechanisms. Since the frame and loads are symmetrical, the 

beam mechanism in Figure 3.14c has the same plastic limit load, P . p 

The principle of virtual work is applied by giving the hinge at 

C a small rotation, 9. The displacement at N is ~l = 9 1/3.2 = .313 91. 

The rotation at B is .484 9, and the angle change at N is 9 + .484 9 = 

1.484 9. Finally, the displacement at Mis ~2 = (.4849)(1/3.2) = .151 91. 

For this mechanism the external work is 

WE .125P~l + .125P~ 2 = (.125P)(.3139L) + (.125P)(.1519L) 

= .058 P9L 

The internal work is 

W = M (9 + 1.4849 + .484A) = 2.968 M 9 
I p p 
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Equating external and internal work gives 

51.28 ~/L ( 3 .4) 

Figure 3.14d is a combined mechanism of the first two beam mechanisms. 

The hinge rotations are 9 which gives a displacement at N and M of ~ = 

9L/3.2 = .313 91. The external work is 

WE= (.125P)(.3139L) + (.125P)(.3139L) = .07891 

The internal work is 

WI = M (9 + 9 + 9 + 9) = 4M 9 
p p 

Equating the above two equations gives 

P = 51.28 M /L p p 
(3.5) 

Therefore, the plastic limit load is P = 51.28 M /L which gives 
p p 

hinges at B, M, N and C. The required M , excluding P- ~ effects, is 
p 

found by substituting in the value of P • This gives M = PL/51.2 
u p 

(1.7 x 1512 •. 229)(84) -- 34.3 in-k. h i b d di T e ent re en ing moment agram is 

determined by considering the free body diagram of Figure 3.15 where 

all column forces are determined by considering the free body diagrams 

of individual columns. 

The moment at the centerline of the joint block is 1.13 M . As p 

stated in assumption 6, the column joint block has greater strength 

than the connecting members. The moments for the entire structure are 

shown in Figure 3.16. 

b) Condition II. The loads for Condition II are shown in Figure 

3.17a. The independent mechanisms are the same as for loading Condition 

I except that there is an added panel mechanism. The first two mechanisms, 
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as shown in Figures 3.17b and 3.17c, are beam mechanisms which give 

the same expression for P as equation (3.4). The third mechanism 
p 

is a panel mechanism while the fourth mechanism is a combination of a 

beam and panel mechanisms. 
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For the panel mechanism shown in Figure 3.17d, the added rotation 

at C is caused by the inclination of member BC. If the columns rotate 

9, then hinge crises a distance 62 = (9)(1/48) = .0208 91 while the 

hinge at B lowers the same amount. Therefore, the rotation of this 

member is 

.020891 + .020891 
1/1.043 .04349 

This gives a hinge rotation at B and C of 9 + .04349 = 1.04349. The 

horizontal displacement of the frame is 61 = (9)(1/4) = .25091. 

Therefore, the external work is 

WE= (.087P)(.2591) = .0218P91 

The external work at Mand N cancel each other. The internal work is 

W
1 

= M (1.04349 + 1.04349) = 2.0868M 9 
p p 

Equating external and internal work gives 

P = 95.72 M /1 
p p 

(3 .6) 

Figure 3.18 is a combined mechanism with hinges at C and M. 

Because the hinge at C displaces vertically it is necessary to calculate 

the rotation el. 

of the mechanism. 

The rotation e
1 

is solved by considering the geometry 

This gives 

The vertical deflection at C is ~2 (9)(1/48) .0208Q1, while the 
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vertical deflection at Mis 
1 

= (0)(1/3) = .333391. Therefore 

9· = .33391 + .020891 
1 1/3 + 1/3.2 

.5489 

This gives a rotation at C and M of 9 + .5489 = 1.5489. The displacement 

at N is ~3 = (.5489)(1/3.2) - (9)(1/48) = .150 91. 

The external work is 

WE= (.087P)(.2591) + (.125P)(.15091) + (.125P)(.333391 

= .082P91 
The internal work is 

Equating external and internal work gives 

P = 37.76 M /1 
p p 

(3. 7) 

which is the controlling mechanism. This gives a required M 
p P1/37.76 = 

(15.67)(84) = 34 9 i -k 
37.76 · n · 

The failure mechanism is checked by considering the equilibrium 

of the entire structure as shown in Figure 3.19. The moments are shown 

in Figure 3.20. 

The moments for both loading conditions, excluding the column 

moments, are shown in Figure 3.21. 

3.3.3 Consideration of P-~ Moments 

The plastic limit loads calculated for each load condition in 

previous sections did not include P- ~ effects. To complete the moment 

diagram of Figure 3.21, the P-~ effect is estimated using an empirical 

equation as described in the following. 

An equation used to predict the failure load of steel frames is 

given by the Merchant..-Rankine formula (20): 

1 -- = 
:>.. F 

_l_ + i_ 
:>..p "c or (3 . 8) 



e1 = .5489 

er 
I 
I 
I 
I 
I 
I 
I 

~9 
D I 

.125P .125? 

~k ___ r~ ____ J~----~--
A 

91 = .5489 

FIG. 3.18 COMBINED MECHANISM 

-, B 
I 
I 
I 
I 
I 
I 

~ 
I A 
I 



L/4 

37.76 M 
-----P 4. 72 M 

L p 

L/ 4~i I• L/3. 2 ~~· L/3 

M 
p N 

4.46 M 
R_ ., p 

D -"DH L 

4.72 M 
37.76 M 

p 
p L 

~ .. M L/3 l 
p 

B 

1.17 M 
R p 

AH • L ---- ... 1 43.30 M 

~ A t 41.66 M 
~V,.. L p RAV ... L p 

FIG.3.19 LOADS a REACTIONS 

M 
p 

M .73 M 
_JP~---f'. 

.29 M 
p 

.21 M 
p 

FIG.3.20MOMENT DIAGRAM 

77 



28
11 28" 2811 

~4=.3~~-.+-~...,,.._---~49 
------- --- 34.3 -""-"" ,,,.. ...--'2:5.5 ............ 

~ ~ 

C° N 1~~~-+-~--+-~~~~ 

_.... 

I 34.9 
21 11 Note: Moments at faces of crossing members, in-k 

--Gravity (Cond. I ) 

- - - - - 3/4 (Gravity+ Lateral) (Cond.l[) 

FIG.321 BEAM MOMENT ENVELOPE FOR LD-1 

343 

....... 
00 



where A 
F 

A 
c 

collapse load factor 

p (Code equations 9~1 = u 
service load . 

= Elastic critical load 

P (equation 3 . 1) 
c 
service load 

or 9...-2) 

factor 

A = Idealized rigid-plastic collapse load factor p 

= P (From controlling mechanism) p 
service load 
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This equation combines purely elastic behavior (A ) with purely plastic c 

behavior (A ) to find the collapse load factor. p 

More recently, Wood (21) modified the Merchant-Rankine formula 

as follows: 
A 

A p 
F = .9 + A /A 

p c 

Wood changed the formula primarily because of the effect of strain 

(3.9) 

hardening and cladding on the strength and stiffness of steel frames. 

This equation was used to predict the collapse load factor of Frame LD-1. 

First, the frame critical sections, excluding P-~ effects, were 

designed according to the moments of Figure 3.21. From the cross sections 

and frame geometry, the elastic critical buckling load was determined 

from equation 3.1. Then the collapse load factor was determined from 

equation (3.9) which gave a lower value than specified by code equations 

9~1 and 9~2. Therefore, the failure load had to be increased by either 

stiffening or strengthening the memoer critical sections. It was 

decided to strengthen the memoer so that the plastic collapse load 

factor would increase. To do this, equation 3.9 was rearranged to give 



the needed plastic collapse load factor: 

). 
p 

80 

(3 .10) 

The collapse load factors are defined as ).F = 1.7 and 1.4 as specified 

by ACI 318~71 . The elastic critical load factor AE was calculated from 

the final design cross sections. Hence, the required Ap (or Pp) 

could be calculated. Finally, the required M , which is a function of 
p 

P , was determined. 
p 

a) Condition 1. The required M is calculated for loading 
p 

condition I. The cross section details of the beam and column are shown 

in Figure 3.30. 

The flexural stiffness of the column and beam is 

Eib 38750 in2-k (see Figure 3.22) 

EI 31500 in2-k (P-M-0t not shown) c 

The above values give flexural stiffnesses of EI /L = 31500/21 = 
c c 

1500 in-k for the column and Eib/Lb = 38750/84 = 461 in-k for the beam. 

At joints C and D the rigidity ratios are 

lJi c = 

L: EI /L 
c c 

lJin = 00 (Hinge) 

1500 
461 = 3. 25 

From reference (18), the equivalent factor k is 3.0. The elastic 

critical buckling load according to equation (3. l} is 

p 
c 

7T 2 EI 
c =---

(kl ) 2 
u 

7T
2 x 31500 

(3 x 19) 2 
= 95.7 k 

The elastic critical load factor is 

). 
c 

Elastic critical load (P ) 
c 

Service load (P+Q) 
95.7 6 92 

12.29 + 1.54 = . 
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FIG.3.22 COMPUTED P-M-4't, BEAM LO-I 



The required idealized rigid-plastic collapse load factor A , 
p 

according to equation (3.10), is 

(.9)(1.7)(6.92) = = 2.03 6.92 - 1.70 

82 

Finally, the required M for this loading condition is calculated 
p 

from the controlling mechanism: 
p L 

M_ = p = (2.03 x 12.29)(84) = 40 . 9 in-k 
--p 51.28 51.28 

The moment diagram for loading condition I is shown in Figure 

3.24 as a solid line. 

b) Condition II. For loading condition II, the flexural 

stiffnesses of the column and beam are 

Elb = 38750 in2-k (see Figure 3.22) 

EI 33000 in2-k (see Figure 3.23) 
c 

These values give flexural stiffnesses of Elc/Lc = 33000/21 = 

1571 in-k for the column, and Eib/Lb = 38750/84 = 461 for the beam. 

At joints C and D the rigidity ratios are 

~c 
1571 

461 = 3.41 

~D 00 (Hinge) 
From reference (18), the equivalent length factor k is 3.0. The elastic 

critical buckling load according to equation (3.1) is 

p 
c = 

n
2 EI 2 

C TI X 33000 
~~~ 

(kl ) 2 
(3 x 19) 2 

= 100.2 k 

u 

The elastic critical load factor, including the lateral load 

effect on the axial load, is 

A 
c 

pc 100.2 = ~~~~~- = ~~~~~~--'-~~-:-~-:-...,,..,.--,.- = 9.48 k 
Service load .75(12.29 + 1.54 + ~~)~~~~42)) 
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The required idealized rigid-plastic collapse load factor, 

according to equation (3.10), is 

A = 
p 

(.9)(1.7)(9 . 48) 
(9 . 48 - 1.70) 1.86 

84 

Finally, the required M for this loading condition is calculated 
p 

from the controlling mechanism: 

M 
p 

p L 
p 

37.76 
(1 . 86 x 9.22)(84) 

37.76 38.2 in-k 

The moment diagram for loading condition II is shown in Figure 3.24 

as a dashed line. 

3.3.4 Column Design 

The P-~ effects for the column were included in the design M 
p 

by increasing the plastic collapse load factor. Thus, the design 

moment for the column already includes the P-~ moment. 

The moments are determined at the critical sections from the reactions 

of the frame, as shown in Figures 3.15 and 3.19. The column cross 

section is shown in Figure 3.30. 

p 
u 

a) Condition I. The required strength for 
4.53 

23.5 k and M = (1 )(Base shear) = (19)( L p u 

the column is 
M 

p) = (19)(4.53 x 40.9) 
84 

41.9 in-k. 

The values used in the column design are the eccentricity ratio 

e/h 41.9/(23.5)(3.50) = .51 and ptm ~ (.021)((60)/(.85)(4)) = .37. 

For this section, y/h = .57 = .6, so chart 85 of reference (17, p. 121) 

is used, This gives a capacity of P /f'bd = .27. The true capacity u c 

with 0 = 1 is .27/.7 = .39. The required is P /f'bfi = 23.5/(4)(6)(3.5) 
u c 

,28. 
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• •, Design is adequate for Condition I. 

b) Condition II. The required strength, excluding column thrusts 

caused by lateral loading, is P = 15.67 + 1.96 = 17.63 k and M = 
4.46 Mu p 

(lu)(Base shear)= (19)( 1 p) = (19)(4 •46 ~4 38 • 2 ) = 38.5 in-k. 

The eccentricity ratio is e/h = 38.5/(17.63)(3.30) = .62 and 

tm = .37. The capacity as determined from reference (17, p. 121), is 

P /f'bh = .22. The true capacity with 0 = 1 is .22/.7 = .31. The required u c 

is P /f'b~ = 17.63/(4)(6)(3.5) = .21 
u c 

• • • Design is adequate for Condition II. 

3.3.5 Beam Design and Detailing 

The required plastic moments, M , as shown in Figure 3.24, are 
p 

40.9 in-k for condition I and 38.2 in-k for condition II. Therefore, 

gravity loads control the design at critical sections M and C. The 

section design and detailing is similar to the beam design of Frame USD-1. 

However, only one cross-section is designed. The required plastic 

rotational capacity is checked in section 3.3.7. 

M M = 40.9 in-k 
p u 

d. 3.171 ]h-4" 
f I = 4.0 ksi c 

f 66.0 ksi • • y 

. 2 

~ b = 6" ~ A 2- 113 .22 in s 

d 3.17 (after several trials) 

T A f = (2)(.11)(66.0) = 14.52 k s y 



c T 

.85 f•ab = 14.52; 
c 

14.52 
a = ...,..( -. 8-5..-)(.,....4-) -(6-) = ' 712 

M = T(d•a/2) = 14.52(3.17-.712/2) = 40.9 in-k 
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The moment envelope for one-half the frame is shown in Figure 3.25. 

The same assumptions and procedure are used as for Frame USD-1. The 

shear requirements at the cutoff points will be checked in section 3.3.6. 

As shown in Figure 3.25, for negative moment reinforcing, one 

bar can be tentatively stopped at 7.02" + 4.5" = 11.52" (l'-0"). 

This gives enough distance for the bar to yield at the support face 

(l'-O" = ld = l'-0"). Since the remaining bar is assumed to yield at 

the cutoff point, it must extend ld = 12 in. past this point. Therefore, 

the remaining bar is stopped at l'-0" + 12" = 2'-0" from the support 

face. This bar extends 24" - 15.17" = 8.83" past the point of inflection 

which is greater than 12db or ln/16 as required by the ACI 318-71 

code (Art. 12.3.3). 

One positive moment bar can be tentatively stopped at 10.06" + 

4.5" = 14.51" (l'-3") from point M. This is enough distance for the 

bar to yield at point M. The remaining bar must extend through the 

support so as to -develop its yield strength at that joint. This satisfies 

71 ACI Code Articles 12.2.1 and 12.2.2. 

To make sure the reinforcement is in the elastic range at service 

loads, the elastic stresses are calculated~ The high.est service load 

moment is in the ·beam at corner C. The service load moments for the 

two loading conditions are calculated according to the provisions of 

reference (22). 



SHIFTED 
MOMENT 
DIAGRAM 

l'-0" 

2!.o" 

M 

t-2" 

9k-in. 

I 

I 
MOMENT ENVELOPE 

I 
I 

1!..3" 1'-2 

88 

FIG.3.25 BEAM REINF. DETAILS, LD-1 



The service loads for gravity (condition I) are multiplied by 

1.2 while the service loads for gravity and lateral (condition II) 

are multiplied by 1.0. Next, the elastic moments are calculated from 

these loads. Finally, the elastic stresses are calculated from the 

transformed section. 

The moment at corner C, in condition I, is: 

M = FQLb = (.178)(1.2 x 1.54)(84) 27.6 in-k 

This moment reduces to 24.9 in-k at the support face. The moment at 

corner C in condition II, is: 

Mc 2 FQLb + HLc/4 

= 34.3 in-k 

(.178)(1.54)(84) + c1 · 0r)<42 ) 

This moment reduces to 31.l in-k at the support face. 

The transformed section is shown in Figure 3.26. The section 

properties are calculated to be: 

kd = 1.10 in (neutral axis depth) 

and 
I = 10.63 in4 

The elastic stresses are 

f 
c 

f 
s 

Mkd --= 
(31.1)(1.10) 

10.63 3.22 ksi 
I 

n x 
M(d-kd) 

I 
8 x (31.1)(3.17 - 1.10) 

10.63 
48.4 ksi 
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The steel stress is 73 percent of the yield strength which is less than 

the maximum service load stress of .90 F . 
y 

The z"'11.umber, according to 71 ACI Code Equation 10-2, is calculated 

from the service load stress: 



z = f ..1'dA 
S " OCI\ 

3.------
= 48.4 iJC.83)(4.98) = 77.7 

This is less than 150 as required by the code. Therefore, the beam 

cross-section meets the requirements of yield safety and cracking 

serviceability. 

3.3.6 Shear Design 

90 

The maximum design shear in the beam is determined from the moment 

diagram of Figure 3.21. The beam must form plastic moments at C and 

N under gravity loads. These moments rotate the member ends in opposite 

directions. Therefore, the maximum shear between C and N, in condition I, 

is 
40.9 + 40.9 

26.25 
3.12k 

The maximum shear stress between M and N is caused by condition II 

loading: 

V = 38.2 - 27.9 37k 
MN 28 ' 

Since these shear loads are similar to the shear loads for Frame 

USD-1, the stirrups spacing, s, is controlled by the effective depth, 

d. Therefore, use #12 gage closed stirrups at s = 3.17/2 = 1.58 in. 

for spans BM and CN. Likewise, in span MN, no stirrups are required. 

As for Frame USD-1, the cutoff bar must meet added shear require-

ments. The ultimate shear capacity, including stirrups, is 
A f 

v - v + v 2"""v + ...:!._L ALL - c s V1 c bs 

= 127 + (2)(.00874)(60000) 
(6)(1.58) 

= 237 psi 
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The shearing stress at the cutoff point is v = V /bd = 3120/3.17 = 
c u 

164 psi. Which is approximately equal to 2/3 x 237 = 158 psi. 

Furthermore, the frame will be tested under condition .II loading which 

will induce smaller shearing stresses. 

3.3.7 Ultimate Deflection and Plastic Rotation Requirements 

The ultimate frame deflections, at the collapse load, are 

calculated just before the second hinge at point M forms. Also, the 

required plastic rotation 9 is calculated for the hinge at corner C. 
p 

The required rotation is checked against the plastic rotation capacity 

of the beam cross section. 

The method used for calculating deflections and rotations follows 

the procedure by Beedle (19) for steel frames. In this method, the 

plastic hinges are replaced with frictionless hinges which are allowed 

to rotate freely. The members between the plastic hinges are assumed 

to remain elastic. The correct boundary condition is with continuity 

assumed at the last plastic hinge to form. The same assumptions are 

used as for the plastic analysis discussed in Section 3.3.2. 

Slope deflection equation is used to calculate deflections: 

,.., - ,..,, /::,. R. ( 1 ) 
"A - "A+ i + 3El MAB - 2 ~A (3.11) 

These terms are shown in Figure 3.27 for a member with length = 1. 

Clockwise moments and rotations are positive while the flexural stiffness 

EI is constant over the span. 

The loading diagram, mechanism, moment diagram, and free body 

diagram are shown in Figure 3,28. The moments at B and C are taken at 

the centerline of the joint so as to simplify the analysis. Therefore, 

the hinges are assumed to form at the center of the joint blocks. 
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The deflections ov and oH are solved with two boundary conditions. 

The first boundary condition is at joint B where QBM _equals QBA' The 

second boundary condition is at M where QMB equals QMC' This boundary 

condition is valid just before the last hinge forms. 

The rotation QBA' for the column segment BA, is 

0 - ~ + 1/4 = (-.29 M__ - O) 1/ 4 3EI --p 

1 

c 

~1 
.024 Er 

c 

Next, the rotation QBM is found by using equation (3.11) for 

segment BM: 

36 
v 

1 

~1 
.023 E1 

b 

Since joint B has continuity, 9BA equals QBM: 

36 
v 

(3 .12) 

The last plastic hinge forms at M, therefore QMB = QMC just before 

the frame begins mechanism motion. The rotation QMB is 

.29 ~ 
2 ) 

Next, segment MC is considered. This gives a rotation QMC of 

where Q~C 

6v 21/3 1.12 ~ 
= 9~c + 21/3 + 3EI (-~ + 2 ) 

b 
simple beam slope = -.131 Mp1/Elb 



This gives 
3o 

v 
= -- -21 

ML 
.229 tr

b 

Since ~MC is equal to 9MB 

and 

3o ML 
- L v + . 095 F = 

b 

ML 
ov = .072 k 

3o 
v 

21 

ML 
.229 rl

b 

This expression is substituted into equation (4.12) 

M L
2 

M L
2 

Elb 
oH = .054E'i-- + .oo58E'i-- c1 - .100 ~ 

b b c 
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(3.13) 

(3 .14) 

For Frame LD-1 Mp = 40.9 in-k, and Eib and Elc as calculated from the 

P-M-0t plots are 38750 and 33000 k-in2 . Therefore, the lateral deflection 

oH' according to equation (3.14) is 

(.0598)(40.9)(84) 2 

38750 (l 

oH = .390 in 

(.100)(38750)) 
33000 

The plastic hinge rotation at corner C is given by the expression 

e = e - eco p CM 

The rotation gCM is 

0 
eCM = e' + v + 2L/3 

CM 2L/3 3Eib 
where Q'CM = .131 MPL/E~ 

Therefore 

Likewise 

ov = equation (3.13) 

ML 
0CM = .101 F 

b 

M 
(-1.12 Mp + -t) 

(3.15) 



0H L/4 
= 0 - L/ 4 + 3EI (1.12 M - 0) 

c p 

where oH = equation (3.14) 

Therefore 
ML 

= -.239 fr- (1 
b 

From equation (3.15) the required plastic hinge rotation is 

The 

EI c 

eP = 

9 = p 

required 

= 33000, 

ML ML Eib 
.101 fr-+ .239 fr- (1 - .489 E!) 

b b c 
ML ML 

.34 fr- - .117 tr-
b c 

plastic rotation, with M 40.9 in-k, Eib 

is 

(. 34)(40. 9)(84) 
38750 

p 

(.117)(40.9)(84) 
33000 

ep .018 rad. 

= 38750, 
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and 

This value will now be checked against the available plastic rotation. 

The plastic rotation capacity 9, as given by Park and Paulay (23), 
p 

is 

9 = (0 - 0 ) 2, 
p u y p 

where 0u ultimate curvature 

0y curvature at first yield 

£ = equivalent length of plastic hinge 
p 

This formula is an idealization of the actual plastic rotation at a 

critical section. It replaces the true curvature diagram with a 

rectangle of equal area. 

Since the curvature is the slope of the strain diagram for the 

(3 .16 ) 

cross~ection, equation (3.16) may be expressed as a function of strain 

(23): 
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£ £ 

9 = (~ _ ce)£. 
p c kd p 

where £ = ultimate concrete strain 
u 

c = neutral axis depth at ultimate curvature 

£ = concrete strain at first yield ce 

kd = neutral axis depth at first yield 

The values for ultimate concrete strain £ and equivalent length 
u 

of the plastic hinge 1 are found by an empirical formula proposed by 
p 

Corley (5). These expressions are results of tests on simply supported 

beams. Mattock (24), however, simplified these expressions as follows: 

and 

t = 0.5d + 0.05z 
p 

£ = .003 + 0.02 b/z + 0.2 p 
u s 

where z = distance from the critical section to point of contra 

flexural 

b = width of the beam 

p = ratio of volume of continuing steel to volume of concrete 
s 

core. 

The above expressions give 1 = (0.5)(3.17) + (.05)(15.17) = 
p 

2.34 in. which is .74d. The ultimate concrete strain Eu' with Ps 

is 
£ 

u 
0 003 + <0 · 02 )(6) + (.2)(.0088) 

. 15.17 

= .013 in/in 

(3.18) 

(3 .19) 

.0088, 

From section 3.3,5, k.d = 1.10 in, c = .712 in, and ~ = F /E x (kd/d-kd) = 
ce y s 

(66)(1.l}/(29,000)(2.17-1,10} = 00.12 in/in. Therefore, the plastic 

rotation capacity as given by equation (3.17) is 



eP <:~i; - · 0~~i> 2.34 

9P = .040 rad. > .018 rad. required 

Adequate plastic rotation capacity exists. 

3.3.8 Frame Details 
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The plan view of Frame LD-1, as shown in Figure 3.29, gives the 

reinforcement arrangements and dimensions for the Frame. The cross

sections for the beam and column are shown in Figure 3.30. A schedule 

of reinforcement is shown in Figure 3.31 while the details of the column 

cage are shown in Figure 3.32. 
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BAR SCHEDULE, FRAME LD-1 

BAR TOTAL SIZE TYPE DtM. 11A
11 TOTAL 

NO. BARS 'J• ·-·· l ii:'MGTH 

L-1 2 3 66.0 I 1!.1111 2!.4" 

L-2 2 3 66.0 I 2!.1111 3!.4" 

L-3 I 3 66.0 STR 4!.1011 

L-4 I 3 66.0 2 8~411 9!.4" 

L-5 8 3 59.1 STR 1!..11 11 

TYPE I TYPE 2 
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CHAPTER IV 

EXPERIMENTAL METHOD 

This chapter describes the materials, fabrication of test frames, 

measurement methods, and testing apparatus. The details of the test 

frames are shown in the previous chapter, therefore references will be 

made to figures in Chapter III. The "as built" dimensions are shown 

in Table 4.2 and Table 4.3. 

4.1 MATERIALS 

4.1.l Concrete 

Because the design called for concrete with a compressive strength 

of 4000 psi at seven days, three trial batches were made so as to 

determine the proper design mix. From the strength tests of these trial 

batch cylinders, a design mix was chosen which was used for Frames USD-1 

and LD-1. The cement was type III (high early strength), the coarse 

aggregate pea gravel with a maximum aggregate size of 3/8-in, and the 

fine aggregate a well graded fine sand. The coarse and fine aggregates 

were Willamette River aggregates. 

Stress-strain curves of standard cylinders for Frames USD-1 and LD-1 

are shown in Figures 4.1 and 4.2. The dashed line, as shown in these 

' figures, stands for the secant modulus of elasticity at 1/2 fc. The 

equipment used for the test was a 250-kip capacity hand operated hydraulic 

testing machine and a compressometer with a 6-in gage length. A pressure 

gage, calibrated in kips, measured the load. 
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4.1.2 Reinforcing Steel 

Number 3 reinforcing bars, conforming to ASTM-A615, were used for 

the longitudinal reinforcement. Twelve inch long coupons were cut 

from 20-ft. long stock bars and tested using the Material Testing System (MTS) 

electro-hydraulic testing machine. By plotting the load vs. strain on 

the MTS plotter, the yield point load was determined. Finally, the yield 

strength was calculated from the yield point load. Yield strengths 

of the bars used in the test frames are shown in Figures 3.12 and 3.31 

A typical stress-strain curve is shown in Figure 4.3. 

4.1,3 Number 12 Gage Wire 
( 

The beam stirrups and column ties, which are shown in Figures 3.11 

and 3.30, were made from #12 gage cold drawn steel wires. The tensile 

test procedure was similar to the one used for the reinforcing bars. 

The load vs. strain plot, as shown in Figure 4.4 exhibited gradual 

yielding rather than a definite yield point. Therefore, the 0.2 percent 

off set method was used to determine the yield strength. The yield 

strength exceeds the maximum design value of 60 ksi allowed by the ACI 

318-71. Therefore a yield strength of 60 ksi was assumed when designing 

the test frame ties and stirrups. 

4.2 FABRICATION OF SPECIMENS 

Specimen fabrication consisted primarily of aligning the formwork, 

fabricating the reinforcement cages, placing the cages in the forms, and 

casting and curing of the test frames. 
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4.2.1 Alignment of Forms 

Figures 4.5 through 4.8 show the formwork and cages. The bottom of 

the formwork consisted of a steel base made from three sections of C9 x 13.4 

steel channels. The two channels, which form the legs, were butt-welded 

to the main channel. The sides of the test frames were formed with eight 

sections of C6 x 8.2 steel channels which were bolted to the base through 

slotted holes drilled in the bottom flange. These slotted holes were 

used so as to provide adjustable member depths for the test frames. As 

discussed by Rad (12), the most critical dimension was the diagonals. 

When the intersecting diagonals were nearly equal, perpendicularity of 

the beam-column junction was satisfied. 

Three centerlines, which coincided with the centerlines of the 

test frames, were drawn on the base channels. Next, the rear channel, 

which forms the top of the beam, was bolted securely to the base at the 

required distance from the beam centerline. The top dimension was 

maintained by using a tri square and an adjustment angle. One-quarter 

inch bolts welded to the tops of the sideforms, were fastened to adjust

ment angles consisting of steel angle stubs welded to the base channels. 

By turning the nut on the bolt, the top of the side channel could move 

in either direction perpendicular to the member centerline. The above 

procedure was repeated for the other seven side forms. 

After the side forms were in place, the intersecting diagonals 

were measured by stretching nylon thread from four reference points 

center-punched on the top flange of the side forms. If the four inter

secting diagonals were within a selected tolerance of 1/16-in. of each 

other, the form alignment was considered satisfactory. 
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Fig. 4.5. The column cage positioned in the forms 

Fig. 4.6. The berun cage showing the beam stirrups 



Fig. 4 . . 7. The beam and column cage intersection 

Fig. 4.8. The reinforcing cages positioned in the forms 
before concrete casting 
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Finally, the formwork was caulked at the side form-base channel corners, 

and oiled about 24 hours before concrete casting. 

4.2.2 Fabrication of Reinforcing Cages 

a) Column Cage. For ease of construction a special detail was 

set up for the two column cages. Because of the geometry of the frame 

and congestion of steel at the beam-column intersection, it was necessary 

to develop the column reinforcing bars by welding them to a top plate. 

Likewise, the column end called for a special detail for the reaction 

point. The cages consisted of four reinforcing bars welded to two plates. 

The details of these cages for Frames USD-1 and LD-1 are shown in 

Figures 3.13 and 3.32. 

First, the plates were cut to the cross-section dimensions of the 

column. However the depth for the bottom plate was cut about 0.05-in. 

less so as to easily position it in the forms. Next, the bottom plate 

was machined with a mill on the three sides of the plate which contact 

the forms. Then, a 1/16 in. deep V-Notch was machined along the center

line of the bottom plate. This V-Notch accepts the knife-edge support 

of the test apparatus. Finally, holes were drilled in both plates for 

insertin~ the reinforcing bars. 

Four reinforcing bars were placed in the holes of the top and bottom 

plate. Column ties were inserted before welding the bars to the plates. 

Careful attention was given to the overall length of the cage as the 

bars were welded. Af ter welding, the cage was checked for squareness and 

overall length. Then the ties were positioned along the length of the 

cage and tied at all four corners with #16 gage wire. Finally, a 3/4-in. 

diameter x l'-0" long steel rod was welded to the centerline of the bottom 
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plate. This rod is a part of the corner rotation measuring device which 

is discussed in section 4.3.3. 

b) Beam Cage. Frist, the reinforcement bars were cut to the pro

per length as shown in Figures 3.12 and 3.31. Then a bar bending device 

was used for those bars needing a standard hook. Next, the bars were 

longitudinally positioned as shown in Figures 3.10 and 3.29. The bars 

were supported at four points with 12" x 12" plywood veneer panels. 

These panels included four holes drilled in the pattern conforming to 

the cross-section. Finally, the stirrups were placed and tied with #16 

gage wire at each point where a bar existed. The first stirrup began 

at (s/2) from the support face of the column. 

4.2.3 Placement of Reinforcing Cages 

The beam and column cages were placed in the forms on steel chairs 

which were used to align the cages with respect to bottom and side 

channels of the forms. The chairs were placed at the negative and 

positive bending moment regions. Also, the column and beam reinforcing 

bars were tied together with #16 gage wire at the beam-column intersection. 

This provided a rigid connection and prevented the reinforcing bars 

from moving when the concrete was placed. Four photographs of the reinfor

cing steel positioned in the forms are shown in Figures 4.5 through 4.8. 

A 15/16"1.D. steel pipe was inserted and vertically aligned at the beam

column intersection. This pipe is part of the lateral load assembly, 

as discussed in section 4.4.lc. 

Lifting hooks made from #2 bars were placed at four locations. 

These hooks were used together with a 1-ton hoist to lift the frame out 
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of the forms. 

4.2.4 Casting and Curing of Concrete 

The concr ete was poured in two batches. The columns were cast from 

the first batch and the beam was cast from the second batch. At least 

three control cylinders were poured from each batch. The proportions 

by weight of fine aggregate~ coarse aggregate, cement and water for the 

two frames are shown in Table 4.1. 

A small internal vibrator, as shown in Figure 4.9, was used to 

consolidate the concrete. The top of the concrete was screeded with a 

flat piece of wood and trowel finished. Finally, the forms were cleaned 

with a wet rag. Figure 4.10 shows the final stage of casting. 

About four hours after concrete placement, cotton curing mats 

were moistened and placed on the specimen and cylinder molds. Two days 

later, the specimen and cylinders were removed and placed in cotton 

curing mats up to one day before testing. After five days, a cylinder 

was capped and tested in a hand-operated hydraulic testing machine for 

its compressive strength. If the strength was within 400 psi of the 

specified compressive strength, the specimen and cylinders were cleaned 

and placed in the test rig. 

The overall geometry of the test frames was measured after casting, 

as shown in Table 4.2. Also, member widths and depths were measured 

where instrumentation was applied. These average values are presented 

in Table 4.3 . This table also shows concrete covers, concrete strengths 

and reinforcing steel yield strengths. 



TABLE 4.1 

CONCRETE MIX PROPORTIONS BY WEIGHT 

FRAME BATCH CEMENT WATER FINE COARSE SLUMP BATCH VOL. 
(lb) (lb) AGG. AGG. (in) (cu ft) 

(lb) (lb) 

1 47 24 118 86 7 1.90 
USD-1 

2 70 1/2 34 177 129 7 1/4 2.83 

1 59 30 148 108 7 1/4 2.38 
LD-1 

2 59 31 138 108 7 2.32 
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Fig. 4.9. Casting and consolidating the concrete 

Fig. 4.10. Cleaning the forms after casting 
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MEASURED r.F.m·mTRY 

T 
F 
j_ ...,....._ ______ 8----.....;;,;;;....._. ... 

..... -------c---------oillif 

A B c D E F G 
FRAME USD-1 

Actual 80 1/4 80 1/4 84 1/32 85 7/16 85 3/8 23 23 

Ideal 80 1/4 80 1/4 84 85 9/32 85 9/32 23 23 

FRAME LD-1 

Actual 80 1/2 80 1/2 84 1/32 85 9/16 85 1/2 23 23 

Ideal 80 1/2 80 1/2 84 85 ll/32 85 13/32 23 23 

TABLE 4.3 

PRINCIPLE PROPERTIES OF THE FRAMES 

h b Mom. de f I f c kst Frame Member in. in. Region in. psi 

USD-1 Col 3.764 6.041 ±M .75 4421 59.l 

Brn 4.032 6.107 +M .94 4126 59.1 
-M .75 79.6 

Col 3.499 6.036 ±M .75 5414 59.1 
LD-1 Bm 4.029 6.096 +M .90 4444 66.0 

-M .90 66.0 
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4.3 MEASUREMENT METHODS 

The main purpose of this experimental work was to study the behavior 

of reinforced concrete frames subjected to gravity loads and a lateral 

load. 

The following measurements were taken: 

(1) measurements of column loads (P), beam loads {Q), and lateral 

load (H). 

(2) curvatures at various locations 

(3) corner rotations 

(4) lateral deflections. 

4.3.l Loads and Pressures 

Three independent pressure supplies were used to apply the column 

loads, beam loads and the lateral load. The pressure was applied with 

three hand-operated pumps. The pumps had adjustable pressure relief 

valves. The instrumentation system is schematically diagrammed in Figure 

4.11. 

Column loads were applied with 30-ton capacity rams. Because 

column loads were the same, column rams were connected to a single pump 

through a system of hydraulic hoses and a manifold. The pressure was 

measured by a calibrated strain-gauge pressure transducer, and checked by 

a pressure gage. Both measuring devices had a capacity of 10,000 psi. 

Similarly, the beam loads were applied by a 20-ton capacity ram. 

The lateral load for Frame USD-1 was applied by a 10-ton capacity ram. 

The test apparatus had to be modified slightly for Frame LD-1 for which 

a 12-ton capacity ram was used. Ream and lateral loads were measured 
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using pressure transducers. In addition, 10-kip capacity load cell was 

used for measuring the lateral load for Frame LD-1. 

Calibration Method. The pressure transducer and the load cell were 

calibrated in terms of output voltage. It involved applying a known load 

and recording the output voltage from either the transducer or load 

cell in µv/v (microvolts per volt). The test setup, which is schematically 

shown in Figure 4.12, consisted of the Material Testing System electro

hydraulic testing machine, a strain indicator connected to a scanner, 

and the pressure supply system. 

The loads to the ram were applied by the MTS and measured with 

the MTS digital voltmeter. At the same load level, output voltage from 

the transducer or load cell was recorded on the strain indicator. This 

step was repeated for several load levels over the operating range 

of the pressure supply system. The above step was repeated for descending 

load levels. 

The calibration curves are shown in Figures 4.13 through 4.15. 

Because the lateral load ram was changed for testing LD-1, two calibrations 

are shown in Figure 4.14. 

4.3.2 Curvatures 

Because it was necessary to measure bending moments at various 

locations on the beam and columns, measurement devices called curvature

meters were used. These devices are described by earlier investigators 

(14,25,26). The locations of the curvature-meters are shown in Figure 

4.16. The plan view of a curvature meter is shown in Figure 4.17. A 

curvature meter measures the deformation over a gage length on opposite 

sides of the member. From deformations, the average strain on the top 
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and bottom fibers and the corresponding curvature is determined. 

These curvatures were used to determine the bending moment at the center 

of the gage length. All computations are done by the computer program 

FRAGO as described in section 5.1.1. 

The main parts of a curvature-meter are the arms, saddles, and 

dial gages. The arms were made from steel angles which were welded to 

U-shaped saddles. A mount for the dial gage was connected at the end 

of each arm. The dial gages had an accuracy of .001 in. and a plunger 

range of 1.00 in. The dial gages were positioned at a reading of about 

0.5 in. This was done to allow movement in either direction. 

Curvature meters were installed by first marking the exact positions 

of the meters on the test frame (Figure 4.16). Metal strips (1/16" x 

1/2" x 6") were glued to the frame at these locations. Next, steel 

plates (1/3 x 2" x 6") were centered over the strip. Finally, the curvature 

meters were centered over the plates and tightened with 1/4-in bolts. 

A 1/4 in. gap between the top of the specimen and curvature meter was 

provided ·to prevent restraint. A photograph of several curvature meters 

in position is shown in Figure 4.19. 

4.3.3 Corner Rotations 

The corner rotations at A and D were measured with a device shown 

in Figure 4.18. It consisted of an 18-in. long steel angle welded to a 

3-in. long 13/16-in I.D. steel pipe. This assembly was fastened to the 

test frame joint by sliding the pipe over the 3/4- in. diameter bar cast 

in the frame. Two 1/4-in. diameter set screws secured the assembly to 

the bar. A 2-in. x 4-in. x 5/32-in. plate was welded to the other end 

of the arm. The plunger of the dial gage was positioned perpendicular 
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to the end plate. 

The angular rotation (9) is determined by the relationship: 

9 = ~DR L 
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where ~DR is the change in dial gage reading, and L is the length of the 

arm as shown in Figure 4.18. 

4.3,4 Lateral Deflection Measurement 

The lateral deflection was measured with a 2-in. travel dial gage. 

This dial gage, located at corner B beam stub shown in Figure 4.16, 

measured the lateral deflection relative to the laboratory floor. A 

Photograph of the measuring device is shown in Figure 4.20. 

4.4 TEST APPARATUS 

The components of the loading system, schematically diagramed 

in Figure 4.21, are briefly described in the following section. Reference 

(27) includes a detailed description of the loading system. Also, a 

typical test procedure is outlined below. 

4.4.1 Description of Apparatus 

The loading system consists of five main parts: two column load 

devices, a beam load device, a lateral load assembly, a stationa~y concrete 

reaction beam, and a movable steel beam. The gravity (beam and col umn) 

loads react on the test frame through three pairs of bearing devices 

interconnected by prestressing strands. A sway adjustment ram as shown 

in Figure 4.23 is provided at one end of the movable steel beam which can 

move the steel beam laterally to adjust to the test frame lateral movement. 

Figure 4.22 is a photograph of the test apparatus. 
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Fig. 4.19. Curvature-meters in position 

Fig. 4.20. Lateral deflection measuring device 
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Fig. 4.22. Test apparatus 

Fig. 4.23. Sway adjustment ram and dial gage 
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a) Column Load Devices. The column load device is composed of 

a bearing head and ram head coupled together by two prestressing strands. 

The load is applied by a hydraulic ram connected to the ram head. 

When the ram is extended, it reacts against the ram head which transmits 

the load through two prestressing strands to the bearing head. The 

reaction at the bearing head is the load to the test frame. 

The ram head, which is U-shaped, is made from steel plates and 

sections of wide flange wel ded together. It is supported on a steel 

angle frame by two wheels which permit it to move perpendicular to the 

movable steel beam. This steel angle frame is supported by a wheel at 

one end, which allow it to move laterally; and by the movable steel beam 

at the other end. 

The bearing head, which is about 7 ft from the ram head, is 

similarly constructed. However, the bearing head has a knife-edge 

welded to it which transmits the load to the columns. 

Two 1/2 inch 0 prestressing strands connect the ram head and bearing 

head together. These two strands are located in the same vertical plane 

as the column centerline of the test frame. The top and bottom strands 

are about 38-in. and 12-in. from the laboratory floor. Chucks are used 

to connect the strands to the heads. 

b) Beam Load Device. The beam load device is similar to the column 

load device. The load transmitted from the beam ram head was split into 

two forces by a yoke system (beam loading assembly). 

c) Lateral Load Assembly. The ram and load cell centerlines for 

the lateral load assembly, which are mounted on a vertical column stub, 

are about 2'-2" from the laboratory floor. When the ram is extended it 
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reacts against a 4" x 4" bearing plate. This bearing plate transmits 

the load to the test frame by two 1/4-in. diameter rods. The load from 

these rods is transferred to the test frame with a 3/4-in. diameter rod 

inserted in the pipe sleeve as discussed in section 4.2.3. Also, between 

the ram and test frame, the load transmits through a coiled spring shown 

in Figure 4.21. This spring helps keep the lateral load constant as 

the test frame is deflected laterally. 

d) Concrete Reaction Beam and Movable Steel Beam, A concrete 

reaction beam, mounted to the laboratory floor, withstands the reaction 

forces from the reaction stubs and the movable steel beam. The centerline 

of the l'-2" wide x 2'-0" deep beam is about 2'-2" from the laboratory 

floor. 

The 10-ft long movable steel beam, which is simply supported. by 

rollers, is used to support the three ram heads. A hydraulic ram, as 

shown in Figure 4.23, is placed at one end of the beam. By using this 

ram and a dial gage, the movable steel beam was positioned laterally 

the same distance as the test frame lateral deflection. This was to 

insure that the stands were always perpendicular to the loading beam as 

testing was in progress. 

4.4.2 Test Procedure 

a) Pre-test Procedure. The test frame was leveled in the horizontal 

direction to prevent biaxial bending in the columns and torsion in the beam. 

This was done by using screw jacks which supported the test frame . The 

bearing heads were then positioned at the load points of the test frame. 

The top and bottom strands for each bearing head were adjusted to the 

same length so that they would carry equal loads. This was checked by 
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loading the columns with about a 6-kip load and then tapping the strands 

by a piece of thin steel flat bar. If the sound frequencies were about 

the same, then it was concluded that the stands had approximately equal 

loads. 

Finally, the column loading strands were aligned with the column 

centerlines. A transit, which was about 15-ft behind the bearing head, 

was set up on the right column centerline. The vertical hairline of the 

transit, as shown in Figure 4.24, was aligned with the column centerline. 

Then the column cable was positioned on this centerline. Next, a 

measuring tape was used to position tne otner strands. The alignment 

was checked by applying a column load of 2.5 kips. The alignment was 

good if the frame lateral deflection was less than .001 in. 

b) Ultimate Load Test. After the test frame was aligned, zero 

readings of the pressure transducers and the load cell were taken. 

Then, a 500-lb column load was applied to seat the frame. At this load, 

which is the seating load, zero readings of all the curvature-meter dials, 

rotation dials and the lateral deflection dial were taken. 

The sequence of test loads were applied as follows: 

Sequence 1. The beam and column load increments were applied in 8 levels 

to a maximum column and beam load of 15.67-kip and 1.96-kip. The Q/P 

ratio was maintained at .125. 

Sequence 2. The lateral load was applied incrementally to failure while 

maintaining the maximum beam and column loads. 

Sequence 3. The lateral load from sequence 2 was reduced to zero and 

the column and beam loads were reduced to 75 percent of their original 

values. Finally, the lateral load was reapplied to failure (for F·rame LD-1 

only). 
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At each load level for sequences 1 and 2, the curvature-meter dials, 

corner rotation dials and the lateral deflection dial were read and 

recorded (see Figure 4.25). Also, as shown in Figure 4.26, the visible 

cracks were marked with a marker for each load increment. As sho>;.m in 

Figure 4.27, the beam and column loads were monitored to prevent load 

relaxation in the strands caused by either elastic stretching, or 

creep and moment redistribution in the test frame. Two readings were 

recorded on the pressure transducers and the load cell, one when curvature 

meters were first read and one after the readings were completed. About 

ten minutes were needed to read and record all the dial gages. 

The lateral load for sequence 2 was first applied in nominal 200-lb 

increments. During this load application, the load vs. deflection was 

plotted to detect nonlinearity in the test frame. When this response 

became nonlinear, the nominal load increments were reduced to 50-lb. 

As the frame approached failure, the critical value needed was the ultimate 

lateral load. This was achieved by continuously monitoring the load ce ll 

of the lateral load assembly. During and after failure the lateral load 

could not be maintained. To obtain the descending portion of the l ateral 

load vs. deflection curves, deformation rather than lateral load was 

applied. 

In summary, the loading for sequence was stopped when three conditions 

were observed: 

(1) a reduction in the lateral load capacity under increasing lateral 

deflection, 

(2) two well defined hinges, including concrete spalling, observed in 

the beam (collapse mechanism), 

(3) lateral deflection of about one inch. 
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During the loading for sequence 3, only the lateral deflections 

were recorded. 

After the frame was tested, photographs were taken with both the 

instrumentation on and off the specimen. Finally, the control cylinders 

were tested for their compressive strength. 

4.4.3 Sources of Error 

This section briefly describes some critical aspects of the loading 

system and test frame. Reference (12) includes a more complete descri?tion 

of the sources of error involved in testing unbraced frames. 

Three factors have the most influence on the behavior of unbraced 

frames (12). They are: 

1. column strength when column failures occurred 

2. alignment of frame (Figure 4.28a) 

3. precise direction and specific point of application of column 

loads (Figure 4.28b) 

The first factor does not apply to frame tests in this series becaus e 

the hinge formed in the beam. The concrete strength does not significantly 

affect the bending capacity of the heam. However , factors 2 and 3 have 

a significant affect on the lateral load response of the test frames. 

Two idealized models, as shown in Figure 4.28 were used to study the 

degree of error in the frame. 

The first model, as shown in Figure 4.28a, had a parallelogram 

geometry but with col mnn l oad, p e rpendicular to the beam. The s econd 

model, as shown in Figure 4.28b, had rerfect geometry but with column 

loads slightly inclined. 
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The effects of both models is to cause an extraneous lateral load 

acting to the right. Therefore, the column load P can be broken down 

into two loads; a load acting along the column axis, and a lateral load 

acting along the beam direction. If the column and geometry are perfect 

than lateral load - deflection response for the f rame should cause a 

zero displacement under full gravity load. However if there is some 

imperfection then some displacement will occur. The required lateral 

load needed to bring the structure to zero displacement may be called 

the extraneous lateral load caused by imperfec t i on in either the frame 

geometry or loading. Therefore, for small angles, the imperfection 

angle, a , would be 

TAN-1 H/ 2 
p 
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Fig. 4.24. Aligning the right column strand 

Fig. 4.25. Reading the curvature-meter dials 



Fig . 4 . 26. Marking flexural c r acks at the positive 
moment region of the beam 

Fig . 4 . 27. Monitoring loads and pressures wit h the 
strain indicator 
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p p 

(a) iMPERFECTION IN FRAME GEOMETRY 

p p 

(b) IMPERFECTION IN LOADING 

FIG.4.28 FRAMES WITH IDEALIZED 
IMPERFECTIONS 



CHAPTER V 

TEST RESULTS 

This chapter describes the test behavior of Frames USD-1 and 

LD-1 . Both frames were tested to failure under gravity and lateral loads. 

Frames USD-1 and LD-1 were designed, as discussed in Chapter III, under 

the same loading conditions. Frame USD-1 was designed by the Ultimate 

Strength method while Frame LD-1 by a Limit Design method. 

5.1 DATA REDUCTION 

This section describes how the measured data was processed into 

refined data. The refined data are presented in a series of six graphs 

for Frames USD-1 and LD-1. 

5.1.1 Moments at the Curvature-Meter Stations 

The recorded strain measurements from the pressure transducers and 

the load cell were used to determine loads for each load increment. The 

relationships between the strain readings and the loads were determined 

from the calibration curves given in section 4.3.1. The column thrust 

was assumed as the sum of beam load (Q) and column load (P) while the 

axial load in the beam was assumed as zero. Lateral loads for Frames 

USD-1 and LD-1 given in the test results are computed from the load cell. 

The dial readings from the curvature-meters (four stations in the 

beam and two in the columns as shown in Figure 4.16) were machine processed 

into average curvatures and surface strains at the midpoint of the station 

by program FRAGO (14,26). The input for FRAGO is similar to member 
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input for NONFIX7. The ultimate concrete strain was taken as Eu= .0038 

while the maximum ordinate on the stress-strain curve was taken as 1.0. 

A P-M-0t curve for the cross~section at each station is generated by 

FRAGO for different axial loads. Finally, the moment is determined by 

finding the moment corresponding to that curvature and input axial load. 

Program FRAGO calculates the moment for cross-sections with symmetrical 

reinforcement. In this frame test series, columns were symmetrically 

reinforced; but not the beams. Nevertheless, input for the beam was 

entered as symmetrically reinforced. To check the error caused by this 

input, P-.M-0t curves for two cases were generated. This was done 

using program PMPHI by first determining P-M-0t for a symmetrical cross 

section with the properties of a typical station, say station 3 of 

Frame USD-1 (p =Pl and p' = p1). Next, the compression steel was removed 

(p' = 0) and the above step repeated. It was observed that the stiffnesses, 

moment capacities, and ultimate curvatures were nearly identical (for 

example the moment capacities were within 1% of each other). 

Also, because of nonsymmetrical cross-sections in the beam, pro

visions had to be made to account for reversed curvature at beam corner 

station 6. This was done by running station 6 on FRAGO with the negative 

and positive bending cross sections. 

The indicated moments from program FRAGO underestimate the true 

bending moment (28). This was found to be true for the beam because 

FRAGO assumes the concrete to be cracked under tensile strain. However, 

the column moments are more accurate since they are axially loaded thus 

cracking prevented. 
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5.1.2 Moments at the Critical Sections 

There are six critical sections which were studied. The critical 

section locations, bending moment capacities and symbols used in the 

graphs are shown in Figure 5.1. Four critical sections exist at the 

two corners (Band C), one at the beam load (M), and one at the positive 

' moment cutoff point (M ). More plastic hinges are capable of forming, 

however, and the critical sections listed here best represent the in-

elastic behavior of the frames. 

Indicated moments at the critical sections were determined by 

extending the moment diagrams indicated oy the curvature-meters at 

various stations. Figure 5.2 shows the method for determining the total 

moment diagrams. Also as shown in Figure 5.3, it was possible to 

determine the spread of hinging. 

The calculation for beam bending capacities (M or M ) were p u 

calculated using the ACI 318-71 provisions. These provisions, which 

were also used in the design, replace the true concrete compressive 

stress distribution with an equivalent rectangular stress block. Short 

column bending capacities for various axial loads were calculated from 

a subroutine in NONFIX7. The above values were close to the design 

values given in Chapter III. The differences were caused by changes 

' in the concrete strength (f) and the measured covers (d ). 
c c 

5.1.3 Description of Results 

The behavior of the frames is given by six graphs described 

below, These graphs are used to determine the behavior of the frame as 

well as the behavior of the members. 
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Section Station Description USD-1 LD-1 for 
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3 Highly stress·ed 0 36 0 41 0 

t4 

Region in beam 

Positive moment 25 18 20 20 D 
Cutoff point 
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FIG. 5.1 CRITICAL SECTIONS 
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FIG. 5.2 FRAME MOMENTS 

FIG. 5.3 SPREAD OF HINGING AT CORNER C 
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-~~l~mn Thr~st vs. Indicated Moment. These graphs show the 

column thrust vs. the column indicated moment at the beam soffit leve1. 

The critical sections are shown in Figure 5.1. These curves show the 

actua1 eccentricity ratio for the critical sections under gravity loading. 

The theoretical eccentricity ratio e/h at the critical section is based on 

an elastic moment distribution. The stiffness factors used in the 

moment distribution are based on center-to-center lengths and gross 

cross-sections (excluding all steel). Also shown on these figures are 

the partial column interaction diagram and the beam negative moment 

capacity at corner C. 

b) Lateral Load vs. Moment. These graphs show the load vs. 

indicated moment for the six critical sections listed in Figure 5.1. 

These curves determine the collapse mechanism for the frames and are 

used to predict the amount of moment redistribution. 

As previously defined, the index of moment redistribution is 

based on the amount of lateral load needed to cause the frame to fail 

after the first hinge forms. Mathematically, the expression is H2/HULT 

where H2 = HULT - H1 and H1 is the lateral load at first hinge f ormation. 

Approximate values for H
1 

can be determined from che beam and column 

moments at corner C. Because of the 1:racked beam assumption of the data 

reduction program FRAGO, the column moments were considered more accura te. 

Therefore, H
1 

was determined when the column moment at the beam soffit 

level reached the ~ capacity of the beam at corner C. 

The lateral load H
1

, may also be called the lateral load at first 

yield because the yield moment M for the beam at corner C is about 98% 
y 

of the ultimate moment ~· The moment-curvature diagrams f or the beam 



147 

at corner C are shown in Figures 3.6 anft 3.22 for Frames USD-1 and LD-1, 

respectively. 

The moments in the beam and column at each corner should theoretically 

be equal, however some differences were observed. These differences 

can be attributed to three causes: (1) the cracked beam assumption of 

program FRAGO, (2) differences in the column and beam shear forces at 

the joint block, and (3) accidental eccentricity of the column loads 

caused by either strand misalignment or non-induced eccentricities 

caused by variation in the column concrete strength. 

c) Lateral Load vs. Deflection. These curves show the nonlinearity 

in the frame under lateral loads. They help determine the level of 

lateral load that causes the first hinge to form (H1). Also, they give 

some idea about serviceability. 

The ductility index of the frames in the lateral direction may be 

defined as the ratio of lateral deflection at ultimate load to lateral 

deflection at first yield. The equation DL = ~u/~y; where DL is the 

lateral ductility index, ~ is the lateral deflection at ultimate and 
u 

~ is the lateral deflection at first yield. These values are calculated 
y 

for Frames USD-1 and LD-1 and are used to compare the ductilities of 

the frames. Since H1 is based on the load that causes hinging rather 

than yielding, the ductility indices are slightly underestimated. 

d) Load vs. Corner Rotations. These graphs are used similarly 

with the lateral load deflection graph to show non-linearity in the frames. 

They also show the rotation under gravity loads. The ductility of the 

frames at the two corners (A and D) may be defined in terms .of rotation. 

The expression is D
0 

= eu/ey; where D0 is the rotation ductility index, 
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9 is the rotation at ultimate and 9 is the rotation at first yield. 
u y 

As explained in the previous section, the ductility indices are slightly 

underestimated. 

e) Components of the Moment in the Leeward Column. The moment 

in the leeward column critical section M , before the first hinge forms, is 
c 

due to three sources: (1) due to beam loads, Q, (2) due to lateral 

load H, and (3) due to sway deflection. Mathematically, the total 

moment M is 
c 

M c (5 .1) 

where MQ is the gravity moment, ~ is the lateral load moment, and 

~-6 is the P-6 moment. All these moments act clockwise on the member. 

Since the column thrust (P+Q) and lateral deflections are measured 

values, the P-6 moment can be determined at any load increment. The 

lateral load elastic moment is ~ = HLc/4. From data reduction, M 
c 

is a known value. Therefore, the gravity moment can be found by 

rearranging equation (5.1): 

(5.2) 

After the first hinge forms the total moment Mc becomes ~ while 

the lateral load moment remains at ~ = H
1
Lc/4. The P-6 moment increases 

by (P+Q)62 where 62 is the added deflection after first hinge. This 

added P-6 moment must be balanced by a column shear so as to keep the 

column moment~ constant. Thus, this shear force, whi ch is 2(P+Q)t.i
2

/ Lc 

as given in Section 2.4.1, causes an additional moment component in a 

counterclockwise direction. Therefore, equation (5.1) is changed to 

include the added moment M': 



or 

M c M + ~ + ~-ti - M' 
Q 
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(5. 3) 

(5.4) 

The above equations are applied after the first hinge forms. Finally, 

the components of the moments in the leeward column are drawn for each 

lateral load increment. 

f) Lateral Load vs. Moment Magnification Factor. From the previous 

graph the magnification factor may be defined as the ratio of total 

moment to primary moment. Mathematically, this factor is o M I (M -M_ ) ; c c --P-6 

where Mc is the total moment determined from data reduction and ~-6 is 

the P-ti moment. Two values of interest are the magnification factors 

at first hinge (o ) and at ultimate load o . 
y u 

5.1.4 Data Reduction Check 

The indicated moments at the column critical sections were checked 

against the statics of the frame. Figure 5.4 shows the deformed shape 

of the frame under the effects of gravity and lateral loads. This 

figure shows the indicated moments at corners B and C of the columns 

(MB and Mc)' the measured column thrust (P+Q), measured sway deflection ti 

and a measured lateral load H. 

The equilibrium equations for both columns, where counterclockwise 

moments are positive, are shown below: 

+~ + (P+Q) x ti 

+M + (P+Q) x 6 
c 

+v
1 

x 19" 0 (windward column) 

+Vw x 19" = 0 (leeward column) 

(5.5) 

(5.6) 



H 

a m .. 
~ 

P+Q P+Q 

A A 

:fct ~--I js 
VL re 

EE WARD 
COLUMN WINDWARD 

COLUMN 
.,.A 

FIG. 5A STATICS OF THE FRAME 

~-

Vl 
0 



Adding the above equations: 

(VL + VW) x 19" + 2(P+Q) x A + l:M(2 corners) 

Since (VL + Vw) = H 

19 x H + 2(P+Q)6 + l:M(2 corners) 0 

0 

Because of inherent physical measurement errors, as well as 

computer modeling errors in FRAGO, the indicated moments do not 
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(S.7) 

(S. 8) 

satisfy the statics check completely, i.e., the above equations, in 

general, do not equal zero. This deviation from statics may be 

termed 6M; where 

AM= 19 x H + 2(P+Q)A + D1(2 corners) (5. 9) 

If 6M is positive, the indicated moments are lower than the 

actually induced moments. Equation 5.9 was applied to the test frames 

for each load level. The largest AM and average AM for all the load 

levels will be reported for the frames. 

5.2 FRAME USD-1 

5.2.1 Frame Description 

Frame USD-1, designed by the Ultimate Strength method, represented 

the bottom panel of a five story building where the Q/P ratio is .125. 

The design details of the frame are described in Chapter III while the 

"as built" properties showing the concrete strengths, reinforcement 

yield strengths and dimensions are given in Tables 4.2 and 4.3 of 

Chapter IV. 

The . columns, consisting of 3-3/4-in. thick by 6-in. wide cross 

sections, were reinforced with four #3 reinforcing bars and tied together 

with #12 gage ties at 3-3/4-in. spacing, The first tie was placed 
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1 7/8-in. from the soffit of the beam. The 4 by 6 in. beams were re-

inforced with #3 bars which were tailored according to the moment 

envelope diagram. Closed stirrups made from #12 gage wire were used 

for shear reinforcement in the beam, except in the middle third, at 

a spacing of s = 1.56-in. The first stirrup was placed s/2 from the 

column face. 

The frame was tested on the sixth day after concrete casting. 

The column and beam concrete strengths were 4421 and 4126 psi respectively. 

The critical sections and their bending capacities are given in Figure 

5.1. The frame was designed so tfiat tne ninge would form at corne r C 

in the beam. 

The beam and column loads were measured with pressure transducers. 

However, the lateral load was measured with the pressure transducer 

only because the load cell was not available. Nevertheless, the lateral 

load measurements were revised after Frame LD-1 was tested for which 

both pressure transducers and a load cell were used. During the test ing 

of Frame LD-1 it was observed that the pressure transducer and load cell 

measurements differed by about 9 percent. Since the load cell was more 

accurate, the measured lateral loads for Frame USD-1 were revised 

according to the relationship between the pressure transducer and load 

cell. 

5.2.2 Results 

a) Column Thr us t vs. Indicat ed Moment. The column. thrust vs . 

indicated moments for the column critical sections are shown in Figure 

5.5. The columns had a clear height-thickness ratio 1 /h = 10.1, nominal 
u 

I 

w = 2, and F = 4421 psi. The beam and column loads were increased t o 
c 
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1.93 kips and 15.66 kips which caused a maximum column thrust of 17.59 

kips. At this load, the indicated moment in the leeward column in-

creased to 28 in-k. When the lateral load was applied the leeward 

column moment increased to a maximum moment of 50 in-k which is the 

negative bending moment capacity of the beam at corner C. 

The flexural cracks in the beam, which were first noted during 

testing at a column load (P) of 10 k, cause more gravity moment to be 

transferred to the stiffer members (uncracked columns). The P-M 

relationship (Figure 5.5) shows this increasing column gravity moment 

at a column thrust of about 10 k. 

The theoretical moment at the intersection of the member center-

lines is given by the relationship M = FQLh = (.18)(1.93)(84) = 29.2 in-k. 

This gives a moment of (19/21)(29.2) = 26.4 in-k at the beam soffit 

level which compares favorably with the indicated moment of 28 in-k. 

The theoretical e/h ratio is obtained from the relationship e/h = M/(P+Q)h 

(26.4)/(17.59)(3.75) = .40. This is shown on Figure 5.5 as a dashed 

line. 

!D..___!.ateral Load vs. Moment. Figure 5.6 shows the lateral load 

vs. moment for the critical sections listed in Figure 5.1. As shown 

in this figure the first hinge formed in the beam at corner C at about 

H = 2000 lb. As further load was applied this section maintained its 

hinging moment (~ = 50 in-k) while other critical sections were 

reaching their bending capacities. It appears from Figure 5.6 that 

the moment capacity at critical sec.tion M (~ = 36 in-k) was close to 

its capacity at an ultimate lateral load of 2270 lb. Also, the bending 
I 

moment at critical section M (positive moment cutoff point) was close 



to its section capacity of ~ = 18 in-k. The moment at critical 

section M' underwent reversed curvature at about H = 600 lb. 

As shown in Figure 5.6, the moments at critical sections M and 
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M' (shown by() and[]) remained at 33 in-k and 12 in-k for the last few 

load increments. Since the moments at M and M' are 3 in-k and 6 in-k 

from their bending capacities, some internal stress redistribution must 

be occurring in the region between Mand M'. This is probably caused 

by creep which prevents these critical sections from reaching ~· However, 

the less-stressed joint at B, which is less subject to creep, shows 

increasing corner moments for the last few load increments. 

After the second hinge formed at M the frame became unstable. 

The index of moment redistribution for this frame is H2/H = 270/2270 = 

12%. 

The moments at corner B in the beam and column differed by about 

7 in-k after the full gravity loads were applied. As stated in section 

5.l.3b, this is caused by either accidental eccentricity in the column 

loads or the cracked beam assumption of program FRAGO. 

The error analysis for this frame, as discussed in section 5.1.4, 

shows that the average moment needed to satisfy equilibrium (~M) for all 

the load increments is about +4 in-k. The largest value, which is at 

the ultimate load, is about ~M = +10 in-k. The positive sign means 

that the indicated moments are less than the actually induced moments. 

c) Lateral Load vs. Deflection. The lateral load vs. deflection 

graph is shown in Figure 5.7. Under full gravity loads, the frame 

deflected .008-in, opposite to the direction of applied lateral load. 

With application of lateral load the response was nearly linear 



up to a lateral load of about 2000 lb. Beyond H = 2000 lb, which is 

the hinging load H1 • the slope of the curve became flatter as the 

frame reached an ultimate lateral load of 2270 lb. 
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The deflections at service and factored lateral loads are .094 in. 

and .146 in. As shown in Figure 5.7, the frame stiffnesses at both 

load levels are nearly the same, 

The ductility index for this frame is DL = 6 /6 = .446/.29 = 1.5. 
u y 

d) Load vs. Corner Rotations. The load vs. corner rotations for 

A and D are shown in Figure 5.8, Under gravity loads the rotations at 

A and D turned in an opposite direction to tne predicted sense. This 

is probably caused by imperfections in the frame geometry and by 

eccentrically applied column loads. During the pretest procedure, 

the columns slipped off the knife-edge of the reaction stub as the 

beam was loaded. Measurements of the frame geometry revealed that the 

centerline-to-centerline dimensions of 84-in. at the top and bottom 

had changed to 83-7/8-in and 84-1/8-in. respectively. This caused 

slightly inclined columns with a joint angle at C af about 90.3°. This 

angle may be large enough to help cause the column ends at A and D to 

turn opposite to the predicted sense. 

With lateral loads the column ends turned in the right direction 

and at H = 2000 lb. the curve slopes became flatter. The ductility 

indices at A and A are n
0

A = 0u/0y = .022/.016 = 1.4 and D
0
D = .022/.014 = 

1.6. 

e) Components of the Moments in the Leeward Column. The components 

of the moment graph are shown in Figure 5.9. The P-6 moment when the 

first hinge formed (H = 2000 lb) is 5.3 in-k. The P-6 moment for the 



entire frame at the ultimate lateral load (H = 2270-lb) is 7.9 in-k. 

As shown in Figure 6.9, the gravity moment, MQ, is nearly the 

same during lateral loading. 

f) Lateral Load vs. Moment Magnification Factor. Figure 5.10 
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shows the lateral load vs. moment magnification factor graph. Corres-

ponding to the P-~ moments from above, the moment magnification factor 

at first hinge is 8 = M /(M -M_ ) 
y c c -P-11 

50/(50-5.3) = 1.12. The magnification 

factor for the frame at ultimate is o = 50/50-7.9 = 1.19. 
u 

5.2.3 Test History, Sequence of Cracking, and Hinge Formation 

The testing procedure differed slightly from the procedure given 

in section 4.4.2 of Chapter IV. The main difference was that the 

column loading strands were not aligned with a transit. The revised 

alignment procedure is explained in the following paragraph. 

A pencil line was extended from the centerline of the leeward 

column on to the stationary reaction beam. Next, a plumb-bob was used 

to center the loading strand over the leeward column centerline. Then, 

the windward column loading strand was placed 83-7/8-in. (top dimension 

of Frame USD-1) from the leeward column loading strand. This dimension 

was checked at the ram and bearing head locations. Finally, the alignment 

was checked by loading the columns with a 2.5 kips load to see if any 

lateral deflection occurred. The alignment was good and the test pro-

ceeded in the usual way. 

No problems were met during the test. A column load of 10 kips 

and beam load of 1.25 kips caused hairline cracks in the negative 

moment region of the beam at corner C and in the positive moment region 

between Mand N. However, the columns remained uncrackcd. 
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After the full gravity loads were applied the frame deflected 

.008 in. to the right. This causes a negligible P-6 moment equal to 

(17.59)(.008) = .14 in-k. Therefore, the imperfection angles for the 

frame geometry and the loading system, as discussed in section 4.4.3, 

are within good accuracy. 

The lateral loads were first applied in 200-lb. increments. 

When the frame behaved nonlinearly, as detected by the lateral-load 

deflection curve plotted as testing progressed, the increments were 

reduced to 100-lb. 

At about H = 2000 lb the flexural cracks in the beam at corner C 

and between M and N widened and the slope of the lateral-load deflection 

curve became flatter. Near the ultimate load the curvature-meter dials 

deflected continuously, however all the dial gages were read at the 

ultimate load of H = 2270-lb. A descending point on the lateral-load 

deflection curve was measured as the frame underwent mechanism motion. 

With full beam and column loads on, the lateral load was reduced to 

zero which resulted in a frame lateral deflection of 1.047-in. The 

frame deflection and crack widths reduced somewhat when the gravity 

loads were removed. Frame USD-1 was not reloaded with lateral loadi ng 

as discussed in section 4.4.2b. 

The overall crack pattern is shown in Figure 5.11. The cracking 

pattern for the first hinge will be described first followed by the 

description of the second hinge. 

Figure 5.12 is a photograph of the hinge at corner C. This photo

graph reveals that the major flexural cracks occur in the vicinity 

of about four inches (approximately equal to 4/3d) from the support 
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fnce, At the negative moment cutoff point, as may be seen near the 

right in Figure 5. 12, a flexural crilc:k formed at about H = 1600 lh. 

This flexural crack moved verticillly about 2-in. toward the compression 

fiber. Near the half-depth of the beam, this crack inclined about 45° 

and finally progressed to within 1-in. of the compression fiber. A 

photograph of the compression face at corner C is shown in Figure 5.13. 

This figure shows that concrete spalling extended about 2-in from the 

support face. 

The positive moment region, between points M and N, is shown in 

Figure 5.14. From the analysis of the data, the second hinge formed 

at M. This is shown clearly in Figure 5.15, which shows that the major 

flexural crack extended nearly to the compression face. The flexurnl 

crack at M' (positive moment cutoff point), as shown in Figure 5.16, 

is similar to the crack at the negative moment cutoff point. Figure 5.16 

also reveals that the beam at corner B remained free of cracks. 
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Fig . 5.11. Overall view of frame USD-1 after failure 

Fig. 5.12. Plastic hinge at corner C 
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COLUMN 

Fig . 5.13. Concrete spalling at corner C 

Fig. 5.14. Flexural cracks in the middle third of the beam 



Fig. 5 . 15. Flexural crack at M 

Fig. 5 . 16. Flexural-shear crack at M' (positive moment 
cutoff point) 
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5.3 FRAME LD-1 

5.3.1 Frame Description 

Frame LD-1, designed by a Limit Design method, represented the 

bottom panel of a five story building where the Q/P ratio is .125. 

The design details of the frame are described in Chapter III while the 

"as built" properties showing the concrete strengths, reinforcement 

yield strengths and dimensions are given in Tables 4.2 and 4.3 of 

Chapter IV. 

The columns, consisting of 3-1/2-in thick by 6-in. wide cross 

sections, were reinforced with four #3 reinforcing bars and tied together 

with #12 gage wire ties at 3-1/2-in. spacing. The first tie was 

placed 1-3/4-in from the soffit of the beam. The 4 x 6 in. beams 

were reinforced with #3 reinforcing bars which were tailored according 

to the moment envelope diagram. Closed stirrups made from #12 gage 

wire were used in the beam, except in the middle third, at a spacing 

of s = 1.58-in. The first stirrup was placed s/2 from the face of the 

support. 

The frame was tested on the seventh day after concrete casting. 

The column and beam concrete strengths were 5414 and /~444 psi. The 

critical sections and their bending capacities are given in Figure 5.1. 

5.3.2 Results 

a) Column Thrust vs. Indicated Moment. The column thrust vs. 

indicated moments for the column critical sections are shown in Figure 

5.17. The columns had a clear height-thickness ratio 1 /h = 10.9, nominal 
u 

w = 2 and f' = 5414 psi. The beam and column loads were increased to 
c 
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1. 92 kips and 15. 39 kips respectlvely which caused a maximum column 

thrust of 17.31 kips. At this load, the f.ndicated moment in the leeward 

column increased to 26-in-k. When the lateral load was applied this 

moment increased to a maximum moment of 41 in-k which is the negative 

bending moment capacity of the beam at corner C. 

During the application of gravity loads the P-M relationship 

shows slightly increasing column moments which is caused by beam cracking. 

The theoretical elastic moment at the intersection of the member 

centerlines is given by the relationship M = FQLb = (.18)(1.92)(84) = 

29.0 in-k. This gives a moment of (19/21)(29.0) = 26.2 in-k at the beam 

soffit level which compares favorably with the column indicated moments 

at corners B and C of 25 and 26-in-k. This gives a theoretical e/h 

ratio of M/(P+Q)h = 26.2/(17.31)(3.5) = .43. 

b) Lateral Load vs. Moment. Figure 5.18 shows the lateral 

force vs. moment for the critical sections given in Figure 5.1. This 

curve shows that the beam capacity at corner C (~ = 41 in-k) is 

reached at a lateral load of about 1500 lb. Up to this load the H-M 

relationship for each critical section is nearly linear. With further 

application of lateral load the bending capacity of critical section M 

(~ = 41-in-k) was approached at an ultimate lateral load of 1820 lb. 

Also, the slope of H-M curve for bending moment at critical section M' 

(positive moment cutoff point) became flat at this load level. With 

two hinges in the beam at C and M the frame became unstable. Frame LD-1 

had a moment redistribution index of H2/Hult = 320/1820 = 18%. 

At the end of the gravity load application the differences 

between the beam and column moments at corners B and C were 11 in-k 

and 10 in-k. As discussed before, this is caused primarily by the cracked 
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beam assumption of program FRAGO. 

The error analysis for this frame, as discussed in Section 5.1.4 , 

shows that the average moment needed to satisfy equilibrium (6M) for all 

the load increments is about +3in-k. The largest value, which is at 

the ultimate load, is about +8in-k. The positive sign means that 

the indicated moments are less than the actually induced moments. 

£) Lateral Load vs. Deflection. The lateral load vs. deflection 

graph is shown in Figure 5.19. Recause of either eccentricity of 

applied column loads or imperfec tions in the frame geometry, Frame LD-1 

deflected .048-in. to the right after the full gravity loads were applied. 

The II-fl response is nearly linear up to a lateral load of about 

1500 lb. At this load, the curve flattens out because of hinging in 

the beam at corner C. At a lateral load of 1820 lb. the frame became 

unstable as shown by the descending part of Figure 5.19. Frame LD-1 

had a ductility index of D
1 

= l / fl = .608/.205 = 3.0 
• l1 y 

Under the reloading cycle ( s equence 3) the f rame was able to with-

stand a lateral load nf 1480-lb. This is abo11t 81 percent of the original 

ultimate load. Also, as shown i_n Figure 5.19, the s lopes of the two 

H-A curves (frame stiffnesses) ar c nearly the s ame. 

The deflections at service nnd factored loads are .098 in. and .157 in. 

As shown in Figure 5.19, the frame stjffness at the factored load is 

lower than the frame-stiffness at the service load. 

d) Load vs. Corner Rota tion s . The corner rotations at A and D 

are shown in Figure 5.20. Under grnv ity loads the rotation at D was in 

the anticipated direction while the rotation at A was nearly zero. 

With lateral load application the curve s indicated nonlinearity 
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at about a load of 1500 lb (first hinge). The slope of the curves 

became flatter as the frame approached failure. 

The rotation ductility indices at corners A and D are n
9
A = 9 /9 

u y = 

.0206/.0101 = 2.0 and n90 = .0257/.0137 = 1.9. 

e) Components of the Moments in the Leeward Column. The components 

of the moment graph are shown in Figure 5.21. The P-6 moment when the 

first hinge formed (H = 1500 lb) was 3.5 in-k. Just before the second 

hinge formed (H = 1780 lb) the P-6 moment was 7.8 in-k. The P-~ moment 

for the entire frame at the ultimate lateral load (H = 1820 lb) was 

10.5 in-k. As shown in Figure 5.21, the gravity moment MQ decreases 

slightly during lateral loading. This is probably caused by decreasing 

column stiffness as can be seen by the moment-curvature diagram of 

Figure 3.23. 

!) Lateral Load vs. Moment Magnification Factor. Figure 5.22 

shows the lateral load vs. moment magnification factor. Corresponding 

to the P-~ moments given above, the moment magnification factor at first 

hinge is 6 = M /(M -M_ ,) = 41/(41-3.5) = 1.09. Just before the second y C C -""P-u 

hinge forms (H = 1780 lb) 6 is 41/(41-7.8) = 1.23. The magnification 

factor at ultimate is 6 = 41/(41-10.5) = 1.34. 
u 

Because the frame deflected to the right under gravity loadi ng, 

the magnification factor was less than 1.0 for lateral loads less than 

about 300 lb. 

5.3. 3 Test History, Sequence of Cracking, and Hinge Formation 

The column loading strands were aligned with the transit according 

to the procedure given in Chapter IV. 

No special difficulties were encountered during the test. However, 
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the frame deflected .048-in. to ghe right after the full gravity loads 

were applied. This indicated that either the geometry of the frame was 

slightly imperfect or that the column loads were applied with some 

initial eccentricity. 

The angle of imperfection, ~. can be estimated from the idealized 

models of section 4.4.3. These models are shown in Figure 4.28 for 

the imperfection in Frame Geometry, and the imperfection in Loading. 

The lateral load needed to bring the structure back to zero lateral dis-

placement, as shown in Figure 5.19, is about 300 lbs. Thus, the imper-

. -1 H/2 -1 3/2 fection angle 1s tan ~p = tan · = 5° 15.67 . 

Hairline cracks in the beam at corner C and between M and N were 

first observed at a beam load of 1.50 kips. Some of these cracks, 

between M and N, were inclined about 10-30° to the vertical indicating 

that the beam loads had slight torsional eccentricities. 

The lateral load was first applied in 200-lb increments to a 

nominal load of 1400 lb. At this load the flexural cracks in the beam 

at corner C widened and extended vertically to the compression face. 

Lateral load increment was decreased to 100-lb and the overall H-~ 

response became more nonlinear up to a maximum lateral load of 1820 lb. 

No curvature-meter deals were read at this load. The last curvature-

meter dial reading was at H = 1780 lb. Several descending points on the 

lateral deflection dial were recorded as the frame underwent a collapse 

mechanism. During the descending portion, a secondary compression failure 

was noted in the beam at corner C. Next, the lateral load was removed 

which caused the frame to recover some lateral deflection. The lateral 

deflection at this point was 1.00 in. Finally, the gravity loads were 
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reduced to 75 percent of their original values and the frame was retested 

under lateral load. 

Figures 5.23 and 5.24 show two overall views of the frame after 

failure. The crack pattern and the hinge formations for Frame LD-1 

were similar to Frame USD-1. However, in general the cracks for Frame 

LD-1 were larger because of the reloading cycle. Reload cracks for 

Frame LD-1 were marked with an "R". 

Figure 5.25 is a photograph of the plastic hinge at corner C. 

The major flexural cracks, as shown in Figure 5.25, occur in the vicinity 

of about 3 inches (approximately equal to d) from the support face. 

About 12 inches from the column face, a slightly inclined flexural-

shear crack occurred at the negative moment cutoff point (Figure 5.26). 

In Figures 5.25 and 5.26, concrete spalling can be seen in the compression 

face of the beam at C and at the negative moment cutoff point. 

Figures 5.27 and 5.28 show the major cracks which developed while 

the frame was approaching a mechanism. The second plastic hinge was 

difficult to distinguish because it was the last hinge to form and 

therefore underwent less inelastic deformation than did the hinge at C. 

However, the data reduction for the first loading cycle showed that the 

second hinge formed at M while the bending moment at M' was close to 

its capacity. It appears from Figure 5.28 that a hinge formed at M' 

as characterized by the large flexural-shear crack. However, this crack 

formed during the reloading cycle with 75 percent of the original beam 

loads. As discussed in Chapter II, the second hinge is more likely to 

occur near corner B because of smaller beam loads. 

Figure 5.29 shows a positive moment flexural crack in the beam at 

corner B. This crack occurred during the reloading cycle. 
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Fig. 5.23. Overall view of frame LD-1 after failure 

Fig. 5.24. Overall view of frame LD-1 after failure 
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fig . 5 . 25. Plastic hinge at corner C 

Fig. 5 . 26. Flexural-shear crack at negative moment cutoff point 
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Fig . 5.27. Flexural cracks near M 

Fig. 5.28. Flexural-shear crack at M' (positive moment cutoff point) 
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Fig . 5.29. Flexural crack at B (occurred during reload cycle) 
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5.4 COMPARISON OF FRAMES USD-1 AND LD-1 

Table 5.1 is a sunnnary of some of the important values determined 

from data reduction. For both frames two plastic hinges formed in the 

beams (C and M) which led to a collapse mechanism. The collapse mech

anism is shown in Figure 5.30. The frames will be compared with regard 

to serviceability, ultimate load capacity, moment redistribution, 

rotational capacity, ductility, yield safety, and economy. 

As shown in Figure 5.31 and Table 5.1 the lateral deflections under 

service loads are similar. This is justified, because both frames 

possessed almost identical columns. 

Frame USD-1 reached its first yield load at H1 = 2000 lb while 

Frame LD-1 required H
1 

= 1500 lb. Both frames showed enough rotational 

capacity at corner C and moment redistribution as they approached an 

ultimate load of 2270 lb for Frame USD-1 and 1820 lb for Frame LD-1. 

As shown in Table 5.1, Frame LD-1 had a larger moment redistribution 

index, Hz/Hult (18% vs. 12%). Frame LD-1 was designed based on the prin

ciples of moment redistribution, however the moment redistribution for 

Frame USD-1 calls for some explanation. Theoretically, if reinforced 

concrete frames behave elasto-plastically, the plastic hinges at corner 

C and point M should occur at the same lateral load if both sections were 

designed for the same loading condition. For Frame USD-1, loading 

condition II (Gravity & Lateral) controlled the design at C while loading 

condition I (Gravity) controlled the design at M. Therefore, since the 

first plastic hinge forms at C, some extra capacity is available at 

section M. In addition, reinforced concrete members do not behave 

elasto-plastically, rather, in a round house fashion which gives rise 
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to more moment readjustments during loading. 

Both frames showed enough rotational capacity in the beam at 

corner C. The shear span ratios near the negative moment are M/Vd = 7.0 

and 6.3 for Frames USD-1 and LD-1, respectively. As expected, the inelastic 

deformation occurred over a finite length rather than at a point as 

assumed in the mechanism design of Frame LD-1. Also, the flexural 

cracking at the negative moment cutoff point helps the region to rotate 

and distribute the additional moment to less critical sections. However, 

flexural-shear cracks should be avoided in regions where the first hinge 

forms. 

The factor o[ safety against first yield may be defined as the 

ratlo of lateral load at first hinge to service lateral load. these 

values are given in Table 5.1 which show enough yiel~ safety. Roth 

ratios should be higher because the beam and column test loads were 27 

percent higher than the service loads. 

The column slenderness ratios (L /r) for Frames USD-1 and LD-1 were 
u 

17.6 and 18.8, respectively. These values are reasonably close beca use 

the column cross sections are nearly identical. 

The material volumes for both frames are shown in Table 5.2. This 

table gives the concrete and steel volume in the beam and columns. The 

volume of steel (A x L) is multiplied by the yield s t rength (f ) to s . y 

reflect the savings in selecting different grades of reinforcement. 

Finally, Table 5.2 compares the material volumes for hath frames. 

Table 5.2 shows that savings in the column concrete volume 

(no savings in the beam) and total reinforcement for Frame LD-1 are 7 ~ 

as compared to Frame USD-1. However, a 27% savings for Frame LD-1 occurs 
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occurs for the steel at the negative moment region. This savings relieves 

the steel congestion at the beam-column intersection, and also allows for 

better consolidation of concrete. 

5.5 COMPARISON OF TEST RESULTS WITH NONFIX7 AND STABILITY DOMAINS 

This section compares the test results with the analytical computer 

program and the elasto-plastic stability model. 

The general nonlinear program NONFIX7, as discussed in Chapter II 

(Section 2.3.1), was used to predict the behavior of Frames USD-1 and 

LD-1. The input for the joint-members was entered as 5.35 times stiffer 

than the members; This was done to simulate the greater stiffness of 

the joint block and also to shift the critical moment section at the center 

of the joint block to the support face of the beam. A more complete dis

cussion of the stiffened joint procedure is given in Reference (12). 

The analytical lateral-load deflection curves, as shown by a dashed 

line, are plotted together with the experimental results in Figures 5.7 

and 5.19 for Frames USD-1 and LD-1 respectively. These curves show less 

stiffness than the experimental curves. This is caused by neglecting the 

tensile strength of the concrete. The predicted ultimate lateral loads 

for USD-1 and LD-1 are 91% and 88% of the measured ultimate lateral loads. 

Comparisons between the test frames and the elasto-plastic model are 

made by considering the stability domains of Figure 2.11. As discussed 

in Section 2.4.4, Figure 2.11, three domains were defined by Curve A 

and Curve B. Figure 2.11 is reproduced in this section as Figure 5.32. 

The first domain (Domain I) is to the right of Curve A. This region re

presents frames that are unstable before any lateral load can be applied, 



i.e., H
1 

= H
2 

= 0. The second domain (Domain II) lies between Curves A 

and B and represents cases where the frame is stable for lateral loads 

up to H
1

, i.e .. H
1 

> 0, but H
2 

= 0. Frames that lie to the left of 

curve B, Domain IIT, are stable until a mechanism forms, i.e., H
1 

and 

H > O. 
2 

In addition to Frames USD-1 and LD-1, two other frames tested in 

this series and designed by the same method c:s described in Ch;:ipter U l 

;ire shown in Figure 5. 32. They are designated as Frames USD-2 and LD-2: 

where Fra.me USD-2 was designed by the Ultimate Strength method and Frame 

LD-2 was designed by the Limit Design method. Both frames represented 

the lowest level of a 7-story building and were designed for 50% higher 

column and lateral loads than Frames USD-1 and LD-1. The test results 

are reported in Reference (27). 

The stiffnesses of the beam and column are calculated from the 

moment-curvature curves as shown in Figure 2.12 of Section 2.4.5. The 

p + Q 
values ~, and _p___ were calculated from the stiffnesses and are plott e d 

E 
in Figure 5.32. The positions of the four test frames all lie within the 

stable domain (stable for both H
1 

and H
2
). This shows good correlation 

between the analytical stability results and physical tests. 



TABLE 5.1 

SUMMARY OF TEST RESULTS 

Frame H t... H Hult Hl Hz serv serv des 
(k) (in) (k) (k) (k) k 

USD-1 1.07 .094 1. 37 Z.Z7 z.oo .Z7 
·- -.... - ·----

LD-1 1.07 .098 1. 37 1.8Z 1.50 .3Z 

·-
Frame Hult/Hdes Hz/Hult H/Hserv DL D0A 0en 

USD-1 1.66 .lZ 1.9 1.5 1.4 i.6 
I-· 

LD-1 1. 33 .18 1.4 3.0 z.o 1.9 

TABLE 5.2 

MATERIAL SAVINGS 

Vol. of Cone . Vol. of Cone. Vol. of Bm. Vol. of Col. 
Bm. (in3) Col. (in3) Steel Steel 

(A.,,L) x f., (A L) x f s y 
-M +M' Total 

USD-1 1926 517.5 849 948 1797 1196 

LD-1 193Z 483.0 6Z4 1053 1677 1196 

--
% savings = 
(USD-1)-(LD-1) -- 0% 7% - 27% -11% 7% 0% 

(USD-1) ·-- ______ J 
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CHAPTER VT 

SUMMARY, CONCLUSIONS, ANIJ RECOMMENDAT10NS 

The main objective of this study was to determine whether Limit 

Design could be applied to low-rise unbraced r einf orced concre t e 

frames. The investigation was carried out both analytically and 

experimentally. 

In the analytical part, two mathematical models were used to 

determine the behavior of the frames. The first method used a nonlinear 

program, which takes into account the material and geometric non

linearity , to analyze the behavior of unbraced frames. Several cases 

of f rames with different reinforcement ratios and under different beam 

to column load ratios were investigated. For each frame the gravity 

loads were increased proportionately to 3/4 of the ultimate frame 

capacity. Then, lateral load was applied to failure while keeping 

the beam and column loads constant. 

The second mathematical model solved for the frame stability 

equation by assuming elasto-plastic moment curvature relationships for 

members. The model was applied separately to two cases; one when the 

second hinge formed at the leeward corner and the o ther when it formed 

at beam load location. Also, the stability solution was carried out 

by reducing the frame to a column attached to a linear spring. 

In the experimental part, two frames were designed by t~o different 

methods and tested to failure. Frame USD~l was designed by Ultimate 

Strength design wfiile Frame LD-1 was designed by a Limi t Design method. 

Both frames were designed for the snme loads. The columns were 21-in 
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high while the beam was 84-in long . The loading procedure consisted 

of proportionately loading t: .; be<-1H1 and columns up to the design load, 

and then applying the later~l load to failure. 

Based on the results of the analytical and experimental parts of 

this investigation, the following conclusions are valid: 

1. The computer study showed that combined mechanism failures 

occur for frames representative of up to a nine story building. 

2. The comparison between the computer results and the frame 

stability analysis shows good correlation. 

3. The stability equation, as derived from the elasto-plastic 

stability model, is independent of where the second plastic 

hinge forms. 

4. Frames USD-1 and LD-1 both remained in stable equilibrium 

until two plastic hinges formed in the beam. The ultimate 

loads of Frames USD-1 and LD-1 exceeded the design lateral 

load by 66% and 33%, respectively. 

5. Both frames had nearly the same lateral stiffness and 

deflection at service load. 

6. The nonlinear program predicted the response of Frames 

USD-1 and LD-1 with reasonable accuracy. 

7. The Merchant-Rankine formula predicted the P-~ effects 

in unbraced frames with reasonable accuracy. 

8. The savings in column concrete volume and beam steel, were 7%, 

and the reduction in beam steel at the negative moment region 

was 27%, for Frame LD-1 as compared to Frame USD-1. 

9. The second cycle lateral load capacity for Frame LD-1 was 

81% of the original. 
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10. Limit Design may be used for low-rise unbraced reinforced 

concrete structures. 

The following recommendations are made: 

1. So as to study more realistic unbraced frames, the analytical 

and frame tests should be extended to include multi-bay 

frames. 

2. The tensile strength of the concrete should be included in 

the nonlinear computer programs. 
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