Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
2002

Querying Geographically Dispersed, Heterogeneous
Data Stores: The PPerfXchange Approach

Matthew Edward Colgrove
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Computer Engineering Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation

Colgrove, Matthew Edward, "Querying Geographically Dispersed, Heterogeneous Data Stores: The
PPerfXchange Approach" (2002). Dissertations and Theses. Paper 2665.
https://doi.org/10.15760/etd.2656

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2665&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2665
https://doi.org/10.15760/etd.2656
mailto:pdxscholar@pdx.edu

QUERYING GEOGRAPHICALLY DISPERSED,
HETEROGENEOUS DATA STORES:

THE PPERFXCHANGE APPROACH

by

MATHEW EDWARD COLGROVE

A thesis submitted in partia fulfillment of the
reguirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE

Portland State University
2002

DEDICATION

Thisthesisis dedicated to my wife, Kathy, and son, Reed, whose patience and support

made this thesis possible.

ACKNOWLEDGEMENTS

| gratefully acknowledge and thank the follow people for their help with this thesis.

Dr. Karen Karavanic for her advice, guidance, and entrusting PPerfX change to me.
Christian Hansen for providing the example data and insight into PPerfDB.

Brian Kearns for his proof-reading expertise and moral support.

TABLE OF CONTENTS

Acknowledgements
List of Tables
List of Figures
1 Introduction
2 Background

2.1 PPerfDB

2.2 XML

2.3 XQuery
3 The PPerfXchange Architecture

3.1 Using PPerfX change

3.2 Parsing and Processing the XQuery

3.3 Unified, Virtual, and Native XML Documents
4 The PPerfXchange Prototype | mplementation

4.1 Sending an XQuery

4.2 Parsing the Query

4.3 Process Nodes and Process Instructions

4.4 Virtual XML Documents

4.4.1 Configuring a Virtual XML Document
4.4.2 Representing Global XML Schemasin a Relational Database

4.4.3 Forming a Relational Database Virtual XML Document

10

11

13

13

15

16

19

19

21

23

27

27

29

33

4.4.4 Retrieving Data from a Relational Database Virtual XML Document 36

TABLE OF CONTENTS

5 Examples
5.1 Example Parallel Performance Global Schema
5.2 Parallel Performance Database for SMG98
5.3 Configuration of XML to SQL
5.4 Use Cases
6 Related Work
6.1 Mediators and Semantic Integration
6.2 Representing and Querying a Relational Database Using XML
6.3 XQuery
7 Conclusions and Future Work
8 References
Appendix A: Example Global XML Schemafor Parallel Performance Data

Appendix B: Resulting XML Documents from the Use Cases

38

38

39

41

48

48

50

56

61

65

67

1 Test Executions
2 UseCases

3 Resulting XML Documents

LIST OF TABLES

40

67

LIST OF FIGURES

1 An Architectural Overview of PPerfDB

2 An ExampleMerged Event Map

3 Comparing CPU Idle Time For Two Executions

4 Componentsof an XQuery

5 An Architectural Overview of PPerfXchange

6 TheUnified XML Document Hierarchy

7 An Example XQuery

8 Bison Equivalent Grammar for an XQuery Grammar Rule
9 Example Flow of Process I nstructionsand Process Nodes
10 The Configuration Tables

11 Translating a Relational Database Schemato a Virtual XML Document
12 An Example Parallel Performance Global XML Schema
13 SMG98 Perfor mance Database Schema

14 Mapping the Application and Execution Elements

15 Mapping the Metric, Focus, and Data Elements

16 Alternative XML Representation Approaches

12

15

16

20

22

25

28

30

39

41

42

43

Vi

1 Introduction

A group of scientists meet at a conference and discover each isworking on similar
problems. They exchange ideas, discuss future needs, and find that each have data use-
ful to each other’s research. They decide to collaborate and return to their respective
labs excited about the new prospects. However, when it comes time to actually
exchange their data, they find each have very different methods for storing and organiz-
ing the data. The process of translating the data into each others respective format
becomes a laborious chore. While the new information would greatly help, the tranda-
tion quickly becomes too time consuming to be useful. Ultimately the collaboration

wanes, and each scientist continues on separate paths.

What was needed for these scientists was a method by which they could quickly
retrieve each other’s data and translate it into their local format. Thisthesis offersa
solution to this problem and describes an innovative tool, PPerf X change, which allows
remote users to query geographically dispersed data and return the datain aformat
which can be easily trand ated into the local format. Such atool may be used by many
areas of collaborative research; PPerfXchange focuses on the exchange of parallel

computing performance data.

Computer applications which execute on high performance parallel computer architec-
tures are often extremely difficult to optimize. A variety of tools have been created

which gather performance information during the execution of these applications. A

single run of an application can generate hundreds of megabytes of information, which
can then be analyzed using various visualization tools. However, exchanging gathered
information between collaborators can be very difficult due to the large amount of data
gathered, the incompatible data formats used, and the time it takes to convert between

formats.

The PPerfDB project [12] at Portland State University is creating an experiment man-
agement tool for parallel performance analysis. PPerfDB uses multiple sets of perfor-
mance analysis data and is able to compare results even if the data was collected by
different analysistools. It would be advantageous to the user to compare data from
more than the limited set of executions that are stored locally. Given that the commu-
nity of developers that analyzes parallel performance is large, each devel oper would
benefit from the exchange of performance data. To do so, one devel oper would need to
allow another to transfer his or her data set to the local system where it could then be
analyzed. This process would entail alengthy download, trandating the data into a for-
mat the local system could understand, and then extracting the meaningful data. In
most cases, the cost of this process istoo prohibitive to be beneficial. 1deally, a devel-
oper would query the remote location for the particular data set of interest and receive
thisdatain aformat that easily integratesinto the local system. To accomplish this, sev-

era obstacles would need to be overcome.

The first obstacle concerns how performance data is formatted. PPerfDB uses several

external preprocessing scripts to transform various data formats into a common repre-

2

sentation. The user must run this script before the data may be analyzed. It may be
unknown what format the remote dataisin, requiring the local user to transfer the
remote data to the local system and then apply the appropriate script. Instead, it would
be beneficial if the user had the option to do this trandation step at the remote site.
Each site would only be responsible for trand ating their own data into the common rep-

resentation while not needing to know how the other sites format their data.

The second obstacle is how the remote data is stored. Given the wealth of data storage
mechanisms in use, i.e. databases, text files, XML documents, and binary files, the
remote site may employ one or more meansto store their data. For instance, a site may
store archived datain arelational database and non-archived executionsin atext file.
The developer should not need to know how the dataiis stored, and should be able to

query al of the potential data storesin a uniform manner.

The final obstacleisthe volume of performance data. Each execution potentially gener-
ates hundreds of megabytes of data. If the developer isinterested in only a particular

performance measurement, only the data corresponding to this measurement should be
returned. Hence, the devel oper needs the ability to query the remote data for thisfocus.
In rare cases the volume of data may be small enough to not warrant aquery. However,
for the purposes of thisthesisit is presumed that the volume of each data set islarge

and querying this data set would significantly reduce the amount of data needing to be

transferred.

As part of the PPerfDB project, | have developed PPerfXchange to allow scientists to
easily exchange performance data by solving the obstacles described above. To facili-

tate data exchange between the collaborating scientists, each scientist maps his or her

3

data to a common naming convention described by a global XML schema. The datais
published as aset of virtual XML documents, an XML interface to alocal data set,
based upon this global XML schema. The virtual XML document performs the map-
ping between the local data and the global format, and allows the local data to remain
inwhatever data storethelocal site uses. To retrieve datafrom aremote site, a scientist
gueries avirtual XML document using the XML query language, XQuery. When the
XQuery arrives at the remote site, PPerf X change queriesthe virtual XML documents
which in turn translate and retrieve the local data. The resulting data set is returned to
the scientist as an XML document with its form defined in the XQuery. Only the data

of interest is retrieved, reducing the amount of data transferred.

This thesis detail s PPerf X change's approach for querying geographically dispersed het-
erogeneous data stores. While elements of PPerfXchange's method have been imple-
mented for other application areas, PPerf X change shows how these elements can be
applied to parallel performance analysis. The accomplishments of thisthesis are:
» Thedesign of an architecture for PPerfXchange, giving a uniform method to
guery heterogeneous data stores;
» A proof of concept prototype implementation of PPerfXchange including a par-
tial implementation of an XQuery processor and a relational database virtual XML
document; and

» Evaluation of PPerfXchange using example paralel performance analysis data.

Chapter 2 of this thesis gives some background for PPerfDB, XML, XML Schemas,
and X Query. Chapter 3 details the overall architecture of PPerfXchange. Chapter 4
describes the implementation of a PPerfXchange prototype. Chapter 5 gives an exam-
ple global XML schema, details a database containing parallel performance data,
describes how the local database schemaistranslated into the global XML schema, and
concludes with several example XQuery use cases. Chapter 6 highlights work related

to PPerfX change. Chapter 7 concludes with future work.

2. Background

This chapter gives abrief introduction to parallel performance analysis using PPerfDB,
XML, XML Schemas, and XQuery. PPerfXchange makes extensive use of both XML
and X Query to retrieve data for geographically dispersed, heterogeneous parallel per-
formance data stores. As such, a brief overview of these languagesis needed. This
chapter is not intended to give a complete guide to the languages; rather it intends to

highlight the portions of the languages that PPerfX change accepts.

2.1 PPerfDB

For a programmer writing an application for use on a parallel architecture, the process
of optimizing code is often a difficult task. In order to aid the programmer, avariety of
paralel analysistools have been developed [4]. These tools aid in discovering bottle-
necks and poor performance by using instrumentation, performance libraries, or both to
measure particular aspects of the application. Some tools also include visualization
utilities for displaying performance measurements. However, most tools analyze only a
single run of the application at atime. For comparing multiple runs, it is up to the
developer to determine the differences. In addition, if multiple performance tools are
used, comparing the various results is made difficult by the different data formats and

specific measurements taken.

The PPerfDB project [12] at Portland State University is creating an experiment man-
agement tool that uses multiple sets of performance analysis data. The developer isable
to study particular aspects of the parallel application’s performance. If a particular
guestion cannot be resolved using the existing data, then anew run of the applicationis

performed and dynamic instrumentation inserted to measure this aspect of the applica-

6

tion. Dynamic instrumentation uses the Dyninst or DPCL libraries to insert code into a
running process to gather the performance data. The overall goal of the PPerfDB
project isto remove the developer from the analysis work and have PPerfDB self-tune

the application. Figure 1 gives a diagram of PPerfDB’s overall architecture.

PPerf D B Visualization

Histograms] Graphs

Tables

[Space [™™] EventMap —VHDataStore
Map I

Test
Application

Performance
Difference

PPerfX change

© Remote
Data
. Store

Figure1: An Architectural Overview of PPerfDB

Thisfigure gives an overview of the PPerfDB architecture. Shown is how PPerfDB gathers data from
multiple performancetools, creates a Space Map of the gathered data, creates an Event Map, and then
visualizesthe results. A performance difference operation can be applied to the Event Map or the
resulting data can be stored for future evaluation.

To correctly compare an application’s performance data using multiple performance
tools, acommon data representation is used. PPerfDB gathers performance tool data
formatted in the common representation into a Space Map. The Space Map containsthe
data from multiple executions having some common parameter that the experiment will
compare. For example, the experiment may determine how varying the number of pro-

cessors affects an application’s performance when using a common platform. Each exe-

7

cution’s datais stored as a hierarchy of identifiable resources, such as code modules or
processidentifiers, with each execution assigned a unique power of two as an identifier.
An Event Map gives aview of this hierarchy. Each node contains a label with the
resource name and an execution identifier. A structural merge operation combines the
various execution treesinto aunified Event Map view (Figure 2). The execution identi-
fier of the merged treeisthe sum of theindividual execution identifiers. For example, if
execution one and two both were run on processor one, the resulting execution identi-
fier for processor oneisthree. Once an Event Map is constructed, the user may select a
focus, i.e. one resource from each path, a metric, and time interval, to compare the exe-
cutions performance. A metric might be the number of function calls performed, the
duration of afunction call, or the percentage of CPU utilization. PPerfDB uses a visual-

ization tool, such as a graph or histogram, to display the results.

Map Data |
FRGE00: hlue wi 41 = hlue wi 40
i Y
3 MPI_ALLGATHER i [ER_LR A |
23 MPI_ALLGATHERY cp_kemed
i MFI_ALLAEDUCE Cpu_wait
i MPI_CORMM_RAMNE Cp_ ke
i MPI_C O _SIZE in_paail
i MFI_FINALIZE in_wrile
i MAFI_IMIT 0 _xher
i\ MFI_IRECY in_sent
~ 3 MPI_SEND I _Fascw
i MPIL_TYPE_CORMMIT proc_cixtsw
i\ MFI_TYPE_FREE proc:_awacall
V5 MPL_TYPE_HVECTOR m'm|
; MF': TYFE_STRUCT fumc_cudy
:'xﬁl-:ﬁ;';‘"" .20 msg_byies
I:llun-.E':I'1l acific linl u-éf" L =
: g B 2 e
H\. . =z a
3 mlarkir \\ -
1 blum3a6 paciic Ilnl.guuég: ; |
ijac R e anb H‘"\-._‘I 1 F i
Hlart: [0
= = |/ Fndsh: [11 1516435410005
| Focua: Ot JSackrss S Sync Object Lk

—

Figure 2: An Example Merged Event Map

This screen shot from PPerfDB gives an example of amerged Event Map and associated metrics.

Figure 2 gives an example of a merged Event Map using two executions, labeled 1 and
2. The main frame shows the available resources along three paths. The first path con-
tainsthe MPI function calls performed during the execution of the application. The sec-
ond path indicates the particular machine that each execution was run on and the
processor identifier of the machine. Blue 271 and 336 are nodes on Lawrence Liver-
more National Laboratory’s Blue Pacific supercomputer. The final path indicates the
MPI message tags. The right-hand window gives the user alist of available metrics.
The bottom window indicates the focus selected by the user. The start and end fields
give the time range the user isinterested in examining. Figure 3 gives the resulting
visualization for the comparison of the CPU idle time for processor 3, obtained by

selecting the focus “/Code,/M achine/blue.pacific.lInl.gov/3,/SyncObject.”

Graph Dptoss Dk

S5O Overlay: cou_dk s sme
i =
—
Turlsd
n
i Farnan
| 1
|
7 Hin
1]
1]
=
ki
1]
Flaw
w 1]
=
T T T T T T T T
1] B 0
ThTe: Het e e
i R b e gl B e et i ko s L il B il S v

Figure 3: Comparing CPU Idle Timefor Two Executions

Shown is a graph comparing the CPU idle times from two executions of SMG98 for
the selected focus “/Code,/M achine/blue.pacific.linl.gov/3,/SyncObject.”

22 XML

XML (Extensible Markup Language), developed by the World Wide Web Consortium
(W3C), presents a standard method for formatting data and documents. XML enforces
arigid structure for its documents, allowing multiple parties to easily exchange data
since any XML aware client can read any XML document. Whilerigid in structure,
XML can be customized for a particular application. XML uses user-defined |abels,
also called tags or el ement constructors, to define the various elements of a particular
document or data set. XML issimilar to HTML in that both are mark-up languages.
However, instead of using tags to define the formatting of text, XML usestagsto
define the semantics of individual elements. XML formats documents through other

means, such as cascading style sheets.

The structure of awell-formed XML document is a hierarchy of elements with leaves
containing the actual content of the XML document. Elements may have attributes
indicating additional information about the element. This structure can represent awide
variety of dataincluding arelational database table, or a book. The table would have a
flat hierarchy with many sibling nodes, while the book would have an extensive hierar-

chy, i.e. book, chapter, section, paragraph, sentence, word, but fewer siblings.

While the XML family is extensive, the core of XML is quite ssimple. To export a par-

ticular data set, label each element of the set and arrange the elements in a hierarchy to
define relationships. However, just because athird party can parse the XML document
and read itstags, it does not mean that it can be interpreted. To give meaning and a spe-

cific structureto XML documents, the W3C XML Schemarecommendation [27] gives

10

aframework for multiple partiesto create acommon vocabulary and rule set governing
the form of their XML documents. This allows each to publish XML documents that

others can not only read, but also interpret.

2.3 XQuery

To query XML documents, PPerfX change uses the W3C's working draft XML query
language, XQuery [28]. XQuery istheresult of many years of collaborative effort and
merges ideas from other XML query languages such as XQL, XML-QL, and Quilt into
asingle XML Query language. XQuery requests particular elements of XML docu-

ments and transforms them into other well-formed XML documents.

The FLWR (FOR LET WHERE RETURN) statement alowsfor iteration, aggregation,
and joins. The RETURN statement lists a set of element constructors or other FLWR
statements and defines the structure of the resulting XML document. The client can
define any structure and tagging they need to easily integrate the returned data into
their system. Hence, the data should need little additional transformation when it is
returned. FOR statements iterate through each element of the XML document and
apply the RETURN section to each element. LET statements assign a statement to a
variable. Whenever the variable is encountered in the RETURN statement, the LET
statement is evaluated. LET statements may be text or an element. If it is an element,
the entire data set is evaluated. The WHERE statement allows for the selection of par-
ticular elementsin the XML document and gives the join properties for multiple XML

documents.

11

X Query accomplishes projection using X Path syntax. X Path gives a path, similar to a
file path, to the element of interest within the XML document. In addition to projection,
XPath allows selection through the use of step qualifiers that place constraints on the
particular element. XQuery has an extensive set of built in functions such as count,
min, max, document, etc., which aid in the discovery and transformation of elements.
Users may also define their own functions. Figure 4 gives an example XQuery that
selects all metric data from the “smg98.xml” document where the application is
“smg98”. The FOR statement iterates through each metric element and returns the met-

ric’'s name.

Element Constructor | Built in function X Path Step Qualifier

<metrics>

{
FOR — FOR $v IN document(“smg98.xml")/application[name =“smg98”]/metric
statement RETURN

RETURN |7
Statement <nhame>

I/ { $v/nameltext() }
</name>

}

</metrics>
Figure4: Components of an XQuery

Shown is an example of an XQuery. The labels indicate the various components of the XQuery.
The element constructor defines elements of the resulting XML document. The FOR statement
iterates through an XML document, retrieved by the built-in document function. The XPath
defines the path within the XML document to the desired target element. A step qualifier selects
only elements matching the given criteria. RETURN statements define the element constructors
which are applied to each of the found target elements. A text element returnsaliteral tag while a
data element returns an element of the queried XML document.

12

3 The PPerfXchange Architecture

The following chapter begins by showing how PPerfXchange can be used to retrieve
heterogeneous data from geographically dispersed locations. An overview of the major
components of PPerfXchange are then detailed. This chapter gives a high level descrip-
tion of PPerfXchange with some components not having been implemented in the
PPerfX change prototype. Please refer to chapter 4, the PPerfX change prototype, for

specific information about the implemented components.

3.1 Using PPerfXchange

Thefirst step in using PPerfXchange isfor agroup of collaborating scientists to decide
that exchanging datawould help further their collective research. If the amount of data
to be exchanged is small and the data exchange is infrequent, then the use of

PPerf X change would not be necessary. However, if the amount of data to be
exchanged islarge, and it is updated often requiring frequent exchanges, then
PPerf X change offers an innovative method to allow these scientists to uniformly
exchange data. The scientists begin by creating aglobal XML schemato represent a
common naming convention and format for their collective data. PPerfXchange makes

no assumptions as to the specific details of the global XML schema.

Next, each site publishesthe data they wish to share asa set of virtual XML documents
based upon thisglobal XML schema. A virtual XML document isan XML interface to
asite'slocal dataset. The site'sdataresidesin what ever data store they choose with

the virtual XML document performing the trand ation between the data store and the

13

global representation. (A complete discussion of virtual XML documentsisgivenin
section 3.3.) To aid in publishing data, agraphical virtual XML document configura-
tion tool, similar to Microsoft’'s XML View Mapper 1.0 schema mapping utility [25], is
used. Thistool would give avisual representation of the global XML schema and the
data store’s schema, and allow the scientist to map the schemas as well as place con-

straints as to the specific data set published.

With the global XML schema created and a site’s data published asif it were an XML
document, the other scientist in the group can begin asking queries using XQuery. An
XQuery isformed by PPerfDB whenever a scientist requests data from aremote site.
Multiple XQueries may be used. Aninitial query might request meta-data about the
remote site’'s published data and store this information in PPerfDB’s Space Map. Sub-
sequent queries would be asked in order to retrieve data for visualization once the sci-
entist has selected a particular focus from an Event Map. While PPerfXchange is
designed for use with PPerfDB, it will respond to any client, such as aweb browser,
able to speak XQuery. Once an XQuery is sent to aremote site, the local

PPerfX change server processes the XQuery and returns the resulting datain an XML
document. The resulting XML document’s structure is defined in the XQuery itself

allowing the client to define the format of the resulting data.

The remainder of this chapter discusses the internal components of the PPerfX change
architecture. Figure 5 (next page) gives an overview of this architecture. Section 3.2
describes the X Query processor and section 3.3 discusses the virtual XML document

construct.

14

PPerfX change ‘

Network X Query X Query
Interface Parser Processor

Resulting
» XML
Document

Abstract Syntax Tree Process I nstructions

Virtua
XML
Documents | |

Figure 5: An Architectural Overview of PPerfXchange

Shown isan overview of PPerfXchange's architecture. An XQuery is sent to the remote
sitewhereit isreceived by PPerf X change’s network interface. The query isthen parsed,
creating an abstract syntax tree (AST). The AST is transformed into a series of process
instructions that create aresulting XML document by retrieving data from a set of
virtual XML documents.

3.2 Parsing and Processing an XQuery

The XQuery parser parses the XQuery into an abstract syntax tree (AST) and deter-
minesif the query iswell-formed. If the XQuery isill-formed, the parser returns an
error message to the user asto the source of the parse error. If the XQuery parser is suc-
cessful, the AST passes to the XQuery processor for transformation into a series of pro-

cessing instructions, and a set of native and virtual XML documents.

The processing instructions are then executed in order. An instruction may either create
a static text node, create anode using queried data, or execute a set of instructions such
as a FLWR statement. The created data and text elements are returned sequentially to
the user as aresulting XML document with itsform defined in the user’s XQuery. By

sending the resulting elements incrementally, PPerfX change reduces the amount of

15

memory needed locally and ensures the successful retrieval of even the largest data

Sets.

3.3 Unified, Virtual, and Native XML Documents

The processing instructions retrieve data from a unified XML document. A unified

XML document represents a single view over the data set of interest, which may span
multiple data stores. It combines all requested virtual and native XML documents into
asingle virtual XML document, and applies qualifiers and aggregate functions to this

document. Figure 6 illustrates the document hierarchy of aunified XML document.

Direct Mapping Virtual Mapping

Virtual
XML
Document
- Text

Virtual
XML
Document -
Relational

Native
XML
Document

L1

XML
Documents
- Local

Object-
Relational
Databases

] Text XML
Relational Documents Documents
Databases

Figure 6: The Unified XML Document Hierarchy

Shown are the components of aunified XML document. The unified XML document rep-
resents an XML document based upon the global XML schema. Virtual XML documents
transform a particular data model into the global representation while connection objects
represent the actual link to a particular data store. Native XML documents are XML doc-

uments written in the global XML schema and thus require no mapping.

16

A unified XML document is formed when an XQuery “document” function is encoun-
tered in the FOR clause of a FLWR statement. The content of the XML document is
determined by the path stated in the FOR clause’'s XPath expression. If aquery seg-
ment consists of asingle XML document without a WHERE statement qualifier or an
aggregate function being applied, the unified XML document abstraction is bypassed

and only asingle virtual or native XML document is used.

The virtual XML documents model the structure of an XML document based upon the
global XML schema. It can be thought of an XML interface to adata set in that it maps
the underlying local data store’s schema to the common XML representation. Each
class of virtual XML document represents a common data model such as a relational
database or text file. Additional modules can be written to be able to support a wider
variety of data stores. A connection object performs the connection to a specific data
store such asaMySQL database, and performs the actual dataretrieval. Multiple con-
nection modules can be written to support the various data stores. Native XML docu-
ments are XML documents whose format and content are based upon the global XML
schema. Since a native XML document’s structure matches the global XML schema,

schema mapping is not needed.

The configuration database contains the information needed for PPerfX change to
access and model the remote data. This includes the names of the published XML doc-
uments as well asthe XML document’s data store type, location, connection method,
and description. Other entities describe the structural mapping between thelocal virtual

XML document and global XML schema. The configuration database’s meta-data is

17

published as avirtual XML document and can be queried in the same manner as the

site’s published data.

18

4. The PPerfXchange Prototype I mplementation

In this chapter, the implementation of the PPerfX change prototypeis detailed. The pro-
totype implements partial or complete versions of al PPerfXchange components.
Rather than focusing on a complete implementation of certain components, it was
decided to create limited versionsfor all components. This allows for the evaluation of
the PPerfX change approach as a whole rather than focusing on a single aspect of the

approach.

Section 4.1 begins by examining how an XQuery is created by the client and sent to the
PPerfX change prototype. Section 4.2 discusses the parsing of the XQuery and some of
the implementation details of the XQuery parser. Section 4.3 details how the XQuery is
processed using processing nodes and processinstructions. Finally, section 4.4 shows

how virtual XML documents are used to map schemas and retrieve data from relational

databases.

4.1 Sending an XQuery

The first step to any query is the XQuery formulation by the client. While PPerfX-
change has been developed for use with PPerfDB, the actua client could be any pro-
gram with the ability to send an XQuery to the PPerfX change prototype, such as aweb
client. The PPerfX change prototype does not currently use any headers or authorization
methods. Rather, it smply takes an XQuery and returns the results. The PPerfXchange

prototype supports portions of the XQuery language and allows the client to formulate
19

awide range of queries. The PPerfXchange prototype allows queries to retrieve and
manipul ate the data from a single virtual XML document at atime. Multiple virtua
XML documents may be queried in succession. Qualifiers are used to limit the size of
the returned data. Users may define their own return element tags, or use the default

global tags for the returned XML document.

An example question a client might ask is *For the application SMG98's fourth execu-
tion, what was the CPU idle time for the focus/Code/MPI/MPI_ALLGATHER,/Pro-
cess/4,/SyncObject/Communicator/0.” If the question cannot be satisfied locally, the
client may retrieve this information from aremote site by reformulating the question

into an XQuery. Figure 7 shows an example XQuery to answer this question.

<snmg98>
{ FOR $x IN docunent (“sng98. xm ")
/ Appl i cati on[name=" SM398"]
[execution[id=4]
/metric[name="cpu_idle"]
/ focus[pat h1="/ Code/ MPI / MPI _ALLGATHER"]
[pat h2="/ Process/ 4"]
[pat h3="/ SyncObj ect / Communi cat or/ 0"]

/dat a
RETURN
<dat a>
{$x/time}
{ $x/ val ue}
</ dat a>
}
</ sngy98>

Figure 7: An Example XQuery
The shown XQuery requestsall data from the fourth execution of the SMG98 application with the met-

ric CPU idletime and the focus “/Code/MPI/MPI_ALL GATHER./Process/4./SyncObject/Communi-
cator/0.”

20

The query is created to retrieve data from one or more published XML documents
located at the remote site. The client may obtain alist of the available published XML
documents, as well as the documents schemas, by first sending an XQuery requesting
alist of documents from the remote site's configuration database. Once the client has
formed and sent the query to the PPerf X change prototype, the network interface
receives the request. Each request is placed on a queue to be serviced by an XQuery
processor. The PPerfX change prototype is multi-threaded; the exact number of threads
isacommand line argument. Each thread contains an X Query processor and processes
asingle request at atime from start to finish. Once finished, a thread will take the next
request off the queue. If no requests are pending, it will wait until one becomes avail-
able. When an XQuery processor receives a request, it stores the query temporarily on
disk. Storing the query in an intermediary file allows the queries to be arbitrary sizes
and helps reduce the risk of running out of memory. Each new query an XQuery pro-
Cessor receives, overwrites the previous query. When the program terminates, the tem-

porary files are removed.

4.2 Parsing the Query

After the XQuery isreceived, the XQuery parser reads the query from disk and trans-
forms it into an in-memory abstract syntax tree (AST). If the XQuery isill-formed, the
XQuery parser aborts and the XQuery processor sends an error message to the client.
Otherwise, the XQuery parser returns the root of the AST to the XQuery processor.
The XQuery parser was created using GNU’s Flex [15] and Bison [6] utilities. The

21

XQuery grammar rules [28], an LL(1) grammar, were translated into Bison compliant
grammar rules, LALR(1). Figure 8 gives an example of an XQuery grammar rule and

its equivalent Bison grammar rule.

XQuery Granmar Rul e:

FLWRExpr := (ForCl ause | Letd ause)+ WhereC ause? “return” Expr
ForCl ause := “for” Variable “in” Expr (“,” Variable “in” Expr)*
LetClause := “let” Variable “:=" Expr (“,” Variable “:=" Expr)*

Bi son Grammar Rul e:

FLVREXpr :
For Let Li st WhereCl ause RETURN Expr
| ForlLetList RETURN Expr
For Let Li st:
For Let Li st
| ForLetlList LetC ause
| ForLetList ',"' LetNextC ause
| ForLetList ',' ForNextdC ause
| FordC ause
| Letd ause
For C ause:

FORVari abl e I N Expr
For Next Cl ause:
Variable I N Expr
Let C ause:
LET Vari abl e ASSI GN Expr

Let Next Cl ause:
Vari abl e ASSI GN Expr

Figure 8: Bison Equivalent Grammar for an XQuery Grammar Rule

Shown is an XQuery grammar rule for the FLWR statement and the equivalent Bison grammar rule.

Each FLWREXxpr rule is composed of one or more FOR or LET clauses, zero or one

WHERE clauses, and a RETURN expression. The FOR and LET clause rules contain
avariable, an expression, and zero or more additional clauses without the FOR or LET
identifier. In order to mimic the one or more constructs, new list el ements were added

to build aleft recursive list. While Bison does allow rules to have empty sentences,
22

doing so causes multiple reduce/reduce conflict errors. To create zero occurrences of a
clause, aruleisgivenin its parent rule without the corresponding child rule. In order to
mimic the property that multiple FOR or LET clauses can be put together without a
new FOR or LET identifier, the “ForNextClause” and “ LetNextClause” rules were

added.

The resulting AST is comprised of nodes, called xnodes, each corresponding to the
major rules. For example, the above rules are reduced to two xnodes, “FLWR” and
"ForLetList”. The parser was tested using the W3C's published use cases[31]. All que-
ries from thislist were accepted. However, user defined functions, context declarations
(namespaces), and data types do not have a corresponding xnode. These grammar rules

areignored by inserting an “ unsupported” xnode into the AST.

4.3 Process Nodes and Process | nstructions

Once the XQuery has been represented as a tree of xnodes, the xnodes are returned to
the XQuery processor. The X Query processor creates a series of process nodes and pro-
cessinstructions to fulfill the client’s request. The process nodes represent an element
in the resulting XML document. There are three types of process nodes: text process
nodes contain only labels or literal value, data processing nodes contain data from the
resulting query, and a document node indicates the start of the resulting XML docu-
ment and contains header information. Processinstructions represent control structures
and functions.

23

The PPerf X change prototype implements a single process instruction, the FLWR
instruction. While additional instructions would be needed to create afully functional
XQuery processor, the FLWR instruction illustrates how instructions can be accom-
plished. The FLWR instruction contains a variable table, adocument list, and a set of
process instructions and processing nodes. The variable table is used for retrieving the
appropriate virtual XML document when forming data nodes. The documents list con-
tainsalinked list of unified XML documents. However, the current implementation is
limited to asingle virtual XML document per FLWR instruction and the unified XML
document construct is bypassed. The scope for the FLWR instruction’s data process
nodesis limited to this virtual XML document and the virtual XML documents
declared in any higher order FLWR statements. While nesting of FLWR statementsis
allowed in the PPerfX change prototype, joining documentsis not. As such, nested
FLWR statements are not recommend since they result in the cross product of the two

documents.

Figure 9 (next page) shows the resulting processing nodes and instructions from the
XQuery givenin Figure 7. The process nodes and process instructions are created by
recursively descending the xnode tree. Semantic rules are applied during this creation
process. If a semantic error occurs, the process stops and an error message is returned
to the user. The PPerfX change prototype implements astricter set of semantics than the
formal semantics defined by the W3C [28]. The stricter set is due to the lack of support

for other XQuery instructions and functions. For example, a FOR clause’s expression

24

“SMG98” FLWR

Text Process w1 Process

Node Instruction

Y

] Datan

Text Process
Node

A

“Time” “Value”
Data Process Data Process
Node Node

Figure 9: Example Flow of Process I nstructions and Process Nodes

The shown process instruction and process nodes represent the processing of the sample X Query given
in Figure 7. The X Query processor recursively descends through the process node and process instruc-
tion hierarchy. Text process nodes return aliteral tag to the client while data process nodes return con-
tent retrieved from avirtual XML document. The FLWR instruction iterates through each item in the

virtual XML document and applies its child process nodes to the virtual XML document.

must contain a document function or avariable. XQuery semantics would allow any
document related expression, such as an aggregate function. After the process nodes
and process instructions are created, the query is executed. Starting at the document
node, the X Query processor recursively descends through the process nodes and pro-
cess instructions. The document node contains the header information about the return
document. This information is contained in adocument configuration object passed to
the XQuery processor by the main program. The configuration information is stored in
atext file and read by the main program. It contains such information as the site con-

tact, XML document version number, and the character encoding used. The document
25

header also contains arandomly generated document number for use in logging. The
PPerfX change prototype can be modified to store the tracking number and information

about the requested X Query for statistical use.

When encountering a process node, an opening tag is generated and sent to the client.
After the subsequent process nodes and process instructions have been executed, the
XQuery processor returns to this node, and the closing tag is sent. Data process nodes
contain a pointer to avirtual XML document and a path in the virtual XML document
to the elements of interest. The data process node has two options, return a complete
XML element based on the path, or just the element’s text. The type sent is determined
by the client’'s XQuery. A text or data function call after the node's path, i.e. “element-
Name/text()”, indicates only the text of the node should be returned. Using just the ele-

ment name indicates the complete XML element is returned.

Process instructions themselves do not return data to the client; rather they indicate that
special processing is to be done. In the case of the FLWR process instruction, the
XQuery processor will open avirtual XML document, apply qualifiers and ranges, and
then moveto the first dataitem in the result set. See section 4.4 for more information
about how documents are formed and queried. Next, the FLWR process instruction will
iterate through each data item and apply its process nodes and process instructions to
each. Once all the data items have been processed, the FLWR process instruction will

close the document and proceed with the next process node or process instruction.

26

4.4 Virtual XML Documents

This section detail s the methods used to create and retrieve data from virtual XML doc-
uments. Virtual XML documents may represent any number of different data stores,
including structured text files or databases. The PPerfX change prototype implements a
single virtual XML document class used to model arelationa database. Each virtual
XML document is created from a common virtual base class and allows for the devel-
opment of other future virtual XML document classes. The specific type of virtual
XML document created is determined by information contained in the configuration
database. Section 4.4.1 outlines the configuration process. Section 4.4.2 details how a
relational database schemais represented as aglobal XML schema. Section 4.4.3
shows the process of forming arelational database virtual XML document and section

4.4.4 details how datais acquired by the XQuery processor.

4.4.1 Configuring a Virtual XML Document

When the XQuery processor encounters a document function while creating the pro-
cess nodes and process instructions, a new virtual XML document object is instanti-
ated. However, the specific virtual XML document employed is unknown by the
XQuery processor. The document’s name and database configuration object (see
below) are passed to aglobal function called “createDocument”, which determines
which type of virtual XML document to create and returns an object of thistype to the

XQuery processor.

27

The “createDocument” function first connects to the local configuration database and
issues an SQL query to the“documents’ table requesting information about this virtua
XML document. The document identifier, connection type and connection identifier
arereturned. If no document record exists, an error is returned to the client. Figure 10

gives the schema for the XML document configuration tables.

sql connection
Connection Id - ®
Database type document
Database Name Did
Host Name
Host Address 1 Connection Type
Port — Connection Id
User Name
Password

Figure 10: The Configuration Tables

Shown is the relational schema of the configuration database’s configuration tables. These
tables are used by the PPerf X change prototype to create the appropriate virtual XML docu-
ment and connection object.

A second SQL query is made to the table containing the particular connection type for
this document. Currently, there isasingle connection type, arelationa database (SQL).
As additional connection types are supported, additional connection tables can be
added. For relationa database connections, the database type and name are the only
required fields. Host, host address, and port can be used if the database is not |ocated on
the same | ocation as the PPerfX change prototype. User name and password are used to
access the database as a different user than the user that started the PPerf X change pro-

totype.

28

For arelational database connection, a database configuration object is used to store the
configuration information. Thisinformation is used by an object of the database con-
nection class to create the actual connection to the database. The database connection
classisavirtual base class alowing for uniform access to multiple relational databases.
Each type of relational database has its own connection class based upon this common
interface. The PPerfX change prototype supports the PostgreSQL [19] object-relational
database. Support for additional databases can be added by creating a corresponding

database connection classes.

4.4.2 Representing Global XML Schemasin a Relational Database

The PPerfX change prototype does not attempt to completely trandate the XQuery into
an SQL query. Rather, only asmall portion, the XPath, is actually trand ated. From the
example XQuery in Figure 7, the “/Application[name="smg98"]"” part of the XPath is
tranglated into the following generalized SQL statement:

SELECT * FROM Application WHERE name = “smg98”

To map the virtual XML document to the relational database’s schema, each level in

the virtual XML document’s hierarchy is represented as an SQL statement. Retrieval of
child elements is accomplished using additional subqueries. While this method issm-
pleto implement and allows for easier schema mapping, performance suffers when the

document has an extensive hierarchy. The multiple subqueries act as nested SQL que-

29

ries with each subquery being re-evaluated each time a higher order item is moved.
The trandlation process is accomplished using several tablesin the configuration data-
base. The tables are based on the structure of an XML document and allow the map-
ping of a particular XML document to arelational view. Figure 11 shows these tables

and their relationships.

root objects
Did
Objid
Name reference
Objid
constraints objects Refld
Objid Name
Objid < Did
Cid « ggm?
ation
=dType OrderField joins
ValType Ascending Jid
Value Objid
child Refld
Cid EqlType
Parentld VaType
Name Refcid
rs'i'tct'r Objcid
IsNode

Figure 11: Trandating A Relational Database Schemato a
Virtual XML Document

Shown are the configuration database tables used to translate the local relational data-
base’s schemato a particular virtual XML document. The tables model the hierarchical
structure of an XML document. The arrows indicate the relationships between the rela
tional database'stables.

The "objects" table contains theidentifier and name of each global XML schema’s non-
leaf elements, called objects, for al documents. Because each document can contain
objects having the same name, the document identifier is given so only the correct
objects for aparticular virtual XML document are retrieved. The“name” field isthe

name of the object in the global XML schema and the “relation” field isthe relational

30

database’s entity that models this object. The “root objects’ table defines which
objects are document nodes, with one root object for each virtual XML document.
Each object mapsto an entity, table or view, in the relational database that the virtual
XML document is modeling. When there is not a one-to-one mapping between a data-
base table and a virtual XML document object, aview must be created in the database

that correctly models this object. Entities can be shared among objects.

One key feature of XML isthat itsdatais ordered. However, most relational databases
do not inherently keep datain an ordered manner. To help maintain order, the
“orderField” and “ascending” fields were added to the “objects’ table. The
“orderField” indicates which of the object's children determines the order of the data.
The “ascending” field is a Boolean value indicating the order direction. The document
order of the objects themselvesis determined by the object identifier. Lower object ids

will be traversed before higher object ids.

Objects may contain children, the leaf elements or attributes of the virtual XML
document. To represent the mapping between the children and the relational database,
the PPerfX change prototype uses the "child" table. The “name” field isthe global
XML schemanamefor the child. "Field" indicatesthefield in the parent object's entity
to which the child is mapped. The “isattr” field is a Boolean value used to indicate if
thischild is an attribute of the object. Certain fieldsin the relational database are

sometimes needed to satisfy joins between the virtual XML document’s levels, or

31

indicate ordering, but are not elements of the virtual XML document itself. The
“isnode” field is a Boolean flag indicating if the contents of this child are actually part
of the virtual XML document or are only used to aid in the processing of the virtual

XML document.

In addition to children, objects may contain other objects. The "reference” table
contains alist of child objects. The "joins" table is used to define the relationships
between the parent and child objects relational database entities. For example, if a
student object contains a address object, then ajoin isused the to retrieve an addressfor
aparticular student. The "reference” contains the object identifier of the parent, a
reference identifier of the child object, and the global XML schemaname for the child
object. The “referenceid” uniquely identifies which join to use for a particular child
object. Withinthe"joins" table, the “object id” isthe identifier of the child object. The
“refcid” and “objcid” are the child identifiers from the "child" table that join the two
objects. The “egltype’ field defines which equality type, i.e. equals, not equals, less
than, greater, etc., thejoinisbounded by. The“valtype’ field isthe datatype of the two

child values.

The "congtraints' tableis used to add qualifiers to a particular object's data. 1f only
certain records of a given entity define an object, adding a constraint eliminates the
need to create a separate view. The*cid” isthe child identifier of the object's children

upon which the projection is based. The object identifier is the object applied to the

32

constraint. The “egltype” and “valtype” are the same as the "joins" table equality and

valuetypes. The“value” field istheliteral value of the constraint.

4.4.3 Forming a Relational Database Virtual XML Document

During the execution phase of the XQuery processor, a virtual XML document is cre-
ated when the “document” function is encountered. The query then applies selection
and projection qualifiers to the virtual XML document using the subsequent X Path.
Step qualifiers and range expressions are applied to achieve selection and the document
path is applied to achieve projection. This path information isstored in the virtual XML
document and is used to form the document when the FLWR instruction that containsit
isfirst encountered. The formation of adocument is the process of creating an in-mem-
ory data structure matching the virtual XML document whose structure is defined in
the configuration database. This section first describes how XPath is applied to a docu-

ment and then details how documents are formed.

Adding anew object is straightforward for simple path navigation, i.e. “/”. The object
issimply added to the document’s path object. For recursive navigation, i.e. “//”, al
object’s of a given name that are descendants of the current object are added. This
could lead to multiple branches within the path. The PPerfX change prototype does not
currently allow a path to contain more than one branch. Hence, only the first descen-
dant in document order is added. To find the path to the descendant, the descendant’s
parent object is determined by generating a SQL query to the configuration database. If

33

the parent object does not match the object indicated before the recursive navigation, a
second query is made to find the parent’s parent object. The process continues until the

complete path is found.

Qualifiers are added by passing the virtual XML document the path of the qualified
object, the name of the object’s child that the qualifier is applied to, the equality type of
qualifier, the value to apply, and finally the data type of the value. A range expression
constrains the resulting data set from a particular minimum element to a maximum ele-
ment, for example from element 2 to 10. Since applying a range expression impliesthe
document is ordered, resultswill only be correct if the order field in the “child” tableis

specified.

A new document is formed each time an FLWR instruction is entered. For nested
FLWR statements, the document is re-formed each time it is encountered. This alows
different qualifiers to be applied to each iteration of the FLWR instruction. Qualifiers
added during the document’s configuration are permanently added, while qualifiers
added during the execution phase are only applied to the next formation of the docu-

ment.

An XML object class represents an object as defined in the “ object” table of the config-
uration database. It is formed by querying the configuration database for its relation,

order field, and order direction. Next, it determinesif it is the target object, i.e. the last

34

XPath node, and if the “ descendants’ flag is true. The descendants flag is used to
enable or disable adding the target object’s descendants to the virtual XML document.
Disabling descendantsincreases the efficiency of the PPerfX change prototype since the
subqueries for the descendants are not evaluated and only the target object’s children
areused inthe query. By default thisflag is set to false, but may be set to true using

the function call “ descendants("true”)” within the user’s X Query.

If thisis not the target node, the XML object creates anew XML object for the next
object in the path. If thisis the target object and the descendants flag istrue, a new
XML object is created for each of the target object’s child objects. The parent object
gueries the configuration database for all joins between the parent object and child
objects. Joins are stored in the parent object and applied when the child object is
opened. Each child object isformed until all descendents on this path are created. After
all descendent objects have been formed, the current XML object’s children are added.
The configuration database's “child” table is queried for alist of children for this
object. Each child is added to the object’s children list, ordered by identifier. The XML
object stores the child’s global XML schema name, the database field name, a Boolean
flag determining whether the child is an attribute, and second Boolean flag determining
whether the child is a node and should be part of the resulting XML document. The
final query to the configuration database determines the constraints to apply to this

object.

35

During the formation of each XML object, a helper classis employed to build and store
thisobject’s SQL statement. The “ sglBuild” class enables the SQL statement to be built
incrementally. The “FROM” clauseis set using the object’s “relation” field. The
“SELECT” clauseis built by adding each child’s“field” value. Permanent “WHERE”
statements are added using constraints while variant qualifiers are added just before
execution of the SQL query. “ORDER BY” clauses are set using the object’s order field

value.

4.4.4 Retrieving Data from a Relational Database Virtual XML Document

This section illustrates the process of retrieving datafrom avirtual XML document and
how the datais returned to the user. The virtual XML document begins by opening its
root object. The root object connects to the actual relational database containing the
performance data and executes an SQL query created during the formation of the
object. If arange expression is used with this object, the object will move to the first
record in the range. Next the object’s children are assigned values from the return data
set. The object then applies all joins to its child objects. Each child object is then

opened. The process repeats for each child.

Each iteration of the FLWR instruction moves to the next record in the data set. The
next record is defined as the next record in the target object. When the target object
reaches the last item inits set, it is closed and its connection to the database is
destroyed. Its parent object moves to its next record and the target object is re-opened,

36

joining to the parent object’s new dataitem. The processisthe same for objectson all

levelsin the path.

The virtual XML document returns data to the X Query processor using an xmiNode
object from the GNU’s libxml2 library [33]. The first time a process node, data or text,
isretrieved, a new xmINode is created by recursively moving through each object in
the virtual XML document. The object adds its own information and each of its chil-
dren, attributes and content, to the xmINode. Children with the “isNode” flag set to
false, are ignored. The XQuery processor can retrieve the entire xmlNode or a particu-
lar sub-node at a given point in the path. The XQuery processor then either sends the
entire retrieved portion of the xmINode or just the text. Every subsequent retrieval for
thisrecord is applied to this current xmINode. When the object is moved or closed, the

xmINode is destroyed.

37

5 Examples

This chapter gives an example of how PPerfXchange can be used to query remote par-
allel performance data. Section 5.1 details an example global schemafor paralel per-
formance data. Section 5.2 gives three example performance data databases created
from data gathered by Christian Hansen [12] for use with PPerfDB. Section 5.3 illus-
trates the mapping between the global schema and the performance data databases.
Finally, section 5.4 gives some example use cases for retrieving data from the perfor-

mance data databases using PPerfX change.

5.1 Example Parallel Performance Global Schema

Theinitial step in using PPerfXchangeisto develop a global schema. The specifics of
the schema is left to the participants. So long as each party agrees to the schema, any
schema can be used. Figure 12 (next page) gives an example globa schema hierarchy

for parallel performance data. Appendix A contains the corresponding schemafile.

The root element of the global XML schema is the application for which the perfor-
mance analysis data was generated. Each application contains the name of the applica-
tion, any general information the author wishesto publish, and one or more executions.
Each execution contains an unique identifier, various configuration information, the
start and end times of the performance data, and one or more observed metrics. The

author can also add zero or more “ other” elements. These are meant to allow additional
38

information about a specific execution but cannot be queried. Metrics have a name and
zero or more foci. Each focus contains one or more paths and zero or more data ele-

ments. Data elements contain atime value as well as the data val ue observed.

‘ application ‘
e | [oo]
[
1.0
‘ id HargumentsH platform ‘ ‘optimizationLeveI H other '
0.0

metric I ‘starttime‘ ‘ endtime ‘
| I |

‘ time H value ‘

Figure12: An Example Parallel Performance Global XML Schema

Shown is an example global schema hierarchy for parallel performance data.

5.2 Parallel Performance Database for SM G98

The example data used to show PPerfXchange's features is taken from a set of parallel
performance analysis data gathered by Christian Hansen [12]. The data was gathered
using the Vampir tracing tool for the application SMG98. SMG98 is a semicoarsing
multigrid solver used to solve systems of linear equations that compute finite differ-
ence, finite volume, or finite element discrete diffusion equations on distributed mem-
ory architectures [12]. The data for each execution of SMG98 was transformed from

39

Vampir’sdata format into a set of text files. One file contains alist of available metrics,
a second contains the available foci, and athird contains alisting of metric-focus pairs,
the start and end times of the execution, and the name of the file containing the gath-
ered datafor this pair. Each focus contains three paths, “/Code”, “/Process’, and
“/SyncObject.” Depending upon the specific execution, the number of metric-focus

pair entries, and hence the number of datafiles, rangesfrom 2 to 2199.

Three executions were used, SMG98 4, SMG98 8, and SMG98_27. The amount of
data generated is dependent on the number of metric-focus pairs observed, the amount
of time the application was allowed to run, and the number of observable events. Table

1 lists the number of metric-focus pairs, run time, and total size of the data.

Table 1: Test Executions

Execution N uIanal:i) fsr of Run time (sec.) ;\Irﬁ;ﬁlg(zl\?l gf)
SMG98 4 2 12.7 20
SMG98_8 1057 5.6 257
SMG98_27 2199 11 248

A PostgreSQL database was created to store the execution’s data. Initially, all execu-
tionsfor SMG were to be stored in asingle database. However, the number of data
value tuples exceed 20 million for just these three executions. SQL queries of the data
values had unsatisfactory execution times due to thelarge number of tuples. Asaresult,
a separate database was created for each execution. Note that the size of each database

could not be determined due to the lack of administration support in the PostgreSQL

40

database used. The databases share the same schema as shown in Figure 13. A utility
program was created, paral mport, which populated the three databases from the text

datafiles.

information vaue

id vid Data metrics
ame did < > did > mid

zz?nfo time mid *I Name

exedd vaue pathl «

ags peth2 < focus

optlevel pah3 < > fid

platform SatTime Name

problemSize endTime

sharedMemory

commProtocol

Figure 13: SM G98 Perfor mance Data Database Schema

Shown is the database schema used to store the SMG98 performance data. The data
table contains the metric-focus pairs and the start and end times. The metrics and focus
tables store the metric and focus names. The value table contains the observed perfor-
mance data. The information table contains information about the execution and appli-
cation.

5.3 Configuration of XML to SQL

With the SMG98 databases popul ated, the configuration database must be configured
to allow XQueriesto the PostgreSQL databases. The initial step isto determine the

mapping between the global XML schema and the database schema. Each level of the
global XML schema's hierarchy must be mapped to an entity in the database. Figures

14 (next page) and 15 (page 43) illustrate these mappings.

41

Global XML Schema SMG98 Database Schema

application information
id
— name ‘ > appname
— Information > applr.1fo
> execid
> args
> platform
id - > problemSize
» sharedMemory
—> arguments
» commProtocol
—> optimizationLevel Data
— platform did
mi
— other d
pathl
— starttime path2
. ath3
— endtime p
> startTime
> endTime

Figure 14: Mapping the Application and Execution Elements

Shown isthe mapping between the application and execution elementsin the global XML
schema with the corresponding tables in the SMG98 database schema. Most elements
map to afield in the information table with the exception of the start and end times, which
map to the data table. Since al data items have the same start and end times, only one
value from each is needed. Note that there are three “ other” elements mapping to informa-
tion specific to SMG98.

Once the mapping has been determined, the configuration database is populated. First
each database is entered in the documents table with the SMG98_4 database entered as
the smg98_4.xml document, SMG98_8 as smg98_8.xml, and SMG98_27 as
smg98_27.xml. Next, an sgl_connection entry is made for each database. Entries for
the five objectsin the XML schema, application, execution, metric, focus, and data, are

made in the objects tables. For application, metric, and data, the entries are straightfor-

ward since each has a direct mapping to an entity, information, metrics, and value

42

Global XML Schema SM G98 Database Schema

mid
> Name Data
did
focus > mid
fid T————» pathl
> path —————— > Name > path2
> path3
> path ——— focus Pt)
L+ path fid sianTlme
» Name endTime
focus
fid b
> Name value
did <

time —> time

- > vdue
value

Figure 15: Mapping the Metric, Focus, and Data Elements

Shown is the mapping for the global XML schema's metric, focus, and data el ements to
the SMG98 database tables. The metric element directly maps to the metrics table while
the focus element indirectly maps to the data tabl e through three instances of the focus
table. The data element maps directly to the value table. The combination of metrics iden-

tifier and the focus paths obtain the values comprising the selected metric-focus pair.

respectively. However, execution and focus are composites of multiple entities. Two
views, execution and paths, were created in each of the SMG98 databases. Execution
and focus are then mapped to the views. Each child element of the objects are entered
in the child table and mapped to a specific field in the corresponding entity. Child
objects are entered in the reference table and joins are added for the metric/focus and
focus/data relationships. Additional children were added, i.e. the metric identifier and

dataidentifier, to facilitate the joins. Finally, application was entered as the root object.

43

5.4 Use Cases

With the databases in place and the mapping configuration complete, PPerfXchangeis
now able to begin evaluating X Queries. This section gives a series of use cases (see
Table 2) that PPerfDB may need to retrieve remote performance analysis for usein an
experiment. The situation for each case is given as well as a corresponding X Query.
Each of use case’'s XQueries were sent to PPerfX change and a resulting XML docu-
ment retrieved. Performance measurements, such as theretrieval time, were not
recorded since the test use cases are meant to only illustrate the usefulness of

PPerfX change. Once afull implementation of PPerfXchange is developed, the perfor-
mance of PPerfXchange will be evaluated. Portions of the resulting XML documents

aregiven in Appendix B.

Table 2: Use Cases

Use XQuery

1| To determine the remote <documentList>
site’s published virtual XML | {

documents, PPerfDB querys FOR $x IN document("PPerfConf.xml")/documents

. . RETURN

the configuration database <document>

for alist of virtual XML doc- { $x/name}

uments as well the corre- <template> { $x/schemaltext() } </template>
sponding global XML </document>

schema. The schema'stag is |} ,
replaced with “template’ and | </documentList>
the schemaelement’stext is
inserted using the “ text()”
function.

Table 2: Use Cases

Use

XQuery

Oncealist of documentsis
obtained, PPerfDB now
determines what informa-
tion isavailable about the
applicationsin the
“smg98_8.xml” document.
While each document in the
example corresponds to a
single execution, avirtua
XML document may span
more than one execution.

<applicationlnformation>

{
FOR $x IN document("smg98_8.xml")/application

RETURN
<application>{ $x } </application>

</applicationl nformation>

Next, PPerfDB gathersalist
of information about the
available executions. Again,
the example document has
only asingle execution but
may span multiple runs.

<executionlnformation>
{
FOR $x IN document("smg98_8.xml")/application
/execution
RETURN
<execution> { $x } </execution>

}

</executionl nformation>

The information about the
available metricsis deter-
mined and the results are
placed into PPerfDB’s Event

Map.

<metriclnformation>
{
FOR $x IN document("smg98_8.xml")/application
/execution/metric
RETURN
<metric> { $x/nameltext() } </metric>

}

</metriclnformation>

Next, PPerfDB determines
what foci are available for
the metric “func_calls.”
PPerfDB now has a com-
plete Event Map and the
experiment may now begin
retrieving data.

<focusl nformation>
{
FOR $x IN document(*smg98_8.xml")/application
/execution/metric[name="func_calls"]
[/focus
RETURN
<func_calls> { $x } </func_calls>

}

</focusl nformation>

45

Table 2: Use Cases

Use XQuery
6| The scientist has selecteda | <smg98_8data>
focus from the Event Map { o
and wishes to visualize the FOR $x IN document("smg98_8.xml")/application
/execution

results. PPerfDB now
retrieves all performance
data for this focus from the
remote site.

/metric[name="func_calls"]

[focug] path1="/Code/MPI/MPI_Comm_size"]
[path2="/Process/4"]
[path3="/SyncObject/Communicator/0"]

/data

RETURN
<process4> { $x } </process4>
}
</smg98_8data>

The scientist wishesto only
analyze the focus data
between the time interval of
1 and 1.02 seconds. PPerfDB
retrieves only a subset of
data for the given focus.

<smg98_8data>
{
FOR $x IN document(*smg98_8.xml")/application

/execution

/metric[name="func_calls"]

[focug] path1="/Code/MPI/MPI_Comm_size"]
[path2="/Process/4"]
[path3="/SyncObject/Communicator/0"]

/data[time>1][time<1.02]

RETURN
<process4> { $x } </process4>
}
</smg98_8data>

46

Table 2: Use Cases

Use XQuery
8| The scientist wishesto com- | <smg98data>
pare the focus data from the <?T1998_8data>
S_rtr;]thhS_S.xmlf dOC]ch mentth FOR $x IN document("smg98_8.xml")/application
Wi e samefocusfromthe Jexecution

“smg98 27.xml” document.
Both documents are queried
in succession. Theresultsare
returned asasingle XML
document. Notethat thetime
intervals selected are meant
to reduce the size of the
resulting XML document.
They are not meant to corre-
spond to an actual perfor-
mance analysis experiment.

/metric[name="func_calls"]

[focug] path1="/Code/MPI/MPI_Comm_size"]
[path2="/Process/4"]
[path3="/SyncObject/Communicator/0"]

/data[time>1][time<1.02]

RETURN
<processA> { $x } </process4>
}
</smg98_8data>
<smg98_27data>
{
FOR $x IN document("smg98_27.xml")/application

/execution

/metric[name="func_calls"]

[focug path1="/Code/MPI/MPI_Comm_size"]
[path2="/Process/4"]
[path3="/SyncObject/Communicator/0"]

/data[time>7.7][time<7.74]

RETURN
<process4> { $x } </process4>
}
</smg98_27data>
</smg98data>

47

6 Related Work

The architecture and implementation of PPerfX change presented in chapters 3 and 4
are the results of research in three major areas. Section 6.1 describes the mediator con-
cept in which aunified processis created to access multiple databases using a global
schema for semantic integration. Section 6.2 presents work related to representing
XML and XML queriesin relational databases. Section 6.3 describes some of the work

surrounding the development of the X Query language.

6.1 Mediator sand Semantic I ntegration

The term mediator is used to describe a semi-autonomous module that manages parti-
tioned, i.e. distributed, information systems. The mediator is placed between the user
and the information system. The users see a single system and can make read-only que-
ries against thisunified view. The mediator receives this query and evaluatesit by issu-
ing sub-queries to particular data stores within the system. In Gio Wiederhold's 1991
paper Mediators in the Architecture of Future Information Systems [26], the author
details an architecture that uses mediators to abstract the details of a distributed infor-
mation system. The unified document hierarchy as described in section 4.3 is based
upon thisidea. A paper by Richard Hull, Managing Semantic Heterogeneity in Data-
bases: A Theoretical Perspective [13], discusses how mediators can be used for read-

only queries across data stores containing varying schemas.

48

Gio Wiederhold details two approaches for using mediators. Thefirst is a materialized
approach in which datafrom the various data storesis periodically updated into asingle
source. Data warehousing is an example of this approach. A second approach, which
PPerfX change adopts, is to use an integrated view, or virtual schema, across all data
stores. The virtual approach has the advantage of being able to query active data stores
but suffers from the complexity of needing to translate local schemas into the unified
view, and the added costs associated with it. For the materialized approach, only histor-
ical data may be viewed. If large volumes of data are present, the cost of querying this

large data store may outweigh the cost of mapping virtual schemas.

The concept of mediators has been studied for a variety of data stores. The paper
Object-Oriented Mediator Queriesto XML Data [16] discusses a method of using
object-oriented mediator queries to retrieve data from a collection of XML documents.
Querying Heterogeneous Information Systems Using Source Descriptions [10]
describes a method of querying the world wide web (WWW) called the information
manifold. The information manifold uses a“world view” to represent a virtua view

across multiple WWW documents.

The conceptsillustrated by these and other papers are presently used in commercial
database systems. One such application, Nimble [7], extensively uses XML to achieve
aunified model of the underlying data stores. Nimble uses the global -as-view approach

[11] inwhich XML queries are definitions for how to query the local data stores.

49

While Nimble and PPerfX change have similar architectures, PPerfX change was devel -
oped without prior knowledge of Nimble. Nimble was released in February 2002 after
PPerfX change was devel oped and implemented. However, the co-founder of Nimble,
Alon Halevy, has authored several papers on data integration including Logic-Based

Techniquesin Data Integration [11].

6.2 Representing and Querying a Relational Database Using XML

As the development of the PPerfX change prototype began, the W3C published their
working draft for the XQuery language [28]. While little work prior to this point had
been done in the trandation of XQuery to SQL, work had been done on related XML
Query languages. In particular, Pushing XML Queries Inside Relational Database [17]
by loana Manolescu, Daniela Florescu, and Donald Kossmann used the Quilt XML
guery language to show how such queries could be trandated into SQL. The authors
work uses a*“local asview” (LAV) approach, purposed by Alon Halevy [11] in which
the contents of a data store are described in terms of the global schema. The query is
reformulated in terms of the local data store, executed, and then trandated it back into
the global schema. Manolescu, Florescu, and Kossmann define a set of relations that
correspond to the structure of avirtual generic XML Schema. The local relations are
then described as avirtual XML document based upon the virtual generic schema. The
XML query isthen normalized, trandated into an SQL query, and evaluated by the

relational database.

50

A second approach that influenced PPerfXchange's design is given by SilkRoute [9].
SilkRoute offers two methods to represent an XML query as arelational database
query. Thefirstisavirtual view in which an XML query, in thiscase XML-QL, is
applied against virtual XML views representing entities within the relational database.
Each query istrandated into SQL via an intermediately query language called “Rela-
tional to XML Transformation Language” (RXL). However, the trandation process is
complex and may create a dightly differing result then the intended query. The second
method uses amaterialized XML document for the entire database. While this means

the query isnot acting on live data, no trandation step is needed.

For PPerfX change, some of the ideas expressed above have been implemented in the
PPerf X change prototype. However, aspects have been modified to better solve the
objectives of PPerfXchange. One area that both solutions do not address is how other
data stores can be queried and how virtual XML documents from multiple data stores
can be joined. If the prototype followed the approach given by Pushing XML Queries
Inside Relational Database [17], each class of data store, i.e. text, XML, object-ori-
ented databases, would need its own SQL -like query mechanism and a trand ation pro-
cessfrom an XML Query to this mechanism. Also, if multiple documentsare used in a
single query, and each document mapsto a different data store, then an additional
higher-order process will need to divide the query across the data stores and then join
the resulting data sets. For native XML documents, XML documents written in the glo-

bal schema, a complete XML query processor would need to be developed, passing the

51

result set to ahigher level XML query processor for additional processing. A second
unsolved issue is that several features of a XML query are difficult, if not impossible,
to trandate into SQL. One example is when a query needs to be materialized for inter-

mediate XML results. A second is support for user-defined functions.

The approach the PPerf X change prototype uses is to push only a small part of XQuery
into the relational database, |eaving the bulk of the processing to be done in the XQuery
processor itself. Only the X Path portion of an XQuery isused by avirtua XML docu-
ment to configure the mapping to the actual data set. The virtual XML document repre-
sents the entire object defined by the XPath, including children. The XQuery processor
then processes the virtual XML documents as if they were native XML documents.
While virtual XML documents would most likely be less efficient than an SQL proces-
sor and return larger than needed data sets for processing, this penalty is mitigated by

benefit of applying auniform process to all data stores.

In The Table and the Tree: On-Line Accessto Relational Data Through Virtual XML
Documents [2], the authors describe the ROLEX (Relational On-Line Exchange with
XML) system architecture. ROLEX isa SAX and DOM interface to arelational data-
base, specifically DataBlitz, in which relational data may be published asan XML doc-
ument for use with aweb server. DOM stands for “ Document Object Model” and
creates an in-memory tree data structure of an XML document. DOM allows for pars-

ing of the XML document and retrieval of specific elements within the document tree.

52

SAX isan event driven XML document parser for use with large XML documents or
used to model XML documentsin adifferent object model than DOM. The authors
determined that the techniques for trandating XML queriesto SQL as shownin
SilkRoute [8,9] were too costly for the high demand of aweb-server. Instead, they pro-
vide the interface for extracting relational data as an XML document and lets the XML
guery processor or web server handle any additional processing. PPerfXchange
adopted thisidea of only pushing part of the XML query into therelational database but

stopped short of creating a SAX and DOM interface.

The paper Efficiently Publishing Relational Data as XML Documents [22] describes
several methods for representing relational data asan XML document. This paper was
not found until after PPerfX change was designed and the prototype implemented. It is
unfortunate because several of the methods discussed could have been implemented
and might have greatly improved the performance of the relational database to virtual
XML document trandlation process. The approach used in PPerfXchange is described
by the authors as the “ stored-procedure approach”. This approach uses nested queries
tomodel the hierarchical XML model. For documentswith large hierarchies, the nested
gueries result in a considerable performance cost. Other approaches are the Redundant
Relation and Outer Union. Both join al relationsinto asingle view. Markers keep track
of the movement within the hierarchy, either in a column or row, and data is tagged

appropriately. Figure 16 (next page) illustrates this approach.

53

The differences between the two is that the Redundant Relation approach uses left-
outer joins to combine the relation while the Outer Union approach uses a combination
of right and left outer joins. The Redundant Relation approach will return atuplefor all
leaf nodes, even if that |eaf node contains no data. The outer union approach returns

only populated tuples thus reducing the result size and decreasing the amount of pro-

cessing needed.

Path Path Path Time Value

/Code /Process /SyncObj ect 1 10
/Code /Process /SyncObj ect 2 5
/Code /Process /SyncObj ect 3 6
/Code /Process /SyncObj ect 4 3
/Code/MPI | /Process /SyncObj ect 1 5
/Code/MPI | /Process /SyncObj ect 2 2
/Code/MPI | /Process /SyncObj ect 3 1
/Code/MPI | /Process /SyncObj ect 4 3

Figure 16: Alternative XML Representation Approaches

Shown is how the Redundant Relation and Outer Union approaches would view an XML
document in SQL.

6.3 XQuery

The direction of XQuery’s devel opment was heavily influenced by the document Data-
base Desiderata for an XML Query Language written by Dr. David Maier [18]. The

document outlines Dr. Maier’s desired characteristics for XQuery. This document

54

pushed the development of XQuery toward the “XML asdata’ instead of the “XML as
document” [14]. Thisfacilitated X Query’s support for relational query operations and

made it easier to translate XQuery syntax to SQL.

At the time the development of PPerfX change began, XQuery 1.0 [28] had just been
released by the W3C. At the time only two X Query processor implementations had
been created, one by Microsoft and one by FatDog Software. Both are commercial
products and unavailable for use with PPerfXchange. This condition lead to the devel-
opment of PPerfXchange's XQuery processor. Nearly nine months later, several more
implementations have become available. Notably, Galax [24] isin development at Bell
labs and is currently in alpharelease. Galax’s goal isto fully implement the entire
XQuery family [27-32] as an open source application. The current aphareleaseis used

as a module to Bell Labs DataBlitz database.

55

7 Conclusions and Future Wor k

This thesis has detailed the PPerf X change approach for retrieval of parallel perfor-
mance data from geographically dispersed, heterogeneous data stores. PPerfXchange
uses global XML schemas to describe acommon format for parallel performance data.
For each set of data a site wishes to publish, avirtual XML document is created. A vir-
tual XML document maps the published data set’s schemato an XML document based
on the global XML schema. PPerfXchange uses a configuration database to store
information about this mapping. Once a set of virtual XML documents is published by
asite, other sites may query these documents using the XML query language XQuery.
Since the amount of parallel performance datais often large, the use of XQuery alows
auser to retrieve a specific subset of performance data from the larger published set.
XQuery aso alowsthe user to define the format of the resulting data set for easier inte-

gration with the user’s local format.

Chapter 5 gives an example of how PPerfXchangeis used to retrieve parallel perfor-
mance data from aremote data store. The data store used was a PostgreSQL object-
relational database. The chapter shows how the global XML schemais mapped to the
PostgreSQL database schema and gives several example use cases. The use casesillus-
trate the XQuery expressions, path expressions, el ement constructors, and FOR expres-
sions, necessary to retrieve datafrom arelational database. Future versions of

PPerfX change should add the ability to join two or more documents, apply aggregate

functions, and sort documents. Other XQuery expressions would only need to be

56

implemented in order to fully support XQuery but are not necessary for the evaluation
of the PPerfX change approach. These unsupported expressions are: data types, most
built-in functions, user defined functions, process instructions, references, arithmetic
operation, comparison operations, logical operations, sequence-related operations, and
conditional expressions. Future versions of PPerfXchange may consider integrating an
open-source X Query processor, such as GALAX [15], instead of completing the cur-

rent XQuery processor.

The unified XML document hierarchy described in chapter 3, shows how multiple vir-
tual XML documents can be combined into a single view. While each virtual XML
document may map to asingle data store, unified XML documents allow an integrated
view of multiple data stores. Completion of the unified XML document is not abso-
lutely necessary. As shown in the use cases, performance data can be retrieved without
it. However, aunified XML document would allow for the abstracting of the SMG98
databases, each containing a single execution’s performance data, into asingle view
over all executions. Thisallows for simpler and more uniform queries and reduces the

amount of site specific information needed by users to form queries.

Additional virtual XML document classes and connection classes are needed to support
awider variety of data models and data stores, including native XML documents and
other structured text files. The supported structured text files would be those generated

from parallel performance analysistools such asthe text files used to create the SMG98

57

database described in chapter 5. Since virtual XML documents map a specific data
store's structure to the global XML schema, each type of structured text file may
require aunique virtual XML document. Also needed is the creation of a schema-to-
schema mapping tool to simplify the publishing of a data set asavirtual XML docu-

ment.

Since each site’s performance datais proprietary, future versions of PPerfXchange
should give administrators the ability to authenticate and log X Query requests. An
administrator should be able to grant or deny access to each particular published data
set depending upon privileges of the person sending the query. Also, logs should be
kept of all requests for administrative information. The use of encryption for sending

the XQuery and the resulting XML document is encouraged in future versions.

While the performance of PPerfXchange was not measured nor optimized, several per-
formance issues should be addressed in future versions. The main performance issueis
thetime to transfer data. While additional processing by the XQuery processor may
reduce the amount of datain some cases, the volume of datais still assumed to be large.
Currently, the PPerfX change prototype uses TCP to transport data across the network
connection. While TCPisreliable, the use of UDP should be researched since UDP
has |ess overhead than TCP and can be more efficient for bulk data transfer. A second
performance issue is the time to process an XQuery. Specifically, the relationa data-

base virtual XML document class can be modified to use a more efficient method of

58

modeling arelational database schema. The PPerfXchange prototype uses the “ stored-
procedure approach” but should investigate the use of the Outer Union approach [22]
as described in section 6.2. Also, areduction in the number of times the data is copied
within the XQuery processor would increase efficiency. The virtual XML document
first stores the data returned from the PostgreSQL database in a temporary data struc-
ture. A second copy is made when forming the resulting XML document and a final
copy is created when the resulting XML document is buffered for network transport.
Thefinal two copies could be eliminated if the libxml2 library [33] was not used and if
PPerfX change contained its own method of creating and transferring the resulting

XML document.

Although the prototype of PPerfXchange is not complete, it does alow for the evalua-
tion of the PPerfXchange approach. The overall goal of PPerfXchangeisto allow geo-
graphically dispersed collaborating scientists, specifically those scientists optimizing
applications for use on a parallel architecture, to easily exchange heterogeneous data.
To accomplish this goal, PPerfX change needs to overcome three main obstacles. The
first obstacle is the semantic integration of the heterogeneous data stores. To solvethis,
PPerfX change uses aglobal XML schema. Each site maps their data’s format and
semantics to the common format. A site needs to only trandate their own data into the
global XML schema but does not need to have knowledge of the specific formats used
by other sites. The second obstacle is each site may use different methods to store the

data. Some sites may use arelational database, while others may use text files. In

59

order to retrieve the data, the query writer should not need to know what data store is
being used by the remote site. To solve this, PPerfX change uses virtual XML docu-
ment classes to represent various data models and connection classes to connect to a
specific datastore. A virtual XML document maps a specific data store’s schemato the
global XML schema and retrieves the data. The final obstacle is the volume of data
that can be generated by parallel performance analysistools. Since a single execution
can generate hundreds of megabytes of data, the time to transfer the entire data set
would be lengthy. To limit the amount data retrieved to the specific data set needed to
aid in aparticular performance analysis, PPerfX change allows for the querying of
remote performance data using XQuery. Also, an XQuery defines aresulting XML

document’s format allowing for easier integration at the local site.

60

8 References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

Fabio Arciniegas. C++ XML. Indianapolis, IN: New Riders Publishing,
2002.

P. Bohannon, H.F. Korth, PP.S. Narayan. The Table and the Tree:
On-Line Access to Relational Data Through Virtual XML Documents.
Bell Laboratories, Murry Hill, NJ. Proceedings of the WebDB 2001
Workshop on Databases and the Web. May 2001. Santa Barbara, CA

Ronald Bourret. XML and Databases.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.
February, 2002

Rajkumar Buyya. High Performance Cluster Computing: Volume 1
Architectures and Systems. Prentice Hall, New Jersey, 1999.
Pages 33-34.

Justin Campbell, Daniel Grossman, Ana-Maria Popescu. Quilt23q -
An ML Sorage Schema and Query Engine for the Quilt Query
Language. University of Washington CSE 544 Term Paper.
http://www.cs.washington.edu/homes/grossman/projects/544proj ect
June 5, 2000.

Charles Donnelly, Richard Stallman. Bison: The YACC-compatible
Parser Generator. November 1995. Bison version 1.25
http://www.gnu.org/manual/bison-1.25/html_node/bison_toc.html

Denise Draper, Alon Y. Halevy, Daniel S. Weld. The Nimble XML Data
Integration System. Proceedings of ACM SIGMOD Conference on
Management of Data 2001. http://www.cs.washington.edu/homes/
alon/siteffiles'sgmod01-nimble.ps

Mary Fernandez, Atsuyuki Morishima, Dan Suciu. Efficient Evaluation
of XML Middle-ware Queries. 2001 SIGMOD Conference
http://www.research.att.com/~mff/files/final .pdf

Mary Fernandez, Atsuyuki Morishima, Dan Suciu, Wang-Chiew Tan.
Pushing Relational Data in XML: the SIkRoute Approach.

|EEE Data Engineering Bulletin , no. 24(2) , pp. 12--19, 2001
http://www.research.att.com/~mff/files_F292063957.pdf

61

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Alon Y. Halevy, Anand Rgaraman, Joann J. Ordille. Querying
Heterogeneous | nfor mation Sources Using Source Descriptions.
Proceedings of the 22nd VLDB Conference, Mumbai (Bombay),
India, 1996. http://dbpubs.stanford.edu:8090/pub/1996-61

Alon Y. Halevy. Logic-Based Techniquesin Data I ntegration.
University of Washington, May 1999
http://citeseer.nj.nec.com/391746.html

Christian Hansen. Towards Comparative Profiling of Parallel
Applications with PPerfDB. Portland State University Master’s
Thesis. October, 2001.

Richard Hull. Managing Semantic Heterogeneity in Databases:
A Theoretical Perspective. Proceedings ACM Symposium on
Principles of Databases (Invited Tutorial) (1997), pp. 51--61.
http://www-db-out.bell-l1abs.com/user/hull/pods97-tutorial .html

Howard Katz. An Introduction to XQuery.
http://mww-106.ibm.com/devel operworks/xml/library/x-xquery.html.

John R. Levine, Tony Mason, Doug Brown. lex & yacc. (second
edition) Sebastopol, CA: O’ Reilly & Associates, Inc., 1992

Hui Lin, Tore Risch, Timour Katchaounov. Object-Oriented Mediator
Queriesto XML Data. Proceedings of 1st International Conference on
Web Information Systems Engineering, (Vol 2), Hong Kong, China,
June 2000, pp 38-45. http://www.dis.uu.se/~udbl/publ/hui_xml.pdf

loana M anolescu, Daniela Florescu, Donald Kossmann. Pushing
XML Queries Inside Relational Databases. INRIA Domaine de
Voluceau-Rocquencourt, Le Chesnay Cedex, France.
http://ww.inriafr/rrrt/rr-4112.html. January 2001.

David Maier. Database Desiderata for an XML Query Language.
Query Languages 98.
http://www.w3.org/TandS/QL/QL 98/pp/maier.html

PostgreSQL 7.1 Documentation. http://www.postgresgl.org/idocs/
2001.

Erik T. Ray. Learning XML. Sebastopol, CA: O’ Reilly & Associates,
Inc., 2001.

62

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang,
David DeWitt, Jeffrey Naughton. Relational Database for Querying
XML Documents: Limitations and Opportunities. Proceedings of the
25th Very Large Database Conference, Edinburgh, Scotland, 1999.

Jayavel Shanmugasundaram, Eugene Shekita, Rimon Barr, Micheal
Carey, Bruce Lindsay, Hamid Pirahesh, Berthold Reinwald.
Efficiently Publishing Relational Data as XML Documents.

IBM Almaden Research Center, San Jose, CA

Proceedings of the 26th International Conference on Very Large
Databases, Cairo, Egypt, 2000.

J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Krishnamurthy, E.
Viglas, J. Naughton, |. Tatarinov. A General Technique for Querying
XML Documents Using a Relational Database System.

SIGMOD Record, September 2001

Jerome Simeon. GALAX. Bell Labs, Lucent Technologies.
http://db.bell_labs.com/galax

Karli Watson, Brian Smith, Darshan Singh, Denise Gosnell, Carvin Wilson,
Sam Ferguson, Warren Wiltsie, Paul Morris, Jan Narkiewicz, Jon Reid, Paul J
Burke, J. Michael Palermo IV. Professional SQL Server 2000 XML.
Appendix B pages 527-577. Wrox Press Ltd. Birmingham, UK. 2001.

Gio Wiederhold. Mediatorsin the Architecture of Future Information
Systems. |EEE Computer Magazine, March 1992.
http://www-db.stanford.edu/L | C/mediator.html

XML Schema. Part O: Primer, Part 1: Sructures, Part 2: Data Types.
W3C Recommendation. May 2001
http://www.w3.0rg/X ML/Schemattdev

XQuery 1.0: An XML Query Language. W3C Working Draft.
June 2001. http://www.w3.org/TR/xquery/

XQuery 1.0 Formal Semantics. W3C Working Draft. June 2001
http://www.w3.org/TR/query-semantics/

XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft
June 2001. http://www.w3.org/TR/query-datamodel/

XML Query Use Cases. W3C Working Draft. June 2001
http://www.w3.org/TR/xmlquery-use-cases

63

[32]

[33]

[34]

XML Syntax for XQuery 1.0 (XQueryX). W3C Working Draft
June 2001. http://www.w3.org/TR/xqueryx

The XML C Library for Gnome. http://www.xmlsoft.org

Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura,
Shunsuke Uemura. XRel: A Path-Based Approach to Sorage and
Retrieval of XML Documents Using Relational Databases.

ACM TOIT, 1(1), 2001. http://db-www.aist-nara.ac.jp/members/
Yoshikawa/paper/TOI T2001-author Copy.pdf

64

Appendix A: Example Global XML Schemafor Parallel Performance Data

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- edited with XML Spy v4.3 (http://ww. xm spy. com
by Mat Col grove -->
<xs:schema xm ns:xs="http://ww.w3. org/ 2001/ XM_Scherma"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">
<xs: el enent name="Application">
<xs:conpl exType>
<xs: conpl exCont ent >
<xs: extension base="ApplicationType"/>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: el ement >
<xs: el enent name="netric" type="metricType"/>
<xs: conpl exType name="Applicati onType">
<Xs:sequence>
<xs: el enent nane="Nane" type="xs:string"/>
<xs: el enent ref="execution" maxQOccurs="unbounded"/ >
<xs: el enent nanme="Information" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: el enent nanme="nane" type="xs:string"/>
<xs: conpl exType name="nmetri cType">
<Xs:sequence>
<xs: el enent nanme="nanme"/>
<xs: el enent ref="focus" maxCccurs="unbounded"/ >
</ xs: sequence>
</ xs: conpl exType>
<xs: el enent name="execution" type="executionType"/>
<xs: conpl exType name="executi onType">
<Xs:sequence>
<xs: el enent nanme="id">
<xs: si npl eType>
<xs:restriction base="xs:integer">
<xs: whi t eSpace val ue="preserve"/>
</xs:restriction>
</ xs:sinpl eType>
</ xs: el ement >
<xs: el enent nanme="argunments" type="xs:string"/>
<xs: el enent name="optim zati onLevel " type="xs:integer"/>
<xs: el enent name="platform' type="xs:string"/>
<xs:elenent ref="metric" maxOccurs="unbounded"/ >
<xs: el enent nanme="other" maxOccur s="unbounded"/ >
<xs: el enent nanme="startTi me" type="xs:float"/>
<xs: el enent nanme="endTi ne" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: el enent name="focus" type="focusType"/>
<xs: el enent nane="data" type="dataType"/>

<xs: conpl exType nane="dat aType" >
<Xs:sequence>

<xs: el enent nanme="val ue" type="xs:double"/>
<xs: el enent name="time" type="xs:long"/>

</ xs: sequence>

</ xs: conpl exType>

<xs: conpl exType nane="focusType">
<Xs:sequence>

<xs: el enent nanme="path" type="xs:string"

maxQccur s="unbounded"/ >
<xs: el enment ref="data" m nOccurs="0"
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

maxQccur s="unbounded"/ >

66

Appendix B: Resulting XML Documents from the Use Cases
Given isthe resulting XML documents, or portions of the resulting XML documents,
for the corresponding use case. The use caseis given along with the size of the result-

ing XML document.
Table 3: Resulting XML Documents

Use Case Resulting XML Document

1) What documentsare | <?ml version="1.0" encoding="UTF-8"?>
available at theremote | <'-- PPerfXchange generated document from test site.
; Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
3te r?n d Wh? schemas Query id ="1893159416-1026" -->
o they Use" <documentList>
<document>
Size: 1KB <name>PPerfConf .xml</name>
<schema> pperfconfig.xsd</schema>
</document>
<document>
<name>smg98_4.xml</name>
<schema>paradata.xsd</schema>
</document>
<document>
<name>smg98_8.xml</name>
<schema>paradata.xsd</schema>
</document>
<document>
<name>smg98_27.xml</name>
<schema>paradata.xsd</schema>
</document>
</documentL ist>

2) What is the applic& <?xml version="1.0" encoding="UTF-8"?>
tion information for <!-- PPerfX change generated document from test site.
Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
SMG98_8.xml? Query id ="1968639724-1006" >
. <applicationlnformation>
Size: 1KB <application>
<name>smg98</name>
<information>Data gathered by Christian Hansen for histhesis</
information>
</application>
</applicationl nformation>

67

Table 3: Resulting XML Documents

Use Case

Resulting XML Document

3) What isthe
execution information
for SMG98_8.xml?

Size: 1 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerf X change generated document from test site.
Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
Query id ="1929940265-1026" -->
<executionlnformation>
<execution id="smg_8">
<optimizationlevel>blue</optimizationlevel>
<platform>40x40x40</platform>
<sharedM emory>yes</sharedM emory>
<commProtocol>ip</commProtocol>
<starttime>0</starttime>
<endtime>5.600076</endtime>
<arguments>basi c</arguments>
</execution>
</executionlnformation>

4) What metrics are
availablefor the
SMG98_8 execution?

Size: 1 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerfX change generated document from test site.
Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
Query id ="1633500571-1026" -->
<metriclnformation>
<metric>func_calls</metric>
<metric>msg_bytes</metric>
<metric>func_duration</metric>
<metric>msg_deliv_time</metric>
</metriclnformation>

68

Table 3: Resulting XML Documents

Use Case

Resulting XML Document

5) What foci are avail-
able for the metric
“func_calls’ and execu-
tion SMG98_87?

Size: 51 KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerf X change generated document from test site.
Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
Query id ="2097126748-1026" -->
<focuslnformation>
<func_calls>
<focus>
<path1>/Code/M PI</path1>
<path2>/Process</path2>
<path3>/SyncObject</path3>
</focus>
</func_calls>
<func_calls>
<focus>
<path1>/Code/MPI/MPI_Allgather</path1>
<path2>/Process</path2>
<path3>/SyncObject</path3>
</focus>
</func_calls>
<func_calls>
<focus>
<path1>/Code/MPI/MPI_Allgather</path1>
<path2>/Process/1</path2>
<path3>/SyncObject</path3>
</focus>
Results continue.

69

Table 3: Resulting XML Documents

Use Case

Resulting XML Document

6) Return all the data
from SMG98_8.xml
given the metric
“func_calls’ and the
focus “/Code/MPI/
MPI_Comm_size,
/Process/4, /SyncOb-
ject/Communicator/0.”

Size: 400 KB

Header Omitted
<data>
<value>10</vaue>
<time>0.456719</time>
</data>
</process4>
<process4>
<data>
<value>1l</value>
<time>0.457316</time>
</data>
</process4>
<process4>
<data>
<value>12</vaue>
<time>0.457363</time>
</data>
</process4>
<process4>
<data>
<value>13</vaue>
<time>0.467556</time>
</data>
Results continue

70

Table 3: Resulting XML Documents

Use Case

Resulting XML Document

7) Return all the data
between 1 and 1.02
seconds from
SMG98_8.xml given
the metric “func_calls’
and the focus*/Code/
MPI/MPI_Comm_size,
/Process/4, /SyncOb-
ject/Communicator/0.”

Size: 4 KB

Header omitted
<data>
<value>611</value>
<time>1.007649</time>
</data>
</process4>
<process4>
<data>
<value>612</value>
<time>1.007709</time>
</data>
</process4>
<process4>
<data>
<value>613</value>
<time>1.00853</time>
</data>
</process4>
<process4>
<data>
<vaue>614</value>
<time>1.008592</time>
</data>
Results continue

71

Table 3: Resulting XML Documents

Use Case

Resulting XML Document

8) Return all the data
between 1 and 1.02
seconds from
SMG98_8.xml and the
data between 7.7 and
7.74 seconds from the
SMG98_27.xml given
the metric “func_calls’
and the focus“/Code/
MPI/MPI_Comm_size,
/Process/4, /SyncOb-
ject/Communicator/0”.

Size: 5KB

<?xml version="1.0" encoding="UTF-8"?>
<!-- PPerf X change generated document from test site.
Contact: Mathew Colgrove Email: colgrove@cs.pdx.edu
Query id ="929202754-1026" -->
<smg98data>
<smg98_8data>
<process4>
<data>
<value>609</value>
<time>1.006873</time>
</data>
</process4>
<process4>
<data>
<value>610</value>
<time>1.006954</time>
</data>
</process4>

</smg98_8data>
<smg98_27data>
<process4>
<data>
<value>5</value>
<time>7.729737</time>
</data>
</process4>
<process4>
<data>
<value>6</value>
<time>7.729837</time>
</data>
</process4>
<process4>
<data>
<value>7</value>
<time>7.73039</time>
</data>
Results continue

72

	Querying Geographically Dispersed, Heterogeneous Data Stores: The PPerfXchange Approach
	Let us know how access to this document benefits you.
	Recommended Citation

	1 Test Executions
	2 Use Cases
	3 Resulting XML Documents
	1 An Architectural Overview of PPerfDB
	2 An Example Merged Event Map
	3 Comparing CPU Idle Time For Two Executions
	4 Components of an XQuery
	5 An Architectural Overview of PPerfXchange
	6 The Unified XML Document Hierarchy
	7 An Example XQuery
	8 Bison Equivalent Grammar for an XQuery Grammar Rule
	9 Example Flow of Process Instructions and Process Nodes
	10 The Configuration Tables
	11 Translating a Relational Database Schema to a Virtual XML Document
	12 An Example Parallel Performance Global XML Schema
	13 SMG98 Performance Database Schema
	14 Mapping the Application and Execution Elements
	15 Mapping the Metric, Focus, and Data Elements
	16 Alternative XML Representation Approaches
	1 Introduction
	2. Background
	2.1 PPerfDB
	2.2 XML
	2.3 XQuery
	3 The PPerfXchange Architecture
	3.3 Unified, Virtual, and Native XML Documents
	The configuration database contains the information needed for PPerfXchange to access and model t...
	4. The PPerfXchange Prototype Implementation
	4.1 Sending an XQuery
	4.2 Parsing the Query
	4.3 Process Nodes and Process Instructions
	4.4 Virtual XML Documents
	4.4.1 Configuring a Virtual XML Document
	4.4.2 Representing Global XML Schemas in a Relational Database
	4.4.3 Forming a Relational Database Virtual XML Document
	4.4.4 Retrieving Data from a Relational Database Virtual XML Document

	5 Examples
	5.1 Example Parallel Performance Global Schema
	5.2 Parallel Performance Database for SMG98
	Table 1: Test Executions

	5.3 Configuration of XML to SQL
	5.4 Use Cases
	Table 2: Use Cases
	6 Related Work
	6.1 Mediators and Semantic Integration
	6.2 Representing and Querying a Relational Database Using XML
	6.3 XQuery

	7 Conclusions and Future Work
	Appendix A: Example Global XML Schema for Parallel Performance Data
	Table 3: Resulting XML Documents

