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Abstract 

Accurate modeling of acoustic propagation in the ocean waveguide is important to 

SONAR-performance prediction, and requires, particularly in shallow water 

environments, characterizing the bottom reflection loss with a precision that 

databank-based modeling cannot achieve. Recent advances in the technology of 

autonomous underwater vehicles (AUV) make it possible to envision a survey system 

for seabed characterization composed of a short array mounted on a small AUV. The 

bottom power reflection coefficient (and the related reflection loss) can be estimated 

passively by beamforming the naturally occurring marine ambient-noise acoustic 

field recorded by a vertical line array of hydrophones. However, the reduced array 

lengths required by small AUV deployment can hinder the process, due to the 

inherently poor angular resolution. In this dissertation, original data-processing 

techniques are presented which, by introducing into the processing chain knowledge 

derived from physics, can improve the performance of short arrays in this particular 

task. Particularly, the analysis of a model of the ambient-noise spatial coherence 

function leads to the development of a new proof of the result at the basis of the 

bottom reflection-loss estimation technique. The proof highlights some shortcomings 

inherent in the beamforming operation so far used in this technique. A different 

algorithm is then proposed, which removes the problem achieving improved 

performance. Furthermore, another technique is presented that uses data from 

higher frequencies to estimate the noise spatial coherence function at a lower 
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frequency, for sensor spacing values beyond the physical length of the array. By 

“synthesizing” a longer array, the angular resolution of the bottom-loss estimate can 

be improved, often making use of data at frequencies above the array design 

frequency, otherwise not utilized for beamforming. The proposed algorithms are 

demonstrated both in simulation and on real data acquired during several 

experimental campaigns. 
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1. Introduction 

SONAR, the underwater equivalent of RADAR, is an important asset for many human 

activities at sea, and predicting its performance requires knowledge of the acoustic 

properties of the sea bottom. Traditionally, this knowledge is acquired by means of 

costly equipment, typically including a ship with crew, a chain of underwater acoustic 

sensors (hereafter referred to as “array”), whose length varies from several meters to 

tens of meters, and an artificial acoustic source. Besides being expensive, this 

methodology has recently begun to raise some concerns, as evidence is being 

gathered relating the acoustic sources to the periodic stranding of marine mammals 

on the shore. The research described in this dissertation is part of an effort carried 

out by the Northwest Electromagnetics and Acoustics Research Laboratory ( “NEAR 

Lab”) in collaboration with other institutions to condense the entire system into one 

small, unmanned submarine, at the same time eliminating the need for the artificial 

acoustic source by replacing it with the naturally occurring sound of wind flow and 

breaking waves at the sea surface. 

All SONAR systems, whether active or passive, are meant to infer information by 

exploiting the propagation of sound waves from a source/target to a physically 

separated receiver. Predicting how the system can perform in a given environment 

requires the modeling of sound propagation, and particularly in a shallow water 

environment, the interaction of propagating sound waves with the bottom is an 

important contribution to the transmission loss. Any propagation model must 

therefore include accurate information about the acoustic properties of the bottom, 
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and, especially for models based on ray tracing, this can be in the form of the power 

reflection loss as a function of grazing angle and frequency.1 The research described 

in this document focuses in particular on the reflection loss from the bottom 

(hereafter also referred to as “bottom loss” or “BL”), which is related to the bottom 

plane wave power reflection coefficient by the equation:2 

  

where 𝑅(𝜃𝑏 , 𝜔) is the plane-wave power reflection coefficient of the bottom, which in 

general depends on the wave frequency 𝜔 and grazing angle at the bottom 𝜃𝑏 .  

In models, the seafloor is usually described as a lossy boundary composed of a 

number of layers (each characterized by thickness and a set of physical properties) 

overlaying a rock basement. The presence of layers results in a reflection coefficient 

that depends on both the incident-wave grazing angle and its frequency.2 Unlike the 

sea surface, the bottom has very little temporal variability, but can have particularly 

strong spatial variability: Layer thicknesses and composition can vary dramatically 

within a few hundred meters,3 and so do the reflection coefficient and the bottom loss. 

The bottom properties are unfortunately very difficult to measure directly in situ 

(e.g., by analysis of seabed cores),4,5 and are typically obtained either from existing 

environmental databases, or by geoacoustic inversion of measured acoustic data. 

Existing databases were for the most part developed for modeling propagation in 

deep water, where the bottom interaction is not as important a contributor to the 

transmission loss as it is in shallow water. These databases have been shown to 

   ,RBL bb  ,log10, 10
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produce unreliable results, when employed for SONAR transmission loss in shallow 

water, and the largest source of the error has been identified in the inaccurate 

information they provide for bottom-loss prediction.6 In principle, the necessary 

spatial resolution for accurate propagation modeling in shallow water can be 

obtained by geoacoustic inversion. Perhaps the most widely employed geoacoustic 

inversion methodology so far has been deploying acoustic sources (such as sound 

projectors or explosive charges, but in some cases exploiting sources of opportunity, 

such as ship noise) and hydrophone arrays, measuring the acoustic field (sources and 

arrays could be towed, if an extended area needed to be surveyed), and employing 

model based matched-field processing to determine the seabed properties by 

minimizing the mismatch between model predictions and measurement.7—17 

Besides requiring costly deploying techniques and equipment, this approach is 

particularly intrusive for the environment, both because of the size of the vehicles and 

equipment (which also implies energy consumption for transport and operation), and 

because of the high noise levels introduced by the acoustic sources, which can be 

deleterious to some applications, as well as to marine life (evidence exists that certain 

anthropogenic sounds can have a negative impact on marine mammals).18 

Compared to active systems, passive systems (which only “listen”, i.e. exploit 

acoustic sources already present in the environment) have the advantage of reduced 

environmental impact, can be easier to deploy, and generate a minimal impact on the 

overall noise level of the environment in which they operate. Typical applications of 

these systems have included for decades detection, target localization, and tracking. 
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Recently, marine ambient noise naturally generated at the surface (mainly 

originating from breaking waves and wind) has received increased interest as an 

acoustic source for passive surveying of the sea bottom. Two passive sea-bottom-

survey systems are Harrison and Simons’ technique for bottom-loss estimation19 and 

the passive fathometer.20 

If one is interested in determining the physical properties of the seabed, Harrison 

and Simons’ technique can be exploited for reliable geoacoustic inversion.21 However, 

the research described in this document focuses in particular on bottom-loss 

estimation. For this application, one of the main advantages of this technique is that, 

without the use of an artificial acoustic source, it produces bottom loss directly, as a 

function of frequency and grazing angle, without requiring data inversion schemes. 

This is done by processing ambient-noise data collected by a vertical line array of 

hydrophones through an array-processing technique called beamforming. This 

technique allows one to use a set of omnidirectional sensors as a directional antenna: 

Without physically moving the sensors, their outputs can be phased in such a way as 

to significantly improve the signal-to-noise ratio for waves impinging on the array 

from a specific direction. 

The directional properties of the beamformer vary depending on the geometric 

arrangement of the sensors. Although three-dimensional arrangements afford the 

luxury of selectively steering over all three angles in space, the ease of deployment 

and transportation has made line arrays (where the sensors are positioned along a 

straight line) often the preferred configuration in underwater acoustics. In the 
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particular case of Harrison and Simon’s technique, the sensors are positioned along a 

straight vertical line (“vertical line array”, or “VLA” for short), allowing the array to 

be selectively steered in the elevation-angle direction, which corresponds to the 

wave’s grazing angle on the bottom. 

Beamforming is not immune to the inherent limitations of all antennas, which for 

the purpose of this research affect in particular the angular resolution: All other 

parameters being equal, the angular resolution improves when the array length (and 

number of elements) increases.22 Since the bottom loss needs to be estimated as a 

function of grazing angle, limitations in the angular resolution of the array result in 

limitations on the quality of the estimated bottom loss. 

Initially, this technique was conceived and applied to data collected by moored or 

drifting arrays, the latter deployment affording the possibility of surveying an 

extensive area as the array is carried by the current. These arrays are usually several 

meters to several tens of meters long, and have a flexible construction. Such 

construction allows for easier deployment and transportation, but can negatively 

impact the performance of high-resolution beamforming techniques (the so called 

“array mismatch” error), which rely on precise knowledge of the relative positioning 

of the sensors.23 

Nowadays, the original implementation of Harrison and Simons’ technique is 

challenged by new developments in operations at sea. The recent interest in 

Autonomous Underwater Vehicles (AUVs) as marine operational platforms has 

quickly and dramatically changed the scenario in a number of fields, including seabed 
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characterization. AUVs are unmanned submarines, usually of small dimensions, 

which are programmed with a mission and deployed at sea; they carry out the mission 

with minimal human supervision, and are then recovered. If the goal of the mission is 

data collection, the data are usually stored in the memory of the data-acquisition 

system aboard the vehicle, and downloaded when the vehicle has been recovered. 

If it were possible to combine ambient-noise array processing with AUV 

technology, this would result in an efficient survey tool for seabed characterization. 

The tool would provide long duration at sea, affording coverage of extended areas 

with minimal intrusion and impact on the environmental noise levels. Furthermore, 

it would be cost efficient, because it would minimize the need for both surface vessels, 

and human interaction during the mission. However, the use of such vehicles imposes 

design constraints, which vary depending on the size of the AUV, and are mainly 

related to power consumption, drag, and weight of the whole system. Such 

constraints affect the propulsion systems of the vehicle — which must be minimally 

demanding to avoid compromising buoyancy and battery life — but also the 

equipment that can be deployed on an AUV. This study targets small size AUVs, such 

as the NEAR-Lab’s Slocum glider (Teledyne Webb Research) or the eFolaga (jointly 

developed by the University of Genova, the CMRE, and GraalTech s.r.l., illustrated to 

some depth in Section 7). In order for these vehicles to perform bottom 

characterization, the aforementioned constraints call for: 

1.  the elimination of the artificial acoustic sources traditionally employed in these 

studies; 
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2. A drastic reduction of the array length; 

3. A limited number of array elements (the size and capability of both the battery 

and the electronics of the acquisition system limit the number of channels that 

can be processed, as well as the total amount of data that can be stored on 

board).  

Harrison and Simons’ passive technique replaces brilliantly the artificial acoustic 

source with natural marine surface noise generated by waves and wind flow. As far 

as the array dimensions and number of elements are concerned, the possibility of 

AUV deployment and potential for elimination of array-mismatch errors have made 

rigid, short arrays increasingly attractive for a number of applications. However, one 

of the main obstacles on the way of successful implementation of such a system is the 

reduced array lengths required by small AUV deployment: Harrison and Simons’ 

technique has proven effective in the 100–5000Hz frequency range when employing 

arrays of lengths between a few meters and several tens of meters. However, small 

AUVs would require shorter arrays, with a maximum length of 2m. At these lengths, 

and at the frequency range indicated above, the inherently poor angular resolution of 

the beams becomes a matter of concern for the quality of the estimated bottom loss, 

causing an underestimation of the loss and poor resolution of its grazing angle 

dependent features. These effects can introduce significant errors when the 

estimated bottom loss is used directly in propagation models, or in an inversion 

scheme to estimate geo-acoustic properties of the seabed.24  
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Before the start of the research work described in this document, improving the 

grazing-angle resolution of the estimated bottom loss without increasing the array 

length had been proposed only by employing adaptive beamforming techniques and, 

to the author’s knowledge, no such attempt had resulted in a peer-reviewed journal 

publication. Harrison and Baldacci suggested that adaptive beamforming could 

improve angular resolution in a CMRE technical report,25 and so did Siderius and 

Harrison in 2004,24 but a successive CMRE report showed rather unsatisfactory 

results,26 and the idea does not seem to have been pursued further by these 

researchers.  

In a preliminary study based on simulations, Arvelo proposed employing rigid, 

very short arrays mounted inside the nose of AUVs for bottom-loss estimation.27 The 

vehicles could survey extensive areas in a single mission, collecting data that would 

subsequently be processed to compute the bottom loss. To overcome the limitations 

due to the extremely small array aperture, Arvelo limited his study to high 

frequencies and proposed using aggressive adaptive beamforming techniques to 

estimate the bottom loss. His conclusion was that such techniques provide reliable 

results only below the critical angle. 

These claims have been investigated also by the author,28,29 by application of 

adaptive-beamforming techniques to both simulated and measured data (on 

relatively long arrays),  confirming that, consistently with what is available in 

literature, results cannot be considered satisfactory, at least not beyond the angle 

regimes indicated by Arvelo. The cause of the problem appears to lie in the nature of 
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the adaptive beamforming algorithms, which are designed for detection and/or 

direction-of-arrival estimation, and do not necessarily yield the accurate estimation 

of the spatial power spectrum required by bottom-loss estimation. 

More recently, the Centre for Maritime Research and Experimentation has started 

experimenting on the field with AUV-deployable short arrays. They developed a 

compact, volumetric 8-element array including a 0.4m long, 5-element linear array 

that can be mounted on the nose of an AUV. The acquisition-system test and 

validation campaign (GLider Acoustics Sensing of Sediments experiment 2012 — 

GLASS’12) produced data (while the vehicle was mounted on a frame moored to the 

bottom) that showed the potential of the VLA for a rough estimate of basic seabed 

properties and of the volumetric array for target localization.30,31 In 2014, the 

Recognized Environmental Picture campaign in the Mediterranean Sea (REP14-MED) 

employed an 8-element prototype VLA with adjustable spacing, and deployed it 

together with a 32-element array to be used as reference. The data collected offer a 

first direct comparison between the performance of the original implementation of 

Harrison and Simons’ technique, and the performance of the new algorithms 

proposed in this dissertation. Part of the research activities described in this 

dissertation includes the participation of the author in the GLASS’13 experiment, both 

during the measurement campaign and the successive data-analysis and processing 

phase, which resulted in a study of the performance of this array for bottom-loss 

estimation. The author also participated in the data collection of the acoustic leg of 
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the REP14-MED campaign, and the results from the processing of the collected data 

are included in this dissertation. 

The work presented in this document, involving simulation, modeling and data 

processing/analysis, represents the first investigation of the impact of these 

particular array configurations on the results obtained by ambient-noise-based 

bottom survey. The preliminary results show that, in order to successfully migrate 

Harrison and Simons’ technique from longer, moored/drifting arrays to small AUV-

mounted arrays, improved angular resolution must be achieved, and in this sense 

adaptive beamforming techniques do not appear to provide reliable results, at least 

above the critical angle. 

In this document, a new derivation of the result at the basis of Harrison and Simons’ 

technique is presented. Furthermore, a technique for increasing the angular 

resolution of the computed reflection coefficient (and therefore of the derived bottom 

loss) is demonstrated. The technique, called “high-resolution bottom-loss estimation” 

(HR-BL), emerges as a natural consequence of the derivation, and exploits the spatial 

stationarity of the ambient-noise spatial coherence function, a known property of a 

surface-generated, noise-only field. The higher angular resolution is achieved by 

removing some inherent limitations of conventional beamforming.32—34 The new 

technique is demonstrated on both synthetic and experimental data. The author also 

collaborated with another recent study35 focused on the vertical coherence function, 

which proposed employing existing algorithms for the extrapolation of band-limited 

signals to reconstruct the noise coherence function of a longer array, starting from 
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data measured by a shorter array. The extrapolation results appeared promising, but 

the potential of this technique for bottom-loss estimation has not been investigated 

yet. 

In this dissertation, the idea of overcoming the limitations of short arrays by 

synthesizing the coherence function of a longer array is treated with the specific 

purpose of improving the performance of bottom-loss estimation (particularly the 

angular resolution) through HR-BL. However, instead of applying extrapolation 

algorithms, the proposed technique, called “frequency based coherence-function 

extension” (FBE),36,37 uses data measured at different frequencies by the physical 

hydrophones, to approximate the coherence function at the location of the sensors of 

a longer array. The technique is computationally simple, and makes a more efficient 

use of the frequency band available to modern acquisition systems, which often 

extends well beyond the array design frequency. 
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2. Literature review 

This section provides the context for the contributions made in this dissertation. It 

does so by identifying the current state of research in the fields touched by this work, 

and pointing out areas that have not been addressed by the open literature. The 

research described in this document is inherently multidisciplinary and includes 

topics from the fields of signal/array processing, acoustic-propagation modeling and 

sea-bottom survey/characterization. Each field is presented separately in the 

following sections, with special focus on the topics relevant to this dissertation. 

2.1. Array processing and beamforming 

Array processing and beamforming have been well-established applications for a few 

decades now, and a comprehensive coverage of algorithms and techniques is outside 

the scope of this document. Excellent, comprehensive references are nowadays 

available in the form of books: for example, Van Trees38 offers thorough coverage of 

the topic from a communication-theory viewpoint; Johnson and Dudgeon present a 

more physics-oriented approach;39 some chapters of Manolakis, Ingle and Kogon 

offer a more concise, yet still surprisingly effective, treatment from a statistical-

signal-processing and adaptive-filtering perspective.40–42 Very good review articles 

are available as well, such as the one by Krim and Viberg.43 

Part of the work for this dissertation has involved investigating the application of 

adaptive-beamforming techniques to bottom-loss estimation, for which Cox provides 

an excellent starting point, illustrating both the optimal minimum-variance 
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distortionless response algorithm, and the advantages in terms of robustness of the 

white-noise gain constraint.23 Recursive-least-squares implementations have been 

developed, to extend the same minimization problem with the introduction of 

multiple linear constraints and up to a single quadratic constraint.44,45 

2.2. Geoacoustic inversion 

Characterizing the seafloor for propagation modeling amounts to being able to 

describe the physical properties of this medium that are relevant to acoustic 

propagation. This task is of obvious relevance to SONAR operation, and has a well-

established history,1 spread over an impressively large bibliography that cannot be 

covered in this document. An idea of how complex it is to proceed to this 

characterization by direct measurement can be gained from the work by Hamilton4 

and Hamilton and Bachman.5 An easier alternative for SONAR prediction is the use of 

available databases, which were mostly developed and validated for military 

applications in deep water, the main operating theater during the Cold War. However, 

when sound-propagation modeling in shallow water environments is required, 

environmental databases often cannot provide adequately accurate bottom-loss 

information, which can result in very inaccurate transmission-loss predictions.6 The 

third alternative is geoacoustic inversion of measured acoustic data. In this field, 

perhaps the most widely employed methodology has so far been deploying acoustic 

sources (such as sound projectors or explosive charges, but in some cases exploiting 

sources of opportunity, such as ship noise) and hydrophone arrays, measuring the 

acoustic field, and employing model-based matched-field processing to determine the 
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seabed properties by minimizing the mismatch between model predictions and 

measurement. A vast literature is available on these methods, which have become 

more popular as relatively inexpensive computational power has been made 

available by technological advances.7—17 While the examples cited here all pertain to 

active survey techniques, passive techniques also exist, and are the subject of the next 

section. 

2.3. Marine ambient-noise processing 

The potential for greatly reduced cost and complexity and, more recently, growing 

concern about the negative impact on marine life of certain anthropogenic sounds,18 

have made passive SONAR systems an expanding research field, and this includes 

applications to seafloor survey. Among these systems, those exploiting marine 

ambient noise (mainly originating from breaking waves, wind and rain at the surface) 

as an acoustic source (rather than a disturbance) are of great relevance to this 

dissertation. In 2002 Harrison and Simons showed that it is possible to estimate the 

plane-wave power reflection coefficient of the seafloor by comparing the ambient-

noise energy harvested by a vertical line array when steered towards the surface and 

the bottom at opposite elevation angles,19 effectively removing for this application 

the need for artificial acoustic sources. The technique was refined and applied to 

measured array data in the following years,24,46 and extended to investigation of the 

bottom layering.47—49 More recently, Arvelo investigated in simulation the 

technique’s sensitivity to different operative conditions,50 and data produced by this 

technique have been employed in the framework of a Bayesian algorithm for 
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geoacoustic inversion.51 This technique was also at the origin of another successful 

noise-processing application known as the passive fathometer, which exploits 

coherent analysis of vertically steered beams to image seabed layering.20,52—56 

Recently, the development of Autonomous Underwater Vehicles (AUVs) has 

reached a stage where they have become a viable technology for a number of 

applications ranging from military,57 to commercial,58,59 to research sectors.60 

Combining ambient-noise-based bottom survey with the versatility61 and simplicity 

of AUVs would produce an attractive, cost-effective bottom-survey system. Due to the 

nature and size of these vehicles, hydrophone arrays mounted on these systems need 

to be very compact, and the application of short arrays to bottom characterization has 

received some interest.24 Harrison and Baldacci,25 and Siderius and Harrison24 

suggested that adaptive beamforming could improve angular resolution, but a 

successive report from CMRE showed rather unsatisfactory results,26 and the idea 

does not seem to have been pursued further by the researchers. A study by Arvelo,27 

conducted on synthetic data using adaptive-beamforming techniques, showed very 

limited applicability. Interestingly, adaptive-beamforming techniques have been 

exploited successfully for the passive fathometer,53,56 whereas application to the 

problem of bottom reflectivity estimation has not been equally successful26–29 

(another promising technique for the passive fathometer is practical supergain,62,63 

which only applies to arrays steered to endfire). In general, the open literature at this 

moment lacks a study of the performance and limitations of compact arrays to the 

specific field of bottom-loss estimation, as well as the presentation of viable 
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methodologies for alleviating the effects of their inherent limitations in this 

application. One of the primary goals of this research work is filling this gap. 

2.4. The marine ambient-noise spatial coherence function 

The marine ambient-noise spatial coherence function plays a fundamental role in 

beamforming, and has been the subject of extensive theoretical treatment in 

underwater acoustics, particularly in its relationship to the Green’s function.64—76 A 

good summary of how this function is modeled for shipping and wind is provided by 

Hamson.3 However, for the research in this dissertation, the wind flow and the 

breaking waves at the sea surface are the source of choice, and the most useful 

treatment has been developed for the modeling of passive bottom-survey systems, 

such as the passive fathometer,52,53,56 and Harrison and Simons’ technique for 

bottom-loss estimation.73–75 This study also discusses techniques for extrapolating 

the spatial coherence function, for which a recent application of preexisting band-

limited signal extrapolation techniques79–81 has been proposed by Quijano et al.35 
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3. Background 

The research described in this document is inherently multidisciplinary, as it aims at 

improving the performance of signal- and array-processing algorithms through 

integration of knowledge provided by physics of the particular problem at hand. 

Assuming a basic knowledge of underwater acoustics, for each involved discipline 

this section summarizes the basics and presents the equations that are useful in 

understanding the rest of the document. 

3.1. Marine surface ambient noise 

[Ambient noise] is what is “left over” after all identifiable noise sources are accounted 
for.1 

In signal processing literature and research, the word noise normally indicates a 

disturbance, an unwanted contribution, or a general background field that competes 

with a signal. Since the usual purpose is to detect the signal, noise has a negative 

impact on performance and must be minimized. Urick defines “marine ambient noise” 

as “that part of the noise background observed with a non-directional hydrophone 

that is not due to […] self-noise, or to some identifiable localized source of noise”.1 The 

term “self-noise” encompasses cable strumming, waves splashing against the 

hydrophone, 60Hz hum, and all other occasional causes, such as crabs crawling on the 

sensor. However, in the case of the research illustrated in this dissertation, one 

component of what Urick calls “noise background” is exploited as a source; as such, it 
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constitutes the signal to observe, and its presence is desirable. This section illustrates 

the basic characteristics of this peculiar acoustic source. 

3.1.1. Ambient-noise spectrum 

The first important trait of the ambient-noise field is that it is generated by different 

mechanisms, depending on the frequency band and the water-column depth under 

consideration. The frequency band below 20Hz includes noise sources such as tides, 

waves, and earth seismicity, and is of little interest to this study. The band between 

20Hz and 500Hz appears to be dominated by distant ship traffic, which in deep water 

can be generated thousands of kilometers away from the measuring hydrophone. 

The following band, up to about 30kHz, is the one of greatest relevance to this 

work. The dominant ambient-noise source in this frequency band is the action of 

surface waves, through mechanisms whose physics is still not completely understood, 

such as breaking whitecaps, wind-flow noise (turbulent pressure waves caused by 

the wind blowing over the rough sea surface), and cavitation. Regardless of the exact 

origin of the noise, the level of this source has been shown to be correlated with the 

local wind speed at the surface, over a relatively small area above the measuring 

hydrophone. 

Available deep-water noise spectra include a further band that extends beyond 

100kHz, which is not of direct relevance to this study, and where the main source of 

noise is molecular thermal motion. Other sources of noise at sea are of anthropogenic 

nature (e.g., explosions, industrial activity in bays and harbors), biological nature 
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(such as marine mammals or snapping shrimps), or can be due to a number of 

intermittent natural phenomena, such as rain, cracking ice, seaquakes, and volcanoes.  

3.1.2. Deep vs. shallow water 

As discussed in the previous section, a number of different sources contribute to the 

ambient noise field. This section briefly illustrates some generally accepted results 

describing the influence of the hydrophone depth on the detected noise field from the 

various sources, providing a higher level of detail on the one that is of more direct 

interest for the work described in this dissertation: the noise generated at the surface 

by the action of wind and waves. In the following, the term “shallow water” will refer 

both to bay and harbor environments, and to coastal waters, such as those on the 

continental shelf — the distinction will be made explicitly, when necessary — and 

“deep water” will identify water-column depths extending beyond the continental 

shelf. 

One of the ways in which the water-column depth influences the noise field is by 

indirectly “favoring” some sources with respect to others. For instance, in shallow 

water environments such as bays and harbors the noise sources usually present high 

temporal and spatial variability: At any given time and location, the strongest 

contributions to the field in this environment will be provided by a different mix of 

shipping and industrial noise, wind noise, and biological noise. In contrast, noise from 

these shallow sources will reach a hydrophone in deep water only as a distant 

contribution, and its level will depend on the propagation conditions between the 

hydrophone and the sources. Chapter 7 in Urick’s book1 provides a summary of 
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different studies showing that, in general, the total noise level in the frequency band 

of interest to this study tends to decrease with increasing depth, with a gradient that 

is steepest just below the surface. Besides volume attenuation (which varies with 

frequency), this can also be an effect of bottom topography (deeper locations are 

“shielded” by surrounding peaks screening out distant sources) or the presence of a 

surface duct, which traps noise generated at shallow depths in the region below the 

surface. 

The noise level generated by the action of wind and waves at the surface has been 

found to depend on the wind speed at the surface, directly above the measuring 

hydrophone. Perhaps more importantly for this study, and quite surprisingly, when 

the ambient noise is generated only by this source, its level has been found to be 

independent of hydrophone depth and water depth. 

3.2. The marine noise spatial coherence function 

The spatial coherence function of the pressure field 𝑝(𝐫, 𝑡) between two points in 

space 𝐫1 and 𝐫2 is defined, in its un-normalized form, as the ensemble average of the 

product 𝑝(𝐫1, 𝜔)𝑝∗(𝐫2, 𝜔): 

  

where ∗ indicates complex conjugate and 𝑝𝜔(𝐫) is the coefficient at angular frequency 

𝜔 of the Fourier expansion of 𝑝(𝐫, 𝑡). It is sometimes useful to refer also to the 

normalized coherence function 𝐶𝜔
′ (𝐫𝑖, 𝐫𝑗), defined as:76 
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and has the advantage of removing from the function the dependence on the noise 

level at the given frequency. 

The noise spatial coherence function, as well as its relationship to the Green’s 

function, has long been the object of studies in underwater acoustics64—76 and is of 

great relevance to the modeling of passive bottom-survey systems such as the passive 

fathometer56 and Harrison and Simons’ technique for bottom-loss estimation.73,74 

However, the bare definitions given in Eq.(2) and Eq.(3) will suffice for the moment, 

as its fundamental relevance to this study will be clarified by direct references in the 

following sections. 

3.3. Array processing and spatial filtering (“beamforming”) 

Array processing and beamforming have been well-established applications for a few 

decades now, and a comprehensive summary of algorithms and techniques is outside 

the scope of this document (among the numerous references that are available, 

comprehensive texts have been written by Van Trees38 and Johnson and Dudgeon,22 

while a shorter but effective introduction can be found in Manolakis, Ingle and 

Kogon.)40,42 In this section, only the theoretical basics that are necessary for the rest 

of this document are presented. 

The term “array processing” refers to signal-processing techniques applied to a 

group of signals detected by an array of sensors arranged in a specific geometric 
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configuration. When the sensors are equally spaced on a straight line, the array is 

called a uniform line array (ULA). Just like a finite-impulse-response (FIR) filter 

processing a uniformly time-sampled signal as input, a ULA spatially samples an 

impinging wave at equal spatial increments and then processes the signal. A 

particular application of array processing is beamforming, where the signals from all 

sensors are linearly combined in order to emphasize signals from a particular 

direction of arrival, while suppressing signal from any other direction. 

3.3.1. Conventional beamforming 

In the frequency domain, a beamformer produces its output by forming a weighted 

sum of data (specifically, the Fourier transform of the recorded signals) from the M  

sensors of the array (for the sake of simplicity, in the following the dependence on 

frequency and grazing angle will often be dropped in the right-hand side of 

equations): 

  

In Eq.(4), 𝐻 denotes the conjugate transpose operation, and 𝐰(𝜗𝑠, 𝜔) =

[𝑤1, 𝑤2, … , 𝑤𝑀]𝑇  is the weight vector for the steering angle 𝜗𝑠 (𝑇 denotes the 

transpose operation). The angle 𝜗𝑠 = 0 corresponds to the array being steered 

towards broadside (i.e., horizontally for a vertical array), 𝜗𝑠 > 0 towards the surface, 

and 𝜗𝑠 < 0 towards the bottom. The vector 𝐩(𝜔) = [𝑝1(𝜔), 𝑝2(𝜔), … , 𝑝𝑀(𝜔)]𝑇 , where 

𝑝𝑚(𝜔) = 𝑝(𝐫𝑚, 𝜔) = F {𝑝𝑚(𝑡)}, represents the data from the 𝑀  hydrophones in the 

array (F {∙} denotes the Fourier transform). 

  ,,
1

pwH
M

m
mmS pwy 







 

23 

Introducing into the picture the stochastic nature of ambient-noise data, the average 

beam power 𝐵(𝜗𝑠, 𝜔) is defined as: 

  

where 𝐸[∙] denotes expectation. The weight vector 𝐰(𝜗𝑠, 𝜔) can be computed in 

different ways, depending on the kind of beamformer one wants to implement. For 

the “conventional beamformer” (CBF), the weight for the 𝑚-th element in the array is 

computed as: 

  

Where 𝑐 is the sound speed and 𝑑 is the array inter-element spacing (assumed 

constant throughout the array). 

The spatial coherence matrix (or cross-spectral-density matrix, hereafter also 

referred to as “CSD matrix”) 𝐂𝜔 is defined as the expected value of the outer product 

𝐩𝑖(𝜔)𝐩𝑖
𝐻(𝜔): 

  

To make an explicit link to the theory described before, in Eq.(7) element (𝑖, 𝑗) in 𝐂𝜔 

is given by the value of the spatial coherence function 𝐶𝜔(𝐫𝑖, 𝐫𝑗) between the two 

hydrophones [see Eq.(2)]. Typically, in real-world applications an estimate �̂�𝜔 of 𝐂𝜔 

is obtained by averaging 𝐩𝑖(𝜔)𝐩𝑖
𝐻(𝜔) over 𝐾 data snapshots: 
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3.3.2. Adaptive beamforming 

In the signal-processing literature there is a clear distinction between optimum 

beamforming techniques, which are mathematically derived assuming perfect 

knowledge of the statistics of the field being sampled by the array, and their practical 

implementations, which can only count on estimates of the statistics deduced from 

measured data. 38,40,42 To stress this difference, in this section the typical signal-

processing notation is retained, which uses the symbol 𝐑 to indicate the covariance 

matrix of the array output (regardless of the physical nature of the field being 

measured), and the symbols used in the preceding sections of this document are 

introduced only when the application pertains specifically to the acoustic noise field. 

As shown in Eq.(5), beamforming amounts to computing a set of weights so as to 

optimize the spatial response of the array on the particular data at hand, with respect 

to some specified criterion. Among optimum beamforming techniques aimed at 

maximizing the signal-to-interference-plus-noise ratio at the steering angle, the 

minimum-variance distortionless-response (MVDR) beamformer computes the 

weight vector as the solution to the optimization problem:23,40,43 
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where 𝐑𝑖+𝑛(𝜔) is the interference-plus-noise cross spectral-density matrix. The 

vector 𝐯(𝜗𝑠, 𝜔) is defined as a plane wave of unit amplitude at frequency 𝜔 and 

incident at an angle 𝜗𝑠. Equation (9) shows that the MVDR algorithm tries to maintain 

unit gain at the steering angle 𝜗𝑠, while minimizing the contribution to the total power 

by noise and interferers coming from directions different from 𝜗𝑠. Standard 

techniques, such as the method of Lagrange multipliers,82 can be used to solve the 

single-constraint minimization problem in Eq. (9), leading to the well-known closed 

form: 23,40,43 

  

When processing the marine ambient-noise field, 𝐑𝑖+𝑛(𝜔) is not available, and one 

must resort to algorithms that make use of an estimate of the whole cross-spectral 

density matrix including signal and possible interference. In this case, the minimum-

variance distortionless-processor algorithm (MVDP) is implemented by replacing 

𝐑𝑖+𝑛(𝜔) with �̂�𝜔 in Eq.(9). 

3.4. Passive bottom-loss estimation: Harrison & Simons’ technique 

The seabed bottom loss is an important quantity for predicting transmission loss in 

the ocean. A passive technique for estimating the bottom loss was first introduced by 

Harrison and Simons,19 and has proven effective in several studies.21,24-49 In this 

technique, the marine ambient-noise field, mainly originating from breaking waves, 

wind and rain at the surface, is sampled at discrete locations in space by a vertical line 

array of hydrophones. The data are then beamformed to obtain estimates of the 
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power impinging on the array from different angles. The ratio of the averaged noise 

coming from the seabed to that coming from the surface (at symmetric angles with 

respect to the horizontal) reveals the loss due to interaction with the seabed, which 

by definition is the bottom loss.  

For a wave front of frequency 𝜔 incident upon the bottom at grazing angle 𝜃𝑏 >

0 (see Figure 1 for the definition of all geometric quantities), the bottom loss is 

defined as (this equation, already presented in Section 1, is repeated here for 

convenience): 

  

Where 𝑅(𝜃𝑏 , 𝜔) is the plane-wave power reflection coefficient of the bottom. 

Harrison and Simons show that the bottom loss can be computed from an estimate 

�̂�(𝜃𝑏 , 𝜔) of the power reflection coefficient obtained from array data as the ratio of 

the downward and upward beam powers: 

  

where 𝜃 = |𝜃𝑟| is the absolute value of the angle at the receiver 𝜃𝑟 (i.e., the angle at 

which a ray reaches the receiver) corresponding to the angle at the bottom 𝜃𝑏 . This 

estimate is then used to replace 𝐸[𝐩𝐩𝐻]in Eq.(5), yielding: 
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Equation (12) shows that, in bottom-loss estimation, the ratio of the beamformer 

output power is used to estimate the power ratio of (plane) wave fronts incident upon 

the array from angles symmetric with respect to the horizontal. A “pictorial view” of 

the technique is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Definition of coordinate system and geometric quantities. For constant 
sound speed, the rays are straight lines (hatched), and 𝜃𝑠

′ = 𝜃𝑏
′ = |𝜃𝑟| = 𝜃. The solid 

lines represent ray paths in the presence of a sound-speed profile. The same angle at 
the receiver 𝜃𝑟 is considered in both cases.  

The wave propagation angle can be expressed in terms of the vertical wavenumber; 

for a plane wave propagating at angle 𝜃0 (e.g., at the bottom this would be the grazing 

angle 𝜃𝑏), a wave vector 𝛋 is defined: 
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whose Cartesian components 𝜅𝑟 and 𝜅𝑧 are the horizontal and vertical wavenumbers, 

respectively. In the given geometry, and at a given frequency 𝜔, the vertical 

wavenumber therefore unambiguously identifies the direction of propagation 𝜃0 of 

the wave front, and Eq.(14) establishes the correspondence between 𝜃0 and 𝜅𝑧 . 

The beamformer resolution is the ability of the beamformer to discriminate 

between wave fronts incident from closely-spaced directions. Adopting the definition 

based on the Rayleigh criterion, the resolution in wavenumber domain for a linear 

array is:22 

  

where Δ𝜅 is the distance between the two closest values of 𝜅 that can be resolved and 

𝐿 = 𝑑(𝑀 − 1) is the total length of the array. Equation (15) shows that, for a given 

sensor spacing, increasing the number of array sensors (and therefore the array 

length) results in a finer resolution in 𝜅. 
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Figure 2. “Pictorial view” of Harrison and Simons’ technique. The noise produced 
at the surface by the waves is captured by the array when steered towards positive 
grazing angles. The noise reaching the array from the opposite (negative) angles has 
undergone an interaction with the bottom. The two “cones” symbolize the ambiguity 
of the VLA in the azimuth direction. The two lines indicated in real scale represent the 
length of the arrays used in the Boundary measurement campaigns (more details 
below). 
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4. Passive bottom-loss estimation from VLA data 

Harrison and Simons’ technique has been used in a number of studies and does not 

need to be tested in this research. However, to give the reader an idea of what kind of 

results it can yield, this section shows some examples of its application to both 

synthetic and measured data. 

4.1. Synthetic data 

The tool elected to produce synthetic ambient-noise data for this study is OASN, the 

noise-propagation model of OASES,77 which implements a full solution of the wave 

equation based on wavenumber integration, for horizontally stratified media. For a 

given bottom type, a theoretical model can be used to compute the corresponding 

bottom loss as a function of frequency and grazing angle. This can be used as 

reference in a comparison with the bottom loss estimated by beamforming the OASN 

CSD matrices; the estimation error is then quantified as the difference between the 

two values. In this research work it was decided to implement the theoretical model 

for computing the bottom reflection coefficient described by Jensen et al. 2 

The bottom type used for this test is shown in TABLE I. The array has 32 

hydrophones with 0.18m spacing. The water-sediment interface is at a depth of 

200m; the sound speed in the water column is constant at 1500m/s. The bottom has 

a 0.75m layer resting on a halfspace (see TABLE I for the physical properties). The 

shallowest hydrophone is at a depth of 180m. 
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Figure 3 shows plots of the bottom loss as a function of frequency and grazing 

angle. The size, number, and magnitude of the striations visible in the plot depends 

on the bottom layering and physical properties, and will therefore appear different 

for different bottom types. In the plot produced using Jensen et al.’s model, the low 

loss area covering the entire frequency range at the lowest grazing angles is limited 

to the right by the critical angle. In general, when moving to the plot produced by the 

beamformer, the limited aperture of the array produces a “smoothed” version of what 

would be the theoretical bottom-loss plot, since the array’s angular resolution cannot 

be infinitely fine. This is particularly visible around the critical angle, where the 

transition is not as sharp and the detail of the “double” critical angle due to layering 

(visible in the theoretical prediction above 2500Hz, between 20° and 30°) is lost. 

Furthermore, the array fails to measure bottom loss at very low frequencies because, 

as indicated by Eq.(14) and Eq.(15), the angular resolution becomes poorer at lower 

frequencies. This means that the array is harvesting energy from a very broad range 

of grazing angles, which tends to bring the ratio in Eq.(12) close to one, causing the 

result of Eq.(11) (i.e. the estimate of the bottom loss) to approach zero. For all the 

plots estimated using an array, the vertical axis only covers a frequency range up to 

the array “design frequency”: Above such frequency, which is a function of the ratio 

of the array spacing to the wavelength, the array resolution drops abruptly, as 

evidenced by the low-loss (blue) area in the upper right corner of the estimated-

bottom-loss plot. 
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What Figure 3 shows, which is fundamental for the remainder of this dissertation, 

is that reducing the array length has the effect of magnifying the “smoothing” effect 

due to the array’s finite aperture. The deterioration of the bottom-loss estimate 

becomes more severe as the array length becomes smaller, in comparison to the 

signal wavelength. 

 Water-column and bottom properties for the simulated cases; 

Δ is the layer thickness, 𝜌 is the density, 𝛼𝑐 is the compressional volume 

attenuation, and 𝜆 is the wavelength. Shear sound speed and 

attenuation were set to zero.  

 Δ(m) 𝑐𝑝(m s⁄ ) 𝜌(kg m3⁄ ) 𝛼𝑐(dB 𝜆⁄ ) 

Water 170 1500 1000 10-4 

Sediment 0.50 1565 1500 0.2 

Halfspace   1800 2000 0.5 
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Figure 3. Bottom loss for the configuration of TABLE I: Computed using Jensen’s 
model (top left) and estimated by applying conventional beamforming to an OASN 
CSD matrix with 40 (top right), 8 (bottom left), and 5 elements (bottom right). In 
general, the beamformed estimate appears as a “smoothed” version of the theoretical 
prediction. This is particularly visible around the critical angle in the top row, where 
the transition is not as sharp and the detail of the “double” critical angle due to 
layering (visible in the theoretical prediction above 2500Hz, between 15° and 30°) is 
lost. Note the severe deterioration of the estimated bottom loss as the array length 
decreases.
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4.2. Boundary data 

The research performed for this study has included applying Harrison and Simons’ 

technique to a number of different datasets, some of which have been studied for 

years by the scientific community (data from the Boundary 2003,  and the Boundary 

2004 experiments), others are more recent (GLASS 2012 and GLASS 2013 

experiments) and others are presented for the first time (REP14-MED experiment). 

More details on these experiments and datasets are provided in Sections 6–8; this 

section presents one example of the results, to give the reader an idea of what they 

look like, compared to the theoretical and simulated results shown above. 

In the real world, the data are collected as sampled time histories by each 

hydrophone in the array. The data are then moved to the frequency domain through 

a Fast Fourier transform, averaged as indicated in Eq.(8) and beamformed according 

to Eq.(13). Figure 4 shows the result of beamforming on a data segment from the 

Boundary 2003 experiment. Compared to the simulated results, these show in 

particular poorer resolution of the interference striations and a much smoother 

transition at the critical angle. 
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Figure 4. Estimated bottom loss using data from the Boundary 2003 experiment 
and an array with the same configuration as that in Section 4.1. The critical-angle 
transition is not as sharp as one would expect from theory. Some evidence of layering 
is present at grazing angles beyond 60°, although the striations are quite “smoothed”, 
an effect of the finite beamformer resolution, coupled with the uncertainties in some 
of the beamforming parameters, such as the relative positioning of the array elements 
and the sound speed in water. 
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5. Use of adaptive beamforming techniques for bottom-loss estimation 

As previously explained in Section 3, Harrison and Simons’ passive technique for 

estimating the bottom loss is based on beamforming of the marine ambient-noise 

field using a vertical line array. Although studies available in literature and based on 

measured data (as opposed to simulations) so far have only made use of conventional 

beamforming, some authors have suggested that adaptive beamforming techniques 

might improve the BL estimation.24,27,50 This has found partial confirmation for 

grazing angles below the critical angle in a study involving simulated data.27 The 

minimum-variance distortionless processor is a beamforming algorithm that has 

proven to achieve excellent performance in direction-of-arrival estimation. In this 

section, the application of this adaptive beamformer for BL estimation is explored by 

applying it to both simulated and measured data. 

The BL plots in Figure 5 are obtained by computing �̂�(𝜃𝑏 , 𝜔) with Jensen’s model2 

(a) and by beamforming a noise field produced by OASN77 (b and c), all for the same 

bottom type. Figure 5(c), in particular, shows that the MVDP beamformer performs 

significantly worse than the CBF in this application, generating artifacts such as an 

area of significant BL disruption around endfire, and disruptive striations running 

approximately perpendicularly to the BL ridges. 
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Figure 5. Bottom loss obtained through Jensen et al. model (a), and from 
synthetic data produced by OASN for the same bottom type, using CBF (b) and MVDP 
beamforming (c).  

 

 

 

 

 

 

 

Figure 6.  Bottom-loss error BLth – BLMVDP (left) and main-lobe-width ratio (right) 
for the MVDP beamformer on the same data as in Figure 5.  

The disruption can be quantified by comparison with the predicted BL obtained 

from the theoretical model: Figure 6 shows the difference between the theoretical 

(BLth) and the MVDP (BLMVDP) results as BLth – BLMVDP [i.e., the difference between (a) 

and (c) in Figure 5]. The disruption is particularly significant across the whole 

frequency spectrum at endfire and around the critical angle, and at low frequencies 
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above the critical angle; the disruptive striations are clearly visible in the whole 

region to the right of the critical angle. Since these are synthetic data, the position of 

the array elements is known without ambiguity, and array mismatch can be ruled out 

as a possible cause of the artifacts. Furthermore, diagonal loading was used to 

stabilize the cross spectral density matrices with respect to inversion, to avoid effects 

due to numerical instability. Finally, the artifacts are absent in the CBF results, both 

for real and synthetic data. All these considerations suggest that the artifacts should 

be regarded as a consequence of the MVDP algorithm itself. 

As shown in Eq.(6), the CBF weight vector depends only on the array configuration 

and the sound speed in the medium, whereas the MVDP weight vector in Eq.(10) 

includes properties of the acoustic field through the cross spectral density matrix 

𝐑𝑖+𝑛. As shown in Figure 7(a), the data-independent CBF beam pattern has a “regular” 

shape, with sidelobes whose level decreases with distance from the steering angle, 

and when the array is steered towards two symmetric angles +𝜗𝑠 and −𝜗𝑠, the two 

beam patterns are perfectly symmetric around the horizontal grazing angle 𝜃 = 0. 

When comparing CBF and MVDP beam patterns, it is apparent that the adaptive 

nature of the MVDP beamformer destroys this symmetry, and yields beam patterns 

of more complex shape [Figure 7 (b)]. The MVDP beamformer, when steered towards 

the bottom, attempts to reduce the contribution of the surface sources to the total 

power by lowering the sidelobes that point towards the surface (positive grazing-

angle values). But in the case of Figure 7 (b) (𝜗𝑠 = −71∘, 𝑓 = 945.5Hz), the price to 

pay for this optimization is a wide main lobe. When steering towards the surface, the 
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beamformer can afford higher sidelobes towards the bottom — because, due to the 

BL, the contribution of bottom bounces to the total power is significantly lower — 

and maintain a narrow main lobe at the steering angle. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Top: CBF beam patterns at 945.5Hz at 𝜗𝑠 = −71∘ (hatched) and 𝜗𝑠 =
+71∘  (solid). Bottom: MVDP beam patterns at the same frequency and steering 
angles. The MVDP beam patterns do not display the same symmetry as the CBF ones. 
When steered towards the bottom, the MVDP beamformer attempts to minimize the 
contribution from the sources at the surface by lowering the sidelobes in the positive 
grazing-angle region, at the price of a much wider down-looking main lobe.  

It seems reasonable to make the hypothesis that this main-lobe asymmetry could 

affect the ratio in Eq.(12) to the point that it no longer represents a correct estimate 

of the directional power ratio, therefore ruining the BL estimate. To quantify the 

influence of this parameter, in this work the main-lobe width 𝑊 is defined as the full 

width at half maximum — i.e., the difference in grazing-angle value of the two -6dB 
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points that are closest (on opposite sides) to the main-lobe maximum in the beam 

pattern plot. 

Figure 6 (b) shows on a dB scale the ratio of the width of the down-looking main 

lobe (𝑊−) to the width of the up-looking main lobe (𝑊+), for each pair of steering 

angles ±𝜗𝑠, as a function of frequency and grazing angle; the orientation of the axes 

is the same as in the BL plots. By comparison to the BL-error plot in Figure 6(a), it is 

apparent that both plots show ridges in the same positions where the disruptive 

striations appear in the MVDP BL plot [see Figure 5(c)]. Particularly, a darker area at 

endfire, and a strong ridge running from about 75° and 𝑓 = 1.5kHz to about 20° and 

𝑓 = 100Hz in the width-ratio plot clearly correspond to similar features in the BL-

error plot, and to BL disruption in the MVDP BL pattern of Figure 7. 

The same calculations and analyses were performed on other data sets, both 

measured and simulated, verifying that the artifacts shown above and their 

correspondence with main lobe asymmetry are not specific to the particular data set 

shown here. These results provide empirical evidence that the main lobe asymmetry 

plays an important role in the disruptive striations observed in MVDP-estimated BL 

plots. 

In conclusion, beamforming of the underwater noise field using the MVDP 

algorithm can result in inaccurate estimation of the BL. Errors around the critical 

angle and in the low-frequency region above the critical angle are typical artifacts of 

this BL-estimation technique, due to the broadening of the beams induced by the 

finite length of the array. The MVDP algorithm introduces other errors, which 
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concentrate particularly around endfire and along striations running approximately 

perpendicularly to the BL ridges in the BL-pattern plots. The locations of these errors 

correspond to locations at which the main lobes of the beam patterns steered towards 

symmetric directions show markedly different widths. More specifically, the MVDP 

algorithm can produce down-looking main lobes that are significantly wider than the 

corresponding up-looking main lobes. This appears to be a condition induced by the 

MVDP algorithm in the attempt to minimize contribution to the total power by the 

sources on the surface, when steering towards the bottom. 

These considerations, together with the little support to the idea found in 

literature, indicate that the application of adaptive beamforming algorithms to 

Harrison and Simons’ technique presents significant challenges. The reason for this 

appears to lie in the “mismatch” between the task these algorithms are designed for 

(direction-of-arrival estimation) and the purpose they should serve in BL estimation 

(accurate estimation of the spatial power spectrum). Algorithms such as the MVDP 

are designed to suppress interferers covering a very narrow range in angle of 

incidence, and whose level is above the signal that needs to be detected. However, in 

BL estimation, when steering towards the bottom, the surface ambient noise appears 

to the MVDP algorithm as an “interferer” with ample spatial coverage and a level 

comparable to the “signal” that should be detected (i.e., the reflection from the 

bottom). The two scenarios are virtually one the opposite of the other, and therefore 

the unpredictable behavior of the MVDP should not be surprising.  
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6. High resolution bottom-loss estimation 

In the previous section, it has been shown that the application of Harrison and 

Simons’ technique to arrays whose length is short, compared to the signal 

wavelength, presents new, significant challenges, related in particular to the low 

angular resolution of the array. Besides increasing the array length, no other method 

for improving angular resolution in this particular application is available in 

literature (the application of adaptive beamforming techniques has not been proved 

to be a viable solution above the critical angle.)27–29 In this section, an original 

derivation is presented that shows how, under some reasonable conditions, the 

bottom reflection coefficient can be obtained from the array spatial coherence 

function without conventional beamforming. The prerequisite is that the array CSD 

matrix be (approximately) Toeplitz, which is a known property for a surface-

generated, noise-only field. Furthermore, a technique for increasing the angular 

resolution of the computed reflection coefficient (and therefore of the derived bottom 

loss) is demonstrated. The technique emerges as a natural consequence of the 

derivation, and is demonstrated on both synthetic and experimental data. 

6.1. Derivation of the power reflection coefficient from the noise spatial 

coherence function 

6.1.1. Derivation 

The un-normalized spatial coherence function and its relationship to the CSD matrix 

have already been introduced in Eq.(2) and Eq.(7) (for the sake of brevity, “un-

normalized” will be omitted in the remainder of this document, but the spatial 
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coherence function should always be considered in this form, unless otherwise 

specified.) This section presents the derivation in the frequency-wavenumber 

domain of a formula for computing the power reflection coefficient from the 

coherence function of the surface-generated marine noise field as recorded by the 

array.  

Using a ray-based approach Harrison derived a formula for the spatial coherence 

function of surface-generated noise in the ocean, which for the case of two 

hydrophones joined by a perfectly vertical line and separated by a distance 𝑧 is 

written (see Figure 1 for the definition of the coordinate system and all geometric 

quantities):64,74 

 

  

In Eq.(16), 𝐶𝜔(𝑧) introduces a more compact notation 𝐶𝜔(𝑧) ≡ 𝐶𝑧(𝐫1, 𝐫2), where it is 

assumed that 𝐫1 = (0,0) and 𝐫2 = (0, 𝑧) — i.e. the hydrophone pair is assumed to be 

aligned with the 𝑧 axis, whose origin is at the depth of hydrophone 1. Furthermore, 

𝜃𝑟 , 𝜃𝑠 , and 𝜃𝑏 are the ray angles at the receiver, the surface, and the bottom; 𝑠𝑐 and 

𝑠𝑝 are the complete and partial ray-path lengths (specifically, 𝑠𝑐 is the length of a 

surface-bottom-surface ray path), whose dependence on 𝜃𝑟 is determined by the 

sound-speed profile in the water column, 𝑐 is the sound speed at the receivers, and 𝑅 

and 𝑅𝑠 are the bottom and surface power reflection coefficients. In general, besides 

the ray angle, the reflection coefficients are also a function of frequency, but for the 
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sake of simplicity this dependence will not be indicated explicitly. Note that 𝑎 is the 

power attenuation per unit length along the ray path. The model assumes that the 

hydrophones are “close”, so that a single ray path and sound speed can be defined for 

the sensor pair. 

Since 𝜃𝑟 is limited in Eq.(16) to non-negative values, by defining 𝜃 ≡ |𝜃𝑟| and using 

Snell’s law: 

 

  

(where 𝑐𝑠 and 𝑐𝑏 indicate the sound speed at the surface and bottom, respectively) 

the equation can be rewritten as a function of the sole variable 𝜃: 

 

  

Now let: 

  

where 𝜆 is the signal wavelength; then 0 < 𝜃𝑟 = sin−1(𝜆𝑘) < 𝜋 2⁄  gives the bounds 

0 < 𝑘 < 1 𝜆⁄  [note that Eq.(19) defines 𝑘 as a scaled vertical wavenumber at the 

receiver: 𝑘 = 𝜅𝑧 2𝜋⁄ .] By substituting 𝜃 ≡ sin−1(𝜆|𝑘|) into Eq.(17) and Eq.(18), and 

defining: 
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Harrison’s equation can be rewritten as: 

 

  

Now by letting: 

  

and by introducing the generalized rectangle function: 

  

equation (21)can be rewritten as: 

 

 

 

  

Equation (24) states that the two addends can be expressed as a direct and an inverse 

Fourier transform between the 𝑧 and the 𝑘 domains. Taking the Fourier transform of 

both sides yields: 
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The first addend in Eq.(25) reduces to the argument of the inner inverse Fourier 

transform: 

  

whereas the second addend, by applying the duality property of the Fourier 

transform, yields: 

 

  

Equations (25)–(27) show that F {Cω(z)}, the 𝑘-spectrum of the coherence function, 

is split into a portion ℱ+(𝑘), which is nonzero only for positive 𝑘 values, and a portion 

ℱ−(𝑘), which is nonzero only for negative 𝑘 values. 𝑅(𝑘) can now be computed as the 

ratio: 

 

  

where, recalling that both �̃�(𝑘) and 𝑅(𝑘) are even functions of 𝑘,  ℱ−(−𝑘) is given by: 

  

Note that, because of the rectangle functions in ℱ+(𝑘) and ℱ−(𝑘), the power 

reflection coefficient 𝑅(𝑘) is defined only for ∈ [0 1 𝜆⁄ ], i.e. 𝜃𝑟 ∈ [0 𝜋 2⁄ ], which are 

the integration limits in Eq.(16). Since negative values of 𝑘 correspond to 𝜃𝑟 < 0 in 

Eq.(19) — i.e. waves reaching the hydrophones after reflection from the bottom — 
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and positive values of 𝑘 correspond to 𝜃𝑟 > 0 — i.e. reflection from the surface — the 

result in Eq.(28) is reminiscent of the method for estimating 𝑅 described by Harrison 

and Simons,2 but it provides an explicit account of the influence of the volume 

attenuation on the estimate of 𝑅 that the energy-flux argument in the original 

reference did not have. Furthermore, Eq.(28) is the theoretical basis of the improved-

resolution BL-estimation algorithm illustrated in Section 6.2. 

If volume attenuation in the water column is neglected, Eq.(20), Eq.(22), and 

Eq.(28) can be simplified by dropping the exponential factors. For a lossy medium, 

Eq.(28) shows that the ratio of the two halves of {Cω(z)} must be corrected by the 

additional exponential factor, which takes into account volume attenuation along the 

partial and complete ray paths. In general, the exact form of �̃�𝑐 and �̃�𝑝 depends on the 

sound-speed profile, and given the definition in Eq.(11), this factor adds to the bottom 

loss an  excess of 10 log10{exp[2𝑎 �̃�𝑝(𝑘) − 𝑎 �̃�𝑐(𝑘)]}, which needs to be subtracted 

when estimating the bottom loss using Harrison and Simons’ method. However, 

Eq.(28) also shows that this correction can be minimized by positioning the array 

close to the bottom (a similar conclusion was reached by Arvelo,50 although in the 

context of a different derivation): In this case the approximation 2�̃�𝑝 ≈ �̃�𝑐 can be 

considered valid for most grazing angles (see Figure 1), and the value of the 

exponential term approaches one.  

For the special case of an isospeed water column of depth 𝐻, assuming the 

hydrophone pair is at depth ℎ, the complete and partial ray-path lengths are: 
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and Eq.(28) becomes: 

  

As an example, the correction to the bottom loss that one should apply when using 

Harrison an Simons’ technique, computed from the exponential in Eq.(31), is plotted 

in Figure 8 as a function of grazing angle in a water column of depth 𝐻 = 200m, for 

different values of the sensor depth ℎ and 𝑎 = 2.46 ∙ 10−4m−1 (a value typical for a 

frequency of 10kHz). Since the sensor depth can vary between zero and 𝐻, when ℎ =

𝐻 the exponential factor is identically equal to one, whereas when ℎ < 𝐻 the plot 

shows that the correction is relevant especially at very low grazing angles, and is 

minimized when the array is close to the bottom. 
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Figure 8. Correction introduced by the exponential factor from Eq.(31) as a 
function of grazing angle and sensor depth ℎ for power attenuation 𝑎 = 2.46 ∙
10−4m−1 and water-column depth 𝐻 = 200m. The correction is relevant especially at 
very low grazing angles, and can be minimized by positioning the array close to the 
bottom. 

6.1.2. Applicability of the approach 

The conditions under which the results shown above apply are determined by the 

assumptions underlying Eq.(16). For this study, the most important assumption is 

that the acoustic field be generated by surface noise: The derivation does not make 

allowances for sources of a different kind. In the real world, this implies being able to 

acquire data when the surface noise is sufficiently high and shipping interference is 

negligible. The derivation also assumes that the spacing between the hydrophones 

whose data are being correlated is small enough to guarantee that the angle at the 

receiver for a given ray is the same for both hydrophones. This condition is usually 

well approximated for vertical line arrays, especially those used for beamforming. In 

the derivation, the hydrophones are also assumed to be joined by a perfectly vertical 
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line. When this is not the case (e.g., for a tilted array), the accuracy in the estimate of 

𝑅(𝑘) deteriorates, but this is not investigated in this study. 

Finally, a correction is required in Eq.(16) in the proximity of boundaries. 

Harrison64 shows that such correction can be safely neglected at distances from the 

boundaries of the order of 𝜆 sin 𝜃𝑐⁄  (where 𝜃𝑐  is the critical angle), which, e.g., 

corresponds to about 1.5m for 𝜃𝑐 = 20∘ and a 3kHz signal. When these conditions are 

met, CSD matrices produced by Eq.(16) result in estimates of 𝑅(𝑘) in excellent 

agreement with those produced using OASN, the noise-propagation module of 

OASES,77 which implements a full wave solution based on wavenumber integration 

for horizontally stratified media. 

6.2. Array processing for high resolution bottom-loss estimation 

6.2.1. Technique implementation 

When working with array data, measurements are only available at the locations of 

the sensors, so the coherence function 𝐶𝜔(𝑧) is sampled at integer multiples of 𝑑 along 

the 𝑧 axis, and its Fourier transform in Eq.(25) must be interpreted as a discrete 

Fourier transform (DFT). The resolution of the DFT in spatial wavenumber 𝑘 

increases with the number of samples available to the transform, i.e. with the number 

of array elements. This translates into better estimation of the seabed bottom loss, 

but it comes at the price of physically increasing the array length. An alternative 

approach is proposed here, which is based on the idea of exploiting the physical 

properties of 𝐶𝜔(𝑧) before applying the DFT.  
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In order to explain the technique, a first important consideration is the dependence 

of the coherence function on the hydrophone-pair depth ℎ. This dependence appears 

implicitly in Eq.(16) in the difference between 𝑠𝑐 and 𝑠𝑝, and its effect on the bottom 

reflection coefficient is quantified by the exponential correction factor in Eq.(28). This 

correction can become important at very shallow grazing angles, but this effect can 

be minimized by positioning the array close to the bottom. 

When this is added to the conditions outlined in Section 6.1.2, the noise coherence 

function between two hydrophones depends primarily on the distance between the 

hydrophones, rather than their absolute position in the water column. In other words, 

equally-spaced hydrophones have the same coherence function, regardless of their 

position in the array. This spatial stationarity of the marine ambient-noise field has 

been theoretically proved and verified against experimental data for both deep66,75 

and shallow water (at sufficient distance from the waveguide boundaries).64,69 

Harrison’s ray treatment estimated that the spatial coherence function becomes 

weakly dependent on sensor depth at a distance from the waveguide boundaries of 

the order of a few wavelengths. 64  

For the CSD matrix 𝐂𝜔 , the spatial stationarity of 𝐶𝜔(𝑧) implies that 𝐶𝜔(𝐫𝑖, 𝐫𝑗) =

𝐶𝜔(𝐫𝑙, 𝐫𝑚) when (𝑖 − 𝑗) = (𝑙 − 𝑚), i.e., besides being Hermitian by construction, the 

matrix is Toeplitz. Finally, the spatial stationarity also implies that 𝐶𝜔(𝑧) is 

(approximately) conjugate symmetric: 

      .zCzC  
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The Toeplitz structure of 𝐂𝜔 implies that all the relevant information is contained in 

its first row. The elements in each of the diagonals parallel to the main diagonal are 

all equal, and all correspond to the same value of 𝑧. However, the number of 

(repeated) elements in each diagonal decreases linearly with increasing 𝑧. This has 

important consequences on the quality of the BL, when CBF is used for its estimation, 

as in Harrison and Simons’ technique. 

The following is a key proof, in order to understand the advantages provided by 

the algorithm for BL estimation presented in this section. The proof shows that, when 

CBF is implemented as a matrix product, as in Eq.(13), is has an effect equivalent to 

applying a triangular shading window to the spatial coherence function. 

The simple case of a 4-element array provides a starting point, from which the 

expressions for a general, 𝑀-element array are then derived. The weight vector for a 

4-element array is: 

  

where the expression for the individual weight 𝑤𝑚 was given earlier in Eq.(6). 

Furthermore, by exploiting its Toeplitz character, the CSD matrix can be expressed 

as: 
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where the subscript of each element indicates the magnitude (in units of 𝑑) of the 

spacing between the two sensors whose coherence is given by the element itself. It is 

important, for this proof, to note that in Eq.(34), elements corresponding to negative 

spacing values — i.e., according to the convention established in Section 6.1.1, 

elements whose row index is greater than their column index — are easily identified 

by the complex conjugate sign accompanying them. The average beam power can 

then be computed explicitly as: 

 

 

  

and, by regrouping: 

 

 

  

It is now necessary to introduce a more explicit expression for the weight products in 

Eq.(36). For CBF, by using the substitution 𝛿 = (𝜔 𝑐⁄ )𝑑 sin 𝜃, the expression for the 

weights 𝑤𝑚 given in Eq.(6) becomes: 
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and, with some algebra, the products in Eq.(36) can be written for a generic sensor-

index 𝑚 as: 

 

 

  

By observing the pattern in Eq.(36) for the particular case of 𝑀 = 4, the general 

expression for the average beamformer output, in the case of Toeplitz CSD matrix, can 

be derived: 

 

 

 

 

 

 

 

 

  

The pattern of the coefficients in Eq.(39) shows that they implement a shading of the 

coherence function by a “lifted” triangular window, which has a value of one at the 

central point of the function (element 𝑐0, corresponding to zero spacing), and 
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decreases linearly with increasing magnitude of the spacing, both towards negative 

and towards positive values of the spacing, reaching the value 1 𝑀⁄  at the maximum 

spacing magnitude. 

The triangular coherence-function shading described above is intrinsic to the CBF 

operation, and combines with any other array shading that can be introduced in the 

processing. The remainder of this study shows that, even when no array shading is 

implemented, the triangular shading of the coherence function is not desirable for 

bottom-loss estimation, and describes a technique that is immune from this issue. 

More specifically, by using the results in Eq.(28) and Eq.(32), this study introduces an 

algorithm for fast, improved-resolution BL estimation from array data, which also 

removes the limitations imposed by the triangular shading implicit in Eq.(13). 

In this algorithm, first 𝐂𝜔 is estimated by averaging array data over an adequate 

number of snapshots [see Eq.(8)]; if the field is only due to surface ambient noise, the 

CSD matrix is (approximately) Toeplitz and an average along the diagonals provides 

an estimate �̂�𝜔(𝑧) of 𝐶𝜔(𝑧). Furthermore, the estimated �̂�𝜔(𝑧)can be extended to the 

negative side of 𝑧 according to Eq.(32), windowed as desired, and its DFT taken 

between �̂�𝜔(−𝐿) and �̂�𝜔(𝐿), i.e. over (2𝑀 − 1) samples. The ratio of the portions of 

the DFT of �̂�𝜔(𝑧)on the positive and negative sides of the 𝑘 axis (the discrete 

equivalent of Eq.(28)) provides an estimate of the power reflection coefficient 𝑅(𝑘). 

No further correction is needed if the array is sufficiently close to the bottom, and 

𝑅(𝑘) can then be mapped back to angle space 𝜃𝑟 and used to estimate the BL 

according to Eq.(11). Sections 6.3 and 6.4 show how this technique can increase the 
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angular resolution of the estimated bottom loss both in simulated and experimental 

shallow-water scenarios. 

6.2.2. Examples in simple scenarios 

The result in Eq.(32) deserves some more attention, as it may appear counterintuitive 

initially: For example, it does not hold for the case of a single point source. If such 

source were at depth ℎ𝑠 and range 𝑟 from a receiver at depth ℎ (Figure 1 can still be 

used as reference), the normal-mode expression for the resulting pressure field at the 

receivers at a given frequency 𝜔 would be:83 

 

  

Where 𝜌 is the water density, 𝜓𝑚 is the mode shape function, 𝜅𝑚 is the modal 

wavenumber, and 𝐻0
(1)

(𝜅𝑚𝑟) is the Hankel function of the first kind [note that, in the 

interest of readability, in this section the notation is slightly different from that in 

Section 3.2; letting 𝐫 = (𝑟, ℎ), the equivalence between the two notations is given by 

𝑝𝜔(𝑟, ℎ) = 𝑝𝑟(𝜔)]. 

Using three receivers positioned along a vertical line at depths (𝐷 − 𝑑), 𝐷, and 

(𝐷 + 𝑑), the resulting coherence functions between the center receiver and the other 

two would be: 
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Due to the difference in the depth dependence of the mode shape functions 𝜓𝑚, 

Eq.(41) does not necessarily imply that Eq.(32) would hold in this case. However, the 

surface noise considered in this work is different from a single point source, and its 

peculiar nature gives rise to the result in Eq.(32). For instance, in the case of surface 

noise in an isospeed deep ocean, Cron and Sherman’s model64,65 expresses the spatial 

coherence function as:75 

  

 which yields the result in Eq.(32) exactly.  

6.3. Application to data 

6.3.1. Application to simulated data 

Section 6.4 presents the results of applying the technique proposed in this study to 

measured data. In order to facilitate the interpretation of those results, this section 

applies both this technique and Harrison and Simons’ technique to CSD matrices 

obtained from an OASN simulation. Since the simulated environment is perfectly 

known, in this case ground-truth bottom loss can be obtained from the power 
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reflection coefficient computed by a theoretical model,2 and used to judge the quality 

of the results. 

The geoacoustic parameters for this test are shown in TABLE II. Two array 

configurations are used, with 16 and 32 hydrophones; the inter-sensor spacing is 

0.18m in both cases, with the shallowest hydrophone at a depth of 180m, i.e. at 20m 

from the bottom, to minimize the effect of attenuation. In the remainder of this 

dissertation, the proposed technique will be referred to as “high resolution bottom-

loss estimation” (HR-BL). Figure 9 shows the bottom-loss theoretical prediction, the 

HR-BL, and the CBF estimate at 2500Hz, from OASN-generated CSD matrices of sizes 

32 × 32 and 16 × 16. The spatial coherence function for HR-BL is estimated by 

averaging the elements of the CSD matrix along the diagonals parallel to the main 

diagonal (exploiting the Toeplitz character of the matrix); the function is then 

“doubled” by extension to the negative 𝑧 values and tapered with a Tukey window 

with 0.6 taper width (the same used to shade the array when computing the CBF 

estimate). The DFT of this extended coherence function is computed as a Fast Fourier 

Transform and the reflection coefficient is estimated as the ratio of the halves of the 

resulting 𝑘 spectrum, as indicated in Eq.(28). 

For both array lengths, the HR-BL results follow more closely the theoretical 

prediction, particularly in the 32-element case (Figure 9-a). Moving from 32 to 16 

elements (Figure 9-b), the CBF experiences a significant loss of resolution, failing to 

recover most of the details of the peaks. On the other hand, the result of the 16-

element HR-BL processor is very close to the longer CBF over almost the entire 
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angular range (except between the peaks). Results in Section 6.4 confirm that a 16-

element HR-BL processor can perform at a level comparable to a 32-element physical 

array when applied to measured data. 

 Water-column and bottom properties for the simulated cases; 

Δ is the layer thickness, 𝜌 is the density, 𝛼𝑐 is the compressional volume 

attenuation, and 𝜆 is the wavelength. Shear sound speed and 

attenuation were set to zero. Attenuation in water is set by OASN to its 

lower bound. 

 Δ(m) 𝑐𝑝(m s⁄ ) 𝜌(kg m3⁄ ) 𝛼𝑐(dB 𝜆⁄ ) 

Water 200 1500 1000 - 

Sediment 0.75 1550 1500 0.2 

Halfspace   1600 2000 0.15 
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Figure 9. Estimated bottom loss at 2500Hz from OASN data for the environment 
in TABLE I. (a): Theoretical bottom loss (“Theory”), HR-BL processor and CBF using 
32 × 32 CSD matrices produced by OASN.  (b): Same as in (a), but using 16 × 16 
matrices (the CBF 32 curve is repeated to facilitate a direct comparison). In both 
cases, when using the same number of physical sensors the HR-BL curve is closer to 
the theoretical prediction than the CBF curve over almost the entire angular range. 
Note the significant degradation of the CBF when moving from 32 to 16 elements, and 
how the HR-BL 16 curve is very close to the CBF 32 curve. 

To further highlight the benefits of HR-BL processing over CBF, Figure 10 shows the 

bottom loss estimated over the frequency range 25–4166Hz for the same OASN data 

used in Figure 9, this time using a Hanning taper (the Tukey taper used in Figure 9 
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can be too “aggressive” at low frequencies), and the pixel-by-pixel error between the 

values predicted by the theoretical model and the estimated ones. Although the 

Hanning taper does not maximize the performance of either technique in the upper 

part of the frequency range, the HR-BL processor is closer to the theoretical 

prediction along the ridge peaks and performs particularly well at the lower 

frequencies. 

 

 

 

  

  

 

 

 

 

 

 

Figure 10. Estimated bottom loss and error over the frequency range 25-4166Hz 
from OASN data for the environment in TABLE I. The bottom loss is estimated from 
the same 32 × 32 CSD matrix using a Hanning taper and CBF (a) and HR-BL 
processing (b). The error is computed as the pixel-by-pixel difference in dB between 
the bottom loss predicted using the model by Jensen et al. and that estimated by the 
CBF (c) and the HR-BL processor (d). 
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6.3.2. More on the Toeplitz character of the CSD matrix 

HR-BL processing is based on the assumption that the CSD matrix of the original array 

is Toeplitz, which is a known property for a surface-noise-only field. However, 

measured CSD matrices do not always exhibit a Toeplitz structure. As an example, 

Figure 11 shows the real and imaginary part of two CSD matrices obtained from the 

BOUNDARY-03 experiment48 by averaging 5-minute segments collected about 40 

minutes apart. Since the interest here is in the geometric structure of the matrices, 

rather than the values of their elements, to ease the comparison each matrix has been 

normalized so that the maximum absolute value of its elements is 1. Two important 

differences are apparent. First, the CSD matrix in Figure 11-a,b does not show as clear 

a Toeplitz structure as the matrix in Figure 11-c,d. Second, its diagonal bands are 

wider, and do not decay as markedly when moving away from the main diagonal. 

These two differences appear to have a strong influence on the bottom loss estimated 

from these CSD matrices.  The results shown in Figure 12 were obtained by applying 

conventional beamforming and HR-BL processing to the 32 × 32 matrices shown in 

Figure 11. In Figure 12-a, both curves drop below zero at low grazing angles, an 

implausible result for a field generated only by surface noise and therefore an 

indication that some fundamental assumption in the model is violated. In this case, 

the HR-BL curve shows very large oscillations, which are inconsistent with the curves 

in Figure 12-b (from data collected about 40 minutes later), which shows more 

plausible curves: The physical-array curve appears to be a smoothed version of the 

HR-BL curve and the latter shows more marked oscillations and a higher bottom loss 
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around endfire. In other words, the HR-BL processor results compare to the CBF 

results in a manner similar to what was observed for the OASN simulation (see Figure 

9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Real (top) and imaginary (bottom) parts of the normalized CSD 
matrices at 2156Hz, computed from two 5-minute snapshots (collected about 40 
minutes apart) from the BOUNDARY-03 experiment. The matrices in panels c-d 
appear to be closer to Toeplitz than the matrices in panels a-b. 
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Figure 12. Bottom-loss curves: 32-element CBF vs. HR-BL for the same data as in 
Figure 11. The drop below zero of the bottom-loss curves visible below 20° in (a) 
(corresponding to Figure 11-a,b) is an indication that some violation of the model 
assumptions is occurring in this 5-minute average. The large oscillations of the HR-
BL curve are also inconsistent with the curve from data collected about 40 minutes 
later (b) (corresponding to Figure 11-c,d), where the two techniques compare in a 
manner analogous to what observed for the OASN simulation (see Figure 9). 

The comparison between the two CSD matrices in Figure 11 raises the question of 

what is inducing such dramatic alterations in the structure of the matrices. One 

possible cause of the non-Toeplitz character of the matrix is array deformation. 

Harrison’s model for the spatial coherence function contains a term that is a function 

of the elevation angle of the line joining the two receivers. When the array is assumed 
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to be perfectly vertical (as in this study), this term equals one and therefore does not 

appear in Eq.(16). But if the array is deformed, in general the elevation angle of the 

line joining an arbitrary pair of sensors will vary depending on the particular pair 

chosen, changing the value of the additional term. This variation will reflect on the 

CSD matrix by introducing some variability along the diagonals. Given the arbitrary 

character of array deformation, it is hard to provide a systematic study of the 

influence of this effect on the CSD matrices. OASN simulations conducted with rather 

severe deformations showed increased variability along the diagonals, but not to the 

extent visible in Figure 11, failing in particular to produce the alteration of the band 

structure. 

It is reasonable to think that a nearby discrete source such as a ship could be 

responsible for the effects observed in Figure 11 and Figure 12; Figure 13 supports 

this hypothesis by plotting the beamformer output at 2156Hz, as a function of 

steering angle and time. A loud interferer appears close to broadside around time 

19:25, and approaches the array reaching the closest point around time 19:40, as 

indicated by the broadening of the angle covered by the interferer. The CSD matrix 

shown in Figure 11a,b corresponds to a 5-minute time average centered around time 

19:27:30 (when the interferer’s presence is quite strongly affecting the array output), 

while the matrix in Figure 11c,d is based on a time average centered around time 

20:07:30 (when the interferer’s influence is much reduced).  
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Figure 13. Beamformer output at 2156Hz, as a function of steering angle and time, 
from the dataset used to produce the CSD matrices in Figure 11. A loud interferer 
appears close to broadside around time 19:25, and approaches the array reaching the 
closest point around time 19:40, as indicated by the broadening of the angle covered 
by the interferer. The CSD matrix shown in Figure 11-a,b corresponds to a 5-minute 
time average centered around time 19:27:30 (when the interferer is quite strongly 
affecting the array output), while the matrix in Figure 11-c,d is based on an average 
centered around time 20:07:30 (when the interferer’s influence is much reduced). 

6.4. Results 

In this section, the procedures described in Section 8.4 for simulated data are applied 

to the CSD matrices obtained from data collected at sea by 32-element arrays during 

three separate experiments by the NATO-STO Centre for Maritime Research and 

Experimentation (CMRE, La Spezia, Italy — formerly NATO Undersea Research 

Centre). The data represent measurements from two different vertical arrays, at six 

different locations. The dataset identifiers used in this chapter are reported in TABLE 

III, together with the basic features of the array and acquisition system. 



 

67 

 Datasets and array basic features. 

Dataset ID Num. of 
elements 

Spacing (m) Sampling freq. 
(Hz) 

Design freq. 
(Hz) @

s/m1500c  

Deploy
ment 
type 

VLA-03 32 0.50 6000 1500 Drifting 

MFA-03 32 0.18 12000 4166 Drifting 

MFA-04 32 0.18 12000 4166 Drifting 

GLASS12 5 0.1 90000 7500 Moored 

GLASS13 5 0.1 90000 7500 Moored 

SLIVA-14 32 0.18 50000 4166 Moored 

 

For the location of these measurements, the only ground truth available is in the 

form of normal incidence measurements (e.g., seismic chirp sonar), which can 

provide information about the layering of the bottom, but not the bottom loss, which 

is of interest in this study. For this reason, Figure 14, Figure 15, and Figure 16 show 

two CBF lines, corresponding to bottom-loss estimates obtained using the full array 

(32 elements), and a sub-array composed of the first 16 elements. The third line, in 

each of the plots, is the bottom loss estimated by the HR-BL processor using data from 

the same sensors as the 16-element CBF. Since no bottom-loss ground truth is 

available, the estimate from the longer array is assumed to be the better one, and the 

performance of the 16-element HR-BL processor can be assessed by comparison with 

that of the two CBF results. All the CSD matrices were obtained by averaging 5 

minutes of data. Both the HR-BL coherence function before the DFT, and the array 
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data used by the CBF are tapered using a Taylor window with -30dB maximum 

sidelobe level (compared to the main lobe). 

For the 16-element cases, the CBF curves show a marked degradation in angular 

resolution, in the form of less pronounced, wider peaks and valleys, and a generally 

lower loss estimated towards 90°. The HR-BL curves are obtained by processing only 

the first 16 elements of the array. The HR-BL curves appear largely immune to the 

degradation experienced by the 16-element CBF, very closely resembling the 

performance of the 32-element CBF. Note that, given the larger inter-element spacing, 

the frequencies in the VLA-03 case are lower than in the others, but CBF and HR-BL 

compare in similar terms. 
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Figure 14. Bottom-loss curves computed from two 5-minute averages (data from 
the VLA-03 dataset) at 1313Hz (a) and 972Hz (b): Conventional beamforming (CBF) 
for 32-element and 16-element physical array vs. 16-element HR-BL processor using 
a Taylor taper with -30dB sidelobe level. In both cases the 16-element HR-BL 
processor reproduces the features of the 32-element CBF curve more faithfully than 
the 16-element CBF, and limits the bottom-loss disruption around endfire. 

  



 

70 

0 10 20 30 40 50 60 70 80 90
0
2
4
6
8

10
12
14
16

Grazing angle (deg)

B
o

tt
o

m
 l

o
ss

 (
d

B
)

 

 

CBF 16

CBF 32

HR-BL 16

a

0 10 20 30 40 50 60 70 80 90
0
2
4
6
8

10
12
14
16

Grazing angle (deg)

B
o

tt
o

m
 l

o
ss

 (
d

B
)

 

 

CBF 16

CBF 32

HR-BL 16

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Bottom loss curves computed from two 5-minute averages (data from 
the MFA-03 dataset) at 2000Hz (a) and 2250Hz (b); processing and naming 
conventions are the same as in Figure 14. 
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Figure 16. Bottom loss curves computed from two 5-minute averages (data from 
the MFA-04 dataset) at 2414Hz (a) and 3070Hz (b); processing and naming 
conventions are the same as in Figure 14. 
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6.5. Summary 

In this section, a previously introduced derivation in frequency-wavenumber domain 

of the bottom plane-wave power reflection coefficient from the array coherence 

function has been extended to include the effects of volume attenuation and variable 

sound speed in the water column. The main result is that, under certain conditions, 

for a surface-noise-only field it is possible to obtain the reflection coefficient (and 

therefore the bottom loss) by computing the Fourier transform of the coherence 

function 𝐶𝜔(𝑧). A technique has been presented, and theoretically justified, that 

improves on the bottom-loss estimate provided by the matrix-product 

implementation of conventional beamforming, by exploiting the Toeplitz structure of 

the noise-only CSD matrix and a DFT implementation of beamforming. The technique 

has been demonstrated both on simulated and measured data. When the estimated 

cross-spectral-density matrix obtained from array data is sufficiently close to 

Toeplitz, experimental results show that a 16-element array can improve the 

estimated bottom loss, achieving an angular resolution comparable to that of a 

matrix-product implementation of CBF on a 32-element array. 
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7. Application to arrays suitable for AUV deployment 

Harrison and Simons’ technique has proved to perform consistently and reliably in 

the past, but those studies used arrays of lengths of at least 5.5m, and exclusively 

adopted conventional beamforming for obtaining the estimated spatial power 

spectrum. The recent introduction of AUVs as operational platforms has raised the 

question of whether they could be employed as bottom-survey tools using this 

technique. Particularly, Arvelo27 has proposed inserting very short arrays in the nose 

of AUVs, and the NATO-STO CMRE has developed a short array that can be mounted 

on the nose of an AUV.78 In these cases, the array length can range between a few tens 

of a meter and less than 2m, and these lengths will be considered as viable for AUV 

deployment in the remainder of this dissertation. 

Since the angular resolution of the estimated bottom loss deteriorates as the array 

length reduces [see Eq.(15) and related discussion], it is natural to wonder how the 

performance of this technique is impacted when moving to array lengths suited for 

AUV deployment. In the case of this particular application, the literature does not 

provide an answer: Arvelo’s work, which was limited to simulated data, remains the 

only study available. He proposed overcoming the resolution problem by aggressive 

adaptive beamforming, but showed significant results only at high frequencies, and 

below the critical angle. Part of the research described in this study aims at filling this 

gap by investigating the performance of short arrays using both Harrison and Simons’ 

original technique, and the new algorithms proposed in this dissertation, both in 

simulation and on measured data. 
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7.1. Results from the GLASS experiment 

The GLASS experiment represents the first attempt at investigating AUV-based 

bottom survey through ambient-noise processing. The main agency behind the 

project is the Centre for Maritime Research and Experimentation (La Spezia, Italy), 

part of the North Atlantic Treaty Organization, Science and Technology Organization 

(NATO-STO), and the author has collaborated with them taking part in the GLASS 

2013 and REP14-MED campaigns both on the field, and by subsequently processing 

the data collected. 
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Figure 17. The GLASS volumetric array — Side and front view. 

The goal of the project is to transition Harrison and Simons’ technique, so far 

implemented only using moored or drifting arrays, to an autonomous vehicle 

equipped with a compact array. A new type of hybrid AUV named eFOLAGA61 is being 

jointly developed by the University of Genova (Genova, Italy), the CMRE and the 

manufacturer GraalTech s.r.l (Genova, Italy). The vehicle is equipped with jet pumps 

and blade propellers, which has the advantage, over ordinary gliders, of more flexible 

maneuver features, including e.g. diving in the vertical direction, hovering at specific 

heading and depth and rotation on the spot. For GLASS, the CMRE developed a nose-

mounted combined vertical and tetrahedral array (see Figure 17 and Figure 18), 
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comprising a total of 8 elements, 5 of which are on a straight (vertical) line with 0.1m 

spacing. The central element of the line array is also one of the vertices of the 

tetrahedral array, which includes 3 more elements; the spacing between any two 

sensors in the tetrahedral array is still 0.1m. 

 

 

 

 

 

 

 

 

 

Figure 18. The eFolaga, with the GLASS volumetric array mounted on its nose, 
beginning one of its missions. 

7.1.1. GLASS sea trials 

The AUV with mounted data-acquisition package was deployed for the first time in 

the Summer of 2012 (GLASS’12) off the Versilian Coast, Mediterranean Sea (Italy),78 

with the engineering objective of integrating the nose-mounted and combined 

vertical and tetrahedral array with the remaining electronic control and sensing 

devices on the eFOLAGA. Some ambient-noise data were collected during this trial, 

with the AUV mounted on a frame fixed on the bottom. 



 

77 

In the Summer of 2013, the author took part in the GLASS ’13 experiment, off the 

coast of Panama City, Florida, US, collaborating to the phases of mission planning, 

equipment deployment and retrieval, data collection and data processing. The 

scientific goal was to provide experimental validation of the performance of an AUV-

mounted short array in ambient-noise-based bottom characterization. This would be 

accomplished by collecting data to estimate bottom loss and layering structure from 

sea surface ambient noise and distant shipping in an environment different from the 

GLASS12 region, and by comparing ambient noise derived seabed properties with 

independent measurements obtained during the ONR sponsored Target and 

Reverberation Experiment 2013 (TREX13), conducted during April-May 2013 in the 

same area. A total of 80 minutes of ambient noise data was identified as usable for 

seabed characterization during the GLASS’13, where 70 minutes of the data were 

acquired while the AUV was bottom moored (moorings over two days), and 10 

minutes of useful data while the vehicle was kept at constant depth and gliding 

through the water. The study described here represents the first investigation of the 

dataset. 

7.1.2. Array performance characterization: Sensitivity to tilt and bottom 

properties 

While the moored/drifting arrays used in the past to implement Harrison and Simons’ 

technique were several meters long, the 5-element linear array mounted on the 

eFolaga AUV has a total length of 0.4m. This fact alone indicates that a significant 

deterioration in angular resolution of the bottom-loss estimate must be expected, and 
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in fact bottom-loss plots produced by GLASS data look markedly different from the 

ones observed above, as a comparison between Figure 4 and Figure 19 demonstrates. 

 

 

 

 

 

 

 

Figure 19. Estimated bottom loss from GLASS’12 (left) and GLASS’13 (right) data. 
In both cases, the limitations imposed on the estimate by the reduced array length are 
apparent, when comparing these plots with Figure 4. 

After the sea trial in June 2013, the author spent 6 weeks processing/analyzing the 

GLASS data as a Visiting Researcher at the CMRE. Since no systematic study 

investigating the effects of such short arrays on the estimated bottom loss had been 

conducted before, the first part of the term at the CMRE was spent to gain a better 

understanding of these issues, to which this section is devoted. The details on what 

kind of quantitative and qualitative information can be extracted from bottom-loss 

maps such as the ones in Figure 19 will be given in the next section. 

The differences in the plots of Figure 19 suggest that the seabed properties must 

be different in the two cases. Although results from previous experimental activities 

at the two sites confirm this circumstance, the appearance of the GLASS’13 plot raised 

some legitimate suspicion. The two salient features of the plot are its very high critical 
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angle and very low estimated bottom loss below about 4500Hz. In previous work the 

author had observed that such a combination of features can present itself when the 

array is tilted, i.e. its longitudinal axis forms an angle smaller than 90° with the 

horizontal. Since the amount of data collected is not large, rather than discarding 

these data altogether, it is important to try and establish whether the plot’s 

appearance is due to adverse deployment conditions (tilted array) or represents a 

physically plausible result. In this case, during data collection the AUV was tethered 

with rope and ballast (contrary to the specially manufactured rigid frame used during 

GLASS’12), which may introduce current- and wave-induced tilt of the vertical line 

array and, therefore, possibly degrade the performance of the seabed 

characterization. The array was deployed twice in this configuration: 

1) bottom moored with only the acquisitions system turned on, to evaluate the 

state of the array and self-noise of the acquisition system; 

2) bottom moored with both acquisition system and control unit powered. 

The latter would indicate any motion of the vehicle induced by current and waves 

that would alter the array orientation. However, due to a software bug the propeller 

of the vehicle turned on a couple of minutes after the latter deployment and 

contaminated the noise measurements and attitude of the vehicle. However, in the 

first couple of minutes after the deployment without the propeller turned on, the 

attitude sensors did indicate a roll of around 3° and pitch close to 8°. The question 

now is to establish whether this would be enough to cause a significant alteration of 

the bottom-loss estimate. 
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The question was addressed through numerical modeling by beamforming noise-

only CSD matrices produced by OASN in an environment chosen to emulate the 

experimental set-up during the GLASS’13 deployment, and introducing increasing 

amounts of tilt in the array orientation. The study was repeated for several different 

bottom types, varying in particular the sound speed (which directly influences the 

critical angle) and the bottom density (which influences the bottom-loss level above 

the critical angle). The results clearly indicated that a tilt of 10° would not have a 

significant impact on the estimated bottom loss, but that some physically sensible 

combinations of seabed properties, coupled with the array’s low angular resolution, 

can result in plots like the one in the right panel of Figure 19. 

7.1.3. GLASS line-array data processing for bottom-loss estimation 

This section presents an example of what kind of qualitative and quantitative 

information can be obtained from bottom-loss estimates produced by the GLASS 

array. In general, one can expect this task to be harder than in the case of longer 

arrays, and a comparison between Figure 4 and Figure 19 immediately confirms this 

circumstance. The two plots shown in Figure 19 differ from the ones produced by 

longer arrays in that they appear to be “noisier”, and do not seem to show evidence 

of striations (which would indicate layering in the bottom).  

Differences can also be observed between the two GLASS plots; as stated above, 

this is unlikely to be due to array tilt, and is believed to be due to the bottom physical 

properties, coupled with the low array resolution. Now, the seabed properties in part 

of the GLASS’12 experimental area can be characterized as clay or clay-silt based on 
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previous experimental activities and by core data acquired during the experiment. 

The GLASS’13 site has been visited several times in the past by the majority of the 

Principal Investigators of the TREX, and results from these previous experiments 

indicate that the seabed is composed mainly of sand with shell debris and clay/silt 

inclusions. Therefore, the AUV has been deployed in two different shallow-water 

environments during the GLASS’12 and GLASS’13 experiments. The differences in the 

two plots show that the measured loss is affected by the different bottom types. This 

finds confirmation in the geoacoustic inversion study described below. 

Another salient feature in the GLASS plots is the absence of striations, which would 

in theory indicate a bottom with no layering (“halfspace”); however, this feature could 

also be a consequence of the poor angular resolution of the array. In the case of 

GLASS’12, the seismic profiling at the site did not reveal any clear bottom layering 

structure, whereas this type of information is not available for GLASS’13. It is 

therefore hard from these plots to understand which of the circumstances is 

presenting itself in this case.  

7.1.4. Use of estimated bottom loss for geoacoustic inversion 

The second part of the analysis carried out at the CMRE was aimed at obtaining more 

quantitative results, by investigating the feasibility of inverting the data for 

geoacoustic parameters of the bottom. The derived reflection loss from the GLASS’12 

and GLASS’13 sites has been used in a model-based inference method to estimate the 

geoacoustic properties of the bottom. In this analysis, the seabed is described as an 

infinite halfspace with only three unknown parameters, namely density, attenuation 
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and sound speed. The inversion is based on a very simple algorithm, which does not 

aim at competing with state-of-the art systems: The aim of this study, rather than 

accurate determination of the seabed parameters, is a first assessment of the 

sensitivity of this array to different bottom types. 

The main components of the search algorithm are the cost function and the search 

space.  The algorithm compares the bottom loss estimated from data at all grazing 

angles and in the 1-7.5kHz frequency range to the entire corpus constituting the 

search space and produces as solution the bottom type that results in the lowest cost-

function value. The cost function is the RMS of the pixel-by-pixel difference between 

the data-estimated bottom loss and the model-derived bottom loss for a given 

combination of the bottom parameters. The search space included bottom types given 

by all possible combinations of the discretized values of the three search parameters: 

8 values for the attenuation covering the range from 0.2 − 1.6 𝑑𝐵 𝜆⁄ ; 15 values for 

the sound speed in the range 1440 − 2000 m s⁄ , and 41 density values in the range 

1000 − 3000 kg m3⁄ , for a total of 4920 configurations constituting the search space. 

The corpus of bottom-loss values (as a function of frequency and grazing angle) 

constituting the search space was obtained by running for each configuration the 

following procedure: 

1) A model found in literature2 was implemented and run to compute the plane-

wave power reflection coefficient for each combination of the bottom 

parameters. 
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2) To compute the spatial coherence function between each pair of 

hydrophones, the implementation of Harrison’s model73,74 introduced in 

Section 5 was used. This receives as input the reflection coefficient generated 

in step 1), together with the water-column physical parameters and positions 

of the array hydrophones. 

3) The coherence function resulting from Harrison’s model is used to build the 

CSD matrix, which is then beamformed. 

4) The result is used to estimate the bottom loss. 

Having implemented Jensen et al.’s model and Harrison’s model was key to the 

performance of this procedure. The same study would have been possible by running 

OASN simulations for all the bottom types, but it is estimated that it would have 

required running times higher by one to two orders of magnitude. Excellent 

agreement between the implemented models and OASN has been verified by 

comparing the results over a number of test cases (which included bottom layering). 

It seems important to state that the CBF has in this case been applied using a Taylor 

taper. This taper is not as established in its use in signal processing as others (such as 

the Hanning taper), and one of its salient features is that its value at the end points is 

not zero. Although this can in some cases introduce undesirable artifacts in signal 

processing, the Taylor taper empirically appeared to provide better “contrast” in the 

bottom-loss plots for this type of array, and this feature is very desirable when 

working with a cost function as the one used in this study. Since the taper is applied 

both to the measured data and to the synthetic data it is compared to for the search, 
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any “features” due to the taper would appear in both cases, and should therefore not 

have any deleterious impact on the search result. 

Two examples of the results obtained by the exhaustive search algorithm for 

GLASS’12 and GLASS’13 data are shown in TABLE IV, Figure 20 and Figure 21. 

 Results of GLASS data inversion for two data samples. 

Data file 
Optimal 

𝛼𝑝(dB 𝜆⁄ ) 
Optimal 
𝑐(m s⁄ )  

Optimal 
𝜌(kg m3⁄ ) 

glass_2012_07_24__09_28_10 1 1560 2250 

glass13_2013_06_13__17_43_08 0.6 1600 1750 

 

The sensitivity of the search to the three parameters has been examined in a number 

of cases, showing consistently that the sound speed is the most sensitive parameter, 

i.e. the one that induces the largest variations of the cost function for a given 

configuration, followed by the density and the attenuation. 

  



 

85 

Grazing angle (deg)

F
re

q
u

e
n

c
y
 (

H
z
)

 

 

0 15 30 45 60 75 90
50

500

1500

2500

3500

4500

5500

6500

7500

L
o

s
s
 (

d
B

)

0

2

4

6

8

10

Grazing angle (deg)
F

re
q

u
e

n
c
y
 (

H
z
)

 

 

0 15 30 45 60 75 90
50

500

1500

2500

3500

4500

5500

6500

7500

L
o

s
s
 (

d
B

)

0

2

4

6

8

10

Grazing angle (deg)

F
re

q
u

e
n

c
y
 (

H
z
)

 

 

0 15 30 45 60 75 90
50

500

1500

2500

3500

4500

5500

6500

7500
L

o
s
s
 (

d
B

)

0

2

4

6

8

10

Grazing angle (deg)

F
re

q
u

e
n

c
y
 (

H
z
)

 

 

0 15 30 45 60 75 90
50

500

1500

2500

3500

4500

5500

6500

7500

L
o

s
s
 (

d
B

)
0

2

4

6

8

10

 

 

 

 

 

 

 

 

Figure 20. Beamformed BL from GLASS’12 data (left), and the case resulting from 
the exhaustive search (right).  

 

 

 

 

 

 

 

Figure 21. Beamformed BL from GLASS’13 data (left), and the case resulting from 
the exhaustive search (right). 

For the GLASS’12 experiment, seabed properties deduced from cores collected on site 

showed a muddy bottom, with sound speed around 1510m/s and density in the range 

of 1600–1800kg/m3. Although these measurements are rigorously representative 
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only of the upper 1m of the seabed, whereas the array-deduced measurement can be 

influenced by bottom material at greater depths, they represent a basic benchmark 

for this study. The results shown in TABLE IV are representative of what was obtained 

examining a number of data snapshots from the sites, and show that the sound speed 

for GLASS’12 is in very good agreement with core measurements. The overestimation 

of the density is believed to be a consequence of the low surface-generated noise level 

from that experiment, which can cause an excessively low estimate of the bottom loss, 

which the algorithm attempts to “justify” by introducing higher density values. For 

the GLASS’13 experiment, no ground-truth data are available, but the sound-speed 

and density values to which the algorithm converges are sensible. In general, the 

search seems to place properly the critical angle (which is controlled by the sound 

speed) and the cutoff frequency below which the array does not measure any bottom 

loss. Given the nature of the cost function, it is reasonable to imagine that these two 

features are the ones driving the algorithm. 

7.1.5. Application of the HR-BL algorithm 

The estimated bottom-loss plots in Figure 19 show the limitations that one could 

expect from the simulation experiment shown in Figure 3: The limited angular 

resolution causes an uncertain location of the critical angle, significant 

underestimation of the bottom loss in the lower frequency range, and possibly loss of 

the striations indicating the presence of layers in the bottom. The HR-BL algorithm 

presented in Section 5 has proved to improve the angular resolution of relatively 

short arrays, and now the very short GLASS array offers a particularly hard test. 
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Figure 22 shows the results of applying HR-BL to the same data that generated Figure 

19. In both cases, the new plots present features that one would expect from 

improved angular resolution, based on the analysis in Section 5: Generally higher 

bottom-loss levels, which help “extend” the plot significantly towards lower 

frequencies, and a sharper transition at the critical angle.  

 

 

 

 

 

 

 

Figure 22. Estimated bottom loss from GLASS12 (left) and GLASS13 (right) using 
the HR-BL algorithm. 

Unfortunately, data from a longer array are not available in either case, so one cannot 

validate these results against any “ground truth”. However, the consistency with what 

shown in Section 6 makes these results appear sensible. 

7.2. Results from the Recognized Environmental Picture experiment 

The REP14-MED sea trial was conducted in the Sardinian Sea (Western 

Mediterranean) in June 2014, and coordinated by the CMRE as part of a series of 

multinational sea experiments. Two vessels participated in the campaign: the NATO 

Research Vessel Alliance, and the Research Vessel Planet of the German Navy. The 
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experiments involved the collection of both physical oceanography and underwater 

acoustics data. 

The NEAR Lab was involved both in the collection and in the processing of marine 

ambient-noise data recorded by two CMRE hydrophone arrays deployed during the 

campaign. The objective of the non-anthropogenic ambient-noise experiments was to 

validate seabed characterization by using short hydrophone arrays with a dimension 

suitable for installation on gliders and autonomous underwater vehicles. 

In order to fulfill the objective, a newly developed prototype array (called HYDRA) 

was deployed, consisting of eight hydrophones positioned in a line and mounted on a 

ridged pole. The spacing of the individual hydrophones was adjustable from 0.15m 

(design frequency of 5kHz, total length of 1.05m) to 0.30m (design frequency of 

2.5kHz, total length of 2.10m). The reference array (called SLIVA) had 32 

hydrophones positioned at a fixed spacing of 0.18m (design frequency of 4.167kHz.) 

The arrays were bottom moored a few hundred meters apart with a distance from the 

seabed to the first hydrophone of approximately 20m in a water depth of 170m. The 

weather conditions during the ambient noise measurements were calm to moderate 

with white caps visually observed. 

Although data from both arrays were processed, in this dissertation only results 

from the SLIVA array are shown, because the spacing of this array is very close to that 

of the HYDRA prototype, and the 32 elements allow one to carry out a comparative 

study, where only part of the array can be selected, and its performance compared 

against the full array, in a fashion similar to what has been shown in Section 6.  
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The SLIVA array was deployed at a single site during REP14-MED, and processing 

of ambient-noise data for the full array produces the bottom loss shown in Figure 23. 

The appearance of this plot is markedly different from that of other plots seen before, 

particularly for the presence of the large area of low loss between 1 and 2kHz, below 

60∘. The origin of this peculiar behavior is unknown at present, but its presence does 

not preclude the use of these data for the purpose of evaluating the performance of 

the algorithms described in this study. Furthermore, there appears to be some 

evidence of striations similar to those seen in other datasets, indicating the presence 

of layering in the bottom. 

 

 

 

 

 

 

 

 

 

Figure 23. SLIVA data: Estimated bottom loss using the full 32-element array.  
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Figure 24. SLIVA data: Estimated bottom loss using 8 (top), and 16 (bottom) 
elements of the array, and CBF (left) and HR-BL (right).  

In Figure 24, the estimated bottom loss from 8 and 16 elements of the array is 

computed using the original technique by Harrison and Simons, and the HR-BL 

algorithm. Similarly to what was done in Figure 10, in order to process the entire 

frequency range in the same way, a Hanning window was applied to the data. This is 

not the most advantageous for the HR-BL algorithm, but even so, the plots show 

improvement in both cases, along the same lines as described in Section 6.  
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7.3. Summary 

The analysis conducted in this study of the performance of the GLASS array for the 

purpose of passive bottom-loss estimation indicates that the task presents challenges 

of a unique nature. This work, involving simulation, modeling, and data analysis, 

represents the first investigation of the impact of these particular array 

configurations on the results obtained by Harrison and Simons’ technique, as well as 

the first analysis of the GLASS’13 dataset for this purpose. The encouraging results 

are that array tilt, when limited to less than 15°, does not appear to impair the bottom-

loss measurement, and that the results do appear to contain meaningful information 

on the bottom. 

The array can be used to distinguish between different types of bottom, but the 

limits imposed by its much reduced length cause a significant loss in angular 

resolution, with the consequences expected on the quality of the estimated bottom 

loss. In order to successfully migrate Harrison and Simons’ technique from 

moored/drifting arrays to small AUV mounted arrays, improved angular resolution 

must be achieved, and, despite the lack of ground truth, the results achieved by the 

HR-BL algorithm are consistent with such an improvement. 

This section also presented the application of HR-BL to data collected by the SLIVA-

I array during the REP14-MED measurement campaign. Unlike the GLASS array, the 

SLIVA-I array, with its 32 elements, affords the comparison of the performance of HR-

BL between the results obtained by a sub array of a length deployable on a small AUV 

(8 sensors were chosen in this case, for a total length of 1.26m) and a longer sub array 
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(16 elements were chosen in this case, for a total length of 2.70m). The results show 

that the HR-BL algorithm, as expected, can improved the BL estimate and recover 

some of the features lost when moving from a longer array to a shorter one. 
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8. Frequency based Coherence-function extension 

The HR-BL algorithm, illustrated in Section 6, enhances the angular resolution of the 

BL estimated from array data by exploiting specific properties of the ambient-noise 

vertical coherence function to remove some undesirable effects of conventional 

beamforming.34 Another recent study proposed to employ existing algorithms for the 

extrapolation of band-limited signals to reconstruct the noise coherence function of a 

longer array, starting from data measured by a shorter array. The extrapolation 

results appeared promising, but the potential of this technique for bottom-loss 

estimation has not been investigated yet.35 

In this section, the idea of overcoming the limitations of short arrays by 

synthesizing the coherence function of a longer array is treated with the specific 

purpose of improving the performance of bottom-loss estimation (particularly the 

angular resolution) through Harrison and Simons’ technique. However, instead of 

applying extrapolation algorithms, the proposed technique uses data measured at 

different frequencies by the hydrophones, to approximate the coherence function at 

sensors located beyond the physical length of the array. The treatment begins by 

describing the algorithm, and then proceeds to justify its use by means of both 

theoretical and empirical arguments. 

8.1. Algorithm 

This section introduces an algorithm for extending the coherence function beyond the 

physical length of the array, which in the remainder of this dissertation will be called 
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“frequency based extension” (FBE). The algorithm is computationally simple, and 

makes a more efficient use of the frequency band available to modern acquisition 

systems, which often extends well beyond the array design frequency.  

It has already been shown in this dissertation that the performance of an array of 

sensors in noise depends upon the accuracy of the estimate of the CSD matrix — i.e., 

the second order statistics of the noise field at the sensors (see Section 3) — and that 

this is modeled in physics by the spatial coherence function 𝐶𝜔
′ (𝑧), defined in Eq.(2) 

and Eq.(3). The idea at the basis of FBE is as follows: Given two frequency values 

𝜔1 > 𝜔0, and two spacing values 𝑧1 > 𝑧0, an estimate of the coherence function 

𝐶𝜔0
′ (𝑧1) can be obtained, if an estimate of 𝐶𝜔1

′ (𝑧0) is available (e.g., from measured 

data), as long as the condition: 

  

(or, equivalently, 𝑧0 𝜆1⁄ = 𝑧1 𝜆0⁄ ) is met. From a practical standpoint, it is convenient 

to implement the algorithm by choosing 𝑧0 = (𝑀 − 1)𝑑 (where 𝑀 is the total number 

of elements in the array), i.e., the total length of the array. Then, the (extended) value 

of the function at 𝑧1 = 𝑛𝑑 > 𝑧0 — where 𝑛 is an integer such that 𝑛 ≥ 𝑀 — can be 

obtained by assuming: 
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The base spacing 𝑧0 is set to the maximum value available on the physical array on 

purpose, in order to minimize the difference between 𝜔0 and 𝜔1, for reasons that will 

be clarified below. If 𝐶𝜔1
′ (𝑧0) is obtained from data measured by an array, then this 

algorithm can be used to estimate the coherence function for spacing values greater 

than the physical length of the array. This bare definition of the FBE algorithm is 

integrated in the following sections with examples of its application to simple cases, 

then the treatment proceeds to justify its use by means of both theoretical and 

empirical arguments. 

8.2. Modeling and application: Halfspace bottom 

It is easier to start discussing the FBE algorithm by considering the simple case of a 

bottom composed of a single material of constant acoustic properties, extending 

indefinitely in depth — this bottom type will be referred to as “halfspace”. The 

starting point is provided by the integral expression derived by Harrison for the un-

normalized noise vertical coherence, already introduced in Eq.(18) and repeated here 

for convenience:  

 

  

Since the reflection coefficient of a halfspace bottom is independent of frequency,2 if 

one neglects the frequency dependence of 𝑎 (an acceptable assumption, as shown 

later), in this case the integrand of 𝐶𝜔(𝑧) does not depend on 𝜔 and 𝑧 separately, but 
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rather on the term 𝜔𝑧 𝑐⁄ = 2𝜋 𝑧 𝜆⁄ , where the familiar ratio of sensor spacing to 

wavelength appears. This is confirmed by the example provided in Figure 25 and 

Figure 26: Both plots show the normalized coherence function computed at selected 

frequency values using Eq.(45) and Eq.(3), for a halfspace bottom (see case HS in 

TABLE V for the physical properties of the water column and the bottom.) Each curve 

is plotted using 391 points over 0 ≤ 𝑧 ≤ 5.85m, corresponding to an inter-sensor 

spacing of 0.015m. The markers show the positions of sensors number 10, 20, and 40 

in an array of spacing 𝑑 = 0.15m (this value is used in the simulations shown later in 

Section 8.4). 

In Figure 25, the curves are plotted as a function of sensor spacing 𝑧,  and show the 

familiar decay along the horizontal axis, with more oscillations included over the 

array aperture as the frequency increases. However, the dependence of the coherence 

on the 𝑧 𝜆 ⁄  ratio is better illustrated by the 𝐶𝜔
′ (𝑧 𝜆⁄ ) curves shown in Figure 26, 

where, given the quantity on the horizontal axis, at a lower frequency two consecutive 

points of a curve are closer than they are at a higher frequency. The plots show that, 

aside from the slight amplitude differences due to the inclusion of volume attenuation 

in Eq.(45) — which is at the basis of the model used to generate these plots — both 

the real and the imaginary part of 𝐶𝜔
′ (𝑧 𝜆⁄ ) overlap almost perfectly, regardless of 

frequency. However, due to the difference in wavelength, the curves at higher 

frequencies extend farther to the right on the horizontal axis than those at lower 

frequencies. Using Figure 26 for reference, understanding how the FBE algorithm 

works becomes straightforward, in this case: For example, the maximum spacing for 
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a 10-element array is 𝑧0 = 1.35m, and an additional (“nonphysical”) sensor number 

11 would be at 𝑧1 = 1.50m from sensor number 1. If one assumes 𝑓0 = 𝜔0 2𝜋⁄ =

1kHz,  then 𝑧1 𝜆0 ⁄ = 1, and Eq.(43) yields 𝑓1 = (1.50 1.35⁄ )𝑓0 = 1.111kHz. The point 

corresponding to 𝑧 𝜆 ⁄ = 1 on the 1.111kHz curve is then used to estimate the 

coherence at the position of the “nonphysical” sensor number 11 on the 1kHz curve. 

The maximum available value for 𝑧0  is chosen on purpose in this example, so as to 

minimize the difference between 𝜔0 and 𝜔1, ensuring that the error between the two 

𝐶𝜔
′ (𝑧 𝜆⁄ ) curves is minimized. 

 Water-column and bottom properties for the simulated cases; Δ is 

the layer thickness, 𝜌 is the density, 𝛼𝑐 is the compressional volume 

attenuation, and 𝜆 is the wavelength.  

 Δ(m) 𝑐𝑝(m s⁄ )  𝜌(kg m3⁄ )  𝛼𝑐(dB 𝜆⁄ )  

Water 170 1500 1000 1e-4 

HS ∞ 1565 1500 0.2 

1L - Layer 0.5 1650 1500 0.2 

1L - Halfspace ∞ 1700 2000 0.5 

2L - Layer #1 0.5 1565 1500 0.2 

2L - Layer #2 3 1625 1700 0.3 

2L - Halfspace ∞ 1800 2000 0.5 
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Figure 25.  Halfspace bottom (case HS): Normalized coherence-function real (a) 
and imaginary (b) part at several frequencies, as a function of sensor spacing 𝑧.  The 
markers indicate the positions of sensors number 10 (diamond), 20 (circle), and 40 
(square) for an array of spacing 𝑑 = 0.15m.  
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Figure 26.  Halfspace bottom (case HS): Normalized coherence-function real (a) 
and imaginary (b) part at the same frequencies as in Figure 25, as a function of the 
𝑧/𝜆 ratio. The markers indicate the same sensors as in Figure 25, but given the 
quantity on the horizontal axis, at a lower frequency two consecutive points of a curve 
are now closer than they are at a higher frequency, and the curve corresponding to a 
higher frequency reaches higher values on the horizontal axis. Note the almost perfect 
overlap of the curves.  
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8.3. Considerations on layered bottoms 

Although the treatment above relies on the fact that the bottom reflection coefficient 

is independent of frequency, use of the FBE algorithm prior to BL estimation (treated 

extensively in Section 8.4 and Section 8.5 below) improves the quality of the results 

also in the case of layered bottoms, where the frequency dependence of the reflection 

coefficient can be dramatic. The reason for this is not immediately apparent from 

theoretical models, which present 𝐶𝜔(𝑧) either in integral form, such as Eq.(45), or as 

a series expansion.67 The expression of 𝐶𝜔(𝑧) as the combination of a direct and an 

inverse Fourier transform between the hydrophone-spacing 𝑧 and the vertical 

wavenumber (and therefore, the frequency 𝜔) domains32,34  makes the connection 

between the two quantities explicit, but this fact alone does not fully explain why FBE 

is so effective in aiding BL estimation. An approach based on both theoretical and 

empirical considerations is proposed in this study. 

As a starting point, the 𝐶𝜔
′ (𝑧 𝜆⁄ ) curves obtained from Eq.(3) and Eq.(45) for the 

layered bottom types 1L and 2L in TABLE V are shown in Figure 27 and Figure 28. 

One of the most remarkable features in the plots is that, while the real parts of 

𝐶𝜔
′ (𝑧 𝜆⁄ ) appear to vary significantly between the two cases, the imaginary parts have 

a much more “regular” behavior, and appear to differ mostly in the amplitude of their 

oscillations. This can be explained starting from Eq. (45), and introducing the 

simplifying hypotheses of an isospeed water column with negligible volume 

attenuation (𝑎 ≈ 0), and a unit-value surface reflection coefficient (𝑅𝑠 ≈ 1), which 

yields the simplified expression:  
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Now, by expressing the exponentials in trigonometric form, one can separate the real 

and imaginary parts of the integral: 

 

 

  

The most apparent feature in Eq.(47) is the absence of the reflection coefficient in 

Im[𝐶𝜔
′ (𝑧 𝜆⁄ )]: In this simplified model, the imaginary part of 𝐶𝜔

′ (𝑧 𝜆⁄ ) is independent 

of the bottom reflection properties, and its dependence on 𝜔 is only present as the 𝜔𝑧 

product. This conclusion is confirmed by Figure 27 and Figure 28, where the behavior 

of the imaginary part curves is perfectly analogous to that observed in the halfspace 

case (see Figure 26). 

Furthermore, Eq.(47) indicates that the differences due to the bottom type should 

manifest themselves in the real part curves, which, in fact, show clear differences 

between the two cases. However, it should be noted that, even for these layered 

bottoms, if one considers two Re[𝐶𝜔
′ (𝑧 𝜆⁄ )] curves corresponding to “close” frequency 

values, the points corresponding to the same 𝑧 𝜆 ⁄  value on the two curves will be 

“close” too. In other words, although the curves can be proven theoretically to overlap 

perfectly (except for the frequency dependence of 𝑎) only for a halfspace bottom, they 
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still appear to vary smoothly with frequency, in the case of layered bottoms. The results 

presented in Section 8.4 and Section 8.5 below confirm that this reasonable 

hypothesis holds, and that the FBE algorithm does help improve the BL estimates 

from short arrays.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27.  Single layer over halfspace (case 1L): Normalized coherence-function 
real (a) and imaginary (b) part at several frequencies, as a function of the 𝑧/𝜆 ratio. 
The markers are positioned as in Figure 26.   
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Figure 28.  Double layer over halfspace (case 2L): Normalized coherence-function 
real (a) and imaginary (b) part at several frequency values, as a function of the 𝑧/𝜆 
ratio. The markers are positioned as in Figure 26.  
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8.4. Application to bottom-loss estimation: Simulation 

Simulation can be useful at this point to investigate further the dependence of the 

coherence function on signal and array physical parameters. In the remainder of this 

chapter, results are presented from simulations run using OASN, the surface-noise 

module of the OASES77 package. By implementing a numerical solution to the full 

wave equation for range independent, stratified media — as opposed to 

implementing an analytical model — OASES produces directly the �̂�𝜔 matrix of 

Eq.(13), providing a more realistic approximation to what an estimate of the 

coherence function from measured data would be. For its simulation part, this study 

presents the application of OASN to the three different types of bottom already 

investigated above: Halfspace (identified by “HS”), single layer over halfspace (“1L”), 

and two layers over halfspace (“2L”). The bottom properties for each case are shown 

in TABLE V. 

8.4.1. Considerations on array configuration and the bandwidth of the 

estimated bottom loss 

Arrays suitable for AUV deployment should reasonably have a length not greater than 

2m, but the applicability of Harrison and Simons’ technique to such arrays, especially 

at frequencies below 10kHz, has been shown to be unreliable, due to the severe 

deterioration of the beamformer’s angular resolution.24 High resolution bottom-loss 

estimation (HR-BL) has recently shown that BL estimates from Harrison and Simons’ 

technique can be improved, by replacing the CBF with a more sophisticated 

technique, which exploits the physical properties of the surface generated noise 



 

105 

field.34 However, the challenge posed by BL estimation with AUV deployable arrays 

in the 500-5000Hz frequency range makes any further performance improvement 

highly desirable. 

As an example of an effective application of FBE, this section shows how it can 

improve significantly the performance of short arrays in passive bottom-loss 

estimation. The main advantage is the possibility of improving the grazing-angle 

resolution of the estimated bottom loss to a level that the original technique could 

only achieve by means of a longer array. A more subtle advantage is a more efficient 

use of the bandwidth of current acquisition systems, explained below. 

The beamforming operation imposes a practical limitation on BL estimation: The 

upper limit on the frequency range over which data can be used (hereafter referred 

to as “array design frequency”). For conventional beamforming on a line array, this 

limit is determined by the inter-sensor spacing: The maximum frequency at which the 

array can operate as a directional antenna corresponds to a wavelength that is twice 

the spacing. For instance, assuming a sound speed in water of 1500m/s, an array 

whose sensors are spaced 0.15m has a design frequency of 5kHz. The appearance of 

grating lobes in the beam pattern makes it impossible to estimate the bottom loss 

above the array design frequency. 

However, with the sampling rates afforded by current acquisition systems, the 

array design frequency usually falls well below the Nyquist frequency, leaving a 

sizeable fraction of the data unused, for the purpose of bottom-loss estimation. In 

FBE, data from higher frequencies are used to estimate the noise spatial coherence 
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function at a lower frequency, for values of the sensor spacing beyond the physical 

length of the array. As Eq.(44) shows, if one wants to double the number of sensors, 

and therefore the array length, and estimate the BL up to the array design frequency 

𝑓𝑑 = 𝑐 2𝑑⁄ , it is necessary to have data available from the physical sensors up to a 

frequency that is roughly 2𝑓𝑑 . By doing so, the angular resolution of the bottom-loss 

estimate can be improved, often making use of data at frequencies otherwise not 

utilized for beamforming. 

8.4.2. Application to simulated data 

In this section, the application of FBE to passive bottom-loss estimation is 

investigated through simulation. This ensures the a priori knowledge of the bottom 

and the water column, a luxury that experiments on the field usually cannot afford, 

making it possible to compare the results to model-based predictions. Since the goal 

is bottom-loss estimation, in this study the reference is provided by a model, 

presented by Jensen et al.,2 that predicts the power reflection coefficient of a 

horizontally stratified fluid bottom of known physical properties, as a function of 

frequency and grazing angle. 

For each of the cases introduced above, Jensen et al.’s model has been run to 

provide the predicted BL to be used as reference. For the HS case, the CSD matrices 

produced by OASN for a 24-element array with 0.15m spacing have been processed 

to estimate the BL both by the HR-BL algorithm, and by CBF, as in Harrison and 

Simons’ original technique. The latter procedure has been repeated using only the 

first 12 elements of the array, to show how the estimated BL is impacted by a 
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significant reduction of the array length. The same 12-element CSD matrices have 

then been used to estimate the 12-point coherence function by diagonal averaging,34 

and this has been extended as described in Section 8 up to the length of the original 

array, i.e. adding 12 points corresponding to “synthetic” sensors beyond the length 

covered by the “physical” sensors. In the examples presented in this section, the 

frequency domain has been sampled with 680 bins of 50Hz width between 50Hz and 

34kHz. In general, the frequency value required to apply Eq.(44) will not fall at the 

center of one of the chosen frequency bins. The results presented in the remainder of 

this chapter have been obtained by simple linear interpolation of the coherence 

function between the closest available frequency bins. The extended coherence 

function has been used to build a Toeplitz CSDM, 32,34 which has then been passed to 

the HR-BL algorithm to estimate the BL. 

The results obtained by the procedure outlined above are shown in Figure 29. 

Panels 𝑎 and 𝑐 show the limitations imposed by beamforming: While the predicted 

BL is perfectly frequency independent, the 24-element beamformer — corresponding 

to a 3.45m aperture — places the critical angle correctly only at the higher 

frequencies. With decreasing frequency, the beams become wider, and the decreased 

angular resolution causes an area of substantial underestimation, which extends to 

cover the entire grazing angle range at the bottom of the plot. The design frequency 

for this array is 5kHz, and at this frequency, around normal incidence, the BL estimate 

drops to zero, due to the grating lobes that appear in the beam pattern. When the 

aperture is reduced to 1.65m (12 elements), all the limitations indicated above are 
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magnified. The last panel in Figure 29 shows the BL estimated with data from the 

same 12 sensors, but after extending the coherence function by FBE back to 24 

elements: The plot shows a virtually complete recovery of the information lost by the 

shorter array. 

Given the analysis presented in Section 8.2, the result above is not surprising, 

whereas for a layered bottom one could expect the more pronounced dissimilarity of 

the coherence-function real part to make the application of FBE more difficult. This 

has been preliminary investigated through a number of simulations, of which the 

results for cases 1L and 2L, shown in Figure 30 and Figure 31 respectively, are 

presented as a sample. These results have been produced following the same 

procedure as the one described above for case HS. 

For layered bottoms, the predicted BL presents much more structure than for a 

halfspace. Such structure can be rather fine, as shown, for instance, in case 1L at the 

critical angle (the angle above which the BL becomes significant, Figure 30), and, in 

case 2L, in the thin striations overlapping with the three wide striations (Figure 31). 

The data being simulated, the BL estimated by Harrison and Simons’ technique in 

these cases is very “clean”, compared to what is usually observed when working with 

experimental data. Nevertheless, the 24-element CBF results present a significant 

underestimation of the BL at low frequencies, and in general the estimated BL 

appears to be a “smeared” version of the BL predicted by the Jensen et al.’s model. 

These effects are expected, as they are due to the finite angular resolution of the 

beamformer, and are accentuated when moving to the BL estimated by the half-length 
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array (12 elements). The BL estimated by HR-BL using the data from the same 12 

elements — after extending the estimated coherence function at the locations of 12 

additional “synthetic” sensors — shows in both cases an almost complete recovery of 

the information lost by the 12-element CBF, with a sharper critical-angle transition, 

better definition of the striations, and improved BL estimation at the lower 

frequencies.  
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Figure 29.  Halfspace bottom (case HS): BL predicted using the reflection 
coefficient given by Jensen et al.’s model (a); BL estimated from OASN data using CBF 
over 12 (b) and 24 (c) sensors, and BL estimated by HR-BL over 12 sensors extended 
to 24 by FBE (d).  
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Figure 30.  Single layer over halfspace (case 1L): BL predicted using the reflection 
coefficient given by Jensen et al.’s model (a); BL estimated from OASN data using CBF 
over 12 (b) and 24 (c) sensors, and BL estimated by HR-BL over 12 sensors extended 
to 24 by FBE (d).  
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Figure 31.  Double layer over halfspace (case 2L): BL predicted using the 
reflection coefficient given by Jensen et al.’s model (a). BL estimated from OASN data 
using CBF over 12 (b), and 24 (c) sensors, and BL estimated by HR-BL over 12 sensors 
extended to 24 by FBE (d).  
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8.5. Application to measured data 

This section presents the results of applying FBE to passive BL estimation from actual 

data measured in three different experiments at sea by the NATO-STO Centre for 

Maritime Research and Experimentation. The data refer to three different sites and 

arrays, and the dataset identifiers used in the remainder of this chapter, as well as the 

basic characteristics of each data set and array, are listed in TABLE VI. The MFA and 

VLA data are from the experimental campaign named Boundary 2003, while the 

SLIVA dataset was recorded during the REP14-MED experiment of 2014. 

The emphasis in this study is in showing how FBE can improve the performance of 

a short array in BL estimation. For this reason, rather than comparing the results to a 

ground truth that in the case of the measured data is rather uncertain, the comparison 

is carried out between the full 32-element array, a subarray including only a subset 

of the original elements, and the same subarray extended to the original length by 

using FBE to estimate the coherence function at the location of the missing original 

sensors. 

 Datasets and array basic features. 

Dataset ID Num. of 
elements 

Spacing (m) Sampling freq. 
(Hz) 

Design freq. 
(Hz) @𝑐 =
1500m/s 

Deploy
ment 
type 

VLA-03 32 0.50 6000 1500 Drifting 

MFA-03 32 0.18 12000 4166 Drifting 

SLIVA-14 32 0.18 50000 4166 Moored 
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All the CSD matrices used in this study correspond to 5-minute averages of data. The 

plots in Figure 32, Figure 33, and Figure 34 compare the BL estimated by applying 

Harrison and Simons’ original technique to data recorded over the full 32-element 

arrays of the Boundary experiment, and to a 20-element subarray. In these examples, 

the magnitude of the extension (from 20 to 32 elements) is limited by the low Nyquist 

frequency, which in particular prevents the recovery of the BL estimate up to the 

design frequency (4166Hz, with a sound speed of 1500m/s) for the MFA dataset. 

In all cases the deterioration due to the loss in angular resolution is visible in the same 

terms as already described above for the synthetic data, and FBE coupled with HR-BL 

proves to be able to recover in the BL most of the information lost by applying the 

CBF to the same array, as in Harrison and Simons’ original technique. 

Furthermore, some high loss striations appear at very low grazing angles in the 

FBE result in Figure 32. It is unclear whether these represent an actual feature of the 

bottom, but analysis of the other panels in the figure, as well as Figure 33, shows that 

these features are present in the BL estimated by the other techniques, and are simply 

emphasized by the high resolution of the HR-BL algorithm. 

Finally, the VLA results in Figure 34 may not appear to be as “dramatic” as the MFA 

ones; this is due to the nature of the data. The analysis of these data shows that the 

surface noise field is contaminated by other contributions, a circumstance to which 

the HR-BL algorithm is known to be sensitive.34 To alleviate the consequences of this, 

a Hanning taper was applied to the CSD matrix prior to HR-BL processing, a procedure 

that limits the performance of the algorithm. However, it should also be noted that 
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although this low frequency array, with an inter sensor spacing of 0.5m, can be more 

challenging for FBE, it is also an unlikely candidate for AUV deployment. 

Data-bandwidth limitation is a less important problem today, with data acquisition 

systems that are capable of much higher sampling rates. For instance, TABLE VI 

shows that the SLIVA array has the same spacing as the MFA array, but a much higher 

sampling rate. In Figure 35 the BL estimated using the full SLIVA array is compared 

to that obtained from an 8-element subarray (which could be used for AUV 

deployment), with the latter showing a significant loss of information. As the results 

show, in this case the sampling rate is high enough to “extend” the subarray back to 

32 elements, therefore quadrupling the array length, up to the array design 

frequency. Even in this rather extreme attempt, the significant information recovery 

by the extended coherence function is apparent. 

To conclude the experimental part of this study, it is important to stress that the 

quality of these results depends on the measured acoustic field being free of sources 

other than wind and wave noise. Furthermore, it should be noted that there can be 

features in the coherence function that do not manifest themselves in measurement 

if the array does not have an adequate length. In such cases, FBE may not recover such 

features, which may correspond to some details in the BL plot, but it will still provide 

an approximation to the general shape of the function, and its decay with increasing 

𝑧 𝜆⁄ .  
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Figure 32.   Boundary 2003 MFA data: BL estimated by HR-BL over 32 elements 
(a), by CBF over 20 (b) and 32 elements (c), and by HR-BL after extending the 
coherence function estimated from 20 sensors to 32 sensors by FBE (d).   
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Figure 33.  Boundary 2003 MFA data: BL estimated by HR-BL over 32 elements 
(a), by CBF over 20 (b) and 32 elements (c), and by HR-BL after extending the 
coherence function estimated from 20 sensors to 32 sensors by FBE (d).   
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Figure 34.   Boundary 2003 VLA data: BL estimated by HR-BL over 32 elements 
(a), by CBF over 20 (b) and 32 elements (c), and by HR-BL after extending the 
coherence function estimated from 20 sensors to 32 sensors by FBE (d).   
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Figure 35.  SLIVA data: BL estimated by HR-BL over 32 elements (a), by CBF over 
8 (b) and 32 elements (c), and by HR-BL after extending the coherence function 
estimated from 8 sensors to 32 sensors by FBE (d). Despite the fact that the length of 
the array is being increased by a factor of 4, the high sampling frequency affords the 
recovery of BL up to the array design frequency.  
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8.6. Summary 

The analysis of a model proposed by Harrison shows that the imaginary part of the 

spatial coherence function, measured by a vertical line array in a surface-ambient-

noise field, is weakly dependent on the bottom reflection properties, and therefore on 

the signal frequency alone. The real part of the function contains the dependence on 

the bottom reflection properties, and therefore shows a greater dependence on 

frequency alone. Both the real and the imaginary part of the function depend strongly 

on the ratio of the sensor-pair spacing to signal wavelength 𝑧 𝜆⁄ . Furthermore, 

empirical analysis shows that the normalized coherence-function curves appear to 

vary smoothly with frequency. 

Based on these considerations, in the case of a frequency-independent bottom 

reflection coefficient (such as that of a halfspace bottom), a simple technique can be 

envisioned to extend the coherence function to values of the sensor spacing that are 

beyond the physical length of the array, by making use of data at higher frequencies, 

and provided that the spacing to wavelength ratio is preserved. While some amount 

of error is expected when the technique is applied to a layered bottom, results show 

that, for the particular task of passive bottom-loss estimation, these errors are well 

within the margins of Harrison and Simons’ technique. Processing of both simulated 

and measured data by FBE coupled with HR-BL show that the information lost by a 

short array can be at least partially recovered, while making a more efficient use of 

the large bandwidth afforded by modern acquisition systems. An important 
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prerequisite for the application of the algorithm is that the data be free of interference 

from sources other than wind and wave noise.  
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9. Contributions 

This dissertation makes the following contributions to the field of underwater 

acoustics: 

 Experimental verification of the performance and limitations of sub-meter arrays 

in bottom-loss estimation. 

o Participation to the GLASS’13 and REP14-MED sea trials — Collaboration to 

the phases of: mission planning, equipment deployment and retrieval, data 

collection; processing of acquired ambient-noise data; 

o numerical simulations and modeling; 

o study of the sensitivity of the estimated bottom loss to the seabed parameters 

by geoacoustic inversion of the GLASS data. 

 A derivation showing how, under some reasonable conditions, the bottom 

reflection coefficient can be obtained from the array spatial coherence function 

removing a shortcoming that is intrinsic to the beamforming used in Harrison and 

Simons’ original technique. This is formulated starting from a known model of the 

marine ambient-noise spatial coherence function. 

 A technique for increasing the angular resolution of the estimated reflection 

coefficient (and therefore of the derived bottom loss). This emerges as a natural 

consequence of the derivation, and is demonstrated on both synthetic and 

experimental data. 
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 A technique for extending the coherence function to values of the sensor spacing 

that are beyond the physical length of the array, increasing the angular resolution 

of the estimated bottom loss. 

This dissertation advances the capabilities of passive bottom-survey technology by 

arrays of length that is short compared to the signal wavelength, therefore providing 

essential groundwork, both theoretical and experimental, needed for migrating 

Harrison and Simons’ technique from long arrays deployed by ships to arrays 

mounted on small AUVs. 
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 P. L. Nielsen, M. Siderius and L. Muzi, "Performance assessment of a short 

hydrophone array for seabed characterization using natural-made ambient 
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