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Glossary 
 
absolute calibration: the process of converting the intensity axis of a spectrum from 

units of photon count to units of radiance, such as W/cm2/sr/µm. 

aperture width: the number of rows of pixels that are averaged together to produce 

an extracted spectrum. 

calibration images: spectral images that are used only for the calibration of scientific 

images. 

data reduction: the calibration of raw data in preparation for analysis. 

DetermineDispersion1: the dispersion axis determination algorithm discussed in the 

COMICS Data Reduction Manual. 

DetermineDispersion2: the first version of the newly developed dispersion axis 

determination algorithm. 

DetermineDispersion3: the second version of the newly developed dispersion axis 

determination algorithm. 

DetermineSpatial: the spatial axis determination algorithm. 

dispersion axis: the x-axis of a spectral image. 

extraction: the process of obtaining a one or more spectra from a spectral image. 

flat spectral image: a calibration image that captures the non-uniformities in the 

spectrometer detector’s response to light. 

InImage: the input image for an algorithm. 



 

 xi 

orthogonalization: the process of transforming a spectral image so that the image’s 

dispersion and spatial axes are perpendicular, the dispersion axis is horizontal, and the 

spatial axis is vertical. 

photon count: the average number of photons that have hit the pixels in a column of 

the detector array.  This term may also be used to denote the number of photons that 

have hit a single pixel.  The intended meaning will be clear from the context. 

radiance: a measure of the intensity of the radiation emitted from an object.  Radiance 

may be expressed in units such as W/cm2/sr/µm. 

read-out pattern noise: the noise generated by detectors when they read data. 

resolution: a measure of the degree of separation of wavelengths along the x-axis of a 

spectrum. 

scientific images: spectral images of objects that are of interest to astronomers.  For 

the purposes of this research, all scientific images are the spectral images of planets 

and stars. 

sky emission: the infrared (thermal) radiation emitted by Earth’s atmosphere. 

spatial axis: the y-axis of a spectral image. 

spectral image: a two-dimensional image obtained from a spectrometer that reports 

the intensity of the electromagnetic radiation emitted from an object (such as a star or 

a planet) as a function of wavelength and of position along the spectrometer slit.  The 

x-axis of such an image is the dispersion axis, which keeps track of the wavelength of 

the radiation; the y-axis is the spatial axis, which keeps track of the position along the 

slit. 



 

 xii 

spectral line: a line within a spectral image that reports the amount of radiation 

emitted at a single wavelength as a function of position along the spectrometer slit. 

spectrometer: an instrument that separates light according to wavelength, much as a 

prism does. 

spectrum: a one-dimensional plot of the intensity of the electromagnetic radiation 

emitted from an object (such as a star or a planet) as a function of wavelength. 

spectrum calibration: the process of converting the axes of a spectrum to units that 

are meaningful to scientists.  This process involves two types of calibration: 

wavelength calibration and absolute calibration. 

theta: the angle between the spatial and dispersion axes of a spectral image. 

Transformation1: The initial version of the image transformation algorithm that is 

used during orthogonalization. 

Transformation2: The first refinement of the image transformation algorithm. 

Transformation3: The second refinement of the image transformation algorithm. 

wavelength calibration: the process of converting the wavelength axis of a spectrum 

from units of pixel number to units of wavelength, such as micrometers (µm). 
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Chapter 1 : Introduction 
 
1.1 Problem Statement 
 
 The dynamic atmospheres of Jupiter, Saturn, Uranus, and Neptune provide a 

rich source of meteorological phenomena for scientists to study.  To investigate these 

planets, scientists obtain spectral images of these bodies using various instruments 

including the Cooled Mid-Infrared Camera and Spectrometer (COMICS) at the Subaru 

Telescope Facility at Mauna Kea, Hawaii.  These spectral images are two-dimensional 

arrays of double precision floating point values that have been read from a detector 

array.  Such images must be reduced before the information they contain can be 

analyzed.  The reduction process for spectral images from COMICS involves several 

steps: 

1. Sky subtraction: the background radiation from Earth’s atmosphere must be 

subtracted from the spectral images. 

2. Read-out pattern noise reduction: the noise related to reading data from detectors 

must be subtracted from the spectral images. 

3. Division by the flat: the spectral images must be corrected for non-uniformities in 

the detector array response. 

4. Orthogonalization: the spectral images must be transformed so that the images’ 

axes are perpendicular. 
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5. Extraction: individual spectra must be extracted from the spectral images.  These 

spectra are plots of pixel intensity as a function of position along the x-axis of a 

spectral image. 

6. Calibration: the x- and y- axes of the extracted spectra must be converted to units 

that are meaningful for scientific analysis. 

In earlier work, the author developed software tools to support the first three steps 

in this reduction process.  This thesis presents algorithms for performing the next two 

reduction steps, namely orthogonalization and extraction.  More specifically, this 

thesis addresses the following research question: What are proper methods of 

orthogonalizing spectral images in preparation for extraction? 

 

1.2 Motivation and Background 
 
 The research presented in this thesis is a continuation of work begun by the 

author as a student intern at the Jet Propulsion Laboratory, California Institute of 

Technology (JPL/CIT) in the summer of 2008.  During this internship, the author 

worked under the direction of Dr. Glenn Orton, an astronomer who studies the 

atmospheres of Jupiter, Saturn, Uranus, and Neptune.  Dr. Orton and his colleagues in 

the Earth and Planetary Atmospheres group observe these planets at telescope 

facilities around the world, collecting data in the form of infrared images and spectra.  

The images are obtained using cameras and provide data similar to that contained in a 

photograph, while the spectra are obtained using spectrometers and provide data as 

described in Section 1.3 of this thesis.  These data must be reduced before they can be 

analyzed.  The Earth and Planetary Atmospheres group has been collecting imaging 
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data for decades now, so they have a vast software base to aid in the reduction of such 

data.  However, this group has only recently begun collecting spectroscopic data.  

Traditional reduction techniques for images cannot, in general, be applied to spectra, 

so new software needed to be developed to reduce the new type of data.  During the 

summer of 2008, the author produced software to facilitate the reduction of spectra 

from the Cooled Mid-Infrared Camera and Spectrometer (COMICS) at the Subaru 

Telescope; the reduction process used for this instrument along with the format of the 

data after reduction are described in Section 1.3.  Partial support for the reduction of 

COMICS spectra was implemented over the summer, and this thesis is a continuation 

of that work. 

 Once spectroscopic data have been reduced, the data can be analyzed and 

published in peer-reviewed journals.  These published data provide scientists with 

information about the atmospheric composition of the giant planets in our solar 

system; this composition information in turn provides insight into the structure and 

dynamics of these planetary atmospheres [15] [16][18][19].  In addition to advancing 

scientists’ understanding of these important bodies in our solar system, studying the 

outer planets also provides a knowledge base that scientists can use as they seek to 

understand the composition and dynamics of the atmospheres of giant planets in other 

planetary systems [16].  In providing an easy method for Dr. Orton and his group to use 

to reduce their data, the algorithms presented here will help these scientists as they 

seek to increase humanity’s knowledge about our universe.  It may also be possible to 

use these algorithms to process data from other instruments (in addition to COMICS); 
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these instruments may collect data for use in scientific inquiry or in military 

applications. 

 This data reduction problem was chosen because, even after the author’s 

summer internship, suitable algorithms had not been developed for performing all of 

the reduction steps required for COMICS spectra.  Questions regarding what 

computational techniques should be used to complete these reduction steps provided 

an interesting research topic to address in a thesis.  This research was conducted in a 

computer science department because the work described here did not require the use 

of scientific principles to develop a new process for reducing data from the COMICS 

spectrometer.  Instead, this research involved looking at a preexisting data reduction 

process for COMICS spectra (see Section 1.3) and developing new algorithms, where 

necessary, to support this reduction process.  The novel algorithms presented here 

apply standard image processing techniques to the problem of reducing COMICS 

spectra.  Such development of new algorithms falls under the realm of computer 

science. 

 

1.3 Terminology 
 
 To perform their research, Dr. Orton and his colleagues observe Jupiter, 

Saturn, Uranus, and Neptune using various ground-based telescopes including the 

Subaru Telescope, NASA’s Infrared Telescope Facility (IRTF), the Gemini North and 

South Telescopes, and the ESO Very Large Telescope (VLT).  These telescopes are all 

equipped with spectrometers that are sensitive to infrared (thermal) radiation.  A 

spectrometer is an instrument that separates light according to wavelength, much as a 
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prism does [15].  The schematic of a spectrometer is shown in Figure 1-1.  This 

spectrometer works as follows: the telescope is pointed at an object of interest, such as 

a planet or a star.  Light from the object enters the telescope and is directed through a 

slit and into the spectrometer.  Once inside the spectrometer, the light is focused onto a 

diffraction grating that separates the light into its component wavelengths.  The ability 

of this grating to separate light of different wavelengths is indicated by its resolution; 

the higher the resolution, the greater the distance that separates the different 

wavelengths after the light leaves the grating.  From the grating, the light is directed 

onto a detector that records the data.  This detector may be thought of as a two-

dimensional array of pixels where each pixel collects a portion of the light that hits the 

detector. 

 
Figure 1-1. The schematic of a spectrometer.  Each of the colored arrows in the schematic 
represents a different wavelength of light.  This figure is a modified version of the image 
http://en.wikipedia.org/wiki/Image:Spectrometer_schematic.gif made by Kkmurray. 
 
The data obtained from a telescope’s spectrometer are reported in the form of a 

spectral image such as the one shown on the right half of Figure 1-2.  A spectral image 

is a two-dimensional image that reports the intensity of the electromagnetic radiation 

emitted from an object as a function of wavelength and of position along the 
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spectrometer slit.  The spectral image’s x-axis is the dispersion axis, which keeps track 

of the wavelength of the light that was captured by the detector; the y-axis of this 

image is the spatial axis, which keeps track of the position along the spectrometer’s 

slit.  This spectral image contains multiple vertical columns of bright pixels, and each 

of these columns is called a spectral line.  Each spectral line reports the intensity of the 

radiation emitted at a particular wavelength from each position along the spectrometer 

slit. 

 

 
Figure 1-2. (left) The position of the spectrometer slit on an object of interest (Jupiter), and 
(right) the spectral image obtained at that slit position.  The shades of red in this spectral 
image indicate the intensity of each pixel, not the wavelength of the light associated with those 
pixels. 
 
 These spectral images do not present the data in a form that is easy for 

scientists to analyze.  Therefore, the data must be reduced, or calibrated, to prepare 

them for analysis.  The data reduction process for spectral images involves several 

major steps, which are outlined below for infrared data [10][12][13].  During this 

reduction procedure, two types of spectral images are used: we will refer to them as 
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scientific images and calibration images.  Scientific images are the spectral images of 

objects that are of interest to astronomers; for the purposes of this research, the 

scientific images are the spectral images of planets and stars.  Calibration images are 

spectral images that are used only for the calibration of scientific images. 

1. Sky subtraction. 

Earth’s atmosphere emits a significant amount of infrared radiation; the intensity 

of this sky emission is high enough to overwhelm the signal resulting from the 

infrared radiation from the outer planets.  A calibration image of this background 

radiation must be subtracted from the scientific images. 

2. Read-out pattern noise reduction. 

The electrical circuits present in spectrometer detectors generate a certain amount 

of noise when the data are read from the detector and stored to disk.  This noise 

pattern must be subtracted from the scientific images. 

3. Division by the flat. 

The detectors used with telescope spectrometers may be viewed as two-

dimensional arrays of pixels.  Each pixel in such a detector array responds 

differently to the light incident upon it.  To correct for these non-uniformities in 

the detector array response, each scientific image must be divided by a flat 

calibration image.  Here, the term flat refers to the fact that the flat image captures 

the detector’s response to a uniform light source. 
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4. Spectral image orthogonalization. 

As shown in Figure 1-3, the spatial and dispersion axes of a scientific image may 

not be perpendicular to one another; this axis skew is caused by the characteristics 

of the COMICS spectrometer.  Orthogonalization is the process of transforming a 

spectral image so that these axes are perpendicular.  The size of the spectral image 

is the same both before and after orthogonalization. 

 
Figure 1-3. A spectral image for which the spatial axis is not perpendicular to the dispersion 
axis. 

 
5. Spectrum extraction. 

To reformat the data contained in a science image so that scientists may analyze it, 

one or more spectra must be extracted from the spectral image.  A spectrum is a 

plot of the intensity of the electromagnetic radiation emitted from an object as a 

function of wavelength.  The intensity axis is often expressed in units of photon 

counts, where the photon count is the average number of photons that have hit the 

pixels in one column of the orthogonalized image.  Instead of being specified in 

units of wavelength, the wavelength axis of a newly extracted spectrum is often 
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expressed in terms of pixel number, where the pixel number is the position along 

the dispersion axis of the column of pixels whose photon count is being reported. 

6. Spectrum calibration. 

The intensity and wavelength axes of a newly extracted spectrum are not 

expressed in terms of useful units.  Spectrum calibration is the process of 

converting the axes to units that are more meaningful for scientists; this process 

requires two types of calibration: wavelength calibration and absolute calibration.  

Wavelength calibration is the process of converting the wavelength axis from units 

of pixel number to units of wavelength, such a micrometers (µm).  Absolute 

calibration is the process of converting the intensity axis from units of photon 

count to units of radiance, such as W/cm2/sr/µm; radiance is a measure of the 

intensity of the radiation emitted from an object. 

Figure 1-4 provides an illustration of these six reduction steps [10]. 
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Figure 1-4. An illustration of the process of data reduction for spectral images. 



 

 11

1.4 Telescopes and their Properties 
 
 The Earth and Planetary Atmospheres Group at JPL/CIT routinely use the 

infrared spectrometers at several ground-based telescopes for their observations.  The 

8.2-m Subaru telescope is located on Mauna Kea in Hawaii and is operated by the 

National Astronomical Observatory of Japan (NAOJ) [15].  Subaru is equipped with the 

Cooled Mid-Infrared Camera and Spectrometer (COMICS), an instrument that is 

sensitive to infrared radiation in the wavelength range from 7.8 to 24.5 µm.  The 

COMICS spectrometer is equipped with low (250), medium (2,500), and high 

(10,000) resolution gratings that cover the range from 7.8 to 13.3 µm.  COMICS is 

also outfitted with five spectroscopy detectors; only one of these detectors is used for 

low-resolution observations, while all five detectors are used during medium- and 

high- resolution observations[10].  The 3-m Infrared Telescope Facility is also located 

on Mauna Kea and is run by NASA and the University of Hawaii; the IRTF is 

equipped with an infrared spectrograph called SpeX (a spectrograph is similar to a 

spectrometer).  The 8.1-m Gemini North and South telescopes are a pair of identical 

telescopes, one in the northern hemisphere and the other in the southern hemisphere, 

that are operated by the International Gemini Consortium.  Gemini North is located on 

Mauna Kea and is equipped with the Michelle infrared spectrometer.  Gemini South is 

located at Cerro Pachon in Chile and houses the T-Recs infrared spectrometer.  The 

Very Large Telescope contains four 8.2-m telescopes that can operate individually or 

as a single unit.  VLT is operated in La Paranal, Chile by the European Southern 

Observatory (ESO) and houses the VISIR camera and spectrometer [15]. 
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Chapter 2 : Methodology and Related Work 
 
2.1 Approach 
 
 The approach presented in this thesis for spectral image orthogonalization is 

based on the work of Dr. Glenn Orton and on the work of the COMICS team at the 

Subaru Telescope Facility.  Before describing this approach, it will be useful to 

describe the data sets for which the algorithms presented in this thesis were developed 

(Section 2.1.1).  Then we will discuss the general approaches used for developing 

(Section 2.1.2) and testing (Section 2.1.3) the algorithms presented in this thesis. 

 

2.1.1 Data Sets 
 

For the purposes of this research, a data set is a collection of spectral images 

that were obtained using the COMICS spectrometer during one night of making 

observations; Dr. Orton’s data sets typically contain 25 to 100 images.  These spectral 

images are encoded using the Flexible Image Transport System (FITS) format, a 

standard file format used by astronomers.  The FITS files used in this research contain 

two components: a 240320×  array of double-precision floating-point numbers, and 

an array of strings.  The floating-point array represents a spectral image, while the 

string array is the file header.  This FITS header contains a description of the data 

stored in the file along with information about the conditions under which the data 

were collected.  Such FITS files are typically g-zipped with the compressed file sizes 

ranging from 500 to 600 kB.  More information about the FITS format is available 

online at http://fits.gsfc.nasa.gov. 
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2.1.2 Approach for Algorithms 
 

To orthogonalize the images in a data set, the spectral images of stars are used 

to determine the spatial axis orientations associated with the images in the data set.  

Then the spectral image of a planet is used to determine the dispersion axis orientation 

associated with the data.  Once the spatial and dispersion axes have been determined, 

the spectral images in the data set are transformed so that the axes are perpendicular, 

with the dispersion axis being horizontal and the spatial axis being vertical.  Spectra 

can then be extracted from the orthogonalized spectral images.  All of these algorithms 

operate on individual spectral images. 

 

2.1.3 Approach for Testing 
 
 The algorithms developed to perform orthogonalization have been tested for 

both correctness and efficiency; the tests used here are based on techniques used by 

Dr. Orton and by the COMICS team.  Correctness has been evaluated using data 

provided by Dr. Orton.  Spectral images have been orthogonalized using the 

algorithms presented in this thesis.  Some of these algorithms were developed by the 

author, and others were developed by the COMICS team.  The spatial and dispersion 

axes have been re-determined for the orthogonalized images using the axis 

determination algorithms described in this thesis.  The angle between these determined 

axes was also calculated for the orthogonalized images.  If the orthogonalized images’ 

axes are perpendicular, with the spatial axes being vertical and the dispersion axes 

being horizontal, then the output of the orthogonalization algorithm is correct.  A 

second measure of correctness could be to check that, for any given spectral image, 
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the sum of all the pixels’ intensities is the same before and after orthogonalization.  

This correctness criterion cannot be used here because the spectral images are the 

same size before and after orthogonalization: as a result of this size restriction, some 

pixels from the original image are mapped outside the bounds of the transformed 

image by the orthogonalization transformation, resulting in “lost pixels” and a sum of 

pixel values that is smaller after the transformation than before the transformation.  

The efficiency of this algorithm has been measured in terms of running time: the 

implementation of the orthogonalization algorithm must be able to process a single 

spectral image in less than 5 minutes.  The performance of the orthogonalization 

algorithm based on these correctness and efficiency criteria are reported in Chapter 3 

of this thesis. 

 

2.2 Distinctive Aspects of this Approach 
 
 The orthogonalization algorithm is divided into three stages: spatial axis 

determination, dispersion axis determination, and image transformation.  The spatial 

axis determination and image transformation algorithms developed by the COMICS 

team were implemented for this thesis.  However, a new algorithm for dispersion axis 

determination was developed because the algorithm presented by the COMICS team 

for this purpose was strongly connected to wavelength calibration.  Dr. Orton needed 

an algorithm that did not involve such a connection because he wanted the software 

for each reduction step to be designed as a separate module.  Modularity will simplify 

the task of generalizing these algorithms so that they can be used to reduce data from 

other instruments, a task that will be undertaken in future work.  The new dispersion 
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axis determination algorithm uses general image processing techniques to separate the 

axis determination procedure from wavelength calibration. 

 

2.3 Orthogonalization Algorithm 
 
 After a spectral image has undergone the reduction steps of sky subtraction, 

read-out pattern noise reduction, and division by the flat, that image is ready to be 

orthogonalized.  Orthogonalization is the process of transforming a spectral image so 

that the image’s dispersion and spatial axes are perpendicular to one another, with the 

dispersion axis being horizontal and the spatial axis being vertical.  The COMICS 

Data Reduction Manual [10] states that the orthogonalization process may be 

implemented in three steps: 

1. Determine the orientation of the spatial axis for a high S/N spectral image of a 

standard star.  The orientation of this axis, y, changes as a function of x (see Figure 

2-1a); this variation in orientation can be captured by a quadratic function of the 

form 21
2

0 bxbxby ++= .  This step should be done once for each set of low-

resolution spectral images and five times for each set of medium-resolution 

spectral images; these numbers of repetitions are used because low-resolution 

spectra are obtained using one of the five spectroscopy detectors available on 

COMICS while the medium-resolution spectra are obtained using all five 

spectroscopy detectors[10].  The algorithm used to perform this step may involve 

user interaction. 
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2. Determine the orientation of the dispersion axis for a high S/N spectral image of a 

planet.  The orientation of this axis, x, changes as a function of y (see Figure 2-1b); 

this variation in orientation can be captured by a linear function of the form 

10 ayax += .  This dispersion axis is described by a linear function instead of a 

quadratic function because the orientation of this axis can be inferred from the 

orientation of the spectral lines in an image, and these spectral lines are described 

by linear equations.  This step normally should be performed once for each set of 

low-resolution spectral images and once for each set of medium-resolution images 

because the dispersion axis orientation is usually the same for images of the same 

resolution in the same data set (see the results presented in Section 3.3.1.2).  The 

algorithm used to perform this step may involve user interaction. 

3. Using information about the axes determined in steps 1 and 2, transform the 

images so that the spatial and dispersion axes are perpendicular.  This step should 

be performed once for each image in a data set, and the algorithm used to perform 

this step should not require user interaction. 
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Figure 2-1. A conceptual illustration of (a) determining the spatial axis and (b) determining the 
dispersion axis.  The red curve gives the location of the “base” of the spatial (y) axis as a 
function of x; the blue arrows labeled Yx1 through Yx5 show the position of the spatial axis for 
the x-values x1 through x5, respectively.  Likewise, the green line give the location of the 
“base” of the dispersion (x) axis as a function of y; the blue arrows labeled XY1 through XY5 
show the position of the dispersion axis for the y-values Y1 through Y5, respectively. 
 
Section 2.3.1 describes the algorithm for spatial axis determination, Section 2.3.2 

describes three algorithms for dispersion axis determination, and Section 2.3.3 

describes three algorithms for transforming an image so that its axes are perpendicular.  

In these sections, the input image will be referred to as InImage. 

 

2.3.1 Spatial Axis Determination 
 
This algorithm, which will be referred to as DetermineSpatial in the remainder of this 

thesis, requires the following input parameters: 

1. InImage: The spectral image of a standard star represented as an 240320×  array 

of floating point values.  The dimensions of this array will be labeled x and y. 

2. xmin: The minimum x-value for which we will perform calculations; the COMICS 

manual suggests using a value of 30.  The rationale for choosing this value for 
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xmin is not explained in the manual, but the value was probably chosen to exclude 

pixels near the edge of the image from the calculation: due to the characteristics of 

the spectroscopy detector, the pixels near the edge are less accurate than the pixels 

in the middle of the image.[10] 

3. xmax: The maximum x-value for which we will perform calculations.  The 

COMICS manual suggests using a value of 290; the reason for choosing this value 

for xmax is the same as that used to choose a value for xmin. 

To determine the spatial axis of InImage, first, automatically determine the y-

values (ymin and ymax) between which the star spectrum appears in this image (see 

Figure 2-2).  These boundary values are obtained using a 2-standard-deviation 

threshold above the mean pixel value; the user is allowed to adjust these values if they 

are not reasonable. 

 

 
Figure 2-2. The two-sigma threshold estimates for the minimum (ymin) and maximum 
(ymax) y-values between which the star spectrum appears. 
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 Next, locate the peak position (in terms of intensity) of the star spectrum for 

each x-value between xmin and xmax.  To determine the coordinates of these peak 

positions this algorithm employs a two-step method that is used by the q-series task 

q_startrace; q-series is free software available on the Internet at 

http://canadia.ir.isas.ac.jp/comics/open/rbin/rbin.html. 

Step 1: For each value of y between ymin and ymax, compute the arithmetic mean of 

the x-values in the row corresponding that value of y.  Fit these average values with a 

Gaussian of the form 

ExD
2
zexpA

2
+⋅+









 −⋅ ,   (2.1) 

where 
C

Bxz −= . 

To perform this Gaussian fit, the algorithm implemented by the Interactive Data 

Language’s gaussfit function is used; gaussfit uses gradient expansion to calculate a 

non-linear least squares fit.  The initial guesses for the fit parameters are as follows, 

where m is the vector containing the average for each y-value and n is the size of 

vector m: 
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Step 2: For each value of x between xmin and xmax, take the y-values corresponding to 

that value of x and fit those y-values with a Gaussian of the same form as was used in 

Step 1.  Use the fit parameters associated with the final Gaussian from Step 1 as initial 

guesses for the fit parameters associated with the Gaussians here.  The x- and y- 

coordinates of the Gaussian centers for each x-value are recorded for later use.  Figure 

2-3 shows a star spectrum with the calculated Gaussian centers displayed over the top. 
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Figure 2-3. A star spectrum with the calculated Gaussian centers plotted over the top. 
 
These peak positions are fit with both a quadratic equation of the form 

21
2

0 bxbxby ++=  and a linear equation of the form 21 bxby += .  Both fits are 

displayed as shown in Figure 2-4 with a plot of each fit superimposed upon the star 

image.  The user is asked to identify which fit, if any, best describes the axis; here, the 

user is an astronomer or a student worker who is using an implementation of this 

algorithm to reduce spectra.  The parameters of the fit chosen by the user are the 

parameters that describe the spatial axis of InImage. 

 



 

 22

 
Figure 2-4. Quadratic and linear spatial axis fits for the spectral image of a standard star. 
 
2.3.2 Dispersion Axis Determination 
 
 The COMICS Data Reduction Manual [10] proposes an algorithm for 

determining the dispersion axis, an algorithm that is partially implemented by the q-

series task q_sky_nlow.  This algorithm (which will be referred to as 

DetermineDispersion1) has an undesirable property, so a new algorithm 

(DetermineDispersion2) was developed to perform this determination.  The newly 

developed algorithm was later refined after testing revealed problems; this refined 

algorithm will be called DetermineDispersion3.  The COMICS Data Reduction 

Manual algorithm and both versions of the newly developed algorithm are described 
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below.  All three of these algorithms require one input parameter: InImage, the 

spectral image of a planet represented as a two-dimensional array of floating point 

values; the dimensions of this array are labeled x and y. 

 

2.3.2.1 The COMICS Data Reduction Manual Algorithm (DetermineDispersion1) 
 
The following algorithm will determine the dispersion axis of InImage: 

For each value of y in the set {30, 40, 50, … , 220}, perform the steps 

described below.  This set was chosen because the values are evenly spaced across the 

image and can be used to obtain a good approximation of the orientation of the 

dispersion axis. 

1. Identify the row in InImage that is associated with the current value of y. 

2. Initialize an array x1 to hold the x-coordinates of all the pixels in the row and the 

array y1 to hold the value associated with each pixel in this row. 

3. Calculate the wavelength calibration parameters for this row using the procedure 

outlined below.  The wavelength calibration fit equation is  

                      BAx)x( +=λ    (2.3) 

where λ  is the wavelength in microns of the pixel with x-coordinate x and where 

A and B are the desired calibration parameters. 

a. Locate the “peaks” in the array y1, where a peak is located at position i in 

the array if y1[i] is greater than both y1[i-1] and y1[i+1]. 

b. Create an array ydata that contains approximate Gaussian peaks at each 

position i where a peak was found in the y1 array.  An approximate 
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Gaussian peak is created at position i in ydata by adding 1 to ydata[i] and 

adding 0.382546 to ydata[i-1] and to ydata[i+1]. 

c. Initialize an array xsky to hold the wavelengths (in microns) of the Earth’s 

atmospheric emission lines. 

d. Test a range of values for the calibration parameters from equation (2.3) as 

follows:  

For A = 0.01965; A = 0.020145; A = A + 0.000245 

For B = 7.45; B = 7.849; B = B + 0.199 

i. Substitute the current values for A and B into equation (2.3) to 

calculate the x-coordinates associated with each wavelength found 

in the array xsky. 

ii. Generate an array ysky that contains Gaussian peaks at the x-

positions calculated in Step 1.  A Gaussian peak is produced at 

position p in the ysky array by finding the equation of the Gaussian 

with a mean of p and a standard deviation of 0.721347; this value 

for the standard deviation captures the effect that the spectrometer’s 

slit has on the width of the lines in Earth’s atmospheric emission 

spectrum.  The function values for this Gaussian are calculated for 

positions p-1, p, p+1, and p+2; these function values are added to 

the corresponding elements in the ysky array. 

iii. Calculate the correlation coefficient for the arrays ydata and ysky (see 

Figure 2-5). 
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e. The values of A and B that give the highest correlation coefficient are the 

wavelength calibration parameters that are reported for the current row in 

InImage. 

 
Figure 2-5. Gaussian peaks from the ydata and ysky arrays that are compared using a 
correlation coefficient.  The ydata array contains peaks from one row in the inputted image 
while the ysky array contains peaks corresponding to Earth’s atmospheric emission lines. 
 
 Once the wavelength calibration parameters have been calculated for the 20 

values of y from 30 to 220, the y-dependence of these parameters must be determined.  

For this purpose, we fit the parameters using the equations 10 ayaA +=  and 

32 ayaB +=  using least-squares linear regression.  The resulting fit coefficients a0, 

a1, a2, and a3 are the parameters that describe the dispersion axis.  These fit parameters 

are different from the dispersion axis fit parameters discussed at the beginning of 

Section 2.3 because the dependence of λ  on x and y cannot, in general, be captured 

using only two parameters.  However, DetermineDispersion2 and 

DetermineDispersion3 can use only two parameters because these algorithms are 

independent of wavelength calibration. 
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2.3.2.2 The Newly Developed Algorithm: Initial Version (DetermineDispersion2) 
 
 The algorithm from the COMICS Data Reduction Manual has one significant 

problem: The dispersion axis determination procedure is strongly tied to wavelength 

calibration.  This property of the algorithm is undesirable because wavelength 

calibration is generally an independent step in the spectral reduction process and 

therefore should not be tied to any other reduction steps.  For this reason, the 

following new algorithm was developed for dispersion axis determination.  This 

algorithm assumes that all of the spectral lines in InImage have the same slope; a test 

that was performed to determine the validity of this assumption is described in Chapter 

3. 

First, remove noise from InImage using a median filter.  Convolve the 

resulting filtered image with the Sobel operator shown below, producing a first-

derivative image; in this first-derivative image, the vertical edges are enhanced. 


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Convolve the resulting first-derivative image with the above Sobel operator to produce 

a second-derivative image.  In this second-derivative image, the edges are the 

boundaries between regions with positive and negative pixel values.  Set all of the 

positive values in the second-derivative image to 1 (white) and all of the negative 

values to 0 (black).  In the resulting image (see Figure 2-6), the boundaries between 

black and white regions correspond to the vertical edges in the original spectral image.  
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This procedure for producing a black and white second-derivative image is based on 

ideas presented by Gonzalez and Woods [11]. 

 

 
Figure 2-6. A second-derivative image in which edges are indicated by the boundaries 
between black and white regions.  This figure is the second derivative of the spectral image on 
the right side of Figure 1-2. 
 

Next, ask the user (an astronomer or a student worker) to identify a rectangular 

region in this black and white image that contains a well-defined edge; here, a 

rectangle contains a well-defined edge if, for each row of pixels contained in the 

rectangle, the rectangle contains a boundary between black and white in that row.  

Figure 2-7 shows an example of a rectangle that contains a well-defined edge.  This 

rectangular region must be at least 20 pixels high. 

 



 

 28

 
Figure 2-7. A second-derivative image with a well-defined edge enclosed in the red rectangle. 
 

After the user has selected a rectangular region, locate 20 equally-spaced 

points along the edge contained within the region; if the region contains more than one 

edge, the leftmost such edge is used.  If 20 edge points could not be found, then the 

selected rectangle did not contain a well-defined edge, and the user is asked to select a 

different region.  Once 20 points along an edge have been located, fit those points with 

a linear equation of the form 10 ayax += .  The parameters of this linear equation 

are the parameters that describe the dispersion axis of the inputted image.  Figure 2-8 

shows the dispersion axis fit plotted over the spectral image of a planet. 
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Figure 2-8. The dispersion axis fit for the spectral image of a planet. 
 
2.3.2.3 The Newly Developed Algorithm: Refined Version (DetermineDispersion3) 
 
 The dispersion axis determination algorithm just described suffers from two 

major difficulties: (1) the algorithm requires the user to specify a region of interest in 

InImage, and (2) the algorithm assumes that all of the spectral lines in InImage have 

the same slope when, in actuality, the slopes of the spectral lines can vary across the 

image.  As part of the contribution of this thesis, DetermineDispersion2 has been 

refined to deal with these difficulties.  To deal with difficulty (1), a procedure was 

developed to automatically locate well-defined spectral lines in InImage; however, the 

user is still given the option of specifying a region of interest manually in case the 

automatic procedure produces unreasonable results.  To deal with difficulty (2), 

multiple spectral lines are identified in InImage; the slopes of these lines are averaged 

to produce an equation for the dispersion axis that is characteristic of the image as a 

whole.  This improved algorithm is described below.  However, since we are still 

using a single number to describe the slope of the dispersion axis, this algorithm 
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assumes that all of the spectral lines in InImage have comparable slopes—that is, that 

the orthogonalization transformation will not be sensitive to the differences in spectral 

line slope that occur within the image. 

 

The Algorithm 
 
 First, produce a second-derivative image as was done in the initial version of 

this algorithm.  Set all of the positive values in the second derivative image to 1 

(white) and all of the negative values to 0 (black).  In the resulting binary image, the 

boundaries between black regions and white regions correspond to the spectral lines in 

the original image (see Figure 2-6).  Isolate the edges in this black and white image as 

follows to produce a binary edge image: 

§ Create a new array of integers that is the same size as the black and white image; 

this new array, called edge_image, will represent the edge image. 

§ For each pair of consecutive columns I and I+1 in the black and white image, 

perform the following steps: 

§ For each pixel in column I, do the following: 

§ Let P be the position of the current pixel in column I. 

§ If the current pixel has the same value as the pixel at position P in 

column I+1, assign the value 0 to the pixel at position P in column I of 

the edge_image array.  Otherwise, assign the value of 1 to the pixel at 

position P in column I of edge_image. 

In the resulting edge image, the edges are represented as white lines that are one pixel 

thick (see Figure 2-9). 
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Figure 2-9. A binary edge image where each white line represents an edge from the second 
derivative image. 
 

Next, identify well-defined edges in this image; here, an edge is well defined if 

it does not contain any discontinuities or branching.  The user (an astronomer or 

student worker) is asked whether this identification process should occur manually or 

automatically. If the user chooses manual mode, the user must identify a rectangular 

region in the second derivative image that contains one or more well-defined 

boundaries between black and white.  A boundary between black and white is well-

defined if the black region associated with the boundary is not disjoint – in other 

words, if the black region (1) does not contain any white pixels, (2) does not contain 

any “broken cycles” of black pixels, and (3) is at least one pixel wide in every row 

contained within the rectangular region.  For example, in Figure 2-10, the boundary 

enclosed in the dark blue rectangle is not well-defined because its black region 

contains white pixels, the boundary enclosed in the green rectangle is not well-defined 

because its black region contains a broken cycle of black pixels, and the boundary 
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enclosed in the pink rectangle is not well-defined because its black region is zero 

pixels wide in many of the rows contained within the rectangle. 

 
Figure 2-10. A second derivative image containing three ill-defined boundaries between black 
and white.  The boundary enclosed in the dark blue rectangle is ill-defined because its black 
region contains white pixels, the boundary enclosed in the green rectangle is ill-defined 
because its black region contains a “broken cycle” of black pixels, and the boundary enclosed 
in the pink rectangle is ill-defined because its black region is zero pixels wide in many of the 
rows contained within the rectangle. 
 
Once the user has identified a region of interest in the second derivative image, the 

corresponding region in the binary edge image is isolated; the well-defined edges 

contained in this image region are the well-defined edges that will be used in the 

remainder of this algorithm (see Figure 2-11). 
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Figure 2-11. A region of interest containing several well-defined edges that were identified by 
the user in manual mode. 
 

If the user chooses automatic mode, well-defined edges in the edge image are 

identified as follows.  The procedure described here is based on ideas presented by 

Fisher, Perkins, Walker, and Wolfart[9].  First, the Hough transform of the edge image 

is calculated; for the Hough transform, only theta values from -6.3° to -0.6° were 

considered and the step size separating consecutive theta values was given by the 

following formula: 






 +π

π
=

22 yxceiling
size_step  

where 
0.2
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=
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y , xsize is the width of the edge image, and ysize is 

the height of the edge image.  The resulting transformed image is then histogram-

equalized, converted to a binary image using a threshold of 0.9995 times the image’s 

maximum pixel value for medium-resolution spectra or 0.995 times the image’s 
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maximum pixel value for low-resolution spectra, and then is thinned using the 

following hit and miss structural elements along with their 90 degree rotations: 

Hit structural elements: 
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Miss structural elements: 
 

















000
000

111

   
















000
100

110

 

Lastly, the Hough backprojection is calculated for the resulting thinned binary image. 

This backprojection is converted to a binary image using a threshold of zero; the 

resulting image contains the well-defined edges that will be used in the remainder of 

this algorithm (see Figure 2-12).  For the interested reader, descriptions of the Hough 

transform, histogram equalization, and thinning are given in the appendicies. 
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Figure 2-12. An image containing the well-defined edges that were identified by the algorithm 
in automatic mode.  In this figure, each set of connected white pixels forms a single edge. 
 

Once well-defined edges have been identified, DetermineDispersion3 

identifies which pixels are associated with each edge.  To simplify this identification 

process, the following assumptions are made: 

1. All edges are vertical, or nearly vertical. 

2. None of the edges intersect. 

3. For each pixel that is part of an edge, all of the pixel’s neighbors are part of the 

same edge or are background pixels. 

4. If an edge is more than one pixel thick at any row within the image, only the 

leftmost pixel in that row needs to be accounted for. 

The first and second assumptions are reasonable because each edge represents a 

spectral line: all spectral lines are nearly vertical, and two distinct spectral lines do not 

intersect.  The third assumption indicates that all 1-pixels that are adjacent to one 

another are part of the same edge; this assumption is valid because, if two adjacent 

pixels were part of two different edges, then those edges would be close enough that it 
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would be difficult to distinguish between the two.  The fourth assumption is 

reasonable because the orientation of an edge can be described using a least squares 

linear fit of the coordinates of the leftmost pixels associated with that edge, and 

information about the orientation of each edge is the only information necessary for 

determining the orientation of the dispersion axis. 

To identify which pixels are associated with each edge, a vertical sweep line 

that is one pixel thick moves from the left side of the image to the right side; each 1-

pixel encountered by the sweep line is given a negative number that indicates which 

line the pixel is associated with.  If there is more than one 1-pixel on the sweep line at 

any given time, these 1-pixels are considered in order from bottom to top.  The value 

assigned to each 1-pixel depends on the values of that pixel’s neighbors, so the 

following notation will be used to refer to the neighbor pixels’ values.  In the diagram 

below, Current-Pixel is the 1-pixel whose value is currently being determined. 

Left-Above   

Left Current-Pixel  

Left-Below Below  

If Current-Pixel is in the leftmost column of the edge image, then Left-Above, Left, 

and Left-Below are all assigned values of zero; if Current-Pixel is in the last row of 

the edge image, then Left-Below and Below are both assigned values of zero.  Five 

different cases, considered in the order given, must be handled according to the values 

assigned to a 1-pixel’s neighbors: 
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Case 1: Left-Above, Left, and Left-Below are all 0. 

If Below is zero, assign to Current-Pixel a negative value that has not yet been 

given to any other pixels.  Otherwise, assign to Current-Pixel the same value as 

Below. 

Case 2: Left is non-zero and negative 

If Below is zero, assign to Current-Pixel the same value as Left.  Otherwise, 

assign to Current-Pixel the same value as below and assign Left, along with 

any other pixels with the same value as Left, to the value of Below.  For 

example, if Left = -4 and Below = -3, assign to Current-Pixel the value -3.  

Then locate all pixels having the value -4 (including Left) and assign to those 

pixels the value -3. 

Case 3: Left-Above is zero and Left-Below is negative (or vice-versa) 

If Below is zero, assign to Current-Pixel the same value as Left-Below (or 

Left-Above, in the alternative case).  Otherwise, assign to Current-Pixel the 

same value as Below and assign Left-Below (or Left-Above), along with any 

other pixels with the same value as Left-Below (or Left-Above), to the value of 

Below.  For example, if Left-Above = 0, Left-Below = -5, and Below = -3, 

assign to Current-Pixel the value -3.  Then locate all pixels having the value 

-5 (including Left-Below) and assign to those pixels the value -3. 

Case 4: Left-Above is equal to Left-Below 

If Below is zero, give Current-Pixel the same value as Left-Above.  Otherwise, 

assign to Current-Pixel the same value as Below and assign Left-Above, along 
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with any other pixels with the same value as Left-Above, to the value of 

Below. 

Case 5: Left-Above is not equal to Left-Below 

Let ‘higher’ be the pixel of maximum value between Left-Above and Left-

Below, and let ‘lower’ be the pixel of minimum value.  Assign to Current-Pixel 

the same value as ‘higher’ and assign ‘lower’, along with any other pixels with 

the same value as ‘lower’, to the value of ‘higher’. 

After each 1-pixel in the edge image has been assigned a negative number, the 

algorithm thins the edges so that each edge is one pixel thick.  This thinning is done by 

considering each row in the image; in each row, the first pixel having a particular 

value is retained while the remaining pixels having that value are set to zero.  Figure 

2-13 shows a version of the image from Figure 2-12 where each edge is assigned to 

different negative number; the different negative numbers are represented by the 

different colored lines in the figure. 

 
Figure 2-13. An image containing the well-defined edges from Figure 2-12 where each of the 
edges has been assigned a different color that corresponds to a different negative number. 
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Once each edge has been associated with a different number, a vertical scan 

line is used to extract and store the coordinates of the pixels associated with each edge.  

Edges that do not extend for the entire height of the image or that contain 

discontinuities are ignored.  Each extracted line is then fit with a linear equation of the 

form 10 ayax += .  Lines for which the value of a0 is more than 2 standard deviations 

away from the mean value for a0 (over all the lines) are discarded. For the remaining 

lines, the mean of the a0 values and the median of the a1 values are calculated and 

reported as the fit parameters of the spectral axis.  This completes the description of 

the newly developed DetermineDispersion3 algorithm. 

 

2.3.3 Image Transformation 
 
 As with the dispersion axis determination algorithm, an initial algorithm was 

developed to perform the image transformation and then was refined twice after 

testing revealed problems.  The initial algorithm will be referred to as 

Transformation1, while the two refined versions of the algorithm will be called 

Transformation2 and Transformation3.  These three algorithms are described below. 

 

2.3.3.1 Initial Algorithm (Transformation1) 
 
 This algorithm uses the following input parameters: 

1. InImage: the image to be transformed. 

2. a0: the coefficient to the linear term in the equation 10 ayax +=  that 

describes the dispersion axis. 
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3. b0: the coefficient of the quadratic term in the equation 21
2

0 bxbxby ++=  

that describes the spatial axis. 

4. b1: the coefficient of the linear term in the equation describing the spatial axis. 

First select a set of tie points that will be used to perform the transformation; a tie 

point is a point for which we know its x- and y- coordinates in InImage and for which 

we can calculate the x- and y- coordinates where the point will be in the transformed 

image.  As was done in the q-series task q_transtable2, all of the pixels in InImage are 

used as tie points.  The coordinates where the tie points will be in the transformed 

image are calculated from the coordinates of the tie points in the original image using 

the following equations; this computation is done using floating-point arithmetic. 

 

( )original1
2
original0originaldtransforme

original0originaldtransforme

xbxbyy

yaxx

+−=

−=
  (2.4) 

 
The obtained coordinates of the tie points in the original image and in the transformed 

image are inputted into the Interactive Data Language (IDL) built-in function 

warp_tri, which performs the transformation and returns the resulting orthogonalized 

image.  The warp_tri function is so named because triangulation is one of the steps in 

the procedure used by this function to warp, or transform, images.  According to the 

IDL online help manual, warp_tri works as follows:[14] 

First, the warp_tri function triangulates the irregular grid defined by the 

coordinates of the tie points in the transformed image.  Then, the function 

calculates the coordinates of the points in the original image that are associated 

with each pixel in the transformed image.  These calculated coordinates might 



 

 41

have non-integer values, while all of the pixels in the original image have 

integer-valued coordinates.  Therefore, the original image is linearly 

interpolated to compute the values that should be given to each of the points 

identified in the original image.  The values given to these points are also 

assigned to the corresponding pixels in the transformed image, thereby 

producing the final image that is outputted by warp_tri. 

Figure 2-14 shows a spectral image as it appears before and after orthogonalization. 

 

 
(a) 

 
(b) 

Figure 2-14. A spectral image of Saturn both before orthogonalization (a) and after 
orthogonalization using Transformation1 (b). 
 
2.3.3.2 Refined Algorithm 1 (Transformation2) 
 
 Through testing, it has been shown that Transformation1 does not properly 

handle the case where the spatial axis is described by a quadratic equation (that is, 

where b0 is nonzero); the right side of Figure 2-15 shows a standard star spectrum that 

was transformed using a quadratic equation for the spatial axis.  This result prompted a 

closer examination of the transformation procedures described in the COMICS Data 

Reduction Manual[10] and it was found that the IDL procedure warp_tri does not 
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perform the same transformation as is implemented in the software used by the 

COMICS team; it was also noticed that the programs used by the COMICS team 

conserve InImage’s total flux (that is, the total brightness of the image[21]) before and 

after the transformation, while the initial version of the algorithm presented here does 

not conserve the total image flux.  The improved image transformation algorithm is 

described below. 

 
(a) 

 
(b) 

Figure 2-15. The spectral image of a standard star both before (a) and after (b) being 
orthogonalized using a quadratic fit for the spatial axis with Transformation1. 
 
The Algorithm 
 
 Transformation2 calculates the tie points in the original and transformed 

images with the same procedure as was used in the initial algorithm.  However, 

instead of using the warp_tri function to perform the transformation, this algorithm 

uses the polywarp and poly_2d IDL built-in functions.  The polywarp procedure uses 

least squares estimation to calculate polynomial transformations that map the tie point 

coordinates from the coordinate system of the transformed image to the coordinate 

system of the original image.  This coordinate system transformation is described by 

the following equations: 
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where Kx and Ky are 2-dimensional arrays of coefficients.  Using these polynomial 

transformation functions, the poly_2d function performs the transformation and 

produces the orthogonalized image; poly_2d uses bilinear interpolation (see Appendix 

D) to produce the output image and uses the output value 0.0 for pixels whose 

(xoriginal, yoriginal) coordinates refer to a point outside of the bounds of InImage. 

 Once the transformation is complete, the orthogonalized image is multiplied by 

the Jacobian of the coordinate transformation to ensure that the total image flux is 

conserved.  The Jacobian is calculated using the following equations: 
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Figure 2-16 shows the image from the left side Figure 2-15 after it has been 

orthogonalized using this refined algorithm. 

 

 
Figure 2-16. A spectral image of the standard star from Figure 14 after being orthogonalized 
using a quadratic fit for the spatial axis with the refined transformation algorithm. 
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2.3.3.3 Refined Algorithm 2 (Transformation3) 
 
 When Transformation2 was tested, an additional problem was revealed: The 

transformation equation for the x-axis described in the COMICS Data Reduction 

Manual evenly distributes the pixels in the spectral image along the x-axis, but the 

transformation equation used here for the x-axis does not perform a similar function.  

This difference between the algorithm described here and the algorithm used in the 

COMICS Data Reduction Manual may lead to additional pixels being mapped outside 

of the image by the refined algorithm.  Tests performed on low-resolution spectra 

show that 304 pixels are mapped outside of the image by the transformation used by 

the COMICS team, while 646 pixels are mapped outside of the image by the 

transformation used here.  To fix this problem, the equation used to calculate the x-

coordinates of the tie points in the transformed image was changed to the following: 

 

2
ya

yaxx size0
original0originaldtransforme +−=   (2.7) 

 
where ysize is the number of rows of pixels in InImage.  With this change, the number 

of pixels mapped outside of the image by this transformation was reduced to 389, a 

value which is comparable to the number of pixels lost with the transformation used 

by the COMICS team. 

 

2.4 Extraction Algorithm 
 
 Extraction is the process of obtaining one or more spectra from a spectral 

image; if multiple spectra are generated, each spectrum is extracted from a different 

spatial position in the spectral image.  This algorithm is based on the spectrum 
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extraction procedure described in the COMICS Data Reduction Manual[10].  Given 

InImage, the spectral image from which spectra will be extracted, the algorithm 

operates as follows. 

First, the user identifies a rectangular region that contains the spectrum to be extracted 

from InImage.  This rectangular region will be referred to as the spectrum region; an 

example of such a region is delimited by the white rectangle in Figure 2-17.  The 

positions of the boundaries of this rectangular region are initialized using a two-

standard-deviation threshold above the mean pixel value, and the user is allowed to 

adjust these boundaries as necessary.  The user is also asked to identify two more 

rectangular regions—a sky emission region that appears above the spectrum region 

and a sky emission region that appears below the spectrum region; examples of such 

sky regions are shown in Figure 2-17.  If there is no sky region above (or below) the 

spectrum region, the user may indicate this condition by specifying a line instead of a 

rectangular region above (or below) the spectrum region as was done for the sky 

region above the spectrum in Figure 2-17.  The left and right boundaries of these sky 

regions must be the same as the left and right boundaries of the spectrum region; the 

upper and lower boundaries of the sky regions may be varied, and these boundaries are 

initialized to appear at a fixed distance above or below the spectrum region.  These 

sky regions are not required to abut the image borders. 
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Figure 2-17. A spectral image in which a spectrum region, containing the spectrum that will be 
extracted from the image, has been identified by the white rectangle.  Sky emission regions 
have also been identified above and below the spectrum region.  The sky region above the 
spectrum region is specified by a line instead of a rectangle, indicating that there is no sky 
emission present above the spectrum. 
 

Once these sky and spectrum regions have been identified, the user is asked to 

choose the aperture width to be used for extraction; the possible widths (in pixels) are 

1, 3, 5, 7, 9, and the total number of rows in the spectrum region.  Spectra are then 

extracted from the image using the selected aperture width.  The following procedure 

is used to perform the extraction process: 

 
Let rmin be the bottommost row of pixels in the spectrum region and let rmax be the 

topmost row.  Further, let w be the aperture width selected by the user.  For each row r 

of pixels beginning at row 
2

1w
rmin

−
+  and ending at row 

2
1wrmax

−− , calculate 
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the pixel-wise average of rows 
2

1w
r

−
−  through 

2
1w

r
−

+ .  This process is illustrated 

in Figure 2-18 for an aperture width of 3 with a spectrum region that contains 5 rows. 

 

 
Figure 2-18. An illustration of the spectrum extraction process for a spectrum region 
that contains 5 rows of pixels (from rmin to rmax) and for an extraction aperture width of 
3. 

 
The averaging process generates ( ) 1w1rr minmax +−+−  extracted spectra where 

each spectrum is the average of w consecutive rows from the spectrum region. 

 
Next, the sky regions that were identified above and below the spectrum region are 

isolated from InImage and then merged into a single rectangle of pixels; any sky 

regions that were identified using a line instead of a rectangle are not incorporated into 

this rectangle of sky pixels, so if both sky regions were identified using lines, the 

rectangle of sky pixels is left undefined.  If the rectangle of sky pixels is defined, the 

standard deviation is calculated for each column of pixels in the rectangle.  This 

standard deviation calculation gives a noise level estimate for each point in the 

extracted spectra.  However, if the rectangle of sky pixels is not defined, this noise 

estimate is not calculated. 
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Once this process is complete, each extracted spectrum is packed in a two-

dimensional array of double-precision floating-point numbers.  This array has three 

rows, and the contents of each row are as follows: 

row 1: The x-coordinates associated with each column in the spectrum. 

row 2: The spectrum itself. 

row 3: The noise level estimate for each column in the spectrum.  If a noise 

level estimate was not calculated, this row contains all zeros. 

The resulting spectra are then saved in separate files.  Figure 2-19 shows an extracted 

spectrum. 

 

Figure 2-19. An extracted spectrum of a star. 
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2.5 Future Approach for Spectrum Calibration 
 

Algorithms for spectrum calibration have not been developed for this thesis.  

However, the COMICS team and Dr. Glenn Orton have general techniques that may 

be used in the future to calibrate spectra.  The calibration process requires two types of 

calibration: wavelength calibration, and absolute calibration (see Section 1.3).  To 

perform wavelength calibration, Dr. Orton’s technique involves comparing the 

spectrum of a star with Earth’s atmospheric absorption spectrum.  Some of Earth’s 

absorption lines can be seen in the stellar spectrum, allowing us to determine the pixel-

to-wavelength correspondence for the stellar spectrum.  This pixel-to-wavelength 

correspondence allows us to convert the wavelength axes of all images in a single data 

set from units of pixel number to units of wavelength, such as µm. 

 To perform absolute calibration, Dr. Orton and the COMICS team use the 

spectrum of a star to correct for the effects of atmospheric absorption on the spectrum 

of a planet.  Let Observed(Planet) be the spectrum of a planet X from one of our data 

sets Y, let Standard(Planet) be the corrected spectrum of planet X, let Observed(Star) 

be the stellar spectrum of a star Z from data set Y, and let Standard(Star) be the 

atmospheric-absorption-corrected spectrum of star Z.  Here, Standard(Planet) is the 

end result of absolute calibration, and Standard(Star) is a standard spectrum that has 

been calculated by Cohen et al.[3]  Standard(Planet) may be calculated using the 

following formula: 

( ) ( )
( )

( )StarStandard
StarObserved

PlanetObserved
PlanetStandard =  
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This equation may be used to perform absolute calibration on any planetary spectrum; 

after this calibration step is complete, the intensity axis of the calibrated spectrum has 

been converted from units of photon count to units of radiance, such as W/cm2/sr/µm.  

Dr. Orton does not perform absolute calibration on stellar spectra because he is only 

interested in studying planets. 

 

2.6 Literature Review 
 
 This thesis presents an algorithm for orthogonalizing spectral images obtained 

using COMICS; the orthogonalization process involves transforming images so that 

their spectral axes are vertical and their dispersion axes are horizontal.  The need to 

transform images also appears in the reduction processes required for other 

instruments and in the preprocessing procedures used in stereovision applications.  

Based on how they differ from the orthogonalization algorithm presented here, the 

transformation algorithms used for data reduction can be divided into three categories: 

algorithms that fix the orientation of one axis during the transformation (Section 

2.6.1), algorithms that use different interpolation techniques during the transformation 

(Section 2.6.2), and algorithms that use similar polynomial transformation techniques 

to transform different types of images (Section 2.6.3).  Section 2.6.4 discusses the 

differences between the transformations used in stereovision applications and the 

orthogonalization transformation presented in this thesis. 

 

2.6.1 Rectification With One Fixed Axis 
 

Cushing et al.[4] present algorithms to reduce spectral images from the SpeX 

spectrograph at IRTF, including an algorithm to rectify spectral images that are 
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curved.  This rectification algorithm differs from the orthogonalization algorithm 

presented here because Cushing et al.’s algorithm assumes that the spatial axes of all 

spectral images are vertical, so the algorithm only needs to straighten the dispersion 

axis.  The orthogonalization algorithm presented here, on the other hand, must 

straighten both the spatial and dispersion axes. 

 

2.6.2 Interpolation Techniques 
 

Barrett et al.[1] and Dressel et al.[5] present a new algorithm to rectify spectral 

images obtained from the Space Telescope Imaging Spectrograph; this rectification 

algorithm is used to prepare spectral images for extraction.  The new algorithm uses 

wavelet interpolation to produce a final image that is more accurate than could be 

produced using bilinear interpolation: Bilinear interpolation assumes that the light 

collected by a detector pixel is concentrated at the center of that pixel.  This 

assumption gives accurate results when the aperture width that will be used for 

extraction is large.  In reality, the light collected by a detector pixel is distributed over 

the entire pixel area; wavelet interpolation takes this fact into account to produce a 

more accurate rectified image in the case where the extraction aperture width is small.  

The COMICS team uses bilinear interpolation while orthogonalizing spectral images 

from their instrument[10], so the transformation algorithm discussed in this thesis uses 

bilinear interpolation instead of wavelet interpolation. 
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2.6.3 Polynomial Transformations 
 

Wang[21] presents algorithms to reduce camera images from WIRCAM on the 

Canada-France-Hawaii Telescope and from MOIRCS on the Subaru Telescope; 

among the algorithms discussed is a procedure to correct distorted images using a 

polynomial transformation.  A polynomial transformation is also used in the 

orthogonalization algorithm presented here, but Wang’s algorithm is specialized for 

camera images while the algorithm introduced in this thesis is specialized for spectral 

images. 

 

2.6.4 Rectification of Stereo Image Pairs  
 
 Image transformations are used to rectify stereo image pairs in stereovision 

applications[2][17][20].  This rectification process aligns a pair of images so that the 

epipolar lines in both images are horizontal; if images A and B form a stereo image 

pair, then the epipolar lines indicate which pixels in A and B correspond with one 

another.  Thus the image transformations in stereovision are concerned with aligning 

image pairs along one dimension (that is, along the dimension denoted by the direction 

of the epipolar lines) while the image transformations used in this thesis are concerned 

with aligning individual images along two dimensions (that is, the dimensions denoted 

by the spatial and dispersion axes). 
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Chapter 3 : Implementation and Experimental Results 
 
3.1 Implementation 
 
 The algorithms described in this thesis for orthogonalizing spectral images and 

for extracting one-dimensional spectra from two-dimensional spectral images have 

been implemented using the Interactive Data Language (IDL).  IDL is an array-based 

language with built-in image processing functions and GUI development tools that 

facilitate the development of user-friendly image processing applications.  More 

information about IDL is available Online at 

http://www.ittvis.com/ProductServices/IDL.aspx. 

 

3.2 Experimental Design 
 
 The correctness of DetermineSpatial (DS), DetermineDispersion2 (DD2), and 

DetermineDispersion3 (DD3) cannot be evaluated until after images have been 

orthogonalized using the parameters determined for the axes.  However, in developing 

DD2 and DD3, assumptions were made about the variations in the slopes of the 

spectral lines within a single spectral image.  Experiments designed to test these 

assumptions are described in Section 3.2.1.  Section 3.2.2 describes tests used to 

evaluate the correctness of the image transformation algorithm.  Section 3.2.3 

describes a sensitivity analysis that was performed for the transformation algorithm, 

and Section 3.2.4 describes efficiency tests that were performed for the 

orthogonalization algorithm. 
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3.2.1 Testing Assumptions About Spectral Line Slope 
 

DD2 assumes that all of the spectral lines in the inputted spectral image have 

the same slope.  This assumption was tested as follows: Three or four well-defined 

spectral lines were manually identified in each of seven low-resolution and five 

medium-resolution spectral images; DD2 was used to calculate the slope of each 

selected spectral line.  If all of the spectral lines identified in the low-resolution 

spectral images have the same slope, then the assumption made by DD2 is valid for 

low-resolution images.  Likewise, if the spectral lines identified in the medium-

resolution spectral images all have the same slope, then the assumption is valid for 

medium-resolution images.  DD3 assumes that any variations in the slopes of the 

spectral lines within a single image are small enough that the orthogonalization 

transformation will not be sensitive to the difference.  To test this assumption, a region 

containing at least fifteen well-defined spectral lines was manually identified in each 

of seven low-resolution and five medium-resolution spectral images.  DD3 was used 

to calculate the slope of each spectral line in the selected regions; the implementation 

of the algorithm was modified for this test so that the slope of each identified line in 

the selected region would be reported to the user.  The variation in spectral line slope 

for both the low- and medium- resolution images was recorded and a sensitivity 

analysis was performed to determine the transformation’s sensitivity to changes in 

spectral line slope (the procedure used to perform the sensitivity analysis is described 

in Section 3.2.3).  If the variation in spectral line slope for the low-resolution images is 

within the insensitive range of the transformation, then the assumption made by DD3 
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is valid for low-resolution images.  Likewise, if the spectral line slope variation seen 

in the medium-resolution images is within the insensitive range of the transformation, 

then the assumption made by DD3 is valid for medium-resolution images.  The results 

for these tests on DD2 and DD3 are reported in Section 3.3.1. 

 

3.2.2 Correctness Tests for the Image Transformation Algorithm 
 
 To test the correctness of the image transformation algorithm, both low- and 

medium- resolution spectra were orthogonalized using the transformation algorithm; 

for all images, linear equations were used to describe the spatial and dispersion axes 

both before and after the transformation.  The angle between the axes of each image 

was calculated both before and after the transformation according to the equation 

( )( ) 
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
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011
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where θ  is the angle between the axes, a0 is the coefficient of the linear term in the 

equation 10 ayax +=  that describes the dispersion axis, and b1 is the coefficient to 

the linear term in the linear equation 21 bxby +=  that describes the spatial axis.  The 

values of the coefficients a0 and b1 before the transformation were also compared 

with the coefficients’ values after the transformation.  If θ  is between 89.73° and 

90.27°, and if 0a  and 1b  are reduced by 1-2 orders of magnitude, then the output of 

the transformation algorithm is reasonable.  The results of these angle calculations and 

parameter comparisons are presented in Section 3.3.2 for Transformation3; for these 

tests, DD3 was used for axis determination both before and after the transformation. 
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3.2.3 Sensitivity Analysis 
 
 The sensitivity of the transformation to changes in the parameters a0, b0, and 

b1 was measured using a pair of medium resolution spectral images: The image of a 

standard star and the image of a planet.  To determine the transformation’s sensitivity 

to changes in a0, the following procedure was used: first the values of a0, b0, and b1 

were initialized to the correct values calculated for the pair of images using DD3 and 

DS.  Keeping the values of b0 and b1 constant, the value of a0 was decreased until it 

was visually obvious that the pair of images, after being transformed, were not 

properly orthogonalized.  Then values of a0 were selected from the range extending 

from the correct value of a0 to a value of a0 for which the transformed image was 

clearly not orthogonal; for each selected value of a0, the angle between the dispersion 

and spatial axes was calculated.  To determine the dispersion axes of the images in 

preparation for these angle calculations, DD3 was used in manual mode.  After 

returning a0 to its correct value, the same process was repeated, only this time a0 was 

increased instead of being decreased.  A similar procedure was used to determine the 

sensitivity of the transformation to changes in b0 and in b1.  The results of this 

sensitivity analysis are given in Section 3.3.3 for Transformation3 and are used to 

define ranges of values that a0, b0, and b1 can take on without adversely affecting the 

quality of the transformation.  These results are also used to evaluate the assumption 

made by DD3 as described in Section 3.2.1. 
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3.2.4 Efficiency Tests 
 
 Efficiency tests were performed for the implementations of three algorithms: 

DS, DD3, and Transformation3.  These tests were performed using IDL’s code 

profiling procedure, profiler.  For each algorithm, the running time of the 

implementation was averaged over five runs using five different input images; these 

running times do not include the time spent waiting for user I/O.  The execution times 

for DS, DD3, and Transformation3 were added together to calculate the amount of 

time required to process a single spectral image.  If this running time is less than 5 

minutes, and if it is possible that the processing time will be less than 5 minutes after 

user I/O time is added, then the IDL implementation of the orthogonalization 

algorithm meets the efficiency requirements described in Section 2.1.3.  The results of 

these tests are presented in Section 3.3.4. 

 

3.3 Results 
 
 The following sections report the results of experiments described in Section 

3.2. 

 

3.3.1 Dispersion Axis Determination Tests 
 
3.3.1.1 Results for DetermineDispersion2 (DD2) 
 
 Figure 3-1 and Figure 3-2 report the results of tests designed to evaluate the 

validity of the assumption made by DD2 – that all of the spectral lines in the inputted 

spectral image have the same slope. 
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Figure 3-1. The relationship between spectral line slope and position along the image’s x-axis 
as calculated for low-resolution spectra by DD2.  The range of the x-axis indicates the region 
in the images that contain easily identified spectral lines. 
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Figure 3-2. The relationship between spectral line slope and position along the image’s x-axis 
as calculated for medium-resolution spectra by DD2.  The range of the x-axis indicates the 
region in the images that contain easily identified spectral lines. 
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The slopes plotted in Figure 3-1 vary from 0.0167 to 0.0208, a range of 0.0041, while 

the slopes plotted in Figure 3-2 vary from 0.0684 to 0.0940, a range of 0.0256.  This 

variation in spectral line slope may be real or it may be due to noise.  If the variation is 

real, then the assumption made by DD2 is incorrect.  However, if the variation is 

simply due to noise, then DD2’s use of a single spectral line to determine the 

orientation of the dispersion axis may result in inaccurate algorithm output: if the user 

selects a spectral line whose slope is at one of the extreme ends of the slope range for 

the image, the slope of the determined dispersion axis will not be characteristic of the 

image as a whole.  This test, therefore, indicates that there is a flaw in the design of 

DD2. 

 

3.3.1.2 Results for DetermineDispersion3(DD3) 
 
 Figure 3-3 and Figure 3-4 present the results of tests designed to evaluate the 

validity of the assumption made by DD3, namely that any variations in the slopes of 

the spectral lines within a single spectral image are small enough that the 

orthogonalization transformation will not be sensitive to the difference. 
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Figure 3-3. The relationship between spectral line slope and position along the image’s x-axis 
as calculated for low-resolution spectra by DD3.  The range of the x-axis indicates the region 
in the images that contain easily identified spectral lines. 
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Figure 3-4. The relationship between spectral line slope and position along the image’s x-axis 
as calculated for medium resolution spectra by DD3.  The range of the x-axis indicates the 
region in the images that contain easily identified spectral lines. 
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The spectral line slopes shown in Figure 3-3 vary from 0.0165 to 0.0232, a range of 

0.0067.  Here, the range is calculated over multiple images because the dispersion axis 

determined using one spectral image should be applicable to other images as well; 

therefore, the assumption made by DD3 must be tested across multiple images.  These 

results show that if the orthogonalization transformation is sensitive to variations of 

less than 0.0067 in spectral line slope, the transformation algorithm is sensitive to the 

slope variations in low-resolution spectra and the assumption made by DD3 is invalid 

for low-resolution spectra.  The spectral line slopes shown in Figure 3-4 appear in two 

separate “bands”: the lower band consists of the slope values obtained from Image 

89836.4 and the upper band consists of the slope values obtained from the remaining 

images.  The slope values in the lower band range from 0.0766 to 0.0836 while the 

values in the upper band range from 0.0814 to 0.0890, yielding a range of 0.007 for 

the lower band and a range of 0.0076 for the upper band.  Thus, if the 

orthogonalization transformation is sensitive to variations of less than 0.0076 in 

spectral line slope, the transformation algorithm is sensitive to the slope variations in 

medium-resolution spectra, leaving the assumption made by DD3 invalid for medium-

resolution spectra.  The sensitivity analysis results needed to determine the validity of 

this assumption is presented in section 3.3.3. 
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3.3.2: Orthogonalization Transformation Tests 
 
Table 3-1. Angle calculation results for the transformation test on Transformation3.  For each 
star and planet spectral-image pair, Original θ  is the angle between the spatial and dispersion 
axis before transformation, Transformed θ  is the angle between the axes after 
transformation, θ∆  the difference between Transformed θ  and Original θ , and Error is the 
difference between Transformed θ  and 90°. 

Star 
Image 

Number 

Planet 
Image 

Number 

Original θ  
(degrees) 

Transformed 
θ  (degrees) 

θ∆  
(degrees) 

Error 
(degrees) 

90886 90880 90.89 90.04 -0.85 0.04 
89848.1 89836 92.46 90.06 -2.40 0.06 
89848.2 89836 93.21 90.06 -3.15 0.06 
89848.3 89836 94.43 90.08 -4.35 0.08 
89848.4 89836.4 95.60 90.11 -5.49 0.11 
89848.5 89836 96.46 90.13 -6.33 0.13 

 
Table 3-2. Axis parameter values before and after transformation for Transformation3.  For 
each star and planet spectral-image pair, values of a0 and b1 both before and after the 
transformation are reported.  The value of b0 was held constant at zero for these tests. 

Star 
Image 

Number 

Planet 
Image 

Number 

Original 
a0 

Transformed 
a0 

Original  
b1 

Transformed 
b1 

90886 90880 2108.1 −×  4102.6 −×  3107.2 −×−  5107.8 −×  
89848.1 89836 2108.7 −×  3104.1 −×  2105.3 −×−  4104.3 −×−  
89848.2 89836 2108.7 −×  3104.1 −×  2102.2 −×−  4108.3 −×−  
89848.3 89836 2108.7 −×  3104.1 −×  3101.1 −×−  5103.3 −×  
89848.4 89836.4 2108.7 −×  3104.1 −×  2109.1 −×  4104.5 −×  
89848.5 89836 2108.7 −×  3104.1 −×  2104.3 −×  4107.7 −×  

 
Table 3-1 shows that for all of the image pairs listed in the table, the angle between the 

spatial and dispersion axes after orthogonalization is less than 0.14° away from 90°.  

The results in Table 3-2 indicate that the transformation brings the axis parameters a0 

and b1 one to two orders of magnitude closer to zero than they were before the 

transformation; if the orthogonalization procedure worked perfectly, a0 and b1 would 

both be zero after the transformation.  This low error level coupled with the 
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corresponding decreases in the magnitudes of a0 and b1 suggest that the 

Transformation3 works reasonably well in the case where both the spatial and 

dispersion axes are described by a linear equation.  No results are presented for the 

case where the spatial axis is described by a quadratic equation because none of the 

spectral images available for use in testing during this research were well described by 

a quadratic spatial axis. 

 

3.3.3: Sensitivity Analysis 
 
 The following graphs show the results of a sensitivity analysis on each of the 

parameters a0, b0, and b1.  In these figures and in the discussion below, theta is the 

angle between the spectral and dispersion axes of a spectral image. 
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Figure 3-5. The variation of theta as a function of the transformation parameter a0, where 
theta is the angle between the spatial and dispersion axes of the spectral images used in the 
sensitivity analysis.  The dashed lines indicate, from top to bottom, angles of 90.27°, 90.0°, 
and 89.73°. 
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Figure 3-6. The variation of theta as a function of the transformation parameter b0, where 
theta is the angle between the spatial and dispersion axes of the spectral images used in the 
sensitivity analysis.  The dashed lines indicate, from top to bottom, angles of 90.27°, 90.0°, 
and 89.73°. 
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Figure 3-7. The variation of theta as a function of the transformation parameter b1, where 
theta is the angle between the spatial and dispersion axes of the spectral images used in the 
sensitivity analysis.  The dashed lines indicate, from top to bottom, angles of 90.27°, 90.0°, 
and 89.73°. 
 

The goal of this sensitivity analysis was to compute the range of values that a0, 

b0, and b1 can take on without unacceptably reducing the quality of the transformation.  
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To carry out this calculation, a range of theta-values was selected such that a spectral 

image may be considered satisfactorily orthogonalized if its theta value appears in that 

range.  The following reasoning was used to select this range: 

Table 3-1 in Section 3.3.2 indicates that 90.89° is the smallest angle theta for a 

spectral image that has not been orthogonalized; thus, for the data examined 

here, 0.89° is the smallest deviation from 90° that we can expect before 

orthogonalization.  If the image transformation can decrease this deviation to 

30% of its original value (that is, to 0.27°), then the departure from 

perpendicularity will probably not be visually detectable and the image will be 

satisfactorily orthogonalized.  This maximum deviation of 0.27° means that 

theta must be between 90.27° and 89.73° for the transformation to be correct. 

For this range of theta-values, the data in Figure 3-5, Figure 3-6, and Figure 3-7 

indicate that acceptable orthogonalization occurs for a0 ranging from 0.076 to 0.084, 

for b0 ranging from –0.0004 to 0.0002, and for b1 ranging from 0.017 to 0.023.  Thus 

a0 may vary with a range of 0.008 without reducing the transformation quality to an 

undesirable extent; when viewed in conjunction with the results from Section 3.3.1, 

these sensitivity analysis results indicate that the assumption made by DD3 is valid.  In 

addition, the sensitivity analysis results show that b0 may vary with a range of 0.0006 

and b1 may vary with a range of 0.006 without unacceptably reducing the 

transformation quality. 
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3.3.4: Efficiency Tests 
 
Table 3-3. Running times for DetermineSpatial (DS), DetermineDispersion3 when run in 
automatic mode (DD3A), DetermineDispersion3 when run in manual mode (DD3M), and 
Transformation3 (T3).  For each algorithm, the computation time (CPU time), the disk I/O time, 
and the sum of the computation and disk I/O times are reported.  Each running time is an 
average over five runs. 

Algorithm Computation Time 
(seconds) 

Disk I/O Time 
(seconds) 

Computation + 
Disk I/O Time 

(seconds) 
DS 3.20 0.35 3.55 

DD3A 6.54 0.35 6.89 
DD3M 2.51 0.35 2.86 

T3 13.37 0.35 13.72 
 
The data reported in Table 3-3 give the computation and disk I/O times for 

DetermineSpatial, DetermineDispersion3, and Transformation3.  These results show 

that 23.11 seconds of computation time are required to determine an image’s spatial 

and dispersion axes and then transform the image.  After adding the disk I/O time to 

this total, the time required to process a single spectral image increases to 24.16 

seconds.  This running time is clearly less than five minutes; if the time spent waiting 

for user I/O were added to this total, the running time could potentially be under 5 

minutes, depending on the amount of time that the user spends entering input.  Thus, 

the implementations of these algorithms have met the efficiency requirements laid out 

in Chapter 2. 
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Chapter 4 : Conclusions and Future Work 
 
4.1 Conclusions  
 
 The purpose of this thesis was to develop algorithms that properly 

orthogonalize spectral images from the COMICS spectrometer.  To be correctly 

orthogonalized, the spatial and dispersion axes of a spectral image must be 

perpendicular to one another, with the spatial axis being vertical and the dispersion 

axis being horizontal.  The results presented in Section 3.3.2 demonstrate that the 

orthogonalization algorithms described in this thesis produce correct output relative to 

these criteria.  In addition to the correctness requirements, the IDL implementations of 

these algorithms must meet efficiency requirements so that the software may be used 

to reduce large quantities of data quickly.  These requirements state that it must be 

possible to determine the spatial and dispersion axes of a single image and then 

transform the image so that the axes are perpendicular in less than 5 minutes.  The 

results presented in Section 3.3.4 indicate that the implementation used for this thesis 

meets these efficiency requirements.  Thus, we have presented algorithms that may be 

used by astronomers to correctly and efficiently orthogonalize COMICS spectral 

images as part of the data reduction process. 

 In addition to the correctness and efficiency requirements just discussed, the 

dispersion axis determination algorithm used during orthogonalization should be 

independent of wavelength calibration.  This thesis has introduced a new algorithm 

(DetermineDispersion3) that has this independence property.  Independence allows the 

orthogonalization and wavelength calibration algorithms to be implemented as 
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separate modules in software, making the software easier to extend and maintain.  

Since the dispersion axis determination algorithm presented in the COMICS manual 

(DetermineDispersion1) does not have the independence property, this thesis has 

introduced a new technique for separating orthogonalization from wavelength 

calibration. 

 

4.2 Future Work 
 
 There is still more work to be done on the research problem discussed in this 

thesis.  First, techniques must be developed for calibrating spectra after they have been 

extracted from spectral images.  Then, the data reduction algorithms that have been 

developed for COMICS must be generalized so that those algorithms can be used to 

reduce data from other instruments including the Michelle spectrometer on the Gemini 

North telescope, the T-Recs spectrometer on the Gemini South telescope, and the 

VISIR spectrometer on the Very Large Telescope.  The procedures that should be used 

to reduce data from these instruments differ according to the hardware characteristics 

of each instrument.  Generalizing the COMICS-specific algorithms so that they apply 

to these varied instruments involves modifying the algorithms so that the methods they 

use support the other instruments’ reduction procedures.  In addition, new algorithms 

will need to be developed to support reduction steps that are required for these 

instruments but are not required for COMICS. 
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Appendix A: The Hough Transform 
 
 The Hough transform is a useful tool for identifying regular curves, such as lines 
or circles, in an image.  This appendix, however, will only discuss the detection of 
straight lines.  The basic idea underlying this line identification technique is as 
follows: each non-zero pixel, or point, in an image may be part of one or more straight 
lines in the image.  Knowing that two or more points lie along the same line provides 
evidence that a line connecting those points is present in the image; the greater the 
number of points, the greater the evidence for a line connecting those points.[9][11]  
 As we collect evidence for lines, it will be useful to describe the lines in 
parametric, or normal, form: 
 
 rsinycosx =θ+θ   (A.1) 
 
In this equation, r is the perpendicular distance from the origin to the line, and θ  is the 
angle between r and the x-axis (see Figure A-1).  Each line is described uniquely by an 
(r, θ ) pair using this representation. 
 

 
Figure A-1. The parametric representation of a line. 
 
The Hough transform collects evidence for lines by changing the representation of the 
image: Instead of depicting the image as a set of points in Cartesian space, the Hough 
transform represents the image as a set of sinusoidal curves in the (r, θ ) parameter 
space.  To calculate the image’s representation in parameter space, the following 
procedure is performed: For each point in the image as it is depicted in Cartesian 
space, plot the (r, θ ) pairs that represent lines which include the point.  After this 
process is complete, each point in the Cartesian space is represented as a sinusoid in 
the parameter space (see Figure A-2).  If two points lie on the same line in Cartesian 
image space, then the corresponding sinusoids intersect in parameter space.  Thus, the 
number of sinusoids that intersect at point (r, θ ) in the parameter space is equal to the 
number of points that lie on the corresponding line in Cartesian space.[9][11] 
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 The Hough transform is implemented by dividing the parameter space into finite-
sized accumulator cells.  Each point (x, y) in the Cartesian image space is transformed 
into a sinusoid in parameter space, and the accumulator cells that lie along this curve 
are incremented.  The values in the accumulator cells at the end of the transform 
reveal the number of sinusoids that intersect within each cell.[9] 
 As just described, the Hough transform may be used to represent an image in a 
parameter space that facilitates the identification of straight lines.  It is also possible to 
take an image that is represented in the Hough parameter space and calculate the 
image’s representation in Cartesian space.  This inverse of the Hough transform is 
known as the Hough backprojection and is computed by mapping each point in the 
parameter space to a line in Cartesian space.[9] 

 
 
 
 
 
 

 
 
 
 
 
 
(a) 

 
(b) 

Figure A-2. (a) A Cartesian-space image that consists of five points, and (b) the Hough 
transform of that image. 
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Appendix B: Histogram Equalization 
 
 Histogram equalization is a technique that can be used to enhance the contrast and 
dynamic range of an image; here, the dynamic range is the range of pixel values that 
are found in the image.  This technique works by using a monotonic, nonlinear 
mapping function to change the values of the pixels in the image based on the 
structure of the image’s histogram[7]. 
 The following discussion is based on Gonzalez and Wood’s treatment of the 
discrete form of histogram equalization[11].  Consider a gray-level image I, and let L be 
the number of gray levels.  Let r be a variable that represents the gray levels in I, and 
let rk, 1Lk0 −≤≤ , be a variable that represents the kth gray level.  Further, let n be 
the total number of pixels in I and let nk be the number of times that the kth gray level 
appears in I.  Then,  

 ( ) 1L,...,1,0k,
n

n
rp k
kr −==   (B.1) 

is the probability of the kth gray level.  The histogram of image I is then a plot of pr(rk) 
versus rk, and the mapping function used for histogram equalization is 

 ( )∑
=

=
k

0j
jrk rps     (B.2) 

where sk is a variable that represents the kth gray level in the image produced by 
histogram equalization.  This mapping function is the cumulative distribution function 
of the variable r and will produce an output image whose dynamic range and contrast 
are greater than those of I (see Figure B-1 for an example). 
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(a)  

(b) 

 
(c)  

(d) 
Figure B-1. (a) An unequalized image along with (b) its histogram (in red) and cumulative 
distribution function (in black).  (c) The image from (a) after histogram equalization along with 
(d) its histogram (in red) and cumulative distribution function (in black).  These images and 
their histograms were obtained online at http://en.wikipedia.org/wiki/Histogram_equalization. 
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Appendix C: Thinning 
 
 Thinning is an operation from mathematical morphology that is often used to 
erode lines in binary images until those lines are only one pixel thick.  This operation 
is defined in terms of the hit-and-miss transform described below[6]. 
 The hit-and-miss transform takes as its input a binary image I and a structuring 
element S, and produces a new binary image as output.  A structuring element is 
usually a square array with an odd number of entries that contains ones and zeros (see 
Figure C-1 for an example); the contents of this element determine the effect that the 
hit-and-miss transform has on the image I.  The center pixel (colored in red Figure C-
1) of the structuring element is called the origin.  This hit-and-miss transform works as 
follows: for each p pixel in image I, the structuring element is laid over the image so 
that the origin of the structuring element is aligned with pixel p.  Then, the pixels in 
the structuring element are compared with the underlying pixels in image I.  If the 
pixels in the structuring element exactly match the pixels in the image, then pixel p is 
set to 1; otherwise, pixel p is set to 0[8]. 
 

 
Figure C-1. A structuring element for the hit-and-miss transform.  The center pixel (colored in 
red) is the origin of the structuring element. 
 
 In some implementations of the hit-and-miss transform, such as the 
implementation provided by the Interactive Data Language (IDL), the transform takes 
three inputs: a binary image I, a hit structural element, and a miss structural element.  
The hit structural element is translated over all of the pixels in image I as described in 
the last paragraph to produce a new binary image A.  Then, the miss structural element 
is translated over all of the pixels in the complement of image I to produce a binary 
image B.  The hit-and-miss transform then outputs the image BA ∧ . 
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 Now that we understand how the hit-or-miss transform works, we can define 
thinning as follows: 
 
 ( )M,H,Imiss_and_hitI)M,H,I(thin −= .  (C.1) 
 
Here, I is a binary image, H is a hit structural element, M is a miss structural element, 
and the subtraction operation is logical subtraction defined by the 
equation YXYX ¬∧=− .  This thinning operation is normally applied iteratively 
until convergence (that is, until the procedure no longer causes the image to change)[6]. 
 It is sometimes useful to apply more than one pair of hit and miss structural 
elements to an image during thinning.  In this case, a sequence of calls to the thinning 
operation is performed where each call uses a different pair of structural elements; the 
output of one call to the thinning operation is used as the input for the next call.  This 
sequence of thinning operations is usually applied iteratively until convergence[6]. 
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Appendix D: Bilinear Interpolation 
 
 Bilinear interpolation is a technique that may be used during geometric 
transformations, such as the image transformations discussed in section 4.3.3 of this 
thesis.  This technique is used to calculate the values that should be assigned to each 
pixel in a transformed image.[11] 
 Suppose we have a geometric transformation described by the equations 
 

   
( )
( )y,xsŷ

y,xrx̂
=
=

    (D.1) 

 

where ( )ŷ,x̂  are the coordinates of the point in the original image whose value should 
be given to the point at the coordinates ( )y,x  in the transformed image, and where 

( )y,xr  and ( )y,xs  are the transformation functions.  The calculated coordinates x̂  and 
ŷ  may have non-integer values, while all of the pixels in the original image have 
integer-valued coordinates.  Therefore, interpolation must be used to compute the 
value that should be assigned to pixel ( )y,x  in the transformed image.[11] 
 For non-integer coordinates ( )ŷ,x̂ , bilinear interpolation uses the known pixel 
values of the four nearest neighbors to calculate the value at ( )ŷ,x̂ , denoted ( )ŷ,x̂v , in 
the original image (see Figure D-1).  These four nearest neighbors all have integer-
valued coordinates.  The equation 
 

 ( ) dŷx̂cŷbx̂aŷ,x̂v +++=   (D.2) 
 

is used to perform the interpolation.  Here, the coefficients a, b, c, and d are 
determined using the four nearest neighbors.  Once these coefficients have been 
computed, ( )ŷ,x̂v  is calculated using equation (D.2), and the resulting value is 
assigned to pixel ( )y,x  in the transformed image.[11] 
 

 
Figure D-1. A point ( )ŷ,x̂  with non-integer coordinates and the four nearest neighbors that 

will be used to compute the value at ( )ŷ,x̂ . 
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