
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 12-22-2015

Formal Modeling and Verification of Delay-Formal Modeling and Verification of Delay-

Insensitive Circuits Insensitive Circuits

Hoon Park
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Digital Circuits Commons, and the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Park, Hoon, "Formal Modeling and Verification of Delay-Insensitive Circuits" (2015). Dissertations and
Theses. Paper 2639.
https://doi.org/10.15760/etd.2635

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2639&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/260?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2639&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2639&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2639
https://doi.org/10.15760/etd.2635
mailto:pdxscholar@pdx.edu

Formal Modeling and Verification of Delay-Insensitive Circuits

by

Hoon Park

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Dissertation Committee:
Xiaoyu Song, Chair
Douglas V. Hall

Fu Li
Christof Teuscher

Jingke Li
Marly Roncken (non-voting member)

Portland State University
2015

c© 2015 Hoon Park

Abstract

Einstein’s relativity theory tells us that the notion of simultaneity can only

be approximated for events distributed over space. As a result, the use of

asynchronous techniques is unavoidable in systems larger than a certain physical

size. Traditional design techniques that use global clocks face this barrier of

scale already within the space of a modern microprocessor chip. The most

common response by the chip industry for overcoming this barrier is to use

Globally Asynchronous Locally Synchronous (GALS) design techniques. The

circuits investigated in this thesis can be viewed as examples of GALS design.

To make such designs trustworthy it is necessary to model formally the relative

signal delays and timing requirements that make these designs work correctly.

With trustworthy asynchrony one can build reliable, large, and scalable systems,

and exploit the lower power and higher speed features of asynchrony.

This research presents ARCtimer, a framework for modeling, generating,

verifying, and enforcing timing constraints for individual self-timed handshake

components that use bounded-bundled-data handshake protocols. The constraints

guarantee that the component’s gate-level circuit implementation obeys the

component’s handshake protocol specification. Because the handshake protocols

are delay insensitive, self-timed systems built using ARCtimer-verified components

can be made delay insensitive. Any delay sensitivity inside a component is detected

and repaired by ARCtimer. In short: by carefully considering time locally, we can

ignore time globally.

ARCtimer applies early in the design process as part of building a library of

verified components for later system use. The library also stores static timing

analysis (STA) code to validate and enforce the component’s constraints in any

i

self-timed system built using the library. The library descriptions of a handshake

component’s circuit, protocol, timing constraints, and STA code are robust to

circuit modifications applied later in the design process by technology mapping or

layout tools.

New contributions of ARCtimer include:

1. Upfront modeling on a component by component basis to reduce the

validation effort required to

(a) reimplement components in different technologies,

(b) assemble components into systems, and

(c) guarantee system-level timing closure.

2. Modeling of bounded-bundled-data timing constraints that permit the

control signals to lead or lag behind data signals to optimize system timing.

ii

Dedication

This dissertation is dedicated to my wife Haera, for all her love and support.

iii

Acknowledgments

First of all I thank my mentor, Marly Roncken. She is enthusiastic, full of

ideas, and thorough with all the details. I appreciate all her contributions in time,

ideas, and funding to make my Ph.D. experience productive and stimulating. The

joy and enthusiasm she has for research was contagious and motivational for me,

even during tough times in the Ph.D. pursuit.

I thank my advisor, Prof. Xiaoyu Song, for his guidance, encouragement, and

excellent scientific advice throughout the course of this research.

Special thanks go to Willem Mallon who built the ARCwelder compiler during

the two years he joined the ARC at Portland State University. He introduced me

to the theory of Delay-Insensitive algebra and developed the notion of Bounded

Bundled Data (BBD), which I have formalized in this thesis.

I thank Anping He, our ARC collaborator in China, with whom we have weekly

meetings. He was very instrumental in building a foundation for automating

ARCtimer.

I would also like to thank my fellow ARCwelders: Ivan Sutherland for

stimulating ideas and discussions, and Swetha Mettala Gilla, Chris Cowan, and

Navaneeth Jamadagni, for daily companionship and laughter.

Most of all, I thank my beloved wife, Haera Chung, for her love, constant

support, her prayers, and giving birth to our son, Daniel. Daniel is now five

months old at 18 pounds – he is a bundle of joy.

Last but not least, I would like to thank my parents, Woe-Chul Park and

Kum-ju Kim for their unending love and support. It’s been a long journey.

iv

Table of Contents

Abstract i

Dedication iii

Acknowledgments iv

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 5

1.3 Proposed Approach . 7

1.4 Contributions . 8

1.5 Organization of the Dissertation . 11

2 Related Work 12

3 Fundamentals and Semi-modularity Revisited 16

3.1 Asynchronous Communication Channels 16

3.2 Circuit Class . 18

3.3 Graphical Representation of Asynchronous Circuits 19

3.4 Gate and Wire Model . 21

3.5 Environment Model . 25

3.6 Relative Timing Methodology . 27

3.7 Semimodularity in the context of Relative Timing 29

v

3.7.1 Semimodularity—old definition 30

3.7.2 Semimodularity—new definition 31

3.8 Example - C element . 33

3.8.1 Specification . 33

3.8.2 Implementation . 34

3.8.3 Applying RT constraints and enhanced semimodularity . . . 37

4 Modeling 41

4.1 Modeling the Implementation . 42

4.1.1 Circuit . 43

4.1.2 Environment . 45

4.1.3 Modeling RT constraints . 48

4.2 Checking Specification using Properties 51

4.3 Using XDI Specifications as Monitor and Properties 54

5 ARCtimer 57

5.1 Timing Verification Context . 59

5.1.1 Design Library . 61

5.1.2 GUI . 61

5.1.3 Parser . 63

5.1.4 STA . 64

5.2 Timing Verification Framework . 69

5.2.1 ARCtimer Step 1 — Handshake Component 71

5.2.2 ARCtimer Step 2 — Model Checker 77

5.2.3 ARCtimer Step 3 — Timing Patterns 91

5.2.4 Step 2 Revisited — Adding Timing Constraints 108

vi

5.2.5 ARCtimer Step 4 — Static Timing Analysis 112

5.2.6 Summary Timing Verification Framework Steps 1–4 118

6 RT characterization of Bounded Bundled Data 120

6.1 Bounded Bundled Data and Click Storage 120

6.2 Modeling Data . 122

6.3 RT Constraints for BBD . 124

6.4 Code Changes and Additions in NuSMV 126

6.5 Counter Examples without BBD Constraints 133

6.6 Non-Storage Component . 135

6.7 STA Translation . 137

7 Conclusion 139

References 142

Appendix A Click Family - Protocols, Circuits, Timing Patterns 151

Appendix B Click Verification - Time and Space Complexity 160

Appendix C NuSMV Library Code for Click 164

Appendix D NuSMV Code for Click Storage Component 171

vii

List of Figures

1.1 An example of a glitch . 6

2.1 RT constraint expression . 12

2.2 Simplification in synthesis . 13

2.3 Constructing a process representation using DI algebra 14

3.1 Timing diagram of bundled data . 17

3.2 Circuit classification . 19

3.3 Example of two inverters and its state graph 21

3.4 Logic gate . 21

3.5 Stable and unstable gates . 22

3.6 Unstable gate becoming stable . 23

3.7 Inertial delay NAND gate . 23

3.8 Semimodular NAND gate . 24

3.9 Modeling wire delays on a fork . 25

3.10 Environment and circuit in relation to the specification 26

3.11 Example of RT over two paths and STG 28

3.12 Blocked by RT stripe convention 29

3.13 Examples of transitions under old semimodularity 31

3.14 Examples of transitions under enhanced semimodularity 32

3.15 C element example . 33

3.16 XDI description of C element . 34

3.17 SI C element NAND implementation 35

3.18 STG of C element in NAND implementation 36

viii

3.19 RT constraint sets comparing old and new definition of semimodularity 37

3.20 Snapshot of STG using two different RT sets 38

3.21 Example showing the difference between old and new semimodularity 39

4.1 Model checker overview . 41

4.2 Implementation in a model checker 43

4.3 Code for cgate . 43

4.4 Composition of cgate instances to build a C element 45

4.5 C element with random environment 46

4.6 C element with a closed environment 47

4.7 Code changes for lazy environment 48

4.8 Model of a RT constraint . 49

4.9 Code for RT constraint module . 50

4.10 Code for blocking late events . 50

4.11 Example of two paths with a RT constraint 51

4.12 Model checking with properties . 51

4.13 Basic CTL syntax . 52

4.14 Examples of CTL expression tree 52

4.15 C element specification and properties 53

4.16 Alternative properties for the C element 53

4.17 Model checking with XDI specification as a monitor 54

4.18 STG of C element with error state 55

4.19 Code for the protocol module . 56

5.1 Reference diagram for ARCtimer 58

5.2 Overview of chip design flow . 60

ix

5.3 GUI showing a Fibonacci example 61

5.4 Fibonacci circuit example . 63

5.5 Gate level netlist . 63

5.6 Setup time and hold time . 65

5.7 Four main steps of the ARCtimer framework 70

5.8 Bundled data and state representations 72

5.9 Click Storage circuit implementation 72

5.10 Click Storage protocol translated to FSM 73

5.11 Possible input and output event orderings 76

5.12 Organization of model checking task 79

5.13 DI protocol specification for storage and corresponding code 81

5.14 Click storage circuit and environment 84

5.15 Code for the circuit . 85

5.16 Code for combinational gate and positive edge triggered FF 87

5.17 Code instantiating protocol, circuit, and environment 91

5.18 Two counterexamples . 93

5.19 Stoplight model for RT, and RT set 98

5.20 Example of applying generalized timing constraint 104

5.21 Timing patterns . 107

5.22 Code with RT patterns . 109

5.23 Translation of RT constraint for STA 117

6.1 Click storage and non-storage with datapath 120

6.2 Comparison of bundled-data and bounded-bundled-data 121

6.3 Model of data validity . 123

6.4 Click storage with datapath . 124

x

6.5 BBD FF setup constraint . 125

6.6 BBD FF hold constraint . 125

6.7 Code for semimodularity check . 127

6.8 Code for BBD check . 128

6.9 Code for CL gate . 128

6.10 Code for FF with data . 129

6.11 Code for BBD storage circuit . 131

6.12 Code for environment with BBD . 132

6.13 Code to tie in protocol, environment, and circuit 132

6.14 Circuit and environment for BBD storage 133

6.15 Two counterexamples for BBD storage from NuSMV 134

6.16 Circuit and environment for non-storage component 135

6.17 Code for the circuit portion of non-storage component 136

6.18 Module main for non-storage . 137

6.19 BBD constraints prepared for STA 138

xi

1

Introduction

1.1 Motivation

Modern computer systems are distributed over space. For example, there is the

internet of things – a network of physical objects embedded with electronics,

software, sensors, and network connectivity, which enables these objects to collect

and exchange data. Another example is IBM’s TrueNorth [28]. TrueNorth is

a system composed of modular chips that act like neurons and form artificial

neural networks to run “deep learning algorithms” like Skype’s chat translator or

Facebook’s facial recognition.

Global state is a useful model for traditional clocked hardware, where: state

may change only when the clock ticks, where all tasks must fit into the clock period,

and where the global state is stable between ticks.

Below folow three examples where events are not simultaneous over space.

The first example relates to the latest planetary mission to Pluto. New Horizons

took a picture of Pluto and its moon, Charion. Pluto is very far away – more than

30 times Earth’s distance from the Sun. It took about 4 hours to tweak the position

of New Horizons to take such a picture. There’s a substantial communication

delay between earth and Pluto. Clearly, the commands and the photo shot are not

simultaneous.

The second example is also from outer space. In August 2012, NASA landed

Curiosity on Mars. At the time, Mars was a communication distance of 13 minutes

away. During the last 13 minutes of landing, the landing system worked on

1

autopilot – self-directed, self-controlled, autonomous.

As a third example, let’s take a look at something closer and more down to

earth. What about chips? What about communication delays within a cubic inch?

Even here, down to earth, within a cubic inch of silicon, the communication delay

in a network chip with a size of less than a cubic inch are longer than the delays

that we use to control the chip. Moreover, the complexity of pretending that events

in the chip are simultaneous is huge: hundreds of clock domains, and ten thousands

of clock synchronizers [58].

Clearly, the notions of global state and global control fail to scale over space,

even within the cubic inch space of a single chip.

With the advance of IC manufacturing technologies, high speed digital systems

have grown in complexity. In the past, all digital systems required data to pass

sequentially through the system. The standard approach to this was to synchronize

the entire system to a common global discrete period clock. This results in

synchronous systems that are orchestrated by a centralized clock that operates

on a fixed rate. Control and data signals are stored and passed in lockstep on

fixed intervals as determined by the clock and its phases. All functions between

the storage elements are evaluated during the clock period. This is a valid model

as long as the clock period is longer than the time it takes for the clock signal to

travel from one end to another end of the circuit, giving a well-defined semantics

to the term ‘lockstep.’

Thanks to continuous scaling of VLSI to meet the ever-increasing demands

for more speed and less power, the clock period has shrunk to below the chip’s

end-to-end clock traversal time. In addition, in many high-performance designs,

clock power has been reported to exceed 30% of the total power consumption [10].

2

Power is now an additional limiting factor in raising the clock frequency [57].

As a result, the conceptual framework of synchronous design faces new challenges

beyond pure functionality and raw throughput, concerning timing closure and

power dissipation, process variation and interfacing.

Due to these drawbacks, asynchronous circuits are gaining interest. Asyn-

chronous circuits, also known as self-timed circuits, do not have a global clock.

The asynchronous circuits or self-timed circuits communicate with their neighbors

through handshake protocols.

Potential advantages of self-timed circuits compared to synchronous circuits

are as follows:

• High speed

Since there is no central clock, there are no clock skew problems. Self-timed

circuits can be designed for average performance while synchronous circuits

are typically designed for worst case performance.

• Low power

Self-timed circuits consume power when and where needed. In contrast,

synchronous circuits usually have a ticking clock that consumes power even

if there is no work to do.

• Robustness

Self-timed circuits self-adapt to temperature and voltage variation. In

contrast, synchronous circuits require clock frequency regulations to track

voltage variations.

3

• Low electromagnetic interference

The clock pulses on synchronous circuits operating on the exact same

frequency generate resonance and electro-magnetic interference (EMI).

The irregular behavior in self timed circuits provides very low EMI.

• Modularity

The asynchronous or self-timed components communicate with each other

through handshake protocols. The protocols are implemented locally, with

local timing constraints. The locality of time make it possible to build large

systems of any scale.

However, there are also drawbacks such as:

• Different notion of time

The global clock is replaced by handshake protocols.

• Testability and Debug

Synchronous circuits can simply freeze the clock for better visibility of circuit

actions. We recently provided a generic solution to freeze local self-timed

actions for test and debug with Mr.GO [39].

• Lack of EDA tool support

Lack of CAD tool support from EDA industries makes wide adoption of self-

timed design hard. The ARCtimer presented in this thesis shows how to

provide EDA tool support for timing closure of self-timed systems.

The biggest problems are the lack of a standard work flow, and a non-standard

way of designing circuits. A difference in the timing regime requires a different

4

way of thinking of circuit design, which isn’t being offered as education in many

places. Portland State University is one of the research institutes world wide

where students can study self-timed design. Some companies that have adopted

self-timed circuit designs have their own design flow and tools which are not

publicly available.

This thesis tackles the problem of lacking a standard workflow by providing a

general methodology and work flow outline for solving the local timing constraints

that support the handshake protocols between self-timed components. This

workflow is called ARCtimer.

The near-term goal of ARCtimer is to generate and repair local timing

constraints necessary for correct communication through handshaking. Once

the handshake protocols can be assumed correct, the remaining and recurring

task of building systems out of handshaking circuit components becomes a

delay-insensitive design task. Thus, the longer-term goal of ARCtimer is to

support the large-scale integration of delay-insensitive circuits. Hence, the title

of this thesis.

1.2 Problem Definition

In digital circuits, a logic hazard is an unexpected output that lasts temporary

after an input has changed. Because hazards are temporary, synchronous circuits

can usually clear the hazard by slowing down the clock cycle used for synchronizing

such that the correct output is in the right place by the time the active clock edge

arrives. Self-timed circuits on the other hand does not have a global clock to

delay the sampling of the output. Each component operate on their own pace

solely relying on handshake signals to communicate with neighboring components.

5

Because handshake operations are driven by events, glitches must be avoided.

INV

OUT

time

IN

NAND

INV

IN OUT
0

1

0

1 2 3 4 5

gl
itc
h

Figure 1.1: An example of combinational logic that could cause a glitch. From the
initial state as marked in the Figure, once the IN makes a rising transition (time = 2),
INV makes a falling transition (time = 3). The NAND gate seeing both inputs high
(between time = 2, 3) produces a momentarily glitch (time = 3), but then recovers (after
time = 4).

To make a circuit free of hazards, we look at delay-insensitive (DI) circuits

which are the most robust of the asynchronous circuit classes. This circuit class

operates correctly with unknown delays in wires and gates. But due to heavy

restrictions, only a few circuits are truly insensitive to delays of gates and wires.

Timing constraints can be applied to make the circuit operate in a DI fashion, but

how can one be sure that the timing constraint set is complete? To verify these

timing constraints, what kind of tools should one use, and how would one model

the system? What kind of timing constraints should one add? Are the constraints

placed at optimal locations?

The problem with lack of support from the industry and standardized tools

makes it hard to widely adopt self-timed designs. The solutions are not

interchangeable and usually don’t carry over with technology advancements. Static

timing analysis (STA) loop cutting doesn’t work with conventional STA tools

because they are built for synchronous circuits.

6

1.3 Proposed Approach

The circuit can behave like a delay-insensitive (DI) circuit if each handshake

component faithfully follows their specified DI protocols. ARCtimer uncovers the

delay sensitivities and defines a delay repair procedure in advance, so that when

the component is used the designer and the STA tool know what to analyze and

how to repair it, if it fails DI.

We design our circuits using the theory of Logical Effort [56], where we assume

gates and wires are well-designed and there are no adverse analog effects. For

the handshake component’s protocol, we use the formalism of Delay-Insensitive

Algebra developed by [14,20,59], which has a compact and complete specification.

Delay-Insensitive Algebra specifies both safety property and liveness property,

which are important for choices of action.

To verify our design, we use a general purpose model checker to perform

an exhaustive verification. Each of the component and protocol specification

are modeled for the model checker. The properties such as safety and liveness

properties come from the protocol specification, and with the help of a model

checker, we find a complete set of timing constraints that are required to make the

circuit behave like a delay-insensitive circuit. The generated timing constraints

capture what is needed to obey the protocol interface.

To model timing constraints, we use relative timing methodology [49] which

is based on the ordering of events. Although not practical, the glitch would have

been avoided in Figure 1.1 if there were a relative timing constraint such as “when

IN changes, the INV’s output must change before OUT changes.” This can be

interpreted as “the path from IN to OUT must be slower than the path from IN

through INV to OUT.” To guarantee that this is always true, a delay exceeding

7

the amount of delay in the path IN–INV–OUT could be added in the path

between IN–OUT.

The complete set of timing constraint is carefully analyzed to form a generalized

timing constraint which becomes stored in the design library. For larger

components that belong to the same circuit family, one can use a known starter set

of timing constraints from the generalized constraints to find the missing timing

constraints. Once the design library is complete, designers can use the components

without redoing timing verification.

1.4 Contributions

This work is relevant for designing self-timed circuits that use timing constraints.

In practice, very few self-timed circuits can work without timing constraint [16,22].

We developed ARCtimer, a framework of formal modeling and verification

methods for generating and verifying timing constraints for handshake components

with bounded-bundled-data protocol. Through this framework, we can uncover

what is needed to make the component’s gate-level circuit follow the component’s

handshake protocol.

Our focus was to ensure that not only the circuit obeys the handshake protocol

but also its timing constraints and static timing analysis code are sufficiently

general for use in a design library. To achieve this, we analyzed the design patterns

and generalized the timing constraints into timing constraint patterns which are

also more intuitive.

We build up a shared understanding of what a framework like ARCtimer entails,

and helps readers understand the tradeoffs and decisions, and identify essential

decision points, the choices one can make, what we and others chose, and why.

8

We have exchangeable solutions in three areas: STA loops kept intact, DI

protocol specifications, failure analysis heuristics to derive timing constraints.

We explain how to model each component, how to model the protocol into

properties in a model checker. While doing so, we found that there is a conflict

between the design paradigm of semimodularity used since the early days and the

new paradigm of relative timing introduced recently to make self-timed circuits

fast and efficient. We show this conflict by redefining semimodularity in a way

that fits rather than fight relative timing. This work was published in [32].

The model checker we use is a general purpose tool which is open to public

access. The use of a specialized tool for timing verification for self-timed circuits

carry hidden assumptions. Custom tools are also less flexible in case a user wants

to add new features.

Following is a list of contributions from this thesis:

1. Upfront modeling on a component by component basis to reduce the

validation effort required to:

(a) reimplement components in different technologies, by using the notion

of patterns seen in Chapter 5, Section 5.2.3.3 and Figure 5.20

(b) assemble components into systems as shown in Chapter 5, Section 5.1.2

and Figure 5.3, and

(c) guarantee system-level timing closure by using ARCtimer introduced in

Chapter 5, Section 5.2 and Figure 5.7.

2. Modeling of data and bounded-bundled-data timing constraints that permit

the control signals to lead or lag behind data signals to optimize system

timing. This is shown in Chapter 6, Figure 6.2.

9

3. New semimodular model [32], a key property present in most self-timed

modeling tools such as [30,47,63]. The enhanced definition of semimodularity

can be found in Chapter 3, Section 3.7.2 and Definition 3.7.2.

I have published the following papers:

1. Journals

(a) H. Park, A. He, M. Roncken, and X. Song. Semi-Modular delay

model revisited in context of relative timing. IET Electronics Letters,

51(4):332–334, 2015 [32]

(b) H. Park, A. He, M. Roncken, X. Song, and I. Sutherland. Modular

timing constraints for delay-insensitive systems. JCST, Springer,

accepted 2015 [33]

2. Conferences and Poster sessions

(a) M. Roncken, S. Metta Gilla, H. Park, N. Jamadagni, C. Cowan, and I.

Sutherland. Naturalized communication and testing. In Asynchronous

Circuits and Systems (ASYNC), 2015 21st IEEE International Sympo-

sium on, pages 77–84, May 2015 [39]

(b) H. Park, A. He, M. Roncken, X. Song. Verifying Timing Constraints for

Delay-Insensitive Circuits. Poster presentation. In Asynchronous Cir-

cuits and Systems (ASYNC), 2015 21st IEEE International Symposium,

May 2015.

(c) M. Faust, H.Chung, H. Park, J. Rodriguez. Introducing hardware

emulation in the ECE curriculum. In IEEE International Confer-

ence on Microelectronic Systems Education (MSE ’11), pages 39–40,

June 2011.

10

1.5 Organization of the Dissertation

The rest of the dissertation is organized in seven chapters.

Chapter 2 reviews related work on self-timed circuit verification.

Chapter 3 describes the basic fundamentals of asynchronous circuits, delay

models, circuit and environment model, and relative timing methodology. An

enhanced definition of semimodularity is presented with an example of a C-element.

Chapter 4 describes how modeling and verification is done in a general purpose

model checker using a C-element as an example.

Chapter 5 presents ARCtimer, our timing verification framework for generating

and verifying delay-insensitive circuits. A storage element from Click circuit family

is used as an example. We show how relative timing constraints are derived and

modeled, and then generalized into timing patterns.

Chapter 6 adds datapath to the storage example and show how data is modeled,

and what type of timing constraints are required for the bounded-bundled-data

protocol.

Chapter 7 concludes this thesis and addresses possible future work.

11

2

Related Work

Timing closure for self-timed digital circuits is a problem of a high relevance,

because very few circuits, if any, are insensitive to wire and gate delays [16, 22].

Several approaches have been proposed to tackle timing verification.

Kenneth Stevens et al. in [50] introduced Relative Timing (RT) methodology

for synthesis and also for verifying asynchronous circuits that use unbounded delay

model. Relative timing constraints the overall delay of two paths such that a

specified path is faster than the other. The two paths has a common starting

point, which is called Point-Of-Divergence (POD), and has two different ending

points, called Point-Of-Convergence (POC0 and POC1). The RT constraint shown

in Figure 2.1 reads as “if event POD happens, event POC0 must happen before

event POC1.” See Section 3.6.

POD → POC0 ≺ POC1

Figure 2.1: RT constraint is expressed as a path from point-of-divergence (POD) to
two different point-of-convergence (POC). From POD, the delay of the path to POC0

must be less than the path to POC1.

Relative timing methodology makes timing requirements explicit. Timing

requirements of a circuit can be directly added, removed, and optimized using this

style. When used for synthesis, depending on the environment, the circuit can be

simplified with RT constraints since it reduces concurrency in the implementation.

Figure 2.2b from [50] shows an example of a simplified C element with the

assumption that the environment always changes input a from high to low before

b changes from high to low.

12

a

b c

(a) Speed-independent C-element

a
b c

(b) With assumption a− ≺ b−

Figure 2.2: Simplification in synthesis. Timing assumptions of the environment can
lead to a simpler circuit as shown in [50].

For verification, they use a custom verification tool called Analyze which

use trace semantics and calculus for communicating system (CCS) based logic

conformance relation [48]. They model and verify that the timing-constrained

circuit meets the protocol. The application of timing constraints can be aggressive

or conservative depending on the application.

Yang Xu [62, 63] builds upon [18] and [50]. He created a tool called ARTIST

which automatically generates timing constraints based on bisimulation formalism.

Error traces or action sequences are evaluated and a RT constraint is generated

and added to the circuit implementation. The tool iterates through evaluation

and generation of RT constraints until the circuit implementation conforms to the

specification. However, automation typically pushes constraints to become too fine

grain to provide intuition. Also, the constraints are technology dependent.

Krishnaji Desai et al. in [9] models the circuit and RT constraints in NuSMV

model checker to check for correctness. They demonstrate the growth of the system

size as pipeline stages become deeper. However, progress and choice equivalence

properties are absent from the NuSMV based timing verification work.

Radu Negulescu et al. in [30, 31] in Process Spaces and FIREMAPS built a

system very much like Ken’s. The difference is that they use complete path of

events as constraints instead of start and end points of a path. Their research are

examples that use the theory of Delay-Insensitive Algebra for both modeling and

verification task.

13

a

b

b

a

c

(a) Original state graph

a

b

b

a

cg

g

g

ee r
c

c

c

a,b,c
a,b

a,b,c

(b) Process representation

Figure 2.3: Constructing a process representation using Delay-Insensitive Algebra as
shown in [30]. The state machine needs to be a complete automaton so in addition to
the original state graph, they add reject state (r©), error state (e©), and goal states (g©).
An error from the environment leads to a reject state where it can’t escape while an error
from the circuit leads to an error state which it can’t escape.

We use a similar approach for describing the specification of the protocol when

expanding the state graph. We have two types of error states, error from the

environment and error from the circuit. For the timing constraints, they use

a term called Chain Constraint which is a path based constraint. The path is

expressed with all the intermediate events on the path, listed like a chain, which

the delays to the early and late events are calculated. Chain constraints are much

easier to translate into STA code than relative timing constraints. However, chain

constraints are also much harder to model in a model checker than relative timing

constraints. We add checkpoints in our path of relative timing constraints to

perform STA.

Prasad Joshi [15] verified single track bi-directional wires for the GasP

component, and worked on handling loops for STA tools by breaking timing loops.

Since conventional STA flow does not support bi-directional wires, he split these

wires to verify GasP circuit family. He applied RT constraints on the control logic

to satisfy the specification.

Yoneda et al. in [64] uses metric timing. Using absolute delay reduces

complexity in state space, and they suggest that un-timed circuits may introduce

14

unrealistic failure traces complicating the verification process. They model each

circuit element with a time Petri net. Using min–max delay is a different approach,

however, this seems to fit less with self-timed design compared to relative timing.

This method also makes the constraints technology dependent.

Khaled Alsayeg et al. in [1] created Requirement Analysis Tool (RAT) to

formally verify asynchronous circuits using model checking techniques. The tool

checks for the correctness of the behavior using Property Specification Language

(PSL). They describe the circuit using a set of properties expressed in temporal

logic, and use a model checker to verify the properties. They start with specifying

properties for a general gate model, and then move to abstract level and check the

interconnection of each block.

15

3

Fundamentals and Semi-modularity Revisited

Self-timed circuits, also known as asynchronous circuits, operate on a handshake

protocol and communicate through channels with their neighbor modules. Ensur-

ing that each module operates correctly according to the handshake protocol, one

can easily build scalable systems from these self-timed components. We build our

self-timed designs from circuit components that interact using handshake protocols.

The designs that we consider are delay-insensitive as long as every component

faithfully follows the handshake protocols. By carefully considering time locally,

we can ignore time globally. We use Relative Timing (RT) methodology [9,62] and

build upon it to enforce local timing relations as known as RT constraints.

This chapter introduces the basics of communication protocols, graphical

representation of circuits, gate and wire models, coloring schemes. We also

discuss definitions of semimodularity, and bring in an enhanced definition of

semimodularity used in the presence of RT constraints, and show by example

of a Muller C element how the enhanced definition is applied.

3.1 Asynchronous Communication Channels

Contrary to synchronous circuits where every action happens on a beat of a

clock, asynchronous circuits communicate with neighbors through communication

channels with the use of handshakes. This can be thought of as an interaction

between two people, one person sending a request as needed, and the other person

acknowledging the request at his own pace. In synchronous system, these two

16

people would only be able to communicate during the tick of a clock, and the clock

would keep ticking even when there is no real work going on.

Bundled-data four-phase and two-phase handshakes are widely used handshake

protocols. Bundled-data refers to data wires being bundled with a separate request

and acknowledge wires. The four-phase and two-phase naming comes from the

number of transitions required in the request and acknowledge wires to complete

a handshake event.

valid valid

Acknowledge

Request

Data

time

(1)

(2)

(3)

(4)

(a) Four-phase RTZ protocol

valid valid

Acknowledge

Request

Data

time

(1)

(2)

(b) Two-phase non-RTZ protocol

Figure 3.1: Timing diagram of bundled data handshake protocols.

Four-phase handshake: (1) The sender places the data and sends a request sig-

nal and valid data. (2) The receiver detects this received data, and acknowledges.

(3) The sender responds to the acknowledgement by lowering the request signal,

and by generating new data. (4) The receiver acknowledges this and lowers the

acknowledge signal. 1

Two-phase handshake: (1) The sender places valid data and sends a request

signal. (2) The receiver receives the data and acknowledges.

In digital circuits, the voltage level of a wire is represented with Boolean value

0 or 1, for low and high respectively. A transition on a wire means the voltage

level changed from low to high, or high to low. Comparing the four-phase to the

two-phase non-return-to-zero handshake protocol, the four-phase protocol has the

advantage of simpler circuitry in that it uses level signaling for the control and
1Various data validity schemes exist. See Ad Peeters 1996 Ph.D. dissertation [35] for details.

17

allows each state to be unique, making it easy to determine the initial state of

each handshake. Its disadvantage is the extra return-to-zero (RTZ) transitions

which take extra time and power. The two-phase handshake protocol could lead

to a faster circuit since there are fewer signal transitions, but the circuit is typically

more complex.

3.2 Circuit Class

Asynchronous circuits can be classified by their delay model. In this thesis,

unbounded delay means a positive but possibly infinite delay, while bounded delay

means a positive but finite delay. Muller’s Speed-Independent (SI) circuits [29] with

an example in Figure 3.2a use an unbounded delay model on the gates. Known

as iso-chronic forks, either the wires are assumed to have negligible delay, or the

wire delays are lumped into the gate which it connects to. In result, when a gate’s

output changes, all the connected gates immediately sees the change.

Delay-Insensitive (DI) circuits which are the most robust of the three classes

do not make any delay assumptions and operate correctly under arbitrary gate

and wire delays. This is shown in Figure 3.2b where each gate and wire has its

own delay.

The delay model of Quasi-Delay-Insensitive (QDI) circuits differ from the SI

model in that different branches of a forked wire may have different delays. This

means that certain forks are iso-chronic.

18

d1

d2

d3

(a) SI

d1

d2

d3

w1

w2

(b) DI

Figure 3.2: Circuit classification depending on the delay model. Square blocks represent
gate delay and round blocks represent wire delay.

Very few circuits are DI or even QDI or SI. In general, relative timing

constraints are needed on top of these circuits to enable the user to repair the

delays to make it behave according to the protocol.

We model our circuits for higher-level delay-insensitive protocol applications

where the correctness is independent of gate and wire delays in the sense that

we can repair any given gate and wire delay setting to obtain correctness of the

application.

3.3 Graphical Representation of Asynchronous Circuits

Asynchronous circuits must be free of hazards, so every gate or wire transition

counts and carries a meaning. To express the possible behaviors of the circuit,

we use a finite state machine with interleaving semantics, where each node is a

unique vector of logic wire levels. A module’s communication protocol describes

the behavior at a more abstract level and only sees the external inputs and outputs.

Such state machines can be represented as a directed graph using a 4 tuple

G =< S, s0, E, T > as in Figure 3.3b:

• S: Finite set of nodes represented with circles

• s0: A set of initial node ∈ S

19

• E: Event, which is a wire transition from low to high, high to low, or simply

any transition

• T : {S×E → S}: Transition is labeled with an event, leading to a next state.

We use interleaving model where only single event happens in a transition

A wire transition indicates a change in the logic level of the wire. We use the

following notation for transitions:

• +: low-to-high transition

• −: high-to-low transition

• ±: either low-to-high or high-to-low transition

Let’s now look at the system shown in Figure 3.3a. The system part

called “circuit” has two inverters connected in series and the system part called

“environment” has one inverter. The wires are initialized as a = 0, b = 1, c = 0.

After the environment circuit changes a from 0 to 1, it produces the next input

only after it sees an output transition on output of c the circuit. A state is defined

as < a, b, c >, and this system can be modeled with 6 states total if we distinguish

up and down transitions. From the initial state s0 =< 0, 1, 0 >, both inverters are

stable (colored gray). The only possible action is for the environment to issue a+,

and go to state s1 =< 1, 1, 0 >. Note that there are no states with < 0, 0, 0 > or

< 1, 1, 1 > since these states are not possible in this environment.

20

cb
0 1 0
a

circuit

environment

(a) Two inverters with environment

s0

a+
b-

s3

c+<0,1,0>

<1,1,0> <1,0,0>

<1,0,1>s1 s2

s5 s4

<0,1,1> <0,0,1>

c-
b+

a-

(b) State graph, s =< a, b, c >

Figure 3.3: Example of two inverters in series and its state graph.

3.4 Gate and Wire Model

A gate is represented by a Boolean function. We use the theory of Logical

Effort [56]. As a result, our circuits come with an “analog health” waiver: their

signal rise and fall times are sufficiently good to skip analog circuit analysis.

A logic gate is modeled as a triple < I,O, F > where:

• I is a set of input signals

• O is an output signal

• F is a set of the circuit functions, where after an unbounded delay, O receives

the value of F

in1
in2 out
inn

F(in1 , … ,inn)

Boolean
Function

(F)

(I)

(O)

Logic gate

Figure 3.4: Representation of a logic gate.

A stable gate means F (I) and O have the same value, and that there is no

transition scheduled on the output. We color stable gates gray.

out = F (in1, ..., inn) (stable)

21

When F (I) has a different value from O, O may change to the value of F (I).

We color unstable gates white.

out 6= F (in1, ..., inn) (unstable)

Let’s look at an example of a two-input NAND gate shown in Figure 3.5. The

function of the gate is expressed as F (in1, in2) = ¬(in1 ∧ in2). When in1 = 0 and

in2 = 0, the function F (in1, in2) is ¬(0∧0). In this state, if the current output out

is 0, this gate is unstable. If the current output out is 1, then this gate is stable.

This is shown in Figure 3.5b. The coloring scheme of stable and unstable will be

used throughout this thesis only where necessary.

in1 in2 F (in1, in2) out Stable
0 0 ¬(0 ∧ 0) 0 False
0 0 ¬(0 ∧ 0) 1 True
0 1 ¬(0 ∧ 1) 0 False
0 1 ¬(0 ∧ 1) 1 True
1 0 ¬(1 ∧ 0) 0 False
1 0 ¬(1 ∧ 0) 1 True
1 1 ¬(1 ∧ 1) 0 True
1 1 ¬(1 ∧ 1) 1 False

(a) 2-input NAND gate

in1
in2 out

0

0 0

Unstable

in1
in2 out

0

0 1

Stable

(b) Example of unstable and stable

Figure 3.5: 2-input NAND gate truth table showing all 8 states, and an example of
unstable and stable gates.

As shown in Figure 3.6, an unstable gate that is given enough time will

eventually become stable by changing its output. However, it is also possible

that the inputs changes quickly enough that the gate no longer wants to change

the output, as it considers itself stable. Such example is possible in an inertial

delay model.

22

in1
in2 out

0

0 0

Unstable

in1
in2 out

0

0 1

Stable

in1
in2 out

1

0 0

Unstable in1
in2 out

1

1 0

Stable

out+

in1+

in2+

Figure 3.6: Unstable gate may become stable by changing the output (left path), or by
changing the inputs (right path).

An inertial delay model can be thought of as a logic gate model with inertia.

Inputs have to hold long enough to propagate to the output. Short pulses may be

ignored if the pulse is too short.

Figure 3.7 shows all possible actions for a 2-input NAND gate under such an

inertial delay model. For example, trace s0
a+−→ s1

b+−→ s3
b−−→ s1 shows that in

state s3, b was retracted too quickly that it wasn’t propagated to the output. This

trace can also be seen as the gate becoming unstable in state s3, but because input

b changed quickly back to 0, the gate became stable again.

0
0

1 1
0

1

0
1

1
1
1

1

0
1

0
1
1

0

0
0

0
1
0

0

a+
a-

a+

a-

a+
a-

b+ b-

c+ c-c+ c+

a+

a-

b+ b- b- b+

b- b+

s0 s1

s2 s3

s4 s5

s6 s7

Figure 3.7: Inertial delay model shows that inputs can be withdrawn at any time even
before it propagates to the output.

23

Semimodular delay model introduced by David Muller [29], and brought to the

attention of a wider audience through Raymond Miller’s 1956 book [27] is widely

used for designing hazard-free self-timed circuits by insisting that a digital signal

changes occur before being disabled. One might call it the “no change left behind”

paradigm. Once an output change is scheduled, it must go through. This puts

a strong restriction on the inputs and the surrounding environment. Figure 3.8

shows all possible actions that are allowed in a semimodular delay model for a

2-input NAND gate. Compared to the inertial delay model in Figure 3.7, there are

four fewer possible transitions which are prohibited because the pending output

change on c from state s3 and s7 cannot be canceled. From an unstable state s3,

the only possible action is to change the output by doing c− and going to state

s5. From another unstable state s7, as long as the input change doesn’t make the

gate stable, it is allowed to take that action, which is why going to state s6 by a−

is legal.

0
0

1 1
0

1

0
1

1
1
1

1

0
1

0
1
1

0

0
0

0
1
0

0

a+
a-

a+

a-

a+
a-

b+

c+ c-c+ c+

b+ b- b-

b- b+

s0 s1

s2 s3

s4 s5

s6 s7

Figure 3.8: Semimodular delay model shows that when an output change is scheduled,
it cannot be canceled by changing an input. This is seen in state s3 where it cannot do
a− or b−. In state s4, action a+ is not possible, and in state s7, action b+ is not possible.

24

Transport delay model which is also used with inertial delay model in hardware

description language during functional simulation assumes that no matter how

short a pulse is, it is scheduled and propagates to the output. Transport delay

model is used for functional simulation and timing analysis, and it is typically

used with fixed delay range. Semimodular model is a logic model used for logic

simulation and verification analysis of arbitrary delay range, but other than that

they express the same thing but used for different purpose.

Wire delays are making a bigger presence on the circuit with advances in process

technology. The wire delays on different paths of a fork can’t be ignored. To model

the difference in wire delay on forks, buffer gates are added in each wire branch as

done in [46].

buffers added
on forks

ideal wires

Figure 3.9: Buffers are added to model delays in the branches of forked wires

3.5 Environment Model

Every component operates in some environment which provides the inputs.

Overcomplicating the environment leads to unnecessary computation, while

oversimplifying will not accurately model the real environment. There are basically

two modes of operation of the environment, fundamental mode pioneered by [13],

and input-output mode pioneered by [29]. Both modes assume that the circuit

starts in a stable state. Fundamental mode allows the environment to change one

input, and waits until the entire circuit is stable. Only then can it change the

next input. Input-output mode allows to change the inputs, and when the circuit

25

responds by producing any output, the next inputs can be changed again. This

means there could be internal signals that are not yet stable before another input

changes.

The environment model we use are similar to input-output mode, where inputs

can change as soon as an output is produced. We assume our components operate

in an environment where the behavior of the environment is well known, and the

inputs follow the interface specification, which is also discussed in Section 3.8.1.

In Figure 3.10, the environment supplies inputs to the circuit, and the circuit

responds to those inputs by producing outputs. The dashed lines mark the area the

specification cares about – getting the correct sequence of inputs and outputs for

the circuit. If the circuit does not behave according to the specification, the circuit

can be repaired or reconfigured so that it produces the correct outputs. However,

this assumes that the correct inputs were provided according to the specification

in the first place. If the inputs were incorrectly provided by the environment, it

would be meaningless to verify the circuit.

Circuit

Environment

Specification

in
out

Figure 3.10: Environment provides inputs for the circuit according to the channel
protocol specification. The circuit responds to the inputs and produces outputs. From the
circuit’s perspective, the environment supplies inputs while the circuit produces outputs.

In the model checker that we use, the environment can be modeled as a ran-

domly behaving environment or it can be modeled as part of the implementation.

For the randomly behaving environment, there needs to be an invariant to check

26

only for the inputs that the circuit really cares about and to discard incorrect

input events. If the environment is designed as part of the implementation, it

should produce inputs according to what the circuit specification expects.

3.6 Relative Timing Methodology

Only a small class of self-timed circuits can work correctly under arbitrary gate

and wire delays. Relative timing methodology introduced by Kenneth Stevens [50]

specifies the relative ordering of two events making all timing requirements explicit.

Relative timing constraints specify event orderings that—when obeyed—guarantee

correct operation of the circuit. There are various ways to express these constraints.

We follow [9,62] and express them as triples (POD, EARLY, LATE), where:

• POD is the “point of divergence” event that causes the target events.

• EARLY is the target event following POD that must happen before the

LATE event.

• LATE is the target event following POD that can happen only after the

EARLY event.

Each relative timing constraint is expressed in the form of:

POD → EARLY ≺ LATE

Enforcing a relative timing constraint on two circuit events, POD is the common

point where the circuit paths to where two events begin. The POD tells when the

constraints begin to be enforced. In Figure 3.11a, this would be on the output

of gate a. The two forked wires from output a have arbitrary delays and go

respectively to gate b and c. The two paths through b and c, path1 respectively

27

path 2, merge at gate d. In case we want to guarantee that path 1 is faster than

path 2, we create a relative timing constraint using a as POD, b as EARLY, and

c as LATE.

a

b

c

w1

w2

d

path1

path2

(a) Two paths from a to d

s0

<a,b,c,d>

s1

s2

s5

s4

s6

s3

a±
b±

d±

c±

d±

b±

c± d±
s7

c±

c±

(b) S3 and S6 becomes unreachable

Figure 3.11: Enforcing a relative timing such that path 1 is faster than path 2 is done
by placing RT constraint as rt1 : a± → b± ≺ c±. With this constraint, the state graph
on the right shows that s3 and s6 are unreachable.

Relative timing constraints are guaranteed by adjusting the delay settings of

gates and wires in the late path of the circuit, and validated using static timing

analysis. Since timing can directly affect the performance and robustness of the

circuits, each constraint can be evaluated, and its application can be aggressive or

conservative.

In the context of state transition graphs, the basis of RT methodology is to avoid

an illegal state by side-stepping to another legal state as shown in Figure 3.11b.

Avoiding one state over another is enforced once POD happens. The EARLY event

always happens before the LATE event. In the circuit, this means that the path

delay from POD to EARLY is smaller than the path delay from POD to LATE.

When an output transition of a gate is blocked by an RT constraint because

it’s a LATE event, we indicate the direction (low-to-high or high-to-low) of the

blocked transition by using stripes slanted in the direction which is being blocked.

Figure 3.12 illustrates an inverter that has a boolean function out = ¬in, with one

or more constraints blocking the output transition.

28

00

(a) out+ is blocked

11

(b) out− is blocked

11

(c) out± blocked

Figure 3.12: Stripes slanted in the direction of the output transition being blocked. All
three gates are unstable, but the output is not allowed to change because it is blocked
by one or more relative timing constraints.

3.7 Semimodularity in the context of Relative Timing

Semimodularity is a well-known paradigm for designing hazard-free self-timed

digital circuits. Semimodularity requires that a digital signal change—when

enabled—must happen before it is disabled – see Section 3.4 and Figure 3.8.

Semimodularity played a key role in the early development of computer aided

design tools for self-timed systems. Introduced by Raymond Miller [27], it

was the starting point for the first generation of self-timed design and analysis

tools [19,25,60]. The early tool focus was on generating circuits that—though large

and slow—were correct, independent of the gate and wire delays in the design.

Focus shifted to speed and energy efficiency, which was achieved by exchanging

delay-insensitivity for extra delay assumptions formulated as relative timing

constraints [8, 9, 30, 49, 62]. By adding relative timing constraints, the circuits

behave as a delay-insensitive circuit. But the definitions of semimodularity were

neither re-examined nor adapted in the context of relative timing. In this section,

we will show the need for and present a new definition of semimodularity that is

aware of relative timing constraints. The results in this section were published

in [32].

29

3.7.1 Semimodularity—old definition

As explained in Figure 3.6, an unstable gate can become stable by changing either

its output or its inputs. Semimodularity allows the change of output but forbids

changing the inputs in case this change causes a gate to become stable.

Our execution model for changes is based on finite traces of events, i.e. gate or

wire transitions, and on an interleaving semantics that represents parallel events

by arbitrary sequential orderings of the events. The resulting single event orderings

are also used to model the delays of the events, relative to each other. This is a

standard execution model for analyzing self-timed designs. Under this execution

model, semimodularity for gates with arbitrary transition delays can be formulated

as follows:

Definition 3.7.1. An unstable gate sees no changes until its output changes, i.e.

out 6= F (in1, · · · , inn)

→
[{

out′ = F (in1, · · · , inn)
}
∨ (out′ = out)

]
∧
{
F (in′1, · · · , in′n) = F (in1, · · · , inn)

}

In addition to the gate model explained in Section 3.4, the tick symbol(′)

represents the next value of a symbol. Definition 3.7.1 can be read as: “If a

gate is unstable, then the output may change while the function of the inputs

stay the same.” The output may not change in case the output transition is

blocked by a timing constraint. Also note that the last part of Definition 3.7.1,
{
F (in′1, · · · , in′n) = F (in1, · · · , inn)

}
, means that as long as the function of the

inputs do not change, inputs may change.

30

out- out-out+out+ out+ out±out-

00 00 11 11 00 11 bb

in- in-in+in+ in+ in±in-

10 10 01 01

Figure 3.13: Examples of allowed and forbidden transitions for a gate with Boolean
function out = ¬in. As indicated in Figure 3.5b, we color unstable gates white and
stable gates gray. Semimodularity prevents the inputs from changing on all unstable
gates. Timing constraints prevents the outputs from changing for the three right gates.

3.7.2 Semimodularity—new definition

A gate output change under the new execution model is enabled if and only if the

gate is unstable and the transition that causes the output change is not blocked by

relative timing constraints. This loosens up semimodularity so that if the gate’s

output is blocked by a timing constraint, the function of the inputs can make a

transition and make the gate stable. The legal and forbidden execution possibilities

for the inputs and outputs are illustrated in Figure 3.14.

In the old definition of semimodularity, an unstable gate can only become stable

by changing its output. With relative timing constraints in consideration, we also

allow a gate to become stable by changing an input, if and only if the output

transition was blocked by one or more relative timing constraints. The legal and

forbidden execution possibilities are illustrated in Figure 3.14 for an inverter gate

with function out = ¬(in).

As before, semimodularity requires that a digital signal change—when

enabled—must happen before it is disabled. In case the output transition is blocked

31

out- out-out+out+ out+ out±out-

00 00 11 11 00 11 bb

in- in-in+in+ in+ in±in-

10 10 01 01

b¬b01 10

Figure 3.14: Under the new definition of semimodularity, the three right gates illustrate
that output transitions are blocked by one or more relative timing constraints. For these
three gates, inputs are allowed to change and make the gate become stable.

by one or more relative timing constraints, the inputs may change to make that

gate stable. This leads to the following definition of semimodularity in the new

execution model with relative timing:

Definition 3.7.2. An unblocked unstable gate sees no internal changes until its

output changes, i.e.
{
out 6= F (in1, · · · , inn)

}
∧
[{

out ∧ ¬block(out−)
}
∨
{
¬out ∧ ¬block(out+)

}]

→
[{

out′ = F (in1, · · · , inn)
}
∨ (out′ = out)

]
∧
{
F (in′1, · · · , in′n) = F (in1, · · · , inn)

}

Definition 3.7.2 adds an unblocked condition on Definition 3.7.1, and reads as

“If a gate is unstable and the output transition is not blocked, then the output

may change while the function of the inputs stay the same.”

32

3.8 Example - C element

Muller C element is often used in asynchronous circuits as a state holding element.

This section uses a C element as an example to go over the specification, an imple-

mentation, and how relative timing constraints and the enhanced semimodularity

works. The circuit shown in this section is intended to be speed-independent—i.e.

wire delays can be ignored.

C
in_A

in_B
out_C

Figure 3.15: Muller C element. When the two inputs have the same value, the output
becomes that value. When inputs are different, the output holds its state acting as a
state holding element.

3.8.1 Specification

A specification shows the intended circuit behavior. For a C element, when two

input values match, the output follows the value of the inputs. The output remains

in this state until both the inputs transition to the other state. To express the

specification, we use extended delay insensitive (XDI) semantics [20].

An XDI description consists of three parts. First is the list of input and output

signals. Second is the interface specification which specifies a global sequence

of transition events on the channels. Third is the handshake protocol which

lists rules that should be obeyed per channel for a correct handshake. Since C

element does not have a handshake protocol, the third part is empty from the

XDI description and there’s only the inputs and outputs signal declaration and

the interface specification shown in Figure 3.16a.

For the C element, the inputs are in_A, in_B, and output is out_C. The

interface specification(S) describes that in_A happens and in_B happens, and

33

then out_C happens. Input events on the interface specification can be moved

earlier in the specification sequence, and output events can be moved later in the

sequence, as long as they follow the rule specified in the handshake protocol. For

the C element, this means that behavior in_A?; in_B?; out_C! in addition to

in_B?; in_A?; out_C! is also supported.

Figure 3.16b shows the intended behavior in a state transition graph with the

initial state, S0, marked with a small triangle on top of the node. In this graph,

A refers to in_A, B to in_B, and C to out_C.

1 Inputs and Outputs:
2 I = { in_A, in_B}
3 O = { out_C }
4
5 Interface specification(S)
6 S = in_A? ; in_B?; out_C!; S

(a) XDI description

A

B

B

A C

s0 s3

s1

s2

(b) State transition graph

Figure 3.16: Speed-Independent Muller C element specification. Transition A in the
state transition graph on the right refers to in_A in XDI description on the left.

3.8.2 Implementation

When it comes to implementation, the environment also needs to be part of the

implementation. We modeled a C element using NAND gates with its environment

modeled as inverters as shown in Figure 3.17. After the initial inputs from the

environment, the next inputs can come only after the output has been produced

by the circuit. This environment is not speed-independent, but it represents a

general environment where C-to-A path and C-to-B path are modeled separately.

The specification checks the transitions on wires A, B, C. We address the circuit

gates by their output signal name by using a lower case alphabet. Gates a, b, c are

34

initially 0, and all gates are stable except for the two inverter gates a and b in the

environment.

c

A

B

C

a

b

0

0

0

ac

bc

1

1

1

ab

Environment

c

A

B

C

0

0

0

ac

bc

1

1

1

ab

Figure 3.17: A speed-independent C element NAND implementation (left). The
environment model represents a general environment where C to A path and C to B
path are modeled separately.

From this implementation, a state transition graph including all the internal

signals (ab, ac, bc) can be created as shown in Figure 3.18. This is similar to the

state transition graph that [50,62] has, but with the difference that we don’t enforce

semimodularity. The state graph in Figure 3.18 shows parts of the reachable state.

In this Figure, dashed edges indicate there are more states that are reachable, but

not shown.

35

a+b+

b+a+

ab-

c+

a-b-

a-b-

a-b-

a-b-

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc- ab
+

ab
+

ab
+

ab
+

ab
+

ab
+

ab
+

a-b-

c- c-

ab
+

ab
+

ab
+

ac
+

ac
+ bc+

bc+

ab
+

ab
+

b- a-

c-

Figure 3.18: State transition graph of C element in NAND implementation as done
in [50, 62], but without semimodularity constraint. States are modeled with solid dots.
The initial state is marked with a small triangle next to the dot. Dashed edges indicate
there are further possible states but not shown.

36

3.8.3 Applying RT constraints and enhanced semimodularity

The timing constraints derived in [9] for the C element are based on the old

definition of semimodularity, using a timing constraint set shown in Figure 3.19a.

This solution satisfies the specification, but does not consider the fact that

semimodularity and relative timing constraint overlaps with each other. With

our enhanced semimodularity definition, we derived four RT constraints shown in

Figure 3.19b that give more choices, yet satisfy the specification.

These RT constraints can be generated through formal verification using a

model checker. Generating and deriving these RT constraints will be discussed

in the next Section of this thesis. For small examples such as the C element, it

is possible to visualize how the RT constraints restrict certain paths in a state

transition graph.

c+→ ac− < a−
c+→ bc− < b−
c+→ ac− < b−
c+→ bc− < a−

(a) RT Set 1

c+→ ac− < a−
c+→ bc− < b−
c+→ ac− < c−
c+→ bc− < c−

(b) RT Set 2

Figure 3.19: Different RT constraints. RT Set 1 was generated using the old definition
of semimodularity, while RT Set 2 was generated using the new definition.

Looking at Figure 3.20, solid arrow exiting a state indicates possible transitions

in that state while a dashed gray arrow indicates transition is no longer possible

because the RT constraint set is restricting such transition from that state.

Figure 3.20a shows the state transition graph with RT Set 1, and Figure 3.20b

with RT Set 2. This shows that using the new definition of semimodularity, the

real circuit behavior can be more flexible than the old semimodularity model allows

it to be.

37

c+

a-b-

a-b-

a-b-

a-b-

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc- ab
+

ab
+

ab
+

ab
+

ab
+

ab
+

a-b-

c- c-

ab
+

ab
+

ab
+

ac
+

ac
+ bc+

bc+

ab
+

ab
+

b- a-

c-

ab
+

(a) With RT Set 1

a-b-

c+

a-b-

a-b-

a-b-

a-b-

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

ac
-

a-

ac
+

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc-

bc+

b-

bc- ab
+

ab
+

ab
+

ab
+

ab
+

ab
+

c- c-

ab
+

ab
+

ab
+

ac
+

ac
+ bc+

bc+
ab
+

ab
+

b- a-

c-

ab
+

S4

S5

S6

S7

S8

(b) With RT Set 2

Figure 3.20: Snapshot of Figure 3.18 showing the differences in reachable states with
different timing constraint sets applied. Dashed gray lines are not reachable.

Next, let’s look at the internal values of an event trace when using RT Set 2

from Figure 3.19b and the state transition graph in Figure 3.20b. Figure 3.21 shows

the states and event trace leading up to what would have been a semimodularity

conflict under the old definition, but continues fine under the new definition:

S0
a+−→ b+−→ S2

ab−−→ S3
c+−→ S4

bc−−→ S5
b−−→ S6

ab+−→ S7
bc+−→ S8

The transitions from initial state S0 to state S8 are allowed under both the old

and new definitions of semimodularity. All four relative timing constraints kick in

at state S4, after POD event c+, and start blocking the LATE events, a− and b−

and c−, until the constraints are released by the corresponding EARLY events,

ac− or bc− or both. Event b− is released first, in state S5. The other two remain

blocked up to and including state S8.

38

c+

b-bc+

state = S8 state = S7 state = S6 state = S5

c

A

B

C

a

b

1

0

1

ab

ac

bc

1

0

1

a-

ac-

ab+

bc-

a+
b+

ac-

c

A

B

C

a

b

1

0

1

ac

bc

1

1

0

ab

c

A

B

C

a

b

1

0

1

ab

ac

bc

0

1

0

c

A

B

C

a

b

1

0

1

ab

ac

bc

1

1

1

c

A

B

C

a

b

1

0

1

ac

bc

1

0

1

ab

with old semi-modular definition with new semi-modular definition

c

A

B

C

a

b

1

1

1

ac

bc

0

1

0

ab

c

A

B

C

a

b

1

1

1

ac

bc

0

1

1

ab

c

A

B

C

a

b

1

1

0

ac

bc

0

1

1

ab

c

A

B

C

a

b

0

0

0

ac

bc

1

1

1

ab

c

A

B

C

a

b

1

1

0

ac

bc

1

1

1

ab

ab-

state = S0 state = S2 state = S3 state = S4

c

A

B

C

a

b

0

0

1

ac

bc

1

0

1

ab

c

A

B

C

a

b

0

0

1

ac

bc

1

1

1

ab
state = error state = S9 state = S10 state = S11

ac+

Figure 3.21: Event trace in the new execution model with RT Set 2. Events from S0 to
state S8 are allowed under the old and new definitions of semimodularity. With the old
definition, the trace cannot exit S8 without violating relative timing or semimodularity.
With the new definition, there is no semimodularity violation and the trace proceeds
correctly from state S8 to S11.

Under the old definition, the trace stops at S8—execution cannot exit S8,

because all possible exits would violate either a relative timing constraint or

semimodularity. The forbidden exit causing the semimodularity conflict is shown

in the bottom left dash lined box in the picture: event ac− causes unstable gate

c to see its boolean input function ¬(ab ∧ ac ∧ bc) change from 1 to 0, before its

output changes, i.e. before c−.

The new definition does not detect any semimodularity conflict: c− is not

enabled in S8, because it is blocked by a relative timing constraint, as indicated by

the diagonal stripes (\) for gate c. Under the new definition, execution proceeds

correctly from S8 to state S11, and from there back to the initial state.

So, the execution model with Definition 3.7.1 (old semimodularity) finds the

39

circuit with the four relative timing constraints incorrect. With Definition 3.7.2

(enhanced semimodularity), it finds that the combination behaves as specified. In

other words, the four constraints from RT Set 2 are falsely rejected under the old

definition, Definition 3.7.1, and accepted under the new one, Definition 3.7.2.

40

4

Modeling

A model checker checks the specification written in properties against a model of

a system. We start by building a model of the system that we would like to verify.

Once the model is built, the model checker checks if it satisfies the the properties.

The model checker automatically performs an exhaustive check. If a property turns

out to be false, a counterexample trace is generated. In case of a timing verification,

the user will inspect and analyze the counterexample trace to pinpoint the source

of the error and correct the problem by adding timing constraints. This process is

repeated until either all properties return true, or the system faces a state space

explosion problem.

Models expressed in formal language
 -Modules
 -Hierarchy
 -Initialized/non-initialized Variables
 -Case Statements
 -Non-determinism

Implementation Specification

Properties
expressed in

temporal logic

Figure 4.1: Model checker overview. Model of the system is created as an
implementation. Properties expressed in temporal logic describes the specification. The
model checker goes through the implementation and checks whether the properties hold
true or not. The direction of the block arrow indicates that some information is passed
on to the Specification. This can be thought of as the Specification observing what the
Implementation is doing.

What model checker should one use for this task? The two basic choices are a

general-purpose model checker that is widely used or a model checker customized to

fit the self-timed computation theory of one’s choice. Analyze and Artist in [52,62]

are examples that use customized model checkers with a trace semantics and a

41

CCS based logic conformance relation. They model and verify that the timing-

constrained circuit meets the protocol. Process Spaces and FIREMAPS in [30,31]

are examples that use the theory of Delay-Insensitive Algebra for both the modeling

and the model verification task.

A major advantage of a custom model checker is that the theory for the

underlying conformance relation and algebraic model is already built into the

model checker. On the other hand, a custom model checker tends to have few

and highly specialized users and few test examples, and may be flawed by various

subtle bugs that make it hard to use for new examples. A major advantage of a

widely used open-source general-purpose model checker is that it has many users

and many diverse test examples, and so its bugs tend to be discovered and repaired.

For this reason, we used NuSMV [6] derived from CMU SMV [24] to verify the

correctness of our design.

4.1 Modeling the Implementation

An implementation of a system is composed of a circuit, an environment, and

timing constraints as shown in Figure 4.2. Each component generates an event

which refers to a transition on a gate or wire. Remember that a signal transition

is a signal change from low to high or high to low, as explained in Chapter 3. Each

component may monitor and respond to each others events. In the initial stage of

modeling the implementation, timing constraints may not be known, so we start

with the circuit and the environment model. Note that it is possible to start with

a known “starter-set” of timing constraints such as the trivial ones or from past

experience within the same circuit family. This will be later shown in the following

chapters.

42

The circuit performs the main functionality while the environment supplies

inputs, according to the specification. If the circuit doesn’t behave according to

the specification, timing constraints are added to avoid the wrong behaviors.

Implementation

Environment

Circuit

Timing

constraints

Figure 4.2: Implementation is a parallel composition of circuit, environment, and timing
constraints. The arrows indicate that components may monitor and respond to each
others events.

4.1.1 Circuit

We code the behavior of a combinational logic gate in a generic MODULE, called

cgate, with formal parameters set and init_val and an ASSIGN block to set and

initialize output val as shown in Figure 4.3b.

init_val

set
val

MODULE
cgate

(a) Model of a combinational logic gate

1 MODULE cgate(set, init_val)
2 --set : gate function, also known as set function of the gate
3 --init_val : initial value for output
4 --val : gate output
5 VAR
6 val : boolean;
7 ASSIGN
8 init(val) := init_val;
9 next(val) := case

10 set = val : val; --if set and val are same, then no change required
11 TRUE: set; --otherwise, change the output to set
12 esac;
13 FAIRNESS running

(b) NuSMV code for cgate module

Figure 4.3: MODULE cgate models a generic combinational logic gate. Initial value of
the output val comes from init_val when instantiating this module. Depending on the
case statement, the set function may get copied to the output as shown in line 11.

43

The parameter set is a function with a Boolean result. For example, the set-

function for a 2-input AND gate which has in1, in2 as inputs are represented as

set = (in1 & in2). The “&” symbol in NuSMV is a conjunction(∧) operator. Line

8 of Figure 4.3b assigns the initial value of the output from init_val, while the

case statement in line 9-12 determines whether or not the set function gets copied

over to the output. The case statement here simply states that when the current

output val is different from the set value, the set value gets copied over to the

output val. The case statement in its current form is trivial and could have used

a single assignment next(val) := set, but will become more complex as we add

timing constraints and allow stuttering on the output of the gates.

The modules in NuSMV can behave synchronously or asynchronously. The

circuit modules are typically instantiated with the keyword process as shown in line

7–11 in Figure 4.4b to be instantiated as an asynchronous process [6] and executed

by interleaving its operation with those of other process instances. The selection

of processes are non-deterministic and each process has a special Boolean variable

called running. This special Boolean variable becomes TRUE when the process is

selected, and only one running may be TRUE at any time. This causes interleaving

of different process operations. For fair interleaving, FAIRNESS running is added

in each module that instantiates these processes shown in line 12 in Figure 4.4b;

this prevents each process from never being selected. The connections between

modules are made through shared variables, as shown in Figure 4.4b.

44

c

A

B

0

0

0

ac

bc

1

1

1

ab

(a) Speed-independent C element implemented with NAND gates. Copy of Figure 3.17.

1 MODULE main
2 VAR
3 --inputs can randomly change representing a free environment
4 A: boolean;
5 B: boolean;
6 --two input nand gate
7 ab: process cgate (!(A & B), TRUE);
8 ac: process cgate (!(A & c), TRUE);
9 bc: process cgate (!(B & c), TRUE);

10 --three input nand gate
11 c: process cgate (!(ab.val & ac.val & bc.val), FALSE);
12 FAIRNESS running

(b) NuSMV code for C element main module

Figure 4.4: Composition of cgate instances for NAND gate implementation of a C
element. The gates are instantiated in the module main. The connections are made by
sharing each other’s variables, for instance cgate instance c.

While modeling the circuit, we also model semimodularity which helps with

finding problems related to protocol failures. It’s not always necessary to keep

semimodularity, but acts as a helper property. Protocol properties are discussed

in Section 4.3 and Figure 4.19.

4.1.2 Environment

An environment is what surrounds the circuit and provides inputs while the circuit

produces the outputs. Figure 4.5 shows the circuit with a randomly behaving

environment. Compared to Figure 4.4a, there are two additional buffer gates,

a and b, instantiated as process cgate modules on the inputs of the circuit for

interleaving.

45

c

A

B

C

a

b

0

0

0

ac

bc

1

1

1

ab

Figure 4.5: C element with randomly behaving environment. The buffers enforce that
input events are interleaved.

Since we are only interested in the inputs that are provided to the circuit

according to the circuit’s specification, one way to filter the environment is to

use invariants to ignore the unwanted inputs. Another approach, which we use

in our model, is to model the environment as part of the implementation, which

provides the inputs that the circuit expects according to the channel part of the

specification. We define separate sub environment for each channel. Per channel,

the environment responds to the handshake events generated on the channel as

output by the circuit. The environment responds by generating the next handshake

event on the channel as input to the circuit. The environment response is lazy

but the response is correct as long as the circuit obeys its part of the handshake

protocol on the channel. Components that operate on handshake protocols are

also modeled this way since we know what kind of environment the modules are

expected to be used in. For the C element, we add inverter gates for input A and

B which come from output c as shown in Figure 4.6a. After the initial event from

the environment, this allows the inputs to change only after the output changes.

46

c

A

B

C

a

b

0

0

0

ac

bc

1

1

1

ab

Environment

(a) NAND implementation of C element with an environment that has a causal relation
between c-a and c-b. New inputs arrive only after the output changes.

1 MODULE main
2 VAR
3 --inverters to model an environment
4 a: process cgate (!c.val, FALSE);
5 b: process cgate (!c.val, FALSE);
6 --two input nand gates
7 ab: process cgate (!(a.val & b.val), TRUE);
8 ac: process cgate (!(a.val & c.val), TRUE);
9 bc: process cgate (!(b.val & c.val), TRUE);

10 --three input nand gate
11 c: process cgate (!(ab.val & ac.val & bc.val), FALSE);
12 FAIRNESS running

(b) NuSMV code for C element that has environment and circuit

Figure 4.6: Composition of cgate modules for C element. Each module is assigned as
a process so that only one module is active at the same time. Each inverter gate in the
environment has a set function ¬c.val, which means it takes the negation of gate c’s
output as its input. Gate ab has a set function of ¬(a.val ∧ b.val).

A more realistic environment may stall A and B as long as it wants. To model

a stalling environment, we add a formal parameter called lazy in module cgate

and make it TRUE for all environment gates. When the lazy variable is TRUE,

the cgate is allowed to stall the output indefinitely. This is done by altering

the case statement in Figure 4.7b line 12 such that the next output val can

non-deterministically keep the current value of val or change it to match the

value of set.

47

init_val
set val

MODULE
cgatelazy

(a) Module cgate with lazy

1 MODULE cgate(set, init_val, lazy)
2 --set : gate function, also known as set function of the gate
3 --init_val : initial value for output
4 --lazy : allows stalling the output
5 --val : gate output
6 VAR
7 val : boolean;
8 ASSIGN
9 init(val) := init_val;

10 next(val) := case
11 set = val : val; --if set and val are same, then no change required
12 lazy: {val, set}; --if lazy, output can either change or stall
13 TRUE: set; --otherwise, change the output to set
14 esac;
15 FAIRNESS running

(b) MODULE cgate with lazy. As environment gates are marked lazy, they can stall
their outputs indefinitely.

1 MODULE main
2 VAR
3 --inverters to model a lazy environment
4 a: process cgate (!c.val, FALSE, TRUE);
5 b: process cgate (!c.val, FALSE, TRUE);
6 --two input nand gates
7 ab: process cgate (!(a.val & b.val), TRUE, FALSE);
8 ac: process cgate (!(a.val & c.val), TRUE, FALSE);
9 bc: process cgate (!(b.val & c.val), TRUE, FALSE);

10 --three input nand gate
11 c: process cgate (!(ab.val & ac.val & bc.val), FALSE);
12 FAIRNESS running

(c) NuSMV main module with environment and lazy parameter

Figure 4.7: An environment behaving according to the circuit’s specification is modeled
as part of the implementation. With the addition of lazy parameter, each environment
gate is allowed to stall its output as long as it wants.

4.1.3 Modeling RT constraints

A relative timing constraint is modeled with a set-reset type finite state machine

as shown in Figure 4.8 which was outlined in [9]. We use a more complex state

machine which can handle guard conditions in the later chapters, but for now, a

simple version is shown here for easier understanding.

Each relative timing constraint has this state machine and they operate

independently in a synchronous manner, meaning that the constraints are always

evaluated every time any event happens.

48

POD event

(set)
Early event

(reset)

RT

FALSE

RT

TRUE

Figure 4.8: RT constraint variable is represented as a state machine. When the POD
event happens, the RT constraint variable is set to TRUE, which is used to block the
output of the Late event. When the Early event happens, the RT variable is reset making
RT FALSE so it no longer blocks the output of the Late event. This model assumes that
the POD and Early event are interleaved.

A transition on an output of a gate is referred to as an event. With some

exceptions, most relative timing constraints are initialized to FALSE, and only

become TRUE between the POD event and the Early event. When a relative

timing constraint is TRUE, it prevents the Late event until the Early event happens

and resets the RT value to FALSE. When a relative timing constraint is TRUE,

and the Early event has not occurred yet, a constraint placed on the gate producing

the Late event will disallow the output from changing.

In NuSMV, we model a relative timing constraint in a module called constraint,

with formal parameters pod, early, and init_val. The module has an ASSIGN

block to initialize output val, and a TRANS block to change the output val to

TRUE if pod becomes TRUE, or to FALSE as soon as early becomes TRUE. The

difference between ASSIGN and TRANS is as follows: The ASSIGN statement is

used for variable initialization and is executed only when the process is selected.

The TRANS statement is about a transition relation in terms of current and next

state variable, and is executed at all times.

49

init_val
pod val

MODULE
constraintearly

(a) Module constraint

1 MODULE constraint (pod, early, init_val)
2 VAR
3 val : boolean;
4 ASSIGN
5 init(val) := init_val;
6 TRANS
7 next(val) = case
8 !val & !pod & next(pod) : TRUE; --set RT
9 val & !early & next(early) : FALSE; --reset RT

10 TRUE : val;
11 esac;

(b) NuSMV code for the relative timing constraint model in Figure 4.8

Figure 4.9: Relative timing constraints module in NuSMV

To block an output transition due to the transition being a late event in an RT

constraint, module cgate is expanded with two more parameters: block_HI and

block_LO for blocking low-to-high and high-to-low transitions, respectively. The

changes in NuSMV code for the module cgate is shown in Figure 4.10.

1 MODULE cgate (set, init_val, lazy, block_HI, block_LO)
2 VAR
3 val : boolean;
4 ASSIGN
5 init(val) := init_val;
6 next(val) := case
7 (block_HI & !val & set) | (block_LO & val & !set) : val;
8 lazy: {val, set};
9 TRUE: set;

10 esac;
11 FAIRNESS running

Figure 4.10: MODULE cgate with additional code for blocking late events.

An overall picture of how the constraints work in relation with POD-early-late

in an example is shown in Figure 4.11.

50

a

b

c

d

path1

path2

(POD)

(Early)

(Late)

output of c is blocked
when RT=TRUE

init_val
pod val

RT
(MODULE
constraint)early

Figure 4.11: Example showing two paths. The RT constraint is a→ b ≺ c, which means
path1 is shorter than path2. Square boxes a, b, c, d are instances of module cgate. The
RT constraint module keeps track of POD and Early event. Upon executing process
cgate module instance for gate c which produces the Late event, the output transition is
blocked if RT is TRUE.

4.2 Checking Specification using Properties

A specification is a requirement of a system. The requirements are expressed in

properties using temporal logic for the model checker to perform an exhaustive

check against the implementation. An overview is shown in Figure 4.12.

Specification

Properties

Implementation

Environment

Circuit

Timing

constraints

Figure 4.12: Model-checking with implementation and specification. The implemen-
tation is composed of circuit, environment, and timing constraints. Specification is
expressed in properties and observes the behavior of the implementation checking whether
all properties hold true or not.

We write properties using a computational tree logic (CTL) language [7],

available in the model checker. CTL is a branching time logic, which can be

used to describe properties for paths. The syntax is to use one branch identifier

51

followed by a temporal operator which is again followed by another CTL expression.

Figure 4.13 summarizes branch identifiers and temporal operators.

Branch identifier Temporal operator

A For all paths X next
F in the future

E There exists a path G always
U until

Figure 4.13: Basic CTL syntax.

Some basic examples of expressing properties in CTL are shown in Figure 4.14,

where p is a CTL expression.

• AF p: “wherever you go, p will eventually be true".
• AG p: “for all futures p is true".
• EF p: “in at least one path, p will eventually be true".
• EG p: “in at least one path, p is true forever".

 AF p AG p EF p EG p

p

pp

p

pp

p

p

pp

p

p

p

p

Figure 4.14: Examples of CTL expressing properties from the top of the tree. p is a
CTL expression.

We check for safety property and liveness property. Safety in modeling means

that nothing bad happens. In terms of state transition graphs, this means we

never get into an error state. Liveness means that something good eventually

happens. In terms of state transition graphs, this can be seen as an action being

eventually executed with fair choice, making progress. Liveness requires that we

add FAIRNESS running on the process cgate modules. We enforce liveness by

52

adding progress properties enforcing that when the output is ready to make a

transition it must do so.

A

B

B

A C

s0 s3

s1

s2

(a) State transition graph

AG (c.val→ A [c.val U (!a.val & !b.val)])
AG (!c.val→ A [!c.val U (a.val & b.val)])
AG (AF !c.val)
AG (AF c.val)

(b) Safety and Liveness properties in a non-
lazy environment

Figure 4.15: The specification of the C element is expressed with four properties in CTL.
Whenever c.val is TRUE, it remains TRUE until both inputs a.val and b.val becomes
FALSE. The second property is similar from the first but from symmetry. The third and
fourth property is about making progress, where the output c.val or !c.val can’t stay
forever. This is assuming the environment is not lazy.

Figure 4.15 shows the specification and properties of a C element. In the

NuSMV code, the gate name followed by .val refers to the output of that gate.

For example, a rising transition of A from the state transition graph refer to !a.val

& next(a.val) in NuSMV. The four properties which check for safety and liveness

property shown in Figure 4.15b are added in MODULE main.

Similar properties but with a lazy environment was expressed in work done

in [1] as shown in Figure 4.16.

AG (c → (A [c U (!a & !b)]) | AG c)
AG (!c → (A [!c U (a & b)]) | AG !c)
AG ((!a & !b & c) → AF !c)
AG ((a & b & !c) → AF c)

Figure 4.16: Properties shown in [1] are similar to 4.15b but include laziness of the
environment.

Writing properties for a small circuit such as a C element is not that

complicated. However, more complex circuits that have a larger state space

tend to have more properties and the properties tend to become more complex.

53

We use an alternative method for generating properties directly from Extended-

Delay-Insensitive (XDI) specification which is explained in the next Section.

4.3 Using XDI Specifications as Monitor and Properties

The XDI specification, written in delay-insensitive algebra, can be used to create

a finite state machine which is a collection of all the correct behavior states. On

top of the correct states, we add edges with unexpected inputs or outputs leading

to an error state for every single node. This finite state machine is called Protocol

FSM. By using Protocol FSM, the burden of writing properties is reduced.

Specification

Properties

Protocol
FSM

Implementation

Environment

Circuit

Timing

constraints

Figure 4.17: Organization for model checker to verify single handshake components.
The protocol FSM which comes from an XDI specification also becomes part of
the implementation. The protocol FSM monitors the observable actions from the
implementation of environment, circuit, and timing constraints. The properties check
that the Protocol FSM does not get into an error state and that all legal states from the
specification are reachable. One other property that probes the circuit directly shown as
an arrow coming from the Circuit to the Properties performs a semimodularity check
which could help identifying trouble spots, but isn’t a requirement for the behavior
to be correct.

The Protocol FSM is also part of the implementation, and operates along the

side, monitoring the implementation model of circuit, environment, and timing

constraints. All the property checks except semimodularity checks are now

performed on the Protocol FSM. Safety properties ensure that error states are

not reachable and progress properties ensure that it is possible to make progress

54

and that all legal transitions are supported as possible implementations. The

semimodularity check comes directly from the implementation. Semimodularity

checks can be used to help identify problems earlier in the error trace, but may

not be essential for a correctly operating implementation. The organization of the

new implementation and specification is shown in Figure 4.17.

The C element’s XDI specification shown in Figure 3.16 is translated into a

Protocol FSM as shown in Figure 4.18. We add all the actions that lead to an

error state in this state machine and write properties such as safety, progress, and

bisimulation equivalence properties shown in Figure 4.19 line 20-31.

A

B

B

A

C

error

C

C

C

s1

s0

s2

s3

Figure 4.18: Boxes indicate the state is lazy and can be stalled. The triangle state
indicate that an output is pending so progress must be made. The Protocol FSMmonitors
the circuit’s behavior and changes states accordingly. This monitor assumes that the
environment behaves according to the input specification of the circuit. Illegal outputs
from each state leads to an error state. Illegal inputs can also be sent to an error state
but not shown in this FSM.

55

1 MODULE protocol (in_A, in_B, out_C)
2 VAR
3 state: {s0, s1, s2, s3, error};
4 ASSIGN
5 init(state) := s0;
6 TRANS
7 next(state) = case
8 --legal handshake transitions
9 state = s0 & (in_A != next(in_A)) : s1;

10 state = s0 & (in_B != next(in_B)) : s2;
11 state = s1 & (in_B != next(in_B)) : s3;
12 state = s2 & (in_A != next(in_A)) : s3;
13 state = s3 & (out_C != next(out_C)): s0;
14 --illegal handshake transitions
15 (state in {s0, s1, s2}) & (out_C != next(out_C)) : error;
16 --otherwise, remain in same state
17 TRUE: state;
18 esac;
19
20 --Safety Property
21 CTLSPEC AG state != error;
22
23 --Progress Property for transient states
24 CTLSPEC AG AF(state != s3) --SPEC !(EF EG (state=s3))
25
26 --All transitions are possible (Bisimulation equivalence)
27 CTLSPEC AG (state = s0 -> E[state = s0 U state = s1])
28 CTLSPEC AG (state = s0 -> E[state = s0 U state = s2])
29 CTLSPEC AG (state = s1 -> E[state = s1 U state = s3])
30 CTLSPEC AG (state = s2 -> E[state = s2 U state = s3])
31 CTLSPEC AG (state = s3 -> E[state = s3 U state = s0])

Figure 4.19: MODULE protocol which is generated from an XDI specification. This
module monitors the behavior of the implementation and changes states accordingly.
When an unexpected output is produced, the state becomes an error state. Safety
property on line 21 states that the error state is not reachable, and the progress property
on line 24 states that progress must be made when the output of c can change. The
choice equivalence properties on lines 27–31 spell out the choices of action that must be
available to the observed sub-system.

56

5

ARCtimer

In Chapter 3, the fundamentals and an enhanced version of semimodularity were

introduced. In Chapter 4, details of how modeling a C element was shown as an

example. This Chapter brings all the previous knowledge into a single framework

and shows how to model and verify handshake components. I call this framework

ARCtimer.

ARCtimer is the timing part of ARCwelder, a design compiler we use at the

ARC developed by Willem Mallon at Portland State University. ARCwelder is

the next version of the design compiler developed by Handshake Solutions [36].

ARCwelder stores descriptions of gate level designs for each component. I

add protocol description, RT constraint, and STA code generated from these

RT constraints and extend the library of components to a library of verified

components. This allows the designer to build a modular and scalable system

with timing closure.

Our building blocks are no longer cgates as was in Chapter 4, instead the blocks

are groups of cgates along with other modules which form a handshake component.

This Chapter focuses on control of handshake components. On the next Chapter,

I will add bounded bundled data (BBD) to the verification flow.

ARCtimer is a framework for modeling, generating, verifying, and enforc-

ing timing constraints for individual self-timed handshake components. The

constraints guarantee that the component’s gate-level circuit implementation

obeys the component’s handshake protocol specification. Because the handshake

57

G
e

n
e

ra
te

 t
im

in
g

 c
o

n
s
tr

a
in

ts
fr

o
m

 c
o

u
n

te
re

x
a

m
p

le
s

¬
F

F
.q

 ∧
 a

n
d

2
.v

a
l+

x
o

r_
in

1
.v

a
l-

in
1

_
R

-

F
F

.q
-

in
v
_

q
2

d
.v

a
l+

b
u

f_
c
k
.v

a
l+

1

1

 a
n

d
2

x
o

r_
in

1 F
F

b
u

f_
in

1
_

A
1

b
u

f_
o

u
t1

_
R

1

C
lic

k
 S

to
ra

g
e

 C
ir
c
u

it

in
v
_
q

2
d

x
n

o
r_

o
u

t1

b
u

f_
o

u
t1

_
R

2
b

u
f_

in
1

_
A

2

C
lic

k
 S

to
ra

g
e

 E
n

v
ir
o

n
m

e
n

t

ENV_out1

ENV_in1

o
u

t1
_
A

o
u

t1
_
R

in
1

_
R

in
1

_
A

b
u

f_
c
k

Q
D

L
L

C
li
c

k
 S

to
ra

g
e

 P
ro

to
c

o
l

 a
n

d
2

x
o

r_
in

1

F
F

in
1
_

R

in
1

_
A

in
1
_

D
o

u
t1

_
D

o
u

t1
_
R

o
u

t1
_

A

C
li
c

k
 S

to
ra

g
e

 C
ir

c
u

it

x
n

o
r_

o
u

t1

F
F

_
D

in
v
_

q
2

d

1

D
e

s
ig

n
:
F

ib
o

n
a

c
c
i

J
o

in

(a
d

d
)

C
3

c
h

5

S
to

ra
g

e

C
4

S
to

ra
g

e

C
2

S
to

ra
g

e

C
1

1

0
1

c
h

1

c
h

2
c
h

3

c
h

4

re
s
u

lt
s

C

h
ip

 D
e

s
ig

n

D
e

s
ig

n
 L

ib
ra

ry

C

o
m

p
o

n
e

n
t

T
im

in
g

 P
a

tt
e

rn
 G

e
n

e
ra

ti
o

n
 a

n
d

 V
e

ri
fi

c
a

ti
o

n

e
v
a

lu
a

te
ti
m

in
g

c
o

n
s
tr

a
in

ts

w
ir
e

 &
 g

a
te

d

e
la

y
s

O
K

?

re
p

a
ir
 i
n

v
a

lid

ti
m

in
g

c
o

n
s
tr

a
in

ts

N
O

Y
E

S

1

G
U

I

S
T

A

in
_

R

o

u
t_

A

in
_

A

o

u
t_

R

in
_

D

o

u
t_

D

G
a

te
 l
e

v
e

l
n

e
tl
is

t

S
to

ra
g

e
 C

4
c
h

4

 c

h
5

P
a

rs
e

r

c
h

ip

In
p

u
t

 {

in
1
_

R
,
o

u
t1

_
A

}

O
u

tp
u

t

 {

in
1
_

A
,
o

u
t1

_
R

}

H
a

n
d

s
h

a
k

e
 e

v
e

n
t

o
rd

e
ri

n
g

 (

{i
n

1
_

R
},

 {
in

1
_
A

})

 (

{o
u

t1
_
R

},
 {

o
u

t1
_

A
})

H
a

n
d

s
h

a
k

e
 p

ro
to

c
o

l
(P

)

P
 =

 i
n
1

_
R

;
in

1
_
A

;
o

u
t1

_
R

;
o

u
t1

_
A

;
P

C
li
c

k
 S

to
ra

g
e

 T
im

in
g

Q
D

Q
D

C
lic

k
 S

to
ra

g
e

 P
ro

to
c
o

l

05
3 4

2

6 1

7

out1_A

in
1
_

A

out1_A

o
u

t1
_
R

in
1

_
A

in1_R

out1_A

in
1
_

A

in
1
_
R

in
1
_
R

out1_R

out1_R

c
o

m
p

o
n

e
n

ts
d

a
ta

 t
y
p

e
s

fu
n

c
ti
o

n
s

c
ir
c
u

it
s

S
te

p
 1

H
a

n
d

s
h

a
k

e

C
o

m
p

o
n

e
n

t

c
o

m
p

o
n

e
n

t
n

e
tw

o
rk

S
te

p
 2

M
o

d
e

l

C
h

e
c

k
e

r

G
e

n
e

ra
liz

e
 t
o

 t
im

in
g

 p
a

tt
e

rn
s

a
n

d
2

.v
a

l+
x
o

r_
in

1
.v

a
l-

x
n

o
r_

o
u

t1
.v

a
l-

b
u

f_
c
k
.v

a
l-

in
v
_
q

2
d
.v

a
l±

in
1
_

R
±

o
u

t1
_
A

±

M
o

d
u

la
r

S
T

A
 c

o
d

e

p

a
th

-d
e

la
y
 s

e
a

rc
h

c
h

a
n

n
e

l
s
u

b
ro

u
ti
n

e
s

s
u

b
ro

u
ti
n

e
 c

a
lls

A
d

d
 c

h
e

c
k
p

o
in

ts
 t
o

 t
im

in
g

 p
a

tt
e

rn
s

to
 s

im
p

lif
y
 S

T
A

 c
o

d
e

a
n

d
2

.v
a

l+

x
o

r_
in

1
.v

a
l±

x
n

o
r_

o
u

t1
.v

a
l±

b
u

f_
c
k
.v

a
l±

in
1

_
R

±

o
u

t1
_

A
±

F
F

.q
±

ti
m

in
g

c
o

n
s
tr

a
in

ts

S
te

p
 4

S
ta

ti
c

T
im

in
g

A
n

a
ly

s
is

S
te

p
 3

T
im

in
g

P
a

tt
e

rn
s

g
a

te
 l
e

v
e

l
n

e
tl
is

t

in
v
_

q
2

d
.v

a
l±

F
ig

u
re

5.
1:

R
ef
er
en
ce

di
ag

ra
m

fo
r
th
is

C
ha

pt
er
,i
llu

st
ra
ti
ng

th
e
ti
m
in
g
ve
ri
fic

at
io
n
co
nt
ex
t
an

d
fr
am

ew
or
k
of

A
R
C
ti
m
er
.
T
he

D
es
ig
n
Li
br
ar
y
in

th
e
ce
nt
er

co
lu
m
n
co
nn

ec
ts

th
e
C
hi
p
D
es
ig
n
flo

w
on

th
e
le
ft

an
d
th
e
C
om

po
ne

nt
T
im

in
g
P
at
te
rn

G
en

er
at
io
n

an
d
V
er
ifi
ca
ti
on

fr
am

ew
or
k
(A

R
C
ti
m
er
)
on

th
e
ri
gh

t.

58

protocols are delay insensitive, self-timed systems built using ARCtimer-verified

components are also delay insensitive.

ARCtimer comes early in the design process as part of building a library of

verified components for later system use. The library also stores static timing

analysis (STA) code to validate and enforce the component’s constraints in any

self-timed system built using the library. The library descriptions of a handshake

component’s circuit, protocol, timing constraints, and STA code are robust to

circuit modifications applied later in the design process by technology mapping or

layout tools. This Chapter identifies critical choices and explains what modular

timing verification entails and how it works.

Verifying gate-level signals against a handshake protocol is to identify and

verify the essential internal timing constraints that make or break the component’s

protocol description.

We introduce ARCtimer, a framework set up precisely to identify internal

timing constraints. ARCtimer targets pattern-based circuit families of handshake

components – circuit families that use design patterns to describe the circuit im-

plementations of their components. Families that do so include Micropipeline [54],

Tangram and Balsa and Handshake Solutions [3, 11, 46], GasP [53, 55], QDI with

precharge buffers [3, 23,43], Mousetrap [45], and Click [36].

5.1 Timing Verification Context

Figure 5.2 shows three stages in a typical chip design flow for self-timed circuits.

The stages are marked with the keywords GUI (Graphical User Interface), Parser,

and STA (Static Timing Analysis). Other stages, for instance simulation and

testing and layout placement and routing, are omitted. Each stage receives

59

information from the Design Library.

Design: Fibonacci

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

0 1

ch1

ch2ch3

ch4

results

evaluate
timing

constraints

wire & gate
delays

OK?

repair invalid
timing

constraints

NO

YES

GUI

STA

in_R out_A

in_A out_R

in_D out_D

Gate level netlist

Storage C4
ch4 ch5

Parser

chip

component network

gate level netlist

Component

Design Library

Component
Component

Circuit
Implementation

Handshake
Protocol

Timing
Constraints

Chip Design

Figure 5.2: Overview of a typical chip design flow for self-timed circuits, showing an
example of a Fibonacci number generator design. Simulation and testing and layout
placement and routing are omitted. Each part of this Figure is discussed in more detail
in the following subsections.

60

5.1.1 Design Library

An ideal design flow would support a variety of circuit families that could be

mixed and matched based on the desired speed, power, energy efficiency, time-

to-market or backward compatibility needs for the system or sub-systems. The

Design Library for such a flow should store GUI, circuit, and protocol descriptions

for the components of each family. Such a library should also store the timing

constraints for each component.

5.1.2 GUI

Using a GUI (Graphical User Interface) or an equivalent written user interface,

one can formulate a network of components connected by handshake channels.

The GUI design in Figure 5.3 connects four components assembled to generate the

Fibonacci sequence 1, 2, 3, 5, 8, etc on the results channel.

Design: Fibonacci

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

0 1

ch1

ch2ch3

ch4

results

Figure 5.3: Fibonacci design using a GUI. Components are connected by handshake
channels. Arrows indicate the direction of data.

Our GUI-formulated designs use function calls to represent data operations and

a handshake protocol based on full and empty channels with data types. A full

channel has valid data; an empty channel has data not yet valid or no longer used.

The Storage components in the Fibonacci design act when their incoming channels

are full and their outgoing channels are empty. When they act, they:

61

• copy the incoming data and forward the copied data,

• fill their outgoing channels, making them full, and

• drain their incoming channels, making them empty.

The Join component in Figure 5.3 adds the numeric data on its two incoming

channels and forwards the sum. Having no storage facility for data, it waits to

drain its incoming channels until all its outgoing channels are empty. This ensures

that the incoming data remain stable until the sum is stored and acknowledged.

The Fibonacci design starts with all channels empty except for channels ch1,

ch2 and ch3 that start full with initial data values respectively 1, 1, and 0 –

as indicated in Figure 5.3 and Figure 5.4 (a). The Join forwards the sum of 0

and 1, i.e. 1, both to the results channel and to channel ch4 going into Storage

component C4, shown in Figure 5.4 (b). Storage C4 forwards the Fibonacci result

to Storage C1, and in doing so it fills ch5 and drains ch4, shown in Figure 5.4 (c).

This enables the Join to drain channels ch2 and ch3, thus enabling Storage C2 to

act, shown in (d)–(e). C2 acts by storing the data value 1 proffered over ch1 and

sending it on to ch3, thereby making ch3 full and ch1 empty, shown in (f). This in

turn enables Storage C1 to store and forward the new Fibonacci result 1 onto ch1

and ch2, fill ch1 and ch2, and drain ch5. The design is now back in a state similar

to its initial state, with all channels empty except for ch1, ch2, and ch3 that have

the next set of data values: 1, 1, 1 respectively. The Join’s next Fibonacci result

will be 2.

62

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

0 1

ch1

ch2ch3

ch4

1 .

1

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

0 1

ch1

ch2ch3

ch4

1 1
Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

0 1

ch1

ch2ch3

ch4

. .

.

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

. .

ch1

ch2ch3

ch4

1 .

1

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

1

1 1

ch1

ch2ch3

ch4

1 .

.

Join
(add)
C3

ch5

Storage

C4

Storage

C2

Storage

C1

.

1 .

ch1

ch2ch3

ch4

1 .

1

.

C3 C4

C1 C2

(a) (b) (c)

(f) (e) (d)

C3

Figure 5.4: Fibonacci circuit example. Empty (drained) channels are marked with “.”
over the channel. For this Figure only, components are gray colored if no handshake
events are possible. Steps (a) through (f) shows the results changing from no data to 1.
Step (f) is similar to (a), but with new data for Join-C3

5.1.3 Parser

The Parser takes as input a component network from the GUI and expands it into

a gate-level netlist for the protocol and circuit family selected by the user.

From the Fibonacci design in Figure 5.3, we chose a bundled-data two-phase

non-return-to-zero (non-RTZ) handshake protocol, which uses a request wire, an

acknowledge wire, and a bundle of wires with data. The gate-level netlist for

Storage C4, shown in Figure 5.5, belongs to the Click circuit family [36].

in_R out_A

in_A out_R

in_D out_D

Gate level netlist

Storage C4
ch4 ch5

Figure 5.5: The GUI formulated Fibonacci design is parsed into a gate-level netlist.

63

There are several choices for expanding data functions, like the add function in

the Join. One choice is to keep them as function calls. Standard hardware descrip-

tion languages, such as Verilog, can mix structural and functional descriptions [41].

Another choice is to expand the datapath circuits separately and organize the

GUI formulation to optimize the flow of data. Standard design compilers excel

at automatically synthesizing combinational functions into gate-level netlists.

Automatically synthesizing sequential functions is more difficult, but possible when

the goal is to optimize worst-case performance. However, a major promise of

self-timed design is the ability to optimize average-case performance — in terms

of latency, throughput, power, energy, or any combination thereof. Partitioning

sequential functions into combinational functions that optimize average-case rather

than worst-case performance has thus far eluded design automation. Such

partitioning remains a collaborative effort between the designer and his or her

design compiler [5, 17,42,44,51].

5.1.4 STA

Static timing analysis (STA) [40] allows one to validate and repair timing

constraints in the gate-level netlist generated by the Parser. Well-known examples

of timing constraints for latches and flipflops are minimum clock pulse width,

setup time, and hold time. A self-timed Design Library also holds relative timing

constraints between end signals on paths that start at the same point but must

arrive at their end points in a pre-established sequence. The delay slack in each

constraint is parametrized and filled in during technology mapping.

A Technology Library for the chosen fabrication process will fill in further

details on gate and wire delays, minimum clock pulse widths, etc. By using

64

Clock

Data

setup time hold time

time

Figure 5.6: In Click circuits, data are captured at the rising clock edge as depicted
in this timing diagram. Setup time is the amount of time from when the data must be
ready before the rising clock edge. Hold time is the amount of time that the data must
remain stable after the rising clock edge. Another way of describing the hold time is to
say that the active clock edge has to arrive before releasing the data.

timing information stored in the Technology Library with physical information

obtained from the chip, STA tools can compute and compare actual clock pulse

widths against required minimum clock pulse widths, and add extra delay to repair

inadequate pulse widths. The repairs go into the next chip layout iteration. STA

tools can also repair relative timing constraints by adding sufficient delay to the

“late path” with the pre-established later arrival.

There are several STA decisions that one must make, each with its own choices.

Below, we will emphasize three important STA decisions, and indicate the choices

that we have made.

The first STA decision to make is where to insert delay to repair an invalid

timing constraint. One could insert the delay at the end point of the pre-established

later end signal. Alternatively, one could insert the delay at a design-friendly

location that might be exercised less frequently per protocol cycle and therefore

retard the circuit performance less. Or one could choose a repair point that is

shared by multiple invalid constraints, thus reducing the need to insert multiple

delays.

We have chosen to specify a design-friendly delay insertion point for each timing

constraint. Each constraint stored in our Design Library identifies a delay insertion

point to use for its repair. The Design Library may indicate that the delay is

65

symmetric or that it retards only rising or only falling signals.

We formulate timing constraints from the viewpoint of a handshake component,

even though the constrained paths may start or briefly wander outside the

component. The STA code for a timing constraint stored in the Design Library

records when and where a constrained path enters and exits the component.

The “when” relates to a pre-established path signal sequence. The “where” is

always a handshake signal because all components connect only through handshake

channels. The STA code can identify a constraint with an external start point by

identifying the two handshake signals that jointly started there.1 Armed with

this information, an STA tool can instantiate the STA code stored in the Design

Library, fill in the sub-paths that are outside the component instance in the gate-

level netlist, and complete the path-finding process in a modular fashion.

The second and equally important STA decision to make is when to insert

delay. The many timing constraint instances associated with a gate-level netlist

might not be independent to each other. Inserting delay to repair one invalid

constraint instance may repair or invalidate others.

We use an iterative process similar to [36] for delay insertion. During STA,

we group timing constraint instances that share the same delay insertion point

instance2 for repair. For each delay insertion point and its group of constraints,

we maintain:

1We use this, for instance, to formulate bundled-data setup time constraints. Data flipflop
FF_D in the Storage component in Figure 5.7 (left-column-top) has a setup time constraint with
an external start point identified as the point where handshake signals in1_R and in1_D jointly
started.

2We may use “constraint” and “insertion point” when it is clear from the context that we mean
“constraint instance” and “insertion point instance.”

66

• a list with delays of the constraints in the group,

• the maximum delay in the list, and

• the sum of the delays in the list.

The delay value of a constraint indicates the least delay one must insert into the

gate-level netlist to make the constraint valid. The STA process stages delay

insertion iteratively, inserting more delay at only one insertion point per iteration.

As mentioned earlier, constraints are not necessarily independent, and so inserting

more delay into the netlist to repair one constraint may repair others as well, or

possibly damage them. Therefore, after each iteration the STA process re-computes

the delay requirements for all constraints. The process is as follows:

• Start the first STA iteration, with all delays set to zero.

• After each iteration, update the information for each insertion point. For

valid constraints, set the delay to zero. For invalid constraints, set the delay

to a re-computed minimum delay mismatch rounded up to the best suitable

delay device available in the Technology Library.

• If all groups have a maximum delay of zero then all timing constraints are

satisfied, iteration ends, and the netlist can proceed to the next stage in the

chip design.

• If one or more groups have non-zero delay, another iteration begins by adding

delay to the worst offender. As worst offender, our process chooses an

insertion point from those with the highest delay sum. The added delay

is the maximum delay listed for this worst offender.

67

This iterative process may temporarily decrease the number of valid constraints

from iteration to iteration, but it will converge unless constraints are circularly

dependent, which rarely happens. Circularly dependent constraints force one to

choose different delay insertion points or even different timing constraints.

Having discussed where to insert delay and when to insert it, we now come

to the third and most important STA decision to make: what STA engine to use.

Conventional STA tools are difficult to use on self-timed circuits because such tools

fail to handle logic loops gracefully. Simple treatment of such loops is acceptable

for the conventional design process because they are rare in clocked systems —

loops in clocked systems tend to start and end at flipflops. Self-timed circuits,

however, are rich with logic loops, as they must be because the unstable behavior

of closed logic loops animates self-timed behavior.

Graceful analysis of rise and fall times and delay of gates in logic loops requires

a two-pass process. A first pass computes output rise and fall times from gate size,

gate load, and input rise and fall times. This pass converges very quickly because

output rise and fall times are a very weak function, almost independent, of input

rise and fall times. A second pass computes the delay of each gate using the input

rise and fall times from the first pass.

Conventional STA tools combine those two passes into one concurrent process.

They split loops into linear acyclic paths to make a one-pass estimation effective.

Moreover, they commonly use a “clock,” rare in self-timed circuit designs, to guide

where to split each loop. Some self-timed design groups have invested heroic effort

in fresh ways to split loops in order to apply conventional STA tools to self-timed

systems [2, 36,38,52,61], but none work truly gracefully.3

3This applies also to the Click self-timed circuit family, which was developed specifically to
work with conventional STA and test tools [36]. Click circuits use only flipflops as state-holding

68

The time has come to use a two-pass process to analyze loops intact. Loops

are, after all, central to self-timed circuit design.

Our STA engine is set up to work self-standing or with an existing STA

tool. Its internal algorithms to find paths and calculate path delays are still

too coarse-grained to replace existing STA tools, but adequate for early design

exploration. We use the STA engine in self-standing mode to evaluate the timing

in new handshake components before we have formalized timing constraints using

ARCtimer — the timing verification framework discussed in the next section,

Section 5.2. We use the self-standing mode again to validate the STA code for

the timing constraints produced by ARCtimer and stored in the Design Library.

By inserting pseudo-random delays at multiple pseudo-randomly selected points in

the netlist we force the STA engine to recompute compensating delays, and then

we simulate and test the repaired netlist for correct functionality.

5.2 Timing Verification Framework

The spiral in Figure 5.7 shows the four main steps in our timing verification

framework4 for handshake components. We call this framework ARCtimer. The

steps use the keywords: Handshake Component (Step 1), Model Checker (Step 2),

Timing Patterns (Step 3) and Static Timing Analysis (Step 4). Step 1 begins and

Step 4 ends in the left column with the Design Library of component descriptions

for each circuit family supported by the design flow. This Figure illustrates the

steps for a Click Storage component with single incoming and outgoing channels.

elements, and have a flipflop in every loop. Some Click loops, however, go through flipflops and
fail to start or end at flipflops. Conventional STA tools require splitting such loops.

4We use the term “framework” because we already reserved the term “system” for large-scale
designs, and because the term “flow” is often associated with automatic solutions and we seek to
avoid that connotation.

69

Generate timing constraints
from counterexamples

¬FF.q ∧ and2.val+ xor_in1.val- in1_R-

FF.q- inv_q2d.val+ buf_ck.val+

Click Storage Protocol

 and2

xor_in1

FF

in1_R

in1_A

in1_D out1_D

out1_R

out1_A

Click Storage Circuit

xnor_out1

FF_D

inv_q2d

1

1

Input

 { in1_R, out1_A }

Output

 { in1_A, out1_R }

Handshake event ordering

 ({ in1_R }, { in1_A })

 ({ out1_R }, { out1_A })

Handshake protocol (P)

P = in1_R; in1_A; out1_R; out1_A; P

Click Storage Timing

1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_
in

1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL
QD

QD

Click Storage Protocol

0

5 3

4

2

6

1

7

o
u

t1
_

A

in1_A

o
u

t1
_

A

out1_R

in1_A

in
1
_

R

o
u

t1
_
A

in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

Step 1

Handshake

Component

Step 2

Model

Checker

Generalize to timing patterns

and2.val+ xor_in1.val-

xnor_out1.val-

buf_ck.val-

inv_q2d.val±

in1_R±

out1_A±

Modular STA code

 path-delay search

 channel subroutines

 subroutine calls

Add checkpoints to timing patterns
to simplify STA code

and2.val+

xor_in1.val±

xnor_out1.val±

buf_ck.val±
in1_R±

out1_A±

FF.q±

Step 4

Static

Timing

Analysis

Step 3

Timing

Patterns

 Design Library Component Timing Pattern Generation and Verification

inv_q2d.val±

Figure 5.7: The ARCtimer framework has four main steps. Starting from a circuit
implementation and XDI description of the specification, it goes through a model checker
– finding timing constraints, and generalizing them for use with STA tools. The whole
process starts and ends in the Design Library.

We use this framework in two ways, with and without priming. Without

priming, ARCtimer takes the circuit and protocol descriptions of a component

70

and helps us uncover all the timing constraints. The set of timing constraints thus

produced ensures that the circuit obeys the protocol. ARCtimer works well without

priming for simple components such as the Storage and Join in the Fibonacci design

in Figure 5.3. For complex, nondeterministic, or data-driven components the run

time and space limitations of underlying tools may necessitate priming ARCtimer

with a starter set of timing constraints and using ARCtimer to complete the set.

The sub-sections below explain each step in more detail.

5.2.1 ARCtimer Step 1 — Handshake Component

A handshake component responds to the full and empty state of its channels, as

we illustrated earlier in Section 5.1.2 for the Storage and Join components in the

Fibonacci design.

The circuit-level representations for full and empty channels depend on the

variant of the handshake protocol used. Many circuit families, including Click [36],

Micropipeline [54], and Mousetrap [45] use a two-phase non-return-to-zero (non-

RTZ) protocol with separate request and acknowledge wires to encode full or empty.

GasP uses a two-phase return-to-zero (RTZ) protocol [53,55] with a single statewire

to represent full or empty. Figure 5.8 shows the default representations for full and

empty in two-phase non-RTZ and two-phase RTZ handshake protocols.

In general, the control logic of a handshake component is an AND function

of the conditions necessary for it to act. Complex handshake components may

have multiple such AND functions to guard different actions. The Click Storage

component in Figure 5.9 has one such AND function — labeled and2.

The response of a handshake component usually changes the state of one or

more of the channels to which it responded. Many components drain full incoming

71

Time

full fullempty emptyempty

request
acknowledge

non-RTZ

statewire
RTZ

valid validdata
bundled data Voltage

Figure 5.8: Default state representations for full and empty channels in two-phase non-
RTZ and RTZ handshake protocols with bundled data. A channel with non-RTZ protocol
is engaged in a handshake, i.e. is full, when its request and acknowledge differ. A channel
with RTZ protocol is full when its statewire is high. During the handshake, i.e. when
the channel is full, data must be valid and remain stable.

 and2

xor_in1

FF

in1_R

in1_A

in1_D out1_D

out1_R

out1_A

Click Storage Circuit

xnor_out1

FF_D

inv_q2d

1

1
QD

QD

Figure 5.9: Circuit implementation of Click Storage including the data path. Initially,
all wires of the control path have a logical value of 0, except for the wires marked 1.

channels and fill empty outgoing channels. Thus, there is a feedback loop from

channel state to component action to channel state. The Click Storage component

in Figure 5.9 has two such loops: one for channel in1 from in1_R through gates

xor_in1, and2, FF to in1_A; another for channel out1 from out1_A through gates

xnor_out1, and2, FF to out1_R.

The AND function coordinates the two loops and makes the Click Storage

component “act.” The component’s gate-level actions are similar but more refined

than its GUI-level actions described in Section 5.1.2. The action triggers when in1

is full (in1_R 6= in1_A) and out1 is empty (out1_R = out1_A) — see Figure 5.8.

72

When detected, these cause rising transitions on xor_in1 and xnor_out1 that in

turn cause AND function and2 to rise. A rising transition on and2 clocks the

edge-triggered flipflops and starts three actions concurrently:

• FF_D captures and copies data from in1_D to out1_D.

• FF inverts the value on signal in1_A, thus draining in1.

• FF also inverts the value on out1_R, thus filling out1.

The now empty in1 and now full out1 reset xor_in1 and xnor_out1 to low, each

of which resets and2 to low, thus bringing the Click Storage circuit back to an

initial state where it can coordinate the next full in1 and empty out1 handshakes.

We initialized the Click Storage circuit which is part of the Design Library as

shown in Figure 5.9 with all channels empty. All its signals have a logical value

of 0, except for the output of xnor_out1 and the D input of FF which are 1, as

indicated. This initial state in the Storage circuit matches the initial state of the

grey-colored state 0 in the corresponding finite state machine protocol specification

in Figure 5.10b.

Click Storage Protocol

Input

 { in1_R, out1_A }

Output

 { in1_A, out1_R }

Handshake event ordering

 ({ in1_R }, { in1_A })

 ({ out1_R }, { out1_A })

Handshake protocol (P)

P = in1_R; in1_A; out1_R; out1_A; P

(a) Handshake protocol in XDI

Click Storage Protocol

0

5 3

4

2

6

1

7

o
u

t1
_

A

in1_A
o

u
t1

_
A

out1_R

in1_A

in
1

_
R

o
u

t1
_

A

in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

(b) Translated in to FSM

Figure 5.10: Click Storage Protocol and translation in to FSM.

73

One can choose various specification formalisms to describe the protocol

behavior of a single handshake component or of a self-timed network of handshake

components. Dialects of Communicating Sequential Processes (CSP), sometimes

called Communicating Hardware Processes (CHP), are very popular [3, 46]. The

Calculus of Communicating Systems (CCS) forms the basis of the self-timed circuit

verification work in [52,62]. Signal Transition Graphs and Petri Nets form the basis

of the self-timed circuit verification and synthesis work in [8, 19,25].

The goal of this Chapter is merely to show how to verify single components. We

consider here neither how to synthesize a component nor how to verify networks

of them. This limited goal gives us the leisure of selecting a formalism whose

specifications are both compact, i.e. short and easy to understand, and complete,

i.e. fully delay-insensitive. We found a suitable formalism in the theory of

Delay-Insensitive Algebra developed by [14,20,59]. Delay-Insensitive Algebra also

underlies [30] which uses it to build a verification framework for self-timed circuits.

Our goal is much simpler than any of the synthesis and verification work built on

Delay-Insensitive Algebra. We merely seek compact and complete specifications

that allow us to verify that a component’s circuit has the same choices of action

as specified by the component’s protocol.

Delay-Insensitive Algebra uses finite traces of events that specify not only safety

properties, but also liveness properties that are crucial for distinguishing choices of

action. It uses an interleaving semantics that represents parallel events by ordering

them arbitrarily.

The protocol description in Figure 5.10a first identifies the signals coming into

the Click Storage (Input) and those going out (Output). This information will be

used to complete the compact description into a fully delay-insensitive one. Next

74

come the handshake event orderings for the two channels. Each event is either a

rising or a falling signal transition. Each channel of the Click Storage component

starts with an event on its request signal, and thereafter alternates events on its

request and acknowledge signals, This corresponds to the basic two-phase non-RTZ

handshake communication protocol for an initially empty channel, illustrated in

Figure 5.8. Last comes the protocol description P — a compact repetitive sequence

of four consecutive input-output events:

P = in1_R ; in1_A ; out1_R ; out1_A ; P.

In this form, protocol P says that the Click Storage component must wait for

input event in1_R before it produces output event in1_A followed by output event

out1_R, after which it waits again until it receives another input event, namely

out1_A, before it repeats the same protocol, P.

The delay-insensitive interpretation of P allows more behaviors. The interpre-

tation is based on what is popularly known as the Foam Rubber Wrapper metaphor,

a term for delay-insensitive communication introduced by the late Charles Molnar.

The idea is that an event may be delayed for an arbitrary time when it travels

between sender and receiver components. Thus, an input event in an event

sequence specified by P might have occurred as early as its generation or as late

as its receipt, or anywhere in between. Hence, input events in1_R and out1_A

in P may move to earlier positions in the sequence provided each input follows

the previous output event on the same channel, as specified in the handshake

event orderings. Likewise, output events in1_A and out1_R may move to later

positions in the sequence provided each output precedes the next input event on the

same channel.

75

time

o
u

t1
_

A
(i
n

p
u

t)

o
u

t1
_

R
(o

u
tp

u
t)

in
1

_
A

(o
u

tp
u

t)

in
1

_
R

(i
n

p
u

t)

time

o
u

t1
_

A
(i
n

p
u

t)

o
u

t1
_

R
(o

u
tp

u
t)

in
1

_
A

(o
u

tp
u

t)

in
1

_
R

(i
n

p
u

t)

time

o
u

t1
_

A
(i

n
p

u
t)

o
u

t1
_

R
(o

u
tp

u
t)

in
1

_
A

(o
u

tp
u

t)

in
1

_
R

(i
n

p
u

t)

input events can move

earlier in time

event ordering

listed in XDI

output events can move

later in time

Figure 5.11: Possible event orderings. For better visibility, input events are colored
with white dots and output events are colored black dots. The events which moved
position in time are highlighted with bold font. From the top of the Figure where there is
a sequence of four events, input events can move backward in time (middle) and output
events can move forward in time (bottom), provided they follow the handshake event
ordering specified in Figure 5.10a.

We use tools developed for Delay-Insensitive Algebra in [20] to complete the

compact protocol description expressed as P automatically into a fully delay-

insensitive description expressed as the finite state machine in Figure 5.10b.

The finite state machine in Figure 5.10b describes the various event sequences

and event choices at the pair of channel interfaces of the Storage component.

It also describes the progress expectations at each state in an event sequence.

The triangles (5) denote transient states that may persist only for a finite

time. Triangular states typically respond to handshake output events, which are

controlled by the component. The underlying assumption is that the internal

circuit actions leading up to the output event will finish within a finite amount

of time. This is valid for most actions, with the possible exception of non-

deterministic arbitration — absent from a Storage component. The rectangles (�)

76

denote non-transient states that may persist forever. Rectangular states typically

produce only input events — events controlled by the component’s environment.

The underlying assumption is that the environment might be lazy and never act.

The finite state machine constrains the component to exit a transient state within

unbounded but finite time, but allows it to remain in a non-transient state forever.

Note that these descriptions can be used for any Storage component with

single incoming and outgoing channels and two-phase non-RTZ handshakes. One

can easily envision how to generalize both descriptions to arbitrary numbers of

channels. Other handshake components, such as the Join in the Fibonacci design

of Figure 5.3, and even non-deterministic and data-driven components, also have

relatively simple compact descriptions that are easy to understand [20].

The combination of a compact protocol description, P, and tool automation

to complete P into a fully delay-insensitive description helps avoid over-specifying

components. Avoiding over-specification is important and harder than one might

think. We inadvertently and repeatedly over-specified the handshake behavior of

a component using the approach in [52,62], which requires complete specifications

in CCS without tool support to help make them.

5.2.2 ARCtimer Step 2 — Model Checker

Figure 5.10 illustrates how one can model the protocol of a handshake component

as a finite state machine. The machine serializes sequential as well as parallel

events and captures the serialized behavior in event-based state transitions, state

transition choices, and transient and non-transient states. Similar finite state

machine descriptions can model gates, wires, the networks of gates and wires

that form the circuit of a handshake component, and even the timing constraints

77

of a handshake component. Verifying that the component’s circuit meets the

component’s protocol under the component’s given set of timing constraints thus

becomes a model checking task [7].

We experimented with a customized model checker, Analyze [52], as well as a

general-purpose model checker, NuSMV [6]. We have found customized model

checkers especially hard to use for modeling and verifying the protocols and

circuits of non-deterministic and data-driven handshake components. Moreover,

we mistrusted some of the verification results that we obtained. We resolved the

difficulty in modeling the protocols by using formalisms and tools developed for

Delay-Insensitive Algebra, as explained in Section 5.2.1. Other difficulties vanished

with use of a general-purpose model checker. General-purpose model checkers force

one to indicate explicitly both what to verify and how to execute the various parts

of a model. Although explicitness requires more work, it gives one full control over

one’s own experiments.

The experiments and code fragments shown in this Chapter are based on

NuSMV [6], a model checker that is freely available and has an active and diverse

user community. NuSMV has helped us generate and verify timing constraints

for widely different components with deterministic, non-deterministic, and data-

driven handshake behaviors. The timing verification work in [9] use NuSMV but

verify fewer properties than we do, as we will explain in Sections 5.2.2.1–5.2.2.2.

Figure 5.12 shows what a general-purpose model checker must have and do to

verify a handshake component’s circuit against its protocol under a given set of

timing constraints. Note that besides models for the circuit, protocol, and timing

constraints, there is the component’s environment — a model for the environment

in which the component’s circuit operates. We model the component’s environment

78

by providing a separate interface for each channel that responds to channel outputs

in any of all the valid ways possible for that channel.

C
o

m
p

o
n

e
n

t’
s

 P
ro

to
c

o
l

a
n

d
 p

ro
to

c
o

l
p

ro
p

e
rt

ie
s

Component’s Environment

and “digital health” properties

Component’s Circuit

and “digital health” properties

Model Checker Library

for gates, wires, handshake circuits, handshake protocols, etc.

including “digital health” and protocol-related properties

instantiate models

Model Checker Netlist

verify properties

Verification Report

including counterexamples for invalid properties

C
o

m
p

o
n

e
n

t’
s

T
im

in
g

 C
o

n
s

tr
a

in
ts

Component’s Test Circuit

Figure 5.12: Organization of the model checking task to verify, for a given handshake
component, that the component’s circuit in its environment and under its timing
constraints satisfies both the gate-level “digital health” properties and the properties
defined by the component’s protocol. Examples of “digital health” are semimodularity,
explained earlier in Section 3.7, and absence of set-reset drive fights.

From Figure 5.12, the grey rectangle at the top represents the Model Checker

Library — a translation of the Design Library in Figure 5.7 (left-column) into

model checker lingo. Using the Model Checker Library, ARCtimer creates a Model

Checker Netlist represented by the middle grey rectangle. The netlist connects

single instances of the component’s protocol, circuit, environment, and available

timing constraints, as indicated by the white and broken-line rectangles and the

white arrows. A white arrow follows the direction from a rectangle with models

that create an event to a rectangle with models that respond to that event. All

events in and between rectangles with horizontal text are interleaved using an

79

asynchronous mode of operation. Events of rectangles with vertical text must be

synchronized to corresponding events, which is achieved by operating them in

synchronous mode. The model checker takes the Model Checker Netlist and first

generates a corresponding finite state machine model with instantiated gate-level

“digital health” and protocol-related properties for verification, and then it checks

the properties. The grey rectangle at the bottom represents the verification report

with a pass or fail indication per property and a counterexample of a computation

path in the resulting finite state machine for each failing property.

The following sub-sections give a more detailed explanation of Figure 5.12,

including code fragments with NuSMV solutions.

5.2.2.1 Modeling the Component’s Protocol

Figure 5.13a repeats the complete, fully delay-insensitive protocol specification of

Figure 5.10b and shows its translation into NuSMV model checker lingo.

80

Click Storage Protocol

0

5 3

4

2

6

1

7

o
u

t1
_

A

in1_A

o
u

t1
_

A

out1_R

in1_A

in
1

_
R

o
u

t1
_

A

in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

(a) Fully delay insensitive protocol specification

1 MODULE protocol (in1_R, in1_A, out1_R, out1_A)
2 VAR
3 state: {s0, s1, s2, s3, s4, s5, s6, s7, errorOUT, errorIN};
4 ASSIGN
5 init(state) := s0;
6 TRANS
7 next(state) = case
8 --legal handshake transitions
9 state = s0 & (in1_R != next(in1_R)) : s1;

10 state = s1 & (in1_A != next(in1_A)) : s2;
11 state = s1 & (out1_R != next(out1_R)): s3;
12 state = s2 & (in1_R != next(in1_R)) : s7;
13 state = s2 & (out1_R != next(out1_R)): s5;
14 state = s3 & (out1_A != next(out1_A)): s4;
15 state = s3 & (in1_A != next(in1_A)) : s5;
16 state = s4 & (in1_A != next(in1_A)) : s0;
17 state = s5 & (in1_R != next(in1_R)) : s6;
18 state = s5 & (out1_A != next(out1_A)): s0;
19 state = s6 & (out1_A != next(out1_A)): s1;
20 state = s7 & (out1_R != next(out1_R)): s6;
21 --illegal handshake transitions
22 in1_A != next(in1_A) | out1_R != next(out1_R) : errorOUT;
23 in1_R != next(in1_R) | out1_A != next(out1_A) : errorIN;
24 --remaining transitions
25 TRUE: state;
26 esac;
27
28 --PROPERTIES
29 --safety
30 CTLSPEC AG state != errorOUT
31 CTLSPEC AG state != errorIN
32 --progress
33 CTLSPEC AG (AF (state!=s1))
34 CTLSPEC AG (AF (state!=s2))
35 CTLSPEC AG (AF (state!=s3))
36 CTLSPEC AG (AF (state!=s4))
37 CTLSPEC AG (AF (state!=s7))
38 --choice equivalence
39 CTLSPEC AG (state = s0 -> E[state = s0 U state = s1])
40 CTLSPEC AG (state = s1 -> E[state = s1 U state = s2])
41 CTLSPEC AG (state = s1 -> E[state = s1 U state = s3])
42 CTLSPEC AG (state = s2 -> E[state = s2 U state = s7])
43 CTLSPEC AG (state = s2 -> E[state = s2 U state = s5])
44 CTLSPEC AG (state = s3 -> E[state = s3 U state = s4])
45 CTLSPEC AG (state = s3 -> E[state = s3 U state = s5])
46 CTLSPEC AG (state = s4 -> E[state = s4 U state = s0])
47 CTLSPEC AG (state = s5 -> E[state = s5 U state = s6])
48 CTLSPEC AG (state = s5 -> E[state = s5 U state = s0])
49 CTLSPEC AG (state = s6 -> E[state = s6 U state = s1])
50 CTLSPEC AG (state = s7 -> E[state = s7 U state = s6])

(b) Corresponding NuSMV code

Figure 5.13: The first part of the code in lines 1–26 describes legal and illegal states
and transitions. The model checker uses this part to monitor the sub-system with circuit,
environment, and timing constraints. The second part in lines 28–50 describes the
protocol properties for “what the monitor must see.” Note: A NuSMV case statement
gives higher priority to the guarded commands in earlier lines of the case statement.

81

The translation is wrapped in a self-contained module, with the abbreviated

name protocol, with formal parameter names for the handshake signals. The

module’s full name is Click_Storage_1_In_1_Out_Protocol.5 We store such

modules in the Model Checker Library — top box in Figure 5.12.

The first part of the translation, up to line 26 in Figure 5.13, codes the states,

initial state, and event-based state transitions of the protocol. Each translated

state name begins with the letter s followed by the original state number — e.g.

initial state 0 in Figure 5.13a translates to s0 in Figure 5.13b. The original protocol

specifications in Figure 5.10 specify only legal states and transitions, omitting

illegal and irrelevant ones. The omissions must be coded, however. We code

two types of error states to receive illegal handshake transitions: illegal channel

outputs go to errorOUT, and illegal channel inputs go to errorIN. All other events,

irrelevant to the protocol, preserve the protocol’s state. The resulting code forms

a monitor. It will be used to monitor the Component’s Test Circuit — the sub-

system inside the broken line in Figure 5.12 (middle) which holds the component’s

circuit, environment, and timing constraints.

To monitor the Component’s Test Circuit the protocol operates in synchronous

mode. This means that the protocol’s finite state machine code is executed in each

execution step by the model checker. NuSMV uses the keyword TRANS in line 6 of

Figure 5.13b to indicate that the next statement is to be executed in synchronous

mode. The next statement, enclosed by the keywords case and esac in lines 7

and 26, is precisely the monitor code of the component’s protocol in the rightmost

white rectangle in Figure 5.12.

5Its un-abbreviated name says that the module has the protocol translation for a Click Storage
component with 1 incoming and 1 outgoing channel.

82

The purpose of monitoring the Component’s Test Circuit is to annotate

its behavior for verification. Verification is done by checking properties. The

properties in lines 28–50 of Figure 5.13b specify what the protocol must see when

it monitors the Component’s Test Circuit.

The properties in the second part of the code, lines 28–50, are inherent in the

protocol specification, and translated along with the rest of the code. The two

safety properties in lines 30–31 allow only legal handshake behaviors. The five

progress properties in lines 33–37 allow the five transient states to persist for only

a finite time. The transient states correspond to the triangles (5) in the original

specification. The remaining choice equivalence properties spell out the choices

of action that must be available to the observed sub-system to meet the protocol

specification. These might be refined with additional event information, if needed.

The structure of these properties is quite straightforward for the Click Storage

component, but becomes more interesting for non-deterministic components.

5.2.2.2 Modeling the Component’s Circuit and Environment

Figure 5.14 repeats the gate-level Click Storage circuit and environment models

in Figure 5.7 (right-column-top) and shows the corresponding gate-level NuSMV

translation in Figure 5.15, using two gate models, cgate and ff_posedge that are

defined in Figure 5.16.

The two translations, circuit and environment, are wrapped in self-contained

modules with formal parameter names to support the exchange of handshake

and timing constraint signals. These contain the code for the middle two white

rectangles with horizontal text in Figure 5.12.

83

1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_

in
1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL

Figure 5.14: Click Storage circuit and environment models from Figure 5.7 (right-
column-top). The gates for ENV_in1 and ENV_out1 contain the letter “L” to indicate
that they are lazy.

The Click Storage Circuit shown in Figure 5.14 contains five more buffers than

the original circuit description in the Design Library of Figure 5.7. The extra

buffers are colored grey and named buf_in1_A1, buf_in1_A2, buf_out1_R1,

buf_out1_R2, and buf_ck. The translation adds these buffers to delay wires and

individual wire branches independently from gates. Buffers are necessary because

the model checker ignores wire delays. Adding a buffer or inverter device to a

logical wire connection makes that connection visible to the model checker as a

device output with a device delay. It suffices to add buffers only to wires that

branch out and to wires that clock edge-triggered flipflops. It is straightforward to

adapt a compiler that generates the original circuit description to generate also the

description for the model checker. The circuit description for the model checker

also contains datapath signals in1_D and out1_D and datapath flipflop FF_D,

which are omitted from Figure 5.14 to focus on the control logic and are postponed

to Chapter 6.

84

1 MODULE circuit (in1_R, out1_A)
2 VAR
3 xor_in1 : process cgate (in1_R xor buf_in1_A2.val, f,f,f,f);
4 xnor_out1 : process cgate (out1_A xnor buf_out1_R2.val, t,f,f,f);
5 and2 : process cgate (xor_in1.val & xnor_out1.val, f,f,f,f);
6 buf_ck : process cgate (and2.val, f,f,f,f);
7 FF : ff_posedge (buf_ck.val, inv_q2d.val, f);
8 inv_q2d : process cgate (!FF.q, t,f,f,f);
9 buf_in1_A1 : process cgate (FF.q, f,f,f,f);

10 buf_in1_A2 : process cgate (FF.q, f,f,f,f);
11 buf_out1_R1 : process cgate (FF.q, f,f,f,f);
12 buf_out1_R2 : process cgate (FF.q, f,f,f,f);
13 DEFINE
14 in1_A := buf_in1_A1.val;
15 out1_R := buf_out1_R1.val;
16 f := FALSE;
17 t := TRUE;
18 FAIRNESS running
19
20 MODULE environment (in1_A, out1_R)
21 VAR
22 ENV_in1 : process cgate (!in1_A, f,t,f,f);
23 ENV_out1 : process cgate (out1_R, f,t,f,f);
24 DEFINE
25 in1_R := ENV_in1.val;
26 out1_A := ENV_out1.val;
27 f := FALSE;
28 t := TRUE;
29 FAIRNESS running

Figure 5.15: Module definitions for the Model Checker Library. The code for cgate and
ff_posedge follows in Figure 5.16.

Figure 5.15 shows the translated circuit module in lines 1–18 and the translated

environment module in lines 20–29. Lines 3–12 describe the gate instances and

their connections for the circuit. Lines 22–23 do the same for the environment.

Most gates are instantiated as process cgate (function,. . .) where function is a

Boolean logic combination of the module’s parameters and outputs of other gates.

The instances have the same names and logical functions as in Figure 5.14. For

example, gate instance xor_in1 in line 3 of Figure 5.15 computes the exclusive-or

of parameter in1_R and buf_in_A2.val, the output of gate buf_in_A2. Likewise,

positive edge-triggered flipflop instance FF in line 7 copies and stores the value on

inv_q2d.val onto its output q whenever its clock input buf_ck.val changes from low

(FALSE) to high (TRUE). The signal definitions in lines 14–17 and 25–28 following

the keywords DEFINE serve to shorten and simplify various code fragments.

The operations of the circuit and its environment are monitored by the protocol

85

as explained in Section 5.2.2.1. Because we describe protocols with Delay-

Insensitive Algebra, which uses an interleaving semantics, the protocol model

interleaves its events. Thus, the protocol can interpret handshake events only

when they arrive in sequence. Consequently, the circuit and its environment must

interleave all handshake events because these are the events they share with the

protocol. To simplify the overall execution, we chose to interleave not just the

handshake events but all events generated by cgate instances in the circuit or

its environment. 6 NuSMV pairs the keywords process and cgate in lines 3–12

and 23–24 in Figure 5.15 to indicate that the cgate instance is to be executed in

asynchronous mode by interleaving its operations with those of other process cgate

instances.

The asynchronous interleaving mode of operation comes with a cost of fairness

conditions for selecting which process cgate operation to run next. The protocol

assumes that most circuit operations take a finite time. It expects the circuit

to generate a handshake output within a finite number of execution steps after

receiving a handshake input from its environment. The NuSMV code for the

protocol uses progress properties to formulate and verify these expectations — see

lines 33–37 of Figure 5.13b. To satisfy these progress properties, each process cgate

instance in the module must be selected to run after every so many unbounded

but finite execution steps. The NuSMV statements FAIRNESS running in lines

18 and 29 of Figure 5.15 enforce precisely that.

The remaining code details can be explained by examining the module

definitions for cgate and ff_posedge in Figure 5.16.
6This simple mode of interleaving can be combined with a simultaneous mode of operation [9]

for internal gates that generate non-handshake events, allowing arbitrary subsets of these to
operate simultaneously.

86

1 MODULE cgate (set, init_val, lazy, stop_rise, stop_fall)
2 VAR
3 val : boolean;
4 semimodular : boolean;
5 ASSIGN
6 init(val) := init_val;
7 init(semimodular) := TRUE
8 next(val) := case
9 (stop_rise & !val & set) | (stop_fall & val & !set) : val;

10 lazy : {val, set};
11 TRUE : set;
12 esac;
13 TRANS
14 next(semimodular) = case
15 ((!stop_rise & !val & set) | (!stop_fall & val & !set))
16 & next(val)=next(set) & next(val)=val = : FALSE;
17 TRUE : semimodular;
18 esac;
19 --PROPERTIES for digital health
20 CTLSPEC AG semimodular
21
22 MODULE ff_posedge(ck, d, init_q)
23 VAR
24 q : boolean;
25 ASSIGN
26 init(q) := init_q;
27 TRANS
28 next(q) = case
29 !ck & next(ck) = : d;
30 TRUE : q;
31 esac;

Figure 5.16: Module definitions for cgate and ff_posedge

The module definition of cgate, i.e. “combinational gate,” follows in lines 1–20

of Figure 5.16. Each cgate takes an arbitrary Boolean combinational logic function

through its first parameter, set. For example, the cgate for xor_in1 in line 3 of

Figure 5.15 takes in1_R xor buf_in1_A2.val — the exclusive-or of Boolean signals

in1_R and buf_in_A2.val. The second parameter, init_val, contains the initial

value of cgate output val, assigned in line 6 of Figure 5.16. For example, the output

of xnor_out1 in line 4 of Figure 5.15 is initialized to TRUE, which corresponds

to the value 1 indicated for the xnor_out1 output in Figure 5.14. When a cgate

instance is selected to run, it evaluates its set function. Depending on the other

input parameters in Figure 5.16, it either updates its output val with the set result

(line 10 or 11) or does nothing (line 9 or 10). Only lazy or timing constrained cgate

instances may do nothing.

A cgate is lazy if its third parameter, lazy, is TRUE. For example, both the Click

Storage Environment gates ENV_in1 and ENV_out1 in lines 22–23 of Figure 5.15

87

are lazy. A lazy cgate has an arbitrary choice either to act by setting its output

val to the result in set or to do nothing by keeping the old value of val. This

nondeterministic choice is indicated in line 10 of Figure 5.16 by the curly brackets

around val and set.

Timing constraints may prevent a cgate output transition from FALSE to

TRUE (rise), from TRUE to FALSE (fall), or both. Output val cannot rise in

line 9 of Figure 5.16 if the fourth parameter stop_rise is TRUE, and neither can

it fall if the fifth parameter stop_fall is TRUE. In Section 5.2.3, we will discuss

how timing constraints control the run-time values of stop_rise and stop_fall in

the various cgate instances.

It is possible that a cgate instance, poised to have its output rise or fall, fails to

be selected and do the output transition before a new set value arrives that disables

the transition. For cgate instances used in self-timed circuits, the presence of a later

set value overtaking an earlier one often indicates the presence of a race condition.

We therefore flag such overtakings for later inspection. A variable with the name

semimodular, initially TRUE (line 7), becomes FALSE at the first such overtaking

(lines 15–16) when the next execution step no longer shows an enabled transition

(next(val)=next(set)) but also shows no sign of having taken it (next(val)=val).

The NuSMV model checker updates variable semimodular (lines 14–18) at each

execution step, as indicated by the keyword TRANS in line 13. The “digital health”

property in line 20 requires semimodular 7 to be TRUE at all times, and flags any

change to FALSE.

Variable semimodular in Figure 5.16 has been aptly named. Semimodularity

is a well-known paradigm for designing self-timed digital circuits without hazards
7See Chapter 3.7 for semimodularity.

88

by insisting that digital signal changes occur before being disabled. One might

call it the “no change left behind” paradigm. Introduced by David Muller [29]

and brought to the attention of a wider audience through Raymond Miller’s 1965

book [27] semimodularity formed the starting point of the first generation of self-

timed circuit design tools [19, 25]. Though semimodularity is still an important

paradigm for designing and verifying self-timed circuits, new design trends for

fast, energy-efficient self-timed circuits [4, 42,44,51] force it to share that position

with Relative Timing [50]. The NuSMV code in lines 14–18 of Figure 5.16 for

updating the variable semimodular is based on a new definition of semimodularity

for timing constrained self-timed circuits, which was explained in Chapter 3.8.3 and

presented in [32].

The module definition of ff_posedge in lines 22–31 of Figure 5.16 models a

positive edge-triggered flipflop. The flipflop copies and stores the value of its

second parameter, d, onto its output, q, whenever its first parameter, ck, changes

from low (FALSE) to high (TRUE), as indicated in line 29. The value of output q

is initialized through the third parameter, init_q (line 26). Instances of ff_posedge

run each execution step, as indicated by the keyword TRANS in line 27.

To time and verify each ff_posedge instance, we pair it with a process cgate

instance as its clock buffer. The clock buffer provides the timing flexibility in

selecting when the flipflop acts. We verify the semimodular behavior of the clock

buffer to ensure that all “clock” transitions issued by the and2 gate reach the

flipflop — see Section 5.2.1 for a reminder on “clocking.” This explains the extra

buffer buf_ck in Figure 5.14: it is the clock buffer for flipflop FF.

Gate models cgate and ff_posedge in Figure 5.15–5.16 have NuSMV code

descriptions reminiscent of code descriptions in a hardware description language

89

like Verilog. We chose to use a general gate model for cgate, capable of modeling

all combinational gates in the Click Storage component. This is possible because

each gate instantiated in the component’s gate-level netlist in Figure 5.14 has

a behavioral description of its Boolean logic function. When instantiated with

the signals coming into the gate, this Boolean logic function becomes the set

function of the corresponding cgate instance in Figure 5.15. One could follow

a similar approach for sequential gates and define a general gate model capable

of modeling all sequential gates, as is done in [1]. We refrained from doing this

here because Click components use only one type of sequential gate — a positive

edge-triggered flipflop. Instead of using a few general gate models, one could define

a dedicated model for each gate with a different logic function, and connect the

gates by connecting their signal names. This is done in [9]. Figure 5.15 would

require eight such dedicated gate models: two for the lazy environment, and six

for the circuit. Dedicated gate models produce a larger Model Checker Library to

characterize, but they contain extra connectivity information that could be useful.

5.2.2.3 Instantiating the Models in a Model Checker Netlist

Figure 5.17 repeats the middle grey rectangle of Figure 5.12 with the Model

Checker Netlist but omits the white rectangle for the Component’s Timing

Constraints. It also shows the NuSMV translation with a single protocol, circuit,

and environment instance for each. The keywords process in lines 4–5 indicate that

the model checker will run the circuit and environment instances in asynchronous

mode by interleaving their events. The FAIRNESS running command in line 11

insists that the event selection between the two instances be fair. The lack of

keyword process in line 3 indicates that the protocol instance runs in synchronous

90

mode. This matches the modes of operation specified earlier in Figure 5.12.

C
o

m
p

o
n

e
n

t’
s

 P
ro

to
c

o
l

a
n

d
 p

ro
to

c
o

l
p

ro
p

e
rt

ie
s

Component’s Environment

and “digital health” properties

Component’s Circuit

and “digital health” properties

Model Checker Netlist

Component’s Test Circuit

(a) Model checker Netlist from Figure 5.12, but without timing constraints

1 MODULE main
2 VAR
3 ComponentProtocol : protocol (in1_R, in1_A, out1_R, out1_A);
4 ComponentCircuit : process circuit (in1_R, out1_A);
5 ComponentEnvironment : process environment (in1_A, out1_R);
6 DEFINE
7 in1_R := ComponentEnvironment.in1_R;
8 in1_A := ComponentCircuit.in1_A;
9 out1_R := ComponentCircuit.out1_R;

10 out1_A := ComponentEnvironment.out1_A;
11 FAIRNESS running

(b) NuSMV code – instantiating component’s protocol, circuit, and environment

Figure 5.17: Model Checker Netlist from Figure 5.12 without timing constraints and
corresponding NuSMV code with one instance each of the component’s protocol, circuit,
and environment. The code of each instance can be found in Figures 5.13 and 5.15.

In Section 5.2.3, we will verify the “digital health” and protocol properties in the

code of Figure 5.17, analyze any failing properties, and generate timing constraints

to correct the failures. In Section 5.2.4 we will revisit Figure 5.17 and upgrade its

NuSMV code by adding the missing constraints.

5.2.3 ARCtimer Step 3 — Timing Patterns

When the model checker runs the code in Figure 5.17 it reports multiple failing

properties. For each failing property it gives a counterexample — a computation

path that fails that property. Failing properties expose delay sensitivities in the

design. A counterexample not only exposes a delay sensitivity, but also contains

91

“clues” about how to prevent it from becoming hazardous. These clues can be

captured in a form suitable for verification and correction — and thus prevention.

There are various options available for capturing clues. For instance, [64]

assigns metric delay bounds to each gate in the circuit and its environment,

capturing each clue as a tighter metric delay bound and calls this a timing

constraint. Alternatively, a clue can be captured as a relative ordering of events

and be called a chain constraint as in [30, 31], or a (relative) timing constraint as

in [8, 18,34,52,62].

Here, we capture a clue as a relative ordering of events and call this a relative

timing constraint, or simply constraint.

Analyzing a counterexample to capture the clue it contains always requires

finite state machine analysis around the failing step. Many of the approaches

referenced here, notably [8, 18, 62–64], provide heuristics to capture the clue as a

constraint and to generate the constraint automatically. These heuristics are, alas,

tightly coupled to the underlying tools and theory and thus hard to transfer to

other verification flows.

To share understanding of what is involved in analyzing a counterexample, we

analyze the two counterexamples of Figure 5.18 for the netlist of Figure 5.17a —

one failing a “digital health” property and the other failing a protocol property.

92

1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_

in
1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL

(a)

1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_
in

1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL

“Digital Health” Failure
Initial State:

state=s0
Run step 1:

ENV in1.val+
in1 R+
state=s1

Run step 2:
xor in1.val+

Run step 3:
and2.val+

Run step 4:
buf ck.val+
FF.q+

Run step 5:
buf out1 R1.val+
out1 R+
state=s3

Run step 6:
buf out1 R2.val+

Run step 7:
ENV out1.val+
out1 A+
state=s4
xnor out1.semimodular=FALSE

Failure: CTLSPEC AG semimodular

Protocol Failure
Initial state: Run step 8:

state=s0 and2.val−
Run step 1: Run step 9:

ENV in1.val+ buf ck.val−
in1 R+ Run step 10:
state=s1 inv q2d−

Run step 2: Run step 11:
xor in1.val+ ENV out1.val+

Run step 3: out1 A+
and2.val+ state=s4

Run step 4: Run step 12:
buf ck.val+ xnor out1.val+
FF.q+ Run step 13:

Run step 5: and2.val+
buf out1 R1.val+ Run step 14:
out1 R+ buf ck.val+
state=s3 FF.q−

Run step 6: Run step 15:
buf out1 R2.val+ buf out1 R1.val−

Run step 7: out1 R−
xnor out1.val− state=errorOUT

Failure: CTLSPEC AG state!=errorOUT

Figure 9 (left) Copy of the Click Storage circuit and environment coded in Figures 6–7 and two counterexamples (right) showing a
“digital health” failure for gate xnor out1 and a failure in state s4 of the protocol (Figure 5) monitoring the circuit and environment.
The counterexamples each describe a path of events through the circuit. An event is a rising or falling signal transition. The
counterexamples indicate rising signal transitions by appending the symbol “+” to the signal name, like ENV in1.val+ in step 1.
They indicate falling transitions by appending the symbol “−”, like out1 R− in step 15 of the path with the protocol failure.

to rt4. Two more such counterexamples can be found by
exchanging the two feedback loops at channel out1’s side
for the two feedback loops at channel in1’s side. The four
relative timing constraints rt1 to rt4 in Figure 10 block all
such counterexamples.

Semimodularity failures are easy to solve: instead of disabling
the transition, take it! This simple heuristic, however, tends to
push the semimodularity failure to the next gate, just as a
snow plow pushes snow elsewhere. This happens for instance
between rt7–rt8 and rt9 in Figure 10, each of which solve
a semimodularity failure. Constraints rt7 and rt8 solve a
semimodularity failure for gate and2 by pushing the failure to
the next gate, buf ck. Constraint rt9 solves the semimodularity
failure for gate buf ck by pushing the failure to FF, which
does not register this type of failure, and so the simple
heuristic snow plow stops here. Relative timing constraints
that merely push a semimodularity failure elsewhere fail to
be appealing and intuitive to the designer of the component
and are less robust to circuit modification applied later in the
design process. We will come back to this in Section III-C3.

The counterexample in the right box of Figure 9 avoids the
mistake of the first counterexample by taking the still-enabled
transition xnor out1.val− (step 7). It continues by resetting
the AND function and setting up the flipflop for the next
handshake coordination (steps 8–10). So far so good. But then,
it starts a second handshake on channel out1 (steps 11-12)
while ignoring the still outstanding first handshake on in1 —

forgetting that it “takes two to tango.” With in1 R high and
in1 A still low, input channel in1 is still full and xor in1 is
still high. As a result, the AND function “acts” prematurely
(steps 13–15) and coordinates the first handshake on in1 with
the second handshake on out1. This premature action of the
AND function causes a protocol failure in step 15.

This second counterexample violates the core purpose of the
Click Storage component, which is to coordinate exactly one
incoming handshake with exactly one outgoing handshake and
to repeat this for the successive handshakes on each channel.
For one-to-one coordination, the AND function must know
when a channel is willing to participate (“Shall we dance?”)
as well as when its participation is over (“Thank you!”). Each
channel indicates its willingness to participate by raising the
output of its exclusive-(N)OR gate, and each channel ends its
participation by lowering this same output. After each action,
both outputs must fall before either rises again. We capture
this clue in the counterexample in the following way:

• When and2.val rises, then xor in1.val must fall before
xnor out1.val rises. We denote this as:
and2.val+ → xor in1.val− < xnor out1.val+.

This formulation of the captured clue matches rt5 in Figure 10.
The related constraint, rt6, avoids similar counterexamples for
the reverse situation by preventing each handshake on in1 from
outpacing its handshake partner on out1.

Solving protocol failures may be hard and require rules of
thumb for designing self-timed circuits. For example [8] exper-

14

(b)

Figure 5.18: (a) Copy of the Click Storage circuit and environment coded in
Figures 5.15–5.16 and two counterexamples (b) showing a “digital health” failure for gate
xnor_out1 and a failure in state s4 of the protocol (Figure 5.13) monitoring the circuit
and environment. The counterexamples each describe a path of events through the circuit.
An event is a rising or falling signal transition. The counterexamples indicate rising signal
transitions by appending the symbol “+” to the signal name, like ENV_in1.val+ in step
1. They indicate falling transitions by appending the symbol “−,” like out1_R− in step
15 of the path with the protocol failure.

93

It is well to remember that the generation of relative timing constraints comes

early in the design process, as part of building the library of handshake components

— the Design Library in Figure 5.7 (left-column). Once constraints are known

and stored in the Design Library, they are used over and over again for every

chip design. Thus, the time taken for constraint generation plays only a small

role in the overall time from design to market. We therefore have the leisure to

make the constraints understandable to the component’s designer, and to increase

their robustness to circuit modifications applied later in the design process. We

do this by formulating the constraints as timing patterns, in support of the design

patterns that the designer selected for the component’s circuit and family. The

highly general and highly robust timing patterns derived for simple components

can form a starter set for priming complex components. More detail on timing

patterns appears in Section 5.2.3.3.

5.2.3.1 Analyzing Counterexamples

Figure 5.18b shows two counterexamples for the NuSMV netlist in Figure 5.17.

To ease following the paths in each counterexample, Figure 5.18a repeats the

gate-level circuit diagram of the Click Storage circuit and environment. Both

counterexamples describe a path of events starting from the initial state. State

names, like s0 for the initial state, are filled in by the component’s protocol — the

vertical rectangle in the netlist diagram of Figure 5.17a. The protocol description

for the Click Storage component can be found in Figure 5.13.

The two counterexamples show that if gates and wires have arbitrary delays it is

harder to guarantee the simple operational descriptions of handshake components

and handshake channel interfaces given in Section 5.2.1 and Figure 5.8.

94

The first six execution steps, run steps 1–6 in Figure 5.18b, are the same in

both counterexamples. In run step 1, ENV_in1 raises ENV_in1.val. The rising

transition is denoted by the symbol “+” at the end of ENV_in1.val. For a falling

transition we would have used the symbol “−.” Remember that a gate name

with suffix “.val” denotes the gate’s output — see Figure 5.15–Figure 5.16. Because

ENV_in1.val is an alternative name for in1_R, this run step changes the protocol

state to s1. With in1_R high and in1_A still low, incoming channel in1 is now

full. This is detected by gate xor_in whose output rises in run step 2. With both

its input signals high, AND function and2 now “acts” as follows. First and2.val

rises (run step 3), and then clock buffer output buf_ck.val rises and clocks flipflop

FF, causing its output FF.q to rise (run step 4). From here on, the ordering of

execution steps depends on the delays of the logic gate in the feedback loops from

FF.q back to buf_ck. There are four such feedback loops — two per channel, on

each side.

Both counterexamples focus on the two feedback loops at the out1 side.

They show what happens when the two feedback loops are equally fast, and

what happens when both are faster than the two feedback loops at the in1

side. The examples both select to change buf_out1_R1 in run step 5, raising

buf_out1_R1.val and thus out1_R, which changes the protocol state to s3.

Outgoing channel out1 is now empty. In run step 6, both examples then raise

buf_out1_R2.val, making gate xnor_out1 aware that out1 is empty by enabling

xnor_out1.val to fall. In run step 7, the two counterexamples diverge.

The example in the left box of Figure 5.18b selects ENV_out1, raising its

output and thus out1_A, which changes the protocol state to s4. The change

in out1_A also makes channel out1 full and prevents xnor_out1.val from falling

95

before it took the opportunity to fall. This causes xnor_out1.semimodular to

become FALSE (lines 15–16 of Figure 5.16) which is flagged because the gate has

failed the “digital health” property, called CTLSPEC AG semimodular (line 20 of

Figure 5.16).

A semimodularity failure like this could happen in a chip design if the internal

path through the circuit, from FF.q via buf_out1_R2 to xnor_out1, were to take

about the same time as the external path through the environment, from FF.q

via buf_out1_R1 to xnor_out1. Were this to happen, it would render exclusive-

NOR gate xnor_out1 useless as a detector of full and empty channel states, thus

defeating the handshake protocol on out1. To differentiate a full from an empty

channel, xnor_out1 must have enough time to receive and respond to the internal

representation for out1_R, as captured by buf_out1_R2, before the environment

responds with a next state change through out1_A. This is the clue we are seeking.

Given that both inputs for buf_out1_R1 and buf_out1_R2 start at FF.q, or

even at the AND function and2.val before that, we can capture this clue in the

counterexample in one of the following two ways:

• After FF.q rises, xnor_out1.val must fall before out1_A rises. Following the

notation of [9,52] we denote this as: FF.q+→ xnor_out1.val− < out1_A+.

• If ¬FF.q holds while and2.val rises, then subsequently xnor_out1.val

must fall before out1_A rises — denoted as: (¬FF.q ∧ and2.val+) →

xnor_out1.val− < out1_A+.

The second formulation of the captured clue matches relative timing constraint

rt3 in Figure 5.19. A similar counterexample exists for the case that FF.q holds

while and2.val rises, leading to rt4. Two more such counterexamples can be found

96

by exchanging the two feedback loops at channel out1 ’s side for the two feedback

loops at channel in1 ’s side. The four relative timing constraints rt1 to rt4 in

Figure 5.19 block all such counterexamples.

Semimodularity failures are easy to solve: instead of disabling the transition,

take it! This simple heuristic, however, tends to push the semimodularity failure

to the next gate, just as a snow plow pushes snow elsewhere. This happens

for instance between rt7–rt8 and rt9 in Figure 5.19, each of which solve a

semimodularity failure. Constraints rt7 and rt8 solve a semimodularity failure

for gate and2 by pushing the failure to the next gate, buf_ck. Constraint rt9

solves the semimodularity failure for gate buf_ck by pushing the failure to FF,

which does not register this type of failure, and so the simple heuristic snow plow

stops here. Relative timing constraints that merely push a semimodularity failure

elsewhere fail to be appealing and intuitive to the designer of the component and

are less robust to circuit modification applied later in the design process. We will

come back to this when we discuss design patterns.

The counterexample in the right box of Figure 5.18 avoids the mistake of the

first counterexample by taking the still-enabled transition xnor_out1.val− (run

step 7). It continues by resetting the AND function and setting up the flipflop for

the next handshake coordination (run steps 8–10). So far so good. But then, it

starts a second handshake on channel out1 (run steps 11-12) while ignoring the

still outstanding first handshake on in1 — forgetting that it “takes two to tango.”

With in1_R high and in1_A still low, input channel in1 is still full and xor_in1 is

still high. As a result, the AND function “acts” prematurely (run steps 13–15) and

coordinates the first handshake on in1 with the second handshake on out1. This

premature action of the AND function causes a protocol failure in run step 15.

97

m
yP

O
D

 Ù
 Ø

 g
u
a
rd

 L
A

T
E m

yE
A

R
L
Y

m
yP

O
D

 Ù

 g
u
a
rd

 L
A

T
E

guard LATE +

m
yE

A
R

L
Y

YELLOW

perm
it

event LATE

guard LATE -

myEARLY

myEARLY

 has priority

REDblock
event LATE

GREEN

permit
event LATE

(a) Stoplight model of a relative timing

m
yPOD Ù Ø guard LATE m

yE
AR

LY

m
yP

O
D

Ù
gu

ar
d LA

TE

guard LATE +

m
yEARLY

YELLOW

permit

event LATE

guard LATE -

myEARLY

myEARLY
 has priority

REDblock
event LATE

GREEN
permit

event LATE

Initial Set of Relative Timing Constraints
for the Click Storage Circuit and Environment

myName myPOD myEARLY myLATE

rt1 : (¬FF.q ^ and2.val+) ! xor in1.val� < in1 R�
rt2 : (FF.q ^ and2.val+) ! xor in1.val� < in1 R+

rt3 : (¬FF.q ^ and2.val+) ! xnor out1.val� < out1 A+

rt4 : (FF.q ^ and2.val+) ! xnor out1.val� < out1 A�
rt5 : and2.val+ ! xor in1.val� < xnor out1.val+
rt6 : and2.val+ ! xnor out1.val� < xor in1.val+
rt7 : and2.val+ ! and2.val� < (xor in1.val ^ xnor out1.val+)
rt8 : and2.val+ ! and2.val� < (xnor out1.val ^ xor in1.val+)
rt9 : and2.val+ ! buf ck.val� < and2.val+
rt10 : FF.q+ ! inv q2d.val� < buf ck.val+
rt11 : FF.q� ! inv q2d.val+ < buf ck.val+

Figure 10 (left) Stoplight model of a relative timing constraint for use by the model checker, and (right) initial set of relative timing
constraints for the Click Storage component derived by failure analysis of counterexamples for the NuSMV netlist in Figure 8. Failure
analysis of the two counterexamples from Figure 9 in Section III-C1 gave us rt3 and rt5 — and implicitly rt1 to rt6. Constraint
myNAME : myPOD ! myEARLY < myLATE expresses that after myPOD the computation encounters myEARLY before myLATE.
The expressions myPOD, myEARLY, and myLATE formulate guarded events, as explained in the text of Section III-C2. The
expressions for the guards are underlined. Rising events end with the symbol “+” and falling events end with the symbol “�.”

29

(b) Initial set of relative timing constraints

Figure 5.19: Initial set of relative timing constraints for the Click Storage com-
ponent are derived by failure analysis of counterexamples for the NuSMV netlist
in Figure 5.17. Failure analysis of the two counterexamples from Figure 5.18 in
Section 5.2.3.1 gave us rt3 and rt5 — and implicitly rt1 to rt6. Constraint
myNAME : myPOD → myEARLY < myLATE expresses that after myPOD the com-
putation encounters myEARLY before myLATE. The expressions myPOD, myEARLY,
and myLATE formulate guarded events, as explained in the text on modeling relative
timing constraints. The expressions for the guards are underlined. Rising events end
with the symbol “+” and falling events end with the symbol “−.”

This second counterexample violates the core purpose of the Click Storage

component, which is to coordinate exactly one incoming handshake with exactly

98

one outgoing handshake and to repeat this for the successive handshakes on

each channel. For one-to-one coordination, the AND function must know when

a channel is willing to participate (“Shall we dance?”) as well as when its

participation is over (“Thank you!”). Each channel indicates its willingness to

participate by raising the output of its exclusive-(N)OR gate, and each channel

ends its participation by lowering this same output. After each action, both outputs

must fall before either rises again. We capture this clue in the counterexample in

the following way:

• When and2.val rises, then xor_in1.val must fall before xnor_out1.val rises.

We denote this as:

and2.val+ → xor_in1.val− < xnor_out1.val+.

This formulation of the captured clue matches rt5 in Figure 5.19. The

related constraint, rt6, avoids similar counterexamples for the reverse situation

by preventing each handshake on in1 from outpacing its handshake partner on

out1.

Solving protocol failures may be hard and require rules of thumb for designing

self-timed circuits. For example [8] experiments with slow versus fast input events

to guide the synthesis of self-timed circuits. By presuming a slow environment, it

may be possible to generate rt5 automatically from the second counterexample.

We will come back to this when we discuss timing patterns.

5.2.3.2 Modeling Relative Timing Constraints

The relative timing constraints in Figure 5.19 capture the clues from the various

counterexamples generated by the model checker. The two counterexamples of

Figure 5.18 gave us rt3 and rt5, and implicitly all six constraints, rt1 to rt6. The

99

focus of the current section is to expose the structure and operation of all such

relative timing constraints.

As mentioned in Section 5.1.4, relative timing constraints are constraints

between signals at the ends of paths that start at the same point — signals

that must change in a pre-established sequence. Each relative timing constraint

identifies the point where the paths split, called a Point of Divergence (POD)

in [9, 52] — here we call it myPOD. Each constraint also indicates the two

destinations, a pre-established “early” end point and a pre-established “late” end

point — we call these myEARLY and myLATE, respectively. In addition the

constraint has a name, like rt1 in Figure 5.19 — we call this myNAME.

Our relative timing constraints have the following structure:

• myNAME : myPOD → myEARLY < myLATE

where

• myPOD is an abbreviation for: guardPOD ∧ eventPOD

◦ guardPOD is a guard, i.e. a Boolean logic expression

◦ eventPOD is an event, i.e. a rising or falling signal

• myPOD holds if and only if

◦ eventPOD occurs, and

◦ meanwhile guardPOD holds

• myEARLY and myLATE have similar structures:

◦ myEARLY abbreviates guardEARLY ∧ eventEARLY

◦ myLATE abbreviates guardLATE ∧ eventLATE

100

To better distinguish guards from events, we underline guards. We omit trivial

guards, like TRUE. For instance, the guards for myPOD in rt5 to rt11 are omitted

for this reason.

Constraint myNAME :myPOD → myEARLY < myLATE says:

• if myPOD becomes valid

• then myEARLY must become valid

• before myLATE becomes valid.

One can use a constraint for analysis and report whether or not it is satisfied

for all possible computation paths of the system. This is done, for instance, during

static timing analysis — see Section 5.1.4. Alternatively, one can use a constraint

as an actuator — a delay device that retards eventLATE aftermyPOD becomes valid

by blocking eventLATE until myEARLY has become valid. The model checker uses

constraints as actuators.

Our model checker’s actuator model of constraint myNAME is a three-

state finite state machine extension of the two-state version used in [9] and in

Section 4.1.3. The three states are necessary for modeling the non-trivial guards

of myLATE in rt7 and rt8 of Figure 5.19. We name the three states GREEN,

YELLOW, and RED.

Figure 5.19a shows the stoplight model that we use as the model checker’s

actuator view of a relative timing constraint. Both GREEN and YELLOW states

permit eventLATE to happen, while a RED state blocks eventLATE . Most constraints

start in GREEN, as do rt1 to rt11 in Figure 5.19b, and proceed as follows:

• All constraints go to a GREEN state when myEARLY becomes valid,

because the need to retard eventLATE vanishes with arrival of myEARLY.

101

• In GREEN, only myPOD can change the state, because myEARLY and

myLATE matter only after myPOD becomes valid. The stoplight changes

from GREEN to YELLOW if myPOD holds but guardLATE does not. Only

instances of eventLATE for which guardLATE holds need blocking. The state

changes from GREEN to RED if both myPOD and guardLATE hold.

• Both YELLOW and RED states follow from arrival of a valid myPOD but

not yet a valid myEARLY.

• Before myEARLY becomes valid, changes in guardLATE change the state

from YELLOW to RED, and vice versa. Such changing of the guard and the

state happens in some computations for rt7 and rt8 in Figure 5.19b. The

stoplight state for rt7 or rt8 changes from RED, at myPOD, to YELLOW,

by rt5 and rt6, back to RED if xor_in1.val+ or xnor_out1.val+ changes

before and2.val−.

5.2.3.3 Deriving Timing Patterns

Failure analysis of the two counterexamples in Figure 5.18 gave us the first six

relative timing constraints rt1 to rt6 of Figure 5.19. Constraints rt1 to rt6 are

the weakest relative timing constraints required to prevent the failures exposed by

the two counterexamples and similar examples. The remaining constraints are also

the weakest relative timing constraints of their kind:

• Constraints rt7 and rt8 form the weakest relative timing constraints to

maintain the “digital health” of gate and2 as a semimodular gate. They

go as far as to permit a single rising and2 input after both inputs have gone

low, before they require and2.val to fall.

102

• Constraint rt9 is the weakest relative timing constraint to maintain buf_ck ’s

“digital health” as a semimodular gate.

• Constraints rt10 and rt11 are the weakest setup time constraints for positive

edge-triggered flipflop FF.

One can explore myNAME :myPOD → myEARLY < myLATE expressions to

get an idea which constraints are critical. One way to do this is to estimate

the elapsed time between myLATE and myEARLY at full speed operation under

reasonable gate delays and in a reasonable environment, e.g.:

• Assume gate delays equivalent to 2 inverter delays for X(N)OR, AND, FF.

Assume zero delay for the grey buffers. Replace the component’s environment

in Figure 5.15 by two other Click Storage circuits, one on each channel.

Assume maximally parallel operation — no stalling.

• Under these assumptions, the cycle time for and2.val+ is 12 inverter delays,

and the elapsed time from myEARLY to myLATE is 4 inverter delays for

rt1–rt4 and rt7–rt8, 6 for rt5–rt6 and rt9, and 9 for rt10–rt11.

With at least 4 inverter delays to spare in each constraint, these estimations

indicate that the risk for violating a constraint is low and that none of the

constraints rt1 to rt11 is critical.

Constraints rt1 to rt11 are the weakest possible constraints in part because

they are tightly coupled to the circuit. A tight coupling between constraints and

circuit is useful if the chip uses exactly this circuit for each instance of the Click

Storage component — which is unlikely. For example, a technology mapping tool

might partition the AND gate into a NAND and inverter, and a layout tool might

103

add clock buffers. With a NAND gate or extra clock buffers, constraints rt1 to

rt11, as formulated in Figure 5.19, no longer suffice because the gate names and

connections have changed. To make the constraints suffice might require a grouping

of gates in the new circuit and a mapping of group names back to the old circuit.

This is common practice and not a problem in itself. The problem is that not all

renamings ensure that rt1 to rt11 still cover all the properties in the new circuit

— see Figure 5.20.

buf_extranew

buf_cknew

NEW-2

a
n

d
2

b
u

f_
c

k

 and2new

buf_extranew

buf_cknew

NEW-1
a

n
d

2
b

u
f_

c
k

 and2new

buf_ck

 and2

OLD

Figure 5.20: (OLD) Click Storage sub-circuit from Figure 5.15, and (NEW) two
new post-layout versions with an extra buffer. Sub-circuit NEW-1 groups and2 new

and buf_extranew and identifies the group with and2 in OLD. The semimodular gate
behavior of each gate is covered if the semimodularity of and2 is covered. Constraints
rt7 and rt8 of Figure 5.19 cover the semimodularity of and2, and thus that of
and2 new and buf_extranew in NEW-1. The grouping and renamings for sub-circuit
NEW-2, however, keep buf_extranew isolated. Because rt1 to rt11 are the weakest
possible constraints for the original circuit with sub-circuit OLD, they fail to cover the
semimodular gate behavior of buf_extranew in NEW-2. Because the timing patterns p5
and p6 in Figure 5.21 cover the semimodular behavior of all gates from and2 through
buf_ck, they cover the semimodular behavior of the intermediary gate, buf_extranew ,
in both NEW-1 and NEW-2.

Ensuring that the renaming works for rt1 to rt11 may require re-running the

model checker on the new circuit. However, re-running the model checker would

defeat the purpose of working with a Design Library of verified components and

would put the timing verification framework, i.e. ARCtimer, in the critical design

104

cycle of each chip. Our purpose holds to keep ARCtimer firmly in the early part

of the design process.

To hold this purpose, the constraints must work regardless of circuit changes

made during technology mapping or layout. Figure 5.20 shows that constraints rt1

to rt11 fail this purpose.

In summary: We need general constraints that emphasize the circuit’s intent

rather than the circuit’s structure.

The component’s designer faces a similar issue when choosing appropriate

structures for the component’s circuit. To make the circuit work for every chip, he

or she uses design patterns. The patterns work for most technology mappings and

layout tools. We wish to solve circuit design and circuit timing in a similar way.

We seek timing patterns that make the design patterns work — i.e. that ensure:

• the X(N)OR gates detect full and empty channel states,

• the AND function coordinates the handshakes, and

• the FF and inv_q2d flip the channel state.

Let us examine the initial constraints rt1 to rt11 of Figure 5.19 to see which

might work as patterns and which need generalizing:

• Constraints rt1 to rt4 make the X(N)OR gates work, and do no more and

no less than that — they make fine patterns. Figure 5.21 rephrases them as

p1 and p2.

• Constraints rt5 and rt6 make the AND function work by comparing the

output signals of the X(N)OR gates. This comparison makes less sense for

complex AND functions in components with more than one channel on each

105

side. Requiring the outputs of all X(N)OR gates to fall before any channel

input changes results in the more general constraints p3 and p4 in Figure 5.21

(top) and p (bottom).

• Constraints rt7 to rt9 keep the AND function semimodular, but they do

this by exposing the organization of the AND function all the way from

gate and2 to the FF ’s clock input — a result of resolving semimodularity

failures by pushing them out of the way. The slow environment presumed

in Section 5.2.3.1 for rt5 and rt6 can be assumed again here to guarantee

that there will be enough time to stabilize internal feedback loops up to FF ’s

clock input before the channel inputs change. This assumption is formalized

in p5 and p6 of Figure 5.21. Unlike rt7 and rt8, patterns p5 and p6 are

robust to both post-layout design changes shown in Figure 5.20.

• Constraints rt10 and rt11 keep the FF with inv_q2d combination flipping,

but can be generalized as patterns p7 and p8 of Figure 5.21 by assuming a

slow environment.

Note that each pattern in p1 to p8 of Figure 5.21 still leaves at least 2 inverter

delays to spare under the earlier estimations for full speed operation, reasonable

gate delays, and a reasonable environment. This indicates that the risk for violating

one of these patterns is low and that none of them is critical.

The slow environment assumed above leads to a burst-mode operation [12] of

the Click Storage component, where internal loops stabilize before new external

channel inputs arrive. The burst-mode assumption is expressed most clearly in

the parametrized pattern p of Figure 5.21. It is quite common in self-timed

circuit design to assume that an external feedback loop through the component’s

106

Timing Patterns
replacing rt1 to rt11

myName myPOD myEARLY myLATE
p1 : and2.val+ ! xor in1.val� < in1 R±
p2 : and2.val+ ! xnor out1.val� < out1 A±
p3 : and2.val+ ! xor in1.val� < out1 A±
p4 : and2.val+ ! xnor out1.val� < in1 R±
p5 : and2.val+ ! buf ck.val� < in1 R±
p6 : and2.val+ ! buf ck.val� < out1 A±
p7 : and2.val+ ! inv q2d.val± < in1 R±
p8 : and2.val+ ! inv q2d.val± < out1 A±

Parametrized Timing Patterns
for N incoming and M outgoing channels

(0 < n1, n2 N and 0 < m1, m2 M)

myPOD myEARLY myLATE

p : and2.val+ !

8
<
:

xor in [n1] .val�
xnor out [m1] .val�

buf ck.val�
inv q2d.val±

9
=
; <

n
in [n2] R±

out [m2] A±
o

Figure 12 Timing Patterns for a Click Storage component
with a single incoming and a single outgoing channel (top).
Pattern p (bottom) re-phrases and parametrizes p1 to p8 to
multiple incoming and outgoing channels. It expresses that
after myPOD the computation must satisfy all myEARLY
before any myLATE. Symbols “+,” “�” and “±” at the end
of a signal indicate a rising, falling, or either signal transition.

31

Figure 5.21: Timing Patterns for a Click Storage component with a single incoming
and a single outgoing channel (top). Pattern p (bottom) re-phrases and parametrizes
p1 to p8 to multiple incoming and outgoing channels. It expresses that after myPOD
the computation must satisfy all myEARLY before any myLATE. Symbols “+,” “−” and
“± ” at the end of a signal indicate a rising, falling, or either signal transition.

107

environment is slow compared to an internal feedback loop in the component’s

circuit. Heuristics for automatic circuit synthesis or timing constraint generation

often use such assumptions. There is no guarantee, however, that relative timing

constraints generated on the basis of heuristics are sufficiently general to be stored

in a Design Library for use in every chip design.

The role of ARCtimer’s Step 3 is to take the initial timing constraints, obtained

by human or automated failure analysis, and turn them into sufficiently general

timing patterns.

5.2.4 Step 2 Revisited — Adding Timing Constraints

The double-headed arrow in Figure 5.7 (right-column), on the spiral between Step

2 and Step 3, indicates that we alternate these two steps. We first run the model

checker (Step 2), then we examine a few counterexamples and capture their clues in

one ore more relative timing constraints (Step 3). Then we model the constraints,

and re-run the model checker primed with these constraints. We examine a few

counterexamples, and repeat. We alternate Step 2 and Step 3 until the model

checker reports no further counterexamples. This alternation gave us constraints

rt1 to rt11 of Figure 5.19b, from which we then derived timing patterns p1 to p8

and p of Figure 5.21.

The purpose of this Section is to illustrate how one can model such constraints

in a general-purpose model checker. As before, we use the NuSMVmodel checker as

example. Figure 5.22 expands the NuSMV Model Checker Netlist of Figure 5.17a

without timing constraints to match the version shown in Figure 5.12 (middle)

with p1 to p8 as the component’s timing constraints. When the model checker

runs the code in Figure 5.22 it reports no further counterexamples.

108

1 MODULE rt (eventPOD, eventEARLY, init_rt, guardPOD, guardEARLY, guardLATE, xPOD, xEARLY)
2 VAR
3 stoplight : {GREEN, YELLOW, RED};
4 ASSIGN
5 init(stoplight) := init_rt;
6 TRANS
7 next(stoplight) = case
8 myEARLY : GREEN;
9 stoplight=GREEN & myPOD & next(!guardLATE): YELLOW;

10 stoplight=GREEN & myPOD & next(guardLATE) : RED;
11 stoplight=YELLOW & next(guardLATE) : RED;
12 stoplight=RED & next(!guardLATE) : YELLOW;
13 TRUE : stoplight;
14 esac;
15 DEFINE
16 myPOD := guardPOD & ((xPOD & eventPOD!=next(eventPOD)) | (!eventPOD & next(eventPOD)));
17 myEARLY := guardEARLY & ((xEARLY & eventEARLY!=next(eventEARLY)) | (!eventEARLY & next(eventEARLY)));
18 stop := (stoplight=RED);
19 --PROPERTIES
20 --safety
21 CTLSPEC AG (stoplight=YELLOW -> !guardLATE) & (stoplight=RED -> guardLATE)
22 --END MODULE RTconstraint
23
24 MODULE circuit (in1_R, out1_A)
25 --RELATIVE TIMING CONSTRAINTS
26 VAR
27 p1p3: rt (and.val, !xor_in.val, GREEN, t,t,t,f,f);
28 p2p4: rt (and.val, !xnor_out.val, GREEN, t,t,t,f,f);
29 p5p6: rt (and.val, !ckbuf.val, GREEN, t,t,t,f,f);
30 p7p8: rt (and.val, inv_q2d.val, GREEN, t,t,t,f,t);
31 DEFINE
32 stop_in1_R_x := p1p3.stop | p2p4.stop | p5p6.stop | p7p8.stop;
33 stop_out1_A_x := p1p3.stop | p2p4.stop | p5p6.stop | p7p8.stop;
34 VAR
35 xor_in1 : process cgate (in1_R xor buf_in1_A2.val, f,f,f,f);
36 xnor_out1 : process cgate (out1_A xnor buf_out1_R2.val, t,f,f,f);
37 and2 : process cgate (xor_in1.val & xnor_out1.val, f,f,f,f);
38 buf_ck : process cgate (and2.val, f,f,f,f);
39 FF : ff_posedge (buf_ck.val, inv_q2d.val, f);
40 inv_q2d : process cgate (!FF.q, t,f,f,f);
41 buf_in1_A1 : process cgate (FF.q, f,f,f,f);
42 buf_in1_A2 : process cgate (FF.q, f,f,f,f);
43 buf_out1_R1 : process cgate (FF.q, f,f,f,f);
44 buf_out1_R2 : process cgate (FF.q, f,f,f,f);
45 DEFINE
46 in1_A := buf_in1_A1.val;
47 out1_R := buf_out1_R1.val;
48 f := FALSE;
49 t := TRUE;
50 FAIRNESS running
51
52 MODULE environment (in1_A, out1_R, stop_in1_R_x, stop_out1_A_x)
53 VAR
54 ENV_in1 : process cgate (!in1_A, f, t, stop_in1_R_x, stop_in1_R_x);
55 ENV_out1 : process cgate (out1_R, f, t, stop_out1_A_x, stop_out1_A_x);
56 DEFINE
57 in1_R := ENV_in1.val;
58 out1_A := ENV_out1.val;
59 f := FALSE;
60 t := TRUE;
61 FAIRNESS running
62
63 MODULE main
64 VAR
65 ComponentEnvironment : process environment (in1_A, out1_R);kill
66 ComponentProtocol : protocol (in1_R, in1_A, out1_R, out1_A);
67 ComponentCircuit : process circuit (in1_R, out1_A);
68 ComponentEnvironment : process environment (in1_A, out1_R, stop_in1_R_x, stop_out1_A_x);
69 DEFINE
70 stop_in1_R_x := ComponentCircuit.stop_in1_R_x;
71 stop_out1_A_x := ComponentCircuit.stop_out1_A_x;
72 in1_R := ComponentEnvironment.in1_R;
73 in1_A := ComponentCircuit.in1_A;
74 out1_R := ComponentCircuit.out1_R;
75 out1_A := ComponentEnvironment.out1_A;
76 FAIRNESS running

Figure 5.22: NuSMV model checker code changes are applied for adding the relative
timing constraints captured in patterns p1 to p8 of Figure 5.21. The Model Checker
Library adds the module definitions for protocol (Figure 5.13) and logic gates cgate and
ff_posedge (Figure 5.16). Note: In NuSMV, earlier commands in a case statement have
a higher priority, and the symbol “!” is used for logical negation.

109

Module rt in lines 1–18 of Figure 5.22 models the state changes of the

stoplight model of Figure 5.19a which is our model of a relative timing constraint.

The parameters in line 1 with names eventPOD, eventEARLY, guardPOD ,

guardEARLY, and guardLATE represent respectively eventPOD , eventEARLY ,

guardPOD , guardEARLY and guardLATE defined earlier, and used in Figure 5.19.

Note the absence of a parameter for eventLATE . The third parameter in line 1,

init_rt, contains the initial stoplight state. The role of the last two parameters,

xPOD and xEARLY, is to reduce the number of rt instances needed to code

constraints. Parameter xPOD, when TRUE, indicates that both rising and falling

signal transitions count as events for myPOD. Parameter xEARLY indicates

the same for myEARLY. The last two parameters make it possible to model

inv_q2d.val± in p7 and p8 of Figure 5.21 with a single rt instance by making

xEARLY TRUE (t) — see line 26 in Figure 5.22.

The statement between the keywords case and esac in lines 7 and 14 is

precisely the code for the stoplight’s state changes. It is executed in synchronous

mode, i.e. in each execution step by the model checker, as indicated by the

keyword TRANS in line 6. This is consistent with the mode of execution

indicated earlier in Figure 5.12 for the leftmost white rectangle with the name

“Component’s Timing Constraints.”

The signal, stop, defined in line 18 of Figure 5.22, is TRUE if and and only if

the stoplight is RED.

The constraint’s rt instances follow in lines 25–33, in the code for the circuit

module. Constraints that start in the same state and that use the same myPOD,

myEARLY, and guardLATE have the same rt parameters in the NuSMV code,

and can thus share an rt instance. For instance, patterns p1 and p3 share an rt

110

instance in line 27, called p1p3. This is possible, despite the fact that the two

patterns have different myLATE events. It is possible because the rt instances

control the GREEN, YELLOW and RED stoplight states, but they do not block

myLATE event. The cgate instance that drives the myLATE event, eventLATE, is

the one that blocks the event.

For the model checker, we partitioned the stoplight model of Figure 5.19a into

a stoplight controller (rt) and a driver (cgate). Although [9] uses a two-state model

instead of our three-state stoplight model, their model checker solution uses exactly

the same partition. The analogy with everyday stoplights and drivers makes this

an obvious partition.

Just as multiple stoplights may force a driver to stop a vehicle, so multiple

rt instances may force a cgate to block a myLATE event. Take for instance

relative timing constraints p1, p4, p5, and p7 of Figure 5.21. The constraints share

myLATE event, in1_R± , which corresponds to a rising or falling transition. This

means that any of these constraints may block any transition of in1_R. Thus, in

the model checker, each of the stop signals of the constraints’ multiple rt instances

may block in1_R± . Line 32 of Figure 5.22 combines these separate stop signals

into a single variable stop_in1_R_x, to simplify the remaining code. Likewise,

line 33 combines the separate stop signals for myLATE event out1_A± into a

single variable stop_out1_A_x.

All events in1_R± and out1_A± are generated by the environment.

Therefore, stop_in1_R_x and stop_out1_A_x must pass from the instantiated

circuit to the instantiated environment through the parameter mechanism, as

shown in lines 63–75 of Figure 5.22. In lines 52–60, module environment passes

the parameters to the appropriate cgate drivers, ENV_in1 and ENV_out1.

111

Because stop_in1_R_x blocks the rising as well as the falling transitions of

ENV_in1.val it is passed to both the stop_rise and the stop_fall parameter slots

for cgate ENV_in1 — making the cgate block any transition of ENV_in1.val if

stop_in1_R_x is TRUE (line 9 of Figure 5.16). This is how timing constraints

control the run-time values of stop_rise and stop_fall in the various cgate drivers

of myLATE events.

5.2.5 ARCtimer Step 4 — Static Timing Analysis

Section 5.2.3 ended Step 3 “Timing Patterns” of Figure 5.7 (right-column-bottom)

with a set of timing patterns p1 to p8 and their parametrized version p — see

Figure 5.21. This set is complete in terms of property coverage and sufficiently

general to apply to every chip with a Click Storage component.

This Section 5.2.5 takes p to Step 4 “Static Timing Analysis” of Figure 5.7

(left-column-bottom) by translating p’s formula into code for static timing analysis

(STA). We store both p’s formula, p : myPOD → myEARLY < myLATE , and its

STA code in the Design Library.8

The first task for static timing analysis is to validate p, i.e. to validate that p’s

slowest early path is faster than p’s fastest late path in the chip’s gate-level netlist.

This involves computing the maximum path delay, maxEARLY, of all paths from

myPOD to myEARLY and the minimum path delay, minLATE, from myPOD to

myLATE, and validating that:

• maxEARLY < (minLATE + margin)

for some delay margin.
8The STA code for non-relative-timing constraints, such as minimum clock pulse widths, can

be stored, organized, and generated in a way similar to p.

112

The second task for static timing analysis is to repair the netlist in case the first

task invalidates p. The iterative repair process described in Section 5.1.4 performs

this second task. It finds the minimum delay value d to make p valid, given a delay

insertion point in the netlist at which to insert d.

Calculating maxEARLY and minLATE involves following the topological connec-

tions between gates and wires in the netlist, differentiating rising from falling

transitions where possible, and filling in gate and wire delays using lookup

tables [15, 26, 37, 38, 52, 61]. Unfortunately, some STA tools cannot differentiate

rising from falling transitions, and many STA tools cut paths and loops at flipflops

— see Section 5.1.4. As a result, most STA tools need guidance to know if a path

passes through or bypasses a flipflop and to know which delay to use at asymmetric

delay insertion points.

Various self-timed design groups have developed solutions to guide STA tools

through a gate-level netlist with self-timed circuitry — see Section 5.1.4. The

solutions usually involve pre-cut sub-paths that a conventional STA tool can

handle. These pre-cut sub-paths are the result of a higher-level analysis of the

netlist. The higher-level analysis is the most interesting part of any of these

solutions, because it is the part that would remain necessary even if conventional

STA tools were capable of doing the analysis without guidance.

The STA code stored in the Design Library does the higher-level analysis.

It contains the algorithms to find paths and calculate path delays and to mark

intermediary flipflops and other relevant checkpoints on the paths.9 Below, we

indicate the most important decisions that we made to organize this STA code.

These decisions complement the actual path cutting pragmatics in [15,26,38,61].
9We call these checkpoints, after the Berlin Wall’s “Checkpoint Charlie” — the famous Cold

War crossing point between East and West Berlin.

113

• Fill in crucial semantic details in advance:

We use the model checker and formal analysis to fill in behavioral details

that a topological search cannot find.

• Mimic the modularity of the self-timed design:

Because the Design Library stores information by component, we must

partition the STA code also by component. Our self-timed components

communicate by handshakes over channels, as explained in Section 5.2.1

and Figure 5.8. Each handshake is marked by a pair of events, making

the channel full and then empty, or vice versa. In Click these events

are marked by a transition on the request signal followed by a transition

on the acknowledge signal, or vice versa. Each pair of handshake events

partitions the paths in the netlist between two successive components. Thus,

although we store the main STA code for validating the component’s timing

constraints with the component, we can distribute the full code by storing

the delay calculations for the other side of a partitioned path with the other

component.10 The STA code uses the pair of handshake events to initiate

an external delay calculation and return its results. This process may be

recursive, because the STA code for the neighboring component may initiate

sub-calculations stored with further out neighboring components before it can

complete its calculation. We implement this using channel subroutine calls.

Hence, in addition to STA code for validating its own timing constraint, each

component must also store STA code for the channel subroutines for which

it might receive calls.
10Bundled data setup and hold time constraints use a similar partition based on different pairs

of handshake events — between request and data signals versus acknowledge and data signals.
See also footnote 1.

114

• Sequence the calculations in a sensible way

Internal paths generally contribute less delay than paths that exit and enter

the component via a handshake channel. Thus, it makes sense to start

minimum path delay calculations with internal paths, and use the current

minimum to cut off subsequent calculations including the channel subroutine

calls introduced above.

As an example, let us look at the decisions and STA code organization re-

lated to timing constraint p of Figure 5.21 and its calculations to validate

maxEARLY < (minLATE + margin):

• Delay insertion points:

We have chosen to repair p at the two myLATE events, by delaying signal

changes on in[n2]_R and out[m2]_A — whichever applies. The two end

signals make good repair points, because, not only do they change exactly

once permyPOD–myLATE cycle, the minimum frequency for repair, but also

their change covers all of the myEARLY events in each myPOD–myLATE

cycle. The delay element must delay both rising and falling transitions

because the direction of the change is irrelevant, as indicated by the symbol

“± ” in Figure 5.21.

Also, as p’s myLATE events, in[n2]_R and out[m2]_A share the same

set of myEARLY events. As a result, we can delay signal changes on

in[n2]_R and out[m2]_A without creating circular repair dependencies. The

lack of circular dependencies ensures that the repair process described in

Section 5.1.4 will converge.

• Additional semantic details to simplify maxEARLY :

Timing constraint p has falling signal transitions for myEARLY events, and

115

thus requires transition-aware static timing analysis. However, the only

myEARLY event preventing a transition-agnostic analysis is buf_ck.val−.

Unlike its transition-agnostic version buf_ck.val± , event buf_ck.val− fol-

lows and2.val+ not immediately but only after FF.q± . As it happens, all

p’s myEARLY events follow and2.val+ after FF.q± . We can indicate this

by adding FF.q± between myPOD and myEARLY in p. The presence of

FF.q± makes it possible to focus on changes rather than specific transitions

of myEARLY events — the transitions are implied, as the model checker

can confirm. Figure 5.23 shows the updated version of p, with checkpoint

FF.q± and non-specific myEARLY event transitions. This is the version

that we translate into STA code, using transition-agnostic calculations.11

From p itself we can deduce that early paths end before any myLATE event

and thus never go through a channel. Therefore, we can use transition-

agnostic calculations for maxEARLY restricted to paths internal to the

module.

• STA code partitioning for minLATE:

The minLATE STA code for p calculates the minimum path delay for paths

from myPOD to myLATE internal to the module — no holds barred. The

code keeps track of any flipflop or other checkpoints that may need further

preparation before the calculations can be handed over to conventional STA
11We chose and2.val+ as p’s myPOD rather than FF.q± , because as the AND function of

the Click Storage component, and2.val+ makes the component “act” more so than FF.q± .
Moreover, alternative circuit implementations that split FF into separate flipflops for each
channel [39] require p to use and2.val+ as myPOD. Having said that, the Click Storage circuit
in Figure 5.7 (right-column-top) can use FF.q± as myPOD and thus, without inserting an
additional checkpoint, avoid the need to differentiate rising from falling transitions in myEARLY.
Whether one chooses to keep the STA code as general as possible by taking and2.val+ as myPOD
or as simple as possible by taking FF.q± as myPOD the goal remains the same: simplify the
STA code using transition-agnostic path-finding and path-delay calculations where possible.

116

tools. Each time the path subsequently exits and enters the module over a

channel, the code inserts a channel subroutine call, and splits the calculation

into the sum of three sub-calculations: the original calculation up to the exit

over the channel, the channel subroutine call, and the original calculation

from the entry over the channel back into the module.

Each channel comes with STA code to fill in the delay of a channel

subroutine call entering and exiting the Click Storage module. Each such

channel subroutine calculates the minimum path delay for paths through the

component from channel entry to channel exit — no holds barred.

myPOD
out1_A±

myEARLY in1_R±

myPOD
out1_A±

myEARLY in1_R±FF.q±

myPOD
out1_A±

myEARLY in1_R±

myPOD
out1_A±

myEARLY in1_R±FF.q±

Parametrized Timing Patterns for STA code generation
replacing p (guard

def
= sta1.stoplight 6= GREEN)

myPOD myEARLY myLATE

sta1 : and2.val+ ! FF.q± <

n
in [n2] R±

out [m2] A±
o

sta2 : (guard ^ FF.q±) !

8
<
:

xor in [n1] .val±
xnor out [m1] .val±

buf ck.val ^ buf ck.val±
inv q2d.val±

9
=
; <

n
in [n2] R±

out [m2] A±
o

Figure 14 We modify timing pattern p of Figure ?? to simplify its STA code. Knowing that all p’s myEARLY paths go through
flipflop FF compensates the need to differentiate rising from falling transitions in myEARLY. The lefthand graphs show the event
orderings specified by p before (top) and after (bottom) adding FF as intermediary checkpoint. The righthand constraints sta1 and
sta2 formulate the modified version of p, and have been verified by using their NuSMV translations instead of those of p in lines
24–30 of Figure 13. The guard in myPOD of sta2 plays the role of the baton in a relay race, handing over the task of blocking
myLATE from sta1 to sta2. The guard in myEARLY for buf ck.val±in sta2 distinguishes the targeted early transition from the one
occurring concurrently with myPOD, and can be ignored in the STA code.

33

Figure 5.23: We modify timing pattern p of Figure 5.21 to simplify its STA code.
Knowing that all p’s myEARLY paths go through flipflop FF compensates the need
to differentiate rising from falling transitions in myEARLY. The graphs show the event
orderings specified by p before (top) and after (bottom) adding FF as intermediary
checkpoint. The constraints sta1 and sta2 shown in the box formulate the modified
version of p, and have been verified by using their NuSMV translations instead of those
of p in lines 27–33 of Figure 5.22. The guard in myPOD of sta2 plays the role of the
baton in a relay race, handing over the task of blocking myLATE from sta1 to sta2. The
guard in myEARLY for buf_ck.val± in sta2 distinguishes the targeted early transition
from the one occurring concurrently with myPOD, and can be ignored in the STA code.

117

Our STA code calculations are conservative. They tend to ignore any

guards, and focus only on the event changes in the relative timing constraint

formulation of Section 5.2.3.2. This is possible because we compensate for

missing details by adding checkpoints. Moreover, static timing validation is

more forgiving than behavior-based timing verification: it suffices to satisfy

maxEARLY < (minLATE + margin) even were the minimum and maximum delays

to belong to false paths.

5.2.6 Summary Timing Verification Framework Steps 1–4

Our Design Library, Figure 5.7 (left-column), stores a set of handshake components

for use in larger self-timed systems. For each component, the Design Library stores

a circuit description, a protocol description, a description of the timing constraints

for the circuit, and static timing analysis code to validate and enforce these

constraints in the final system. The circuit and its timing constraints are known to

follow the protocol properly because they have gone through the verification steps

outlined here. Because these verification steps happen early in the design process,

we have the leisure to apply an in-depth verification process.

We make use of a model checker as part of the verification process. The model

checker verifies that each component, or rather its timing constrained circuit, obeys

the protocol specified for its interface signals. The model checker also verifies

the “digital health” of a component. “Digital health” includes such properties

as semimodular gate behavior and as absence of set-reset drive fights, a “digital

health” property not used in this Chapter but important for verification of GasP

components. The static timing analysis code covers additional timing constraints,

such as minimum clock pulse widths for all the edge-triggered flipflops in the Click

118

circuit. The flipflop models that we used are too abstract for the model checker to

detect the need for such pulse width constraints.

In building the Design Library, we strive for modularity and generality. The

Design Library is organized by component. Even the static timing analysis code

generated in Step 4 is partitioned over the components. For each handshake

component we seek circuit descriptions as well as protocol, constraint, and

code descriptions that are understandable to the component’s designer, easy to

maintain, and robust to circuit modifications applied later in the design process.

Where possible, the descriptions in the Design Library are parametrized to address

variable numbers of channels. Whenever we use the term pattern, as in design

pattern or timing pattern, it is to emphasize the generality of that particular

description.

119

6

RT characterization of Bounded Bundled Data

This Chapter brings the datapath into the verification flow discussed in Chapter 5.

We explain how data is modeled and characterize the RT constraints for a Click

Storage component with bounded-bundled data (BBD) protocol.

6.1 Bounded Bundled Data and Click Storage

Figure 6.1 shows two circuit implementations of Click storage with datapath.

The first stores the data locally, the second doesn’t store the data. When the

predecessor on the input channel is full, the XOR gate xor_in1 becomes high.

XNOR gate xnor_out1 is high when the output channel is empty, and low when

the output channel is full. The AND gate locally synchronizes the predecessor’s

and successor’s handshakes, clocks the flipflop in the controller FF, and also clocks

the flipflop(s) in the datapath FF_D if local data storage exists.

FF

in1_R

in1_A

in1_D out1_D

out1_R

out1_A

FF_D

inv_q2d

1

1

xor_in1 xnor_out1

and

D Q

1

D Q
0/1 0/1

(a) Storage with datapath

FF

in1_R

in1_A

in1_D out1_D

out1_R

out1_A

inv_q2d

1

xor_in1 xnor_out1

and

D Q

1

0/1

1

(b) Non-storage with datapath

Figure 6.1: Click storage and non-storage component implementations with bounded
bundled data.

120

Click
nonStorage

Click Storage

Data

FF_D
D Q

Req

Ack

Lo
ca

l C
lo

ck

Click
Control

Click
Control

D Q

Lo
ca

l C
lo

ck

Click
Control

FF_D

Click Storage

CL

(a) A non-Storage component in-between two Storage components

B
o

u
n

d
e

d
B

u
n

d
le

d
 D

at
a

B
u

n
d

le
d

 D
at

a

validvalid

Acknowledge

Request

Data

Acknowledge

Request

Local Clock

Data

handshake handshake

valid valid

(b) Timing diagram of protocols

Figure 6.2: The flipflop on the datapath receives a clocking signal from its local control
module. Bundled Data protocol places valid data prior to the start of the handshake, and
remains valid until the end of the handshake. Bounded Bundled Data protocol on the
other hand allows the data to be skewed with respect to both request and acknowledge,
as long as the data is valid for at least the setup time prior to the local clock’s active
edge and at least the hold time afterwards. From the timing diagram, the blue and green
data shows the first and the second valid data.

Two-phase non-return-to-zero handshake protocol with bundled data is often

used between consecutive components in a dataflow pipeline, where each module

captures and stores data locally. The main motivation to store data locally is to

121

increase throughput. With local storage, a component can operate and forward its

current data while its predecessor components already prepare and evaluate the

next data. The disadvantage is that local data storage costs latency and dissipates

energy.

The BBD protocol on the other hand accommodates dataflow pipelines where

only a subset of the components capture and store data. It was proposed by

Willem Mallon [21] and is used in the ARC’s data-driven compiler, ARCwelder,

and in the Click circuit family that he developed at Portland State University.

His motivation for adding components that don’t store data is to avoid the extra

latency and energy for storage when throughput is limited by the combinational

logic rather than by the control components. BBD protocol minimizes the cost for

delay matching the bundled control and data by enabling delay borrowing between

the handshake channels of non-Storage components.

6.2 Modeling Data

To model validity of data and distinguish whether the data is new, current, or

stale, even when the data values don’t change, we created two virtual signals used

only for verification purposes. The two signals are called bind and release. We

use an encoding such that “bind 6= release” represents valid data while “bind =

release” represents invalid data.

Figure 6.3 shows an example of data validity with a timing diagram. The

two signals bind and release start from the same state to each other. When new

valid data is placed the bind bit flips. This can happen from currently valid or

invalid data. The current data becomes old or stale upon arrival of the new valid

data. When the current data goes stale, for instance because it is being reset by

122

a multiplexer or overwritten by new valid data, the release bit flips. The release

signal can flip only when the current data goes from valid to invalid.

Data

Bind

Release

valid
invalid

valid
invalid

Figure 6.3: Data validity is modeled with bind and release signals. A flipping bind
signals arrival of new valid data. A flipping release indicates that the current data is
going stale. Data is valid if and only if bind 6= release.

Figure 6.4 shows that the flipflop on the datapath is expanded to accommodate

bind and release signals. Since input D of the flipflop gets passed on to Q on each

rising edge of the clock signal, the two virtual signals bind and release are flipped

and passed on to the output to mark the data as a new valid data. We also add

a placeholder for combinational logic shown as CL in front of the flipflop. Gate

CL is similar to a cgate, but has additional bind and release signals along with

variable stop_release which can be used in timing constraints to stop the output

from releasing the data prematurely.

123

in_Request

in_Acknowledge

in_D out_D

FF_D

D Q

out_Request

out_Acknowledge

Lo
ca

l C
lo

ck

Click
Storage
Module

B
Rin_Drelease

in_Dbind

CL

out_Drelease
out_Dbind

Data

Release
Bind

Figure 6.4: Click storage with datapath. The datapath has two virtual signals, bind
and release to represent data validity. The data flipflop has been extended to pass on bind
and release signals on a rising clock edge. Combinational logic (CL) in front of the data
flipflop can have its own delay or even borrow delay from the predecessor component.

6.3 RT Constraints for BBD

The BBD protocol provides a large degree of independence for the design of the

datapath into combinational logic and flipflops versus the design of the self-timed

control. Data and control are mutually bounded only by the setup and hold times

of the gates where they meet. Typical gates that act as points of convergence for

data and control are locally clocked flipflops and multiplexers.

The setup constraint requires that data is ready before clocking the data

flipflop. As shown in Figure 6.5, the predecessor’s path delays are also considered

and the predecessor’s and+ becomes the POD. The EARLY event is where the new

data is ready on the data flipflop’s input D, which can be seen as CL.Bind±. The

LATE event is where the data flipflop receives an active clock edge, buf_ck_D+.

124

in1_D
in1_Dbind
in1_Drelease

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

out1_D

FF_D

D Q
B
R

CL

out1_Drelease
out1_Dbind

D Q

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

FF_D

D Q
B
R

CL

D Q

(P
re
d
e
ce
sso

r)

Early
Late

POD

Data

Release
Bind

in1_D

in1_Drelease
in1_Dbind

Data

Release
Bind

(S
e
lf
)

FF
inv_q2d

1

FF
inv_q2d

1

Figure 6.5: BBD flipflop setup constraint. The setup constraint simply states the data
must be ready before clocking the flipflop. The POD for this constraint starts from
the predecessor’s and gate. The early path is colored in red and the late path in blue.
BBD_setup: Predecessor.and+→ CL.Bind± ≺ buf_ck_D+

The hold constraint shown in Figure 6.6 requires that the time from and+ to

clocking the data flipflop is shorter than the time going over the input channel to

release and possibly replace the data. This can be characterized in terms of bind

and release changes, requiring release to come only after the data has been clocked

and stored into the data flipflop.

in1_D
in1_Dbind
in1_Drelease

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

out1_D

FF_D

D Q
B
R

CL

out1_Drelease
out1_Dbind

D Q

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

FF_D

D Q
B
R

CL

D Q

(P
re
d
e
ce
sso

r) Early

Late

POD

Data

Release
Bind

in1_D

in1_Drelease
in1_Dbind

Data

Release
Bind

(S
e
lf
)

FF
inv_q2d

1

inv_q2d

1

Figure 6.6: BBD flipflop hold constraint. The hold constraint states that the current
data must have been picked up by clocking the data flipflop before releasing the data.
BBD_hold: and+→ buf_ck_D+ ≺ CL.Release±

125

In summary, the additional RT constraints for the BBD datapath are as follows:

• (BBD setup) Predecessor.and+→ CL.Bind± ≺ buf_ck_D+

• (BBD hold) and+→ buf_ck_D+ ≺ CL.Release±

6.4 Code Changes and Additions in NuSMV

This section goes over the details and changes in the NuSMV code to accommodate

BBD datapaths, and is based on the code from Chapter 5. With the validity of

data being modeled using bind and release signals, we need to extend some of

the NuSMV module definitions with bind and release information and add a few

modules to track and verify bind and release changes. Key changes are as follows.

• Semimodularity check:

The new NuSMV code distinguishes more gate varieties, each with its own

semimodularity check. It makes sense to share the code for semimodularity

checking by creating a parameterized module, semimodular_check, that can

be instantiated as needed.

• BBD check:

The changes in bind and release must match the data validity encoding

illustrated in Figure 6.3. To verify that this is the case, we defined a new

NuSMV module, bbd_check, which can be instantiated whenever a BBD

check is required.

• Combinational gate and flipflop modules that use or produce BBD signals:

These module variations must include bind and release signals.

126

• Circuit, Environment, and Main modules:

The Circuit module contains the connectivity of the circuit while the

Environment module models the channel communications with the circuit.

The Main module pulls everything together. These modules must be adapted

to accommodate and verify bind and release signals.

Figure 6.7 shows the code for detection of semimodularity violation. This

function was part of the cgate module in Chapter 5 but we moved it out and

created a stand-alone module, to enable code sharing.

The new module has four variables: val, set, stop-rise, and stop-fall. Variable

val is the output and set is the value of the input function. To indicate whether the

output transition is blocked by one or more RT constraints, parameters stop-rise

and stop-fall are used to stop rising and falling transitions, respectively.

When the output is scheduled to make a transition and is not blocked by any

RTs, but the input function changes and the output no longer needs to make

a transition, semimodularity is flagged and semimodular becomes false. This is

shown in line 8 in the case statement.

1 MODULE semimodular_check (val, set, stop_rise, stop_fall)
2 VAR
3 semimodular : boolean;
4 ASSIGN
5 init(semimodular) := TRUE;
6 TRANS
7 next(semimodular) = case
8 ((!stop_rise & !val & set) | (!stop_fall & val & !set)) & next(val=set) & next(val)=val : FALSE;
9 TRUE : semimodular;

10 esac;
11 --PROPERTIES
12 --safety
13 CTLSPEC AG semimodular

Figure 6.7: Semimodularity check. If the output transition was not blocked, and
the output was about to make a transition but was canceled due to an input change,
semimodularity becomes false. This module is used for all cgates as well as other types
of gate modules in the flow control and datapath.

127

1 MODULE bbd_check (valid_set, set, D, bind, release)
2 VAR
3 bbd: boolean;
4 ASSIGN
5 init(bbd) := TRUE;
6 DEFINE
7 valid_D := (bind != release);
8 TRANS
9 next(bbd) = case

10 --A change in "bind" indicates that
11 --D is generated from a valid set input with a valid result value "set".
12 !(bind != next(bind) -> (valid_set & next(D) = set)) : FALSE;
13 --A valid D remains stable until released
14 !((valid_D & release = next(release)) -> D = next(D)) : FALSE;
15 --Bind changes exactly once from the current to the next [D-invalid to D-valid to D-invalid] cycle
16 --(where D-invalid may coincide with the previous D-valid) - namely when D become valid.
17 --Release changes also exactly once for each such cycle - namely when D become invalid.
18 --Bind and release changing together indicates that the new valid data invalidate the old data.
19 !((valid_D & bind != next(bind)) -> release != next(release)) : FALSE;
20 !(!valid_D -> release = next(release)) : FALSE;
21 TRUE: bbd;
22 esac
23 --PROPERTIES
24 --safety
25 CTLSPEC AG bbd

Figure 6.8: NuSMV code for BBD checking. This module is instantiated from each of
modules in the datapath.

1 MODULE cgate_data (set, bind_set, release_set, init_val, stop_release)
2 --Inertial delay extension of the inertial-delay cgate, adding data and its bind and release info.
3 --The changes (X) on bind or release can be sensed and used in RT constraints for bundled-data.
4 --When blocked by an RT constraint, DATA MUST BE MAINTAINED.
5 -- The definition of semimodularity CHANGES again over the prior rt-aware control version!!!
6 -- * We allow changes in set for invalid data, i.e. set!=next(set) is OK, i.e. semimodular,
7 -- when bind_set=release_set (invalid-set-data).
8 -- * Semimodularity for bind and release remain as strict as before.
9 VAR

10 val : boolean;
11 bind : boolean;
12 release : boolean;
13 ASSIGN
14 init(val) := init_val;
15 init(bind) := FALSE;
16 init(release) := FALSE;
17 next(val) := case
18 stop_data : val;
19 TRUE : set;
20 esac;
21 next(bind) := case
22 stop_data : bind;
23 TRUE : bind_set;
24 esac;
25 next(release) := case
26 stop_data : release;
27 TRUE : release_set;
28 esac;
29 DEFINE
30 valid_set := bind_set != release_set;
31 stop_data := stop_release & (release != release_set);
32 VAR
33 --PROPERTIES
34 --safety
35 --semimodularity
36 -- semimodular_check (val, set, stop_rise & , stop_fall)
37 -- NOTE: functions with invalid incoming data need not obey semimodularity
38 semimodular_val : semimodular_check (val , set , (stop_data | !valid_set), (stop_data | !

valid_set));
39 semimodular_bind : semimodular_check (bind , bind_set , stop_data , stop_data);
40 semimodular_release : semimodular_check (release, release_set, stop_data , stop_data);
41 --BBD
42 -- bbd_check (valid_set, set, D, bind, release)
43 bbd_cgate : bbd_check (valid_set, set, val, bind, release);
44 --progress
45 FAIRNESS running

Figure 6.9: CL gate for generic combinational logic is an instantiation of cgate_data
module. When this module process is selected, it passes on the Data, Bind, and Release
as long as the transition is not blocked by one or more RT constraints.

128

Figure 6.8 shows the module for BBD check. This module is instantiated from

each gate module in the datapath. It samples data, bind, and release from both

the inputs and outputs and checks whether BBD is violated.

Figure 6.9 is the module that is instantiated as combinational logic (CL) in the

datapath shown in Figure 6.4. This module is an extension of the inertial delay

cgate module with support of data validity. Semimodularity checks are performed

for handing over Data, Bind, and Release signals from CL input to CL output.

1 MODULE ff_posedge_data (ck1, d1, bind1, release1, init_q)
2 --Greedy posedge triggered flipflop for bounded bundled data, with bind and release bits.
3 --Flipflops release previous data while binding new data, so bind != release at all times.
4 --Without loss of generality (because it’s the bind/release changes that count)
5 --we start with FF.bind TRUE and FF.release FALSE, for all FF.
6 VAR
7 --GATES
8 -- count_bind_release_pc (bind, release, guard)
9 count1 : count_bind_release_pc (bind1, release1, guard1);

10 VAR
11 q : boolean;
12 bind : boolean;
13 release : boolean;
14 ASSIGN
15 init(q) := init_q;
16 init(bind) := TRUE;
17 init(release) := FALSE;
18 TRANS
19 next(q) = case
20 guard1 : d1;
21 TRUE: q;
22 esac;
23 TRANS
24 next(bind) = case
25 guard1 : !bind;
26 TRUE: bind;
27 esac;
28 TRANS
29 next(release) = case
30 guard1 : !release;
31 TRUE: release;
32 esac;
33 DEFINE
34 guard1 := !ck1 & next(ck1);
35 valid_set1 := bind1 != release1 & count1.cnt_bind = 1 & (count1.cnt_release = 1 | count1.initial_cycle);
36 VAR
37 --PROPERTIES
38 --safety
39 --BBD
40 -- bbd_check (valid_set, set, D, bind, release)
41 bbd_ff : bbd_check (valid_set1, next(ck1) & d1, q, bind, release);

Figure 6.10: Flipflop model with BBD inputs. The flipflop is initialized with valid data.
Upon each posedge clock, the Bind and Release flip, keeping the relation Bind 6= Release
at all times. The internal count1 module verifies that no valid data coming in is skipped
or stuttered as valid flipflop data going out on ff_posedge_data.q. It does this by counting
the number of incoming Bind and Release changes per clock cycle. The code details for
count1 are available in Appendix C.

Figure 6.10 is a flipflop model for bundled data with additional Bind and

Release bits. Flipflops release previous data while binding new data so it is always

129

the case that bind 6= release, which means that data stored and output by a flipflop

is valid at all times.

Figures 6.11–6.13 shows the code for the circuit and RT constraints, the

environment, and the main module that connects everything together. BBD setup

constraint rtbbd1 and hold constraint rtbbd2 can be found in Figure 6.11.

• (BBD setup) rtbbd1 : in1_POD± → CL.bind± ≺ and±

• (BBD hold) rtbbd2 : and+→ buf_ck_D± ≺ CL. ∗ ±

Notice that in Section 6.3 when there were two storage components, the POD

event for BBD setup was predecessor ’s AND gate, but now refers to in1_POD

in the environment module. The LATE event buf_ck_D is now and± which is

earlier point in time on the LATE path for generalization. By the way, there are

also some additional RTs we haven’t discussed yet. This is because the control

logic now forks the output of the AND gate to two clocks, FF and FF_D.

130

1 MODULE circuit (in1_R, in1_POD, in1_D, in1_Dbind, in1_Drelease, out1_A)
2 VAR
3 --CONTROL LOGIC
4 --Declaration format:
5 -- process cgate (set, init_val, lazy, stop_rise, stop_fall)
6 -- process cgate_data (set, bind_set, release_set, init_val, stop_release)
7 -- process ff_flip_on_posedge_w_guard_w_q2d (ck, guard, init_out)
8 -- ff_posedge_data (ck, d, dbind, drelease, init_q)
9 xor_in1 : process cgate (in1_R xor buf_in1_A2.val , FALSE, FALSE, FALSE, FALSE);

10 xnor_out1 : process cgate (out1_A xnor buf_out1_R2.val, TRUE , FALSE, FALSE, FALSE);
11 and : process cgate (xor_in1.val & xnor_out1.val, FALSE, FALSE, stop_and_HI, stop_and_LO);
12 buf_ck : process cgate (and.val , FALSE, FALSE, FALSE, FALSE);
13 buf_ck_D : process cgate (and.val , FALSE, FALSE, FALSE, FALSE);
14 FF : process ff_flip_on_posedge_w_guard_w_q2d (buf_ck.val, TRUE, FALSE);
15 buf_in1_A1 : process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
16 buf_in1_A2 : process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
17 buf_out1_R1: process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
18 buf_out1_R2: process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
19 --DATAPATH LOGIC
20 CL : process cgate_data (in1_D, in1_Dbind, in1_Drelease, FALSE, stop_CLrelease_x);
21 FF_D : ff_posedge_data (buf_ck_D.val, CL.val, CL.bind, CL.release, FALSE);
22 DEFINE
23 in1_A := buf_in1_A1.val;
24 out1_R := buf_out1_R1.val;
25 out1_D := FF_D.q;
26 out1_Dbind := FF_D.bind;
27 out1_Drelease := FF_D.release;
28 VAR
29 --CONSTRAINTS
30 --Declaration instance:
31 -- rt (eventPOD, eventEARLY, init_rt, guardPOD, guardEARLY, guardLATE, xPOD, xEARLY)
32 --(1) clock domain FF: and/ clocks the control FF.
33 -- POD : and/
34 -- Early : {xor_in_n1\, xnor_out_m1\, FF.d X, buf_ck\, buf_ck_D\}
35 -- Late : {in_n2_R X, out_m2_A X}
36 -- Repair: at each failing late event
37 rtc1: rt (and.val, !xor_in1.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
38 rtc2: rt (and.val, !xnor_out1.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
39 rtc3: rt (and.val, FF.d , GREEN, TRUE, TRUE, TRUE, FALSE, TRUE);
40 rtc4: rt (and.val, !buf_ck.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
41 rtc5: rt (and.val, !buf_ck_D.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
42 --(2) Bounded Bundled Data Setup
43 -- POD : in_n1_POD X
44 -- NOTE: for its out-channels, which are in-channels to SUCC modules, POD=and/
45 -- Early : {CL.bind X}
46 -- Late : {and/}
47 -- NOTE: is replaceable by {and X} for easy STA translation
48 -- Repair: at in_n1_R
49 rtbbd1: rt (in1_POD, CL.bind, GREEN, TRUE, TRUE, TRUE, TRUE, TRUE);
50 --(3) Bounded Bundled Data Release
51 -- Note:
52 -- For proper release of data, we require that:
53 -- The time from and/ is shorter to FFD.ck/ than over the channel to a new in1_D value.
54 -- Thanks to rtd1, we already know that the first in1_D value came before and/.
55 -- and by assumption-commitment reasoning (OK for pred then OK for succ)
56 -- the release of it comes after and/ and before the next binding of in1_D.
57 -- The corresponding constraint parameters are:
58 -- POD : and/
59 -- Early : {buf_ck_D/}
60 -- NOTE: by rtc5, this is replaceable by {buf_ck_D X} for easy STA translation
61 -- Late : {CL.release X}
62 -- Repair: at late event
63 rtbbd2: rt (and.val, buf_ck_D.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
64 --(4) Left-over isochronic forks, pushed to the point of semimodularity:
65 -- POD : and/
66 -- Early : {buf_ck_D/}
67 -- NOTE: by rtc5, this can be replaced by {buf_ck_D X} for easy STA translation,
68 -- Late : {and\}
69 -- NOTE: by rtc5, this can be replaced by {and X} for easy STA translation
70 -- Repair: at buf_in1_A2/buf_out1_R2
71 -- NOTE: this internal repair is likely never needed.
72 rtf1: rt (and.val, buf_ck_D.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
73 DEFINE
74 --Combine RT’s with the same late events into one RT with the name of the late events
75 stop_c := rtc1.stop | rtc2.stop | rtc3.stop | rtc4.stop | rtc5.stop;
76 stop_in1R_x := stop_c;
77 stop_out1A_x := stop_c;
78 stop_CLrelease_x:= rtbbd2.stop;
79 stop_and_HI := rtbbd1.stop;
80 stop_and_LO := rtf1.stop;
81 --PROPERTIES
82 --progress
83 FAIRNESS running

Figure 6.11: Module circuit has all the connectivity information for the control logic.
All RT constraints’ POD and EARLY, and some LATE points are in this module. BBD
setup constraint is shown rtbbd1 in line 49, where POD is in1_POD, EARLY is CL.bind.
The LATE event is and± seen in line 11.

131

1 MODULE ENVin_data (in_A, random_inD, stop_inR_x, stop_inDrelease_x)
2 VAR
3 --GATES
4 -- cgate (set, init_val, lazy, stop_rise, stop_fall)
5 -- ff_doubledge (ck, d, init_q)
6 buf_inA : process cgate (in_A , FALSE, TRUE , stop_inDrelease_x, stop_inDrelease_x);
7 inv_POD : process cgate (!buf_inA.val , FALSE, TRUE , FALSE , FALSE);
8 buf_inR : process cgate (inv_POD.val , FALSE, FALSE, stop_inR_x , stop_inR_x);
9 FF_inD : ff_doubledge (inv_POD.val , random_inD , FALSE);

10 DEFINE
11 in_POD := inv_POD.val;
12 in_R := buf_inR.val;
13 in_D := FF_inD.q;
14 in_Dbind := inv_POD.val;
15 in_Drelease:= buf_inA.val;
16 VAR
17 --PROPERTIES
18 --safety
19 --BBD
20 -- bbd_check (valid_set, set, D, bind, release)
21 bbd_ENVin : bbd_check (TRUE, random_inD, in_D, in_Dbind, in_Drelease);
22 --progress
23 FAIRNESS running

(a) Module ENVin_data is a submodule for the environment on the input channel.

1 MODULE environment (in1_A, out1_R, out1_D, out1_Dbind, out1_Drelease, stop_in1R_x, stop_in1Drelease_x, stop_out1A_x)
2 VAR
3 --GATES:
4 --Reminder of module definitions:
5 -- ENVin_data (in_A, random_inD, stop_inR_x, stop_inDrelease_x)
6 -- cgate (set, init_val, lazy, stop_rise, stop_fall)
7 ENV_in1 : process ENVin_data (in1_A, random_in1D, stop_in1R_x, stop_in1Drelease_x);
8 ENV_out1 : process cgate (out1_R, FALSE, TRUE, stop_out1A_x, stop_out1A_x);
9 random_in1D : boolean;

10 DEFINE
11 in1_R := ENV_in1.in_R;
12 in1_POD := ENV_in1.in_POD;
13 in1_D := ENV_in1.in_D;
14 in1_Dbind := ENV_in1.in_Dbind;
15 in1_Drelease := ENV_in1.in_Drelease;
16 out1_A := ENV_out1.val;
17 --PROPERTIES
18 --progress
19 FAIRNESS running

(b) Module environment interacts with the circuit module. Environment is part of a
LATE event for one or more RT constraints. Random inputs are supplied for the data.

Figure 6.12: Environment produces inputs and accepts outputs from the circuit.

1 MODULE main
2 VAR
3 StorageProtocol : protocol (in1_R, in1_A, out1_R, out1_A);
4 StorageEnvironment: process environment (in1_A, out1_R, out1_D, out1_Dbind, out1_Drelease, stop_in1R_x,

stop_in1Drelease_x, stop_out1A_x);
5 StorageCircuit : process circuit (in1_R, in1_POD, in1_D, in1_Dbind, in1_Drelease, out1_A);
6 DEFINE
7 in1_R := StorageEnvironment.in1_R;
8 in1_A := StorageCircuit.in1_A;
9 in1_POD := StorageEnvironment.in1_POD;

10 in1_D := StorageEnvironment.in1_D;
11 in1_Dbind := StorageEnvironment.in1_Dbind;
12 in1_Drelease := StorageEnvironment.in1_Drelease;
13 out1_R := StorageCircuit.out1_R;
14 out1_A := StorageEnvironment.out1_A;
15 out1_D := StorageCircuit.out1_D;
16 out1_Dbind := StorageCircuit.out1_Dbind;
17 out1_Drelease := StorageCircuit.out1_Drelease;
18 stop_in1R_x := StorageCircuit.stop_in1R_x;
19 stop_in1Drelease_x := FALSE;
20 stop_out1A_x := StorageCircuit.stop_out1A_x;
21 --PROPERTIES
22 --progress
23 FAIRNESS running

Figure 6.13: Module main connects the protocol, the environment, and the circuit.

132

6.5 Counter Examples without BBD Constraints

The final schematic of the Click storage with datapath is shown in Figure 6.14.

Figure 6.15 shows two counterexamples for the gate-level circuit diagram in

Figure 6.14 when data setup and hold are not constrained.

in1_Drelease

FF

in1_R

in1_A out1_R

out1_A

1

xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

in1_D out1_D

FF_D

D Q
B
R

in1_Dbind

CL

out1_Drelease
out1_Dbind

Data

Release
Bind

ra
n

d
o

m
_i

n
1

D

ENVin_data

in
1

_P
O

D

in_A

in_R

ra
n

d
o

m
_i

n
D

in
_P

O
D

in_D

in_Dbind
in_Drelease

EN
V

_o
u

t1

Lz

out1_D
out1_Dbind
out1_Drelease

inv_q2d

1
D Q

Figure 6.14: Circuit and Environment model of Click Storage with datapath.
Corresponding module definitions are coded in Figures 6.11–6.13.

133

“Data Setup” Failure
Initial State:

state=s0
random in1D=TRUE
in1 Dbind=FALSE
in1 Drelease=FALSE
in1 D=FALSE
CL.bind=FALSE
CL.release=FALSE
CL.val=FALSE
FF D.bind=TRUE
FF D.release=FALSE
FF D.q=FALSE

Run step 1:
in1 POD+
in1 Dbind+
in1 D=TRUE

Run step 2:
in1 R+
state=s1

Run step 3:
xor in1.val+

Run step 4:
and.val+

Run step 5:
buf ck D.val+
FF D.bind�
FF D.release+
FF D.q=FALSE
FF D.dvalid=FALSE

Failure: CTLSPEC AG bbd

“Data Hold” Failure
Initial State:

(see ”Data Setup”)
Run step 1:

in1 POD+
in1 Dbind+
in1 D=TRUE

Run step 2:
in1 R+
state=s1

Run step 3:
xor in1.val+

Run step 4:
CL.bind+
Cl.val=TRUE

Run step 5:
and.val+

Run step 6:
buf ck.val+

Run step 7:
in1 A+
state=s2

Run step 8:
ENV in1.buf in1A+
in1 Drelease+

Run step 9:
CL.release+

Run step 10:
buf ck D.val+
FF D.bind�
FF D.release+
FF D.dvalid=FALSE

Failure: CTLSPEC AG bbd

Figure 1 (left) Copy of the Click Storage circuit with datapath and environment coded in Figures REF-TO-NUSMV-CODE-
FOR-PICTURE-WITH-DATA and two counterexamples created by NuSMV (right). As before, in Figure REF-TO-CONTROL-
COUNTEREXAMPLE-FIG, the counterexamples each describe a path of events through a not-yet correctly constrained circuit. The
leftmost counterexample shows a “data setup” failure at data flipflop FF D, created in absence of relative timing constraint rtbbd1.
In the counterexample, the data coming in through channel in1 lag behind too much and fail to make it through the combinational
logic, CL, before the logic results are captured into FF D at the rising clock edge, buf ck D+. As a result, flipflop FF D captures
invalid data, which is detected by the bbd check that we built into the NuSMV code of the flipflop. The rightmost counterexample
shows a “data hold” failure at data flipflop FF D, created in absence of relative timing constraint rtbbd2. In this case, the data
coming in through channel in1 do make it through the combinational logic, CL, but are released too soon. The incoming data are
released and the released data are propagated through the logic before the logic results are captured into FF D. Consequently FF D
may have invalid data, which is detected by the bbd check in the NuSMV code of the flipflop.

2

Figure 6.15: Click Storage circuit with datapath and environment coded in Fig-
ures 6.11–6.12 and two counterexamples created by NuSMV. Corresponding gate-level
circuit diagram is in Figure 6.14. As before, in Figure 5.18, the counterexamples each
describe a path of events through a not-yet correctly constrained circuit. The left
counterexample shows a “data setup” failure at data flipflop FF_D, created in absence
of relative timing constraint rtbbd1. In the counterexample, the data coming in through
channel in1 lag behind too much and fail to make it through the combinational logic, CL,
before the logic results are captured into FF_D at the rising clock edge, buf_ck_D+. As
a result, flipflop FF_D captures invalid data, which is detected by the bbd_check that we
built into the NuSMV code of the flipflop. The right counterexample shows a “data hold”
failure at data flipflop FF_D, created in absence of relative timing constraint rtbbd2. In
this case, the data coming in through channel in1 do make it through the combinational
logic, CL, but are released too soon. The incoming data are released and the released
data are propagated through the logic before the logic results are captured into FF_D.
Consequently FF_D may have invalid data, which is detected by the bbd_check in the
NuSMV code of the flipflop.

134

6.6 Non-Storage Component

As explained earlier in Section 6.1, non-storage components are used where it is

known that the previous component is holding data. The only difference from the

storage component shown in Section 6.4 is that it lacks a local data flipflop along

with the associated buffer for the clock. Because there is no data flipflop, the extra

fork constraint “rtf1 ” in Figure 6.11 related to the data flipflop clock is no longer

needed. Other than that, the RT constraints for control remains unchanged.

in1_Drelease

FF

in1_R

in1_A out1_R

out1_A

1

xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_in1_A1 buf_out1_R1

in1_D out1_D
in1_Dbind

CL

out1_Drelease
out1_Dbind

Data

Release
Bind

ra
n

d
o

m
_i

n
1

D

ENVin_data

in
1

_P
O

D

in_A

in_R

ra
n

d
o

m
_i

n
D

in
_P

O
D

in_D

in_Dbind
in_Drelease

EN
V

_o
u

t1

Lz

out1_D
out1_Dbind
out1_Drelease

inv_q2d

1
D Q

Figure 6.16: Circuit and Environment model of Click non-Storage with datapath. The
datapath only has a CL module and no data flipflop.

Figure 6.16 shows the circuit and environment model of the non-storage

datapath model, and Figure 6.17 shows the corresponding NuSMV code for the

circuit portion of the component. The BBD constraints are also reduced to just

one constraint, rtbbd seen in Figure 6.17 line 49.

• (BBD) rtbbd1 : in1_POD± → CL.bind± ≺ in1_Drelease±

135

This is a much weaker constraint than the rtbbd1 and rtbbd2 from the previous

storage version. When this non-storage component is sitting between two storage

componets, the rtbbd1 and rtbbd2 of the storage component that captures the

output of the non-storage component basically already covers this weak constraint.

So in most cases, this constraint will not be used.

The environment now gets a constraint because the semimodularity for the

release is pushed back to the environment and now it becomes a STOP signal as

a LATE event.

1 MODULE circuit (in1_R, in1_POD, in1_D, in1_Dbind, in1_Drelease, out1_A)
2 VAR
3 --CONTROL LOGIC
4 --Executed as part of the (FAIR) process interleaving schedule
5 --Declaration format:
6 -- process cgate (set, init_val, lazy, stop_rise, stop_fall)
7 -- process cgate_data (set, bind_set, release_set, init_val, stop_release)
8 -- process ff_flip_on_posedge_w_guard_w_q2d (ck, guard, init_out)
9 xor_in1 : process cgate (in1_R xor buf_in1_A2.val , FALSE, FALSE, FALSE, FALSE);

10 xnor_out1 : process cgate (out1_A xnor buf_out1_R2.val, TRUE , FALSE, FALSE, FALSE);
11 and : process cgate (xor_in1.val & xnor_out1.val, FALSE, FALSE, FALSE, FALSE);
12 buf_ck : process cgate (and.val , FALSE, FALSE, FALSE, FALSE);
13 FF : process ff_flip_on_posedge_w_guard_w_q2d (buf_ck.val, TRUE, FALSE);
14 buf_in1_A1 : process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
15 buf_in1_A2 : process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
16 buf_out1_R1: process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
17 buf_out1_R2: process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
18 --DATAPATH LOGIC
19 CL : process cgate_data (in1_D, in1_Dbind, in1_Drelease, FALSE, FALSE);
20 DEFINE
21 in1_A := buf_in1_A1.val;
22 out1_R := buf_out1_R1.val;
23 out1_D := CL.val;
24 out1_Dbind := CL.bind;
25 out1_Drelease := CL.release;
26 VAR
27 --CONSTRAINTS
28 --Declaration instance:
29 -- rt (eventPOD, eventEARLY, init_rt, guardPOD, guardEARLY, guardLATE, xPOD, xEARLY)
30 --(1) clock domain FF: and/ clocks the control FF.
31 -- POD : and/
32 -- Early : {xor_in_n1\, xnor_out_m1\, FF.d X, buf_ck\}
33 -- Late : {in_n2_R X, out_m2_A X}
34 -- Repair: at each failing late event
35 rtc1: rt (and.val, !xor_in1.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
36 rtc2: rt (and.val, !xnor_out1.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
37 rtc3: rt (and.val, FF.d , GREEN, TRUE, TRUE, TRUE, FALSE, TRUE);
38 rtc4: rt (and.val, !buf_ck.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
39 --(2) Bounded Bundled Data Setup and Release
40 -- ini_POD X -> CL.bind X < ini_Drelease X
41 -- INTERPRETATION:
42 -- Before releasing the data on channel ini,
43 -- ensure that these data have produced a valid combinational logic result"
44 -- Default repair : at late events
45 -- STA translation:
46 -- POD: ini_POD X
47 -- -> early: {CL.bind X} ~ maxpath{POD to in_D X to CL.val X}
48 -- -> late: {ini.Drelease X} ~ minpath{POD to in_R X to in_A X to in_D X}
49 rtbbd: rt (in1_POD, CL.bind, GREEN, TRUE, TRUE, TRUE, TRUE, TRUE);
50 DEFINE
51 --Combine RT’s with the same late events into one RT with the name of the late events
52 stop_c := rtc1.stop | rtc2.stop | rtc3.stop | rtc4.stop;
53 stop_in1R_x := stop_c;
54 stop_out1A_x := stop_c;
55 stop_in1Drelease_x := rtbbd.stop;
56 --PROPERTIES
57 --progress
58 FAIRNESS running

Figure 6.17: Module circuit for non-storage. There’s no data flipflop in the datapath.

136

1 MODULE main
2 VAR
3 StorageProtocol : protocol (in1_R, in1_A, out1_R, out1_A);
4 StorageEnvironment: process environment (in1_A, out1_R, out1_D, out1_Dbind, out1_Drelease, stop_in1R_x,

stop_in1Drelease_x, stop_out1A_x);
5 StorageCircuit : process circuit (in1_R, in1_POD, in1_D, in1_Dbind, in1_Drelease, out1_A);
6 DEFINE
7 in1_R := StorageEnvironment.in1_R;
8 in1_A := StorageCircuit.in1_A;
9 in1_POD := StorageEnvironment.in1_POD;

10 in1_D := StorageEnvironment.in1_D;
11 in1_Dbind := StorageEnvironment.in1_Dbind;
12 in1_Drelease := StorageEnvironment.in1_Drelease;
13 out1_R := StorageCircuit.out1_R;
14 out1_A := StorageEnvironment.out1_A;
15 out1_D := StorageCircuit.out1_D;
16 out1_Dbind := StorageCircuit.out1_Dbind;
17 out1_Drelease := StorageCircuit.out1_Drelease;
18 stop_in1R_x := StorageCircuit.stop_in1R_x;
19 stop_in1Drelease_x := StorageCircuit.stop_in1Drelease_x;
20 stop_out1A_x := StorageCircuit.stop_out1A_x;
21 --PROPERTIES
22 --progress
23 FAIRNESS running

Figure 6.18: Module main for non-storage. The only difference is that there is
stop_in1_Drelease_x = StorageCircuit.stop_in1_Drelease_x which is used to stop the
environment as part of the LATE constraint.

6.7 STA Translation

As explained in Section 5.2.5, ARCtimer does static timing analysis (STA) in a

modular fashion through procedure calls and calculate the delays of paths from the

RT constraints while being aware of going through flipflops and channels, which

are marked as checkpoints. The checkpoint-to-checkpoint pieces of these paths are

stored in the component design library, on a per-component basis.

Figure 6.19 is a repeat of Figure 6.5 and 6.6, but shows how the RT paths are

broken into pieces for STA. Typically, maximum delay is calculated for the EARLY

path, while minimum delay is calculated for the LATE path. As long as the

maximum delay of the early path is less than the minimum delay of the late path,

there is nothing to fix. ARCtimer knows which procedure to instantiate. Though

it may look like the pats are cut at checkpoints, ARCtimer can, in principle, glue

the various component pieces back together seamlessly into the final paths for STA.

137

in1_D
in1_Dbind
in1_Drelease

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

out1_D

FF_D

D Q
B
R

CL

out1_Drelease
out1_Dbind

D Q

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

FF_D

D Q
B
R

CL

D Q

(P
re
d
e
ce
sso

r)

Early2
Late2

POD

Data

Release
Bind

in1_D

in1_Drelease
in1_Dbind

Data

Release
Bind

(S
e
lf
)

FF
inv_q2d

1

FF
inv_q2d

1

Early1

Late1

(a) BBD flipflop setup constraint for STA. The two paths are cut into pieces when going
over a channel.

in1_D
in1_Dbind
in1_Drelease

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

out1_D

FF_D

D Q
B
R

CL

out1_Drelease
out1_Dbind

D Q

FF

in1_R

in1_A out1_R

out1_A
xor_in1 xnor_out1

and
1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

FF_D

D Q
B
R

CL

D Q

(P
re
d
e
ce
sso

r) Early

Late3

POD

Data

Release
Bind

in1_D

in1_Drelease
in1_Dbind

Data

Release
Bind

(S
e
lf
)

FF
inv_q2d

1

inv_q2d

1

Late1

Late2

(b) BBD flipflop hold constraint for STA. The two paths are cut into pieces when going
over a channel.

Figure 6.19: BBD constraints from Figure 6.5 and 6.6, but with the paths cut at the
channels for STA.

138

7

Conclusion

With the advancement of technology, digital circuits are becoming more complex

and it is becoming harder to manage the whole system with a global clock.

Asynchronous circuits operating on handshake protocols instead of a global clock

has the potential to bring better power efficiency, high speed, and robustness.

However, the lack of tool and support from the industry for asynchronous design

has been and still is a major hurdle for wide adoption.

Timing verification in asynchronous system is especially important since

handshake communications are driven by signal transitions on the wires rather

than being sampled at fixed intervals of an active clock edge. Since there is no

synchronization of time, hazards must be avoided.

Delay insensitive circuits, which are the most robust type of asynchronous

circuits, must operate correctly with unknown delay in wires and gates. This type

of circuit are hazard-free, but due to heavy restriction, only a small number of

circuits are truly insensitive to delays.

This thesis tackles timing closure of asynchronous circuits and presents a frame-

work for generating and verifying timing constraints for handshake components

that use bounded-bundled-data handshake protocols. We add timing constraints

where needed to make the circuit follow a delay-insensitive specification. The

timing constraints that we add are based on relative timing methodology, where

select events are ordered relative to another event. We have expanded the

capability of relative timing by including guard conditions that can be used to

139

specify a sequence of events. The constraints are not tied with physical process

technology so the constraints can be carried over. To verify that the timing

constraint set is complete, we used a general purpose model checker, and show how

to model the system, the timing constraints, the delay-insensitive specification,

data validity, and how to check the properties that the circuit must satisfy.

Because components in a same circuit family shares similarities, the complete

set of timing constraints can be generalized into a pattern constraint and stored

in the component library where designers can use the component without re-

doing timing verification at the component level. For static timing analysis, the

pattern constraints are broken down into STA tool friendly format. Essential

decision points and choices one can make compared to others have been identified

throughout the context.

I have applied ARCtimer to generate timing constraints for Click and GasP self-

timed circuit families, using ARCtimer as indicated in Chapters 5–6. Appendix A

in this thesis shows the modeling details and the generated timing constraints for a

representative set of Click components. The Click component set is representative

in that it contains components with parallel and with sequential handshake

behaviors, with and without data storage, and with data-driven deterministic

as well as arbitrated non-deterministic dataflow control. Appendix B presents

tables that quantify the space and time complexity of verifying this set of Click

components. Appendix C shows the NuSMV library modules that were used

in generating and verifying the timing constraints of these Click components.

Appendix D repeats the NuSMV code for the key example in Chapters 5–6: the

Click Storage component, with datapath.

140

For Future work, improving our current automation on translating relative

timing constraints to STA code would be helpful to speed up the completion of the

design library. Increasing modeling capacity by adding theorem proving such as

ACL2 would also be an interesting topic. Another future work could be applying

the solutions presented in this thesis to so-called Naturalized Communication [39]

versions of various circuit families. Naturalized communication separates compo-

nents into links and joints and a standard link-join interface.

141

References

[1] Khaled Alsayeg, Katell Morin-Allory, and Laurent Fesquet. RAT-Based For-

mal Verification of QDI Asynchronous Controllers. In Forum on Specification

and Design Languages (FDL), pages 1–6, 2009.

[2] Peter Beerel, Georgios Dimou, and Andrew Lines. Proteus: An ASIC Flow for

GHz Asynchronous Designs. IEEE Design & Test of Computers, 28(5):36–51,

2011.

[3] Peter Beerel, Recep Ozdag, and Marcos Ferretti. A Designer’s Guide to

Asynchronous VLSI. Cambridge University Press, NY, USA, 2010.

[4] Peter Beerel and Marly Roncken. Low Power and Energy Efficient Asyn-

chronous Design. Journal of Low Power Electronics (JOLPE), 3(3):234–253,

2007.

[5] Kees van Berkel, Ronan Burgess, Joep Kessels, Marly Roncken, Frits Schalij,

and Ad Peeters. Asynchronous Circuits for Low Power: A DCC Error

Corrector. IEEE Design & Test of Computers, 11(2):22–32, 1994.

[6] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin

Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri, and An-

drei Tchaltsev. NuSMV 2.4 User Manual, 2013. Download from

http://nusmv.fbk.eu/NuSMV/userman/index-v2.html.

[7] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. The

MIT Press, Cambridge, MA, USA, 2000.

142

[8] Jordi Cortadella, Mike Kishinevsky, Alex Kondratyev, Luciano Lavagno, and

Alex Yakovlev. Logic Synthesis of Asynchronous Controllers and Interfaces.

Springer-Verlag, Berlin, Heidelberg, NewYork, 2002.

[9] Krishnaji Desai, Kenneth Stevens, and John O’Leary. Symbolic Verification of

Timed Asynchronous Hardware Protocols. In Proc. IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pages 147–152, Aug 2013.

[10] Daniel Dobberpuhl, Richard Witek, Randy Allmon, Robert Anglin, Sharon

Britton, Linda Chao, Robert Conrad, Daniel Dever, Bruce Gieseke, Gregory

Hoeppner, John Kowaleski, Kathryn Kuchler, Maureen Ladd, Michael Leary,

Liam Madden, Edward Mclellan, Derrick Meyer, James Montanaro, Donald

Priore, Vidya Rajagopalan, Sridhar Samudrala, and Sribalan Santhanam.

A 200 mhz 64 b dual-issue cmos microprocessor. In Solid-State Circuits

Conference, 1992. Digest of Technical Papers. 39th ISSCC, 1992 IEEE

International, pages 106–107, Feb 1992.

[11] Doug Edwards and Andrew Bardsley. Balsa: An Asynchronous Hardware

Synthesis Language. The Computer Journal, 45(1):12–18, 2002.

[12] Robert Fuhrer and Steven Nowick. Sequential Optimization of Asynchronous

and Synchronous Finite-State Machines: Algorithms and Tools. Kluwer

Academic Publishers, Boston, MA, USA, 2001.

[13] David Huffman. The synthesis of sequential switching circuits. Journal of the

Franklin Institute, 257(3):161–190, 1954.

[14] Mark Josephs and Jan Tijmen Udding. An Algebra for Delay-Insensitive

Circuits. In Computer Aided Verification (CAV), pages 343–352, 1991.

143

[15] Prasad Joshi. Static Timing Analysis of GasP. Master’s thesis, Electrical

Engineering, University of Southern California, USA, December 2008.

[16] Sean Keller, Michael Katelman, and Alain Martin. A Necessary and Sufficient

Timing Assumption for Speed-Independent Circuits. In Proc. Asynchronous

Circuits and Systems (ASYNC), pages 65–76, 2009.

[17] Joep Kessels and Paul Marston. Designing Asynchronous Standby Circuits

for a Low-Power Pager. Proceedings of the IEEE, 87(2):257–267, 1999.

[18] Hoshik Kim, Peter Beerel, and Ken Stevens. Relative Timing Based

Verification of Timed Circuits and Systems. In IEEE International Symposium

on Asynchronous Circuits and Systems (ASYNC), pages 115–124, 2002.

[19] Luciano Lavagno and Alberto Sangiovanni-Vincentelli. Algorithms for Syn-

thesis and Testing of Asynchronous Circuits. Kluwer Academic Publishers,

Norwell, MA, USA, 1993.

[20] Willem Mallon. Theories and Tools for the Design of Delay-Insensitive

Communicating Processes. PhD thesis, University of Groningen, The

Netherlands, 2000.

[21] Willem Mallon. Bounded Bundled Data. Internal Report, ARC2012-hp02,

Asynchronous Research Center (ARC), Portland State University, 2011.

Available from our web site at http://arc.cecs.pdx.edu/publications.

[22] Alain Martin. The Limitations to Delay-Insensitivity in Asynchronous

Circuits. In Proc. Advanced Research in VLSI, pages 263–278, 1990.

[23] Alain Martin and Mika Nyström. Asynchronous Techniques for System-on-

Chip Design. Proceedings of the IEEE, 94(6):1089–1120, 2006.

144

[24] Kenneth McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

Norwell, MA, USA, 1993.

[25] Teresa Meng. Synchronization Design for Digital Systems. Kluwer Academic

Publishers, Norwell, MA, USA, 1991.

[26] Swetha Mettala Gilla. Library Characterization and Static Timing Analysis

of Single-Track Circuits in GasP. Master’s thesis, Electrical and Computer

Engineering, Portland State University, USA, 2010.

[27] Raymond Miller. Switching Theory Volume 2: Sequential Circuits and

Machines, Chapters 9–10. John Wiley & Sons, New York, USA, 1965.

[28] Dharmendra Modha. Introducing a brain-inspired computer, 2015.

http://www.research.ibm.com/articles/brain-chip.shtml.

[29] David E. Muller and W. Scott Bartky. A Theory of Asynchronous Circuits.

Harvard University Press, Cambridge, MA, USA, 1959.

[30] Radu Negulescu. Process Spaces and Formal Verification of Asynchronous

Circuits. PhD thesis, University of Waterloo, Canada, 1998.

[31] Radu Negulescu and Ad Peeters. Verification of Speed-Dependences in

Single-Rail Handshake Circuits. In Proc. Asynchronous Circuits and Systems

(ASYNC), pages 159–170, 1998.

[32] Hoon Park, Anping He, Marly Roncken, and Xiaoyu Song. Semi-modular

delay model revisited in context of relative timing. Electronics Letters,

51(4):332–334, 2015.

145

[33] Hoon Park, Anping He, Marly Roncken, Xiaoyu Song, and Ivan Sutherland.

Modular timing constraints for delay-insensitive systems. Journal of Computer

Science and Technology, Springer, Accepted for publication, 2016.

[34] Marco Peña, Jordi Cortadella, Alex Kondratyev, and Enric Pastor. Formal

verification of safety properties in timed circuits. In IEEE International

Symposium on Advanced Research in Asynchronous Circuits and Systems

(ASYNC), pages 2–11, 2000.

[35] Ad Peeters. Single-Rail Handshake Circuits. PhD thesis, Proefschrift

Technische Universiteit Eindhoven, Eindhoven, Netherlands, 1996.

[36] Ad Peeters, Frank te Beest, Mark de Wit, and Willem Mallon. Click

Elements: An Implementation Style for Data-Driven Compilation. In Proc.

Asynchronous Circuits and Systems (ASYNC), pages 3–14, 2010.

[37] Mallika Prakash. Library characterization and static timing analysis of

asynchronous circuits. Master’s thesis, University of Southern California, CA,

USA, December 2007.

[38] Mallika Prakash and Peter Beerel. Static Timing Analysis of Template-Based

Asynchronous Circuits. US Patent US 2009/0210841 A1, assigned to the

University of Southern California, August 2009.

[39] Marly Roncken, Swetha Mettala Gilla, Hoon Park, Navaneeth Jamadagni,

Chris Cowan, and Ivan Sutherland. Naturalized communication and testing.

In Asynchronous Circuits and Systems (ASYNC), 2015 21st IEEE Interna-

tional Symposium on, pages 77–84, May 2015.

146

[40] Sachin Sapatnekar. Chapter 6: Static Timing Analysis. In L. Scheffer, L.

Lavagno, G. Martin (Eds.): Electronic Design Automation for Integrated

Circuits Handbook, Volume 2. CRC Press, 2006.

[41] Louis Scheffer, Luciano Lavagno, and Grant Martin (Eds.). Electronic Design

Automation for Integrated Circuits Handbook, Volumes 1–2. CRC Press and

Taylor & Francis, 2006.

[42] Basit Riaz Sheikh and Rajit Manohar. An Operand-Optimized Asynchronous

IEEE 754 Double-Precision FLoating-Point Adder. In IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC), pages 151–162,

2010.

[43] Basit Riaz Sheikh and Rajit Manohar. Energy-Efficient Pipeline Templates

for High-Performance Asynchronous Circuits. ACM Journal on Emerging

Technologies in Computing Systems, 7(4), 2011.

[44] Basit Riaz Sheikh and Rajit Manohar. An Asynchronous FLoating-Point

Multiplier. In IEEE International Symposium on Asynchronous Circuits and

Systems (ASYNC), pages 89–96, 2012.

[45] Montek Singh and Steven M. Nowick. MOUSETRAP: High-speed Transition-

Signaling Asynchronous Pipelines. IEEE Transactions on Very Large Integra-

tion (VLSI) Systems, 15(6):684–698, 2007.

[46] Jens Sparsø and Steve Furber (Eds.). Principles of Asynchronous Circuit

Design: A Systems Perspective. Kluwer Academic Publishers, Boston, MA,

USA, 2001.

147

[47] Ken Stevens and Yang Xu. Analyze and Artist: Tool Suite for Generating

Relative Timing Constraints for Self-Timed Circuits Using a Bisimulation

Equivalence Model, University of Utah.

[48] Kenneth Stevens. Practical Verification and Synthesis of Low Latency

Asynchronous Systems. PhD thesis, University of Calgary, September 1994.

[49] Kenneth Stevens, Ran Ginosar, and Shai Rotem. Relative timing. In Proc.

Advanced Research in Asynchronous Circuits and Systems, pages 208–218,

1999.

[50] Kenneth Stevens, Ran Ginosar, and Shai Rotem. Relative Timing. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 11(1):129–140,

2003.

[51] Kenneth Stevens, Shai Rotem, Ran Ginosar, Peter Beerel, Chris Myers, Ken-

neth Yun, Rakefet Kol, Charles Dike, and Marly Roncken. An Asynchronous

Instruction Length Decoder. IEEE Journal of Solid-State Circuits, 36(2):217–

228, 2001.

[52] Kenneth Stevens, Yang Xu, and Vikas Vij. Characterization of Asynchronous

Templates for Integration into Clocked CAD Flows. In IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC), pages 151–161,

2009.

[53] Ivan Sutherland. GasP Circuits that Work. ECE 507 Research Seminar, Fall

2010. Asynchronous Research Center, Portland State University. Download

from http://arc.cecs.pdx.edu/fall10.

148

[54] Ivan Sutherland. Micropipelines. Communications of the ACM, 32(6):720–

738, 1989.

[55] Ivan Sutherland and Scott Fairbanks. GasP: A Minimal FIFO Control. In

Proc. Asynchronous Circuits and Systems (ASYNC), pages 46–53, 2001.

[56] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort: Designing

Fast CMOS Circuits. Morgan Kaufmann Publishers, San Francisco, CA, USA,

1999.

[57] Vivek Tiwari, Deo Singh, Suresh Rajgopal, Gaurav Mehta, Rakesh Patel,

and Franklin Baez. Reducing power in high-performance microprocessors. In

Design Automation Conference, 1998. Proceedings, pages 732–737, June 1998.

[58] Jeanne Trinko. IBM, Keynote Speech, ASYNC 2013.

[59] Tom Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Eindhoven

University of Technology, The Netherlands, 1994.

[60] Victor Varshavsky (Ed.). Self-Timed Control of Concurrent Processes. Kluwer

Academic Publishers, Norwell, MA, USA, 1990.

[61] Vikas Vij. Algorithms and Methodology to Design Asynchronous Circuits

Using Synchronous CAD Tools and Flows. PhD thesis, Electrical and

Computer Engineering, The University of Utah, USA, 2013.

[62] Yang Xu. Algorithms for Automatic Generation of Relative Timing Con-

straints. PhD thesis, The University of Utah, USA, 2011.

149

[63] Yang Xu and Kenneth Stevens. Automatic Synthesis of Computation Inter-

ference Constraints for Relative Timing Verification. In IEEE International

Conference on Computer Design (ICCD), pages 16–22, 2009.

[64] Tomohiro Yoneda, Tomoya Kitai, and Chris Myers. Automatic Derivation of

Timing Constraints by Failure Analysis. In Proc. Computer Aided Verification

(CAV), pages 195–208, 2002.

150

Appendix A

Click Family - Protocols, Circuits, Timing Patterns

At the Asynchronous Research Center, we use the following three variations of a

component:

• Parallel storage: Used as beginning and end components in a dataflow

pipeline, to store data locally and maintain this data for entire duration

of the dataflow operation. This component variation fills output channels

and drain input channels in parallel.

• Parallel non-storage: Used between parallel and storage components, where

the combinational logic in the datapath may have more delay than the control

path. Non-storage components do not store data locally, thus saving area,

time, and power.

• Telescope non-storage: Used between parallel storage components. Telescope

components do store data locally, to save area and power. This component

variation first fills output channel and it drains input channels only after the

output channels have been filled as well as drained.

In the Click circuit family, it is common to tie the Q output of a flipflop via

an inverter to the D input. Figure A.1 shows a positive-edge flipping flipflop.

Triggering of a flipflop can be made conditionally by adding an EN signal that

gates either the Q to D propagation or the CLK propagation.

151

FF

inv

≈ QND Q

CLK CLK

FF

(a) Positive-edge flipping flipflop

FF

inv

≈ QND Q

CLK CLK

FF

(b) Double-edge flipping flipflop

EN QN

FF

≈

CLK CLK

QN

EN

FF

FF

(c) Positive-edge flipping flipflop with EN

EN QN

FF

≈

CLK CLK

QN

EN

FF

FF

(d) Double-edge flipping flipflop with EN

Figure A.1: Flipflop models used in this Section

Figures A.2 to A.6 show five representative Click modules covering each of

the above variations as wells as deterministic data driven and non-deterministic

arbitrated behaviors. Each Figure provides a compact XDI and expanded FSM

protocol specification of the module, the gate-level schematic, as modeled in the

NuSMV model checker and the full set of relative timing constraints generated and

verified using ARCtimer.

152

I = { in_R , out_A }
O = { in_A , out_R }

P = in_R ? ; in_A! ; out_R! ; out_A ? ; P

[{in_R} , {in_A}]
[{out_R} , {out_A}]

(a) XDI description

out0_R

out0_Aout0_A

in0_R

in0_A

in0_A

out0_A

out0_R

in0_R

out0_R

in0_A

in0_R

7 6

5

4

3

2 1

0

(b) FSM

Data

Release

Bind

FF

in1_R

in1_A out1_R

out1_A

1

xor_in1 xnor_out1

and

1

buf_ck

buf_in1_A2 buf_out1_R2

buf_ck_D

buf_in1_A1 buf_out1_R1

in1_D

FF_D

D Q

B
Rin1_Drelease

in1_Dbind CL

ra
n
d
o
m
_i
n
1
D

ENVin_data

in
1
_P

O
D

in_A

in_R

ra
n
d
o
m
_i
n
D

in
_P

O
D

in_D

in_Dbind
in_Drelease

EN
V
_o

u
t1

Lz

out1_D
out1_Dbind
out1_Drelease

QN

(c) Circuit

Type POD Early Late

Control and+

buf_ck-
buf_ck_D-
xor_ini1 -
xnor_outj1 -
FF.d±

ini2_R±
outj2_A±

buf_ck_D+ and-
BBD-setup ini_POD± CL.bind± and+
BBD-hold and+ buf_ck_D+ CL.release±

(d) Timing Patterns, generalized for Broadcast parallel storage components with one
or more input channels ini and one or more output channels outj . Indices i, i1, i2
range independently from 1 to the total number of ini channels. Indices j, j1, j2 do
this for output channels. If the same index is used in the POD, Early, or Late
part of a timing pattern, then the index values are the same. For instance, for the
circuit in Figure A.2(c), timing pattern (and+ → xor_outj1- < outj2_A±) represents
(and_out+ → xor_out1- < out1_A±).

Figure A.2: Broadcast: parallel storage

153

I = { in_R , out_A }
O = { in_A , out_R }

P = in_R ? ; in_A! ; out_R! ; out_A ? ; P

[{in_R} , {in_A}]
[{out_R} , {out_A}]

(a) XDI description

out0_R

out0_Aout0_A

in0_R

in0_A

in0_A

out0_A

out0_R

in0_R

out0_R

in0_A

in0_R

7 6

5

4

3

2 1

0

(b) FSM

FF

in1_R

in1_A out1_R

out1_A

1 and

1

buf_ck

buf_in1_A2 buf_out1_R2

buf_in1_A1 buf_out1_R1

in1_D

in1_Drelease
in1_Dbind

ra
n
d
o
m
_i
n
1
D

ENVin_data

in
1
_P

O
D

in_A

in_R

ra
n
d
o
m
_i
n
D

in
_P

O
D

in_D

in_Dbind
in_Drelease

EN
V
_o

u
t1

Lz

out1_D
out1_Dbind
out1_Drelease

QN

xor_in1 xnor_out1

Data

Release

BindCL

(c) Circuit

Type POD Early Late

Control and+

buf_ck-
xor_ini1 -
xnor_outj1 -
FF.d±

ini2_R±
outj2_A±

BBD-setup & hold ini_POD± CL.bind± ini_Drelease±
(d) Timing Patterns, generalized for Broadcast parallel non-storage components with one
or more input channels ini and one or more output channels outj . For an explanation of
indices i, i1, i2, j1, j2, see Figure A.2.

Figure A.3: Broadcast: parallel non-storage

A Broadcast with parallel storage and non-storage variations are the same ones

that I call Click Storage and Click non-Storage in Chapter 6 Figure 6.2. Both of

the modules use the same control module shown in Chapter 5.

154

I = { in1_R , out1_A }
O = { in1_A , out1_R }

P = in1_R? ; out1_R! ; out1_A? ; in1_A! ; P

[{ in1_R } , { in1_A }]
[{ out1_R } , { out1_A }]

(a) XDI description

in1_A

out1_A

out1_R

in1_R

3

21

0

(b) FSM

Data

Release

Bind

in1_R

in1_A

out1_R

out1_A

xor_in1

buf_out_R1

buf_in1_A0

in1_D

in1_Drelease
in1_Dbind CL

ra
n
d
o
m
_i
n
1
D

ENVin_data

in
1
_P

O
D

in_A

in_R

ra
n
d
o
m
_i
n
D

in
_P

O
D

in_D

in_Dbind
in_Drelease

EN
V
_o

u
t1

Lz

out1_D
out1_Dbind
out1_Drelease

and_in

FF_in

QN

buf_ck_in

buf_out_R0

xor_out1and_outbuf_ck_out

FF_out

QN

buf_in1_A1

1

1

(c) Circuit

Type POD Early Late

Control and_in+
buf_ck_in-
xor_ini1-
FF_in.d±

ini2_R±

and_out+
buf_ck_out-
xor_outj1-
FF_out.d±

outj2_A±

BBD-setup & hold ini_POD± CL.bind± ini_Drelease±
(d) Timing Patterns, generalized for Broadcast telescope components with one or more
input channels ini and one or more output channels outj . For an explanation of indices
i, i1, i2, j1, j2, see Figure A.2.

Figure A.4: Broadcast: telescope

155

I = { in_R , select0_R , select1_R , out1_A }
O = { out1_R , in_A , select_A }

P = [select0_R -> D0 , select1_R -> D1]
D0 = [in_R? -> F]
D1 = [in_R? -> out1_R ; out1_A? ; F]
F = select_A ; in_A ; P

[{ in_R } , { in_A }]
[{ select0_R , select1_R } , { select_A }]
[{ out1_R } , { out1_A }]

(a) XDI description

select_A

in_A

in_A

in_A

select1_R

select0_R

select_A

in_R

select_A

in_A

select0_R out1_A

out1_R

in_R

in_R

select1_R

select1_R

select0_R

in_R

11

10

9

8

7 6

5

4

3

2

1

0

(b) FSM

in1_R

in1_A

out1_A

out1_R

in1_D

in1_Drelease
in1_Dbind CL

in

ra
n
d
o
m
_i
n
1
D

in
1
_P

O
D

in_A

in_R

ra
n
d
o
m
_i
n
D

in
_P

O
D

in_D

in_Dbind
in_Drelease

EN
V
_o

u
t1

Lz

out1_D
out1_Dbind
out1_Drelease

and_req
1

FF_ackQN

EN QN

EN QN

select_R

select_A

1

1

1

select_D

select_Drelease

xor_select

xor_in1

buf_select_A1

buf_select_A0

buf_in_A1

buf_in_A0

FF0

FF1

ckbuf_FF0

ckbuf_FF1

buf_out1_R0

buf_out1_R1

xnor_out1

and_ack

ckbuf_FFack

xor_ack

ra
n
d
o
m
_i
n
D

in
_P

O
D

se
le
ct
_D

1
se
le
ct
_P

O
D

QN EN

FF_sel0_R

se
le
ct
0
_R

QN EN

FF_sel1_R

se
le
ct
1
_R

Data

Release

Bind

CL
select

B
R

B
R

select_Dbind
Data

Release
Bind

(c) Circuit

156

Type [guarded] POD Early Late

Control and_req+
ckbuf_FFk-
xor_ini1-
xor_select-

ini2_R±
select_R±

[!select_Dj , all j] and_req+ FF0.d±
[select_Dj1, j1>0] and_req+ FFj1.d±

[select_Dj1, j1>0] and_req+
ckbuf_FFack-
xnor_outj1-

outj2_A±

and_ack+ FF_ack.d±
and_req+ ckbuf_FFk+ and_req-

BBD-setup iniPOD± CLin.bind± ini_Drelease±
select_POD± CLselect.bind± and_req+

BBD-hold and_req+ ckbuf_FFk+ CLselect.release±
(d) Timing Patterns, generalized for Distributor telescope components with one or more
input channels ini, and one or more output channels outj . For an explanation of i and j in-
dices, see Figure A.2. Index k ranges from 0 to the number of outj channels. For instance,
for Figure A.5(c), timing pattern (and_req+ → ckbuf_FFk- < ini2_R±) represents
(and_req+ → ckbuf_FF0- < in1_R±) and (and_req+ → ckbuf_FF1- < in1_R±).

Figure A.5: Distributor: telescope.

A Distributor shows deterministic choice based on incoming data. A data

select value of 0 corresponds to a select0_R event, and leads to an immediate

handshake completion on both input channels in and select. A data select value

of 1 corresponds to a select1_R event, and leads to an output handshake over

channel out1 followed by completion of the input handshakes.

In XDI algebras, such data-driven choice is expressed as a control-driven choice.

Instead of data bits, the XDI protocol injects channel request signals.

157

I = { in0_R , in1_R , out_A }
O = { in0_A , in1_A , out_R }

P = [in0_R? -> M0 , in1_R? -> M1]
M0 = in0_A! ; out_R! ; out_A? ; P
M1 = in1_A! ; out_R! ; out_A? ; P

[{in0_R} , {in0_A}]
[{in1_R} , {in1_A}]
[{out1_R} , {out1_A}]

(a) XDI description

in1_A

in0_A

out1_A

in1_A

in0_A

in0_A

out1_A

out1_R

in0_A

in1_R

out1_A

out1_A

in1_R

in1_A

in0_A

in1_A

out1_A

out1_R

in1_A

in0_R

out1_A

out1_A

in0_Rout1_R

in0_R

out1_R

in1_R

in1_R

in0_R

17out_Aout1_R
15

14

13

12

1110

9

8

7

6

54

3

2

1

0 16

in1_A

in0_A

out1_R1

(b) FSM

Release

Bind

out1_A

out1_R

in2_D

in2_Drelease
in2_Dbind

EN
V
_o

u
t1

Lz

out1_D
out1_Dbind
out1_Drelease

1

QN EN

1

1

xor_in1

FF_ack1

ckguard_FFack1

buf_out1_R0

buf_out1_R1

xnor_ack

and_ack

in2_R

in2_A

ra
n
d
o
m
_i
n
2
D

in
2
_P

O
D

in_A
in_R

ra
n
d
o
m
_i
n
D

in
_P

O
D

in_D

in_Dbind

in_Drelease

in1_R

in1_A

ra
n
d
o
m
_i
n
1
D

in
1
_P

O
D

in_A
in_R

ra
n
d
o
m
_i
n
D

in
_P

O
D

in_D

in_Dbind

in_Drelease

1

1

G1

G2

QN EN

QN

QN

ckbuf_FFack1

xor_in2 me

FF_ack2

buf_ack1_A1

ckinv_FFreq1

FFreq1

FFreq2

xor_in

buf_ack2_A1

ckguard_FFack2

ckinv_FFreq2

ckbuf_FFack2

buf_ack1_A0

buf_ack2_A0

M
U

X

R

B

in1_D

in1_Drelease
in1_Dbind

CL
2

D

Data

Release

Bind

CL
1

Data

1

1

m1

m2

m1

m2

(c) Circuit

158

Type Initial RT [guarded] POD [guarded] Early [guarded] Late

Control GREEN me.Gi -

ckinv_FFreqi -
ckguard_FFacki-
mi-
FFreqi.d±

ini_R±

RED and_ack+
ckbuf_FFacki-
xnor_ackj1-

outj2_A±

GREEN [!me.Gi] and_ack+ FF_acki.d±
Control GREEN me.Gi± ckguard_FFacki± and_ack+
guard-setup GREEN and_ack+ ckbuf_FFacki1± me.Gi2±
BBD-setup GREEN me.Gi+ mi- and_ack+

GREEN ini_POD± [!me.Gi] mux.bind± [!me.Gi] and_ack+
BBD-hold GREEN [!me.Gi] and_ack+ mi- CLi.release±

(d) Timing Patterns for Merge telescope components with two input channels ini, and
one or more output channels outj . For an explanation of i and j indices, see Figure A.2.

Figure A.6: Merge: telescope.

A Merge component shows non-deterministic choice with an arbiter. The

arbiter is a mutual exclusion element. It acts like an inverter, but allows at most

one active-high input to proceed as an active-low output. The non-granted input

waits until the granted input falls and releases the arbiter with both its outputs

reset to high. The arbiter may be unfair and starve a pending input in favor of an

infinitely-often incoming co-competitor input.

159

Appendix B

Click Verification - Time and Space Complexity

The following Figures give state space and system size information for running and

verifying each of the Click components shown in Appendix A.

The first Figure, Figure B.1 shows the need for priming modelchecker runs

with known timing constraints. ARCtimer allows users to prime a verification

run for a new component with timing constraints generated for previously verified

components. This is extremely useful, because very few components will run from

scratch to produce counterexamples that hint at missing timing constraints. Most

components are too complex for the NuSMV modelchecker to run from scratch.

The table in Figure B.1 illustrates this for one of the most common components

used in dataflow designs: a 1-in 1-out First-In-First-Out (FIFO), implemented

in Click by the 1-in 1-out Broadcast component. With all timing constraints,

the control-only part of the Broadcast component takes less than a minute of

run time for NuSMV to conclude that the design is correct. Being one of the

simplest components, this is likely the first components a library designer would

run in NuSMV from scratch, i.e. without timing constraints. As Figure B.1 shows,

this is very do-able for the control-only part of the design. Within a minute,

NuSMV produces counterexamples that help with generating the first few timing

constraints, which can then be used to prime the next NuSMV run, until all timing

constraints are generated. Figure B.1 also shows that it is no longer do-able to

run a Broadcast component with control and data. NuSMV simply runs out of

space and time. The solution approach that I have used for generating the relative

160

timing constraints of the Click components in Appendix A is to first generate

timing constraints for the control-only part of the design, and to then use these

control-only timing constraints to generate still missing relative timing constraints

for the full design.

The tables in Figures B.2–B.3 show the space and time complexity of the

verification runs for the set of representative Click components of Appendix A.

The tables in Figures B.4–B.5 show the total numbers of relative timing constraints

and properties verified in these runs.

Verification Complexity Illustrated for the parallel Broadcast Component

Design Constraint System Reachable Run
Variant Status Diameter States Time

control-only all constraints 32 660 1 min
(29.36632 out of 233.6618)

control-only no constraints 172 14230500 1 min
(223.7625 out of 227.3219)

control and data all constraints 56 14926 2 min
with storage (213.8655 out of 270.7565)

control and data control-only 124 211968 1 min
with storage constraints (217.6935 out of 250.6618)

control and data no constraints - - ∞
with storage

control and data all constraints 54 10968 1 min
without storage (213.421 out of 252.2467)

control and data control-only 155 2720670 2 min
without storage constraints (221.3755 out of 266.0016)

control and data no constraints - - ∞
without storage

Figure B.1: Space-Time complexity for generating counterexamples in NuSMV.

161

Design Complexity in Space and Time — Control-Only Verification

Design System Reachable Run
Diameter States Time

Broadcast — parallel 32 660 (29.36632 out of 233.6618) 1 min

Broadcast — telescope 50 1840 (210.8455 out of 243.0947) 1 min

Distributor — telescope 102 20448 (214.3197 out of 277.2419) 7 min

Merge — telescope 112 81440 (216.3134 out of 283.5114) 43 min

Figure B.2: Space-Time complexity for the control part of verified Click components,
as reported by the NuSMV modelchecker. Run times are rounded up in minutes.

Design Complexity in Space and Time — Control and Data Verification

Design System Reachable Run
Diameter States Time

Broadcast — parallel 56 14926 (213.8655 out of 270.7565) 2 min
with storage

Broadcast — parallel 54 10968 (213.421 out of 252.2467) 1 min
without storage

Broadcast: telescope 69 24000 (214.5507 out of 261.6797) 1 min

Distributor — telescope 11* 457220 (218.8025 out of 2113.752)* 3 hours 3 min

Merge — telescope 84* 841320 (219.6823 out of 2103.096)* 1 hour 29 min

Figure B.3: Space-time complexity per verified Click component for control and data,
as reported by the NuSMV modelchecker. Run times are rounded up in minutes. The
*-marked figures for system diameter and reachable states are lower bounds. The Click
Distributor and Merge designs are too big for NuSMV. To verify the full designs, already
proven and timing constrained wire buffers or inverters were removed, to reduce the
design complexity sufficiently to complete the verification run. The *-marked figures
indicate the resulting figures reported by NuSMV.

162

Number of Constraints and Properties per Design for Control Only

Design Timing Protocol Semimodularity BBD
Constraints Properties Properties Properties

Broadcast — parallel 4 19 11 0

Broadcast — telescope 6 8 14 0

Distributor — telescope 11 28 23 1

Merge — telescope 14 45 26 0

Figure B.4: Total numbers of relative timing constraints and properties verified for the
control part of each Click component in Appendix A. Properties are partitioned into
protocol, semimodularity, and bounded-bundled data (BBD) properties.

Number of Timing Constraints and Properties per Design for Control and Data

Design Timing Protocol Semimodularity BBD
Constraints Properties Properties Properties

Broadcast — parallel 8 19 17 3
with storage

Broadcast — parallel 5 19 16 2
without storage

Broadcast — telescope 7 8 19 2

Distributor — telescope 11* 28 25* 8

Merge — telescope 9* 45 23* 7

Figure B.5: Total numbers of relative timing constraints and properties verified for each
Click component in Appendix A. The *-marked figures for the number of constraints and
semimodularity properties are lower bounds. The Click Distributor and Merge designs
are too big for NuSMV. To verify the full designs, already proven and timing constrained
wire buffers or inverters were removed, to reduce the design complexity sufficiently to
complete the verification run. The *-marked figures are the resulting totals actually
simulated and verified in the NuSMV run.

163

Appendix C

NuSMV Library Code for Click

The following NuSMV code ClickLibrary.smv has the base modules that are used

to build a component.

1 ---------------------------------BEGIN ClickLibrary.smv
2 MODULE rt (eventPOD, eventEARLY, init_rt, guardPOD, guardEARLY, guardLATE, xPOD, xEARLY)
3 --NOTE: Use next(guard) so when guard becomes true concurrent with event, event is marked as target event.
4 -- So, if myPOD and eventEARLY are all set simultaneously, while guardEARLY is set by myPOD,
5 -- then myPOD and myEARLY now coincide and the stoplight goes GREEN,
6 -- Example:
7 -- Telescope merge when we delete all forks except FF.q forks to ENV,
8 -- and RT: me.Gi\ -> mux_D.bind X [!me.Gi] < and_ack/ [!me.Gi].
9 -- When me.Gi\ then mux_D.bind != next(mux_D.bind) and next(!me.Gi), unblocking and_ack/.

10 -- if guard and event changes are interleaved, then we can take
11 -- either guardPOD and guardEARLY or next(guardPOD) and next(guardEARLY)
12 VAR
13 stoplight : {GREEN, YELLOW, RED};
14 ASSIGN
15 init(stoplight) := init_rt;
16 TRANS
17 next(stoplight) = case
18 myEARLY : GREEN;
19 stoplight=GREEN & myPOD & next(!guardLATE): YELLOW;
20 stoplight=GREEN & myPOD & next(guardLATE) : RED;
21 stoplight=YELLOW & next(guardLATE) : RED;
22 stoplight=RED & next(!guardLATE) : YELLOW;
23 TRUE : stoplight;
24 esac;
25 DEFINE
26 myPOD := guardPOD & ((xPOD & eventPOD!=next(eventPOD)) | (!eventPOD & next(eventPOD)));
27 myEARLY := guardEARLY & ((xEARLY & eventEARLY!=next(eventEARLY)) | (!eventEARLY & next(eventEARLY)));
28 stop := (stoplight=RED);
29 --PROPERTIES
30 --safety
31 CTLSPEC AG (stoplight=YELLOW -> !guardLATE) & (stoplight=RED -> guardLATE)
32 --END MODULE RTconstraint
33
34
35 MODULE semimodular_check (val, set, stop_rise, stop_fall)
36 --Greedy check of semimodularity for a given val:=set function with rise and fall constraints
37 --NOTE:
38 -- * IF
39 -- you base the val and set epressions on the same variables
40 -- such that the Boolean values of val and set change concurrently
41 -- THEN
42 -- the semimodularity check will pass, i.e. variable semimodular will be TRUE.
43 -- * This should not come as a surprise, because semimodularity is about "not getting out of sync"
44 -- and in this IF-clause, set and val never get out of sink - they track each other perfectly!
45 VAR
46 semimodular : boolean;
47 ASSIGN
48 init(semimodular) := TRUE;
49 TRANS
50 next(semimodular) = case
51 ((!stop_rise & !val & set) | (!stop_fall & val & !set)) & next(val=set) & next(val)=val : FALSE;
52 TRUE : semimodular;
53 esac;
54 --PROPERTIES
55 --safety
56 CTLSPEC AG semimodular
57 --END MODULE semimodular_check
58
59
60 MODULE bbd_check (valid_set, set, D, bind, release)
61 --Greedy bounded bundled data check D,bind,release, with a set function for D,
62 --and a boolean validity expression, valid_set, for this set function.
63 --Typically paired with a module’s datapath CL
64 --NOTE: in our encoding, we maintain the relations:
65 -- (1) bind!=release IF AND ONLY IF D valid
66 -- (2) bind changes from the current to the next state
67 -- ONLY when NEW data become valid from current to next.
68 -- (3) release changes from current to next
69 -- ONLY when OLD data are valid in current and become invalid or no longer relevant in next.
70 --NOTE: liveness for handing over data/bind/release is guaranteed where applicable, because:
71 -- (a) Semimodularity guarantees changes aren’t overlooked

164

72 -- (b) Protocol liveness properties for circuit gates guarantee liveness where applicable,
73 -- for instance to clock data flipflops
74 --NOTE:
75 -- * parameter "set" is the combinational data function being computed.
76 -- It REPRESENTS that data, with the role of showing how data are handed over.
77 -- In the actual circuit instance with the real combinational logic instantiated
78 -- set is replaced by that real CL instance, which may not be the version we have chosen
79 -- in the NuSMV simulation setup. However, the NuSMV function will be general in that
80 -- it depends on all input data and cannot be represented by a smaller set of input data.
81 -- That’s important to ensure that the bbd_check in the NuSMV simulation setup
82 -- holds for all possible data functions.
83 -- * Conclusion:
84 -- Although, strictly speaking, the NuSMV simulation run checks
85 -- NOT so much the DATA FUNCTIONALITY BUT RATHER the handing over of correct DATA VALIDITY information,
86 -- our representation of the DATA FUNCTION has the additional beneficial side-effect that
87 -- any function results will be handed over as specified in the bbd_check.
88 VAR
89 bbd1: boolean;
90 bbd2: boolean;
91 bbd3: boolean;
92 ASSIGN
93 init(bbd1) := TRUE;
94 init(bbd2) := TRUE;
95 init(bbd3) := TRUE;
96 TRANS
97 next(bbd1) = case
98 --CASE 1:
99 -- A change in "bind" indicates that

100 -- D is generated from a valid set input with a valid result value "set".
101 -- The fact that the resulting next value "set" is valid, i.e. valid_D holds,
102 -- is a logical consequence of CASE 3, and as such does not need to be stated here,
103 -- but we’ll state it anyway because it’s a good fact to be aware of.
104 !(bind != next(bind) -> (valid_set & next(D)=set & next(valid_D))) : FALSE;
105 TRUE: bbd1;
106 esac;
107 TRANS
108 next(bbd2) = case
109 --CASE 2:
110 -- A valid D remains stable until released
111 !((valid_D & release = next(release)) -> D = next(D)) : FALSE;
112 TRUE: bbd2;
113 esac;
114 TRANS
115 next(bbd3) = case
116 --CASE 3:
117 -- Bind changes exactly once from the current to the next [D-invalid to D-valid to D-invalid] cycle
118 -- (where D-invalid may coincide with the previous D-valid) - namely when D become valid.
119 -- Release changes also exactly once for each such cycle - namely when D become invalid.
120 -- Bind and release changing together indicates that the new valid data invalidate the old data,
121 !((valid_D & bind != next(bind)) -> release != next(release)) : FALSE;
122 !(!valid_D -> release = next(release)) : FALSE;
123 TRUE: bbd3;
124 esac;
125 DEFINE
126 valid_D := (bind != release);
127 --PROPERTIES
128 --safety
129 CTLSPEC AG bbd1
130 CTLSPEC AG bbd2
131 CTLSPEC AG bbd3
132 --END MODULE bbd_check
133
134
135 MODULE cgate (set, init_val, lazy, stop_rise, stop_fall)
136 --Inertial-delay combinational gate, which can be lazy (or not).
137 --lazy = TRUE for environment gates that may stall forever
138 --lazy = FALSE for circuit gates
139 VAR
140 val : boolean;
141 ASSIGN
142 init(val) := init_val;
143 next(val) := case
144 (stop_rise & !val & set) | (stop_fall & val & !set) : val;
145 lazy: {val, set};
146 TRUE: set;
147 esac;
148 VAR
149 --PROPERTIES
150 --safety
151 --semimodularity
152 -- semimodular_check (val, set, stop_rise, stop_fall)
153 semimodular_cgate : semimodular_check (val, set, stop_rise, stop_fall);
154 --progress
155 FAIRNESS running
156 --END MODULE cgate
157
158
159 MODULE arbiter (in0, in1, init0, init1, lazy, stop_rise0, stop_fall0, stop_rise1, stop_fall1)
160 --Abstract model for the inertial-delay mutual exclusion element,
161 --which arbitrates between two incoming requests and grants exactly one;
162 --a HI grant signal Gi means that ini is not granted;
163 --a LO grant signal Gi means that ini is granted

165

164 --lazy = TRUE if resolving a contested arbitration can take infinite time
165 --lazy = FALSE otherwise
166 VAR
167 G0 : boolean;
168 G1 : boolean;
169 choice: boolean;
170 ASSIGN
171 init(G0) := init0;
172 init(G1) := init1;
173 next(G0) := case
174 (in0 & !in1 & G0 & G1 & !stop_fall0) | (!in0 & !G0 & !stop_rise0): !G0;
175 in0 & in1 & G0 & G1 & !stop_fall0 & lazy & !choice : {TRUE, FALSE};
176 in0 & in1 & G0 & G1 & !stop_fall0 & !lazy : choice;
177 TRUE: G0;
178 esac;
179 next(G1) := case
180 (!in0 & in1 & G0 & G1 & !stop_fall1) | (!in1 & !G1 & !stop_rise1): !G1;
181 in0 & in1 & G0 & G1 & !stop_fall1 & lazy & choice : {TRUE, FALSE};
182 in0 & in1 & G0 & G1 & !stop_fall1 & !lazy : !choice;
183 TRUE: G1;
184 esac;
185 VAR
186 --PROPERTIES
187 --safety
188 --semimodularity
189 -- semimodular_check (val, set, stop_rise, stop_fall)
190 semimodular_G0 : semimodular_check (G0, !in0, stop_rise0, stop_fall0);
191 semimodular_G1 : semimodular_check (G1, !in1, stop_rise1, stop_fall1);
192 --progress
193 FAIRNESS running
194 ---END MODULE arbiter
195
196
197 MODULE ff_posedge (ck, d, init_q)
198 --Greedy posedge triggered flipflop.
199 --Must have preceeding inertial delay clock buffer to skip or skew the incoming clock signal ck.
200 --(but if no skewing is needed, the clock buffer can be absent)
201 VAR
202 q : boolean;
203 ASSIGN
204 init(q) := init_q;
205 TRANS
206 next(q) = case
207 !ck & next(ck) : d;
208 TRUE: q;
209 esac;
210 --END MODULE ff_posedge
211
212
213 MODULE ff_flip_on_posedge_w_guard (ck, guard, init_q)
214 --Greedy data-inverting FFs have been replaced with this simpler FF, ff_flip_on_posedge_w_guard.
215 --As a result, the translation to STA must include the data setup constraints for these FF’s:
216 -- rtff_0: FF.q X -> FF.d X < FF.ck /
217 --Must have preceeding inertial delay clock buffer to skip or skew the incoming clock signal ck.
218 --(but if no skewing is needed, the clock buffer can be absent)
219 VAR
220 q : boolean;
221 ASSIGN
222 init(q) := init_q;
223 TRANS
224 next(q) = case
225 !ck & next(ck) & guard: !q;
226 TRUE: q;
227 esac;
228 --END MODULE ff_flip_on_posedge_w_guard
229
230
231 MODULE ff_flip_on_posedge_w_guard_w_q2d (ck, guard, init_q)
232 --Explicit version of ff_flip_on_posedge_w_guard with q2d inverter,
233 --and hence no longer fully greedy, and thus instantiated with keyword "process."
234 --Must have preceeding inertial delay clock buffer to skip or skew the incoming clock signal ck.
235 --(but if no skewing is needed, the clock buffer can be absent)
236 VAR
237 q : boolean;
238 inv_q2d : process cgate (!q, !init_q, FALSE, FALSE, FALSE);
239 ASSIGN
240 init(q) := init_q;
241 TRANS
242 next(q) = case
243 !ck & next(ck) & guard: d;
244 TRUE: q;
245 esac;
246 DEFINE
247 d := inv_q2d.val;
248 --PROPERTIES
249 --progress
250 FAIRNESS running
251 --END MODULE ff_flip_on_posedge_w_guard_w_q2d
252
253
254 MODULE ff_doubledge (ck, d, init_q)
255 --Greedy double-edge triggered flipflop.

166

256 --Must have preceeding inertial delay clock buffer to skip or skew the incoming clock signal ck.
257 --(but if no skewing is needed, the clock buffer can be absent)
258 VAR
259 q : boolean;
260 ASSIGN
261 init(q) := init_q;
262 TRANS
263 next(q) = case
264 ck != next(ck) : d;
265 TRUE: q;
266 esac;
267 --END MODULE ff_doubledge
268
269
270 MODULE ff_flip_on_doubledge_w_guard (ck, guard, init_q)
271 --Greedy double-edge triggered flipflop version, used to model environmental protocol actions.
272 --If mapped to ARCwelder, the translation must include the data setup constraints for these FF’s:
273 -- rtff_0: FF.q X -> FF.d X < FF.ck X
274 --Must have preceeding inertial delay clock buffer to skip or skew the incoming clock signal ck.
275 --(but if no skewing is needed, the clock buffer can be absent)
276 VAR
277 q : boolean;
278 ASSIGN
279 init(q) := init_q;
280 TRANS
281 next(q) = case
282 (ck != next(ck)) & guard: !q;
283 TRUE: q;
284 esac;
285 ---END MODULE ff_flip_on_doubledge_w_guard
286
287
288 MODULE cgate_data (set, bind_set, release_set, init_val, stop_release)
289 --Inertial delay extension of the inertial-delay cgate, adding data and its bind and release info.
290 --The changes (X) on bind or release can be sensed and used in RT constraints for bundled-data.
291 --When blocked by an RT constraint, DATA MUST BE MAINTAINED.
292 --We currently need only constrain the release of data,
293 --need only non-lazy cgate_data instances,
294 --and can initialize the state with invalid output data,
295 --which, without loss of generality, we can initialize to bind=release=FALSE because
296 --we track only of bind-release changes irrespective of whether these are rising or falling changes.
297 --NOTE:
298 -- The definition of semimodularity CHANGES again over the prior rt-aware control version!!!
299 -- * We allow changes in set for invalid data, i.e. set!=next(set) is OK, i.e. semimodular,
300 -- when bind_set=release_set (invalid-set-data).
301 -- * Semimodularity for bind and release remain as strict as before.
302 VAR
303 val : boolean;
304 bind : boolean;
305 release : boolean;
306 ASSIGN
307 init(val) := init_val;
308 init(bind) := FALSE;
309 init(release) := FALSE;
310 next(val) := case
311 stop_data : val;
312 TRUE : set;
313 esac;
314 next(bind) := case
315 stop_data : bind;
316 TRUE : bind_set;
317 esac;
318 next(release) := case
319 stop_data : release;
320 TRUE : release_set;
321 esac;
322 DEFINE
323 valid_set := bind_set != release_set;
324 stop_data := stop_release & (release != release_set);
325 VAR
326 --PROPERTIES
327 --safety
328 --semimodularity
329 -- semimodular_check (val, set, stop_rise & , stop_fall)
330 -- NOTE: functions with invalid incoming data need not obey semimodularity
331 semimodular_val : semimodular_check (val , set , (stop_data | !valid_set), (stop_data | !

valid_set));
332 semimodular_bind : semimodular_check (bind , bind_set , stop_data , stop_data);
333 semimodular_release : semimodular_check (release, release_set, stop_data , stop_data);
334 --BBD
335 -- bbd_check (valid_set, set, D, bind, release)
336 bbd_cgate : bbd_check (valid_set, set, val, bind, release);
337 --progress
338 FAIRNESS running
339 --END MODULE cgate_data
340
341
342 MODULE ff_posedge_data (ck1, d1, bind1, release1, init_q)
343 --Greedy posedge triggered flipflop for bounded bundled data, with bind and release bits.
344 --Flipflops release previous data while binding new data, so bind != release at all times.
345 --Without loss of generality (because it’s the bind/release changes that count)
346 --we start with FF.bind TRUE and FF.release FALSE, for all FF.

167

347 VAR
348 --GATES
349 -- count_bind_release_pc (bind, release, guard)
350 count1 : count_bind_release_pc (bind1, release1, guard1);
351 VAR
352 q : boolean;
353 bind : boolean;
354 release : boolean;
355 ASSIGN
356 init(q) := init_q;
357 init(bind) := TRUE;
358 init(release) := FALSE;
359 TRANS
360 next(q) = case
361 guard1 : d1;
362 TRUE: q;
363 esac;
364 TRANS
365 next(bind) = case
366 guard1 : !bind;
367 TRUE: bind;
368 esac;
369 TRANS
370 next(release) = case
371 guard1 : !release;
372 TRUE: release;
373 esac;
374 DEFINE
375 guard1 := !ck1 & next(ck1);
376 valid_set1 := bind1 != release1 & count1.cnt_bind = 1 & (count1.cnt_release = 1 | count1.initial_cycle);
377 VAR
378 --PROPERTIES
379 --safety
380 --BBD
381 -- bbd_check (valid_set, set, D, bind, release)
382 bbd_ff : bbd_check (valid_set1, next(ck1) & d1, q, bind, release);
383 --END MODULE ff_posedge_data
384
385
386 MODULE ff_flip_on_posedge_w_dataguard_w_q2d (ck, guard, bind_guard, release_guard, init_q)
387 --Explicit version of ff_flip_on_posedge_w_guard with q2d inverter and data-controlled guard.
388 --No longer fully greedy, and thus instantiated with keyword "process."
389 --Must have preceeding inertial delay clock buffer to skip or skew the incoming clock signal ck.
390 --(but if no skewing is needed, the clock buffer can be absent)
391 VAR
392 --GATES
393 -- count_bind_release_pc (bind, release, guard)
394 count1 : count_bind_release_pc (bind_guard, release_guard, guard1);
395 inv_q2d : process cgate (!q, !init_q, FALSE, FALSE, FALSE);
396 VAR
397 q : boolean;
398 bind : boolean;
399 release : boolean;
400 ASSIGN
401 init(q) := init_q;
402 init(bind) := TRUE;
403 init(release) := FALSE;
404 TRANS
405 next(q) = case
406 guard1 & guard: d;
407 TRUE: q;
408 esac;
409 TRANS
410 next(bind) = case
411 guard1 : !bind;
412 TRUE: bind;
413 esac;
414 TRANS
415 next(release) = case
416 guard1 : !release;
417 TRUE: release;
418 esac;
419 DEFINE
420 guard1 := !ck & next(ck);
421 valid_guard := bind_guard != release_guard & count1.cnt_bind = 1 & (count1.cnt_release = 1 | count1.

initial_cycle);
422 d := inv_q2d.val;
423 VAR
424 --PROPERTIES
425 --safety
426 --BBD
427 -- bbd_check (valid_set, set, D, bind, release)
428 bbd_ff : bbd_check (valid_guard, next(ck) & ((guard & d) | (!guard & q)), q, bind, release);
429 --PROPERTIES
430 --progress
431 FAIRNESS running
432 --END MODULE ff_flip_on_posedge_w_dataguard_w_q2d
433
434
435 MODULE mux_data (ck1, d1, bind1, release1, ck2, d2, bind2, release2)
436 --Greedy mux for bounded bundled data, with bind and release bits.
437 --Assumption:

168

438 -- * Starts with invalid data.
439 VAR
440 --GATES
441 -- count_bind_release_pc (bind, release, guard)
442 --NOTE
443 -- The mux passes data as long as its clock is high,
444 -- and starts each count at clock going low.
445 count1 : count_bind_release_pc (bind1, release1, guard1);
446 count2 : count_bind_release_pc (bind2, release2, guard2);
447 VAR
448 --current_bind = TRUE IFF bind X for the current cki_clean hasn’t occurred yet
449 current_bind : boolean;
450 bind : boolean;
451 release : boolean;
452 ASSIGN
453 init(current_bind) := TRUE;
454 init(bind) := FALSE;
455 init(release) := FALSE;
456 TRANS
457 next(current_bind) = case
458 bind != next(bind) : FALSE;
459 guard1 | guard2 : TRUE;
460 TRUE : current_bind;
461 esac;
462 TRANS
463 next(bind) = case
464 current_bind & count1.cnt_bind > 0 & next(ck1_clean) : !bind;
465 current_bind & count2.cnt_bind > 0 & next(ck2_clean) : !bind;
466 TRUE: bind;
467 esac;
468 TRANS
469 next(release) = case
470 guard1 | guard2 : !release;
471 TRUE: release;
472 esac;
473 DEFINE
474 val := (ck1 & d1) | (ck2 & d2);
475 ck1_clean := ck1 & !ck2;
476 ck2_clean := ck2 & !ck1;
477 guard1 := ck1_clean & next(!ck1_clean);
478 guard2 := ck2_clean & next(!ck2_clean);
479 valid_set1 := (next(ck1_clean) & bind1 != release1 & count1.cnt_bind = 1 & (count1.cnt_release = 1 | count1.

initial_cycle));
480 valid_set2 := (next(ck2_clean) & bind2 != release2 & count2.cnt_bind = 1 & (count2.cnt_release = 1 | count2.

initial_cycle));
481 VAR
482 --PROPERTIES
483 --safety
484 --BBD
485 -- bbd_check (valid_set, set, D, bind, release)
486 bbd_mux : bbd_check (valid_set1 | valid_set2, (next(ck1_clean) & d1) | (next(ck2_clean) & d2), val, bind,

release);
487 -- NOTE:
488 -- * Each half is semimodular in bind/release provided its clock ticks (!=FALSE forever).
489 -- If its clock doesn’t tick, then its incoming bind and release count will eventually be 2
490 -- for at least one NuSMV run, by semimodularity of ENV_in and continuous progress for that run.
491 -- A count > 1 is flagged by a failing CTL property in the related count_bind_release_pc instance.
492 -- * As a result, the mux is semimodular provided the "clean" clocks are mutually exclusive high,
493 -- which they are by definition.
494 --END MODULE mux_data
495
496
497 MODULE count_bind_release_pc (bind, release, guard)
498 --Greedy 1-in-1-out guarded (combinational or sequential) logic that counts
499 --the number of changes in bind and release from cycle to cycle, where each cycle starts
500 --with guard being true for one step followed by one or more steps with guard being false.
501 --A count of 1 indicates that no change is left behind or stutters per cycle (pc).
502 --One could see this as an extension of semimodularity to data.
503 VAR
504 cnt_bind : 0..2;
505 cnt_release : 0..2;
506 cnt_guard_steps : 0..2;
507 initial_cycle : boolean;
508 ASSIGN
509 init(cnt_bind) := 0;
510 init(cnt_release) := 0;
511 init(cnt_guard_steps) := 0;
512 init(initial_cycle) := TRUE;
513 TRANS
514 next(cnt_bind) = case
515 bind != next(bind) & guard : 1;
516 bind != next(bind) & cnt_bind < 2 : cnt_bind + 1;
517 guard : 0;
518 TRUE : cnt_bind;
519 esac;
520 TRANS
521 next(cnt_release) = case
522 release != next(release) & guard : 1;
523 release != next(release) & cnt_release < 2 : cnt_release + 1;
524 guard : 0;
525 TRUE : cnt_release;
526 esac;

169

527 TRANS
528 next(initial_cycle) = case
529 guard : FALSE;
530 TRUE : initial_cycle;
531 esac;
532 TRANS
533 next(cnt_guard_steps) = case
534 guard : cnt_guard_steps + 1;
535 !guard : 0;
536 TRUE : cnt_guard_steps;
537 esac;
538 --PROPERTIES
539 --safety
540 --semimodularity and single-step-guard cycles
541 CTLSPEC AG (cnt_bind < 2 & cnt_release < 2 & cnt_guard_steps < 2)
542 --END MODULE count_bind_release_pc
543
544
545 MODULE ENVin_data (in_A, random_inD, stop_inR_x, stop_inDrelease_x)
546 VAR
547 --GATES
548 -- cgate (set, init_val, lazy, stop_rise, stop_fall)
549 -- ff_doubledge (ck, d, init_q)
550 buf_inA : process cgate (in_A , FALSE, TRUE , stop_inDrelease_x, stop_inDrelease_x);
551 inv_POD : process cgate (!buf_inA.val , FALSE, TRUE , FALSE , FALSE);
552 buf_inR : process cgate (inv_POD.val , FALSE, FALSE, stop_inR_x , stop_inR_x);
553 FF_inD : ff_doubledge (inv_POD.val , random_inD , FALSE);
554 DEFINE
555 in_POD := inv_POD.val;
556 in_R := buf_inR.val;
557 in_D := FF_inD.q;
558 in_Dbind := inv_POD.val;
559 in_Drelease:= buf_inA.val;
560 VAR
561 --PROPERTIES
562 --safety
563 --BBD
564 -- bbd_check (valid_set, set, D, bind, release)
565 bbd_ENVin : bbd_check (TRUE, random_inD, in_D, in_Dbind, in_Drelease);
566 --progress
567 FAIRNESS running
568 --END MODULE ENVin_data
569 ---------------------------------END ClickLibrary.smv

170

Appendix D

NuSMV Code for Click Storage Component

For the sake of completeness, a copy of the NuSMV code for the Click Storage

component, or parallel Broadcast component with data storage as it is called in

Appendix A, follows below — see also Chapter 6.

1 MODULE protocol (in1_R, in1_A, out1_R, out1_A)
2 VAR
3 state: {s0, s1, s2, s3, s4, s5, s6, s7, errorOUT, errorIN};
4 ASSIGN
5 init(state) := s0;
6 TRANS
7 next(state) = case
8 --legal handshake transitions
9 state = s0 & (in1_R != next(in1_R)) : s1;

10 state = s1 & (in1_A != next(in1_A)) : s2;
11 state = s1 & (out1_R != next(out1_R)): s3;
12 state = s2 & (in1_R != next(in1_R)) : s7;
13 state = s2 & (out1_R != next(out1_R)): s5;
14 state = s3 & (out1_A != next(out1_A)): s4;
15 state = s3 & (in1_A != next(in1_A)) : s5;
16 state = s4 & (in1_A != next(in1_A)) : s0;
17 state = s5 & (in1_R != next(in1_R)) : s6;
18 state = s5 & (out1_A != next(out1_A)): s0;
19 state = s6 & (out1_A != next(out1_A)): s1;
20 state = s7 & (out1_R != next(out1_R)): s6;
21 --illegal handshake transitions
22 in1_A != next(in1_A) | out1_R != next(out1_R) : errorOUT;
23 in1_R != next(in1_R) | out1_A != next(out1_A) : errorIN;
24 --remaining transitions
25 TRUE: state;
26 esac;
27 --PROPERTIES
28 --safety
29 CTLSPEC AG state != errorOUT
30 CTLSPEC AG state != errorIN
31 --progress
32 CTLSPEC AG (AF (state!=s1))
33 CTLSPEC AG (AF (state!=s2))
34 CTLSPEC AG (AF (state!=s3))
35 CTLSPEC AG (AF (state!=s4))
36 CTLSPEC AG (AF (state!=s7))
37 --choice equivalence
38 CTLSPEC AG (state = s0 -> E[state = s0 U state = s1])
39 CTLSPEC AG (state = s1 -> E[state = s1 U state = s2])
40 CTLSPEC AG (state = s1 -> E[state = s1 U state = s3])
41 CTLSPEC AG (state = s2 -> E[state = s2 U state = s7])
42 CTLSPEC AG (state = s2 -> E[state = s2 U state = s5])
43 CTLSPEC AG (state = s3 -> E[state = s3 U state = s4])
44 CTLSPEC AG (state = s3 -> E[state = s3 U state = s5])
45 CTLSPEC AG (state = s4 -> E[state = s4 U state = s0])
46 CTLSPEC AG (state = s5 -> E[state = s5 U state = s6])
47 CTLSPEC AG (state = s5 -> E[state = s5 U state = s0])
48 CTLSPEC AG (state = s6 -> E[state = s6 U state = s1])
49 CTLSPEC AG (state = s7 -> E[state = s7 U state = s6])
50 -- END MODULE protocol
51
52
53 MODULE circuit (in1_R, in1_POD, in1_D, in1_Dbind, in1_Drelease, out1_A)
54 VAR
55 --CONTROL LOGIC
56 --Executed as part of the (FAIR) process interleaving schedule
57 --Declaration format:
58 -- process cgate (set, init_val, lazy, stop_rise, stop_fall)
59 -- process cgate_data (set, bind_set, release_set, init_val, stop_release)
60 -- process ff_flip_on_posedge_w_guard_w_q2d (ck, guard, init_out)
61 -- ff_posedge_data (ck, d, dbind, drelease, init_q)
62 xor_in1 : process cgate (in1_R xor buf_in1_A2.val , FALSE, FALSE, FALSE, FALSE);
63 xnor_out1 : process cgate (out1_A xnor buf_out1_R2.val, TRUE , FALSE, FALSE, FALSE);
64 and : process cgate (xor_in1.val & xnor_out1.val, FALSE, FALSE, stop_and_HI, stop_and_LO);
65 buf_ck : process cgate (and.val , FALSE, FALSE, FALSE, FALSE);
66 buf_ck_D : process cgate (and.val , FALSE, FALSE, FALSE, FALSE);
67 FF : process ff_flip_on_posedge_w_guard_w_q2d (buf_ck.val, TRUE, FALSE);
68 buf_in1_A1 : process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);

171

69 buf_in1_A2 : process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
70 buf_out1_R1: process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
71 buf_out1_R2: process cgate (FF.q, FALSE, FALSE, FALSE, FALSE);
72 --DATAPATH LOGIC
73 CL : process cgate_data (in1_D, in1_Dbind, in1_Drelease, FALSE, stop_CLrelease_x);
74 FF_D : ff_posedge_data (buf_ck_D.val, CL.val, CL.bind, CL.release, FALSE);
75 DEFINE
76 in1_A := buf_in1_A1.val;
77 out1_R := buf_out1_R1.val;
78 out1_D := FF_D.q;
79 out1_Dbind := FF_D.bind;
80 out1_Drelease := FF_D.release;
81 VAR
82 --CONSTRAINTS
83 --Declaration instance:
84 -- rt (eventPOD, eventEARLY, init_rt, guardPOD, guardEARLY, guardLATE, xPOD, xEARLY)
85 --(1) clock domain FF: and/ clocks the control FF.
86 -- POD : and/
87 -- Early : {xor_in_n1\, xnor_out_m1\, FF.d X, buf_ck\, buf_ck_D\}
88 -- Late : {in_n2_R X, out_m2_A X}
89 -- Repair: at each failing late event
90 rtc1: rt (and.val, !xor_in1.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
91 rtc2: rt (and.val, !xnor_out1.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
92 rtc3: rt (and.val, FF.d , GREEN, TRUE, TRUE, TRUE, FALSE, TRUE);
93 rtc4: rt (and.val, !buf_ck.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
94 rtc5: rt (and.val, !buf_ck_D.val , GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
95 --(2) Bounded Bundled Data Setup
96 -- POD : in_n1_POD X
97 -- NOTE: for its out-channels, which are in-channels to SUCC modules, POD=and/
98 -- Early : {CL.bind X}
99 -- Late : {and/}

100 -- NOTE: is replaceable by {and X} for easy STA translation
101 -- Repair: at in_n1_R
102 rtbbd1: rt (in1_POD, CL.bind, GREEN, TRUE, TRUE, TRUE, TRUE, TRUE);
103 --(3) Bounded Bundled Data Release
104 -- Note:
105 -- For proper release of data, we require that:
106 -- The time from and/ is shorter to FFD.ck/ than over the channel to a new in1_D value.
107 -- Thanks to rtd1, we already know that the first in1_D value came before and/.
108 -- and by assumption-commitment reasoning (OK for pred then OK for succ)
109 -- the release of it comes after and/ and before the next binding of in1_D.
110 -- The corresponding constraint parameters are:
111 -- POD : and/
112 -- Early : {buf_ck_D/}
113 -- NOTE: by rtc5, this is replaceable by {buf_ck_D X} for easy STA translation
114 -- Late : {CL.release X}
115 -- Repair: at late event
116 rtbbd2: rt (and.val, buf_ck_D.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
117 --(4) Left-over isochronic forks, pushed to the point of semimodularity:
118 -- POD : and/
119 -- Early : {buf_ck_D/}
120 -- Late : {and\}
121 -- Repair: at buf_in1_A2/buf_out1_R2
122 rtf1: rt (and.val, buf_ck_D.val, GREEN, TRUE, TRUE, TRUE, FALSE, FALSE);
123 DEFINE
124 --Combine RT’s with the same late events into one RT with the name of the late events
125 stop_c := rtc1.stop | rtc2.stop | rtc3.stop | rtc4.stop | rtc5.stop;
126 stop_in1R_x := stop_c;
127 stop_out1A_x := stop_c;
128 stop_CLrelease_x:= rtbbd2.stop;
129 stop_and_HI := rtbbd1.stop;
130 stop_and_LO := rtf1.stop;
131 --PROPERTIES
132 --progress
133 FAIRNESS running
134 --END MODULE circuit
135
136
137 MODULE environment (in1_A, out1_R, out1_D, out1_Dbind, out1_Drelease, stop_in1R_x, stop_in1Drelease_x, stop_out1A_x)
138 VAR
139 --GATES:
140 --Reminder of module definitions:
141 -- ENVin_data (in_A, random_inD, stop_inR_x, stop_inDrelease_x)
142 -- cgate (set, init_val, lazy, stop_rise, stop_fall)
143 ENV_in1 : process ENVin_data (in1_A, random_in1D, stop_in1R_x, stop_in1Drelease_x);
144 ENV_out1 : process cgate (out1_R, FALSE, TRUE, stop_out1A_x, stop_out1A_x);
145 random_in1D : boolean;
146 DEFINE
147 in1_R := ENV_in1.in_R;
148 in1_POD := ENV_in1.in_POD;
149 in1_D := ENV_in1.in_D;
150 in1_Dbind := ENV_in1.in_Dbind;
151 in1_Drelease := ENV_in1.in_Drelease;
152 out1_A := ENV_out1.val;
153 --PROPERTIES
154 --progress
155 FAIRNESS running
156 --END MODULE environment
157
158
159 MODULE main
160 VAR

172

161 StorageProtocol : protocol (in1_R, in1_A, out1_R, out1_A);
162 StorageEnvironment: process environment (in1_A, out1_R, out1_D, out1_Dbind, out1_Drelease, stop_in1R_x,

stop_in1Drelease_x, stop_out1A_x);
163 StorageCircuit : process circuit (in1_R, in1_POD, in1_D, in1_Dbind, in1_Drelease, out1_A);
164 DEFINE
165 in1_R := StorageEnvironment.in1_R;
166 in1_A := StorageCircuit.in1_A;
167 in1_POD := StorageEnvironment.in1_POD;
168 in1_D := StorageEnvironment.in1_D;
169 in1_Dbind := StorageEnvironment.in1_Dbind;
170 in1_Drelease := StorageEnvironment.in1_Drelease;
171 out1_R := StorageCircuit.out1_R;
172 out1_A := StorageEnvironment.out1_A;
173 out1_D := StorageCircuit.out1_D;
174 out1_Dbind := StorageCircuit.out1_Dbind;
175 out1_Drelease := StorageCircuit.out1_Drelease;
176 stop_in1R_x := StorageCircuit.stop_in1R_x;
177 stop_in1Drelease_x := FALSE;
178 stop_out1A_x := StorageCircuit.stop_out1A_x;
179 --PROPERTIES
180 --progress
181 FAIRNESS running
182 -- END MODULE main

173

	Formal Modeling and Verification of Delay-Insensitive Circuits
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1451503087.pdf.JC36x

