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Abstract 

 It is common knowledge that invasive species cause worldwide ecological and 

economic damage, and are nearly impossible to eradicate. However, upon introduction to 

a novel environment, alien species should be the underdogs: They are present in small 

numbers, possess low genetic diversity, and have not adapted to the climate and 

competitors present in the new habitat. So, how are alien species able to invade an 

environment occupied by native species that have already adapted to the local 

environment? To discover some answers to this apparent paradox I conducted four 

ecological genetic studies that utilized the invasive species Brachypodium sylvaticum 

(Hudson) Beauv. to determine mechanisms contributing to adaptation and success in the 

novel habitat. 

The first study used simulations and experiments to test the hypothesis that 

genetic purging, the process where genetic load is reduced by selection against the 

recessive deleterious alleles expressed in the homozygous state, promotes invasive range 

expansion. I found that homozygous populations on B. sylvaticum’s range periphery 

displayed lower inbreeding depression compared to heterozygous populations near 

introduction sites. Empirical tests with B. sylvaticum further demonstrate that purging of 

genetic load is a plausible scenario promoting range expansion during invasion. 

 Next, I explored how the interaction between population genetic diversity and the 

environment contributed to the establishment and spread of Brachypodium sylvaticum. I 

found that nitrogen application increases both final size and shoot biomass for B. 

sylvaticum individuals from source populations with low HS levels to levels found in 
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individuals from populations with high HS. A coefficient of relative competition intensity 

index (RCI) displayed reduced effects of interspecific competition on B. sylvaticum 

biomass in high nitrogen plots. Results show that elevated nitrogen deposition is a factor 

that increases establishment of introduced species with historically small effective 

population sizes.  

Thirdly, I investigated phenotypic differentiation during the establishment and 

range expansion of Brachypodium sylvaticum. Utilizing a novel approach, unique alleles 

were used to determine the genetic probability of contribution from native source regions 

to invasive regions. These probabilities were integrated into QST-FST comparisons to 

determine the influence of selection and genetic drift on twelve physiological and 

anatomical traits associated with drought stress. Phenotypic divergence greater than 

neutral expectations was found for five traits between native and invasive populations, 

indicating selective divergence. Results from this study show that the majority of 

divergence in B. sylvaticum occurred after introduction to the novel environment, but 

prior to invasive range expansion. 

 The final chapter of my dissertation investigates the adaptive role of genetic 

differentiation and plasticity for Brachypodium sylvaticum invasion. Plasticity was 

measured across treatments of contrasting water availability. Linear and nonlinear 

selection gradients determined the effect of directional and quadratic selection on 

plasticity and genetic differentiation. Invasive trait divergence was a consequence of 

post-introduction selection leading to genetic differentiation, as there were no plastic 

responses to contrasting water availability for any measured traits. Genetic divergence of 
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invasive plants was not consistently in the direction indicated by selection, suggesting 

limitations of selection that may be a consequence of physical constraints and/or tradeoffs 

between growth and abiotic tolerance. Results suggest that selection, rather than 

plasticity, is driving phenotypic change in the invaded environment.  

The combined volume of these studies contributes significantly to the field of 

invasion and plant biology by providing novel insights into the processes underlying 

range expansion, adaptation, and ultimately, evolution of introduced species. 
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Chapter 1 

Introduction 

In the Origin of Species, Charles Darwin wrote that because competition drives 

natural selection, we should “feel no surprise at the inhabitants of any one country […] 

being beaten and supplanted by the naturalised productions from another land.” Darwin’s 

writings regarding the fragility of ecosystems had raised an important question: How are 

alien species able to invade an environment occupied by native species that are adapted to 

that same environment? Despite Darwin’s note on the existence of introduced organisms, 

it wasn’t until almost a century later, with the publication in 1958 of The Ecology of 

Invasions by Animals and Plants by Charles Elton that an author endeavored to describe 

the ecological impact of invasive species and their consequences for biodiversity. 

Invasive species became of interest to evolutionary biologists after works in The Genetics 

of Colonizing Species, edited by Herbert G. Baker and G. Ledyard Stebbins and 

published in 1965, hypothesized that local adaptation and selection play major roles in 

invasion. The Genetics of Colonizing Species is considered to have laid the groundwork 

for the many modern studies of invasion genetics that had emerged by the end of the 20th 

century. 

The emergence of invasion biology as a popular field of study corresponds to an 

increasing rate of introduction of species into novel environments. Although humans 

have transported plants and animals around the earth for thousands of years, the ever-

increasing movement of people and goods worldwide has provided more opportunities 

than ever for species introductions (Mooney and Cleland 2001; Hulme 2009; Richardson 

and Rejmánek 2011). Invasive species are defined as organisms that are non-native to 
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their current environment, can survive without direct human involvement, and have 

spread from sites of initial establishment in the introduced range.  Although a small 

percentage of introduced species become invasive, introductions have accumulated over 

time, and by 2004 it was estimated that there were over 50,000 invasive species 

worldwide (Pimentel et al. 2005). 

The prevalence of invasive species introduces a paradox: upon introduction to a 

novel environment, loss of genetic diversity through genetic drift and inbreeding should 

result in extinction. Introduced populations are thought to possess small numbers, low 

genetic diversity (HS), and low effective population sizes (Ne), factors that limit the 

evolutionary potential of introduced populations. Several studies have predicted that 

invasive success is dependent on adaptation and species response to natural selection 

(Sakai et al. 2001; Lee 2002; Lavergne and Molofsky 2007; Prentis et al. 2008; Matzek 

2012). 

A partial answer to this apparent paradox of invasion has been found in the 

prevalence of multiple introductions contributing to invasion. A meta-analysis by 

Dlugosch and Parker (2008) and their accompanying studies with the invasive St. John’s 

Wort species Hypericum canariense found that multiple introductions tend to be the rule, 

rather than the exception, when examining plants that have become invasive. Multiple 

introductions raise the Ne and HS of introduced populations, essentially increasing 

population’s evolutionary potential. 

My dissertation work utilized Brachypodium sylvaticum (Hudson) Beauv., a 

bunchgrass currently invading the Pacific Northwest USA to test predictions of 

adaptation in invasive species, while also investigating the underlying genetic 
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mechanisms facilitating adaptation. Brachypodium sylvaticum is a diploid, self-

compatible, perennial C-3 bunchgrass (Kaye 2003; Ramakrishnan et al. 2010). It is 

thought that the United States Department of Agriculture first introduced B. sylvaticum to 

central Oregon, USA in the 1920s while testing for a productive range grass, although 

populations did not become invasive until the end of the 20th century (Hull 1974; 

Ramakrishnan et al. 2010). Brachypodium sylvaticum invades the shady understory of the 

Pacific Northwest, transforming areas once characterized by swordfern (Polystichum 

munitum), Oregon grape (Mahonia aquifolium), snowberry (Symphoricarpos albus), and 

redwood sorrel (Oxalis oregano) into vast monocultures of slender false brome (Fig. 1.1). 

A study by Rosenthal et al. (2008) confirmed that there were two separate 

introductions of B. sylvaticum; one into Eugene, Oregon, USA, and the second into 

Corvallis, Oregon, USA. These introductions consisted of individuals from populations 

across B. sylvaticum’s native range (Fig. 1.2). These multiple introductions resulted in the 

populations of initial establishment having high HS and Ne and led to the development of 

recombinant hybrid genotypes in the invasive region as individuals from populations 

across the native region crossed (Rosenthal et al. 2008).  

This known background of B. sylvaticum’s introduction history allowed me to 

develop an overarching hypothesis for my dissertation (Fig. 1.3). Brachypodium 

sylvaticum was introduced from multiple sources, allowing the formation of the invasive 

genotypes. However, after these individuals began to spread into Oregon, populations 

underwent secondary bottlenecks in the introduced range, resulting in a halted range 

expansion. After populations overcame these secondary bottlenecks, invasive B. 

sylvaticum began its full invasion. In my dissertation, I seek to discover what processes 
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underlie B. sylvaticum’s ability to overcome these secondary bottlenecks in the 

introduced range, allowing the species to become invasive. These findings can be applied 

to investigations of mechanisms underlying invasions of other introduced plants, or of 

plants expanding their range into novel territories.  

• In Chapter 2 I use empirical studies and simulations to investigate the 

hypothesis that genetic purging, the process where genetic load is reduced by 

selection against the recessive deleterious alleles expressed in the 

homozygous state, promotes invasive range expansion. 

• In Chapter 3 I use greenhouse experiments to discover how addition of 

nitrogen to soils influence the competitive performance of B. sylvaticum 

individuals from populations with varying levels of genetic diversity. I test for 

ecological mitigation of inbreeding depression (EMID), the potential for stress 

reductions to augment fitness in populations with limited gene diversity, as a 

factor facilitating invasion. 

• In Chapter 4 I determine if genetic differentiation of individuals in the 

invasive range of B. sylvaticum is the result of genetic drift or natural 

selection, additionally investigating if differentiation has occurred during the 

primary establishment phase of invasion or during subsequent range 

expansion. I also describe a robust method for detection of selective processes 

after species range expansion or introduction to a novel environment. 

• In Chapter 5 I investigate phenotypic plasticity as a factor contributing to 

invasion. The adaptive value of phenotypic plasticity and genetic 

differentiation in the invasive range is determined. 
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My dissertation work significantly contributes to the field of invasion biology by 

uncovering mechanisms underlying the establishment success of introduced species, 

despite low population genetic diversity. In a greater context, results from these studies 

provide insight into how populations adapt to changing environments. 
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Figures 

Figure 1.1 The forest understory in central Oregon, USA before (top, A) and after 
(bottom, B) Brachypodium sylvaticum invasion.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

Figure 1.2 Locations of populations (black circles) in the native range of Brachypodium 
sylvaticum where individuals contributing to the original introduction are thought to have 
originated. 
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Figure 1.3 Overarching hypothesis of mechanisms underlying Brachypodium 
sylvaticum’s invasion. Introduction from multiple source regions results in the 
development of an invasive genotype. After primary establishment, secondary 
bottlenecks occur as the species expands its range, slowing spread. After these 
bottlenecks are overcome, a full invasion begins. 
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Chapter 2 

Rapid Purging of Genetic Load in a Metapopulation and Consequences for Range 

Expansion in an Invasive Plant 

Abstract 

Invasive species often display high fitness despite bottlenecks and inbreeding during 

establishment. We address this paradox through simulations and experiments that assess 

the potential for purging of genetic load during range expansion. Success of invaders 

often depends on the production of vigorous inbred offspring allowing for rapid 

population growth after colonization. Substantial genetic load of outbreeding species 

reduces the fitness of offspring as inbreeding ensues during the establishment of 

populations. In our simulations, sustained selfing or outcrossing within isolated 

populations did little to remove deleterious mutations. Conversely, inbreeding combined 

with periodic gene flow resulted in efficient purging and accelerated rates of range 

expansion. Purging efficiency was dependent on initial genetic diversity levels, in line 

with predictions that multiple introductions facilitate invasion and the evolution of more 

aggressive invaders.  Simulation predictions were tested using the invasive species 

Brachypodium sylvaticum. Homozygous populations on B. sylvaticum’s range periphery 

displayed lower inbreeding depression compared to heterozygous populations near 

introduction sites. Empirical tests with B. sylvaticum demonstrate that purging of genetic 

load is a plausible scenario promoting range expansion during invasion.  
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Introduction 

Inbreeding within populations increases homozygosity and the expression of genetic load 

– the accumulated complement of deleterious recessive alleles that is often prevalent in 

outcrossing species.  Inbreeding exposes deleterious alleles to the effects of selection and 

may reduce population growth and persistence (Crow and Kimura 1970; Keller and 

Waller 2002). Invasive species provide an ideal model for studying the effects of 

inbreeding on establishment and range expansion, as spreading populations of alien 

species often possess a low genetic diversity resulting from bottlenecks and small 

population size (Frankham 2004). Inbreeding depression, defined as the loss of fitness in 

an inbred individual compared to an outcrossed individual, results from genetic load (the 

sum of accumulated deleterious recessive mutations). Expression of genetic load due to 

inbreeding can slow population growth (Endels et al. 2007; Charlesworth and Willis 

2009) and decrease the rate of range expansion (Excoffier et al. 2009; Fig. 2.1). In 

contrast to these expectations, many invasive species display vigorous population growth 

and range expansion throughout invasion (Frankham 2004). Based on the success of 

invasive species in novel environments, we would expect that the loss of genetic load 

may be occurring during range expansion (Whitlock and Bourguet 2000). 

Range expansion during invasion of novel geographic regions may facilitate 

purging, a process where genetic load is reduced by selection against the recessive 

deleterious alleles expressed in the homozygous state (Pujol et al. 2009; Barringer et al. 

2012). This hypothesis has been previously tested through creation of serial inbred lines 

or artificial bottlenecks to force genetic purging under controlled laboratory settings 

(Byers and Waller 1999; Crnokrak and Barrett 2002; Leberg and Firmin 2008), however 
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examples of wild populations with the substantial variation in levels of inbreeding 

depression signaling that purging has occurred are rare (e.g., Haikola et al. 2001; 

Goodwillie and Knight 2006; Pujol et al. 2009; Barringer et al. 2012). Utilization of a 

recently-introduced invasive species with a well-described invasion history to investigate 

the process of genetic purging is ideal, as individuals can be collected from the field and 

allowed to cross in a controlled environment. Measurement of the fitness of outcrossed 

and selfed progeny then provides a direct test of levels of genetic load characterizing 

populations and whether genetic purging is occurring in wild populations.  

Range expansion during invasion occurs as propagules migrate from source 

populations to form small founder populations. This process of range expansion 

continues until the invasion is a network of interconnected small and large populations, 

forming the invasive metapopulation. In small populations genetic drift can outweigh 

selection resulting in the fixation of a high proportion of deleterious alleles (Hedrick and 

Kalinowski 2000). In large, outbreeding populations genomic heterozygosity remains 

high, so genetic load is not expressed. Colonization processes during range expansion 

may exacerbate the negative effects of genetic load, as evidenced by high levels of 

inbreeding depression due to increased homozygosity in small populations. Gene flow to 

small populations increases heterozygosity as it infuses isolated populations with genetic 

variation, which increases selection efficiency, elevates fitness, and promotes further 

range expansion of the invasive species (Fig. 2.1; Richards 2000; Keller and Waller 

2002). Intermittent gene flow to populations can facilitate genetic purging, as the periods 

in between gene flow events would allow selection to favor high-fitness alleles at loci 

that have become fixed for deleterious mutations. We hypothesize that intermittent gene 
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flow (low levels of gene flow) is more likely to result in genetically purged populations 

because high rates of gene flow results in many heterozygotes and can swamp the effects 

of selection on populations. Conversely, intermittent gene flow to isolated populations 

allows time for selection to occur, removing unfit homozygotes and leaving homozygotes 

with high fitness. 

We propose that purging of genetic load may be promoted by periodic gene flow 

to isolated populations, leading to increased fitness and accelerated range expansion. 

Periodic gene flow reflects processes occurring during range expansion as populations 

are likely to be isolated for some generations after colonization (Ramakrishnan et al. 

2010). Population bottlenecks during range expansion can lead to inbreeding depression, 

allowing strong selection to eliminate deleterious alleles. Multiple generations of 

inbreeding in small populations without gene flow should expose a larger proportion of 

deleterious alleles to selection resulting in more effective purging. We perform an 

empirical test of the prediction that populations with lower genetic diversity may have 

higher fitness due to genetic purging through comparison of the fitness of selfed and 

outcrossed progeny from central and peripheral populations of the newly-invasive 

bunchgrass, Brachypodium sylvaticum (Hudson) Beauv. (slender false brome; Poaceae).  

We developed three simulations to describe mechanisms by which genetic 

purging may occur in wild populations of B. sylvaticum. Our goal was to start with 

simplistic conditions, building on the outcomes to add more realistic scenarios in the 

second and third simulations. Our first simulation explored the hypothesis that 

populations of primarily selfing individuals outcrossing intermittently were more likely to 

result in genetic purging than a population of completely selfing individuals. We 
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examined the effects of three variables on fitness: effective population size (Ne), the 

number of unlinked loci contributing to inbreeding depression, and the frequency of 

outbreeding.  

In our second simulation we expand on the previous hypothesis from a single 

population to a metapopulation, simulating gene flow across multiple inbreeding 

populations. In this simulation, we test the hypothesis that intermittent gene flow within a 

metapopulation facilitates genetic purging more effectively than a single large population 

or isolated populations consisting of selfing or outcrossing individuals. We also introduce 

mutation by allowing for one deleterious allele to appear at an anonymous location in 

each genome each generation (Denver et al. 2004; Haag-Liautard et al. 2007).   

The third simulation integrates range expansion of the metapopulation to 

previously unoccupied habitats, testing the hypothesis that purging can occur 

simultaneously in more than one population of the invaded range, and that the occurrence 

of purging in invasive populations accelerates the rate of range expansion into previously 

unoccupied habitats. 

Materials and Methods 

Simulations – Outcrossing Among Highly Selfing Lineages 

For the first set of simulations we explored the effects of the number of progeny 

(strength of selection, Fig. A.A2) and the number of loci contributing to genetic load on 

the effectiveness of genetic purging.  To reflect patterns of colonization during range 

expansion we assumed that new populations would be established through self-

fertilization of a single colonizing individual. In this first simulation we mimicked a 

scenario where individuals primarily reproduced by selfing but would periodically 
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outcross with other inbred lineages. 

We used a collection of selfing lineages (represented by individual genotypes), 

annual hermaphroditic species that persisted in a single population with no outcrossing. 

We assumed the primarily selfing plants would infrequently outcross with other lineages 

in the same population. Generations were non-overlapping and discrete in this and all 

subsequent simulations.  All lineages were initially heterozygous for k = 1 to 1,000 

unlinked loci segregating for two alleles, one deleterious (a), the other of which produced 

a normal phenotype (A).  Deleterious alleles were assumed to be completely recessive to 

accommodate a dominance model for inbreeding depression (Charlesworth and 

Charlesworth 1987; Barrett and Charlesworth 1991). Genotypes across loci were 

randomly generated with ga = 0.5; i.e., approximately 25% of loci were homozygous for 

the deleterious allele in each lineage at the start of each simulation, where ga indicates the 

proportion of loci with the a allele present.  Absolute fitness (W) declined proportionally 

with the number of loci homozygous for the deleterious allele (W = 1 – Gaa; where Gaa is 

the genomic frequency of loci homozygous for the a allele), so effects across loci were 

additive and each locus had an equal effect on fitness.   

Each generation, alleles at each locus of diploid individuals segregated to produce 

gametes that were randomly combined with another gamete from the same (selfing), or a 

different (outcrossing/gene flow) randomly-chosen lineage to produce a set of n progeny 

(n = 1 to 1000).   We assumed that selection only occurred at the juvenile stage, so each 

lineage was replaced by one of its own offspring each generation.  Selection was imposed 

by choosing the progeny genotype with the highest absolute fitness (W) from among the n 

progeny produced by each lineage in each generation (see Fig. A.A1). For these 
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simulations we assumed the mutation rate was zero.  

Simulations – Gene Flow in a Metapopulation 

In the second set of simulations we examined the effects of mutation (introduction of 

deleterious alleles) and gene flow among Ñ inbred populations consisting of N 

outbreeding individuals on levels of purging. Here, we assumed each population was 

established after dispersal of a single seed to an open site. Colonists were homozygous 

for deleterious alleles at 25% of their loci as described above. The individuals in each 

population were generated by selfing of each colonist in generation zero as described 

above.  In subsequent generations the N individuals were produced by outcrossing within 

each population. Selection was imposed by choosing progeny with the highest W from 

among the n progeny as described above. In this simulation we focused on the effects of 

gene flow among established populations so no extinction of lineages or populations was 

allowed (survival thresholds were set to zero – see Fig. A.A1). 

A total of k = 100 loci were monitored and were treated as anonymous so each 

locus could be representative of any location in the genome.  One mutation per genome 

each generation was introduced at a random locus homozygous for the normal (A) allele 

by generating a heterozygous genotype (the availability of anonymous locations 

homozygous for A alleles never became limiting in the simulations described below).  

The rate of one deleterious mutation per genome per generation (U) falls within the range 

of estimates found for non-human animal species (Denver et al. 2004; Haag-Liautard et 

al. 2007), and is similar to estimates for most plants (0.14 – 2.0 ; Ossowski et al. 2010).   

Simulations were conducted to examine the effectiveness of gene flow among 

inbred populations for purging genetic load (ga = 0.50) with mutation and selection 
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pressure.  We examined the consequences of gene flow (every fifth generation) within a 

metapopulation (Ñ = 10 populations of N = 10 lineages) contrasted the effectiveness of 

purging of genetic load with a single large population (N = 100), the same set of ten 

populations with outcrossing and no gene flow, and the same set of ten populations with 

only selfing and no gene flow.  We quantified purging of genetic load and changes in 

genotype frequencies for the average proportion of loci in lineages that were 

heterozygous or homozygous for each allele across populations.  These population 

averages provide a measure of within-population purging and population fitness.  

Simulations – Metapopulation Range Expansion 

 We modified the previous metapopulation simulation to examine rates of range 

expansion by creating a 20 x 20 array of sites that could be occupied by populations.  In 

all simulations the invasion was initiated with five populations located at the center of the 

range, and a single selfing colonist as described above populated each site. Once 

populations exceeded the repopulation threshold then randomly-chosen individuals that 

exceeded the threshold were chosen to contribute to repopulation in populations that had 

less than ten individuals. Colonization occurred every second generation for sites that 

were adjacent to a population where the average fitness of lineages exceeded the 

colonization threshold. Colonization proceeded from propagules generated by randomly-

chosen individuals that exceeded the repopulation fitness threshold. Once a population 

was colonized it could grow to a population size of ten by production of progeny from 

within the population (if the fitness was greater than the repopulation threshold) or from 

an adjacent population (if the average fitness exceeded the colonization threshold). 

Rates of range expansion were modulated by choosing fitness thresholds W = 0.60 
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for individual survival, and individual average thresholds of W = 0.90 for population 

growth and colonization. As lineages went extinct they could be replaced by high-fitness 

lineages from within the same population or from an adjacent population. With the fitness 

thresholds used we did not observe any population to suffer complete extinction. In all 

other respects the conditions used in this simulation matched those in the second 

simulation with the same levels of mutation and gene flow among populations, and 

complete outcrossing among individuals within each population.  

We tracked average fitness of each population and number of sites occupied over 

100 generations.  To obtain different levels of differentiation among populations we 

generated sets of initial colonists that were identical for different proportions of their 

genomes (i.e. from zero loci identical to all k of the loci identical among colonists of the 

Ñ populations).  Genotypes at shared loci were randomly generated with ga = 0.5.  We 

estimated levels of differentiation among the populations during the first generation of 

each simulation by calculating FST for each locus and averaging across all k loci (Hartl 

and Clark 2006).  

Empirical Tests – Population Inbreeding Depression 

Study species  

Brachypodium sylvaticum is a diploid, perennial, C-3 bunchgrass native to 

Europe, Asia, and Africa, with invasive populations in North America and Australia. 

False brome was introduced in the Pacific Northwest of North America during the early 

1900’s, but did not begin rapidly spreading in central Oregon’s Willamette Valley until 

the 1980’s (Rosenthal et al. 2008). This species continues to expand its range, and 

invasive B. sylvaticum can now be found in Washington, California, Virginia, New York, 
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USA, as well as in British Columbia and Ontario, Canada (Rosenthal et al. 2008; Roy 

2010).  In Oregon this species is currently undergoing rapid range expansion. Recently-

colonized peripheral populations have lower levels of heterozygosity than populations 

close to the original introduction points near Corvallis and Eugene (Rosenthal et al. 

2008a; Ramakrishnan et al. 2010).   

Data Collection 

We collected seeds to study patterns of genetic diversity of B. sylvaticum from 12 

sites within central Oregon, USA to evaluate fitness-related traits under common garden 

conditions. Seeds were cold stratified in a 4°C refrigerator on Petri dishes for 28 days. If 

there was cotyledon emergence after stratification, seeds were planted into 162 cm3 pots. 

Once plants were grown, single tillers from at least eight plants per population were 

separated out and replanted into individual 162 cm3 pots into Pro-Mix soil (Premier Tech 

Horticulture, Quakertown, PA, USA). Plants were arranged in a randomized complete 

block design in a field environment on the campus of Portland State University in May 

2008 and irrigated to supplement natural precipitation.  Plant height, tiller and 

inflorescence number were measured once monthly for six months to assess fitness (n= 

33 to 50 per population). Eight plants per population were utilized for gene diversity 

estimates. Total plant size was calculated as the product of plant height and tiller number. 

Germination rate was calculated as the number of seeds germinated out of 20 after a two-

week period. Differences in germination rate were analyzed with a mixed model 

ANOVA in SAS 9.2 software.  

We estimated levels of inbreeding depression for six of the populations that were 

used in the common garden study to represent peripheral and centrally located 
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populations (three populations each). Seeds were gathered in the field from the chosen 

population sites and cold-stratified for 28 days in a 4°C refrigerator before being planted 

in the greenhouse. One tiller from each of ten individuals per population was separated 

and grown in a 162 cm3 pot. These plants were arranged in randomized blocks and 

allowed to freely self or cross-pollinate. Blocks were made up of maternal individuals 

from all six populations as well as individuals from 20 worldwide populations of B. 

sylvaticum. Mature seeds were collected and cold stratified. Six seeds per maternal plant 

were each planted in separate 162 cm3 pots in Pro-Mix soil (Premier Tech Horticulture). 

Plants were randomly placed within groups in a greenhouse in a randomized complete 

block design of 36 blocks (10 plants/block) to control for environmental variation across 

the greenhouse bench. Plant height, tiller, and inflorescence number were measured once 

monthly for three months for plant growth estimates with regular irrigation and fertilizer 

applications under controlled greenhouse conditions (24/18 oC, day/night, 10/12 h under 

ambient light). Additionally, twenty seeds per maternal plant were used to assess early 

life stage inbreeding depression through germination by being placed in Petri dishes on 

moist germination paper and checked daily for signs of emergence, at which point they 

were considered to be germinated.  

We measured fitness of individuals as the multiplicative product of seed 

germination, size at one month, size at six months, survival, and biomass, divided by the 

maximum value to scale fitness from 0-1.  Seedlings from each maternal parent were 

determined to be products of self- or outcross-fertilization (selfed or outcrossed) from 12 

microsatellite markers. A seedling was determined to be the product of self-fertilization if 

alleles at all eleven loci matched maternal alleles (see Fig. A.A3). Inbreeding depression 



 20

was calculated as the decrease in fitness between selfed and outbred plants from the same 

maternal plant. We analyzed what factors influenced fitness differences within 

populations with a mixed model ANOVA in SAS 9.2. We included “population”, 

“block”, “selfed/outcrossed” (S/O), “population” nested within “maternal plant” and the 

interaction of “population” and S/O in our model, treating “maternal plant” and “block” 

as random factors. 

Results 

Simulations – Outcrossing Among Selfing Lineages 

Loss of deleterious recessive alleles in selfing lineages depended on the 

population size, the strength of selection, and the number of loci segregating for 

deleterious alleles (Fig. 2.2). Purging was least effective with continual self-fertilization 

(Fig. 2.2a,b; N = 1 lineage) as lineages quickly became fixed for deleterious alleles at a 

larger proportion of their loci compared to lineages that periodically outcrossed. Fixation 

of deleterious alleles decreased rapidly (i.e., fitness increased) from continually selfing 

lineages (N = 1) up to five lineages, but changed much less for population sizes greater 

than N = 5.  The strength of selection (effects of progeny number, n) increased rapidly 

when n < 25, but purging efficiency was marginal for increases in the number of progeny 

from 25 to 200, especially with larger numbers of lineages (Fig. 2.2a,b).  The proportion  
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of loci homozygous for deleterious alleles was greater (fitness declined) when the number 

of loci was moderate to large and the number of lineages was smaller (Fig. 2.2c,d). The 

effectiveness of purging was improved and the average fitness of populations was 

substantially increased with repeated selfing followed by outbreeding every five 

generations (Fig. 2.2a,b). In all cases the fixation of normal alleles across lineages lagged 

behind the average frequency of fixation within lineages.  Outbreeding contributed to this 

process as individual lineages become fixed for high-fitness alleles, then these high-

fitness alleles spread among lineages through continued crossing among lineages.  

Simulations – Gene Flow in a Metapopulation 

 The effects of gene flow among inbreeding populations on loss of deleterious 

alleles in a metapopulation were similar to patterns of purging in selfing lineages.  The 

degree of purging depended largely on metapopulation structure and the frequency of 

gene flow (Fig. 2.3).  A single large population of 100 lineages rapidly became 

homozygous for deleterious recessive alleles for around 25% of loci (Fig. 2.3a).  This 

degree of purging was similar for a metapopulation consisting of the same total number 

of lineages divided into ten isolated populations of ten lineages that only outcrossed 

within each population (Fig. 2.3b).  Similarly, purging was less effective for a 

metapopulation of completely selfing lineages that lacked gene flow where around 40% 

of loci became fixed for deleterious alleles (Fig. 2.3c).  The most effective purging was 

observed when lineages outcrossed within populations and gene flow occurred every fifth 

generation among populations (Fig. 2.3d). Under this scenario no loci became fixed for 

deleterious alleles and around 90% of loci became homozygous for normal alleles.  Close 

to 10% of loci remained heterozygous in outcrossing populations due to new mutations 
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(Fig. 2.3a, b, and d), but the proportion of heterozygous loci maintained in selfing 

populations was much less (Fig. 2.3c).  Introducing mutations at a rate of one per genome 

per generation contributed to the maintenance of genetic variation within populations and 

prevented metapopulation-wide fixation of alleles for all four scenarios depicted in Fig. 

2.3.   

 The maintenance of genetic variation and the effectiveness of purging depended 

on metapopulation size (see Fig. A.A4).  Increasing the number of populations 

undergoing periodic gene flow allowed for a higher proportion of loci to become fixed 

for the normal allele from around 65% (one population) to 90% (for > ten populations).  

Higher levels of genetic variation were maintained in larger metapopulations as none of 

the loci became fixed for either allele with more than ten populations.  The introduction 

of new mutations maintained heterozygosity around 8% to 11% across a range of 

metapopulation sizes (see Fig. A.A4).   

Simulations – Metapopulation Range Expansion 

 With spatially-restricted gene flow and colonization of open sites range expansion 

proceeded slowly for the first 25 generations, but became much more rapid as 

populations became purged of their genetic load (Fig. 2.4).  When simulations were 

initiated with no shared loci among the colonists the process of purging began as open 

sites received seed dispersal from more than one neighboring site (note the single orange 

population; Fig. 2.4a).  Episodes of purging often began a multiple locations as the range 

slowly expanded (Fig. 2.4b), and subsequent colonization came primarily from the 

populations with higher fitness (Fig. 2.4c).  As the expanding fronts of higher fitness 

genotypes from independent purging events coalesced, additional rounds of purging were 
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initiated and contributed to more rapid range expansion (note the darker red populations 

between the expanding ranges from the original purging events; Fig. 2.4c,d).  The degree 

of purging and subsequent rate of range expansion was heavily dependent on the 

relatedness (genetic diversity) among the initial colonists (Fig. 2.5); invasions initiated by 

colonists representing higher levels of genetic diversity caused rapid purging and 

exponential range expansion, while range expansion was much slower when initial 

colonists were more closely-related.   

Empirical Tests – Inbreeding Depression 

 Observed populations heterozygosity (Hs) was calculated for each population as 

the average heterozygosity of individuals within the population. Hs ranged from almost 

completely homozygous (Hs values ranged from 0.04 to 0.09 for homozygous 

populations E4, M1, and S2) to highly heterozygous (Hs values ranged from 0.13 to 0.39 

for heterozygous populations C6, C7, C1, C4, E1, C2, C10, and E9; Fig. 2.6). Populations 

with the highest genetic diversity tended to be located towards the central regions of the 

invasion, while more homozygous populations were located at the edge of the invasive 

range. In general, offspring from inbred populations performed poorly under field 

cultivation, but plants from one highly homozygous population (E4 in Fig. 2.6) had 

growth rates similar to offspring from genetically diverse populations, suggesting 

reduced genetic load. The results from our ANOVA showed significant effects of “block” 

(F11. 825= 11.2, p < 0.001), initial plant size (F1, 825= 19.7, p < 0.001), and homozygous  

and diverse populations (F10, 825= 4.13, p <  0.001) on vegetative biomass of individuals 

(Fig. 2.6). 

Selfed and outcrossed offspring from homozygous populations displayed high 
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levels of fitness and little or no evidence of inbreeding depression under controlled 

greenhouse conditions; while the fitness of seedlings from the central and more 

genetically diverse populations was much lower and displayed greater levels of 

inbreeding depression (Fig. 2.7).  The probability of undetected outcrossed offspring to 

be quite low (Maximum P(u)j = 4.37 x 10-6). We found significant effects of S/O 

fertilization (F1,199= 6.39, p = 0.01) across populations, the identity of the source 

population (F5,46= 51.3, p < 0.001) and due to variation among blocks (F36,199= 1.57, p = 

0.03) on multiplicative fitness. A significant effect of S/O by population interaction 

(F5,199= 2.49, p = 0.03) was found in the same model indicating that the intensity of 

inbreeding depression varied among populations. There was no significant effect of 

maternal individual on multiplicative fitness (F38,199= 1.30, p = 0.13).  

Discussion 

Our simulations indicate that cyclic inbreeding and outbreeding among 

populations can purge genetic load more effectively than sustained selfing or inbreeding 

within small populations.  These cycles mimic inbreeding and gene flow that occur with 

colonization and dispersal during range expansion. Genetic purging within populations 

of an invasive plant can result in high-fitness populations at the range edge, instigating 

new phases of rapid and aggressive invasion as purged individuals establish in new sites 

and contribute to gene flow among established populations.  

The result from our simulations and empirical study are applicable to developing 

more effective strategies determining patterns of invasion and determining population 

characteristics that result in invasive success. The restricted population sizes that are 

common to the step-wise dispersal accompanying species invasion (Pujol et al. 2009) 
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are similar to cases of rare species where fragmented and isolated populations occur 

throughout the species’ range. Artificially imposing gene flow among inbred 

populations would infuse new variation for more effective purging of genetic load, and 

may provide an effective alternative to the inbreeding strategies that are currently being 

employed (Hedrick and Fredrickson 2010). Our results suggest that alternating cycles of 

inbreeding and gene flow among inbred populations may be an effective strategy for the 

recovery of species suffering from inbreeding depression.  On the other hand, the 

effectiveness of purging depends on the relatedness among populations that are 

interbred; admixture among disjunct populations representing divergent lineages will 

provide more effective purging (e.g., Johnson et al. 2010).   

Based on results from our simulations the process of purging genetic load appears 

to be dependent on inbreeding to facilitate the exposure of deleterious mutations to 

selection coupled with low levels of gene flow to introduce adequate genetic variation at 

loci that had become fixed for deleterious alleles. These conditions may frequently occur 

during the establishment and spread of invasive species. During range expansion sites at 

the range periphery are typically colonized by one or a few individuals (Ibrahim et al. 

1995; Sakai et al. 2001), so new populations may be subject to inbreeding for several 

generations before additional genetic variation is introduced via gene flow (e.g., 

Ramakrishnan et al. 2010). As the range expands, groups of populations near the 

expanding limits of the range may be subject to cycles of inbreeding followed by 

infrequent gene flow among populations, which creates conditions that promotes purging 

and the emergence of high-fitness populations that accelerate the rate of range expansion.   

The efficiency of purging in our simulations depended largely on metapopulation 
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structure and initial levels of genetic diversity.  As individual lines or populations inbreed 

they become nearly homozygous within a few generations, and depending on the strength 

of selection, a somewhat higher proportion of loci become fixed for high-fitness alleles. 

More loci are made heterozygous with each cycle of outbreeding, which provides 

opportunities for sequential rounds of selection to incrementally decrease the number of 

loci segregating for deleterious alleles. At the end of this process all of the lines achieve 

higher fitness, but may still be fixed for a subset of deleterious alleles. Opportunities for 

additional purging would arise with gene flow from neighboring populations, which 

would introduce additional variation so the process could begin anew. For example, note 

the additional purging that occurred when populations from different expanding ranges 

met (darker red populations appearing in Figs. 2.4c and d).  The rate and efficiency of 

purging in a metapopulation with cyclic inbreeding were similar to predictions from 

analytical models finding that the mean fitness of a population is dependent on 

population subdivision (Whitlock 2002), but our simulations and experiments extend 

these results to accommodate conditions that are likely to occur during the establishment 

and invasive by introduced species.   

While our simulations reveal a mechanism for purging of genetic load they include 

a number of simplifications that might affect the generality of the results.  For example, 

these models do not allow for the influence of environmental variation on fitness or 

demographic stochasticity.  Both of these factors would be expected to mute the effects 

of selection and enhance genetic drift in populations (Hartl and Clark 2006).  These non-

genetic sources of variation would probably slow the rates of purging, but the general 

outcomes of our simulations should hold.  Similarly, the range of selection values that we 
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examined was limited (s ≈ 0.04 to 0.12 for progeny arrays of n = 2 to 100; Fig. A.A2). 

Our metapopulation simulations were conducted with n = 100 and reducing the number 

of progeny per generation extends the time required for purging, but the results remain 

qualitatively the same as those reported here. It is also important to note that these models 

focus on the process of purging genetic load and do not address processes of adaptive 

evolution in novel environments, which is also thought to be more effective when the 

initial level of genetic variation in the colonizing population is high (Charlesworth and 

Willis 2009).  

Other simplifications include the assumptions that deleterious alleles were 

completely recessive and had equal effects on fitness. Estimates from several species 

suggest a leptokurtic distribution of effects of mutations with a small number having 

larger effects on fitness (Lynch et al. 1999; Eyre-Walker and Keightley 2007). The 

dominance of mutations segregating in populations also varies and tends to be much 

weaker for alleles with larger negative effects on fitness (Halligan and Keightley 2009).  

However, both theoretical and empirical results of the dynamics of purging genetic load 

indicate that those mutations with larger effects and higher levels of expression in the 

heterozygous state are more easily eliminated from populations (Charlesworth and Willis 

2009). By examining the dynamics of completely recessive alleles with very small effects 

on fitness these simulations provide a conservative view of purging dynamics; we would 

expect more rapid elimination of mutations with larger effects or those with some 

expression in the heterozygous state.   

 The efficacy of purging genetic load in these simulations and our experiments 

with B. sylvaticum are striking when contrasted with results from unsuccessful crossing 
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experiments designed to eliminate deleterious mutations through lines of inbreeding or 

artificial creation of bottlenecks (Byers and Waller 1999; Crnokrak and Barrett 2002; 

Carr and Dudash 2003; Swindell and Bouzat 2006). One of the possible reasons for the 

difficulty of reducing genetic load in populations is due to the generation of gametic 

disequilibrium by inbreeding (Lande et al. 1994; Winn et al. 2011). Disequilibrium across 

the genome leads to selective interference because the effects of advantageous alleles at 

some loci may be counterbalanced by their association with deleterious alleles at other 

locations (Cutter and Payseur 2013; Neher 2013). Gene flow alleviates selective 

interference by providing opportunities for recombination to disassociate beneficial and 

deleterious mutations and elevates levels of genetic diversity within populations. The 

strong effect of gene flow among inbred populations for purging in our simulations is 

dependent on low relatedness among populations, which allows for recombination among 

divergent genomes. Our results help elucidate how the process of genetic purging can 

occur in nature resulting in potential for introduced species to evolve into aggressive 

invaders.   

Effects of Range Expansion on Genetic Load 

Populations across the expanding range of B. sylvaticum vary in observed 

heterozygosity, with more genetically depauperate populations located towards the 

leading edge of the expanding range (Rosenthal et al. 2008; Ramakrishnan et al. 2010). 

The performance of offspring from crosses within populations depends on both the 

history of inbreeding and the degree to which genetic load has been purged.  In general, 

plants from genetically diverse populations close to introduction points outperformed 

plants from the range periphery under field conditions, but some homozygous 
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populations with low genetic load represent outstanding departures from this pattern. The 

higher fitness of both selfed and outcrossed progeny from peripheral populations of B. 

sylvaticum suggests that reductions in load have occurred during range expansion.  

According to the results from our simulations, these high-fitness populations may 

represent the beginning of the next phase of the false brome invasion – one that will be 

much more rapid and aggressive as purged genotypes colonize new sites and contribute 

to gene flow among established populations.   

There are some particular aspects of the histories of species that may explain why 

purging is more likely during invasion than for stable metapopulations of native species.  

False brome and many other invasive species have succeeded partly as a consequence of 

multiple introductions of genetically divergent individuals (Roman and Darling 2007; 

Dlugosch and Parker 2008; Facon et al. 2008; Rosenthal et al. 2008).  Our simulations 

demonstrate that invasions initiated with higher levels of genetic divergence have more 

potential for elevating absolute fitness through the elimination of deleterious mutations 

contributing to genetic load.  Multiple introductions of invasive species would create a 

metapopulation that more closely approximates the high genetic diversity scenarios in our 

simulations.  Stable metapopulations of native species, on the other hand, are more likely 

to consist of populations from a single origin, so relatedness is higher and they are more 

likely to share a large proportion of fixed deleterious genetic variation.  Higher levels of 

genetic diversity within metapopulations derived from multiple introductions create 

conditions that favor purging of genetic load through cycles of inbreeding and gene flow, 

and may be responsible for fitness increases in peripheral populations of B. sylvaticum. 

Multiple introductions could also carry novel genetic variation that facilitates adaptation, 
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which could contribute to the success of invasive species (Novak and Mack 1995; 

Meimberg et al. 2010). In the case of B. sylvaticum the higher fitness we observed in 

peripheral populations occurred in a controlled greenhouse environment, so this increased 

fitness is more likely to be due to purging of genetic load.  

Our simulation and empirical results have implications for the long-range 

prospects of the success and further evolution of invasives and other species undergoing 

to range expansion. Populations that have lost much of their genetic load through purging 

during range expansion are susceptible to the spread of mutations that increase the 

frequency of selfing (Jarne and Charlesworth 1993). As purging increases the fitness of 

inbred offspring, it effectively reduces the “cost” of selfing (Fisher 1941; Nagylaki 1976), 

which is expected to lead to the rapid evolution of primarily selfing lineages (Lande and 

Schemske 1985). This scenario presents a potential mechanism for the generation of new 

selfing lineages; extensive range expansions precipitated by human-mediated dispersal of 

species and climatic change create conditions that facilitate purging of genetic load and 

the evolution of selfing. Under such a scenario, the emergence of a new complement of 

selfing species may be imminent as human-mediated disturbance, long-distance dispersal, 

and rapid climate change lead to range expansions and purging of mutational load, 

conditions that favor the evolution of self-fertilization in hermaphroditic species. 

 In summary, our results from simulations and estimates of inbreeding depression 

in populations of the newly-invasive Brachypodium sylvaticum are consistent with the 

hypothesis that range expansion can facilitate rapid purging of genetic load in outcrossing 

species. The simulations further demonstrate that loss of genetic load is promoted by high 

levels of genetic diversity, which may be provided by multiple introductions from 
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divergent populations in the native range. High levels of genetic variation during 

establishment and range expansion may promote adaptation to novel conditions in the 

introduced range (Chapter 4; Lavergne and Molofsky 2007), and may increase the overall 

vigor of invasive species through the purging of genetic load. In the case of B. sylvaticum 

in particular, purging of genetic load during range expansion may precipitate a more 

rapid and aggressive phase of invasion. Comparative analyses of levels of inbreeding 

depression in other invasive species will provide a more complete picture of the role of 

purging in the evolution of aggressively invasive species.  
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Tables and Figures 

Figure 2.1 A qualitative model for the dynamics of range expansion under selection and 
purging of genetic load in an outbreeding invasive species.  Phase 1 – a primary lag phase 
occurs during initial colonization and establishment as the invader responds to selection 
in a novel environment.  Phase 2 – initial range expansion occurs as open sites are 
colonized.  Phase 3 – a secondary lag phase occurs due to inbreeding and population 
bottlenecks during the establishment of satellite populations.  Purging of genetic load 
occurs through inbreeding and gene flow among satellite populations.  Phase 4 – 
exponential range expansion ensues as genetic load is purged.  Newly-established 
populations on the range edge have high rates of growth because of the lack of inbreeding 
depression.   
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Figure 2.2 Effects of population size and number of loci on purging levels within 
lineages (Mean GAA) and the proportion of loci fixed for normal alleles (Fixed AA) across 
lineages.  The effects the strength of selection (n progeny = 1 to 200) are shown in the 
two top panels (a and b); where each line represents the number of lineages from N = 1 
lineage that selfed every generation or outcrossed every fifth generation (N = 2 to 10 
lineages).  The effects of number of loci are shown in the two bottom panels (c and d); 
where each line represents k = 1 to 1000 loci with their response to the number of 
lineages on the horizontal axis (n = 100 progeny).  Generations were discrete and 
selection was based on replacing each lineage with the fittest progeny.  Mutation rate is 
zero in all cases.  Error bars were too small for accurate representation.  
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Figure 2.3  The effects of metapopulation structure, breeding system, and gene flow on 
changes in the frequencies of deleterious mutations.  Outcrossing in a single large 
population of N = 100 (a) is contrasted with the same total number of individuals divided 
up into Ñ=10 isolated populations of N = 10 lineages that only self (b; no gene flow) or 
only outbreed within populations (c; no gene flow), and ten populations of ten individuals 
that only outbreed within populations and experience gene flow with a randomly-selected 
population every five generations (d).  Selection is based on n = 100 progeny each 
generation for each line.  Deleterious mutations occur at a rate of one per genome per 
generation with k = 100 loci. Error bars were too small for accurate representation. 
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Figure 2.4  Stages of range expansion after establishment of an outbreeding invasive 
species; a) one of a few satellite populations displays higher fitness after colonization by 
more than one of the original five populations (dark blue outline); b) invasion continues 
as new sites are colonized primarily from the first high-fitness population.  A second 
purged population appears on the opposite side of the range; c) rapid range expansion as 
satellite populations from the two original purging events undergo admixture. Another 
round of purging produces higher fitness populations; d) high-fitness genotypes spread 
and range expansion is rapid, purging is nearly complete.  Simulation conditions: FST = 
0.47 among five colonizing populations in generation 1; population size N = 10; selection 
based on n = 100 progeny (s = 0.12); outcrossing within populations (no selfing); gene 
flow among populations every 10th generation; fitness threshold for contributing to 
population growth or colonization = 0.90; seed dispersal every second generation.   
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Figure 2.5 The effects of levels of divergence among established populations (FST) on the 
potential for purging and rapid range expansion.  All simulations were initiated under the 
same set of condition for the strength of selection (n progeny per generation).  
Differences in FST reflect the proportion of loci that were identical among the original 
colonists.  With the exception of relatedness among colonists (initial genetic divergence), 
all simulation conditions were the same as for Figure 2.4.   
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Figure 2.6 The relationship between population genetic diversity and plant biomass in a 
common garden. Homozygous populations from the range periphery are designated by 
blue squares; centrally located heterozygous populations are represented by green 
squares. 
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Figure 2.7 The fitness of selfed (spotted) and outcrossed (striped) progeny from 
populations that vary for genetic diversity (a), and the genetic diversity of source 
populations for outcrossed and selfed progeny (b) in the newly invasive grass, 
Brachypodium sylvaticum. (a) Letters denote groups of populations that are not 
significantly different in fitness (selfed and outcrossed progeny combined). Multiplicative 
fitness is estimated here as the product of seed germination, early growth, survival, and 
ranked biomass. Asterisks indicate a significant difference in fitness between selfed and 
outcrossed progeny within a population. (b) Genetic diversity of each population is 
represented by black circles.  
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Chapter 3 

Ecological mitigation of inbreeding depression in a newly invasive species 

Abstract 

The interaction of population genetic diversity and the environment has important effects 

on the spread and establishment of invasive species. Bottlenecks during range expansion 

limit genetic diversity and adaptive potential as a consequence of small effective 

population size and inbreeding. Homozygous individuals are more sensitive to 

environmental stress and may be less able to take advantage of available resources; 

however, adaptation to abiotic change such as increased nitrogen deposition may raise 

fitness of individuals from low genetic diversity populations, facilitating invasion. We 

utilized the rapidly- spreading invasive bunchgrass, Brachypodium sylvaticum, in a 

competition experiment to investigate how nitrogen addition influences performance of 

plants from low and high HS populations. We found that nitrogen enrichment at levels 

consistent with aerial deposition due to human activities increases the size of individuals 

from low HS populations but does not increase size of individuals from high HS 

populations. Coefficients of relative competition intensity (RCI) show no performance 

reduction of individuals from low HS populations relative to individuals from high HS 

populations. These results are consistent with ecological mitigation of inbreeding 

depression (EMID), which is the potential for increased resources to augment fitness in 

populations with limited gene diversity (HS). Elevated nitrogen availability due to human 

activities is a factor that may be instrumental for increased invasion success of introduced 

species that are subject to inbreeding depression due to small effective population size. 
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Introduction 

Range expansion into novel environments is a dynamic function of biotic and 

abiotic factors governing colonization success (Mack et al. 2000; Sakai et al. 2001). For 

plants, anthropogenic modifications can alter environmental factors such as temperature, 

nutrient availability, and ecological disturbance, increasing species turnover and 

successional changes in community composition that facilitate species invasions (Ibanez 

et al. 2009; Walther 2010; Moser et al. 2011). Populations can adapt to novel conditions 

during invasion but low genetic diversity may cause reductions in fitness and limit 

adaptive potential. 

Bottlenecks occurring upon introduction cause newly invasive populations to 

have only a portion of the genetic diversity (HS, population genetic diversity; Lee 2002) 

of the source population. Estimates of HS using neutral markers such as microsatellite 

loci provide information on historic population bottlenecks and levels of inbreeding in 

populations (Morgante and Olivieri 1993; Garza and Williamson 2001; Selkoe and 

Toonen 2006). Although many invasive species are established through multiple 

introductions, resulting in high HS near sites of primary colonization, HS in populations at 

the edge of the expanding range tends to be lower due to bottlenecks incurred during 

range expansion (GarciaRamos and Kirkpatrick 1997; Arnaud-Haond et al. 2006; 

Ramakrishnan et al. 2010).  Lower genetic diversity and higher levels of inbreeding in 

newly established populations at the edge of the expanding range may lower population 

growth rate and stall the spread of newly-invasive species.   
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Low HS results from a historically small effective population size (Ne) that makes 

populations vulnerable to loss of genetic variation through genetic drift, demographic 

stochasticity, and inbreeding (Dlugosch and Parker 2008; Ramakrishnan et al. 2010). 

Commonly, a population isolated from gene flow for several generations will experience 

fitness decreases as drift results in random fixation of alleles (Young et al. 1996; Keller 

and Waller 2002; Excoffier 2004). Inbreeding depression, the reduction in fitness of 

inbred offspring in comparison to outbred offspring (Wright 1977; Charlesworth and 

Charlesworth 1987; Shields 1993), results from accumulation of deleterious alleles and 

loss of heterozygosity (Crnokrak and Barrett 2002). Drift and inbreeding reduce genetic 

variation and the potential for adaptive evolution, leaving a population vulnerable to 

environmental fluctuations (Keller and Waller 2002; Pearson et al. 2009). 

Stressful environmental conditions, such as enhanced competition stemming from 

nutrient limitations, can exacerbate the negative effects of reduced HS, resulting in 

environmentally dependent inbreeding depression (EDID; Fig. 3.1a) (Fox and Reed 2010; 

Cheptou and Donohue 2011; Bijlsma and Loeschcke 2012). However, despite the lack of 

genetic diversity resulting from demographic expansion, many species successfully 

spread and colonize new populations in the invasive range (Tsutsui et al. 2000; Dlugosch 

and Parker 2008). We propose that ecological mitigation of inbreeding depression 

(EMID; Fig 3.1b), an increase in the ability of low HS individuals to utilize available 

resources, underlies the ability of genetically depauperate invasive populations to 

colonize new areas. 

Levels of inbreeding depression experienced by invading species during range 

expansion may be alleviated by favorable ecological conditions. In particular, increased 
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resources afforded by human activities may provide ecological remediation of fitness 

declines normally observed for homozygous and inbred populations. We distinguish 

EMID from environmentally- dependent inbreeding depression (EDID; Cheptou and 

Donohue 2011) because it elevates the fitness of inbred populations to be equal to 

outbred populations when resources are more abundant (Fig. 3.1b). In contrast to EDID, 

under ecological mitigation low genetic diversity populations are more capable of taking 

advantage of increased resources then the outbred populations. Ecological mitigation of 

inbreeding depression could occur through strong selection that increases the frequency 

of genotypes that are locally adapted to abiotic conditions; either through selection 

against deleterious alleles that have accumulated in the homozygous state (genetic 

purging; Crow and Kimura 1970), or by selection on environmentally influenced 

phenotypes that are able to take advantage of nutrient availability (adaptive plasticity; 

Callaway et al. 2003; Pigliucci and Murren 2003), resulting in homozygous individuals 

possessing optimal trait values favored by the local environment. Under the EMID we 

predict that inbred invasive populations will be able to capitalize on increased resource 

availability (especially nitrogen) after environmental perturbations that damage or 

destroy native vegetation, and by increased aerial input of nitrogen due to human 

activities. 

Nitrogen deposition is increasing due to rising levels of atmospheric pollution and 

may destabilize natural successional processes, providing opportunities for the 

establishment of invasive species (Callaway and Walker 1997; Ackerly 2003; Gilbert et 

al. 2009). The rate of input into the terrestrial nitrogen cycle has approximately doubled 

since the industrial revolution, dramatically increasing soil nitrogen levels that affect 



 43

plant community composition (Vitousek et al. 1997).  Many previous studies have found 

that plant communities are being significantly altered by atmospheric nitrogen depostion 

resulting from inorganic fertilizer use and nitrous oxide (NOX) emissions (Fenn et al. 

2003). Increasing a fundamentally limiting soil nutrient such as nitrogen may create 

reductions in environmental stress that disrupts community dynamics by altering 

outcomes of competitive interactions (Gerry and Wilson 1995; Lamb and Cahill 2008). 

These disturbances create openings for the establishment of exotic and invasive species 

that tend to have greater invasion success in soils with increased nitrogen loads 

(Witkowski 1991; Green and Galatowitsch 2002; Holdredge et al. 2010).  

Studies investigating invasion associated with nitrogen deposition in the Great 

Basin of the western USA have found that nitrogen requirements can be high for invasive 

grasses due to the rapid growth characteristic of many invasive plants (Evans et al. 2001; 

Booth et al. 2003). Research suggests that competition for soil nutrients in low nitrogen 

environments is an abiotic stress that reduces fitness of plants from low HS populations 

(Hayes et al. 2005). Recognizing the influence that atmospheric nitrogen deposition has 

on establishment of low HS populations provides insight into the processes of invasion 

and range expansion as the number of environments affected by nitrogen deposition 

increase.  

To investigate how genetic diversity and environmental stress interact to 

determine colonization success, we studied the invasive perennial bunchgrass 

Brachypodium sylvaticum (Hudson) Beauv. (slender false brome). The native range of B. 

sylvaticum extends from Northern Europe into Asia and North Africa (Rosenthal et al. 

2008). Brachypodium sylvaticum is considered to be aggressively invasive in the Pacific 
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Northwest USA, and is classified as a noxious weed in Oregon, USA, where it occupies 

more than 10,000 hectares of mixed coniferous forest and grasslands (Kaye 2003). 

Microsatellite marker data have confirmed two independent introductions of B. 

sylvaticum into Corvallis and Eugene, Oregon, USA, as well as multiple introductions of 

B. sylvaticum from several regions throughout Western Europe (the United Kingdom, 

Greece, and Spain; (Rosenthal et al. 2008). B. sylvaticum frequently self-fertilizes, 

allowing a single individual to found a new population. Hybridization among individuals 

from separate geographic sources has resulted in the spread of novel recombinant 

genotypes throughout the invaded region (Rosenthal et al. 2008). 

Near introduction sites, B. sylvaticum forms expansive monocultures to the 

exclusion of all other vegetation. In contrast, populations along the range periphery tend 

to be sparse and are interspersed with other species (Rosenthal et al. 2008). 

Brachypodium sylvaticum populations located near the sites of primary colonization 

exhibit high HS, whereas recently colonized populations possess low HS (Ramakrishnan 

et al. 2010). This genetic stratification in invasive populations renders B. sylvaticum an 

ideal model for the study of invasion dynamics during a species’ range expansion. 

We assessed the interaction of nitrogen enrichment and population HS (as a proxy 

for historical Ne) on plant performance and for determining outcomes of intra- and inter-

specific competition in B. sylvaticum. We test for EMID, simulating a less stressful 

environment by increasing nitrogen levels in plots. We mimicked community dynamics 

within Oregon sites invaded by B. sylvaticum by growing plants in direct competition 

with native and introduced grass genotypes originating from the same field locations. The 

genetic consequences of demographic history were addressed through the collection of 
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experimental individuals of B sylvaticum from low or high HS invasive populations. 

Creating “neighborhoods” of competition simulated the arrival of plant species to an open 

site immediately after disturbance. Individuals of Brachypodium sylvaticum were planted 

at the center of competition neighborhoods with itself (monoculture neighborhoods) or 

one of three other bunch grass species (interspecific neighborhoods) in a factorial design 

with low and high soil nitrogen treatments. Nitrogen levels were carefully chosen to 

mimic indigenous and elevated nitrogen deposition due to industrialization.  

We investigated three primary questions: 1) Is there environmentally- dependent 

inbreeding depression in invasive populations of B. sylvaticum? 2) Does nitrogen addition 

result in a release from stress in individuals from low genetic diversity populations of B. 

sylvaticum? and 3) Do nitrogen availability and source population genetic diversity 

interact to influence plant performance in competition? Competition for nitrogen in a 

limited environment can result in decreased size and biomass compared to an 

environment where nitrogen is not limited. Environmentally dependent inbreeding 

depression would show lower overall fitness in individuals from populations with low 

HS, with fitness losses exaggerated in the stressful environment (low nitrogen). With 

EMID individuals from low HS invasive B. sylvaticum populations would experience a 

release from nutrient stress through nitrogen deposition, and would perform as well as 

high HS populations when nitrogen availability is increased. This result would indicate 

that spread of B. sylvaticum from low genetic diversity populations could be facilitated by 

human-mediated nitrogen deposition. 

 

Methods  
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B. sylvaticum collection and microsatellite genotyping 

The rapidly spreading invasive species B. sylvaticum has established populations 

on the West and East coasts of the USA and Canada (Rosenthal et al. 2008b; Holmes et 

al. 2010; Miller et al. 2011). It is thought that the United States Department of 

Agriculture first introduced B. sylvaticum to central Oregon, USA in the 1930’s while 

testing for a productive range grass (Hull 1974; Ramakrishnan et al. 2010). 

Brachypodium sylvaticum is a diploid, self-compatible, perennial C-3 bunchgrass (Kaye 

2003; Ramakrishnan et al. 2010). Brachypodium sylvaticum is nonrhizomatous, although 

plants frequently spread vegetatively through tillering (Kaye 2003; Ramakrishnan et al. 

2010).  

 We sampled plants from 11 invasive B. sylvaticum populations to obtain a range 

of genetic diversity and inbreeding histories. Seeds collected from sample sites were 

raised in a greenhouse, and leaf material was dried and stored in silica gel prior to DNA 

extraction. Genetic diversity was evaluated as within-population heterozygosity using 

eight to 12 microsatellite markers (SSRs). All microsatellite primers were developed and 

optimized at Portland State University (Ramakrishnan et al. 2008; Rosenthal et al. 2008) 

and are deposited at GenBank (Accession nos. EF450748, EF450751, EF450752, 

EF450754, EF450756, EF450757, EF450759, EF450765). Microsatellite DNA fragment 

length variation was visualized on an Applied Biosystems 310 automated capillary 

electrophoresis system with GeneScan 500 ROX as a standard. Allele length variation 

was scored with Genemapper™ software (Applied Biosystems). For further details on 

the microsatellite protocol see Rosenthal et al. (2008). 
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 For our competition experiment, we selected three perennial, cespitose, 

nonrhizomatous C-3 bunchgrass species that were consistently found near all B. 

sylvaticum populations examined in the study. Competitor grasses chosen were: Elymus 

glaucus Buckley (Poaceae; blue wild-rye), Holcus lanatus L. (Poaceae; velvetgrass), and 

Dactylis glomerata L. (Poaceae; orchardgrass).  Holcus lanatus is an escaped cultivar 

native to Northern Europe and is currently listed as a quarantined invasive species in 

Washington, California, and Oregon. Dactylis glomerata was first introduced to the USA 

from Northern Europe in the 1760’s and is considered naturalized to the Pacific 

Northwest. Elymus glaucus is the only native species that was consistently found near B. 

sylvaticum invaded sites.  

Experimental Design  

We utilized HS as a proxy for historical Ne to determine the influence that nutrient 

deposition and competitor species had on fitness related traits in individuals sourced from 

invasive B. sylvaticum populations. Due to ethical concerns connected with planting 

invasive species outdoors for a manipulative experiment, we built six 1 x 1 x 0.8 m 

wooden raised beds in which competition neighborhoods were established in a factorial 

design. Raised beds were located in the hoophouses (polytunnels) at Portland State 

University, Portland, OR, USA. The hoophouse was a polyethylene-covered tunnel semi-

circular with minimal environmental control. Fans provided air circulation and cooling 

when temperatures rose above 23° C in the summer while hoophouses were unheated 

throughout the winter in order to better mimic ambient temperatures.  

We designated three raised beds as high nitrogen (nitrogen addition) and three 

raised beds as low nitrogen (no nitrogen addition). Light conditions within the hoophouse 
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were similar to light levels at B. sylvaticum sites in the Willamette Valley, Oregon, USA. 

Soil used was a sandy loam mixture consisting of 5% clay, 45% sand and 50% silt 

containing nitrogen levels similar to that of soil at field sites (Field site average: 10 ppm 

NO3
--N, 2 ppm NH4

+-N, pH 6.5; Sandy loam: 16 ppm NO3
--N, 2 ppm NH4

+-N, pH 6.7). 

Soil from all sites used as source populations was collected, mixed, and spread 

approximately three centimeters deep over the sandy loam mixture to serve as a microbial 

inoculum and to better simulate field conditions.  

Seeds of B. sylvaticum, E. glaucus, D. glomerata, and H. lanatus species were 

collected from 11 Oregon, USA sites located at least 10 km apart in October 2008 (see 

Table 1 for site locations). Seeds were collected from plants located at least 10 meters 

apart. The location of the experimental site at the Portland State University hoophouses 

was 120 km from the nearest collection site. In February 2009, seeds from all species 

were cold-stratified at 4°C for 28 days prior to planting in order to mimic winter 

dormancy and achieve coordinated germination. After cold stratification, seeds were 

placed on water-moistened germination paper for one week. Seeds that had germinated at 

the end of this period with a coleoptile less than 1 cm were planted into competition 

neighborhoods within raised beds in April 2009.  

In each bed, germinated individuals were planted within a matrix of 64 36 cm2 

square competition neighborhoods consisting of five individuals (Fig. A.B1). 

Neighborhoods always consisted of individuals originating from the same source 

population and were randomized within the raised beds. At the center of each 

neighborhood we placed a B. sylvaticum individual as the focal target plant for which we 

measured competitive effects. Focal seedlings originated from different maternal plants 
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collected from each population site. In these neighborhoods, each target individual was 

surrounded at the four corners of the square by E. glaucus, H. lanatus, D. glomerata 

(interspecific competition), or B. sylvaticum (monoculture, intraspecific competition; see 

Fig. A.B1 for competition design). Focal B. sylvaticum seedlings were spaced 10 cm 

apart in the center of each neighborhood, with competitor seedlings located at the four 

corners of each square. Species combinations were planted in approximately equal 

numbers for all source populations across raised beds (n = ~10 neighborhoods per source 

population x competitor combination in each nitrogen treatment). Although the design of 

this experiment resulted in plants interacting with individuals beyond their immediate 

neighborhood, we do not consider those effects in this study. Nitrogen was applied to the 

high nitrogen beds in low level increments to simulate the natural deposition rate in 

central Oregon of 16 kg*N/ha*yr (Galloway et al. 2008). This number was scaled down 

to account for the size of the raised beds and applied weekly as 30.8 mg NH4NO3/m2, 

dissolved in water, applied during the regular watering schedule. All raised beds were 

given 10 L of water every other day. 

Variables Measured  

 Measurements were made across three summer growing seasons to estimate plant 

size and reproduction as surrogates for fitness. Plant height and tiller number of the B. 

sylvaticum target plants were chosen as fitness characters as these capture competitive 

ability for light (height) and space (tiller number). Because B. sylvaticum exhibits growth 

vertically and through tiller production, we estimated plant size defined as height and 

shoot number prior to harvest. Plants were harvested 24 months after planting and shoot 

biomass was obtained by placing plants in convection drying ovens (70° C) until a 
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constant mass was achieved (minimum of 48 hours). We were not able to acquire root 

biomass as roots become tangled after long growth periods, making them difficult to pull 

apart without significant loss.      

Relative Competition Index 

We calculated coefficients of relative competition intensity (RCI; Campbell and 

Grime 1992; Weigelt and Jolliffe 2003) to quantify the intensity of inter- and intra-

specific competition for each focal B. sylvaticum individual per nitrogen treatment and 

source population. The RCI has defined limits [-1, +1] and is symmetrical around zero; a 

value from 0 to +1 indicate that species performs better in mixture than in monoculture, 

experiencing reducing competition with interspecific neighbors; values from 0 to -1 

indicate no competition between species (Williams and McCarthy 2001). The RCI is 

calculated by dividing the difference of the biomass of the B. sylvaticum individuals 

grown in monoculture (BMONO) and B. sylvaticum focal individuals grown with 

interspecific competitors (BMIX) by the biomass of B. sylvaticum focal individuals grown 

in monoculture ((( BMONO – BMIX )/( BMONO)) x 100).  

We used ANOVA to determine the effects of HS and nitrogen application on RCI 

(R Core Development Team 2014). Explanatory variables in the model were HS, 

nitrogen, and their interaction; the response variable was RCI.  

Statistical Analyses 

We evaluated the interactions between nitrogen enrichment, source population HS, 

and competitor species for their effects on final plant size and shoot biomass. Our study 

was designed to have six raised beds with two different treatments, and we analyzed the 

raised beds as random factors, with individual plants nested within the beds. The 



 51

response variables plant size and shoot biomass were log transformed to fit assumptions 

of normality for ANCOVA. Although plants are interacting with individuals beyond their 

immediate neighborhood, random positioning of neighbor treatments ensures that any 

effects of these interactions are not systematically applied to particular treatments. We 

recognize that samples from a population are not all genetically equivalent, but in our 

statistical models we assume that HS is descriptive of the common history of a 

population. Data was analyzed with mixed model ANCOVAs using the lme command of 

the nlme package in R: Statistical Software (R Core Development Team 2014; Pinheiro J 

2015). Our analyses were also performed categorically with HS and substituting FIS for 

HS, these results can be found in Appendix B.  

Results  

Nitrogen application and HS x Nitrogen interaction were significant for shoot 

biomass and final size. Other model terms and interactions were not significant (Table 2).  

Population HS x Nitrogen Interaction 

Population genetic diversity ranged from almost completely homozygous (HS = 0) 

to highly heterozygous (HS = 0.392; Table 3.1; Rosenthal et al. 2008). Nitrogen addition 

alone had a positive effect on final size (F1, 4 = 37.68, p= 0.0036) and shoot biomass (F1, 4 

= 16.26, p= 0.0157). At low HS, nitrogen addition displayed a positive effect on final size 

(F1, 220 = 6.933, p= 0.0091) and shoot biomass (F1, 230 = 6.06, p= 0.0146; Figure 3.2). A 

categorical presentation of this data can be found in Appendix B, Fig. A.B2. From 

categorical data, it was seen that plants from low HS populations in the high nitrogen 

treatment had a 78% increase in size and a 12% increase in shoot biomass compared to 

individuals from low HS populations grown without nitrogen addition. 
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Relative Competition Index 

Relative competition index coefficients indicate that although there is a slight 

downward trend in the intensity of competition with increasing HS, this relationship was 

not significant in our experiment (Fig. 3.3). Means of the coefficient of RCI are negative 

for plants from high nitrogen neighborhoods (mean= -0.054± 0.066 SE) and positive for 

plants from low nitrogen neighborhoods (mean= 0.004± 0.117 SE). Results from 

ANOVA were not significant for nitrogen application, HS, their interaction term. This 

indicates similar performance of individuals from low and high HS populations. 

Discussion  

The primary aim of this study was to investigate the interaction of abiotic stress 

and population genetic diversity (HS) on performance of an invasive species. We 

simulated community dynamics of species arrival at a disturbed site to determine how HS, 

a genetic factor that is a function of historical Ne, influences performance of the invasive 

plant B. sylvaticum. Nitrogen addition resulted in plants from low HS populations 

displaying fitness-related trait values similar to those exhibited by individuals from high 

HS populations (Fig. 3.2). Results show ecological mitigation of inbreeding depression 

(EMID), suggesting that bottlenecks in the invasive range facilitated local adaptation of 

low genetic diversity populations to increased nitrogen availability. This argument is 

strengthed by the result that individuals from populations with high HS values had no 

difference in vigor across nitrogen treatments.  

The finding that nitrogen application significantly increased growth of individuals 

from low HS populations provides insight into the success of invasive species with small 

population sizes and limited genetic diversity. Our results are consistent with other 
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studies finding fitness declines for plants from low genetic diversity populations under 

stressful conditions, however, these studies assume constant reductions in fitness for 

homozygous individuals (Damgaard and Loeschcke 1994; Cheptou et al. 2001; Fox and 

Reed 2011; Bijlsma and Loeschcke 2012). Equal performace of plants from low and high 

genetic diversity populations in response to environmental conditions has not previously 

been noted as a mechanism of adaptation in invasive species.  

The ability of invasive individuals from low genetic diversity populations to more 

effectively respond to nitrogen application indicates EMID, and implies that local 

adaptation towards increased utilization of nutrients is specific to more homozygous 

populations. Local adaptation is the evolution of traits that result in a fitness advantage in 

conditions of the local habitat, regardless of the consequences of these traits in other 

environments (Williams 1966). In high HS populations, selective processes can be driven 

by temporal ecological variability, shielding individuals from the effects of selection 

towards specific environments. This is likely why the release from nitrogen stress had no 

effect on fitness of B. sylvaticum individuals from high HS populations. EMID may be 

hindered by frequent gene flow and higher connectivity of invasive populations. 

Selection for plasticity of traits associated with nutrient uptake could lead to 

EMID in low HS populations through adaptive trait responses to increased resource 

availability. In a variable environment, plasticity can increase the ability of a species to 

survive by allowing individuals to modify morphological or physiological traits to values 

optimal to the habitat. In a fairly constant environment, one phenotype may consistently 

have greater fitness than other phenotypes, resulting in selection towards a single, optimal 
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phenotype. In low HS populations of B. sylvaticum selection may have favored plasticity 

for improved uptake of nitrogen. 

Genetic purging, strong selection on deleterious alleles that accumulate as a result 

of inbreeding and increasing homozygosity can also lead to EMID. Environmentally 

determined genetic purging could improve fitness responses to increased resource 

availability, but not alleviate fitness deficits under more stressful conditions. Evidence for 

genetic purging has been found in invasive populations of B. sylvaticum (Marchini et. al 

in press). Reduced inbreeding depression in offspring of individuals from low HS 

populations compared to progeny from high HS populations was found for B. sylvaticum 

plants from in invasive range (Marchini et. al in press). Because genetic purging may be 

dependent on environmental stress, individuals can experience strong fitness losses when 

subjected to environmental fluctuations such as reduced nutrient availability.  

Inbreeding is thought to interfere with the ability of individuals to successfully 

grow under stressful and low nutrient conditions (Fox and Reed 2011). As nitrogen 

deposition is common, especially in the disturbed habitats that are easily colonized by 

introduced species (Mooney and Hobbs 2000), nutrient addition is likely a consistent 

selective force throughout the invasive range of many species. Local adaptation to 

increased soil fertility in the introduced range has been previously documented as a likely 

facilitator of invasion success for the invasive grass Bromus inermis (Sherrand and 

Maherli 2012). Nitrogen fertilization improves plant performance and the chance that low 

HS populations of B. sylvaticum will thrive and serve as a source for subsequent 

establishment, allowing invasive plants to overcome the limitations imposed by small Ne 

and demographic stochasticity. 
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Interestingly, there was a weak overall effect of competition on B. sylvaticum 

performance. Under the conditions of this experiment, the abiotic conditions such as 

nitrogen availability had a larger effect on plant fitness than on performance in response 

to competition. We did not find any significant effect of HS or nitrogen application on 

RCI. This is unexpected, as inbreeding depression and homozygosity are thought to 

decrease plant performance in competition (Donohue 1998; Vellend 2006; Cheptou and 

Donohue 2011), although is in line with results that low HS populations have become 

adapted to the invasive environment. Low genetic diversity does not influence 

performance, indicating that competition is not any more of a barrier to low HS 

populations that are newly establishing in the invasive range than it is to high HS 

populations.  

Our study provides evidence that nitrogen deposition leads to ecological 

mitigation of environmentally determined inbreeding depression and can facilitate the 

establishment of low HS populations of invasive species. The loss of genetic diversity in 

newly- established populations is expected to slow population growth and consequently 

the rate of range expansion; however the opposite was found for plants in nitrogen-added 

plots. These results provide evidence of local adaptation in populations with low genetic 

diversity, in contrast to populations with high genetic diversity. Further study may reveal 

whether the superior response of low HS populations to increased nitrogen availability is 

the outcome of improved plasticity for traits associated with N uptake or to 

environmentally-dependent effects of genetic purging during invasion.  Elevated nutrient 

deposition may be allowing populations of B. sylvaticum to overcome genetic 
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establishment barriers, enhancing rates of range expansion and raising the probability that 

invasive species will remain and thrive. 
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Tables and Figures 

 

Table 3.1 Location information, HS, and HO values for B. sylvaticum populations.  
 

Site Code Latitude Longitude N HS HO 

C1 44° 39' 35"  -124° 45' 41" 24 0.26 0.017 

E1 43° 57' 35"  -123° 15' 49" 34 0.276 0.085 

E4 44° 0' 48"  -123° 7' 30" 14 0.042 0.036 

E6 43° 59' 47"  -123° 12' 3" 24 0.37 0.073 

E7 43° 58' 29"  -123° 21' 13" 21 0.097 0.043 

E9 43° 58' 26"  -123° 7' 36" 24 0.392 0.176 

M16 44° 22' 19" -123° 22' 45" 24 0.297 0.19 

M3 44° 23' 45" -122° 28' 13" 21 0 0 

M5 44° 24' 30" -122° 36' 22" 21 0.2 0.05 

M7 44° 24' 7" -122° 39' 59" 21 0.34 0.14 

S1 44° 45' 14" -123° 28' 56" 29 0.063 0.086 
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Table 3.2 Statistical results presented as F-values from mixed 
models testing the effects of HS, nitrogen fertilization (N), competitor 
species (S), and their interaction terms on final size and shoot 
biomass of B. sylvaticum focal plants. 
 

Variable  df Final Size Shoot Biomass 

HS 1 0.39 3.39 
N 1 37.68** 16.26* 

S 3 0.68 0.61 
HS x N  1 6.93** 6.06* 

HS x S 3 1.37 0.86 
N x S 3 0.56 1.81 

HS x N x S 3 0.92 0.37 

Bold values indicate statistical significance, *P< 0.05, **P<0.01. 
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Figure 3.1 Environmentally dependent-inbreeding depression (EDID) and ecological 
mitigation of inbreeding depression in individuals in nutrient-rich and nutrient-poor 
conditions. Solid lines show predicted fitness for individuals from low genetic diversity 
(dark blue) and high genetic diversity (gray) populations. (A) Inbreeding depression 
results in an overall reduction in fitness for inbred individuals, EDID results in increased 
expression of inbreeding depression in the nutrient-poor environment (Cheptou 2011). 
(B) EMID results in higher fitness of individuals from low genetic diversity populations 
in the less stressful nutrient-rich environment. Increases in fitness are not seen for 
individuals from high genetic diversity populations where selective processes did not  
occur. 
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Figure 3.2 (A) Nitrogen x HS effects on final size (height*shoot number) and (B) 
Nitrogen x HS effects on shoot biomass of B. sylvaticum focal plants. Orange dots 
represent plants in high nitrogen neighborhoods; blue dots represent plants in low 
nitrogen neighborhoods. Regression lines indicate HS by final size and shoot biomass 
interactions in high nitrogen (orange lines) and low nitrogen (blue lines) neighborhoods. 
Grey areas represent 95% confidence intervals. Increased N resulted in significant 
differences in performance for individuals from low HS populations, but this difference 
declined with increasing HS, with no difference between low and high N treatments at the 
highest HS values (see Appendix B1). 
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Figure 3.3 Relative competition index coefficient (RCI) values for each per high and low 
nitrogen treatment for each source population HS.  Orange dots represent plants in high 
nitrogen neighborhoods; blue dots represent plants in low nitrogen neighborhoods. 
Regression lines indicate HS in high nitrogen (orange lines) and low nitrogen (blue lines) 
neighborhoods. RCI values greater than 0 indicate a suppressive effect of interspecific 
competitors; values below zero indicate possible facilitative effects in monoculture. 
Population HS and N did not result in significant differences in plant performance.  
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Chapter 4 

Selective differentiation during the colonization and establishment of a newly invasive 

species 

Summary:  

• The potential for rapid evolution in invasive species makes them useful for 

studying adaptive responses of populations to novel environments. However, 

phenotypic divergence during invasion is not necessarily due to selection, but may 

be a product of neutral processes resulting from population bottlenecks during 

colonization and range expansion. 

• We investigated phenotypic adaptation during the establishment and range 

expansion of the invasive bunchgrass, slender false brome (Brachypodium 

sylvaticum; Poaceae). We utilized a novel approach to make robust comparisons 

of functional traits using unique alleles to determine the genetic probability of 

contribution from native source regions. These probabilities were used as weights 

in QST-FST comparisons for twelve functional traits associated with drought stress 

in the introduced range. 

•  Our results indicate phenotypic divergence greater than neutral expectations in 

five traits between native and invasive populations, indicating selective 

divergence had occurred during invasive species establishment. Results show that 

the majority of divergence in B. sylvaticum occurred after introduction to the 

novel environment, but prior to invasive range expansion.  
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• This study provides evidence for adaptive genetic differentiation during the 

establishment of an invasive species, while also describing a robust method for 

detection of selective processes after species introduction to a novel environment. 

 

Introduction 

The potential for rapid evolution in invasive species makes them a useful tool for 

studying adaptive responses of populations introduced to novel environments (Prentis et 

al. 2008; Sultan et al. 2013; Franks and Munshi-South 2014). While evolutionary 

processes during invasion are evidenced by divergence in fitness-related traits in invasive 

populations (Bossdorf et al. 2005; Olivieri 2009; Wilson et al. 2009), investigating the 

mechanisms underlying this differentiation can be difficult (Keller and Taylor 2008). 

Divergence of an invasive species is not necessarily the result of selection but may be a 

product of selectively neutral processes (i.e., genetic drift) resulting from population 

bottlenecks during introduction and establishment. Disentangling the influence of genetic 

drift and selection on phenotypic divergence during establishment after long-distance 

dispersal provides much needed knowledge on the potential for adaptation to novel 

environments to promote range expansion.  

There are several phases of a species invasion where selection can occur (Prentis 

et al. 2008), but these may be counteracted by population bottlenecks. Genetic 

bottlenecks are common after propagules are first transported to a novel environment, 

even though successfully invasive species are often the product of multiple introductions 

that reduce the effects of bottlenecks and increase evolutionary potential (Lavergne and 

Molofsky 2007; Rosenthal et al. 2008). Ease of establishment of these colonizing 
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individuals is determined by phenotypic plasticity and the degree of pre-adaptation to 

novel biotic and abiotic environmental conditions; even moderately pre-adapted species 

often incur an initial lag phase of slow demographic growth after which vigorous 

population expansion may occur (Aikio et al. 2010; Lenda et al. 2012). Genetic drift or 

selection during the lag phase (pre-invasion differentiation), or during invasive range 

expansion following introduction (post-invasion differentiation), can result in trait 

divergence between native and invasive populations. Bottlenecks and selection can occur 

during establishment or the subsequent range expansion of an invasive species, and the 

ultimate success of invasion may be dependent on evolutionary processes occurring at 

both stages. 

To differentiate the influence of selection and genetic drift on variation in 

phenotypic traits, QST, a measure of quantitative genetic differentiation, can be compared 

to FST, which measures population differentiation for neutral molecular loci (Wright 

1931; Lande 1992; Spitze 1993; Whitlock 2008; Leinonen et al. 2013). Because historical 

processes such as genetic drift affect neutral markers across a genome, QST and FST are 

expected to be approximately equal if trait differentiation is the result of neutral 

evolution. Divergence due to natural selection in the novel environment increases the 

variance (differences among populations) in QST relative to FST (QST > FST). A reduction 

in QST relative to FST is indicative of homogenizing selection (e.g., due to similar habitat 

conditions), where phenotypic differentiation among populations is reduced compared to 

the neutral expectation (QST < FST). Previous studies have found phenotypic divergence 

of invasive species in invaded regions but have not always successfully differentiated the 
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effects of selection from the effects of drift (e.g., Burns 2004; Bossdorf et al. 2005; 

Leishman et al. 2007).  

Detection of adaptive divergence in invasive populations can be problematic if 

native source regions are unknown. Many invasive species possess broad native 

distributions, and only a subsample of the populations may have contributed to an 

invasion. If native populations used for QST-FST comparisons are all treated as equally 

contributing to an invasion, selection in the invaded range may be falsely inferred 

because the native trait values are not representative of the populations that established 

the invasion. Here we use unique genetic profiles based on twelve microsatellite loci 

among native populations to identify the populations contributing to the invasion. We use 

these probabilities of contribution to weight QST and FST calculations, providing a robust 

test of divergence by using values of quantitative traits that were most likely present upon 

original establishment of the species in the invasive habitat.  

To study adaptive divergence during establishment and range expansion, we 

utilized the invasive species Brachypodium sylvaticum (Hudson) Beauv. (slender false 

brome), a newly invasive perennial C-3 bunchgrass in the Pacific Northwest region of the 

United States (Rosenthal et al. 2008; Roy 2010). Invasive populations of B. sylvaticum 

are concentrated in the states of Oregon and California, USA. The native range of B. 

sylvaticum extends across Europe, North Africa, and parts of Asia (Catalan and Olmstead 

2000). It is thought that B. sylvaticum was first introduced into Eugene, Oregon, USA, 

and Corvallis, OR, USA during rangeland testing experiments utilizing combinations of 

plants from populations across the species’ native range (Rosenthal et al. 2008). 

Rosenthal et al. (2008) utilized microsatellites (SSRs) to determine source regions 
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contributing to the introduction, and found unique combinations of alleles in invasive 

individuals that were not present in native plants indicating that invasive individuals 

consist of recombinant intra-specific hybrids (Rosenthal et al. 2008). After its 

introduction into Oregon in the 1930’s, B. sylvaticum experienced a lag period of about 

50 years and did not undergo invasive range expansion until the late 1980s (Rosenthal et 

al. 2008). Additionally, seed stock from native accessions presumably utilized for initial 

rangeland plantings is still maintained and available from the Western Regional Plant 

Introduction Station in Pullman, Washington, USA. The combination of available 

information from previous studies on B. sylvaticum’s source regions, as well as access to 

the seed stock representing the probable source of invasion renders B. sylvaticum an 

outstanding system for comparative studies and investigations of divergence during 

invasion. 

Detection of phenotypic divergence in the invasive region is dependent on the 

traits selected for quantification. Environmental stressors such as climate, and 

precipitation in particular, can be a significant evolutionary force for plants. B. sylvaticum 

has a wide geographic native range with variable precipitation levels during the summer 

growing season (May- September) including such areas as the Southern United Kingdom, 

a region with a wet summer growing season, and Northern Greece, a region with a dry 

summer growing season. We compared the summer aridity of central Oregon, USA, the 

primary site of invasion of B. sylvaticum in the USA to the summer aridity values of 

native source regions identified by Rosenthal et al. (2008) and found that, on average, the 

long drought occurring during the Oregon summer months results in more arid conditions 

than what is found in native regions.  
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To understand potential responses to the more arid conditions in the invasive 

range we quantified a wide range of physiological and anatomical traits associated with 

plant performance under water-limited conditions. Lack of precipitation in the invasive 

range can result in drought stress, a plant’s response to a period of time of below average 

precipitation that can result in reduced productivity. The ability of plants to function 

during drought is related to a combination of physiological and morphological traits 

promoting drought tolerance or resistance (Grime 2001). This is particularly the case for 

B. sylvaticum because flowering and seed set occur in late summer during the driest part 

of the growing season. Traits promoting drought tolerance can vary across individuals of 

the same species and even across the lifespan of an individual. Maintenance of cell turgor 

and normal tissue water potentials (ΨW) during drought requires reducing water losses 

through exposed surfaces by rolling or folding in leaves or closing stomata (Verslues and 

Zhu 2005). Long-term water deficit can result in reduced specific leaf area (thicker 

leaves) or smaller, more numerous stomata to limit transpirational and surface water loss, 

or alteration of xylem morphology and cell wall stiffness (Meinzer and Grantz 1990; 

Tyree and Zimmermann 2002; Verslues and Zhu 2005; Tombesi et al. 2010; Aroca et al. 

2012).  

We used a combination of common garden studies examining physiological and 

morphological traits related to drought tolerance and population genetic analyses to 

assess patterns of phenotypic divergence during establishment and initial range expansion 

of invasive B. sylvaticum populations in Oregon. Our study tests the hypothesis that 

selection during establishment resulted in trait divergence throughout B. sylvaticum’s 

invasion into the Pacific Northwest, USA. The molecular evidence of hybridization found 
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by Rosenthal et al. (2008) supports this hypothesis, as multiple introductions first 

increased genetic diversity of invasive populations, increasing evolutionary potential and 

providing variation for selection on intra-specific hybrids during the establishment phase 

of invasion, aiding the range expansion and invasion of B. sylvaticum into the Pacific 

Northwest USA. 

In this study, we addressed three main questions: (1) Does divergence in 

quantitative traits exist between native and invasive populations of B. sylvaticum in 

functional traits related to water availability? (2) If present, is divergence in quantitative 

traits the result of genetic drift or selection in the invasive region? and, (3) At what point 

during the invasion of B. sylvaticum did divergence in quantitative traits occur; during 

establishment (pre-invasion) or after invasive range expansion (post-invasion)? We 

obtained and utilized accessions of seeds presumably used for the original rangeland 

planting experiment that established B. sylvaticum in Oregon. Data were collected on 

twelve functional traits related to water stress in individuals from native and invasive 

populations grown in the greenhouse. When comparing QST and FST between native and 

invasive regions we integrated the probability of contribution from native populations to 

the invasive range as weights. We predicted that selection during establishment (pre-

invasion) would exhibit significantly greater QST vs. FST values for comparisons between 

invasive and native regions, and selection in different habitats occurring during range 

expansion (post-invasion) would result in significant QST - FST values among populations 

in the invasive range. 

Materials and Methods 

Seed Collection and Genetic Analysis 
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 For this study, we utilized plants from the same populations that were sampled for 

microsatellite variation by Rosenthal et al. (2008). Plant seeds were collected from 11 

invasive populations located in Oregon, USA and 21 native populations located 

throughout Europe, North Africa, and the Middle East (Table 4.1).  Brachypodium 

sylvaticum (Hudson) Beauv. was most likely first introduced to Oregon, USA during 

planting experiments in the cities of Eugene and Corvallis conducted by the Western 

Regional Plant Introduction Station (Western Regional Plant Introduction Station, 

Pullman, WA, USA). Seeds from additional European populations were collected by 

individuals from Portland State University (M. Poyourow and M.B.C.) and from 

European institutions (Pilar Catalan, University of Zaragoza; Michael Ristow, University 

of Potsdam), or were provided by the Millennium Seed Bank Project (Kew, Surrey, UK; 

Table 4.1). At least eight individuals were analyzed from each of the populations in the 

native range with the exception of Germany (N=6), Slovakia (N=2), and Iran (N=7); 

between 20 and 30 individuals were analyzed for each population from the invasive range 

in Oregon (Table 4.1). Plants were genotyped at eight microsatellite loci with primers 

developed and optimized at Portland State University (Ramakrishnan et al. 2008) and 

deposited at GenBank (Accession nos EF450748, EF450751, EF450752, EF450754, 

EF450756, EF450757, EF450759, EF450765). As the detailed information for the 

microsatellite survey is presented elsewhere (Rosenthal et al. 2008), we will only discuss 

the additional analyses performed for the present study in the main manuscript (see 

Methods AC.1 for microsatellite survey methods). 

Brachypodium sylvaticum is widely distributed across a range of environments, 

including semi-arid deserts, dry-summer temperate Mediterranean, and Oceanic climates. 
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The aridity index A— a numerical index of the degree of dryness at a location where 

smaller values indicate a more arid environment— was calculated from interpolated 

climatic data, (including 30-year monthly temperature averages and total monthly 

precipitation), for invasive and source regions of B. sylvaticum using the method of 

Malmstrom (1969). Climatic data for Oregon, USA populations were obtained from the 

Prism Group, Oregon State University (PRISM Group 2004); climatic data for native 

source populations located throughout Europe, the Middle East, and Asia were obtained 

using WorldClim (Hijmans et al. 2005) and United State Geological Climate Survey 

(USGS) climate data (Hearn et al. 2003). We found that invasive populations in the 

Willamette Valley of Oregon, USA, the center of the B. sylvaticum invasion had an 

average summer aridity of 0.71, while regions near the native source populations in 

Northern Greece had an average summer aridity of 0.42, and native source populations in 

the Southern UK had an average summer aridity of 0.90 (see Methods A.C2, Fig. A.C1 

for details). 

We determined the probability of contribution from different native source 

populations to invasive populations. Assignment tests for the probability of genetic 

contribution of native to invasive populations were performed in GeneClass2 using 

twelve microsatellite loci with the Rannala and Mountain (1997) assignment method of 

identifying immigrants based on their multilocus genotypes (Rannala and Mountain 

1997; Piry et al. 2004). The assignment probabilities were pooled across invasive 

populations to create an average probability of genetic contribution of each native 

population to the invasive range. These probabilities were used as weights in ANOVA 

and QST -FST comparisons described below, allowing for a more accurate assessment of 
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differentiation in the invasive range than if all native populations were pooled for 

comparative analysis. 

Common Garden Studies 

Two common garden studies were conducted to measure of functional traits 

related to water availability in B. sylvaticum. The first study involved the creation of 

pressure-volume curves measuring the relationship between water potential (Ѱ) and 

relative water content in dehydrating leaves. Pressure-volume curves summarize leaf 

responses to water deficit and allow calculation of key leaf parameters related to 

drought tolerance (Tyree and Hammel 1972; Bartlett et al. 2012). The second common 

garden study allowed measurement of leaf morphological traits that may be 

phenotypically variable in response to water availability of the environment. Expected 

trait responses to water deficit are found in Table 4.2. 

Common garden study 1: Pressure Volume Curves  

Ten individuals from each of thirty-six native and invasive populations of B. 

sylvaticum were grown from seed in the Portland State University (PSU) glasshouse in 

June 2011. Seeds of invasive populations were collected from field sites in Oregon, USA. 

Seeds of native populations were obtained from the Western Plant Introduction Station 

(Pullman, WA, USA) and the Millennial Seed Bank Project (Kew, Surrey, UK; Table 

4.1). Plants were considered fully grown five months after planting. Three to six 

individuals per population were randomly selected for creation of pressure-volume curves 

during the period from December 2011 to April 2012. Prior to processing, leaves were 

cut from plants submerged in water, leaves were then left in tap water for 24 hours in the 

dark to allow full hydration. The mean initial water potential of all leaves used was -0.90 
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MPa. Leaves were placed in a 60ºC drying oven for a minimum of 48 hours then weighed 

to determine dry mass. 

 Water potential measurements and creation of pressure volume curves were 

performed following the procedure of Turner (1981) using a Scholander Pressure 

Chamber (Model 600, PMS Instrument Company, Albany, OR, USA). Leaves were 

weighed to 0.001 g immediately before and after water potential measurements. 

Measurements were considered complete when a water potential of -2.5 MPa was 

obtained. We derived six physiological parameters from graphical analysis of pressure-

volume curves: (1) Turgor loss point (ΨTLP, MPa), the point during dehydration when 

leaf cells become flaccid and lose turgor; (2) Relative water content at turgor loss point 

(RWCTLP, %), the leaf hydration at which cells become flaccid; (3) Osmotic potential at 

full hydration (πo, MPa), the solute concentration in plant cells; (4) Cell modulus of 

elasticity at full turgor (ε, MPa), plant cell wall stiffness describing the strain that occurs 

in response to water stress; (5) Relative capacitance at full turgor (CFT, MPa-1), the water 

storage capacity for leaves at full turgor; and (6) Relative capacitance at turgor loss point 

(CTLP, MPa-1), the water storage capacity for leaves at turgor loss point (Tyree and 

Hammel 1972; Sack et al. 2003; Bartlett et al. 2012; Table 2). 

The inverse of water potential (-1/Ѱ) was plotted against the leaf relative water 

content (RWC, derived as the fraction of saturated water present in the leaf at each stage 

of the dehydration process) to find ΨTLP. At water potentials below turgor loss point, the 

relationship between -1/Ѱ and RWC is linear and ΨTLP is determined as the point where 
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the relationship becomes non-linear (Due to zero turgor within cells; Tyree and Hammel 

1972; Bartlett et al. 2012). 

 RWCTLP is the relative water content at ΨTLP. After ΨTLP, the continued 

measurement of leaf water potential is an assessment of the change in solute potential. 

Thus, a straight line fitted to the points below turgor loss extrapolated to the y-axis (-1/Ѱ) 

is used to find 1/πo, the inverse of πo. The slope between full leaf hydration and turgor 

loss point describes stress on the cell wall resulting from dehydration and is equal to ε. 

CFT is calculated as ΔRWC/ΔѰ between full turgor and turgor loss point; CTLP is 

ΔRWC/ΔѰ between turgor loss point and -2.5 MPa.   

 Leaves from plants in this study were collected for determination of specific leaf 

area (SLA). We utilized a greater number of plants from each population for SLA analysis 

than for determination of pressure volume curves (110 invasive individuals, 729 native 

individuals for SLA analysis). Leaf surface area was found using a CID Bioscience CI-203 

Handheld Laser Leaf Area Meter with a CI-203 CA Conveyer Attachment (CID 

Bioscience, Camas, WA, USA). Leaves were then gathered and dried in an oven at 60ºC 

to constant weight. SLA was calculated as leaf surface area in m-2 kg leaf dry weight per 

individual. 

Common Garden Study 2: Morphological Traits 

 Plants from thirty-three invasive and native populations of B. sylvaticum were 

grown in a common garden experiment from August 2012 to December 2012 (n = 5 

individuals per population). Plants were grown from clonal tillers of individuals utilized 

for pressure-volume curves. Three study plots were established in 1 m3 raised bed plots 
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in the research glasshouse at Portland State University, Portland, Oregon, USA. Boxes 

were filled with sandy loam soil (5% clay, 45% sand, and 50% silt). Five tillers, (with 

the exception of populations ESH, M3, M7, TUK, UK4, which had 4 tillers, and M16, 

which had 3 tillers) representing different genotypes from each population of B. 

sylvaticum were randomly placed in each raised beds at a fixed distance of 10 cm from 

one another.  

Two leaf samples were collected from each individual; the most recently fully 

expanded leaf was utilized for stomatal index (SI) measurements. A second fully 

expanded leaf was collected and placed in 2.0 mL vials filled with a 200:5 50% ethanol-

glacial acetic acid (17.5M) mixture to preserve tissue for analysis of metaxylem 

characteristics. Stomatal and metaxylem counts and measurements were made using a 

Leica MZ16 stereomicroscope (Leica Microsystems, Wetzlar, Germany) linked to a Q-

Imaging Retiga 1300 camera (Q-Imaging, Surrey, British Columbia, Canada) and 

analyzed with Image-Pro 6.0 Software (Media Cybernetics, Warrendale, PA, USA).  

 Leaf epidermal impressions were obtained according to methods in Beerling and 

Chaloner (1992) for calculation of SI [stomatal density/(stomatal density + epidermal cell 

density) x 100, where stomata consist of the stomatal pore and two flanking guard cells], a 

measurement that normalizes leaf stomatal density in relation to the confounding influence 

of epidermal cell expansion that may be initiated by factors other than those influencing 

stomatal development (Royer 2001; Xu and Zhou 2008).  

 Cross sections of preserved leaf samples were photographed and measured for 

metaxylem and bulliform cell characteristics on at least 3 individuals per population. 

Images were analyzed with ImageJ (National Institutes of Health, Bethesda, Maryland, 
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USA). Measurements on each section included cross-sectional area, area of the major 

veins, and proportion of bulliform cells and vascular tissue to cross-sectional area. These 

measurements were utilized to obtain hydraulically weighted mean diameter (HMD), 

metaxylem vessel frequency (VF), maximum metaxylem vessel diameter (MVD), and 

bulliform area (BA) for each individual (Table 4.2).  We applied the principle of the 

Hagen- Poiseuille relationship stating that a conduit’s hydraulic conductivity is 

proportional to its diameter to the 4th power to assess average metaxylem diameter. 

Specifically, to find HMD, we analyzed raw measurements of diameter were analyzed for 

their frequency in 1µm size classes and for the relative contribution of each class of 

diameter to the sum of all the conduits raised to the 4th power calculated as:  

��� = 2
���

��	
 , where r is the radius of a xylem conduit. This equation weights the 

importance of radii in proportion to the estimated hydraulic conductance of the xylem 

conduits (Sperry and Saliendra 1994). VF was calculated as the average number of 

metaxylem vessels per leaf area. MVD is the largest metaxylem vessel per individual. The 

cross-sectional area of bulliform cells, large leaf surface cells that are the first to lose 

turgor in times of water stress, resulting in leaves rolling in to prevent transpirational 

water loss, was found for each individual. BA was calculated as the proportion of 

bulliform cells present per cross-sectional area (Table 4.2).  

Statistical Analysis  

The structure of variation in quantitative traits between invasive and native 

regions of B. sylvaticum was analyzed by running two ANOVA models (un-weighted and 

weighted by the probability of genetic contribution) for each trait. For weighted models, 

all invasive populations were given a weight of 1. The models also included population 
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nested within regions and raised bed (raised bed is included for traits measured in 

Common Garden Study 2 only) treated as random effects. A separate ANOVA was run 

utilizing only individuals from invasive populations to determine if further differentiation 

occurred after invasion (Post-invasion differentiation). Response variables were 

transformed to achieve assumptions of normality for ANOVA (log-transformations: SI, 

VF, MVD, HMD, BA, ΨTLP, πo, ε; square-root transformation: SLA; squared-

transformation: RWCTLP; arcsin transformation: CTLP, CFT). ANOVA analyses were 

performed in R: Statistical Software (R Core Team 2013). 

QST-FST Comparisons 

To assess whether phenotypic divergence in invasive populations of B. sylvaticum 

was greater or less than that expected under neutrality, we performed two sets of QST-FST 

comparisons for twelve functional traits (SI, SLA, VF, MVD, HMD, BA, ΨTLP, πo, ε, CFT, 

RWCTLP, CTLP) in B. sylvaticum. The first set of comparisons examined pre-invasion 

differentiation, consisting of an analysis of traits between native and invasive 

populations. Invasive populations were given a weight of 1. The second set of 

comparisons tested post-invasion differentiation, focused solely on invasive Oregon 

populations, and was not weighted. 

For determination of weighted QST-FST, individuals were grouped into two 

populations determined by origin, “Native” or “Invasive.” Because native populations did 

not contribute equally to the genetics of Oregon populations, QST and FST were weighted 

by the assignment probabilities calculated from microsatellite data in Geneclass2 (Piry et 

al. 2004). Weighted values for FST were calculated as the weighted mean of pairwise FST 

values between each native population and the grouped “Invasive” population. Pairwise 
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FST values were found using the pp.fst function from the hierfstat package in R Statistical 

Software (Goudet 2005). 

We calculated QST as: 


�� =  
���1 + ����

���1 + ���� + ��4 − �2�������

 

utilizing a form of the equation integrating FIS to describe the relationship between 

individuals collected from wild populations. We used FIS= 0.489--the value found from 

grouping invasive populations, calculated in FSTAT (Table 1; Goudet 1995). Weighted 

values for Va were determined calculating weighted means for each trait per region and 

utilizing ANOVA to obtain pairwise variance across the regions. Weighted Vw was 

calculated as the mean of the variance of each trait per region found by weighted 

ANOVA. Analysis of post-establishment differentiation was performed similarly using 

data for comparison among invasive populations, but excluding weights. 

Because our experimental procedure measured variance at only eight neutral loci, 

we utilized a simulation method based on parametric bootstrapping to create a null 

distribution of QST-FST for testing hypotheses of trait evolution in B. sylvaticum 

(Whitlock and Guillaume 2009). Since we cannot measure neutral expectations at each 

locus, this bootstrapping procedure is necessary to determine if apparent differences 

between QST and FST exceed (or fall below) values expected by chance. Null distributions 

of QST and FST were generated for each trait by bootstrapping the weighted variance 

components Va and Vw 10,000 times across values. For tests of differentiation during 

establishment, weights were applied at each iteration prior to resampling to determine the 

weighted values for the null distribution of Va and Vw. Weighted values of FST were 
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randomly sampled at each iteration from an estimated distribution created by 

bootstrapping the microsatellite data across loci and subtracting it from QST to obtain the 

null distribution of QST-FST. For post-establishment differentiation tests, weights were 

excluded. Actual values of QST-FST for each trait were compared to the 95% distribution 

of the simulated QST-FST values to indicate uniform selection (quantiles 0-0.025, QST-FST 

< 0) or divergent selection (quantiles 0.975-1, QST-FST > 0). 

 

Results 

Contribution of Native Populations to the Invasive Region 

 Results from GeneClass2 found that probabilities of genetic contribution to the 

invasive population ranged from 0 to 0.17 for native source populations tested (Fig. 4.1). 

Native populations with the highest contribution to the invasive regions were located in 

Italy, Greece, Germany, and England.  

Trait Variation 

We performed two sets of ANOVAs examining trait variation in twelve 

functional traits across invasive and native regions of B. sylvaticum for tests of pre- 

invasion diversification. For the first set of ANOVAs we utilized data un-weighted by the 

genetic probability of contribution to invasive regions, and found significant differences 

in MVD (F1,73= 4.37, p = 0.04), VF (F1,73= 4.06, p = 0.047), BA (F1,73= 8.23, p = 0.005), ε 

(F1,138= 5.65, p = 0.019), and SLA (F1,837= 18.56, p < 0.0001). Of these traits, the direction 

of phenotypic differences between native and invasive regions for MVD, BA, VF, and ε 

were consistent with hypotheses that invasive B. sylvaticum populations have been 
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selected for traits improving plant performance in a water-limited environment (Table 

4.2, Fig. 4.2). 

For the second set of ANOVAs we used data weighted by the genetic probability 

of contribution to invasive regions, and found that ANOVA models weighted by the 

genetic probability of contribution yielded different results than un-weighted models. 

Two functional traits, BA (F1,60= 5.98, p = 0.017) and SLA (F1,636= 14.01, p = 0.0002) 

displayed phenotypic differentiation between invasive and native regions. Of these traits, 

the direction of phenotypic differences between native and invasive regions for BA were 

consistent with hypotheses of better plant performance in drought stress, while values for 

SLA were not (Table 4.2, Fig. 4.3). 

The third set of ANOVAs examining trait variation within the invasive region 

(Post-invasion diversification) found no significant variation in trait values within the 

invasive regions for all functional and fitness traits.  

Quantitative genetic divergence 

Unweighted FST values for invasive populations only (FST = 0.461), was higher 

than FST of the native source populations (FST = 0.430), although both values indicate 

high population structure across regions. Weighted pairwise FST values used for QST-FST 

comparisons between native and invasion regions were moderately lower (FST = 0.3722), 

indicating moderate population structure between invasive and contributing native source 

populations. Overall pre-invasion QST estimates ranged from 0.02 to 0.97 (Table 4.3). For 

pre-invasion tests of diversification, QST was significantly greater than FST for ΨTLP, SI, 

VF, πo, SLA, and CTLP, indicating adaptive differentiation (Fig. 4.4). Of these traits, SLA 

was found to be significantly different in the un-weighted ANOVA, but not in the 
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direction predicted by hypotheses of adaptation to drought, indicating divergent selection 

for SLA to a factor other than drought stress. BA displayed significant differences in un-

weighted ANOVA models but did not have a significant QST-FST, indicating neutral 

differentiation.  

Although ΨTLP, SI, VF, πo, and CTLP were not found to be significantly different 

between invasive and native regions in ANOVA models, we still consider the findings 

that QST > FST for these traits to be ecologically important; the results demonstrate that 

populations diverged adaptively despite genetic contributions from native regions. Of 

these traits, ΨTLP, πo, VF, and CTLP display phenotypic differences between native and 

invasive regions in the direction og predictions of adaptation to drought stress in invasive 

populations (Fig. 4.3, Fig.4.4).  

Post-invasion estimates utilizing only invasive populations displayed QST values 

ranging from 0.07 to 0.47 (Table 4.4). For post-invasion tests of diversification, no 

significant QST-FST values were found, indicating that no further divergence has occurred 

in populations after invasive range expansion.  

 

Discussion 

The results from this study indicate that phenotypic divergence exceeding that 

expected under neutrality has occurred in plants from invasive populations of B. 

sylvaticum. This phenotypic divergence was found between invasive and native 

populations; however, it was not found across invasive populations. Importantly, this 

pattern indicates that divergence for traits measured in this study occurred during the 
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establishment period of B. sylvaticum prior to invasive range expansion. Our results are 

consistent with the hypothesis that adaptive evolution during the lag phase (following 

introduction) may facilitate range expansion and the ultimate success of an invasive 

species in a novel environment.  

One of the main goals of this study was to develop a more accurate method for 

determination of adaptive genetic differentiation in invasive species. Many previous 

studies have determined the presence of differentiation or variation in potentially 

adaptive traits without considering variation in genetic contribution from native-range 

populations to the newly introduced populations (e.g., Bossdorf et al. 2005; Lavergne and 

Molofsky 2007; Leishman et al. 2007). The accuracy of the QST- FST approach, shown to 

be reliable for detection of local adaptation and differentiation, can be improved for the 

purposes of detecting adaptation during invasion when weights describing the probability 

of genetic contribution of native populations to the invasion are included. In our analysis, 

the traits displaying significant phenotypic differentiation differed when ANOVA was 

performed with and without such weighting. Traits facilitating invasion success can vary 

by taxa and habitat (Hayes and Barry 2008) and more accurate inferences of the 

evolutionary processes responsible for trait divergence during invasion can be obtained 

through the weighted QST- FST method applied in this study. 

Both divergent selection (for ΨTLP, SI, VF, πo, SLA, and CTLP) and neutral 

differentiation (for BA) contributed to phenotypic differentiation of native and invasive B. 

sylvaticum populations. Many species become invasive as a result of multiple 

introductions that increase available genetic diversity, allowing for selection to occur on 
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recombinant hybrids not found in a species’ native range during the introductory lag 

phase (Darling et al. 2008; Dlugosch and Parker 2008).  

A common hypothesis is that the post-introduction lag phase is a period of slow 

growth that allows selection to act on introduced populations during which certain 

adaptations must evolve for continued demographic growth (Mooney and Cleland 2001). 

However, there are few documented examples of this process in wild populations 

(Espeland 2013; van Klinken et al. 2015) primarily due to the difficulty of detecting lag 

phases, which occur prior to invasion in alien species that often go unnoticed. This study 

shows phenotypic diversification between native and invasive regions occurred during 

the lag period following introduction rather than during subsequent radiation of 

populations within the invasive range. 

Although invasive B. sylvaticum populations are the result of multiple 

introductions (Rosenthal et al. 2008), a comparison of FST values across the range of 

native populations (FST= 0.430) and within invasive populations alone (FST= 0.461) 

reveal that population differentiation is greater in the invasive region than in the native 

region. This is expected as founder effects in the invasive range can reduce 

heterozygosity and increase genetic differentiation across populations (Brown and 

Marshall 1980). This may be the reason why trait divergence was not found in 

populations across the invasive region, as bottlenecks resulting from founder effects 

during invasive spread from the primary site of introduction can reduce genetic diversity 

and increase genetic drift, reducing phenotypic trait divergence and the probability of 

local adaptation (Sakai et al. 2001). However, invasive species may also phenotypically 

diverge after the lag period of invasion. A recent study of three plant species invasive to 
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the United Kingdom found that all three species were changing in at least one trait more 

than a century after their introduction (Flores-Moreno et al. 2015). It is possible that 

because invasive B. sylvaticum populations are the product of hybridization of 

populations from throughout the native range that portions of parental pre-hybridization 

genomes have been retained, allowing invasive populations to possess a wide ecological 

breadth (Rieseberg et al. 1993; Rosenthal et al. 2008). 

There was disparity in how invasive B. sylvaticum phenotypic differences 

between native and invasive regions compared to hypotheses of adaptation to drought 

stress. Differences in ΨTLP, πo, VF, and CTLP between invasive and native regions all fit 

assumptions of adaptation to drought in the invasive region, while SLA and SI did not. 

This pattern may indicate that environmental factors other than water limitation have 

played a role in diversification of the latter traits. While drought is a significant 

environmental stress, other climatic factors could result in opposing changes in functional 

traits. For example, SLA is also influenced by nitrogen gradients in soil, where larger 

amounts of available nitrogen can result in greater SLA (Knops and Reinhart 2000), while 

increased light availability can reduce SI (Schoch et al. 1980). Results contrary to 

predictions of adaptation to drought stress may also be the result of functional trade-offs 

between traits. These trade-offs are plant water-use strategies to increase resource capture 

and retention rates and can change with environment (Grime 2001).  

Though phenotypic shifts towards more adaptive trait values in the invasive 

environment can increase the chances of invasion success, previous work has shown that 

other factors can lead to the proliferation of B. sylvaticum in its invasive habitat. Roy et 

al. (2011) examined the effect of enemy release on the invasive potential of B. 
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sylvaticum. In native regions, plants can become infected with an endophytic fungus 

preventing sexual reproduction, while the infectious endophyte does not occur in invasive 

regions. It was found that the fungus inhibited seedling survival in the native range (Roy 

et al. 2011). Additionally, B. sylvaticum invasion is associated with sites that have a 

recent history of physical disturbances such as logging that aid primary colonization 

(Taylor and Cruzan 2015). Moreover, several mechanisms have been found to reduce the 

effects of bottlenecks in the invasive region for B. sylvaticum. Increases in nitrogen 

deposition have been found the increase fitness of B. sylvaticum individuals from 

genetically depauperate populations (Marchini and Cruzan unpublished). Marchini et al. 

(unpublished) found evidence that genetic purging, selection against deleterious alleles 

expressed in the homozygous state of an inbreeding population, was occurring in invasive 

populations. Genetic purging and nitrogen deposition can increase plant fitness despite a 

low effective population size, instigating additional invasion into new areas (Chapter 2 

and Chapter 3). The successful invasion of B. sylvaticum into the Pacific Northwest USA 

appears to be product of enemy release, site disturbance, nitrogen deposition, and 

phenotypic shifts towards traits more suited towards climate of the invasive range. 

 Rapid adaptation is considered to be an important process underlying species 

invasion in an introduced range. We found that the phenotypic shifts in our measured 

traits likely occurred during the pre-invasive, establishment phase of B. sylvaticum’s 

introduction. By identifying the phase of invasion where adaptation to the new 

environment is most likely to occur, management strategies can be directed towards 

populations with the most potential to spread. We have also utilized information on the 

putative source regions of B. sylvaticum to determine a more accurate method for 
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detection of trait differentiation in the invasive range. Application of this robust method 

for detection of phenotypic differentiation in invasive populations allows for more 

accurate detection of traits leading to invasiveness in non-native species. 
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Tables and Figures 

Table 4.1 Location, latitude and longitude, sample size (n), gene diversity (HS), and 
inbreeding coefficients (FIS) for populations sampled in this study.  
 

 

 

 

Code Location Latitude Longitude N Hs Fis

NATIVE

ESH England, Shropshire  52° 37' 32"  -3° 44' 14" 8 0.352 0.422

ES England, Surrey  51° 23' 24"  -1° 22' 48" 8 0.08 0.167

SPIN Huesca, Spain  42° 8' 12"  -1° 35' 24" 8 0.299 0.843

TUN Tunisia  34° 32' 29"  9° 13' 20" 8 0.253 0.383

Gerh German Halle  51° 28' 12"  11° 57' 36" 6 0.55 0.742

Gerl German Leipzig  51° 20' 24"  12° 22' 48" 6 0.433 0.712

IC Italy, Calabria  39° 31' 48"  16° 12' 36" 8 0.56 0.442

ICB Italy, Calabria 2  39° 32' 18"  16° 12' 31" 8 0.573 0.372

IP Italy, Puglia  40° 52' 48"  16° 45' 36" 8 0.51 0.387

GIK Greece, Kerkira  39° 31' 48"  19° 55' 48" 8 0.516 0.273

SES Slovakia, East Slovakia  48° 49' 41"  20° 9' 4" 2 0.344 0.273

SER Vlakca, Serbia  44° 10' 17"  20° 41' 54" 8 0.063 0.5

GII Greece, Ioannina  29° 40' 12"  20° 50' 24" 8 0.544 0.598

GIP Greece, Ioannina 2  29° 40' 12"  20° 50' 24" 8 0.493 0.208

GTC Greece, Larrisa  39° 32' 47"  22° 8' 11" 8 0.616 0.315

GMT Greece, Thessaloniki  40° 37' 48"  22° 57' 36" 8 0.338 0.492

UKR Ukrain, Krym  44° 24' 14"  33° 49' 30" 10 0.166 0.121

TUR Turkey, Gerze, Sinop  41° 49' 2"  35° 1' 24" 8 0.662 0.646

RUS Russian Federation  45° 0' 24"  41° 58' 29" 10 0.45 0.278

IRAN Iran  35° 5' 21"  52° 20' 20" 7 0.244 0.268

KAZ Kazakastan, Alma Ata  43° 16' 24"  76° 55' 54" 9 0.174 0.52

INVASIVE 

C1 Corvallis  44° 39' 35"  -124° 45' 41" 24 0.26 0.936

C6 Hwy22  44° 45' 19"  -123° 36' 42" 24 0.133 0.438

C10 Corvallis  44° 23' 29"  -124° 38' 4" 24 0.133 0.645

E1 Eugene  43° 57' 35"  -123° 15' 49" 34 0.085 0.692

E4 Eugene  44° 0' 48"  -123° 7' 30" 14 0.042 0.148

E6 Eugene  43° 59' 47"  -123° 12' 3" 24 0.37 0.817

E7 Eugene  43° 58' 29"  -123° 21' 13" 21 0.097 0.561

E9 Eugene  43° 58' 26"  -123° 7' 36" 24 0.392 0.544

M1 Fish_Ck_Cmpgrnd  44° 23' 54"  -123° 39' 18" 15 0.033 0.429

M16 Cedar & Wiley  44° 22' 19"  -123° 22' 45" 24 0.297 0.361

S1 Fisherman's Bend  44° 45' 14"  -123° 28' 56" 29 0.063 0.379
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Table 4.2 Functional traits measured in B. sylvaticum and their units, description, and 
expected behavior in drought. 
 

 

 

 

 

 

 

 

Symbol Variable Unit Significance Expectations in Drought References

SLA Specific Leaf Area m
-2 

kg Leaf surface area:mass ratio Low SLA   delays tissue 

dehydration.

Larcher (1995), 

Poorter et al.  (2009)

SI Stomatal Index % Normalized measurement of 

stomatal density

Many small stomata can 

increase water-use efficiency.

Beerling & Chaloner 

(1992), Xu & Zhou 

(2008)

VF Vessel Frequency % Xylem vessel frequency per 

leaf area.

 Xylem vessel size decreases 

while vessel frequency 

increases

Tyree & Zimmerman 

(2002), Smith et al. 

(2013)

MVD Maximum Vessel 

Diameter

μm Diameter of the largest xylem 

vessel per individual

Plants in dry environments 

have smaller xylem vessels.

Tyree & Zimmerman 

(2002)

HMD Hydraulical ly 

Weighted Mean 

Vessel Diameter

μm Xylem diameter; accounting for 

hydraulic resistance. 

Less resistance from xylem 

conduits increases water flow.

Tyree & Zimmerman 

(2002), Tombesi et 

al.  (2010)

BA Bull iform Cell Area μm Water loss results in bulli form 

cells shinking to reduce leaf 

surface area

Smaller bull iform cells result in 

rapid leaf rol ling.

Kadioglu et al. 

(2012)

ΨTLP Water potential at 

turgor loss point

MPa The point at which leaf cells 

lose turgor, leaf wilting point.

More negative ψTLP indicates 

greater turgor maintenance.

Meinzer & Grantz 

(1990),  Aroca et al. 

(2012)

RWC TLP Relative Water 

Content at Turgor Loss 

Point

% Cell hydration at turgor loss 

point

Higher RWC TLP  delays leaf 

dessication after stomatal 

closure, reduces cel l wall 

damage.

Tyree & Zimmerman 

(2002), Bartlett et 

al.  (2012)

ε Modulus of Elasticity 

at Full  Turgor

MPa Deformabil ity of a cel l wall; 

pressure change required to 

cause a unit change in cell  

volume.

 Rigid walls (high ε) slows cell  

volume declines during 

drought.

Verslues & Zhu 

(2005), Aroca et al. 

(2012)

C TLP Capacitance at Turgor 

Loss Point

MPa Water storage capacity of 

plant at turgor loss point.

High capacitance maintains 

cell  hydration, reductes cel l 

wall  damage.

Bartlett et al.  (2012)

C FT Capacitance at Full 

Turgor

MPa Water storage capacity of 

plant at full  turgor.

High capacitance enables leaf 

cells to store more water, 

increasing water potentials; 

buffer against water 

Lamont & Lamont 

(2000), Sack et al. 

(2005)

πo Osmotic Potential  at 

Full  Turgor

MPa Solute concentration in plant 

cells.

More negative osmotic 

potential al lows maintenance 

of leaf turgor at lower water 

potential. 

Verslues & Zhu 

(2005), Aroca et al. 

(2012)
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Table 4.3 Variance components, FST, QST, and QST-FST for populations across the native 
and invasive ranges of B. sylvaticum, using FST=0.3722. 
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Table 4.4 Variance components, FST, QST, and QST-FST for populations in the invasive 
range of B. sylvaticum, using FST=0.4609.  
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Figure 4.1 Probability of genetic contribution to invasive populations of B. sylvaticum 
from 21 populations from throughout the native range. 
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Figure 4.2 Traits exhibiting significant differences at p < 0.05 between invasive and 
native population using data unweighted by the probability of genetic contribution. 
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Figure 4.3 Traits exhibiting significant differences at p < 0.05 between invasive and 
native population using data weighted by the probability of genetic contribution. 
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Figure 4.4 Null distributions of QST-FST for five quantitative traits with significant values 
of QST-FST in B. sylvaticum, indicating selective divergence in the invasive range. Black 
arrows indicate actual values of QST-FST for traits. 
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Chapter 5 

Trait divergence, not plasticity, determines the success of a newly invasive plant 

 

Abstract:  

• Phenotypic plasticity and genetic differentiation play important roles in the 

establishment and spread of invasive species; however, previous studies 

investigating the role of plasticity in invasion have focused on morphological 

traits associated with fitness. Here, we determine the adaptive value of phenotypic 

plasticity and genetic divergence for functional traits related to water uptake in an 

invasive plant. 

• We measured six morphological traits in contrasting water environments for 

individuals from invasive and native ranges of the bunchgrass Brachypodium 

sylvaticum (Hudson) Beauv. To accurately represent genotypes contributing to 

invasion, we used the presence of unique alleles to calculate probabilities genetic 

contribution from native populations, and used these probabilities as weights in 

our analyses. Regression-based linear and nonlinear selection coefficients were 

estimated to determine the adaptive value of plasticity and genetic differentiation.   

• Plasticity was absent in response to water availability. Plants in the invasive range 

had increased xylem vessel frequency, smaller xylem diameter, and lower 

bulliform cell area than plants from the native range, indicating a shift in the 

invasive range towards drought tolerant phenotypes. Stomatal density was 

associated with climate of the invasive range, implying local adaptation to water-

limitation. Genetic divergence of invasive plants was not consistently in the 
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direction indicated by selection coefficients, suggesting limitations of selection 

that may be a consequence of physical constraints and/or tradeoffs between 

growth and abiotic tolerance.  

• Differentiation of functional traits is the consequence of post-introduction 

selection in the invasive range; although the adaptive value of traits is 

environmentally determined. Plasticity of functional traits appears to be 

unimportant and in some cases may impose a liability on invasion success. 
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INTRODUCTION 

Phenotypic plasticity and evolutionary change are thought to play major roles in 

the establishment and spread of invasive species (Lambrinos 2004; Dybdahl and Kane 

2005; Geng et al. 2007; Dlugosch and Parker 2008). Upon primary introduction to a 

novel habitat plasticity may provide plants with the ability to occupy a wide range of 

environments, promoting invasive establishment and spread (Droste et al. 2010; 

Davidson et al. 2011; Martina and von Ende 2012). Morphological differences have been 

found across the invasive and native range of plant species (Alexander et al. 2009; 

Eriksen et al. 2012; Felker‐Quinn et al. 2013), however the adaptive value of these trait 

shifts in the invasive range have not been investigated. Additionally, the morphological 

traits studied tend to be associated with fitness (reviewed in: Davidson et al. 2011; Godoy 

et al. 2011; Palacio‐López and Gianoli 2011). Here, we investigate the role of 

adaptation in plasticity and genetic differentiation of functional traits for the success of an 

invasive plant.  

Phenotypic plasticity is defined as the ability of organisms to modify 

morphological or physiological traits in response to environmental conditions (Turesson 

1922), and can be adaptive if plasticity increases the ability of a species to survive and 

reproduce across environments in comparison to non-plastic genotypes (Callaway et al. 

2003; Pigliucci and Murren 2003; Richards et al. 2006; Ghalambor et al. 2007). The 

ability of invasive plants to colonize a novel environment is commonly attributed to 

species possessing generalist genotypes with high phenotypic plasticity, as plasticity 

allows introduced individuals to shift traits towards optimal values favored by the local 

environment (Matesanz et al. 2012; Zhao et al. 2012). For example, plants that exhibit 
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plasticity in response to drought stress tolerate limited water availability by shifting 

morphological or physiological trait expression to meet environmental optima (Picotte et 

al. 2007; Meier and Leuschner 2008; Bartlett et al. 2012). There is evidence that 

phenotypic plasticity is common in invasive species in response to nutrient, light, and 

water availability (Pattison et al. 1998; Niinemets et al. 2003; Burns and Winn 2006; 

Davidson et al. 2011). Adaptive plasticity has been found in invasive plant populations in 

response to climate (Hahn et al. 2012; Zenni et al. 2014; Bock et al. 2015; Turner et al. 

2015), but detailed evaluations of the contribution of plasticity for functional traits to 

invasion success are lacking. 

Selection in the invasive range is thought to allow species to adapt to novel 

environments (Willis et al. 2000b; Muller-Scharer et al. 2004; Keller and Taylor 2008; 

Prentis et al. 2008; Whitney and Gabler 2008). Selective pressures can lead to genetic 

differentiation, displayed as shifts in trait values between individuals from invasive and 

native ranges that are not a result of plasticity. Post-introduction selection can lead to 

local adaptation to the new abiotic environment, resulting in genetic differentiation that 

supports population persistence (Piersma and Drent 2003; Prentis et al. 2008). Evidence 

of genetic differentiation has been found in invasive plants that have rapidly shifted 

growth and reproductive rates subsequent to introduction (Sexton et al. 2002; Siemann 

and Rogers 2003; Blair and Wolfe 2004; DeWalt and Hamrick 2004; Maron et al. 2004; 

Brown and Idris 2005). Selection has been found to act on plasticity in invasive 

populations in response to light and water availability (Zou et al. 2009), and after 

hybridization with native subspecies (Lavergne and Molofsky 2007).  
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Though dissimilarities in habitat can result in genetic differentiation between 

populations in invasive and native ranges, divergence may be the result of non-adaptive 

processes such as genetic drift rather than selection (Bossdorf et al. 2005; Dlugosch and 

Parker 2008a; Kilkenny and Galloway 2013). The invasive bunchgrass Brachypodium 

sylvaticum (Hudson) Beauv., provides an ideal model for studies of adaptation during 

invasion, as a previous study with B. sylvaticum confirmed that trait divergence in 

morphological and physiological traits related to water uptake was the result of selection 

in the introduced range opposed to neutral evolutionary processes such as drift (Marchini 

and Cruzan unpublished). Here, we build on previous research finding that genetic 

differentiation is a product of selection to determine if trait values exhibit phenotypic 

plasticity, while also investigating the adaptive value of plasticity and genetic 

differentiation for individuals in the invaded range.  

Brachypodium sylvaticum is an aggressive invader of the mixed-conifer 

understory habitats of the Pacific Northwest, USA, where it is capable of forming 

extensive monocultures. Brachypodium sylvaticum’s invasion was facilitated by multiple 

introductions from across its native range, with invasive individuals mainly the result of 

hybridization among introduced populations from Western and Southern Europe 

(Rosenthal et al. 2008). Multiple introductions can provide a larger gene pool for 

selection to facilitate local adaptation and are often associated with invasive success (Riis 

et al. 2010).  

Brachypodium sylvaticum displays broad climatic tolerances in its native range, 

occurring in arid, warm temperate, and boreal regions. Upon introduction to the invasive 

range, populations of B. sylvaticum had to acclimatize to the temperate Mediterranean 
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climate of the Pacific Northwest USA, tolerating dramatic variations in seasonal rainfall 

and a long summer drought that contrasted to the relatively consistent precipitation 

patterns that are characteristic of the temperate Maritime regions in Western Europe. We 

hypothesized that the long summer drought of the invasive region would challenge 

introduced populations of B. sylvaticum as its primary growing season occurs during the 

warmest and driest part of the  summer when it flowers and produces seed.  

We chose six leaf and xylem morphological traits to test for genetic 

differentiation and plasticity in plants from native and invasive populations of B. 

sylvaticum in response to water limitation. We also measured two fitness-related traits, 

final size and shoot biomass, to investigate the possibility that plasticity and/or genetic 

differentiation is adaptive. Rapid growth and large size is thought to increase competitive 

ability and contribute to invasion success (Van Kleunen et al. 2010), and if adaptation to 

novel environments were occurring we would expect to find high values of these fitness-

related traits in invasive individuals.  

Our study addresses the hypothesis that plasticity is a mechanism aiding invasive 

success of B. sylvaticum. The plastic ability of plants from native and invasive 

populations of B. sylvaticum was measured as genotype-by-environment interactions (Via 

and Lande 1985) in one water-available and one water-limited treatment. We also explore 

an alternate hypothesis that selection has resulted in genetic differentiation of individuals 

from invasive populations. Because genetic differentiation can occur as a result of 

climate-driven selection, we include tests of abiotic environment on trait morphology. 

The adaptive potential of plasticity and differentiation was assessed with directional (β) 

and quadratic (ϒ) selection gradients (Lande and Arnold 1983), regressing trait values 
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and plasticity across environments onto fitness-related traits (shoot biomass and final 

plant size). Because populations in the invasive range of B. sylvaticum consist of 

hybridized individuals from native source regions, we weighted our models by the 

probability of native population contribution to the invasive environment, determined by 

multilocus genotypes at microsatellite markers. If selection in the novel environment is 

driving invasive success, we would expect to find genetic differentiation between 

invasive and native populations of B. sylvaticum, instead of observing treatment-driven 

phenotypic differences. Utilization of selection gradients to test for selection on plasticity 

or genetic differentiation provides insight into the underlying drivers of adaptation in 

invasive species. 

 

MATERIALS AND METHODS 

Study system- Brachypodium sylvaticum (slender false brome) is a diploid 

perennial C-3 bunchgrass native to Europe, Asia, and Africa, with invasive populations in 

North America and Australia. The first herbarium specimen of B. sylvaticum was 

collected in 1939 in Eugene, Oregon (Ramakrishnan et al. 2008). B. sylvaticum 

maintained small populations in central Oregon until the 1980’s, when it began to spread 

throughout central Oregon. Populations are now rapidly expanding, and invasive B. 

sylvaticum can be found in Washington, California, Virginia, New York, and British 

Columbia and Ontario, Canada (Miller et al. 2011). Invasive populations of B. sylvaticum 

show much variability in habitat, and can be found in areas ranging from wetland and 

riparian habitat to dry forests. Invasive populations form a monoculture carpeting the area 

and preventing establishment of native plants and tree seedlings. B. sylvaticum’s recent 
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spread, wide native range, and varied habitat make it an ideal model system for study of 

the evolutionary changes accompanying invasion.  

Independent introductions of B. sylvaticum into Corvallis and Eugene, Oregon 

have been confirmed by microsatellite marker analysis (Ramakrishnan et al. 2008). 

Rosenthal 2008 also found that multiple introductions of B. sylvaticum from several 

regions throughout Western Europe (the United Kingdom, Greece, and Spain) had 

occurred and that these individuals hybridized with each other, resulting in their novel 

recombinant genotypes being found throughout the invasive range.  

Native B. sylvaticum populations encompass a wide latitudinal distribution over 

several climatic regions. Seeds from a number of these areas, including the ones that will 

be used in this study, are available through the USDA’s National Plant Germplasm 

System. The hybrid genotypes that are currently spreading throughout Oregon are a 

combination of populations from oceanic (United Kingdom), hot-summer Mediterranean 

(Greece), and cold semi-arid desert (Spain) climate types (Ramakrishnan et al. 2008). All 

of these climates represent a significant shift in precipitation from Oregon’s cool-summer 

Mediterranean climate. The Oregon climate provides significantly less precipitation than 

in the UK, while significantly more than in Spain or Greece. 

 Greenhouse Methods- We performed a common garden study to assess plasticity 

and phenotypic differentiation of leaf morphological traits in response to water 

availability of the environment. Plants were grown in a research greenhouse due instead 

of in the field due to the ethical complications associated with growing an invasive 

species outdoors. Plants from thirty-three invasive and native populations of B. 

sylvaticum were grown in a common garden experiment from August 2012 to December 
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2012 (n = 5 individuals per population; see Appendix 1 for population sampling 

locations) Six study plots were established in 1 m3 raised bed plots in the research 

greenhouse at Portland State University, Portland, Oregon, USA. Boxes were filled with 

sandy loam soil (5% clay, 45% sand, and 50% silt). The six study plots were given 1/2 L 

of water after transplanting to acclimate the plants to the new growing conditions. Half of 

the plots were designated for drought treatment (watered minimally at first signs of 

wilting to mimic Oregon summer drought), while the other half were designated for 

regular watering (approximately 1/2 L a week to approximate natural rainfall patterns 

during Oregon’s rainy season). 

Brachypodium sylvaticum seeds were collected from 11 invasive populations 

located in Oregon, USA and 21 native populations located throughout Europe, North 

Africa, and the Middle East (Table A.D1). Seeds were obtained from the Western 

Regional Plant Introduction Station (Western Regional Plant Introduction Station, 

Pullman, WA, USA) and the Millennium Seed Bank Project (Kew, Surrey, UK). Seeds 

were planted in the glasshouse at Portland State University, Portland, OR, USA, and 

plants were maintained for a period of six months. Two tillers per plant were collected for 

use in the current experiment, with one tiller per individual placed in each of the water-

limited and water-available treatments. 

Five tillers per population were each planted in water-limited and well-watered 

treatments, (with the exception of populations ESH, M3, M7, TUK, UK4, which had 4 

tillers, and M16, which had 3 tillers) representing different individuals from each 

population of B. sylvaticum. Tillers were randomly placed in each raised bed at a fixed 

distance of 10 cm from one another. Water treatment was induced after the plants had 
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been allowed to grow and establish for one month, and was carried out for approximately 

five months. At the end of the five-month growing period average plant height and tiller 

number data were collected to quantify population fitness and growth. Because B. 

sylvaticum exhibits growth vertically and through tiller production, we define plant size 

as the product of height and tiller number prior to harvest. Plants were harvested five 

months after planting and shoot biomass was obtained by placing plants in convection 

drying ovens (70° C) until a constant mass was achieved (minimum of 48 hours). We 

were not able to acquire root biomass as roots become tangled after long growth periods, 

making them difficult to pull apart without significant loss.     

 Morphological Variables Measured- We measured six morphological traits 

related to water uptake in plants: xylem vessel frequency (VF), maximum xylem vessel 

diameter (MVD), hydraulically weighted mean xylem vessel diameter (HMD), bulliform 

cell area (BA), stomatal index (SI), and specific leaf area (SLA). In water-limited 

conditions, xylem vessel frequency (VF) is expected to increase while vessel diameter 

(MVD and HMD) decreases, resulting in xylem vessels that are less prone to cavitation 

while maintaining water uptake (Tyree and Zimmermann 2002; Tombesi et al. 2010; 

Smith et al. 2013). Bulliform cells control leaf rolling, a behavior that reduces surface 

area thus evaporation off the leaf surface; a smaller bulliform cell area (BA) allows more 

rapid loss of turgor, promoting more rapid rolling of leaves in water-limited 

environments (Kadioglu et al. 2012). Stomatal index (SI) is a normalized measure of 

stomatal density across a leaf’s surface; many, small stomata are expected to reduce 

water loss in drought compared to larger, less frequent stomata (Beerling and Chaloner 

1992; Xu and Zhou 2008). Specific leaf area (SLA), the ratio of leaf surface area to 
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mass, is expected to decrease in drought as leaves become thicker to reduce water losses 

(Larcher 1995; Poorter et al. 2009). See Chapter 3, Table 3.2 for trait details. 

One most recently expanded leaf was collected from each individual for SI and 

SLA measurements. Approximately 2 cm of tissue was collected from the base of each 

leaf and placed in 2.0 mL vials filled with a 200:5 50% ethanol-glacial acetic acid 

(17.5M) mixture to preserve tissue for analysis of metaxylem characteristics (VF, MVD, 

HWMD). Due to differences in the growth rates of the plants and size limitations, leaves 

used for tissue samples were collected in two separate batches: half at the end of 

November and half at the end of December. During each sampling session, matching 

tillers from each individual were always collected in clonal pairs (one plant from each 

treatment) and a range of populations was gathered to avoid biased sampling of 

populations. Leaves collected in the greenhouse were kept in water and processed within 

the same day.  

 Stomatal and metaxylem counts and measurements were made using a Leica 

MZ16 stereomicroscope (Leica Microsystems, Wetzlar, Germany) linked to a Q-

Imaging Retiga 1300 camera (Q-Imaging, Surrey, British Columbia, Canada) and 

analyzed with Image-Pro 6.0 Software (Media Cybernetics, Warrendale, PA, USA). 

Leaf epidermal impressions were obtained according to methods in Beerling and 

Chaloner (1992) for calculation of SI [stomatal density/(stomatal density + epidermal 

cell density) x 100, where stomata consist of the stomatal pore and two flanking guard 

cells], a measurement that normalizes leaf stomatal density in relation to the confounding 

influence of epidermal cell expansion that may be initiated by factors other than those 

influencing stomatal development (Royer 2001; Xu and Zhou 2008).  
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 Cross sections of preserved leaf samples were photographed and measured for 

metaxylem and bulliform cell characteristics on at least 3 individuals per population. 

Images were analyzed with ImageJ (National Institutes of Health, Bethesda, Maryland, 

USA). Measurements on each section included cross-sectional area, area of the major 

veins, and proportion of bulliform cells and vascular tissue to cross-sectional area. These 

measurements were utilized to obtain HMD, VF, MVD, and BA for each individual. To 

assess average metaxylem diameter, the principles of the Hagen- Poiseuille relationship, 

which state that a conduit’s hydraulic conductivity is proportional to its diameter to the 

4th power, were taken into account. Thus, to find HMD, raw measurements of diameter 

were analyzed for their frequency in 1µm size classes and for the relative contribution of 

each class of diameter to the sum of all the conduits raised to the 4th power calculated as:  

��� = 2
���

��	
, where r is the radius of a xylem conduit. This equation weights the 

importance of radii in proportion to the estimated hydraulic conductance of the xylem 

conduits (Sperry and Saliendra 1994). VF was calculated as the average number of 

metaxylem vessels per leaf area. MVD is the largest metaxylem vessel per individual. The 

cross-sectional area of bulliform cells, large leaf surface cells that are the first to lose 

turgor in times of water stress, resulting in leaves rolling in to prevent transpirational 

water loss, was found for each individual. BA was calculated as the proportion of 

bulliform cells present per cross-sectional area. 

 To obtain SLA, the surface area for each plant was measured by first 

photographing the top half of the most recently fully expanded leaf using a Kaiser RA-1 

copy stand with a Panasonic WV-BD400 camera attachment. The surface area of this 

portion of the leaf was estimated using the drawing tool in Image J. The top half of each 
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leaf was gathered and dried in an oven for at least 48 hours at 60 C to constant weight. 

SLA was calculated as leaf surface area in m2/leaf dry weight in kg for each plant. 

 Statistical Analysis Weights of Genetic Contribution-Prior to performing 

statistical analysis we weighted traits of native individuals by probability of contribution 

to invasive populations. Assignment tests of the probability of contribution of native to 

invasive populations were performed using the genotypes of Brachypodium sylvaticum 

plants at eight microsatellite loci with primers developed and optimized at Portland State 

University (Ramakrishnan et al. 2008a). Primers are deposited at GenBank (Accession 

nos EF450748, EF450751, EF450752, EF450754, EF450756, EF450757, EF450759, 

EF450765). Assignment tests were performed in Geneclass2 utilizing the Rannala and 

Mountain (1997) assignment method of identifying immigrants based on their multilocus 

genotypes to detect immigrant ancestry (Rannala and Mountain 1997; Piry et al. 2004). 

The assignment probabilities were pooled across invasive populations, to create an 

average probability of genetic contribution of each native population to the invasive 

range. Mixed linear regressions were then weighted by this genetic probability of 

contribution. 

 Phenotypic Plasticity and Genetic Differentiation- We used restricted maximum 

likelihood models with random effects to determine plasticity and trait divergence across 

water-limited and water available treatments (lmer and lmerTest, lme4 package; R Core 

Team 2013). To account for phenotypic variation based on climate of source population, 

each model included a composite abiotic environmental covariate determined by a 

principal components analysis (PCA) of latitude and six climatic variables (aridity, 

potential evapotranspiration, temperature, evaporation, precipitation, and cloud cover). 
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Climatic data for Oregon, USA populations were obtained from the Prism Group, Oregon 

State University (PRISM Group 2004); climatic data for native source populations 

located throughout Europe, the Middle East, and Asia were obtained using WorldClim 

(Hijmans et al. 2005) and United State Geological Climate Survey (USGS) climate data 

(Hearn et al. 2003). The principal component PC1 explained most variation across 

regions, and was utilized in all trait models as the environment term.  

Water treatment, region (invasive or native), environment (PC1), the interaction 

of environment x region, and the interaction of treatment x region were treated as fixed 

factors in the model; treatment nested within raised bed was a random effect. A 

significant effect of region in these models would indicate differentiation in the given 

trait between plants from invasive and native regions; a significant effect of treatment 

would indicate plasticity for the given trait. All response variables were logx + 1 

transformed to meet assumptions of normality for regression. 

 Plasticity and Selection Gradients- For all selection analyses we utilized 

standardized explanatory values (mean=0, SD=1) to allow comparison between 

regression coefficients of traits measured on different scales (Van Kleunen 2001). The 

relative fitness of shoot biomass and final plant size was calculated for response 

variables. Response variables were logx + 1 transformed and also standardized to mean=0 

SD=1. All models were weighted by the probability of contribution of native to invasive 

ranges. 

Selection on plasticity for traits across water-available and water-limited 

treatments was tested using linear regression (Weis and Gorman 1990). The standardized 

values of absolute plasticity (mean of treatment 1 minus mean of treatment 2) and 
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standardized mean trait values were explanatory variables in the model. Response 

variables were the fitness related traits of shoot biomass and final plant size. A positive 

effect of phenotypic plasticity on a fitness related trait is indicated by a positive 

regression coefficient for a trait, while a negative selection coefficient suggests selection 

against plasticity (Van Kleunen and Fischer 2001). 

We estimated linear (β) and univariate nonlinear (quadratic, ϒ) selection for 

morphological traits in water-limited and water-available environments (Lande and 

Arnold 1983). Selection models were weighted by the probability of genetic contribution 

of native to invasive populations (Marchini and Cruzan unpublished). Directional 

selection gradients were estimated using linear models regressing standardized trait 

values onto the standardized relative fitness values for shoot biomass and final size (lmer; 

R Core Group 2013). The linear selection coefficient β is found as the partial regression 

coefficient for each morphological trait. Significance of linear selection coefficients is 

indicative of directional selection for higher (positive β) or lower (negative β) phenotypic 

values that effect fitness-related traits. Nonlinear models included all linear and quadratic 

values of standardized traits and their interaction terms. The partial regression coefficient 

of the quadratic terms was the quadratic selection coefficient. Quadratic selection 

gradients were doubled (Stinchcombe et al. 2008).  Stabilizing selection is revealed by a 

concave quadratic term, while disruptive selection is indicated by a convex quadratic 

term.  

 

RESULTS 
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 Principal Components Analysis of Climate- Results from the PCA of population 

climatic characteristics show that PC1 and PC2 explained 50% and 19% of the variance 

across populations, respectively. Axis 1 was correlated with aridity and latitude (a smaller 

value for aridity indicates a drier environment); Axis 2 was correlated with surface 

evaporation and precipitation. Although there is overlap in the ellipses of climatic 

variation between native and invasive source regions, invasive regions are more strongly 

influenced by aridity (PC1; Fig. 5.1). 

 Plasticity and Genetic Differentiation- Probabilities of contribution used in 

analyses are found in Appendix D, Fig. D1. There was no effect of treatment or a 

treatment x region interaction for any measured traits, indicating a lack of plasticity. 

There was significant genetic differentiation between ranges of three traits related to 

xylem morphology HMD, MVD, VF, and one trait related to cell size, BA (Fig. 5.1, Table 

5.1). HMD and MVD were significantly lower in invasive populations than in native 

populations, while VF was higher in invasive populations than native populations, 

indicating that plants in invasive populations possess smaller, more frequent xylem 

vessels than plants from native populations. The expression of four traits, VF, HMD, 

MVD, and BA in individuals from the invasive range conformed to hypotheses of optimal 

trait values expected in water-limited environments (Fig.5.2, Fig. 5.3). 

 Environment was associated with values of HMD, MVD, and BA (Table 5.1, Fig. 

5.4a, b, c), and although trait values for plants from the invasive range appeared to be 

associated with lower PC1 scores (more arid environment), the environment x region 

interaction term was not significant for these variables. The environment x region 
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interaction was significant for SI, with invasive range values more closely correlated with 

lower PC1 values (Fig. 5.4d). 

 Plasticity, Linear, and Quadratic Selection Gradients- The majority of linear 

selection coefficients for plasticity were negative (Table 5.3). There was a significant 

negative selection coefficient for plasticity in VF on shoot biomass (Table 5.2), indicating 

that greater plasticity in VF across water-limited and water-available treatments is 

associated with a lower shoot biomass (Figure 5). No other traits had significant selection 

coefficients of plasticity. 

Four out of six traits had significant directional selection gradients for shoot 

biomass and final size in the water-limited treatments (Table 5.3). Gradients ran in the 

same direction for shoot biomass and final size in response to all traits. A negative 

selection coefficient for VF describes reduced aboveground size with an increasing 

frequency of xylem vessels. The selection gradient of MVD is positive, indicating that 

possession of at least one large xylem vessel results in increased size and biomass, 

although the negative coefficient of HMD indicates selection towards a smaller size of 

xylem vessels. Negative selection gradients for BA imply negative selection for 

increasing bulliform cell area in water-limited environments. 

In the water available treatment, the majority of linear selection coefficients were 

negative, although none were statistically significant (Table 5.3). There was a significant 

negative quadratic term for VF (Fig. 5.6a), and a positive quadratic term for BA (Fig 

5.6b). Inspection of these curves show that the quadratic functions are mostly linear. 

 Genetic Differentiation and Direction of Selection- Of the four traits found to be 

significantly different across invasive and native ranges of B. sylvaticum, the direction of 



 111

selection for greater relative fitness was only consistent with the direction of phenotypic 

differentiation occurring in the invasive region for two traits in the water limited 

treatment. One of these traits is related to xylem morphology (HMD), and one of these 

traits is related to cell morphology (BA). Both HMD and BA were associated with 

negative selection gradients, consistent with the smaller values of HMD and BA found for 

individuals from invasive populations (Table 5.3, Fig. 5.2). 

 Two of the four traits that significantly differed across invasive and native ranges 

of B. sylvaticum displayed trait values inconsistent with the direction of selection for 

relative fitness of shoot biomass and final size in the water limited treatment. These traits, 

VF and MVD, are both related to xylem vessel morphology. A negative selection 

coefficient implies greater relative fitness with decreasing frequency of xylem vessels, in 

contrast to the greater VF found in plants from invasive populations. The positive 

selection coefficient for MVD suggests greater relative fitness with a larger maximum 

diameter of the xylem vessels, while plants from invasive populations possess smaller 

MVD than their native counterparts. 

 

 

DISCUSSION 

 Our study found that invasion success in Brachypodium sylvaticum has been 

facilitated by post-introduction selection leading to genetic differentiation rather than by 

plasticity. This result contrasts with the hypothesis that plasticity has allowed invasive 

individuals the flexibility to establish in multiple habitats. Our results instead show that 

two out of four measured traits exhibiting genetic divergence were adaptive in a water-
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limited environment, while one trait displayed local adaptation to the abiotic environment 

in the invasive range. 

 Plasticity- There were no significant effects of treatments on trait expression 

indicating a lack of plasticity in response to contrasting water environments for plants 

from both invasive and native ranges of B. sylvaticum. These results are contrary to 

findings that plasticity is high in populations of invasive species (Davidson et al. 2011), 

but in line with other studies concluding that there are no differences in plasticity 

between invasive and native populations (Godoy et al. 2011; Palacio‐López and Gianoli 

2011). Moreover, selection gradients for aboveground biomass were negatively 

correlated with plasticity for the frequency of xylem vessels in leaves (VF; Fig. 5), 

indicating selection against plasticity for this trait. 

Contradictory reviews have found that plasticity either plays a major (Davidson et 

al. 2011), or very minor role (Godoy et al. 2011; Palacio‐López and Gianoli 2011) in the 

invasive process. A recent hypothesis proposed by (Lande 2015) provides an explanation 

for the inconsistent findings. Lande describes how introduction to a novel habitat can 

spur a rapid increase in plasticity during the lag phase, allowing individuals to approach 

phenotypic optima. This peak in plastic ability is followed by slow genetic assimilation of 

the new phenotypes into invasive populations (Lande 2015). Plasticity is reduced as 

adjustment to the novel habitat proceeds, barring frequent environmental perturbations 

(Lande 2009, 2015).Alternatively, the variation necessary for adaptive responses in the 

novel environment can be generated by admixture due to interbreeding among genotypes 

from multiple sources in the native range. However, due to the ephemeral nature of 
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plasticity during the lag phase, this hypothesis is difficult to test on a species that has 

already become invasive. 

 Results show selection against plasticity in VF, indicating that plasticity may 

constrain rather than facilitate adaptation in the new environment. Generally, plasticity is 

thought to be favored in fluctuating environments and disadvantageous in homogeneous 

environments. Costs of plasticity are indicated by a reduction in fitness of a plastic 

compared to a fixed organism in the same environment (DeWitt et al. 1998). A cost of 

plasticity occurs when variation in phenotypic expression results in a fitness deficit, as a 

consequence of physical, developmental, and genetic constraints (DeWitt et al. 1998; 

Callahan et al. 2008). Similarly, plasticity can be maladaptive if the plastic response 

moves trait values away from phenotype optima for an environment. A cost of plasticity 

is implied by VF plasticity resulting in smaller aboveground size and biomass. 

 Phenotypic Differentiation and Selection- Differences in selection gradients in 

the water-available and water-limited environments, combined with evidence that 

environmental variation at population locations influences trait values, suggests that 

moisture availability is a selective pressure driving genetic differentiation in the invasive 

range of B. sylvaticum. Trait shifts predicted to occur in drought were supported by 

invasive trait values; however, these traits shifts did not consistently result in greater 

aboveground biomass and size.  

 Two traits, HMD and BA, displayed genetic divergence in the invasive range 

consistent with the direction of improved drought tolerance. Selection for reduced 

bulliform cell area in the invasive range translates into more rapid leaf rolling in response 

to moisture stress. Leaf rolling decreases leaf surface area, reducing transpirational 
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losses, and is a common response to low water availability in drought tolerant species 

(O'Toole and Cruz 1980; Turner 1986; Kadioglu et al. 2012). Reduced xylem diameter 

decreases susceptibility to cavitation under drought stress (Hacke and Sperry 2001; Tyree 

and Zimmermann 2002; Tombesi et al. 2010). Genetic differentiation of these traits in the 

invasive range has likely facilitated by population persistence of B. sylvaticum during 

summer droughts in Oregon.  

 We found seemingly maladaptive genetic differentiation in the water-limited 

treatment for two traits related to xylem morphology (VF and MVD) in the invasive range 

of B. sylvaticum. Frequency of xylem vessels is related to xylem diameter; as diameters 

decrease, reducing the threat of cavitation, the frequency of vessels throughout the stem 

should increase so that water uptake can be maintained (Tyree and Zimmermann 2002; 

Smith et al. 2013). Similar to expectations of HMD in drought, MVD is predicted to 

decrease, lowering the probability of cavitation (Tyree and Zimmermann 2002); although 

it is possible that the advantage of maintaining several large xylem vessels permitting 

rapid water uptake outweighs cavitation risks. Despite these predictions, we found 

increased aboveground size and biomass with less frequent xylem and larger maximum 

xylem diameter.  

Trade-offs between growth and resource allocation and tolerance to 

environmental stress may provide insight into the apparent contradiction between the 

direction of selection and observed patterns of differentiation for VF and MVD. Grime 

(1977) suggested that plants could not be both highly competitive and highly tolerant to 

environmental stress. The existence of such trade-offs has been supported by recent 

studies finding that increased tolerance to abiotic stress often comes at a cost of reduced 
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competitive ability (Petrů et al. 2006; Sambatti and Rice 2007; Liancourt and Tielbörger 

2009; Hodgins and Rieseberg 2011). Distinct abiotic environments in the invasive and 

native range are likely driving selection and increasing invasive drought tolerance, while 

limiting aboveground growth potential.  

A second explanation for inconsistency between the direction of selection and 

divergence is the possibility that fitness and competitive ability of B. sylvaticum is not 

driven by aboveground size and biomass. Though there are few studies finding that 

increased aboveground size is not a trait contributing to invasiveness (Willis et al. 2000a; 

Thébaud and Simberloff 2001); there are a bounty of studies finding that resource 

allocation to improve fitness in water-limited environments is often directed belowground 

(Chaves et al. 2003; Farooq et al. 2009). For example, a study of invasive and non-

invasive woody species grown in a summer drought found that invasive species had 

much larger root masses than non-invasive species (Grotkopp and Rejmánek 2007). 

While requiring further investigation and speculative based on the scope of the current 

study, selection on B. sylvaticum individuals in water-limited environments may result in 

resource allocation and increased competitiveness belowground. 

 Effect of Environment- Abiotic environment was correlated with two traits 

related to xylem vessel size (MVD and HMD) and one trait related to cell morphology 

(BA). There was a significant environment x range interaction for SLA indicating that this 

trait for plants from the native and invasive ranges responded differently to changes in 

water availability. The sensitivity of these traits to environmental gradients suggests 

environmental specialization (Richards et al 2006). These results suggest local adaptation 

to environmental variability that has shaped genetic divergence between ranges and has 
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led to evolution after introduction and establishment  (Callaway and Maron 2006; 

Colautti et al. 2010).  

 Invasive populations of B. sylvaticum are composed of intra-specific recombinant 

hybrid genotypes as a result of multiple introductions (Rosenthal et al. 2008b). Invasive 

hybridization may be a factor promoting local adaptation of B. sylvaticum to the abiotic 

environment of the invaded region. Evidence of hybridization is commonly found in 

populations of invasive species (Ellstrand and Schierenbeck 2000; Gaskin and Schaal 

2002; Zalapa et al. 2010; Kolbe et al. 2012). In B. sylvaticum, hybridization and multiple 

introductions have reduced genetic bottlenecks at sites of primary introduction (Rosenthal 

et al. 2008b). These primary introduction sites now act as sources for gene flow to 

satellite populations (Ramakrishnan et al. 2010a; Marchini and Cruzan unpublished), and 

likely provide the genetic variation necessary for strong selection to evolve phenotypes 

that are adapted to the local climatic conditions in the invasive range. 

 Conclusions- We have presented evidence that genetic differentiation and local 

adaptation rather than plasticity are drivers of invasive success in Brachypodium 

sylvaticum. Individuals from the invasive and native ranges of B. sylvaticum were not 

phenotypically plastic in environments of contrasting water availability, supporting 

studies concluding that plasticity is not a trait inherent to invasive species. We found 

genetic divergence between invasive and native ranges for four out of six traits measured. 

Differentiation of these traits was in the direction hypothesized to occur in response to 

drought stress in the introduced range. Divergence of invasive plants was not consistently 

in the direction indicated by selection gradients, implying that there are limitations of 

selection that may be a consequence of physical constraints and/or tradeoffs between 
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growth and abiotic tolerance. Significant relationships between genetic divergence and 

environment suggest local adaptation of B. sylvaticum to local environmental conditions. 

Future work on B. sylvaticum and other invasive plants will further explore the role of 

genetic variation resulting from hybridization and plasticity for processes of local 

adaptation leading to invasion success in novel environments.  
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Tables and Figures 

 

Table 5.1 P-values from mixed linear regressions finding the effects of range, abiotic 
environment, and treatment on 6 measured traits in B. sylvaticum. 
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Table 5.2 Directional (β) and quadratic (ϒ) selection gradients 
on final size and shoot biomass of invasive and native 
populations of Brachypodium sylvaticum. The table lists also 
lists standardized regression coefficients of plasticity for final 
size and shoot biomass. Asterisks indicate statistical significance 
of regression coefficients: * = p < 0.05, ** = p < 0.01. The 
presented quadratic gradients are twice the estimated partial 
regression coefficients. 

 
 

Value Final Size   

 
Water-available Water-limited 

β ϒ β ϒ 

VF -0.2078 0.427 -1.215** 0.396 
MVD -2.8161 -3.798   3.116* -3.1 
HMD 3.0408 3.897 -3.175* 2.614 

SI 0.3524 0.389 -0.466 -0.468 
SLA -0.9065 3.743 0.166 0.054 
BA -0.3966 -3.039 -0.436* -0.076 
  Shoot Biomass  

Water-available Water-limited 

  β ϒ β ϒ 
VF -0.4853 0.794** -1.076** 0.268 

MVD -2.1455 -2.22 4.031** 1.178 
HMD 1.8938 2.884 -4.326** -1.038 

SI 0.1366 -0.052 -0.133 -0.036 
SLA -0.1358 1.564 0.331 0.292 

BA -0.2212 -2.782** -0.331* -0.252 
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Table 5.3 Directional (β) selection gradients of plasticity in six traits on final size and 
shoot biomass of invasive and native populations of Brachypodium sylvaticum. Asterisks 
indicate statistical significance of regression coefficients: * = p < 0.05. 
 

 
Plasticity  Final Size   Shoot Biomass  

VF -0.359 -0.789* 

MVD -4.078 -2.997 
HMD 3.854 2.255 

SI 0.017 0.211 
SLA -0.105 0.083 

BA -0.607 -0.594 
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Figure 5.1 Principal components analysis biplot of variables associated with climate in 
populations of Brachypodium sylvaticum. Points represent range of Brachypodium 
sylvaticum populations (I=Invasive, N=Native). 
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Figure 5.2 Trait means for a) VF, b) MVD, c) HMD, d) SI, e) SLA, and f) BA in 
individuals from invasive and native range of Brachypodium sylvaticum.  Arrows indicate 
direction of trait shifts under drought stress. Data is weighted by the probability of 
genetic contribution found by multilocus comparisons. Asterisks indicate statistical 
difference of trait values between regions: * = p < 0.05.  
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Figure 5.3 Examples of Brachypodium sylvaticum leaves from invasive (Corvallis, 
Oregon, USA, left) and native (Larissa, Greece, right) ranges. a) Cross-sections of leaves. 
Invasive plants have smaller bulliform cells and smaller, more frequent metaxylem 
vessels. b) Surface imprints of the leaf epidermis. Invasive individuals have lower 
stomatal density.  
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Figure 5.4. Environmental gradients and phenotypic expression for four morphological 
traits of Brachypodium sylvaticum. a) Maximum vessel density, b) Hydraulically 
weighted mean diameter, c) Bulliform cell area, and d) An interaction of range and 
abiotic environment in for stomatal index. PC1 is strongly correlated with aridity. Error 
bars are ± SE. 
 
 

 
 
 
 
 
 
 
 
 
 
 



 125

Figure 5.5 Significant negative directional selection (β) for VF plasticity in response to 
water availability in Brachypodium sylvaticum. Plasticity is measured as mean values of 
treatment 1- treatment 2 per population.  
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Figure 5.6 Quadratic selection (ϒ) for a) VF and b) BA in the water available treatment. 
Selection curves are significant at p < 0.05. 
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Chapter 6 

Conclusions: Management Implications of Studies 

 The combined works of this dissertation significantly contribute to the field of 

invasion biology by uncovering mechanisms underlying the establishment success of 

introduced species. While it is clear that these studies have allowed development of 

hypotheses of evolutionary mechanisms underlying invasion in Brachypodium 

sylvaticum, these results also have a practical application for management practices to 

limit invasive plant spread.  

In chapter two, I establish that purging of genetic load is facilitated by intermittent 

gene flow and that genetic purging increases the success of populations with low genetic 

diversity (HS) and effective population size (Ne). This scenario of genetic purging is also 

plausible for other plants, and thus results are applicable for management practices of 

species other than B. sylvaticum. While B. sylvaticum’s ability to self-fertilize promotes 

its’ potential to purge genetic load, I hypothesize that without self-fertilization, it is 

possible to purge genetic load through close-kin inbreeding that would occur in 

populations with low Ne. As genetic purging in a population with small Ne is facilitated 

by intermittent gene flow from high HS populations, management practices should focus 

on centrally located populations near the sites of primary invasion. By destroying highly 

fit central populations, managers can cut off gene flow from these populations to the 

range edge, increasing the detrimental effects of bottlenecks and slowing invasion.  

Evidence for genetic purging in populations of B. sylvaticum was expanded on in 

chapter three, where I discuss how reductions in fitness due to the effects of low effective 

population size (Ne) can be mitigated by stress reduction; specifically that nitrogen 
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deposition may be increasing the chance that low HS populations of invasive species are 

spreading. These results point towards the process of genetic purging being 

environmentally dependent, as fitness of individuals from low genetic diversity 

populations was only equal to the fitness of individuals from high genetic diversity 

populations in a high nitrogen environment. This suggests that invasive control should be 

focused on populations where environmental stress is likely to be low. The low-stress 

areas include habitats subject to high nitrogen deposition and runoff, and may be 

broadened to include environments where frequent physical disturbance limits 

competition. 

In chapter 4, I found evidence of selective processes occurring during the 

establishment phase of invasion, as well as developed a robust method for assessing 

phenotypic divergence in species that are invasive or expanding their range. This study 

points towards the result that phenotypic adaptation in invasive species occurs prior to 

invasive range expansion. Once a species is introduced, selective process take place prior 

to invasive spread. This study has a more difficult implication for management, as an 

introduced species must be eradicated prior to invasion, and most management practices 

only begin control after invasive spread. The main lesson from this study is that 

management practices should focus on newly invasive species, as it is impossible to 

know how detrimental any new introduced species may become. After a species becomes 

invasive and overcomes secondary bottlenecks hindering range expansion, control 

becomes increasingly difficult if not impossible. 

In chapter 5, I determine that trait differentiation is more important than plasticity 

in invasive B. sylvaticum, and find evidence that plant growth may be constrained by 
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selection for traits tolerant to the abiotic environment. These results build on evidence of 

selection from chapter 4, and show that a plant’s size may not be representative of its 

adaptation to the invaded environment, as a drought tolerant plant may not be the largest. 

This result implies that invasive practices should not just be focused on the largest 

individuals in a population, but that smaller, seemingly less fit plants may be capable of 

sustaining the invasion. 

 A broad conclusion from these studies is that multiple introductions and high HS 

in centrally located source populations facilitates selective processes and increase fitness 

of individuals in edge populations. By applying management strategies to populations 

that are feeding the invasion at the range edge, the spread of invasive plants can be 

reduced. 
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Appendix A 

Supplemental Materials for Chapter 2: Rapid Purging of Genetic Load in a 

Metapopulation and Consequences for Range Expansion in an Invasive Plant 

Figure A.A1 Description of simulations. 

 Simulations were conducted to mimic selfing lineages within a population (first 

simulation) or a group of inbred populations with periodic gene flow. Each generation 

each lineage produced n progeny by selfing or outcrossing to a random individual within 

the same population. The most fit progeny was chosen to replace the lineage the next 

generation. If the fitness fell below the survival threshold (defined below) then the 

lineage was removed. Extinct lineages could be replaced if any lineages in the population 

surpassed the repopulation threshold (defined below). Propagules from each population 

were generated to colonize adjacent empty sites if the fitness of any lineage exceeded the 

colonization fitness threshold (defined below). 

If more than one lineage exceeded the 

colonization or repopulation threshold then only 

the one most-fit lineage per population was used 

for colonization or repopulation.  

 The simulations were started with p = 

0.5 such that the AA, Aa, and aa loci occurred at 

frequencies of 0.25, 0.50, and 0.25, respectively. 

A single individual was generated as the initial colonist of each of the �� populations. At 

generation 0 this individual was selfed to generate the N individuals to populate each site 
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(population). After generation zero each of the N individuals in each population was 

selfed or outcrossed to generate progeny as described below. 

 For all simulations reported in this manuscript the deleterious mutations were 

completely recessive. Fitness for each lineage was calculated as the total number of loci 

(100 in these simulations) less the number of loci that were homozygous for the 

deleterious allele (aa). Loci were unlinked and each had an equal effect on fitness for the 

simulations reported in this manuscript. Mutations were introduced by changing one of 

the AA loci in each lineage to Aa (introduction of a new deleterious allele).  

 Each generation gametes were generated by randomly choosing one allele from 

each locus. Randomly-generated gametes from the same individual (selfing) or a different 

individual from the same population (outcrossing) were combined to produce n progeny. 

The most fit progeny was chosen to continue each lineage. Gene flow among populations 

was accomplished by randomly choosing a single individual to that combined its gametes 

with a high-fitness individual from a different population.  

 For the first simulations only one population was used. Lineages within the 

population were allowed to self and periodically outcross with other individuals from the 

same population. The effects of the number of progeny and loci on fitness were 

examined.  In these simulations survival thresholds were set at zero so that all selfing 

lineages survived regardless of their fitness.  

For the second simulation �� = 10 populations consisting of N = 10 outcrossing lineages 

were connected by periodic gene flow every five generations. For comparison we used 

the same set ten of populations with no gene flow with either complete outcrossing or 

complete selfing, and a single large population of 100 lineages that was isolated and did 
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not experience gene flow. Inbreeding within populations led to increased homozygosity, 

but different populations tended to become fixed for different sets of alleles.  

 In the first scenario gene flow occurred between randomly-chosen pairs of 

populations. In this simulation there was no spatial structure so every population had an 

equal chance of exchanging alleles with every other population. A total of 100 loci were 

monitored one mutation was allowed to occur in each genome each generation. In the 

third simulation conditions were exactly the same as the populations of outbreeding 

individuals connected by gene flow, but we introduced spatial structure and the 

opportunity for colonization of unoccupied sites to mimic range expansion. Each 

simulation was established by colonization of five sites by one seed followed by selfing 

(as described above) at the center of the range. Once populations exceeded the 

repopulation threshold then randomly-chosen individuals that exceeded the threshold 

were chosen to contribute to repopulation in populations that had less than ten 

individuals. Colonization occurred every second generation for sites that were adjacent to 

a population where the average fitness of lineages exceeded the colonization threshold. 

Colonization proceeded from propagules produced by randomly-chosen individuals that 

exceeded the repopulation threshold. Once a population was colonized it could grow to a 

population size of ten by production of progeny from within the population (if the fitness 

was greater than the repopulation threshold) or from an adjacent population (if the 

average fitness exceeded the colonization threshold). We explored the effect of 

relatedness among populations (equivalent to the initial level of genetic diversity) by 

varying the number of loci out of 100 that were identical among individuals and 
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populations. Genetic diversity of the colonizing populations was estimated using FST as 

described in the manuscript.  
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Figure A. A2 To estimate the strength of selection, we compared the maximum fitness to 

the mean for progeny pools that ranged from n = 2 to 200.  Progeny pools were generated 

by randomly selecting from log-normal distributions, and selection was calculated as s = 

wmax – wmean for each progeny pool of size n.  We used these data to estimate the 

relationship between selection (s) and progeny number (s = 0.0198 ln(n) + 0.0276; where 

n is the number of progeny). These estimates indicate that selection increases rapidly for 

n < 100 (s = 0.04 to 0.12 for n = 2 to 100, respectively), and much more slowly when n > 

100 (e.g., s = 0.16 when n = 1000). We note that many plants are capable of producing 

hundreds of seeds each year, and the large majority of seedlings do not survive to 

reproduction.  We chose to explore a range of progeny numbers from n = 2 to 200 per 

generation for each lineage to provide a representative range of selection coefficients.  

The blue line represents calculated values from log-normal distributions and the black 

line is the best-fit relationship.   
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Methods A.A3  Nuclear microsatellite data 

Seedlings from each maternal parent were determined to be products of self- or 

outcross-fertilization using genetic markers (SSRs; Ramakrishnan et al. 2008b; Rosenthal 

et al. 2008a).  Leaf material for genetic analysis was collected from greenhouse plants, 

dried and stored on silica gels prior to extractions. DNA was extracted after leaf material 

was flash-frozen in liquid nitrogen and ground in a ball mill (Retcsh M300; Newtown, 

PA, USA); DNA was purified using DNEasy™ extraction kits (Qiagen; Valencia, CA, 

USA ). 

Nuclear genomic regions containing repeated motifs of two, three, or four bases 

were amplified following standardized protocols: 1μL of genomic DNA was amplified by 

combining 1μL of 2.5μm primer mix with 3.75μL HotStarTaq Master Mix (Qiagen), and 

2.25μL PCR grade water. The primer mixes consisted of a 10:9:1 ratio of forward primer, 

reverse primer, and fluorophore- labeled reverse primer, respectively. Cycling reactions 

were conducted either on an MJ Research P-100 (St. Bruno, Quebec, Canada) or an 

Eppendorf Master Gradient (Hauppauge, NY, USA). Reaction conditions were: 95°C for 

15min, then 95°C for 30s, 58–60°C for 45s, and 72°C for 30s for 30–40 cycles, then 

72°C for 2min. Specific cycling times and annealing temperatures varied depending on 

which primer combinations were used. All primers were developed and optimized at 

Portland State University (Ramakrishnan et al. 2008b; Rosenthal et al. 2008a) and are 

deposited in GenBank. To ensure that multiplexing had no effect on the size of the 

amplified DNA fragment, multiplexed loci were amplified singly for several individuals 

and compared to multiplex banding profiles. Microsatellite DNA fragment length 

variation was visualized on an Applied Biosystems 310 automated capillary 
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electrophoresis system (Life Technologies; Grand Island, NY, USA) with GeneScan 500 

ROX (Life Technologies) as a standard at Portland State University. Allele length 

variation was scored with Genemapper™ software (Life Technologies).  

A seedling was determined to be the product of self-fertilization if alleles at all 

eleven loci matched maternal alleles. Samples were only used in the analysis if they 

displayed non-ambiguous results at all loci. Because offspring possessing alleles that 

were not unique to the maternal plant could be the product of selfing or outcrossing with 

an individual having a similar genotype, we calculated the probability of a plant 

producing an undetectable outcross event, P(u)j (Cruzan et al. 1994). This probability can 

be found as the product across all loci of the frequency of maternal alleles in the pollen 

pool: 

                                              

 

where pik is the population frequency of allele i at locus k present in the maternal 

genotype. 

 

 

 

 

 

 

 

 

P(u)j = П  pik, 
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k=1 
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Figure A.A3 The effects of the number of populations (metapopulation size Ñ=1 to 20 

populations) on levels of genetic diversity maintained within populations (average Aa 

and AA) and fixed for all populations (Fixed for aa and AA across all lineages in all 

populations).  Selection is based on n = 100 progeny each generation for each line.  

Deleterious mutations occur at a rate of one per genome per generation (U = 1) with k = 

100 loci.  Values are from simulations after stabilization (>50 generations).   Error bars 

were too small for accurate representation. 
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Appendix B 

Supplemental Material for Chapter 3: Ecological mitigation of inbreeding depression in a 

newly invasive species. 

Figure A.B1 Competition Schematic 

 

Schematic of competition design within a raised bed in the hoophouse. Six raised beds 

total were utilized, three of which received nitrogen fertilization. A single individual of 

Brachypodium sylvaticum was planted at the center of each competition neighborhood, 

and surrounded at four corners by conspecific individuals of each competitor species 

(Holcus lanatus, Dactylis glomerata, Elymus glaucus, or Brachypodium sylvaticum). 

Focal B. sylvaticum seedlings were spaced 10 cm apart in the center of each 
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neighborhood, with competitor seedlings located at the four corners of each square At the 

edge of the raised beds “pressure plants” were planted randomly by species to control for 

competitive effect in edge neighborhoods.  
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Appendix B FIS x Nitrogen Interactions 

The inbreeding coefficient (FIS) measures the extent to which consanguineous mating 

occurs in a population and can signify fitness losses in individuals from populations with 

homozygote excess (Frankham 1997). FIS is a function of Ne, because in small 

populations even random mating may be between closely related individuals (Keller and 

Waller 2002). The inclusion of both HS and “population” or FIS and “population” 

(“population” as a categorical variable) within the same model would confound results, 

but we are including results from statistical tests using FIS in this appendix. Results from 

models substituting FIS for HS were equivalent, so these results are not described in the 

manuscript. 

The local inbreeding coefficient FIS was positive in 10 of the 11 populations 

surveyed, with an average FIS= 0.489, indicating a tendency towards inbreeding in 

invasive B. sylvaticum (Table B1). Significant differences from zero in FIS values were 

found by bootstrapping 1000 times over loci utilizing the R package hierfstat (Goudet 

2005). Seven out of 11 total populations displayed FIS values that deviated from zero 

(Table B1), and there is a significantly positive relationship between HS and FIS as 

indicated by a Pearson correlation coefficient of R = 0.7042 (p = 0.02). 

Incremental seasonal growth was predicted by FIS. Individuals from populations 

with low FIS had increased vegetative growth throughout the first (F1, 15 = 11.00, p = 

0.0010) and third experimental seasons (F1, 9 = 18.21, p < 0.0001). The Nitrogen x FIS 

interaction influenced final plant size, as nitrogen addition significantly increased the size 
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of individuals from high FIS populations (F1, 15= 3.28, p = 0.0004; Figure B1). Mean final 

size of individuals sourced from high FIS populations with nitrogen addition was equal to 

132.27 ± 12.53 (tiller number x height) compared to a mean final size of 43.53 ± 3.66 

(tiller number x height) for plants grown without nitrogen addition (Figure B1). 

Individuals from low FIS sources were associated with greater final leaf chlorophyll 

content (F1,16 = 5.89, p =0.0156). 

 

 

 

 

 

 

Table A.B1: Location information, HS, HO, and FIS values for B. sylvaticum populations.  
 

Site Code Latitude Longitude N HS HO FIS 

C1 44° 39' 35"  -124° 45' 41" 24 0.26 0.017 0.936* 

E1 43° 57' 35"  -123° 15' 49" 34 0.276 0.085 0.692* 

E4 44° 0' 48"  -123° 7' 30" 14 0.042 0.036 0.148 

E6 43° 59' 47"  -123° 12' 3" 24 0.37 0.073 0.817* 

E7 43° 58' 29"  -123° 21' 13" 21 0.097 0.043 0.561* 

E9 43° 58' 26"  -123° 7' 36" 24 0.392 0.176 0.544* 

M16 44° 22' 19" -123° 22' 45" 24 0.297 0.19 0.361* 

M3 44° 23' 45" -122° 28' 13" 21 0 0 - 

M5 44° 24' 30" -122° 36' 22" 21 0.2 0.05 0.61 

M7 44° 24' 7" -122° 39' 59" 21 0.34 0.14 0.6 

S1 44° 45' 14" -123° 28' 56" 29 0.063 0.086 -0.379* 

Asterisks indicate a significant departure from zero (p < 0.05). 
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Figure A.B2 (A) Nitrogen x HS and (B) Nitrogen x FIS interaction effects on final size 

(height x tiller) of B. sylvaticum focal plants. In (A) black bars indicate low HS, white bars 

indicate high HS. In (B), black bars indicate high FIS, white bars indicate low HS. 

Categories were chosen based on natural breaks in the distribution of values: Low HS: 0 

to 0.097, High HS: 0.2 to 0.392; Low FIS: -0.379 to 0.361, High FIS: 0.544 to 0.936. A 

low HS and a high FIS are associated with a historically small population size (Ne). 

Asterisks represent a significant difference (p < 0.05) between individuals from 

populations within respective nitrogen treatments. Error bars represent  

± SE. 
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Supplemental Material for Chapter 4: Selective differentiation during the colonization 

and establishment of a newly invasive species 

 

Methods A.C1 Microsatellite survey of worldwide populations of B. sylvaticum 

Nuclear genomic regions containing repeated motifs of two, three, or four bases were 

amplified following standardized protocols: 1 μL of genomic DNA was amplified by 

combining 1 μL of 2.5 μm primer mix with 3.75 μL HotStarTaq Master Mix, and 2.25 μL 

PCR grade water. The primer mixes consisted of a 10 : 9 : 1 ratio of forward primer, 

reverse primer, and fluorophore-labelled reverse primer, respectively. Cycling reactions 

were conducted either on an MJ Research P-100 thermal cycler or an Eppendorf Master 

Gradient. Reaction conditions were: 95 °C for 15 min, then 95 °C for 30 s, 58–60 °C for 

45 s, and 72 °C for 30 s for 30–40 cycles, then 72 °C for 2 min. Specific cycling times 

and annealing temperatures varied depending on which primer com- binations were used. 

All primers were developed and optimized at Portland State University (Ramakrishnan et 

al. in press) and are deposited at GenBank (Accession nos EF450748, EF450751, 

EF450752, EF450754, EF450756, EF450757, EF450759, EF450765). To ensure that 

multiplexing had no effect on the size of the amplified DNA fragment, multiplexed loci 

were amplified singly for several individuals and compared to multiplex banding profiles. 

Microsatellite DNA fragment length variation was visualized on an Applied Biosystems 

310 automated capillary electrophoresis system with GeneScan 500 ROX as a standard at 

Portland State University. Allele length variation was scored with genotyperTM software 

(Applied Biosystems). Observed (Ho) heterozygosity was calculated using genalex 

(Peakall & Smouse 2006).  

 

 

 

Methods A.C2 Climatic comparison across native and invasive populations of B. 

sylvaticum. 
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Climatic data for Oregon, USA populations were obtained from the Prism Group, 

Oregon State University (http:/www.prismclimate.org), climatic data for native source 

populations located throughout Europe, the Middle East, and Asia were obtained using 

WorldClim Version 1(worldclim.org). From the obtained climatic data, we calculated 

potential evapotranspiration (PET) for each site using Malmstrom’s (1969) method as  

�� = 40.9 ×  %&  � 

where %&  � is the saturation vapor pressure at the mean daily temperature at each site 

(Malmstrom 1969). We then calculated aridity (A) for each site as 

' = � �� ⁄  

where P is the monthly precipitation and PET is the monthly potential evapotranspiration 
(Budyko 1974; Thornthwaite 1948). 

 

Figure A.C1 Comparison of aridity in invasive and native regions of the invasive grass 

B. sylvaticum. 
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Supplemental Materials for Chapter 5: Trait divergence, not plasticity, determines the 

success of a newly invasive plant 

Table A.D1 Location information for sampled populations of Brachypodium sylvaticum. 

Code Location Latitude Longitude 

  NATIVE     

ESH England, Shropshire  52° 37' 32"  -3° 44' 14" 

ES England, Surrey  51° 23' 24"  -1° 22' 48" 

SPIN Huesca, Spain  42° 8' 12"  -1° 35' 24" 

TUN Tunisia  34° 32' 29"  9° 13' 20" 

Gerh German Halle  51° 28' 12"  11° 57' 36" 

Gerl German Leipzig  51° 20' 24"  12° 22' 48" 

IC Italy, Calabria  39° 31' 48"  16° 12' 36" 

ICB Italy, Calabria 2  39° 32' 18"  16° 12' 31" 

IP Italy, Puglia  40° 52' 48"  16° 45' 36" 

GIK Greece, Kerkira  39° 31' 48"  19° 55' 48" 

SES 
Slovakia, East 
Slovakia 

 48° 49' 41"  20° 9' 4" 

SER Vlakca, Serbia  44° 10' 17"  20° 41' 54" 

GII Greece, Ioannina  29° 40' 12"  20° 50' 24" 

GIP Greece, Ioannina 2  29° 40' 12"  20° 50' 24" 

GTC Greece, Larrisa  39° 32' 47"  22° 8' 11" 

GMT Greece, Thessaloniki  40° 37' 48"  22° 57' 36" 

UKR Ukrain, Krym  44° 24' 14"  33° 49' 30" 

TUR Turkey, Gerze, Sinop  41° 49' 2"  35° 1' 24" 

RUS Russian Federation  45° 0' 24"  41° 58' 29" 

IRAN Iran  35° 5' 21"  52° 20' 20" 

KAZ Kazakastan, Alma Ata  43° 16' 24"  76° 55' 54" 

  INVASIVE      

C1 Corvallis  44° 39' 35"  -124° 45' 41" 

C6 Hwy22  44° 45' 19"  -123° 36' 42" 

C10 Corvallis  44° 23' 29"  -124° 38' 4" 

E1 Eugene  43° 57' 35"  -123° 15' 49" 

E4 Eugene  44° 0' 48"  -123° 7' 30" 

E6 Eugene  43° 59' 47"  -123° 12' 3" 

E7 Eugene  43° 58' 29"  -123° 21' 13" 

E9 Eugene  43° 58' 26"  -123° 7' 36" 

M1 Fish_Ck_Cmpgrnd  44° 23' 54"  -123° 39' 18" 

M16 Cedar & Wiley  44° 22' 19"  -123° 22' 45" 

S1 Fisherman's Bend   44° 45' 14"  -123° 28' 56" 
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Figure A.D1 Probabilities of genetic contribution from multilocus genotypes. 

Probabilities are used as weights in statistical analysis.  

 Detailed methods of the microsatellite survey performed for determination of 

genetic weights of contribution are detailed in Marchini and Cruzan (unpublished). 
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