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ABSTRACT 

 
An abstract of the dissertation of Jie Huang for the Doctor of Philosophy in Computer 

Science presented October 9, 2006. 

 

Title:  Efficient Support for Application-Specific Video Adaptation 

 

As video applications become more diverse, video must be adapted in different 

ways to meet the requirements of different applications when there are insufficient 

resources.  In this dissertation, we address two sorts of requirements that cannot be 

addressed by existing video adaptation technologies: (i) accommodating large 

variations in resolution and (ii) collecting video effectively in a multi-hop sensor 

network.  In addition, we also address requirements for implementing video adaptation 

in a sensor network.  

Accommodating large variation in resolution is required by the existence of 

display devices with widely disparate screen sizes.  Existing resolution adaptation 

technologies usually aim at adapting video between two resolutions.  We examine the 

limitations of these technologies that prevent them from supporting a large number of 

resolutions efficiently. We propose several hybrid schemes and study their 

performance. Among these hybrid schemes, Bonneville, a framework that combines 
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multiple encodings with limited scalability, can make good trade-offs when organizing 

compressed video to support a wide range of resolutions.  

Video collection in a sensor network requires adapting video in a multi-hop store-

and-forward network and with multiple video sources.  This task cannot be supported 

effectively by existing adaptation technologies, which are designed for real-time 

streaming applications from a single source over IP-style end-to-end connections.  We 

propose to adapt video in the network instead of at the network edge.  We also propose 

a framework, Steens, to compose adaptation mechanisms on multiple nodes.  We 

design two signaling protocols in Steens to coordinate multiple nodes.  Our 

simulations show that in-network adaptation can use buffer space on intermediate 

nodes for adaptation and achieve better video quality than conventional network-edge 

adaptation.  Our simulations also show that explicit collaboration among multiple 

nodes through signaling can improve video quality, waste less bandwidth, and 

maintain bandwidth-sharing fairness.  

The implementation of video adaptation in a sensor network requires system 

support for programmability, retaskability, and high performance.  We propose 

Cascades, a component-based framework, to provide the required support.  A 

prototype implementation of Steens in this framework shows that the performance 

overhead is less than 5% compared to a hard-coded C implementation.  
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CHAPTER 1  
 

INTRODUCTION 

The advent of digital video compression algorithms and standards [26][49] in the 

early 1990s has fostered the development of many video applications such as video 

conferencing and video on demand.  For many of these applications, video adaptation 

is an indispensable tool to adjust their resource requirements to match the underlying 

resources supporting them.  The goal of video adaptation, of course, is to adapt video 

to lower resource consumption while maximizing video quality.  What makes this 

difficult is that the meaning of “quality” changes from one user to another, and from 

one application to another. 

In this dissertation, we address how to adapt video to maximize video quality for 

different applications.  Different applications have different resource constraints and 

different preferences on video quality. Therefore, they have different requirements on 

video adaptation technologies. As video applications are becoming more diverse, 

video adaptation must be specialized according to application requirements to 

maximize the video quality.  
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1.1 Motivation 

Handling digital video can be burdensome for many computers or networks, 

especially as video resolutions continue to increase.  For example, the H.261 video 

compression algorithms require approximately 968 million operations per second to 

compress CIF (358×288) resolution video at 30 frames per second (fps)[4].  This is 

with highly-optimized motion-estimation algorithms and fast DCT algorithms in place.  

Despite the large compression ratios of video compression algorithms, the data rate of 

a compressed video stream can still be several megabits per second (Mbps).  Not only 

is the handling of digital video resource demanding, but the resource requirements are 

also bursty over time because of the temporal compression used between frames.  Due 

to the high data rate and burstiness in resource requirements, it is often not feasible or 

cost-effective to provide resource guarantees for digital video across all resources. 

Fortunately, many video applications can work without complete resource 

guarantees because they can tolerant some quality degradation.  Video adaptation is 

the key to make these applications work when there are insufficient resources.  It 

intelligently adapts video to lower resource consumption to meet resource constraints 

while providing the highest quality video possible (as defined by the user).    

There are many ways to adapt a video stream; for example, either reducing the 

frame rate or downscaling the video resolution can reduce the bandwidth requirements 

needed to support it.  The choice, however, is typically application-dependent.  In the 

above example, frame rate reduction may work for video with little motion but not for 
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motion-intensive video.  Conversely, resolution downscaling might be preferred by 

users with a palm-size display device but not by users watching the video on a larger 

PC display.  Obviously, video adaptation needs the input from applications to 

maximize the video quality to a user’s particular display and preferences.  

Most existing video adaptation technologies are focused on providing continuous 

video for best-effort streaming applications such as video conferencing, webcasting, 

distance education, video surveillance, video on demand, and so on.  The goal of these 

adaptation technologies is (i) to tailor video to fit available bandwidth and (ii) to 

deliver smooth video over bursty networks for uninterrupted playback.  To tailor video 

to fit available bandwidth, the adaptation technologies use bit-rate reduction 

techniques that reduce the frame rate and/or lower the spatial fidelity.  To deliver 

smoother quality video over bursty networks, they usually employ some form of 

buffering, in which larger buffers typically provide better video quality at the expense 

of latency.  The buffer smoothes both network bandwidth fluctuations and the data 

rate fluctuations of compressed video.  

As a variety of new video devices are emerging, video applications are becoming 

more diverse and video adaptation systems need to deal with more diversified 

application requirements.  We will now describe two emerging application scenarios 

that have different requirements from existing applications and need support beyond 

existing adaptation technologies.   
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Scenario 1: Streaming high-resolution video to devices with widely disparate 

resolutions.  In this scenario, a video server hosts a popular high-resolution video clip.  

The high-resolution video clip is generated either by an HD camcorder (1920×1080) 

or by stitching together video from multiple cameras (e.g. panoramic video) [8] [24].  

To view this video stream, users can choose from a variety of devices covering a wide 

range of display sizes such as 96×64 pixels on a cell phone, 240×160 on a Palm device, 

320×240 on a video iPod, 640×480 on an iPAQ, 1024×768 on a laptop, 1920×1080 on 

a HDTV, 2048×1536 on a PC monitor, or 2560×1600 on an Apple Cinema Display.  

To stream high-resolution video to a device with a small display, video adaptation 

technologies should downscale the video resolution to the display size because 

sending high-resolution video to the device is not as bandwidth-efficient as sending at 

the display resolution.  Furthermore, it may cause significant processing problems on 

such devices.  In this scenario, we are interested in the adaptation of video to a variety 

of display characteristics, where the range of display resolution variation may be 

greater than an order of magnitude. 

Scenario 2: Collecting video in a sensor network.  Oceanographers at Oregon 

State University would like to place a video camera every ¼ mile along the Oregon 

coast in order to observe near-shore phenomena [34].  This can be made possible by a 

class of new video capturing devices—video sensors.  These video sensor nodes can 

capture, store, and process video and harvest energy from the environment for 

computation and networking.  Furthermore, they can cooperate in order to pass data 

along the coast through other nodes to sink nodes with more power.  This is a typical 
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application of a video sensor network, which collects video from multiple sensors and 

sends it through an ad hoc, multi-hop, store-and-forward network to a sink.  While 

video collection does not have latency requirements as stringent as video streaming 

applications, it places four new requirements on adaptation technologies.  First, it 

requires adaptation technologies to maximize video quality in an arbitrarily long time 

frame.  Second, it requires adaptation technologies to work over multi-hop networks 

without end-to-end connectivity.  Third, it requires adaptation technologies to ensure 

fair sharing of networking resources among multiple video sources, including both 

buffer and bandwidth resources.  Finally, it requires adaptation technologies to adapt 

video based on video content or even to filter out unwanted video segments.  For 

example, oceanographers might be interested in high quality video during high tide; in 

habitat monitoring, biologists might need only those video clips with a particular 

species in them.     

These two scenarios show that while dealing with non-ideal network conditions is 

still a major responsibility of video adaptation, new application scenarios put new 

requirements on how it is accomplished.  Existing technologies are still useful, but we 

need to further explore the adaptation space and to tailor adaptation technologies 

around these new application requirements. 

1.2 Challenges 

In this subsection, we discuss several challenges in meeting the requirements of 

accommodating large variations in resolution and supporting video collection in 
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video-based sensor networks.  Our discussion is centered around two parts of a video 

streaming system.  The adaptation mechanism is responsible for determining when 

and how much video to send across the network.  It is also the mechanism that is 

responsible for determining the bandwidth for the video stream to match.  The 

adaptation mechanism works in concert with the tailoring mechanism.  The tailoring 

mechanism works in one of two ways.  It either provides a video stream to the 

adaptation mechanism that is formatted in such a way that the adaptation mechanism 

can adapt the stream through dropping of marked data, or the tailoring mechanism 

reformats the video stream to a target rate based upon feedback received from the 

adaptation mechanism.   A more detailed description of these mechanisms will be 

provided in Section 2.2.  

1.2.1 Challenges in Accommodating Large Variation in Resolution 

To display high-resolution video on small display devices, the video needs to be 

cropped to a smaller size and/or downscaled to a smaller resolution.  Usually video is 

compressed; making changes to compressed video requires tailoring mechanisms such 

as re-encoding or transcoding.  Re-encoding techniques decompress the stream into 

the pixel domain and then encode it again with new parameters.  Transcoding partially 

decompresses the stream, manipulates the stream in the compressed domain in a way 

that approximates operations in the pixel domain, and re-encodes it.  A summary of 

existing tailoring mechanisms will be presented in Chapter 2.  

Accommodating large variation in resolution requires the tailoring mechanisms to 

support fine-grained region-of-interest (ROI) adaptation and resolution adaptation 
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over a wide range.  Providing a large number of sub-regions and resolutions is 

challenging because the number of resolutions and the range of resolutions make 

tailoring difficult.  For resolution adaptation, full re-encoding may be feasible for 

generating one new resolution, but encoding many resolutions at the same time is 

impractical even for modern computers.  Fast transcoding can reduce the resolution in 

the compressed domain by up to a factor of eight but cannot downscale beyond that.  

We will describe the limitation of transcoding in more detail in Chapter 3.   

In this work, we focus on supporting fine-grained resolution adaptation over a 

wide range of resolutions.  We study how to organize and represent high-resolution 

video so it can be tailored to multiple resolutions efficiently. 

1.2.2 Challenges in Supporting Video Collection 

With the tailoring mechanism, we can tailor video to many different resolutions or 

target bit-rates.  Still, we need an adaptation mechanism to determine the target bit-

rates and a sending schedule so the resources can be utilized efficiently while 

maximizing the video quality.  It is more challenging, though, to make the right 

decisions for video collection in a sensor network than in an IP-style network because 

there is no end-to-end connectivity in a sensor network and there are multiple video 

sources in a video collection application.   

In an IP-style network, there is an end-to-end connection between a sender and a 

receiver, and the adaptation mechanisms make adaptation decisions according to the 

conditions of that connection.  In a sensor network, the route from a video source to 
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the sink usually consists of multiple store-and-forward hops.  This results in adaptation 

decisions that tend to be made based-upon the first hop.  However, this is insufficient 

because the tailored video stream may not fit into the network bandwidth closer to the 

sink.  The adaptation mechanisms need to consider the network conditions on all hops 

from the source to the sink without requiring end-to-end coordination.  In addition, 

adaptation mechanisms also need to consider other video sources and not consume 

more than their fair share of resources.  Making adaptation decisions based upon 

information from many sensor nodes that are not directly connected is a challenge.  

Another challenge is implementing video adaptation within a sensor network with 

high performance and at the same time with sufficient flexibility to cope with the 

dynamic application requirements.  High performance is important for video sensor 

applications because of the constrained resources in sensor network platforms and the 

large resource requirement for handling video.  Meanwhile, flexibility is required by 

most sensor applications because application requirements often change after 

obtaining initial results.  In addition, a sensor network is usually a distributed, 

embedded, and heterogeneous system; providing high performance and flexibility in 

such a system is always a challenge.  

In this work, we study how to construct adaptation mechanisms that can collect 

the most useful video in a multi-hop store-and-forward network with multiple video 

sources.  We also study the requirements of implementing video adaptation in a video 

sensor network and look for a framework to support the implementation.  
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1.3 Thesis Statements 

In this dissertation, we address three video adaptation problems for emerging 

video application scenarios that are becoming feasible with the advent of new video 

capturing and display technologies. 

Problem 1: What is the right tailoring mechanism to efficiently support fine-

grained resolution adaptation over a wide-range of resolutions? 

Thesis Statement 1: A combination of multi-encoding and scalable 

encoding/transcoding is necessary to tailor a video stream to multiple resolutions 

efficiently. 

Problem 2:  How can an adaptation mechanism efficiently collect video through a 

multi-hop store-and-forward sensor network to maximize the utility of video collected 

at the sink and minimize bandwidth wastage? 

Thesis Statement 2: In-network adaptation and collaboration among store-and-

forward sensor nodes are necessary to maximize the utility of video collected at the 

sink while minimizing wasted bandwidth. 

Problems 3:  How can we provide programmability, retaskability, and high 

performance for the implementation of video adaptation in sensor networks? 

Thesis Statement 3: A component-based framework can make it easy to 

implement and retask video adaptation in sensor networks while retaining high 

performance.  
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1.4 Dissertation Outline 

The rest of this dissertation is organized as follows.   

Chapter 2 presents the necessary background for our work.  Because our work is 

on compressed video and the basic concepts of video compression are important to 

understand it, we start with a short tutorial of video compression, using MPEG 

compression as an example.  We also briefly review the more recent H.264 video 

compression standard.  We then survey existing video adaptation technologies and 

senor networking technologies.  

Chapter 3 deals with the problem of how to organize and represent high-

resolution video so it can be tailored to multiple resolutions efficiently.  We first 

describe existing transcoding and scalable encoding algorithms that support multi-

resolution video.  We then present Bonneville, a hybrid architecture to supports fine-

grained video adaptation over a wide range of resolutions.  Finally, we discuss the 

experimental setup and results.  

In Chapter 4, we focus on video collection in ad hoc multi-hop store-and-forward 

sensor networks.  We propose Steens, a multi-hop buffering and priority-based 

adaptation mechanism, for collecting video in a sensor network.  We present the three 

components of Steens: prioritization, buffer management, and coordinating protocols.  

Finally, we demonstrate the advantages of Steens over traditional adaptation 

mechanisms through trace-driven simulations.  
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Chapter 5 discusses the problem of implementing video adaptation, especially 

content-based adaptation and adaptive collection, in a sensor network.  First, we 

describe the requirements of in-network processing.  We then discuss implementation 

technologies in scalar sensor networks and why they cannot be applied to video 

processing.  We present Cascades, a component-based framework based on the 

scripting language Python to ease the implementation of video adaptation, and how it 

meets those requirements of in-network video processing.   

In Chapter 6, we review the contributions of this dissertation and summarize key 

findings.  Finally, we present future directions for research in this area.   
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CHAPTER 2  
 

BACKGROUND AND RELATED WORK 

In this chapter, we present the necessary background for this dissertation.  We 

will describe (i) basic concepts in video compression, (ii) existing video adaptation 

technologies and their limitations, and (iii) recent developments in sensor networks 

and video sensors.  

2.1 Video Compression 

To help understand the motivation and details of our work, we present an 

overview of Discrete Cosine Transform (DCT) based video compression technologies.  

DCT-based compression has become extremely popular for imaging and video 

because of its high fidelity image reconstruction with high compression ratios [77].  

We will use MPEG video as an example because it is the most commonly used video 

compression standard.  We will also describe some of the new features in H.264, 

another popular DCT-based compression algorithm.   

2.1.1 MPEG Overview 

In this short introduction, we focus on the aspects of MPEG compression 

necessary to understand this work.  A more detailed introduction to MPEG video is 

given by Gall [26]. 
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There are two ways to encode individual frames in MPEG: intra-coding and inter-

coding.  Intra-coded frames are similar to JPEG images; they are encoded 

independently of other frames.  In contrast, inter-coded frames are encoded by 

exploiting temporal redundancy among nearby frames.   

The major steps for intra-coding are shown in Figure 2-1.   

To prepare for compression, each image is divided into macroblocks of 16×16 

pixels.  In each macroblock, a conversion from the red, green, blue (RGB) color space 

into the luminance, chrominance, chrominance (YUV) color space is performed.  This 

transformation allows the more important luminance component (Y) to be separated 

from the two chrominance channels (U and V).  Since human eyes are less sensitive to 

chrominance channels, each 16×16-pixel chrominance block is typically sub-sampled 

into an 8×8 block whereas the luminance component is divided into four 8×8 blocks.  

This process is shown in Figure 2-2.   

Next, the six 8×8 blocks are transformed into the frequency domain using discrete 

cosine transform (DCT).  This transformation moves the lower frequency components 

DCT 
Entropy 

encoding 

YUV 

Conversion 

RGB 

images 
Compressed 

video 

Figure 2-1  Intra-coding.  This figure shows the four main steps involved in 

compressing a video frame. 1) Conversion of RGB color space to YUV color space, 

2) Transformation into frequency domain via discrete cosine transform (DCT), 3) 

Quantization of DCT coefficients, and 4) Entropy encoding: Run Length Encoding 

(RLE) and Variable Length Coding (VLC). 

Quantization 
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into the upper left corner of the block while moving the higher frequency components 

into the lower right corner.  Thus, the average or the DC level of each block is in the 

upper left corner.  The other 63 coefficients are called the AC coefficients.  These 64 

DCT coefficients are the values manipulated by many transcoding algorithms to alter 

the compressed video quality and/or the compressed stream size.  In the quantization 

phase, the coefficients are quantized into discrete levels, typically giving coarser 

distinctions for higher frequency components.  This is considered “lossy” and the 

quantization step size directly influences the compression ratio and the compressed 

video quality.  Figure 2-3 intuitively shows how the combination of DCT and 

quantization reduces the number of coefficients to be encoded.  There are many zeros 

at the lower right corner after quantization because the DCT coefficients are small and 

the quantization steps are large at the lower right corner. 

Finally, the run-length encoded (RLE) coefficients for each block are compressed 

with variable length coding (VLC), a variant of Huffman encoding. 

16x16-pixels 

B 
G 

R    Y    U    V    Y   U  V 

Y = (0.257*R) + (0.504*G) + (0.098*B) + 16 

V = (0.439*R) - (0.368*G) - (0.071*B) + 128 

U = -(0.148*R) - (0.291*G) + (0.439*B) + 128 

 

Downsample UV 

six 8×8 blocks Conversion 

Figure 2-2 YUV conversion and downsampling 
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For inter-coded frames (sometimes referred as predictive-coded frames), there is 

an additional motion estimation (ME) step between the YUV conversion and the DCT.  

Motion estimation predicts a macroblock of pixel values using a motion-compensated 

macroblock from a reference frame.  The location difference between the two 

macroblocks is called the motion vector; and the difference between the two 

macroblocks is called the prediction error.  If the two macroblocks are similar enough 

and the prediction error for a block requires less bytes than the original block, the 

motion vector and the prediction error are encoded instead of the original block. 

1288 201 53 -165 26 -25 5 8 
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DCT 

Quantization 

Figure 2-3  A DCT and quantization example  
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Figure 2-4 shows an example of a good match for motion estimation.  Two 

consecutive frames are shown.  The block being encoded is part of the left tail light of 

the car, shown in a black square in the right frame. The left tail light in the left frame 

is used as a reference, with the block being referenced shown in another black square. 

The Y components for both blocks and their differences are displayed below.  The 

difference is so small that it can be skipped and only the motion vector is needed to 

encode the original block.  That is, upon decompression, the decompressor simply 

-3 0 0 -3 0 -5 0 0 

0 0 0 -4 1 1 2 0 

1 0 0 -2 0 0 0 0 

0 0 0 0 0 -9 0 -7 

2 0 0 0 6 0 0 0 

-4 0 -2 0 0 0 0 8 

-5 0 0 5 0 0 0 0 

-10 15 -18 3 6 0 10 12 

 

172 171 166 140 114 166 225 237 

177 204 201 213 147 103 164 215 

207 205 211 201 177 104 104 166 

221 252 251 214 170 072 057 122 

226 260 304 177 141 073 066 110 

170 213 213 157 120 066 074 106 

135 144 132 135 076 105 115 154 

147 146 151 150 154 161 170 210 

 

169 171 166 137 114 161 225 237 

177 204 201 209 148 104 166 215 

208 205 211 199 177 104 104 166 

221 252 251 214 170 063 057 115 

228 260 304 177 147 073 066 110 

166 213 211 157 120 066 074 114 

130 144 132 140 076 105 115 154 

137 161 133 153 160 161 180 222 

 

Motion Vector 

Prediction errors 

Figure 2-4 Motion Estimation 
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needs to take a part of the reference frame (the reference block) and move it.  Motion 

estimation is very important to video compression, but the process of finding a good 

match with the least prediction error can be very computationally demanding.  A 

decoder (inverse quantization plus Inverse DCT) is included in the encoder, as shown 

in Figure 2-5, reflecting the actual reference frame the decoder will use.  

Inter-coding introduces dependencies among compressed frames.  For MPEG, the 

dependency relationship classifies compressed frames into three types: I frames, P 

frames, and B frames.  I frames in MPEG are those frames within which all 

macroblocks are intra-encoded; their decoding does not depend on other frames.  P 

frames and B frames have inter-encoded macroblocks; consequently they cannot be 

decoded before their reference frames have been decoded.  There are two major 

differences between P frames and B frames. First, P frames are forward-predictive-

coded with respect to a past frame while B-frames are bidirectionally-predictive-coded,  

requiring a preceding and a following frame. Second, a P frame can be a reference 

frame, for another P frame or a B frame, while a B frame cannot.  When frame 

Prediction 

Prediction 

error 

Input 

video 

Motion Vector 

DCT Quantization 

Motion 

Estimation 

Motion 

Compensation 

Frame Store IDCT 

Inverse 

Quantization 

RLE/VLC 

Figure 2-5 Inter encoding 
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dropping is used for video adaptation, the dependency relationship defines a partial 

order for drift-free dropping, that is, a reference frame should not be dropped before 

the frames that depend on it.  

Most major block-based video compression standards, including the H.26× series 

and the MPEG series, follow the compression steps described above, with minor 

differences in details such as UV subsampling or entropy encoding.     

2.1.2 H.264 Overview 

H.264 is a joint MPEG and ITU-T video encoding standard [82].  It is also called 

MPEG-4 part 10 Advanced Video Coding (AVC).  It is reported to have 50% bit-rate 

savings compared to H.263+ or MPEG-4 Advanced Simple Profile (ASP).  

While the overall structure of an H.264 encoder is similar to that of other DCT-

based algorithms, there are many improvements in the details.  First, it allows finer-

grained predictive coding.  Motion estimation can be done on any 4×4, 8×8, 4×8, 8×4, 

16×8, and 8×16 blocks in a macroblock.  Second, it allows more than one reference 

frame, which includes B frames.  Third, it adds intra spatial prediction in which a 

reference block is in the same frame as the block being predicted.  Finally, the primary 

transform block size in H.264 is 4×4 instead of 8×8 as in most video coding standards.  

In summary, these changes decrease the unit size for prediction, extend the range of 

reference frames, and expand the modes for searching so the precision of prediction is 

improved.  The major advantage is improved compression ratios.  The disadvantages 
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are the extremely high computational cost for motion estimation and increased 

memory space for storing extra reference frames at the encoder and the decoder. 

2.2 Video Adaptation 

We will present the existing video adaptation technologies in two parts: the 

tailoring mechanism to provide a required video stream and the adaptation mechanism 

to determine what is required according to network conditions.  

2.2.1 Tailoring Mechanisms 

In this subsection, we first summarize tailoring mechanisms in general.  We will 

then discuss tailoring mechanism for different quality dimensions. 

2.2.1.1 A taxonomy of tailoring mechanisms  

In general, the goal of tailoring mechanisms is to make a compressed video 

stream fit within the bit-rate allowed by the available network bandwidth and the 

receiver resource capability.  The intuitive way to make a compressed stream fit a 

target bit-rate is to alter the video such as dropping every other frame and/or adjusting 

encoding parameters such as the quantization step.   

Different types of video applications require different tailoring mechanisms.  

Tailoring mechanisms for live video applications are pretty straightforward because 

video is encoded at transmission time and the target bit-rate is known while the video 

is still uncompressed; the raw video can be altered and encoding parameters can be set 

accordingly.  In contrast, tailoring mechanisms for stored video applications are more 
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complicated because stored video is usually already in a compressed format.  We will 

focus primarily on tailoring already compressed video in this dissertation. 

We divide tailoring mechanisms for stored video into several categories, as shown 

in Table 2-1, according to how the video is stored: (i) in a non-scalable stream, (ii) in 

multiple non-scalable streams, or (iii) in a scalable stream.   

If the video is stored in one non-scalable stream, two types of tailoring 

mechanisms are available.  They are re-encoding and transcoding.  Re-encoding fully 

decodes the compressed video, alters the decompressed video in the pixel domain, and 

Video 

representation 
A non-scalable stream 

Multiple non-

scalable streams 
A scalable stream 

Mechanisms Re-encoding Transcoding Multi-encoding Scalable encoding 

How to tailor 

Change encoding parameters 
Switch between 

streams 
Add or drop layers 

Tailor raw video 
Tailor video in the 

DCT domain 

Advantages 

• Low storage cost 

• Low computational cost at encoding time 

• Low computational cost at transmission 

time 

• Fine-grained  

• May provide good 

trade-offs between 

computational cost 

and compression 

efficiency 

• Good compression 

efficiency 

• Good bandwidth 

efficiency for multi-

casting 

Disadvantages 

• High 

computational 

cost at 

transmission time 

• Special algorithms 

required  

• Limited working 

range  

• Coarse-grained 

• High computational cost at encoding time 

• High storage cost 

• Special  algorithms 

required 

• Compression 

efficiency overhead 

 

Table 2-1 A taxonomy of tailoring mechanisms for stored video 
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re-encodes the altered video with appropriate encoding parameters.  Re-encoding can 

tune the video bit rate to precisely match the network bandwidth; however, it requires 

a lot of computation at transmission time.  Transcoding tries to reduce the 

computational cost of re-encoding by partially decoding a video stream, altering the 

video in the DCT domain, and partially re-encoding it.  Altering the video in the DCT 

domain is not as straightforward as altering video in the pixel domain and requires 

specially designed algorithms.  These algorithms usually lower the compression 

efficiency and have a very limited working range.  A comprehensive survey of 

existing transcoding techniques is presented in [76].   

If the video is stored in multiple non-scalable streams, tailoring is accomplished 

by switching between encoded streams.  We refer to such an approach as multi-

encoding in this dissertation.  Multi-encoding spends a lot of time in encoding and a 

lot of space to store the compressed streams.  Due to the limitation of encoding time 

and storage capacity, usually only a few such encodings are used at a given time.  

However, for each supported bit-rate, multi-encoding often has better compression 

efficiency than other mechanisms.  Multi-encoding is currently being used by the 

IntelliStream system [3] from Windows Media and the SureStreams system [12] from 

Real Networks. 

If the video is stored as a scalable stream, tailoring is accomplished through 

adding or dropping layers in the scalable stream.  A scalable stream is generated by 

algorithms that structure a compressed stream into a base layer and several dependent 
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enhancement layers, which we refer to as scalable encoding.  Scalable encoding 

usually has worse compression efficiency than non-scalable encoding; moreover, 

existing implementations support only two target rates.  However, when more than 

one target bit-rate is required, scalable encoding allows the base layer to be shared by 

those targets so it can improve bandwidth efficiency if the underlying network 

provides group networking protocols such as multicast.  Scalable encoding is included 

in many video compression standards such as MPEG-2.  

2.2.1.2 Adaptation dimensions and tailoring mechanisms 

In the previous subsection, we discussed ways in which a compressed video 

stream can be tailored to fit a target bit-rate.  Changing the bit-rate of a video stream 

inevitably affects the video quality in one or more dimensions.  The most common 

quality dimension is the actual visual quality of the individual video frames, which is 

commonly referred to as spatial fidelity and can be altered through changes in 

quantization.  In addition, the frame rate, the spatial resolution, the cropped region, 

and the color fidelity can also be affected.  For some applications, changing the bit-

rate of a video stream can also be accomplished by selectively encoding part of the 

video because the quality or the utility of video depends on the content of the video.  

For example, for security surveillance applications, video that catches suspicious 

activities or subjects is useful; for habitat monitoring, video containing research 

subjects is useful.  In summary, video can be tailored in a number.  Below we briefly 

discuss techniques for tailoring video in different dimensions.  
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For re-encoding and multi-encoding, video is altered in the pixel domain. Altering 

video in the pixel domain is straightforward because there are no dependencies among 

frames and there are many algorithms available.  For example, changing the frame rate 

requires only that frames be dropped before encoding; resolution scaling can be done 

through pixel sub-sampling, pixel interpolation, and filtering; algorithms for object 

identification and feature extraction can be used for content-based tailoring or filtering.  

Transcoding requires altering video in the DCT domain. While operations in the 

DCT domain can approximate operations in the pixel domain, they introduce drift 

errors in predicative-encoded frames because the reference used during decoding may 

be altered and be different from the reference frame used during encoding.  

Algorithms for changing the spatial fidelity, the resolution, or the frame rate in the 

DCT domain have been proposed.  Changing the spatial fidelity level in the DCT 

domain is relatively easy since it can be accomplished by changing the quantization 

parameters; however, to achieve good compression efficiency, it is necessary to re-

calculate the prediction errors in the DCT domain based on the altered reference to 

reduce the drift errors [76] .  Changing the resolution is not that straightforward for 

block-based compression because the blocks are different at a new resolution, which 

means the old motion vectors and the old DCT coefficients are typically invalid.  

Algorithms for constructing new motion vectors and new DCT coefficients from the 

old ones in the compressed domain have been studied [2][46][47][88]. They are often 

designed to support downcaling to one lower resolution, which makes these 

algorithms unsuitable for supporting wide-range fine-grained multi-resolution video.  
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Changing the frame rate can be done by simply dropping frames along the dependency 

chain in that remaining frames are likely to be distributed unevenly along the time line.  

If a smooth frame rate is preferred, the dropped frames need to be evenly distributed, 

which breaks the old dependency and introduce drift errors.  In this case, motion 

vectors may need to be re-estimated and prediction errors re-calculated in the DCT 

domain to reduce drift errors. 

Scalable encoding algorithms in different dimensions have been studied.  

Algorithms for spatial fidelity scalability (usually called SNR scalability in research 

literature of multimedia) and for temporal scalability (supporting multiple frame rates) 

are mostly used and are included in video standards such as H.263, MPEG-2, and 

MPEG-4.  H.263 and MPEG-2 also include algorithms for spatial scalability 

(supporting multiple resolutions).  Dugad and Ahuja have proposed another spatial 

scalability scheme based on non-scalable encoders; this is referred as Dugad’s scheme 

in this dissertation.  Isolated regions in H.264 [81][82] and selective enhancement for 

MPEG-4 [69] can be used to encode ROIs; these schemes can be combined with 

multi-resolution video to better accommodate large variation in resolution.  The 

scalability in a compressed stream is usually coarse, with one base layer and only one 

enhancement layer.  One exception is the Fine Granularity Scalable (FGS) coding and 

Progressive Fine Granularity Scalable (PFGS) coding in MPEG-4[48][84], which 

provide fine-grained adaptation in the spatial fidelity dimension.   
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2.2.2 Adaptation Mechanisms 

Adaptation mechanisms are coupled to the tailoring mechanisms being used.  For 

re-encoding and transcoding, adaptation mechanisms decide when and how to change 

the video encoding parameters [42].  For multi-encoding, they decide when to switch 

and which stream to switch to [12][72][73].  For scalable encoding, they decide when 

to drop or add layers [17][54][64].  Because lower layers are always needed by higher 

layers, the decision of how many layers to send can be postponed until lower layers 

have been sent and a better estimation of network conditions becomes available.  Still 

the decision needs to be made within a time window because the sending of higher 

layers should meet the latency requirement of an application for continuous playback.  

Feng [20], Kang[43], Krasic [44], and Miao [55] have proposed algorithms for 

window-based scheduling.  The time window smoothes fluctuations of the video data 

rate and the network bandwidth at the cost of increased latency.  For collection 

applications, the window can be very large because such applications typically do not 

have stringent latency requirements. 

Despite their differences, most existing adaptation mechanisms target streaming 

applications with a maximum latency requirement, are based on IP-style networks 

with end-to-end connections, and are designed for streaming video from one source to 

one or more receivers. 
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2.3 Sensor Networks and Video Sensors 

In this subsection, we describe the network conditions in a sensor network to help 

understand the challenges and our assumption for video collection.  We then describe 

current video sensor platforms and video-based sensor applications.   

2.3.1 Sensor Networks and Multi-hop routing 

Sensor networks consist of smart sensors capable of sensing, computation, and 

communication [1][6][16][59].  They can be deployed in an ad hoc manner at places 

without networking infrastructure or power facilities.  One challenge in building an 

operational sensor network is for sensors to self-organize to form multi-hop routes to 

store-and-forward data to a base station.  Usually a sensor is not directly connected to 

the base station either because the distance between them is out of  communication 

range or because the multiple short hops are more energy efficient than a long hop.  

Multi-hop routes are not always connected, either because of environmental factors or 

because of a TDMA MAC layer [87] used to save energy.  There is no end-to-end 

connection in a sensor network and video adaptation in such a network has not been 

studied. 

Many routing algorithms [7][28][41][83][85] have been proposed to set up multi-

hop routes in sensor networks.  In this dissertation, we assume that multi-hop routes 

have been setup and are relatively stable. 
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2.3.2 Video Sensors and Video-based Sensor Applications 

As sensor hardware develops, a class of “large” sensor nodes that are capable of 

capturing and processing multimedia data such as audio and video have become 

available [31][32].  One representative example is the Crossbow Stargate device, 

which has a 400MHz Intel X-scale processor, up to 64 megabytes memory and one 

gigabyte flash memory, and an 802.11 wireless interface that can provide wireless 

bandwidth from 500Kbps to 10Mbps.  These sensor nodes are much more powerful 

than typical “small” sensor nodes such as Berkeley motes [33] and make it possible to 

capture multimedia information in addition to scalar data.  The Panoptes video sensor 

[19] is built on this platform and is used for our experiments. The research effort 

towards building applications upon video sensor networks has just started [21].  

Examples include Panoptes [19], SensEye [45], the CVSN project [27], and 

distributed attention [10].   
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CHAPTER 3  
 

BONNEVILLE: SUPPORTING WIDE-RANGE FINE-GRAINED MULTI-
RESOLUTION VIDEO 

As the diversity of video devices increases, video adaptation systems will need to 

support adaptation over an extremely large range of display requirements (e.g. 90×60 

to 1920×1080.)  In this chapter, we examine tailoring techniques for resolution scaling 

to support the adaptation.  We believe that Bonneville, a combination of multi-

encoding and scalable encoding/transcoding, is necessary to accommodate large 

variation in resolution.   

3.1 Introduction 

In chapter 1 we presented an application scenario in which high-resolution video 

is streamed to display devices of different sizes, and resolution adaptation is needed to 

adapt video over a wide-range of resolutions.  In this section, we present more 

application examples that require wide-range fine-grained multi-resolution video.  We 

then propose Bonneville, a framework to structure stored video to support many 

resolutions.  

3.1.1 More Motivating Examples 

In addition to adapting to display requirements, resolution adaptation also allows 

the video stream to be adapted to underlying networking constraints.  Currently, 
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spatial fidelity adaptation (also called SNR adaptation in research literature of 

multimedia) is often used to deal with insufficient bandwidth.  When the bandwidth is 

extremely low, spatial fidelity adaptation cannot reduce the stream size enough and 

resolution adaptation has to be used to reduce the number of pixels to be encoded.  To 

demonstrate this, we have encoded 300 frames from the movie The Italian Job using 

the reference codec of H.264 [29] at different resolutions with different quantization 

scales as shown in Figure 3-1.   When we encode at resolution 768×512, the smallest 

stream size we encode by adjusting the spatial fidelity (using the largest quantization 

scale 51) is 164Kbps; by reducing the resolution to 384×256, the stream size can be 

further reduced to 54Kbps.  Even if spatial fidelity adaptation can make the target 

Figure 3-1   Encoding The Italian Job at different resolutions.   This figure shows average bit-

rates and average PSNRs of video streams encoded at different resolutions with different 

quantization scales.  Each line represents a resolution and dots on that line represent different 

quantization scales.  Each dot in this figure represents a feasible bit-rate. 
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bandwidth, downscaling the resolution can result in better perceptual quality than 

lowering the spatial fidelity in some cases.  Figure 3-2(a) and Figure 3-2(b) show a 

decoded frame from two streams encoded at 768×612 and 384×256 respectively, both 

having a bit-rate of 164Kbps.  The decoded picture from the 384×256 stream shown in 

Figure 3-2(b) obviously has better picture fidelity.  For example, we can see the back 

of a truck on the left side of the picture in Figure 3-2(b) while in Figure 3-2(a) it is so 

blurred that it is hardly distinguished from the buildings in front of it.  In summary, 

adjusting the resolution extends the range and dimensions for bandwidth adaptation; 

adjustment over a wide range is needed to fit possible bandwidth limits and the user’s 

needs. 

Resolution adaptation, combined with ROI adaptation, is also useful to support 

Pan-Tilt-Zoom-like operations for users to navigate through high-resolution video 

over best-effort networks.  Transmission bandwidth and remote computation can be 

saved by sending the video at the viewed resolution instead of the high-resolution 

video; and potentially the video may be viewed at many resolutions that require fine-

grained resolution adaptation.    

3.1.2 Proposed Approach 

In order to support resolution adaptation, re-encoding, transcoding, multi-

encoding, or scalable encoding can be used.  Each type of mechanisms introduces 

some overhead when supporting multiple resolutions.  Re-encoding has high 

computational overhead; transcoding and scalable encoding have compression 

efficiency overhead; and multi-encoding has storage overhead.  The problem of 
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(b) transmitted at 384×256 

Figure 3-2 The difference between lowering the spatial fidelity and downscaling the 

resolution.  These two pictures are decoded from two H.264 streams.  Both streams contain the 

same 300 frames from the Italian Job encoded by the H.264 reference codec.  Stream (a) is 

encoded at the resolution 768×512 with a very low spatial fidelity; stream (b) is encoded at 

384×256 but the spatial fidelity is higher.  Both streams are about 164Kbps.  Picture (b) is much 

sharper than picture (a).  

(a) transmitted at 768×512 
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extending one mechanism to support resolution adaptation over a wide range, if even 

possible, is that the accumulated overhead may become too large and make the 

mechanism unsuitable for practical use.   

We propose to combine existing tailoring technologies; we believe that the 

combination of mechanisms can provide the best-balanced performance.  In particular, 

we propose to combine multi-encoding with scalable encoding and transcoding.  We 

call this hybrid framework Bonneville.  

We will compare tailoring mechanisms in the Bonneville framework with other 

tailoring mechanisms.  We group tailoring mechanisms into three architectures based 

on the number of “full” encodings that are used to represent the video on the server: 

the one-encoding-for-all-resolutions architecture, the one-encoding-per-resolution 

architecture, and the hybrid architecture. Bonneville is a hybrid architecture.  We 

describe the three architectures in Section 3.2.  We study the bandwidth efficiency, 

computational cost, and storage cost for these architectures in Section 3.3 and present 

an in-depth analysis of how Bonneville provides good architectural trade-offs in 

providing fine-grained wide-range multi-resolution video.  Our work also provides 

guidelines to structure the multiple encodings within the Bonneville framework such 

as the number of encodings. 

3.2 Tailoring Mechanisms for Resolution Adaptation 

Despite rapid progress in storage capacity and transmission bandwidth, video 

compression is still a key technology for video applications because of large 
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compression ratios that are achievable.  Currently, most compression techniques are 

either DCT-based or wavelet-based.  Wavelet-based algorithms [53][89] perform a 

wavelet transform on the entire image, which results in a hierarchical representation of 

an image.  In the hierarchy, each layer represents a frequency band, which corresponds 

to a resolution.  Thus, wavelet-based compression supports multi-resolution video 

inherently.  However, the ability to perform ROI adaptation is limited due to the 

wavelet transform.  We believe that both ROI adaptation and resolution adaptation are 

needed to accommodate large variation in resolution.  In DCT-based compression, 

ROI cropping can be supported by flexible macroblock ordering [81][82] or bit-plane 

shifting[69].  While somewhat challenging to support multi-resolution video for DCT-

based compression, its adoption into standards such as the MPEG series and the H.26× 

series coupled with the ability to support ROI adaptation make it an interesting 

technique to use. 

In the remainder of this section, we describe DCT-based tailoring mechanisms for 

resolution adaptation as well as their advantages and disadvantages for supporting 

fine-grained wide-range adaptation.     

3.2.1 A Single Encoding for All Resolutions 

A very simple architecture to provide wide-range fine-grained video resolution 

adaptation is to encode the highest resolution once and generate all other resolutions 

from the one encoding.  Under this architecture, resolution adaptation is accomplished 

using one of the following two approaches.   
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The first approach is to spend more time encoding the stream so it is more 

amenable to resolution downscaling; for example, scalably encoding the stream with a 

base layer and multiple enhancement layers.  We note here that the use of the term 

enhancement layer usually means higher spatial fidelity.  For our purposes, we use 

enhancement layer to refer to layers that provide higher resolutions.  Examples of 

scalable encoding include the MPEG-2 spatial scalability scheme [30], where an 

upscaled base layer provides extra references for motion estimation, and Dugad’s 

spatially scalable encoder [15] constructed from non-scalable encoders, where an 

enhancement layer encodes differential signals between the high resolution images 

and the upscaled base layer.  In addition to ease of scaling, it can save bandwidth in 

multicast scenarios because low resolutions are included in high-resolution streams.  

However, scalability is not free because the compression efficiency of scalable 

encoding is lower than that of non-scalable encoding.  If scalable encoding is extended 

to support many resolutions, the overhead accumulates and can become significant.  

We will evaluate the compression efficiency of scalable encoding for wide-range fine-

grained multi-resolution video. 

The second approach to provide resolution adaptation is to compress the stream 

with minimal extra information and spend more time scaling the video stream to a 

different resolution as needed.  Scaling can involve (i) a full re-encoding where the 

stream is decompressed and recompressed, or (ii) a partial re-encoding (transcoding) 

where the stream is altered in the compressed domain [14][37][75].  Different 
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transcoding algorithms need different amounts of work when a client requires a 

smaller resolution; but in general, they need less work than re-encoding.   

There are two groups of transcoding algorithms.  The first group of algorithms 

tries to derive new DCT coefficient matrices for low-resolution images.  For example, 

many algorithms extract 4×4 low-frequency coefficient from four adjacent blocks in 

the high-resolution video to form one 8×8 coefficient matrix for one block in the low-

resolution video as shown in Figure 3-3.  Thus, these algorithms can derive only one 

low resolution that has to be one-fourth of the high resolution (half in each dimension).  

The second group of algorithms simply drops DCT AC coefficients at the server side 

and the downscaling is done at the client side.  The working range of this class is also 

very limited because the compression efficiency for the low-resolution video degrades 

rapidly when the number of pixels in the low-resolution video approaches or becomes 

less than the number of blocks in the high-resolution video.  Figure 3-4 provides an 

example of the degradation of compression efficiency. It shows the Y component of a 

128×128-pixel image, which is divided into 256 8×8-blocks.  After the DCT 

Figure 3-3  Generate DCT coefficients for low-resolution image in the DCT domain.  

The intuition behind many algorithms is to extract 4×4 low-frequency coefficients of the 

MxN video from four adjacent blocks to form the 8×8 coefficient-matrix of the M/2 x N/2 

video.   
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transform and quantization, 30% of the coefficients are typically non-zero; therefore, 

each pixel is represented by 0.3 compressed coefficients.  Suppose we are to 

downscale the image to 16×16 pixels.  If the image is re-encoded, the16×16 pixels 

are divided into four 8×8-blocks and a similar compression ratio can be retained.  If 

we simply drop AC coefficients, the 256 blocks remain with one DC coefficient in 

each block.  Thus, one pixel is represented by one compressed coefficient and the 

compression efficiency is about 3.3 times worse than re-encoding.  More importantly, 

this is the lower bound of the number of blocks.  If a smaller resolution is required, the 

256 blocks still need to be encoded. In summary, transcoding alone cannot support 

many resolutions efficiently.   

Figure 3-4 Comparison of compression efficiency between re-encoding and transcoding by 

dropping AC coefficients.  In each 8×8 block, about 70% coefficients are zeros after DCT 

transform and quantization.  A compressed 8×8 block is much smaller than 64 1x1 block. 

The original image: 128×128 pixels, 
16x16 8×8-blocks 

The Downscaled image through re-
encoding: 16x16 pixels, 2×2 8×8-blocks 

The downscaled image through transcoding: 
16x16 pixels, 16x16  1x1 blocks 
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In addition to the two traditional approaches, we also propose to mix these two 

approaches by scalably encoding the video once and then transcoding enhancement 

layers to generate resolutions between layers.  This mixed approach effectively takes 

the advantage of the positive aspects of each while trying to avoid the disadvantages.  

The performance of this mixture is unknown and we will figure out through 

experiments whether the mixture can provide good trade-offs between coding 

efficiency, computational cost, and storage cost. 

3.2.2  One Encoding Per Resolution 

Another simple architecture to provide multi-resolution video is to encode as 

many streams as resolutions that are required.  In this way, each encoding has been 

optimized for a particular display (or at least one that is of similar resolution).  

However, the optimal per-resolution efficiency does not lead to optimal overall 

bandwidth efficiency because different resolutions do not share data.  Another 

drawback is the computational overhead involved in creating and managing 

potentially many streams since there are a large number of different display sizes as 

shown in Table 3-1.  For stored systems, this is further complicated by the fact that the 

resolutions required may not be known a priori.  Thus, some form of adaptation may 

always be necessary.   

For this dissertation, we will use the one-encoding-per-resolution architecture in 

the experiments to provide a baseline for how well one could have done for a 

particular resolution (quality as well as bandwidth requirements). 
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3.2.3 Hybrid Architectures and Bonneville 

In addition to the architectures described in the previous two subsections, one can 

encode several candidate resolutions that cover a class of displays and then create all 

other resolution streams from the encoded streams.  In effect, this hybrid architecture 

combines the above two architectures.  The goal is to extend the working range of a 

single architecture and to provide better trade-offs in bandwidth efficiency, 

computational cost, and storage cost. 

In the hybrid architecture, resolutions are divided into groups and each group has 

one full encoding.  In this dissertation, we assume that all groups use the same 

tailoring mechanism to support resolutions in that group.  For example, all groups 

might be based on scalable encoding and use the same scalability scheme; or all 

groups might be based on non-scalable encoding and use the same transcoding 

algorithm.   

Table 3-1 Available display sizes 

Cell Phones PDAs Laptops Top-of-the-line Monitors 

96x36 

96x65 

101x80 

128×128 

160×128 

208×176 

240×160 

320×208 

320×240 

640×200 

640×320 

160×160 

160×240 

240×100 

240×200 

320×240 

320×320 

480×160 

480×320 

640×240 

800×480 

800×600 

640×480 

800×600 

1024×480 

1024×768 

1280×800 

1280×1024 

1400×1050 

1440×900 

1600×1200 

1680×1050 

1920×1200 

2048×768 

2048×1536 

2560×1600 
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Bonneville is a hybrid architecture with multiple scalable encodings.  Each group 

contains a scalable encoding; some resolutions in the group may not be included in 

that encoding and these resolutions between layers are generated by trnascoding.  

3.2.4 Mechanism Summary 

The mechanisms that can be employed to support multi-resolution video are 

summarized in Figure 3-5.  The question is how should one structure the video to 

support such adaptation to a large number of display sizes.  Intuitively, we believe that 

supporting such video will fall into the hybrid architecture category because it allows 

the efficient trade-off between computation for encoding and computation for display-

dependent streaming.  

3.3 Experiments and Analysis 

In this section, we will present a number of experiments to highlight the various 

trade-offs one can make in supporting multi-resolution video.  We first present our 

Figure 3-5 Multi-resolution mechanism summary.  There are three possible architectures: one-

encoding-for-all-resolutions, one-encoding-per-resolution, and the hybrid architectures.  To 

generate multiple resolutions from one encoding, there are four possible mechanisms: scalable 

encoding, re-encoding, tanscoding, and the combination of scalable encoding and transcoding.  

Examples of scalable encoding schemes and transcoding techniques are shown. 

Multi-resolution video 

One-encoding-for-

all-resolutions 

Non-scalable 

encoding 

Transcoding 

Hybrid One-encoding-per-

resolution 

Scalable 

encoding 

Combination of scalable 

encoding and transcoding 

Dougard’s 

scheme 

MPEG-2-

like scheme 
Reencoding 

DCT coeff 

dropping 

Multiple non-

scalable encodings 

Multiple scalable 

encodings 
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experimental setup and the metrics we use to compare mechanisms under different 

architectures.  We then present the results for bandwidth efficiency, computational 

cost, and storage cost in the following three subsections.  Finally, we discuss 

guidelines for designing a system for multi-resolution video in the framework of 

Bonneville. 

3.3.1 Experimental Setup 

In this subsection, we describe how we set up the test sequences, the testing 

resolutions, the codec, the encoding parameters of the codec, the transcoding and 

scalable encoding algorithms, and the algorithms for spatial scaling in the following 

subsections.  

3.3.1.1 Test sequences and testing resolutions 

We use the test sequence Bus, which is a standard test sequence in the reseach 

community, to test scalable encoding parameters and spatial scaling algorithms.  

However, Bus is at CIF resolution (352×288) and the resolution is not high enough to 

test resolution adaptation over a wide range as we need in this dissertation.  

We choose two video clips with higher resolutions as test sequences for resolution 

adaptation, one motion-intensive and the other non-motion-intensive so our results are 

not biased towards either.  The motion-intensive clip consists of the 300 frames from 

The Italian Job.  The non-motion-intensive clip is a 100-frame 3008×2000 video 

sequence we took at a Street Corner.  As we will discuss in the following section, the 

codec we choose is the H.264 reference codec, which accepts only those resolutions 
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that are multiples of 16 in each dimension.  Therefore, we padded The Italian Job 

images to 768×512 and cropped the Street Corner images to 2880×1920.  We took the 

raw video and converted it into YUV420 and then downsized the raw images to small 

resolutions.  The downsized image sequences are used as the reference for that 

resolution when calculating PSNRs (Peak Signal Noise Ratio).  PSNR is the metric we 

use to measure video quality as we will discuss later in Section 3.3.2. 

All the testing resolutions we chose, along with a sample frame from each 

sequence, are listed in Table 3-2.  Some resolutions chosen are non-standard because 

of the multiple-of-16 restriction, yet they are close to sizes of all kinds of display 

Table 3-2 Testing sequences and resolutions 

Name of 

video 

sequences 

A sample picture 

The 

original 

resolution 

Testing 

resolutions 

The Italian 

Job 
 720×480 

768×512, 

576x384, 

384×256, 

288×192, 

192×128, 

96x64 

Street 

Corner 
 3008×2000 

2880×1920, 

2160×1440, 

1920×1280 

1440×960, 

960×640, 

720×480, 

480×320, 

384×256, 

288×192, 

192×128,  

96x64 
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devices.  For example, 96×64 is close to the size of many cell phones; 480×320 is a 

typical size for PDA screens; 960×640 and 1440×960 could be the resolutions for 

laptops or desktops monitors; 1920×1280 is almost the resolution for HDTV; 

2160×1440 and 2880×1920 can be used for top-of-the-line monitors.  All the testing 

resolutions together also provide a wide range of bit-rates that could fit various 

network conditions.  

3.3.1.2 The base codec and encoding parameters 

We constructed our experiments mainly based on the H.264 reference software 

[29], which focuses on compression efficiency.  The transcoding algorithms and 

scalable encoding algorithms used in the experiments are implemented based on this 

codec and will be described in the following sections.  

Figure 3-6 shows part of the encoding parameters we use for the H.264 codec.  

IntraPeriod 4 means there are three P frames after each I frame; FrameSkip 2 means 

there are two B frames between any I or P frames.  Thus, the GOP structure is 

IBBPBBPBBPBB.  We allow three reference frames for motion estimation and allow 

all inter and intra prediction modes.  One important parameter not shown is the 

quantization scale.  We use the same quantization scale for all frames (the H.264 

codec allows different quantization scales for I, P, and B frames) and the same 

quantization scale for the Y component and the UV components.  The range of legal 

quantization scales is 1 to 51.  The quantization scales we chose are 8, 16, 20, 22, 24, 
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Figure 3-6 The H.264 encoder configuration file. 

# Files 

InputHeaderLength     = 0      # If the inputfile has a header 

StartFrame            = 0      # Start frame for encoding. (0-N) 

FramesToBeEncoded     = 300    # Number of frames to be coded 

FrameRate             = 25     # Frame Rate per second (0.1-100.0) 

TraceFile             = "trace_enc.txt" 

ReconFile             = "test_rec.yuv" 

OutputFile            = "ij.h264" 

 

# Encoder Control 

ProfileIDC            = 77  # Profile IDC (66=baseline, 77=main,  

 # 88=extended; FREXT Profiles: 100=High,  

 # 110=High 10, 122=High 4:2:2, 144=High 4:4:4) 

LevelIDC              = 50  # Level IDC   (e.g. 20 = level 2.0) 

 

IntraPeriod           =  4  # Period of I-Frames (0=only first) 

IDRIntraEnable        =  0  # Force IDR Intra  (0=disable 1=enable) 

FrameSkip             =  2  # Number of frames to be skipped in input  

                            # (e.g 2 will code every third frame) 

ChromaQPOffset        =  0  # Chroma QP offset (-51..51) 

UseHadamard           =  1  # Hadamard transform (0=not used, 1=used) 

SearchRange           = 16  # Max search range 

NumberReferenceFrames =  3  # Number of previous frames used for inter 

motion search (1-5) 

PList0References      =  0  # P slice List 0 reference override (0  

 # disable, N <= NumberReferenceFrames) 

Log2MaxFrameNum       =  0  # Sets log2_max_frame_num_minus4 (0-3:based on  

     # FramesToBeEncoded, >3:Log2MaxFrameNum - 4) 

MbLineIntraUpdate     =  0  # Error robustness(extra intra macro block  

     # updates)(0=off, N: One GOB every N frames  

     # are intra coded) 

RandomIntraMBRefresh  =  0  # Forced intra MBs per picture 

InterSearch16x16    =  1  # Inter block search 16x16 (0=disable, 1=enable) 

InterSearch16x8     =  1  # Inter block search 16x8  (0=disable, 1=enable) 

InterSearch8×16     =  1  # Inter block search  8×16 (0=disable, 1=enable) 

InterSearch8×8      =  1  # Inter block search  8×8  (0=disable, 1=enable) 

InterSearch8×4      =  1  # Inter block search  8×4  (0=disable, 1=enable) 

InterSearch4×8      =  1  # Inter block search  4×8  (0=disable, 1=enable) 

InterSearch4×4      =  1  # Inter block search  4×4  (0=disable, 1=enable) 

 

IntraDisableInterOnly  = 0  #  Intra modes for Non I-Slices 

Intra4×4ParDisable    = 0  #  Vertical & Horizontal 4×4  

Intra4×4DiagDisable    = 0  #  Diagonal 45degree 4×4 

Intra4×4DirDisable     = 0  # Other Diagonal 4×4 

Intra16x16ParDisable   = 0  # Vertical & Horizontal 16x16 

Intra16x16PlaneDisable = 0  # Planar 16x16 

ChromaIntraDisable    = 0  # Intra Chroma modes other than DC 

 

UseFME            =  0  # Use fast motion estimation (0=disable, 1=enable) 
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26, 28, 33, 37, 41, 45, and 51.  Usually quantization scales in the twenties are practical 

and the quantization scale 24 is used in most of our experiments unless otherwise 

specified. 

3.3.1.3 Transcoding 

We have modified the H.264 codec to drop AC coefficients as the transcoding 

scheme.  Since the H.264 codec uses 4×4 DCT, the working range of this scheme is 

very limited.  Suppose the high resolution is MxN, resolutions 3M/4×3N/4, M/2×N/2, 

and M/4×N/4 can be derived by keeping the 3×3 low-frequency coefficients, the 2×2 

low-frequency coefficients, and the DC coefficients, respectively.  The downscaling is 

done at the client side after decoding using the sinc filter from ImageMagic [39].   

3.3.1.4 Scalable encoding 

For our experiments, we will test two spatially scalable encoding schemes.  One is 

the scheme used in MPEG-2, which is referred to as the MPEG-2-like scheme in this 

chapter; the other is Dugad’s scheme that is based on a non-scalable codec. We first 

describe how these schemes are implemented based on the H.264 codec and are 

extended to support more than one resolution.  Then we discuss the representation of 

differential signals in Dugad’s scheme and the choice of scaling algorithms. 
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3.3.1.4.1 MPEG-2-like scheme 

We have added MPEG-2-like spatial scalability into the H.264 codec and 

implemented an H.264 scalable encoder, as shown in [13].  The scalable encoder has 

four more reference frames for motion estimation in addition to the regular three 

temporal reference frames.  One is the upscaled decoded low-resolution frame, which 

is called the spatial reference frame; the other three are the averages of the spatial 

reference frame and the three temporal reference frames.  The scalability scheme is 

extended to generate more than two layers, as shown in Figure 3-7.   

Resolution 

upscaling 
Resolution 

downscaling 

Figure 3-7 The MPEG-2-like spatially scalable encoder. 
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3.3.1.4.2 Dugad’s scheme 

We have constructed a spatially scalable encoder according to Dugad’s scheme 

[15], in which differential signals between the high-resolution video and the upscaled 

decoded lower resolution video is encoded for enhancement layers.  We have extended 

the scheme to more than two layers as shown in Figure 3-8.  The construction of such 

an encoder is simple because it is based on non-scalable encoders.   

 

Original 

sequence 

Lowest-resolution  

Sequence 

Highest enhancement layer 

1st enhancement layer 

Figure 3-8 Dugad’s spatially scalable encoder. 
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3.3.1.4.3 Representation of differential signals in Dugad’s scheme 

In Dugad’s scheme, enhancement layers encode differential signals, which are 

supposed to be smaller than encoding the high-resolution video directly.  The 

differential signals are represented in the same YUV420 format, in which each value 

is represented by eight bits ranging from 0 to 255, as in the original video.  However, 

differential values range from -255 to 255 instead of 0 to 255, thus doubling the range 

of values that we need to represent in eight bits.  We need to squeeze the range to [-

127, 128] and we consider two ways.  One way is to divide the differential signals by 

2; the other way is to truncate the range by making  values less than -127, -127 and 

those larger than 128, 128.  The first way introduces rounding errors in about half of 

the pixels.  The second way introduces overflow errors which are the difference 

between -127 and a differential value less than -127 or the difference between 128 and 

a differential signal larger than 128.  An overflow can be as large as 128 and its 

contribution to the Mean Square Error and the PSNR could be equivalent to rounding 

errors at 16,384 pixels.  Since the upscaled decoded lower resolution video should be 

close to the high-resolution video, we believe that the chance for overflow is small and 

the “truncate” representation could achieve better video quality for enhancement 

layers.   

To confirm that the “truncated” representation can achieve better PSNRs than the 

“divided by 2” representation, we ran the encoder on the Bus test sequence using the 

two representations.  The base layer is at QCIF (176×144) and the enhancement layer 

is at CIF (352×288).  Figure 3-9 shows the average PSNRs of the reconstructed CIF 
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images and the sizes of the compressed streams when they are scalably encoded and 

when they non-scalably encoded.  When the differential signals are in the “truncated” 

representation, the reconstructed images from the scalable stream have PSNRs close to 

the decoded images from the non-scalable stream and the size of the scalable stream is 

larger than the non-scalable stream.  When the differential signals are in the “divided 

by 2” representation, the scalable stream is smaller than the non-scalable stream but 

the PSNRs of reconstructed images are about 5dB lower than those from the non-

scalable stream.  For this dissertation, we will use the “truncated” representation 

because when we compare the two schemes we expect them to have the same or 

similar PSNRs, especially given the fact that they represent the same image.   

Figure 3-9 Comparison of different representations for differential signals.  The 

PSNRs are for the Bus test sequence at CIF resolution.  The base layer is at QCIF.   
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3.3.1.4.4 Choice of scaling algorithms 

The resolution-scaling algorithm used in a scalable encoding scheme can greatly 

change its compression efficiency because decoded frames at a low-resolution need to 

be upscaled to a higher resolution to help reduce the bit-rate when encoding the higher 

resolution.  For the MPEG-2-like scheme, an upscaled frame is a reference frame for 

motion estimation and a reference frame with good quality can potentially provide 

good matches to the frame being encoded thus reduce the size of the compressed 

frame.  For Dugad’s scheme, an upscaled frame with good quality can reduce the size 

of the differential signals thus reduce information to be encoded.  Therefore, we need 

to choose an appropriate scaling algorithm so that the compression efficiency of the 

scalable encoding scheme is not limited by it.  

There are three categories of scaling algorithms: pixel re-sampling, pixel 

interpolation, and transform-based scaling.  We have tested all three categories, using 

the scaling functions in ImageMagick [39], an open-source image manipulation tool.  

The three categories correspond to the “-resample”, “-scale”, and “-resize” options 

in ImageMagick, respectively.  For transform-based scaling, we have tested the sinc 

filter and the Lanczos filter.  

Our experiments are mainly based on Dugad’s scheme.  The test sequence is the 

Bus sequence; the base layer is at QCIF and the enhancement layer is at CIF.  The 

PSNR and stream size for the CIF resolution are shown in Figure 3-10. As shown the 

transform-based algorithms outperform other algorithms.  The Lanczos filter and the 

sinc filter have very similar results, which are about 0.25 dB better than pixel 
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interpolation and 1.12dB better than pixel resampling, and the stream size is 27.40% 

and 46.96% smaller.  We also ran the MPEG-2-like algorithm using the Lanczos filter 

and the sinc filter and the results are satisfying, only 10% larger stream size and 0.1dB 

better quality compared to non-scalable encoding.  Therefore, we use the sinc filter 

(because it is more common than the Lanczos filter) throughout the experiments.  

3.3.1.5 Summary of experimental setup 

For our experiments on multi-resolution video, we will use two test sequences: 

The Italian Job and Street Corner.  The former is motion-intensive and the resolutions 

range from 96×64 to 768×512.  The latter is non-motion-intensive but rich in details 

and resolutions range from 96×64 to 2880×1920. 

Figure 3-10 Comparison of scaling algorithms.  The PSNRs are for the Bus test sequence 

at CIF resolution.  The base layer is at QCIF.   
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The H.264 reference codec is our non-scalable encoder.  It is also the base for 

implementing our transcoding and scalable encoding algorithms.  For transcoding, we 

implement DCT-coefficient dropping; for scalable encoding, we implement the spatial 

scalability scheme in MPEG-2 and Dugad’s scheme.  We choose the sinc filter as the 

scaling algorithm for the two scalable encoding schemes because the compression 

efficiency is good when the sinc filter is used.  

3.3.2 Metrics 

For this dissertation, bandwidth efficiency, computational cost, and storage cost 

are the three metrics we use to compare approaches.     

Bandwidth efficiency is determined by two factors: the bit-rate of a video stream 

and the video quality it presents.  We have to compare both the bit-rate and the video 

quality when compare bandwidth efficiency.  A video stream has better bandwidth 

efficiency than another stream in one of the three cases: (i) it has better video quality 

and lower bit-rate, (ii) it has the same quality as the other stream but has lower bit-rate, 

or (iii) it has the same bit-rate as the other stream but has higher video quality.  If the 

stream has better (worse) video quality and higher (lower) bit-rate than the other 

stream, their bandwidth efficiency is not really comparable.   

In our experiments, video quality is measured by the average PSNR (Peak Signal 

Noise Ratio) of the Y component of all frames.  PSNR is the log of the ratio of the 

square of the peak signal (255 in an 8-bit system) to the MSE (Mean Square Error). 

Although PSNR is often criticized for having poor correlation with the human vision 
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system, it is the most widely used objective metric for video quality because it is 

simple and performs statistically equivalent to some more complicated schemes [65] 

such as the Just Noticeable Difference model from the Sarnoff Labs [50]. Video 

quality can be more accurately measured by subjective testing; however, it is too 

costly and time consuming and not adopted in our experiments. After all, neither 

objective nor subjective methods can measure video quality directly but provide an 

indication of how a degraded picture compares with a reference picture.  

There are two ways to measure bandwidth efficiency, the per-resolution 

bandwidth efficiency and the overall bandwidth efficiency for all resolutions.  The 

per-resolution bandwidth efficiency is very important for receivers to use their 

bandwidth efficiently.  Overall bandwidth efficiency is very important for the server to 

improve its performance because it often needs to stream multiple resolutions at the 

same time.  Per-resolution bandwidth efficiency is determined by its compression 

efficiency thus we use the two terms interchangeably.  The overall bandwidth 

efficiency may not be the sum of the bandwidth requirement for each of the individual 

resolutions.  Scalable encoding algorithms usually have lower per-resolution 

compression efficiency but have the potential for higher overall compression 

efficiency because different resolutions can share data (suppose that the underlying 

networking protocols can support data sharing.)   

For computational cost, we consider the server side cost as the primary metric.  

Computational cost at encoding time and streaming time are both considered.  
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Computational cost at encoding time, however, usually has a looser time constraint 

thus is not as important as streaming time cost.  It is difficult to measure 

computational cost, which depends on factors such as algorithms, compilers, CPUs, 

caching, and operating systems.  Execution time is not a good measurement in our 

case since the H.264 reference codec we used takes about one day to encode one 

hundred 2880×1920 frames.  This codec is not intended for any real applications.  

Therefore, the execution time of this codec does not have any practical meaning.  

Fortunately, our goal is to compare runtime computational cost among different 

approaches.  For our purposes, we will use the number of DCTs, the number of IDCTs, 

and the number of motion estimations as an indication of the amount of work each 

algorithm needs to perform because they represent the most expensive computations 

for DCT-based video compression.   For example, a H.261 encoder is reported to 

spend about 60% of computation in motion estimation and about 25% in 

DCT/IDCT[25]. The H.264 codec we use is likely to spend more time in motion 

estimation than other compression standards because for each macroblock, motion 

estimation can be done for different blocks within the macroblock over multiple 

reference frames as described in Section 2.1.2. In this chapter, we count the match-

searching for one block over one reference frame as one motion estimation. 

3.3.3 Experimental Results and Analysis  

We will use the results from the one-encoding-per-resolution architecture as a 

reference in comparison.  The one-encoding-per-resolution architecture is supposed to 

have (i) the best per-resolution bandwidth efficiency because each resolution is non-
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scalably encoded and has optimized compression efficiency, (ii) the best streaming 

time computational cost because no computation is needed, (iii) the worst overall 

bandwidth efficiency because there is no data sharing among different resolutions, (iv) 

the worst encoding time computational cost because it has to encode every resolution, 

and (v) the worst storage cost because it stores a stream for every resolution.   

Our experiments will show that Bonneville, multiple scalable encodings combined 

with transcoding, can efficiently balance many of the performance metrics. In 

particular, we believe that multiple scalable encodings with less than five layers in 

each encoding are a good start point and DCT-coefficient dropping can be used to 

generate one resolution between layers. 

3.3.3.1 Bandwidth efficiency 

We first show the limitations of one-encoding-for-all-resolutions (one-encoding 

for short) on per-resolution bandwidth efficiency and the improvement in the overall 

bandwidth efficiency compared to the one-encoding-resolution architecture.  We then 

show how a hybrid architecture can improve the per-resolution bandwidth efficiency 

of the one-encoding architecture and retain its good overall bandwidth efficiency.  

3.3.3.1.1 The one-encoding-for-all-resolutions architecture 

The purposes of this subsection are (i) to find out the limitations when scalable 

encoding and re-encoding are pushed to support many resolutions and (ii) to find out 

whether the one-encoding architecture can improve the overall bandwidth efficiency 

compared to the one-encoding-per-resolution architecture.  The algorithms being 
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compared are re-encoding, MPEG-2-like spatially scalable encoding, and Dugad’s 

spatially scalable encoding.  Since the H.264 codec uses a 4×4 DCT transform, DCT-

coefficient dropping can only generate three lower resolutions from one full encoding 

so DCT-coefficient dropping alone cannot support the number of resolutions in our 

experimental setup.   

The resolution arrangement for this group of experiments is shown in Figure 3-11.  

96×64 is the base layer resolution for the two scalable encoding schemes; 192×168 is 

the first enhancement layer resolution; and so on.  There are six layers altogether for 

The Italian Job and 11 layers for Street Corner.  For re-encoding, the video is first 

encoded at the highest resolution (768×512 for The Italian Job and 2880×1920 for 

Street Corner), then decoded, and re-encoded at different resolutions.  

3.3.3.1.1.1 Limitations on per-resolution bandwidth efficiency 

Figure 3-12 shows the bandwidth efficiency of different algorithms under the one-

encoding architecture.  The bandwidth efficiency is represented by PSNR and video 

bit-rate.  Each line in the figure represents an algorithm; each dot on a line represents a 

resolution as the resolution increases from left to right along the line.  The x value of a 

dot represents the bit-rate and the y value of the dot represents the PSNR.  In general, 

lines with dots in the upper-left area (high PSNR and low bit-rate) represent good 

algorithms.  Results from the one-encoding-per-resolution architecture are presented 

as references by the “non-scalable” line. 
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Figure 3-11  The resolution arrangement for mechanisms in the one-encoding-for-all-

resolutions architecture. 
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(a) The Italian Job 

(b) Street Corner  

Figure 3-12  Bandwidth Efficiency of Different Algorithms for One-encoding-for-all-

resolutions.  Each line represents an algorithm.  Each dot represents a resolution.  All results are 

from the quantization scale 24.  In general, lines with dots in the upper-left area represent good 

algorithms. 
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For scalable encoding, as the resolution gets higher, the horizontal distance from 

the “non-scalable” line gets larger, indicating that the stream size of scalable streams 

grows faster than that of non-scalable streams.  To show this trend clearly, we extract 

the bit-rate and the PSNR for the second lowest resolution (192×128) and the highest 

resolution (768×512 for The Italian Job and 2880×1920 for Street Corner) from 

Figure 3-12 and compare them to those of the non-scalable streams in Table 3-3.  The 

difference in PSNR is insignificant; but the bit-rate overhead compared to non- 

scalable encoding increases rapidly as the number of layers increases.  For the second 

lowest resolution, a scalably encoded stream consists of one base layer and one 

enhancement layer; the MPEG-2-like stream of The Italian Job is 407 Kbps and is 

28% higher than the non-scalable stream at the same resolution; the MPEG-2-like 

stream of Street Corner is 302Kbps and is 16% higher than the non-scalable stream.  

For the highest resolution of The Italian Job, the scalably encoded stream consists of 

one base layer and five enhancement layers; the MPEG-2-like stream is 3.22Mbps and 

59% higher the non-scalable stream.  For the highest resolution of Street Corner, the 

Table 3-3 Compression efficiency of the first enhancement layer and the highest enhancement 

layer,  compared to that of non-scalable encoding.    

 

The Italian Job Street Corner 

192×128 768×512 192×128 2880×1920 

PSNR Kbps PSNR Kbps PSNR Kbps PSNR Kbps 

Non-scalable 

encoding 
40.18 317 43.84 2022 37.39 260 37.61 100095 

MPEG-2 scalable 

encoding 
40.29 407 44.25 3217 37.36 302 37.93 148567 

Dugad’s scalable 

encoding 
40.58 391 43.05 3088 37.24 304 37.90 145256 
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scalable stream has one base layer and ten enhancement layers; the MPEG-2-like 

stream is 148.567Mbps and 48% higher than the non-scalable stream.  The results of 

Dugad’s streams are similar.  Even though the increase of overhead is different for the 

two sequences with different content, simply extending the scalable encoding 

algorithms to support many resolutions definitely causes overhead accumulation as the 

number of layers increase thus poor compression efficiency for high resolutions.  

For re-encoding, there is a big drop of PSNR for the second highest resolution.  

This is caused by the artifacts introduced while encoding the highest resolution.  A 

major artifact introduced by a DCT-based compression algorithm is the blocking 

artifact, the discontinuity effect across transform block boundaries.  Since the highest 

resolution is not a multiple of the second highest resolution, block boundaries in the 

highest resolution get into the blocks of the second highest resolution; the blocking 

artifacts are brought into the blocks too.  Thus, when the decoded frames are 

downscaled to the second high resolution the quality is much worse than downscaling 

directly from the original highest resolution frames.  As the resolution gets smaller, the 

PSNR of the re-encoded stream gets closer to that of the non-scalable stream at the 

same resolution because the effect of the artifacts gets smaller since details are lost in 

low resolutions anyway.  Therefore, under the one-encoding architecture, re-encoding 

cannot efficiently support resolutions close to the encoded resolution.  

From Figure 3-12, we also notice that with the same quantization scale, higher 

resolutions have higher PSNR.  We believe the reason is that when an image is 
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downscaled, gradual variation at the high resolution becomes radical changes within a 

4×4 pixel block, which correspond to high-frequency information in the DCT domain 

that is zeroed out during quantization; 

We also notice in Figure 3-12 that, for The Italian Job, the coding efficiency of 

the MPEG-2-like algorithm is much better than that of the Dugad’s algorithm 

especially for high resolutions.  We believe that it is because The Italian Job is very 

motion-intensive thus motion estimation is very important for coding efficiency.  The 

enhancement layers in Dugad’s algorithm consist of differential signals that are not 

amiable to motion estimation and motion compensation.  

3.3.3.1.1.2 Reducing the number of layers in a scalable encoding 

In the previous subsection, we showed that the compression efficiency of scalable 

encoding degrades rapidly as the number of layers grows and the compression 

efficiency of the highest resolution is especially poor.  In this subsection, we are 

interested in whether we can improve the compression efficiency of the highest 

resolution in the one-encoding architecture by reducing the number of layers between 

the lowest resolution and the highest resolution.  The resolutions between layers are 

derived by dropping DCT coefficients of an enhancement layer, transmitting the 

partial enhancement layer and all layers below, decoding and downscaling at the client 

side.  This is the mixed scheme that we proposed in section 3.2.1.  The base layer 

resolution, the enhancement layer resolutions, and the resolutions derived from each 

enhancement layer are shown in Figure 3-13.  There are three layers in The Italian Job 

and four layers in Street Corner.  
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Figure 3-13  The resolution arrangement for the combination of scalable encoding and DCT-

coefficient dropping in the one-encoding-for-all-resolutions architecture. 
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The compression efficiency of the mixed scheme for all resolutions is shown in 

Figure 3-14 and Figure 3-15, for the MPEG-2-like scheme and the Dugad’s scheme 

respectively.  The results for pure MPEG-2-like scalable encoding and pure Dugad’s 

scalable encoding are included for comparison.  In both Figure 3-14 and Figure 3-15, 

the compression efficiency of the highest resolution (the rightmost dot on each line) of 

the mixed algorithms is improved compared to pure scalable encoding. The 

compression efficiency of the highest resolution is one of our major concerns and is 

listed in Table 3-4.  For The Italian Job, the MPEG-2-like stream with three layers is 

2.38 Mbps, which is 26% smaller than the MPEG-2-like stream with six layers in the 

one-encoding architecture; and the overhead compared to a non-scalable stream is 

reduced from 59% to 18%.  Its PSNR is close to the six-layer MPEG-2-like stream 

therefore the coding efficiency for the highest resolution is improved when there are 

fewer layers in a stream.  For the Street Corner, the MPEG-2-like stream with four 

layers is 110.4Mbps and is 25% smaller than the MPEG-2-like stream with 11 layers 

in the one-encoding architecture while the PSNR is similar.  Reducing the number of 

layers, even though the distance between the base resolution and the highest resolution 

is still the same, improves the coding efficiency for the highest resolution. 

In Figure 3-14(b) and Figure 3-15(b), the lines representing the mixed scheme are 

non-monotonic in that resolution 720×480 has higher bit-rate than resolution 960×640 

and resolution 1440×960.  This is due to that the decrease in stream size through 

dropping high-frequency coefficients is very limited, as we show in Figure 3-4, 

because some of the dropped coefficients are already zeros.  Therefore, the number of  



 63 

Figure 3-14 Comparison of the MPEG-2-like schemes with six layers and three layers 

combined with DCT-coefficient dropping.  Each line represents a configuration.  Each dot 

represents a resolution.  All results are from the quantization scale 24.  In general, lines with 

dots in the upper-left area represent good configurations. 

(a) The Italian Job 

(b) Street Corner  
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(a) The Italian Job 

(b) Street Corner  

Figure 3-15 Comparison of the Dugad’s scheme with six layers and three layers combined 

with DCT-coefficient dropping.  Each line represents a configuration.  Each dot represents a 

resolution.  All results are from the quantization scale 24.  In general, lines that are high and with 

dots close to the Y-axis represent good configurations. 
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 macroblocks is the determining factor of the stream size.  Resolution 720×480 is 

generated from 2880×1920 as shown in Figure 3-13 and has more macroblocks than 

the 960×640 stream and the 1440×960 stream, which are generated from the 

1920×1280 stream. 

Since the decrease in stream size through dropping high-frequency coefficients is 

very limited, the resolutions generated by dropping coefficients have large stream 

sizes (and high PSNRs) compared to non-scalable streams and scalable streams 

because they are derived from a higher resolution and have more macroblocks 

encoded.  To understand how large the derived streams are, we compare the bit-rate of 

the derived streams with that of the scalable streams at the same resolution in Table 

3-5.  We also list how many coefficients are kept out of the 4×4 DCT coefficient 

matrix for a derived resolution.  Table 3-5 shows that when 3×3 coefficients are kept, 

the derived stream is no more than 35% larger than the scalable stream; when 2×2 

coefficients are kept, the derived stream is about one time larger than the scalable 

stream; and when only one DC coefficient is kept, the derived stream is several times 

Table 3-4 Compression efficiency of the highest resolution (768×512 for the Italian job and 

2880×1290 for street corner) 

 The Italian Job Street Corner 

Non-

scalable 

MPEG-

2-like 

 

MPEG-

2-like + 

dropping 

Dugad’s 

 

Dugad’s   

+ 

dropping 

Non-

scalable- 

MPEG-

2-like 

 

MPEG-

2-like + 

dropping 

Dugad’s 

Dugad’s 

+ 

dropping 

PSNR 43.84 44.25 44.02 43.05 43.12 37.61 37.93 37.75 37.9 37.80 

Bit-rate 

(Mbps) 
2.022 3.217 2.38 3.088 2.47 100.1 148.6 110.4 145.3 116.9 
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larger than the scalable stream.  For example, for the MPEG-2-like scheme and the 

Street Corner sequence, at resolution 1440×960, the derived stream is 35.96Mbps, 

which is 17% larger than the scalable stream; at resolution 960×640, the derived 

stream is 25.90Mbps and about twice the size of the scalable stream; at resolution 

720×480, the derived stream is 55.10Mbps and 8.38 times of the scalable stream.  We 

believe that it is acceptable to derive one resolution between layers through dropping 

the right-most column and the bottom row in the 4×4 DCT coefficient matrix; 

dropping more than that will cause the stream too big for the derived resolution.  

3.3.3.1.1.3 Improvement in overall bandwidth efficiency 

Scalable encoding, at the expense of coding efficiency for each resolution, can 

support all resolutions in one stream—the stream for the highest resolution—through 

dropping layers.  Therefore, scalable encoding is efficient in supporting multiple 

Table 3-5 Bit-rates of derived resolutions 

 

Resolutions 
Coefficients 

Kept 

Bit-rate (Mbps) 

MPEG-2-

like 

 

MPEG-2-like 

+ dropping 

Dugad’s 

 

Dugad’s   + 

dropping 

The Italian 

Job 

192×128 2×2 0.41 0.74 0.39 0.79 

288×192 3×3 0.82 0.84 0.77 0.89 

576x384 3×3 2.19 2.38 2.07 2.42 

Street 

Corner 

192×128 2×2 0.30 0.63 0..30 0.73 

288×192 3×3 0.78 0.90 0.78 0.96 

480×320 1x1 2.88 14.30 2.85 17.07 

720×480 1x1 6.57 55.10 6.82 53.60 

960×640 2×2 13.19 25.90 13.54 28.81 

1440×960 3×3 30.69 35.96 31.34 38.93 

2160×1440 3×3 81.70 110.43 80.29 102.54 
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resolutions at the same time because different resolutions can share data (assuming 

multicasting is used).  The bandwidth requirement for all resolutions is shown in the 

last row in Table 3-6.  Using the MPEG-2 like algorithm, it requires 37.8% less 

bandwidth for The Italian Job and 34.0% less for the Street Corner than sending a 

non-scalable stream for every resolution.  The average PSNR and the worst PSNR of 

scalable encoding are close to those of non-scalable encoding.   

Re-encoding also requires less bandwidth than non-scalable encoding but the 

saving is not as significant as scalable encoding and the PSNR is also a little lower 

than that of scalable encoding.   

Table 3-6 Overall bandwidth Efficiencies for mechanisms in the one-encoding-for-all-
resolutions architecture. Bit-rates are in mega bits per seconds. The bandwidth efficiency for 

non-scalable encoding is listed as a reference. 

 

The Italian Job Street Corner 

Non-

scalable 

encoding 

MPEG-2-

like 
Dugad’s 

Re-

encode 

Non-

scalable 

encoding 

MPEG-2-

like 
Dugad’s 

Re-

encode 

Average PSNR 

for all 

resolutions 

41.765 42.02 41.48 41.14 37.39 37.45 37.28 36.88 

The worst 

PSNR of all 

resolution 

39.32 39.32 39.32 39.13 37.18 37.19 37.09 36.01 

Overall bit-rates 

for all 

resolutions 

(Mbps) 

5.18 3.22 3.09 5.04 225.0 148.6 145.3 198.1 
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Not shown in Table 3-6 is the overall bandwidth for the mixed scheme because it 

depends on whether the intermediate nodes can perfo``rm coefficient dropping.  If the 

intermediate nodes can do coefficient dropping, then all resolutions can share one 

stream and require less overall bandwidth than scalable encoding because this stream 

of the mixed scheme has less layers.  If the intermediate nodes cannot do coefficient 

dropping, then the server has to do it and sends the original stream and coefficients-

dropped streams.  Even though there is still bandwidth sharing among scalably 

encoded resolutions, these streams generated through dropping coefficients are so 

large (and cannot be shared) that more bandwidth is required to support all resolutions 

than transmitting all non-scalable streams    

3.3.3.1.2 The hybrid architecture 

In this subsection, we try to improve the per-resolution compression efficiency by 

increasing the number of encodings and reducing the number of resolutions supported 

by each encoding.  We have used two encodings for The Italian Job and three 

encodings for Street Corner.  The resolutions included in each encoding and derived 

resolutions from an encoding are shown in Figure 3-16.   

We first discuss the results for multiple scalable encoding and then the results for 

multiple non-scalable encoding. 
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Figure 3-16  The resolution arrangement for configurations in the hybrid architectures. 
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3.3.3.1.2.1 Multiple scalable encodings 

In Figure 3-17 and Figure 3-18, we show the compression efficiency at all 

resolutions for multiple MPEG-2-like scalable encodings and multiple Dugad’s 

scalable encodings, respectively.  The compression efficiency of the highest resolution 

is one of our major concerns and is listed in Table 3-7. 

For The Italian Job, the stream for the highest resolution consists of one base 

layer and two enhancement layers.  The MPEG-2-like stream is 2.67 Mbps, which is 

17% smaller than the MPEG-2-like stream in the one-encoding architecture and the 

overhead compared to a non-scalable stream is reduced from 59% to 32%.  The 

PSNRs are similar for these two streams therefore the coding efficiency is improved 

when there are fewer layers in a stream.  For the Street Corner video, the stream for 

the highest resolution consists of one base layer and four enhancement layers.  The 

MPEG-2-like stream is 143.5Mbps and is 3.4% smaller than the stream in the one-

encoding architecture.  The improvement is not as significant as that for The Italian 

Job and we believe that this is due to the five layers in the stream that have already 

accumulated large overhead.  If we look at resolution 1440×960, the first enhancement 

layer in the five-layer stream,  the stream size decreases from 30.67Mbps in the one- 

encoding architecture to 25.71Mbps in the three-encoding architecture, a 16.17% 

reduction for the same PSNR 37.25dB.  For Dugad’s algorithm, the results are similar.    
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(a) The Italian Job 

(b) Street Corner  

Figure 3-17 Comparison of MPEG-2-like schemes in different configurations: one encoding 

or multiple encodings.  Each line represents a configuration.  Each dot represents a resolution.  

All results are from the quantization scale 24. 
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(a) The Italian Job 

(b) Street Corner  

Figure 3-18 Comparison of Dugad’s schemes in different configurations: one encoding or 

multiple encodings.  Each line represents a configuration.  Each dot represents a resolution.  

All results are from the quantization scale 24. 
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In summary, reducing the number of layers (by adding one or two encodings) in 

one encoding can improve the coding efficiency of the highest resolution and retain 

good compression efficiency of other resolutions.  The improvement is more 

significant when there are less than five layers in one encoding.  

The overall bandwidth efficiency of multiple scalable encodings is very close to 

that of the one-encoding architecture and much better than that of the one-encoding-

per-resolution architecture as shown in Table 3-8 because the compression efficiency 

for high resolutions is improved.  In the hybrid architecture, we have to stream more 

than one encoding to support all resolutions at the same time.  The total number of 

layers is the same regardless of the number of encodings since there is always one 

layer corresponding to one resolution; the number of base layers, however, increases 

as the number of encodings increases.  For example, for The Italian Job, the resolution 

384×256 corresponds to an enhancement layer in the one-encoding architecture but is 

a base layer in the two-encoding architecture.  Usually a base layer is larger than an 

enhancement layer for the same resolution; therefore, increasing the number of 

Table 3-7 Comparison of compression efficiency for the highest resolution in scalable encodings 

with different configurations.  The PSNR and the stream size for non-scalable encoding are listed as 

references.  

 

The Italian Job (768×512 Street Corner(2880×1920) 

One encoding Two encodings One encoding Three encodings 

PSNR Mbps PSNR Mbps PSNR Mbps PSNR Mbps 

Non-scalable 

encoding 
43.84 2.02 43.84 2.02 37.61 100.1 37.61 100.1 

MPEG-2-like 44.25 3.22 44.21 2.67 37.93 148.6 37.93 143.5 

Dugads’ 43.05 3.09 43.33 2.48 37.90 145.3 37.90 138.0 
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 encodings is likely to increase the overall bandwidth requirement because it increases 

the number of base layers.  However, since the coding efficiency for high resolutions 

is improved, sending one or more encodings does not increase the bandwidth 

requirement much.  This is especially true for the Street Corner, which contains many 

details and reducing the number of layers can greatly increase the coding efficiency.  

For example, sending the three MPEG-2-like scalable streams requires 150.3Mbps 

only 1.1% more bandwidth than the one big MPEG-2-like scalable stream (consisting 

of eleven layers) and still requires 33.2% less than transmitting all non-scalable 

streams.  For Dugad’s algorithm, the bandwidth for the three streams is even smaller 

than that for the one big stream, which means the improved compression efficiency for 

high resolutions offsets the high bit-rates of the two extra base layers.  

Table 3-8 Overall bandwidth Efficiency for multiple scalable encodings. Bit-rates are in mega 

bits per seconds. The bandwidth efficiencies for one-scalable encoding and non-scalable encoding 

are listed as references. 

 

The Italian Job Street Corner 

Non-

scalable 

MPEG-

2-like 

 

MPEG-

2-like 

(two en-

codings) 

Dugad’s 

 

Dugad’s   

(two en-

codings) 

Non-

scalable 

MPEG-

2-like 

 

MPEG-

2-like 

(three 

en-

codings) 

Dugad’s 

Dugad’s

(three 

en-

codings) 

Average 

PSNR for 

all 

resolutions 

41.76 42.02 41.95 41.48 41.69 37.39 37.45 37.45 37.28 37.34 

The worst 

PSNR of all 

resolution 

39.32 39.32 39.32 39.32 39.32 37.18 37.19 37.18 37.09 37.02 

Overall bit-

rates for all 

resolutions 

(Mbps) 

5.18 3.22 3.59 3.09 3.24 225.0 148.6 150.3 145.3 144.8 
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3.3.3.1.2.2 Multiple non-scalable encodings 

For multiple non-scalable encodings, we have tested two ways to derive 

resolutions that are not encoded: re-encoding and DCT-coefficient dropping. 

In Figure 3-19, we consider multi-encoding combined with re-encoding and 

compare it with re-encoding in the one-encoding architecture.  Adding a new encoding 

adds a sharp drop for the resolution next to it and decreases the compression efficiency 

for lower resolutions.  This is consistent with our analysis in the previous section that 

re-encoding is inefficient for those resolutions close to the encoded resolution because 

of blocking artifacts.  For re-encoding, the hybrid architecture performs worse than the 

one-encoding architecture.   

In Figure 3-20, we consider multi-encodings combined with DCT-coefficient 

dropping.  The derived resolutions have very high bit-rates compared to non-scalable 

encoding because the number of macroblocks is larger in the derived streams.  To 

understand the compression efficiency of these resolutions, we plot the PSNR and bit-

rate of resolutions 96×64, 192×128, and 288×192 over many quantization scales in 

Figure 3-21.  The compression efficiency for the resolution 288×192 is very close to 

that of non-scalable encoding when the bandwidth is low and the difference begins to 

show only when the PSNR is higher than 40dB.  The compression efficiencies for the 

resolutions 192×128 and 96×64 are poor.  For example, the PSNR is at least 5dB 

worse than that of non-scalable encoding at 96×64.  For the same PSNR, for example 

40dB, the derived stream is about 280Kbps and is about twice the bit-rate of the non-
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(a) The Italian Job 

(b) Street Corner  

Figure 3-19 Comparison of re-encoding in different configurations: one encoding and 

multiple encodings.  Each line represents a configuration.  Each dot represents a resolution.  All 

results are from the quantization scale 24. 
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(a) The Italian Job 

(b) Street Corner  

Figure 3-20 Compression efficiency of the combination of multi-encoding and DCT-

coefficient dropping. 
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288×192 

192×128 

96x64 

Figure 3-21 Bandwidth efficiency for single resolutions.  The test sequence is The Italian Job.  

Each line represents a configuration and dots on that line represent different quantization scales.  

DCT-coefficient dropping from multiple encodings is compared with non-scalable encoding and for 

some resolutions with DCT-coefficient dropping from enhancement layers. 
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scalable stream.  This is consistent with Figure 3-4 in that the compression efficiency 

gets worse as more coefficients are dropped.  Our experiments show that when 3×3 

out of 4×4 coefficients are kept after dropping, the compression efficiency is 

acceptable.  Therefore, the number of streams has to be at least half of the number of 

supported resolutions in this approach.  

3.3.3.2 Computational cost 

To characterize the computational costs of the various algorithms, we use the 

number of DCTs, the number of IDCTs, and the number of motion estimations (ME) 

for encoding a P frame (Y component only) as the measure for computational cost 

instead of execution time.  Since the H.264 codec uses a 4×4 DCT, the number of 

DCTs/IDCTs is the number of 4×4 blocks in an image (assuming no blocks are 

skipped).  IDCTs in the encoding cycle to generate reference frames are not counted.  

For each 16×16 block, seven searching modes 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 

4×4 are supported.  Therefore, the number of MEs is the number of 16×16 blocks 

multiplied by seven multiplied by the number of reference frames.  We used three 

temporal reference frames.  For the MPEG-2-like scheme, there is one spatial 

reference frame and three average reference frames so there are seven reference 

frames in total.   

Table 3-9 and Table 3-10 show the computational cost for approaches under the 

one-encoding architecture, for The Italian Job and Street Corner respectively.  Table 

3-11 and Table 3-12 show the computational cost for approaches under the hybrid 

architecture.  From these tables, we conclude that no approaches require 
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Table 3-10 Computational  Cost for mechanisms in the one-encoding-for-all-resolutions 

architecture and the one-encoding-per-resolution architecture (Street Corner). 
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Table 3-9 Computational Cost for mechanisms in the one-encoding-for-all-resolutions 

architecture and the one-encoding-per-resolution architecture (The Italian Job).  
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Table 3-12 Computational Cost for hybrid architectures: multiple encodings + scalable 
encoding/transcoding/re-encoding (Street Corner). Non-scalable encoding and one-encoding-for-

all-resolutions mechanisms are listed as reference. 
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Table 3-11 Computational Cost for hybrid architectures: multiple encodings + scalable 

encoding/transcoding/re-encoding (The Italian Job). Non-scalable encoding and one-encoding-for-

all-resolutions mechanisms are listed as reference. 
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significant computation at streaming time except re-encoding.  Therefore, 

computational cost is not a constraining factor for approaches not involving re-

encoding. 

 We also notice other interesting points in the tables.  First, the MPEG-2-like 

scalable encoding scheme requires the most computation at encoding time because of 

the extra MEs on additional reference frames.  Second, re-encoding needs the least 

computation at encoding time but the computation it saves is spent at streaming time. 

Thirdly, adding one encoding decreases the encoding-time-computation for the 

MPEG-2-like scheme because two-encoding means one more base layer that is 

encoded without additional references.  Finally, if we compare the computational cost 

for The Italian Job and Street Corner, we can see that resolution is the determining 

factor for computational cost. 

3.3.3.3 Storage cost 

Unlike bandwidth, storage is much cheaper.  In theory, one can encode video at 

every resolution that might be used and store it all; in practice, it would be extremely 

difficult to manage and access the large volume of data; in reality, there is more video 

produced than stored and even less stored video can be retrieved.  Therefore, we still 

want to lower the volume of data to be stored. 

Table 3-13 and Table 3-14 show the storage cost for all mechanisms and 

architectures.  Compared to one-encoding-per-resolution, all other mechanisms can 

save at least 30% of the storage space.  We are especially interested in the storage cost 
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for scalable encoding because they have good overall bandwidth efficiency and low 

streaming time computational cost.  In the one-encoding architecture, the MPEG-2-

like scheme saves 37.92% storage space compared to the one-encoding-per-resolution 

architecture for The Italian Job and 33.97% for Street Corner.  In the hybrid 

architecture, the MPEG-2-like scheme saves 32.51% for The Italian Job and 33.18% 

for Street Corner.  Adding one or two encodings does not increase storage cost much 

for scalable encoding especially for Street Corner because the compression is more 

efficient at high resolutions when there are more than one encoding.  The results for 

Dugad’s scheme are similar.  

Table 3-14 Storage Cost for hybrid architectures: multiple encodings + scalable 

encoding/transcoding/re-encoding, in megabytes and percentage compared to non-

scalable encoding. Two encodings for The Italian Job and three encodings for Street 

Corner. 
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Street 
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112.50 75.17 72.40 69.83 69.83 
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Table 3-13 Storage Cost for mechanisms in one-encoding-for-all-resolutions 

architecture, in megabytes and percentage compared to non-scalable encoding.  
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7.72 4.79 3.55 4.60 3.59 3.01 

100% 62.08% 46.00% 59.57% 46.58% 39.00% 
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112.50 74.28 55.21 72.63 58.43 50.05 

100% 66.03% 49.08% 64.56% 51.94% 44.49% 
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3.3.4 Supporting Multi-resolution Video 

In the previous sections, we tried to determine the trade-offs in supporting multi-

resolution video through a large number of experiments on real video.  However, there 

are still many open questions.  For example, in our experiments, we assume that each 

resolution is equally important; however, if 80% of users are watching the video at 

resolution 720×480, how much priority should we give to that resolution? 

Indeed, designing a multi-resolution video system poses more questions than 

those can be answered by our experimental results.  In this section, we first try to 

formulate the problem of designing a multi-resolution video system.  Then we 

describe the guidelines we draw from our experimental results to help the design of 

such as systems.  

The design of a multi-resolution video system can be defined as a Lagrangian 

optimization problem.  Lagrangian methods have been widely used to minimize video 

quality distortion subject to a rate constraint [58][71][80].   

At a high level, the design of multi-resolution video is similar to a typical Rate-

Distortion (R-D) optimization problem.  A typical R-D optimization problem is to find 

a solution S that minimizes the Lagrangian cost J, where  

)()( SRSDJ λ+=  

In the above equation, D(S) is the distortion, R(S) is the rate, and λ is the Lagrange 

multiplier.  If the R-D function is known, for a given λ, an optimal solution S*(λ) that 
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minimizes the Lagrangian cost J for that λ can be found.  The Lagrange multiplier λ 

allows us to make a trade-off between the distortion and the rate.  For example, if λ=0, 

the optimization is biased to the distortion and minimizing J is to minimize the 

distortion; if λ=∞, the optimization is biased to the rate and minimizing J is to 

minimize the rate.  If there is a rate constraint C, the Lagrangian method can be used 

to find an optimal or near optimal solution subject to the constraint by looking for a λ 

that R(S*(λ)) is equal or close to C.  

In the scenario of video coding, all three quantities D, λ, and R tend to be 

complicated and subject to approximations and compromises.  For example, the use of 

temporal prediction makes optimization decisions on one frame have cascading effects 

on subsequent frames and these interactive effects are often ignored in practice [71].  

For the design of multi-resolution video, we consider three cost factors: bandwidth, 

computation, and storage, instead of one.  Therefore, both λ and R are vectors and the 

Lagrangian cost function is: 

)()()()( 332211 SRSRSRSDJ λλλ +++= ,  

where R1 is bandwidth, R2 computation, and R3 storage; and λ=(λ1,λ2,λ3) is the vector 

Lagrange multiplier.  

The vector Lagrange multiplier λ allows us not only to make a trade-off between 

the distortion and the resource consumption but also to make trade-offs among 

different resources.  For example, bandwidth is usually more expensive than storage; 

this can be reflected in the optimization process by specifying a λ1 larger than λ3.  



 86 

However, the choice of λ is also subject to ii CSR ≤))(*( λ  for i=1, 2, and 3, where Ci 

is the constraint of the corresponding resource.  

The biggest problem for designing multi-resolution video is to establish the right 

R-D function.  If the R-D function is known, searching for an optimal solution for a 

given λ and searching for a λ whose optimal solution can make the best use of 

available resources have been studied [9][23][57][61].  However, establishing the R-D 

function for designing multi-resolution video is extremely difficult because the huge 

solution space and many application-specific factors.  We discuss the solution space 

and application-specific factors below.  

A solution S for our design problem consists of several parts:  

),,,( 4321 ssssS = , 

where s1 is the grouping of resolutions, s2 is the mechanism to support multiple 

resolutions in one group, s3 is the codec, and s4 is the set of encoding parameters. 

The above definition of the solution is quite simplified.  For example, we assume 

that each group uses the same mechanism to support multiple resolutions.  However, 

the number of possible solutions is still large, just considering the pages of encoding 

parameters for the H.264 codec.   

The measure of the distortion is highly application-specific.  Assuming MSE 

(Mean Square Error) is used to measure distortion, the distortion of the system 

depends on the MSE at each resolution: 
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where N is the total number of resolution and wi is the weighing parameter reflecting 

the important of resolution i.   

The weights of resolutions are application-specific.  For example, some 

applications may give priority to high resolutions and others may give priority to 

resolutions with the most users.  In addition, the MSE for each resolution also depends 

on the content of the video, which is application-specific and dynamic. 

The measure of resource consumption is also application-specific.  For example, 

the bandwidth consumption depends on the underlying transport protocol and the 

geographic distribution of users; the computation depends on hardware and the 

operating system.     

While capturing R-D characteristics needs further research and is very 

application-specific, our work has established some general guidelines to quickly 

discard bad solutions and find promising solutions in the framework of Bonneville. 

Our experiments focus on exploring s1 (the grouping of resolutions) and s2 (the 

mechanism to support multiple resolutions in one group) in the solution space.  Our 

work shows that one single encoding or a single algorithm is hard to provide fine-

grained wide-range multi-resolution video effectively.  We have also run similar 

experiments [35] using the ffmpeg MPEG-1 codec [22], which is known for its speed 
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while the compression efficiency is not optimized.  Different codecs results in 

different results.  For example, scalable encoding is more efficient with the H.264 

codec; and the 8×8 DCT transform of the ffmpeg codec allows a wider working range 

of coefficient dropping.  However, our results all indicate a hybrid architecture can 

provide a good trade-off in resolution adaptation.  In particular, we believe that 

multiple scalable encodings with less than five layers in each encoding are a good start.  

DCT-coefficient dropping is preferred to generate one resolution between layers if 

DCT-coefficient dropping can be done at intermediate nodes.   

3.4 Conclusions 

In this chapter, we have examined the various trade-offs in supporting wide-range, 

fine-grained multi-resolution adaptation.  We believe that in the future, video 

streaming algorithm for both stored and live video are going to have to potentially 

support both extremely high-resolution video mapped to a large number of display 

characteristics.  In addition, we believe that such systems will also need to support 

efficient region-of-interest cropping, especially for applications such as telepresence. 

Our results show that encoding a video stream for every display size results in highly 

compressed and optimized video streams.  The main drawback of this approach is the 

high computational complexity required to churn out a potentially large number of 

streams.  Scalable encodings and fast-transcoding are useful but cannot support an 

extremely wide-range of display characteristics.  Finally, our results show that 

adapting a video stream between relatively close resolution requirements makes sense. 
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CHAPTER 4  
 

STEENS: MULTI-HOP BUFFERING AND ADAPTATION FOR VIDEO 
COLLECTION IN SENSOR NETWORKS 

As video sensor networks become more widely deployed, mechanisms for 

adaptively transmitting video data within the network are necessary because of their 

generally large resource requirements compared to their scalar counterparts.  In this 

chapter, we propose Steens, a multi-hop buffering and adaptation framework, for 

adaptively collecting video in sensor networks.  We will show that in-network 

adaptation and collaboration among sensor nodes is necessary to collect the most 

useful video with minimal wastage of networking bandwidth.   

4.1 Introduction 

With recent advances in hardware technologies, the construction of massively 

scalable video sensor networks is becoming possible.  Many applications that rely on 

video sensor networks require video collection, in which the video needs to be sent to 

a central sink (or sinks) for later analysis and processing.  Often, there is no direct 

network connection between a video sensor and the sink in the sensor network.  As 

such, they typically need to rely on other nodes in the network to buffer and forward 

data on their behalf.   
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Because image and video data can represent a large burden on the sensor-

networking infrastructure, simply passing data towards the sink, as in scalar sensor 

networks, may result in network congestion and random dropping of video data in the 

network, which will lead to waste of bandwidth and rapid degradation of video quality.  

There are techniques [66][79] to deal with network congestion in a scalar sensor 

network, but they do not provide appropriate buffer management and data adaptation 

functions that are needed to adaptively transmit video.  Video adaptation techniques 

are needed to manage in-network buffer space and to tailor video according to network 

conditions.  

Adaptive video collection in such sensor networks cannot be addressed by 

existing video adaptation mechanisms meant for streaming video over the Internet or 

other IP-style networks.  First, existing adaptation mechanisms for video typically 

assume end-to-end semantics between them, which does not exist for the multi-hop 

store-and-forward routes in most sensor networks.  Second, most of the current 

streaming algorithms use either a one-to-one unicast or a one-to-many multicast 

delivery mechanism while video collection is typically many-to-one.  Finally, existing 

streaming mechanisms have to satisfy a real-time or “just in time” delivery 

requirement for video streaming and might not suitable for video collection, in which 

video can sit in the network for a much longer time.  Furthermore, because the video 

sensor network will typically respond to specific events spaced out over time, the 

resultant video may not necessarily be continuous over time; rather, the video will 

consist of a number of short segments representing events. 
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There exist a couple of video adaptation systems that adapt video over multi-hop 

routes or for many-to-one flows; but their applications scenarios are different from 

video collection in a sensor network.  A system that adapts video over multiple hops is 

End System Multicast [11], which is a video conferencing system on application 

overlays.  In this system, the intermediate nodes are also receivers and adaptation is 

independently performed for each hop.  In a sensor network, however, the intermediate 

nodes are also sources not sinks; and the adaptation must be performed between the 

sources and the sink through multiple hops.  An adaptation mechanism that deals with 

many-to-one video flows is PALS [63], which streams video from multiple senders to 

one receiver.  However, the multiple streams in aggregate make up a single video 

stream.  In the video sensor case, the multiple streams are distinctly different streams.  

The adaptation challenge for multiple senders is to choose a subset from the senders 

and assign different parts of the same video for them to send so that the receiver can 

get a complete copy of the video.  Multiple sources generate different video and the 

adaptation challenge is to collect the most useful video from all sources.  In summary, 

these adaptation technologies cannot address the requirements of video collection in a 

sensor network even though they seem to have extra features compared to common 

adaptation technologies.   

In this chapter, we propose Steens, a multi-hop video buffering and adaptation 

framework for video collection in sensor networks.  In this framework, nodes in a 

multi-hop route collaboratively participate in video adaptation and delivery of video 

sensor data.  We describe this framework in section 4.2.  In section 4.3, we compare 
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video quality, bandwidth wastage, and bandwidth sharing fairness of different 

approaches within this framework and compare them with traditional IP-based video 

adaptation mechanisms through trace-driven simulations.  

4.2 Design of a Multi-hop Buffering and Adaptation Mechanism 

Adaptation mechanisms need to know the network conditions to make proper 

adaptation decisions.  However, the lack of end-to-end semantics in a sensor network 

makes it hard for a sensor node to detect network conditions several hops away.  

Therefore, we propose to adapt video hop-by-hop according to the network conditions 

on directly connected links, instead of conventional end-to-end adaptation that 

depends on end-to-end network conditions.  In this section, we describe the design of 

Steens, a multi-hop buffering and adaptation framework for video collection in sensor 

networks.  We discuss the basic adaptation mechanisms we choose to use in Steens 

and possible ways to compose them to construct a system-wide collaborative 

adaptation mechanism that can effectively collect data in a multi-hop network and 

allow bandwidth fair sharing among multiple sources. 

For the purposes of this dissertation, we assume that network setup protocols exist 

to construct and maintain the network topology.  We also assume that data loss is 

caused by congestion only, i.e., links between any two nodes are reliable through link 

layer retransmission and the adaptation mechanisms have control over data dropping. 
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4.2.1 Basic Tailoring Mechanism  

For Steens we will use scalable encoding as the basic tailoring mechanism.  There 

are a number of reasons for this.  First, tailoring scalably-encoded video allows video 

to be adapted through dropping of data, leading to simplified computational 

requirements for adaptation.  Re-encoding or transcoding is too computationally 

intensive and does not scale because intermediate nodes close to the sink have to tailor 

multiple video streams from different sources.  Second, it does not require 

transmission of extra data to perform tailoring on intermediate nodes.  Multi-encoding 

requires transmitting multiple streams to intermediate nodes, which can be 

prohibitively expensive.  Finally, most video encoding schemes support scalability to 

some degree and can be used in Steens. For example, even “non-scalable” encodings 

can support temporal scalability by dropping frames.   

4.2.2 Basic Adaptation Mechanism 

In order to adapt the video within the network, we will use a priority-based 

buffering and adaptation mechanism on individual nodes as shown in Figure 4-1.  At 

any time, high priority data (priority zero is the highest and priority three the lowest) 

in a buffer are sent before low priority data.  This is similar to the window-based 

priority dropping mechanisms in [20][44] except that the “window” here is as large as 

the buffer.  There are a number of advantages of the choice of scalable encoding with 

priority-based data dropping for adaptation.  First, it does not require much 

computation, which will not burden resource-constrained sensor nodes.  Second, it 

effectively uses buffering for adaptation and can potentially make good adaptation 
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decisions by allowing the decisions to be delayed until more information is available.  

Finally, it separates application-specific encoding-scheme-dependent prioritization 

from the general scheduling (sending and dropping) algorithm.  The prioritization 

mechanism shown in Figure 4-1 is very simple and it tries to maintain a smooth frame 

rate based on the assumption that all frames are independently encoded.  More 

complicated prioritization mechanisms can be easily integrated in without affecting 

the generality of our discussion on adaptation mechanisms.  

4.2.3 Composition 

Given our chosen adaptation and tailoring mechanisms, the most important 

question in the design of Steens is how to compose adaptation mechanisms on 

individual sensor nodes into a whole system to achieve the application’s adaptation 

goal.  We identify three components that can change the behavior of the composed 

system: global prioritization, buffer management, and signaling.  The global 

prioritization component accounts for the relative importance among video sources; 

the buffer management component allocates buffer space among various sources; and 

the signaling component exchanges information among neighbor nodes to help 

manage buffers and make adaptation decisions.  In the remainder of this section, we 

 Priority 0 

 Priority 1 

 Priority 3 

 Priority 2 
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Figure 4-1.  The basic adaptation mechanism and a simple prioritization 

mechanism.  At any time, high priority data are sent before low priority data. 
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briefly describe the three components and their impact on video quality, bandwidth 

wastage, and bandwidth sharing in more detail. 

4.2.3.1 Global prioritization 

In Section 4.2.3, we assume a prioritization mechanism that maps the utilities of 

data to priorities within one stream.  When we combine adaptation mechanisms on 

individual nodes together, however, prioritization also needs to consider the relative 

importance of different video sources.  For example, data from a camera at a security 

door are likely more important than data from a camera at an office.  

In this thesis, we assume a global prioritization component to map local priorities 

to global priorities to reflect the importance of video sources.  Because such networks 

are collaborative rather than combative, we believe that this assumption is reasonable.  

Example global mappings are shown in Figure 4-2.  Figure 4-2(a) shows two video 

sources that are equally important and their local priorities are mapped to the same 

local priorities.  In Figure 4-2(b), src1 is more important than src2 and all its data 

should be sent before data from src2.  Figure 4-2(c) shows that src2 is less important 

than src1 in general but its highest priority data are as important as those from src1.  

For example, src2 is the camera at the office, which is usually not as important as 

camera src1 at the security door; but frames from src2 capturing things being moved 

out of the office are of great importance.  The mapping is application-specific and may 

change over time; yet the adaptation mechanism shown in Figure 4-1 still works 

because it works on the general notion of priorities.  
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Global prioritization helps enforce bandwidth sharing among multiple video 

sources because it reflects the importance of video sources.  The importance of video 

sources defines the goal of bandwidth sharing.  In Figure 4-2(a), the two sources 

should share the bandwidth equally.  In Figure 4-2(b), if there is only bandwidth for 

half of the data, then all bandwidth should be taken by src1.  The bandwidth-sharing 

goal is achieved at the granularity of priorities as long as the adaptation mechanism 

can get as much high priority data to the sink as possible.  If the adaptation mechanism 

can achieve the fair-sharing goal in Figure 4-2(a), it can achieve the biased goal in 

Figure 4-2(b).  In this thesis, we will assume that all video sources are equally 

important and the mapping in Figure 4-2(a) is used.  We will focus on equal sharing 
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for the rest of this chapter and our discussion can be easily generalized to unequal 

sharing specified by prioritization. 

4.2.3.2   Buffer management 

The buffer space on a sensor node is shared by all sensor nodes using it to get data 

to the sink.  For a single source, the buffer space on intermediate nodes can be used for 

video adaptation; if intermediate nodes can carry out the source’s adaptation policy, 

the effective buffer space for the source is extended and better video quality can be 

achieved.  For multiple sources, how the buffer space is shared affects bandwidth 

sharing.   

There are two primary ways to manage buffers shared by multiple sources.  They 

can either share a single buffer in a first-come-first-serve manner or explicitly partition 

the buffer amongst the sources.  Partitioning can prevent a node from using more 

resources than its fair-share.  However, underutilization of buffer space may happen if 

the partitions are not updated with network topology changes; for example, if a source 

nodes becomes isolated, the partition reserved for it becomes empty and cannot be 

used by another sensor whose partition is overflowing.   

4.2.3.3 Signaling 

Although adapting video in the network can help realize an application’s 

adaptation policy, there are two problems if they make adaptation decisions using only 

local information.  One is priority inversion, a phenomenon in which data dropped by 

a node might have a higher priority than data kept on other nodes and eventually make 
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their way to the sink.  The other is unnecessary bandwidth wastage, caused by data 

being sent into the network but dropped somewhere along the way to the sink.  

Exchanging information among sensor nodes can help make more globally 

optimal adaptation decisions at the expense of signaling messages.  We propose two 

signaling protocols for information exchange in this chapter and study their effects on 

reducing priority inversion and bandwidth wastage as well as the cost of signaling 

messages.   

The first signaling protocol is similar to the ECN (Explicit Congestion 

Notification) mechanism [62] in the Internet to prevent congestion.  ECN sends a 

“buffer full” message when a high watermark is reached or a “buffer not full” message 

when a low watermark is reached to upstream nodes toward the source.  Nodes 

receiving the “buffer full” message will stop sending data to that node.  A sample 

message sequence is shown in Figure 4-3(a).  We believe that this signaling protocol 

can reduce bandwidth waste because it helps prevents data that will be dropped at a 

congestion node from being sent.  It has other advantages as well.  First, it helps use 

in-network buffer space effectively by trying to delay dropping until all buffers along 

the route from the congested node back to the source are full.  Since buffers on nodes 

close to the source usually are not shared by as many streams as buffers on nodes 

close the sink, they can greatly increase in-network storage capacity while the network 

is disconnected.  Second, it might reduce priority inversion because it pushes dropping 

back to the source and reduces dropping at multiple nodes.  Third, the buffer full level 
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is general information so it can be used in a multi-modal sensor network to reduce 

bandwidth wastage for all types of data.  However, this signaling protocol might cause 

unfair sharing of resources on a certain node because it biases towards nodes close by, 

which can potentially occupy the buffer before data from nodes farther away arrive.  

The second signaling protocol we propose adjusts the dropping level when a high 

watermark or a low watermark is reached and sends the dropping level, instead of the 

“buffer full” message, to upstream nodes towards the source so they will not send data 

that will ultimately be dropped.  A sample sequence of messages of this signaling 

protocol is shown in Figure 4-3(b).  This signaling protocol can save bandwidth 

wastage too but not as aggressively as the first signaling protocol because it allows 

high priority data to be sent to a congested node and forces the congested node to drop 

lower priority data arriving earlier.  However, by allowing high priority data to be sent 

Figure 4-3. Signaling protocols for collaboration among nodes. 
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to the congested node, it uses in-network buffers for more effective adaptation. By 

moving high priority data towards buffers close to the sink, high priority data from all 

sources are likely to be sent to the sink before low priority data; therefore, it connects 

the distributed buffers together as if the adaptation is based on a larger buffer.  By 

using a “larger” buffer for adaptation, it reduces priority inversion further and 

improves fair sharing.     

The purpose of these two signaling protocols is to show the benefits of 

collaboration among sensor nodes; therefore, their design is much simplified. For 

example, we use the instantaneous buffer fill level to measure congestion or to 

determine the dropping level.  Systems based on instantaneous information tend to be 

unstable and history information of the buffer can be used to reduce thrashing in a way 

similar to how it is used in active queue management in the Internet [5][18]. 

4.3 Experimentation 

In this section, we construct trace-driven simulations to verify the advantages of 

hop-by-hop adaptation over end-to-end adaptation and explore different design 

parameters in Steens.   

4.3.1 Simulation Setup and Metrics  

For our simulations, we captured a 3,000-frame trace using a Panoptes video 

sensor [19].  The resolution of the video is 320×240 pixels and the average frame size 

is 17,282 bytes.  This results in a video stream of approximately 4.14Mbps (at 30 

frames per second) for each camera.  Figure 4-4 shows the network structures we use 
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in the simulations.  The single-video-source structure shown in Figure 4-4(a) will be 

used when bandwidth sharing is not a concern.  Because the last link to the sink is 

typically shared by the most sensor nodes, we assume that it is the bottleneck link.  

The results, however, should generalize to any network configuration where the 

bottleneck is between the source and the sink.  We assume that each sensor has 

1.5Mega Bytes buffer space.  Each simulation run is 100 seconds of simulated time.   

The purposes of the simulations are (i) to understand the effectiveness of hop-by-

hop adaptation for each video source and (ii) to understand the sharing of bandwidth 

among multiple resources.   

The metrics we use to compare the effectiveness of video adaptation are video 

quality and wasted bandwidth.  Video quality is measured as the throughput and the 

priority distribution of received frames.  Video frame rate smoothness is also used to 
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Figure 4-4 The network structures used in the simulations. 

9 3 2 G

1 4 

5 

7 

6 

8 

Sensor node 

with a camera 

Sensor node 

without a camera 
sink 

(a) 

(b) 

(c) 



 102

compare video quality since the prioritization mechanism we choose aims to deliver a 

smooth frame rate.  There are two types of wasted bandwidth.  One is unconsumed 

bandwidth due to buffer underflow, improper scheduling, and so on.  The other is 

bandwidth consumed but not contributing to moving data to the sink.  In this chapter, 

we concentrate on the latter because it also wastes energy, a precious resource in 

sensor networks.  There are two sources for consumed but wasted bandwidth: data 

dropped after leaving their sources and signaling traffic.  In our experiments, dropped 

data are also weighted by the distance from the source because data dropped far away 

from the source consumes more energy than data dropped closer to the source and we 

assume transmission over each hop consumes the same energy.    

The metric for bandwidth sharing is fairness because we assume that all video 

sources are equally important as discussed in Section 4.2.4.1.  We use the distribution 

of received frames for each camera to measure bandwidth-sharing fairness.  

4.3.2 A Case for Hop-by-hop Adaptation 

In this subsection, we show through simulations that hop-by-hop adaptation is 

better than end-to-end adaptation in terms of video quality.  We consider end-to-end 

adaptation without end-to-end reliability, in which data may be dropped in the network 

randomly, and end-to-end adaptation with end-to-end reliability.  We have 

implemented a simple end-to-end reliability scheme similar to that in [78], in which a 

video frame is kept until an acknowledgement is received from the next hop.  Figure 

4-5 describes the acknowledgement sequences and data loss detection of the reliability 

scheme. 
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The one-source network structure shown in Figure 4-4(a) is used since we are 

mainly concerned about the video quality of hop-by-hop adaptation.    The average 

bandwidth is 4.2Mbps, which is a little higher than the average bit-rate of the video 

stream, on all links except the bottleneck link.  The bandwidth for the bottleneck link 

varies as shown along the x-axis in Figure 4-6.  Also for the bottleneck link, there is a 

6.7-second break starting at the 33
rd

 second and a 16.67-second break at the 66
th

 

second.  

Figure 4-5. The end-to-end reliability scheme through hop-by-hop acknowledgement. 
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The priority distribution for end-to-end adaptation and hop-by-hop adaptation is 

shown in Figure 4-6.  In Figure 4-6, the height of a column represents the total number 

of frames received.  There are at most four sub-parts within each column and each 

sub-part represents the number of frames for a certain priority level, from the priority 

level zero at the bottom to the priority three on the top.  Although the throughput is 

similar for both end-to-end adaptation and hop-by-hop adaptation, the hop-by-hop 

mechanism gets more high priority data through when the bandwidth is low.  For 

Figure 4-6 .  Throughput and priority distribution for end-to-end adaptation and hop-by-

hop adaptation.   The height of a column represents the total number of frames received.  

There are at most four sub-parts within each column and each sub-part represents the number of 

frames for a certain priority level. 
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example, when the bottleneck link has bandwidth 1.8Mbps, ideally about 1,000 frames 

(one third of the total frames) can get through and 750 of which are of priority zero 

and 250 of which are of priority one.  The throughputs for all three approaches are 

close to the ideal case. Only the hop-by-hop approach has a close to ideal priority 

distribution: about 710 priority-zero frames and 382 priority-one frames.  The two 

end-to-end approaches have frames evenly distributed, about 250 frames for each 

priority level.  If there are dependencies among these frames, the decodable frames for 

these two approaches are far more less than 1000 frames.  The frame distribution 

along the time line is shown in Figure 4-7.   

Figure 4-7 shows the frame rates for these approaches when the bottleneck 

bandwidth is 1.8Mbps.  The frame rates are calculated based on the capturing 

timestamps, not on arrival time because there is no real-time requirement.  Ideally, the 

frame rate should be about ten frames per second all the time during the simulation.  

None of the approaches achieve this frame rate.  The hop-by-hop, however, 

mechanism has a much smoother frame rate than the two end-to-end adaptation 

mechanisms because it effectively utilizes buffer space on multiple nodes for 

adaptation.  Without reliability, the end-to-end approach has random frame rates 

because the network drops data randomly; with reliability, only frames of the first 33 

seconds get through because the video source makes adaptation decisions based on the 
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Figure 4-7 The frame rates.  The frame rates are calculated based on the 

capturing timestamps, not on arrival time. 
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bandwidth on the first hop and tries to send out data with all priorities while the 

reliability scheme uses up the available bandwidth to send the first 33-second data.  .  

Figure 4-8 shows the wasted bandwidth for end-to-end adaptation and hop-by-hop 

adaptation.  The signaling traffic for end-to-end reliability is negligible.  The dropped 

data for end-to-end adaptation without reliability and hop-by-hop adaptation are 

similar because they both send data aggressively.  End-to-end adaptation with  

reliability uses much of the buffer space for unacknowledged data thus slows down the 

sending and drops about 50 megabytes (17%) less data than the other two mechanisms.  

However, we do not believe that the saving can justify its highly variable frame rate. 
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Simulations in this subsection clearly show that hop-by-hop adaptation can 

achieve better video quality on a multi-hop route than end-to-end adaptation.  If there 

are dependencies among frames such as in MPEG, the advantage of our approach is 

more significant because a dropped high priority frame can cause many low priority 

frames to be un-decodable.  In the next subsection, we study different ways to 

compose mechanisms on individual nodes in the hop-by-hop framework to better 

video quality, to reduce bandwidth waste, and to promote fair sharing.  

4.3.3 Exploring Steens 

In this subsection, we experiment with different buffer management schemes and 

signaling protocols and study their effects on the composed adaptation system.  We 

first study the video quality and bandwidth waste for a single source; then we study 

the bandwidth sharing among multiple sources. 

4.3.3.1 Effective adaptation for a single source 

In this subsection, we focus on the effect of signaling protocols on hop-by-hop 

adaptation for a single source assuming the single source can use all available buffer 

space.  The network structure and the network bandwidth are the same as the 

simulations in Section 4.3.2, where the last link to the sink is the bottleneck link and 

has two breaks during the simulation.  We assume signaling messages are reliably 

transmitted; however, the signaling protocols still work even if signaling messages are 

lost occasionally.  For example, in case a “buffer full” message is lost, the destination 

node of this message keeps sending data to the full node, which will be dropped at the 

full node and trigger the sending of another “buffer full” message.  
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The throughput and the priority distribution are shown in Figure 4-9 for three 

hop-by-hop adaptation systems: without explicit signaling, with Signaling 1 that 

exchanges “buffer full” messages, and with Signaling 2 that exchanges dropping 

levels.  The throughput is almost the same for all three systems, as expected.  In most 

cases, the two systems with signaling have more high priority data than the system 

without signaling because they delay the dropping of high priority data in a full buffer 

by pushing dropping towards the source.  The number of priority inversions is reduced 

because priority inversions occur when there are multiple nodes dropping frames and 

Figure 4-9 .  Throughput and priority distribution for three hop-by-hop adaptation systems. The 

height of a column represents the total number of frames received.  There are at most four sub-parts 

within each column and each sub-part represents the number of frames for a certain priority level. 
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having different dropping levels.  However, for Signaling 1, at the initial stage of the 

simulation, there are low priority data getting into intermediate nodes and they cannot 

be replaced by high priority data when the buffer is full.  This low priority data gets 

sent even when the average bandwidth is very low.  In general, this is not a problem 

for Signaling 2 because it allows high priority data to enter a full buffer to replace 

those low priority frames unless occasionally these low priority data get sent before 

high priority data arrive.    

Figure 4-10 shows the frame rates for the bottleneck bandwidth of 1.8Mbps.  Still, 

no approach achieves the ideal 10 frames per second.  However, both systems with 

signaling do better than the system without signaling.  Signaling 1 smoothes the frame 

rate over the first short break; with Signaling 2, the frame is smoothed into two 

relatively stable phases: before the 45
th

 second, the frame rate is 10 frames per second; 

after that the frame rate is about 7.5 frames per second despite the long break on the 

bottleneck link.  The cause of the difference lies in how the buffer space is used as the 

smoothness of video is tightly coupled with the buffer space for adaptation.  In all 

three cases, buffer space on intermediate nodes is used for adaptation.  However, 

without signaling, dropping starts immediately when the bottleneck link breaks while 

the two signaling protocols delay the dropping by asking other nodes in the network to 

store some data so the buffer space is used more efficiently than without signaling.  
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Figure 4-10 The frame rates (hop-by-hop adaptation). The frame rates are 

calculated based on the capturing timestamps, not on arrival time. 
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Signaling 2 uses the buffer space more efficiently than Signaling 1 because it not only 

uses the buffer space to store data but uses it to store high-priority data by trying to 

maintain a system-wide dropping level. 

Next, we show the reduced bandwidth wastage through signaling (the bottleneck 

bandwidth is 1.8Mbps) in Figure 4-11.  Signaling 1 and Signaling 2 greatly reduce the 

amount of data dropped in the network, 82.7% and 67.1%, respectively.  The price 

they pay is negligible: 7620 and 8850 signaling messages.  Assuming 20 bytes per 

signaling message, the wasted bandwidth for signaling messages is just about one 

video frame, 0.053% and 0.062% of without-signaling-bandwidth-wastage.    

Figure 4-11  Wasted bandwidth 
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For Signaling 1 and Signaling 2, we need to decide the high watermark and the 

low watermark for the congested node.  In Figure 4-9 and Figure 4-10, the high 

watermark is that the buffer is completely full and the low watermark is that the buffer 

has 10% free space.  That is, in Signaling 1, a node asks its upstream nodes to stop 

sending when the buffer is full and to resume sending when the buffer has 10% free 

space; in Signaling 2, a node will decrease the dropping level when the buffer is full 

and increase the dropping level when the buffer has 10% percent free space. 

Obviously, changing the watermarks may change the behavior of the adaptation.  We 

have experimented with the low watermark of 5%, 20%, 30%, and 50%. The priority 

distribution, the frame rate, and the wasted bandwidth are shown in Figure 4-12 to 

Figure 4-17 for the two signaling protocols respectively. Changing the watermarks has 

a significant impact on Signaling 1.  In Figure 4-12, it is obvious that more low 

priority data are protected and sent by a larger low watermark because it delays the 

arrival of high priority data from other nodes.  For example, when the bottleneck 

bandwidth is 1.8Mbps, the low watermark 50% has about 164 less priority-zero 

frames but 183 more priority-two frames than the low watermark 5%.  Figure 4-13 

shows clearly that more early data are protected by a larger low watermark regardless 

of their priority.  When the low watermark is 50%, the frame rate for the first 20 

seconds is about 22.5 frames per second but falls to zero after about the 73
rd

 second.  

A large low watermark does reduce wasted bandwidth as shown in Figure 4-14.  For 

example, the low watermark 50% wastes 70% less bandwidth than the 5% watermark.  

This is expected since a large low watermark causes less aggressive sending and less 
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oscillation thus less data dropping than a small low watermark.  Increasing the low 

watermark for Signaling 2 also increases the number of low priority data in the sink 

and reduces the wasted bandwidth as shown in Figure 4-15, Figure 4-16, and Figure 

4-17; however, it is not as sensitive to the low watermark as Signaling 1 because it 

always allows high priority data to get through.  

Figure 4-12 .  Throughput and priority distribution for signaling 1 with different low watermarks.  

The height of a column represents the total number of frames received.  There are at most four sub-parts 

within each column and each sub-part represents the number of frames for a certain priority level. 
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Figure 4-13 The frame rates (signaling 1).  The frame rates are 

calculated based on the capturing timestamps, not on arrival time. 
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Figure 4-14  Wasted bandwidth 
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Figure 4-15 .  Throughput and priority distribution for signaling 2 with different low watermarks.  

The height of a column represents the total number of frames received.  There are at most four sub-parts 

within each column and each sub-part represents the number of frames for a certain priority level. 
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Figure 4-16 The frame rates (signaling 2).  The frame rates are 

calculated based on the capturing timestamps, not on arrival time. 
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Changing the watermarks provides a means to make trade-offs between video 

quality and wasted bandwidth.  For example, for Signaling 2, the low watermark 

10%and the low watermark 30% result in similar video quality while the low 

watermark 10% leads to about 30 megabytes more wasted bandwidth. 

4.3.3.2 Bandwidth sharing among multiple sources 

The focus of this subsection is on bandwidth sharing among multiple sources.  

Intuitively, the network topology may change the sharing because sensor nodes farther 

away from to the sink are likely getting less bandwidth on the bottleneck links, which 

are usually close to the sink.  Therefore, we use two network structures, both having 

ten cameras, and try to draw conclusions independent of network topology: one is the 

line structure shown in Figure 4-4(b) and the other is the tree structure in Figure 4-4 (c)  

Figure 4-17  Wasted bandwidth 
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The bottleneck link in both structures is the last link to the sink.  All links have 

13.86Mbps bandwidth, which allows about frames from three cameras to get through. 

The bottleneck links have four breaks at the16
th

 second, the 23
rd

 second, the 50
th

 

second, and the 66
th

 second with a total break time of 33.33 seconds, which are one 

third of the simulation time.    

In this chapter, we assume that all sources have the same priority, the same 

prioritization mechanism, and the same data rate.  The total bytes can be transmitted 

on the bottleneck link is about 115 megabytes, that is, about 6,683 frames.  Therefore, 

each source should have about 668 frames in the sink under equal sharing, preferably 

weighted toward higher priorities.  

Figure 4-18 shows the numbers of received frames for each camera, for first-

come-first-serve buffering and partitioned buffering, respectively.  Partitioned 

buffering enforces fair sharing, regardless of the topology or the signaling protocol, as 

shown in Figure 4-18(b).  The maximum standard deviation with partitioned buffering 

is 36.32 when Signaling 1 is used in the line structure.  For the same signaling 

protocol and topology, the standard deviation is 522.56 without partitions because 

Signaling 1 is very biased to nodes close to the sink whose data arrive early at node 9.  

Without signaling, the standard deviation is only 52.73 because all nodes send 

aggressively and there is enough bandwidth to transmit their data to node 9 to compete 

for the bandwidth on bottleneck link.  Signaling 2 also protects early data but it allows 

high priority data to be sent to a full buffer and forcing low priority data in the full 
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buffer to be dropped; therefore the sharing is greatly improved compared to Signaling 

1 and the standard deviation is 71.11.  The tree structure is a little more amenable for 

fair sharing because the difference in number of hops is smaller in the tree structure.  

Changing the low watermark for resuming receiving in Signaling 1 and the low 

watermark for decreasing the dropping level in Signaling 2 can change the sharing 

among cameras when the buffer is not partitioned.  In Figure 4-19, we show the effect 

of changing the low watermarks on fair-sharing in the line structure.  In general, a 

smaller low watermark means more aggressive sending thus better sharing.  The 

standard deviation for Signaling 1 ranges from 257.7 to 723.94 as the low watermark 

goes from 5% to 50% and the standard deviation for Signaling 2 ranges from 43.33 to 

218.82.  Nevertheless, Signaling 1 is bad for sharing whatever the low watermark is.   
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Figure 4-20 shows the priority distribution for multiple video sources.  In Figure 

4-20, partitions do not lower the throughput in our configuration because no partition 

is underflowing.  Signaling 1 has better priority distribution with partitions because 

low priority data are forced to be dropped even at the beginning stage due to the small 

partition and less low priority data can get to the sink.  Signaling 2 works better 

without partitions.  For example, the tree topology without partitions has 6294 priority 

–zero frames, which is 10% more than with partitions.  We believe that this is because 

high-priority data cannot get into a buffer when its partition is full while other 

partitions have lower priority data.   

Figure 4-20.  Throughput and priority distribution.  The height of a column represents the total number 

of frames received.  There are at most four sub-parts within each column and each sub-part represents 

the number of frames for a certain priority level. 
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Figure 4-21 shows the wasted bandwidth for multiple resources.  As the space for 

each partition is small, thrashing occurs for Signaling 1 and Signaling 2, which means 

more data dropping as shown in Figure 4-21.  For example, for the line structure and 

Signaling 2, partitioning drops eight times more data than first-come-first-serve 

buffering. 

It is worth noting that in our experiments, buffer partitions perfectly reflect 

network topology.  In a real sensor network, video sources may have different data 

rates and the network topology is always changing. A system with partitioned buffer 

may not be able to achieve the fair-sharing shown in this section and buffer underflow 

Figure 4-21 Wasted Bandwidth (dropped data) 
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can happen, which lowers the throughput of the system.  Therefore, we believe that 

Signaling 2 without partitions is a good option for fair sharing.  

4.4 Conclusions 

In this chapter, we propose Steens, a multi-hop buffering and adaptation 

framework for video-based sensor networking applications.  We have shown that 

adapting video in the network is more effective in collecting high quality video than 

adapting video at the network edges.  We also show that properly sharing information 

among sensor nodes can achieve smoother frame rates and reduce bandwidth wastage.  

Sharing of application-information information among nodes can also maintain fair 

sharing of bandwidth.  
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CHAPTER 5  
 

CASCADES: SUPPORTING VIDEO ADAPTATION IN SENSOR 
NETWORKS 

Providing video adaptation within a sensor network requires the underlying 

systems software to support some degree of programmability and retaskability while 

retaining high performance.  In this chapter, we describe Cascades, a flexible 

component-based framework for multi-modal sensor networking applications.  We 

also describe how it supports video adaptation within a sensor network.  

5.1 Introduction 

In order to reduce the power consumed for communication and to maximize 

scalability of a sensor network, it is necessary to process or filter the data from various 

sensors as close to the source as possible.  For some applications, this might be at the 

sensor itself, while in other applications it might be at a point where several sensor 

data streams are fused together. Programming a distributed, embedded, and 

heterogonous sensor network system consisting of up to thousands of sensor nodes is a 

formidable challenge.  This is further complicated by the fact that the processing 

within the network may need to be adjusted or changed because the sensor application 

may be dynamic over time.  Changes might be in response to an event captured within 

the sensor network or new algorithms being developed by the user to assimilate data.  
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Therefore, supporting easy-to-program and easy-to-retask data processing in the 

network is essential to the cost-effective development and maintenance of sensor 

networking applications.   

In scalar sensor networks, programmability and retaskablility are most often 

provided by query language interfaces that provide high-level abstractions for 

programming.  TinyDB [51][52], Cougar [86], and SINA [68] are representative 

examples of the query language approach.  They view the sensor network as a 

distributed database system and queries are distributed and processed in the network 

automatically.  Programming and retasking are accomplished by simply sending 

queries to the sensor networks.  However, the query language approach is suitable 

only for scalar sensor networks because scalar data can be adequately processed 

through generic operations such as MAXIMUM, MINIMUM, and AVERAGE.   

We propose Cascades [36], a flexible component-based framework, to provide 

programmability and retaskability to process multimedia data in the network.  Unlike 

scalar data, multimedia data processing tends to be very application-specific and 

cannot be implemented solely through generic operations.  Instead, component-based 

approaches are often used to facilitate the development of multimedia applications by 

flexibly reusing complex algorithms.  For example, the Continuous Media Toolkit 

(CMT) [56] from Berkeley allows users to construct streaming applications rapidly 

through TCL scripts that combine lower-level video-based components.  Cascades 

adopts the component-based approach and addresses sensor networking issues such as 
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retaskability and the integration of scalar data and multimedia data.  We believe that 

such a framework is necessary for building multimedia sensor networking applications.  

In this chapter, we examine whether video adaptation in sensor networks can be 

accomplished efficiently in a component-based framework.  One key focus of our 

work is the need for high-performance.  Given the power and processing constraints 

on embedded devices, component frameworks that are slow may not be usable in a 

sensor network setting.  We will show how Cascades can meet the requirements of 

programmability, restaskablility, and high performance.  We will first describe the 

overall architecture of Cascades in Section 5.2. 

5.2 The Cascades Architecture 

As with any other component-framework, Cascades needs to provide the ability 

to combine the components in a meaningful way.  At one extreme, composability can 

be accomplished through pre-defined code segments that are compiled together into a 

single monolithic executable, allowing the system to run as efficiently as possible.  

Unfortunately, this eliminates the ability to make changes to a running system.  At the 

other end of the spectrum, one could imagine using a shell-level scripting program to 

compose such a system from a number of smaller executables each running as a 

separate process.  While making it easier to distribute smaller sub-components, such a 

system may suffer from a large amount of overhead in switching between address 

spaces and marshalling of data between stand-alone executables.   
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Cascades adopts an approach somewhere between these two extremes: it uses a 

high-level scripting language to connect highly-optimized components so that they 

execute in the same process.  High-level scripting languages allow users to specify 

rather complex systems with minimal code.  Furthermore, they allow programs written 

in high-level languages such as C or C++ to be called as part of the script.  This allows 

a majority of computationally intensive code (such as video processing algorithms) to 

be written in a language with a highly optimized implementation. 

In Cascades, we have chosen to use Python as the high-level scripting.  We have 

several requirements for the scripting language.  First, we prefer a language that 

supports Object-Oriented Programming because objects fit into a component-based 

framework naturally.  Second, it needs to provide the complex data structures that are 

needed to manage multimedia data.  Third, to support re-tasking, it must have the 

ability to add to or change the behavior of parts of the system while it is running.  

Finally, the combination of components needs to be of high-performance in order to 

minimize impact on systems performance.  We have chosen Python because it meets 

all these requirements and it is available on the two embedded platforms in our test 

bed.  We would expect that other scripting languages that meet theses requirements to 

work as well. 

The primary mechanism used to support the processing of multimedia data and 

the integration of multi-modal data in Cascades is cascading filters.  Filters are user-

supplied or toolkit-derived components that allow the sensor sub-system to tailor its 
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data for the user application.  The idea behind filters is that they process data with a 

highly optimized piece of code (rather than with an interpreted language).  There are 

several basic types of filters that we envision. 

Efilters (error filters) are the primary mechanism by which the handling of faulty 

sensors can be specified.  As an example, faulty readings can occur from bio-fouling 

of the sensors in outdoor scenarios.  These filters can consist of standard statistical 

filtering techniques; they can also allow the application to specify the exact way in 

which the faulty data may be handled.  

Dfilters (scalar data filters) are used to manage scalar data within the sensor 

network.  They take one or more streams of scalar data as input and produce as output 

one or more data streams as well as meta-information about the data.  As an example, 

one filter might calculate the average value measured per hour, either for a single 

sensor or a group of sensors.  The filter might also add meta-information such as 

timing information or relational information between sensors.  The sensor output can 

then be used by other filters.  

Vfilters (video filters) are used to manage video data being collected by video 

sensors.  Vfilters might consist of application-specific video processing algorithms or 

off-the-shelf components.  Application-specific algorithms might include image-

processing techniques for object identification; an off-the-shelf component might 

include a compression algorithm or video adaptation algorithm. 
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Ufilters (user filters) are user-specified filters that allow the user to specify the 

integration of data from the other types of filters, for example, the annotation of video 

streams using scalar sensor data. 

The focus in this thesis is on the video filter aspects of the component-based 

framework.  We leave other types of filters as future work. 

An example system in the Cascades framework is shown in Figure 5-1.  We 

believe that large multi-modal sensor networks will have a multi-tiered architecture 

that consists of low-power sensor nodes such as the scalar sensor nodes in Figure 5-1 

and high-power sensor nodes such as the video sensor nodes. The scalar sensors nodes, 

Stream Processing Engine 

Sensor Filtering 

 DFilter 

 
VFilter 

 
EFilter 

 
 UFilter 

Query Processing and 

Optimization 

Stargate 

Stargate 

Data and metadata flow Control flow Filter flow (code motion) 

Figure 5-1 An example system in the framework of Cascades.  The Stargate nodes are more 

powerful than scalar sensor nodes and can both capture video and be used to manage a number of scalar 

sensor nodes. 
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which are not capable of running Python due to memory constraints, can run the 

operating system of their choice such as TinyOS [33].  The scalar sensors can be 

abstracted to the point that they can be plugged as input into a dfilter into the 

Cascades systems. For example, Cascades provides a mote abstraction layer, which 

encapsulates the functionality of TinyDB [51] and exports the data collected from 

Berkeley motes [33] through generic Python interconnects. The mote abstraction layer 

runs on sensor nodes that are capable of data aggregation, so data from Berkeley 

motes can be collected by other filters without dealing with the communication details 

or TinyDB interfaces.  Crossbow Stargates in Figure 5-1 are an example platform for 

such data aggregation tasks. These nodes are powerful enough to process video data 

and to support Cascades’ cascading filter architecture.  In the Cascades framework, 

the base station of a sensor network contains a stream processing engine that 

determines the filters needed and their locations.  A filter management system will 

transmit and load filters into sensor nodes dynamically.  

We do not expect Cascades to be a complete system.  Rather, we are interested in 

providing a framework for others to use in order to gain insights into what abstractions 

are needed for building multimedia sensor networking applications.  We believe that 

once a large number of example applications have been assembled, it will be much 

easier to provide a polished, generic, and relatively complete middleware system. 
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5.3 Implementing Video Adaptation in Cascades 

In this subsection, we describe our implementation of a simple prototype of 

Steens in the Cascades framework.  The prototype includes video capturing, video 

filtering, video compression, video adaptation, and collaborative signaling.  The 

structure of this system is shown in Figure 5-2.  The two video sources are both 

Panoptes video sensors [19], which use the Crossbow Stargate embedded sensor 

platforms.  The Stargate platform runs the embedded Linux operating system 2.4.19-

rmk7-pxa2.  It has a 400 MHz Intel Xscale processor, 64 megabytes of memory, a 100 

Mbps Ethernet connector, and a compact flash wireless 802.11 card.  Video capture is 

accomplished through a Logitech QuickCam 4000 Pro USB camera.  The in-network 

manager and forwarder is an Intel StarEast node that has a 533MHz Intel IXP425 

network processor and 256 megabytes on-board SDRAM (only 64 megabytes are 

used).  It runs Snapgear Linux 3.1.1, a uClinux distribution for embedded systems.  

Wireless communication is through an Intel Calexico II card.  Although the Stargate 

nodes and the StarEast node both run embedded Linux, they are heterogeneous and 

two different cross compilers are needed.  The sink is a Compaq laptop computer 

running Redhat 9.0.  We will show in the following subsections how the software is 

constructed, how retasking is realized, and the performance overhead of the Cascades 

framework.  
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5.3.1 Programmability 

We begin with a basic adaptive video collection system without collaboration 

among nodes. Our system consists of code from the original Panoptes video 

sensor[19], the ffmpeg MPEG-1 codec [22], and code that we wrote to bring them 

together.  We implemented the prioritization mechanism in described in Figure 4-1.  A 

majority of the code was in written in C or C++.  We wrapped the C/C++ code 

segments with Python interfaces so that we have filters for capturing, motion detection, 

compression, prioritization, and networking.  With these filters, we can quickly build 

the software on the video source nodes as shown in Figure 5-3.  An example Python 

script connecting filters together is shown in Figure 5-4.  In Figure 5-4, the 

application-layer filter we use is a motion filter, that is, video without change is 

discarded, which is very useful to reduce data processing and transmission for 

applications such as video surveillance.  Other filters such as content-based filters can 

be plugged in as easily, assuming they have been written.  The compression filter is a 

JPEG encoder and can be replaced with an MPEG encoder on-the-fly.  The secretary 

filter packs and unpacks network messages and the messenger filter sends and receives 

Stargate 

Stargate 

StarEast 

Figure 5-2 A simple adaptive video collection system.  The two 

video sources are Stargate-based.  The StarEast node is an in-

network manager and forwarder.  The laptop is the sink.  



 134

messages.  The software on the StarEast node is composed in a similar way with 

fewer filters (no capture, motion detection, or compression filters).  The prioritizer on 

the StarEast node does global prioritization that maps local priorities to global 

priorities.   

#Initialization and minor procedures removed 

 

while 1: 

  messenger.PollSockets() 

  rawImage = camera.CaptureOneFrame() 

  if motionDector.HasMotion(rawImage): 

    JPEGImage,len = compressor.Compress(rawImage) 

    priority = prioritizer.PrioritizeCircle(); 

    JPEGMsg = secretary.MakeJPEGMsg(JPEGImage,len,priority) 

    buffer.PutMsg(JPEGMsg) 

    msgToSend = buffer.GetNextMsgToSend() 

    if messenger.SendMsg("manager", msgToSend, -1): 

      buffer.RemoveSelectedMsg() 

 

 

Figure 5-4 The capturing and adaptation script.  In this example, the application-layer 

filter is a motion filter; the compression filter is a JPEG encoder; the prioritization 

mechanism is show in Figure 4-1; and the buffer sends messages in the priority order. 

Application- 
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Filtering 

Compression 
Buffering  

and  

Adaptation 

Figure 5-3   The construction of a video sensor capturing and adaptation system.  Each of the 

filters has a Python interface, allowing it to be arranged in a variety of ways.  The secretary filter 

packs and unpacks network messages and the messenger filter sends and receives messages.  The 

Python script for an example video capture system is shown in Figure 5-4. 
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We have also implemented collaboration and signaling protocols as the next step.  

Since Python itself can do complicated processing and access data structures defined 

in C++, we are able to implement signaling in Python and keep most of the C++ code 

unchanged.  Figure 5-5 shows a sample Python script on the StarEast node for the 

ECN-like signaling in Steens.  In the Python script, the manager node checks its 

buffer-fill level periodically.  If the buffer status changes, it sends the “stop sending” 

message or the “resume sending” message to the video source nodes. Because Python 

is interpreted and does not need compilation, adaptation parameters such as the 

threshold for resuming sending can be adjusted easily.  We have found that compiling 

for heterogeneous platforms is tedious and error-prone even though we have only two 

different platforms.  The use of Python reduces the time required for prototyping, 

which requires frequent code changes.  After the signaling implementation in Python 

was working properly, we ported it into C++ and built new buffering and adaptation 

filters that were capable of sending and receiving signaling messages and 

collaborating with other nodes. 

In summary, we have found that the Cascades framework is quite useful for quick 

construction of our video adaptation prototype through reusing existing code and 

coding in the cross-platform scripting language Python.  
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Figure 5-5 Implementing signaling in Python. 

 

#Initialization and minor procedures removed. 

 

def is_time_to_stop_receiving(): 

  global buffer_full, buffer 

  if not buffer_full and buffer.IsFull(): 

    buffer_full = 1 

    return 1 

  return 0 

 

def is_time_to_resume_receiving(): 

global buffer_full, buffer 

if buffer_full and buffer.HasSpareSpace(8): 

  buffer_full = 0 

  return 1 

return 0 

 

while 1: 

  messenger.PollSockets() 

 

  msg = secretary.GetMsgFrom("sensor1") 

  buffer.PutMsg(msg) 

  msg = secretary.GetMsgFrom("sensor2") 

  buffer.PutMsg(msg) 

 

  if is_time_to_stop_receiving(): 

    cmd = secretary.MakeStopSendingMsg() 

    messenger.SendMsg("sensor1", cmd, -1) 

    messenger.SendMsg("sensor2", cmd, -1) 

 

  if is_time_to_resume_receiving(): 

    cmd = secretary.MakeStartSendingMsg() 

    messenger.SendMsg("sensor1", cmd, -1) 

    messenger.SendMsg("sensor2", cmd, -1) 

 

  msg2send = buffer.GetNextMsgToSend() 

  if messenger.SendMsg("sink",msg2send,-1): 

    buffer.RemoveSelectedMsg() 
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5.3.2 Retasking 

Retasking is supported by the dynamic reloading function in Python.  The code 

segment for retasking is shown in Figure 5-6.  The Python script checks the time 

stamp of the filter file regularly.  If a new version is available, it is loaded and 

executed.  To enable re-tasking at different scopes, we re-organize the filters in Figure 

5-3 into the structure shown in Figure 5-7.  Filters in the black boxes are surrounded 

by the dynamic loading check and can be reloaded when changed.  In this example, we 

are able to remove or add motion filtering and change the compression algorithm 

while the software is running.  

def run(): 

  global modify_time 

  messenger.PollSockets() 

  rawImage = camera.CaptureOneFrame() 

  new_modify_time = os.stat("filters.py")[ST_MTIME] 

  if modify_time != new_modify_time: 

    modify_time = new_modify_time 

    reload(filters) 

 

  msg = filters.run(rawImage)  

  buffer.PutMsg(msg) 

  msgToSend = buffer.GetNextMsgToSend() 

  if messenger.SendMsg("sink", msgToSend, -1): 

    buffer.RemoveSelectedMsg() 

 

Figure 5-6 Retasking through dynamic reloading.  “filters.py” corresponds to the 

processing filter in Figure 5-7.  It could contain the motion detection filter or not.   
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5.3.3 Performance Experiments 

To understand the impact of performance overhead on video adaptation, we have 

measured the amount of overhead on the Stargate platform introduced by connecting 

the system via generic interfaces in Cascades and the amount of extra space on the 

sensor needed to hold the code and Python executables.  

5.3.3.1 Experimental setup 

For experimentation, we compare and contrast four different types of system 

architecture.  We have implemented a simple video collection system similar to that 

shown in Figure 5-3 but without an application layer filter or a prioritizer.  We built 

the system with a single monolithic C program.  We will refer to this approach as the 

Figure 5-7 The re-organized filter structure for retasking.  Black boxes are filters whose files are 

checked regularly and can be replaced on the fly.  For example, the processing filter may include the 

application-layer filtering or not; the compression filter can be a JPEG encoder or an MPEG encoder.  
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C approach.  We have also built each of the components as standalone executables, 

using a shell script with pipes to interconnect the components.  We will refer to this 

approach as the Shell approach.  For the Cascades framework, we experimented with 

two approaches.  Both approaches use the same compiled C modules.  One approach, 

referred to as the Python-SWIG approach, uses the Simplified Wrapper and Interface 

Generator (SWIG) [74] system to generate Python interfaces for the C code.  The 

other approach, which we refer to as Python-Native, uses hand-coded C to Python 

interface mappings.  SWIG can generate necessary glue code automatically but may 

lead to excess code given its generic nature.   

In the experimental set up, the sensor node is connected to a laptop through 

Ethernet so there is no frame dropping due to network bandwidth.  Video compression 

is the major computationally-intensive component.  We implemented three different 

compression algorithms because we also expect the outcome of these experiments to 

be useful in understanding what can and cannot be done in future multi-modal sensor 

networks and what the minimum preocessing requirements are.  The three 

compression algorithms that we implemented are JPEG, JPEG-IPP, and MPEG.  The 

JPEG algorithm is based upon the standard libJPEG source code [38] that is freely 

available.  The code is optimized in a CPU independent way;  thus, JPEG represents a 

generic image compression algorithm.  The JPEG-IPP algorithm takes advantage of 

the Intel Integrated Performance Primitives (IPP) libraries that are available from 

Intel[40].  The IPP libraries provide routines for copying large amount of memory, 

performing DCT transform, Huffman encoding, and other multimedia related tasks.  
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The libraries are primarily low-level assembly routines that take advantage of the 

architecture.  The MPEG algorithm is the MPEG-1 video codec from ffmpeg, which 

we optimized for the Xscale processor on the Stargate platform by chossing the right 

compile flags.   

5.3.3.2 System performance 

In this section, we compare and contrast the four different approaches that we 

have implemented: the C approach, the Shell approach, the Python-SWIG approach, 

and the Python-Native approach.  For each approach, we captured 300 frames using 

each compression algorithm and measured the number of frames per second it was 

able to capture.  The results show that the performance of the Python-based system is 

very close to that of the monolithic C program and better than that of the Shell-based 

systems.  

Table 5-1 shows the results for JPEG encoding.  The system is able to keep up 

with the camera’s capture rate at the resolution 160×120 in all cases except the Shell 

programming case.  The multiple threads and I/O necessary to move information 

between shell-scripted entities impose excessing overhead, as expected.  Moving to 

Table 5-1 JPEG performance.  This table shows the performance of the libJPEG 

code using the four interconnect techniques.  The numbers shown are frame rates 

in frames per second. 

 C 
Python- 

Native 

Python-

SWIG 
Shell 

160×120 29.60 29.55 29.57 27.09 

320×240 10.01 10.00 9.45 8.07 

640×480 2.62 2.59 2.60 2.07 
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320×240 frames, we see that the C, Python SWIG and Python-Native algorithms 

perform similarly.  This is encouraging as it suggests that the overhead of using SWIG 

is not that high.  We also notice that using shell scripting in this case requires 

approximately 20% overhead compared to the C approach.  Finally, in the 640×480 

case, we see that the processor is completely overwhelmed with data per frame.  As a 

result all versions perform poorly while the shell scripting version is about 20% slower 

than the Python and C versions. 

For JPEG-IPP at 160×120, as shown in Table 5-2, the Stargate processor is able 

to keep up with the camera’s capture rate.  The Shell version is slightly faster than in 

the JPEG case primarily due to the IPP code freeing up some of the CPU cycles to do 

data movement and context switching between address spaces.  For the 320×240 video, 

we see that the IPP-based code is able to achieve a video capture rate 80 to 87% better 

than its non-IPP-based counterpart.  This suggests that in building such sensor systems, 

hand tuning of the filters for specific platforms is critical to performance.  Meanwhile, 

the overhead of the Shell version increases from about 20% to 25% compared to JPEG 

because the computation time for each frame is decreased and the context-switch 

Table 5-2 JPEG IPP performance.  This table shows the performance of the JPEG 

code that takes advantage of the IPP libraries using the four interconnect techniques.  

The numbers shown are frame rates in frames per second, 

 C 
Python- 

Native 

Python-

SWIG 
Shell 

160×120 29.69 29.41 29.88 28.68 

320×240 18.37 18.38 17.74 13.95 

640×480 5.04 5.04 5.04 3.77 
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overhead becomes a larger proportion of the total computation time.  For the 

resolution 320×240 we again see that the C and various Python versions are similar.  

Finally, we see that in the 640×480 case, the IPP version allows nearly a doubling of 

the frame rate achievable by the non-IPP version.   

Results for the ffmpeg MPEG-1 video compression algorithm are shown in Table 

5-3.  It is interesting to note that adding motion compensation between frames requires 

approximately 50% computational overhead in the 320×240 case and the 640×480 

case compared to JPEG-IPP.  We believe that this is partially due to the slower 

memory hierarchy of the embedded processor.  Another point worth mentioning is that 

the Shell version does relatively better in the MPEG than in the JPEG cases; and the 

overhead decreases form 20% in JPEG to about 10%.  This is due to the facts that (i) 

there is a significantly higher computation per frame requirement than in the JPEG 

cases allowing the context switching overhead to be amortized over more cycles and 

(ii) MPEG frames are smaller than JPEG frames on average requiring less data 

copying between contexts. 

Table 5-3 MPEG performance.  This table shows the performance of the 

ffmpeg code using the four interconnect techniques.  The numbers shown are 

frame rates in frames per second. 

 C 
Python- 

Native 

Python-

SWIG 
Shell 

160×120 22.55 21.96 21.43 20.25 

320×240 8.46 8.32 8.35 7.55 

640×480 2.41 2.45 2.40 2.18 
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In general, we found that the Python-SWIG and Python-Native algorithms had 

very similar performance.  We also found that the Python versions perform similarly 

to the C version.  Given its interpretive nature, we believe that this is a significant 

achievement for the writers of Python and something that we should take advantage of 

for composability and retasking of sensor networking code.  Finally, we note that on 

average the MPEG frames are approximately half the size of the JPEG frames for the 

320×240 case.  It may be worth spending twice the computation time (compared to 

JPEG-IPP) to encode video as MPEG frames to reduce bandwidth consumption in 

extremely bandwidth-stringent environments  

5.3.3.3 Code size 

One potential drawback of using Python is that it requires that the Python 

interpreter and necessary Python libraries (called modules in Python terminology) be 

installed on the each node running the Python scripts.  Clearly, this could limit the 

types of embedded processors that the code can run on.   

In Table 5-5, we have listed the code sizes for the JPEG-IPP algorithm.  Here, we 

see the clear differences between the various approaches.  The C code is a single 

compiled object allowing all the standard libraries to be linked in just once.  For the 

Shell approach, the code consists of compiled code segments, which are filters, and a 

small script to connect them. The filters are compiled separately and each contains a 

copy of the standard libraries.  As a result, the Shell connected code is approximately 

51% larger than the C code.  The Python filters (the compiled code) require even more 

space than the Shell filters due to the wrappers for the Python interfaces.  Hand-
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writing the interface wrappers as in the Python-Native approach saves 120 kilobytes 

compared to the Python-SWIG approach, at the expense of additional programming.  

We also see that there is approximately one megabyte overhead to store the Python 

interpreter and two small Python modules that are required to run the experiments.  

Still, these are reasonable for all but the smallest devices. 

Table 5-4, we have listed the MPEG-based code sizes.  As shown in the table, 

MPEG requires significantly more space (and processing power) in order to operate on 

the embedded devices.  This is as expected, given the complexity of motion estimation.  

Because of the relatively large size of the MPEG compiled code, much of the space 

Table 5-4 Code Sizes.  This table shows the size in kilobytes of 

the various subcomponents for the MPEG-based code. 

 C 
Python 

Native 

Python-

SWIG 
Shell 

Compiled 

code 
1064.9 1072.0 1318.3 1114.1 

Script -- 1.2 0.6 0.6 

Interpreter 

and libraries 
-- 1103.7 1103.7 -- 

Total 1064.9 2176.9 2422.6 1114.7 

 

Table 5-5 Code Sizes.  This table shows the size in kilobytes of 

the various subcomponents for the JPEG-IPP code. 

 C 
Python- 

Native 

Python-

SWIG 
Shell 

Compiled 

code  
95.7 184.8 299.6 145.0 

Script -- 1.0 0.6 0.6 

Interpreter 

and libraries 
-- 1103.7 1103.7 -- 

Total 95.7 1289.5 1403.9 145.6 
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overhead of the Python interpreter and the Python modules is amortized over the 

larger code. For the Python-Native approach, the overhead compared to the C 

approach decreases from about 1250% for JPEG-IPP to 104%.  For the Python-SWIG 

approach, the overhead decreases from 1370% to 125%.  We expect that increasingly 

complicated video processing will be needed for adaptive video collection and will 

make the impact of Python’s overhead smaller.   

5.4 Conclusions 

We believe that a component-based framework will be needed to provide 

programmability and retaskablility to integrate multimedia data into sensor networks.  

We have proposed such a framework, Cascades, to support the processing of 

multimedia data in the network and the integration of multi-modal data.  In this 

chapter, we have focused on supporting video adaptation in Cascades.  Our 

experimental implementation has show that video adaptation fits well into the 

Cascades framework and has good performance. 
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CHAPTER 6  
 

CONCLUSIONS AND FUTURE WORK 

6.1 Research Contributions 

In this dissertation, we have focused on addressing application-specific 

requirements in the process of adapting video to meet resource constraints.  Existing 

adaptation technologies for video streaming applications may be used to meet the 

resource constraints; however, the mechanisms they use to lower resource 

consumption and to respond to network changes might not be able to deliver 

acceptable video for new emerging application scenarios.  We have investigated new 

mechanisms to adapt video to meet resource constraints as well as to satisfy 

application requirements.  In particular, we address two special requirements: 

accommodating large variation in resolution and collecting video in a multi-hop sensor 

network.  

To accommodate large variation in resolution, our work focuses on supporting 

wide-range resolution adaptation.  Our work is the first to address the problem of 

supporting wide-range resolution adaptation for block-based compression algorithms.  

We have examined the performance of existing multi-resolution video technologies 

when supporting a large number of resolutions; and have found the efficiency 

decreases rapidly as the number of resolutions increases.  We have proposed hybrid 



 147

schemes and studied their performance.  We have found that the Bonneville 

framework, which combines multiple scalable encodings, can make good trade-offs 

when organizing compressed video to support a wide range of resolutions 

simultaneously.   

Our work on video collection in a sensor network is the first to consider adapting 

video in a multi-hop store-and-forward network, for non-real-time use, and for 

multiple video sources.  We have proposed to adapt the video in the network and 

proposed the Steens framework to compose adaptation mechanisms on multiple nodes.   

We have designed two signaling protocols in Steens to coordinate multiple nodes.  Our 

simulations show that in-network adaptation can use buffer space on intermediate 

nodes for adaptation and achieve better video quality than conventional network-edge 

adaptation.  Our simulations also shown that explicit collaboration among multiple 

nodes through signaling can further improve video quality, reduce bandwidth wastage, 

and share bandwidth fairly. 

We have also implemented a prototype of Steens on a video sensor network test-

bed.  The implementation is in Cascades, a framework we propose to support multi-

modal sensor networking applications.  The component-based framework of Cascades 

provides programmability and retaskability for the implementation of Steens while 

still maintains adequate performance.  
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6.2 Future Directions 

In this dissertation, we have proposed unique video adaptation technologies to 

address challenges in supporting large variation in resolution and video collection in 

sensor networks.  As with any good research, new problems have come up during our 

search for solutions.  Below we list some of these problems that we believe are 

important in the area of video adaptation for future diversified video applications. 

6.2.1 Future Directions in Resolution Adaptation 

To accommodate large variation in resolution, we have proposed Bonneville, a 

framework for fine-grained resolution adaptation over a wide range of resolutions.  

However, to provide users with what they want to watch from the high resolution 

video shown on different display devices, we need both resolution adaptation to adjust 

the video to an appropriate resolution and ROI adaptation to select the right region.  In 

Bonneville, video is encoded by block-based algorithms; a region can be encoded by 

constraining motion estimation to search within blocks that comprise that region 

[81][82].   The challenge is that the regions (and the resolutions) needed are not 

known a priori.  We need to encode small regions and compose regions of larger sizes 

from them when needed.  To construct regions of any size precisely, the smaller the 

component regions, the better.  However, compression efficiency decreases as regions 

become smaller, since motion estimation is constrained to a region and a good match 

may not exist in that region.  What is the compression efficiency of regional encoding, 

especially when combined with spatially scalable encodings, which we propose to 

store high-resolution video in to support resolution adaptation? Will the saving of 
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bandwidth by cropping irrelevant regions offset the degradation of compression 

efficiency? Can we plan the regions based on video content, so that large regions can 

be encoded that are likely to meet user needs?  There are interesting questions for 

future work. 

6.2.2 Future Directions for Video-Based Sensor Applications 

There are many open questions and challenges for video-based sensor 

applications.   

In our work, we have proposed an adaptive collection mechanism, Steens, that is 

based on priorities.  We have not considered how priorities should be assigned, and 

assigning priorities to sensed video data is hard.  Existing prioritization mechanisms 

usually prioritize data packets using general frame information such as the frame type 

and the dependencies among frames. Video collection is selective in nature so the 

prioritization should consider the content of the video and is very application-specific.  

 In Steens, we assume that all nodes are static and the multi-hop routes are 

relatively stable.   Researchers [67] have proposed another collection model in which 

mobile “data mules” are roaming and sensor nodes send data to a data mule when it 

gets close.  This has proven very effective for scalar sensors when sensor nodes are 

sparsely deployed.  In the oceanographic example, the data mule could be an aircraft 

that flies around to collect video data.  It is not clear how well this model works with 

video collection.  Future work could consider such integration and its impact on multi-

hop buffering.  
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Although many video sensor applications require only batched video collection, 

there are situations where video needs to be streamed over the sensor network for 

continuous playback.  In this case, we still believe that collaborative in-network 

adaptation can do a better job than end-to-end adaptation, which most of today’s 

adaptive streaming technologies adopt, because it can have a better estimate of 

network conditions and can push data dropping back, close to the source.   In addition 

to in-network adaptation, other forms of in-network video processing, such as stitching 

images together to remove overlaps and filtering out irrelevant video, should be 

exploited to prevent potential information overload as video is streamed from multiple 

sensors to one destination in the sensor network.  It is very challenging, though, to 

control the streaming latency for continuous playback when adaptation buffers and 

processing are both distributed.  
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