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Abstract 

Viruses infecting the Archaea exhibit a tremendous amount of 

morphological and genetic diversity.  This is especially true for crenarchaeal 

viruses from the family Fuselloviridae, which possess spindle-shaped capsids 

and genomes that harbor a great number of uncharacterized genes.  The 

functions of these unidentified gene products are of interest as they have the 

potential to provide valuable insights into the fusellovirus infection cycle and 

archaeal viruses in general.  In an effort to better characterize the genetic 

requirements of the Fuselloviridae, we have performed genetic and biochemical 

experiments using the best studied fusellovirus, Sulfolobus spindle-shaped virus 

1 (SSV1).   

A comprehensive genetic analysis of SSV1 was conducted using long 

inverse PCR and transposon mutagenesis.  The results of this work illustrate that 

SSV1 is highly tolerant of mutagenesis.  A robust protocol for the purification of 

recombinant VP2 protein from E. coli was developed and should be useful for 

future studies aimed at characterizing the biochemical and structural 

characteristics of this SSV1 structural protein.  Finally, the first insights into a 

fusellovirus infection are presented and provide the framework for a detailed 

characterization of the fusellovirus infection cycle.  The results and significance 

of this work are presented in the chapters that follow. 
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Chapter 1: Introduction  
 
The Archaea and their viruses 

 The pioneering work of Carl Woese in the late 1970’s formally introduced 

the scientific community to the Archaea and triggered a paradigm shift in the way 

we looked at the interrelatedness of life on planet Earth (Woese and Fox, 1977; 

Albers et al., 2013).  Later it was shown that the Archaea share traits with both 

Bacteria (compact genomes, genes arranged in operons, metabolism) and 

Eukarya (information processing systems) and as well as possess their own 

unique attributes (Zillig et al., 1991; Brochier-Armanet and Forterre 2011; Barry 

and Bell, 2006; Makarova and Koonin 2013).  The Archaea are often thought to 

be exclusively extremophilic but it has become clear that in addition to populating 

some of the planet’s most extreme environments, they can be found almost 

everywhere (Delong 1998; Schleper et al., 2005).  However, it is their ability to 

thrive in the most extreme conditions on the planet that has made them very 

suitable subjects for studies into the origins of life and astrobiology.  Furthermore, 

the similarities of their information processing systems with Eukaryotes and their 

general ease of manipulation has made them great surrogates in the laboratory 

(Cavicchioli 2011).   

 The advent of whole genome sequencing has greatly expanded our 

knowledge of microbial diversity, especially within the Archaea.  The Archaea 

have been divided into three phyla (Crenarchaea, Euryarchaea, and 

Thaumarchaea) and three candidate phyla (Nanoarchaea, Korarchaea, and 
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Aigarchaeota) have been proposed (Brochier-Armanet and Forterre 2011).  The 

Euryarchaea, Crenarchaea, and Nanoarchaea all include hyperthermophiles 

(Stetter et al., 2006).  Members of the crenarchaeal genus Sulfolobus were some 

of the first hyperthermophiles to be isolated and are some of the best studied 

Archaea (Brock et al., 1972).  Sulfolobus thrive in high temperature (70-80ºC) 

and low pH (2-4) hot-spring environments throughout the world (Whitaker et al., 

2003).  Because Sulfolobus grows aerobically it is much more straightforward to 

manipulate in the lab than most other hyperthermophiles, which are strict 

anaerobes.  Furthermore, a number of diverse extrachromosomal genetic 

elements have been identified and isolated from many members of Sulfolobus, 

including some truly novel and unique viruses (Lipps et al., 2006; Prangishvili 

2013; Wang et al., 2015).  

 Viruses infecting Archaea, particularly the Crenarchaea, harbor a 

tremendous amount of genomic and morphological diversity (Prangishvili et al., 

2006; Krupovic et al., 2011).  Archaeal virus genomes are linear or circular 

dsDNA, with the exception of two recently discovered ssDNA viruses, one of 

which encodes the largest ssDNA genome of any known virus (Mochizuki et al., 

2012; Pietilä et al., 2009).  No RNA virus infecting Archaea has been isolated to 

date but a metagenomic analysis of a hot spring in Yellowstone National Park 

has hinted at their possible existence (Bolduc et al., 2012).  The vast majority of 

archaeal virus genes do not have recognizable homologues in public databases, 

even when compared to other archaeal viruses (Prangishvili et al., 2006).  
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Furthermore, a number of unique virion morphologies have been observed that 

do not appear in the other domains, including spindle-shaped, bottle-shaped, and 

droplet-shaped virions (Prangishvili et al., 2013).  These fascinating and 

Archaea-specific architectures undoubtedly have a lot to teach about viral 

evolution as well as protein stability and protein folding in extreme environments 

(Snyder et al., 2015).  

 Virions with a spindle-shaped morphology have routinely been observed in 

geothermal and halophilic environments that are rich in Archaea (Luk et al., 

2014; Prangishvili et al., 2013).  These viruses have been divided into two viral 

families, the short-tailed Fuselloviridae (also known as SSVs) and the long-tailed 

Bicaudaviridae (ICTV 2014 release).  An additional unassigned genus has been 

proposed, the Salterprovirus, and includes the halophilic virus His1 (Krupovic et 

al., 2014).  Acidianus two-tailed virus (ATV), the only official member of the 

Bicaudaviridae, has been well studied and is best known for the unique 

development of two tails independently of and external to the host (Häring et al., 

2005).  ATV exhibits no significant genetic similarity with viruses in the 

Fuselloviridae, including the major capsid protein (MCP) (Krupovic et al., 2014; 

Appendix A).  Several viruses with morphologies similar to fuselloviruses have 

been isolated but appear to share no significant genetic identity with the 

fuselloviruses other than two moderately similar hydrophobic patches within the 

MCP.  Because of the weakly similar MCPs, it has been proposed that these new 

viruses be classified as fuselloviruses (Krupovic et al., 2014).   
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Architecture of archaeal virions: A mix of old and new 

 Archaeal viruses display a tremendous amount of morphological diversity.  

In addition to the classical bacteriophage architectures (e.g. head-tail, 

icosahedral and helical morphologies), archaeal viruses exhibit numerous bizarre 

structures that have never before been observed in viruses from the other 

domains (Prangishvili 2013; Figure 1-1).  This seems to be especially true for 

archaeal viruses isolated from thermophilic environments.  While this may be 

attributable to sampling bias, perhaps the prevalence of unique morphologies in 

these hostile environments reflects some fundamental adaptation to life in these 

inhospitable conditions.  Regardless, archaeal virus morphologies and the 

structures of the proteins that comprise them have been instrumental in altering 

the way we look at viral relationships among the three domains. 

 Due to the limited number of solved structures and practically non-existent 

sequence homology, it is unclear just how many unique protein folds are utilized 

by the MCPs (major capsid proteins) of archaeal viruses.  However, it is clear 

that at least a few archaeal viruses utilize some of the more ubiquitous protein 

folds to form their capsids.  The MCP of the icosahedral virus STIV1 exhibits a 

double jelly-roll motif that has been observed in the bacteriophage PRD1, 

eukaryotic NCLDVs, and human adenovirus (Khayat et al., 2005; Veesler et al., 

2013).  More recently, a single jelly-roll motif was observed in the MCP of the 

haloarchaeal virus SH1 (Jäälinoja et al., 2008).  Additionally, the HK97 fold found 

in the bacteriophage HK97 and eukaryotic herpesvirus was also recently 
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observed in the haloarchaeal virus HSTV1 (Pietilä et al., 2013).  The presence of 

conserved virion architectures reveals potential hidden evolutionary relationships 

and implies the existence of a common ancestor prior to the split of the three 

domains (Khayat et al., 2005; Benson et al., 2004).   

 

 
Figure 1-1: Transmission electron micrographs displaying morphological diversity of known 
archaeal viruses.  
Acidianus two-tailed virus (ATV); Acidianus rod-shaped virus 1 (ARV1); Acidianus bottle-shaped 
virus (ABV); Acidianus filamentous virus 3 (AFV3); Aeropyrum pernix bacilliform virus 1 (APBV1); 
Aeropyrum coil-shaped virus (ACV); Sulfolobus spindle-shaped virus 6 (SSV6); Sulfolobus 
turreted icosahedral virus 2 (STIV2); Aeropyrum pernix ovoid virus 1 (APVO1); Aeropyrum pernix 
spindle-shaped virus 1 (APSV1).  Bars, 100 nm.  Image from Prangishvili 2013. 
 
Sulfolobus spindle-shaped virus 1 (SSV1): 

 SSV1 (Sulfolobus shibatae virus 1, also Sulfolobus spindle-shaped virus 1) 

was the first-isolated and is probably the best-studied fusellovirus (Yeats et al., 
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1982; Martin et al., 1984; Schleper et al., 1992; Contursi et al., 2014).  The 

original host S. shibatae (isolated in Beppu, Japan and misidentified as S. 

acidocaldarius) was noticed to harbor double-stranded plasmid DNA (Yeats et 

al., 1982) and later found to produce lemon- or spindle-shaped particles following 

exposure to UV light (Martin et al., 1984).  Schleper et al. later showed that S. 

solfataricus could be transfected with this extrachromosomal DNA, resulting in 

the integration of the DNA and the production of lemon-shaped particles 

(Schleper et al., 1992).  Fuselloviruses have since been isolated from hot spring 

environments in Iceland (SSV2, SSV3, SSV4, SSV5, SSV6, and SSV7), 

Yellowstone National Park (SSV8), and Kamchatka, Russia (SSV9) (Prangishvili 

2013).  Acidianus spindle-shaped virus 1 (ASV1) was discovered in the process 

of sequencing the genome of Acidianus brierleyi and is the only identified 

fusellovirus shown to infect a non-Sulfolobus host (Redder et al., 2009).  A 

fusellovirus genome was identified in a Mexican hot spring metagenome, 

however no virions were isolated and a few core fusellovirus genes appear to be 

missing (Servin-Garcidueñas et al., 2013; Table 1-2).  A comprehensive analysis 

of fusellovirus host range determined that geography is not a reliable predictor of 

host susceptibility and found SSV1 to exhibit the narrowest host-range while 

SSV9 exhibits the broadest range (Ceballos et al., 2012; Held and Whitaker 

2009).   

 The 15,465 bp SSV1 genome encodes 35 open reading frames (ORFs) and 

exists in a positively supercoiled topological state within the virion (Nadal et al., 
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1986; Palm et al., 1992; Fusco et al., 2013; Figure 1-3).  It is unclear how positive 

supercoiling arises or if other fusellovirus genomes are also positively 

supercoiled (Nadal et al., 1986).  The SSV1 genome exists integrated into a host 

arginyl tRNA gene and also as a circular episome (Yeats et al., 1982).  As 

discussed below, the function the vast majority of SSV1 proteins (and fusellovirus 

proteins in general) is unknown, although progress has been made using 

structural and comparative genomics (Lawrence et al., 2009; Prangishvili et al., 

2006; Chapter 2).  The SSV1 integrase is the only protein for which a definitive 

function can be assigned on the basis of sequence alone (Palm et al., 1991).  

Interestingly, SSV1 remained infectious when the integrase gene was deleted 

(Clore and Stedman 2006).  However, SSV1-∆int virus was rapidly outcompeted 

by the wild-type virus, suggesting that the universally conserved integrase plays 

an important role in the success of SSV1 (Clore and Stedman 2006).   

 Fusellovirus virions are ~100 nm x ~60 nm by negative stain transmission 

electron microscopy (TEM) and contain small tail fibers protruding from one end 

of the capsid that often bind with the tail fibers of other virions to form 

characteristic rosettes (Figure 1-2).  A recent study illustrated that SSV1 

aggregates were partially broken up by the addition of 1M NaCl and could be 

further disrupted by treatment with 1% ethanol, suggesting that inter-tail fiber 

interactions are ionic and hydrophobic in nature (Quemin et al., 2015).  

Interestingly, SSV6 and ASV1 virions display morphologically different tail fibers, 

resulting in virions that do not appear to form rosettes.  Furthermore, SSV6 and 
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ASV1 exhibit pleiomorphic morphologies not observed in the other fuselloviruses 

(Redder et al., 2009). 

 The structure of SSV1 was solved to a resolution of 32 Å using cryo-EM 

microscopy and has given the first insights into the architecture and assembly of 

spindle-shaped viruses (Stedman et al., 2015).  The capsid of SSV1 is composed 

of structural proteins VP1 and VP3 while the tail fiber is presumably formed by 

the VP4 protein (Reiter et al., 1987a; Menon et al., 2008; Redder et al., 2009; 

Quemin et al., 2015).  The structure of the SSV1 virion indicates that the size of 

the SSV1 tail structure is of a similar size with pores in the glycoprotein S-layer of 

the host, strengthening the hypothesis that the tail fibers are used in host 

recognition and attachment (Stedman et al., 2015).   

 One additional protein was identified in SSV1 virions via mass 

spectrometry, the putative PD-(D/E)-XK-like nuclease D244, however, D244 was 

not identified in a more recent analysis (Menon et al., 2008; Menon et al., 2010; 

Quemin et al., 2015).  Although not visible in the cryo-EM structure, host-derived 

tetraether lipids were identified in highly purified SSV1 virions, clearing up a long-

standing debate on their presence in SSV1 virions (Quemin et al., 2015).  VP1, 

VP3, and VP4 were all shown to be post-translationally glycosylated in purified 

SSV1 virions (Quemin et al., 2015).  Although the site of glycosylation is 

unknown, each protein encodes two or more copies of the consensus sequence 

recognized by the host Sulfolobus glycosylation apparatus (Quemin et al., 2015).  

The major capsid protein of STIV1 is also known to be glycosylated, suggesting 
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glycosylation may be wide spread in the structural proteins of crenarchaeal 

viruses (Maaty et al., 2006).  

 A high contour level image of the SSV1 capsid allows for the approximate 

placement of seven potential capsomers in a hexagonal lattice.  Interestingly, the 

distance between capsomers is only ~ 50 Å, significantly smaller than the 

distance between capsomers exhibiting more canonical jelly-roll or HK97 folds.  

This, along with the total absence of sequence homology from the SSV1 MCP, 

strongly suggests that the SSV1 MCP does not adopt either of these well known 

folds.  Confirmation of this hypothesis awaits a higher resolution structure of 

SSV1 and/or the capsid proteins VP1 and VP3 (Stedman et al., 2015). 

 A novel viral release mechanism involving the construction of pyramid-like 

structures on the host cell membrane has been characterized for the two 

unrelated lytic crenarchaeal viruses, STIV1 and SIRV1 (Bize et al., 2009; 

Brumfield et al., 2009).  The viral gene responsible for the production of these 

pyramid-like structures has been identified, however, no obvious homologue is 

present in the Fuselloviridae nor has any similar structure been reported or 

observed during a fusellovirus infection (personal observation).  Host-derived 

tetraether lipids were recently found associated with SSV1 virions by mass 

spectrometry, strengthening the long-held hypothesis that SSV1 release occurs 

via budding (Quemin et al., 2015).  However, the specifics of fusellovirus egress 

remain mostly unclear and await further research.   
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Figure 1-2:  Transmission electron micrographs displaying rosette aggregates of SSV9 particles.  
Particles are approximately 90 x 60 nm.  Diessner and Stedman, unpublished. 
 

Following its discovery, SSV1 (then known simply as a virus-like particle 

or VLP) was instrumental in the work of Wolfram Zillig and colleagues that 

showed archaeal promoters are homologous to eukaryotic RNA polymerase II 

promoters (Reiter et al., 1988).  As work with hyperthermophilic Archaea began 

to intensify, the need for genetic tools increased.  Because SSV1 DNA is readily 

transformed into Sulfolobus, the virus efficiently spreads throughout a culture 

without apparent lysis, and cells cannot be cured of infection, there was interest 

in exploiting SSV1 as a genetic tool (Schleper et al., 1992).  Stedman et al. 

(1999) were the first to show that SSV1 can stably maintain large insertions of 
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DNA (2.96 kb) without any obvious adverse effects.  This work identified a 

number of sites in the SSV1 genome amenable to insertion, providing the first 

evidence for essential and non-essential SSV1 open reading frames (ORFs) as 

well as providing the first viral-based shuttle vectors for Sulfolobus.  Shuttle 

vectors have since allowed for the creation of deletion mutants in SSV1 using 

long inverse PCR (LIPCR), expanding the toolbox of SSV genetics (Clore and 

Stedman 2006; Iverson and Stedman 2012; Chapters 2 and 3). 

 
Comparative genomics of archaeal viruses 

 Bioinformatic techniques (e.g. BLAST) can provide valuable information 

about the function of uncharacterized proteins, helping to guide experimental 

studies (Prangishvili et al., 2006).  Because these techniques depend on the 

presence of detectable sequence similarity, they are severely limited in their 

application when analyzing the virosphere where more than one-third of the 

ORFs lack recognizable homology to known ORFs in the public databases (Yin 

et al., 2008).  This seems to be even more pronounced for viruses infecting the 

Archaea, where it is not uncommon for greater than 90% of the ORFs to lack 

recognizable homologs (Prangishvili et al., 2006).  Structural genomics has 

proven to be a viable alternative, but is time consuming and inefficient (see 

below).  

 An exhaustive analysis of all crenarchaeal virus genomes was conducted 

using sensitive bioinformatic tools in an effort to tease out any homology that 
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could have been missed by previous studies (Prangishvili et al., 2006).  While 

some new homologs were detected, the function of the majority of archaeal virus 

ORFs remained mysterious.  Small ribbon-helix-helix (RHH) and helix-turn-helix 

(HTH) proteins were shown to be very common in crenarchaeal viruses, most of 

which are probably involved in transcription regulation of the virus and/or host.  

SSV1 was predicted to contain two RHH proteins, SSV1-C80 and SSV1-E51.  A 

homolog of SSV1-E51 (SSV8-E73) was characterized and confirmed to contain 

the RHH structural motif (Schlenker et al., 2012).  A putative HTH-containing 

protein was also predicted to be encoded in SSV1 (encoded by ORF f93) and the 

structure was later confirmed experimentally (Kraft et al., 2004a).  Interestingly 

the product of ORF f112 of SSV1 was shown to have a HTH motif yet was not 

predicted by Prangishvili et al., serving as a reminder that bioinformatic 

predictions are incomplete (Menon et al., 2008).  Somewhat surprisingly, three 

putative SSV1 proteins (SSV1-B129, SSV1-A79, and SSV1-A45) are predicted to 

contain C2H2 Zn-finger (ZNF) structural motifs.  C2H2 ZNF motifs are ubiquitous in 

eukaryotes but are not common in bacteria or Archaea (Prangishvili et al., 2006).  

However, this motif does seem to be common in the Fuselloviridae and other 

crenarchaeal viruses (Prangishvili et al., 2006). 

 A few other SSV1 ORF products have been assigned putative functions 

based on homology.  The SSV1 integrase belongs to the tyrosine recombinase 

family of proteins and was initially the only SSV1 protein to which a function 

could be assigned on the basis of sequence alone (Palm et al., 1991; 
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Muskhelishvili et al., 1993; Serre et al., 2002).  SSV1 ORF d244 was predicted to 

encode a RecB-like endonuclease and a homolog (from SSV8 ORF d212) was 

later shown to exhibit a nuclease-like fold (Prangishvili et al., 2006; Menon et al., 

2010).  Finally, the product of SSV1 ORF b251 was predicted to contain a NTP-

binding motif characteristic of P-loop ATPases and exhibits limited similarity to 

the bacterial replication initiation protein DnaA (Koonin, 1992).  A recent 

comprehensive bioinformatic analysis of crenarchaeal virus ATPases classifies 

SSV1-B251 and all fusellovirus homologs of this ORF as lon-like proteases 

(Happonen et al., 2014).   

 
Comparative genomics of fuselloviruses 

 Since the publication of the SSV1 genome in 1992, eleven other 

fusellovirus-like genomes have been reported (Table 1-1).  Comparative genomic 

analyses of fusellovirus genomes have been useful in determining the core 

fusellovirus genome (i.e. ORFs found in all fuselloviruses) as well as providing 

clues for the functions of some fusellovirus proteins (Redder et al., 2009; Held 

and Whitaker 2009; Figure 1-3 and Table 1-2).  Additionally, the more 

fusellovirus genomes that are sequenced will enable the identification of ORFs 

that are likely bonafide protein coding genes (Prangishvili et al., 2006).   

 All fusellovirus genomes are double-stranded, circular DNA approximately 

14.5 – 17.5 kb in length, with the exception of the ~24 kb genome of ASV1 

(Redder et al., 2009; Table 1-1).  Fusellovirus genomes exhibit an interesting 



! 14!

dichotomy: one half of the genome contains highly conserved ORFs while the 

other half exhibits significantly higher variation (Figure 1-3).  Nucleotide 

sequence similarity between fuselloviruses generally occurs in small regions of 

the genome, typically within conserved ORFs (Redder et al., 2009).  The 

fusellovirus “core” genome has steadily decreased as more fusellovirus genomes 

have been sequenced (Stedman et al., 2003; Wiedenheft et al., 2004; Redder et 

al., 2009).  A number of putative transcription factors are encoded in the region of 

the fusellovirus genome corresponding to the conserved T5 and T6 “early” 

transcripts, implicating them in regulation of viral and/or host transcription as well 

as viral DNA replication (Fröls et al., 2007; Redder et al., 2009).  All 

fuselloviruses encode a tyrosine recombinase that is responsible for viral 

integration into a host tRNA gene (Reiter et al., 1989).  As expected, all 

fuselloviruses harbor well-conserved VP1 and VP3 homologues, however, only 

SSV1, SSV6, ASV1, and SMF1 encode a VP2 homolog (Redder et al., 2009; 

Servin-Garcidueñas et al., 2013).   

 Discovery of SSV6 and ASV1 led to the identification of putative tail-fiber 

encoding modules in the Fuselloviridae (Redder et al., 2009).  The ASV1 and 

SSV6 putative tail fiber module is clearly distinct from the other fuselloviruses 

and corresponds to a morphologically distinct tail structure and virions that are 

not prone to forming rosettes.  Homologues of SSV1-A153 and SSV1-B251 are 

present in every fusellovirus and surprisingly in the satellite virus pSSVx, leading 

to the hypothesis that these ORFs are involved in packaging (Arnold et al., 
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1999).  The discovery of the satellite pSSVi has cast doubt on this hypothesis as 

pSSVi is likewise packaged into fusellovirus-like particles but does not encode 

SSV1-B251 or SSV1-A153 homologs (Wang et al., 2007; Figure 1-3). 

Table 1-1: List of fusellovirus genomes 

Virus Genome 
Size (bp) # of ORFs Accession Reference 

SSV1 15,465 35 NC_001338 Palm et al., 1991 
SSV2 14,795 35 NC_005265 Stedman et al., 2003 
SSV3 15,230 32 n/a Stedman et al., 2006 
SSV4 15,135 34 NC_009986 Peng 2008 
SSV5 15,330 34 NC_011217 Redder et al., 2009 
SSV6 15,684 33 NC_013587 Redder et al., 2009 
SSV7 17,602 33 NC_013588 Redder et al., 2009 
SSV8 A 16,473 37 NC_005360 Wiedenheft et al., 2004 
SSV9 B 17,385 31 NC_005361 Wiedenheft et al., 2004 
SSVL 14,461 31 n/a Personal communication 
ASV1 24,186 38 NC_013585 Redder et al., 2009 
SMF1 C 14,847 24 NC_020882 Servin-Garcidueñas et al., 2013 

A SSV8 formerly referred to as Sulfolobus spindle-shaped virus Ragged Hills 
B SSV9 formerly referred to as Sulfolobus spindle-shaped virus Kamchatka 
C The genome sequence of SMF1 was constructed from a metagenome, a viral particle 
   has not been isolated 
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Figure 1-3: Map of the SSV1 genome.   
Block arrows denote SSV1 ORFs and are labeled as in Palm et al., 1992 and Fusco et al., 2013.  
Black filled ORFs denote those that are universally conserved and belong to the fusellovirus core 
(Table 1-2), grey-filled ORFs are not universally conserved.  Thin arrows on interior indicate 
known SSV1 viral transcripts (Reiter et al., 1987; Fröls et al., 2007; Fusco et al., 2013).  ORF 
labels in red indicate proteins identified in purified SSV1 virions (Menon et al., 2008; Quemin et 
al., 2015).  Labels with an asterisk (*) denote ORFs that have been structurally characterized 
(See text for references).  The eleven fusellovirus genomes used for this analysis: SSV1, SSV2, 
SSV3, SSV4, SSV5, SSV6, SSV7, SSV8, SSV9, SSVL, and ASV1 (Table 1-1).   
 
Table 1-2: Open reading frames comprising the fusellovirus core 

SSV1 ORF Annotation Reference 
VP1 Major capsid protein Reiter et al., 1987 
VP3 Minor capsid protein Reiter et al., 1987 
Integrase Integrase Mushkelishvili et al., 1993 
A153 Unknown N/A 
A82 Unknown N/A 
A92 Unknown N/A 
B115 Putative HTH transcription regulator Prangishvili et al., 2006 
B129 Putative C2H2 ZNF transcription regulator Lawrence et al., 2009 
B251 ATPase, DnaA homologue, lon-like protease Koonin 1992 
B277 Unknown N/A 
C84 Unknown N/A 
C166 Unknown N/A 

!! SSV1 ORFs named as in Palm et al., 1992.  Fusellovirus core ORFs determined by 
comparing the proteins from 11 fusellovirus genomes (Table 1-1).  SMF1 was omitted from 
this survey as it is unclear if it is a complete fusellovirus genome (Servin-Garcidueñas et al., 
2013).   

 
Archaeal virus protein structure and function 

 Because the vast majority of archaeal virus proteins exhibit little-to-no 

homology to known sequences, structural studies have been initiated on the 

basis that the three-dimensional structure of a protein is conserved on an 

evolutionary time scale and has the potential to reveal homologs that would 

otherwise have gone undetected (Lawrence et al., 2009; Dellas et al., 2013).  

The results of over ten years of structural studies on archaeal viruses has shown 

that the vast majority of solved structures (~80%) conform to previously known 
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protein folds, despite practically non-existent sequence similarity.  This trend 

holds true for the fuselloviruses, from which nine structures have been solved 

(Lawrence et al., 2009; Dellas et al., 2013). 

 Archaeal viruses, including fuselloviruses, seem to encode a large number 

of DNA binding proteins that may be involved in transcription regulation 

(Prangishvili et al., 2006).  The winged helix-turn-helix (wHTH) motif is present in 

the crystal structures of the protein products of ORFs f93 and f112 from SSV1 

and the crystal structure of STIV1-F93 (Kraft et al. 2004a; Menon et al., 2008; 

Larson et al., 2007a).  SSV1-F93 was shown to exist as a dimer in solution and is 

hypothesized to recognize a palindromic or pseudo-palindromic DNA sequence 

on the host chromosome, as no binding site in the SSV1 genome could be 

identified (Kraft et al., 2004).  Interestingly, a well-conserved motif (LTEKG) is 

found near the N-terminus of all three fusellovirus F93 homologs (SSV1-F93, 

SSV9-E81 and ASV1-95) and also in STIV1-F93.  This patch appears to be 

distant from the DNA-binding interface and could be involved in interactions with 

another protein, most likely host-derived (Larson et al., 2007a; Appendix B).  The 

product of SSV1 ORF f112 unexpectedly crystallizes as a monomer and 

apparently also exists as a monomer in solution, although it is possible the 

disordered N-terminus of SSV1-F112 may be involved in interactions with an 

unidentified protein to form a heterodimer (Menon et al., 2008). 

 The solution structure of the product of ORF e73 from SSV8 has been 

solved and displays a RHH motif (Schlenker et al., 2012).  RHH motifs have not 
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been observed in eukaryotes but seem to be very common in Bacteria, Archaea, 

and their viruses (Schreiter et al., 2007).  SSV8-E73 is well conserved within the 

Fuselloviridae, with homologs found in six of the 12 published fusellovirus 

genomes (Appendix B).  However, the SSV8-E73 homolog in SSV1 (SSV1-E51) 

lacks the C-terminal extension found in other fusellovirus homologues.  SSV8-

E73, like almost all RHH proteins, exists as a dimer in solution.  The DNA-binding 

site of SSV8-E73 has not been identified.  However, SSV8-E73 does exhibit non-

specific DNA-binding that can be completely abolished by a K11E mutation in the 

antiparallel Beta-sheet predicted to make base-specific contacts with the DNA 

(Schlenker et al., 2012).  It should be noted that this mutation does not affect the 

structure of the protein.  In addition to the product of SSV1 ORF e51, the 

products of SSV1 ORFs c80 and f55 are also predicted to display RHH structural 

motifs (Prangishvili et al., 2006; Fusco et al., 2013).   

 Several fusellovirus proteins are predicted to or have been shown to 

encode one or more zinc finger motifs (ZNF) (Prangishvili et al., 2006).  SSV1 

encodes three putative proteins containing the ZNF motif (SSV1-B129, SSV1-

A79, and SSV1-A45), all of which occupy the same T6 “early” transcript (Reiter et 

al., 1987b; Prangishvili et al., 2006; Fröls et al., 2007).  The crystal structure of 

the product of the universally conserved SSV1 ORF b129 has been solved and 

shown to contain tandem C2H2-type ZNF motifs (Lawrence et al., 2009).  

Additionally, SSV1-B129 has been shown experimentally to nonspecifically bind 

dsDNA (Lawrence, personal communication).  The protein AFV1p06 from 
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Acidianus filamentous virus 1 (AFV1) also contains a C2H2-like ZNF motif and 

has homologs in seven of the 12 published fusellovirus genomes, including 

SSV1-A45 (Guillere et al., 2013).  AFV1p06 and fusellovirus homologues encode 

a well-conserved hydrophobic C-terminal extension that is distant from the 

putative DNA-binding interface that is hypothesized to be involved in protein-

protein interactions that may play a regulatory role (Guillere et al., 2013).   

 Structures of several non-DNA-binding proteins have also been reported.  

The crystal structure of the catalytic domain of the SSV1 integrase, the first 

archaeal integrase structure solved, yielded insights into the mechanism of 

fusellovirus integration (Eilers et al., 2012).  The crystal structure of the product 

of ORF d212 from SSV8, homologous to SSV1-D244, revealed a new member of 

the PD-(D/E)XK nuclease superfamily and shares significant structural homology 

to a holiday junction resolvase from S. solfataricus (Menon et al., 2010).  The 

crystal structure of SSV1-D63 has also been solved and contains a dimeric 4-

helix bundle motif that is characteristic of a multitude of proteins with diverse 

functions (Kraft et al., 2004b).  The wide-spread and divergent applications of this 

fold has made a functional prediction impossible.  Comparison of SSV1-D63 

homologs from all fuselloviruses reveals several highly conserved surface 

residues and implies that SSV1-D63 might be interacting with another 

macromolecule (Kraft et al., 2004b; Appendix B).   

The structure-based approach exemplified above does not always yield 

recognizable protein folds.  For example, the crystal structure of the product of 
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ORF SSV1 e96 yields no significant homologs via structure comparisons, 

suggesting that SSV1-E96 exhibits a novel fold (Lawrence et al., 2009). 

Curiously, SSV1 is the only fusellovirus to encode an ORF e96 ortholog.  Other 

examples of novel protein folds from crenarchaeal viruses include AFV1-109, 

AFV1-99 and its homolog in STIV1, STIV1-B116 (Keller et al., 2007; Goulet et 

al., 2009; Larson et al., 2007b). 

 
Gene expression in viruses of Sulfolobus 

 The last decade has seen a number of studies focused on elucidating the 

transcriptional response to virus infection and induction for several 

hyperthermophilic archaeal viruses and hosts.  These studies have helped to 

elucidate archaeal virus transcription patterns, or lack thereof, as well the effects 

of virus infection on the host RNA expression.  Furthermore, transcript analysis 

has helped to hypothesize or confirm roles for some of the multitude of 

uncharacterized genes in archaeal virus genomes.   

 It has been known for some time that SSV1 replication could be induced by 

UV light (Martin et al., 1984) and this characteristic was exploited by Reiter et al. 

(1987b) and others to study transcription in SSV1.  Reiter’s initial findings were 

later confirmed and expanded upon using cDNA microarrays (Fröls et al., 2007; 

Figure 1-3).  Exposure of an SSV1 lysogen (defined herein as a host cell 

harboring SSV1 in the carrier state) to UV light revealed that SSV1 transcription 

was temporally regulated and begins with expression of the “immediate-early” 
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Tind transcript, followed by three “early” transcripts (T5, T6, and T9) and four 

“late” transcripts (T1/2, T3, and T4/7/8) (Reiter et al., 1987b; Figure 1-3).  The 

entire transcription cycle after UV-induction is completed within 8.5 hr.  The 

timing of the SSV1 transcripts correlates well with predicted SSV1 gene 

functions, i.e. structural genes are encoded by the late transcripts and putative 

transcription factors are encoded by the early transcripts.  The T9 transcript is the 

last up-regulated transcript prior to DNA replication, implicating the gene 

products in viral replication.  The late monocistronic transcript Tx was previously 

unidentified and the timing of its expression hints at a possible structural role for 

ORF C124, although it has not been identified in purified SSV1 virions.  Because 

SSV1 is apparently the only strongly UV-inducible fusellovirus, it is unclear how 

relevant these data are to the Fuselloviridae in general.   

 In un-induced SSV1-infected cells, incomplete versions of the “early” 

transcripts but complete “late” transcripts were continuously present (Reiter et al., 

1987b; Fröls et al., 2007).  Although the upstream region of the T5 transcript was 

not observed, the region of T5 containing the integrase gene was continuously 

observed and suggests the integrase gene may have its own transcript nestled 

within the T5 transcript (Clore thesis 2008).  It should also be noted that the 

immediate early Tind transcript was not observed in un-induced cells, implying it 

(and the encoded b49 ORF) is only active early in the viral response to UV 

irradiation.  A recent study aimed at identifying genes involved in the 

maintenance of SSV1 lysogeny identified a novel transcript that is continuously 
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expressed throughout lysogeny and encodes a 55 residue protein (F55) that was 

shown to bind weakly (Kd ~1-9 µM) and with differential affinity to the T5, T6, 

Tind, and Tlys promoters (Fusco et al., 2013).  Because F55 binding overlaps with 

BRE or TSS promoter elements, it is hypothesized that F55 plays a negative 

regulatory role, repressing transcription from these genes until a signal (e.g. UV 

light) induces virus replication.  A recent follow up study reported F55 binding to 

these promoters in vivo and that binding dissipates shortly after UV induction 

(Fusco et al., 2015b).  This hypothesis fits well with the absence of T5, T6 and 

Tind transcripts throughout lysogeny. 

 The only other fusellovirus to have its transcripts analyzed is the closely 

related SSV2 (Ren et al., 2013).  S. solfataricus P2 cells with and without the 

satellite virus pSSVi were infected with SSV2 at an unknown multiplicity of 

infection (MOI) and the viral and host transcription was measured using cDNA 

microarrays (Ren et al., 2013).  Similar to SSV1, SSV2 transcription is temporally 

regulated and genes can be classified as “early” or “late” depending on whether 

they are expressed before or after 4.5 hours post infection (h.p.i.).  The ORF 305 

is the first SSV2 ORF expressed after infection and is followed shortly thereafter 

by the capsid protein genes vp1 and vp3.  SSV2 ORF 305 is a reported homolog 

of SSV1 ORF a291 which is constitutively expressed in SSV1-infected cells and 

up-regulated late following UV induction (Fusco et al., 2013; Fröls et al., 2007).  

The presence of pSSVi was shown to delay viral DNA replication as well as alter 

the timing, but not the chronology, of SSV2 transcript production.  It should be 
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noted that because these experiments were performed at an unknown MOI it 

cannot be confirmed if a synchronous infection was achieved.   

 Transcript studies of fuselloviruses have focused on gene expression 

immediately following infection or induction but not much work had been done on 

gene expression during chronic infection until recently (Fusco et al., 2013; Fusco 

et al., 2015c).  In these works, S. solfataricus P2 derivative LnF1 was infected 

with SSV1 or SSV2 at an unstated MOI and expression of viral genes was 

measured.  Interestingly, both viruses express several homologous genes (vp1, 

vp3, SSV1-a291/SSV2-305, and SSV1-c124/SSV2-126) that have been 

hypothesized as the minimum set of genes required for the maintenance of 

chronic infection (Fusco et al., 2015c).  Despite the similar expression of 

transcription, chronic infection with SSV1 and SSV2 had dramatic differences on 

host gene expression (Fusco et al., 2015c).  While SSV1 hardly perturbed 

expression in the host, SSV2 infection elicited a more dramatic reaction from the 

host that was reminiscent of the effects caused by infection with lytic phages 

SIRV2 and STIV.  Intriguingly, when LnF1 cells were co-infected with both SSV1 

and SSV2 the host transcriptome resembled that of cells infected with SSV1, 

suggesting SSV1 somehow mitigates the effect of the SSV2 (Fusco et al., 

2015c).   

 Two other unrelated hyperthermophilic archaeal viruses infecting Sulfolobus 

have also had their transcripts analyzed.  Expression of RNAs by the lytic 

rudiviruses SIRV1 and SIRV2 appeared to exhibit little to no temporal regulation, 
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as transcription initiation occurs from 20-30 different sites and results in 

expression of almost all viral genes within 30 minutes of infection (Kessler et al., 

2004).  Interestingly, a later study of SIRV2 infection on a highly susceptible S. 

solfataricus P2 derivative (harbors a large CRISPR deletion) revealed that SIRV2 

transcription is more temporally regulated than previously thought (Okutan et al., 

2013).  Analysis of transcription in the lytic virus STIV likewise reveals minor 

temporal regulation and a slower transcription cycle (~32 hr.) compared to the 

fuselloviruses and rudiviruses (Ortmann et al., 2008).  STIV transcripts were first 

identified 8 hours post infection (h.p.i). and most genes are significantly 

expressed within 16 h.p.i.   The STIV structural genes are expressed late in the 

transcription cycle (16-24 h.p.i) albeit in different amounts relative to each other.  

The available data imply that the absence of temporal regulation may be 

characteristic of a lytic life cycle, whereas non-lytic archaeal viruses may need to 

exhibit tighter control on the timing of transcription (Ortmann et al., 2008; Okutan 

et al., 2013; Kessler et al., 2004).  It has been suggested that infection by lytic 

archaeal viruses results in much more pronounced changes in the host 

transcriptome compared to non-lytic infections, although recent work with the 

non-lytic virus SSV2 questions this hypothesis (Quax et al., 2013; Fusco et al., 

2015c).  Clearly more experimental data from both lytic and non-lytic archaeal 

viruses is needed.   
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DNA replication in hyperthermophilic Archaea and viruses: 

 Very little is known about how hyperthermophilic archaeal viruses replicate 

their DNA.  Almost all isolated and sequenced hyperthermophilic archaeal 

viruses do not encode a recognizable DNA polymerase (Peng et al., 2007; Wang 

et al., 2015).  Analysis of host transcripts following infection with STIV and SIRV2 

show up-regulation in many host genes involved in DNA replication and repair, 

suggesting viral dependence on these enzymes (Ortmann et al., 2008; Kessler et 

al., 2004).  Because viral origins of replication appear to be distinct from those of 

the host (and other viruses), it is unclear how the replication machinery is 

recruited (Wang et al., 2015).  Furthermore, the presence of linear and circular 

dsDNA viral genomes suggests there are likely to be multiple varied DNA 

replication strategies. 

 The eukaryotic DNA replication machinery is strikingly similar to the 

machinery used by the Archaea, although the archaeal machinery is less 

complex.  This reduced complexity makes the Archaea, and the 

hyperthermophilic Archaea in particular, a good model organism for the study of 

eukaryotic DNA replication.  DNA Replication in S. solfataricus has been well 

studied and many of the components are well understood (Duggin and Bell, 

2007).  S. solfataricus contains three origins of replication, at which a number 

proteins are assembled to yield the replicative complex.  The components of the 

S. solfataricus replisome includes single stranded binding proteins (RPA), 

replicative helicase (MCM), primase, DNA polymerase (PolB1), heterotrimeric 
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sliding clamp (PCNA-1, PCNA-2, PCNA-3), and the clamp loader (Bell et al., 

2003; Kelman and Kelman 2014) 

 The best understood examples of archaeal virus DNA replication come from 

the rudiviruses SIRV1 and SIRV2.  Initial studies indicated head-head and tail-tail 

replication intermediates, which combined with similarities to Poxviridae genome 

arrangement, led to a proposed replication model where a Rep protein nicks the 

viral DNA at a specific site yielding a 5’-DNA adduct and a free 3’-hydroxyl that 

can prime DNA synthesis (Peng et al., 2001).  A dimeric rep protein from SIRV1 

was later purified and found to display nicking activity at the predicted site within 

viral genome and is the first example of a Rep protein implicated in replication 

that does not undergo rolling circle or rolling hairpin replication (Oke et al., 2011).  

A yeast two-hybrid approach identified five SIRV2 proteins that interact with the 

host PCNA clamp, providing some clues into how recruitment of the host 

replication machinery might occur (Gardner et al., 2014).   

The situation is even more nebulous in the Fuselloviridae.  SSV1 

transcription data suggests the ORFs encoded on the T9 transcript are likely 

involved in DNA replication as they are expressed just prior to an observed 

increase in SSV1 copy number and almost all of these belong to the fusellovirus 

core (Fröls et al., 2007; Figure 1-3 and Table 1-2).  SSV1 ORF b251 is predicted 

to be homologous to the bacterial replication initiation protein DnaA and is 

conserved among the Fuselloviridae (Koonin et al., 1992; Appendix A).  The 

putative origin of replication in SSV1 has been hypothesized to lie near the Tind 
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transcript but this remains to be confirmed (Fröls et al., 2007; Cannio et al., 

1998).  SSV9, SSV7, and ASV1 encode homologs of yeast Rad3 DNA helicase, 

the role of which is unclear in the viral life cycle (Appendix A).   

 
CRISPR-Cas systems: overview and interactions with archaeal viruses: 

 Originally discovered in 1987, research on prokaryotic CRISPR (clustered 

regularly interspaced short palindromic repeats) -mediated immune systems has 

exploded over the last 5-10 years.  CRISPR loci and Cas (CRISPR-associated) 

genes are present in ~50% of bacterial and ~85% of archaeal genomes and have 

been observed in some cases to function as a prokaryotic adaptive immune 

system against viruses and other mobile genetic elements (Grissa et al., 2007).  

There are currently three recognized types of CRISPR-Cas systems (I, II, and 

III), and each is further divided into multiple subtypes (Sorek et al., 2013; 

Barrangou and Marraffini 2014).  Only two cas genes are universal to each 

CRISPR-Cas system (Cas1 and Cas2) while the remaining cas genes vary from 

system to system (Barrangou and Marraffini 2014).  A CRISPR locus is 

comprised of many short repeat elements separated by unique sequences called 

“spacers”, at least some of which are derived from invading plasmids and viruses 

(Sorek et al., 2013).  Environmental data show a high degree of variability in the 

spacer content of natural populations, where it’s rare for the most recently 

acquired spacers to be identical between two cells (Andersson and Banfield 

2008).  Furthermore, only the most recently acquired spacers match virus 
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sequences suggesting that the viruses are under constant pressure to mutate in 

order to avoid host defenses (Andersson and Banfield 2008; Sun et al., 2013; 

Banfield et al., 2015).   

 The CRISPR-mediated immune response is divided into three stages: 

adaptation, expression, and interference (Sorek et al., 2013).  Each stage utilizes 

a different set of associated enzymes and these enzymes vary among the many 

CRISPR types/subtypes.  Adaptation is the process by which new viral and 

plasmid sequences are incorporated into the CRISPR repeat-spacer array and is 

the least understood of the three stages (Erdmann and Garrett 2012).  Newly 

incorporated spacers seem to be added to the leader-proximal region of the 

CRISPR array, however there is experimental evidence suggesting this may not 

be universal to all CRISPR systems (Erdmann et al., 2013).  During the 

expression stage, the entire CRISPR locus is transcribed as a large precursor 

RNA (pre-crRNA) that is processed by Cas proteins into individual crRNAs, each 

containing a repeat and spacer sequence.  CrRNAs are individually recruited by 

a large multi-protein “interference” complex.  The crRNA guides the interference 

complex to the foreign nucleic acid and facilitates degradation of the invader.   

 Sulfolobus possesses complex CRISPR-Cas systems and includes some of 

the best experimental models in the field (Zhang et al., 2013; Manica et al., 

2013).  CRISPR-mediated resistance has been demonstrated in Sulfolobus for a 

few viruses and plasmids while a number of Cas proteins and complexes have 

been thoroughly studied (Manica et al., 2013; Erdmann et al., 2013; Erdmann et 
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al., 2014a; Manica et al., 2011).  Transcript analyses following infection with 

crenarchaeal viruses STIV and SIRV2 revealed a robust host CRISPR-Cas 

response (Quax et al., 2013; Maaty et al., 2012).  It’s unclear if the dramatic 

cellular response results from infection with lytic viruses, which are a major threat 

to cell mortality, or if this is a more general response of Sulfolobus to any virus. 

 Work on S. solfataricus strain P2 and S. islandicus REY15A showed that 

mixtures of viruses, which cells presumably encounter in nature, elicit different 

CRISPR immune responses compared to infections with single viral isolates 

(Erdmann et al., 2012; Erdmann et al., 2014).  Spacer uptake in P2 could only 

occur in the presence of Sulfolobus monocaudovirus 1 (SMV1) and a co-infecting 

virus or plasmid (STSV2 or pMGB1, respectively) and these spacers were shown 

to confer immunity against the matching genetic element (Erdmann et al., 2012).  

Interestingly, spacers were only acquired for the co-infecting genetic element and 

never for SMV1 despite the continued presence of SMV1 in the culture, 

indicating that SMV1 somehow avoids the host CRISPR adaptation machinery 

while simultaneously activating the spacer uptake from other genetic elements.  

A later study in S. islandicus REY15A confirmed these results and expanded 

upon them (Erdmann et al., 2014). They were able to show SMV1 spacer 

acquisition could be accomplished only following “cold-shock” of the cells and 

that spacer acquisition seems to occur simultaneously with SMV1 replication.  

However, these spacers do not confer immunity to SMV1 suggesting that SMV1 

evades the host interference machinery through an unknown mechanism.   
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 While a significant amount of CRISPR research has been done in 

Sulfolobus, the majority of this work has not been focused on fuselloviruses.  A 

screen of the CRISPR arrays from several Sulfolobus, Acidianus, and 

Metallosphaera genomes revealed a large number of spacer sequences 

matching known crenarchaeal viruses and a significant proportion of these match 

fuselloviruses (Shah et al., 2009).  Recombinant SSV1 and S. solfataricus P2 

were used in one of the first demonstrations of CRISPR-mediated defense 

against an invading virus (Manica et al., 2011).  Because S. solfataricus P2 does 

not naturally harbor any spacer matches to SSV1, a protospacer to pNOB8 was 

inserted into SSV1 and this recombinant virus was shown to be significantly less 

infectious than wild-type SSV1.  Infection of S. solfataricus P2 derivative LnF1 

with SSV1 failed to activate the CRISPR system, but infection with SSV2 did 

result in CRISPR activation and was very reminiscent of the host response to 

infection with lytic viruses STIV and SIRV2 (Fusco et al., 2015c).  However, when 

LnF1 cells were doubly-infected with SSV1 and SSV2, CRISPR activation was 

reportedly absent and host gene expression was similar to that of the SSV1 

singly-infected cells.  These data are intriguing and suggest that SSV1 somehow 

mitigates the host response to infection. 

The observation that most loci for cellular immunity, including CRISPR-

Cas, also encode putative toxin genes led to an intriguing hypothesis for the 

incorporation of the latter into the host immune response (Makarova et al., 2012).  

These theoretical toxin genes are expressed simultaneously with other cas 
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genes during the CRISPR response and may induce dormancy, allowing the cell 

to ‘buy time’ to mount a sufficient immune response.  If the immune response 

fails to contain the infection, dormancy continues and results in cell death thus 

preventing the spread of infection to the rest of the population.  Another intriguing 

aspect of this hypothesis is that it provides a temporal mechanism by which a cell 

can acquire de novo spacers against a novel genetic element and mount a 

CRISPR-mediated immune response, a process that remains obscure.  A well 

conserved cas gene (Csa5) was shown to be highly toxic when overexpressed in 

S. solfataricus, supporting the proposed toxicity of some cas genes (He et al., 

2014).  It should be noted that the most highly expressed host gene following 

infection with STIV is a gene of unknown function but homology searches 

suggest it may be a toxin (Quax et al., 2013; Ortmann et al., 2008).  Infection with 

S. islandicus cells with SSV9 at low MOI was shown to induce dormancy and in 

some cases cell death (Bautista et al., 2015).  Infection of cells harboring a 100% 

spacer match to SSV9 resulted in a 24-48 hr. growth delay from which the cells 

recovered and successfully eliminated the virus.  However, cells harboring 

inactivated CRISPR systems were not able to clear the virus and never 

recovered from the initial growth retardation.  The results from this study fit well 

with the induced dormancy hypothesis proposed by Makarova et al. but it is clear 

that more data is needed to elucidate the observed phenomena.   
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Conclusion: 

The significant amount research performed in the past few decades 

illustrates the astonishing diversity possessed by the viruses infecting the 

Archaea.  In particular, viruses infecting the Crenarchaea exhibit a multitude of 

bizarre morphologies that seem be exclusive to the archaeal virosphere and 

probably have much teach us about protein folding and stability in extreme 

environments.  Furthermore, the genetic diversity possessed by these viruses is 

at the same time both fascinating and confounding.  The Fuselloviridae are one 

of the best studied families of archaeal viruses and have proven to be very useful 

subjects for the study of archaeal virology.   

As detailed above, very little is known about the functions of the vast 

majority of fusellovirus proteins.  To address this, we have completed a 

comprehensive genetic analysis of SSV1 by constructing deletion and/or 

insertion mutants in every ORF of the SSV1 genome.  Mutagenesis studies are 

useful as they can provide clues for the function of mysterious proteins.  The 

results of this work dramatically expand on previous knowledge of the genetic 

requirements of SSV1 and provide further insight into the function of several 

SSV1 proteins.   

We have also initiated biochemical analyses of SSV1 proteins in an effort 

to better characterize their function.  The DNA binding protein VP2 was identified 

in purified SSV1 virions and is believed to reside within the capsid, bound to the 

viral DNA (Reiter et al., 1987).  However, the specifics of VP2 DNA binding and 



! 33!

its physiological significance is not well understood.  To address these questions, 

we have developed a robust protocol for the purification of recombinant VP2 

protein from E. coli.  Our results suggest that VP2 exists as a monomer in 

solution and appears to bind non-specifically to dsDNA.  This work should be 

useful for follow-up studies of the three-dimensional structure of VP2 and a more 

in depth characterization of its DNA binding affinity. 

Finally, we present the first insights into the kinetics of a fusellovirus 

infection by performing one-step growth curve experiments with SSV1.  These 

experiments have been challenging to perform with SSV1 due to difficulties in 

isolating the large number of virus required.  We show that low MOI infections 

with SSV1 and SSV1 mutants result in the production of high viral titers which 

can subsequently be used to perform one-step growth curve experiments at high 

MOIs.  The establishment of a reliable protocol for a one-step growth curve will 

be invaluable for further characterization of the numerous SSV1 mutants we 

have isolated.   
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Chapter 2: A genetic study of SSV1, the prototypical fusellovirus 
 
 
This chapter is based on the following publication: 
 

Eric Iverson and Kenneth M. Stedman.  “A genetic study of SSV1, the 

prototypical fusellovirus” 

Front Microbio.  3:200. doi: 10.3389/fmicb.2012.00200. 

Abstract 

Viruses of thermophilic Archaea are unique in both their structures and 

genomic sequences. The most widespread and arguably best studied are the 

lemon-shaped fuselloviruses. The spindle-shaped virus morphology is unique to 

Archaea but widespread therein. The best studied fusellovirus is SSV1 from 

Beppu, Japan, which infects Sulfolobus solfataricus. Very little is known about 

the function of the genes in the SSV1 genome. Recently we have developed 

genetic tools to analyze these genes. In this study, we have deleted three SSV1 

open reading frames (ORFs) ranging from completely conserved to poorly 

conserved: vp2, d244, and b129. Deletion of the universally conserved ORF 

b129, which encodes a predicted transcriptional regulator, results in loss of 

infectivity. Deletion of the poorly conserved predicted DNA-binding protein gene 

vp2 yields viable virus that is indistinguishable from wild-type. Deletion of the 

well-conserved ORF d244 that encodes a predicted nuclease yields viable virus. 

However, infection of S. solfataricus with virus lacking ORF d244 dramatically 

retards host growth, compared to the wild-type virus.  
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Introduction 

Viruses of Archaea are very poorly understood with only about 50 known 

archaeal viruses relative to the ca. 5000 characterized viruses of bacteria, plants, 

and animals (Pina et al., 2011). The best studied of archaeal viruses are those 

infecting the thermoacidophiles, with an unprecedented new seven virus families 

introduced in the last few years to accommodate the astonishing morphological 

and sequence diversity present in these viruses (Pina et al., 2011).  

The Sulfolobus spindle-shaped viruses (SSVs) of the family Fuselloviridae 

were the first discovered and probably the best studied family of archaeal 

viruses. SSVs are found throughout the world in high temperature (>70◦C) and 

acidic (pH < 4) environments where their hosts, Sulfolobus solfataricus and its 

close relatives thrive (Wiedenheft et al., 2004; Held and Whitaker, 2009). The 

type virus, SSV1, encodes a positively supercoiled, 15.5 kbp circular dsDNA 

genome (NC_001338.1) that is enclosed within a lemon or spindle-shaped 

capsid (Yeats et al., 1982; Martin et al., 1984; Nadal et al., 1986). The genome 

encodes 34 open reading frames (ORFs; Palm et al., 1991), most of which have 

no recognizable homologs apart from other Fuselloviridae. The only SSV1 gene 

with clear homology to proteins outside the Fuselloviridae is the viral integrase, 

encoded by ORF d355. The main structural proteins purified from virus particles 

are the major and minor capsid proteins vp1 and vp3 and the putative DNA pack- 

aging protein vp2 (Reiter et al., 1987a). More recently, mass spectrometric 

analysis of SSV1 virions revealed two additional proteins: the products of ORFs 
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c792 and d244 (Menon et al., 2008; Figure 2-1).  

In the absence of homologous sequences, three complementary 

approaches have been used to try and determine the function of the proteins 

encoded in the SSV1 genome; structural genomics, comparative genomics, and 

genetics. Atomic resolution structures have been obtained by C. Martin Lawrence 

and his group for proteins encoded by SSV1 ORFs b129, f112, d63, e96, f93, 

and d244 or their homologs from other fuselloviruses. The products of ORFs 

b129, f112, and f93 resemble transcriptional regulators and d244 a novel 

nuclease (Lawrence et al., 2009; Menon et al., 2010). However, the function of 

these proteins in virus replication remains to be determined. Two of these ORFs, 

b129 and d244, are the targets of the current study.  

In parallel, we and others have undertaken comparative genomic studies. 

Fifteen ORFs are completely conserved in 12 canonical SSV genomes (Stedman 

et al., 2003; Wiedenheft et al., 2004; Held and Whitaker, 2009; Redder et al., 

2009; Stedman, unpublished; Figure 2-1). Most of the universally conserved 

genes are clustered in half of the genome with the notable exception of the vp2 

gene, a target of this study. Conservation in the rest of the genome is lower. 

Nonetheless, there are very few completely unique genes in the SSV1 genome 

(Figure 2-1). It is highly probable that the conserved genes are required for virus 

function, but again this has not been confirmed.  
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Figure 2-1: Genome map of SSV1 
Open reading frames are shown as block arrows and labeled as in Palm et al. (1991). Virus 
structural protein genes (Reiter et al., 1987a) and other proteins found in the virion (Menon et al., 
2008) are outlined in red and labeled as “in virion.” Conservation of open reading frames in 12 
canonical SSV genomes (SSV1, SSV2, SSV3, SSV4, SSV5, SSVRH, SSVK1, SSVL, SSVKM1, 
SSVKU1, SSVL2, and SSVGV1; Redder et al., 2009; Held and Whitaker, 2009; Stedman, 
unpublished) is listed with the color code in the middle of the genome with ORFs conserved in 
12 genomes in black, ORFs conserved in 11 genomes in dark blue, etc. ORFs which did not 
tolerate insertion of the pBluescript plasmid are labeled as “Essential” in blue type. ORFs 
allowing insertion of the pBluescript plasmid without loss of virus function are labeled as “not 
essential” (Stedman et al., 1999). All ORFs whose products have been crystallized and structure 
determined are labeled as “Structure” (Lawrence et al., 2009; Menon et al., 2010). The gene for 
the SSV1-integrase is labeled in green and was shown to be not essential by deletion (Clore and 
Stedman, 2006). Transcripts are labeled as curved thin arrows (Reiter et al., 1987b; Fröls et al., 
2007). ORFs targeted in this study are indicated with large arrows outside the genome map.  
 

We developed methods for gene disruption in order to determine the 

requirements for genes in the virus genome directly. About 10 years ago, we 

showed that four SSV1 ORFs did not tolerate insertion of the 3.2 kbp pBluescript 

plasmid and allow virus function. Twelve other SSV1 ORFs appeared, indirectly, 
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FIGURE 1 | Genome map of SSV1. Open reading frames are shown as block
arrows and labeled as in Palm et al. (1991). Virus structural protein genes
(Reiter et al., 1987a) and other proteins found in the virion (Menon et al., 2008)
are outlined in red and labeled as “in virion.” Conservation of open reading
frames in 12 canonical SSV genomes (SSV1, SSV2, SSV3, SSV4, SSV5,
SSVRH, SSVK1, SSVL, SSVKM1, SSVKU1, SSVL2, and SSVGV1; Redder et al.,
2009; Held and Whitaker, 2009; Stedman, unpublished) is listed with the
color code in the middle of the genome with ORFs conserved in 12 genomes
in black, ORFs conserved in 11 genomes in dark blue, etc. ORFs which did

not tolerate insertion of the pBluescript plasmid are labeled as “Essential” in
blue type. ORFs allowing insertion of the pBluescript plasmid without loss of
virus function are labeled as “not essential” (Stedman et al., 1999). All ORFs
whose products have been crystallized and structure determined are labeled
as “Structure” (Lawrence et al., 2009; Menon et al., 2010). The gene for the
SSV1-integrase is labeled in green and was shown to be not essential by
deletion (Clore and Stedman, 2006). Transcripts are labeled as curved thin
arrows (Reiter et al., 1987b; Fröls et al., 2007). ORFs targeted in this study are
indicated with large arrows outside the genome map.

are limited. Therefore, Long Inverse PCR (LIPCR) using high-
fidelity highly processive DNA polymerases (e.g., Phusion!)
was developed to specifically change the SSV1 genome at sin-
gle nucleotide resolution. LIPCR was used to delete precisely
the SSV1 viral integrase gene. Surprisingly, this “integrase-less”
SSV1 was functional (Clore and Stedman, 2006). However, con-
sistent with its conservation, the virus lacking the integrase gene
is at a competitive disadvantage relative to integrase-containing
viruses (Clore and Stedman, 2006). All of the SSV1 ORFs that
can be deleted or tolerate insertion without abrogating virus func-
tion are in the “early” transcript, T5, that is induced soon after
UV-irradiation of SSV-infected cultures (Reiter et al., 1987b; Fröls
et al., 2007).

Three ORFs in the SSV1 genome were targeted for gene disrup-
tion in this study. The VP2 gene (NP_039802.1) was chosen for
disruption because it is only present in SSV1 and the very distantly
related SSV6 (Held and Whitaker, 2009; Redder et al., 2009), and
is in the middle of the most highly conserved part of fusellovirus
genomes (Figure 1). VP2 has DNA-binding activity (Reiter et al.,
1987a; Iverson and Stedman, unpublished) that is presumably
required for DNA packaging. ORF b129 (NP_039795.1) was cho-
sen because it is intolerant of insertional mutagenesis (Stedman
et al., 1999), a high resolution structure is known (Lawrence et al.,
2009) and the gene is completely conserved in all SSVs (Figure 1).
Finally, ORF d244 (NP_039781.1) was chosen for gene disruption
because a high-resolution structure of its homolog from SSVRH

Frontiers in Microbiology | Evolutionary and Genomic Microbiology June 2012 | Volume 3 | Article 200 | 2
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to not tolerate insertion. However, two ORFs, e178 and e51, were able to tolerate 

insertion of the entire pBluescript plasmid (Stedman et al., 1999). This result 

allowed the development of viral shuttle vectors and the beginnings of Sulfolobus 

genetics (Jonuscheit et al., 2003). Insertion of the pBluescript plasmid and up to 

ca. 5 kbp of exogenous DNA in these ORFs does not appear to have a 

noticeable effect on virus function (Stedman et al., 1999; Jonuscheit et al., 2003; 

Clore and Stedman, 2006; Albers et al., 2006).  

However, insertion of large DNA fragments into the SSV1 genome is not 

straightforward and the possible insertion locations are limited. Therefore, Long 

Inverse PCR (LIPCR) using high-fidelity highly processive DNA polymerases 

(e.g., PhusionTM) was developed to specifically change the SSV1 genome at 

single nucleotide resolution. LIPCR was used to delete precisely the SSV1 viral 

integrase gene. Surprisingly, this “integrase-less” SSV1 was functional (Clore 

and Stedman, 2006). However, consistent with its conservation, the virus lacking 

the integrase gene is at a competitive disadvantage relative to integrase-

containing viruses (Clore and Stedman, 2006). All of the SSV1 ORFs that can be 

deleted or tolerate insertion without abrogating virus function are in the “early” 

transcript, T5, that is induced soon after UV-irradiation of SSV-infected cultures 

(Reiter et al., 1987b; Fröls et al., 2007).  

Three ORFs in the SSV1 genome were targeted for gene disruption in this 

study. The vp2 gene (NP_039802.1) was chosen for disruption because it is only 

present in SSV1 and the very distantly related SSV6 (Held and Whitaker, 2009; 
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Redder et al., 2009), and is in the middle of the most highly conserved part of 

fusellovirus genomes (Figure 2-1). VP2 has DNA-binding activity (Reiter et al., 

1987a; Iverson and Stedman, unpublished) that is presumably required for DNA 

packaging. ORF b129 (NP_039795.1) was chosen because it is intolerant of 

insertional mutagenesis (Stedman et al., 1999), a high resolution structure is 

known (Lawrence et al., 2009) and the gene is completely conserved in all SSVs 

(Figure 2-1). Finally, ORF d244 (NP_039781.1) was chosen for gene disruption 

because a high-resolution structure of its homolog from SSVRH is known (Menon 

et al., 2008) and it is conserved in most SSV genomes with the exception of 

SSVK1.  

 

Materials and methods 
 
Culture conditions 

Sulfolobus solfataricus strains, Table 1, were grown aerobically at 76◦C on 

plates or in liquid media containing yeast extract and sucrose as carbon and 

energy sources (YS Media), both as in Jonuscheit et al. (2003). Escherichia coli 

strains were grown in LB medium at 37◦C as suggested by the manufacturer 

(Novagen). 

 
Purification of DNA 

Plasmid DNA used for LIPCR was purified from E. coli using the alkaline lysis 

method of Birnboim and Doly (1979). Plasmid DNA used to transform Sulfolobus 
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was purified using the GeneJet Plasmid Purification Kit (Fermentas) following the 

manufacturer’s protocols. Total genomic DNA was isolated from S. solfataricus in 

late log phase growth (OD600nm �0.6) as in Stedman et al. (1999). Plasmid DNA 

was purified from a 50 mL culture of S. solfataricus transformed with SSV-∆d244 

(late log, OD600nm �0.6) using the GeneJet plasmid purification kit (Fermentas) 

following the manufacturer’s protocols. This DNA was retransformed into E. coli 

(Novagen), purified therefrom and analyzed by restriction endonuclease 

digestion with EcoRI (Fermentas). 

 
Construction of SSV1 deletion mutants 

Deletion mutants were constructed from the pAJC97 shuttle vector using 

LIPCR (Clore and Stedman, 2006). Primers were designed to overlap with the 

start and stop codon of the ORF to be deleted to keep the deletion in frame. 

Initially primers were designed using the Archaea genome browser 

(archaea.ucsc.edu). Primer melting temperatures were matched and then 

checked for potential primer dimer and secondary structure formation using 

online tools from IDT (Integrated DNA Technologies). Table 2 contains a list of 

oligonucleotide sequences used. LIPCR was performed using Phusion High-

Fidelity DNA Polymerase (NEB/Finnzymes) at a final concentration of 0.005 

U/µL. LIPCR cycling conditions as follows: initial denaturation at 98◦C for 3 min; 

35 cycles of 98◦C for 15 s, annealing for 15 s, 72◦C for 6 min, and a final 

extension at 72◦C for 6 min. The annealing temperatures for deletion of vp2, ORF 



! 41!

d244, and ORF b129 were 59, 53, and 66◦C, respectively. DNA was precipitated 

directly from LIPCR reactions using sodium acetate at a final concentration of 0.3 

M and 95% EtOH. This DNA was phosphorylated using T4 polynucleotide kinase 

according to the manufacturer’s protocols (Fermentas). DNA was ligated 

overnight (�20 h) at 16◦C using 5 Weiss units of T4 DNA ligase (Fermentas). 

Ligated DNA was transformed into NovaBlue Singles chemically competent E. 

coli following the manufacturer’s protocol (Novagen). Plasmids were purified from 

single colonies and deletion constructs were identified by restriction 

endonuclease digestions. The deletion borders were confirmed by sequencing of 

the plasmids.  

 
Electroporation of Sulfolobus 

Purified plasmid DNA was electroporated into Sulfolobus strain G-theta as 

in Schleper et al. (1992). Following electroporation (400 Ω, 1.5 kV, 25 µF) cells 

were immediately resuspended in 1 mL of YS media at 75º C and incubated for 1 

h at º C.  The cells were then added to 50 mL of pre-warmed YS media (75º C) 

and grown in liquid media as outlined below. 

 
Screen for functional infectious virus/halo assay 

To confirm the presence of infectious virus, halo assays were performed in 

duplicate 48 and 72 h post-electroporation (Stedman et al., 2003). Uninfected 

Sulfolobus G-theta cells were diluted to an OD600nm = �0.3 and allowed to grow 

until the OD600nm reached �0.35 (about 2.5 h). Half of a milliliter of this uninfected 
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culture was added to 5 mL YS media containing 0.2% wt/vol Gelrite as a 

softlayer and poured onto pre-warmed YS plates. Two microliters of supernatant 

from electroporated cultures was spotted onto the lawns and plates were 

incubated at 75◦C for up to 3 days. A halo of host growth inhibition, typically 

observed 48– 72 h after incubation, indicated the presence of an infectious virus 

(Figure 2-2).   

 
Growth curves 

Portions of halos of growth inhibition from infected S. solfataricus G-theta 

cells were removed from plates with a sterile pipette tip and inoculated into liquid 

YS media. The culture was grown to an OD600nm of �0.6. One milliliter of this 

culture was diluted in 100 mL YS media to an OD600nm��0.050. Cultures were 

placed in a shaking incubator at 75◦C and the OD600nm was measured every 24 h. 

After 96 h, 1 mL of culture was diluted into 100 mL fresh YS media and returned 

to 75◦C. One milliliter of culture was removed 72 h after each dilution, cells 

removed by centrifugation (14,000 rpm for 5 min in a microcentrifuge) and the 

supernatant was screened for virus using the halo assay above. 

 
Transmission electron microscopy 

Supernatant from infected cultures was collected by centrifugation at 

14,000 rpm for 5 min in a microcentrifuge. Five microliters of supernatant were 

absorbed onto a 400 mesh carbon/formvar grid (Ted Pella) for 2 min and 
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negatively stained with 2% uranyl acetate for 20 sec. Grids were viewed on a 

JEOL 100CX TEM operated at 100 keV and images captured with a Gatan 

imager.  

 

Results 

SSV1 is infectious without the vp2 gene 

The VP2 protein was purified from SSV1 virus particles and reported to be 

a DNA-binding protein (Reiter et al., 1987a). Surprisingly, a gene for VP2 was not 

found in SSV2 (Stedman et al., 2003), SSVRH or SSVK1 (Wiedenheft et al., 

2004). Moreover, a homolog is not present in the S. solfataricus or S. islandicus 

genomes (She et al., 2001; Reno et al., 2009; Guo et al., 2011). However, a very 

distant relative of SSV1, SSV6, which also contains an atypical putative tail fiber 

protein, has a vp2 gene (Redder et al., 2009). Thus, it is not clear whether SSV1 

can function without a vp2 gene.  

Table 2-1: Strains and plasmid vectors used in this work
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every 24 h. After 96 h, 1 mL of culture was diluted into 100 mL
fresh YS media and returned to 75◦C. One milliliter of culture was
removed 72 h after each dilution, cells removed by centrifugation
(14000 rpm for 5 min in a microcentrifuge) and the supernatant
was screened for virus using the halo assay above.

TRANSMISSION ELECTRON MICROSCOPY
Supernatant from infected cultures was collected by centrifugation
at 14,000 rpm for 5 min in a microcentrifuge. Five microliters of
supernatant was absorbed onto a 400 mesh carbon/formvar grid
(Ted Pella) for 2 min and negatively stained with 2% uranyl acetate
for 20 sec. Grids were viewed on a JEOL 100CX TEM operated at
100 keV and images captured with a Gatan imager.

RESULTS
SSV1 IS INFECTIOUS WITHOUT THE VP2 GENE
The VP2 protein was purified from SSV1 virus particles and
reported to be a DNA-binding protein (Reiter et al., 1987a). Sur-
prisingly, a gene for VP2 was not found in SSV2 (Stedman et al.,
2003) or SSVRH or SSVK1 (Wiedenheft et al., 2004). Moreover,
a homolog is not present in the S. solfataricus or S. islandicus
genomes (She et al., 2001; Reno et al., 2009; Guo et al., 2011). How-
ever, a very distant relative of SSV1, SSV6, which also contains an
atypical putative tail fiber protein, has a VP2 gene (Redder et al.,
2009). Thus, it is not clear whether SSV1 can function without a
VP2 gene.

Therefore, we made an in-frame deletion of the majority of
the VP2 gene by LIPCR in the context of the pAJC97 SSV1 shuttle
vector (Clore and Stedman, 2006), leaving the first four codons and
the last four codons (including the stop codon) of the ORF intact
(see Table 1). The putative promoter for the T9 “early” transcript
was also left intact. The construct containing the deletion, pAJC97-
!VP2, is hereafter referred to as SSV-!VP2.

To determine if the SSV-!VP2 was able to make infectious
virus, the shuttle vector was electroporated into S. solfataricus
strain G". Two days after electroporation, the supernatant from
the transformed strains caused inhibition of growth of uninfected
S. solfataricus strain G" on plates (Figure 2) that was indistin-
guishable from growth inhibition caused by the virus containing
the VP2 gene. Similar growth inhibition was also observed on
lawns of uninfected S. solfataricus strain S443, a new S. solfa-
taricus isolate from Lassen Volcanic National Park that is a host

Table 1 | Strains and plasmid vectors used in this work.

Strain/vector Description Reference

S. solfataricus G" MT4 Derivative Cannio et al. (1998)

S. solfataricus S443 Novel Sulfolobus isolate Unpublished data

E. coli NovaBlue! Expression strain Novagen, Inc.

pAJC97 SSV1 with TOPO PCR Blunt II Clore and Stedman

(2006)

pAJC97-!VP2 pAJC97 lacking VP2 gene This Work

pAJC97-!d244 pAJC97 lacking ORF d244 This Work

pAJC97-!b129 pAJC97 lacking ORF b129 This Work

for all tested SSVs (Ceballos et al., in preparation). Moreover,
the supernatant contained SSV-like particles when observed by
transmission electron microscopy (Figure 3).

Infection by wild-type SSV1 and shuttle vectors does not dras-
tically slow growth of cells in liquid culture for unknown reasons
(Martin et al., 1984; Schleper et al., 1992; Stedman et al., 1999). The
same is true of SSV-!VP2 (Figure 4). Infection with SSV-!VP2
was confirmed via PCR amplification (data not shown)

SSV1 CONSTRUCTS LACKING THE CONSERVED ORF b129 DO NOT
APPEAR TO MAKE INFECTIVE VIRUSES
The b129 ORF in SSV1 is universally conserved in all fuselloviruses
(Redder et al., 2009). Moreover shuttle vectors with pBluescript
inserted into ORF b129 did not produce infective virus when
electroporated into Sulfolobus (Stedman et al., 1999). However,
a similar insertion mutant in the equally conserved SSV1 viral
integrase appears to be non-functional (Stedman et al., 1999),
but an in-frame deletion was functional (Clore and Stedman,
2006). A structure for the b129 ORF is also known (Lawrence
et al., 2009) and it contains two Zn-finger putative DNA-binding
motifs.

The b129 ORF was deleted with LIPCR. The deletion of the
b129 ORF left the first four and last two codons of the ORF intact
and maintained the predicted T3 promoter (Reiter et al., 1987b).
This construct is referred to as SSV-!b129. Unlike the SSV-!VP2
construct, supernatants from Sulfolobus cells electroporated with
SSV1-!b129 did not cause zones of growth inhibition when spot-
ted on lawns of uninfected S. solfataricus strain G". A total of
nine independent transformations were performed in which the
wild-type virus consistently caused growth inhibition but SSV-
!b129 did not. Moreover, no halos of growth inhibition were
formed on lawns of S. solfataricus strain S443. It is not cur-
rently known at which step of virus replication the SSV-!b129 is
deficient.

SSV1 LACKING ORF d244 IS INFECTIOUS BUT HAS A
NOVEL PHENOTYPE
SSV1 ORF d244 is in the UV-inducible transcript T5, upstream of
the viral integrase gene (Figure 1). The entire pBluescript plasmid
can be inserted into the ORF directly upstream of ORF d244 with-
out abrogating SSV1 function (Stedman et al., 1999). ORF d244 is
well conserved in other Fusellovirus genomes with the exception
of SSVK1 (Wiedenheft et al., 2004; Redder et al., 2009). The X-ray
crystal structure of the homolog of SSV1 ORF d244, SSVRH ORF
d212 has been solved and it is predicted to be a nuclease (Menon
et al., 2010). Moreover, the product of ORF d244 has been reported
to be in purified SSV1 particles (Menon et al., 2008).

The SSV1 d244 ORF was deleted with LIPCR. The deletion of
the d244 ORF left the first two and last three codons of the ORF
intact as well as maintained the ORF to avoid polar effects. This
construct is referred to as SSV-!d244.

To determine if SSV-!d244 was able to make infectious virus,
the shuttle vector was electroporated into S. solfataricus strain
G". Two days after electroporation, the supernatant from the
transformed strains caused inhibition of growth of uninfected
S. solfataricus strain G" on plates (Figure 2) and also inhib-
ited growth of S. solfataricus strain S443 (data not shown).
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Therefore, we made an in-frame deletion of the majority of the vp2 gene 

by LIPCR in the context of the pAJC97 SSV1 shuttle vector (Clore and Stedman 

2006), leaving the first four codons and the last four codons (including the stop 

codon) of the ORF intact (see Table 2-1). The putative promoter for the T9 “early” 

transcript was also left intact. The construct containing the deletion, pAJC97- 

∆vp2, is hereafter referred to as SSV-∆vp2.  

To determine if the SSV-∆vp2 was able to make infectious virus, the 

shuttle vector was electroporated into S. solfataricus strain G-theta. Two days 

after electroporation, the supernatant from the transformed strains caused 

inhibition of growth of uninfected S. solfataricus strain G-theta on plates (Figure 

2-2) that was indistinguishable from growth inhibition caused by the virus 

containing the vp2 gene. Similar growth inhibition was also observed on lawns of 

uninfected S. solfataricus strain S443, a new S. solfataricus isolate from Lassen 

Volcanic National Park that is a host for all tested SSVs (Ceballos et al., 2012). 

Moreover, the supernatant contained SSV-like particles when observed by 

transmission electron microscopy (Figure 2-3).  
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Figure 2-2: Typical growth inhibition of S. solfataricus on plates due to infectious virus 
Lawns of S. solfataricus strain G-theta were prepared as in Stedman et al. (2003). Two microliters 
of supernatant from cultures transformed with either (A) SSV-∆VP2 or (B) SSV-∆d244 were 
placed on the lawns where indicated. ∆ indicates where SSV-∆vp2 was spotted, ∆D where SSV-
∆d244 was spotted. P indicates SSV-wild type spotted as a positive control. T or Tx indicates 2 
μL of 0.01% Triton X-100 spotted as a control for lawn growth.  
 

Infection by wild-type SSV1 and shuttle vectors does not drastically slow 

growth of cells in liquid culture for unknown reasons (Martin et al., 1984; 

Schleper et al., 1992; Stedman et al., 1999). The same is true of SSV-∆vp2 

(Figure 2-4). Infection with SSV-∆vp2 was confirmed via PCR amplification (data 

not shown). 

 
SSV1 constructs lacking the conserved ORF b129 do not appear to make 

infectious viruses 

The b129 ORF in SSV1 is universally conserved in all fuselloviruses 

(Redder et al., 2009). Moreover, shuttle vectors with pBluescript inserted into 

ORF b129 did not produce infectious virus when electroporated into Sulfolobus 

(Stedman et al., 1999). However, a similar insertion mutant in the equally 
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is known (Menon et al., 2008) and it is conserved in most SSV
genomes with the exception of SSVK1.

MATERIALS AND METHODS
CULTURE CONDITIONS
Sulfolobus solfataricus strains, Table 1, were grown aerobically at
76◦C on plates or in liquid media containing yeast extract and
sucrose as carbon and energy sources (YS Media), both as in
Jonuscheit et al. (2003). Escherichia coli strains were grown in LB
medium at 37◦C as suggested by the manufacturer (Novagen).

PURIFICATION OF DNA
Plasmid DNA used for LIPCR was purified from E. coli using the
alkaline lysis method of Birnboim and Doly (1979). Plasmid DNA
used to transform Sulfolobus was purified using the GeneJet Plas-
mid Purification Kit (Fermentas) following the manufacturer’s
protocols. Total genomic DNA was isolated from S. solfatari-
cus in late log phase growth (OD600 ∼0.6) as in Stedman et al.
(1999). Plasmid DNA was purified from a 50 mL culture of S. sol-
fataricus transformed with SSV-!d244 (late log, OD600 ∼0.6)
using the GeneJet plasmid purification kit (Fermentas) following
the manufacturer’s protocols. This DNA was retransformed into
E. coli (Novagen), purified therefrom and analyzed by restriction
endonuclease digestion with EcoRI (Fermentas).

CONSTRUCTION OF SSV1 DELETION MUTANTS
Deletion mutants were constructed from the pAJC97 shuttle vector
using LIPCR (Clore and Stedman, 2006). Primers were designed
to overlap with the start and stop codon of the ORF to be deleted
to keep the deletion in frame. Initially primers were designed
using the archaea genome browser1. Primer melting tempera-
tures were matched and then checked for potential primer dimer
and secondary structure formation using online tools from IDT2.
Table 2 contains a list of oligonucleotide sequences used. LIPCR
was performed using Phusion! High-Fidelity DNA Polymerase
(NEB/Finnzymes) at a final concentration of 0.005 U/µL. LIPCR
cycling conditions as follows: initial denaturation at 98◦C for
3 min; 35 cycles of 98◦C for 15 s, annealing for 15 s, 72◦C for
6 min, and a final extension at 72◦C for 6 min. The annealing
temperatures for deletion of VP2, ORF d244, and ORF b129 were
59, 53, and 66◦C, respectively. DNA was precipitated directly from
LIPCR reactions using sodium acetate at a final concentration of
0.3 M and 95% EtOH. This DNA was phosphorylated using T4
polynucleotide kinase according to the manufacturer’s protocols
(Fermentas). DNA was ligated overnight (∼20 h) at 16◦C using
5 Weiss units of T4 DNA ligase (Fermentas). Ligated DNA was
transformed into NovaBlue Singles chemically competent E. coli
following the manufacturer’s protocol (Novagen). Plasmids were
purified from single colonies and deletion constructs were identi-
fied by restriction endonuclease digestions. The deletion borders
were confirmed by sequencing of the plasmids.

ELECTROPORATION OF SULFOLOBUS
Purified plasmid DNA was electroportated into Sulfolobus strain
G" as in Schleper et al. (1992). Following electroporation (400#,

1http://archaea.ucsc.edu
2http://www.idtdna.com

1.5 kV, 25 µF), cells were immediately resuspended in 1 mL of
YS media at 75◦C and incubated for 1 h at 75◦C. The cells were
then added to 50 mL of prewarmed YS media (75◦C) and grown
in liquid media as outlined below.

SCREEN FOR FUNCTIONAL INFECTIOUS VIRUS/HALO ASSAY
To confirm the presence of infectious virus, halo assays were per-
formed in duplicate 48 and 72 h post-electroporation (Stedman
et al., 2003). Uninfected Sulfolobus G" cells were diluted to an
OD600 nm = ∼0.3 and allowed to grow until the OD600 nm
reached ∼0.35 (about 2.5 h). Half of a milliliter of this unin-
fected culture was added to 5 mL YS media containing 0.2% wt/vol
Gelrite! as a softlayer and poured onto prewarmed YS plates. Two
microliters of supernatant from electroporated cultures was spot-
ted onto the lawns and plates were incubated at 75◦C for up to
3 days. A halo of host growth inhibition, typically observed 48–
72 h after incubation, indicated the presence of an infectious virus
(Figure 2).

GROWTH CURVES
Portions of halos of growth inhibition from infected S. solfataricus
G" cells were removed from plates with a sterile pipette tip and
inoculated into liquid YS media. The culture was grown to an
OD600 nm of ∼0.6. One milliliter of this culture was diluted in
100 mL YS media to an OD600 ∼0.050. Cultures were placed in
a shaking incubator at 75◦C and the OD600 nm was measured

FIGURE 2 | Typical growth inhibition of S. solfataricus on plates due to
infectious virus. Lawns of S. solfataricus strain G" were prepared as in
Stedman et al. (2003). Two microliters of supernatant from cultures
transformed with either (A) SSV-!VP2 or (B) SSV-!d244 were placed on
the lawns where indicated. ! indicates where SSV-!VP2 was spotted, !D
where SSV-!d244 was spotted. P indicates SSV-WT spotted as a positive
control. T or Tx indicates 2 µL of 0.01% Triton X-100 spotted as a control for
lawn growth.
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conserved SSV1 viral integrase appears to be non-functional (Stedman et al., 

1999), but an in-frame deletion was functional (Clore and Stedman, 2006). A 

structure for the b129 ORF is also known (Lawrence et al., 2009) and it contains 

two Zn-finger putative DNA-binding motifs.  

 

Table 2-2: Oligonucleotides used in this work 

 
 

The b129 ORF was deleted with LIPCR leaving the first four and last two 

codons of the ORF intact and maintaining the predicted T3 promoter (Reiter et 

al., 1987b). This construct is referred to as SSV-∆b129. Unlike the SSV-∆vp2 

construct, supernatants from Sulfolobus cells electroporated with SSV1-∆b129 

did not cause zones of growth inhibition when spot- ted on lawns of uninfected S. 

solfataricus strain G-theta. A total of nine independent transformations were 

performed in which the wild-type virus consistently caused growth inhibition but 

SSV- ∆b129 did not. Moreover, no halos of growth inhibition were formed on 

lawns of S. solfataricus strain S443. It is not currently known at which step of 

virus replication the SSV-∆b129 is deficient.  
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Table 2 | Oligonucleotides used in this work.

Name Sequence Description

VP2 LIPCR F 5′-CAC CGC AAG TAG GCC-3′ Flanks VP2 gene for deletion

VP2 LIPCR R 5′-CAC CCA CTT CAT ATC ACT CC-3′ Flanks VP2 gene for deletion

d244 LIPCR F 5′-ATC CAT TTA CCA TAA TCC ACC-3′ Flanks ORF d244 for deletion

d244 LIPCR R 5′-GGA AAA TGA TAT TCA ACT CAG AGG-3′ Flanks ORF d244 for deletion

b129 LIPCR F 5′-AGT TAG GCT CTT TTT AAA GTC TAC C-3′ Flanks ORF b129 for deletion

b129 LIPCR R 5′-TGA CTC CGT CAT CCT CTA AC-3′ Flanks ORF b129 for deletion

VP2 Check F 5′-ATT CAG ATT CTG WAT WCA GAA C-3′ Amplifies VP2 gene and flanking sequences

VP2 Check R 5′-TCS CCT AAC GCA CTC ATC-3′ Amplifies VP2 gene and flanking sequences

d244 Check F 5′-GGA ACT CCT CTC ATT AAC C-3′ Amplifies ORF d244 and flanking sequences

d244 Check R 5′-GAT CAT CAA CGA GTA TAT TGA CC-3′ Amplifies ORF d244 and flanking sequences

b129 Check F 5′-ATG AAG GCT GAG GAA ACA ATC GTG-3′ Amplifies ORF b129 and flanking sequences

b129 Check R 5′-TTA ATA TAG CTG CGA TGC AGT ATA GTT TAT TTG TGC-3′ Amplifies ORF b129 and flanking sequences

*Underlined sequence indicates ORF.

FIGURE 3 |Transmission electron micrographs of SSV particles.
Supernatants from cultures of S. solfataricus strain G! transformed
with (A) pAJC97, (B) SSV-"VP2, (C) SSV-"d244, were negatively

stained with uranyl acetate and observed with a JEOL 100CX
transmission electron microscope. Bar represents 0.2 µm (B) or
0.5 µm (A,C).

The supernatant contained SSV-like particles when observed by
transmission electron microscopy (Figure 3).

Infection by wild-type SSV1, shuttle vectors and SSV-"VP2
does not slow growth of cells in liquid culture (Martin et al.,
1984; Schleper et al., 1992; Stedman et al., 1999; see above).
However, infection by SSV-"d244 drastically slows growth of
S. solfataricus strains G! and S443 in liquid culture (Figure 4).
Infection with SSV-"d244 was confirmed via PCR. Moreover,
restriction endonuclease digestion of viral DNA recovered from
transformed S. solfataricus cells and retransformed into E. coli
revealed no obvious alterations of the SSV-"d244 construct (data
not shown).

DISCUSSION
THE PUTATIVE DNA PACKAGING PROTEIN VP2 IS NOT REQUIRED
FOR SSV1 FUNCTION
The deletion of VP2 from SSV1 results in a functional virus that
is indistinguishable from the wild-type virus (Figures 2–4). Based
on the lack of conservation of VP2 this result is not completely

unexpected. However, almost all viruses contain a genome packag-
ing protein. There is no clear sequence homolog of VP2 in the host
genome, but there are a number of small DNA-binding proteins,
such as Sso7d or Cren7 that may be able to functionally substi-
tute for VP2 in SSV1 genome packaging (Choli et al., 1988; Guo
et al., 2008). This will be tested with mass spectrometry of SSV-
"VP2 particles. Alternatively, the VP2 protein may be involved in
maintenance of the positive supercoiling of the SSV1 viral genome
(Nadal et al., 1986). It would be interesting to know if the topology
of the viral DNA is affected by the absence of VP2. It is predicted
that positive supercoiling should increase the thermal stability of
the DNA, so SSV-"VP2 may be less thermally stable than the
wild-type virus.

The VP2 gene may be more prevalent than previously thought.
VP2-like sequences have been reported from metagenomic studies,
one in an acid mine drainage metagenome (Andersson and Ban-
field, 2008) and the other from Boiling Springs Lake in California
(Diemer and Stedman, unpublished). These VP2 genes may be in
the context of a SSV6 or ASV-like genome (Redder et al., 2009).
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Figure 2-3: Transmission electron micrographs of SSV particles 
Supernatants from cultures of S. solfataricus strain G-theta transformed with (A) pAJC97, (B) 
SSV-∆vp2, (C) SSV-∆d244, were negatively stained with uranyl acetate and observed with a 
JEOL 100CX transmission electron microscope. Bar represents 0.2 μm (B) or 0.5 μm (A,C).  
 

SSV1 lacking ORF d244 is infectious but has a novel phenotype 

SSV1 ORF d244 is encoded on the transcript T5, upstream of the viral 

integrase gene (Figure 2-1). The entire pBluescript plasmid can be inserted into 

the ORF directly upstream of ORF d244 without abrogating SSV1 function 

(Stedman et al., 1999). ORF d244 is well conserved in other fusellovirus 

genomes with the exception of SSVK1 (Wiedenheft et al., 2004; Redder et al., 

2009). The X-ray crystal structure of the homolog of SSV1 ORF d244, SSVRH 

ORF d212 has been solved and it is predicted to be a nuclease (Menon et al., 

2010). Moreover, the product of ORF d244 has been reported to be in purified 

SSV1 particles (Menon et al., 2008).  

The SSV1 d244 ORF was deleted with LIPCR. The deletion of the d244 

ORF left the first two and last three codons of the ORF intact as well as 

maintained the ORF to avoid polar effects. This construct is referred to as SSV-

∆d244.  

To determine if SSV-∆d244 was able to make infectious virus, the shuttle 
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Table 2 | Oligonucleotides used in this work.

Name Sequence Description

VP2 LIPCR F 5′-CAC CGC AAG TAG GCC-3′ Flanks VP2 gene for deletion

VP2 LIPCR R 5′-CAC CCA CTT CAT ATC ACT CC-3′ Flanks VP2 gene for deletion

d244 LIPCR F 5′-ATC CAT TTA CCA TAA TCC ACC-3′ Flanks ORF d244 for deletion

d244 LIPCR R 5′-GGA AAA TGA TAT TCA ACT CAG AGG-3′ Flanks ORF d244 for deletion

b129 LIPCR F 5′-AGT TAG GCT CTT TTT AAA GTC TAC C-3′ Flanks ORF b129 for deletion

b129 LIPCR R 5′-TGA CTC CGT CAT CCT CTA AC-3′ Flanks ORF b129 for deletion

VP2 Check F 5′-ATT CAG ATT CTG WAT WCA GAA C-3′ Amplifies VP2 gene and flanking sequences

VP2 Check R 5′-TCS CCT AAC GCA CTC ATC-3′ Amplifies VP2 gene and flanking sequences

d244 Check F 5′-GGA ACT CCT CTC ATT AAC C-3′ Amplifies ORF d244 and flanking sequences

d244 Check R 5′-GAT CAT CAA CGA GTA TAT TGA CC-3′ Amplifies ORF d244 and flanking sequences

b129 Check F 5′-ATG AAG GCT GAG GAA ACA ATC GTG-3′ Amplifies ORF b129 and flanking sequences

b129 Check R 5′-TTA ATA TAG CTG CGA TGC AGT ATA GTT TAT TTG TGC-3′ Amplifies ORF b129 and flanking sequences

*Underlined sequence indicates ORF.

FIGURE 3 |Transmission electron micrographs of SSV particles.
Supernatants from cultures of S. solfataricus strain G! transformed
with (A) pAJC97, (B) SSV-"VP2, (C) SSV-"d244, were negatively

stained with uranyl acetate and observed with a JEOL 100CX
transmission electron microscope. Bar represents 0.2 µm (B) or
0.5 µm (A,C).

The supernatant contained SSV-like particles when observed by
transmission electron microscopy (Figure 3).

Infection by wild-type SSV1, shuttle vectors and SSV-"VP2
does not slow growth of cells in liquid culture (Martin et al.,
1984; Schleper et al., 1992; Stedman et al., 1999; see above).
However, infection by SSV-"d244 drastically slows growth of
S. solfataricus strains G! and S443 in liquid culture (Figure 4).
Infection with SSV-"d244 was confirmed via PCR. Moreover,
restriction endonuclease digestion of viral DNA recovered from
transformed S. solfataricus cells and retransformed into E. coli
revealed no obvious alterations of the SSV-"d244 construct (data
not shown).

DISCUSSION
THE PUTATIVE DNA PACKAGING PROTEIN VP2 IS NOT REQUIRED
FOR SSV1 FUNCTION
The deletion of VP2 from SSV1 results in a functional virus that
is indistinguishable from the wild-type virus (Figures 2–4). Based
on the lack of conservation of VP2 this result is not completely

unexpected. However, almost all viruses contain a genome packag-
ing protein. There is no clear sequence homolog of VP2 in the host
genome, but there are a number of small DNA-binding proteins,
such as Sso7d or Cren7 that may be able to functionally substi-
tute for VP2 in SSV1 genome packaging (Choli et al., 1988; Guo
et al., 2008). This will be tested with mass spectrometry of SSV-
"VP2 particles. Alternatively, the VP2 protein may be involved in
maintenance of the positive supercoiling of the SSV1 viral genome
(Nadal et al., 1986). It would be interesting to know if the topology
of the viral DNA is affected by the absence of VP2. It is predicted
that positive supercoiling should increase the thermal stability of
the DNA, so SSV-"VP2 may be less thermally stable than the
wild-type virus.

The VP2 gene may be more prevalent than previously thought.
VP2-like sequences have been reported from metagenomic studies,
one in an acid mine drainage metagenome (Andersson and Ban-
field, 2008) and the other from Boiling Springs Lake in California
(Diemer and Stedman, unpublished). These VP2 genes may be in
the context of a SSV6 or ASV-like genome (Redder et al., 2009).
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vector was electroporated into S. solfataricus strain G-theta. Two days after 

electroporation, the supernatant from the transformed strains caused inhibition of 

growth of uninfected S. solfataricus strain G-theta on plates (Figure 2-2) and also 

inhibited growth of S. solfataricus strain S443 (data not shown). The supernatant 

contained SSV-like particles when observed by transmission electron microscopy 

(Figure 2-3).  

Infection by wild-type SSV1, shuttle vectors and SSV-∆VP2 does not slow 

growth of cells in liquid culture (Martin et al., 1984; Schleper et al., 1992; 

Stedman et al., 1999; see above). However, infection by SSV-∆d244 drastically 

slows growth of S. solfataricus strains G-theta and S443 in liquid culture (Figure 

2-4). Infection with SSV-∆d244 was confirmed via PCR. Moreover, restriction 

endonuclease digestion of viral DNA recovered from transformed S. solfataricus 

cells and retransformed into E. coli revealed no obvious alterations of the SSV-

∆d244 construct (data not shown).  
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FIGURE 4 |Typical growth inhibition in liquid culture of virus
constructs. Cultures of S. solfataricus G! infected with wild-type SSV1,
diamonds, SSV-"VP2, triangles and SSV-"d244, squares, were diluted inYS
media to equal starting OD600 nm and incubated at 75◦C. At the indicated
times, samples were removed and the OD600 nm was determined and the
presence of virus was confirmed in each culture via halo assay. After 96 h,
1 mL of cells were diluted 1:100 in fresh YS media and returned to 75◦C.

THE PRODUCT OF ORF b129 APPEARS TO BE ESSENTIAL FOR SSV1
INFECTIVITY
Homologs of SSV1 ORF b129 are present in all known SSVs
(Redder et al., 2009). The b129 ORF also does not tolerate inser-
tion of the pBluescript plasmid (Stedman et al., 1999). Thus, it
is not surprising that deletion of ORF b129 leads to an incom-
pletely replicating virus. However, the SSV1 integrase, a gene also
conserved in all fuselloviruses, did not appear to tolerate inser-
tion of pBluescript (Stedman et al., 1999), but could be deleted
with LIPCR without abrogating virus function (Clore and Sted-
man, 2006). This indicates that either polar effects are important,
which seems unlikely since the SSV1 integrase is at the end of the
T5 transcript, or that insufficient replicate transformations were
performed in the earlier study.

Nine replicate transformations of S. solfataricus with SSV-
"b129 did not generate functional virus. However, we can-
not absolutely determine that SSV1 ORF b129 is essential for
virus function without complementation experiments, which are
underway. The reasons for the apparent necessity of SSV1 ORF
b129 are unclear, but the structure of the b129 ORF product,
a predicted transcriptional regulator (Lawrence et al., 2009) and
induction of the T6 transcript containing ORF b129 after UV-
irradiation (Reiter et al., 1987b; Fröls et al., 2007) provides clues to
its function.

The assay used herein for virus infection, ability to cause a zone
of growth inhibition on a lawn of uninfected cells, is for virus
spread and infectivity. There are many other aspects of virus repli-
cation that could be affected by disruption of ORF b129. An attrac-
tive hypothesis is that the b129 protein activates transcription of
virus structural genes encoded by the “late” transcripts T7/8/9, T1,
and T2 (Reiter et al., 1987b; Fröls et al., 2007; see Figure 1). This
would be one of very few archaeal transcriptional activators char-
acterized to date and the only the second archaeal viral transcrip-
tional activator (Kessler et al., 2006). Thus, the SSV-"b129 con-
struct may be able to replicate its genome, integrate into the host,

and have genome replication induced by UV-irradiation or some
subset of these activities. Experiments to test these hypotheses are
underway.

TRANSFECTION WITH SSV-!d244 PRODUCES VIRUS AND RETARDS
HOST CELL GROWTH
The SSV1 d244 ORF is well-conserved in fuselloviruses with the
exception of SSVK1 (Wiedenheft et al., 2004; Redder et al., 2009).
However, SSV1 lacking ORF d244 clearly makes infectious virus
particles (Figures 2 and 3). Moreover, the zones of clearing pro-
duced by supernatants of cells transfected with SSV-"d244 are
clearer than those produced by either the wild-type or SSV-"VP2
viruses (Figure 3; unpublished data). They are reminiscent of
zones of clearing produced by SSVK1 (data not shown). Unlike
wild-type virus and SSV-"VP2, transfection by SSV-"d244 leads
to drastically reduced host growth (Figure 4). The reasons for
this growth inhibition are unclear. Similar growth phenotypes
have been observed in SSVK1 infections (Stedman et al., in prepa-
ration). SSVK1 consistently produces more virus than similar
cultures of the wild-type virus, so this may account for the growth
defect (unpublished data). Whether SSV-"d244 consistently pro-
duces more virus than the wild-type or SSV-"VP2 is currently
unknown.

The structure of the product of SSV1 ORF d244 is a predicted
nuclease (Menon et al., 2010), similar to Holiday junction resolvase
enzymes. Why the lack of a resolvase leads to slower host growth
is unclear. Possibly SSV1 ORF d244 is involved in the specificity
of SSV1 integration. SSV-K1 is known to integrate into multi-
ple positions in the host genome (Wiedenheft et al., 2004), which
may contribute to its higher copy number. Whether SSV-"d244
integrates into multiple positions in the host genome is under
investigation. On the other hand, there may be a defect in SSV-
"d244 replication or resolution of SSV replication intermediates
that leads to accumulation of aberrant DNA, which, in turn, leads
to slower host growth.

After multiple transfers of Sulfolobus cultures transfected with
SSV-"d244 into fresh media, growth rates recover to near wild-
type rates (unpublished data). The virus is still present in these
cultures by PCR and is able to inhibit Sulfolobus growth on plates
(unpublished data) so the virus is not lost or apparently rear-
ranged (see Results). Whether there are other genetic changes in
the virus or host under these conditions remains to be determined.
One attractive possibility is changes to the CRISPR repeat struc-
tures that are proposed to be important for acquired immunity in
Sulfolobus (Held and Whitaker, 2009).

SUMMARY AND OUTLOOK
Comparative and structural genomics has identified a number
of targets for gene disruption in the SSV1 genome. Here pre-
cise gene disruptions of the poorly conserved VP2 gene, and the
well-conserved ORFs b129 and d244 are described. Deletions in
VP2 may allow insights into DNA packaging in the SSV1 genome.
Deletion of ORF b129 may allow the identification of the second
archaeal virus transcriptional activator. Deletion of ORF d244
may allow insight into copy number regulation in SSVs, previ-
ously thought to be regulated by ORF d63 (Lawrence et al., 2009).
Clearly, there are many more genes to be analyzed in the SSV1
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Figure 2-4: Typical growth inhibition in liquid culture of virus constructs 
Cultures of S. solfataricus G-theta infected with wild-type SSV1, diamonds, SSV-∆vp2, triangles 
and SSV-∆d244, squares, were diluted in YS media to equal starting OD600nm and incubated at 
75◦C. At the indicated times, samples were removed and the OD600nm was determined and the 
presence of virus was confirmed in each culture via halo assay. After 96 h, 1 mL of cells were 
diluted 1:100 in fresh YS media and returned to 75◦C.  
 
Discussion 

The putative DNA packaging protein VP2 is not required for SSV1 function 

The deletion of vp2 from SSV1 results in a functional virus that is 

indistinguishable from the wild-type virus (Figures 2-2 – 2-4). Based on the lack 

of conservation of VP2 this result is not completely unexpected. However, almost 

all viruses contain a genome packaging protein. There is no clear sequence 

homolog of VP2 in the host genome, but there are a number of small DNA-

binding proteins, such as Sso7d or Cren7 that may be able to functionally 

substitute for VP2 in SSV1 genome packaging (Choli et al., 1988; Guo et al., 

2008). This will be tested with mass spectrometry of SSV- ∆vp2 particles. 

Alternatively, the VP2 protein may be involved in maintenance of the positive 

supercoiling of the SSV1 viral genome (Nadal et al., 1986). It would be 

interesting to know if the topology of the viral DNA is affected by the absence of 

VP2. It is predicted that positive supercoiling should increase the thermal stability 

of the DNA, so SSV-∆vp2 may be less thermally stable than the wild-type virus.  

The vp2 gene may be more prevalent than previously thought. vp2-like 

sequences have been reported from metagenomic studies, one in an acid mine 

drainage metagenome (Andersson and Banfield, 2008) and the other from 

Boiling Springs Lake in California (Diemer and Stedman, unpublished). These 
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vp2 genes may be in the context of a SSV6 or ASV-like genome (Redder et al., 

2009).  

 
The product of ORF b129 appears to be essential for SSV1 infectivity 

Homologs of SSV1 ORF b129 are present in all known SSVs (Redder et 

al., 2009). The b129 ORF also does not tolerate insertion of the pBluescript 

plasmid (Stedman et al., 1999). Thus, it is not surprising that deletion of ORF 

b129 leads to an incompletely replicating virus. However, the SSV1 integrase, a 

gene also conserved in all fuselloviruses, did not appear to tolerate insertion of 

pBluescript (Stedman et al., 1999), but could be deleted with LIPCR without 

abrogating virus function (Clore and Stedman, 2006). This indicates that either 

polar effects are important, which seems unlikely since the SSV1 integrase is at 

the end of the T5 transcript, or that insufficient replicate transformations were 

performed in the earlier study.  

Nine replicate transformations of S. solfataricus with SSV- ∆b129 did not 

generate functional virus. However, we cannot absolutely determine that SSV1 

ORF b129 is essential for virus function without complementation experiments, 

which are underway. The reasons for the apparent necessity of SSV1 ORF b129 

are unclear, but the structure of the b129 ORF product, a predicted 

transcriptional regulator (Lawrence et al., 2009) and induction of the T6 transcript 

containing ORF b129 after UV- irradiation (Reiter et al., 1987b; Fröls et al., 2007) 

provides clues to its function.  



! 51!

The assay used herein for virus infection, ability to cause a zone of growth 

inhibition on a lawn of uninfected cells, is for virus spread and infectivity. There 

are many other aspects of virus replication that could be affected by disruption of 

ORF b129. An attractive hypothesis is that the B129 protein activates 

transcription of virus structural genes encoded by the “late” transcripts T7/8/9, 

T1, and T2 (Reiter et al., 1987b; Fröls et al., 2007; see Figure 2-1). This would be 

one of very few archaeal transcriptional activators characterized to date and the 

only the second archaeal viral transcriptional activator (Kessler et al., 2006). 

Thus, the SSV-∆b129 construct may be able to replicate its genome, integrate 

into the host, and have genome replication induced by UV-irradiation or some 

subset of these activities. Experiments to test these hypotheses are underway.  

 
Transfection with SSV-∆d244 produces virus and retards cell growth 

The SSV1 d244 ORF is well-conserved in fuselloviruses with the 

exception of SSVK1 (Wiedenheft et al., 2004; Redder et al., 2009). However, 

SSV1 lacking ORF d244 clearly makes infectious virus particles (Figures 2-2 and 

2-3). Moreover, the zones of clearing produced by supernatants of cells 

transfected with SSV-∆d244 are clearer than those produced by either the wild-

type or SSV-∆vp2 viruses (Figure 2-3; unpublished data). They are reminiscent 

of zones of clearing produced by SSVK1 (data not shown). Unlike wild-type virus 

and SSV-∆vp2, transfection by SSV-∆d244 leads to drastically reduced host 

growth (Figure 2-4). The reasons for this growth inhibition are unclear. Similar 
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growth phenotypes have been observed in SSVK1 infections (Stedman et al., in 

preparation). SSVK1 consistently produces more virus than similar cultures of the 

wild-type virus, so this may account for the growth defect (unpublished data). 

Whether SSV-∆d244 consistently produces more virus than the wild-type or SSV-

∆vp2 is currently unknown.  

The structure of the product of SSV1 ORF d244 is a predicted nuclease 

(Menon et al., 2010), similar to Holiday junction resolvase enzymes. Why the lack 

of a resolvase leads to slower host growth is unclear. Possibly SSV1 ORF d244 

is involved in the specificity of SSV1 integration. SSV-K1 is known to integrate 

into multiple positions in the host genome (Wiedenheft et al., 2004), which may 

contribute to its higher copy number. Whether SSV-∆d244 integrates into multiple 

positions in the host genome is under investigation. On the other hand, there 

may be a defect in SSV-∆d244 replication or resolution of SSV replication 

intermediates that leads to accumulation of aberrant DNA, which, in turn, leads to 

slower host growth.  

After multiple transfers of Sulfolobus cultures transfected with SSV-∆d244 

into fresh media, growth rates recover to near wild- type rates (unpublished 

data). The virus is still present in these cultures by PCR and is able to inhibit 

Sulfolobus growth on plates (unpublished data) so the virus is not lost or 

apparently rearranged (see Results). Whether there are other genetic changes in 

the virus or host under these conditions remains to be determined. One attractive 

possibility is changes to the CRISPR repeat structures that are proposed to be 
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important for acquired immunity in Sulfolobus (Held and Whitaker, 2009).  

 

Summary and outlook 

Comparative and structural genomics has identified a number of targets 

for gene disruption in the SSV1 genome. Here precise gene disruptions of the 

poorly conserved vp2 gene, and the well-conserved ORFs b129 and d244 are 

described. Deletions in vp2 may allow insights into DNA packaging in the SSV1 

genome. Deletion of ORF b129 may allow the identification of the second 

archaeal virus transcriptional activator. Deletion of ORF d244 may allow insight 

into copy number regulation in SSVs, previously thought to be regulated by ORF 

d63 (Lawrence et al., 2009). Clearly, there are many more genes to be analyzed 

in the SSV1 genome and more insights that can be gained by combining 

comparative genomics, structural biology, and genetics. In the future, 

biochemical work will be added to this suite of techniques to gain fundamental 

understanding of this fascinating, unique, and ubiquitous archaeal virus family.  
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Chapter 3: A comprehensive genetic survey of the fusellovirus SSV1 
reveals a malleable genome that tolerates deletion of the minor capsid 
gene  
 
 
Abstract 
 

The viruses infecting the Archaea harbor a tremendous amount of genetic 

diversity.  This is especially true for the spindle-shaped viruses from the family 

Fuselloviridae, where >90% of the viral genes do not yield detectable homologs 

in public databases.  This significantly limits our ability to elucidate the role of 

viral proteins in the infection cycle.  To address this, we have developed genetic 

techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped 

virus 1 (SSV1).   

Here, we expand upon previous research and present a thorough genetic 

analysis of SSV1 using specific and random mutagenesis.  We demonstrate that 

almost half of the SSV1 genes are not essential for infectivity and the 

requirement for a particular gene roughly correlates with its degree of 

conservation within the Fuselloviridae.  Surprisingly, the universally conserved 

minor capsid gene vp3 could be deleted without a loss in infectivity and results in 

slightly elongated virions.  The major capsid gene vp1 is essential for SSV1 

infectivity but does tolerate mutations to a well-conserved glutamate believed to 

be important for proteolytic processing of the protein.  SSV1 vp1 deletion mutants 

could be rescued by complementation in cis with vp1 homologues from SSV2 

and SSV9, a technique that has not been demonstrated for an archaeal virus.   
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Introduction 
 

The Archaea are infected by some of the most structurally and genetically 

diverse viruses known in nature (Reviewed by Prangishvili 2013).  Of the 

numerous morphologically unique viruses, those possessing a spindle-shaped 

architecture are widespread within the Archaea and include some of the best 

characterized archaeal viruses.  Spindle-shaped viruses (SSVs) belong to two 

viral families, the Fuselloviridae and Bicaudoviridae, which share few similarities 

other than overall capsid morphology (Krupovic et al., 2014).  The Fuselloviridae 

are further divided into the genera Alphafuselloviridae (SSV1, SSV2, SSV4, 

SSV5, SSV7, SSV8, and SSV9) and the Betafuselloviridae (SSV6 and ASV1) 

(ICTV 2014).  Fuselloviruses have been isolated world-wide from volcanic hot 

spring environments (70-80ºC, pH~2-4) in which their hosts thrive (Yeats et al., 

1982; Stedman et al., 2003; Redder 2009).  All members of the Fuselloviridae 

possess genomes of similar size and content, however variations in size and 

morphology of the particle exist (Redder et al., 2009).  Sulfolobus spindle-shaped 

virus 1 (SSV1) is the best-studied fusellovirus, although a significant amount of 

research has been done on the closely-related SSV2 (Reviewed in Contursi et 

al., 2014).   

SSV1 and its host S. shibatae were originally isolated from a hot spring in 

Beppu, Japan (Yeats et al., 1982).  SSV1 possesses a circular positively 

supercoiled 15.5 kbp dsDNA genome (Palm et al., 1991; Nadal et al., 1986).  

SSV1 is apparently unique among the Fuselloviridae in that its replication is 
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strongly UV inducible (Martin et al., 1984; Fusco et al., 2015a).  Transcription 

following UV induction was analyzed and found to be temporally regulated 

(Reiter et al., 1987b; Fröls et al., 2007).  All fuselloviruses encode a tyrosine 

family recombinase that facilitates integration into a host tRNA gene, although 

integration does not seem to be required for virus infectivity (Clore and Stedman 

2006).  Because SSV1 integrates into the host genome and establishes a stable 

carrier-state, SSV1 has been referred to as a temperate virus (Fusco et al., 

2013).  This nomenclature can be misleading, however, as SSV1 maintains a low 

copy number of episomal DNA (~5 copies/cell) and SSV1 infections do not 

appear to result in lysis of the host cell (Fusco et al., 2013; personal 

observations).  SSV1 virions appear to be released via budding and not through 

the recently discovered novel viral egress mechanism utilized by SIRV2 and 

STIV1 viruses (Martin et al., 1984; Bize et al., 2009; Brumfield et al., 2009).   

Fusellovirus capsids are predominantly comprised of the major capsid 

protein VP1 and small amounts of the minor capsid protein VP3 (Reiter et al., 

1987a; Quemin et al., 2015).  VP1 and VP3 proteins are highly conserved within 

the Fuselloviridae and share significant homology to each other (Reiter et al., 

1987a; Iverson and Stedman 2012).  VP1 isolated from purified SSV1 virions 

indicates that VP1 is proteolytically cleaved at an internal universally conserved 

glutamate prior to assembly (Reiter et al., 1987a; Quemin et al., 2015).  The 

source and identity of this putative protease remains a mystery.  SSV1 and three 

other fuselloviruses also encode a small and extremely basic structural protein 
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(VP2) that is thought to bind to viral DNA within the capsid (Reiter et al., 1987a; 

Servin-Garcidueñas et al., 2013).  A fourth capsid protein, VP4 (formerly C792), 

has been identified via mass spectrometry of purified virions and likely forms the 

tail fiber of the virion (Menon et al., 2008; Quemin et al., 2015).  Recently it was 

shown that purified SSV1 virions contain host-derived glycerol dibiphytanyl 

glycerol tetraether (GDGT) lipids (Quemin et al., 2015).  The structure of the 

SSV1 virion has been solved via cryoelectron microscopy, providing insight into 

the architecture and assembly of this diverse family of viruses (Stedman et al., 

2015; Quemin et al., 2015).   

The genome of SSV1 contains 35 open-reading frames (ORFs), most of 

which cannot be assigned a function due to undetectable homology with 

sequences in public databases (Iverson and Stedman 2012; Chapter 2).  This 

situation is not unique among viruses, however it seems especially prolific among 

crenarchaeal viruses and hinders our understanding of them and their life cycles 

(Prangishvili et al., 2006).  Comparison of fusellovirus genomes have identified a 

set of 12 genes/ORFs (i.e. the fusellovirus core) that are completely conserved 

within the Fuselloviridae (Table 1-1).  These genes are almost entirely clustered 

on one half of the genome and are predicted to play roles in replication, 

assembly and packaging due to the timing of their transcription in the UV-induced 

transcription cycle (Fröls et al., 2007; Redder et al., 2009).  To date, only the 

SSV1 structural proteins (VP1, VP2, VP3, and VP4) and integrase have been 

assigned a function, although a combination of structural studies and 
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bioinformatics have provided predictions for the roles of several others (Figure 3-

1). 

A number of putative transcription factors have been identified in the 

SSV1 genome, none of which have been experimentally characterized.  Crystal 

structures of SSV1-B129, SSV1-F112, SSV1-F93 and SSV8-E73 (homologue of 

SSV1-E51) reveal DNA binding domains characteristic of transcriptional 

regulators (Lawrence et al., 2009; Menon et al., 2008; Kraft et al., 2004a; 

Schlenker et al., 2012).  The products of four other well conserved SSV1 ORFs 

(SSV1-A45, SSV1-A79, SSV1-C80, and SSV1-B115) are predicted to encode 

ribbon-helix-helix (RHH), helix-turn-helix (HTH), or zinc finger (ZNF) DNA binding 

domains and may also be involved in transcription regulation (Prangishvili et al., 

2006).  The protein product of ORF f55 is predicted to possess a RHH DNA 

binding domain and was shown to weakly bind a number of viral promoters that 

control the expression of “early” gene products.  Based on these data, SSV1-F55 

is hypothesized to maintain “lysogeny” by repressing early viral promoters (Fusco 

et al., 2013; Fusco et al., 2015b), but this is inconclusive.   

SSV1-B251 and SSV1-A153 are highly conserved and are the only 

fusellovirus proteins encoded by the satellite virus pSSVx, leading to a prediction 

they may be involved in replication or packaging (Arnold et al., 1999).  In line with 

this, SSV1-B251 possesses clear NTP binding motifs and is predicted to be 

homologous to bacterial DnaA (Koonin et al., 1992).  The structure of SSV8-

D212, a homologue of SSV1-D244, displays a nuclease fold although activity 
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was not demonstrated biochemically (Menon et al., 2008).  SSV1-D244 was 

identified by mass spectrometry on purified SSV1 virions, although it was not 

identified in a later analysis (Menon et al., 2008; Quemin et al., 2015).  The 

structure of SSV1-D63 displays a four-helix bundle that is characteristic of a large 

number of proteins making a functional prediction difficult (Kraft et al., 2004b).   

SSV1 has proven to be quite amenable to genetic manipulation and is one 

of only two crenarchaeal viruses with established genetic systems (Stedman et 

al., 1999; Wirth et al., 2011).  The ability of SSV1 to tolerate large insertions of 

foreign DNA allowed for the construction of SSV1-based shuttle vectors and 

provided tools for studying the viral genome itself (Stedman et al., 1999; 

Jonuscheit et al., 2003).  Digestion of SSV1 DNA followed by the insertion of an 

E. coli plasmid provided the first data of which genes are required for virus 

infectivity (Stedman et al., 1999).  The data indicated that a majority of ORFs in 

SSV1 are apparently essential for virus function.  To date SSV1 is the only 

crenarchaeal virus to be extensively studied via genetic manipulation, although 

SSV9 has been shown to tolerate insertion of foreign DNA (Stedman 

unpublished; Appendix A).   

SSV1 shuttle vectors were essential for subsequent work where specific 

ORFs were deleted from the viral genome.  Using long inverse PCR (LIPCR) the 

SSV1 integrase gene was deleted and subsequently shown to be non-essential 

for production of infectious virus in S. solfataricus P2 (Clore and Stedman 2006).  

As a follow up to this work, the vp2 gene and ORFs b129 and d244 were deleted 
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(Iverson and Stedman 2012; Chapter 2).  Deletion of b129 resulted in loss of 

infectivity whereas removal of vp2 and d244 resulted in production of infectious 

virus.  Homologues of SSV1-B129 have been identified in the genomes of all 11 

isolated fuselloviruses, indicating that it is probably crucial for virus infectivity 

(Appendix B).  SSV1-VP2 is much less well conserved and may explain why it 

can be deleted without a loss of infectivity (Appendix B).  Interestingly, cells that 

were infected with ∆d244 virus exhibited a much more retarded growth 

phenotype when compared to cells infected with wild-type or ∆vp2 viruses 

(Iverson and Stedman 2012; Chapter 2). 

In an effort to further characterize the genetic requirements for the function 

of SSV1, LIPCR and transposon mutagenesis were employed to construct 

individual SSV1 genomes harboring defects in each of the 35 ORFs.  Overall, 

SSV1 appears to be much more tolerant of mutagenesis than previously thought.  

Almost the entirety of the T5 early transcript appears to be expendable while the 

other early transcript is much less so, in correlation with the abundance of well 

conserved fusellovirus genes.  The genes of the fusellovirus core appear to be 

essential with the surprising exception of the minor capsid gene vp3, which was 

shown to be non-essential for SSV1 infectivity.  Complementation of an SSV1 

mutant is also demonstrated for the first time. 

 

 

 



! 61!

   
Figure 3-1: Genome map of SSV1  
Open reading frames (ORFs)are displayed as block arrows and labeled as in Palm et al., 1991.  
The conservation of each ORF among 11 fusellovirus genomes is indicated by the color code in 
the middle of the map.  Homologous ORFs were determined by pBLAST (NCBI) using an e-value 
cutoff of 0.001.  Functional and structural annotations are listed next to the ORF name.  
Annotations in blue denote proteins that have been structurally characterized (Integrase: Eilers et 
al., 2012; D244: Menon et al., 2010; F93: Kraft et al., 2004a; E51: Schlenker et al., 2012; E96: 
Unpublished, PDB ID 2WBT; D63: Kraft et al., 2004; F112: Menon et al., 2008; B129: Lawrence 
et al., 2009).  Annotations in red denote ORFs that were characterized via bioinformatics (vp4 
and b78: Redder et al., 2009; a45, a79, c80 and b115: Prangishvili et al., 2006; b251: Koonin et 
al., 1992; f55: Fusco et al., 2013).  Underlined annotations indicate proteins that have been 
identified within the purified SSV1 virion (Reiter et al., 1987a; Menon et al., 2008; Quemin et al., 
2015).  Viral transcripts are shown as small arrows on interior of map (Reiter et al., 1987b; Fröls 
et al., 2007; Fusco et al., 2013).  HTH = helix-turn-helix; RHH = ribbon-helix-helix; wHTH = 
winged helix-turn-helix; ZNF = zinc finger.  
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Materials and Methods 

Purification of SSV1 DNA from Sulfolobus: 

S. shibatae strain B12, the original SSV1 isolate (Yeats et al., 1982; all 

microbial strains used are listed in Table 3-1, was grown by adding small “chip” 

of frozen cell stock (ca. 50 µL) to 5 mL of YS medium and incubated at 70º C 

with shaking until turbid (about ten days).  This culture was transferred to 50 mL 

fresh YS and grown for 3 days (OD600nm = 0.75) after which the culture was 

centrifuged at 3,000 x g.  The virus containing supernatant was stored at 4º C 

and SSV1 DNA was purified from the pellet using the GeneJet Plasmid 

Purification kit following the manufacturer’s protocol for plasmid purification from 

E. coli (Thermo-Fisher).  The yield of purified plasmid was consistently low and 

had a large amount of background DNA contamination, presumably from 

degradation of the host chromosome.  Purification using only the GeneJet kit 

yields DNA suitable for PCR, however, the total SSV1 DNA yield was low and 

deemed too impure for transposon mutagenesis.  An SSV1 DNA sample of 

higher purity was obtained as follows.  15 mL of uninfected Sulfolobus strain 

S441 (Table 3) was pelleted, resuspended in 15 mL of SSV1 supernatant (from 

infected B12 cells), and incubated at room temperature with shaking for two 

hours.  These infected cells were then added to 50 mL fresh YS medium and 

grown for 72 hours at 70º C.  The culture was spun at 3,000 x g and the pellet 

was resuspended in 400 µL of resuspension buffer (50 mM Glucose, 25 mM Tris, 

pH 8.0) and split into four 100 µL aliquots.  200 µL of lysis buffer (0.2 M NaOH, 
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1% SDS) was added to each aliquot, mixed, and incubated on ice for 5 minutes.  

150 µL of neutralization buffer (3M potassium acetate, 2M Acetic acid) was 

added and samples were incubated on ice for 5 minutes.  Samples were spun for 

10 min and the supernatant was collected and extracted three times with an 

equal volume of phenol:chloroform:isoamyl-alcohol (PCA).   

The aqueous phases of PCA extractions were pooled and DNA was 

precipitated with ethanol.  PCA contaminants were removed by passing DNA 

through a GeneJet Plasmid Purification column following the manufacturer’s 

protocol.  The resulting DNA was analyzed by UV spectroscopy (260/280 nm 

~1.8) and EcoRI endonuclease digestion according to manufacturer’s protocol 

(Thermo-Fisher). 

Table 3-1: Sulfolobus and E. coli strains used in this work 

Strain Description Reference 

S. shibatae B12 Original SSV1 host  
Yeats et al., 
1982 

S. solfataricus S441 Novel Sulfolobus isolate Unpublished 

S. solfataricus S171 Original SSV9 host  
Wiedenheft et 
al., 2004 

S. solfataricus GΘ MT4 Derivative 
Cannio et al., 
1998 

Transformax 
EC100D pir+ E. coli A 

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM15 
ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 
galU galK λ- rpsL (StrR) nupG pir+(DHFR) Epicentre, Inc 

Transformax 
EC100D pir-116 E. 
coli A 

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM15 
ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 
galU galK λ- rpsL (StrR) nupG pir-116(DHFR) Epicentre, Inc 

NovaBlue Singles      

E. coli  A 

endA1 hsdR17 (rK12– mK12+) supE44 thi-1 
recA1 gyrA96 relA1 lac Fʹ[proA+B+ 
lacIqZΔM15::Tn10] (TetR) Millipore, Inc 

A Chemically competent cells were prepared in house (See methods) 
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Purification of LIPCR template DNA from E. coli 

E. coli cells harboring the pAJC97, EAI283, or EAI228 SSV1 shuttle 

vectors (see Table 3-3 for reference to plasmids and vectors) were grown 

overnight in 5 mL of LB medium containing 50 µg/mL Kanamycin.  Plasmid DNA 

was then purified from 1.5 mL of overnight culture via alkaline lysis (see above 

for buffer components; Birnboim and Doly 1979).  Following ethanol precipitation, 

the DNA was dissolved in 30 µL diH2O with 0.01 µg of RNaseA.  DNA was 

analyzed by EcoRI restriction endonuclease digestion following manufacturer’s 

protocol (Thermo-Fisher).  DNA was typically diluted 1:10, 1:50, and 1:100 in 

diH2O for use as template in LIPCR. 

 
Long inverse PCR (LIPCR) 

LIPCR was used to delete entire SSV1 ORFs, portions of ORFs, or to 

introduce single base pair mutations into the SSV1 genome.  For deletions, 

primers were designed to overlap with the start and stop codons of the ORF to 

be deleted.  Due to complications with primer design (incompatible Tm’s, 

unfavorable secondary structures, primer dimers), most primers include 

additional portions of the 5’/3’ ends of ORFs (Table 3-2).  For vp1 single base 

pair mutations, primers were designed in such a way that ligation of the LIPCR 

product resulted only in desired base pair mutation and no deletion.  Template 

DNA for LIPCR was purified via alkaline lysis from E. coli harboring the pAJC97, 

EAI283, or EAI228 SSV1 shuttle vectors (described above; Table 3-3).  The 
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optimal concentration of template DNA for LIPCR was unknown and had to be 

determined empirically for each set of primers.  Template DNA purified from E. 

coli was initially diluted in 30 µL of H2O with 0.01 µg RNaseA and further diluted 

1:10, 1:50, 1:100 in H2O.  One µL of each dilution was used as template in a 20 

µL reaction and the dilution resulting in the cleanest full length product was 

selected.  LIPCR was performed as described in Iverson and Stedman 2012 

(Chapter 2).  Annealing temperatures for each primer pair were estimated using 

NEB Tm prediction software (http://tmcalculator.neb.com/#!/) but typically had to 

be experimentally optimized.  LIPCR products were purified, ligated, and 

transformed into chemically competent NovaBlue E. coli as in Iverson and 

Stedman 2012 (Chapter 2). 

 
Transposon mutagenesis 

The EZ-Tn5TM <R6Kγori/KAN-2> Insertion Kit (Epicentre) was used to 

perform transposon mutagenesis on purified SSV1 DNA.  A molar ratio of 30:1 

SSV1 DNA to EZ-Tn5 transposon was found to yield significantly more mutants 

than the manufacturer’s recommended equimolar ratio.  This was the only 

deviation from the manufacturer’s protocol (Epicentre).  Following completion of 

the reaction, the sample was diluted to 20 µL with nuclease free H2O.  This was 

done to lower the conductivity of the sample and reduce the chance for arcing 

during electroporation.  1 µL of the SSV1-EZ-Tn5 reaction was electroporated 

into 50 µL of transformax EC100D pir+ electrocompetent E. coli (Epicentre; Table 
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3-1) using a 0.1 cm gap length cuvette (Bulldog Bio) under the following 

electroporator (BioRad Gene Pulser II) conditions: 1.8 kV, 200 Ω, 25 µF.  Time 

constants were generally around 3.5-4.0 milliseconds.  Electroporated cells were 

immediately transferred to 1 mL of SOC medium and allowed to recover for 1 hr 

at 37º C with shaking.  Cells were then spread on LB plates containing 50 µg/mL 

Kanamycin and grown overnight at 37º C. 

 
Preparation of chemically competent E. coli for transformation of SSV1 deletion 

mutants 

NovaBlue Singles E. coli (Millipore; Table 3-1) were the only cells capable 

of consistent transformation with the large plasmid pAJC97, from which almost all 

SSV1 deletion mutants were constructed.  To prepare chemically competent 

cells, a single colony of NovaBlue E. coli from a freshly streaked plate was 

inoculated into 4 mL of sterile LB medium with no antibiotic and grown overnight 

at 37º C with shaking.  The culture was transferred to 400 mL sterile LB and 

typically grown to an OD600nm ~0.3 - 0.4.  Cells were spun for 10 min and 

resuspended in 1/4 volume of ice cold 100 mM MgCl2.  Cells were then spun for 

10 min, resuspended in 1/2 vol of ice cold 100 mM CaCl2, and left on ice for 30 

min.  Cells were centrifuged for 10 min and resuspended in 85 mM ice cold 

CaCl2/15% Glycerol.  Cells were divided into 100 µL aliquots and frozen at -80ºC.  

Cells retained competence for greater than 6 months at -80º C.  All 

centrifugations were performed at 3,000 x g and 4º C.  Chemically competent 
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Transformax EC100D pir+ cells used for transformations of EZ-Tn5 based 

vectors were prepared in an identical fashion (Table 3-1). 

 
Isolation and identification of transposon and deletion mutants 

Single colonies of E. coli following transformation with LIPCR products or 

transposon insertion reactions were picked and grown in 5 mL LB with 50 µg/mL 

Kanamycin.  Plasmid DNA was purified via alkaline lysis (see above) and 

checked for a SSV1-like banding pattern after digestion with EcoRI (Thermo-

Fisher).  Deletion mutants displaying expected EcoRI restriction patterns were 

further analyzed by PCR using primers that amplified across the deleted region.  

Positively identified mutant DNA was re-isolated from E. coli using the GeneJet 

Plasmid Purification Kit (Thermo-Fisher) following manufacturer's protocol.  

Purified DNA was sequenced using the Big Dye Terminator Kit according to 

manufacturer’s protocols (ABI).  10 µL BDT sequencing reactions were 

assembled as follows: 200-400 ng template DNA, 0.5 µL of 10 µM primer, 2 µL 

5X BDT buffer, 1 µL of BDT mix, and H2O to 10 µL.  Thermocycler parameters 

for BDT sequencing reactions were as follows: Initial denaturation at 96º C for 2 

min; 30 cycles of 10 sec at 96º C, 10 sec annealing at 50º C, 4 min extension at 

72º C.  BDT reactions were precipitated with isopropanol and allowed to dry at 

room temperature.  Samples were submitted to the DNA Services Core at 

Oregon Health and Sciences University for sequencing. 
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Complementation in cis of SSV1 mutants 

SSV1 mutants lacking a specific ORF/gene were constructed via LIPCR 

using EAI283 as template (Tables 3-3 and 3-4).  The homolog of the missing 

ORF/gene from either SSV9 or SSV2 (Table 3-4) was amplified using Phusion 

DNA polymerase, purified with PCR Purification Kit (Thermo-Fisher) and 

phosphorylated with T4 polynucleotide kinase according to manufacturer’s 

protocols (Thermo-Fisher).  Phosphorylated homolog-containing DNA was heat 

treated for 10 min at 75º C prior to ligation reaction.  LIPCR products were 

purified directly from the LIPCR reaction by sodium acetate/ethanol precipitation.  

The phosphorylated homolog-encoding DNA was mixed with LIPCR product at a 

molar ratio of 10:1 (respectively) and ligated with 5 U of T4 DNA ligase (Thermo-

Fisher) for 20 hours at 16ºC.  5 µL of the ligation reaction was used to transform 

100 µL chemically competent pir+ E. coli according to manufacturer’s protocol 

(Epicentre).  DNA was purified from resulting transformants by alkaline lysis and 

checked for correct insertion by PCR with DreamTaq DNA polymerase (Thermo-

Fisher) using an internal primer specific to the homolog and an external primer 

specific to SSV1.  BDT sequencing was performed to confirm correct insertion 

(see above).   

 
Transformation of Sulfolobus 

Starter cultures of Sulfolobus (5 mL) were grown from frozen stocks for 

48-72 hr in a 70º C shaking incubator.  Starter cultures were transferred to 50-
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100 mL of fresh YS in long neck Erlenmeyer flasks and grown until turbid (~48 

hr).  For transformation, cells were diluted with YS media to OD600nm ~0.16-0.18 

and grown until OD600nm reached ~0.20 (2-3 hr).  50 mL of cells were removed 

and placed on ice for 30 minutes.  Cells were washed with 20 mM ice-cold 

sucrose as in Schleper et al., 1992.  After the final wash, cells were resuspended 

in 400 mL ice-cold 20 mM sucrose and kept on ice.  100 µL of cells were added 

to a chilled 0.1 cm gap length cuvette (Bulldog Bio) and 2 µL of SSV DNA (100-

500 ng/µL) was added to the cells.  SSV DNA used in transformation was 

typically purified from E. coli using the GeneJET plasmid purification kit (Fisher).  

Cells were transformed by electroporation (BioRad Gene Pulser II) under the 

following conditions: 1.5 kV, 400 Ω, 25 µF.  Immediately following 

electroporation, cells were resuspended in 1 mL of 70º C YS, transferred to a 1.5 

mL tube, and incubated for 1 hr in a 70º C dry incubator.  Following incubation, 

cells were transferred to 50 mL of preheated YS in a long neck Erlenmeyer flask 

and grown with shaking at 70º C.  Cultures should appear turbid after ~24-36 

hours. 

 
Halo assay to check for infectious virus production 

Following electroporation of Sulfolobus with SSV DNA, halo assays were 

performed in duplicate 48 and 72 hours post-transformation.  Halo assays were 

performed as previously described (Chapter 2).  Indicator lawns were always 
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prepared using the same strain of uninfected Sulfolobus that was used in the 

original transformation.   

 
Confirmation of infectious SSV DNA 

Transformed cultures that resulted in production of halos were further 

analyzed to confirm the identity of the viral DNA and ensure that contamination 

with a different virus had not occurred.  Viral DNA was purified from infected cells 

using GeneJET kit (detailed above).  Purified DNA was then PCR-amplified using 

DreamTaq DNA polymerase (Thermo-Fisher) and primers that flank the mutated 

region of the viral DNA.  Control reactions using the original mutant DNA (i.e. 

DNA used in transformation of Sulfolobus) and wild type SSV1 DNA were always 

performed.  Cultures harboring infectious SSV1 mutants were spun down, 

concentrated 10X in Sulfolobus storage buffer (YS medium with 20% glycerol, 

lacking yeast extract and sucrose, pH = 5.0), and frozen at -80º C.   

 
Transmission electron microscopy 

 Samples were prepared for TEM analysis as in Iverson and Stedman 

2012 (Chapter 2).  Alternatively, samples were also prepared by directly spotting 

5 µL of infected culture onto the TEM grid in place of supernatant.   
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Table 3-2: LIPCR primers used to construct SSV1 mutants 

Mutation Forward primer Reverse Primer 

Amino acids 
remaining in 
ORFAB /  % of 

ORF 
remainingAB 

∆C102a 
CTG AAT GGC TAA AAA 
GAA CGG  (62) 

TGT TAT TAT TTC TGT 
TAC TGA GAC C (57) 12 / 11% 

∆B251 
ATT GAC GAC GTA ACA 
AGA TAG (56) 

TAA CCA TAA CCA TTC 
ATT ACT C (55) 23 / 9% 

∆E54 
ACT CAT TTG TCC ACC 
TTG (56) 

CAA CCA TAA TAC TGT 
GAG G (53) 13 / 24% 

∆F92 
CTC TGA GTT GAA TAT 
CAT TTT CC (58) 

ATA GCA TGG CTA GAA 
TAC AAG G (59) 16 / 17% 

∆F93 
CAT ATC CTC CTC ACT 
CCT CAG (60)  

ATC AAA AAG AGG TGA 
ACT AGA TGG (61) 5 / 5% 

∆E96 
CAG ATC GAA TAT AGG 
AAC TTG C (59) 

TAA ATG ATA GAG AAG 
AGG AAA GAT AGG (60) 10 / 10% 

∆F112 
CAT CTT GTA TGA ATT 
TAG AGT TTG TGC (63) 

AAG GCA AAG CAG 
TGA ACT GAC (63) 14 / 13% 

∆B49 
GTA GAA GCA ATA AAT 
GAT TTG (53) 

CTC AGA TTT TGC ACA 
TCC (56) 15 / 30% 

∆F55 

TTT CCT CGG CAT ACG 
CTA TC (64) 

TAA ATG CCC TAC TAT 
ACT CTA TCT CTC TC 
(60) 4 / 7% 

∆A100 
TTT GAC TTC TGA GGA 
GG (53) 

TAA CTC TTC TTC TTT 
TCG GG (58) 15 / 15% 

∆C80 

TTA GCG AGG TAT GTA 
GAA AAT GTT TAG ATG   
C (67) 

TGT GTA ACA TCT AGG 
TAA TTT GAT GTA TTC 
(62) 23 / 29% 

∆A79 
GTT GAG TGA ATA ATG 
TAT CAA TGT CTA C (60) 

GCA TCT AAA CAT TTT 
CTA CAT ACC TC (60) 6 / 8% 

∆A45 
GTG AGA GGA CAA TGA 
ACC (55) 

TTG ATA CAT TAT TCA 
CTC AAC C (56) 7 / 15% 

∆C102b 
GGA TGA CGG AGT CAG 
ACG TTG (67) 

GTT CAT TGT CCT CTC 
ACC CTG AAG (67) 3 / 3% 

B129 (∆N-
terminus) 

AAA GCG ATT TCA CAG 
TTT GTC (61) 

TGA CTC CGT CAT CCT 
CTA AC (59) 64 / 50% 

B129 (∆C-
terminus) 

AGT TAG GCT CTT TTT 
AAA GTC TAC C (58) 

TGA AAT CGC TTT ACT 
CGC (59) 74 / 57% 

∆C124 
AGA AGA TAG CCC TTT 
TTA AAG CC (62) 

GAA AAT AGA ACC TAC 
AAC TGT AAA CAG (59) 14 / 11% 

∆B115 
TGG AGG GGT TTA AAA 
ACG TAA G (63) 

TCA TTC CGA CCC CCT 
AAT TAA C (65) 33 / 29% 

∆VP1 
TGA GGG ATG GAA ATC 
AGT TTA AAG (64) 

CAA ACT CCT TAG GAG 
TCT CAT CC (62) 2 / 1% 

VP1(∆N-
terminus) 

ATG GAA GCA ACC AAC 
ATA GG (61) and GAA GCA 
ACC AAC ATA GG (54) 

CAA ACT CCT TAG GAG 
TCT CAT CC (62) 73 / 53% or 74 

/ 54% 

VP1(E66A)C 
GCA GCA ACC AAC ATA 
GGC (62) 

ACC TTT TGT GAG CTT 
GGG G (63) NA 
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VP1(E66Q)D 
CAA GCA ACC AAC ATA 
GGC (59) 

ACC TTT TGT GAG CTT 
GGG G (63) NA 

VP1 (∆61-
65) 

GAA GCA ACC AAC ATA 
GGC (58) 

GGG GTT TGC CTT TGC 
TAC (62) 133 / 96% 

∆VP3 
TGA TAT GAA GTG GGT 
GCA AAA GG (67) 

CAT CCC TCA CAC CTC 
AGT CTT TG (67) 2 / 2% 

∆D335 
(Integrase) 

CAT TTC GCC TCA CAG 
TAT TAT GG (64) 

GTC TGA CAT TAC CCG 
TAT CAC (58) 2 / 1% 

∆D63-F92 
TTC TTT ACT CAT TGT 
TTT TCA CCT TAG (62) 

ATA GCA TGG CTA GAA 
TAC AAG G (59) NA 

!! All sequences are written 5’ " 3’ orientation, bases in bold type denote those which are 
within the SSV1 ORF 

A.! Does not include the stop codon 
B.! Determined after deletion with LICPR 
C.! Highlighted base indicates mismatch that correlates to Glu"Ala mutation in VP1 protein 
D.! Highlighted base indicates mismatch that correlates to Glu"Gln mutation in VP1 protein 
 
 
 
Results 

To better understand the function of SSV1 genetic elements and extend 

the work presented in chapter 2, specific and random mutagenesis of SSV1 was 

performed:   

 
Construction of specific SSV1 mutants by LIPCR 

Deletions and point mutations were introduced into the SSV1 genome via 

LIPCR using Phusion High-Fidelity DNA polymerase (Thermo-Fisher).  The 

majority of deletion mutants were constructed in the genetic background of 

pAJC97, an SSV1 shuttle vector with the TOPO pcr Blunt II plasmid (Thermo-

Fisher) inserted into ORF e178 (Clore and Stedman 2006; Table 3-3).  Later, 

shuttle vectors EAI228 and EAI284 were also used as templates for LIPCR (See 

below and Table 3-3). 
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Template DNA for LIPCR was purified from 1.5 mL of a 5 mL overnight E. coli 

culture via alkaline lysis.  Template DNA purified using a commercially available 

kit (Thermo-Fisher Plasmid Purification Kit) did not result in a noticeable 

improvement in PCR efficiency.  LIPCR reactions (20 µL) were prepared 

following the DNA polymerase manufacturer’s protocol.  The only exception was 

that the recommended concentration of polymerase was reduced from 0.02 U/µL 

to 0.005 U/µL which helped to eliminate “smearing” that appeared using the 

higher concentration of enzyme.  The optimal concentration of template DNA for 

LIPCR was determined empirically for each set of primers (See methods). 

Primers were designed to delete a specified ORF while preserving the 

sequences of overlapping ORFs, promoter elements, and other genetic elements 

(Reiter et al., 1987b; Palm et al., 1991; Fröls et al., 2007; Fusco et al., 2013).  

Optimally, only the start and stop codons of the targeted ORF would remain 

following LIPCR, however, this was not always achievable.  The majority of 

deletions resulted in ORFs ~10 codons in length (Table 3-2).  The annealing 

temperature for each set of primers was estimated using primer design software 

(see methods).  This estimate was often not optimal but was typically within 1-5˚ 

C of the optimal temperature. 

In initial PCR experiments, an extension of 30 sec/kb at 72º C was used 

and resulted in little to no amplification or the appearance of large smears on the 

gel.  The extension time was incrementally decreased to 18.75 sec/kb, which, 

along with the reduced enzyme concentration, eliminated smearing and more 
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consistently resulted in full-length product.  A total of 35 amplification cycles were 

performed, although later experiments indicated that 30 cycles were sufficient.   

Following LIPCR, phosphorylated DNA was ligated and transformed into 

E. coli for selection of full-length mutant DNA.  Several commercial E. coli strains 

were tested for their ability to efficiently uptake ligation reactions, including 

chemically competent DH5α (NEB), DH5α (Invitrogen), 10-Beta (NEB), and 

NovaBlue Singles (Millipore).  The only strain that could be reliably transformed 

were NovaBlue E. coli that were prepared in house (see materials and methods; 

Table 3-1).  Transformants harboring full length pAJC97-derived deletion mutants 

were typically slow growing, formed small colonies on LB-Kan plates, and did not 

grow well in liquid media.  This was likely due to the large size of the plasmid 

(~19 kb) and the high copy number inherent to TOPO pcr Blunt II.  Later it was 

observed that pir+ E. coli (Epicentre) grew much more efficiently when 

transformed with EZTn5-based SSV1 shuttle vectors, most likely due to the 

reduced copy number of the plasmid.  A few of the later SSV1 mutants were 

constructed in the genetic background of EAI283 and EAI228, which harbor the 

EZTn5 transposon in ORFs e178 and f112, respectively (Tables 2 and 3).   
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Table 3-3: List of plasmids and SSV1 shuttle vectors used in this work 

Plasmid Description 
Infectious in 
S441 (+ or -) Reference 

pAJC96 
pAJC97 background with Integrase 
(d335) deleted 

— Clore and 
Stedman 2006 

pAJC97 
SSV1 shuttle vector (TOPO PCR Blunt 
II inserted into ORF e178 at bp 3,173) + Clore and 

Stedman 2006 

REC228 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 4,680 (ORF f112) + This Work 

REC229 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 11,265 (vp4)  

— 
This Work 

REC230 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 8,277 (ORF a291) 

— 
This Work 

REC231 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 11,227 (vp4) 

— 
This Work 

EAI232 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 8,662 (ORF a291) 

— 
This Work 

EAI239 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,218 (ORF b49) 

— 
This Work 

EAI240 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 4,792 (ORF f112) 

— 
This Work 

EAI241 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 100 (ORF a100) 

— 
This Work 

EAI242 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 10,159 (vp4) 

— 
This Work 

REC243 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 14,046 (ORF c84/a82) 

— 
This Work 

REC244 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 4,788 (ORF f112) 

— 
This Work 

REC245 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 12,718 (vp1) 

— 
This Work 

EAI247 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 13,992 (ORF c84/a82) 

— 
This Work 

EAI248 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 953  

— 
This Work 

EAI249 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 6,375 (ORF a132) + This Work 

EAI250 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 11,641 (ORF b78) 

— 
This Work 

EAI251 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 14,677 (ORF b277) 

— 
This Work 

EAI253 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 3,889 (ORF e51) + This Work 

EAI254 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 8,633 bp (ORF a291) 

— 
This Work 

EAI255 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 7,509 (ORF b129) 

— 
This Work 

EAI256 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 2,776 (ORF d244) + This Work 

EAI257 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 4,249 (ORF e96) + This Work 
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EAI258 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 8,998 (ORF c124) + This Work 

EAI260 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 80 (ORF a153) 

— 
This Work 

EAI261 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 14,209 (ORF b277) 

— 
This Work 

REC262 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 4,209 (ORF e96) + This Work 

EAI266 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 1,988 (ORF e54) 

— 
This Work 

EAI267 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 1,717 (Integrase) 

— 
This Work 

EAI271 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 6,018 (ORF a100) 

— 
This Work 

EAI278 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 14,834 (ORF b277) 

— 
This Work 

EAI281 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 13,709 (ORF c84/a82) 

— 
This Work 

EAI282 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 11,807 (ORF c166) 

— 
This Work 

EAI283 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 3,572 (ORF e178) + This Work 

EAI286 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 11,407 (vp4) 

— 
This Work 

EAI296 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,783  

— 
This Work 

EAI297 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 12,170 (ORF c166) 

— 
This Work 

EAI305 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 7,359 (ORF c102b) 

— 
This Work 

EAI319 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 7,387 (ORF c102b) 

— 
This Work 

REC322 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,573 (ORF f55) 

— 
This Work 

REC324 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 4,394 (ORF d63) + This Work 

REC325 A 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 967 (Integrase) + This Work 

EAI446 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 13,211 (vp3)  +B 

This Work 

EAI452 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 13,003   +B This Work 

EAI453 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,451  + This Work 

EAI469 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 13,491 (vp2) 

— 
This Work 

EAI476 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 13,191 (vp3)  +B This Work 

EAI477 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,247 (b49) 

— 
This Work 
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EAI486 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,024  + This Work 

EAI492 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 3,837 (f92) + This Work 

EAI202 
pAJC97 background with ORF b129 
deleted 

— 
This Work 

EAI201  
pAJC97 background with ORF d244 
deleted 

— 
This Work 

EAI205 
pAJC97 background with ORF b49 
deleted + This Work 

EAI206 
pAJC97 background with ORF b251 
deleted 

— 
This Work 

EAI214 
pAJC97 background with ORF b115 
deleted 

— 
This Work 

EAI216 
pAJC97 background with ORF e96 
deleted + This Work 

EAI233 
pAJC97 background with ORF a100 
deleted 

— 
This Work 

EAI237 
pAJC97 background with N-terminus of 
vp1 deleted 

— 
This Work 

EAI327 
pAJC97 background with ORF f112 
deleted 

— 
This Work 

EAI390 
pAJC97 background with ORF c124 
deleted + This Work 

EAI394 
pAJC97 background with ORF a79 
deleted + This Work 

EAI398 
pAJC97 background with ORF a45 
deleted + This Work 

EAI400 
pAJC97 background with ORF f55 
deleted + This Work 

EAI407 
pAJC97 background with ORF f92 
deleted + This Work 

EAI413 
pAJC97 background with ORF f93 
deleted + This Work 

EAI420 pAJC97 background with vp3 deleted + This Work 

EAI421 
pAJC97 background with ORF c102a 
deleted 

— 
This Work 

EAI422 
pAJC97 background with C-terminus of 
ORF b129 deleted 

— 
This Work 

EAI427 
pAJC97 background with E66Q 
mutation in VP1 + This Work 

EAI430 
pAJC97 background with N-terminus of 
b129 deleted 

— 
This Work 

EAI435 
pAJC97 background with ORF e54 
deleted 

— 
This Work 

EAI439 
pAJC97 background with ORF c80 
deleted + This Work 

EAI496 
pAJC97 background with ORF c102b 
deleted 

— 
This Work 

EAI499 
pAJC97 background with ORF b129 
deleted 

— 
This Work 
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EAI500 
pAJC97 background with E66A 
mutation in VP1 + This Work 

EAI553 
EAI283 background with SSV9-vp1 
complementation + This Work 

EAI557 
EAI283 background with N-terminus of 
SSV9-vp1 complement + This Work 

EAI561 
EAI283 background with SSV9-b279 
complementation 

— 
This Work 

EAI563 
EAI283 background with SSV9-a231 
complementation 

— 
This Work 

EAI564 
EAI283 background with N-terminus of 
vp1 deleted 

— 
This Work 

EAI566 
EAI283 background with SSV2-vp1 
complementation + This Work 

JAH572 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,016  

— 
This Work 

JAH573 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,264 (b49) 

— 
This Work 

JAH576 
SSV1::Tn5 mutant, EZ-Tn5 inserted at 
bp 5,681  

— 
This Work 

EAI578 
EAI283 background with residues 61-65 
deleted from VP1 

— 
This Work 

EAI580 
EAI283 background with ORF d335 
deleted  

— 
This work 

EAI582 
EAI228 background with ORFs d63 
through f92 deleted + This work 

A.! Plasmids with REC prefix refer to SSV1 mutants that were isolated in the Recombinant 
DNA Techniques Laboratory at Portland State University 

B.!Insertions in these mutants were removed in Sulfolobus via homologous recombination 
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Table 3-4: List of other primers used in this work 

Primer Sequence Description 

Kan-2 FP-1 
ACCTACAACAAAGCTCTCATCA
ACC 

Used to sequence transposon 
mutants, anneals ~100 bp 
upstream EZ-Tn5 5’ end 

Univ_7F ATTCAGATTCTGWATWCAGAA 

Amplifies structural gene region of 
all SSVs with universal 8R (Snyder 
et al., 2004) 

Univ_8R TCSCCTAACGCACTCATC 

Amplifies structural gene region of 
all SSVs with universal 7F (Snyder 
et al., 2004) 

SSV9_VP1_F GAAGTTTGGTCAAAGTTAAACG 
Amplifies VP1 gene from SSV9 for 
complementation of SSV1-∆VP1 

SSV9_VP1_R ATCTTTGTAGATTTTATACG 
Amplifies VP1 gene from SSV9 for 
complementation of SSV1-∆VP1 

SSV2_VP1_F GCCACCAGACTAATGCTAAGC 
Amplifies VP1 gene from SSV2 for 
complementation of SSV1-∆VP1 

SSV2_VP1_R 
GTCACGATATATCTTATACGCT
ATGAC 

Amplifies VP1 gene from SSV2 for 
complementation of SSV1-∆VP1 

SSV9_VP1NT_F GAAGTTTGGTCAAAGTTAAACG 

Amplifies N-terminus of VP1 gene 
from SSV9 for complementation of 
SSV1-VP1∆N-terminus 

SSV9_VP1NT_R ACCCCTAGTAAGTTTGGG 

Amplifies N-terminus of VP1 gene 
from SSV9 for complementation of 
SSV1-VP1∆N-terminus 

B277_LIPCR_F 
AATGGTCTCAGTAACAGAAATA
ATAAC 

Deletion of entire b277 ORF from 
EAI283 for complementation 

B277_LIPCR_R GCAAACACCTCAACCCAAG 
Deletion of entire b277 ORF from 
EAI283 for complementation 

SSV9_C279_F 
ATGTCTGATGGAAAATTAGTTT
CC 

Amplifies c279 ORF from SSV9 for 
complementation of ∆b277 mutant 

SSV9_C279_R TCACCCCTTACTCGTATTTGC 
Amplifies c279 ORF from SSV9 for 
complementation of ∆b277 mutant 

B251_LIPCR_F2 TGATACGGGTAATGTCAGACC 
Deletion of entire b251 ORF from 
EAI283 for complementation 

B251_LIPCR_R2 
GGTCAAATAATTGTTTCAGAAT
TG 

Deletion of entire b251 ORF from 
EAI283 for complementation 

SSV9_A231_F 
ATGGAAATGACTGAACTATTAT
GG 

Amplifies A231 ORF from SSV9 
for complementation of ∆b251 
mutant 

SSV9_A231_R 
CTACTCTAAATTTTCGTTATTTT
TCC 

Amplifies A231 ORF from SSV9 
for complementation of ∆b251 
mutant 

* All primer sequences written 5’ " 3’ orientation 
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Construction of SSV1 EZTn5 transposon insertion mutants 

The EZ-Tn5TM <R6Kγori/KAN-2> transposon insertion kit (Epicentre) was 

used to construct insertion mutants of SSV1.  Combining EZTn5 transposon DNA 

and SSV1 DNA at an equimolar ratio as specified by the manufacturer yielded 

~5% of transformants harboring full length shuttle vectors.  By increasing this 

ratio to 30:1 (SSV1 DNA:EZTn5 DNA) the number of transformants containing 

full length plasmid increased to ~50%.  SSV1::EZTn5 constructs could only be 

isolated from transformation of “low copy number” pir+ E. coli (Epicentre; Table 3-

1) but could not be isolated following transformation of “high copy number” pir-

116 E. coli (Epicentre; Table 3-1). 

 
Summary of SSV1 mutagenesis 

All 35 ORFs in the SSV1 genome were mutated via insertion and/or 

deletion and these mutants were tested for the ability to infect S. solfataricus 

S441 cells, a host permissive to SSV1 infection (Stedman unpublished).  

Additional insertion mutants within specific intergenic regions were also isolated 

and characterized.  The infectivity of SSV1 mutants was assayed by 

transformation of mutant DNA into uninfected S441 cells and then spotting these 

cultures on an uninfected lawn 72 and 96 hours later.  Spotting a productively 

infected culture on a lawn of cells results in the appearance of a ring of growth 

inhibition, i.e. a “halo”, due to the production of virus by the infected cells.  A 

large proportion of our SSV1 mutants did not result in the production of halos 
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when transformed, indicating they are not infectious.  However, a false negative 

may result from a failed transformation and this is indistinguishable from the 

phenotype of a non-infectious mutant.  To help rule out this possibility, a mutant 

was only labeled as non-infectious after a minimum of five independent negative 

results had been documented with appropriate negative and positive controls.  

While this does not completely eliminate the possibility of false negatives, it does 

significantly increase the likelihood that a non-infectious phenotype is due to the 

mutation and not an experimental error.  Electroporation data from EAI262, which 

was used as a positive control in most experiments, show that 97% of 

transformations result in production of virus as indicated by halo assay.  

However, we encountered two mutants that were initially judged to be non-

infectious after five negative results only to later find that they were capable of 

producing infectious virus (EAI258 and EAI453).   

Overall SSV1 appears quite tolerant of mutagenesis, allowing for a variety 

of insertions and deletions throughout the genome (Table 3-3; Figure 3-2).  With 

a few exceptions, ORFs that could be deleted from the virus without loss of 

infectivity also tolerated insertion of the 2 kb EZTn5 transposon.  The extent to 

which a particular ORF was conserved within the Fuselloviridae generally 

dictated whether or not the ORF was essential for SSV1 infectivity.  Of the 12 

ORFs that are unique to SSV1, 8 of these could be mutated without a loss of 

infectivity.  Conversely, there are 12 universally conserved genes belonging to 
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the so-called fusellovirus core (Table 1-2), none of which could be mutated with 

the notable exception of the vp3 gene (Figures 3-1 and 3-2). 

 
The moderately conserved ORFs of the T6 transcript 
 

The ~2 kb region of the SSV1 genome encoding the T6 transcript (Reiter 

et al., 1987b) encompasses seven ORFs (a100, a132, c80, a79, a45, c102b, and 

b129), most of which are moderately-to-highly conserved within the 

Fuselloviridae (Figure 3-1).  ORF a132 is unique to SSV1 and apparently non-

essential as it was the only ORF within this region that tolerated insertion of the 

transposon.  All three of the ORFs c80, a79, and a45 could be deleted without a 

loss of infectivity.  Oddly, infectious virus was not produced when the transposon 

was inserted into ORFs a45 and c80, potentially due to polar effects caused by 

the insertion.  The highly conserved ORFs c102b and a100 were found to be 

essential for infectivity.  ORF b129 was previously determined to be essential for 

SSV1 infectivity (Chapter 2).   
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Figure 3-2: Results of SSV1 mutagenesis 
Open reading frames are displayed and labeled as in Figure 3-1.  The fill color of the ORF 
indicates if deletion of the ORF results in production of infectious virus (green) or not (red).  ORFs 
for which there are no deletion data are black.  The dotted line near the T5 transcript indicates the 
region deleted in the infectious mutant EAI582.  Arrows on the exterior of the map denote the 
location of individual transposon insertions and the color of the arrow indicates whether the 
insertion results in the production of infectious virus (green) or not (red).  Grey arrows in the 
vp1/vp3 gene region indicate insertions that are apparently removed via homologous 
recombination, allowing for the production of infectious virus.  Blue arrows (ORFs e51 and e178) 
denote infectious SSV1 insertion mutants reported by Stedman et al., 1999.  The purple arrow in 
ORF e178 denotes the location of pBluescript insertion in the infectious mutant pKMSD48 
(Stedman et al., 1999) and also denotes the location of the Topo pcr blunt II plasmid in infectious 
mutants pAJC97 and pAJC96 (Clore and Stedman 2006).  Transcripts are denoted by small 
curved arrows on the interior of the map and labeled as in Figure 3-1.   
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Both the N- and C-termini of B129 are essential for SSV1 infectivity 
 

The structure of SSV1-B129 displays N-terminal and C-terminal DNA 

binding domains, both of which have been shown separately to bind DNA 

(Lawrence et al., 2009 and unpublished).  Mutants lacking the b129 N- and C-

termini were constructed via LIPCR and tested for infectivity (Figure 3-3A).  

Neither mutant appears capable of producing infectious virus, implying that the 

full length B129 protein is required for infectivity. 

 
 
Figure 3-3: B129 and F112 protein sequences 
(A) Amino acid sequence of the SSV1-B129 protein (NP_039795.1).  Residues that were deleted 
to construct the b129 N- and C-terminal deletions are labeled with grey bars under the sequence.  
Blue highlighted residues indicate the position of the tandem ZNF motifs in the C-terminus 
(Lawrence et al., 2009).   
(B) Amino acid sequence of the SSV1-F112 protein (NP_039787.1).  Location of the three 
transposon insertion mutations have been mapped to the F112 sequence and are indicated by 
arrows.  Residues that correspond to the “wing” motif in the F112 crystal structure are highlighted 
in yellow and C-terminal residues not present in the structure are italicized (Menon et al., 2008). 
 
 
The monocistronic transcripts T3 and Tx 
 

The monocistronic transcripts T3 and Tx are both expressed early in the 

transcription cycle (Fröls et al., 2007).  The T3 transcript encodes ORF a291 and 

Tx encodes ORF c124, both of which reportedly have homologues in SSV2 
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(ORFs 305 and126, respectively) but were not identified here using pBLAST 

software (NCBI) (Fusco et al., 2015c; Figure 3-1). 

Three separate insertion mutants (EAI230, EAI232, and EAI254) in a291 

were analyzed, none of which resulted in the production of infectious virus 

(Figure 3-2).  Conversely, c124 tolerated insertion in and deletion of the entire 

ORF without the loss of infectivity.  It should be noted that the c124 insertion 

mutant (EAI258) produced infectious virus in only three of twelve independent 

transformations, something that was not observed for other mutants nor for the 

c124 deletion mutant (EAI390).   

 
The fusellovirus core is intolerant of mutagenesis 
 

The fusellovirus core genes are predominantly encoded on one half of the 

SSV1 genome and encompass the middle-to-late transcripts T4/7/8, T1/2, and 

T9 (Fröls et al., 2007; Figure 3-1).  Core genes c166, b115, a82, c84, a92, b277, 

a153, and b251 did not tolerate deletions and/or insertions (Figures 3-1 and 3-2).  

This was expected due to their presumed significance in the fusellovirus life cycle 

(Redder et al., 2009; Chapter 2).  ORFs vp4 and b78, both proposed to encode 

the SSV1 tail filament (Redder et al., 2009; Quemin et al., 2015), likewise 

appeared essential for infectivity.  The only two ORFs in this region that are not 

well conserved are c102a and the structural gene vp2 which was previously 

shown to be non-essential (Iverson and Stedman 2012; Figure 3-1).  ORF c102a 

could not be deleted and is apparently essential for infectivity.  Unexpectedly, 
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SSV1 lost infectivity when the transposon was inserted into the vp2 gene, in 

disagreement with the previous deletion data (Chapter 2). 

 
The T5 transcript region is almost entirely dispensable 
 

The T5 transcript region encodes a number of poorly conserved ORFs 

(Figure 3-1) which probably accounts for why this region is extremely tolerant of 

mutagenesis.  Ten ORFs occupy this region, seven of which were shown to be 

non-essential (Figure 3-2).  ORF f112 appeared to be essential as it could not be 

deleted without loss of infectivity.  However, ORF f112 tolerated transposon 

insertion in the extreme C-terminus of the ORF (REC228) but did not tolerate 

either of two insertions further upstream (EAI240 and EAI244; Figure 3-3B).  

Mapping of the insertion mutants to the structure of the F112 protein shows that 

in the functional mutant REC228, the transposon is inserted at the end of the C-

terminal unstructured region of the protein whereas the two non-infectious 

mutants (EAI240 and EAI 244) have the transposon inserted within the beta-

sheets that contribute to the “wing” of F112 (Menon et al., 2008).   

ORF d244 was previously deleted and shown to be non-essential 

(Chapter 2).  In agreement with this, two d244 insertion mutants yielded 

functional virus.  S. solfataricus GΘ cells infected with ∆d244 virus exhibit 

significant growth retardation compared to cells infected with wild-type virus 

(Chapter 2).  Interestingly, host growth retardation was not observed in S441 or 

GΘ cells following infection with either of the d244 insertion mutants (Data not 
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shown).  Comparison of D244 homologues in the Fuselloviridae has indicated 

that D244 is probably mis-annotated as it contains a 32 residue N-terminal 

extension that is absent from all other homologues (Lawrence, personal 

communication).  An alternative ATG start codon is located 96 bases 

downstream from the original start codon and produces a better alignment with 

other fusellovirus homologues over the entirety of the protein (data not shown). 

The large stretch of non-essential ORFs occupying the T5 transcript hint 

that the majority of this region may not be required for SSV1 infectivity.  LIPCR 

was used to delete the 2.4 kb region encompassing ORFS f92, d244, e178, f93, 

e51, e96, and d63 in the genetic background of REC228 (Figure 3-2, dotted line).  

Somewhat surprisingly, SSV1 remained infectious after the loss of almost 15% of 

its genome, raising the question of why SSV1 devotes a significant portion of 

genetic information to apparently dispensable genes.   

 
Integrase and e54 deletion mutants exhibit a variable host range 

The integrase gene and ORF e54 lie adjacent to each other at the distal 

end of the T5 transcript region (Figure 3-1).  SSV1 lacking the integrase gene 

(pAJC96, Table 3-3) was previously shown to be capable of infecting S. 

solfataricus P2 (Clore and Stedman 2006).  In this study, the integrase deletion 

mutant was unable to infect strain S441 but was capable of infecting strain GΘ 

(Table 3-2).  Similarly, SSV1 with a deletion of ORF e54 was unable to infect 

S441 but able to infect GΘ.  A new integrase deletion was constructed (EAI580) 
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in the EAI283 genetic background that has the same host-range phenotype as 

the original mutant pAJC96.  A mutant with the transposon inserted in e54 was 

unable to infect S441 nor GΘ.  An insertion in the integrase gene likewise 

inhibited SSV1 infectivity, although a mutant (EAI325) with an insertion near the 

C-terminus was capable of producing virus in S441 (Figure 3-2). 

 
ORFS b49 and f55 and the predicted origin of replication 
 

The 1.3 kb region between the T5 and T6 transcripts harbors two poorly 

conserved ORFS (b49 and f55), the putative origin of replication, and several 

promoters (Cannio et al., 1998; Figures 3-1 and 3-4).  ORF b49 is encoded on 

the UV-inducible transcript Tind while f55 is encoded on the recently discovered 

transcript Tlys (Reiter et al., 1987b; Fröls et al., 2007; Fusco et al., 2013).  It was 

observed that both of these ORFs could be deleted from SSV1 without a loss of 

infectivity, although insertion was not tolerated by either ORF (Figures 3-2 and 3-

4).  Three b49 insertion mutants were analyzed (EAI239, EAI477, and JAH573), 

all of which failed to yield infectious virus.  Likewise, the f55 insertion mutant 

(EAI322) was unable to produce infectious virus.  Transposon insertions in the 

intergenic region surrounding these ORFs were also analyzed (Figure 3-4; Table 

3-3).  Insertion of the transposon between ORFs b49 and f55 (EAI453) did not 

inhibit virus infectivity whereas insertion downstream of ORF f112 (EAI572) and 

upstream of ORF a100 (EAI296) eliminated infectivity.  In EAI572, the 

transposon is inserted two base pairs from the transcription factor B recognition 
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element of the T5 promoter and may explain why the mutant is non-functional.  In 

EAI296, the insertion occurs at the base pair following the mapped transcription 

start site for the T6 promoter.  Furthermore, both insertions in EAI572 and 

EAI296 fall within an 11 bp sequence that is repeated several times in this 

region, weakly binds the f55 putative transcription regulator, and has been 

implicated in SSV1 replication (Fusco et al., 2013; Qureshi 2007; Figure 3-4). 

 
Figure 3-4: The T5, T6, Tind, and Tlys promoter region 
The region spanning bases 4600-6100 of the SSV1 genome is displayed.  ORFs are shown as 
block arrows and labeled.  The locations of transposon insertions are indicated by arrows and 
labeled (See Table 3-3).  The mapped T5, T6, Tlys and Tind promoters are labeled and the 
transcription start sites are indicated by bent arrows (Reiter et al., 1987b; Fröls et al., 2007; Fusco 
et al., 2013).  Sequence repeat elements overlapping the T5 and T6 promoters and involved in 
STRIP binding are indicated by boxes (Qureshi 2007).   
 
The minor capsid gene vp3 is highly conserved but non-essential  

The structural genes vp1 and vp3 are highly conserved and hypothesized 

to be essential for SSV1 infectivity (Figure 3-1).  Surprisingly, SSV1 remained 

infectious following deletion of the vp3 gene.  The ∆vp3 mutant was also shown 

to be infectious in Sulfolobus solfataricus strains GΘ, P1 and P2 suggesting this 

is not a strain-specific phenomenon (Table 3).  Because it is not uncommon for 

Sulfolobus to encode cryptic fusellovirus genomes/genes, it is possible that the 

∆vp3 mutant was able to remain infectious via complementation.  The sequence 

of GΘ is unavailable but the P1 and P2 genomes have been sequenced and do 
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not contain any obvious vp3 homologues.  A more likely explanation is that VP1 

may be compensating for the absence of VP3 due to the homology that exists 

between VP3 and the C-terminus of VP1 (Figure 3-7B).  TEM images of ∆vp3 

virions shows that although the particles are spindle-shaped, they are much more 

elongated relative to wild-type (Figure 3-5).  Nonetheless, it appears that vp3 is 

non-essential for viral infection despite its high degree of conservation and being 

a structural protein in the fusellovirus virion (Reiter et al., 1987a; Menon et al., 

2008; Quemin et al., 2015).  

                 
Figure 3-5: Electron micrographs of SSV1 structural mutants 
Transmission electron micrographs of purified SSV1 wild-type, -∆vp3 (EAI420), -VP1E66A 
(EAI500), and -VP1E66Q (EAI427) virions are displayed.  See methods for purification protocol.  
SSV1 WT particles are ~76 x 40 nm, ∆VP3 particles are ~120 x 26 nm, ∆VP1E66Q particles are 
~ 93 x 42 nm, and VP1E66A particles are ~ 91 x 34 nm (measurements determined by averaging 
at least 25 particles). 
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Homologous recombination can result in deletion of the vp3 gene 
 

Two mutant constructs with transposon insertions in the vp3 gene (EAI446 

and EAI476) and one mutant with an insertion in the small intergenic region 

between vp1 and vp3 (EAI452) were shown to generate infectious virus (Figure 

3-6A).  Following infection, viral DNA was purified and screened via PCR using 

primers that amplified the region encompassing the vp1, vp3, and vp2 structural 

genes (Table 3-4).  Oddly, each mutant yielded truncated PCR products 

compared to the wild-type SSV1, indicating that a deletion had occurred within 

this region instead of the transposon insertion (Figure 3-6B).  There is an 

identical 61 bp sequence in the C-termini of both the vp1 and vp3 genes (Figure 

3-6C; Palm et al., 1991).  DNA sequencing of each PCR product show that 

almost the entire vp3 gene was missing.  Apparently a deletion occurred, 

facilitated by homologous recombination between the 61 bp repeats (Figure 3-

6D).  Recombination also resulted in a deletion of the final 15 bp from the vp1 

gene, including the stop codon.  The new vp1 stop codon is supplied by the 

native vp3 stop codon (Figure 3-6D).  Presumably similar recombination events 

occur in wild type SSV1 DNA, however this has not been detected to date.  

Recombination is thought to have occurred in Sulfolobus following 

transformation.  PCR of the full-length mutant DNA from the transposition 

reaction did not produce the truncated product that is observed in the DNA 

purified from Sulfolobus following electroporation (Figure 3-6B).  Moreover, the 
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pir+ E. coli used here have the recA1 genotype which should inhibit their ability to 

undergo recombination (Table 3-1). 

 
Figure 3-6: Analysis of functional insertion mutants EAI446, EAI452, and EAI476 within VP1/VP3 
structural gene region 
(A) The SSV1 structural genes vp1, vp3 and vp2 are displayed.  PCR primer (univ_7F and 
univ_8R) annealing sites are indicated by thin horizontal arrows.  Vertical arrows denote the 
location of the transposon is in each mutant.  Red underlined regions indicate 61 bp repeats in 
the 3’ end of the vp1 and vp3 genes.   
(B) PCR of viral DNA purified from infected Sulfolobus S441 with primers univ_7F and univ_8R to 
confirm transposon insertion within the structural gene region.  Lanes 1 and 2 are from EAI446; 
Lanes 3 and 4 are from EAI452; Lanes 5 and 6 are from EAI476.  Lane 7 is the original EAI446 
DNA (from E. coli) used to transform S441.  Lanes 8-10 are wild-type SSV1 DNA.  Lane 11 is a 
no template negative control.  Lane 11 is GeneRuler 1 kb Plus Ladder (Fisher), relevant 
molecular weights are indicated beside the gel. 
(C) Pairwise alignment of C-termini from vp1 and vp3 genes displaying the 61 bp identical 
sequence encoded by both genes.  Identical bases are highlighted in black.  Position of displayed 
region in the SSV1 genome is indicated in the figure.    
(D) Nucleotide sequence of the structural gene region following recombination in mutants EAI446, 
EAI452, and EAI476.  Grey highlighted bases correspond to vp1 gene; black highlighted bases 
correspond to remainder of vp3 gene.  Italicized bases denote the 61 bp repeat that presumably 
facilitates recombination. 
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Mutagenesis of the major capsid gene vp1 
 

As expected, the vp1 gene was found to be essential due to its prominent 

role as the major capsid protein.  A complete deletion of vp1 and an insertion in 

the middle of the ORF both failed to yield infectious virus (Figure 3-2).  The VP1 

protein appears to be proteolytically cleaved at an internal completely-conserved 

glutamate residue to produce the mature protein found within the virion (Reiter et 

al., 1987a; Quemin et al., 2015; Figure 3-7).  To investigate if the encoded N-

terminus is required for infectivity, this region was deleted while leaving the 

conserved glutamate intact (Figure 3-7).  Infectious virus was not produced by 

the vp1-∆N-terminus mutant (EAI564), suggesting that the VP1 N-terminus is 

required for production of infectious virus.  The N-termini of fusellovirus VP1 

proteins are less conserved than the C-termini, with the exception of a patch of 

well-conserved residues just upstream of the conserved glutamate (Figure 3-7).  

This region was deleted from the vp1 gene and the resulting mutant (EAI578) 

was similarly found to be non-infectious.  This reinforces the idea that the N-

terminus of VP1 is essential and the conserved residues near the cleavage site 

may be important for proteolysis.   

We also investigated whether the universally conserved glutamate of VP1 

is essential for infectivity or if it could be replaced.  A single base pair change 

was made in the vp1 gene by LIPCR, converting the glutamate to the structurally 

similar but functionally distinct glutamine (Table 3-2).  Interestingly, this mutation 

did not impair SSV1 infectivity (Figure 3-7).  A second mutation in which the 
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glutamate was converted to the less structurally conserved alanine likewise failed 

to impair virus infectivity.  Virions of both vp1 point mutants were analyzed by 

TEM and shown to yield abnormal particles (Figure 3-5).  Together, these data 

demonstrate that the glutamate residue is not essential for SSV1 infectivity 

despite its universal conservation in the Fuselloviridae.  It is unknown if 

proteolysis of VP1 can still occur at this position in either of these mutants or at 

one of the other well conserved glutamate residues upstream (Figure 3-7).   
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Figure 3-7: Fusellovirus VP1 and VP3 proteins 
(A) Multiple sequence alignment of predicted VP1 proteins from 12 fusellovirus genomes (Table 
1-1).  Residues highlighted in black are identical, residues highlighted in grey are conserved, and 
residues that are not highlighted are not conserved.  Residues deleted to construct vp1-∆N-
terminus mutant (EAI237, EAI564) are indicated by longer line at the top of the alignment.  Well 
conserved residues 61-65 deleted from mutant EAI578 are indicated by the shorter line above the 
alignment.  The universally conserved glutamate that was mutated to a glutamine (EAI427) and 
alanine (EAI500) is indicated by an arrow.  Alignment was made with default parameters using 
Geneious (Biomatters) software. 
(B) Pairwise alignment of SSV1-VP1 and SSV1-VP3 proteins displays SSV1-VP3 is homologous 
with the C-terminus of SSV1-VP1.  Conserved bases are highlighted in black, semi-conserved 
bases are highlighted in gray and non-conserved bases are not highlighted.   
 
 
Complementation in cis of SSV1 deletion mutants 
 

In order to confirm that SSV1 deletions were non-functional only due to 

the deletion, we complemented the mutants in cis with homologs from other 

SSVs.  The ∆vp1 mutants could be rescued when complemented in cis with the 

homologous vp1 genes from SSV9 or SSV2 (Figure 3-7).  The C-termini of the 

three VP1 proteins are highly homologous, however, the N-terminus of SSV2-

VP1 is considerably shorter (15 residues) than the other two (SSV9-VP1 65 

residues, SSV1-VP1 66 residues).  The non-functional vp1-∆N-terminus mutant 

(EAI564) was also rescuable by complementation in cis with the similar SSV9 

vp1-N-terminus (Figure 3-7).  Similar attempts were made to complement two 

other non-infectious SSV1 deletion mutants (∆b277 and ∆b251).  Both genes 

were replaced by their putative homologs, SSV1-Δb277 with SSV9-b279 and 

SSV1-Δb251 with SSV9-a231. However, functional virus was not produced. 
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Discussion 

Overview of SSV1 mutagenesis 

The genome of SSV1, like all archaeal viruses, encodes a large number of 

ORFs that share little to no similarity with sequences in public databases, 

confounding investigations of fusellovirus life cycles.  In light of this, we have 

conducted a genetic analysis of each of the ORFs in the fusellovirus SSV1.  Our 

findings illustrate that the SSV1 genome is surprisingly malleable and encodes a 

significantly higher number of non-essential genes than previously thought 

(Stedman et al., 1999).  Using a combination of transposon mutagenesis and 

LIPCR, we have shown that 16 of the 35 ORFs can be disrupted without a loss of 

infectivity.  This is somewhat surprising because viral genomes are often (with 

some exceptions) streamlined to encode only the minimal genes needed for 

survival (Cann 2016).  As expected, almost all SSV1 ORFs that are well 

conserved among the Fuselloviridae appear to be essential for infectivity while 

less conserved ORFs were more tolerant of mutation.   

A significant amount of research on SSV1 genetics has been performed 

over the last decade or so.  Genetic analysis of SSV1, the first performed on any 

archaeal virus, provided the first clues into which ORFs were essential for SSV1 

(Stedman et al., 1999).  Stedman et al., inserted the bacterial plasmid pBluescript 

into various SSV1 ORFs following partial restriction endonuclease digestion and 

the resulting mutants were assayed for infectivity essentially as here.  Insertions 

of pBluescript into ORFs e178 and e51 were tolerated, whereas insertions into 
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ORFs e96, b129, vp4, and d335 (Integrase) all failed to produce infectious virus 

(Figure 3-2).  These data are in agreement with the findings of this work, with the 

exception of e96, which was shown to be non-essential by both deletion and 

insertional mutagenesis (Figure 3-2).  Polar effects caused by the insertion of 

pBluescript may explain this discrepancy, although this seems unlikely as we 

have not only isolated a number of infectious insertion mutants in this region, we 

have also shown that this entire quadrant of the SSV1 genome can be disposed 

of without loss of infectivity.  Alternatively, there could have been problems with 

the original transformation into Sulfolobus, something that has been encountered 

in our research (e.g. infectious mutants EAI258 and EAI453 were initially judged 

to be non-infectious). 

 
The T5 transcript is almost entirely dispensable 
 

The T5 transcript is expressed early in the SSV1 transcription cycle (along 

with T6) and encodes some of the least conserved fusellovirus ORFs (Fröls et 

al., 2007; Figure 3-1).  Only three of the ten T5 ORFs appear to be essential for 

infectivity, and two of these (integrase and e54, see below) appear to be 

essential only in specific hosts (Figure 3-2).  Despite it being non-conserved, 

f112 was the only ORF in this region essential for infectivity.  The structure of 

F112 displays a winged helix-turn-helix DNA binding motif, however a DNA 

binding sequence has not been identified (Menon et al., 2008).  Similar to B129, 

F112 possesses an intramolecular disulfide bond that was experimentally shown 
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to improve protein stability (Menon et al., 2008).  The role of F112 in the 

fusellovirus life cycle is unknown, but the gene, or an unidentified genetic 

element in this region, is apparently critical for SSV1 infectivity (Figure 3-2). 

After it was observed that so many of the ORFs in this region appear non-

essential, a deletion mutant lacking ORFs f92, d244, e178, f93, e51, e96, and 

d63 was constructed (~2.4 kb) and found to be infectious.  This result suggests 

that SSV1 devotes at least 15% of its genome to genes/ORFs that are seemingly 

superfluous, although it is unknown what effect this deletion has on the long-term 

fitness of SSV1 or in the environment.  This seems like an odd strategy although 

it is not completely unheard of in the viral world, as evidenced by analyses of 

mycobacteriophage genomes (Hatfull 2015). 

Work on mycobacteriophages has revealed some interesting parallels with 

the Fuselloviridae and may help explain these results (Hatfull 2015).  

Mycobacteriophage genomes contain a set of well-conserved 

structural/assembly genes but much of their genomes are composed of small 

ORFs (~500 bp) of unknown function and whose presence seems to vary 

considerably from isolate to isolate (Hendrix et al., 1999).  Knockouts of these 

genes were constructed and roughly 2/3 of the non-structural/assembly genes 

were not essential to mycobacteriophage function, very reminiscent to what is 

seen in SSV1 (Marinelli et al., 2008).  One hypothesis is that these genes may 

have been required for growth in an ancestral host but are surplus to 

requirements in the current host.  Alternatively, the natural phage environment is 
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very competitive and it has been observed that phage encode restriction 

modification systems as well as components of the CRISPR-Cas defense system 

in an effort to out-compete invading phage and/or for protection against host 

defense systems (Hatfull 2015).  Therefore, it is possible that some of these 

small genes of unknown function may play a role in this process.  It is unknown if 

any fusellovirus genes are involved in a “defensive” role, although many 

fuselloviruses (not SSV1) do encode a Cas4 homologue (Appendix B).   

 
The moderately conserved ORFs of the T6 transcript 

The T6 transcript, which is expressed early in the SSV1 transcription 

cycle, encodes a number of well conserved ORFs whose products have been 

shown via structural studies or bioinformatics to exhibit DNA binding motifs that 

are characteristic of transcription regulators (Fröls et al., 2007; Prangishvili et al., 

2006; Lawrence et al., 2009).  The ORFs encoding three of these putative 

transcription factors (c80, a79, and a45) could be deleted without a loss of 

infectivity.  However, neither c80 nor a45 tolerated insertion of the transposon.  

Insertion of the transposon was by and large not tolerated anywhere in this 

region, with the exception of ORF a132 which is apparently unique to SSV1.  

ORFs a100 and c102b, whose functions remain mysterious, were also found to 

be essential in accordance with their high level of conservation in the 

Fuselloviridae (Figure 3-1). 
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Previous work showed that the fusellovirus core ORF b129, which 

appears to have N- and C-terminal DNA binding domains, was essential for 

infectivity (Chapter 2; C.M. Lawrence personal communication).  Here we 

showed that deletion of either DNA binding domain resulted in a loss of 

infectivity, suggesting that both are required for SSV1 function.  The structure of 

the B129 dimer (PDB ID: 2WBT) indicates that the N-terminal alpha-helical 

region of B129 forms the dimer-dimer interface, and these interactions appear to 

be destroyed by deletion of the N-terminus.  In addition to the two tandem ZNF 

domains, the C-terminus of B129 also encodes an intramolecular disulfide bond 

that is hypothesized to improve protein stability (Menon et al., 2008).   

 
The SSV1 integrase gene may be essential in some hosts 

The integrase gene was the first deletion made in SSV1 and showed that 

the integrase gene was not essential for infectivity, although it was quickly out-

competed by wild type virus (Clore and Stedman 2006).  However, this mutant 

(pAJC96 a.k.a. ∆int) could not infect the Sulfolobus solfataricus strain used 

herein (S441), which is slightly different from the ∆int-susceptible host strain (P2) 

used in the original work. The ∆int virus was able to infect Sulfolobus solfataricus 

strain GΘ, indicating that the ∆int mutant has a variable host range.  Sulfolobus 

genomes are known to encode a number of integrase-like genes, one of which 

may be capable of complementing the ∆int virus (She et al., 2001a; She et al., 

2004).  The genome of GΘ has not been sequenced but likely encodes 
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integrase-like genes.  If complementation occurs, this might imply that a similar 

phenomenon occurred in P2 during the original SSV1-∆int work.  Although it was 

shown that ∆int virus had not integrated in its natural location in the P2 genome 

by PCR, integration facilitated by an exogenous integrase could have occurred at 

a different site (Clore and Stedman 2006).  Sulfolobus is also host to a plethora 

of extrachromosomal elements, at least one of which (pSSVi) is known to encode 

an SSV-like tyrosine recombinase (Wang et al., 2007; Wang et al., 2015).  We 

have not identified any extrachromosomal element in the strains used here, 

however, it is not unimaginable that such an element may be present and has the 

potential to complement the integrase deletion in the Sulfolobus strains GΘ and 

P2 (Clore and Stedman 2006).  In any event, the findings presented here 

question the conclusion that SSV1 does not require an integrase gene for 

infectivity. 

Deletion of ORF e54, which is non-conserved and lies just upstream of the 

integrase start codon, resulted in the same phenotype as the ∆int mutant.  It is 

possible that deletion of e54 somehow disrupts expression of the integrase gene, 

effectively resulting in a double mutant.  The integrase gene occupies the 3’ end 

of the T5 transcript and is believed to be transcribed mainly via the T5 promoter.  

Although it has not been identified, there is evidence that the integrase gene may 

actually be transcribed from its own promoter.  Integrase mRNA was found in 

greater abundance than T5 mRNA following UV induction and a similar 

phenomenon was observed for the integrase gene during an analysis of the 
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SSV2 transcription cycle (Fröls et al., 2007; Ren et al., 2013).  Although an 

obvious promoter has not been identified upstream of the SSV1 integrase gene, 

several fuselloviruses (SSV2, SSV3, SSV4, and SSV9) do encode putative 

promoters upstream of the integrase gene (Clore 2008).  It is worth noting that 

ORF f92, which also occupies this region of the SSV1 genome, can be deleted 

without loss of infectivity (Figure 3-2).  Based on the low conservation of the e54 

ORF and the evidence for an integrase promoter in this region, it seems likely 

that deletion of e54 simultaneously disrupts expression of the integrase gene and 

explains the identical phenotype exhibited by both mutants.     

 
The Tx and T3 transcripts 
 

The monocistronic transcripts T3 and Tx encode ORFs a291 and c124, 

respectively.  c124 was shown to be non-essential for SSV1 infectivity while a291 

is apparently essential (Figure 3-2).  The T3 and Tx transcripts, and the 

homologous transcripts in SSV2 (encoding ORFs 305 and 126, respectively), 

were found to be constitutively expressed in cells infected with either virus 

(Fusco et al., 2015c).  Interestingly, most of the other fusellovirus genomes 

appear to encode similarly sized ORFs in an identical position just upstream of 

the putative tail fiber gene (vp4).  Despite little to no detectable homology among 

these ORFs via a pBLAST homology search, there is evidence that transcription 

of these ORFs is conserved in the Fuselloviridae (Ren et al., 2013).   
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A pairwise alignment of SSV1-C124 and SSV2-126 showed limited 

identity (12%) exists between the two.  Alignment of all putative C124-like 

proteins (i.e. those occupying an analogous position in the genome) indicates 

SSV1-C124 is homologous to four other fusellovirus proteins (SSV3-111, SSV4-

111, SSV5-111 and SSV9-C108) especially in the C-terminus (Figure 3-8A).  

SSV8 possesses two short ORFs (b74 and c82) in the analogous genomic region 

whose products are homologous to one another and also to the products of 

ORFs in SSV7 (ORF 67) and SSVL (ORF 75) (Figure 3-8B).  A homologue for 

SSV2-126 could not be identified.  Each of these ORFs is preceded by a putative 

promoter that is similar to the Tx promoter of SSV1, suggesting that transcription 

of each of these ORFs may be conserved (data not shown).   



! 104!

A B



! 105!

Figure 3-8: Alignment of putative SSV1-C124 homologues occupying a similar position in the 
fusellovirus genome 
Multiple sequence alignment of putative SSV1-C124 homologues (panel A) and alignment of 
proteins that occupy a similar position in the virus genome (i.e. downstream of vp4) but are not 
homologous to SSV1-C124 (panel B).  SSV2-126 was not homologous to any fusellovirus protein 
(not shown).  Conserved amino acids are highlighted in black, semi-conserved amino acids are 
highlighted in gray and non-conserved amino acids are not highlighted.  A consensus sequence 
for each alignment was generated and is displayed at the top of the alignment.  SSV8 encodes 
two homologous ORFs at this position in the genome, both of which are shown (panel B).  SSV3-
111, SSV4-111, and SSV5-111 are apparently identical in each virus.  Alignments were made 
with default parameters using Geneious (Biomatters) software. 
 

Pairwise alignment of SSV1-A291 and SSV2-305 revealed that the N-

terminal 20 amino acids of the two proteins are highly similar, while the remaining 

protein exhibits little to no similarity (Figure 3-9A).  Because similarity was not 

identified in the original pBLAST search, the remaining 10 fusellovirus genomes 

(Table 1-1, SMF1 was omitted) were re-examined and nine additional 

homologues of SSV1-A291 were identified (Figure 3-9A).  Each of the A291-like 

proteins possesses a well conserved N-terminus but the remainder of the protein 

is non-homologous.  Furthermore, each of these ORFs is preceded by a putative 

promoter that shares significant similarity with the T3 promoter in SSV1, 

indicating that transcription of these genes is probably conserved (Figure 3-9B).  

Because A291 appears to be well conserved in the Fuselloviridae, it is thus not 

surprising that it appears essential for SSV1 infectivity.  These results show that 

SSV1-A291 and SSV1-C124 both have more homologues than previously 

detected, indicating that the degree of conservation for SSV1 proteins presented 

here should be considered a lower limit (Figure 3-1).   



! 106!

         
Figure 3-9: Conservation of SSV1-A291 and the T3 transcript in the Fuselloviridae 
(A) Multiple sequence alignment of the N-termini from fusellovirus SSV1-A291 homologues.  
Conserved amino acids are highlighted in black, semi-conserved amino acids are highlighted in 
gray and non-conserved amino acids are not highlighted.  A consensus sequence was generated 
and displayed at the top of the alignment.  SSV9-310* is hypothesized to be the full length version 
of SSV9-B252 (NP_963990.1), however the hypothetical start codon contains a G"A missense 
mutation which results in a truncated product (B252).  This mutation was confirmed by 
sequencing (data not shown).  The putative promoter for SSV9 ORF 310 is apparently conserved 
(see panel B).  Alignment was made with default parameters using Geneious (Biomatters) 
software. 
(B) Multiple sequence alignment of the putative T3 promoter from SSV1 and putative homologues 
in other fuselloviruses.  Universally conserved bases are highlighted black, highly-conserved 
bases are highlighted dark gray, semi-conserved bases are highlighted light gray and non-
conserved bases are not highlighted.  The consensus sequence for the promoter is displayed 
above the alignment.  Predicted BRE and TATA elements (Fröls et al., 2007) are boxed and 
labeled, the mapped T3 transcription start site in SSV1 is indicated by a bent arrow (Reiter et al., 
1987b; Fröls et al., 2007).  See panel A for explanation of SSV9 ORF 310*.  Alignment was made 
with default parameters using Geneious (Biomatters) software. 
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The role of A291 is unknown but there are clues about its function.  The N-

terminus may facilitate a well-conserved interaction with a host or viral protein.  

An intriguing hypothesis is that A291 may play a role in viral assembly due to the 

simultaneous upregulation of the T3 transcript with the structural genes vp1, vp3, 

and vp4 (Fröls et al., 2007; Fusco et al., 2015c).  However, A291 was not 

identified by mass spectrometry in purified SSV1 virions, suggesting that A291 is 

either not present in the mature virion or may be present at undetectable levels 

(Menon et al., 2008; Quemin et al., 2015).  Perhaps A291 acts as a protein 

scaffold during assembly, a role which has not yet been assigned to any 

fusellovirus gene.  The Tx transcript is upregulated concurrently with the T3 

transcript, suggesting that its protein product (C124) could also be involved in 

assembly and may potentially interact with A291.   

 
The fusellovirus core is intolerant of mutagenesis 
 

The fusellovirus core is the set of genes/ORFs that are encoded by all 

known fuselloviruses.  The core currently consists of 12 genes/ORFs (Figure 3-1; 

also see Table 1-2), almost all of which appear to be essential for SSV1 

infectivity (Figure 3-2).  This is not surprising and re-enforces the idea that these 

are critical to the viral lifecycle.  The only non-essential core gene identified was 

vp3 which is discussed below.  Core fusellovirus ORFs are predominantly 

clustered in one half of the genome and are upregulated mid-to-late in the SSV1 

transcription cycle (Fröls et al., 2007).  Their timing of transcription and co-
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expression with known structural genes hints that most of the core genes may 

have roles in virus replication, assembly, and packaging although there is no 

experimental evidence to support this.  It is somewhat peculiar that we were not 

able to isolate a single functional insertion mutant within this entire half of the 

genome, even in the poorly conserved vp2 gene which is known to be non-

essential from deletion data (Chapter 2).  This is likely an example of disruption 

caused by a polar effect and serves to remind that other apparently non-

infectious mutants may only appear so due to secondary effects of the 

transposon and not due to the mutation of the ORF itself.   

 
ORFs B49 and F55 and the predicted origin of replication 
 

Unlike the other known fuselloviruses, transcription of SSV1 is strongly 

induced by UV irradiation and is highly temporally regulated (Fröls et al., 2007; 

Reiter et al., 1987b).  Following UV irradiation, the transcript Tind is immediately 

upregulated and is swiftly followed by upregulation of the two flanking transcripts 

T5 and T6 (Figure 2; Reiter et al., 1987b; Fröls et al., 2007).  b49 is the only ORF 

encoded by Tind and possesses no homology to sequences in public databases, 

including the Fuselloviridae (Figure 3-1).  Due to the abundance of Tind 

immediately following UV irradiation, it seems likely that the B49 protein plays a 

role in activation of viral transcription, either directly or indirectly.  We have 

shown that the b49 ORF can be deleted and is apparently not essential for SSV1 

infectivity.  This agrees well with transcriptomic data from non-UV induced SSV1-
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infected cells, where Tind (and b49) was not detected and presumably not 

required for infection (Fusco et al., 2013).  However, the effect of the b49 deletion 

on the SSV1 response to UV irradiation is unknown and should provide insight 

into this unique mechanism.   

SSV1 encodes a second monocistronic transcript in this region, Tlys, that is 

apparently expressed constitutively (Fusco et al., 2013; Fusco et al., 2015c).  Tlys 

encodes a 55 amino acid protein (F55) that was shown experimentally to weakly 

bind (Kd ~3-10 µM) early viral promoters (T5, T6, Tind, and Tlys) and is 

hypothesized to repress transcription from them during the maintenance of the 

carrier-state or “lysogeny” (Fusco et al., 2013).  Our results show that the f55 

gene is not required for the production of infectious virus, but it is not clear what 

effect its absence has on SSV1.  Based on the above hypothesis, absence of the 

F55 protein would result in a loss of repression of early viral promoters which 

could lead to constant expression of early gene products throughout the 

infection.  Such an effect should be observable in the transcriptome of this 

mutant and in synchronous infections (see Chapter 4).   

Microarray analyses of SSV1 and SSV2 lysogens (i.e. stably infected 

cells) of S. solfataricus LnF1 cells were recently conducted and it was observed 

that SSV1 has a very minimal impact on host gene expression whereas SSV2 

results in significant changes to the host transcriptome, including activation of the 

CRISPR-Cas antiviral defense system (Fusco et al., 2015c).  Interestingly, SSV1 

and SSV2 express almost the same complement of genes throughout lysogeny, 
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one exception being the constitutive expression of f55 by SSV1.  This has led to 

speculation that F55 may play a key role in mitigating the host response to SSV1 

infection, and experiments with our ∆f55 mutant will be useful for investigating 

this hypothesis. 

This area of the genome, which contains an abundance of promoters as 

well as the putative origin of replication, was very intolerant of transposon 

insertion (Figure 3-4).  The only functional insertion mutant in this region 

(EAI453) contained the transposon between the f55 and b49 ORFs, a significant 

distance from any of the known regulatory elements (Figure 3-4).  All other 

insertions in this region fall within one of the two ORFs or were located adjacent 

to a promoter.  Because the deletion data showed that b49 and f55 are not 

essential, it is unclear why insertions within these ORFs do not produce 

functional virus.  Unpublished data from the Bell laboratory has mapped the 

origin of replication to this region and a self-replicating vector containing the 

putative SSV1 origin was reportedly constructed, although this has been difficult 

to reproduce in other laboratories (Fröls et al., 2007; Cannio et al., 1998; 

Stedman, personal communication).  GC and purine skew analyses also 

indicated that the origin is within this area and appears well conserved in other 

fuselloviruses (Clore 2008).  A protein complex known as STRIP (SSV-1 T5/T6 

Region Interacting Protein) was isolated from S. shibatae (the original SSV1 

host) and shown to bind tandem repeat sequences located upstream of the T5 

and T6 promoters, although the significance of this was not determined (Qureshi 
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2007; Figure 3-4).  Interestingly F55 has also been shown to weakly bind these 

same sequences, suggesting a related function between the two. 

 
The vp3 minor capsid gene is not essential 
 

The only non-essential core gene was vp3, which came as a major 

surprise considering its high degree of conservation and presence as the minor 

structural protein within the virion.  VP3 and the major capsid protein VP1 were 

both isolated from purified SSV1 virions, although VP3 was reportedly found at a 

lower abundance (Reiter et al., 1987a; Quemin et al., 2015).  Because the VP3 

and proteolytically processed VP1 proteins are highly homologous (Figure 3-7B), 

we hypothesize that VP1 complements the ∆vp3 mutant.  The genomes from two 

of the three strains susceptible to infection with the ∆vp3 mutant (P2 and S441) 

were scanned for vp3 homologues using BLAST software (NCBI).  No 

homologues were detected indicating that complementation from the host 

chromosome is unlikely.  ∆vp3 virions were examined by TEM and are elongated 

relative to wild-type SSV1 (Figure 5).  Elongated particles are often observed in 

the virions of SSV9, SSV6, and ASV1, however, each of these viruses encodes a 

VP3 homologue (Wiedenheft et al., 2004; Redder et al., 2009).  Nonetheless, the 

dispensability of a seemingly critical gene is unexpected and the consequences 

of its loss in regards to virion stability and structure remain to be investigated. 

Following the finding that the ∆vp3 virus was infectious, several mutants 

harboring transposon insertions within the vp1-vp3 gene region were isolated 
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and assayed for infectivity (Figure 3-6).  Unlike other insertion mutants in the 

core region of the genome, insertions within vp3 and the vp1/vp3 intergenic 

space seemed to be tolerated and did not interfere with the production of 

infectious virus.  However, when the viral DNA was purified from infected cultures 

it was observed that a deletion instead of an insertion had occurred and this 

appears to have been facilitated by homologous recombination between two 

identical 61 base pair sequences at the C-termini of the vp1 and vp3 genes.  

Recombination also results in the near complete deletion of the vp3 gene (Figure 

3-6C and 3-6D).  Full length viral DNA harboring the transposon could not be 

recovered from infected Sulfolobus cells, indicating that the transposon disrupts 

SSV1 infectivity and must be eliminated to produce infectious virus albeit at a 

loss of the vp3 gene in the process.   

Our data suggest that this recombination event occurs within Sulfolobus 

following transformation of the full length mutant DNA and not in E. coli prior to 

transformation.  If this is the case, it seems likely that the same recombination 

occurs in wild-type SSV1 populations, resulting in sporadic loss of the non-

essential vp3 gene.  We have not been able to identify or isolate a spontaneous 

vp3 mutant in WT SSV1 populations, suggesting that these mutants may be 

present at very low abundances and/or they are outcompeted by wild-type virus.  

SSV1 is the only fusellovirus that possesses such a large stretch of 100% 

identical bases within the vp1 and vp3 genes.  The next largest stretch of 38 

bases occurs in SMF1 vp1/vp3 genes while the rest of the fuselloviruses do not 
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encode stretches longer than 25 base pairs and most do not encode direct 

repeats longer than 12 base pairs (data not shown). 

 
Mutagenesis of the major capsid gene vp1 
 

Unsurprisingly, the major capsid protein (MCP) VP1 is essential for SSV1 

infectivity.  All fusellovirus VP1 proteins are homologous in their C-termini and 

encode a universally conserved glutamate residue hypothesized to be involved in 

proteolysis to yield the mature VP1 protein found within the virion (Reiter et al., 

1987a; Quemin et al., 2015; Figure 3-7).  The source of the protease is unknown 

(viral or host) and the process might also be autocatalytic.  Despite the universal 

conservation of the glutamate residue, we have shown that substitution with a 

glutamine or alanine residue is tolerated although the effect of these substitutions 

on VP1 maturation is unknown (Figure 3-7).  We have also shown that despite 

the absence of the N-terminus in the mature VP1 protein, this region appears to 

be essential and could not be deleted without a loss of infectivity.  Furthermore, 

deletion of the five amino acids immediately upstream of the conserved 

glutamate also result in a loss of infectivity.  These residues are very well 

conserved in fusellovirus VP1 proteins and appear to be critical for infectivity 

(Figure 3-7). 

Proteolytic processing during virion assembly is quite common and may 

actually be the rule rather than the exception (Dougherty and Semler 1993).  

Recent work with the MCP gp5 from the bacteriophage HK97 reveals strong 
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similarities with VP1 from SSV1 (Oh et al., 2014).  Assembly of HK97 particles 

begins with the association of hexamers and pentamers of the MCP and a phage 

encoded protease (gp4) to form the immature procapsid (Duda et al., 1995a).  

Similar to VP1, gp5 possesses an N-terminal extension (the ∆-domain) that is 

cleaved during assembly and is absent in the mature virion (Duda et al., 1995b; 

Oh et al., 2014).  Deletion of the N-terminal ∆-domain (completely or partially) 

from gp5 abolishes HK97 infectivity, similar to what is observed in SSV1.  The ∆-

domain also seems to act as a chaperone, as gp5 lacking this region was shown 

to be very unstable and formed insoluble aggregates that were not observed with 

wild-type protein.  The promotion of assembly and stability along with its absence 

from the mature virion implies that the ∆-domain has adopted the role of a 

scaffold, a protein that is absent from HK97 (Duda et al., 1995b).  Furthermore, a 

nine residue stretch of the ∆-domain was shown to be essential for the 

recruitment of the viral protease (Oh et al., 2014). 

Parallels exist between VP1 of SSV1 and gp5 of HK97.  It has been 

shown that the N-terminus of VP1 is essential for infectivity.  The N-termini of 

fusellovirus vp1 genes are not well conserved with the exception of the essential 

patch of residues just upstream of the conserved glutamate (Figure 3-7).  

Complementation of ∆vp1 mutants with SSV2-vp1, which possesses a truncated 

N-terminus, suggests that the majority of the VP1 N-terminus can be dispensed 

with as long as the residues upstream of the conserved glutamate remain intact.  

The role of these essential residues remain mysterious.  Similar to the HK97 ∆-



! 115!

domain, these residues might be critical for recruitment of a protease and/or may 

act as a scaffold, potentially via interactions with neighboring VP1 N-termini, the 

minor capsid protein VP3, or some other protein involved in assembly.  Research 

on fusellovirus assembly is very much in its infancy and it is unknown which, if 

any, fusellovirus proteins acts as a scaffold.  Assembly is likely highly conserved 

among the Fuselloviridae and any candidate would likely come from the set of 

core fusellovirus genes (see chapter 1).  The hypothesis that the N-terminus of 

VP1, at least a portion of which is essential, may fulfill this role is intriguing one 

and awaits further research.   

 
Conclusions: 

We have presented here a comprehensive genetic analysis of the 

fusellovirus SSV1, which has significantly expanded our knowledge of the 

genetic requirements for this unique archaeal virus.  Almost half of the ORFs 

encoded by SSV1 were found to be non-essential, while those that are well 

conserved within the Fuselloviridae were essential almost without exception.  

The near-entirety of the T5 transcript could be deleted without a loss of SSV1 

infectivity, raising the question as to why SSV1 devotes a significant portion of its 

genome to apparently dispensable genes.  It is possible these genes were 

required in the native host but are surplus to requirements in the host organism 

used here.  The effect of such a large mutation on viral fitness remains to be 

investigated.   
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SSV1 encodes two apparently unique ORFs, b49 and f55, that are 

hypothesized to play roles in the response to UV irradiation and the maintenance 

of the carrier-state (i.e. “lysogeny”), respectively.  Both of these genes are 

apparently not essential for infectivity, but it is not clear what effects these 

mutations have on the processes they are hypothesized to control.  Although little 

work has focused on B49, a significant amount of research on F55 has recently 

been conducted and has led to an intriguing hypothesis for the role of F55.  Both 

of these mutants should be incredibly useful for deciphering the roles of these 

proteins in the SSV1 lifecycle. 

Interestingly, infectious viruses harboring mutations within the vp1 and vp3 

structural genes were able to be isolated.  That SSV1 remains infectious after the 

loss of the minor capsid gene vp3 is a surprising and unexpected result.  We 

hypothesize that the significant homology that exists between VP1 and VP3 

enables the latter to complement this mutant, allowing SSV1 to retain infectivity.  

Unsurprisingly the vp1 gene is essential although mutations were tolerated to the 

universally conserved glutamate residue thought to be involved in the proteolytic 

maturation of VP1.  At least some of the N-terminus of VP1 was also found to be 

essential for infectivity despite its absence in the mature protein.  These results 

parallel what has been observed in the bacteriophage HK97 and provide insights 

into the potential role of the N-terminal extension.  The impact of the vp1 and vp3 

mutations on capsid stability and structure remains to be investigated, although 
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preliminary TEM imaging indicates that ∆vp3 capsids are elongated relative to 

the wild-type.   
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Chapter 4: Purification and characterization of the DNA binding protein VP2 
from SSV1 
 
 
Abstract 
 
 Sulfolobus cells possess a number of small and highly-basic chromatin-

associated proteins whose biological functions are not entirely understood.  

Similarly, Sulfolobus spindle-shaped virus 1 (SSV1) virions also contain a small, 

highly-basic DNA binding protein known as VP2.  To better characterize the VP2 

protein of SSV1, we have developed a protocol for the purification of recombinant 

6X His-tagged VP2 from E. coli.  Purification of 6-His VP2 under denaturing 

conditions was necessary in order to effectively remove contaminating nucleic 

acids.  However, VP2 could be refolded.  6-His VP2 apparently exists as a 

monomer in solution and binds non-specifically to dsDNA.  A comparison of all 

known VP2 homologues was performed.  

 
 
Introduction 
 
 Sulfolobus Spindle-shaped virus 1 (SSV1) encodes four structural proteins, 

VP1, VP2, VP3, and VP4.  VP1, VP2, and VP3 were originally identified by N-

terminal sequencing of proteins from purified SSV1 virions (Reiter et al., 1987a).  

VP4 (formerly C792) was identified later via mass spectrometry of purified virions 

and likely forms the SSV1 tail fiber (Menon et al., 2008; Quemin et al., 2015).  

VP1 and VP3, the major and minor capsid proteins respectively, are highly 

conserved among all fuselloviruses (Redder et al., 2009; Iverson and Stedman 
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2012).  VP2 is small (8.83 kDa) and highly basic (pI = 11.39) and is believed to 

be bound to the viral DNA within the capsid (Reiter, 1985; Reiter et al., 1987a).  

The genome of SSV1 was reported to exist in a positively supercoiled topological 

state within the virion (Nadal et al., 1986).  It is unclear what role, if any, VP2 

plays in the maintenance or establishment of this positive supercoiling.   

 In contrast to the major and minor capsid proteins, VP2 is much less well 

conserved among the Fuselloviridae.  VP2 homologues have been identified in 

three fusellovirus genomes (SSV1, SSV6, ASV1). Three more VP2-like 

sequences have been identified in metagenomic analyses from Boiling Springs 

Lake, an acid mine drainage in Richmond, CA, and a Mexican hot spring (Redder 

et al., 2009; Andersson and Banfield 2008; Diemer and Stedman unpublished; 

Servin-Garcidueñas et al., 2013).  Because VP2 is poorly conserved and the 

gene can be deleted from SSV1 without causing an obvious defect, its role is 

unclear in the fusellovirus life cycle (chapter 2).  Perhaps in the absence of VP2 

the viral DNA in the virion remains “naked” or a VP2 “substitute” may be recruited 

from the host. 

 Members of the genus Sulfolobus express several small, basic, nucleoid-

associated proteins (NAPs), many of which have been shown to protect the host 

chromosome from thermal denaturation (Driessen et al., 2011).  Two of these 

proteins, Sul7 and Cren7, comprise roughly 5% and 1% of the total cellular 

protein content (respectively) and bind non-specifically to DNA as monomers.  

Both seem to bend DNA to similar degrees by binding non-specifically in the 
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minor groove of DNA (Driessen et al., 2013).  Cren7 and Sul7 exhibit highly 

similar beta sheet-rich tertiary structures despite the absence of any recognizable 

sequence homology (Guo et al., 2008).  In addition to Sul7 and Cren7, members 

of the Sulfolobus genera also encode a homologue of the highly conserved ALBA 

(acetylation lowers binding affinity) protein that binds non-specifically to DNA as 

a dimer (Bell et al., 2002).  Binding by Cren7, Sul7 and ALBA all seem to induce 

negative supercoiling of DNA in vitro (Xuan et al., 2012).  Another NAP, SMJ12, 

is found in lower abundances than the other DNA binding proteins (< 0.1% of 

total cellular protein) and unlike the other NAP’s was shown to induce positive 

supercoiling of DNA mini-circles in vitro (Napoli et al., 2001).   

 As has been detailed elsewhere within this dissertation (see chapters 2 and 

3), little is known about the function of the vast majority of fusellovirus proteins.  

VP2, like most crenarchaeal virus proteins, lacks recognizable sequence 

homology to proteins of known function. Here we present an optimized 

purification protocol for recombinant 6X His tagged VP2 and demonstrate its non-

specific binding to dsDNA.  The results of this work should be useful for future 

research aimed at elucidating the biochemical and structural properties of this 

fusellovirus structural protein.   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Materials and Methods: 
 
Cloning of the vp2 gene of SSV1 into pET30 expression vector 

 The SSV1 vp2 gene (NP_039802) was amplified from purified SSV1 DNA 

(Palm et al., 1991) using Phusion high-fidelity DNA polymerase (Thermo-Fisher).  

Primers were designed to amplify the entire SSV1 vp2 gene and included 

overhangs compatible with the pET30-XA/LIC vector system by Millipore (Table 

4-1).  PCR was performed with the following cycling conditions: Initial 

denaturation at 98º C for 3 min; 35 cycles of 98º C for 15 sec, annealing for 15 

sec at 50º C, and extension for 15 sec at 72º C; final extension for 3 min at 72º 

C.  Full length PCR-amplified vp2 DNA was detected on a 1% agarose gel and 

purified using the PCR Purification Kit according to manufacturer’s protocols 

(Fermentas).   

Table 4-1: Primers used for cloning the SSV1 vp2 gene  
Primer Sequence Description 

VP2_LIC_F A,B 
GGTATTGAGGGTCGCATGAAG
TGGGTGCAAAAGG 

Amplifies SSV1_VP2 ORF with 
LIC overhang 

VP2_LIC_R A,B 
AGAGGAGAGTTAGAGCCCTA
CTTGCGGTGCATCCG 

Amplifies SSV1_VP2 ORF with 
LIC overhang 

pET30_LIPCR_F ATTGAGGGTCGCATGAAGTG  
Removal of N-terminal tag from 
pET30_VP2 

pET30_LIPCR_R CACCAGACCAGAAGAATG  
Removal of N-terminal tag from 
pET30_VP2 

T7 promoter TAATACGACTCACTATAGGG 
Sequencing of pET30_VP2 
constructs 

ABolded bases denote pET30-XA/LIC LIC overhangs 

BUnderlined bases are SSV1_VP2 start and stop codons 
 
 Purified vp2 DNA was inserted into pET30-XA/LIC expression plasmid 

(Millipore) and transformed into chemically competent NovaBlue E. coli 

(Millipore) following manufacturer’s protocols.  Plasmid was purified from a single 

transformant by alkaline lysis (Birnboim and Doley 1979).  Insertion of vp2 DNA 
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into pET30-XA/LIC vector was confirmed by EcoRI restriction endonuclease 

digestion and DNA sequencing (Table 4-1).  For expression of recombinant VP2 

protein, the pET30_VP2 plasmid was transformed into chemically competent E. 

cloni BL21(DE3) expression cells following manufacturer’s protocol (Lucigen). 

 
Removal of N-terminal tag region from pET30_VP2 expression vector 

 The recombinant pET30-XA/LIC VP2 construct codes for the 74 amino 

acids of the native SSV1-VP2 protein with an additional 47 amino acid N-

terminus comprised of a 6X-His tag, an S-tag, and factor Xa and thrombin 

proteolytic cleavage sites (Figure 4-1A).  One of the long-term goals of 

recombinant VP2 expression was to obtain a three-dimensional structure. 

However, the length of the N-terminal tag could potentially complicate 

crystallography or NMR experiments.  Thus, a large portion of the N-terminus 

containing most of the tags was deleted using long inverse PCR (LIPCR).  

Primers were designed to delete 93 bases between the 6X His tag and the start 

of VP2 gene while maintaining the correct reading frame (Table 4-1).  Phusion 

DNA polymerase was used following manufacturer’s protocols with the following 

PCR cycling conditions: Initial denaturation at 98º C for 3 min; 35 cycles of 98º C 

for 15 sec, annealing for 15 sec at 50º C, and extension for 2.5 min at 72º C; final 

extension for 3 min at 72º C.  Five identical 20 µL LIPCR reactions were pooled 

and DNA was purified using the PCR Purification kit (Fermentas) according to 

manufacturer’s protocols.  Purified DNA was phosphorylated using T4 
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polynucleotide kinase following manufacturer’s protocols (Fermentas).  

Phosphorylated DNA was ligated for 20 hours at 16ºC using 5U of T4 DNA ligase 

(Fermentas) in 20 µL of 1X ligase buffer.  5 µL of the ligation reaction was 

transformed directly into 100 µL of chemically competent NovaBlue E. coli 

following manufacturer’s protocols (Millipore).  Plasmid DNA was purified from 

transformants via alkaline lysis and sequenced to confirm deletion (Table 4-1).  

This DNA construct is referred to as pET30_6HisVP2 and was utilized to produce 

6-His VP2 for all experiments, unless otherwise noted.  For expression of 6-His 

VP2, pET30_6HisVP2 was transformed into chemically competent E. cloni 

BL21(DE3) expression cells following manufacturer’s protocol (Lucigen). 

 
Overexpression of 6-His VP2 protein 

 Single colonies of E. cloni BL21 DE3 cells harboring pET30_6HisVP2 were 

inoculated into 5 mL of 2XYT (Sambrook and Russell 2001) medium with 50 

µg/mL of kanamycin and grown at 37º C overnight in a shaking incubator (~20 

hr).  The following morning turbid cultures were diluted 1:100 in fresh 2XYT/Kan 

medium and allowed to grow for approximately 3 hr until the OD600nm was ~0.40.  

Cultures were typically 400 mL. IPTG was added to a final concentration of 1 mM 

and cells were incubated at 37º C with shaking for 4 hr.  To check for 6-His VP2 

over-expression, 1 mL samples were taken at 0 hr, 2 hr, and 4 hr after the 

addition of IPTG.  Samples were spun in a microcentrifuge at 13,000 x g for 2 

min, resuspended in 50 µL of 1X SDS-PAGE sample buffer (see below), heated 
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at 100ºC for 10 min, and analyzed on 15% SDS-PAGE gels.  The OD600nm of 400 

mL cultures typically reached values of 1.2-1.4 after 4 hr of incubation.  After 4 hr 

incubation, 100 mL aliquots of overexpressed culture were centrifuged at 3,000 

rpm (SA-300 rotor) to pellet cells.  Cell pellets were typically stored at -20º C for 

1-10 days prior to purification. 

Table 4-2: Buffers used in VP2 purification 
Buffer Name Buffer Components 
7 M urea lysis buffer 7 M urea, 0.5 M NaCl, 0.1 M NaH2PO4, 0.01 M Tris, pH = 8.0 

7 M urea wash buffer 
7 M urea, 0.5 M NaCl, 0.05 M Na2HPO4, 0.01 M Tris, 0.01 M 
imidazole  pH = 8.0 

2.5 M urea wash buffer 2.5 M urea, 0.5 M NaCl, 0.05 M Na2HPO4, 0.02 M Tris, pH = 8.0 
4.5 M urea wash buffer 4.5 M urea, 0.5 M NaCl, 0.05 M Na2HPO4, 0.02 M Tris, pH = 8.0 
0 M urea wash buffer 7 M urea, 0.5 M NaCl, 0.05 M Na2HPO4, 0.02 M Tris, pH = 8.0 
Elution buffer 0.1 M NaCl, 0.02 M Tris, 0.5 M Imidazole, pH = 8.0 
FPLC equilibration buffer 0.05 M Tris, 0.1 M NaCl, 1% glycerol, pH = 8.0 
0.1 M NaCl buffer 0.05 M Tris, 0.1 M NaCl, 1% glycerol, pH = 8.0 
2.5 M NaCl buffer 0.05 M Tris, 2.5 M NaCl, 1% glycerol, pH = 8.0 
SEC running buffer 0.05 M Tris, 0.1 M NaCl, 5% glycerol, pH = 8.0 

 
Initial purification of 6-His VP2 from E. coli 

 Cell pellets (from 100 mL cells expressing 6-His VP2) were resuspended in 

5 mL of 7 M urea lysis buffer (Table 2) and incubated at room temperature with 

shaking for one hour.  Cells were then sonicated (Misonix Microson) on ice six 

times for ten seconds each with a two-minute break between pulses.  The lysate 

was spun at 12,000 rpm (SA-300 rotor) for 30 min at room temperature.  The 

VP2-containing supernatant was collected and cell pellets were discarded.  
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Ni-NTA chromatography 

 Supernatant from cell lysates containing 6-His VP2 was initially purified 

using Ni-NTA chromatography.  A 10 mL total volume gravity flow column was 

prepared with a 1 mL bed volume of Ni-nitrilotriacetic agarose (Ni-NTA) resin 

(Invitrogen) and the column was equilibrated with 10 column volumes (CVs; 10 

mL) of 7 M urea lysis buffer (Table 4-2).  Approximately 10 mL of 6-His VP2-

containing supernatant was loaded onto the column and the flow through was 

collected.  The column was then washed stepwise with 5 CVs of 7 M urea wash 

buffer, 5 CVs of 4.5 M urea wash buffer, and 5 CVs of 2.5 M urea wash buffer 

(Table 4-2).  A final wash with 10 CVs of 0 M urea wash was performed prior to 

elution with 5 CVs of elution buffer.  20 µL samples were taken from all eluted 

fractions and analyzed by SDS-PAGE.  Nucleic acid presence in fractions was 

analyzed by trichloroacetic acid (TCA) precipitation from 100 µL of fractions 

followed by agarose gel electrophoresis on a 1% gel (see below). 

 
Heparin affinity chromatography 

 Fractions from Ni-NTA chromatography containing 6-His VP2 were further 

purified using the AKTA fast protein liquid chromatography platform (FPLC) and 

Hi-Trap HP 1 mL heparin affinity columns (GE healthcare).  The column was 

equilibrated with 20 CVs of FPLC equilibration buffer (Table 4-2).  10 mL of Ni-

NTA fractions containing 6-His VP2 was diluted to 25 mL with FPLC equilibration 

buffer (Table 4-2) and loaded onto the heparin column.  6-His VP2 was eluted 
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from the column using a 0.1-2.5 M NaCl gradient in equilibration buffer over 20 

CVs.  A final wash was performed with 5 CVs of 2.5 M NaCl.  All fractions were 

measured by UV spectroscopy (280 nm) upon elution from the column and 20 µL 

samples were analyzed by SDS-PAGE.  6-His VP2 typically eluted around 1.0 M 

NaCl.   

 
Size exclusion chromatography 

 Fractions containing 6-His VP2 from the Heparin column were further 

purified via size exclusion chromatography (SEC) using a Superdex 10/300 GL 

column (GE Healthcare) on an AKTA FPLC platform.  The column was calibrated 

with a Gel Filtration Standard (Bio-Rad #1511901) under the same running 

conditions.  The column was equilibrated in SEC running buffer prior to all 

experiments (Table 4-2).  Heparin-purified 6-His VP2 was concentrated to 100 µL 

using Vivaspin 20 and Vivaspin 500 centrifugal concentrators (10 kDa MW cutoff) 

following manufacturer’s protocols (Sartorius).  100 µL of concentrated 6-His VP2 

was loaded onto the column and fractions were examined via UV spectroscopy 

(280 nm) upon elution from the column.  A 20 µL sample of each fraction was 

analyzed by SDS-PAGE. 6-His VP2-containing fractions were pooled and the 

concentration was measured via Bradford assay (Biorad). 

 
Circular dichroism (CD) spectroscopy 

 SEC-purified 6-His VP2 was submitted to the Bächinger laboratory at 

OHSU for analysis by far-UV CD spectroscopy to determine if purified 6-His VP2 
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was folded following purification.  CD measurements in millidegrees were 

performed on 0.1 mg/mL of protein in 20 mM phosphate buffer (pH 7.5) at 25º C 

using a 0.1 cm path cuvette on an AVIV 202 CD Spectropolarimeter. 

 
Electrophoretic mobility shift assays (EMSAs) 

 SEC-purified 6-His VP2 was mixed with purified DNA at varying 

concentrations.  DNA used in binding experiments was purified using the 

GeneJet Plasmid Purification Kit (for plasmid DNA samples) or GeneJet PCR 

Purification Kit (for PCR amplified DNA samples) following manufacturer’s 

protocols (Thermo-Fisher).  Experiments using DNA that was digested with 

EcoRI were first heat treated at 70º C for 30 min to denature the EcoRI enzyme 

prior to addition of 6-His VP2.  6-His VP2 and protein were incubated in a 50 mM 

Tris, 100 mM NaCl (pH = 8) buffer for 30 minutes at room temperature (23ºC) for 

30 min prior to loading on a 1% agarose gel.  Gels were stained with ethidium 

bromide and imaged using a UV transilluminator. 

 
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

 Samples were prepared for SDS-PAGE analysis as follows.  5X sample 

buffer (0.25 M Tris-Cl, 0.5 M dithiothreitol, 10% SDS, 0.25% bromophenol blue) 

was added to a final concentration of 1X and samples were heated at 100º C for 

10 minutes.  1-10 µL of prepared sample was loaded onto 15% acrylamide gel in 

a Tris-glycine buffer system (Sambrook and Russell 2001).    
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Bradford assay  

 Protein concentrations were determined using Bradford reagent (Biorad) 

following manufacturer’s protocols using the micro protocol with a bovine serum 

albumin (BSA) standard. 

 
Trichloroacetic acid (TCA) precipitation 

 A 1/10 volume of 100% TCA (w/v) was added to the sample in a 1.5 mL 

tube and mixed by pipetting.  Sample was placed at -20º C for 1 hr and 

centrifuged at 13,000 x g (at 4º C) for 5 min.  The supernatant was then removed 

and discarded without disturbing the small white pellet.  The pellet was washed 

with 200 µL of ice cold acetone (100%) and centrifuged for 5 min at 13,000 x g 

(at 4º C).  The supernatant was removed and the pellet was air-dried for 30 - 60 

min.  Sample was dissolved in 50 µL of diH2O and prepared for SDS-PAGE (see 

above).   

 
 
Results 
 
Cloning of SSV1 vp2 and expression of recombinant 6-His VP2 

 The vp2 gene of SSV1 was initially cloned into the pET30-XA/LIC vector 

(Millipore) for production of recombinant VP2 (Figure 4-1A).  In addition to the 

6X-His tag, the N-terminus of this vector also encodes an S-tag and factor Xa 

and thrombin cleavage sites (Figure 4-1B).  The cumulative size of the N-terminal 

tag is nearly equal to the size of the VP2 protein itself, raising concerns that it 
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could interfere with future crystallography and NMR experiments.  To eliminate 

this as a potential problem, a large portion of the N-terminal tag region was 

removed by LIPCR to yield the expression vector used for 6-His VP2 protein 

production (Figure 4-1B).  The 6-His VP2 construct used in this work was 90 

residues, 74 residues corresponding to the native VP2 protein and 16 residues 

corresponding to the N-terminal 6X His tag and linker.  The theoretical molecular 

weight of recombinant 6-His VP2 is 10.68 kDa (Figure 4-1B).                      

   

Figure 4-1: Amino acid sequences of recombinant VP2 proteins used in this work  
(A) Amino acid sequence of full-length recombinant VP2 protein prior to deletion of the tag region.  
Underlined residues correspond to thrombin site, S-Tag, and Factor Xa site (sequentially from the 
N-terminus).  The amino acids of the native SSV1 VP2 protein are highlighted.  The theoretical 
molecular weight of this protein is13.80 kDa.   
(B) Amino acid sequence of recombinant 6-His VP2 protein following removal of N-terminal tags.  
The amino acids of native SSV1-VP2 are highlighted.  Basic residues are in bold face and 
comprise 26 of the 74 amino acids in native SSV1-VP2 (~35%).  The 6-His VP2 protein has a 
theoretical molecular weight of 10.68 kDa and a predicted pI of 11.35.  This protein is referred to 
as 6-His VP2 and was expressed from the vector pET30_6HisVP2. 
 
 Induction of protein production from 400 mL of a transformed E. coli culture 

at OD600nm = 0.4 using 1 mM IPTG consistently produced high yields of 

recombinant protein four hours post induction (Figure 4-2).  No significant 

increase in protein was observed after longer incubations nor by increasing the 

amount of IPTG used for induction (data not shown).  Although the predicted 
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molecular weight of recombinant VP2 is 10.68 kDa, the protein migrates at an 

approximate mass of 15 kDa on SDS-PAGE (Figure 4-2). 

 

                            

Figure 4-2: Overexpression of 6-His VP2 in BL21 DE3 E. coli   
A single colony of BL21 DE3 E. cloni (Lucigen) cells harboring the pET30_6HisVP2 expression 
vector was grown in 400 mL of 2XYT medium to an OD600nm of 0.412.  6-His VP2 production was 
induced by adding 1 M IPTG to a final concentration of 1 mM.  200 µL samples were taken from 
the culture just prior to induction (0 hr) and four hours post induction (4 hr).  Samples were spun 
at 13,000 x g, pellets were resuspended in 1X SDS-PAGE sample buffer and analyzed on a 15% 
SDS-PAGE gel (see methods).  The position of 6-His VP2 on the gel is indicated by an arrow.  
Ladder (L) is PageRuler Prestained Ladder (Fermentas) 10, 15 and 25 kDa proteins are labeled. 
 
Ni-NTA chromatography of recombinant 6-His VP2 

 Protein preparations were initially purified under non-denaturing conditions.  

Following protein overexpression, cells were lysed and centrifuged at high speed 

to separate the cell debris from the supernatant and both fractions were checked 

for the presence of 6-His VP2 by SDS-PAGE.  Although some 6-His VP2 was 

L 0 hr 4 hr

10 kDa

15 kDa

25 kDa
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always associated with the cell debris, 6-His VP2 was predominantly found in the 

supernatant (Figure 4-3, lane “PC”).  The supernatant was loaded onto a Ni-NTA 

agarose column to which the 6-His VP2 bound (Figure 4-3A compare PC to FT 

lanes).  Following a wash step, protein was eluted from the column using 500 

mM imidazole (Figure 4-3A, lanes E1 to E4).  Eluted protein was predominantly 

6-His VP2 but small amounts of contaminating proteins were present (Figure 4-

3A).  Agarose gel electrophoresis of eluted protein fractions (Figure 4-3B) 

indicated a significant amount of co-purifying nucleic acid that is most likely 

bound to 6-His VP2 (Figure 4-3B).  UV spectroscopy of eluted protein routinely 

gave 260/280 measurements (1.8 – 1.9) characteristic of nucleic acids. 

 Because it was later discovered that nucleic acid contamination impaired 

heparin binding of 6-His VP2 (data not shown), purification was performed under 

high-salt denaturing conditions (7 M urea and 0.5 M NaCl) to remove 

contaminating nucleic acids.  Cells were resuspended in 7 M urea lysis buffer 

(Table 4-2), sonicated to lyse cells, and the 6-His VP2-containing supernatant 

was separated from the cell debris by centrifugation at 12,000 rpm (SA-300 

rotor).  The supernatant was loaded onto a Ni-NTA agarose column and washed 

with 7 M urea/0.5 M NaCl buffer (Table 4-2).  To re-nature 6-His VP2, the column 

was washed stepwise with decreasing amounts of urea prior to elution (Figure 4-

4A) with a urea-free imidazole buffer (Table 4-2).  Agarose gels and 

spectrophotometry of the eluted fractions indicated that the co-purifying nucleic 

acid was greatly reduced (data not shown).   
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Figure 4-3:  Ni-NTA purification of 6-His VP2 under non-denaturing conditions 
(A) A 400 mL culture of BL21 DE3 E. cloni (Lucigen) harboring pET30_6HisVP2 was treated for 4 
hr with 1 mM IPTG, after which the cells were collected by low speed centrifugation (3,000 rpm).  
Cells were resuspended in 0.5 M NaCl/0.1 M NaH2PO4/0.01 M Tris buffer (pH = 8.0) and lysed by 
sonication (see methods).  Lysate was centrifuged at 12,000 rpm (SA-300) and supernatant 
containing 6-His VP2 was collected (PC).  Supernatant was loaded onto Ni-NTA agarose column 
with a 1 mL bed volume and the flowthrough was collected (FT).  The column was washed with 
10 column volumes (10 mL) of 0.5 M NaCl, 0.01 M Tris, 20 mM imidazole, pH = 8.0 buffer (W), 
and eluted with 4 CVs the same buffer containing 500 mM imidazole (E1-E4).  All fractions shown 
on the gel were prepared for SDS-PAGE by diluting 20 µL of sample with 5 µL of 5X sample 
buffer and heating for 10 min at 100º C.  5 µL of each sample was loaded onto a 15% 
polyacrylamide gel.  Ladder (PR) is PageRuler Prestained Ladder (Fermentas).   
(B) Eluted fractions (E1-E4, panel A) from the Ni-NTA column containing 6-His VP2 were pooled 
and 15 µL was mixed with 3 µL of 6X DNA Loading Buffer (Fisher), separated on a 1% agarose 
gel, and stained with ethidium bromide (PE).  Ladder (L) is GeneRuler 1 kb Plus DNA Ladder 
(Fisher). 
 
 Washing Ni-NTA bound 6-His VP2 with high concentrations of urea (7 M) or 

NaCl (up to 1.5 M) separately was not as effective as a combination of the two.  

Nucleic acids were observed in the flowthrough following a wash using only 7 M 

urea (no NaCl), indicating that urea alone can remove nucleic acid (Figure 4-4B).  

However, eluted 6-His VP2 containing fractions show that co-purifying nucleic 

L PC FT W E1 E2 E3 E4 PE L

A B
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acids persist by agarose gel electrophoresis (data not shown) and UV 

spectroscopy (260/280 nm).  Likewise, washing Ni-NTA bound 6-His VP2 with 50 

CVs of 0.75, 1.0, or 1.5 M NaCl (no urea) was ineffective at total nucleic acid 

removal after analysis by agarose gels and spectrophotometry (data not shown).  

Furthermore, washing with high concentrations of NaCl (>1.0 M) resulted in 

dissociation of 6-His VP2 from the Ni-NTA column. 

                
Figure 4-4: Ni-NTA purification of 6-His VP2 using 7 M urea in the absence of NaCl results in 
incomplete removal of co-purifying nucleic acids   
(A) A 400 mL culture of BL21 DE3 E. cloni harboring pET30_6HisVP2 was prepared and protein 
production was induced as indicated in methods. Following induction, cells were collected by low 
speed centrifugation (3,000 rpm) and resuspended in 5 mL of 7 M urea buffer (7 M urea, 0.01 M 
Tris and 0.1 M NaH2PO4, pH = 8.0).  The cells were sonicated and the lysate was prepared for 
Ni-NTA chromatography as above (Figure 4-3).  Supernatant was loaded onto Ni-NTA agarose 
column with a 1 mL bed volume and washed with 20 column volumes of 7 M urea buffer.  6-His 
VP2 was eluted with 5 column volumes of 7 M urea buffer containing 500 mM imidazole.  The 
imidazole elution was pooled and a 20 µL sample was prepared and analyzed by SDS-PAGE as 
above (6-His VP2).  Molecular weight standard (L) is PageRuler Prestained Ladder (Fisher). 
(B) The Ni-NTA column with 6-His VP2 bound was washed with 20 column volumes of 7 M urea 
wash buffer and was collected as two 10 mL fractions (W1 and W2).  A 200 µL sample of both 
fractions was taken and precipitated with TCA (see methods).  Samples were loaded onto a 1% 
agarose gel and stained with ethidium bromide.  Ladder (L) is GeneRuler 1 kb Plus (Fisher). 

W1 W2 L
6-His 
VP2 L

A B
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Heparin affinity chromatography 

 6-His VP2 was further purified by heparin chromatography on an AKTA fast 

protein liquid chromatography (FPLC) instrument.  6-His VP2-containing fractions 

from Ni-NTA chromatography were pooled (10-50 mL total) and loaded onto a 

HiTrap Heparin HP 1 mL column (GE Healthcare) using a superloop.  The 

column was washed with a 2.5 M NaCl gradient over 20 CVs (Figure 4-5A) and 1 

mL fractions eluted from the heparin column were analyzed via UV spectroscopy 

and 15% acrylamide gels (Figure 4-5B).  Analysis of eluted 6-His VP2 often 

resulted in two bands when visualized on SDS-PAGE (see Figure 4-5B), 

however it is not clear if this is due to degradation of 6-His VP2 or a contaminant.  

The two bands were only observed at high concentrations of VP2.  Alternatively, 

the second band could be a co-purifying protein of similar molecular weight.   
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Figure 4-5: Purification of 6-His VP2 by heparin column chromatography 
(A) Approximately 10 mL of Ni-NTA purified 6-His VP2 (in elution buffer) was loaded onto a Hi-
Trap HP 1 mL heparin affinity column (GE Healthcare) connected to an AKTA fast-protein liquid 
chromatography system. Bound 6-His VP2 was eluted by washing with a 20 column volume 
gradient from 0.1 M to 2.5 M NaCl (Table 2). The absorbance at 280nm was monitored (blue line) 
and 1.5 mL fractions were collected.  6-His VP2 typically eluted around 1 M NaCl.  On the 
chromatogram, the Y-axis is in milli-absorbance units (mAU) and the X-axis is volume (mL).  The 
brown line shows buffer conductivity.  Fractions analyzed on the gel in panel B are indicated by 
filled circles on the chromatogram.   
(B) 15% SDS-PAGE gel of fractions following heparin chromatography.  20 µL samples were 
taken from each fraction and prepared for SDS-PAGE (see methods).  The numbers on the top of 
the gel correspond to fractions from the chromatogram in panel A.  Ladder (L) is PageRuler 
Prestained Ladder (Fermentas). 
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SEC purification indicates 6-His VP2 exists as a monomer in solution 

 Following heparin purification, 6-His VP2-containing fractions were pooled, 

concentrated (~100 µL) and loaded onto a calibrated Superdex 10/300 GL SEC 

column (GE Healthcare).  6-His VP2 eluted at ~18 mL, corresponding to a 

molecular mass of ~10 kDa (Figure 4-6) with a “shoulder” eluting later.  The 

theoretical molecular weight of 6-His VP2 is 10.68 kDa, suggesting that 6-His 

VP2 exists in solution predominantly as a monomer.   

 
Figure 4-6: Size exclusion chromatography of 6-His VP2  
Heparin-purified 6-His VP2 was concentrated to 100 µL (vivaspin 500, Sartorius) and loaded onto 
a calibrated Superdex 200 10/300 GL column (GE Healthcare) and run at 0.5 mL/min with SEC 
running buffer (0.05 M Tris, 0.1 M NaCl, 5% glycerol, pH = 8.0). Absorbance at 280 nm was 
monitored and 1mL fractions (1 mL) were collected.  6-His VP2 eluted at ~18 mL, corresponding 
to an approximate molecular mass of 10 kDa. 
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6-His VP2 is folded following purification:  

 The harsh purification conditions used may have damaged 6-His VP2 

and/or led to incorrect folding.  Thus it was imperative to confirm that 6-His VP2 

had been refolded following the 7 M urea/0.5 M NaCl washes.  To check this, 

circular dichroism (CD) spectroscopy was performed by the Bächinger lab at 

Oregon Health and Sciences University (Figure 4-7).  The spectrum is 

reminiscent of an α-helix-containing protein, characterized by two broad minima 

around 208 and 220 nm and a maximum at ~190 nm (Figure 4-7, arrows).  These 

results indicate that the protein is predominantly alpha helical and imply that 6-

His VP2 is in its native folded state.  Furthermore, a heparin-column purified 

fraction of 6-His VP2 (1.3 mg/mL) was analyzed by collaborators at Montana 

State University using NMR.  The chemical shifts in the NMR spectrum were 

reportedly well resolved, confirming that the protein is in fact folded (data not 

shown). 
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Figure 4-7: CD spectrum of 6-His VP2 at 25º C 
SEC-purified 6-His VP2 was diluted to 0.1 mg/mL in 20 mM phosphate buffer (pH = 7.5) and 
analyzed by far-UV CD spectroscopy using a 0.1 cm path-length cuvette.  Arrows denote the two 
characteristic absorbance minima (208 and 220 nm) and the absorbance maximum (190 nm) 
typical of α-helix-containing proteins.  Y-axis units are in millidegrees and X-axis units are in 
nanometers (nm). 
 
DNA binding by 6-His VP2: 

 VP2 purified from SSV1 virions was previously shown to bind non-

specifically to dsDNA (Reiter 1985).  Similarly, SEC-purified 6-His VP2 appears 

to bind both linear and circular dsDNA (Figure 4-8).  Increasing amounts of 6-His 

VP2 were combined with undigested pAJC97 DNA (a SSV1 shuttle vector 

containing the complete SSV1 genome and an E. coli plasmid, Table 3-3) and 

incubated at room temperature for 30 minutes prior to loading onto a 1% agarose 

gel (Figure 4-8A).  The DNA begins to shift at a protein:DNA molar ratio of 585.  

At a protein:DNA molar ratio of 5850 the DNA appears to be completely retained 

in the well of the agarose gel.  At higher protein:DNA ratios the DNA is no longer 

visible on the gel (Figure 4-8A).  An almost identical binding pattern was 

observed when pAJC97 DNA was digested with EcoRI prior to VP2 binding 

(Figure 4-8B).  Increasing the incubation time to two hours prior to loading onto 

the gel had no effect and did not alter the results (data not shown). 
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Figure 4-8: 6-His VP2 binding of circular and EcoRI-digested pAJC97 (SSV1) DNA 
pAJC97 DNA (A – undigested pAJC97; B – EcoRI-digested pAJC97) and SEC-purified 6-His VP2 
were mixed together in varying ratios (see below), incubated at room temperature for 30 min, and 
run for 45 minutes on a 1% agarose gel.  Gels were stained in ethidium bromide and imaged 
using a UV transilluminator.  The numbers on the top of each gel correspond to the following 
amount of VP2: 1 – 0 µg VP2; 2 – 0.05 µg; 3 – 0.1 µg; 4 – 0.5 µg; 5 – 1 µg; 6 – 5 µg; 7 – 10 µg.  
The total amount of DNA (undigested and digested) in each lane is 200 ng.  Ladder (L) is 
GeneRuler 1 kb plus (Fermentas). 
 
 
Discussion and conclusions 
 
 The role of VP2 in the SSV1 life cycle is poorly understood.  Apart from its 

presence in the SSV1 virion, little is known about the three-dimensional structure 

or DNA binding affinity and specificity of VP2.  We demonstrate here an effective 

protocol for the expression and purification of recombinant 6X His-tagged VP2 

from E. coli.  The results of this work should prove useful for future research 

aimed at characterizing VP2 and elucidating its physiological role. 
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Purification of recombinant 6-His VP2 

 Initially, the VP2 gene from SSV1 was cloned into the pET30 XA/LIC vector 

and recombinant protein was purified as detailed above.  Concerned over the 

possibility that the 47-residue N-terminal tag could interfere with future structural 

experiments, we decided to remove 31 residues from the expression vector using 

LIPCR (Figure 1).  This region could, in theory, have been removed post-

expression using Factor Xa protease (Millipore) but we decided against this extra 

step and possible necessity of another purification step to simply remove it from 

the vector itself.    

 Purification of 6-His VP2 was performed under denaturing conditions with 7 

M urea in order to facilitate removal of co-purifying nucleic acids following 

overexpression in E. coli.  E. coli nucleic acid was most efficiently removed by 

thoroughly washing Ni-NTA-bound 6-His VP2 with 7 M urea and 0.5 M NaCl 

together. Washing with 7 M urea and 0.5 M NaCl individually did not effectively 

remove contaminating nucleic acid. Higher concentrations of NaCl were also 

explored (up to 1.5 M) but were similarly unsuccessful at removing nucleic acid 

and had the added drawback of causing 6-His VP2 to prematurely dissociate 

from the Ni-NTA column.  That VP2 apparently binds well to E. coli DNA is 

unsurprising given that VP2 was reported in a thesis and review articles to be a 

DNA binding protein (Reiter 1985; Reiter et al., 1987a; Wiedenheft et al., 2004).  

It is also not unheard of for Sulfolobus virus DNA binding proteins to be 

contaminated with difficult to remove nucleic acids during the purification process 
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(Erdmann et al., 2014a).  Prior to elution from the column, 6-His VP2 was 

washed with decreasing concentrations of urea to re-nature the protein.  CD 

spectroscopy was performed on SEC-purified protein and indicated the presence 

of α-helical regions (Figure 4-7), suggesting that 6-His VP2 was folded.  

Preliminary NMR experiments by our collaborators at Montana State University 

also indicated SEC-purified 6-His VP2 has defined structure and further suggest 

that the protein is not irreversibly damaged during the harsh purification process.   

 
6-His VP2 exists as a monomer in solution 

 Purification of 6-His VP2 via size exclusion chromatography suggests that 

6-His VP2 exists in solution as a monomer, although it may oligomerize upon 

binding to DNA (Figure 4-6 and Figure 4-8).  Monomeric nucleoid-associated 

proteins (NAPs) are not unusual in Sulfolobus which encode several small and 

highly basic proteins that bind DNA non-specifically (Driessen et al., 2013).  A 

multiple sequence alignment of VP2 with monomeric NAPs Cren7 and Sso7d 

from S. solfataricus P2 revealed no detectable homology (data not shown).  

However, the protein sequences of Cren7 and Sso7d also do not share any 

homology despite having nearly identical 3D structures (Guo et al., 2008).  

Therefore, it is not unreasonable to speculate that VP2 may possess a similar 

structure despite the absence of homology.  It’s clear that structural studies are 

required to better understand the exact role of VP2 and its relationship to other 

NAPs in Sulfolobus. 
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 The presence of α-helical secondary structure in VP2 is not unexpected as 

it was shown that 6-His VP2 can bind DNA (Figure 4-8).  Helix-turn-helix (HTH) 

DNA binding motifs are comprised of α-helices and are not uncommon in 

crenarchaeal virus proteins, including the products of SSV1 ORFs b115, f112, 

and f93 (Prangishvili et al., 2006; Menon et al., 2008; Kraft et al., 2004a).  

Furthermore, a secondary structure prediction (JPred4) with the native VP2 

sequence predicts several α-helical segments (Drozdetskiy et al., 2015; data not 

shown).  VP2 may potentially encode HTH-like domain, however, this awaits 

structural characterization. 

 
6-His VP2 binds non-specifically to linear and circular dsDNA 

 Purified VP2 was shown to bind both linear and circular dsDNA and this 

binding appears indistinguishable between the two forms of DNA (Figure 4-8).  

These data strongly suggest that VP2 is indeed a DNA binding protein as 

previously hypothesized (Reiter 1985) but do not conclusively show that VP2 

binding is non-specific as binding to non-SSV1 DNA was not demonstrated.  

Because sequence-specific DNA binding proteins are capable of binding non-

specifically to DNA at high protein concentrations, it cannot be entirely ruled out 

that VP2 does not recognize a specific sequence (Menon et al., 2008).  However, 

the experimental evidence presented here along with the hypothesized role of 

VP2 does not support this. 
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Comparison of VP2 homologues 

 VP2 homologues have been identified in three fusellovirus genomes (SSV1, 

SSV6, and ASV1) and three environmental metagenomes (Redder et al., 2009; 

Andersson and Banfield 2008; Servin-Garcidueñas et al., 2013; Diemer and 

Stedman unpublished).  All VP2 homologues are small (< 14 kDa) and have high 

predicted isoelectric points, similar to other Sulfolobus NAPs (Table 4-3).  A 

multiple sequence alignment illustrates the high degree of conservation among 

all fusellovirus VP2 homologues (Figure 4-9A).  Redder et al. stated that the C-

termini of VP2 differs among known homologues and that this may reflect 

alternative modes of interaction between VP2 and the capsid proteins VP1 

and/or VP3 (Redder et al., 2009).  Although a small C-terminal region is hyper-

variable among the different fusellovirus VP2 homologues, the majority of the C-

termini appear to be highly conserved (Figure 4-9A).  The exception appears to 

be SMF1-VP2 which differs from the other VP2 homologues by the presence of a 

short C-terminal extension that is rich in histidine residues.  It is worth noting, 

however, that the genome of SMF1 was assembled from a metagenome and no 

virion was isolated (Servin-Garcidueñas et al., 2013).  Additionally, the SMF1 

genome apparently lacks two of the genes belonging to the so-called 

“fusellovirus core” (i.e. genes conserved in all fuselloviruses; see Table 1-2), 

casting doubt onto whether or not a SMF1 virion truly exists (Appendix B).   
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Table 4-3: Properties of VP2 homologues and S. solfataricus P2 NAPs 

Protein Molecular Weight 
(kDa) 

Length 
(amino acids) 

Isoelectric point 
(pI) Accession 

SSV1_VP2 8.8 74 11.39 NP_039802 
SSV6_VP2 9.16 76 10.98 YP_003331451 
ASV1_VP2 10 82 10.9 YP_003331406 
SMF1_VP2 10.44 85 10.56 YP_007678026 
AMD_VP2 A 13.52 115 9.85 ACD75427 
BSL_VP2 B 5.68 49 10.24  n/a 
Sso7d C 7.7 68 9.52 NP_343889.1 
Cren7 C 6.6 60 9.87 NP_342459.1 
ALBA C 10.9 100 10.33 NP_342446.1 

A Andersson and Banfield 2008 
B Diemer and Stedman unpublished data 
C S. solfataricus P2 genome 
 
 A multiple sequence alignment comparing the fusellovirus VP2 homologues 

and two putative VP2 homologues identified via metagenomic surveys was 

performed (Figure 4-9B).  VP2-AMD, a putative VP2 homologue from an acid-

mine drainage metagenome (Andersson and Banfield 2008), is significantly 

larger than the other VP2 homologues due to the presence of a non-conserved 

N-terminal extension (~30 residues).  This extension, similar to the entire protein, 

is highly basic (pI ~ 10.9) and is presumably involved in nucleic acid binding.  

The C-terminus of AMD-VP2 is poorly conserved, suggesting that this region 

may be involved in different interactions compared to the other fusellovirus VP2 

homologues.  The putative VP2 homologue identified in the Boiling Springs Lake 

metagenome (BSL-VP2; Diemer and Stedman unpublished) shows clear 

homology with the N-termini of the fusellovirus VP2 sequences (Figure 4-9B).  

However, the sequence is truncated and may not represent the complete protein 

sequence.   
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 The identification of any fusellovirus genes in an acid mine drainage sample 

is intriguing as it is the only VP2 homologue found in a non-thermal environment 

(39º C) and expands the potential habitats from which fuselloviruses could be 

isolated (Andersson and Banfield 2008).  Although only six VP2 homologues 

have been identified, those that have been all come from hyper-acidic 

environments, supporting the hypothesis that VP2 helps protect viral DNA from 

the harsh conditions (Reiter et al., 1987a; Reiter 1985).  It is curious that none of 

the better conserved fusellovirus “core” genes (See Table 1-2) were identified 

along with VP2 in either the acid mine drainage or the BSL metagenomes 

(Andersson and Banfield 2008; Diemer and Stedman unpublished).  While this 

could be attributed to the stochacisty associated with metagenomic sampling, it is 

entirely possible that these VP2 homologues are carried by different viruses (or 

alternatively, cells) which could expand our knowledge of horizontal gene transfer 

among viruses in extreme environments.  
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Figure 4-9: Multiple sequence alignments of VP2 homologues 
A global alignment of the four fusellovirus VP2 homologues (Panel A) and all known VP2 
homologues (Panel B) was performed using Geneious software with default parameters 
(Biomatters).  A sequence logo was generated for both alignments and indicates the degree of 
conservation at each position in the alignment.  Completely conserved residues are highlighted in 
black.  The underlined region in panel A indicates the C-terminal hyper-variable region previously 
observed in fusellovirus VP2 homologues (Redder et al., 2009).   
 
 

Putative role of VP2 in the Fuselloviridae 

 The role of VP2 in the fusellovirus lifecycle is unclear, as the gene is poorly 

conserved and apparently non-essential for SSV1 infectivity (Chapter 2).  A link 
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between the positively supercoiled state of the viral genome and VP2 might exist, 

however it remains to be seen if fusellovirus virions lacking VP2 homologues 

contain positively supercoiled DNA.  The observation that reverse gyrase can 

induce positive supercoils in vitro and the fact that it is present in almost every 

hyperthermophilic Archaea and Bacteria led to the hypothesis that positively 

supercoiled DNA is more stable at high temperatures (Brochier-Armanet and 

Forterre 2007).  This has been challenged by experiments showing positively 

supercoiled DNA is no more stable than negatively supercoiled DNA at high 

temperatures as well as the observation of a number of plasmids in thermophiles 

that exist in relaxed and negatively supercoiled topologies (Marguet and Forterre 

1994; Lulchev and Klostermeier 2014).  The almost universal conservation of the 

reverse gyrase gene in bacterial and archaeal thermophiles strongly suggests a 

role in the adaptation to life in thermophilic environments, however, the specifics 

of this role appear complex and remain obscure (Brochier-Armanet and Forterre 

2007).   

 Because it is not clear if the positively supercoiled genome of SSV1 arises 

from the action of reverse gyrase, it is fair to speculate that VP2 may be 

responsible.  The NAP SMJ12 from S. solfataricus P2 was reported to induce 

positive supercoiling of DNA mini circles in vitro and VP2 may perform a similar 

function in SSV1 (Napoli et al., 2001).  Alternatively, VP2 could play a role in 

binding and stabilizing positively supercoiled DNA that is created by reverse 

gyrase or some other enzyme.  While the action of VP2 is clearly not crucial for 
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virus function, its presence may confer an advantage to viruses encoding a VP2 

homolog.   

 If VP2 does confer an advantage, then why don’t most other fuselloviruses 

encode such a protein when they inhabit analogous niches?  It is not 

unreasonable to suppose that other fuselloviruses have simply dispensed with 

encoding their own VP2 homologues and have instead co-opted a host DNA 

binding protein for the role.  Viral genomes are typically streamlined to encode 

only the minimum information necessary to function, thus the loss of an un-

needed gene could be advantageous (Cann 2016).  In support of this hypothesis, 

purified SSV1 virions were found to contain significant amounts of the host-

derived NAP Sso7d in addition to VP2 (Quemin et al., 2015). 

 Purified STIV virions have also been found to contain Sso7d (Maaty et al., 

2006).  Cells infected with STIV have also been shown to up-regulate expression 

of Sso7d genes following infection with STIV (Ortmann et al., 2008).  There is no 

evidence for STIV having possessed and subsequently lost its own VP2-like 

protein, but this is a clear example of a crenarchaeal virus containing a host-

derived DNA binding protein.  Because this has only been observed in STIV and 

SSV1, it seems likely that this phenomenon is wide-spread among the 

crenarchaeal viruses.  The structural protein profiles of a number of crenarchaeal 

virions have been analyzed but none appear to include obvious viral or host 

derived DNA binding proteins (Prangishvili et al., 2006; Xiang et al., 2005; Geslin 

et al., 2007; Erdmann et al., 2014b).  This includes all isolated hyperthermophilic 
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spindle-shaped viruses, none of which encode a homologue of the VP2 gene (i.e. 

ATV, STSV1, STSV2, APSV1, and PAV1). 
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Chapter 5: First insights into the kinetics of the fusellovirus replication 
cycle 
 
 

Abstract 

Archaeal virus life-cycles and virus-host interactions are poorly 

understood.  To begin to address this we have initiated one-step growth curve 

experiments using the well-characterized fusellovirus Sulfolobus spindle-shaped 

virus 1 (SSV1).  A “one-step growth curve” has not been performed on SSV1 or 

any fusellovirus due to difficulties in obtaining the large amount of virus required.  

We show here that infection of S. solfataricus with SSV1 and SSV1 mutants at a 

low MOI results in the production of viral titers in excess of 109 PFU/mL.  Virus 

from low MOI infections was isolated and used to conduct infections at an MOI of 

5.  Infection with SSV1 at a high MOI results in a severe growth defect that is 

reminiscent to infection with the related fusellovirus SSV9 at a low MOI.  An 

SSV1 mutant lacking the d244 ORF elicited a dramatic cellular response 

following infection at high MOI and produces a viral burst size that is 10-fold 

lower than wild type SSV1.  We also show that UV-inactivated SSV1 does not 

result in any detectable growth defect in S. solfataricus, contrasting what has 

been reported for SSV9 in S. islandicus. 

 
Introduction 

The viruses infecting Archaea appear to be extremely diverse both in 

terms of their morphology and genomic content.  Archaeal virus genomes 
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encode few sequences with recognizable homologues in the public databases 

(Prangishvili et al., 2006).  This dearth of information regarding protein function 

confounds our understanding of archaeal viruses.  Spindle-shaped viruses, which 

have only been found to infect archaeal hosts, appear widespread across a 

variety of habitats (Krupovic et al., 2014).  The spindle-shaped viruses of the 

family Fuselloviridae are among the best-characterized archaeal viruses, 

however, very little is known about fusellovirus life cycles and the relationships 

between these viruses and their hosts. 

One-step growth curves have been a cornerstone of virology research 

since the pioneering work by Max Delbruck and colleagues in the early 20th 

century (Ellis and Delbruck 1939).  They illustrated that a typical virus infection 

can be divided into three phases: adsorption, replication, and lysis.  The crux of 

the one-step growth curve is synchronous infection, whereby all cells in a given 

culture are infected by at least one virus at the same time.  Synchronous 

infections require high viral titers (~109 – 1010 PFU/mL) which have been difficult 

to attain for Sulfolobus spindle-shaped virus 1 (SSV1).  Therefore, one-step 

growth curves have not yet been performed with SSV1, which limits our 

knowledge of the SSV1 life cycle. 

Sulfolobus spindle-shaped virus 1 (SSV1) was isolated from a geothermal 

hot spring in Beppu, Japan and is one of the best-characterized archaeal viruses 

to date (Yeats et al., 1982; Prangishvili 2013).  The 15.465 kb circular dsDNA 

genome of SSV1 encodes 35 open reading frames (ORFs), of which only five 
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have been assigned functions (Iverson and Stedman 2012; Quemin et al., 2015).  

Clues into the functions of some of the remaining proteins have been provided by 

structural studies, bioinformatics, and mutagenesis, although the activity of the 

majority remain elusive (Prangishvili et al., 2006; Dellas et al., 2013; Chapters 2 

and 3).  Deletion of the ORF d244, which encodes a putative nuclease, did not 

impair SSV1 infectivity, however, cells infected with virus lacking ORF d244 

displayed a retarded growth phenotype compared to cells infected with wild-type 

virus (Chapters 2 and 3). 

Following infection, the SSV1 genome integrates site-specifically into an 

arginyl tRNA gene, resulting in splitting of the apparently non-essential viral 

integrase gene (Reiter et al., 1987; Schleper et al., 1992; Clore and Stedman 

2006; Chapter 3).  SSV1 establishes a stable carrier-state within the infected cell 

and infected cells often show little-to-no impairment of growth (Fusco et al., 2013; 

Schleper et al., 1992; Chapter 2).  During this carrier-state, the SSV1 genome is 

maintained at a low copy number and only a subset of viral genes are expressed 

(Fusco et al., 2013; Fusco et al., 2015c).  SSV1 infection does not appear to 

result in lysis, and viral release probably occurs via budding (Martin et al., 1984; 

Quemin et al., 2015).   

SSV1 is the only fusellovirus whose replication has been shown to be UV-

inducible (Martin et al., 1984).  Following exposure to UV light, the titer of SSV1 

reached ~108 PFU/mL within 8 hours of UV irradiation (Schleper et al., 1992).  

UV-irradiated infected cells subsequently displayed a dramatic decrease in 
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growth rate compared to the uninfected UV-irradiated control (Schleper et al., 

1992).  Similar SSV1 titers were achieved in a more recent study using similar 

UV-induction (Fusco et al., 2015a).  The transcription cycle of SSV1 in a stably-

infected cell following exposure to UV light was analyzed and shown to be 

temporally regulated (Fröls et al., 2007).  The transcription cycle following an 

unambiguously synchronous infection by SSV1, or any fusellovirus, remains to 

be analyzed.   

Several other fuselloviruses have been isolated and characterized, though 

not much has been reported about the interactions with their respective hosts 

(Ceballos et al., 2013; Prangishvili 2013). SSV2 and SSV9 are the most studied 

fuselloviruses other than SSV1.  SSV2 was originally isolated from a culture of S. 

islandicus strain REY15/4 but has been shown to also infect S. solfataricus 

strains (Arnold et al., 1999; Ceballos et al., 2013).  SSV1 and SSV2 are very 

similar in gene content (21 homologous open reading frames) and gene synteny 

(Stedman et al., 2003; Appendix B).  The transcription cycle of SSV2 was 

analyzed following infection at an unreported MOI and found to be temporally 

regulated, similar to SSV1 (Ren et al., 2013).  SSV2 replication is induced when 

the S. islandicus REY15/4 culture reaches late logarithmic or stationary growth 

(Contursi et al., 2006).  Interestingly, induction of replication was not observed in 

S. solfataricus strains infected with SSV2 (Contursi et al., 2006).  Recently it was 

shown that infection of S. solfataricus strain LnF1 (uracil auxotroph of S. 

solfataricus P2) with SSV2 at an unknown multiplicity of infection (MOI) elicits a 
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strong response from the host, including activation of the CRISPR-Cas system, 

ultimately resulting in a reduction of the SSV2 copy number (Fusco et al., 2015c).  

However, infection of the same host with SSV1 (also at unknown MOI) 

apparently did not result in CRISPR-Cas activation nor did a co-infection with 

both SSV1 and SSV2 (Fusco et al., 2015c). 

SSV9 (formerly Sulfolobus spindle-shaped virus Kamchatka 1) was 

isolated from the Valley of the Geysers in the Kamchtakan peninsula in eastern 

Russia (Wiedenheft et al., 2004).  Recently it was shown that incubation of S. 

islandicus RJW002 with SSV9 preparations at an MOI of 0.01 resulted in a 

population-wide dormant-like state, suggesting that very low viral abundances 

can cause dramatic population-wide effects (Bautista et al., 2015).  They also 

showed that SSV9 was unable to replicate in these cells and suggest their data 

support the hypothesis put forth by Makarova et al. that dormancy may be a 

natural reaction to allow the cells time to mount an immune response (via the 

CRISPR-Cas pathway) and eliminate the infection (Makarova et al., 2012).  

Interestingly, cell dormancy was also triggered by UV-inactivated virus (i.e. non-

infectious) particles, indicating that the mere presence of virus is enough to 

cause cells to enter stasis.   

The unrelated lytic crenarchaeal viruses STIV1 and SIRV2 have also been 

relatively well studied.  Cells infected with SIRV2 at a MOI of 7 cease growing 

within 4 hours post infection (h.p.i.) and remain in this state of arrest for 60 hr, 

after which there is a burst of growth from a small subset of the population that is 
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immune to SIRV-2 infection (Bize et al., 2009).  A one-step growth curve of an 

SIRV2 infection of S. solfataricus 5E6 cells at a MOI of 30 caused a similar 

reduction in host growth to the previous work and revealed a ~5 hr virus latent 

period with a large burst in viral titer (to >109 PFU/mL) at 12 h.p.i. (Okutan et al., 

2013).  Infection of a S. solfataricus P2 derivative with STIV1 at an MOI of 1.5 – 2 

resulted in a reduction in cell growth at ~30 h.p.i. The copy number of STIV 

peaked at ~40 h.p.i. (Ortmann et al., 2008).  Most of the host cells appeared 

lysed by 40 h.p.i. (Brumfield et al., 2009).   

To better understand the fusellovirus infection cycle we have initiated one-

step growth curve experiments on SSV1 and SSV1 mutants.  In this work we 

show that infection of S. solfataricus S441 cells with SSV1 at a low MOI results in 

a burst in virus production at about 48 h.p.i. with titers reaching ~109 PFU/mL.  

The production of high viral titers allowed isolation of sufficient infectious virions 

to perform higher MOI infections.  High MOI infections resulted in a dramatically 

reduced culture growth rate and resulted in the production of infectious virus by 

~12 h.p.i.  Growth curves from an SSV1 mutant harboring a deletion of the d244 

ORF display aberrant cell growth and virus production relative to infection with 

other viruses.  We also show that infection of S441 with SSV9 at a low MOI 

results in an abrupt and significant growth defect.  Finally, non-infectious UV-

inactivated SSV1 apparently elicits no response from the host, contrary to what 

has been reported for SSV9. 
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Materials and Methods: 
 
Growth of Sulfolobus cultures 

All Sulfolobus cultures were grown in Yeast-Sucrose (YS) medium at pH 

3.0 in a 75º C shaking incubator (See chapter 2).  Typically, small amounts of 

frozen cell stocks (ca. 50 µL) were inoculated into 5 mL of YS medium and 

incubated until turbid (48 – 96 hr).  Cells were then transferred to a larger volume 

of YS medium (50 – 100 mL) in long-neck Erlenmeyer flasks and incubated until 

the desired OD600nm was reached. 

 
Comparison of filtered and non-filtered virus supernatants 

SSV1-infected (S524) and SSV1(e178::Topo)-infected (S538) cultures 

(see below and table 5-1) were grown from frozen stocks in 50 mL of YS medium 

at 75º C for 5 days.  The cell density (OD600nm) of S524 was 0.854 and of S538 

was 0.655 when cultures were removed from high temperature.  Cultures were 

centrifuged for 10 min at 6,000 x g (Eppendorf 5810R) at room temperature.  The 

supernatant was collected and split into two aliquots of equal volume.  One 

aliquot (~20 mL) of each sample was passed through a 0.45 µm filter (Sartorious 

minisart SFCA) and collected.  The other aliquot (~20 mL) was not filtered.  The 

titer of the filtered and unfiltered aliquot from both samples was measured by 

plaque assay in quadruplicate.   
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Initial purification of virus for one-step growth curves 

S. solfataricus S441 was initially transfected with SSV1 by electroporation 

using purified SSV1 DNA as detailed previously (Chapter 3).  Electroporated 

cells were grown in 50 mL of YS medium and incubated for 120 hours.  The cell 

density (OD600nm) and viral titer were measured every 24 hours.  The average 

viral titer was determined from plaque assays performed in triplicate on cell-free 

supernatants.  Glycerol stocks were prepared from this infected culture (strain 

S524) and used to propagate SSV1 for future experiments (see chapter 3 

methods).  A similar protocol was used to prepare frozen stocks of cultures stably 

infected with SSV1(e178::Topo) and SSV1∆d244(e178::Topo) (S538 and S530, 

respectively; see Table 5-1). 

 
SSV1 production in stably-infected S441 cells 

S524 was cultured from frozen stock in 5 mL of YS medium until turbid 

(~72 hr).  This culture was transferred to 50 mL fresh YS medium in a long-neck 

flask and grown for 120 hours.  Samples were taken every 24 hours and the cell 

density (OD600nm) and viral titer (PFU/mL) were measured.  The average viral titer 

at each time point was calculated from plaque assays done in triplicate on cell-

free supernatants.  

Stably-infected cells were grown from frozen stock and used to purify virus 

for low MOI experiments (see below).  Cultures were incubated for 72 hours and 

centrifuged at 6,000 x g (Eppendorf 5810R) for 10 min.  The virus-containing 
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supernatant was collected and the titer was measured by plaque assay.  The 

same protocol was used to purify SSV1(e178::Topo) from cultures of S538 and 

SSV1∆d244(e178::Topo) from cultures of S530.  SSV9-infected cultures were 

prepared as detailed elsewhere (appendix A) and SSV9 was harvested after 48 

hours of incubation at 75º C.   

Table 5-1: Strains, viruses, and plasmids used in this work 
Strain/vector Description Reference 
S. solfataricus S441 Novel Sulfolobus isolate Chapter 3 

S. solfataricus S524 
S441 infected with SSV1 wild-
type This work 

S. solfataricus S538 
S441 infected with 
SSV1(e178::Topo)  This work 

S. solfataricus S530 
S441 infected with 
SSV1∆d244(e178::Topo) This work 

S. solfataricus S506 
S441 infected with SSV9 wild-
type This work 

SSV1 Wild-type SSV1  Yeats et al., 1982 

SSV9 Wild-type SSV9 
Wiedenheft et al., 
2004 

SSV1(e178::Topo) 

SSV1 shuttle vector with TOPO 
PCR Blunt II in ORF e178 (aka 
pAJC97) 

Clore and Stedman 
2006 

SSV1∆d244(e178::Topo) 
SSV1(e178::Topo) with ORF 
d244 deleted 

Iverson and Stedman 
2012 (Chapter 2) 

 
 
Low MOI infections and one-step growth curve experiments 

A mid-logarithmic phase culture of S441 was diluted with YS medium to 

OD600nm of ~0.13 and allowed to recover at 75º C for 2 – 4 hours until the OD600nm 

reached 0.16, a value experimentally determined to equal 108 Sulfolobus 

cells/mL (Drummond 2010; Prangishvili et al., 1999).  30 – 80 mL of S441 cells 

(~3.0 – 8.0 x 109 cells) were added to a corresponding volume of virus calculated 

to yield the desired MOI.  The volume of virus added depended on the titer (5 – 
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40 mL) and the MOI desired.  Negative controls were prepared using an equal 

volume of YS medium in place of virus.  Following addition of virus (or media), 

cultures were incubated for 2 hours at room temperature with shaking followed 

by 2 hours at 75º C with shaking.  Cultures were then centrifuged at room 

temperature for 10 min at 3,500 x g (Eppendorf 5810R).  The supernatant was 

discarded and the cells were resuspended in the original culture volume (30 – 80 

mL) of YS medium.  Cells were centrifuged for another 10 min at 3,500 x g, after 

which the supernatant was removed and the cells were re-suspended in the 

original culture volume (30 – 80 mL) of YS medium.  Cultures were added to 

long-neck Erlenmeyer flasks and incubated with shaking at 75º C.  The cell 

density and viral titer were measured at indicated time points throughout the 

experiment.  Viral titers were measured by plaque assay using cell-free 

supernatants with a minimum of three replicates for each time point.  Samples (1 

mL) were prepared for plaque assay by pelleting the cells via centrifugation (3 

min) at 15,000 x g and carefully collecting the virus supernatant (~500 µL) by 

pipet.  Supernatants could be stored for at least 60 days without a measurable 

decrease in titer (data not shown; Drummond 2010).    

Low MOI infections (0.1) were performed initially to produce high viral 

titers that were required for higher MOI (5.0) experiments.  Low MOI experiments 

indicated that the peak titer of SSV1 [and SSV1(e178::Topo)] occurred between 

16 and 42 h.p.i. and purification within this time span routinely yielded titers ~109 

PFU/mL.  The optimal time for SSV1∆d244(e178::Topo) purification was 24 – 42 
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h.p.i. and yielded similarly high titers to SSV1 and SSV1(e178::Topo).  SSV9 was 

purified via a different protocol (see appendix A).  The virus sample used in each 

one-step growth curve was used in only a single experiment (i.e. every 

experiment used a unique viral sample due to the amounts needed) unless 

otherwise noted.  For the growth curves shown in Figure 5-5, the negative control 

and SSV1∆d244(e178::Topo) curves display the average of three independent 

experiments while the SSV1 and SSV1(e178::Topo) curves display the average 

of two independent experiments.   

 
Calculation of virus burst size 

The viral burst size in one-step growth curves was calculated by the 

following equation: 

Equation 1: 

 
In the equation above, the maximum PFU (t<24) was calculated by 

identifying the maximum titer within the first 24 h.p.i. and calculating the total 

number of virus (PFUs).    The initial titer is equal to the amount of virus present 

immediately after culture is placed in 75º C incubator (i.e. the start of the growth 

curve).  The initial number of cells is the number of cells that were initially 

incubated with the virus for the one-step growth curve (6.0 x 109 cells for all one-

step growth curves).  As indicated by the above equation, virus burst size is 

reported in units of PFU/infected cell.   
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Experiments with “spent” growth medium 

Experiments using “spent” YS medium (i.e. media collected from a late-log 

uninfected S441 culture) in place of fresh YS medium were performed to 

investigate the effect of spent media on cell growth.  Spent media was isolated 

from uninfected S441 cells in the late logarithmic phase of growth (OD600nm ~ 0.7 

– 0.9) via the same protocol used for the separation of virus.  Spent media was 

stored at 4º C until needed (7-10 days).  To test the effect of the spent media, 30 

mL of S441 cells were prepared as if for a one-step growth curve, however, 

18.75 mL of spent media was added instead of virus (see above).  A negative 

control was prepared simultaneously using 18.75 mL of fresh YS in place of 

spent media.  Both cultures were incubated, washed, and grown analogously to 

one-step growth curve experiments.  The cell density (OD600nm) of duplicate 

cultures was averaged and plotted against time.   

 
UV inactivation of SSV1(e178::Topo) virions 

SSV1(e178::Topo) virions were inactivated with UV light to test the effect 

of inactivated virus on the growth of S441.  15 mL of titered SSV1 supernatant 

was added to a polystyrene petri dish (15 x 150 mm) and exposed to 1 J/cm2 of 

UV-irradiation using a CL-1000 UV cross-linker (UVP, Inc.) as in Bautista et al. 

(2015).  The titer of UV-irradiated SSV1(e178::Topo) was measured following the 

initial dose and compared to a non-irradiated control.  The initial dose reduced 

SSV1(e178::Topo) infectivity ~1000-fold (from 108 to 105 PFU/mL) so a second 
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dose (1 J/cm2) was administered.  Again, SSV1(e178::Topo) infectivity was 

reduced by about 1000-fold (to ~101 PFU/mL) but not eliminated so a third dose 

was administered.  This third dose appeared to eliminate SSV1(e178::Topo) 

infectivity as the titer was below the detectable limit.  To ensure 

SSV1(e178::Topo) was non-infectious, a 4th dose was administered.  The total 

dose of radiation delivered was 4 J/cm2 (per 15 mL of virus sample). 

The effect of UV-inactivated SSV1(e178::Topo) virus was tested by 

substituting the UV-inactivated virus for infectious virus in a one-step growth 

curve.  18.75 mL of UV-inactivated virus was mixed with 30 mL of S441 cells and 

the sample was processed as indicated above.  An experiment using an identical 

volume of infectious SSV1(e178::Topo) virus from the same un-irradiated stock 

(18.75 mL) was performed and is shown in Figure 5-4.  A negative control using 

18 mL of YS in place of virus was also prepared.  The cell density (OD600nm) of 

duplicate cultures was averaged and plotted against time.  At the end of the 

experiment (72 h.p.i.), a sample of the culture “infected” with UV-inactivated 

SSV1(e178::Topo) was checked for the presence of virus by plaque assay.  The 

UV-irradiated sample shown in Figure 5-6 is the average of two independent 

experiments. 
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Plaque Assay 

Virus titers were measured via plaque assay as in Schleper et al. (1992) 

with modifications suggested by Albers et al., (2006).  Briefly, an S441 culture 

was diluted with fresh YS medium to OD600nm 0.35 – 0.38 and allowed to recover 

at 75º C until the cell density reached ~0.40 (2 – 4 hours).  Cells were centrifuged 

at 3,000 x g (Eppendorf 5810R) for 10 min and re-suspended in a volume of YS 

resulting in ten-fold concentration of the cells.  500 µL of 10X concentrated cells 

were added to a 5 mL test tube and 100 µL of virus dilution was added.  Virus 

dilutions were prepared by ten-fold serial dilutions of a virus stock in YS medium.  

5 mL of soft-layer was added and the mixture was quickly poured and evenly 

distributed on a warm YS Gelrite® plate (see chapter 2).  Plates were allowed to 

solidify at room temperature for 20 min and then were placed in a sealed plastic 

box with a moist paper towel and incubated for 48 hours.  Plaques began to 

appear after 24 hours but were most visible after 48 hours.  To calculate the viral 

titer, only dilutions yielding clearly-separated plaques (i.e. non-confluent) were 

used.  If plaques were confluent, they were counted as a single PFU.  Plates with 

10 – 50 plaques were optimal for quantification as they limited confluence of 

plaques, but plates with higher PFUs were also counted.  All one-step growth 

curve plaque assays were performed at least in triplicate and averaged to 

calculate the titer and associated standard deviation at a given time point. 
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Results 
 
Filtration of virus results in a 100-fold reduction in infectivity 

SSV1 was initially purified by a two-step protocol.  First, SSV1-infected 

cultures (S524) were centrifuged (6,000 x g; Eppendorf 5810R) to pellet cells and 

the virus-containing supernatant was collected.  The supernatant was then 

passed through a 0.45 µm filter (Sartorious Minisart® SFCA) to remove 

remaining cells.  Viral titers purified by this method were routinely low (102 – 103 

PFU/mL) but it was unknown if this was due to the purification method or intrinsic 

to the virus.  To investigate if the low viral titers were due to the filtration step, 

SSV1 was isolated by omitting the filtration step and compared to virus isolated 

with the filtration step included.  Viral titers from samples purified by both 

protocols (+/- filtration) were measured by plaque assay in quadruplicate and 

compared (Table 5-2).  The filtration step resulted in a roughly 100-fold decrease 

in the viral titer, indicating that filtration does reduce SSV1 infectivity even though 

individual virions are ~90 x 30 nm (Stedman et al., 2015) and should easily pass 

through the filter.  This experiment was repeated using SSV1(e178::Topo) virus 

and yielded similar results (Table 5-2).   

The observed higher titer could be explained by the presence of 

contaminating cells that would have otherwise been removed by filtration.  If 

some of those cells are infected, they would be indistinguishable from virus in the 

plaque assay, resulting in an artificially inflated titer.  To check this, unfiltered 

supernatants were incubated for 10 days at 75º C but no growth was observed, 
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indicating that any potentially contaminating cells are present in low abundance.  

Furthermore, spotting supernatants on YS plates and incubating for 10 days at 

75º C also did not result in visible cell growth.  Sulfolobus cell-like particles have 

been observed when analyzing unfiltered virus supernatants in the TEM. 

However, they are present in low abundance and may not be viable (data not 

shown).  These results suggest that separation of SSV solely by centrifugation is 

suitable and results in a minimal loss of infectious virus.  This protocol was used 

to isolate all virus used in the experiments below.   

Table 5-2: Effect of filtration (0.45 µm) on SSV1 and SSV1(e178::Topo) supernatants 
SSV1  + Filtration (PFU/mL) No filtration (PFU/mL) 
Plate 1 2.1 x 103 4.1 x 105 
Plate 2 5.8 x 103 1.2 x 105 
Plate 3 4.3 x 103 2.5 x 105 
Plate 4 1.9 x 103 2.7 x 105 
Average ± S.D. 3.53 ± 1.86 x 103 2.63 ± 1.19 x 105 

   
SSV1(e178::Topo) + Filtration (PFU/mL) No filtration (PFU/mL) 
Plate 1 5.1 x 104 1.1 x 106 
Plate 2 3.9 x 104 9.0 x 105 
Plate 3 1.3 x 104 1.9 x 106 
Plate 4 5.5 x 104 2.1 x 106 
Average ± S.D. 3.95 ± 1.89 x 104 1.5 ± 5.89 x 106 

 
Newly transfected Sulfolobus yields low viral titers 

Because one-step growth curves at a high multiplicity of infection (MOI) 

require large amounts of virus (~109 PFU/mL), it was essential to develop a 

robust and reliable method for the production of high viral titers.  UV-induction of 

SSV1-infected cultures has been reported to yield titers of up to 109 PFU/ml, 

although induction has been notoriously difficult to reproduce, volumes are 
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generally low, UV-irradiation seems to vary depending on the host strain used, 

and finally, UV-irradiation could also induce mutations (Schleper et al., 1992; 

Fusco et al., 2014; Stedman personal communication).  Therefore, UV-irradiation 

independent means of virus production were investigated.  Mitomycin C has 

been reported as a method to induce SSV1 production, but very large amounts 

are required, probably due to the instability of mitomycin C at low pH (Cannio et 

al., 1998; Liu and Li, 2002; Drummond 2010).  Initially, S. solfataricus strain S441 

was transfected with SSV1 by electroporation (See chapter 3).  Following 

electroporation, cells were diluted into 50 mL of YS medium and incubated at 75º 

C.  Samples (1 mL) were removed every 24 hours and the viral titer in cell-free 

supernatants was measured by plaque assays in triplicate.  The SSV1 titer 

peaked ~72 – 96 hours post-electroporation and did not exceed 105 PFU/mL 

(data not shown).  Similar results were observed following electroporation of 

S441 with the SSV1 shuttle vector SSV1(e178::Topo).  Glycerol stocks from 

SSV1- and SSV1(e178::Topo)-infected cultures were prepared and used for 

preparation of virus below.  

 
Stably infected cultures produce reasonably high (107 – 108 PFU/mL) titers 

SSV1-infected cells (S524) were prepared from frozen stock and grown in 

5 mL of YS medium until turbid (~72 hours).  This culture was transferred to 75 

mL and incubated at 75º C for 120 hours.  Cell density and viral titer were 

measured every 24 hours via plaque assay to determine the optimal time for 
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collection and isolation of virus (Figure 5-1).  The initial titer in cell-free 

supernatants (immediately after dilution) was low (~101 PFU/mL) and reached a 

maximum of 107 PFU/mL by 72 hours.  The titer then gradually decreased as the 

cells reached stationary phase.  Repetitions of this experiment routinely resulted 

in viral titers in this range (105 – 108 PFU/mL).  Similar results were obtained for 

SSV1(e178::Topo)- and SSV1∆d244(e178::Topo)-infected cultures after 72 hour 

incubations (data not shown).  Although greater viral titers were obtained by this 

method compared to post-electroporation samples (above), these titers were still 

not sufficient to perform high MOI one-step growth curve experiments. 

 
 
Figure 5-1: Growth and virus production of SSV1-infected S441 cells 
Sulfolobus cells of strain S441 stably infected with SSV1 (circles) and uninfected S441 
(squares) were diluted to 75 mL with fresh YS medium and incubated for 120 hours at 
75º C.  Samples (1 mL) were taken every 24 hr to determine cell density (OD600nm) and 
to measure the viral titer by plaque assay (open circles).  The average OD600nm and viral 
titer (PFU/mL) of two independent cultures are presented with standard deviations.  The 
viral titer was measured in triplicate at each time point, in each replicate culture. 
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Infections with SSV1 and SSV1(e178::Topo) at low MOI 

Infection of S441 cells with SSV1 at a low MOI was initially performed to 

measure the kinetics of viral infection.  SSV1 with a titer of 2.0 x 108 PFU/mL was 

isolated from a 72-hour old culture of S524 (as above) and 4 mL of this virus 

preparation was mixed with 80 mL of S441 cells (OD600nm = 0.16) for an MOI of 

0.1 (Figure 5-2A).  Following a 2-hour incubation at room temperature and 2-hour 

incubation at 75º C, the un-adsorbed virus was removed by centrifugation and 

the cells were resuspended in fresh YS medium.  An uninfected control was 

simultaneously prepared using an equal volume of YS in place of virus 

supernatant.  Cultures were grown at 75º C with shaking in long-neck flasks.  

Samples (1 mL) were taken at indicated times to measure cell density (OD600nm) 

and the SSV1 titer (Figure 5-2A).  The cell densities of both the infected and 

uninfected cultures were nearly identical for the first 16 hours, after which the 

infected cells began to grow at a decreased rate.  The titer of SSV1 decreased 

by almost two orders of magnitude over the first 12 h.p.i.  Between 12 and 16 

h.p.i., the SSV1 titer began to increase.  A large burst in virus production was 

observed between 24 and 32 h.p.i., with the titer reaching its maximum of 9.38 x 

108 PFU/mL.  The reduction in growth rate of the infected culture corresponds 

with this burst in viral titer.  The SSV1 titer gradually decreased over the final 48 

hours of the experiment, corresponding to the static growth of the infected culture 

during this time. 
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A second infection with SSV1 at the same MOI (0.1) was conducted to 

more closely measure the SSV1 titer during the first 8 hours of infection (Figure 

5-2B).  The SSV1 sample used was the same used in the previous experiment 

(Figure 5-2A).  The titer of SSV1 decreased ten-fold within 2 h.p.i. and hovered at 

this value until increasing almost 10,000 fold between 8 and 24 h.p.i.  This 

increase in titer occurred slightly earlier than the burst observed in the initial 

experiment (Figure 5-2A).  The infected and uninfected cells exhibit almost 

identical growth curves to those in the initial experiment (Figure 5-2A).   

A third experiment using virus produced by the shuttle vector 

SSV1(e178::Topo) at a MOI of 0.1 was performed and displays a similar growth 

curve to wild type SSV1 with a few notable differences (Figure 5-2C).  

SSV1(e178::Topo) virus with a titer of 1.6 x 108 PFU/mL was isolated from a 72-

hour old culture of S538.  Five mL of SSV1(e178::Topo) virus was mixed with 80 

mL of S441 culture (OD600nm = 0.16).  Unlike the SSV1 growth curves, the titer of 

SSV1(e178::Topo) did not decrease during the first 12 h.p.i. but instead 

increased almost 100-fold.  After this initial increase, a slight decrease in titer 

was observed until 24 h.p.i followed by a 100,000-fold increase that reached a 

maximum of 3.0 x 109 PFU/mL by 40 h.p.i.  Overall, data from the growth curves 

indicates that infection with SSV1, or SSV1(e178::Topo), at a low MOI results in 

a burst of virus production between 16 and 32 h.p.i. that can reach titers >109 

PFU/mL.  This trend was exploited to produce the greater titers needed for higher 

MOI experiments. 
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Figure 5-2: Growth curves of S441 cells infected with SSV1 and SSV1(e178::Topo) at 
low MOI 
(A)  Growth curve of S441 cells infected with SSV1 wild-type virus at a MOI of 0.1.  80 
mL of S441 culture (8.0 x 109 cells) were mixed with 4 mL of SSV1 with a titer of 2.0 x 
108 PFU/mL (8.0 x 108 PFU) as detailed in methods (closed circles).  A negative control 
was simultaneously prepared using 80 mL of S441 culture and 4 mL of YS medium in 
place of virus (closed squares).  The cell density (OD600nm) and SSV1 titer (PFU/mL) 
were measured at indicated times in the figure.  The SSV1 titer (open circles) at each 
time point represents the average titer calculated by plaque assay in triplicate (standard 
deviation indicated by bars). 
(B)  Growth curve of S441 cells infected with SSV1 wild-type virus at a MOI of 0.1.  The 
experiment in panel A was repeated with a focus on the initial 24 hours of infection.  
Both infected (closed circles) and uninfected cultures (closed squares) were prepared in 
an identical fashion to those in panel A and used the same SSV1 sample.  The cell 
density (OD600nm) and SSV1 titer (PFU/mL) were measured at indicated times in the 
figure.  The SSV1 titer (open circles) at each time point represents the average titer 
calculated by plaque assay in triplicate (standard deviation indicated by bars). 
(C)  One-step growth curve of S441 cells infected with SSV1(e178::Topo) shuttle vector 
at a MOI of 0.1.  80 mL of S441 culture (8.0 x 109 cells) were mixed with 5 mL of 
SSV1(e178::Topo) with a titer of 1.6 x 108 PFU/mL (8.0 x 108 PFU) and prepared 
identically to other samples (closed circles).  A negative control was simultaneously 
prepared with 80 mL of S441 culture and 5 mL of of YS medium added in place of virus 
(closed circles).  The cell density (OD600nm) and SSV1(e178::Topo) titer (PFU/mL) were 
measured at the indicated times.  The SSV1(e178::Topo) titer (open circles) at each time 
point represents the average titer calculated by plaque assay in triplicate (standard 
deviation indicated by bars). 
 

Infection with SSV9 at low MOI 

An infection of Sulfolobus with SSV9 at an MOI of 0.1 was also performed 

and displays some notable differences with the SSV1 low MOI experiments.  

SSV9 with a titer of 1.3 x 108 PFU/mL was isolated from infected S441 cells 

prepared as detailed elsewhere (see appendix A).  8 mL of SSV9 supernatant 

was added to 80 mL of S441 cells (OD600nm = 0.16) and prepared as done 

previously for SSV1 low MOI infections.  The cell density was measured at 

indicated times and the average SSV9 titer was determined from cell-free 

supernatants by plaque assays in triplicate (Figure 5-3).  Within 8 h.p.i., the titer 
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of SSV9 increased almost 100-fold and quickly reached a maximum of 3.6 x 107 

PFU/mL by 16 h.p.i.  The titer then gradually decreased until 40 h.p.i. and 

appears to level off until the end of the experiment (65 h.p.i.), finishing at ~106 

PFU/mL.  One striking difference between the SSV9 and SSV1 infections at 0.1 

MOI was the growth of the infected cells.  The cell density of the SSV9-infected 

culture mirrors that of the uninfected culture during the first 12 h.p.i. but quickly 

stagnates, barely increasing until approximately 40 h.p.i.  This growth inhibition 

emulates what is observed in higher MOI infections with SSV1 (Figure 5-5).  

Additionally, cell debris was observed in the culture after 48 h.p.i.   

 
Figure 5-3: Growth curve of S441 infected with SSV9 at a MOI of 0.1 
80 mL of S441 cells (8.0 x 109 cells) were mixed with 8 mL of SSV9 with a titer of 1.3 x 
108 PFU/mL (1.04 x 109 PFU) and prepared as described in methods (closed squares).  
A negative control was likewise prepared with 80 mL of S441 cells and 8 mL of YS 
added in place of virus (closed circles).  The cell density (OD600nm) and SSV9 titer 
(PFU/mL) were measured at the indicated times.  Plaque assays in triplicate were 
performed at each time point to calculate the average SSV9 titer (standard deviation 
indicated by bars). 
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One-step growth curves at a MOI of 5 

The observation that high SSV1 and SSV1(e178::Topo) titers (~109 

PFU/mL) were produced by infection at a low MOI enabled experiments with a 

higher MOI.  An infection of S441 with SSV1(e178::Topo) at an MOI of 0.1 

produced a sample of SSV1(e178::Topo) virus with a titer of 8.0 x 108 PFU/mL 

after 40 h.p.i.  18.75 mL of this sample (1.5 x 1010 PFU) was used to infect 3.0 x 

109 cells of S441 (30 mL) at an MOI of 5.0 (Figure 5-4).  Unlike in previous low 

MOI experiments (Figure 5-2), cells infected at the higher MOI exhibit a 

decreased rate of growth relative to the negative control and are reminiscent of 

cells infected with SSV9 at a low MOI (Figure 5-3).  The titer of 

SSV1(e178::Topo) displays a similar pattern to the low MOI SSV1(e178::Topo) 

infection (Figure 5-2C).  The SSV1(e178::Topo) titer increases almost three 

orders of magnitude within the first 12 hours (to ~107 PFU/mL), similar to the low 

MOI infection with SSV1(e178::Topo) but not SSV1 (Figure 5-2).  Following the 

initial increase, the titer of SSV1(e178::Topo) remains relatively constant at ~107 

PFU/mL before reaching a maximum of 108 PFU/mL (24 h.p.i.).  The titer 

remained fairly constant (~107 PFU/mL) for the remainder of the experiment (42 

h.p.i.).   
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Figure 5-4: One-step growth curve of S441 infected with SSV1(e178::Topo) at a MOI of 
5 
30 mL of S441 cells (3.0 x 109 cells) were mixed with 18.75 mL of SSV1(e178::Topo) at 
a titer of 8.0 x 108 PFU/mL (1.5 x 1010 PFU) and prepared as described for other growth 
curves (closed circles).  A negative control was prepared simultaneously by adding 
18.75 mL of YS medium in place of virus to 30 mL of cells (closed squares).  The cell 
density (OD600nm) and SSV1(e178::Topo) titer (PFU/mL) were measured at indicated 
times.  Plaque assays in triplicate were performed on cell-free supernatants at each time 
point to calculate the average viral titer (standard deviation indicated by bars). 
 
One-step growth curves of SSV1, SSV1(e178::Topo) and the SSV1 mutant 

SSV1∆d244(e178::Topo) 

One-step growth curves were performed to compare the infection kinetics 

of SSV1(e178::Topo), SSV1∆d244(e178::Topo) and wild-type SSV1 (Table 5-1).  

High-titer samples of each virus were isolated by first infecting a culture of S441 

at low MOI (~0.1) and purifying the virus between 32 and 40 h.p.i., analogous to 

what was done previously for SSV1(e178::Topo) (Figure 5-2C, see methods).  

Purified virus was used to infect S441 at a MOI of 5 as was done in previously 

(Figure 5-4).  The negative control and SSV1∆d244(e178::Topo) growth curves 

were performed in triplicate and SSV1 and SSV1(e178::Topo) growth curves 
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were performed in duplicate.  Cell density (OD600nm) and viral titer were measured 

at the indicated times.  The average viral titer at each time point was determined 

by plaque assays in triplicate (Figure 5-5).  SSV1- and SSV1(e178::Topo)-

infected cells exhibited similar patterns of growth (Figure 5-5A).  Interestingly, 

SSV1∆d244(e178::Topo)-infected cells display a noticeably different growth 

phenotype from cells infected with either of the other viruses (Figure 5-5B).  

SSV1∆d244(e178::Topo)-infected cells appear indistinguishable from wild type at 

12 h.p.i., but then appear to grow at an accelerated rate relative to the uninfected 

control.  The rate of cell growth begins to decrease between 24 and 36 h.p.i. and 

the cell density decreases between 36 and 44 h.p.i. before leveling out.  While 

cell debris was observed after 65 h.p.i. in all infected cultures, debris was visible 

in SSV1∆d244(e178::Topo)-infected cultures within 36 h.p.i.  Samples of 

SSV1∆d244(e178::Topo)-infected cells between 12 and 36 h.p.i. were observed 

under the light microscope to check for any abnormally large cells, which may 

explain the increase in cell density that was observed during these times relative 

to the uninfected control.  However, the cells appeared indistinguishable from the 

uninfected controls.   

The viral titer increased within the first 12 h.p.i. for all viruses tested 

(Figure 5-5).  Both the SSV1 and SSV1(e178::Topo) titer increased almost 1000-

fold whereas SSV1∆d244(e178::Topo) increased by approximately 100-fold.  

After reaching a maximum titer of 4.9 x 108 PFU/mL after 16 h.p.i., the 

SSV1(e178::Topo) titer steadily decreases throughout the course of the 
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experiment, similar to low MOI growth curves.  The titer of SSV1 somewhat 

mirrors that of SSV1(e178::Topo), although a ten-fold increase in titer is 

observed at ~36 h.p.i., after which the titer remains relatively constant for the 

duration of the experiment.  After an initial increase, the SSV1∆d244(e178::Topo) 

titer dips roughly 10-fold between 16 and 24 h.p.i.  The titer then undergoes a 

second increase (~100-fold) between 24 and 40 h.p.i., reaching a maximum of 

1.84 x 109 PFU/mL.  This second burst correlates with the observed reduction in 

the growth rate of the host cells.   
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Figure 5-5: One-step growth curve of S441 cells infected with SSV1, 
SSV1(e178::Topo), and SSV1∆d244(e178::Topo) at a MOI of 5 
60 mL of S441 culture (6.0 x 108 cells) were mixed with SSV1 (panel A), 
SSV1(e178::Topo) (panel A), and SSV1∆d244(e178::Topo) (panel B) virus at a MOI of 
5.  The amount of virus added to each sample varied depending on the initial titer of the 
virus, but the final volume was adjusted to 40 mL with YS medium.  A negative control 
was prepared by adding 40 mL of YS medium in place of virus.  The same data for the 
negative control is displayed in panels A and B.  The cell density (OD600nm) and viral titer 
(PFU/mL) of each sample were measured at indicated times.  Negative control and 
SSV1∆d244(e178::Topo) growth curves were performed in triplicate while SSV1 and 
SSV1(e178::Topo) growth curves were performed in duplicate.  The average cell density 
from replicate experiments is displayed with associated standard deviation.  The 
average viral titer at each time point is displayed with standard deviations and was 
calculated from triplicate plaque assays performed for each experimental replicate. 
 
 

The initial 24 hours of the one-step growth curve were used to calculate 

the burst size for each of the viruses analyzed.  The burst size of a virus is 

defined as the number of virus produced per infected cell and was calculated by 

equation 1 (see methods).  The burst size of each virus is presented in the table 

5-3.  

Table 5-3: Virus burst sizes 

Virus Maximum PFU 
(t<24) 

Initial PFU  
(t0) 

Burst size 
(PFU/cell) 

SSV1 2.11 x 1010 7.20 x 106 3.52 
SSV1(e178::Topo) 2.95 x 1010 8.52 x 106 4.92 
SSV1∆d244(e178::Topo) 6.60 x 108 7.02 x 106 0.11 

 
The effects of spent media and UV-inactivated virus on S441 growth 

Due to the method of virus separation used here, it was important to 

investigate the effect of used (aka “spent”) Sulfolobus media in the one-step 

growth curves to ensure that the effects observed in the growth curves were due 

to the virus and not some other factor present in the medium.  We were also 

interested in observing the effect of UV-inactivated viral particles 



! 178!

[SSV1(e178::Topo)] on cell growth as it has been reported that UV-inactivated 

SSV9 at a low MOI causes population-wide stasis in S. islandicus (Bautista et al., 

2015).  An experiment similar to the one-step growth curves presented in figures 

5-4 and 5-5 was performed by adding 18.75 mL of UV-inactivated 

SSV1(e178::Topo) or medium from a stationary phase S441 culture in place of 

infectious virus to 30 mL of S441 cells (~3.0 x 108 cells).  The amount of UV-

inactivated virus added was equal to an MOI of 5 prior to UV-inactivation.  Spent 

S441 medium was harvested from a culture in the late logarithmic growth phase 

via centrifugation, as used to isolate virus.  SSV1(e178::Topo) was UV-

inactivated by irradiating a 15 mL sample in a polystyrene petri dish (15 x 150 

mm) with four doses of 1 J/cm2 using a UV cross-linker (UVP).  Plaque assays on 

the UV-inactivated virus showed that each dose lowered the infectivity 

approximately 1000-fold and that infectivity was below the detectable limit after 

three doses of irradiation.  A fourth dose was administered to ensure inactivation 

of virus was complete.  The UV-inactivated SSV1(e178::Topo) virus was from the 

same stock as the infectious SSV1(e178::Topo) virus used in a previous 

experiment (Figure 5-4).  A negative control was prepared using 18.75 mL of YS 

medium in place of virus or spent medium. 

Following the addition of virus or media, cells were prepared in an 

analogous fashion to one-step growth curve experiments.  Samples (1 mL) were 

taken at indicated times and the cell density (OD600nm) from duplicate 

experiments was plotted (Figure 5-6).  Cells that were incubated with UV-
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inactivated SSV1(e178::Topo) grew at a rate that was indistinguishable from 

uninfected cells.  Cultures receiving spent media grew similarly.  These data 

suggest that neither UV-inactivated virus nor the spent media has a significant 

effect on cell growth.  The culture receiving UV-inactivated virus was confirmed 

to be virus-free by plaque assay at the conclusion of the experiment.  

 
 
Figure 5-6: The effect of spent growth medium and UV-inactivated SSV1(e178::Topo) 
on S441 cell growth 
3.0 x 108 S441 cells (30mL) were mixed with 18.75 mL of UV-inactivated 
SSV1(e178::Topo) or spent YS medium to test the effect of each on cell growth.  Spent 
YS medium was collected from uninfected S441 cells grown to late log phase (OD600nm 
~0.8) and isolated by centrifugation (see methods).  SSV1(e178::Topo) was UV-
inactivated and confirmed to be non-infectious via plaque assay prior to the experiment.  
A negative control using 18.75 mL of YS medium in place virus/spent media was also 
prepared.  All cultures were prepared identically to one-step growth curves (Figures 5-4 
and 5-5).  The average cell density (OD600nm) of duplicate growth experiments is 
displayed along with standard deviations.  The culture receiving UV-inactivated virus 
was shown to be virus-free by plaque assay at 72 h.p.i., as expected.  UV-inactivated 
SSV1(e178::Topo) was from the same stock used in the one-step growth curve in Figure 
5-4.   
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Discussion 
 
 
Filtration of SSV1 results in a decrease in infectivity 

Initially, purification of SSV1 was performed by centrifugation of infected 

cultures followed by filtration of the supernatant through a 0.45 µm syringe filter.  

Omission of the filtration step resulted in an almost 100-fold increase in the viral 

titer, illustrating that filtration reduces SSV1 infectivity (Table 5-2).  Similar results 

were observed for SSV1(e178::Topo) virus.  Analysis of virus supernatants 

isolated without filtration by TEM showed them to be largely devoid of 

contaminating cells, suggesting that isolation of SSV1 by centrifugation is 

suitable.  Why filtration reduces infectivity is unclear.  It is possible that the viral 

particles are damaged when passed through the filter and lose infectivity.  

Alternatively, viral particles may become bound to the filter membrane and be 

removed from the solution.  It is also conceivable that many virus particles are 

bound to each other, causing the aggregate to be larger than the pore size of the 

membrane (Quemin et al., 2015; Stedman et al., 2003; Redder et al., 2009).  

SSV1 virions, like most fuselloviruses, commonly form rosettes due to 

interactions between the tail fibers of different virions (Redder et al., 2009; 

Wiedenheft et al., 2004).  SSV1 is also commonly observed bound to cell debris 

and vesicles (Martin et al., 1984; personal observations).  The infectivity of these 

SSV1 aggregates is unknown, but the prevalence of these aggregates suggests 

that viral titers likely underestimate the number of infectious virions in a given 
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solution.  It was recently shown that treatment with NaCl (1.5 M) and ethanol 

(1%) results in partial dissociation of large SSV1 aggregates by TEM analysis, 

although ethanol treatment reduced virus infectivity (Quemin et al., 2015).  

Similar treatments may yield increased viral titers, although the utility of this in 

the purification of SSV1 remains to be investigated. 

 
Newly transfected Sulfolobus results in the production of low viral titers 

The viral production in cultures transfected with SSV1 DNA was measured 

and found to be relatively low, only reaching maximum titers of ~105 PFU/mL by 

72 hours post transfection. The transformation efficiency of Sulfolobus via 

electroporation is known to be quite low (10-5 transformants/µg) and probably 

explains the low titers observed following transfection (Schleper et al., 1992).  

Because only a very small percentage of the population becomes infected with 

viral DNA, this limits the total number of virus-producing cells.  Following 

electroporation, the culture gradually generates more virus which are then 

available to infect the rest of the uninfected population.  Although the titer 

appears low, the number of infected cells is probably quite high and may explain 

why revitalization of a previously transfected culture (that previously produced 

low titers) results in increased virus production (see below and Figure 5-1). 

  
Stably infected cultures produce moderately high (107 – 108 PFU/mL) titers 

SSV1 cultures that had been transfected via electroporation were frozen 

and later used as a source for the production of virus.  When these cultures were 
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re-grown from frozen stock, SSV1 titers often reached values of 107 –108 

PFU/mL, significantly higher than titers from freshly transfected cells but still not 

high enough to prepare virus for one-step growth curve experiments (Figure 5-1).  

Similar results were obtained for the SSV1 shuttle vector, SSV1(e178::Topo).  

Although SSV1-infected cells grew at a slightly depressed rate relative to 

uninfected controls, these cultures still grew to high cell densities.  It is not 

unusual for SSV1-infected Sulfolobus cultures to exhibit growth rates similar to 

that of an uninfected culture (Fusco et al., 2013; Contursi et al., 2006).   

 
Infection of Sulfolobus at a low MOI 

Sulfolobus S441 was initially infected at a low MOI because the high titers 

required for one-step growth curves could not be obtained.  Fortuitously, low MOI 

infections resulted in a burst of virus production that reached titers in excess of 

109 PFU/mL (Figure 5-2A).  Similar results were obtained for low MOI infections 

of SSV1(e178::Topo) (Figure 5-2C) and SSV1∆d244(e178::Topo) (Data not 

shown).  Cells infected at low MOI displayed growth rates similar to the 

uninfected controls for the first 16 – 24 h.p.i., after which a noticeable growth 

defect was observed that correlated with a dramatic increase in the viral titer. 

High titers of SSV1 (>108 PFU/mL) have been difficult to isolate.  The 

highest reported titers (~109 PFU/mL) for SSV1 have all required irradiation with 

UV-light to induce viral replication in the host (Schleper et al., 1992; Fusco et al., 

2015a).  A self-stated standardized protocol for UV-induction has been 
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published, however, the reliability of this is unknown (Fusco et al., 2015a).  Our 

results indicate that infection of strain S441 with SSV1 at a low MOI results in 

viral titers >109 PFU/mL within 40 hours of infection, equaling or exceeding the 

titers reported for UV-induction in other hosts (Figure 5-2).  This protocol was 

also successfully applied to the SSV1 shuttle vector SSV1(e178::Topo) and an 

SSV1 mutant lacking the d244 gene, showing it is reliable and robust.  It is 

unclear how successful this protocol is with other fuselloviruses, as similarly high 

titers (~109 PFU/mL) of SSV9 could not be isolated in a similar fashion (Figure 5-

3).   

The steady titer exhibited by SSV1 during the initial 12 h.p.i. correlates 

well with a typical latent period of a viral infection (Figure 5-2A; Ellis et al., 1939; 

Drummond 2010).  What is unusual is the titer of SSV1(e178::Topo) exhibits a 

~100-fold increase in titer during this same time frame.  The only known 

difference between the two viruses is that the genome of SSV1(e178::Topo) 

harbors a bacterial plasmid inserted into ORF e178 (Clore and Stedman 2006).  

It is probable that the data reflect a limited sample size and could represent an 

experimental artifact.  In support of this, one-step growth curves with SSV1 do 

not display this trend and are nearly identical to those of SSV1(e178::Topo) 

performed at the same MOI (Figure 5-5A). 
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One-step growth curves in Sulfolobus at a MOI of 5 

SSV1, SSV1(e178::Topo), and SSV1∆d244(e178::Topo) viruses were 

isolated from low MOI infections and subsequently used in one-step growth 

curves at a MOI of 5.  MOIs in the range of 5 – 10 theoretically result in >99% of 

the cells encountering at least one infectious viral particle, suggesting that a 

synchronous infection was achieved in these experiments.   

 
Comparisons of one-step growth curves 

Each infection at high MOI resulted in a large burst of virus production 

within 12 h.p.i. that was not observed in the low MOI infections (Figure 5-5).  This 

difference is likely due to a greater initial number of infected cells at the higher 

MOI, resulting in increased virus production over a shorter time span.  The 

overall pattern of virus production in high MOI infections with SSV1 and 

SSV1(e178::Topo) was reminiscent of the low MOI infections (Figure 5-5A).  

Following the initial burst in virus production, the titers in both samples remain 

relatively constant throughout the course of the experiment, although SSV1 

achieves a greater maximum titer.  Preliminary data from our own lab, as well as 

published data elsewhere, indicate that SSV1 loses infectivity when exposed to 

high temperature and low pH (Schleper et al., 1992; Drummond 2010).  This 

instability makes it unlikely that the steady-state titer is due to virus that persists 

in the medium for an extended period of time (i.e. following the initial burst, virus 

production ceases).  Rather, it is likely the result of continuous production by 
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infected cells.  The pattern of virus production in SSV1∆d244(e178::Topo) 

cultures was slightly different (Figure 5-5B).  Following an initial burst, the titer of 

SSV1∆d244(e178::Topo) remains roughly constant until an increase in virus 

production occurs at ~20 h.p.i. that yields a maximum titer of ~109 PFU/mL at 40 

h.p.i.  This increase in virus production corresponds with a reduction in the cell 

density and the appearance of cell debris in the culture.  Virus production in 

SSV1∆d244(e178::Topo) cells occurs more gradually compared to SSV1 and 

SSV1(e178::Topo), although the maximum titers achieved by all three infected 

cultures are similar (~109 PFU/mL). 

 
Virus burst size and latent period 

The data provided by a one-step growth curve enables the determination 

of several infection parameters including viral burst size and virus latent period.  

The burst size is defined as the number of virus produced per infected cell and 

was calculated by equation 1 (see methods).  The maximum titer within the first 

24 h.p.i. was used to calculate the burst size as this was likely to reflect the 

amount of virus produced following a single cycle of virus replication.  In support 

of this time scale, it was shown that the transcription cycle of SSV1 following UV-

induction requires ~8.5 hours for completion (Fröls et al., 2007).  Although the 

transcription cycle following synchronous infection is not known, it is likely longer.  

The initial titer (0 hour) was then subtracted from the maximum titer and this 
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value was divided by the total number of cells that were initially incubated with 

virus (6.0 x 109 cells).   

Our data indicate low burst sizes for each of the three viruses analyzed 

(See equation 1 and Table 5-3).  The low values may indicate that a synchronous 

infection was not achieved, as a burst size of 1 PFU/cell is equal to one virus 

produced per infected cell.  Because we cannot be sure that a synchronous 

infection was achieved, it is not possible to make an accurate determination of 

the true SSV1 burst size at this time.  However, the data do allow for 

comparisons to be made between the viruses used in this work, though, as they 

were all treated under the same experimental conditions.  The amount of virus 

production of SSV1 and SSV1(e178::Topo) appear to be very similar, as is 

expected.  The amount of SSV1∆d244(e178::Topo) produced is nearly 10-fold 

lower, however, suggesting that the defect caused by the d244 deletion results in 

a decreased amount of virus production per cell.   

It is likely that a synchronous infection was not obtained due to low 

adsorption of SSV1.  The adsorption constant for SSV9 is reported to be quite 

low, ~10-11 mL-1min-1 (Bautista et al., 2015).  Data for the SSV1 adsorption 

constant has not been published, however, data from an undergraduate honors 

thesis reported that SSV1 at an initial titer of 105 HFU/mL (halo-forming units/mL) 

became undetectable within 5 hours following incubation in S. solfataricus G-

theta at 23º C.  The MOI of this incubation was 0.01 (Drummond 2010).  It is 

possibly relevant that these data used a different host and that the method of 
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detection was a halo assay (HFU/mL) which is less sensitive than the plaque 

assay (data not shown).  The adsorption constant for SSV1 to S441 remains to 

be determined.  

The latent period corresponds to the amount of time that elapses following 

virus adsorption and the appearance of new infectious virus in the culture.  This 

value has not been determined for SSV1 or any fusellovirus due to the lack of 

one-step growth curves.  Each of the one-step growth curves displays an 

increase in the viral titer during the first 12 h.p.i., indicating that this time frame 

may roughly correspond to the latent period (Figure 5-5).  However, because 

titers were not measured at earlier time points, the exact timing of the latent 

period cannot be determined at this time.  Because the transcription cycle after 

UV-irradiation requires ~8.5 hr to be completed, infectious virus should not be 

produced prior to this time (Fröls et al., 2007).  Thus we hypothesize that the 

latent period is somewhere between 8.5 and 12 hours.  This is supported by the 

low MOI infection with SSV1, where the viral titer did not increase within the first 

8 h.p.i. (Figure 5-2B). 

 
Cell growth during SSV1 and SSV1(e178::Topo) one-step growth curves 

The change in MOI resulted in dramatic differences in the growth of SSV1- 

and SSV1(e178::Topo)-infected cultures.  Cultures infected at a high MOI 

exhibited a rapid reduction in growth (<12 h.p.i.) that was strikingly similar to what 

has been observed in SSV9 infections at a low MOI (Bautista et al., 2015; Figure 
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5-3).  While a reduction in the host growth rate was observed in low MOI 

infections, the onset was later (~ 24 h.p.i.) and not as dramatic as in high MOI 

infections.  The reduction in host growth appears to be correlated with the 

abundance of virus, as low MOI cultures of SSV1 and SSV1(e178::Topo) 

received nearly 50 times lower dose of virus.  Only once the titer increased (~24 

h.p.i.) did a noticeable reduction in cell growth occur.  It is likely that the decrease 

in host growth is caused by the stress imposed on the cells by viral production.  

Our high MOI experiments illustrated that virus is clearly produced within 12 h.p.i. 

(Figure 5-5).  Newly produced virus in low MOI infections could then infect the 

remaining uninfected cells, which in turn begin to produce virus and result in the 

observed decrease in the average rate of cell growth.   

A similar reduction in host growth was observed in SSV2-infected S. 

solfataricus P2 cells (Contursi et al., 2006).  An SSV2-infected culture of P2 was 

established and found to exhibit an extremely low rate of growth relative to 

uninfected controls.  However, single colonies isolated from two rounds of 

streaking and colony picking were found to grow at rates indistinguishable from 

the uninfected control, despite still being infected with SSV2.  The authors 

hypothesized that once SSV2 establishes a stable carrier state, the host is able 

to resume normal growth.  Following infection of S441 at high MOI with 

SSV1(e178::Topo), we see a similar reduction in growth.  We also observed that 

washing the SSV1(e178::Topo)-infected culture and re-suspending the cells in 

fresh YS medium resulted in an improved rate of growth, although growth of 
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these cells was still impaired compared to uninfected controls (data not shown).  

This suggests that SSV1, like SSV2, may gradually establish a stable carrier 

state in host cultures.  Alternatively, the increased rate of growth we observe 

could be due to resistant cells within the population that begin to dominate late in 

growth, as has been seen in studies with other Sulfolobus viruses (Bize et al., 

2009).   

 
SSV1∆d244(e178::Topo)-infected cells display a distinct phenotype 

The growth of SSV1∆d244(e178::Topo)-infected cultures (Figure 5-5B) 

appears dramatically different than cultures infected with SSV1 or 

SSV1(e178::Topo).  At ~12 h.p.i., SSV1∆d244(e178::Topo)-infected cells appear 

to grow at an increased rate relative to the uninfected controls (Figure 5-5B).  

This increased growth rate was observed in each of three independent 

experiments (Figure 5-5B).  It is possible that the measured increase in cell 

density may not be due to increased cell division but may have been caused by 

an increase in cell size.  Infected cells were examined under the light 

microscope, but we did not identify any obvious differences relative to uninfected 

controls.  Follow-up experiments measuring total CFU’s should be performed, 

perhaps in combination with flow cytometry (Okutan et al., 2013; Bernander et 

al., 1997).   

Between 24 – 40 h.p.i., the growth rate of the SSV1∆d244(e178::Topo)-

infected culture began to decrease and a reduction in cell density was observed 
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along with the appearance of cell debris.  Interestingly, the cell density did not 

decrease in any of the infections with SSV1, SSV1(e178::Topo), or SSV9.  It is 

unclear why deletion of the d244 gene from SSV1 results in the aberrant growth 

curve shown here and why cell death seems to occur earlier compared to other 

high MOI infections.   

Our data indicate that SSV1∆d244(e178::Topo) virus elicits a dramatic 

cellular response following infection at high MOI.  Furthermore, this mutant 

resulted in a ten-fold decrease in virus production compared to wild type SSV1 

and SSV1(e178::Topo) (Table 5-3).  The function of D244 in the SSV1 life cycle 

is unknown.  Mass spectrometry of purified SSV1 virions indicated D244 is 

packaged within the virion, although D244 was not identified in more highly 

purified virions in a more recent analysis (Menon et al., 2008; Quemin et al., 

2015).  The crystal structure of D212, a D244 homologue in Sulfolobus spindle-

shaped virus 8, was solved and shares significant homology with members of the 

PD-(D/E)XK nuclease superfamily (Menon et al., 2008).  The d244 gene is 

moderately conserved in the Fuselloviridae and is apparently non-essential for 

SSV1 infectivity (Chapters 2 and 3).  Furthermore, S. solfataricus G-theta cells 

infected with ∆d244 virus exhibited a retarded growth phenotype relative to cells 

infected with wild-type virus.  However, the previous work was performed using a 

culture that was not synchronously infected (Chapter 2).   
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High initial starting titers in one-step growth curves 

It has not escaped our notice that the initial titers in the one-step growth 

curves are quite high (~105 PFU/mL).  This indicates that the wash steps were 

inefficient and did not result in a complete removal of virus.  Following the four-

hour incubation with virus, cells were washed two times prior to the start of the 

growth curve experiments.  As mentioned above, SSV1 forms aggregates with 

other virions and vesicles due to interactions facilitated by the tail fibers (Quemin 

et al., 2015).  It is possible that these aggregates pellet with the cells during the 

wash steps, preventing their removal.  These aggregates may be detected by the 

plaque assay as they essentially become fixed in place by the soft-layer, 

facilitating adsorption to any cells that are in proximity.  However, this remains to 

be investigated.   

 
Appearance of cell debris in high MOI infections 

It is notable that cell debris was observed within 60 h.p.i. in all of the 

cultures infected at high MOI, regardless of the SSV being used.  The presence 

of cell debris implies cell death, but it is unclear if this is due to lysis by SSV1 

because SSV1 is thought to be non-lytic (Martin et al., 1984; Quemin et al., 

2015).  Work with SSV9 suggested that the mere presence of non-infectious 

virus was enough to trigger a state of dormancy in the population, and if 

dormancy persists the cells eventually die (Bautista et al., 2015).  It is possible 

that the cell death observed here may also be due to an extended dormant state 
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and not by lysis caused by virus egress. We did not observe the same dormancy 

with UV-inactivated virus as observed by Bautista et al. (2015) making this 

unlikely.  However, two lytic crenarchaeal viruses (SIRV2 and STIV1) were 

initially thought to be non-lytic (Bize et al., 2009; Ortmann et al., 2008).  

Therefore, it is possible that SSV1 is lytic or that SSV1 infection at high MOI 

leads to cell death.  

 
Infection with SSV9 at low MOI 

As mentioned above, S. islandicus strain RJW002 incubated with SSV9 

virions at an MOI of 0.01 results in a population-wide delay in growth, where cells 

were viable but not growing (Bautista et al., 2015).  Within 24 hours, these cells 

recover and resume a rate of growth comparable to uninfected controls without 

any SSV9 being produced.  Bautista and colleagues proposed that the cells enter 

into a dormant state, hypothesized to provide cells time to mount an immune 

response (via the CRISPR-Cas pathway) to eliminate the invading phage/virus 

(Makarova et al., 2012).  RJW002 cells with a deactivated CRISPR-Cas system 

that were challenged with SSV9 resulted in production of new SSV9 and a more 

prolonged cell dormancy.  This led to the hypothesis that cell stasis in RJW002 

was caused by the continuous presence of SSV9 in the culture.  To test this, UV-

inactivated SSV9 was mixed with RJW002 cells at a MOI of 0.01 (based on titer 

prior to UV-inactivation).  Interestingly, under these conditions RJW002 cells still 

appear to enter into a dormant state from which they do not recover.  Because a 
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dormant-like state was induced at low MOIs (i.e. less than one virus per cell) and 

in the presence of non-infectious virions, it was proposed that this is an anti-viral 

response that is independent of infection.   

Incubation of S441 with SSV9 at a low MOI (0.1) displays some 

similarities with the SSV9-susceptible RJW002 mutants from Bautista et al. 

(2015).  Shortly after infection with SSV9 (<12 h.p.i.), S441 cells display a 

pronounced decrease in growth from which they do not recover (Figure 5-3).  

The OD600nm of the SSV9-infected culture increased by only 0.033 units between 

12 and 46 h.p.i., compared to 0.767 units for the uninfected control (Figure 5-3).  

Our experiments display a burst in SSV9 titer of ~105 PFU/mL after 8 h.p.i., 

nearly two orders of magnitude higher than the 103 – 104 PFU/mL burst observed 

by Bautista et al. at 24 h.p.i.  This burst coincides well with the onset of growth 

inhibition in the host culture.  The minimal growth of SSV9-infected S441 cells 

mirrors that of SSV9-infected RJW002 cells with an inactivated CRISPR-Cas 

system and lends support to their hypothesis that the reduction of cell growth (i.e. 

dormancy) is due to prolonged exposure to SSV9 (Bautista et al., 2015).  

However, this stasis-like state could simply be caused by the stress imposed on 

the cells by viral production, similar to what is seen in SSV1 infections at high 

MOI, and to a lesser extent at low MOI (Figures 5-2 and 5-5).   

It is odd that low MOIs of SSV9 appear to cause a similar growth defect (in 

terms of time of onset) as the high MOI infections with SSV1.  Perhaps infection 

of only a subset of the population by SSV9 does result in a “signal” to the 
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remaining cells, “warning” them of the danger as previously hypothesized 

(Bautista et al., 2015).  We have found that infection with ~50 times more SSV1 

(MOI = 5) is required to elicit a similar cell response (Figure 5-5).  This amount of 

SSV1 is theoretically equal to five infectious particles per cell, suggesting that the 

growth defects observed could be explained by the stress of virus production and 

is intrinsically different than the effect caused by low MOI SSV9 infections.  This 

is supported by the observation that low MOI (0.01) SSV1 infections do not result 

in a growth defect until much later.   

We next investigated if UV-inactivated SSV1(e178::Topo) was capable of 

inducing a similar dormancy-like state as was previously shown for UV-

inactivated SSV9 (Bautista et al., 2015).  UV-inactivated SSV1(e178::Topo) was 

mixed with S441 cells at a MOI of 5, based on the viral titer calculated prior to 

UV-inactivation (Figure 5-6).  The inactivated virus originated from the same 

stock that previously resulted in a severe decrease in growth of S441 (Figure 5-

4).  Challenge of S441 at a much higher inactive virion-to-cell ratio did not result 

in any signs of host growth inhibition relative to the uninfected control.  Our 

results indicate that virions of SSV1(e178::Topo), and SSV1 by extension, do not 

affect cell growth as was observed elsewhere with SSV9 (Bautista et al., 2015).  

This may indicate a fundamental difference between SSV1 and SSV9.  It will be 

interesting to see if UV-inactivated SSV9 is capable of inducing a dormancy-like 

effect in S441.  These experiments will help clarify if the virion-induced stasis 

caused by UV-inactivated SSV9 is observed in a different host (S441), providing 
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further support for Bautista’s hypothesis that cell dormancy is an antiviral defense 

mechanism that is independent of infection.  

Sulfolobicins, a family of antimicrobial peptides found in Sulfolobus, 

provide an alternative explanation for the growth defect observed by Bautista et 

al. (2015) following challenge with UV-inactivated SSV9.  Antimicrobial peptides 

are common in nature, but had not been identified in Sulfolobus until relatively 

recently (Prangishvili et al., 2000; Besse et al., 2015).  Forty-one strains of S. 

islandicus were shown to exhibit antimicrobial activity towards S. solfataricus P1 

and S. shibatae, although none of the S. islandicus strains were inhibited by their 

own sulfolobicins nor by the sulfolobicins of the other producer strains.  One of 

these S. islandicus strains (HEN2/2) was analyzed more closely and a 20-kDa 

peptide was found associated with the cell S-layer and with vesicles released 

from these cells.  S. acidocaldarius was later shown to encode two sulfolobicin 

genes (SulA and SulB), both of which are required for activity of the SulAB 

sulfolobicin.  SulAB was shown to impede the growth of S. islandicus HEN2/2, 

suggesting that the sulfolobicins from these cells are different and hinting that 

their may be a variety of these molecules in nature (Ellen et al., 2011).  Because 

lysis has not been demonstrated following exposure to sulfolobicins, it is 

hypothesized that the mechanism of action works by causing a growth defect, 

similar to what we observe in fusellovirus infections (Ellen et al., 2011).   

It can be argued that the effects observed by Bautista et al. (2015) 

following challenge with UV-inactivated SSV9 could be explained by the action of 



! 196!

sulfolobicins.  Bautista et al. (2015) purified the SSV9 virus used in all of their 

experiments from S. islandicus strain GV.10.6, a different strain from the one in 

which the infections were performed in (S. islandicus RJW002).  Although these 

strains are closely related, it is unknown if this strain would be resistant to any 

sulfolobicins theoretically produced by GV.10.6.  Furthermore, the negative 

control in these experiments consisted of spent S. islandicus RJW002 medium 

(in place of virus) and not spent medium from a virus-free culture of GV.10.6.  

Previous studies have shown that each strain is immune to its own sulfolobicins 

(as would be expected).  Thus the negative control used in Bautista et al. (2015) 

would not reflect the activity of any sulfolobicins present in their SSV9 

preparations, as RJW002 would be immune.  Although the SSV9 preparations 

were concentrated using a 30 kDa spin-column, the sulfolobicin produced by 

strain HEN2/2 elutes with 30-40 kDa proteins via SEC chromatography and 

SulAB produced by S. acidocaldarius has a theoretical molecular weight of 40 

kDa (Prangishvili et al., 2000; Ellen et al., 2011).  The minimum sulfolobicin 

concentration required to elicit a growth defect is unknown as is the effect of a 

viral infection on the production of these compounds.  It is highly unlikely that any 

growth defects we observed in our infections are the result of sulfolobicins as all 

of the virus strains used were isolated from the same host strain (S441). 
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Comparisons to other archaeal viruses 

One-step growth curves have only been performed on two other 

crenarchaeal viruses, both of which are lytic.  Infection of S. islandicus with 

SIRV2 at a MOI of 7 resulted in an almost immediate cessation of host growth 

after which lysis shortly follows (Bize et al., 2009).  A follow-up study (in a 

different host, S. solfataricus P2) showed a burst size of ~30 virions/infected cell 

occurs after a latent period of about 12 hours, the timing of which is similar to our 

results with SSV1 shown here (Okutan et al., 2013).  However, the burst sizes for 

SSV1 cannot be productively compared to SIRV2, as we probably did not 

achieve synchronous infections.  Infection of S. solfataricus with STIV1 at MOIs 

of 1.5 – 2 resulted in a more delayed production of virus relative to SIRV2 and 

SSV1 (~16 - 32 h.i.p.), although this study measured intracellular viral genomes 

rather than infectious virus (Ortmann et al., 2008).  The only one-step growth 

curve reported for a non-lytic archaeal virus was done with the halovirus HHPV-1 

(Roine et al., 2010).  Infection of H. hispanica at an MOI of 15 resulted in a 

maximum HHPV-1 titer (~1011 PFU/mL) at 25 h.p.i. and resulted in a similar 

reduction in host growth (without apparent lysis) observed in infections with other 

crenarchaeal viruses. 

It should be noted that originally infection with SIRV2 and STIV1 resulted 

in only a small minority of infected cells (~10%) while the majority of the 

population appears resistant (Ortmann et al., 2008; Okutan et al., 2013).  

Separate S. solfataricus P2 strains were isolated that are highly susceptible to 
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SIRV2 or STIV1 infection.  The SIRV2-susceptible strain (S. solfataricus 5E6) 

harbors a large deletion in the CRISPR-Cas loci, potentially explaining the loss of 

resistance to SIRV2.  The genetic explanation for resistance to STIV1 is 

unknown.  We observed a similar increase in cell density for high MOI-infected 

cultures at long times with all virus infections (data not shown).  Therefore, it is 

possible that a similar phenomenon may be at work (i.e. some cells in the 

population are resistant).  It would be worthwhile to investigate this phenomenon, 

as isolation of a highly susceptible host could result in improved viral titers and 

could also improve the accuracy of one-step growth curves and the information 

about SSV1 infections that they provide. 

 
Conclusions 

Little is known about the fusellovirus life cycle, let alone the vast majority 

of archaeal viruses.  To this end, we have pursued one-step growth curves with 

SSV1 and SSV1 mutants as these will be essential to better understand this 

unique family of viruses.  The work detailed in this chapter has detailed an 

efficient and reliable protocol for the production of large amounts of infectious 

SSV1 (> 109 PFU/mL) which will be useful for one-step growth curve experiments 

and other applications.  Although this protocol was successfully applied to SSV1 

mutants, it was not applicable to SSV9.  It is unclear if SSV1 is an outlier or if the 

other fuselloviruses will be similarly tractable.   
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High viral titers isolated from low MOI infections were employed to perform 

one-step growth curve experiments at a MOI of 5.  A MOI of 5 is theoretically 

sufficient to achieve a synchronous infection, however, the low burst sizes and 

high baseline titers obtained from our experiments indicate this was not 

achieved.  The reasons for this are unclear but may involve the adsorption rate of 

SSV1.  Clearly more work needs to be done to optimize SSV1 one-step growth 

curves.  Although a true one-step growth curve was not successful, our 

experiments do allow for comparisons to be made between different 

fuselloviruses.  It was shown here that SSV1 and the nearly identical mutant 

SSV1(e178::Topo) produce roughly equal amounts of virus and yield very similar 

growth curves.  Interestingly, the mutant SSV1∆d244(e178::Topo) yielded nearly 

ten-fold lower virus production and resulted an aberrant growth curve compared 

to the other viruses analyzed.  We have isolated a large number of infectious 

SSV1 mutants, the vast number of which do not display an apparent phenotype 

(Chapter 3).  One-step growth experiments similar to those performed here will 

be useful for identifying the effects of these mutations and may also help 

elucidate the functions of mysterious SSV1 ORFs.   

SSV9, as has been detailed elsewhere (Bautista et al., 2015), causes a 

rapid decrease in host growth at low MOI.  This defect is reminiscent of the 

defect caused in high MOI infections with SSV1 but was not observed in low MOI 

SSV1 infections until much later in the experiment.  This suggests that there is a 

fundamental difference between these two viruses that causes the host to react 
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quite differently to an infection.  Although non-infectious SSV9 virions apparently 

elicit a similar growth defect, we did not observe a similar defect using UV-

inactivated SSV1(e178::Topo) virions.  Based on this result, we have proposed 

an alternative explanation for the SSV9 data that involves the antimicrobial 

peptide sulfolobicin.  Clearly more research will be needed to clarify and expand 

upon these interesting results. 
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Chapter 6: Summary and future directions 
 

In the preceding chapters we have presented an extensive analysis of 

SSV1 genetics, biochemistry, and the kinetics of infection.  Using both specific 

and random mutagenesis, we showed that the genome of SSV1 is highly 

malleable and encodes a large proportion of apparently non-essential ORFs, 

including the well conserved minor capsid gene vp3.  A method for the 

purification of recombinant SSV1 structural protein VP2 was presented that 

should be helpful for future research aimed at better characterizing the 

biochemical and structural characteristics of this fusellovirus protein.  Finally, we 

provided a technique for the isolation of large amounts of infectious SSV and 

used this to demonstrate the first known one-step growth curves for a 

fusellovirus.  This work has provided insights into the fusellovirus lifecycle and 

should also spawn a variety of follow-up studies.  A brief summary of our findings 

and ideas for future research are now presented.   

 
The role of VP2 in the Fuselloviridae 

 Many questions about the structure and function of VP2 remain.  The 

observation that the SSV1 genome is positively supercoiled raises questions 

related to how supercoiling arises and if VP2 plays any role in its establishment 

or maintenance (Nadal et al., 1986).  To address this, it would be illuminating to 

investigate the DNA packaged within other fuselloviruses that do not encode a 

VP2 homologue.  It would also be worthwhile to look at the other VP2-encoding 
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fuselloviruses (i.e. SSV6 and ASV1) to investigate if the topology of the 

packaged DNA is correlated with the presence of a VP2 homologue.  We have 

also isolated an infectious mutant of SSV1 lacking the vp2 gene whose packaged 

genome should also be investigated.  A protocol for the isolation of large 

amounts of virus was presented in chapter 5 and could be useful for these 

experiments.     

 It is intriguing that purified SSV1 virions appear to harbor a host DNA 

binding protein (Sso7d) in addition to VP2 (Quemin et al., 2015).  VP2 shares 

many characteristics with the numerous chromatin-associated proteins of 

Sulfolobus suggesting a functional overlap (Zhang et al., 2012).  The 

crenarchaeal virus STIV1 has also been shown to harbor Sso7d, indicating this 

may be a common viral strategy in these environments (Maaty et al., 2006).  It is 

unknown if other fuselloviruses adopt a similar strategy, but it seems likely.  To 

investigate this, the structural proteins from a different fusellovirus isolate should 

be purified and analyzed by mass spectrometry.  Not only will this provide 

information on what DNA binding proteins exist within the other fusellovirus 

capsids, it will also expand our knowledge of fusellovirus structural proteins 

beyond SSV1.  A good candidate would be either of the well characterized 

viruses SSV2 or SSV9, neither of which encodes a VP2 homolog or the VP2 

deletion mutant. 

The protocol presented in chapter 2 for the purification of 6-His VP2 

should aid future research aimed at characterizing the biochemical and structural 
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properties of VP2.  We have shown that 6-His VP2 can be purified under 

denaturing conditions to yield apparently native protein capable of binding non-

specifically to dsDNA.  Although VP2 is known to co-purify with the capsid 

proteins VP1 and VP3, direct interactions between these proteins and VP2 have 

never been demonstrated experimentally (Reiter et al., 1987a).  Experiments 

using the yeast-2-hybrid system are feasible and could elucidate any 

interactions.  We have also isolated mutants harboring mutations in the vp1 and 

vp3 structural genes.  It would be interesting to see if VP2 is still present in the 

capsids of these mutants.   

One of the major motivations for purifying recombinant VP2 is to obtain a 

three-dimensional structure.  The structure of VP2 will be vital to better 

understand the mode of DNA binding and determine any structural relationships 

with other known DNA binding proteins.  Because VP2 shares many physical 

properties with other Sulfolobus NAPs, it will be interesting to see if any structural 

similarities are likewise shared.  Although initial crystallography screens have 

proven unsuccessful, preliminary NMR data suggests that this is a viable 

alternative should crystallography be unsuccessful.   

 
The genetic characterization of SSV1 

We have presented in chapter 3 a comprehensive genetic analysis of the 

fusellovirus SSV1 which has greatly expanded our knowledge of the genetic 

requirements of this unique archaeal virus.  The utility of LIPCR in the 
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construction and complementation of fusellovirus mutants was further 

demonstrated and we also show that transposon mutagenesis is an effective and 

efficient method to isolate SSV1 mutants.  The two methods yield highly similar 

results with a few exceptions that are probably explained by polar effects caused 

by transposon insertion.  Deletion mutants in these ORFs could be constructed, 

although this is probably not crucial at this time.  Alternatively, and perhaps more 

realistically, is these mutants could be complemented in trans to restore 

infectivity.  We have shown that complementation in cis of SSV1 mutants can be 

performed, something that has not been done for any crenarchaeal virus to our 

knowledge.  Due to a lack of selectable markers, complementation in trans has 

been challenging in Sulfolobus although progress has been made (Zhang et al., 

2013). 

Interestingly, infectious virus harboring various mutations within the vp1 

and vp3 structural genes were able to be isolated.  The finding that SSV1 

remains infectious despite the loss of the minor capsid gene vp3 was quite 

unexpected.  We hypothesize that the homology that exists between VP1 and 

VP3 enables the VP1 protein to rescue this mutant via complementation.  

However, the loss of VP3 does correlate with the appearance of elongated 

particles suggesting complementation is either not completely effective or simply 

does not occur.  Higher resolution images of these particles will be required to 

better understand the effect of this mutation. 
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The major capsid protein VP1, while not completely dispensable, does 

tolerate mutations to the universally conserved glutamate believed to be crucial 

for proteolytic cleavage during the maturation of VP1 (Reiter et al., 1987a; 

Quemin et al., 2015).  Despite its absence in the mature VP1 protein, the VP1 N-

terminus could not be deleted without eliminating virus infectivity.  This suggests 

an essential role for the VP1 N-terminus and parallels what has been observed 

for the MCP of bacteriophage HK97.  An attractive hypothesis is that the N-

terminus of VP1 may act as a scaffold (or may interact with a different scaffolding 

protein, e.g. A291, see below) during assembly of VP1, a role which has not 

been assigned to any SSV1 protein.  The N-terminus of VP1 may also be 

important for recruitment of the viral protease, which has not been identified.  The 

recent observation that the product of ORF b251 is homologous to lon proteases 

is intriguing and presents a good candidate for future studies (Happonen et al., 

2014).  Our mutagenesis data indicate this gene is essential for SSV1 infectivity, 

lending support to this hypothesis.   

The abundance of T3 and Tx transcripts (encoding ORFs a291 and c124, 

respectively) in stably infected cells, along with expression of structural genes 

suggests a potential structural role for SSV1-A291 and/or SSV1-C124 (Fusco et 

al., 2015c).  SSV1-A291, and to a lesser extent SSV1-C124, are conserved in 

the Fuselloviridae supporting this conclusion.  The well conserved N-terminus of 

SSV1-A291 could potentially interact with other structural proteins during 

assembly in scaffolding role.  Yeast-two-hybrid screens to detect interactions 
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between A291 and the other SSV1 capsid proteins (vp1, vp2, vp3, and vp4) 

should be fairly straightforward. 

The effect of mutations to the conserved glutamate on VP1 maturation are 

unknown.  It is possible that cleavage occurs at an alternate residue or that 

cleavage does not occur and is not essential for infectivity.  It would be very 

worthwhile to analyze these mutants, along with �vp3 virus, via mass 

spectrometry.  Furthermore, the effect of these structural mutations on the 

thermal stability of the SSV1 capsid should be investigated in addition to one-

step growth curves.   

Recently it has been shown that the structural proteins VP1, VP3 and VP4 

are glycosylated in the SSV1 virion (Quemin et al., 2015).  Glycosylation may be 

critical for virion stability and/or for interactions with the host cell during 

adsorption.  The putative sites of glycosylation have been identified, with VP1 

and VP3 each containing two sites and VP4 containing a total of 20 sites.  The 

physiological relevance of this glycosylation remains to be investigated.  We 

have shown here that LIPCR can be employed to generate single base pair 

changes in the SSV1 genome.  It is would be worthwhile to construct mutants 

with defects in these putative glycosylation sites to help comprehend their 

importance in the Fuselloviridae.   

Although a significant amount of work has been done with SSV1 genetics, 

the other fuselloviruses have been almost completely neglected.  We have 

shown that transposon mutagenesis can be easily applied to fuselloviruses other 
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than SSV1 (appendix A).  Although SSV9 seems to be fairly intolerant of 

transposon mutagenesis, our lab has begun work with a fusellovirus isolated 

from Lassen National Volcanic Park (SSVL) and preliminary results indicate this 

virus may be similar to SSV1 in regards to its ability to tolerate insertions.  Shuttle 

vectors based on the other fuselloviruses will open the door for construction of 

deletion mutants, further expanding our knowledge of fusellovirus genetics.  One 

of the major surprises from this work was the finding that the vp3 gene was not 

essential for infectivity.  It will be interesting to see if the vp3 gene in other 

fuselloviruses can also be removed without a loss of infectivity or if this is an 

SSV1-specific phenomenon. LIPCR can be performed with relative ease so 

these mutants should be fairly straightforward to construct. 

A large number of the mutants examined in this work yielded non-

infectious phenotypes.  Experiments were repeated numerous times (n � 5) using 

rigorous controls to ensure that transformations were successful and viral DNA 

was transported into the cell.  Restriction endonuclease digestion and 

sequencing of the mutated region also helped to ensure viral genomes were full 

length and intact.  However, small deletions may have escaped our notice and 

could contribute to the non-infectious phenotypes observed.  To address this, we 

plan to sequence the complete genomes of our non-infectious mutants to probe 

for any secondary mutations. 
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The kinetics of a fusellovirus infection 

The first insights into the kinetics of a fusellovirus infection were presented 

in chapter 5.  One-step growth curve experiments are useful to determine key 

attributes of a viral life cycle (Ellis and Delbruck 1939).  Although SSV1 has been 

well studied, no such experiments have been performed.  This is likely due to the 

difficulties associated with isolating enough infectious virus to perform the 

synchronous infection required in a one-step growth curve.  We found that 

infection of S. solfataricus strain S441 at a low MOI results in the production of 

high titers that can then be used for high MOI infections.  This protocol was 

successfully applied to wild type SSV1 and two SSV1 mutants, indicating it is 

reliable and repeatable.  However, high titers of the virus SSV9 were not able to 

be obtained indicating this protocol may not be suited for all fuselloviruses.   

One-step growth curves indicate that SSV1 (and SSV1 mutants) has a 

latent period of ~8.5 – 12 hr, which correlates well with previous data on the 

timing of the SSV1 transcription cycle in infected cells (Fröls et al., 2008).  To 

more accurately determine the latent period, more measurements need to be 

taken within the first 12 hours of infection.  One-step growth curves also allowed 

for a rough estimation of SSV1 burst size.  An apparent burst size of ~3 virions 

per infected cell was measured, although this may be an underestimate as we 

are unsure if a synchronous infection was achieved.  To address this, 

experiments measuring the SSV1 adsorption rate to Sulfolobus strain S441 need 
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to be performed which will allow a more for a more accurate viral adsorption 

period during one-step growth curve experiments. 

Although a synchronous infection may not have been achieved, our 

experiments do allow for comparisons to be made between SSV1, SSV1 

mutants, and other fuselloviruses.  We have isolated a number of infectious 

SSV1 mutants, almost all of which do not have obvious phenotypes.  One-step 

growth curves will be useful for teasing out any differences that may exist due to 

these mutations.  We found that SSV1 harboring a deletion of the d244 ORF 

exhibits a dramatically different growth curve relative to wild type SSV1.  

Furthermore, infection with ∆d244 results in a 10-fold lower burst size than wild-

type virus and apparently results in an acceleration of host cell growth shortly 

following infection.  It will be interesting to see how the growth curves of other 

SSV1 mutants compare.   

Low MOI infections with SSV9 resulted in a significant growth defect from 

which the cells do not appear to recover.  This is very similar to the effect caused 

by high MOI infections with SSV1 but differs from low MOI SSV1 infections.  We 

also show that unlike UV-inactivated SSV9, UV-inactivated SSV1 has no effect 

on host growth.  We postulated an alternate explanation for what has been 

observed by others in SSV9 based on the family of antimicrobial peptides known 

as Sulfolobicins that are common in Sulfolobus.  It is unclear why SSV9 elicits a 

more dramatic cellular response at lower MOIs than SSV1.  Very little work has 

been done on the other fuselloviruses, so it will be interesting to see if this is 
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unique to SSV9 or if this is a common phenomenon in the Fuselloviridae and 

SSV1 is the exception.  Preliminary work on SSV3 and SSVL have indicated 

similar phenotypes to SSV9, but this work is very much in its infancy.   

The protocol presented here for the isolation of high SSV1 titers has a few 

other applications.  As detailed elsewhere in this dissertation, we have isolated a 

number of infectious SSV1 structural mutants and the effects of these mutations 

on the SSV1 virion are poorly understood (Chapter 3).  Techniques to investigate 

the structure and composition of SSV1 virions exist (cryo-EM reconstructions, 

mass spectrometry) but require significant amounts of virus.  The protocol 

presented here should be useful in these pursuits.  Furthermore, the SSV1 

transcription cycle has been well characterized but only following UV induction 

and there is evidence that the transcription cycle differs following a “natural” 

infection.  This technique also requires a significant amount of virus that can be 

achieved by applying the results of the work presented herein. 

 
Conclusion 

 Although a significant amount of research has been devoted to the 

Fuselloviridae, there is still much we do not know.  The research presented in 

this dissertation has provided some significant insights into the life-cycle and 

genetic requirements of SSV1, helping to further characterize this unique family 

of archaeal viruses while at the same time opening new avenues of research.  

We have further honed the genetic techniques available for fuselloviruses and 
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provided some intriguing targets for future studies.  The identification of a number 

of infectious structural mutants should provide valuable insight into the assembly 

and thermal stability of spindle-shaped capsids.  A putative scaffolding role for 

the seemingly unimportant VP1 N-terminus has been suggested and should be 

investigated.  The elongated virus particles produced by vp1 and vp3 structural 

mutants are intriguing and await higher-resolution imaging and proteomics to 

better explain these results.  We have isolated a number of infectious mutants 

with defects in a variety of genes, the vast majority of which display no apparent 

phenotype.  Analysis of these mutants by one-step growth curves should be 

straightforward and, as we have seen with one mutant already, has the potential 

to reveal abnormalities in the SSV infection cycle and help elucidate the function 

of mysterious SSV1 proteins.   
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Appendix A: Transposon mutagenesis of Sulfolobus spindle-shaped    
virus 9 (SSV9) 
 

Abstract 

The vast majority of fusellovirus research has focused on Sulfolobus 

spindle-shaped virus 1 (SSV1) and has largely neglected the other viruses in this 

family.  To expand the knowledge of the genetics from other viruses within the 

Fuselloviridae, we have initiated transposon mutagenesis studies on Sulfolobus 

spindle-shaped virus 9 (SSV9) in parallel with our work on SSV1.  We show here 

that although SSV9 does tolerate insertion of the EZTn5 transposon (Epicentre), 

only one infectious insertion mutant could be obtained.  For unknown reasons, 

less than 50% of transfections with this mutant resulted in productive infections. 

 

Materials and Methods 

Purification of SSV9 DNA from Sulfolobus 

Cultures of Sulfolobus solfataricus strain S171 (original SSV9 host, a.k.a. 

G.V. #6; Wiedenheft et al., 2004) could not be reliably grown from frozen stock 

as could be done for SSV1 infected cells, so an alternative protocol was 

implemented.  SSV9 DNA purified from the original SSV9 host (S171) was 

transformed into S. solfataricus S441 cells as done previously (see Chapter 3).  

Supernatant from this infected culture was added to approximately 50 mL of 

S441 cells an OD600nm ~0.40-0.50 and was grown for 72 hours at 70º C with 

shaking.  Final OD600nm readings were typically ~0.7-1.0 after a 72-hour 
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incubation.  20 mL of this culture was spun at 3,000 x g for 10 min and the pellet 

was resuspended in 400 µL of resuspension buffer.  SSV9 DNA was then 

purified following the same protocol used for SSV1 (see Chapter 3).  Purified 

SSV9 DNA was analyzed by UV spectroscopy and EcoRI endonuclease 

digestion according to manufacturer’s protocol (Thermo-Fisher).  The remaining 

SSV9-infected S441 cells were spun down, resuspended in 15% glycerol and 

stored at -80ºC.  Subsequent SSV9 DNA preps were performed in a similar 

fashion, however a small ice chip (ca. 50 µL) of SSV9-infected cells was added 

to uninfected culture instead of SSV9 supernatant. 

 
SSV9 transposon mutagenesis reaction 

The EZ-Tn5TM <R6Kγori/KAN-2> Insertion Kit (Epicentre) was used to 

perform transposon mutagenesis on purified SSV9 DNA following the same 

protocol used for SSV1 DNA (See Chapter 3).  An identical 30:1 ratio of SSV9 

DNA to EZTn5 transposon DNA was used, as previously.  The SSV9::EZTn5 

reaction was transformed into pir+ electrocompetent E. coli (Epicentre) as done 

previously (See Chapter 3).   

 
Transformation of Sulfolobus and screening for virus production 

 Sulfolobus strain S441 was transformed with purified EAI377 DNA as 

detailed elsewhere (See chapter 3).  Transformed cultures were assayed for the 

production of infectious virus via halo assay (See Chapter 3).  Viral DNA was 

purified from cultures that resulted in the production of a halo when spotted on 
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lawns of uninfected S441 using the GeneJet Plasmid Purification Kit (Thermo-

Fisher).  This DNA was screened for EZTn5 DNA by PCR using primers that 

flanked the insertion site in the SSV9 genome. 

 

Results 

Transposon mutagenesis of SSV9 

Transposon mutagenesis of SSV9 was performed analogously to SSV1.  

The efficiency of the transposon insertion reaction was extremely high, with 

approximately 80% of E. coli transformants harboring full length SSV9::Tn5 

constructs.  A number of SSV9::EZTn5 mutants with insertions dispersed 

throughout the SSV9 genome were screened for infectivity in Sulfolobus S441, a 

strain known to be susceptible to SSV9 infection (Figure A-1 and Table A-1).   

Surprisingly EAI377 with an insertion in ORF e71, was the only mutant 

found to be infectious, while all other mutants were apparently not infectious after 

three independent transformations.  The C-terminus of ORF e81 (EAI377) is 

disrupted by insertion of the transposon.  Oddly, EAI377 does not reliably 

produce infectious virus upon transformation as indicated by the halo assay.  

This was true even when using the same DNA preparation that was successful in 

previous experiments (i.e. EAI377 DNA that had previously resulted in an 

infection).  Furthermore, halos produced by EAI377 following transformation were 

much smaller than halos produced by wild type SSV9 and SSV1 (Figure A-2A).  



! 241!

EAI377 virions display elongated virions that are characteristic of SSV9, but not 

SSV1 (Figure A-2B). 

Table A-1: List of SSV9 shuttle vectors in this work 
Vector Description Reference 

SSV9 Wild type SSV9, aka SSVK1 Wiedenheft et 
al., 2004 

EAI338 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 16,924 (vp1) This Work 
EAI339 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 4,206 (c158) This Work 
EAI341 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 2,950 (integrase) This Work 
EAI343 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 5,647 (b494) This Work 
EAI348 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 5,411 (b494) This Work 
EAI349 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 7,774 This Work 
EAI351 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 6,530 (a460) This Work 
EAI357 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 3,073 (integrase) This Work 
EAI359 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 4,979 (b494) This Work 
EAI368 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 4,475 (c158) This Work 
EAI372 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 11,955 This Work 
EAI377 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 9,064 (e81) This Work 
EAI382 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 2,856 (integrase) This Work 
EAI385 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 8,644 This Work 
EAI386 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 17,302 (vp3) This Work 
EAI389 SSV9::Tn5 mutant, EZ-Tn5 inserted at bp 10,982 (a204) This Work 

 

Transformations using similar amounts of wild type SSV9 DNA as a 

control consistently yielded infectious virus, indicating that the electroporation 

conditions are suitable and SSV9 DNA is capable of resulting in production of 

infectious virus.  Wild type SSV9 DNA was purified from Sulfolobus prior to 

transformation, but SSV9::Tn5 DNA was purified from E. coli.  Thus one 

explanation for the higher transformation is that SSV9 DNA may be modified by 

Sulfolobus and this modification results in improved transformation.  To test this, 

EAI377 was purified from infected Sulfolobus cells and used to re-transform an 
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uninfected culture.  Four independent transformations were performed and each 

resulted in the production of infectious virus. 

                
Figure A-1: Results of SSV9 mutagenesis 
Map of the SSV9 genome is shown with ORFs denoted as block arrows and labeled as in 
Wiedenheft et al., 2004.  Small arrows on the outside of the map indicate the location of EZTn5 
transposon insertions in individual mutants.  The color of the arrow denotes if the mutant is 
infectious (green) or non-infectious (red). 
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Figure A-2: Comparisons of halos produced by EAI377 and EAI377 virions 
(A) Halos produced by EAI377, EAI262 (SSV1 with insertion in ORF e96) and SSV9 (labeled 
GV6 on lower plate).  5 µL of a transfected culture was spotted on a lawn of uninfected S. 
solfataricus S441 and incubated for 3 days at 75º C.  An uninfected culture (-) was also spotted 
as a negative control.   
(B) Comparison of EAI377, SSV9, and SSV1 virions.  Virions were isolated from transfected 
cultures of S. solfataricus and prepared for TEM as detailed elsewhere (see Chapter 3). SSV9 
image is from Wiedenheft et al., 2004. 
 
 
Discussion 
 

While SSV1 appears to be very amenable to insertional mutagenesis 

(Chapter 3), SSV9 appears to be almost completely intolerant.  A number of 

mutants were isolated with insertions in a variety of ORFs ranging from 

universally conserved to non-conserved, however, only a single infectious mutant 

was able to be isolated (See Appendix B).  This mutant, EAI377, has the 

transposon inserted at the C-terminus of ORF e81.  E81 is poorly conserved 

within the Fuselloviridae but has a homolog in SSV1 (ORF f93) that has been 

structurally characterized and was also found to be non-essential (Kraft et al., 

A B
EAI377

EAI377 SSV1

virus was isolated from a solfataric hot spring in Reykjanes,
Iceland, and has been shown to infect S. solfataricus (3). The
SSV2 virus is morphologically indistinguishable from SSV1,
and the two viral genomes are similarly arranged. Overall, the
SSV2 and SSV1 genomes share 26 ORFs, while 9 ORFs are
unique to SSV2 and 8 are unique to SSV1. SSV2, unlike SSV1,
does not encode a VP2 structural protein. The genomic com-
parison of SSV2 with SSV1 indicates that these are two distinct
Fuselloviridae viruses (35). The original culture containing
SSV2 also produced a subset of smaller satellite particles (60
by 40 nm) termed pSSVx (accession number AJ243537). The
genetic material packaged by the satellite particle is a hybrid of
pRN family plasmids and two ORFs that share sequence sim-
ilarity to ORFs in SSV1 and SSV2 (3, 15, 16).

Full-length copies of both SSV1 and SSV2 genomes are
found integrated into tRNA genes of their host (27, 41). The
virally encoded integrase identified in the SSV1 (ORF D335)
genome has been shown to function as a site-specific endonu-
clease and ligase (18, 19, 32). The SSV1 integrase is also
capable of excisive recombination in vitro, but the mechanism
of excision in vivo is not presently understood (18, 22). The

viral integrase, like all 130 members of the tyrosine recombi-
nase family, contains the conserved RHRY tetrad (2, 21). The
SSV1 genome is found integrated into an arginine tRNA gene
(27), while SSV2 is thought to integrate into a glycyl tRNA
gene (35). The process of viral integration is modeled to in-
volve base pairing of the attA sequence found within the target
tRNA gene with the attP site found within the viral integrase
gene. In the case of SSV1, the attA site is a 44-bp region that
is centered around the anticodon loop of an arginyl tRNA gene
(27). The attP site is an identical sequence located within the 5!
half of the viral integrase gene. The SSV1 viral genome inte-
grates in a way that complements the tRNA gene and is pre-
sumed to maintain tRNA function (27). The recently described
SSV2 genome also contains a tyrosine recombinase-like inte-
grase gene (ORF F328) (35). Forty-nine nucleotides in this
gene are identical to sequences found in a glycyl tRNA gene in
the S. solfataricus P2 genome (33). These regions likely repre-
sent the attA and attP sites for SSV2. Currently, fuselloviruses
offer the only viral model for examining site-specific recombi-
nation in archaea. The biological role of SSV integration and
the in vivo mechanisms for SSV excision remain unclear.

FIG. 1. Genome maps of the four isolates. Conserved ORFs shared by all genomes are shown as red arrows. ORFs shared between two or three
of the SSV genomes are shown as solid black arrows, and ORFs unique to each isolate are shown as open arrows. TEM images of each virus are
positioned next to maps of their respective genome (bars, 100 nm) (3, 34). The alternative initiation codons (asterisks) are indicated directly
following the name of each ORF in which they were identified.

VOL. 78, 2004 GENOMES OF HYPERTHERMOPHILIC ARCHAEAL FUSELLOVIRIDAE 1955

SSV9
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2004a; Stedman et al., 1999; Figure 2).  SSV1-F93 contains a wHTH motif, 

suggesting a role as a transcription factor in the viral life-cycle (Kraft et al., 

2004a).  The insertion in EAI377 is very close to the insertion of pBluescript in 

shuttle vector pKMSM91 that was previously shown to yield functional virus 

(Stedman, unpublished; Figure A-1).  Apparently this region is somewhat tolerant 

of insertions.  One of our collaborators has reported isolating an SSV9 mutant 

with a massive ~6 kb deletion spanning ORFs f340 (integrase) to c96, indicating 

that none of these ORFs is essential for SSV9 infectivity (Whitaker, personal 

communication).  Numerous mutants with insertions in this region were isolated 

yet only one of them (EAI377) was infectious.  It should be noted that the host 

strain used by our collaborators is different and may explain these results. 

It is unclear why SSV9 is so intolerant of insertional mutagenesis.  

Although transfection with EAI377 DNA does result in a productive infection, it 

was only able to do so in ~50% of transformations.  Wild-type SSV9 DNA was 

used as a control and resulted in infection in all experiments.  Furthermore, halos 

produced by EAI377 transformed cells were typically very small and difficult to 

observe (Figure A-2A).  This is in stark contrast to halos produced by wild-type 

SSV9 which result large clearings almost entirely devoid of cells (Figure A-2A).  

One explanation for the reduced transformation efficiency of EAI377 compared to 

wild-type SSV9 could be due to packaging complications arising from the 

presence of an extra 2 kb of DNA.  SSV9, at 17.4 kb, is already one of the largest 

fusellovirus genomes and may not cope well with the increased genome size 
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caused by insertion of the ~2 kb EZTn5.  However, it is hard to imagine why this 

is only an issue during some transformations and not others.  Another 

explanation is that because SSV9 DNA is purified from Sulfolobus prior to 

electroporation (whereas EAI377 DNA is purified from E. coli), perhaps there is a 

modification to the viral DNA that occurs within Sulfolobus that improves the 

efficiency of transformation.  To address this, we isolated EAI377 DNA from 

infected Sulfolobus S441 cells and tested the transformation efficiency.  Four 

independent transformations were done and each one resulted in an infection, 

while EAI377 purified from E. coli failed to produce an infection in the same 

experiments.  EcoRI restriction endonuclease digestion of EAI377 DNA from 

Sulfolobus compared to EAI377 from E. coli yielded identical banding, suggesting 

there were not any obvious deletions or rearrangements that may have 

influenced the results (data not shown).  Therefore, these data certainly suggest 

that SSV9 DNA purified from Sulfolobus exhibit higher transformation efficiency 

and this may be due to an unknown modification.  Because EAI377 DNA purified 

from E. coli can successfully result in an infection, albeit at a reduced rate, it 

seems that this putative modification is not essential.  Genome modification is not 

an uncommon strategy among viruses to avoid host defense systems and has 

been observed in the spindle-shaped virus STSV1 (Xiang et al., 2005).    

Due to inconsistencies with transformation, further experimentation with 

SSV9 insertional mutants was postponed indefinitely.  
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Appendix B: Genome conservation in the Fuselloviridae 

 

Introduction 

Since the discovery of SSV1 in 1982 (Yeats et al., 1982), a total of 11 

fuselloviruses have been isolated (see Table 1-1).  A twelfth fusellovirus from a 

Mexican hot spring metagenome has been reported, however, a viral particle 

was not identified (Servin-Garcidueñas et al., 2013).  All known fuselloviruses 

harbor genomes of similar size (14 – 17 kb) and replicate in Sulfolobus with the 

exception of Acidianus spindle-shaped virus 1 (ASV1) which infects Acidianus 

and has a significantly larger genome (~24 kb) (Redder et al., 2009).   

Comparative genomics-based approaches have been useful for identifying 

the fusellovirus ORFs that are critical for infectivity, helping direct mutagenesis 

studies (Stedman et al., 2003; Wiedenheft et al., 2004; Redder et al., 2009; Held 

and Whitaker 2009; Chapters 2 and 3).  These ORFs have been referred to as 

the fusellovirus core (Redder et al., 2009; Table 1-2).  As more fusellovirus 

genomes are reported, the number of ORFs comprising the fusellovirus core 

shrinks.  The most recent analysis using 9 fusellovirus genomes (SSV1, SSV2, 

SSV4-9, and ASV1) identified 13 ORFs belonging to the fusellovirus core 

(Redder et al., 2009).  Since this publication, Stedman and colleagues have 

isolated two additional fuselloviruses (SSV3 and SSVL1), in addition to the 

previously mentioned SMF1 (Stedman et al., 2006; Servin-Garcidueñas et al., 



! 247!

2013).  The purpose of this appendix is to perform an updated comparative 

genomics analysis of the full complement of fusellovirus genomes. 

 

Methods 

The degree of conservation for fusellovirus ORFs was determined by 

comparing the product of each ORF to the non-redundant database in Genbank 

(NCBI) using pBLAST.  Homologous ORFs were identified using an arbitrary e-

value cutoff of 0.01 although the vast majority of homologues had e-values which 

were much lower.  All BLAST searches were done using default parameters.  

Homologous ORFs shared between SSVL and SSV3, which are not deposited in 

Genbank, were determined with pBLAST using the option to align two or more 

sequences.  The recently reported SMF1 genome was analyzed but was omitted 

from determination of the fusellovirus core as discussed below. 

 

Results and discussion 

As more fusellovirus genomes are discovered, the complement of ORFs 

comprising the fusellovirus core has gradually decreased.  The fusellovirus core 

initially consisted of 21 ORFs following the identification of SSV2 (Stedman et al., 

2003) but was recently reduced to only 13 following the identification of the ninth 

fusellovirus genome (Wiedenheft et al., 2004; Redder et al., 2009).  We have 

included two additional fusellovirus genomes (SSV3 and SSVL1) in our analysis 

which further reduces the fusellovirus core to 12 ORFs (Table 1-1).  Similar to 
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previous results, almost all of the fusellovirus core ORFs appear clustered on 

one half of the genome, the only exception being homologues to SSV1 ORF 

b129 (Figure B-1).  This new analysis has eliminated SSV1 ORF a79 from the 

core, as neither of SSV3 and SSVL1 were found to encode a homolog.  As in 

Redder et al., (2009) ORFs homologous to the putative tail fiber gene vp4 were 

not judged to be part of the fusellovirus core as SSV6 and ASV1 appear to 

encode an alternate tail fiber module.  Homologues of SSV1 ORF c102b are 

found in all but SSV6 (Figure B-1).  Interestingly, 8 of the 11 fuselloviruses 

encode a Cas4 homolog (Figure B-1).  Cas4 contains a RecB-like nuclease 

domain and is believed to be involved in the acquisition phase of the CRISPR-

Cas pathway (Zhang et al., 2012).  It is unclear why a virus would encode such a 

gene, but it is possible that it plays a role in DNA repair or genome replication or 

escape from CRISPR-Cas-mediated immunity. 

SMF1 was omitted from our analysis of the fusellovirus core for several 

reasons.  Although the genome encodes several fusellovirus homologues, the 

genome is missing two core ORFs (SSV1-C84 and SSV1-B129).  SMF1 also, 

rather peculiarly, does not encode a tail fiber module of the SSV1- or SSV6-type 

(Redder et al., 2009).  Furthermore, other than the remaining core ORFs, SMF1 

does not harbor homologs to any other fusellovirus ORF.  Perhaps most 

crucially, a virion has not been isolated for SMF1.  It is entirely possible that 

SMF1 is a bonafide fusellovirus but the lack of an identified virion along with 

several genomic abnormalities suggest otherwise.   
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Figure B-1: Fusellovirus genome conservation 
Twelve fusellovirus genomes are displayed (See Table 1-1 for references).  Block arrows denote 
fusellovirus ORFs, colored based on the degree of conservation in the Fuselloviridae (see color 
code in figure).  SSV1 transcripts are indicated and labeled (Reiter et al., 1987b; Fröls et al., 
2006; Fusco et al., 2013).  The genome of SMF1 is displayed but was not used in the ORF 
comparison. 
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Table B-1: SSV1 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV1 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 
 

SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV7 SSV8 SSV9 SSVL ASV1 Cons
VP2 VP2 VP2 3
A82 83 83 82 82 83 82 A83 B83 82 83 11
C84 88c 89 81 81 81 83 C78 A82 83 97 11
A92 90 90 89 89 90 90 A83 B90 94 94 11
B277 277 179 280 276 269 281 C277 C279 279 263 11
C102a 1
A154 153 157 152 156 149 150 C154 C157 153 155 11
B251 233 250 233 233 234 255 A247 A231 250 232 11
INT INT INT INT INT INT INT INT INT INT INT 11
E54 1
F92 1
D244 211 208 209 214 215 D212 7
E178 1
F93 E81 95 3
E51 1
E96 1
D63 57 61 62 60 60 F617 64b 7
F112 1
B49 1
F55 1
A100 96 96 96 96 93 106 C96 96 9
A132 1
C80 82a 84 79 79 78 80 B64 C81 9
A79 82b 80 80 82 82 B79 A80 91 9
A45 48 77 45 45 54 C43 7
C102b 100 101 100 100 100 A102b B98 102 101 10
B129 155 138 124 124 123 128 150 B158 185 137 11
A291 1
C124 1
C792 809 809 808 809 811 B812 B793 813 9
B78 79b 80 80a 80 79 A79 A79 81 9
C166 176 170 167 167 134 170 B170 B169 155 130 11
B115 112 120 107 108 88 112 A113 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-2: SSV2 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV2 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 

SSV2 SSV1 SSV3 SSV4 SSV5 SSV6 SSV7 SSV8 SSV9 SSVL ASV1 Cons
83 A82 83 82 82 83 82 A83 B83 82 83 11
88c C84 89 81 81 81 83 C78 A82 83 97 11
90 A92 90 89 89 90 90 A83 B90 94 94 11
277 B277 179 280 276 269 281 C277 C279 279 263 11
153 A154 157 152 156 149 150 C154 C157 153 155 11
233 B251 250 233 233 234 255 A247 A231 250 232 11
Int INT INT INT INT INT INT INT INT INT INT 11
68 1
55a 1
55b 1
70 1
211 D244 208 209 214 215 D212 7
310 1
106 143 143 143 E1507 5
57 D63 61 62 60 60 F61 64b 8
61 61 61 61 61 F62 61 7
72 74 71 3
79a 77 73 73 77 E73 73 7
96 A100 96 96 96 93 106 C96 96 9
88a 89 87 3
82a C80 84 79 79 78 80 B64 C81 9
82b A79 80 80 82 82 B79 A80 91 9
48 A45 77 45 45 54 C43 7
100 C102b 101 100 100 100 A102b B98 102 101 10
205 199 206 206 206 C287 A204 205 8
155 B129 138 124 124 123 128 150 B158 185 137 11
305 298 C2477 287 4
126 1
809 C792 809 808 809 811 B812 B793 813 9
79b B78 80 80a 80 79 A79 A79 81 9
176 C166 170 167 167 134 170 B170 B169 155 130 11
112 B115 120 107 108 88 112 A113 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-3: SSV3 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV3 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 

SSV3 SSV1 SSV2 SSV4 SSV5 SSV6 SSV7 SSV8 SSV9 SSVL ASV1 Cons
83 A82 83 82 82 83 82 A83 B83 82 83 11
89 C84 88 81 81 81 83 C78 A82 83 97 11
90 A92 90 89 89 90 90 A83 B90 94 94 11
179 B277 277 280 276 269 281 C277 C279 279 263 11
157 A154 153 152 156 149 150 C154 C157 153 155 11
250 B251 233 233 233 234 255 A247 A231 250 232 11
INT INT INT INT INT INT INT INT INT INT INT 11
84a 71 76 3
208 D244 211 209 214 215 D212 159 8
61a D63 57 62 60 60 F61 64b 8
159 159a 159a 3
163 159b 159b 185 E152 151 6
143 106 143 143 E150 154 6
61b 61 61 61 61 F62 61a 7
74 72 71 3
77 79 73 73 77 E73 73 7
96 A100 96 96 96 93 106 C96 96 9
89 88a 87 3
84b C80 82 79 79 78 80 B64 C81 9
77 A45 48 45 45 54 C43 7
101 102b 100 100 100 100 A102b B98 102 101 10
199 205 206 206 206 C287 A204 205 8
138 B129 155 124 124 123 128 150 B158 185 137 11
110a 113 C113 B111 125 5
311 311 311 B252 4
111 C1247 111 111 C108 5
809 C792 809 808 809 811 B812 B793 813 9
80 B78 79 80a 80 79 A79 A79 81 9
170 C166 176 167 167 134 170 B170 B169 155 130 11
120 B115 112 107 108 88 112 A113 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-4: SSV4 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV4 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 

SSV4 SSV1 SSV2 SSV3 SSV5 SSV6 SSV7 SSV8 SSV9 SSVL ASV1 Cons
82 A82 83 83 82 83 82 A83 B83 82 83 11
81 C84 88 89 81 81 83 C78 A82 83 97 11
89 A92 90 90 89 90 90 A93 B90 94 94 11
280 B277 277 179 276 269 281 C277 C279 279 263 11
152 A154 153 157 156 149 150 C154 C157 153 155 11
233 B251 233 250 233 234 255 A247 A231 250 232 11
INT Int Int Int Int Int Int Int Int Int Int 11
71 84a 76 3
209 D244 211 208 214 215 D212 7
62 D63 57 61a 60 60 F61 64b 8

159a 159 159a 3
159b 163 159b 185 E152 151 6
64 64 2
143 106 143 143 E150 154 6
61 61 61b 61 61 F62 61a 7
59 59 2
73 79a 77 73 77 E73 73 7
96 A100 96 96 96 93 106 C96 96 9
49 49 48 49 4
79 C80 82 84b 79 78 80 B64 C81 9
80b A79 82 80 82 82 B79 A80 91/109 9
45 A45 48 77 45 54 C43 7
100 C102b 100 101 100 100 A102b B98 102 101 10
206 205 199 206 206 C287 A204 205 8
124 B129 155 124 124 123 128 C150 B158 185 137/125 11
107b 107 110/113 C113 B111 125 6
311 311 311 B252 4
111 111 111 C108 4
808 C792 809 808 809 811 B812 B793 813 9
80a B78 79 80a 80 79 A79 A79 81 9
167 C166 176 170 167 134 170 B170 B169 155 130 11
107a B115 112 120 108 88 112 A113 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-5: SSV5 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV5 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 

SSV5 SSV1 SSV2 SSV3 SSV4 SSV6 SSV7 SSV8 SSV9 SSVL ASV1 Cons
82 A82 83 83 82 83 82 A83 B83 82 83 11
81 C84 88 89 81 81 83 C78 A82 83 97 11
89 A92 90 90 89 90 90 A93 B90 94 94 11
276 B277 277 179 280 269 281 C277 C279 279 263 11
156 A154 153 157 152 149 150 C154 C157 153 155 11
233 B251 233 250 233 234 255 A247 A231 250 232 11
INT INT INT INT INT INT INT INT INT INT INT 11
99 1
214 D244 211 208 209 215 D212 7
60 D63 57 61a 62 60 F61 64b 8

159a 159 159a 3
159b 163 159b 185 E152 151 6
64 64 2
143 106 143 143 E150 154 6
61 61 61b 61 61 F62 61a 7
59 59 2
73 79 77 73 77 E73 73 7
96 A100 96 96 96 93 106 C96 96 9
49 49 48 49 4
79 C80 82 84b 79 78 80 B64 C81 9
80b A79 82 80 82 82 B79 A80 91 9
45 A45 48 77 45 54 C43 7
100 C102b 100 101 100 100 A102b B98 102 101 10
206 205 199 206 206 C287 A204 205 9
124 B129 155 138 124 123 128 C150 B158 185 137 11
107b 107b 110/113 C287 B111 125 6
311 311 311 B252 4
111 111 111 C108 4
809 C792 809 809 808 811 B812 B793 813 9
80a B78 79 80 80a 79 A79 A79 81 9
167 C166 176 170 167 134 170 B170 B169 155 130 11
108 B115 112 120 107 88 112 A113 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-6: SSV6 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV6 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 
 

SSV6 SSV1 SSV2 SSV3 SSV4 SSV5 SSV7 SSV8 SSV9 SSVL ASV1 Cons
VP2 VP2 VP2 3
83 A82 83 83 82 82 82 A83 B83 82 83 11
81 C84 88 89 81 81 83 C78 A82 83 97 11
90 A92 90 90 89 89 90 A93 B90 94 94 11
269 B277 277 179 280 276 281 C277 C279 279 263 11
149 A154 153 157 152 156 150 C154 C157 153 155 11
234 B251 233 250 233 233 255 A247 A231 250 232 11
Int INT INT INT INT INT INT INT INT INT INT 11
79 1
215 D244 211 208 209 214 D212 7
108 1
90 1
94 1
60 D63 57 61a 62 60 64b 7
185 163 159 159 E152 151 6
61 61 61b 61 61 F62 61a 7
77 79a 77 73 73 E73 73 7
93 A100 96 96 96 96 106 C96 96 9
48 49 49 3
87 88a 89 3
92 1
78 C80 82 84b 79 79 80 B64 C81 9
82 A79 82 80 80 82 B79 A80 91/109 9
54 A45 48 77 45 45 C43 7
123 B129 123 138 124 124 128 C150 B158 185 137/125 11
99 96 2
216 208 2
68 58 2

1232 1231 2
134 C166 176 170 167 167 170 B170 B169 155 130 11
88 B115 112 120 107 108 112 A113 A123 117 82 11

VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-7: SSV7 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV7 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 
 
 

SSV7 SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV8 SSV9 SSVL ASV1 Cons
82 A82 83 83 82 82 83 A83 B83 82 83 11
83 C84 88 89 81 81 81 C78 A82 83 97 11
90 A92 90 90 89 89 90 A93 B90 94 94 11
281 B277 277 179 280 276 269 C277 C279 279 263 11
150 A154 153 157 152 156 149 C154 C157 153 155 11
255 B251 233 250 233 233 255 A247 A231 250 232 11
Int INT INT INT INT INT INT INT INT INT INT 11
76 84a 71 3
72 1
204 171 2
74 80 2
583 B494 559 3
471 674 2
192 674 2
154 119 2
110 125 2
49 1
106 A100 96 96 96 96 93 C96 96 9
49 84b 49 49 48 5
80 C80 82 79 79 78 B64 C81 8
82 A79 82 80 80 82 B79 A80 91/109 9
100 C102b 100 101 100 100 A102b B98 102 101 10
206 205 199 206 206 C287 A204 205 8
128 B129 155 138 124 124 123 C150 B158 185 137/125 11
113 110a 107b 107b C113 B111 6
298 305 C247 287 4
67 B74/C82 75 3
811 C792 809 809 808 809 B812 B793 813 9
79 B78 79 80 80 80 A79 A79 81 9
170 C166 176 170 167 167 134 B170 B169 155 130 11
112 B115 112 120 107b 108 88 A113 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-8: SSV8 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV8 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 

SSV8 SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV7 SSV9 SSVL ASV1 Cons
A83 A82 83 83 82 82 83 82 B83 82 83 11
C78 C84 88 89 81 81 81 83 B82 83 97 11
A93 A92 90 90 89 89 90 90 B90 94 94 11
C277 B277 277 179 280 276 269 281 C279 279 263 11
C154 A154 153 157 152 156 149 150 C157 153 155 11
A247 B251 233 250 233 233 234 255 A231 250 232 11
A148 E178 2
D355 INT INT INT INT INT INT INT INT INT INT 11
D212 D244 211 208 209 214 215 7
F61 D63 61a 62 4
E152 163 159b 159b 185 151 6
D110 106 2
E150 143 143 143 154 5
F62 61 61b 61 61 61 61a 7
E73 79a 77 73 73 77 73 7
D57 61b 2

A102a 105 2
C49 1
B50 1
A158 1
C59 1
B64 C80 82 84b 79 79 78 80 C81 9
B79 A79 82 80 80 82 82 A80 109/91 9

A102b C102b 100 101 100 100 100 B98 102 101 10
C287 205 199 206 206 206 A204 205 8
B85 62 2
C150 B129 155 138 124 124 123 128 B158 185 137/125 11
C113 110a 107 107 113/110 B111 125 7
C247 305 298/89 287 4
B74 67 75 3
C82 67 137 3

B812 C792 809 809 808 809 811 B793 813 9
A79 B78 79a 80 80 80 79 A79 81 9
B170 C166 176 170 167 167 134 170 B169 155 130 11
A113b B115 112 120 107 108 88 112 A123 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-9: SSV9 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSV9 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 
 

SSV9 SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV7 SSV8 SSVL ASV1 Cons
B83 A82 83 83 82 82 83 82 A83 82 83 11
A82 C84 88 89 81 81 81 83 C78 83 97 11
B90 A92 90 90 89 89 90 90 A93 94 94 11
C279 B277 277 179 280 276 269 281 C277 279 263 11
C157 A154 153 157 152 156 149 150 C154 153 155 11
A231 B251 233 250 233 233 234 255 A247 250 232 11
INT INT INT INT INT INT INT INT INT INT INT 11
F58 1
C158 1
B494 583 559 3
A460 471 674 3
C78 1
B53 1
B64 102 2
E81 F93 95 3
C96 A100 96 96 96 96 93 106 96 9
C81 C80 82 84b 79 79 78 80 B64 9
A80 A79 82 80 80 82 82 B79 91/109 9
C43 A45 48 77 45 45 54 7
B98 C102b 100 101 100 100 100 A102b 102 101 10
A204 205 199 206 206 206 C287 205 8
B158 B129 155 138 124 124 123 128 C150 185 137 11
B111 110a 107b 107b 113/110 C113 125 7
B252 311 311 311 4
C108 111 111 111 4
B793 C792 809 809 808 809 811 B812 813 9
A79 B78 79 80 80a 80 79 A79 81 9
B169 C166 176 170 167 167 134 170 B170 155 130 11
A123 B115 112 120 107 108 88 112 A113 117 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-10: SSVL ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  SSVL ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 
 
 
 
 

SSVL SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV7 SSV8 SSV9 ASV1 Cons
82 A82 83 83 82 82 83 82 A83 B83 83 11
83 C84 88c 89 81 81 81 83 C78 A82 97 11
94 A92 90 90 89 89 90 90 A93 B90 94 11
279 B277 277 179 280 276 269 281 C277 C279 263 11
153 A154 153 157 152 156 149 150 C154 C157 155 11
250 B251 233 250 233 233 234 255 A247 A231 232 11
64a B85 62 3
INT INT INT INT INT INT INT INT INT INT INT 11
159 208 2
135 1
64b D63 57 61a 62 60 60 7
151 163 159b 159b 185 E152 6
106 D110 2
154 143 143 143 E150 5
61a 61 61b 61 61 61 F62 7
71 72 74 3
73 79a 77 73 73 77 E73 7
61b D57 2
105 A102a 2
102 C102b 100 101 100 100 100 A102b B98 101 10
205 205 199 206 206 206 C287 A204 8
127 B129 155 138 124 124 123 128 C150 B158 137/125 11
125 110a 107b 107b 110 C113 B111 7
287 305 298 C247 4
75 67 B74 3
813 C792 809 809 808 809 811 B812 B793 9
81 B78 79 80 80a 80 77 A79 A79 9
155 C166 176 170 167 167 134 170 B170 B169 130 11
117 B115 112 120 107 108 88 112 A113 A123 82 11
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-11: ASV1 ORF conservation within the Fuselloviridae 
Table view of the data presented in Figure in B-1.  ASV1 ORFs are displayed in the left-most 
column.  Homologous ORFs from the other 10 fuselloviruses are displayed in the table.  Grey 
highlighted rows denote fusellovirus core ORFs/genes.  The column on the far right (Cons) 
indicates the total number of homologues for a particular ORF. 
 
 
 
 
 

ASV1 SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV7 SSV8 SSV9 SSVL Cons
VP2 VP2 VP2 3
83 A82 83 83 82 82 83 82 A83 B83 82 11
97 C84 88 89 81 81 81 83 C78 A82 83 11
94 A92 90 90 89 89 90 90 A93 B90 94 11
263 B277 277 179 280 276 269 281 C277 C279 279 11
155 A154 153 157 152 156 149 150 C154 C157 153 11
232 B251 233 250 233 233 234 255 A247 A231 250 11
Int INT INT INT INT INT INT INT INT INT INT 11
58 72 2
171 1
80 74 2
559 583 B494 3
674 471/192 2
119 154 2
102 B64 2
95 F93 E81 3
96 A100 96 96 96 96 93 106 C96 9
59 1
109 A79 82 80 80 82 82 B79 A80 9
91 A79 82 80 80 82 82 B79 A80 9
101 C102b 100 101 100 100 100 A102b B98 102 10
137 B129 155 138 124 124 123 128 C150 B158 185 11
62 B85 2
276 1
106 1
125 B129 155 138 124 124 123 128 C150 B158 185 11
367 1
137 67 C82 3
806 1
96 99 2
208 213 2
58 68 2

1231 1232 2
130 C166 176 170 167 167 134 170 B170 B169 155 11
82 B115 112 120 107 108 88 112 A113 A123 117 11

VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 11
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 11
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Table B-12: SMF1 homologues within the Fuselloviridae 
SMF1 ORFs are displayed in the left-most column.  Homologous ORFs from the other 11 
fuselloviruses are displayed in the table.   
 

SMF1 SSV1 SSV2 SSV3 SSV4 SSV5 SSV6 SSV7 SSV8 SSV9 ASV1 SSVL
VP2 VP2 VP2 VP2
119
79
105
82 A82 83 83 82 82 83 82 A83 B83 83 82
121 A92 90 90 89 89 90 90 A93 B90 94 94
261 B277 277 179 280 276 269 281 C277 C279 263 279
151 A154 153 157 152 156 149 150 C154 C157 155 153
274 B251 233 250 233 233 234 255 A247 A231 232 250
Int INT INT INT INT INT INT INT INT INT INT INT
68
67
380
540
124
99
46
38
591 C792 809 809 808 809 811 B812 B793 813
625 B78 79 80 80a 80 77 A79 A79 81
156 C166 176 170 167 167 134 170 B170 B169 130 155
122 B115 112 120 107 108 88 112 A113 A123 82 117
66
VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1 VP1
VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3 VP3
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