
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

2004

PPerfGrid: A Grid Services-Based Tool for the PPerfGrid: A Grid Services-Based Tool for the

Exchange of Heterogeneous Parallel Performance Exchange of Heterogeneous Parallel Performance

Data Data

John Jared Hoffman
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hoffman, John Jared, "PPerfGrid: A Grid Services-Based Tool for the Exchange of Heterogeneous Parallel
Performance Data" (2004). Dissertations and Theses. Paper 2664.
https://doi.org/10.15760/etd.2657

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2664&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2664
https://doi.org/10.15760/etd.2657
mailto:pdxscholar@pdx.edu

PPERFGRID: A GRID SERVICES-BASED TOOL FOR THE EXCHANGE OF

HETEROGENEOUS PARALLEL PERFORMANCE DATA

by

JOHN JARED HOFFMAN

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Portland State University
2004

ACKNOWLEDGMENTS

I would like to thank the following people for their help with this thesis: Dr. Karen

Karavanic for the opportunity to work on PPerfGrid and for her guidance throughout

the project, Andrew Byrd for his help in database and systems administration, and

Kathryn Mohror for advice and moral support.

i

TABLE OF CONTENTS

Acknowledgments i

List of Tables v

List of Figures vi

 1 Introduction 1

 2 Related Work 5

 2.1 Data Warehousing 5

 2.2 Database Federation 6

 2.2.1 Database Integration and Mediation 6

 2.2.2 Application Integration 7

 2.2.3 Semantic Integration 8

 2.3 Grid-specific Virtualization Services 10

 2.4 Parallel Computing Performance Tools 12

 3 Technology Overview 15

 3.1 Web Services 15

 3.1.1 A Typical Web Services Scenario 15

 3.1.2 Extensible Markup Language (XML 17

 3.1.3 Simple Object Access Protocol (SOAP) 18

 3.1.4 Web Services Definition Language (WSDL) 18

 3.1.5 Universal Description, Discovery, and Integration (UDDI) 18

 3.2 Grid Services 19

ii

 4 The PPerfGrid Architecture 21

 4.1 Architecture Overview 22

 4.2 Data Layer 22

 4.3 Mapping Layer 22

 4.4 Semantic Layer 23

 4.5 Services Layer 27

 4.6 Virtualization Layer 29

 4.7 Using PPerfGrid 29

 5 The PPerfGrid Implementation 32

 5.1 Data Layer Implementation 32

 5.2 Mapping Layer Implementation 32

 5.3 Semantic Layer Implementation 33

 5.3.1 PPerfGrid Application 34

 5.3.1.1 Attribute Discovery 34

 5.3.1.2 Querying Executions 35

 5.3.1.3 Creation of Execution Grid Services 35

 5.3.1.4 PPerfGrid Manager 35

 5.3.2 PPerfGrid Execution 36

 5.3.2.1 Foci, Metric, Type, and Time Discovery 36

 5.3.2.2 Querying Performance Results 37

 5.3.2.3 Performance Result Caching 38

iii

 5.4 Services Layer Implementation 39

 5.5 Virtualization Layer Implementation 41

 5.5.1 Service Publishing and Discovery 41

 5.5.2 Application Query Panel 43

 5.5.3 Execution Query Panel 44

 5.5.4 Performance Results Visualization 45

 6 Experiments and Results 47

 6.1 Data Sources 47

 6.2 Performance Measurement Method 48

 6.3 Hardware and Network 48

 6.4 Grid Services Overhead 48

 6.5 Scalability 51

 6.6 Performance Results Caching 53

 7 Future Work 55

 8 Conclusions 58

 9 References 60

iv

LIST OF TABLES

 1 PPerfGrid Application PortType 34

 2 PPerfGrid Execution PortType 37

 3 OGSA PortTypes 39

 4 PPerfGrid Overhead 50

 5 PPerfGrid Caching 54

v

LIST OF FIGURES

 1 A Typical Web Services Scenario 16

 2 PPerfGrid Architectural Layers 21

 3 PPerfGrid Component Interaction 30

 4 Mapping Layer Example 33

 5 Semantic Layer Example 38

 6 Services Layer Example 40

 7 Virtualization Layer Example 42

 8 PPerfGrid Client: Service Publishing and Discovery 43

 9 PPerfGrid Client: Service Application Query Panel 44

 10 PPerfGrid Client: Execution Query Panel 45

 11 PPerfGrid Client Visualization Panel 46

 12 PPerfGrid Scalability 52

vi

1 Introduction

Modern, large-scale scientific and engineering projects frequently involve

collaboration between groups of scientists whose proximity to one another ranges

from the same lab to completely different organizations dispersed in a variety of

countries around the world. In addition, the groups working on these projects may

utilize heterogeneous computing resources, information systems, and instruments to

do their research [21].

With the emergence of low-cost, computing clusters built using commodity-

off-the-shelf (COTS) hardware components and free software, a greater number of

scientists and engineers than ever before have access to cost-effective parallel

computing [7], and they utilize parallel systems to run a variety of data-intensive and

compute-intensive applications. The applications that are run on high performance

parallel computers tend to have long runtimes and be extremely hard to optimize. A

variety of analysis tools [37, 1, 27, 38] have been developed that gather performance

data during the execution of an application, allowing system users to diagnose and

repair performance problems. The use of these analysis tools can significantly

increase the performance of an application.

While performance tools typically analyze a single execution of a parallel

application, worthwhile information can also be gained by comparing data from

multiple executions of an application, even when the execution data has been

generated by different analysis tools from runs in different hardware environments.

However, performance tools produce data that has several barriers to use in this kind

of collaboration. Performance data is often stored using a variety of different schemas

1

and in a variety of different formats, from text files, to relational databases, to native

XML. Performance tools also produce large quantities of data, possibly hundreds of

terabytes for one execution of an application. Finally, a variety of different platforms

and implementation languages are used in the storage and management of

performance data, making system interoperability a challenge.

With the goal of overcoming these barriers to parallel performance data

collaboration, namely data heterogeneity, large amounts of data, and lack of system

interoperability, this thesis presents PPerfGrid. This thesis demonstrates that

PPerfGrid is a useful, Grid services-based tool for efficiently sharing performance

data between geographically dispersed locations and collaboration in the analysis of

this data.

Data heterogeneity is resolved in PPerfGrid by abstracting the concepts

common to parallel computing performance data as semantic objects. These semantic

objects, the Application and Execution, have standard interfaces that define how they

are accessed by clients. The implementation of the Application and Execution

semantic objects for each data store provides a mapping to their heterogeneous

formats and schemas. These Application and Execution semantic objects are

deployed as Grid services. Grid services enable software components to be exposed

on the Web as unique, stateful instantiations of static service concepts (e.g.

Application and Execution), which communicate using platform and language-neutral

protocols. Grid services enable a uniform, virtual view of the performance data stores

being compared. This view is uniform because, regardless of the formats or schemas

of the data stores, data from different organizations is accessed through the same

2

interfaces. This view is virtual because the use of Grid services provides location

transparency—regardless of where the data stores are located, clients access them as if

they were local software components.

The use of Grid services enables PPerfGrid to deal with large parallel

performance data stores more efficiently. By instantiating Application and Execution

Grid services on the same machine as the performance data store and providing

focused query interfaces, data transfer is minimized. Application and Execution Grid

services also perform data caching and can be dynamically distributed across several

hosts, improving scalability and performance by taking advantage of parallelism.

Lack of system interoperability is also resolved by using Grid services. Grid

services communicate using platform and language-neutral protocols over the Web,

and the Web services architecture that provides the basis for Grid services is available

for a wide variety of different platforms and languages. Therefore, organizations can

publish their performance data for use with PPerfGrid regardless of their computing

platform or implementation language.

PPerfGrid expands on previous work done by Portland State University's

PPerfDB Group. PPerfDB [28, 23] is a tool that can analyze multiple sets of parallel

computing performance data, regardless of the analysis tool used to collect the data.

PPerfXchange [9] is a PPerfDB module with similar goals to PPerfGrid but with a

more traditional client/server architecture.

This thesis details the approach taken in developing PPerfGrid. Section 2

discusses other research related to this project. Section 3 provides general background

on the technologies utilized in PPerfGrid, focusing on the components that make up

3

the Grid services architecture. Section 4 provides a description of the architecture of

PPerfGrid. Section 5 details the implementation of PPerfGrid. Section 6 presents

tests designed to measure the overhead and scalability of the PPerfGrid application.

Section 7 suggests future work, and Section 8 concludes the thesis.

4

2 Related Work

The PPerfGrid project is just one example of an area of information integration

known as virtualization services. This section describes some of the major projects in

each category of virtualization services and how they relate to PPerfGrid.

2.1 Data Warehousing

Data warehousing deals with heterogeneous data stores by extracting

information from each source, translating and filtering the data as appropriate,

merging it with data from other sources, and storing it in a centralized repository.

Queries are evaluated directly at the repository, without accessing the original data

stores. Because all data is stored in a single location in this approach, data

warehouses can benefit from efficient storage and fast searching. However, because

the data is copied, data warehouses suffer from a latency problem, where information

in the warehouse can be out of date with respect to the source, depending on the

frequency of updates [48].

Many examples of data warehouses exist, including the Protein Data Bank

(PDB), the Alliance for Cell Signaling (AFCS), the Interuniversity Consortium for

Political and Social Research (ICPSR), and the Incorporated Research Institutions for

Seismology (IRIS). An emerging model is to package a data warehouse together with

a software stack (OS, database system, system management software, and Grid

software) and a hardware platform (IBM's Shark), creating a self-contained storage

appliance that acts as a building block for a Data Grid—a GridBrick [34].

In order to avoid the problems of latency and the potentially large amounts of

storage space required to maintain copied data in a central location, data warehousing

5

was not used in the design of PPerfGrid.

2.2 Database Federation

In contrast to data warehousing, a database federation leaves its members' data

at their respective source locations. When a client makes a request for data, the

request is sent to the appropriate source locations, who each handle the query in their

own way. The query results from each source location are then combined as

appropriate and returned to the client. The main types of database federation are

database integration and mediation and application integration.

2.2.1 Database Integration and Mediation

In a mediated architecture, an extra software layer composed of mediator

modules is inserted between the client and the server, and the mediators bring source

information into a common form. A mediator may have to use multiple standards to

access its resources but can present a single interface to the client [49, 50].

Data stores do not present all of their data to the federation, but instead publish

a view of their data that adheres to the mediator data model. In many cases, in order

to publish this view, a data store must utilize a wrapper to translate source data into

the common format and structure of the mediator model. A formal query language,

like SQL or XQuery can be used to make queries against the mediated model [34].

The XMediator system from Enosys Software is an example of the wrapper-

mediator database integration approach. The wrappers, called XMLizers, access

multiple, distributed, heterogeneous information sources and export Virtual XML

views of them. All the exported views are integrated into a Virtual Integrated XML

(VIX) database. The VIX database supports the creation of virtual views and queries

6

using XQuery. Queries and views are translated into the proprietary XCQL Algebra,

combined into a single algebra expression/plan, and executed. The query processor

then lazily evaluates the result to XML, using an appropriate adaptation of relational

database iterator models [35, 36].

InfoGrid, an application developed by a group from the Imperial College of

Science Technology and Medicine in London, is another example of the wrapper-

mediation approach. However, instead of using a built-in, specialized query language

and query-processing engine, InfoGrid allows its clients to use the native query

mechanisms of the remote resources. In this case, the role of the mediator middleware

is to connect the users transparently to the remote resources, ensuring that they have

all knowledge about the resources available and providing them with the tools

required to construct heterogeneous queries and combine the results [16].

PPerfGrid differs from these two applications primarily in that it accesses data

through an application interface (see next section), instead of a full-featured query

language.

2.2.2 Application Integration

Application integration differs from the approaches above in that it employs a

programming language and its associated data model (e.g. an object-oriented class

hierarchy) for its integration. Data stores are wrapped, with associated behaviors and

metadata, to return well-defined objects in the language model. Once the source data

is represented as objects, arbitrary manipulation of these objects is possible using the

programming language [10]. This is the general approach taken in PPerfGrid.

One example of application integration is the Information Integration Testbed

7

project at the San Diego Supercomputing Center. Like PPerfGrid, the I2T Testbed

wraps data stores in the form of Web services, publishing a service interface (WSDL)

rather than exporting database views and query capabilities. This approach has some

advantages because it provides a uniform interface to both data and computational

services and therefore can be used to better control the types of queries/requests

accepted by a source and the corresponding resources consumed [5]. Unlike

PPerfGrid, the I2T Testbed does not leverage the additional functionality that Grid

services provide by extending Web services, namely the addition of stateful service

instances which enable optimizations that will be discussed in sections 4, 5, and 6 of

this thesis.

2.2.3 Semantic Integration

Semantic data integration is required when communities (different labs or

scientific disciplines) have created data stores that describe the same concepts but use

different terminologies. Semantic integration requires the definition of formal

terminology or ontology structures to represent the concepts in each data source.

The main purpose of an ontology is to make explicit the information content in

a manner independent of the underlying data structures that may be used to store the

information in a data repository. Ontologies are thus abstractions and can describe

different types of data such as relational tables and textual and image documents.

In this approach, users deal with ontologies (semantic information) instead of

dealing with multiple heterogeneous data repositories. An ontology also defines a

language, or set of terms, that will be used to formulate queries, So, users formulate

queries over ontologies and the system has the responsibility of managing the

8

heterogeneity and distribution in the repositories, usually through some form of

mediation [31].

Many examples of ontology-based systems exist. The TSIMMIS project [8] is

primarily focused on the semi-automatic generation of wrappers, translators and

mediators that map information in an object exchange model to the underlying

structured or unstructured data. The InfoSleuth project [8] grew out of the Carnot

project, and its focus is on Web searching. A user makes requests to a software agent

using ontological objects, and this agent in turn communicates with other types of

agents (Broker Agents for advertising agent capabilities and routing requests,

Resource Agents for mapping from the common ontology to a database schema, etc.)

to return appropriate data to the user.

PPerfGrid uses a simple and informal ontology implicitly in its Grid Service

object model. The Application and Execution Grid services and Performance Results

are concepts represented in a hierarchy, with Application at the root of the tree and

branching to one or more Executions, which in turn branch to one or more

Performance Results. Instances of concepts are created when data is retrieved from

the database(s) underlying the ontology, or PPerfGrid installation. In fact, the

interface to OBSERVER's Ontology Server [31] is similar in many ways to the

interface structure of PPG's Application and Execution services: OBSERVER's Get-

concepts(WN) -> { print-media, dictionary, book, ...},

Size-of(book,WN) -> 1005, and Get-extension('[pages] for

dictionary',WN) -> <tuple1, tuple2, ... > “services” act like

9

PPG's getExecQueryParams(), getAppInfo(), and getExecs(attrib,

val, operator) methods respectively.

While PPerfGrid's ontology is represented implicitly, through its object model,

interfaces, workflow, and informally specified semantics, almost all ontology-based

systems represent their ontologies with some form of description logic language [45].

These description logic languages also classify queries, which gives ontology-based

systems a more complex, but potentially more expressive, method of asking questions

about data. In the future, PPerfGrid could be extended to accept a description logic

language queries.

2.3 Grid-specific Virtualization Services

The Open Grid Services Architecture (OGSA) does provide the basic

architectural structure and mechanisms for creating service-oriented infrastructure and

can be applied to the challenges of integrated heterogeneous data stores, as has been

presented in this thesis. However, several Grid projects are attempting to generalize

distributed data access on the Grid and provide a suite of Grid services to meet the

requirements of data-intensive applications.

The Data Access and Integration Services (DAIS) Working Group of the

Global Grid Forum has produced a specification for OGSA Data Services. These

services extend the functionality provided by the OGSI by defining basic service data

and/or operations for representing, accessing, creating, and managing data services

[13]. A reference implementation of DAIS has been produced by OGSA-DAI, a UK

project jointly funded by government and industry [11]. At the time this thesis was

written, the DAIS specification had not yet been finalized and was therefore

10

considered promising but not mature enough to be incorporated into the

implementation.

The Chimera project is an effort to produce a Virtual Data Grid—a scalable

system for managing, tracing, communicating, and exploring the derivation and

analysis of diverse data objects. Chimera grew out of the GriPhyN project, which is

developing Grid technologies for domains such as high energy physics and astronomy,

where petrabyte-scale datasets are collected and analyzed. In Chimera's model, the

view of a data system is expansive, with data objects (e.g. a file or a RDMS table), the

computational procedures used to manipulate the data (transformations), and the

computations that apply these procedures to data (derivations and invocations) are

treated as first class entities which can be published, discovered, and manipulated

[14].

Chimera relates to PPerfGrid in several ways. PPerfGrid has Application and

Execution abstractions that provide virtual views of data through calls to uniform

interfaces. The implementation of these interfaces in turn maps to the local data store.

Chimera takes a more generic and flexible approach. Each dataset maintains a

descriptor, which tells a transformation how the dataset is mapped onto a storage

device. Transformations are typed computational procedures (function definitions),

which take arguments and a reference to a dataset and perform create, delete, read,

and/or write operations. Derivations and invocations can be thought of as a record of a

specific function call with a given set of arguments, context information (date, time,

processor, and OS), and potentially a reference to a new, transformed dataset replica.

Both Chimera and PPerfGrid, therefore, shield the user from the low-level

11

details of how data is represented by providing access through abstract data objects

(Applications and Executions for PPerfGrid and datasets for Chimera) and allow

operations on this data by providing an interface to produce virtual data views.

Chimera's architecture differs from PPerfGrid in that datasets, transformations,

derivations, and invocations are first class entities, allowing a variety of different

styles of applying procedures to datasets, including collocating the procedure with the

data, shipping the procedure to the data, shipping the data to the procedure, and

shipping the procedure and data to another computer. These different styles allow

more flexibility in planning Grid resource allocation.

Chimera presents very promising ideas and deserves to be considered for

future work by the PPerfGrid group. However, its existence was not discovered until

late in PPerfGrid's development. In addition, the current release of Chimera is based

on an older, pre-Web services/Grid Services version of the Globus Toolkit, and

therefore does not have some of the compelling interoperability features of GT3.2.

2.4 Parallel Computing Performance Tools

The PerfDMF Project [25] addresses objectives of performance tool

integration, interoperation, and reuse. In PerfDMF, performance data is stored in a

relational database, called the profile database, with a standard schema for

representing performance data. The entities in this schema include APPLICATION,

EXPERIMENT, TRIAL, METRIC, INTERVAL_EVENT, and ATOMIC_EVENT. The

PerfDMF architecture includes a Java API that abstracts query and analysis operations

into a programmatically accessible, non-SQL form which is intended to complement

the SQL interface. The API supports both an object-oriented query mechanism and an

12

object wrapped representation, which hide the complexity of the profile database from

the analysis program coder. The PerfDMF Project has also developed two clients.

ParaProf is a platform for graphically browsing profile data through the PerfDMF

API. The trial browser presents a tree browser for the application, experiment, and

trial hierarchy and includes charting and summarizing capability.

While the PerfDMF Project and the PPerfGrid and PPerfDB Projects share

some of the same goals, there are some important differences. PerfDMF is designed

to allow the import of parallel profile data from multiple sources through embedded

translators to a profile database with a standard schema. In contrast, PPerfGrid's

approach is to leave the performance data in its original format and location and

provide a uniform, virtual view of the data to users over the Grid. These two

approaches present some interesting possibilities for collaboration. For example,

PPerfGrid could be used to expose a PerfDMF profile database for analysis with

performance data from other locations.

The Prophesy Project [43] is a performance analysis and modeling

infrastructure for parallel and grid applications. Prophesy uses an automated

modeling component with the capability to develop models as the composition of the

performance models of the kernels that compose an application. By combining

parameterized models with coupling parameters, which quantify the interaction

between adjacent kernels in an application, a better understanding of individual and

distributed systems can be gained. While Prophesy is focused on analyzing the

performance of parallel and Grid applications, PPerfGrid is focused on using the Grid

as a medium for the virtualization and exchange of performance data. The two

13

projects are potentially complementary, as PPerfGrid could be used to expose the

information in the Prophesy Database to other performance analysis tools.

ZENTURIO [41] is a tool to specify and automatically conduct a large set of

experiments on cluster and Grid architectures, with the goal of supporting

performance analysis and tuning, parameter studies, and software testing. While not

concerned with the exchange of heterogeneous parallel performance data, ZENTURIO

is an OGSA-based Grid application, and is similar to PPerfGrid in its use of OGSA

functionality, including a UDDI-based service registry and the use of transient service

instances. In addition, ZENTURIO offers examples of some of the more advanced

functionality that PPerfGrid will incorporate in the future, like event notifications and

the use of XPath to query service data.

14

3 Technology Overview

This section includes background on the Web services technologies used by

PPerfGrid (XML, SOAP, WSDL, UDDI) and background on Grid computing and

Grid services.

3.1 Web Services

The emergence of the Web was driven by the need for scientific collaboration,

and it has become the common, world-wide repository of all types of data, both

scientific and business. However, this data is published in a wide range of different

formats and is accessible with a variety of different access methods. Web access

usually takes the form of simple call interfaces without APIs or query languages and

only “point and click” visual interfaces [21]. The extreme volume of data now

accessible on the web makes the primitive, inefficient nature of these interfaces

painfully apparent.

Web services technologies enable access to the Semantic Web, a term used to

describe an extension of the existing Web in which information is given a well-

defined meaning that enables it to be programmatically accessed. The Semantic Web

transforms the Web into a medium through which data can be shared, understood, and

processed by automated tools [30]. With the rich interfaces available on the Semantic

Web, the sharing and analysis of data involved in any collaboration immediately

becomes more efficient, powerful, and compelling.

3.1.1 A Typical Web Services Scenario

Web services encapsulate software modules and publish them to the Web as

services. All communication between these services takes place using a variety of

15

Figure 1: A Typical Web Services Scenario
This diagram details a typical Web services scenario, which begins when a WSDL
document is published to a UDDI registry. A Client accesses the directory and uses
the WSDL document to create native language stubs and bind to the Web service.
The Client and Web service communicate using SOAP-formatted messages.

open Internet standards. Web services allow Web-enabled data, and associated

operations on that data, to be dynamically located, subscribed to, and accessed by

software, not just by human beings. Further, because Web services interact using

open Internet standards, communication between the service and a client can occur

regardless of their respective underlying computing platforms or programming

languages. Web services are simply software components, so systems can be

composed of numerous Web services acting together with native code and libraries to

produce the desired functionality.

As indicated in Figure 1, a typical scenario begins when a Web service

publishes its interface, in the form of a WSDL document that describes the function

signatures of the service, to a UDDI-based directory server, which is itself a Web

Service. The Client accesses the directory, using a variety of different search methods

16

<<Directory>>
UDDI

<<service>>
WebService (WSDL)

Client

Publish (SOAP)

Communicate (SOAP)

Lookup (SOAP)

<<Java>>
ServiceImplementation

Native Code (Java) Communication Protocol

to locate a the Web Service and download its WSDL document. Based on the WSDL

document, the Client can create native language stubs and bind to the Web Service.

The Client, from the perspective of its internal code, then makes a call to the Web

Service as it would to any other object or module. This call is translated, through the

Web services stack, into a SOAP-formatted message and sent to the Web Service,

which translates the incoming message into its native code format and makes a

corresponding function call to the service implementation. Any results returned from

this function call are translated again into a SOAP-formatted message and sent back to

the Client. The following sections describe the core Web services technologies

(XML, SOAP, WSDL, and UDDI) in more detail.

3.1.2 Extensible Markup Language (XML)

XML [46] is a data format endorsed by the World Wide Web Consortium

(W3C). XML documents are stored in Unicode text, and they represent complex data

in a structured, self-describing format. Because the format of an XML document is

both structured and self-describing, any XML-enabled client can not only read the

data in the document, but also understand the form of that data, without needing, for

example, a database schema or a text file record descriptor. XML is a markup

language, using user-defined data description tags in a similar way to HTML to define

a hierarchy of elements, with the leaves of the hierarchy containing actual data.

Because all major computing languages have XML capabilities, the language

has become the common language for the exchange of data between applications,

systems, and devices across the Internet. The Web services paradigm uses XML as its

communication protocol and as a basis for its other standards.

17

3.1.3 Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) [47] is an XML-based communication

protocol. SOAP messages are simply XML-based documents with a specific structure

that is understood by both ends of a conversation. The SOAP message XML

hierarchy consists of and Envelope element which contains a Header, containing

meta-data that is used to determine how to process the message, and a Body,

containing the contents of the message. Clients use SOAP to make requests to Web

services (request documents), and Web services return data to the client using SOAP

(response documents). The format of these documents is described in the WSDL file

detailed in the next section.

3.1.4 Web Services Definition Language (WSDL)

The Web Services Definition Language (WSDL) [47] standard is an XML

format that provides the metadata language for defining Web services and describing

how service providers and requesters communicate with each other. WSDL describes

where a Web service is located (URI), how to access the service (which protocol to

use, i.e. SOAP, RPC), and the function signatures (function name, argument types,

and return type) of the service. WSDL documents are used as a template to aid in

generating the native language stub module through which a Web service is

programmatically accessed.

3.1.5 Universal Description, Discovery, and Integration (UDDI)

Universal Description, Discovery, and Integration (UDDI) [44] defines the

standard interfaces and mechanisms for registries intended for publishing, storing,

searching, and retrieving XML-formatted descriptions of network services. While

18

UDDI is designed to be a general-purpose registry service—like a yellow pages for

Web-enabled software, in the Web services paradigm it functions as a service broker,

enabling service providers to publish types and descriptions of Web services

(including a WSDL document) and clients to query the registry and find Web services

that suit their needs. UDDI registries can be either public or private, and many

examples of commercially available UDDI implementations exist.

3.2 Grid Services

Grid computing evolved separately from the Semantic Web, principally to

enable scientific organizations to share high performance computing resources. While

the Semantic Web provides a virtual platform for the sharing of information, Grid

technologies provide a virtual platform for computation and data management [6]. On

the Grid, geographically distributed computing components from different

organizations can be dynamically integrated into a virtual computing system [12]

which provides a wider range of functionality, computing power, or data management

than would be available in a single organization. The functionality required for Grid

computing includes security, information discovery, resource management, data

management, communication, fault detection, and portability [12].

Recently, Web services and Grid computing have begun to converge. Both

paradigms need machine-accessible and shareable meta-data to describe available

software components and enable the automated discovery, integration, and

aggregation of these components. Both paradigms also operate in a globally

distributed, rapidly changing environment [21].

Grid services combine the open interoperability standards and automatic

19

discovery features of web services and the concept of transient, stateful service

instances that are inherent in Grid computing. A Grid service is simply a Web service

that conforms to a set of conventions and supports standard interfaces for such

purposes as lifetime management [12]. The addition of state to the Web services

model enables functionality like reliability, service lifetime, security, and

authentication—functionality that characterizes a Grid service.

Grid services are an integral part of PPerfGrid and will be discussed in more

detail in both the Architecture (Section 4) and Implementation (Section 5) portions of

this thesis.

20

Figure 2: PPerfGrid Architectural Layers
This diagram details the architectural layers of an arbitrary run of PPerfGrid.
Definition of terms: DS=dataset, W=wrapper, SO=semantic object, VO=virtual
object.

4 The PPerfGrid Architecture

The development of the PPerfGrid architecture began with two main areas of

research. The first area of research involved the various data warehousing and

21

Services Layer

Virtualization Layer

Semantic Layer Site A

Mapping Layer Site A

W1

Local-Remote Boundary

SO1

Data Layer Site A

DS1

Data Layer Site B

DS2

Mapping Layer Site B

W2

Semantic Layer Site B

SO2

VO1 VO2

Client

SQL via JDBC XQuery

Java

C#

SOAP

Java

Service Stub Site A
(Architecture Adapter)

Service Stub Site B
(Architecture Adapter)

Client Stub
(Architecture Adapter)

Java

C#

SOAP

Java

Client Stub
(Architecture Adapter)

Java

database federation techniques described Section 2, which provided a general

conceptual framework for solving the problem of sharing heterogeneous data. In

addition, XML was researched, beginning with the previous work done on

PPerfXchange [9], and was confirmed as a viable language for describing a common

format for heterogeneous data. The study of XML led to interest in Web services as a

language and system-neutral Application Programming Interface (API) that could

enable an Application Integration (see Section 2) approach to the exchange of parallel

performance data. An Application Integration approach was chosen for its flexibility.

By using a programming language rather than a particular global database schema and

query language for integration, a wider range of data sources can be integrated.

Research into Web services in turn led to Grid services, which provided additional

functionality, like unique service instances, that allowed performance optimizations

important for dealing with the exceptionally large datasets common in parallel

performance analysis.

4.1 Architecture Overview

PPerfGrid's architecture is abstracted into a Data Layer, a Mapping Layer, a

Semantic Layer, a Services Layer, and a Virtualization Layer.

Performance data is stored in a wide variety of formats and schemas,

depending on the type of application measured and the performance analysis tool used

to record the measurements. A meaningful comparison of two or more different data

stores requires some method of reconciling their potential heterogeneity. At a high

level, PPerfGrid's method of reconciliation involves defining semantic objects to

represent the dataset elements that are consistent across the datasets being compared,

22

and providing mappings from these semantic objects to the different data structures.

Once a semantic representation has been defined, a method of virtualization allows

clients to ask questions of the data in a uniform manner.

4.2 Data Layer

The data layer is composed of one or more data stores. Data stores can take a

variety of different forms—Site A, for example may store their data in a relational

database with several tables while Site B may store their data as XML files. The data

layer also incorporates a method of querying these data stores in some way, usually

with a database server (e.g. PostgresSQL) and its native query language (e.g. SQL or

XQuery).

4.3 Mapping Layer

The mapping layer acts as the intermediary between the data layer and the

semantic layer, taking questions asked by the semantic layer, translating them into a

query format that is understandable by the data layer given its native format and

schema, processing query results, and returning them back to the semantic layer. The

mapping layer takes the form of one or more wrapper modules, written in a scripting

or programming language.

4.4 Semantic Layer

The semantic layer consists of semantic objects, which represent abstractions

of the concepts represented in a parallel performance data store. In order to describe

these concepts, it is helpful to first provide some background on the process of parallel

performance analysis.

A parallel application evolves over time, beginning with initial design and

23

implementation and continuing with code modifications to enhance performance or

functionality. The goal for parallel computing performance analysis is to quantify

how performance changes over an application's lifespan, as, for example, algorithms

or code libraries are changed or exchanged, the number of processors is varied, or a

network's topology changes [28].

Typically, the process of analyzing a parallel application's performance

involves inserting instrumentation designed to measure some aspect of performance

into the application's code, running the application, recording and examining the

output of the instrumentation, making changes to some aspect of the application

(code, number of processes, etc), re-running the application, and examining the new

results. This process stops when an application's performance is considered “good

enough” by its users or there is simply no more time to tune performance. A wide

variety of performance tools [37, 1, 27, 38] have been developed to manage the

instrumentation measuring an application's performance and the results this

instrumentation produces.

In our previous work [28, 23, 9], the PPerfDB Group surveyed the major

performance analysis tools and the organization and content of the data they produce,

running these tools with a variety of different high-performance computing

applications. Our goal in this survey was to discover the common concepts that each

of these parallel performance datasets shared. In PPerfGrid, these concepts are

abstracted into the Application, Execution, and Performance Result semantic objects.

An Application is a representation of any program for which performance data

is being stored. An Application has a name (e.g. “HPL”) and some associated meta-

24

data that describes it (e.g. “Version 1.2” or “HPL - A Portable Implementation of the

High-Performance Linpack Benchmark for Distributed-Memory Computers”). This

meta-data is completely unconstrained in its syntax, format, and length, which allows

the publishers of an Application semantic object to present specialized information.

An Application contains 0 or more Executions, which represent a run of the

program. Repeated runs of the same Application are considered different Executions.

Each Execution has a unique ID. Executions are described by a set of attributes (e.g.

“rundate” or “numprocesses”) and their corresponding values (e.g. “2004-03-15” or

“3”). Each Application provides an operation to retrieve Executions that match a

given attribute-value pair and an operation to retrieve all available Executions.

An Execution contains Performance Results. A Performance Result measures

one metric, for one or more foci, for some time period. A Performance Result also has

a type, which refers to the type of measurement tool used to collect it. Each

Execution provides an operation to retrieve Performance Results that match a given

[metric, foci, time, type] tuple.

The Semantic Layer utilizes the Open Grid Services Architecture's (OGSA)

[12] reference implementation, the Globus Toolkit (GT3.2) [17], to expose the

Application and Execution semantic objects as Grid services. The OGSA/GT3.2

defines the concept of a Grid service as a Web service that provides a set of well-

defined interfaces and that follows specific conventions. Because it is based on the

Web services framework, the OGSA/GT3.2 utilizes SOAP as its messaging protocol

and a variant of WSDL (GWSDL) as its method of service description, and it

leverages numerous tools and services, including WSDL processor that can generate

25

language bindings for most major languages and hosting environments like

Microsoft .NET and Apache Axis [12]

Grid service interfaces are know as PortTypes, and the operations they define

enable functionality vital to a Grid application, like service instance creation and

destruction, service data discovery, registration, and notification. PPerfGrid utilizes

these interfaces, specifically the GridService and Factory PortTypes, to create and

manage transient service instances, which are unique, stateful instantiations of a static

service concept in much the same way an object is an instance of a class in an object-

oriented programming language. A Grid service instance maintains its state as

operations are requested and, when it is no longer needed or its lifetime has expired, it

can be destroyed. Examples of a transient service instance on the Grid might be a

query against a database, a network bandwidth allocation, a running data transfer, or

an advance reservation for processing capability [12].

In the case of PPerfGrid, the Application and Execution semantic objects are

exposed as static Factory Grid services. However, they are not concrete object

representations—all available Applications and Executions do not exist in memory at

a particular site. Instead, they are abstract representations of the data available at a

site, data which is not instantiated until it is requested by a client. For example, when

a client makes a request, through an Application service instance, for a set of

Executions, those Executions are manifested as Execution service instances by the

Factory and handles, known as Grid Service Handles (GSH), to the Execution

instances are returned to the client. Each GSH must be unique—there cannot be two

Grid services or Grid service instances with the same GSH. These handles can then be

26

used by the client to bind to the service instances they represent, as detailed in the next

section.

4.5 Services Layer

The Semantic Layers and the Virtualization Layer in a given PPerfGrid session

are usually (but not always) distributed geographically. As enhanced Web services,

the PPerfGrid Grid services utilize the Web services model for communication

between these layers.

Grid services and Web services communicate using SOAP messages. A

typical outgoing message contains what is essentially an XML-formatted procedure

call, with the procedure name and parameter values. A typical incoming message

contains XML-formatted return values. These SOAP messages are transmitted and

received using socket connections and the TCP/IP and HTTP protocols. Each

outgoing procedure call must be converted to a SOAP message and sent out over a

socket. Socket listeners at the destination Web service receive the message, the

message is parsed, and the correct native code procedure is called. The reverse of this

process then occurs for sending return values back to the requesting Web service.

This process is called marshalling/encoding/routing and

demarshalling/decoding/routing [15].

This process represents a conversion between the two dominant styles for

communication between software components: message-based communication and

call-return communication. Applications using message-based communication tend

to be loosely coupled and lend themselves well to asynchronous communication. In

contrast, in applications using call-return communication, the thread of control

27

originates with and returns to the method caller [33].

The conversion between these styles takes place at two points in a Grid

services application—when a service implemented in a particular language and

platform is deployed and when a client application interacts with one or more Grid

services. This conversion can be described with the Architecture Adapter pattern [33],

which is a variation of the classic Adapter pattern [22].

An architecture adapter is a software component that mediates between two

components with differing architectural styles. The adapter offers a simple interface

to both components and shields them from the complexities involved in converting

from one architecture to the other. In the case of Grid services, the architecture

adapter is split into two halves, one half existing on the client side (which can be

another Grid service) and the other half existing on the Grid service side. The client's

architecture adapter is responsible for receiving a function call from the client's native

implementation language, translating the call into a SOAP message, and sending the

message to the Grid service's architecture adapter. This adapter receives the message

and translates it from SOAP to the native language of the Grid service implementation

[33].

The architecture adapter functionality described above has been implemented

in a variety of Web services platforms, including Microsoft .NET [32], Java Web

services Developer Pack [42], and Apache Axis [2] (the platform on which GT3.2 is

based). Each platform provides APIs and tools that automate generation of code for

the necessary architecture adapters.

A client's interface to a Grid service, therefore, is a local stub and its associated

28

architecture adapter modules. The client uses the stub each time it interacts with a

Grid service. In the case of PPerfGrid, the handle returned from an Application query

for Executions initializes an instance of a stub and its adapters for that specific

Execution Grid service instance, and the client makes function calls to the stub as if it

were a local object. This functionality is exploited by the Virtualization Layer.

4.6 Virtualization Layer

The Virtualization Layer provides a uniform, virtual view of the data available

in a PPerfGrid session. The view is uniform because, regardless of the schemas,

formats, and native query mechanisms of the heterogeneous data stores being

compared, data is accessed through the common interfaces provided by the

Application and Execution Grid service instances. The view is virtual because

virtualization layer also provides location transparency—regardless of where the

datasets are located, the client accesses the virtual objects through stubs as if they

were local objects, implemented in the programming language of the client (e.g.

Java). The Virtualization Layer, combined with the layers below it, enables the

PPerfGrid application to compare multiple sets of distributed, heterogeneous

performance data as if the data sources had a common organization and location.

4.7 Using PPerfGrid

In order to further describe PPerfGrid's architecture, it is helpful to describe a

typical scenario from the user's perspective. Figure 3 shows the process involved

when a user acts as consumer of PPerfGrid performance data.

A client begins by logging on to the registry server through a client program

and searching PPG sites for the Applications that interest them (1a.). The registry

29

Figure 3: PPerfGrid Component Interaction
This diagram details the interaction of the various components of PPerfGrid. (1a.)
Client logs into registry. (1b.) Registry returns Application Factory handles. (2a.)
Client binds to Application Factory and calls CreateService. (2b., 2c.) Application
Facotry creates instances and returns to client. (3a.) Client queries Application for
Executions. (3b., 3c) Application queries wrapper, which queries data source (DS1).
(3d., 3e.) Query results are translated and returned to Application. (3f., 3g, 3h, 3i)
Application requests that Execution Factory create instances for each result, handles
to instances are returned to the client. (4a.) Client binds to Execution instances and
queries for Performance Results (PRs). (4b., 4c) Execution queries wrapper, which
queries data source (DS1). (4d., 4e.) Query results are translated and returned to
Execution. (4f.) Performance Results returned to client.

responds with handles for Application Factories (1b.). The client program then binds

to an Application Factory service and calls its CreateService function (2a.). The

Application Factory creates a new Application service instance (2b.) and returns a

30

 1a.

Client

Wrapper

 1b.

 3b.

 3c. 3d.

 3e.

 3g.

4f.

DS1

Application
Grid Service

Factory

Execution
Grid Service

Factory

Registry

Execution
Grid Service

Instances

Application
Grid Service

Instances

 2c.

 2a.

 2b.

 3f. 3h.

 3i.

 3a.

 4b.

 4e.

4c. 4d.

Wrapper

4a.

PRs

KEY

Create service
instance(s)

Service operation invocation

Service operation return

handle to this new instance to the client (2c.). Next, the client binds to the Application

service instances and executes queries, through the Application interface, to find

Executions that meet their criteria (3a.). These queries proceed through the service

instance, to the underlying wrapper (3b.), and to the local data source (3c.). Once

results are returned from the local data source (3d.) and translated by the wrapper

(3e.), the Application service accesses its associated Execution Factory interface (3f.)

and creates new Execution service instances for each returned result (3g). The final

result returned to the client program is 0 or more handles to Execution service

instances (3h., 3i.). The client program binds to these Execution service instances and

queries them for Performance Results (4a.). These queries proceed through the

wrapper (4b.), to the local data store (4c.). The results then return back through the

wrapper for translation (4d., 4e.) and are finally returned to the client as primitive data

(4f.).

31

5 The PPerfGrid Implementation

This section details the implementation of PPerfGrid. Descriptions and

diagrams of interfaces and functionality are presented for the Data, Wrapper,

Semantic, Services, and Virtualization Layers.

5.1 Data Layer Implementation

Because of the heterogeneous nature of parallel computing

performance data, the Data Layer of PPerfGrid does not have any constraints on the

way data is stored or its schema. In implementing PPerfGrid, three test datasets were

utilized: a relational database with 5 tables, a relational database with a single table,

and flat text files. The relational databases are accessible via SQL queries and the flat

text files are accessible through a custom parser. These datasets are a representative

range of possibilities for the storage of parallel computing performance data, but any

conceivable storage method and organization can be incorporated into PPerfGrid, as

long as it can be programmatically accessed in some way by wrapper modules in the

Mapping Layer.

5.2 Mapping Layer Implementation

Data stores are exposed to PPerfGrid by using wrappers. A wrapper provides

the functionality to connect with and query a local data store. The wrapper adheres to

the PPerfGrid function interface for the data object it is representing (Application or

Execution). This interface has well-defined semantics (detailed in Table 1 and Table

2) that describes the inputs and outputs of PPerfGrid operations. It is the

implementation of this interface that provides the translation of data from the native

format to the format expected by PPerfGrid. For example, a person wishing to publish

32

Figure 4: Mapping Layer Example
This diagram details an example implementation of an Application operation,
getExecs() in a Java class named ApplicationWrapper. getExecs() accesses
an RDBMS using its JDBC API and SQL statements. Results from queries are
processed into the appropriate PPerfGrid format and returned to the caller in the
Semantic Layer.

Application data from a RDMS would implement a PPerfGrid operation (getExecs)

by writing SQL queries to retrieve data from the particular tables where the

information that the function is semantically expected to expose is stored. This

implementation might also include some processing to combine results or convert

types before returning the final values.

Note that this is only one possible implementation—the wrapper may be

implemented in C++, Python, or .NET and query an XML database through an

XQuery API or parse a text file using custom in-line code.

5.3 Semantic Layer Implementation

As discussed in Section 4, the Semantic Layer contains Application and

Execution semantic objects, which are abstract representations of the consistent

33

+ getExecs(...):string[]

DS1

Mapping Layer Example

ApplicationWrapper (Java)

JDBC API

executeQuery("SELECT id FROM information");
...process results, return

Data Layer

Semantic Layer

Application PortType

Call ApplicationWrapper.getExecs(..)

Operation Operation Semantics

getAppInfo Returns general information about the application, possibly including
application name, version, etc. Returns an array of string values, each
element of which should contain a name and a value delimited by the '|'
character.

getNumExecs Returns the number of unique executions available for the application as
an integer.

getExecQueryParams Returns a list of attributes that describe executions, arguments or run
data, for example. Each attribute has associated with it a set of values,
representing all unique possible values for that attribute. Returns an
array of string values, each element of which should contain a name and
a set of values delimited by the '|' character.

getAllExecs Returns an array of Grid Service Handles (GSHs) representing an
Execution service instance for each unique execution record. Returns an
array of string values, each element of which should be a properly
formatted GSH.

getExecs
String: Attribute
String: Value

Returns an array of Grid Service Handles (GSHs) representing an
Execution service instance for each execution record matching the
attribute and value passed as parameters. Returns an array of string
values, each element of which should be a properly formatted GSH.

Table 1: PPerfGrid Application PortType
Operations for retrieving general Application information (getAppInfo), retrieving
the number of Executions available (getNumExecs), retrieving possible parameters
for querying Executions (getExecQueryParams), retrieving all Executions
(getAllExecs), and retrieving a subset of available Executions (getExecs).

concepts in performance datasets. In PPerfGrid, the Application and Execution

semantic objects are implemented as Java classes.

5.3.1 PPerfGrid Application

Table 1 describes the PPerfGrid Application interface. A publisher of

performance data would implement this interface and adhere to the expected

operational semantics.

5.3.1.1 Attribute Discovery

Attribute discovery occurs when a client calls the getExecQueryParams

() method of an Application grid service. A performance data publisher is expected

to return those attributes of a dataset that define an execution along with a set (no

34

duplicates) of the values associated with each attribute.

5.3.1.2 Querying Executions

With these attributes and their associated values, a client can perform

parameterized queries for Executions. Each attribute/value pair is considered to be a

separate query. A group of subsequent queries would be similar to stringing 'OR'

terms together in SQL.

5.3.1.3 Creation of Execution Services

When an Application service instance receives a getAllExecs() or a

getExecs() call, it queries the local data store through its wrapper. The execution

records returned from this query are identified by a unique ID. Each unique ID

returned from such a query identifies a new Execution service instance, which the

Application service instance forwards to the PPerfGrid Manager for processing.

5.3.1.4 PPerfGrid Manager

The Manager is a non-transient Grid service that caches Execution service

instances. Creation of a Grid service instance is a relatively expensive operation and

is best avoided whenever possible. Execution service instances are therefore created

only when they are first queried through the Application service instance. The

Application service instance forwards the unique ID values returned from its database

query to the Manager, which autonomously creates new Execution instances by

accessing the Execution Grid service factory as a client and calling its

createService() operation. The factory will return a GSH for the Execution

service instance, which the Manager service stores in a hash table indexed by the

unique ID of the Execution. The Manager then returns the GSHs of the Execution

35

instances to the Application instance, which in turn returns them to the client as its

result. The client can then bind to the Execution service instances and access them

independently. When another request for the same Execution instance is made, the

cached GSH of the previously created instance is returned.

The Manager also provides replica management functionality. If a data source

is replicated on multiple hosts, the Manager will apply a administrator-defined

algorithm to the creation of Execution service instances. For example, in the simple

case implemented in this version of PPerfGrid, given replicas of a data source on two

different hosts and a request for Performance Results from a set of 32 Executions, the

Manager instantiates 16 Execution service instances on one host and 16 on the other,

interleaving the instantiations (ID 1 on Host A, ID 2 on host B, ID 3 on host A, ID 4

on host B, etc.) to ensure as much fairness as possible for future requests.

It should be noted that the Manager is an internal Grid service—it is not

accessed by the client but only by Application service instances. Grid services need

not be accessed only in the traditional client-server model. They are software

components, and can be composed and aggregated as such.

5.3.2 PPerfGrid Execution

Table 2 describes the PPerfGrid Execution service interface. A publisher of

performance data would implement this interface and adhere to the expected

operational semantics.

5.3.2.1 Foci, Metric, Type, and Time Discovery

Foci, Metric, Type, and Time discovery occurs when a client calls the

respective discovery methods of an Execution Grid service. A performance data

36

Operation Operation Semantics

getInfo Returns general information about the Execution. Returns an array of
string values, each element of which should contain a name and a value
delimited by the '|' character.

getFoci Returns a list of all possible unique focus values for the Execution (no
duplicates) as an array of strings. Foci refer to the nodes of the resource
hierarchy (e.g. /Process/27 or /Code/MPI/MPI_Comm_rank)

getMetrics Returns a list of all possible unique metric values for the Execution (no
duplicates) as an array of strings. Metric refers to the measurements
recorded in the dataset (e.g. func_calls, msg_deliv_time).

getTypes Returns a list of all possible unique type values for the Execution (no
duplicates) as an array of strings. Type refers to the performance tool used
to collect the data.

getTimeStartEnd Returns a list of two values, the first representing the start time of the
Execution and the second representing the end time of the Execution, as an
array of strings.

getPR
String: Metric
String[]: Foci
String: StartTime
String: EndTime
String: Type

Returns a list of Performance Results that meet the criteria given by the
parameter values as an array of strings.

Table 2: PPerfGrid Execution PortType
Operations for retrieving general Execution information (getInfo), retrieving a list
of possible Focus values (getFoci), retrieving possible Metric values
(getMetrics), retrieving possible Type values (getTypes), retrieving values for
the Execution start time and end time (getTimeStartEnd), and retrieving a subset
of available PerformanceResults (getPR).

publisher is expected to return a set (no duplicates) of the values associated with each

category.

5.3.2.2 Querying Performance Results

With the Foci, Metric, Type, and Time sets, a client can perform parameterized

queries for Performance Results. A query consists of a call to the getPR operation

with parameter values representing one Metric, one or more Foci, a starting and

ending time, and a Type. A performance data publisher is expected to return a list of

Performance Results as an array of strings.

37

Figure 5: Semantic Layer Example
This diagram details an example implementation of an Application operation, called
first from the Services Layer and passed to the getExecs() operation in an
ApplicationImplementation Java class. The getExecs() operation calls the
Mapping Layer to retrieve a list of unique Executions. The
ApplicationImplementation then acts as a client to the Manager, which checks its
Execution cache for pre-existing instances. If a cache miss occurs, the Manager
accesses the ExecutionFactory, requesting the creation of ExecutionInstances for each
uncached unique Execution. The GSHs that are returned from the ExecutionFactory
are then returned to the ApplicationPortType in the Services Layer.

5.3.2.3 Performance Result Caching

 Execution service instances utilize a Performance Results cache to improve

performance. This cache stores the results of Performance Result queries in a hash

table indexed by a string value representing the parameters involved in the query (e.g.

“func_calls | /Code/MPI/MPI_Allgather | UNDEFINED | 0.0-

11.047856”). Any future queries to the Execution service instance first check the

cache, only accessing the Mapping Layer and the data store if a miss occurs.

38

+ getExecs(...):string[]

Semantic Layer Example

Application Implementation (Java)

ExecutionFactory

Call ApplicationWrapper.getExecs(...)
Call Manger.getExecs(string[] keys)
Return GSHs

Wrapper Layer

Services Layer

Application PortType
Call ApplicationImplementation.getExecs(..)

ExecutionInstance

ExecutionInstance

ExecutionInstance

ApplicationWrapper

+ getExecs(...):string[]

Manager Implementation (Java)

Check Execution cache by key
If hit, return GSH
If miss,Call ExecutionFactory
Return all cached and new GSHs

PortType Operation Description

GridService FindServiceData Query a variety of information about the Grid
service instance, including basic introspection
information (handle, reference, primary key,
home handleMap: terms to be defined), richer
per-interface information, and service-specific
information (e.g., service instances known to a
registry). Extensible support for various query
languages.

SetTerminationTime Set (and get) termination time for Grid service
instance

Destroy Terminate Grid service instance

Notification-
Source

SubscribeTo-
NotificationTopic

Subscribe to notifications of service-related
events, based on message type and interest
statement. Allows for delivery via third party
messaging services.

Notification-
Sink

DeliverNotification Carry out asynchronous delivery of notification
messages

Registry RegisterService Conduct soft-state registration of Grid service
handles

UnregisterService Deregister a Grid service handle

Factory CreateService Create new Grid service instance

HandleMap FindByHandle Return Grid Service Reference currently
associated with supplied Grid Service Handle

Table 3: OGSA PortTypes
OGSA Grid service interfaces for authorization, policy management, and
manageability. [12].

5.4 Services Layer Implementation

The Services Layer is composed of architecture adapters, which are exposed to

clients with a specific interface, called a PortType. PPerfGrid Application and

Execution Grid services utilize three PortTypes: the Factory and GridService

PortTypes, which are implemented by GT3.2, and the Application and Execution

PortTypes, which are implemented in the Semantic Layer of PPerfGrid. Using tools

provided GT3.2 and Apache Axis, the necessary stubs and architecture adapter code

are generated, and the service is deployed to Apache Axis .

39

Figure 6: Services Layer Example
This diagram details the Services Layer of PPerfGrid with an example Application
Grid service. PPerfGrid Application Grid services utilize three PortTypes: the
Factory and GridService PortTypes, which are implemented by GT3.2, and the
Application PortType, which is implemented in PPerfGrid. Using tools provided
GT3.2 and Apache Axis, the necessary stubs and architecture adapter code are
generated, and the service is deployed to Apache Axis. Apache Axis is responsible,
on both the client and server sides, for converting data in an invocation message or
return message into a format consumable by the hosting environment and routing the
invocation to the correct native language module (message
marshalling/encoding/routing). Apache Axis runs as a servlet within Tomcat, which
provides web server functionality.

Apache Axis is responsible, on both the client and server sides, for converting

data in an invocation message or return message into a format consumable by the

hosting environment and routing the invocation to the correct native language module

40

Apache Jakarta Tomcat
Servlet Container/HTTP Transport

+ getExecs(...):string[]

Services Layer Example
Client Application Stub (Java)

Semantic Layer

Virtualization Layer

Client
Call Factory.createService(...)
Call Stub.getExecs(..)

ApplicationImplementation

Apache Axis Web Services Engine
Message Demarshalling/Decoding/Routing

Apache Axis Web Services Engine
Message Marshalling/Encoding/Routing

Factory PortType GridService PortType Applicatin PortType

Application Stub

+ getExecs(...):string[]

GT3.2 GridService
Implementation

Application Grid Service

SOAP over HTTP

Local-Remote
Boundary

GridService Stub

+ destroy(...)

Factory Stub

+ createService(...)

GT3.2 Factory
Implementation

(message marshalling/encoding/routing) [15]. Apache Axis runs as a servlet within

the Apache Jakarta Tomcat servlet container [3], which provides web server

functionality.

The GridService PortType (Table 3) is the general interface implemented by

all Grid services, and includes the FindServiceData operation, which exposes meta-

data like handle, reference, and primary key, the SetTerminationTime operation,

which manages the lifetime of the service instance, and the Destroy opertion, which

terminates the service instance.

The Factory PortType (Table 3) creates new service instances. Each new

instance has a handle, known as a GSH or Grid Service Handle. Each GSH must be

unique—there cannot be two Grid services or Grid service instances with the same

GSH. GSHs are passed between the components of PPerfGrid to enable one

component to bind to another.

5.5 Virtualization Layer Implementation

The Virtualization Layer is implemented in the PPerfGrid client application.

This application provides a user-friendly GUI interface for querying and analyzing a

uniform, virtual view of the performance data available to PPerfGrid. The Service

Publishing and Discovery, Application Query, Execution Query, and Visualizer

components are described in the following sections.

5.5.1 Service Publishing and Discovery

ThePPerfGrid client includes the functionality to both publish and search for

entries in a UDDI-compliant registry server. PPerfGrid uses UDDI4J, an open source

UDDI API for accessing the registry server, and has been used with the Novell Nsure

41

Figure 7: Virtualization Layer Example
This diagram details the Virtualization Layer of PPerfGrid. This layer provides the
Client with a uniform, virtual view of the performance data available to PPerfGrid.

UDDI Server. The PPerfGrid client utilizes Organization and Service proxy classes to

simplify the UDDI API for PPerfGrid's limited registry needs.

PPerfGrid publishers can create a new Organization entry, which includes

contact information (name, address, etc.). After creating an Organization entry, a

publisher creates a Service entry for each Application dataset they are exposing to the

PPerfGrid data grid. The Service entry includes the URL of the Application Grid

service factory to enable the client to access the factory and create new a Application

service instance.

For a consumer of performance data, the PPerfGrid client has functionality to

retrieve all Organizations in the PPerfGrid data grid or query Organizations by name.

42

Virutalization Layer Example

Services Layer

Execution
Grid Service Instance

Site A

Local-Remote
Boundary

Application Virtual Objects

C
D

B
A

Execution Virtual Objects

A
A

C

B
B

B

Application
Grid Service Instance

Site A

Execution
Grid Service Instance

Site B

Application
Grid Service Instance

Site B

Execution
Grid Service Instance

Site C

Application
Grid Service Instance

Site C

Query for runtime PRs

Figure 8: PPerfGrid Client: Service Publishing and Discovery
This figure is a screenshot of a PPerfGrid client querying a UDDI-compliant registry
service. Members of the PPerfGrid utilize this interface to publish an entry for a
performance data source that they have made available. Members also utilize this
interface to search for and bind to Application services that they wish to access.

After locating an Organization, the Services associated with the Organization are

displayed. Those Services the user wishes to bind to can be added to a 'Current

Bindings' list, which becomes the list of Applications under comparison in other

sections of the client application.

5.5.2 Application Query Panel

The Application Query Panel allows users to view data from the Application

Grid services that were selected in the discovery stage (see previous section). A set of

43

Figure 9: PPerfGrid Client: Service Application Query Panel
This figure is a screenshot of a PPerfGrid client preparing to query Application Grid
services for Executions. A group of queries for specific Executions (runid 100-109)
from the HPL data source are ready to be run.

Application-Attribute-Value tuples can then be selected and added to the Queries

table. When the 'Run Queries' button is clicked, the client sends the individual queries

to the appropriate Application Grid service by calling operations in the local stub

architecture adapters. Execution GSHs are returned from each Application, and the

client uses these GSHs to bind to the new Execution Grid service instances.

5.5.3 Execution Query Panel

The Execution Query Panel allows users to view data from the Execution Grid

services that were returned after running a set of queries on Application Grid services.

A Metric/Foci/Type/Time tuples can then be selected and added to the Queries table.

44

Figure 10: PPerfGrid Client: Execution Query Panel
This figure is a screenshot of a PPerfGrid client preparing to query a group of
Execution Grid service for Performance Results. A query for specific Metric/Foci/
Type/Time values has been added to the Query table.

When the 'Run Queries' button is clicked, the client sends the individual queries to the

appropriate Execution Grid services by calling operations in the local stub architecture

adapters, and Performance Results are returned.

5.5.4 Performance Results Visualization

 Once results have been retrieved, PPerfGrid uses the JFreeChart open source

Java API to provide visualization of the performance data [26]. In the current

implementation, a metric value (e.g. gflops or runtimesec) is plotted for each

45

Figure 11: PPerfGrid Client: Visualization
This figure is a screenshot of a PPerfGrid client after running a set of queries on
Executions from the HPL data source. The Metric being measured is gflops.

Execution in a query. A richer set of visualization capabilities will be included when

PPerfGrid is integrated into PPerfDB (see Section 7).

This section has detailed the implementation of PPerfGrid. We have described

and provided an example diagram for each application layer, given interface

definitions and semantics for each PortType, and showed screenshots of the PPerfGrid

client.

46

6 Experiments and Results

By using Grid services for PPerfGrid, some trade-offs in performance were

expected. A Grid services approach should add additional overhead in the transfer of

data, but should also enable increased performance by dynamically distributing

service instances across replica hosts and caching Performance Results. Two

experiments were designed to evaluate the performance trade-offs involved in a Grid

services approach.

The first experiment, detailed in section 6.4, was designed to measure the

overhead of using a Grid services approach with different heterogeneous formats and

schemas. The second experiment, detailed in Section 6.5, was designed to determine

the scalability of PPerfGrid and illustrates how the use of the PPerfGrid Manager

(Section 5.3.1.4) improves scalability.

6.1 Data Sources

In performing the experiments detailed in the following section, three test data

stores were utilized: SMG98, HPL, and Presta RMA. SMG98 was taken from a set of

parallel performance analysis data gathered by Christian Hansen using the Vampir

tracing tool for the SMG98 application, a semicoarsing multigrid solver used to solve

systems of equations that compute finite difference, finite volume, or finite element

discrete diffusion equations on distributed memory architectures [23]. HPL is data

from the High Performance Linpack Benchmark, a software package that solves a

random, dense linear system in double precision (64 bits) arithmetic on distributed-

memory computers [24]. PRESTA RMA is data from the PRESTA MPI Bandwidth

and Latency Benchmark, which tests inter-process communication latency and

47

bandwidth for standard MPI message passing operations as well as the MPI-2

RMA/one-sided operations [40].

The SMG98 dataset was stored in a relational database with 5 tables; the HPL

dataset was stored in both a relational database with a single table and in a text file as

XML; the Presta RMA dataset was stored in flat text files. The relational databases

were accessed via JDBC SQL queries to the PostgresSQL relational database

management system version 7.4.1 [39]. The flat text files were were accessed

through a custom parser written in Java. These datasets are intended to be a

representative range of possibilities for the storage of parallel computing performance

data.

6.2 Performance Measurement Method

Performance measurements were taken using the System.currentTimeMillis()

function call from the Java API, which returns the difference, measured in

milliseconds, between the current time and midnight, January 1, 1970 UTC.

6.3 Hardware and Network

The Grid services were hosted on two Sun Microsystems Ultra 5/10

workstations running Solaris 5.8, with one 440 MHz SUNW UltraSPARC-IIi

processor and 128 MB RAM. The PPerfGrid client was run on a Dell Latitude C400

laptop running Suse Linux, kernel version 2.4.20, with one 1200 Mhz Intel Pentium

III Mobile processor and 512 MB RAM. The PPerfGrid Client accessed the two Grid

services machines using a fast Ethernet (10/100) LAN.

6.4 Grid Services Overhead

It can be assumed that, in utilizing Grid services, PPerfGrid would exhibit a

48

certain amount of additional overhead in the transfer of data when compared to simply

running SQL queries against the data store. To test this assumption, each call to the

getPR method was timed in two different layers of the PPerfGrid application.

The Virtualization Layer class call to getPR was timed to measure the total

elapsed time of a PPerfGrid query. The Mapping Layer class call to getPR was timed

to measure elapsed time for the local JDBC SQL queries necessary to produce one

Performance Result. Each query's overhead was obtained by subtracting the Mapping

Layer measurement from the Virtualization Layer measurement. In order to eliminate

as much network traffic variability as possible, the test was performed with both the

Virtualization Layer service and the Mapping Layer service instantiated on the same

machine. To ensure an adequate sample size, 100 queries were run for the HPL and

RMA data stores. 30 queries were run for the SMG98 data store (the SMG98 queries

are long-running and 30 was chosen to minimize testing time and still ensure an

adequate sample, as stated in the central limit theorem [29]). The coefficient of

variation normalizes standard deviation with respect to the mean and is included as a

measure of sample variance.

Table 4 indicates the overhead values for each of the data stores used in the

test. These results indicate that the use of Grid services does add significant overhead

to each PPerfGrid query, and the overhead percentage of the total query time depends

on both the amount of data transferred and the efficiency of the Mapping Layer. In

the case of the HPL data store, queries are answered relatively quickly (a mean of

81.8 milliseconds), and the payload of each transfer is small (~8 bytes). In the case of

RMA, queries are also answered relatively quickly (mean of 97.65 milliseconds), but

49

Data Source Mean Total
Query Time

(ms)

Mapping
Layer Query

Time
(ms)

Mean
Overhead

(ms)

Mean
Overhead as
% of Total

Time

COV Total Bytes
Transferred
per Query

HPL (RDBMS) 112.85 81.8 31.05 28% 0.47 ~8 bytes

RMA (ASCII
text files)

358.49 97.65 260.84 71% 0.67 ~5,692 bytes

SMG98
(RDBMS)

74,306.9 66,037.17 8,269.73 11% 0.14 ~ 421,844 bytes

Table 4: PPerfGrid Overheaed
This table shows the mean total query time, Mapping Layer query time, overhead
values, the coefficient of variation, and an approximation of the total data transferred
for each different data store. The coefficient of variation normalizes standard
deviation with respect to the mean and is included as a measure of sample variance.
Bytes are approximated because Java does not provide a sizeof() operator and each
JVM implementation can be different in the amount of memory used for a particular
class of objects. ms = milliseconds.

the amount of data returned by a query is much larger, leading to a higher overhead.

In the case of SMG98, the data source is large (250 MB of files before import into

PostgresSQL [9]), and the queries at the Mapping Layer take a very long time (mean

of 66,037 milliseconds) in relation to the other data stores. The amount of data

transferred is also the largest of the data stores, but, relative to the total query time,

the overhead is low.

So, given the overhead illustrated by these tests, is the use of a Grid services

architecture in PPerfGrid worthwhile? The Grid services overhead illustrated by these

tests most likely results from a combination of factors, principally the process of

marshalling/demarshalling SOAP messages, encoding/decoding XML, and routing to

and from implementation module functions. The HPL and SMG98 data stores could

be accessed with less overhead directly through the Mapping Layer by distributed

clients using Java's JAX-RPC API or via SQL queries and an ODBC client. The

RMA data store could be accessed much more efficiently by transferring the ASCII

50

data files via FTP to the client's machine and querying them directly through a

program wrapper. However, none of these alternatives provides the combination of

interoperability and virtualization offered by Grid services.

6.5 Scalability

The Grid services architecture offers some powerful features for improving the

scalability of an application. For example, given a query for a Performance Result

from a comparison set of 32 Executions for data existing in two replicated data stores,

the Manager Grid service, as currently implemented, would instantiate 16 Execution

service instances on one host and 16 on the other. The performance increase from

running these queries in parallel should be significant.

To test this theory, a query was created in the PPerfGrid client that asked for

Performance Results for Executions from the HPL data source. Each query to an

Execution was made in a separate thread. Because HPL Performance Result queries

have a short execution time, each query was repeated 10 times in each thread. This

was done to create a greater load on each host and simulate a longer running time for

each query. The combined query set was run 10 times, producing 100 queries for

each Execution, which, according to the central limit theorem, is an adequate sample

size [29]. Values for the number of Execution service instances were 2, 4, 8, 16, 32,

64, 124 (the maximum number of executions in the HPL dataset). This scale was

chosen to concisely represent the performance trends over the range of available

Executions for the HPL data source. The graph in Figure 12 illustrates the results of

these queries.

For queries run against more than 64 Execution service instances on one host,

51

Executions 2 4 8 16 32 64 124

Relative Change 48.63% 130.79% 83.20% 67.31% 145.63% 116.91% N/A

Mean Relative Change 113.78%

Speedup 1.49 2.31 1.83 1.67 2.46 2.17 N/A

Mean Speedup 2.14

Figure 12: PPerfGrid Scalability
This figure represents the execution times of queries run against 2 to 124 Execution
service instances. As illustrated, the distribution of Execution service instances across
two hosts results in an mean speedup of 2.14 or a mean relative change of 113.78%
over queries run against Execution service instances on a single host.

a problem with socket timeout errors was experienced. This is documented as an

issue in both Globus FAQ [18] and the Apache Axis documentation [4]. An attempt

was made to implement the remedies described in these documents, but the socket

timeout errors still occurred for long-running queries. Future work on PPerfGrid will

attempt to solve this problem. It should be noted that the distributed queries did not

experience this problem when run against 124 Execution services instances, the

52

2 4 8 16 32 64 124
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000

Scalability

Optimized

Non-Optimized

of Executions GSs in Query

M
ill

is
ec

o
nd

s

maximum number of Executions in the HPL data source.

As the above results indicate, by distributing the Execution service instances

involved in a query across two hosts and running them is parallel, a significant

speedup is achieved (mean speedup of 2.14). While this test presents a simple

example, the strategies that the Manager service uses to distribute Execution service

instances offer interesting possibilities for adjusting at runtime to both the query

patterns of users and the changing loads of hosts involved in a query. Implementation

of these strategies is left to future work.

6.6 Performance Results Caching

The Grid services architecture provides the concept of stateful service

instances, which enables the implementation of a caching scheme in PPerfGrid. The

cache stores the results of Performance Results queries in a hash table indexed by a

string value representing the parameters involved in the query (e.g. “func_calls

| /Code/MPI/MPI_Allgather | UNDEFINED | 0.0-11.047856”).

Any future queries to the Execution service instance first check the cache, only

accessing the Mapping Layer and the data store if a miss occurs. PPerfGrid's

performance should be improved by using the Performance Results cache.

To test this theory, a query was created in the PPerfGrid client that asked for

Performance Results for Executions from each of the data sources (HPL, RMA, and

SMG98). The query was run 30 times for each data source with caching turned off

and 30 times for each data source with caching turned on. The query was run 30

times because, according to the central limit theorem, 30 is the minimum adequate

sample size [29]. The results of these tests are detailed in Table 5.

53

Data Source HPL RMA SMG98

Data source type PostgreSQL ASCII Text Files PostgresSQL

Mean query time, caching off 107.39 ms 280.55 ms 50,693.06 ms

Mean query time, caching on 54.77 ms 271.84 ms 368.58 ms

Relative Change 96.05% 3.20% 13,653.59%

Speedup 1.96 1.03 137.54

Table 5: PPerfGrid Caching
This figure represents the execution times of queries run against the HPL, RMA, and
SMG98 data sources. As illustrated, the use of Performance Results caching results in
reduced mean query times for each data source. ms = milliseconds

As the above results indicate, the caching of Performance Results enables a

speedup for each data source. The speedup is most noticeable in the SMG98 data

source, where query times are long. While the query time for HPL is very short,

caching still improves performance (speedup of 1.96) because the Mapping Layer

does not need to access the PostgresSQL database. It is interesting to note that the

RMA data source does not achieve as significant a speedup as the other two data

sources (speedup of 1.03), probably due to the speed of parsing text files in relation to

accessing an RDBMS through a JDBC. Future tests performed with both the ASCII

text files and an RDBMS version of the RMA data source could confirm this theory.

54

7 Future Work

The implementation of PPerfGrid described in this thesis is a prototype, as as

such represents a proof of concept for using Grid services for the exchange of parallel

performance data. There are several areas of future work for PPerfGrid, including

more performance testing, taking full advantage of the functionality available in

GT3.2, optimizations to the Application and Execution Grid services, adding more

features to the client, and integrating PPerfGrid into the PPerfDB application suite.

In order to further test the functionality and scalability of PPerfGrid, additional

data stores should be added. Specifically, an XML version of the HPL data store

should be used to compare performance and overhead between data stores of the same

content but different formats. A set of tests should also be run to evaluate the

performance improvement resulting from the caching of Performance Results in

Execution service instances.

Several features of GT3.2 have not been utilized in this version of PPerfGrid

and would improve the application's functionality. The current version of PPerfGrid

does not address security and is therefore not ready for full deployment. Future

versions could incorporate GT3.2's Grid Security Infrastructure (GSI) to secure

communications between components. GSI uses public key cryptography and

provides “single sign-on” credential delegation functionality [20]. The WS

Information Services API of GT3.2 [19] allows the service data elements of a Grid

service to be queried using XPath. By exposing metrics, foci, type, and time as

service data elements of an Execution service instance, a user could conceivably enter

an XPath query for Performance Results and therefore take advantage of a more open-

55

ended and flexible query mechanism. As part of its Core APIs, GT3.2 has notification

functionality. Notifications allow a client to be notified of changes to a Grid service.

PPerfGrid could take advantage of this functionality in several ways. If the

performance data in a particular data store is frequently updated, or perhaps even

streamed from a running application, the Execution Grid service could notify

PPerfGrid clients each time an update occurred. Updates to a client could be

propagated using either a “push” or a “pull” model, depending on application

requirements. Another potential use for notifications would be to change how the

PPerfGrid client makes calls to a Grid service from a blocking model to a registry-

callback model. This could eliminate some of the inefficiencies involved in using a

separate thread for each service call in a large query.

Future version of the PPerfGrid Application and Execution Grid services

would benefit from two optimizations. If a data store exists on the same host as the

PPerfGrid client, the client should access this data store directly through its wrapper,

rather than incurring the overhead involved in going through the Services Layer. This

functionality has been tested in an ad-hoc manner, but should be standardized and

incorporated into the PPerfGrid client. The cache replacement policy implemented in

the Execution service instances could adjust dynamically depending on the host's

available system resources by utilizing a Service Data Provider Grid service , which

would return statistics on current system CPU and memory usage [19].

Future versions of the PPerfGrid client could also implement a variety of

enhancements. PPerfGrid will be integrated into the PPerfDB application [28, 23].

This will allow users to apply the full-featured analysis capability already available in

56

PPerfDB to performance data from multiple executions of an application, regardless

of the data format, schema, or location. The Execution Query Panel could include an

option to filter results based on a metric value, allowing users more flexibility in

focusing their queries. The Visualizer Panel now has a limited Performance Result

graphing capability which could be greatly improved by added a panel to customize

graphs and charts according to the options available in the JFreeChart API [26].

57

8 Conclusions

This thesis has detailed the PPerfGrid application, which attempts to address

the challenges involved in the exchange of heterogeneous parallel computing

performance data. These challenges can be characterized by data, system, and

geographic heterogeneity. Parallel computing performance data exists in a wide

variety of different schemas and formats, from basic text files to relational databases

to XML, and it is stored on geographically dispersed host systems of various

platforms and available programming languages.

To reconcile data heterogeneity, PPerfGrid abstracts the concepts common to

alternative representations of parallel computing performance data as Application and

Execution semantic objects. An Application is a representation of the performance

data stored for a particular program, and it contains 0 or more Executions. An

Execution is a representation of the data stored for a particular program run, and it

contains Performance Results. Each of these abstractions has a specific interface

designed to return meta data, query for Executions, or query for Performance Results.

Applications and Executions access performance data through a Mapping Layer,

which maps the particular schema and format of the native data store to the

Application and Execution interfaces.

To reconcile system and geographic heterogeneity, PPerfGrid utilizes the Open

Grid Services Architecture (OGSA) and the Globus Grid Services Toolkit version 3.2

(GT3.2). Grid services are stateful, self-describing and discoverable software modules

that are accessed using system and language-neutral protocols over the Web.

PPerfGrid exposes Application and Execution semantic objects as Grid services and

58

publishes their location and characteristics in a registry. PPerfGrid clients access this

registry, locate the PPerfGrid sites with performance data they are interested in, and

bind to a set of Grid services that represent this data. This set of Application and

Execution Grid services provides a uniform, virtual view of the data available in a

particular PPerfGrid session. The view is uniform because, regardless of the

heterogeneous schemas and formats of the data stores being compared, data is

accessed through the common service interfaces. The view is virtual because,

regardless of data location, platform, or implementation language, the client accesses

Applications and Executions as if they were local objects.

PPerfGrid addresses scalability by allowing specific questions to be asked

about a data store, thereby narrowing the scope of the data returned to a client. In

addition, by using a Grid services approach, the Application and Execution Grid

services involved in a particular query can be dynamically distributed across several

hosts, thereby taking advantage of parallelism and improving scalability.

This thesis has detailed PPerfGrid, a tool that contributes to the field of parallel

performance analysis by enabling users to meaningfully and efficiently compare

parallel performance data from multiple executions of a parallel application,

regardless of data, system, or geographic heterogeneity.

59

9 References

[1] "Automated Instrumentation and Monitoring System,"
http://www.nas.nasa.gov/Groups/Tools/Projects/AIMS/.

[2] "Apache Web Services Project," http://ws.apache.org/.

[3] "Apache Axis Architecture Guide,"
http://ws.apache.org/axis/java/architecture-guide.

[4] "How do I set a timeout when using WSDL2Java stubs,"
http://nagoya.apache.org/wiki/apachewiki.cgi?AxisProjectPages/JavaTimeout.

[5] C. Baru, "Putting Government Information at Citizens' Fingertips," NPACI &
SDSC enVision, vol. 16, no. 3, July - September 2000.

[6] F. Berman, G. Fox, T. Hey, "The Grid: Past, Present, and Future," Grid
Computing - Making the Global Infrastructure a Reality, F. Berman, A. Hey,
G. Fox, ed., John Wiley & Sons, Ltd., 2003, pp. 9-50.

[7] R. Buyya, High Performance Cluster Computing, Volume 2, Programming
and Applications, Prentice Hall PTR, 1999.

[8] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,,
"The TSIMMIS Project: Integration of Heterogeneous Information Sources,"
In Proc. of IPSJ Conference, 1994, pp. 7-18.

[9] M. Colgrove, Querying Geographically Dispersed, Heterogeneous Data
Stores: The PPerfXchange Approach, master's thesis, Dept. of Computer
Science, Portland State University, 2002.

[10] M. Daconta, The Semantic Web: A Guide to the Future of XML, Web Services,
and Knowledge Management, John Wiley & Sons, 2003.

[11] "Open Grid Services Architecture Data Access and Integration OGSA-DAI,"
http://www.ogsadai.org.uk/.

[12] I. Foster, C. Kesselman, J. Nick, S. Tuecke, "The Physiology of the Grid,"
Grid Computing - Making the Global Infrastructure a Reality, F. Berman, A.
Hey, G. Fox, ed., John Wiley & Sons, Ltd., 2003, pp. 217-249.

[13] "OGSA Data Services," http://forge.ggf.org/projects/dais-wg.

[14] I. Foster, J. Vockler, M. Wilde, Y. Zhao, "The Virtual Data Grid: A New
Model and Architecture for Data-Intensive Collaboration," Proceedings of the
2003 CIDR Conference, 2003, .

[15] "Open Grid Services Infrastructure (OGSI) Version 1.0,"
http://www.ggf.org/ogsi-wg.

[16] N. Giannadakis, A. Rowe, M. Ghanem, Y. Guo, "InfoGrid: Providing
Information Integration for Knowledge Discovery," Information Sciences, vol.
155, no. 3-4, October 2003, pp. 199-226.

60

[17] "The Globus Toolkit," http://www-unix.globus.org/toolkit/.

[18] "Globus Toolkit 3.0 FAQ," http://www-
unix.globus.org/toolkit/faq.html#N40007.

[19] "WS Information Services : Developer's Guide," http://www-
unix.globus.org/toolkit/docs/3.2/infosvcs/ws/developer/index.html.

[20] "GSI Documentation," http://www-
unix.globus.org/toolkit/docs/3.2/gsi/index.html.

[21] C. Goble, D. DeRoure, "The Grid: An Application of the Semantic Web,"
SIGMOD Record, vol. 31, no. 4, December 2002, pp. 65-70.

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[23] C. Hansen, Towards Comparative Profiling of Parallel Applications with
PPerfDB, master's thesis, Dept. of Computer Science, Portland State
University, 2001.

[24] "HPL - A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Com,"
http://www.netlib.org/benchmark/hpl/.

[25] K. Huck, R. Bell, L. Li, A. Malony, "PerfDMF: Design and Implementation of
a Parallel Performance Data Management Framework," Performance Research
Laboratory, Dept. of Computer and Information Science, University of
Oregon, 2004.

[26] "JFreeChart," http://www.jfree.org/jfreechart/.

[27] "Jumpshot: Performance Visualization for Parallel Programs," http://www-
unix.mcs.anl.gov/perfvis/software/viewers/.

[28] K. Karavanic, B. Miller, "A Framework for Multi-Execution Performance
Tuning," Parallel and Distributed Computing Practices, vol. 4, no. 3, Sept.
2001, pp. 275-300.

[29] D. Lilja, Measuring Computer Performance: A Practioner's Guide, Cambridge
University Press, 2000, pp. 48-49.

[30] B. Medjahed, A. Bouguettaya, "Composing Web Services on the Semantic
Web," The VLDB Journal, vol. , no. 12, 2003, pp. 333-351.

[31] E. Mena, V. Kashyap, A. Sheth, A. Illarramendi, "OBSERVER: An Approach
for Query Processing in Global Information Systems Based On Interoperation
Across Pre-existing Ontologies," Proceedings of the 1st IFCIS International
Conference, 1996, 1-49.

[32] "Microsoft Web Servics Developer Center,"
http://msdn.microsoft.com/webservices/.

[33] P. Monday, Web Services Patterns: Java Edition, Apress, 2003, pp. 57-74.

61

[34] R. Moore, C. Baru, "Virtualization services for Data Grids," Grid Computing -
Making the Global Infrastructure a Reality, F. Berman, A. Hey, G. Fox, ed.,
John Wiley & Sons, Ltd., 2003, pp. 409-436.

[35] Y. Papakonstantinou, V. Vassalos, "The Enosys Markets Data Integration
Platform: Lessons from the Trenches," Conference on Information and
Knowledge Management, 2001, pp. 538-540.

[36] Y. Papakonstantinou, V. Borkar, "XML Queries and Algebra in the Enosys
Integration Platform," Data & Knowledge Engineering, vol. 44, no. 3, March
2003, pp. 299-322.

[37] "Paradyn Parallel Performance Tools," http://www.cs.wisc.edu/~paradyn/.

[38] "ParaGraph: A Performance Visualization Tool for MPI,"
http://www.csar.uiuc.edu/software/paragraph/.

[39] "PostgresSQL," http://www.postgresql.org/.

[40] "The Presta Stress Benchmark Code,"
http://www.llnl.gov/asci/purple/benchmarks/limited/presta/.

[41] R. Prodan, T. Fahringer, "From Web Services to OGSA: Experiences in
Implementing an OGSA-based Grid Application," 4th International Workshop
on Grid Computing, 2003, 2-9.

[42] "Java Technology and Web Services," http://java.sun.com/webservices/.

[43] V. Taylor, X. Wu, R. Stevens, "Prophesy: an infrastructure for performance
analysis and modeling of parallel and grid applications," ACM SIGMETRICS
Performance Evaluation Review, vol. 30, no. 4, March 2003, pp. pp. 13-16.

[44] "UDDI (Universal Description, Discovery, and Integration) Specification,"
http://www.uddi.org/specification.html.

[45] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H.
Neumann, "Ontology-Based Integration of Information A Survey of Existing
Approaches," 01 Workshop: Ontologies and Information Sharing, 2001, 108-
117.

[46] "XML (Extensible Markup Language Specifications,"
http://www.w3.org/XML.

[47] "Web Services Specifications, SOAP (Simple Object Access Protocol), WSDL
(Web Services Description Language)," http://www.w3.org/2002/ws.

[48] J. Widom, "Research Problems in Data Warehousing," Proceedings of the
fourth international conference on Information and knowledge management,
1995, 25-30.

[49] G. Wiederhold, "Mediation in Information Systems," ACM Computing
Surveys, vol. 27, no. 2, June , pp. 265-267.

62

[50] G. Wiederhold, "Mediation in Information Systems," ACM Computing
Surveys, vol. 27, no. 2, June , pp. 265-267.

63

Combined references: [1][37][27][38][26][22][35][36][28] [49][50]

8. References

[1] "Automated Instrumentation and Monitoring System,"
http://www.nas.nasa.gov/Groups/Tools/Projects/AIMS/.
[2] "Apache Web Services Project," http://ws.apache.org/.
[3] "Apache Axis Architecture Guide," http://ws.apache.org/axis/java/architecture-
guide.
[4] "How do I set a timeout when using WSDL2Java stubs,"
http://nagoya.apache.org/wiki/apachewiki.cgi?AxisProjectPages/JavaTimeout.
[5] C. Baru, "Putting Government Information at Citizens' Fingertips," NPACI &
SDSC enVision, vol. 16, no. 3, July - September 2000.
[6] F. Berman, G. Fox, T. Hey, "The Grid: Past, Present, and Future," Grid
Computing - Making the Global Infrastructure a Reality, F. Berman, A. Hey, G. Fox,
ed., John Wiley & Sons, Ltd., 2003, pp. 9-50.
[7] R. Buyya, High Performance Cluster Computing, Volume 2, Programming and
Applications, Prentice Hall PTR, 1999.
[8] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,,
"The TSIMMIS Project: Integration of Heterogeneous Information Sources," In Proc.
of IPSJ Conference, 1994, pp. 7-18.
[9] M. Colgrove, Querying Geographically Dispersed, Heterogeneous Data Stores:
The PPerfXchange Approach, master's thesis, Dept. of Computer Science, Portland
State University, 2002.
[10] M. Daconta, The Semantic Web: A Guide to the Future of XML, Web Services,
and Knowledge Management, John Wiley & Sons, 2003.
[11] "Open Grid Services Architecture Data Access and Integration OGSA-DAI,"
http://www.ogsadai.org.uk/.
[12] I. Foster, C. Kesselman, J. Nick, S. Tuecke, "The Physiology of the Grid," Grid
Computing - Making the Global Infrastructure a Reality, F. Berman, A. Hey, G. Fox,
ed., John Wiley & Sons, Ltd., 2003, pp. 217-249.
[13] "OGSA Data Services," http://forge.ggf.org/projects/dais-wg.
[14] I. Foster, J. Vockler, M. Wilde, Y. Zhao, "The Virtual Data Grid: A New Model
and Architecture for Data-Intensive Collaboration," Proceedings of the 2003 CIDR
Conference, 2003, .
[15] "Open Grid Services Infrastructure (OGSI) Version 1.0,"
http://www.ggf.org/ogsi-wg.
[16] N. Giannadakis, A. Rowe, M. Ghanem, Y. Guo, "InfoGrid: Providing
Information Integration for Knowledge Discovery," Information Sciences, vol. 155,
no. 3-4, October 2003, pp. 199-226.
[17] "The Globus Toolkit," http://www-unix.globus.org/toolkit/.
[18] "Globus Toolkit 3.0 FAQ," http://www-
unix.globus.org/toolkit/faq.html#N40007.
[19] "WS Information Services : Developer's Guide," http://www-
unix.globus.org/toolkit/docs/3.2/infosvcs/ws/developer/index.html.
[20] "GSI Documentation," http://www-

64

unix.globus.org/toolkit/docs/3.2/gsi/index.html.
[21] C. Goble, D. DeRoure, "The Grid: An Application of the Semantic Web,"
SIGMOD Record, vol. 31, no. 4, December 2002, pp. 65-70.
[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.
[23] C. Hansen, Towards Comparative Profiling of Parallel Applications with
PPerfDB, master's thesis, Dept. of Computer Science, Portland State University,
2001.
[24] "HPL - A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Com," http://www.netlib.org/benchmark/hpl/.
[25] K. Huck, R. Bell, L. Li, A. Malony, "PerfDMF: Design and Implementation of a
Parallel Performance Data Management Framework," Performance Research
Laboratory, Dept. of Computer and Information Science, University of Oregon, 2004.
[26] "JFreeChart," http://www.jfree.org/jfreechart/.
[27] "Jumpshot: Performance Visualization for Parallel Programs," http://www-
unix.mcs.anl.gov/perfvis/software/viewers/.
[28] K. Karavanic, B. Miller, "A Framework for Multi-Execution Performance
Tuning," Parallel and Distributed Computing Practices, vol. 4, no. 3, Sept. 2001, pp.
275-300.
[29] D. Lilja, Measuring Computer Performance: A Practioner's Guide, Cambridge
University Press, 2000, pp. 48-49.
[30] B. Medjahed, A. Bouguettaya, "Composing Web Services on the Semantic
Web," The VLDB Journal, vol. , no. 12, 2003, pp. 333-351.
[31] E. Mena, V. Kashyap, A. Sheth, A. Illarramendi, "OBSERVER: An Approach
for Query Processing in Global Information Systems Based On Interoperation Across
Pre-existing Ontologies," Proceedings of the 1st IFCIS International Confere, 1996,
1-49.
[32] "Microsoft Web Servics Developer Center,"
http://msdn.microsoft.com/webservices/.
[33] P. Monday, Web Services Patterns: Java Edition, Apress, 2003, pp. 57-74.
[34] R. Moore, C. Baru, "Virtualization services for Data Grids," Grid Computing -
Making the Global Infrastructure a Reality, F. Berman, A. Hey, G. Fox, ed., John
Wiley & Sons, Ltd., 2003, pp. 409-436.
[35] Y. Papakonstantinou, V. Vassalos, "The Enosys Markets Data Integration
Platform: Lessons from the Trenches," Conference on Information and Knowledge
Management, 2001, pp. 538-540.
[36] Y. Papakonstantinou, V. Borkar, "XML Queries and Algebra in the Enosys
Integration Platform," Data & Knowledge Engineering, vol. 44, no. 3, March 2003,
pp. 299-322.
[37] "Paradyn Parallel Performance Tools," http://www.cs.wisc.edu/~paradyn/.
[38] "ParaGraph: A Performance Visualization Tool for MPI,"
http://www.csar.uiuc.edu/software/paragraph/.
[39] "PostgresSQL," http://www.postgresql.org/.
[40] "The Presta Stress Benchmark Code,"
http://www.llnl.gov/asci/purple/benchmarks/limited/presta/.

65

[41] R. Prodan, T. Fahringer, "From Web Services to OGSA: Experiences in
Implementing an OGSA-based Grid Application," 4th International Workshop on
Grid Computing, 2003, 2-9.
[42] "Java Technology and Web Services," http://java.sun.com/webservices/.
[43] V. Taylor, X. Wu, R. Stevens, "Prophesy: an infrastructure for performance
analysis and modeling of parallel and grid applications," ACM SIGMETRICS
Performance Evaluation Review, vol. 30, no. 4, March 2003, pp. pp. 13-16.
[44] "UDDI (Universal Description, Discovery, and Integration) Specification,"
http://www.uddi.org/specification.html.
[45] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
"Ontology-Based Integration of Information A Survey of Existing Approaches," 01
Workshop: Ontologies and Information Sharing, 2001, 108-117.
[46] "XML (Extensible Markup Language Specifications," http://www.w3.org/XML.
[47] "Web Services Specifications, SOAP (Simple Object Access Protocol), WSDL
(Web Services Description Language)," http://www.w3.org/2002/ws.
[48] J. Widom, "Research Problems in Data Warehousing," Proceedings of the fourth
international conference on Information and knowledge management, 1995, 25-30.
[49] G. Wiederhold, "Mediators in the architecture of future information systems,"
IEEE Computer, vol. 18, no. 3, March 1992, pp. 38-49.
[50] G. Wiederhold, "Mediation in Information Systems," ACM Computing Surveys,
vol. 27, no. 2, June , pp. 265-267.

66

	PPerfGrid: A Grid Services-Based Tool for the Exchange of Heterogeneous Parallel Performance Data
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1453849391.pdf.IX3jC

