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Glossary

absolute calibration: the process of converting the intensity axis of a spectrum from
units of photon count to units of radiance, such as W/cr/sr/pm.

aperturewidth: the number of rows of pixels that are averaged together to produce
an extracted spectrum.

calibration images: spectrd imagesthat are used only for the cdibration of scientific
images.

datareduction: the cdibration of raw datain preparation for andyss.

Deter mineDispersionl: the dispersion axis determination algorithm discussed in the
COMICS Data Reduction Manual.

Deter mineDispersion2: the first version of the newly developed dispersion axis
determingtion agorithm.

Deter mineDisper sion3: the second version of the newly developed dispersion axis
determingtion agorithm.

Deter mineSpatial: the spatid axis determination agorithm.

dispersion axis: the x-axis of a spectrd image.

extraction: the process of obtaining a one or more spectra from a spectral image.
flat spectral image: acdibration image that captures the non-uniformitiesin the
spectrometer detector’ s response to light.

I nlmage: the input image for an dgorithm.



orthogonalization: the process of transforming a spectral image o that the image's
disperson and spatia axes are perpendicular, the digpersgon axisis horizontd, and the
Soatid axisisvertical.

photon count: the average number of photons that have hit the pixdsin a column of
the detector array. Thisterm may aso be used to denote the number of photons that
have hit asngle pixel. The intended meaning will be clear from the context.

radiance: ameasure of the intendgity of the radiation emitted from an object. Radiance
may be expressed in units such as W/cnf/sr/um,

read-out pattern noise: the noise generated by detectors when they read data.
resolution: ameasure of the degree of separation of wavelengths dong the x-axis of a
pectrum.

scientific images. spectra images of objectsthat are of interest to astronomers. For
the purposes of this research, dl scientific images are the spectra images of planets
and stars.

sky emission: theinfrared (thermd) radiation emitted by Earth’ s atmosphere.
gpatial axis: the y-axis of a spectra image.

spectral image: atwo-dimensond image obtained from a spectrometer that reports
the intendity of the eectromagnetic radiation emitted from an object (such asagtar or
aplanet) as afunction of waveength and of postion dong the spectrometer dit. The
x-axis of such an image isthe digperson axis, which keeps track of the wavelength of
the radiation; the y-axisis the spatia axis, which keepstrack of the position dong the

dit.

Xi



spectral line: alinewithin a gpectra image that reports the amount of radiation
emitted at a 9ngle waveength as afunction of pogtion along the spectrometer dit.
spectrometer: an ingrument that separates light according to wavelength, much asa
prism does.

spectrum: aone-dimensond plot of the intengity of the eectromagnetic radiation
emitted from an object (such asa star or a planet) as afunction of wavelength.
gpectrum calibration: the process of converting the axes of a spectrum to units that
are meaningful to scientists. This process involves two types of cdibration:
wavdength cdibration and absolute cdibration.

theta: the angle between the spatia and dispersion axes of a spectrd image.
Transformationl: Theinitid verson of the image trandformetion dgorithm that is
used during orthogondization.

Transformation2: Thefird refinement of the image transformetion agorithm.
Transformation3: The second refinement of the image transformation agorithm.
waveength calibration: the process of converting the wavelength axis of a spectrum

from units of pixel number to units of wavelength, such as micrometers (um).

Xii



Chapter 1: Introduction
1.1 Problem Statement

The dynamic atmospheres of Jupiter, Saturn, Uranus, and Neptune provide a
rich source of meteorological phenomenafor scientiststo study. To investigate these
planets, scientists obtain spectrd images of these bodies using various ingruments
including the Cooled Mid-Infrared Camera and Spectrometer (COMICY) at the Subaru
Telescope Facility at MaunaKea, Hawali. These spectrd images are two-dimensond
arrays of double precison floating point values that have been read from a detector
array. Such images must be reduced before the information they contain can be
anayzed. The reduction process for spectra images from COMICS involves severd
steps.
1. SKky subtraction: the background radiation from Earth’ s atmosphere must be

subtracted from the spectra images.

2. Read-out pattern noise reduction: the noise related to reading data from detectors

must be subtracted from the spectra images.

3. Division by the flat: the spectral images must be corrected for norntuniformitiesin

the detector array response.

4. Orthogonalization: the spectra images must be transformed so that the images

axes are perpendicular.



5. Extraction: individua spectramust be extracted from the spectral images. These
Spectraare plots of pixe intendty asafunction of position dong the x-axis of a
gpectrd image.

6. Calibration: the x- and y- axes of the extracted spectra must be converted to units
that are meaningful for scientific andysis.

In earlier work, the author devel oped software tools to support the first three steps
in this reduction process. Thisthes's presents dgorithms for performing the next two
reduction steps, namely orthogonaization and extraction. More specificdly, this
thes's addresses the following research question: What are proper methods of

orthogondizing spectra imagesin preparation for extraction?

1.2 Motivation and Background

The research presented in thisthesisis a continuation of work begun by the
author as a student intern at the Jet Propulsion Laboratory, Cdifornia Inditute of
Technology (JPL/CIT) in the summer of 2008. During this internship, the author
worked under the direction of Dr. Glenn Orton, an astronomer who studies the
atmospheres of Jupiter, Saturn, Uranus, and Neptune. Dr. Orton and his colleaguesin
the Earth and Planetary Atmospheres group observe these planets at telescope
facilities around the world, collecting data in the form of infrared images and spectra.
The images are obtained using cameras and provide data similar to that contained in a
photograph, while the spectra are obtained using spectrometers and provide data as
described in Section 1.3 of thisthesis. These data must be reduced before they can be

andyzed. The Earth and Planetary Atmospheres group has been collecting imaging



data for decades now, s0 they have avast software baseto aid in the reduction of such
data. However, this group has only recently begun collecting spectroscopic data.
Traditiona reduction techniques for images cannot, in genera, be applied to spectra,
S0 new software needed to be developed to reduce the new type of data. During the
summer of 2008, the author produced software to facilitate the reduction of spectra
from the Cooled Mid-Infrared Camera and Spectrometer (COMICY) at the Subaru
Telescope; the reduction process used for this ingrument aong with the format of the
data after reduction are described in Section 1.3. Partiad support for the reduction of
COMICS spectrawas implemented over the summer, and thisthessis a continuation
of that work.

Once spectroscopic data have been reduced, the data can be analyzed and
published in peer-reviewed journds. These published data provide scientists with
information about the atmospheric composition of the giant planetsin our solar
system; this compasition information in turn provides insght into the structure and
dynamics of these planetary atmospheres 1% 26111811291 | addition to advancing
scientists understanding of these important bodies in our solar system, studying the
outer planets aso provides a knowledge base that scientists can use as they seek to
understand the composition and dynamics of the aimaospheres of giant planetsin other
planetary systems ). In providing an easy method for Dr. Orton and his group to use
to reduce their data, the agorithms presented here will help these scientists asthey
seek to increase humanity’ s knowledge about our universe. It may aso be possible to

use these algorithms to process data from other instruments (in addition to COMICYS);



these instruments may collect datafor use in scientific inquiry or in military
gpplications.

This data reduction problem was chosen because, even after the author’s
summer internship, suitable agorithms had not been developed for performing dl of
the reduction steps required for COMICS spectra. Questions regarding what
computationa techniques should be used to complete these reduction steps provided
an interesting research topic to addressin athesis. This research was conducted in a
computer science department because the work described here did not require the use
of scientific principles to develop anew process for reducing data from the COMICS
spectrometer. Instead, this research involved looking at a preexisting data reduction
process for COMICS spectra (see Section 1.3) and developing new dgorithms, where
necessary, to support this reduction process. The novel agorithms presented here
apply standard image processing techniques to the problem of reducing COMICS
gpectra. Such development of new dgorithms fals under the redlm of computer

science.

1.3 Terminology

To perform their research, Dr. Orton and his colleagues observe Jupiter,
Saturn, Uranus, and Neptune using various ground- based telescopes including the
Subaru Telescope, NASA's Infrared Telescope Facility (IRTF), the Gemini North and
South Telescopes, and the ESO Very Large Telescope (VLT). Thesetelescopes are dll
equipped with spectrometers that are sengitive to infrared (thermd) radiation. A

spectrometer is an insrument that separates light according to wavelength, much asa



prism does*°!. The schematic of a spectrometer is shown in Figure 1-1. This
spectrometer works as follows: the telescope is pointed at an object of interest, such as
aplanet or agtar. Light from the object enters the telescope and is directed through a
dit and into the spectrometer. Once indde the spectrometer, the light is focused onto a
diffraction grating that separates the light into its component wavelengths. The ability

of this grating to separate light of different wavelengthsisindicated by its resolution;

the higher the resolution, the greater the distance that separates the different
wavdengths after the light leaves the grating. From the grating, the light is directed

onto a detector that recordsthe data. This detector may be thought of as atwo-
dimensiond array of pixes where each pixe collects a portion of the light that hits the

detector.

from

m_ ||
telescope “ @

slit  grating

/ /
detector

Figure 1-1. The schematic of a spectrometer. Each of the colored arrows in the schematic
represents a different wavelength of light. This figure is a modified version of the image
http://en.wikipedia.org/wiki/Image:Spectrometer_schematic.gif made by Kkmurray.

mirrors

The data obtained from a telescope’ s spectrometer are reported in the form of a
gpectra image such as the one shown on theright haf of Figure 1-2. A spectrd image
isatwo-dimensond image that reports the intensity of the electromagnetic radiation

emitted from an object as a function of wavelength and of position dong the



spectrometer dit. The spectrd image s x-axisis the digperson axis, which keeps track
of the wavdlength of the light that was captured by the detector; the y-axis of this
image isthe spatid axis, which kegpstrack of the position aong the spectrometer’s
dit. This spectrd image contains multiple vertical columns of bright pixels, and each

of these columnsis caled a spectrd line. Each spectrd line reports the intengity of the

radiation emitted a a particular wavelength from each position along the spectrometer

dit.

Spectral Image

wavelength

Figure 1-2. (left) The position of the spectrometer slit on an object of interest (Jupiter), and
(right) the spectral image obtained at that slit position. The shades of red in this spectral
image indicate the intensity of each pixel, not the wavelength of the light associated with those
pixels.

These spectra images do not present the datain aform that is easy for
scientists to andyze. Therefore, the data must be reduced, or cdibrated, to prepare
them for analyss. The data reduction process for spectra images involves severd
major steps, which are outlined below for infrared data [*?/1*21131 - During this

reduction procedure, two types of spectral images are used: we will refer to them as



scientific images and cdibration images. Scientific images are the goectrd images of
objectsthat are of interest to astronomers,; for the purposes of this research, the
scientific images are the pectral images of planets and sars. Calibration images are

spectra images that are used only for the cdibration of scientific images.

1. Sy subtraction.
Earth’s atmosphere emits a Sgnificant amount of infrared radiation; the intensity
of this ky emisson is high enough to overwhem the Sgnd resulting from the
infrared radiation from the outer planets. A cdibration image of this background
radiation must be subtracted from the scientific images.

2. Read-out pattern noise reduction.
The dectricad circuits present in pectrometer detectors generate a certain amount
of noise when the data are read from the detector and stored to disk. This noise
pattern must be subtracted from the scientific images.

3. Division by the flat.
The detectors used with telescope spectrometers may be viewed as two-
dimensiond arays of pixels. Each pixe in such a detector array responds
differently to the light incident upon it. To correct for these non-uniformitiesin
the detector array response, each scientific image must be divided by aflat
cdibration image. Here, the term flat refers to the fact that the flat image captures

the detector’ s response to a uniform light source.



4. Spectral image orthogonalization.
Asshown in Figure 1-3, the spatial and dispersion axes of a scientificimage may
not be perpendicular to one another; this axis skew is caused by the characteristics
of the COMICS spectrometer. Orthogonalization is the process of transforming a
spectra image o that these axes are perpendicular. The Sze of the spectrd image

is the same both before and after orthogondization.

spatial
axis

dispersion axis

Figure 1-3. A spectral image for which the spatial axis is not perpendicular to the dispersion
axis.

5. Spectrum extraction.
To reformat the data contained in a science image o that scientists may andyze it,
one or more spectra must be extracted from the spectral image. A spectrumisa
plot of the intendty of the eectromagnetic radiation emitted from an object asa
function of wavdength. The intengity axisis often expressed in units of photon
counts, where the photon count is the average number of photons that have hit the
pixelsin one column of the orthogondized image. Ingtead of being specified in

units of waveength, the waveength axis of a newly extracted spectrum is often



expressed in terms of pixel number, where the pixel number is the position dong
the digpersion axis of the column of pixels whase photon count is being reported.
6. Spectrum calibration.
The intendty and wavelength axes of a newly extracted spectrum are not
expressed in terms of useful units. Spectrum cdibration is the process of
converting the axes to units that are more meaningful for scientists; this process
requires two types of calibration: wavelength cdibration and absolute cdibration.
Waveength calibration is the process of converting the wavelength axis from units
of pixel number to units of wavelength, such amicrometers (um). Absolute
cdibration is the process of converting the intengity axis from units of photon
count to units of radiance, such as W/cn/sr/um; radiance is a measure of the
intengty of the radiation emitted from an object.

Figure 1-4 provides an illustration of these six reduction steps 1%,



Science Image from
the Telescope

Sky Subtraction
Noise Reduction
Division by Flat

J

Orthogonalization

F

e

photon count

pixel number

Radiancs
{WHem®fsum)
?
B
=]
b=

Wavalenagth {um)
Calibrated Spectrum

Figure 1-4. An illustration of the process of data reduction for spectral images.



1.4 Telescopes and their Properties

The Earth and Planetary Atmospheres Group at JPL/CIT routingly use the
infrared spectrometers at several ground-based telescopes for their observations. The
8.2-m Subaru telescope is located on Mauna Keain Hawaii and is operated by the
National Astronomical Observatory of Japan (NAOJ) *°!. Subaru is equipped with the
Cooled Mid-Infrared Camera and Spectrometer (COMICS), an instrument that is
sengtive to infrared radiation in the wavelength range from 7.8 to 24.5 um. The
COMICS spectrometer is equipped with low (250), medium (2,500), and high
(20,000) resolution gratings that cover the range from 7.8 to 13.3 um. COMICSis
a so outfitted with five spectroscopy detectors; only one of these detectorsis used for
low-resolution observations, while dl five detectors are used during medium- and
high- resolution observations!*®. The 3-m Infrared Telescope Faility is also located
on MaunaKeaand isrun by NASA and the Universty of Hawaii; the IRTF is
equipped with aninfrared spectrograph called SpeX (a spectrograph issmilar to a
spectrometer). The 8.1-m Gemini North and South telescopes are a pair of identica
telescopes, one in the northern hemisphere and the other in the southern hemisphere,
that are operated by the Internationa Gemini Consortium. Gemini North islocated on
Mauna Kea and is equipped with the Michelle infrared spectrometer. Gemini South is
located at Cerro Pachon in Chile and houses the T-Recs infrared spectrometer. The
Very Large Telescope contains four 8.2-m telescopes that can operate individualy or
asasgngleunit. VLT isoperated in LaParand, Chile by the European Southern

Observatory (ESO) and houses the VISIR camera and spectrometer (191,
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Chapter 2 : Methodology and Related Work
2.1 Approach

The approach presented in thisthesis for spectral image orthogondization is
based on the work of Dr. Glenn Orton and on the work of the COMICS team &t the
Subaru Telescope Facility. Before describing this approach, it will be useful to
describe the data sets for which the agorithms presented in this thesi's were developed
(Section 2.1.1). Then we will discuss the generd approaches used for developing

(Section 2.1.2) and testing (Section 2.1.3) the agorithms presented in thisthesis.

2.1.1 Data Sets

For the purposes of this research, a data set is a collection of spectral images
that were obtained using the COMICS spectrometer during one night of making
observations, Dr. Orton’s data sets typicaly contain 25 to 100 images. These spectra
iImages are encoded using the Hexible Image Transport System (FITS) format, a
gtandard file format used by astronomers. The FITS files used in this research contain
two components. a 320” 240 array of double-precision floaing-point numbers, and
an aray of drings. The floaing-point array represents a gpectra image, while the
sring array isthefile header. This FITS header contains a description of the data
gored in the file dong with information about the conditions under which the data
were collected. Such FITSfilesaretypicdly g-zipped with the compressed file Sizes
ranging from 500 to 600 kB. More information about the FITS format is available

online a http://fitsgsfc.nasagov.
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2.1.2 Approach for Algorithms

To orthogondize the images in a data s, the spectra images of stars are used
to determine the spatial axis orientations associated with the images in the data st
Then the spectral image of a planet is used to determine the digperson axis orientation
associated with the data. Once the spatial and dispersion axes have been determined,
the spectral imagesin the data set are transformed so that the axes are perpendicular,
with the digoersion axis being horizontal and the spatid axis being vertical. Spectra
can then be extracted from the orthogonalized spectra images. All of these algorithms

operate on individua spectra images.

2.1.3 Approach for Testing

The agorithms developed to perform orthogondization have been tested for
both correctness and efficiency; the tests used here are based on techniques used by
Dr. Orton and by the COMICS team. Correctness has been evaluated using data
provided by Dr. Orton. Spectra images have been orthogonalized using the
agorithms presented in thisthess. Some of these dgorithms were developed by the
author, and others were devel oped by the COMICS team. The spatial and dispersion
axes have been re-determined for the orthogonalized images usng the axis
determination agorithms described in this thess. The angle between these determined
axeswas a0 caculated for the orthogonalized images. If the orthogondized images
axes are perpendicular, with the spatiad axes being vertica and the dispersion axes
being horizonta, then the output of the orthogonaization adgorithmis correct. A

second measure of correctness could be to check that, for any given spectra image,
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the sum of dl the pixels intendtiesis the same before and after orthogondization.
This correctness criterion cannot be used here because the spectral images are the
same size before and after orthogonalization: as aresult of this Sze restriction, some
pixels from the origina image are mapped outside the bounds of the transformed
image by the orthogondization transformation, resulting in “logt pixels’ and asum of
pixd vauesthat is smaler after the transformation than before the transformation.
The efficiency of this dgorithm has been measured in terms of running time: the
implementation of the orthogonalization agorithm must be able to processasingle
gpectrd image in lessthan 5 minutes. The performance of the orthogondization
agorithm based on these correctness and efficiency criteria are reported in Chapter 3

of thisthesis.

2.2 Distinctive Aspects of this Approach

The orthogondization agorithm is divided into three sages. spatid axis
determination, digperson axis determination, and image transformation. The spatid
axis determination and image transformation agorithms developed by the COMICS
team were implemented for thisthesis. However, anew agorithm for dispersion axis
determination was devel oped because the algorithm presented by the COMICS team
for this purpose was strongly connected to wavelength cdibration. Dr. Orton needed
an dgorithm that did not involve such a connection because he wanted the software
for each reduction step to be designed as a separate module. Modularity will Smplify
the task of generdizing these dgorithms so that they can be used to reduce data from

other instruments, a task that will be undertaken in future work. The new dispersion
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axis determination agorithm uses generd image processing techniques to separate the

axis determination procedure from wavelength caibration.

2.3 Orthogonalization Algorithm
After a spectra image has undergone the reduction steps of sky subtraction,
read-out pattern noise reduction, and divison by the flat, that image isready to be

orthogondized. Orthogondization is the process of transforming a spectra image o

that the image' s dispersion and spatia axes are perpendicular to one another, with the

disperson axis being horizontd and the spatid axis being vertica. The COMICS

Data Reduction Manua 1°! states that the orthogonalization process may be

implemented in three steps:

1. Determine the orientetion of the spatid axisfor ahigh SN spectrd image of a
dandard star. The orientation of this axis, y, changes as afunction of x (see Figure
2-14); this variation in orientation can be captured by a quadratic function of the
form y =b,x* + b, x+b,. This step should be done once for each set of low-
resolution spectra images and five times for each set of medium-resolution
spectra images; these numbers of repetitions are used because low-resolution
spectra are obtained using one of the five spectroscopy detectors available on
COMICS while the medium-resol ution spectra are obtained using dl five

spectroscopy detectors %, The agorithm used to perform this step may involve

user interaction.
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2. Determinethe orientation of the digperson axis for ahigh S/N spectrd image of a

planet. The orientation of thisaxis, X, changes as afunction of y (see Figure 2-1b);
this variation in orientation can be captured by alinear function of the form
X=a,y+a . Thisdisoerson axisisdescribed by alinear function instead of a
quadratic function because the orientation of this axis can be inferred from the
orientation of the spectrd linesin an image, and these spectra lines are described
by linear equations. This step normaly should be performed once for each set of
low-resolution spectra images and once for each set of medium-resolution images
because the dispersgon axis orientation is usudly the same for images of the same
resolution in the same data set (see the results presented in Section 3.3.1.2). The
agorithm used to perform this step may involve user interaction.

. Using information about the axes determined in steps 1 and 2, transform the
images so that the spatia and dispersion axes are perpendicular. This step should
be performed once for each image in a data set, and the dgorithm used to perform

this step should not require user interaction.
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Figure 2-1. A conceptual illustration of (a) determining the spatial axis and (b) determining the
dispersion axis. The red curve gives the location of the “base” of the spatial (y) axis as a
function of x; the blue arrows labeled Yxj through Yxs show the position of the spatial axis for
the x-values x1 through xs, respectively. Likewise, the green line give the location of the

“base” of the dispersion (x) axis as a function of y; the blue arrows labeled Xy through Xvs
show the position of the dispersion axis for the y-values Y1 through Ys, respectively.

Section 2.3.1 describes the agorithm for spatid axis determination, Section 2.3.2
describes three dgorithms for dispersion axis determination, and Section 2.3.3
describes three agorithms for transforming an image so that its axes are perpendicular.

In these sections, the input image will be referred to as Inimage.

2.3.1 Spatial Axis Determination
This agorithm, which will be referred to as DetermineSpatial in the remainder of this
thed's, requires the following input parameters:

1. Inlmage: The spectra image of a standard star represented asan 320" 240 array

of floating point values. The dimensions of this array will be labeled x and y.
2. Xmin: Theminimum x-vaue for which we will perform caculations, the COMICS

manua suggests using avaue of 30. The rationde for choosing this vaue for
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Xmin 1S not explained in the manud, but the vaue was probably chosen to exclude

pixels near the edge of the image from the calculation: due to the characteristics of
the spectroscopy detector, the pixels near the edge are less accurate than the pixels

in the middle of theimage!'%

3. Xmax: The maximum x-vaue for which we will perform cdculaions. The
COMICS manud suggests using avaue of 290; the reason for choosing thisvalue
for xmax isthe same as that used to choose a vaue for Xmjn.

To determine the spatid axis of Inimage, firgt, automaticaly determine the y-
vaues (Ymin and Ymax) between which the star spectrum appearsin thisimage (see

Figure 2-2). These boundary values are obtained using a 2-standard- deviation
threshold above the mean pixd vaue; the user is dlowed to adjust these vauesiif they

are not reasonable.

— ¥Ymax
“ Ymin

Figure 2-2. The two-sigma threshold estimates for the minimum (yyin) and maximum
(Ymax) Y-values between which the star spectrum appears.
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Next, locate the pesk position (in terms of intensity) of the star spectrum for

each x-value between Xmin and Xmax. TO determine the coordinates of these peak

positions this dgorithm employs a two-step method that is used by the g-series task
g_startrace; g-seriesis free software available on the Internet at

http://canadia.ir.isas.ac.jp/comics/opervrbin/rbin.html.
Step 1: For each value of y between ymin and Ymax, compute the arithmetic mean of

the x-valuesin the row corresponding that vaue of y. Fit these average values with a

Gaussan of theform

2..

& z°0
A >expé—7+ Dxx+E, (2.1
2 5
o Z_x-B
where c

To perform this Gaussan fit, the agorithm implemented by the Interactive Data
Language s gaussfit function is used; gaussfit uses gradient expansion to caculate a
nortlinear least squaresfit. Theinitid guessesfor the fit parameters are as follows,
where misthe vector containing the average for each y-vadue and n isthe Sze of

vector m:
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ént mn- 1]+ nj0]

A=
24 2.0

C=15 (2.2)
D =m[0]

E- m[n- 1r]] m[O]

Step 2: For each vaue of X between Xmin and Xmax, take the y-vaues corresponding to

that vaue of x and fit those y-vaues with a Gaussian of the same form aswas used in
Step 1. Usethe fit parameters associated with the find Gaussan from Step 1 asinitid
guesses for the fit parameters associated with the Gaussans here. The x- and y-
coordinates of the Gaussian centers for each x-vaue are recorded for later use. Figure

2-3 shows a star spectrum with the calculated Gaussian centers displayed over the top.
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Figure 2-3. A star spectrum with the calculated Gaussian centers plotted over the top.

These pesk positions are fit with both a quadratic equation of the form

y =b,x* + b x + b, and alinear equation of theform y = b x+b,. Bothfitsare
displayed as shown in Figure 2-4 with aplot of each fit superimposed upon the star
image. The user is asked to identify which fit, if any, best describes the axis; here, the
user is an astronomer or astudent worker who is using an implementation of this

agorithm to reduce spectra. The parameters of the fit chosen by the user are the

parameters that describe the spatid axis of Inlmage.
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Figure 2-4. Quadratic and linear spatial axis fits for the spectral image of a standard star.

2.3.2 Dispersion Axis Determination

The COMICS Data Reduction Manua 1! proposes an agorithm for
determining the digperdon axis, an dgorithm that is partidly implemented by the o+
seriestask g_sky nlow. Thisadgorithm (which will be referred to as
DetermineDispersonl) has an undesirable property, so anew agorithm
(DetermineDisperdon?) was developed to perform this determination. The newly
developed dgorithm was later refined after testing reveded problems; this refined
agorithm will be cdled DetermineDisperson3. The COMICS Data Reduction

Manud agorithm and both versions of the newly developed agorithm are described
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below. All three of these agorithms require one input parameter: Inimage, the
spectra image of a planet represented as a two-dimensiond array of floating point

values, the dimengons of thisarray are labded x and .

2.3.2.1 The COMICS Data Reduction Manual Algorithm (DetermineDispersionl)
Thefallowing agorithm will determine the disperson axis of Inimage:

For each value of y in the set { 30, 40, 50, ... , 220}, perform the steps
described below. This set was chosen because the values are evenly spaced across the
image and can be used to obtain a good approximation of the orientation of the
disperson axis.

1. ldentify the row in Inimage that is associated with the current vaue of y.

2. Initidizean array x1 to hold the x-coordinates of dl the pixelsin the row and the
array y1 to hold the vaue associated with each pixe in thisrow.

3. Cdculate the wavdength caibration parameters for this row using the procedure
outlined below. The wavelength cdibration fit equetion is

| (Xx)=Ax +B (2.3

where | isthe waveength in microns of the pixdl with x-coordinate x and where
A and B are the desired cdibration parameters.

a. Locaethe“pesks’ inthearray y1, where apesk islocated at position i in

thearray if y1[i] isgreater than both y1[i-1] and y1[i+1].

b. Createan array Yqyata that contains gpproximate Gaussian peaks at each

position i where a pesk was found in they1 array. An approximate
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Gaussian peek is created at position i in Ygara by adding 110 yyata[i] and
adding 0.382546 t0 Yqata[i-1] and to yqaa[i+1].

Initidize an array Xy to hold the wavelengths (in microns) of the Earth’s
atmospheric emission lines.
. Test arange of vaues for the caibration parameters from equation (2.3) as
follows
For A =0.01965; A = 0.020145; A = A + 0.000245
ForB=745;,B=7.849;B=B +0.199
I.  Subgtitute the current values for A and B into equation (2.3) to
caculate the x- coordinates associated with each wave ength found
inthearray Xgy.

ii. Generatean array Ysky that contains Gaussian pesks at the x-
positions calculated in Step 1. A Gaussian peak is produced at
position p in the ysky array by finding the equation of the Gaussian
with amean of p and a standard deviation of 0.721347; thisvaue
for the standard deviation captures the effect that the spectrometer’s
dit has on the width of the linesin Earth’ s atmospheric emission
gpectrum. The function values for this Gaussan are caculated for
positions p-1, p, p+1, and p+2; these function values are added to
the corresponding elementsin the ysy array.

iii. Caculate the correlation coefficient for the arrays ygata and ysky (See

Figure 2-5).
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e. Thevduesof A and B that give the highest correlation coefficient are the
wavelength calibration parameters that are reported for the current row in

Inimage.

M

Ydattat
Calculate Correlation

Coefficient

Ve Va AN NN

Ys ky

Figure 2-5. Gaussian peaks from the yqata and ys ky arrays that are compared using a
correlation coefficient. The ygata array contains peaks from one row in the inputted image
while the ysky array contains peaks corresponding to Earth’s atmospheric emission lines.

Once the wave ength cdibration parameters have been caculated for the 20

vaues of y from 30 to 220, the y-dependence of these parameters must be determined.

For this purpose, we fit the parameters using the equations A= a,y +a, and

B=4a,y +a, usng least-squares linear regression. The resuting fit coefficients ay,

a1, &, and & are the parameters that describe the dispersion axis. Thesefit parameters

are different from the disperson axisfit parameters discussed at the beginning of
Section 2.3 because the dependence of | on x and y cannat, in genera, be captured
using only two parameters. However, DetermineDispersion2 and
DetermineDigpersgon3 can use only two parameters because these dgorithms are

independent of wavelength cdibration.
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2.3.2.2 The Newly Developed Algorithm: Initial Version (DetermineDispersion2)

The dgorithm from the COMICS Data Reduction Manud has one significant
problem: The disperson axis determination procedure is strongly tied to wavelength
cdibration. This property of the dgorithm is undesirable because wavelength
cdibration is generdly an independent step in the spectra reduction process and
therefore should not be tied to any other reduction steps. For this reason, the
following new agorithm was developed for disperson axis determination. This
agorithm assumesthat dl of the pectra linesin Inlmage have the same dope; atest
that was performed to determine the vaidity of this assumption is described in Chapter
3.

Firgt, remove noise from Inlmage usng amedian filter. Convolve the
resulting filtered image with the Sobel operator shown below, producing afirst-
derivative image; in thisfird-derivative image, the vertica edges are enhanced.

&1 0 1y

é a
&2 0 2

g1 0 1§

Convolve the resulting fird- derivative image with the above Sobel operator to produce
a second-derivativeimage. In this second-derivative image, the edges are the
boundaries between regions with positive and negative pixd vaues. Set dl of the
postive vaues in the second-derivative image to 1 (white) and dl of the negative
vauesto O (black). In the resulting image (see Figure 2-6), the boundaries between

black and white regions correspond to the vertical edges in the origina spectrd image.
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This procedure for producing a black and white second- derivative image is based on

ideas presented by Gonzalez and Woods 4.
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Figure 2-6. A second-derivative image in which edges are indicated by the boundaries
between black and white regions. This figure is the second derivative of the spectral image on

the right side of Figure 1-2.

Next, ask the user (an astronomer or a student worker) to identify a rectangular
region in this black and white image that contains awell-defined edge; here, a
rectangle contains awell-defined edge if, for each row of pixes contained in the
rectangle, the rectangle contains a boundary between black and white in that row.
Figure 2-7 shows an example of arectangle that contains awell-defined edge. This

rectangular region must be at least 20 pixes high.
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Figure 2-7. A second derivative |mage W|th a well- deflned edge enclosed in the red rectangle.

After the user has selected arectangular region, locate 20 equally-spaced
points dong the edge contained within the region; if the region contains more than one
edge, the leftmost such edgeisused. If 20 edge points could not be found, then the
selected rectangle did not contain awell-defined edge, and the user is asked to sdlect a

different region. Once 20 points aong an edge have been located, fit those points with
alinear equation of theform X =8,y + @;. The parameters of this linear equation

are the parameters that describe the dispersion axis of the inputted image. Figure 2-8

shows the dispersion axisfit plotted over the spectral image of a planet.
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Figure 2-8. The dispersion axis fit for the spectral image of a planet.
2.3.2.3 The Newly Developed Algorithm: Refined Version (DetermineDispersion3)
The digperson axis determination agorithm just described suffers from two
major difficulties: (1) the agorithm reguires the user to specify aregion of interest in
Inimage, and (2) the dgorithm assumesthat dl of the spectrd linesin Inimage have
the same dope when, in actudity, the dopes of the spectrd lines can vary across the
image. As part of the contribution of thisthesis, DetermineDispersion2 has been
refined to ded with these difficulties. To ded with difficulty (1), aprocedure was
developed to autometicaly locate well-defined spectrd linesin Inimage; however, the
user is gl given the option of specifying aregion of interes manudly in case the
automatic procedure produces unreasonable results. To ded with difficulty (2),
multiple spectrd lines are identified in Inimage; the dopes of these lines are averaged
to produce an equation for the disperson axis that is characteristic of theimage asa
whole. Thisimproved agorithm is described below. However, sncewe are dill

using a single number to describe the dope of the disperson axis, this dgorithm
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assumesthat dl of the spectrd linesin Inimage have comparable dopes—that is, that
the orthogonalization transformation will not be sengtive to the differences in spectra

line dope that occur within the image.

The Algorithm
Firgt, produce a second- derivetive image as was donein the initid verson of
thisagorithm. Set dl of the postive vaues in the second derivetive imageto 1
(white) and dl of the negative valuesto O (black). In the resulting binary image, the
boundaries between black regions and white regions correspond to the spectral linesin
the origind image (see Figure 2-6). Isolate the edgesin this black and white image as
follows to produce a binary edge image:
= Create anew aray of integersthat is the same size as the black and white image;
thisnew array, cdled edge _image, will represent the edge image.
= For each pair of consecutive columns | and 1+1 in the black and white image,
perform the following steps:
= For each pixel in column |, do the following:
= Le Pbethe pogtion of the current pixel in column .
= If the current pixd has the same vadue asthe pixd at position Pin
column 1+1, assign the vaue 0 to the pixd at postion Pin column | of
the edge image array. Otherwise, assgn the value of 1 to the pixd a
pasition Pin column | of edge image.
In the resulting edge image, the edges are represented as white lines that are one pixe

thick (see Figure 2-9).
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Figure 2-9. A binar
derivative image.

Next, identify well-defined edges in thisimage; here, an edge iswell defined if
it does not contain any discontinuities or branching. The user (an astronomer or
student worker) is asked whether this identification process should occur manually or
automaticaly. If the user chooses manua mode, the user must identify a rectangular
region in the second derivative image that contains one or more well-defined
boundaries between black and white. A boundary between black and whiteis well-
defined if the black region associated with the boundary is not digoint — in other
words, if the black region (1) does not contain any white pixels, (2) does not contain
any “broken cycles’ of black pixds, and (3) isat least one pixel wide in every row
contained within the rectangular region. For example, in Figure 2-10, the boundary
enclosed in the dark blue rectangle is not well-defined because its black region
contains white pixels, the boundary enclosed in the green rectangle is not well-defined

because its black region contains a broken cycle of black pixels, and the boundary



enclosed in the pink rectangle is not well-defined because its black regionis zero

pixels wide in many of the rows contained within the rectangle.
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Figure 2-10. A second derivative image containing three ill-defined boundaries between black
and white. The boundary enclosed in the dark blue rectangle is ill-defined because its black
region contains white pixels, the boundary enclosed in the green rectangle is ill-defined
because its black region contains a “broken cycle” of black pixels, and the boundary enclosed
in the pink rectangle is ill-defined because its black region is zero pixels wide in many of the

rows contained within the rectangle.

Once the user has identified aregion of interest in the second derivative image, the
corresponding region in the binary edge image isisolated; the well-defined edges
contained in this image region are the well-defined edges that will be used in the

remainder of thisagorithm (see Figure 2-11).
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Figure 2-11. A region of interest containing several well-defined edges that were identified by

the user in manual mode.

If the user chooses autometic mode, well-defined edges in the edge image are
identified asfollows. The procedure described here is based on ideas presented by
Fisher, Perkins, Walker, and Wolfart!®. First, the Hough transform of the edge image
is caculated; for the Hough transform, only theta vaues from -6.3° to -0.6° were
conddered and the step Sze separating consecutive theta values was given by the

following formula

step _sSze = & -
ceiling g)\/xz +y29
2
where x = stzz_ 1, y= ys;e;— 1,xsizeisthewidthof the edge image, and ysizeis

the height of the edgeimage. The resulting trandformed image is then hisogram:
equalized, converted to a binary image using athreshold of 0.9995 times the image's

maximum pixd value for medium-resolution spectraor 0.995 times the image' s
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maximum pixel vaue for low-resolution spectra, and then is thinned using the

following hit and miss sructura dements dong with their 90 degree rotations:

Hit structural dements;

@ 0 Oy @ 0 Oy
é U 2 U
D 1 0 1 oY
g 1 19 g 1 0og
Miss gructural dements;

gl 1 1y @ 1 1y
2 U 2 U
H 0 0y H 0 1
@ 0 0f @ 0 0f

Lagtly, the Hough backprojection is caculated for the resulting thinned binary image.
This backprojection is converted to a binary image using athreshold of zero; the
resulting image contains the well-defined edges that will be used in the remainder of
this dgorithm (see Figure 2-12). For the interested reader, descriptions of the Hough

trandform, histogram equdization, and thinning are given in the gppendicies.
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Figure 2-12. An image containing the well-defined edges that were identified by the algorithm
in automatic mode. In this figure, each set of connected white pixels forms a single edge.

Once well-defined edges have been identified, DetermineDisperson3
Identifies which pixels are associated with each edge. To smplify thisidentification
process, the following assumptions are made:

1. All edgesareverticd, or nearly vertical.
2. None of the edges intersect.
3. For each pixd that is part of an edge, dl of the pixd’s neighbors are part of the
same edge or are background pixels.
4. If an edgeis more than one pixd thick at any row within the image, only the
leftmost pixdl in that row needs to be accounted for.
The first and second assumptions are reasonabl e because each edge represents a
spectrd line al spectrd lines are nearly vertical, and two distinct spectral lines do not
intersect. The third assumption indicates that dl 1-pixels that are adjacent to one
another are part of the same edge; this assumption is vaid because, if two adjacent

pixels were part of two different edges, then those edges would be close enough that it
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would be difficult to distinguish between the two. The fourth assumption is
reasonabl e because the orientation of an edge can be described using aleast squares
linear fit of the coordinates of the leftmost pixels associated with that edge, and
information about the orientation of each edge is the only information necessary for
determining the orientation of the disperson axis.

To identify which pixds are associated with each edge, avertical sveep line
that is one pixd thick moves from the left Sde of the image to the right sde; each 1-
pixel encountered by the sweep line is given a negative number thet indicates which
linethe pixd is associated with. If there is more than one 1-pixel on the sweep line a
any given time, these 1-pixels are considered in order from bottom to top. The vaue
assigned to each 1-pixd depends on the vaues of that pixel’s neighbors, so the
following notation will be used to refer to the neighbor pixels vaues. Inthe diagram

below, Current-Pixd isthe 1-pixel whose vaueis currently being determined.

Left-Above
Left Current-Pixel
Left-Below Below

If Current-Pixd isin the leftmost column of the edge image, then Left- Above, Left,
and Left-Bedow are dl assgned vaues of zero; if Current-Pixd isin thelast row of

the edge image, then Left-Below and Below are both assigned vaues of zero. Five
different cases, consdered in the order given, must be handled according to the vaues

assigned to a 1-pixd’s neighbors.



Case 1: Left-Above, Left, and Left-Below areall 0.

If Below is zero, assign to Current-Pixel anegative value that has not yet been
given to any other pixds. Otherwise, assgn to Current-Pixd the same vdue as
Below.

Case 2: Left isnon-zero and negative

If Below is zero, assgn to Current-Pixd the same value as Left. Otherwise,
assign to Current-Pixel the same vaue as below and assign Left, dong with
any other pixds with the same vaue as L&ft, to the value of Below. For
example, if Left = -4 and Below = -3, assign to Current-Pixd thevdue-3.
Then locate dl pixes having the vdue -4 (including Left) and assign to those
pixesthevdue-3.

Case 3: Left-Aboveis zero and L eft-Below is negative (or vice-ver sa)

If Below is zero, assign to Current-Pixd the same vaue as Left-Below (or
Left-Above, inthe dternative case). Otherwise, assign to Current-Pixd the
same vaue as Below and assign Left-Below (or Left-Above), dong with any
other pixds with the same value as Left-Bdow (or Left-Above), to the vaue of
Bdow. For example, if Left-Above = 0, Left-Below =-5, and Below = -3,
assign to Current-Pixe the value-3. Then locate dl pixels having the vaue

-5 (including Left-Below) and assign to those pixels the vaue - 3.

Case 4: Left-Aboveisequal to Left-Below

If Below is zero, give Current- Pixd the same value as Left-Above. Otherwise,

assign to Current-Pixel the same value as Below and assign Left- Above, dong
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with any other pixds with the same value as L eft- Above, to the vaue of

Beow.

Case 5: Left-Aboveisnot equal to L eft-Below

Let *higher’ be the pixd of maximum vaue between Left- Above and Left-

Bdow, and let ‘lower’ bethe pixel of minimum vaue. Assgn to Current-Pixe

the same vadue as ‘higher’ and assign ‘lower’, dong with any other pixelswith

the same value as ‘lower’, to the value of “higher’.
After each 1-pixd in the edge image has been assgned a negative number, the
agorithm thins the edges o that each edge is one pixe thick. Thisthinning is done by
consdering each row in theimage; in each row, the firgt pixd having a particular
vaueis retained while the remaining pixds having that vaue are set to zero. Figure
2-13 shows averson of theimage from Figure 2- 12 where each edge is assigned to
different negative number; the different negative numbers are represented by the

different colored linesin the figure.

Figure 2-13. An image containing the well-defined edges from Figure 2-12 where each of the
edges has been assigned a different color that corresponds to a different negative number.
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Once each edge has been associated with a different number, avertical scan
lineis used to extract and store the coordinates of the pixels associated with each edge.
Edges that do not extend for the entire height of the image or that contain
discontinuities are ignored. Each extracted line is then fit with alinear equation of the
form x =g,y +a,. Linesfor which the vaue of ag is more than 2 stlandard deviations
away from the mean vaue for ag (over dl the lines) are discarded. For the remaining
lines, the mean of the ap vaues and the median of the a; values are calculated and
reported as the fit parameters of the spectral axis. This completes the description of

the newly developed DetermineDigperson3 agorithm.

2.3.3 Image Transfor mation

As with the disperson axis determination agorithm, an initid agorithm was
developed to perform the image transformation and then was refined twice after
testing reveded problems. Theinitid dgorithm will be referred to as
Trandormationl, while the two refined versons of the dgorithm will be caled

Transformation2 and Transformation3. These three dgorithms are described below.

2.3.3.1 Initial Algorithm (Transformationl)
This dgorithm uses the following input parameters.

1. InImage: the image to be transformed.
2. ag: the coefficient to the linear termin the equation X = a,y +a, tha

describes the dispersion axis.



3. bo: the coefficient of the quadratic term in the equation y = b,x* + b, x + b,

that describes the spatia axis.

4. by: the coefficient of the linear term in the equation describing the spatid axis.
First sdlect aset of tie points that will be used to perform the transformation; atie
point isa point for which we know itsx- and y- coordinates in Inlmage and for which
we can calculate the x- and y- coordinates where the point will be in the transformed
image. Aswasdonein the g-seriestask g_transtable2, dl of the pixdsin Inimage are
used astie points. The coordinates where the tie points will bein the transformed
Image are cadculated from the coordinates of thetie pointsin the origina image usng

the following equations; this computation is done using floating- point arithmetic.

X transformed = X original = @0 Y original

Y transformed = Y original - (bOXgrigi nal D1 Xoriginal ) @4

The obtained coordinates of the tie pointsin the original image and in the transformed
image are inputted into the Interactive Data Language (IDL) built-in function
warp_tri, which performs the transformation and returns the resulting orthogondized
image. Thewarp_tri function is S0 named because triangulation is one of the sepsin
the procedure used by this function to warp, or transform, images. According to the
IDL online help manud, warp_tri works as follows!4

Fird, thewarp_tri function triangulates the irregular grid defined by the
coordinates of thetie pointsin the transformed image. Then, the function
caculates the coordinates of the pointsin the origind image that are associated

with each pixel in the transformed image. These calculated coordinates might
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have non-integer vaues, while dl of the pixdsin the origind image have
integer-valued coordinates. Therefore, the origind image islinearly
interpolated to compute the val ues that should be given to each of the points
identified in the original image. The vadues given to these pointsare dso
assigned to the corresponding pixels in the transformed image, thereby
producing the find image that is outputted by warp_tri.

Figure 2-14 shows a spectral image as it gppears before and after orthogondi zation.

@ (b)
Figure 2-14. A spectral image of Saturn both before orthogonalization (a) and after
orthogonalization using Transformationl (b).

2.3.3.2 Refined Algorithm 1 (Transformation2)

Through testing, it has been shown that Transformationl does not properly
handle the case where the spatid axisis described by a quadratic equation (that is,
where by is nonzero); the right Sde of Figure 2-15 shows a standard star spectrum that
was transformed using a quadratic equation for the spatid axis. This result prompted a
closer examination of the transformation procedures described in the COMICS Data

Reduction Manual'® and it was found that the IDL procedure warp_tri does not
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perform the same transformation as is implemented in the software used by the
COMICS team; it was aso noticed that the programs used by the COMICS team
conserve Inlmage' stotal flux (that is, the total brightness of the imagel?Y) before and
after the transformation, while the initid version of the dgorithm presented here does

not consarve the total image flux. The improved image trandformation agorithm is

described below.

@) (b)
Figure 2-15. The spectral image of a standard star both before (a) and after (b) being
orthogonalized using a quadratic fit for the spatial axis with Transformationl.

The Algorithm

Transformation2 caculates the tie points in the origind and transformed
images with the same procedure as was used in the initid agorithm. However,
indeed of ugng thewarp _tri function to perform the transformation, thisagorithm
uses the polywarp and poly_2d IDL built-in functions. The polywarp procedure uses
least squares estimation to caculate polynomid transformations that map the tie point
coordinates from the coordinate system of the transformed image to the coordinate
system of the origind image. This coordinate system transformation is described by

the following equations.
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2 2

-2 2 J I
Xorigind —aa KX[I ’J]Xtransformed Y transformed
1=0J=0

2 2 (2.5)

—_ 2 20 J I
YOrigind —ada KY[l ,J] Xiransformed Y transformed
1=0J=0

where Kx and Ky are 2-dimensond arays of coefficients. Using these polynomid
transformation functions, the poly_2d function performs the transformation and
produces the orthogondized image; poly_2d uses bilinear interpolation (see Appendix
D) to produce the output image and uses the output value 0.0 for pixelswhose
(Xoriginal» Yorigina) coordinates refer to a point outside of the bounds of Inlmage.

Once the transformation is complete, the orthogondized image is multiplied by
the Jacobian of the coordinate transformation to ensure that the total image flux is

conserved. The Jacobian is caculated using the following equations:

X originat » Yori Woignd ~ Worig
Jacobian = ( origind yorlglnai ) - origind yorlglnd
ﬂ(Xtransformed’y'[ransformed) ﬂX'[ransformed ﬂytransformed (2.6)
) ﬂXoriginei ﬂyorigind

ﬂYtransformed ﬂxtransformed

where,

ﬂxori inal
— X = KX[O;I-] + KX [1'1] Ytransformed T 2KX[O, 2] X transformed
fix transformed

+2KX[1,2] X yranstormed Y transformed

2 2
+ 2KX[2,2] X transformed transformed + KX[2,]] Y transformed
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Y wrigina
__ongnd  _ Ky[1,0] + KY[]-J-] Xtransformed + KY[1.2] thra”SformEd

ﬂytransformed
+ ZKy[Z’Z] X%ransformedl/transformed + 2Ky[270] Y transformed
+2KY[2]] X transformed Y transformed
X origina
- KX[:LO] + KX[:L]-] Xtransformed KX[LZ] Xt2ransformed
ﬂYtransformed
2
+ 2KX[2, 2] Xtransformed Y transformed + ZKX[Z’O] Y transformed
+ 2KX[2,1] X transformed Y transformed
Y origina
9 - Ky[O,l] + Ky[l’l] Y transformed + ZKY[QZ] X transformed
ﬂX transformed

+2KY[1,2] Xtransformed Y transformed

+ 2Ky[212] Xtransformedytzransformed + KY[211] ytzransformed
Figure 2-16 shows the image from the left Sde Figure 2-15 &fter it hasbeen

orthogondized using this refined dgorithm.

Figure 2-16. A spectral image of the standard star from Figure 14 after being orthogonalized
using a quadratic fit for the spatial axis with the refined transformation algorithm.



2.3.3.3 Refined Algorithm 2 (Transfor mation3)

When Transformation2 was tested, an additiona problem was reveded: The
transformation equation for the x-axis described in the COMICS Data Reduction
Manud evenly digtributes the pixelsin the spectrd image dong the x-axis, but the
transformation equation used here for the x-axis does not perform a smilar function.

This difference between the agorithm described here and the agorithm used in the

COMICS Data Reduction Manua may lead to additiona pixels being mapped outside

of the image by the refined dgorithm. Tests performed on |ow-resolution spectra
show that 304 pixds are mapped outside of the image by the transformation used by
the COMICS team, while 646 pixels are mapped outside of the image by the
trandformation used here. To fix this problem, the equation used to caculate the x-

coordinates of the tie points in the transformed image was changed to the following:

AgY sze

5 (27)

X transformed = Xoriginal B aOyoriginal +

where ysize IS the number of rows of pixelsin Inimage. With this change, the number

of pixels mapped outside of the image by this transformation was reduced to 389, a
vaue which is comparable to the number of pixelslost with the transformation used

by the COMICS team.

2.4 Extraction Algorithm
Extraction is the process of obtaining one or more spectra from a spectra
image; if multiple spectra are generated, each spectrum is extracted from a different

gpatid pogtion in the spectral image. This agorithm is based on the spectrum
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extraction procedure described in the COMICS Data Reduction Manuall'®. Given
Inimage, the spectra image from which spectrawill be extracted, the dgorithm
operates as follows.

Fird, the user identifies arectangular region tha contains the spectrum to be extracted
from Inimage. Thisrectangular region will be referred to as the spectrum region; an
example of such aregion is ddimited by the whiterectanglein Figure 2-17. The
positions of the boundaries of this rectangular region are initidized usng atwo-
standard-deviation threshold above the mean pixe vaue, and the user is alowed to
adjust these boundaries as necessary. The user is also asked to identify two more
rectangular regions—a sky emission region that appears above the spectrum region
and a sky emission region that appears below the spectrum region; examples of such
sky regionsare shown in Figure 2-17. If there is no sky region above (or below) the
Spectrum region, the user may indicate this condition by specifying aline instead of a
rectangular region above (or below) the spectrum region as was done for the sky
region above the spectrum in Figure 2-17. The left and right boundaries of these sky

regions must be the same as the left and right boundaries of the spectrum region; the

upper and lower boundaries of the sky regions may be varied, and these boundaries are

initialized to appear at afixed distance above or below the spectrum region. These

sky regions are not required to abut the image borders.
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Figure 2-17. A spectral image in which a spectrum region, containing the spectrum that will be
extracted from the image, has been identified by the white rectangle. Sky emission regions
have also been identified above and below the spectrum region. The sky region above the
spectrum region is specified by a line instead of a rectangle, indicating that there is no sky
emission present above the spectrum.

Once these sky and spectrum regions have been identified, the user is asked to
choose the gperture width to be used for extraction; the possible widths (in pixels) are
1,3,5,7,9, and the tota number of rows in the spectrum region. Spectraare then
extracted from the image using the selected gperture width. The following procedure

IS used to perform the extraction process.

Léet rin be the bottommost row of pixelsin the spectrum region and let rox be the

topmost row. Further, let w be the aperture width selected by the user. For each row r

andending at row I - T,cdculate

of pixdsbeginninga row Iyn +
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the pixel-wise average of rows r - le through r + W- 2 This processisillugtrated

in Figure 2-18 for an aperture width of 3 with a spectrum region that contains 5 rows.

1T N M max
— Average A\

{: N Average A\
— W Average

L ~N rmin

Figure 2-18. An illustration of the spectrum extraction process for a spectrum region

that contains 5 rows of pixels (from rmin t0 rmax) and for an extraction aperture width of
3.

The averaging process generates (rmax - Tmin +1) - W +1 extracted spectrawhere

each spectrum is the average of w consecutive rows from the spectrum region.

Next, the sky regions that were identified above and below the spectrum region are
isolated from Inlmage and then merged into asingle rectangle of pixds, any sky
regions that were identified usng alineinstead of arectangle are not incorporated into
this rectangle of sky pixds, o if both sky regions were identified using lines, the
rectangle of ky pixdsisleft undefined. If the rectangle of sky pixelsis defined, the
standard deviation is cacuated for each column of pixdsin therectangle. This
standard deviation caculation gives anoise level estimate for each point in the
extracted spectra However, if the rectangle of sky pixelsisnot defined, this noise

estimate is not caculated.
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Once this process is complete, each extracted spectrum is packed in atwo-
dimensiond array of double-precison floating-point numbers. This array has three
rows, and the contents of each row are as follows:

row 1. The x-coordinates associated with each column in the spectrum.

row 2: The spectrum itself.

row 3: The noise level estimate for each column in the spectrum. If anoise

level estimate was not calculated, this row contains al zeros,

The resulting spectra are then saved in separate files. Figure 2-19 shows an extracted

spectrum.

Fixel Humber

Figure 2-19. An extracted spectrum of a star.
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2.5 Future Approach for Spectrum Calibration

Algorithms for spectrum cdibration have not been developed for this thesis.
However, the COMICS team and Dr. Glenn Orton have genera techniques that may
be used in the future to cdibrate spectra. The calibration process requires two types of
cdibration: wavelength cdibration, and absolute cdibration (see Section 1.3). To
perform wavelength cdibration, Dr. Orton’ s technique involves comparing the
spectrum of a star with Earth’ s atmospheric absorption spectrum. Some of Earth's
absorption lines can be seen in the gtelar spectrum, alowing us to determine the pixe-
to-waveength correspondence for the stellar spectrum. This pixe-to-wavedength
correspondence alows us to convert the wavelength axes of al imagesin asingle data
st from units of pixe number to units of wavdength, such as um.

To perform absolute calibration, Dr. Orton and the COMICS team use the
gpectrum of astar to correct for the effects of atmaospheric absorption on the spectrum
of aplanet. Let Observed(Planet) be the spectrum of a planet X from one of our data
stsY, let Standard(Planet) be the corrected spectrum of planet X, let Observed(Star)
be the stellar spectrum of astar Z from data set Y, and let Standard(Star) be the
atmospheric-absorptioncorrected spectrum of star Z. Here, Standard(Planet) isthe
end result of absolute calibration, and Standard(Star) is a standard spectrum that has
been calculated by Cohen et d.”¥ Standard(Planet) may be calculated using the
falowing formula

Standard(Planet ) = Observed(Fanes) Standard (Star)

Observed(Star)
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This equation may be used to perform absolute cdlibration on any planetary spectrum;

after this cdibration step is complete, the intengity axis of the calibrated spectrum has

been converted from units of photon count to units of radiance, such as W/cn/sr/pm.

Dr. Orton does not perform absolute cdibration on stellar spectra because heis only

interested in studying planets.

2.6 Literature Review

Thisthes's presents an agorithm for orthogonaizing spectra images obtained
using COMICS, the orthogondization process involves transforming images so that
their spectra axes are vertical and their dispersion axes are horizontal. The need to
transform images aso appears in the reduction processes required for other
ingtruments and in the preprocessing procedures used in stereovision gpplications.
Based on how they differ from the orthogondization dgorithm presented here, the
transformation agorithms used for data reduction can be divided into three categories.
agorithms that fix the orientation of one axis during the transformetion (Section
2.6.1), dgorithms that use different interpolation techniques during the transformation
(Section 2.6.2), and dgorithms that use smilar polynomid transformation techniques
to transform different types of images (Section 2.6.3). Section 2.6.4 discussesthe
differences between the transformations used in stereovison applications and the

orthogondization transformation presented in this thess.

2.6.1 Rectification With One Fixed Axis
Cushing et d.1*! present algorithms to reduce spectral images from the SpeX

spectrograph at IRTF, including an dgorithm to rectify spectrd imagesthat are
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curved. This rectification agorithm differs from the orthogondization agorithm
presented here because Cushing et d.’s dgorithm assumes that the spatia axes of dl
spectra images are vertica, so the dgorithm only needs to straighten the dispersion
axis. The orthogondization agorithm presented here, on the other hand, must

straighten both the spatial and dispersion axes.

2.6.2 Interpolation Techniques

Barett et a.!*! and Dressel et d.!%! present anew agorithm to rectify spectra
images obtained from the Space Telescope Imaging Spectrograph; this rectification
agorithm is used to prepare spectral images for extraction. The new agorithm uses
wavelet interpolation to produce afind image that is more accurate than could be
produced using bilinear interpolaion: Bilinear interpolation assumes that the light
collected by a detector pixel is concentrated at the center of that pixel. This
assumption gives accurate results when the gperture width that will be used for
extractionislarge. Inredity, the light collected by a detector pixel is distributed over
the entire pixel area; wavelet interpolation takes this fact into account to produce a
more accurate rectified image in the case where the extraction aperture width is smdl.
The COMICS team uses hilinear interpolation while orthogondizing spectral images
from their instrument!*® , so the transformation algorithm discussed in this thesis uses

bilinear interpolation instead of wave et interpolation.
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2.6.3 Polynomial Transformations

Wang!?Y! presents algorithms to reduce cameraimages from WIRCAM on the
Canada- France-Hawaii Telescope and from MOIRCS on the Subaru Telescope;
among the dgorithms discussed is a procedure to correct distorted imagesusing a
polynomid transformation. A polynomia transformation is dso used in the
orthogondization agorithm presented here, but Wang's dgorithm is specidized for
cameraimages while the agorithm introduced in this thesis is specidized for spectra
images.
2.6.4 Rectification of Stereo | mage Pairs

Image transformations are used to rectify stereo image pairs in stereovison
goplications! 2117129 This rectification process digns a pair of images so that the
epipolar linesin both images are horizontd; if images A and B form a stereo image
pair, then the epipolar lines indicate which pixesin A and B correspond with one
another. Thustheimage transformationsin stereovison are concerned with aigning
image pairs aong one dimenson (that is, dong the dimension denoted by the direction
of the epipolar lines) while the image transformations used in this thes's are concerned
with digning individua images dong two dimensions (that is, the dimensions denoted

by the spatial and dispersion axes).
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Chapter 3 : Implementation and Experimental Results
3.1 Implementation

The dgorithms described in this thesis for orthogondizing spectrd images and
for extracting one-dimensiona spectra from two-dimensond spectra images have
been implemented using the Interactive Data Language (IDL). IDL isan aray-based
language with built-in image processing functions and GUI development tool s that
facilitate the development of user-friendly image processing applications. More
information about IDL is available Online &

http:/Aww.ittvis.com/ProductServices/| DL .aspx.

3.2 Experimental Design

The correctness of DetermineSpatia (DS), DetermineDisperson2 (DD2), and
DetermineDispersion3 (DD3) cannot be evauated until after images have been
orthogondized using the parameters determined for the axes. However, in developing
DD2 and DD3, assumptions were made about the variations in the dopes of the
spectrd lines within asingle spectrd image. Experiments designed to test these
assumptions are described in Section 3.2.1. Section 3.2.2 describes tests used to
evauate the correctness of the image transformation agorithm. Section 3.2.3
describes a sensitivity analysis that was performed for the transformetion agorithm,
and Section 3.2.4 describes efficiency tests that were performed for the

orthogondization agorithm.



3.2.1 Testing Assumptions About Spectral Line Sope

DD2 assumesthat dl of the spectrd linesin the inputted spectrd image have
the same dope. Thisassumption was tested as follows: Three or four well-defined
gpectrd lines were manudly identified in each of seven low-resolution and five
medium-resolution spectral images, DD2 was used to cdculate the dope of each
selected spectrd line. If dl of the gpectrd lines identified in the low-resolution
spectral images have the same dope, then the assumption made by DD2 isvalid for
low-resolution images. Likewisg, if the spectrd linesidentified in the medium-
resolution spectral images dl have the same dope, then the assumptionisvalid for
medium-resolution images. DD3 assumes that any variaions in the dopes of the
spectrd lines within a angle image are amal enough that the orthogondization
transformation will not be sengtive to the difference. To test this assumption, aregion
containing & leest fifteen well- defined spectra lines was manudly identified in each
of seven low-resolution and five medium-resolution spectrd images. DD3 was used
to caculate the dope of each spectrd line in the selected regions; the implementation
of the adgorithm was modified for thistest o that the dope of each identified line in
the sdlected region would be reported to the user. The variation in spectra line dope
for both the low- and medium- resolution images was recorded and a sengitivity
andysiswas performed to determine the transformation’ s sengitivity to changesin
spectrd line dope (the procedure used to perform the sengtivity anadysisis described
in Section 3.2.3). If the variation in spectrd line dope for the low-resolution imagesis

within the insengtive range of the transformation, then the assumption made by DD3
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isvaid for low-resolution images. Likewisg, if the goectrd line dope variation seen
in the medium-resolution images is within the insengtive range of the transformation,
then the assumption made by DD3 isvalid for medium-resolution images. The results

for thesetests on DD2 and DD3 are reported in Section 3.3.1.

3.2.2 Correctness Testsfor the Image Transfor mation Algorithm

To test the correctness of the image transformation agorithm, both low- and
medium- resolution spectra were orthogondized using the transformation agorithm;
for al images, linear equations were used to describe the spatid and dispersion axes
both before and after the transformation. The angle between the axes of each image

was calculated both before and after the transformation according to the equation

((j;e B bl' a 9
&l+aifu+i) g

where q isthe angle between the axes, & isthe coefficient of the linear termin the

q=cos?

(3.0)

equation X = ayY + @, that describes the disperson axis, and b isthe coefficient to
thelinear termin the linear equation y = b,x +b, that describes the spatid axis. The
vaues of the coefficients 8y and b4 before the transformation were also compared
with the coefficients vaues after the transformation. If g is between 89.73° and
90.27°, and if |ay| and |b,| are reduced by 1-2 orders of magnitude, then the output of

the transformation agorithm is reasonable. The results of these angle cdculations and
parameter comparisons are presented in Section 3.3.2 for Transformation3; for these

tests, DD3 was used for axis determination both before and after the transformation.
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3.2.3 Sengitivity Analysis

The sensitivity of the transformation to changes in the parameters ag, b, and
b, was messured using a pair of medium resolution spectral images: Theimage of a
gandard gar and theimage of aplanet. To determine the transformation’ s sengtivity
to changesin ay, the following procedure was used: first the values of ag, bg, and by
were initidized to the correct values caculated for the pair of images usng DD3 and
DS. Keeping the vaues of by and b congtant, the value of ay was decreased until it
was visudly obvious that the pair of images, after being transformed, were not
properly orthogondized. Then vaues of ag were sdected from the range extending
from the correct value of a to avaue of ag for which the transformed image was
clearly not orthogonal; for each selected value of @, the angle between the dispersion
and spatid axeswas cdculated. To determine the dispersion axes of the imagesin
preparation for these angle calculations, DD3 was used in manual mode. After
returning A to its correct vaue, the same process was repegted, only thistime ag was
increased instead of being decreased. A similar procedure was used to determine the
sensitivity of the transformation to changesin by andin b;. The results of this
sengitivity anayss are given in Section 3.3.3 for Transformation3 and are used to
define ranges of vaues that @g, Do, and b4 can take on without adversdly affecting the

qudity of the trandformation. These results are dso used to eva uate the assumption

made by DD3 as described in Section 3.2.1.
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3.2.4 Efficiency Tests

Efficiency tests were performed for the implementations of three dgorithms:
DS, DD3, and Transformation3. These tests were performed using IDL’ s code
profiling procedure, profiler. For each dgorithm, the running time of the
implementation was averaged over five runs usng five different input images, these
running times do not include the time spent waiting for user 1/0. The execution times
for DS, DD3, and Transformation3 were added together to calculate the amount of
time required to process asingle spectrd image. If thisrunning timeislessthan 5
minutes, and if it is possble that the processing time will be less than 5 minutes after
user 1/0 timeis added, then the IDL implementation of the orthogonaization
agorithm meets the efficiency requirements described in Section 2.1.3. The results of

these tests are presented in Section 3.3.4.

3.3 Results
The following sections report the results of experiments described in Section

3.2.

3.3.1 Digpersion Axis Determination Tests
3.3.1.1 Results for DetermineDispersion2 (DD2)

Fgure 3-1 and Figure 3-2 report the results of tests designed to evaduate the
vaidity of the assumption made by DD2 — that dl of the spectrd lines in the inputted

spectrd image have the same dope.
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Figure 3-1. The relationship between spectral line slope and position along the image’s x-axis

as calculated for low-resolution spectra by DD2. The range of the x-axis indicates the region
in the images that contain easily identified spectral lines.
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Figure 3-2. The relationship between spectral line slope and position along the image’s x-axis

as calculated for medium-resolution spectra by DD2. The range of the x-axis indicates the

region in the images that contain easily identified spectral lines.
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The dopes plotted in Figure 3-1 vary from 0.0167 to 0.0208, arange of 0.0041, while
the dopes plotted in Figure 3-2 vary from 0.0684 to 0.0940, arange of 0.0256. This
variation in spectra line dope may bered or it may be dueto noise. If the varidionis
red, then the assumption made by DD2 isincorrect. However, if the variation is
smply due to noise, then DD2's use of asingle spectrd line to determine the
orientation of the digperson axis may result in inaccurate agorithm output: if the user
selects a gpectra line whose dopeis a one of the extreme ends of the dope range for
the image, the dope of the determined dispersion axis will not be characteridtic of the
image asawhole. Thistest, therefore, indicates that thereis aflaw in the design of

DD2.

3.3.1.2 Results for DetermineDispersion3(DD3)

Figure 3-3 and Figure 3-4 present the results of tests designed to evauate the
vaidity of the assumption made by DD3, namdly that any variationsin the dopes of
the spectrd lineswithin asingle spectrd image are smal enough that the

orthogondization transformation will not be sengtive to the difference.
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Figure 3-3. The relationship between spectral line slope and position along the image’s x-axis
as calculated for low-resolution spectra by DD3. The range of the x-axis indicates the region
in the images that contain easily identified spectral lines.
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Figure 3-4. The relationship between spectral line slope and position along the image’s x-axis
as calculated for medium resolution spectra by DD3. The range of the x-axis indicates the
region in the images that contain easily identified spectral lines.
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The spectrd line dopes shown in Fgure 3-3 vary from 0.0165 to 0.0232, arange of
0.0067. Here, the rangeis calculated over multiple images because the disperson axis
determined using one spectra image should be gpplicable to other images aswell;
therefore, the assumption made by DD3 must be tested across multiple images. These
results show that if the orthogondization transformetion is sengitive to variations of

less than 0.0067 in spectrd line dope, the transformation algorithm is senstive to the
dope variaions in low-resolution spectra and the assumption made by DD3 isinvaid
for low-resolution spectra. The spectral line dopes shown in Figure 3-4 appear in two
Separate “bands’: the lower band consigts of the dope vaues obtained from Image
89836.4 and the upper band consists of the dope va ues obtained from the remaining
images. The dope vauesin the lower band range from 0.0766 to 0.0836 while the
vaues in the upper band range from 0.0814 to 0.0890, yielding a range of 0.007 for
the lower band and arange of 0.0076 for the upper band. Thus, if the
orthogondization transformation is sengtive to variaions of less than 0.0076 in

spectrd line dope, the transformation agorithm is sengitive to the dope variationsin
medium-resol ution spectra, leaving the assumption made by DD3 invaid for medium-
resolution spectra. The sengitivity analys's results needed to determine the vdidity of

this assumption is presented in section 3.3.3.
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3.3.2: Orthogonalization Transformation Tests

Table 3-1. Angle calculation results for the transformation test on Transformation3. For each
star and planet spectral-image pair, Original g is the angle between the spatial and dispersion
axis before transformation, Transformed ( is the angle between the axes after

transformation, D(| the difference between Transformed ( and Original , and Error is the

difference between Transformed ( and 90°.

Star Planet Original g | Transformed Dq Error
Image Image (degrees) | g (degrees) | (degrees) | (degrees)
Number Number
90886 90880 90.89 90.04 -0.85 0.04
89848.1 89836 92.46 90.06 -2.40 0.06
89848.2 89836 93.21 90.06 -3.15 0.06
89848.3 89836 94.43 90.08 -4.35 0.08
89848.4 89836.4 95.60 90.11 -5.49 0.11
89848.5 89836 96.46 90.13 -6.33 0.13

Table 3-2. Axis parameter values before and after transformation for Transformation3. For
each star and planet spectral-image pair, values of a; and b, both before and after the
transformation are reported. The value of by was held constant at zero for these tests.

Star Planet Original | Trandormed | Original Transformed
Image | Image ao ao b1 b
Number | Number
90886 | 90880 | 18 102 | 62 10% |-27710%| 87 10°
89848.1 | 89836 | 78102 | 14°10°% |-3510%| -34 10%
89848.2 | 89836 | 78102 | 147103 |-227102| -38 10%
89848.3 | 89836 | 78102 | 14°10% |-11710°%| 33 10°
89848.4 | 898364 | 78102 | 14°10°% | 19°102 | 54 104
898485 | 89836 | 78102 | 14°10% | 347102 | 77 104

Table 3-1 showsthat for dl of the image pairs listed in the table, the angle between the

gpatid and digpersion axes after orthogondization is less than 0.14° away from 90°.

Theresultsin Table 3-2 indicate that the transformation brings the axis parameters a

and b; oneto two orders of magnitude closer to zero than they were before the

transformation; if the orthogondization procedure worked perfectly, & and by would

both be zero after the trandformation. Thislow error level coupled with the
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corresponding decreases in the magnitudes of &y and b; suggest thet the
Transformation3 works reasonably well in the case where both the spatial and
dispersion axes are described by alinear equation. No results are presented for the
case where the spatia axisis described by a quadratic equation because none of the
spectra images available for use in testing during this research were well described by

aquadratic spatid axis.

3.3.3: Senditivity Analysis
The following graphs show the results of a sengtivity andysis on each of the
parameters &y, bo, and b;. In these figures and in the discussion below, thetaisthe

angle between the spectral and disperson axes of a spectral image.
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Figure 3-5. The variation of theta as a function of the transformation parameter ay, where
theta is the angle between the spatial and dispersion axes of the spectral images used in the
sensitivity analysis. The dashed lines indicate, from top to bottom, angles of 90.27°, 90.0°,
and 89.73°.
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Figure 3-6. The variation of theta as a function of the transformation parameter by, where
theta is the angle between the spatial and dispersion axes of the spectral images used in the
sensitivity analysis. The dashed lines indicate, from top to bottom, angles of 90.27°, 90.0°,

and 89.73°.
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Figure 3-7. The variation of theta as a function of the transformation parameter b;, where
theta is the angle between the spatial and dispersion axes of the spectral images used in the
sensitivity analysis. The dashed lines indicate, from top to bottom, angles of 90.27°, 90.0°,

and 89.73°.

The god of this sengtivity analysis was to compute the range of vauesthat ap,

by, and by can take on without unacceptably reducing the quality of the transformetion.
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To carry out this cdculation, arange of theta-values was sdlected such that a spectra
image may be consdered satisfactorily orthogonaized if its theta value gppearsin that
range. Thefollowing reasoning was used to sdlect this range:
Table 3-1 in Section 3.3.2 indicates that 90.89° isthe smdlest angle thetafor a
spectral image that has not been orthogonaized; thus, for the data examined
here, 0.89° isthe smdlest deviation from 90° that we can expect before
orthogondization. If the image transformation can decrease this deviation to
30% of itsorigind vaue (that is, to 0.27°), then the departure from
perpendicularity will probably not be visudly detectable and the image will be
satifactorily orthogonaized. This maximum deviation of 0.27° means that
theta must be between 90.27° and 89.73° for the transformation to be correct.
For thisrange of theta-vaues, the dataiin Figure 3-5, Figure 3-6, and Figure 3-7
indicate that acceptable orthogondization occurs for & ranging from 0.076 to 0.084,
for by ranging from —0.0004 to 0.0002, and for b; ranging from 0.017 to 0.023. Thus
ao may vary with arange of 0.008 without reducing the transformation qudity to an
undesirable extent; when viewed in conjunction with the results from Section 3.3.1,
these sengitivity analysis results indicate that the assumption made by DD3 isvdid. In
addition, the sengitivity analys's results show that by may vary with arange of 0.0006
and by may vary with arange of 0.006 without unacceptably reducing the

trandformation qudlity.
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3.3.4: Efficiency Tests

Table 3-3. Running times for DetermineSpatial (DS), DetermineDispersion3 when run in
automatic mode (DD3A), DetermineDispersion3 when run in manual mode (DD3M), and
Transformation3 (T3). For each algorithm, the computation time (CPU time), the disk 1/O time,
and the sum of the computation and disk 1/0 times are reported. Each running time is an

average over five runs.

Algorithm Computation Time Disk 1/0 Time Computation +
(seconds) (seconds) Disk 1/0O Time
(seconds)
DS 3.20 0.35 3.55
DD3A 6.54 0.35 6.89
DD3M 2.51 0.35 2.86
T3 13.37 0.35 13.72

The datareported in Table 3-3 give the computation and disk /O times for

DetermineSpatia, DetermineDigperson3, and Transformation3. These results show

that 23.11 seconds of computation time are required to determine an image' s spatia

and disperson axes and then transform the image.  After adding the disk 1/0 time to

thistotal, the time required to process a Single spectra image increases to 24.16

seconds. Thisrunning timeis dearly less than five minutes; if the time spent waiting

for user 1/0 were added to thistotd, the running time could potentialy be under 5

minutes, depending on the amount of time that the user pends entering input. Thus,

the implementations of these dgorithms have met the efficiency requirements laid out

in Chapter 2.
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Chapter 4 : Conclusions and Future Work
4.1 Conclusions

The purpose of thisthesiswas to develop agorithms that properly
orthogonalize spectra images from the COMICS spectrometer. To be correctly
orthogondized, the spatial and digpersion axes of a spectrd image must be
perpendicular to one another, with the spatia axis being vertical and the disperson
axis being horizonta. The results presented in Section 3.3.2 demondtrate thet the
orthogondization agorithms described in this thesis produce correct output relative to
these criteria. In addition to the correctness requirements, the IDL implementations of
these algorithms must meet efficiency requirements so that the software may be used
to reduce large quantities of data quickly. These requirements state that it must be
possible to determine the spatid and digpersion axes of a angle image and then
transform the image o that the axes are perpendicular in less than 5 minutes. The
results presented in Section 3.3.4 indicate that the implementation used for thisthesis
meets these efficiency requirements. Thus, we have presented dgorithms that may be
used by astronomersto correctly and efficiently orthogonalize COMICS spectra
Images as part of the data reduction process.

In addition to the correctness and efficiency requirements just discussed, the
disperson axis determination agorithm used during orthogonaization should be
independent of wavelength cdibration. Thisthess has introduced a new dgorithm
(DetermineDispersion3d) that has this independence property. Independence alows the

orthogonalization and wavelength cdibration dgorithms to be implemented as



Separate modules in software, making the software easier to extend and maintain.
Since the digpersion axis determination agorithm presented in the COMICS manua
(DetermineDispersionl) does not have the independence property, thisthesis has
introduced a new technique for separating orthogondization from waveength

cdibration.

4.2 Future Work

Thereis still more work to be done on the research problem discussed in this
thess. Firdt, techniques must be developed for calibrating spectra after they have been
extracted from spectra images. Then, the data reduction dgorithms that have been
developed for COMICS must be generaized so that those agorithms can be used to
reduce data from other insruments including the Michelle spectrometer on the Gemini
North tel escope, the T-Recs spectrometer on the Gemini South telescope, and the
VISIR spectrometer on the Very Large Telescope. The procedures that should be used
to reduce data from these instruments differ according to the hardware characteristics
of each instrument. Generaizing the COMICS-specific agorithms so that they apply
to these varied ingruments involves modifying the agorithms so that the methods they
use support the other instruments' reduction procedures. In addition, new agorithms
will need to be developed to support reduction steps that are required for these

ingruments but are not required for COMICS.
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Appendix A: The Hough Transform

The Hough transform is a useful tool for identifying regular curves, such aslines
or cirdes, inanimage. This gppendix, however, will only discuss the detection of
draight lines. The basic idea underlying this line identification technique is as
follows: each non-zero pixd, or point, in an image may be part of one or more straight
linesin the image. Knowing that two or more points lie dong the same line provides
evidence that aline connecting those pointsis present in the image; the greater the
number of points, the greater the evidence for aline connecting those points 2!

Aswe collect evidence for lines, it will be ussful to describe the linesin
parametric, or normd, form:

X cosg+ysing=r (A1

In this equation, r is the perpendicular distance from the origin to theling, and q isthe
angle between r and the x-axis (see Figure A-1). Each line is described uniquely by an
(r, q) par usng this representation.

r

{0

X

Figure A-1. The parametric representation of a line.

The Hough transform collects evidence for lines by changing the representation of the
image: Instead of depicting theimage as a set of pointsin Cartesian space, the Hough
transform represents the image as a set of snusoidal curvesinthe (r, q) parameter
gpace. To caculate the image s representation in parameter space, the following
procedure is performed: For each point in the image asit is depicted in Cartesian
space, plot the (r, ) pairs that represent lines which include the point. After this
process is complete, each point in the Cartesian space is represented as asinusoid in
the parameter space (see Figure A-2). If two points lie on the same line in Cartesan
image space, then the corresponding sinusoids intersect in parameter space. Thus, the
number of sSnusoids that intersect at point (r, q) in the parameter space IS equd tothe
number of points that lie on the corresponding line in Cartesian space!/!*!
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@ (b)

Figure A-2. (a) A Cartesian-space image that consists of five points, and (b) the Hough
transform of that image.

The Hough transform isimplemented by dividing the parameter space into finite-
sized accumulator cdls. Each point (X, y) in the Cartesian image space is trandformed
into asnusoid in parameter space, and the accumulator cdllsthat lie dong this curve
areincremented. The vauesin the accumulator cells a the end of the transform
reved the number of sinusoids that intersect within each cdll.!!

Asjust described, the Hough transform may be used to represent animagein a
parameter pace thet facilitates the identification of straight lines. It isaso possibleto
take an image that is represented in the Hough parameter space and cdculate the
Image' s representation in Cartesan space. Thisinverse of the Hough transform is
known as the Hough backprojection and is computed by mapping each point in the
parameter spaceto alinein Cartesian space!®!
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Appendix B: Histogram Equalization

Histogram equdization is atechnique that can be used to enhance the contrast and
dynamic range of an image; here, the dynamic range isthe range of pixe vaues that
are found in theimage. This technique works by using a monaotonic, nonlinear
mapping function to change the vdues of the pixelsin the image based on the
structure of the image's histogran .

The following discussion is based on Gonzalez and Wood' s treatment of the
discrete form of histogram equalizatiort*!!. Consider agray-level imagel, and let L be
the number of gray levels. Let r be avariable that represents the gray levelsin |, and
letr,, O£k £L - 1, beavariablethat representsthe k' gray level. Further, let nbe
the total number of pixelsin | and let ny be the number of times that the K" gray level

appearsinl. Then,
n
pr(rk):Tk, k :0,1,...,|_- 1 (Bl)

is the probability of the K" gray level. The histogram of image | isthen aplot of pi(ry)
versus I, and the mapping function used for hisogram equdization is

k
_ o
sc=apin) (82
j=0

where s, is avariable that represents the k' gray level in the image produced by
higogram equdization. This mapping function is the cumulative distribution function
of the varigble r and will produce an output image whose dynamic range and contrast
are greater than those of | (see Figure B-1 for an example).
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Figure B-1. (a) An unequalized image along with (b) its histogram (in red) and cumulative
distribution function (in black). (c) The image from (a) after histogram equalization along with
(d) its histogram (in red) and cumulative distribution function (in black). These images and
their histograms were obtained online at http://en.wikipedia.org/wiki/Histogram_equalization.
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Appendix C: Thinning

Thinning is an operaion from mathematicad morphology that is often used to
erode linesin binary images until those lines are only one pixd thick. This operation
is defined in terms of the hit-and-miss transform described below!®).

The hit-and-miss trandform takes as its input a binary image | and a structuring
element S, and produces anew binary image as output. A dructuring dement is
usualy a square array with an odd number of entries that contains ones and zeros (see
Figure C-1 for an example); the contents of this element determine the effect thet the
hit-and-miss transform has on theimage |. The center pixd (colored in red Figure C-
1) of the structuring dement is cdled the origin. This hit-and-miss transform works as
follows: for each p pixd inimage |, the sructuring ement islaid over theimage so
that the origin of the structuring dement is adligned with pixel p. Then, the pixesin
the structuring e ement are compared with the underlying pixdsinimegel. If the
pixelsin the Sructuring dement exarilg meatch the pixelsin theimage, then pixe pis
set to 1; otherwise, pixel pissetto 0°°.

01010
0 | 110
1 (1)1

Figure C-1. A structuring element for the hit-and-miss transform. The center pixel (colored in

red) is the origin of the structuring element.

In some implementations of the hit-and-miss transform, such asthe
implementation provided by the Interactive Data Language (IDL), the transform takes
three inputs: abinary image |, ahit ructurd dement, and amiss sructura demen.
The hit sructural element istrandated over dl of the pixelsinimeage | asdescribed in
the last paragraph to produce anew binary image A. Then, the miss Structurd element
istrandated over dl of the pixelsin the complement of image | to produce a binary
image B. The hit-and-miss transform then outputs the image A UB .
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Now that we understand how the hit-or-miss transform works, we can define
thinning as follows

thin(l,H,M) =1 - hit_and_miss(l,H,M). (C.1)
Here, | isabinary image, H isahit structurd ement, M isamiss sructurd emert,

and the subtraction operation islogica subtraction defined by the
equationX - Y = X U@Y . Thisthinning operation is normally applied iteratively

until convergence (that is, until the procedure no longer causes the image to change)'®.

It is sometimes useful to gpply more than one pair of hit and miss ructurd
edementsto an image during thinning. In this case, a sequence of cdlsto the thinning
operation is performed where each call uses adifferent pair of sructural eements; the
output of one cal to the thinning operation is used as the input for the next cal. This
sequence of thinning operationsiis usually applied iteratively until convergence®.
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Appendix D: Bilinear Interpolation

Bilinear interpolation is a technique that may be used during geometric
transformations, such as the image transformations discussed in section 4.3.3 of this
thess. Thistechnique is used to caculate the values that should be assigned to each
pixel in atransformed image!**!

Suppose we have a geometric transformation described by the equations

A

x=r(x,y)
D.1
§=9x,y) -1

where (%, ) are the coordinates of the point in the originel image whose value should
be given to the point at the coordinates (x : y) in the transformed image, and where
r(x,y) and gx,y) arethe transformetion functions. The calculated coordinates X and
y may have nonrinteger vaues, while dl of the pixelsin the origind image have
integer-vaued coordinates. Therefore, interpolation must be used to compute the
value that should be assigned to pixel (x, y) in the transformed image*"

For non-integer coordinates (X, ¥), bilinear interpolation uses the known pixel
values of the four nearest neighbors to calculate the vaue at (%, ), denoted v(,§),in

the origind image (see Figure D-1). Thesefour nearest neighbors dl have integer-
vaued coordinates. The equation

v(X,9)=ax + by +cky +d (D.2

isused to perform the interpolaion. Here, the coefficientsa, b, ¢, and d are
determined using the four nearest neighbors. Once these coefficients have been

computed, (X, V) is calculated using equation (D.2), and the resuilting valueis
assigned to pixel (x, y) in the transformed image™!

-

™ ® (%,9)

° nearest
neighbors

Figure D-1. A point (f(, 9) with non-integer coordinates and the four nearest neighbors that
will be used to compute the value at (%, ).
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