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ABSTRACT

An abstract of the dissertation of Bill Howe for the Doctor of Philosophy in Com-

puter Science presented December 8, 2006.

Title: Gridfields: Model-Driven Data Transformation in the Physical Sciences

Scientists’ ability to generate and store simulation results is outpacing their

ability to analyze them via ad hoc programs. We observe that these programs

exhibit an algebraic structure that can be used to facilitate reasoning and improve

performance. In this dissertation, we present a formal data model that exposes this

algebraic structure, then implement the model, evaluate it, and use it to express,

optimize, and reason about data transformations in a variety of scientific domains.

Simulation results are defined over a logical grid structure that allows a con-

tinuous domain to be represented discretely in the computer. Existing approaches

for manipulating these gridded datasets are incomplete. The performance of SQL

queries that manipulate large numeric datasets is not competitive with that of spe-

cialized tools, and the up-front effort required to deploy a relational database makes

them unpopular for dynamic scientific applications. Tools for processing multidi-

mensional arrays can only capture regular, rectilinear grids. Visualization libraries

accommodate arbitrary grids, but no algebra has been developed to simplify their



2

use and afford optimization. Further, these libraries are data dependent—physical

changes to data characteristics break user programs.

We adopt the grid as a first-class citizen, separating topology from geometry

and separating structure from data. Our model is agnostic with respect to di-

mension, uniformly capturing, for example, particle trajectories (1-D), sea-surface

temperatures (2-D), and blood flow in the heart (3-D). Equipped with data, a

grid becomes a gridfield. We provide operators for constructing, transforming, and

aggregating gridfields that admit algebraic laws useful for optimization. We imple-

ment the model by analyzing several candidate data structures and incorporating

their best features. We then show how to deploy gridfields in practice by injecting

the model as middleware between heterogeneous, ad hoc file formats and a popular

visualization library.

In this dissertation, we define, develop, implement, evaluate and deploy a model

of gridded datasets that accommodates a variety of complex grid structures and a

variety of complex data products. We evaluate the applicability and performance

of the model using datasets from oceanography, seismology, and medicine and

conclude that our model-driven approach offers significant advantages over the

status quo.
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Chapter 1

INTRODUCTION

As engineers and physical scientists work on increasingly complex problems, sim-

ulation has emerged as a third avenue to scientific knowledge, alongside theory

and experiment. Problems such as climate prediction are too complex to yield

an analytic solution, and have domains too large (or too small) to be replicated

in the laboratory. Simulation extends the utility of intractable mathematics and

incomplete observational data, yielding a formalized approximation for reality.

• Oceanographers must use simulation due to the complexity and scale of their

domain of interest. Directly measuring the physical attributes of the ocean at

sufficient scales to study currents, plume dynamics resulting from freshwater

jets at the mouths of rivers, and tsunami impacts is not possible. However,

complex coastlines and complex bathymetry prevent derivation of analytic

solutions.

• Mechanical engineers use simulation to analyze failure modes of materials

under stress. Crack propagation in the polycrystal microstructure of stressed

metals (Figure 1.1(a)), for example, requires modeling individual grains and

simulating their interaction [HPD+05].

• Seismologists use simulation to reconstruct the development of an earth-

quake, solving the inverse problem: inference about the displacement of the

earth from sparse data acquired observationally post hoc. This procedure
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(a) (b) (c)

Figure 1.1: Mesh structures used for Finite Element simulations in mechanical engineer-

ing, seismology, and medicine. (a) Individual grains of a metallic polycrystal structure

are modeled with a mesh to study crack propagation in aircraft wings [HPD+05]. (b)

A mesh representing the earth around the San Fernando Valley developed to study the

aftershocks of the 1994 earthquake in the area [ABB+03]. (c) A detailed mesh of a hu-

man heart. The inner structures are modeled in similar detail, but are not visible in this

image [ZB04].

is a prerequisite to a shift from forensics to prior warning and prediction

[ABB+03].

• Finite Element simulations in medicine allow medical researchers to study

organ function in extreme detail. Cardiologists apply numerical methods for

solving fluid dynamics equations to study fetal heart development [DTP+03],

preconditions for stroke [Sch02], and muscle contraction dynamics [ZB04].

We will consider simulations of continuous physical domains whose behavior is

described by differential equations. Discrete event simulations such as those mod-

eling factory flow or network traffic will not be considered, nor will mathematical

models that do not involve a spatial domain, such as ecological population models.

Simulation is an effective tool, but it is a hammer rather than a scalpel. Simula-

tion provides a surrogate for reality, but does not automatically filter out irrelevant



3

information or highlight important features. Scientists looking for specific phenom-

ena, such as the effect of aerosol particles on cloud formation [NS03], must analyze

large unrefined datasets generated by coarse-grained simulations. However, the

tools used to store, manage, and analyze these datasets has not keep pace with

our ability to generate them.

The explosion of data being produced by modern science has been noted by

domain scientists as well as database researchers [OLNS+05, GLNS+05]. Improved

observational technology (satellites, telescopes, particle accelerators) contribute

to the deluge, but simulations represent the dominant source. For example, the

BaBar project at the Stanford Linear Particle Accelerator has produced nearly a

petabyte of particle-collision data; about two-thirds of these data are the results

of simulations [BW].

The terms “online science” and “e-science” [Gob05] describe a shift away from

hypothesis-oriented, top-down data acquisition, to proactive, bottom-up data ac-

quisition. Traditionally, data acquisition was the dominant cost of scientific in-

quiry. Oceanographers, for example, would survey bathymetry with a lead weight

and a string, and have plenty of time during the winter to catalog and analyze the

data. “Simulations” were calculated by hand, and were therefore only formulated

over very simple (and unrealistic) problem domains. Due to the cost, one had to

be selective about which hypotheses would be investigated. We refer to this kind

of hypothesis-driven science as “querying the world” (QW).

However, as the cost and effort of data acquisition drops with improvements

in both computing hardware and observational equipment, acquisition activities

need not be motivated by a particular hypothesis. Instead, data can be acquired in

a bottom-up manner, with the expectation that a comprehensive data repository

will lead to a variety of scientific discoveries on a potentially larger scale sometime

in the future. We call this model of data science “downloading the world” (DW).
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We see the shift to DW in many domains. Biologists sequence entire genomes

and publish the results for public annotation and analysis [HAC+05, MSK+]. Pro-

teomics databases have followed closely [BBA+03]. Astronomers are systematically

mapping the sky rather than competing for telescope time to test individual hy-

potheses [SGT+02]. Earth scientists are interested in connecting ocean models to

ground water models to ecological models developed for varying purposes to allow

cross-scale and even cross-domain analysis [PCD+03, BL00, SBM+00, ND05].

In some domains, bulk observations are not yet technologically feasible. For

example, although satellites can measure sea surface temperature over large areas

at once, they cannot measure the temperature or any other physical quantity at

any significant depth. When the technology to perform DW-style observations is

not available, scientists turn to DW-style simulations, where large domains are

simulated at multiple scales [BWP+99, ABB+03, DTP+03, LFA+, HG05]. The

repositories generated by this kind of project are the topic of this dissertation.

Researchers (and funding agencies) place significant intrinsic value on massive

data acquisition projects. Alexander Szalay, an astronomer on the Sloan Digi-

tal Sky Survey project, says that the utility of a collection of datasets scales as

Ω(N2), as each pairwise comparison of acquired datasets potentially leads to new

discoveries [SGT+02]. For example, temperature measurements acquired by a per-

manent buoy can be meaningfully compared with measurements of different vari-

ables, using different instruments, in different regions, under different conditions.

Each such comparison can improve understanding of fluvian, estuarine, or ocean

processes. The implication of Szalay’s maxim is that simply acquiring datasets

leads to quadratic returns in scientific knowledge. However, arbitrary and com-

plete pairwise comparisons may not be feasible unless access and manipulation of

the acquired datasets become convenient and efficient.

Unfortunately, the computer science community has not produced general tech-

niques for accessing and manipulating scientific data repositories. Scientists still
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tend to store their data in files on an ordinary UNIX filesystem, in a variety of for-

mats with varying APIs. The hardware architectures on which the data reside are

state-of-the-art: multi-core systems, clusters of commodity machines, and Grids.

However, the tools scientists use to access them are updated versions of grep [DG]

and FTP [ABKL05].

Is a more sophisticated data management solution possible? Gray et al. report

success using relational databases to support finite element simulations [HG05],

though each solution relies heavily on application-specific code. Other research

groups have discovered that UNIX tools are insufficient for their needs, and have

developed specialized software for their particular applications [SA02, LCA+03,

BW]. However, general principles for data management in this domain have not

emerged.

Computer scientists have an opportunity to develop more general models and

tools useful across many scientific applications, and perhaps across many domains.

In fact, such generalization is critical, as integrative science emerges as a primary

source of discoveries. Traditional science tends to produce silos of specialization,

but the cost of discovery within narrow sub-disciplines is growing (witness multi-

billion dollar particle accelerators). The areas between silos are fertile, but we

need general tools to bridge the gaps. For example, oceanographers are beginning

to model ecological variables such as bio-mass and fish movement in addition to

physical variables [MtG+99]. The ability to conveniently and efficiently combine

and transform data from different disciplines is crucial for scientific progress, and

computer scientists must stay involved to accelerate progress.

To this end, we provide middleware for filtering, aggregating, and transforming

results of simulations of continuous fields, a particularly prolific type of scientific

data. The middleware is in the form of a data model and associated algebra that

we refer to as the gridfield model (GF). We position gridfields between client-

side visualization programs and large, potentially distributed data repositories.
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Users and application developers write gridfield expressions to extract, transform,

aggregate, and restructure datasets using both server and client resources. Client-

side visualization programs may be employed to render the results of a gridfield

expression and to manage user interaction features such as translation, rotation,

and zoom.

1.1 COMPUTATIONAL SCIENCE

All scientific disciplines began as observational activities. As the discipline ma-

tures, patterns in the observation inventory emerge, and scientists work to capture

and describe these patterns. With increasing rigor, descriptive models evolve into

prescriptive, mathematical models (e.g., the periodic table suggested the existence

of undiscovered elements). Historically, the models were necessarily simple, since

calculations were labor-intensive. With the advent of inexpensive computers, how-

ever, complex models (and models of complex domains) have become manageable.

In the physical sciences, mathematical models describe continuous domains and

continuous processes as a set of partial differential equations. A computer cannot

be used to solve these problems directly—the problem must be re-expressed as a

system of discrete algebraic equations. Once re-expressed and solved, the results

are interpreted to improve the model and answer scientific questions. This last

step—result interpretation—proceeds by creating and studying data products. A

data product is a derived dataset used to convey a specific scientific message. For

example, a data product may be a plot, an aggregate value, or a visualization.

The graphics capabilities of modern computers make visualizations a common and

effective form of data product; we will use visualizations as the typical case.

In this section, we describe the procedure of computational science in detail

using a simple example. The procedure involves six steps:
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Figure 1.2: (a) A thin rod with fixed endpoints subject to a vertical load f(x). (b) The

logical grid describing the rod.

1. Select the governing equations and boundary conditions for the physical sys-

tem under investigation. Only the simplest of problems can be solved ana-

lytically; practical problems require numerical methods.

2. Select a particular numerical method and formulate the discrete version of the

problem. The choice must balance computational efficiency against accuracy

with respect to the characteristics of the problem.

3. Discretize the domain of the problem; that is, overlay a grid on the continuous

domain to which the solution values will be bound.

4. Use the grid and the numerical method to derive and solve a set of algebraic

equations.

5. Evaluate and characterize the error and uncertainty of the solution.

6. Interpret the results via data products to improve the model and answer

scientific questions. The creation of data products is the focus of the disser-

tation.

To illustrate the process, consider a thin rod with fixed endpoints oriented

horizontally with a vertical force f(x) acting along its length (Figure 1.2(a)). Under

some simplifying assumptions, the deformation of the rod u(x) can be expressed
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as

−E
d2u

dx2
+ S

d4u

dx4
= f for 0 ≤ x ≤ 1

where E and S depend on the physical and geometric properties of the rod.

Since the rod’s endpoints are fixed, we can assume the following boundary condi-

tions

u = 0,
du

dx
= 0 for x ∈ {0, 1}

One method we can use to solve this problem is finite differences, where the

derivatives are estimated as the slope calculated between neighboring points. As

with most methods, finite differences requires that we divide the continuous domain

of the thin rod into discrete cells whose endpoints will hold the solution. For this

simple problem, we can represent the grid as a series of points x0, . . . , xN (Figure

1.2(b)). In this case, we use a uniform grid, so that xi = ih. Using the Taylor

series expansion to estimate higher order derivatives, each value in the solution ui

can be expressed relative to its neighbors as follows:

E
1

h2
(−ui+1 + 2ui − ui−1) + S

1

h4
(ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2) = f(xi)

The boundary conditions provide an approximation for the set of points xi,

i ∈ {0, 1, N − 1, N}, and an algebraic system of equations can be derived for the

set of points xi, 1 < i < N − 1:

Au = f , where

A = E
1

h2



2 −1 0 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

. . .
...

0 0 0 · · · 2


+ S

1

h4



6 −4 1 0 · · · 0

−4 6 −4 1 · · · 0

1 −4 6 −4 · · · 0
...

. . .
...

0 0 0 0 · · · 6


Based on the properties of the matrix A, the modeler now selects a method of

solving this system. To visualize the results of this simple problem, we can plot
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Figure 1.3: A sample solution to the problem in Figure 1.2.

the displacement against x. An illustration of the solution to a sample problem of

this form appears in Figure 1.3.

In the QW model of science, we might assume that an individual scientist would

carry out Steps 1) through 6) serially. The analog to this thin rod problem in the

DW model of science, however, is a database of related problems involving rods

with varying properties under different forms of load (point, continuous, clamped),

and solved using a variety of numerical methods. Each combination of parameters

represents a different experiment, and different groups continually conduct such

experiments and log the results. The scientific questions become more holistic.

Of course, the scenario presented here is trivial to carry out for new parameters

whenever the need arises; an analytic solution for this particular problem is known.

However, if one considers three-dimensional problems, complex domains such as a

coastline, simultaneous solution for several variables, a wide variety of grids and

solution methods, and enormous scale, analysis of the resulting data can become

the bottleneck to discovery and insight.

In Step 6) of the procedure above, computational scientists must experiment

with different data products and evaluate how well they convey the behavior of
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the physical system and the accuracy of their simulation, perhaps with respect to

particular phenomena. They therefore need tools that make it easy to design and

generate data products.

In the next section, we consider how the solutions are physically organized.

1.2 SOURCE DATA ORGANIZATION

Software used to derive a data product from raw simulation results must parse, ac-

cess, and manipulate those results in whatever manner they are represented. How

are simulation results represented in practice? We find that the status quo unit

of data is the dataset, defined operationally as the collection of data generated by

a single experiment, observation, or simulation. The typical representation of a

dataset is as one or more files organized in a directory or directory tree. Descrip-

tive metadata may either be embedded within the files themselves or represented

separately.

The advantage of the dataset model is that each datum is associated with

the scientific activity that produced it. This form of provenance is required for

correct interpretation and also serves to identify the dataset. For example, a

series of salinity measurements may be identified as coming from “Oregon State

University cruise, June 2005.” If anomalies are discovered in these data, researchers

can investigate the calibration of the sensors used, the telemetry procedures, or

other potential sources of error.

The disadvantage of the dataset model is that the logical decomposition of

data into datasets tends to dictate the physical decomposition of data into digital

artifacts. Each dataset is materialized as one or more files in a particular format,

obscuring the continuous nature of the domain being studied. Simultaneous access

to many related datasets to expose large-scale features of the data requires careful

scripting by the analyst. The relationships between datasets are entirely implicit

in the programs used to manipulate them. For example, many datasets may be
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defined over the same grid, but be stored separately. Time spent interpreting file

formats and gluing together datasets is time not spent interpreting the results and

designing new data products.

The dataset model of data is a natural result of the QW model of science.

Each dataset is the result of a specific world query, formulated to answer a specific

world question. In the DW model of science, however, information about the world

are downloaded en masse without regard to a specific scientific question. The

challenge, then, is to model and manipulate data captured through DW science.

Since the dataset model does not lend itself to holistic analysis, perhaps a

database makes a better choice. Indeed, the concept of storing a large collection

of data for use by many users in an ad hoc fashion immediately suggests the

features that database systems provide. However, commercial and open-source

database software are not extensively used to store scientific data. Gray et al.

report encountering the following excuses from scientists for their reluctance to

use database software [GLNS+05]:

• We don’t see any benefit in them.

• The cost of learning the tools (data definition and data loading, and query)

doesn’t seem worth it.

• They do not offer good visualization or plotting tools.

• I can handle my data volumes with my programming language.

• They do not support our data types (arrays, spatial, text, etc.).

• They do not support our access patterns (spatial, temporal, etc.).

• We tried them but they were too slow.

• We tried them but once we loaded our data we could no longer manipulate

the data using our standard application programs.

• They require an expensive guru (database administrator) to use.

Our experience agrees with these reports: We find that schema design, data
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ingest, performance tuning, and legacy application rewrites all require significant

up-front effort, and, once complete, acceptable performance is not necessarily guar-

anteed.

For better or for worse, then, DW science frequently relies on expansive, care-

fully organized filesystems to store data. To ease the burden of connecting our

software to these data, we provide a language for extracting portions of files and

exposing them as gridfields. We describe this language in Chapter 4.

Our mechanism for accessing native filesystem data is motivated by the need

to integrate with existing repositories rather than replace them. Research projects

routinely manage terabytes of information [SvPAG, MC99, TKSG02, HM04a], and

discussion of how to manage a petabyte is underway [BW]. Large repositories can-

not afford to translate all of their data to a new format whenever new technology

becomes available. On-demand translation is feasible, but such tools tend to op-

erate on one file at a time; combinations of multiple files or restriction to a small

part of one file must be handled by the application. We describe the structure of

a file and allow a program to extract just the portion it needs in the form it needs

it.

1.3 DATA PRODUCTS

We have characterized the input to the gridfield middleware; in this section we

describe the output.

A data product is a visualization or derived dataset computed from the results

of the simulation that makes interpretation or validation easier. For example, a

data product may be a simple rendering of a scalar dataset (Figure 1.4(a)), or

a comparison of simulated data with observational data (Figure 1.4(b)), or the

result of a complex computation with no visual component. In practice, we define

a data product to be either a visualization (in an on-disk image file format or on

the screen) or a derived dataset (in an on-disk file format).
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(a) (b)

Figure 1.4: a) A 2-D plot of simulated salinity data at the surface of the Columbia

River Estuary. An estuary is an area of mixing between fresh and salt water, usually

driven by tides. The arrows represent the wind direction. b) A timeseries of salinity

measurements compared with the model output at a particular station in the estuary.

We believe that the data product is beginning to supplant the research paper

as the currency of scientific communication: a data product can convey a singular

scientific message in a succinct and compelling manner, and is more accessible to

non-specialists and the general public. Expression, evaluation, and interpretation

of data products are therefore becoming fundamental activities for a computational

scientist.

The goal of this work is to simplify the activity of creating data products

for simulation results by employing a model of gridfields designed especially for

the domain. A grid is simply a collection of cells; a gridfield is a grid along

with data tuples bound to the cells of that grid. Data can be associated with

cells of any dimension. Figure 1.5 shows a 2-D grid with two datasets bound

to it. Geometric coordinates x and y are associated with the nodes of the grid,

as are salinity and temperature values. Area and flux values are associated with

each polygon. The grid structure consists of topological information only—generic
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Figure 1.5: Datasets bound to the nodes and polygons of a 2-D grid.

cells, and incidence and adjacency relationships between cells that are invariant

with respect to a particular geometric embedding. A geometric embedding in this

example is captured by associating coordinate pairs with the nodes.

The types of data products one can create is limited by the tools one uses to

create them. Simulation results may fit into a standard format such as netCDF

[JS92], HDF [hdf04], or FITS [Wel00]. These standard formats come equipped

with an API for limited manipulation. The netCDF format, for example, is a

storage format for multidimensional arrays, and supplies a “projection” operation

for choosing a particular variable and a “subslab” operation for slicing the array

along one or more dimensions. However, not all simulation results can be expressed

as a multidimensional array, so many system designers use their own proprietary

formats and write their own APIs in a general purpose programming language.

Using these APIs, scientists write programs to connect visualization and analy-

sis routines to their data. This approach is oriented toward processing an individ-

ual file to generate an individual data product. The DW model of science involves

running campaigns of simulations with emphasis on coverage of larger or more re-

fined time and space scales. During analysis, multiple scientists or research groups

experiment with a variety of data products.
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For example, given temperature, salinity, and velocity data over the estuary

illustrated in Figure 1.4(a), an oceanographer might plot the maximum salinity

intrusion against time, while an ecologist might be interested in connected regions

of “salmon habitability” defined using all three variables.

A general-purpose language can express any data product, but at a tradeoff of

development time and maintenance. Many scientists designing many data prod-

ucts can result in redundant effort. In our work with oceanographers, we encoun-

tered four different data manipulation programs (three in C and one in Fortran)

with significant overlap in functionality. Duplicated code may simply suggest that

conventional software engineering principles have been overlooked. However, the

common routines were subtly different in their interface and purpose. For example,

each program used a nested iterative structure, traversing the timesteps, then the

horizontal nodes, then the vertical nodes. However, one program aggregated over

depth, another summed the volume of cells that matched a particular criterion,

and a third extracted values at a particular point in space. The differences were as

prominent as the commonalities, making an appropriate abstraction non-obvious.

Our approach is to put aside the specifics of this application for a while and de-

rive simple, sensible operators for generalized grids. We are then able to recreate

complex, application-specific programs as compositions of simple operators.

Since the fundamental structure used in simulation is the grid, we promote

grids to first-class citizens, rather than requiring them to be translated into more

traditional structures. The algebra is designed to mimic scientists’ own English de-

scriptions of data products as an improvement over programs in a general-purpose

language. In this sense, we are proposing a domain-specific language [LM99] for

generating data products from the results of numerical simulations in the physical

sciences.
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1.4 EXAMPLE DOMAIN

We have been working extensively with environmental scientists involved with

the CORIE Environmental Observation and Forecasting System (EOFS) being

developed at the OGI School of Science & Engineering at Oregon Health & Sci-

ence University [BWP+99]. The CORIE system, named for the Columbia River

Estuary, is a multi-purpose platform for studying the fluid dynamics of coastal

waters around the world. Customers of CORIE’s data products include commer-

cial fisheries, environmental policy makers, and external research institutions. The

CORIE repository consists of forecast and “hindcast” simulations covering 1998 to

the present. Each day, forecast simulations add thousands of data products and

gigabytes of raw data to the repository, while sets of hindcast runs, batches of cal-

ibration runs, and individual researchers’ experiments are executed concurrently.

Our examples will primarily involve the CORIE system, though we will emphasize

general principles throughout.

To orient the reader, Figure 1.6 gives an example of a gridfield recipe used to

visualize a 3-D dataset in the CORIE domain. A recipe is an expression in the

gridfield algebra; we avoid the overloaded terms “query” and “plan” so as not

invoke presumptions about how these recipes are used or evaluated.

At the left of Figure 1.6, the gridfield H (named for its horizontal orientation)

has attributes x and y and models the surface of the Columbia River estuary. The

gridfield V (oriented vertically) has a single attribute z and models the depth of

the estuary. The cross product of H and V is a gridfield with attributes x, y, and z,

and models the full 3-D domain. To specify the dataset we are interested in, we use

the bind operator and pass it the identifier salt to indicate the salinity variable. To

restrict the result to a user-specified region of interest, we use the restrict operator

and pass it an appropriate selection predicate (region). The result is a gridfield G

with attributes x, y, z, and salt.
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⊗

H
0
: (x,y)

V
0
: (z)

bind(salt ) restrict( region ) G
0
: (x,y,z,salt)

Figure 1.6: A recipe for visualizing a 3-D CORIE dataset.

We observe several challenges in working with simulation applications in the

physical sciences, which we describe in the remainder of this section. These chal-

lenges are heterogeneity, large scale, non-standard data types, and complex data

products

Heterogeneity. Science has traditionally rewarded specialization and reduc-

tionism, but the limitations of this approach are becoming evident. For example,

oceanography is traditionally divided into several distinct subfields. Nearshore

oceanographers study shallow waves, storm impacts, and beach dynamics. Coastal

oceanographers study currents and tidal processes, but must also consider the ef-

fects of the ocean floor and the presence of the coast, such as, friction and upwelling,

respectively. Deep ocean oceanographers study global currents and usually disre-

gard terrestrial effects. However, some physical and biological processes cannot

be understood without consideration of all of these scales simultaneously. Fish

lifecycle patterns, for example, are difficult to model without cross-scale analysis

[MtG+99].

To provide a holistic view of complex phenomena, there has been increasing

interest in linking data and models defined at different scales and in different disci-

plines. Each of these oceanographic subfields involves similar computational tools

(finite element analysis, visualization). However, rarely do two research institutions

use the same file formats or data analysis procedures [ND05]. These differences

are often artifacts of technical choices made for convenience or efficiency, rather

than reflections of intrinsic incompatibilities.



18

A direct but infeasible solution to this problem is to require that all data be

stored in a standard form, so that all data may be analyzed uniformly. However,

scientists must retain the freedom to store and manage their data using specialized

techniques, since their applications tend to push the limits of computing and have

unique requirements. However, in the interest of data integration, it is critical

that any and all commonalities between scientific applications be identified and

exploited, at least at the logical level.

To address data integration challenges resulting from heterogeneity, we identify

an especially prolific class of data—those datasets produced by scientific simulation—

and provide operations for manipulating them at a high level of abstraction. In

Chapter 4, we will describe how to use these operations with the ad hoc file formats

found in practice. In Chapter 5, we will describe a programming model involving

loosely-coupled services that we argue is superior to a single monolithic software

package considering the diverse and changing requirements of this domain.

Large scale. Scientific applications intrinsically push the envelope of compute

resources. Hardware performance is increasing rapidly, but the demands of these

applications scale up in lock step. Give a computational scientist twice the compute

power, and she will immediately increase the resolution of the existing simulations,

or double the number of simulation runs.

Compute resources are always at a premium in these environments, making

slower, general-purpose software unattractive. For example, the overhead of a

relational database management system (RDBMS), designed with update-intensive

transaction processing in mind, is difficult to justify when a great deal of scientific

data is stored as read-only numeric arrays.

To address the large scale of scientific data processing, we tailor our architecture

to this domain from the ground up. Though we will show in in Chapters 3 and

6 that existing database systems are not a good fit, we can still leverage 30 years

of database research. Management of the memory hierarchy, logical and physical
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data independence, and data-aware algebraic optimization are valuable concepts

that can be applied to many types of software, not just databases.

Non-Standard Data Types. The fundamental data type used in scientific

programming is the multidimensional array. The database community has pro-

posed several techniques for handling arrays, though few have made it into com-

mercial systems. NetCDF, HDF, FITS and other file formats come equipped with

libraries that provide access and simple query capabilities specialized for arrays.

These nascent databases [GLNS+05] mimic some of the features of a conventional

database, but their ability to model complex grids and express complex manipu-

lations is limited.

Further, many scientific datasets cannot be expressed directly as a multidimen-

sional array. Grids are said to be structured or unstructured ; our model treats both

cases uniformly. The grid in Figure 1.7(a) is a 2-D structured grid and the grid in

Figure 1.7(b) is a 2-D unstructured grid consisting of triangles. Structured grids

have implicit topology and can be modeled satisfactorily by multidimensional ar-

rays. Unstructured grids require explicit topology; the connections between cells

must be included as part of the representation. Structured grids are easier to

represent and admit very efficient algorithms. However, unstructured grids allow

more precise modeling of a complex domain such as a coastline. In Chapter 2, we

will describe a model of grids general enough to express unstructured grids with-

out ignoring the regularity of structured grids. In Chapter 3, we will investigate

alternative data structures for representing generalized grids. In Chapter 6, we

will evaluate our implementation on structured and unstructured grids.

Complex Data Products. Computations on grid-structured datasets gen-

erally produce other grid-structured datasets. To generate these derived datasets,

computations may iterate over the cells in a grid, iterate over the neighborhoods

of each cell, and access values stored in related datasets. A language for manip-

ulating grids should operate at a level of abstraction that makes these styles of
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(a) (b)

Figure 1.7: (a) A structured grid. (b) An unstructured grid.

computation natural.

For example, algorithms to estimate the gradient of a scalar field involve ag-

gregating values from neighboring cells. However, depending on the representa-

tion, access to neighboring cells can be awkward or inefficient. For instance, if

a polygonal cell is represented by a sequence of nodes, then each polygonal cell’s

“neighborhood” of nodes can be accessed directly. However, the neighborhood of

cells around a given node is more difficult to compute in this case, requiring a

search through all the cells. An alternative representation would store the map-

ping of nodes to neighborhoods of cells to avoid this search. In either case, the

programmer should be insulated from the specifics of the physical representation

when possible. The operators we will describe in Chapter 2 can be composed to

implement these complex tasks.

In this dissertation, we present and evaluate a model for manipulating gridded

datasets designed to address the challenges listed in this section. To demonstrate

the efficacy of the model, we provide an implementation informed by an experimen-

tal evaluation of various data structures (Chapter 3), connect the implementation

to legacy, ad hoc file formats found in practice (Chapter 4), show how the model

and implementation may be used as a reasoning tool and programming aid, re-

spectively (Chapter 5), and evaluate the implementation experimentally (Chapter

6). First, however, we will consider related work in this domain.
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1.5 RELATED WORK

In this section we position our work amongst data models designed specifically for

scientific data, adaptations of more general models to scientific data (relational,

GIS, visualization), and application-specific solutions. Work related to the more

technical aspects of our results will be presented in context in later chapters.

Relational databases extended with spatial types can model unstructured grids,

but have several weaknesses. Explicit foreign keys and redundant geometric coor-

dinates1 can more than double database size. Since even moderately-sized scientific

applications routinely produce several gigabytes or more every day [BW, HM04a,

SA02, SKT+00], disk space is at a premium despite falling prices per byte.

Transfer times into and out of the database are also excessive [HM04a]. Re-

trieving data from the database for manipulation by application programs involves

copying tuples to fast, memory-resident structures such as arrays. When retrieving

numeric datasets from a relational database, tuples are usually converted to arrays

at the client, incurring an “impedance mismatch” penalty. The scale of scientific

datasets makes the performance issues associated with impedance mismatch more

pronounced [TKSG02]. In Section 4.6, we review modeling challenges stemming

from storing gridded datasets in relational databases.

Libraries such as the Visualization Toolkit (VTK) [SML96] provide efficient grid

processing, but the routines are highly data dependent and programs composed of

them are therefore rather brittle with respect to evolving requirements. The library

functions also exhibit complex semantics, making algebraic properties difficult to

derive if they exist.

Data models designed exclusively for scientific data have been primarily mo-

tivated by the need for visualization. Butler and Pendley applied fiber bundle

structures found in mathematics and physics to the representation of scientific

1Coordinates of a node are repeated everywhere the node is referenced.
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data to support visualization [BP89, BB92, HLC91, Tre99]. Fiber bundles are

very general topological structures capable of modeling many diverse classes of

objects such as simple functions, geometric shapes such as tori, vector fields, and

visualization operations.

Fiber bundles showed great promise in their generality and support for formal

reasoning. However, limitations to their direct use for scientific data modeling

appeared. First, fiber bundles were developed to model continuous fields (mani-

folds), and do not take into account the discretization necessary for representing

the data in a computer [Mor01]. Second, much of the expressive power of fiber

bundles is designed to accommodate complexities that most scientific gridfields do

not exhibit. Most scientific gridfields are cast as “trivial” fiber bundles—simple

Cartesian cross products—that do not exercise the fiber-bundle machinery. Fi-

nally, algebraic manipulation of grid structures is not supported and experimental

results are not reported, so it is not clear that performance requirements can be

met.

Berti’s Grid Algorithms library (GrAL) [Ber00], another system designed to

support simulations in the physical sciences, is a hierarchy of C++ classes lever-

aging generic programming techniques (C++ templates) to improve abstraction.

Templates allow the specification of generic algorithms that operate with a variety

of different data representations. We adopt a higher level of abstraction, identifying

a few generic operations with which to express grid-oriented algorithms. However,

Berti’s thorough treatment of the topology theory underlying grids strongly influ-

enced our formal development.

The database community has given multidimensional discrete data (MDD)

significant attention over the past decade. OLAP systems have been extended

with multi-resolution visualization capabilities [STH02], but modeling and query-

ing unstructured grids in a relational system is difficult, as we demonstrate later.

Query languages and processing techniques based on multidimensional arrays exist
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[DKL+94, LMW96, MS97, WB98], but arrays are not the correct abstraction for

general grid manipulations.

Multidimensional arrays can capture only rectilinear grids. If, as in the CORIE

system, cells in a particular grid may be triangles, quadrilaterals, or a mix of cell

types, then the grid structure is awkward to encode using arrays. The interpre-

tation of an assembly of arrays as an unstructured grid is left to the application,

resulting in programs that are tightly-coupled to specific data characteristics. Fur-

ther, multiple datasets can be bound to the same grid, but to cells of different

dimensions. Using arrays, the relationship between these datasets is lost; each

must use its own distinct “spatial domain” [Bau99]. For example, to encode the

dataset in Figure 1.5, we would need to define two unrelated spatial domains—one

for the 0-cells and one for the 2-cells. The relationship between them is not cap-

tured. Finally, the topology suggested by these grids is always implicit, making

it difficult to separate geometry from topology. This capability is required when

attempting to support two geometric embeddings of the same grid simultaneously,

e.g., in different coordinate systems.

Others have demonstrated that relational databases do not scale up to handle

large scientific datasets [MC99, SA02]. One proposed solution is to treat scientific

datasets as external data sources, and access them using the SQL standard for

management of external data (SQL-MED) [MMJ+01]. Papiani et al. [PWN] report

some success applying this standard to manage turbulence simulations, though

gridded datasets are not directly modeled.

C-Store [SAB+05] and MONET [BK99] both use column-oriented storage and

query processing for read-mostly applications instead of conventional tuple-oriented

techniques. Scientific data management applications meet the prerequisites that

make this approach effective; we also adopt a column-oriented approach. However,

the differences between the gridfield algebra and the relational algebra prevent us

from using the technology directly.
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Designers of GIS are realizing that topological “connection” information can

be as important as geometry for modeling and query processing. ESRI’s ArcGIS

version 8.3 [ESR03] includes topology information modeled as integrity rules. For

example, users can express the rule that every polygon representing a building must

be explicitly connected to a line segment representing a road. ESRI’s product

also supports raster data manipulation using a Map Algebra, but unstructured

grids are difficult to model precisely as raster data. Laser-Scan has produced a

topology-enabled GIS extension for Oracle called Radius [Wat02]. They allow

nodes to be snapped together to express topological relationships independently

of geometric embeddings. However, there is no notion of a manipulable gridded

dataset, which has proven useful in our work. Other GIS systems tend to focus on

raster data [CdSP+00, WB97, Eas97] (structured grids) and operate primarily in

two dimensions. Our language is agnostic with respect to dimensionality and grid

representation.

The database community has investigated query-language extensions support-

ing efficient order-aware collection types, often citing scientific data processing as

a motivation [FM95, LMW96, MS97]. However, the link between collection types

such as arrays and scientific data processing is a red herring. The ubiquity of

arrays in this domain is not evidence that arrays constitute an appropriate data

model for scientific analysis, but rather that more specialized data models have not

been developed. Further, direct use of arrays and other low-level data structures

were the source of the data dependence problem [Cod90] that declarative languages

solved. Incorporating them back into one’s “declarative” language seems to take

a backwards step.

Retreating from the heterogeneity of scientific datasets, some designers do not

attempt to model the contents of datasets, treating them as opaque files that

support a single operation: retrieval [FB01, FVWZ02, WG93]. Metadata attached

to files allow tracking of data provenance, or the information about how the dataset
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was produced. Users of the Chimera system [FVWZ02] can register their analysis

programs and input files and allow Chimera to manage execution. This facility

gives rise to a notion of virtual data that can be derived on demand.

Our work differs in two ways. First, these systems model datasets coarsely

as opaque files; we model the contents of the datasets (in the domain of compu-

tational science). Second, correct and efficient manipulations of datasets are the

responsibility of the programmer in these systems; we offer a specialized language

for expressing manipulations.

There also have been efforts to develop combined scientific data management

and visualization systems. The Active Data Repository (ADR) [KaC+01] opti-

mizes storage and retrieval of very large multidimensional datasets, including grid-

ded datasets. Queries over the data involve three transformations related to our

operators: selecting a subregion, mapping one grid onto another, and processing

the results. ADR is highly customized for particular domains. New C++ classes

are developed for each application. The Aurora system [Jir94] is a database system

for scientific datasets providing persistence, metadata, and limited query facilities.2

The Aurora data model cannot capture fully unstructured grids, and operations

are limited to mapping on-disk data into a “memory set” suitable for process-

ing by a general purpose programming language. Operations supported by this

mapping include restriction and type-casting, but not generalized aggregation and

combination.

Scientific applications today in some ways resemble business applications circa

1977. Copious amounts of data are stored in files with intricate formats. Skepticism

regarding database technology is prolific. Legacy systems are built from efficient

but brittle software components. To mitigate the perceived (and real) risk of

adopting unproven database systems, early data models were implemented as file

2The Aurora system described here should not be confused with a more recent stream-
processing system by the same name.
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transformation engines.

The EXPRESS system [SHT+77] provided two languages: one for describing

a file’s structure, and another for transforming that structure. Transformations

were used as a query facility, but also as a bulk-load facility to translate legacy

data into a new format. Our approach is similar, though we distinguish two data

models: one for source data (directory structures and file content) and another for

target data (gridfields). The source model allows us to retrofit a gridfield interface

onto in situ data [HM05].

Batory gave a taxonomy of record-oriented file structures used by commercial

databases in terms of fields and pointers [Bat85]. Our work similarly provides a

description of file structures used to store nested arrays.

The Binary Format Description Language (BFD) [MC03] is an XML dialect

that describes binary formats and allows transformation of binary data to XML

data. While this tool has a niche, our interest is to support efficient and flexible

access to binary data—converting binary data to XML is clearly impractical for

large datasets. The BinX [WB03] library is also related to our approach. Binary

data file formats are described using instances of a specialized XML Schema. An

API allows access to the data and automatic reformatting according to the local

machine’s byte order and bit order. The most recent version added support for

nested arrays, but only if the lengths of the inner arrays are known statically.

The External Data Representation standard (XDR) [Sri95] is a data-format

language focused on machine-level number representation issues. Variable-length

arrays in XDR must have homogeneous elements (i.e., their elements are not

variable-length), and their lengths must be encoded directly prior to the first ele-

ment. Further, XDR obviously does not describe directory structures, complicating

access to datasets that span multiple files.

With the PADS system [FG05], users describe ad hoc file formats using C-like

type declarations and validating access methods are generated automatically. Data
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transformation is left up to the application. We will describe the PADS system in

more detail in Chapter 4.

Platforms for scientific query and analysis include AQSIM [LCA+03] and the

Active Data Repository [KaC+01]. Both of these systems provide a common plat-

form for accessing a variety of scientific data, but both require centralized stor-

age and management. Other systems such as Chimera [FVWZ02] and Godiva

[MWN+04] supervise the execution of data access programs, but rely on users to

write them in the first place. We operate in a different space of requirements: We

propose access methods for data that the user does not necessarily control.

The Open Data Access Protocol (OpenDAP) [ope05] is comparable to our ap-

proach. OpenDAP allows analysis software such as Ferret [HHO+96] or Matlab

[HH00] to connect to data sources on the web, and provides a common model for

describing data. Institutions wishing to publish their data install an OpenDAP

server and make their data available in one of several file formats. Related Open-

DAP software provides a language for describing custom file formats, allowing it

to be published in the same manner.

Our work is distinguished in that our data model and operations are strictly

more general. The OpenDAP data model is based on multidimensional arrays

and can express only structured grids. We focus on unstructured grids and cap-

ture structured grids as a special case. Unstructured grids are more complex than

regular grids, primarily since the topology of the grid, the central concept in our

model, must be represented explicitly. Our language for manipulating and trans-

forming gridded datasets is also more expressive. OpenDAP operations are limited

to “subslicing” of arrays along one or more dimensions and “projection” of par-

ticular variables. In addition to these operations, we provide operators that allow

gridded datasets to be transformed, aggregated, and combined in a variety of ways.

Papadomanolakis et al. proposed an index for finding an arbitrary point in a

tetrahedral mesh [PAL+06]. Their technique is to assign each 3-D cell a position
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on a space-filling curve. These positions can then be indexed with a conventional

B-Tree. A query point is positioned on the space-filling curve and a candidate

cell is identified. From that point on, the space filing-curve is ignored. From the

candidate cell, the topology of the mesh is traversed to find the actual cell that

contains the query point. The index was implemented in the PostgreSQL database

management system. We can express this indexing mechanism (logically) as a

gridfield expression, demonstrating the broader scope of our work.

1.6 CONTRIBUTIONS

We contribute

1. a logical data model and logical algebra for describing and manipulating

simulation results,

2. a physical data model and physical algebra in terms of gridfield components,

3. optimization techniques for converting logical gridfield expressions into effi-

cient physical gridfield expressions,

4. a framework for providing a gridfield interface to native file-based reposito-

ries,

5. an implementation of the model including a canonical GUI interface for writ-

ing gridfield expressions,

6. empirical evaluation of the implementation against the CORIE Environmen-

tal Observation and Forecasting System,

7. evidence of applicability to other scientific and engineering domains including

seismology and computational medicine.

The data model and associated operators are described in Chapter 2. The

model offers several benefits over competing solutions:

• The data model supports topology directly, independently of any particular

geometric interpretation.
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• The data model captures regular and irregular grids uniformly.

• The operators manipulate grid structures directly, avoiding the complexity

associated with encoding grids as assemblies of arrays.

• The design is well-aligned with client visualization and analysis tools.

• Our operators admit algebraic identities and consequent optimization tech-

niques unique to gridfields.

A discussion of alternative data structures and the design and implementation

of our core data structures are described in Chapter 3. We describe how the native

formats for scientific data may be accessed generically and efficiently in Chapter

4. The programming model for gridfields and example of its use as a reasoning

tool appear in Chapter 5. In addition, we describe a canonical GUI application

for writing, executing, and visualizing the results of gridfield expressions. The

application was originally designed specifically for the CORIE system, but was

generalized to work with any gridfield application. We evaluate our model and

implementation against popular competing approaches in Chapter 6 using datasets

from various domains, with emphasis on those from the CORIE EOFS. In the last

chapter, we summarize our conclusions about the efficacy of gridfields and present

an outlook for future applications.



Chapter 2

DATA MODEL

The notion of a field is widely used to model the physical world. A field is a

function whose domain is a topological space, frequently Rn. In the Earth sciences,

the domain usually represents 3-D space or 4-D spacetime.

There have been several data models based on fields proposed in the literature

[BP89, Mor01, Tre99]. These efforts indicate the ubiquity of the field concept, but

have not gained wide acceptance. The models focus on the underlying spatial do-

main, providing abstractions to hide the grid structure used to physically represent

the domain in the computer. Unfortunately, computations involving fields depend

intimately on the choice of grid. These models therefore offer little guidance to

the algorithm designer. Our model lifts the grid up as the primary interface for

computation.

What are the requirements for a grid-oriented model of continuous fields? The

model must capture the types of grids numerical modelers use, as well as the kinds

of computations they perform. To extract the requirements for the gridfield model,

we first review grid types and grid computations found in practice.

2.1 MODEL REQUIREMENTS

There are many ways to decompose a continuous domain into discrete cells. The

choice has a significant effect on computational efficiency, model accuracy, nu-

merical robustness, and ease of implementation. In this section, we will describe

the types of grids used in practice. We use the term mesh to indicate a a grid
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associated with a particular geometric realization.

A mesh divides a potentially complex geometric domain into simpler control

volumes, which we refer to as cells. A mesh provides three kinds of information: the

cells it contains, the connectivity between its cells, and the geometric embedding

of those cells. Intuitively, each cell has a dimension: a point has a dimension of

zero, an edge has a dimension of one, and so on. We use the term cell when we

wish to ignore dimension; we will adopt the more intuitive terms point, edge, and

face to indicate cells of dimensions 0, 1, or 2, respectively.

Cells (with or without dimension), connectivity, and geometry alone do not

fully describe the characteristics of the region being modeled; in practice each

cell additionally has associated data values representing either physical quantities

(e.g., pressure, velocity, temperature) or computational control values (e.g., iden-

tifiers, pointers). We postpone discussion of these associated data values until the

presentation of the formal model.

A uniform rectangular structured mesh divides the domain into rectangles of

equal size and shape (Figure 2.1(a)). Despite the use of the term rectangular,

this kind of mesh can be used to describe a domain of any number of dimensions.

The rectangles of any structured mesh can be addressed by a vector of indices,

and the nearby nodes, edges, and other rectangles can be addressed in constant

time using simple arithmetic expressions on this vector. Since this mesh is also

uniform rectangular, the Euclidean coordinates of a point (i, j) can be computed

as (hxi + kx, hyj + ky), where hx, hy, kx, ky are constants. Structured meshes allow

small representations and efficient access to connectivity information, but cannot

precisely describe complex domains.

A variable rectangular structured mesh (Figure 2.1(b)) retains the simple con-

nectivity, but allows more control over the geometry. The Euclidean coordinates of

a point (i, j) are (xi, yj). For 0 < i < n and 0 < j < m, a representation of a vari-

able rectangular structured mesh must, in general, explicitly store n x-coordinates
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(a) (b)

Figure 2.1: Two simple grids. (a) A uniform rectangular grid. (b) A variable rectangular

grid.

and m y-coordinates or n − 1 x-intervals and m − 1 y-intervals. The advantage

of the increased complexity is that the modeler can increase the density of cells in

regions of special interest without having to increase the overall number of cells in

the mesh.

A variable rectangular structured mesh is still limited to describing a rectan-

gular domain. Structured meshes can also be deformed to accommodate more

complex regions, as in Figure 2.2. Here, the structured mesh is fit to a curved

three-dimensional geometry representing the space around a blunt fin [HB84]. The

desirable properties of the connectivity information are retained, but the geomet-

ric information must, in general, be fully explicit. That is, in three dimensions,

the Euclidean coordinates of a point (i, j, k) are (xijk, yijk, zijk). For 0 < i < n,

0 < j < m, and 0 < k < p, the mesh must store nmp coordinate triples in the

general case. The term “structured mesh,” without qualifying adjectives, usually

indicates a deformed structured mesh.

Deformation of a structured mesh leads to some difficulties. Computations of

flux at the interfaces between cells now involve a tangential and normal component,

which vary from cell to cell. The curvilinear boundaries of cells also complicate
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Figure 2.2: A deformed structured grid modeling airflow over a blunt fin rising from a

flat plate.

interpolation at points falling within a cell [HT04a] (or even determining which cell

contains a given point). Finally, deformation of a structured mesh is not sufficient

to fit every conceivable domain. Discontinuities produce degenerate cells with a

zero or negative area.

As an alternative to deformation, a masked structured mesh may be used to

indicate that certain portions of the mesh are invalid. The mask is implemented

with Boolean values associated with each cell. Algorithms may break iteration

early to skip regions of invalid cells, or return immediately when encountering an

individual invalid cell, to improve performance. The boundary of a masked mesh

will be a jagged, “stair-step” approximation of a smooth domain boundary, but

since the shape of the cells are still rectilinear, interpolation on unmasked cells is

no more difficult than with a rectangular structured mesh.

To achieve more precision in cell density, modelers can abandon a structured

mesh for an unstructured mesh. The unstructured mesh for a wing in Figure 2.3

[AMW98] conforms well to the wing’s shape, a difficult feat for a structured mesh.

An unstructured mesh has an irregular geometry, like the deformed structured

mesh, but also has an irregular connectivity. The neighbors cannot be determined
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Figure 2.3: An unstructured grid modeling the airflow around a wing.

using index arithmetic. Traversing the neighborhood of a given cell involves po-

tentially random access to a data structure on the order of the size of the grid.

A block-structured mesh is composed of multiple structured meshes describing

the overall region. The boundary between the blocks must obey certain constraints,

depending on the method used. Cells sharing a boundary may have a one-to-one

relationship (Figure 2.4(a)), a many-to-one relationship (Figure 2.4(b)), a many-

to-many relationship (Figure 2.4(c)), or they may overlap (Figure 2.4(d)). The

CHIMERA grid generation package [SDB83] uses overlapping structured grids to

improve interpolation near the boundaries, for example.1 A hybrid mesh is similar

to a block structured mesh, but each block may be unstructured. The DRAGON

hybrid grid generator replaces the overlapping regions of a CHIMERA grid with

an unstructured grid [LK94].

The requirements suggested by these mesh types include access to nodes, edges,

and higher-dimensional cells, the connectivity between them, and geometric infor-

mation. Topology information can be computed implicitly for structured meshes,

but must be looked up for unstructured meshes. Combinations of different types

1The CHIMERA grid generation package should not be confused with the Chimera Virtual
Data System described in Chapter 1.
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(a) (b) (c) (d)

Figure 2.4: The possible interfaces between blocks of a multi-block mesh: (a) one-to-one,

(b) one-to-many, (c) many-to-many, (d) overlapping.

of grids are possible. This diversity suggests that no one data structure is suitable

for all applications, and indeed, there have been a great many data structures

proposed for a variety of specific applications.

Before we discuss our physical representations and data structures in Chapter

3, we propose a general model of sets of cells equipped with 1) an incidence relation

capturing topology, and 2) functions mapping cells to data values. By providing

an explicit incidence relation, the model is oriented towards unstructured meshes.

This choice is sensible, since unstructured meshes are strictly more general than

structured meshes.

This simple model can capture the topology of structured and unstructured

meshes, but two other requirements must be addressed: geometry information and

hybrid (multi-block) meshes. We model geometry information as ordinary data

values associated with the cells, as any other data might be associated with the

cells (for example, the boolean values implementing a masked mesh.) The model

for a multi-block mesh assumes that the blocks can be logically flattened into

a single mesh during computation. For example, the incidence relation can be

extended to accommodate the interfaces in Figure 2.4.

Before we discuss the requirements derived from computations over meshes, we

formalize the grid concept.
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(a) (c)(b)

Figure 2.5: Three different geometric realizations of the same topological grid.

2.2 THE GRIDFIELD MODEL

Existing data models for gridded datasets consist of two components:

• A representation of the topology and geometry, and

• A representation of the data defined over the topology.

Most systems and practitioners use the word geometry broadly to refer to

the first component; few use the word topology. It is important to realize that

the two concepts are distinct. The study of topology arose from the observation

that some problems depend only on connection properties (such as adjacency and

containment) and not the geometric properties (such as shape or size). For ex-

ample, Figure 2.5 shows three geometric realizations of the same topological grid.

Topology involves only the properties of neighborhoods of points and not absolute

positions in a metric space. Our data model makes the same distinction, and does

not require absolute positions in space nor time. This approach reduces the com-

plexity of the data model; geometric data require no special treatment. We view

geometric data as just that-data. We claim that grid topology is the distinguishing

feature of scientific data, and the only feature requiring specialized solutions. All

other data can be modeled as functions over the topological elements.

In this section we describe the topology component of the model—the grid—

then we add data to create a gridfield. Operators for both grids and gridfields
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along with examples will be described throughout.

2.2.1 Grids

Grids are constructed from sets of cells of various dimension connected by an

incidence relationship. We refer to a cell of dimension k as a k-cell, following the

topology literature [Ber00]. Intuitively, a 0-cell is a point, a 1-cell is a line segment

(or poly-line), a 2-cell is a polygon, and so on. These geometric interpretations of

cells guide intuition, but a grid does not explicitly indicate its cells’ geometry.

Our grid model affords interpretation in terms of well-studied concepts from

topology, particularly cellular complexes (c.f. Fitsch and Piccinini [FP90]). How-

ever, we have made an effort to avoid strict dependence on these ideas, for two

reasons. First, very little of the mathematics of topology is directly implementable

in the computer without a suitable representation theory. Second, the manage-

ment of data bound to topological structures requires a different set of tools than

the topology field has to offer; the database community has significant experience

designing such tools and their results should be integrated where possible.

Let C be a universe of featureless cells. Let dim be a function C → N assigning a

non-negative integer dimension to each cell in C. Then a grid G is a pair (X,�G)

where X is a finite subset of C, and �G is an incidence relation. An incidence

relation is a partial order on X that respects dimension; i.e., lower-dimensional

cells are incident to higher-dimensional cells.

We will write k-cell to indicate a general cell c such that dim (c) = k. In

Figure 2.6, the grid has three 0-cells, three 1-cells, and one 2-cell. The incidence

relation in the figure makes each node incident to two edges, each edge incident

to the triangular face, and by the transitivity of a partial order, each node is also

incident to the face A.

In our illustrations, we will use draw nodes (0-cells as black points, 1-cells as

line segments, and 2-cells as shaded regions. From these kinds of pictures, we can
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Figure 2.6: The components of a grid: A set of cells, labeled here by integers (0-cells),

lowercase letters (1-cells), and uppercase letters (2-cell).

unambiguously derive a grid by creating a cell for each drawing component, and

establishing an incidence relationship between cells if they touch in the drawing

and their dimensions are different.

Intuitively, the incidence relation encodes which lower-dimensional cells “touch”

a higher-dimensional cell. Specifically, x � y, read “x is incident to y,” implies

that either dim(x) < dim(y) or that x = y, so that two distinct cells with the

same dimension cannot be incident to each other. We also define ≺ to be the

anti-reflexive restriction of �. In Figure 2.6, for example, 2 ≺ x, but 2 ⊀ 2. We

will write c ≷ d to indicate that c ≺ d or c ≺ d. For example, A ≷ x and x ≷ A in

Figure 2.6. If two cells x and y of the same dimension are incident to a common

cell or have an incident cell in common, then we say that x is adjacent to y. That

is, x is adjacent to y if dim(x) = dim(y) and there exists a cell c such that x ≷ c

and y ≷ c. In Figure 2.6, 2 is adjacent to 3 and 4, and x is adjacent to y and

z. This definition of adjacency is captures the relationship between cells that are

“one hop” apart, regardless of the dimension of the cell being “hopped.”

Given a grid G = (X,�G), we will write Gk to indicate the cells in X of a

particular dimension k. That is, Gk = {x | x ∈ X, dim(x) = k}. We define
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Figure 2.7: Examples of grids allowed by the basic model.

the dimension of a grid G, written dim(G), as max(dim(x)) over all x ∈ X. The

grid in Figure 2.6 is dimension 2. Note that for a d-dimensional grid, Gd must be

non-empty, but Gi may be empty for 0 ≤ i < d.

This definition is very general; a grid may be a collection of unconnected poly-

gons for GIS data, a set of scattered points for values of a random variable, or a

well-connected graph modeling the truss structure of a bridge. The grids in one of

our applications are used to discretize the Columbia River estuary. The resulting

grid is used in solving the 3-D transport equations via a finite-element method.

2.2.2 Grid Properties

The generality of our grid model invites specification of some pathological grids.

Some of the grids in Figure 2.7 may be problematic for specific applications. To

help reason about what constitutes an appropriate grid in a particular instance,

we formalize several properties of grids. For the remainder of this section, we will

refer to a d-dimensional grid G = (X,�).

A grid G is homogeneous if all k-cells, for any k < d, are incident to at least

one d-cell. Homogeneity reflects the intuition that d-dimensional grids are often

manipulated as a set of d-dimensional cells, where isolated nodes and edges are
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disallowed. In Figure 2.7, only iii) and v) are not homogeneous.

A grid is connected if every cell is reachable from any given cell by traversing

the incidence relationships in either direction. Let the predicate reachable(x, z) be

true if x ≷ z or there exists a cell y such that reachable(x, y) and reachable(y, z).

Then G is connected if for all x, y ∈ X, reachable(x, y) holds. In Figure 2.7, only

v) is not connected.

The grid G is embeddable if every (d − 1)-cell x is incident to no more than

two d-cells. Intuitively, this property captures the topological dimension of a grid.

If a 1-dimensional grid cannot be embedded in a line segment, then its topological

dimension is greater than 1. In Figure 2.7, only vii) is not embeddable. Note that

vi) is embeddable, even though it represents a closed loop: It is embeddable in a

1-dimensional space, as is a circle.

The closure grid cG of a cell c with respect to a grid G = (X,�G) is a grid

(C,�C) such that C is the set of all cells in X incident to c, and x �C y if and only

if x, y ∈ C and x �G y. The closure grid cG is the unique subgrid of G consisting

of the cells {d | d �G c}.

A cell is said to be well-supported in a grid according to the following rules:

• All 0-cells are well-supported.

• A 1-cell c is well-supported in G if there are exactly two distinct 0-cells in G

incident to it.

• Let C = cG for a k-cell c in G, where k > 1. The cell c is well-supported in G

if 1) Ck−1 is not empty, 2) every cell in Ck−1 is well-supported, and 3) every

cell in Ck−2 is incident to exactly 2 cells in Ck−1.

Intuitively, the second condition states that only simple line segments are well-

supported 1-cells. The third condition says that the boundary of a well-supported

cell must be continuous. Every node incident to a well-supported face must be

incident to two edges. Every edge incident to a well-supported volume must be
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incident to two faces. In Figure 2.7(i), A is not well-supported since the 0-cell

0 is incident to only one edge, x. Also, A is not well-supported since y is not

well-supported. In Figure 2.7(iv), A is not well-supported since it has no 1-cells

incident to it.

A grid G is said to be well-supported if all of its cells are well-supported in G.

A k-cell c is unique in G if k = 0, or if the set of cells incident to it is unique

and non-empty. That is, a cell x is unique with respect to G if dim(x) = 0, or for

all y ∈ X, xG − {x} = yG − {y} implies x = y. A grid is minimal if all its cells

are unique. In Figure 2.7, ii) is not minimal since both x and y have the same set

of incident cells, {0, 1}.

These properties provide a combinatorial characterization of intuitively correct

grids. Topological formulations of similar properties can be found in the literature

[FP90, Ber00, Lie94, Kov89]. However, the connection between the combinatorial

structure manipulated in the computer and the formal mathematics is sometimes

tenuous. For example, a topological grid is manifold if the local neighborhood of

every point resembles Euclidean space, even if the global structure is more compli-

cated. Authors do not agree in the literature on a unilateral combinatorial defini-

tion of this topological constraint. One definition due to Kovalevsky [Kov89] asserts

that a pseudo-manifold is non-branching, homogeneous, and strongly-connected.

The non-branching property requires that each d − 1-cell be incident to no more

than 2 d-cells, but allows it to be incident to 0 d-cells. Our definition of homoge-

neous matches Kovalevsky’s. A grid G is strongly-connected if every d-cell can be

reached by every other d-cell via a path of the form cd
0, c

d−1
1 , cd

2, . . . , c
d−1
n−1, c

d
n, where

ck
i is in Gk, meaning that, for example, there can be no 3-cells that are connected

by an edge only. We use this definition in our discussions.

We chose to develop a grid model without reference to topological theory to

allow greater flexibility in designing data structures. This choice allows us to reason

about the data structures used in practice that do not have formal underpinnings.
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Figure 2.8: Examples of grid operations: (a) intersection, (b) union, (c) difference. G

and H at the right are incompatible; they involve the same cells in conflicting incidence

relationships. (d) The intersection of these incompatible grids is probably not useful.

Specifically, we can explain why these data structures offer improved performance

in many cases. We will return to this discussion in Chapter 3.

2.2.3 Grid Relations and Operations

We can define set-like operations on grids, though we impose a constraint to ensure

that the results are useful. First, we define the notion of subgrid.

Definition 1. Let E be a grid (X,�E) and F be a grid (Y,�F ). The grid E is a

subgrid of the grid F , written E ⊆ F , if and only if X ⊆ Y and for all x, y ∈ X,

x �E y ⇔ x �F y.

This definition mandates that both grids must possess exactly the same in-

cidence relationships for the cells they share (rather than allowing �E to be an

arbitrary subset of �F ). As one expects, two grids that are mutual subgrids are

equivalent.

Proposition 1. Let E and F be grids. Then (E ⊆ F and F ⊆ E)⇒ E = F .

Proof. Let E = (X,�E) and F = (Y,�F ) be grids such that E ⊆ F and F ⊆ E.

Then X ⊆ Y and Y ⊆ X by definition, and therefore X = Y . The incidence
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relations are also equivalent, since x �E y ⇔ x �F y.

The definition of subgrid may seem straightforward, but consider the grids G

and H at the right of Figure 2.8. Both G and H use the same cells but organize

them differently. The edges x and z, circled with dashed lines, have different nodes

incident to them in each grid. The intersection of G and H, shown in the figure,

is probably not very useful. In fact, the result of G∩H is not even a subgrid of G

nor of H by the definition given. The reason is that these grids use the same cells,

but with contradictory incidence relationships. The following definition makes this

intuition precise:

Definition 2. Let E and F be grids. If there exists a grid G such that E ⊆ G

and F ⊆ G, then we say that E and F are compatible under G. When the grid

G is not important to the discussion, we simply say that E and F are compatible.

Intuitively, compatibility prevents mixing grids from different “universes.” For

example, the grid in Figure 2.2 is unrelated to the grid in Figure 2.3, so their inter-

section (for example) is not well-defined. We define grid union and grid intersection

with respect to compatibility.

Definition 3. Let E and F be grids. The grid union E ∪ F is a grid

(X ∪ Y, (�E ∪ �F )+), where + denotes transitive closure.

The union of two partial orders is not necessarily a partial order, so the näıve

definition of grid union, (X ∪Y,�E ∪ �F ), is not necessarily a grid. To generate a

partial order from the union of two partial orders, two things can go wrong. First,

there could be conflicts; e.g, would x ≺E y and y ≺F x for some x, y ∈ X ∩ Y ?

The answer is no, since this condition implies that dim(x) < dim(y) and dim(y) <

dim(x), a contradiction. Second, a partial order must be transitively closed; e.g.,

if x ≺E y and y ≺F z, then (x, z) is not necessarily in �E ∪ �F . For this reason,

we define grid union in terms of the transitive closure of the incidence relations.

An example of grid union appears in Figure 2.8(b).
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Proposition 2. Let E = (X,�E) and F = (Y,�F ) be grids. Then E ⊆ E ∪ F

and F ⊆ E ∪ F if and only if E and F are compatible.

Proof. Consider

E ⊆ E ∪ F

F ⊆ E ∪ F

Therefore E and F are compatible under E ∪ F by definition. For the if case,

let E and F be compatible under some grid G. Then X ⊆ X ∪ Y , but we must

prove that for all x, y in X, �E is equivalent to �∪. Let �∪= (�E ∪ �F )+. Since

�E⊆�∪, we know that

x �E y ⇒ x �∪ y

For the converse, consider that

�E ⊂ �G

�F ⊂ �G

and therefore

�E ∪ �F ⊂ �G

Since �G is transitively closed,

�∪= (�E ∪ �F )+ ⊂ (�G)+ =�G

Let c, d be cells in X. Then

c �∪ d⇒ c �G d⇒ c �E d

If two grids are compatible under G, then their union is a (not necessarily

proper) subgrid of G. Properties of G that are preserved through the subgrid

relationship, then, are preserved through the union operation. Minimality, in par-

ticular, is preserved.
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Definition 4. Let E and F be grids. The grid intersection E ∩ F is a grid

(X ∩ Y,�E ∩ �F ); see Figure 2.8(a).

The intersection of two grids E and F would intuitively be a subgrid of both

E and F . The following proposition relates this property to compatibility.

Proposition 3. Let E and F be grids. Then E ∩ F ⊆ E and E ∩ F ⊆ F if and

only if E and F are compatible.

Proof. Let E = (X,�E) and F = (Y,�F ) be grids. Then the proof for the if case

proceeds fairly mechanically as follows.

Let there exist a grid G such that

E ⊆ G and F ⊆ G

⇒∀x, y ∈ X, x �E y ⇔ x �G y

and ∀x, y ∈ Y , x �F y ⇔ x �G y

⇒∀x, y ∈ X ∩ Y , ((x �E y ⇔ x �G y)

and (x �F y ⇔ x �G y))

⇔∀x, y ∈ X ∩ Y , ((x �E y ⇔ x �G y)

and ((x �E y and x �F y)⇔ x �G y))

⇔∀x, y ∈ X ∩ Y , ((x �E y and x �F y)⇔ x �E y)

The last line, together with the fact that X ∩ Y ⊆ X, proves that E ∩ F ⊆ E. A

similar argument shows E ∩ F ⊆ F .

For the only if case, we assume that E ∩F ⊆ E and E ∩F ⊆ F and prove that

E ⊆ E ∪ F . Let c, d be cells in X. If c �E d, then c �E∪F d by the definition of

�E∪F .

If c �E∪F d, we must show that c �E d. If c �E d, we are done. Otherwise,

there are two cases to consider:
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Case 1: If c �F d, then c, d in Y , so c, d in X ∩ Y . Then by E ∩ F ⊆ F ,

c �F d⇒ c �E∩F d

and by E ∩ F ⊆ E,

c �E∩F d⇒ c �E d

Case 2: If c �F d, then let k be the smallest integer such that

c �E∪F e1 �E∪F e2 �E∪F . . . ek �E∪F d

Then for all i < k, ei /∈ X, since otherwise i would be a smaller integer than

k meeting the same condition. Therefore ei must be in Y for 0 < i < k, so

c �F d. By Case 1, c �E d.

A näıve definition of grid difference is E − F = (X − Y,�E − �F ). However,

the result grid with this definition could be “over-specified,” where its incidence

relation involves cells that are not present in the grid. An example of grid difference

appears in Figure 2.8(c).

Definition 5. Let E and F be grids. The grid difference E − F is a grid

(H,�E ∩(H ×H)), where H = X − Y .

The expected subgrid relationship, E − F ⊆ E does not require compatibility.

No special relationship between E and F is necessary to produce a subgrid of E,

since the incidence information of F is ignored in the definition.

Proposition 4. Let E and F be grids. Then E − F ⊆ E in all cases.

Proof. Let E = (X,�E) and F = (Y,�F ) be grids. Then

E − F = (H,�E ∩ (H ×H))

where H = X−Y . The relations �E ∩ (H×H) and �E obviously agree on H.
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Figure 2.9: The cross product of two simple grids.

The significance of compatibility is that generally grids can be combined in

meaningful ways only if there is a reference grid of which they are all subgrids.

Without this constraint, two different applications may organize the same cells in

different ways, resulting in incompatible grids. This constraint is fairly intuitive in

practice. The CORIE application, for example, has made use of several distinct

grids to describe the same geometric space on the Earth’s surface as algorithms are

refined and tested, new compute platforms are deployed, and different phenomena

are studied. The cells of these grids are assumed to be disjoint. In order to compare

data on these two incompatible grids, we must first map the data of one grid to the

cells of another grid explicitly. Reasonable assignments will depend on geometry

or other external data, rather than the topology alone. In Section 2.4, we describe

the regrid operator that implements such assignments.

We can also define a cross-product operator, used to produce a higher-dimensional

grid from two lower-dimensional grids. The definition of grid cross product in-

volves the notion of pairs of cells. Specifically, we assume that for cells x and y

in the universe C, the pair (x, y), the cell product, is also a cell in C. Further,

dim((x, y)) = dim(x) + dim(y). This rule tells us that the product of two nodes is

another node (0 + 0 = 0), the product of an edge and another edge is (informally)

a quadrilateral (1 + 1 = 2), and so on. There are multiple means of generating a

cell at a particular dimension. For example, the product of a node and an edge is
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an edge, as is the product of an edge and a node. In our discussion, we will write

xy for the pair (x, y).

Figure 2.9 shows an example of the cross product operation. The cross product

of grids E and F contains six 0-cells, nine 1-cells, five 2-cells, and one 3-cell. The

3-cell is the interior of the prism, the 2-cells are the three rectangular faces and

the two triangular bases, the 1-cells are the edges, and the 0-cells are the nodes.

The 3-cell prism in G is just the pair Aw. Geometrically, this prism is generated

by sweeping the triangle A through a third dimension defined by the line segment

w. This geometric interpretation of the cross product operation is instructive, but

is not formally a part of the grid definition. All we know about the prism is encoded

in the explicit incidence relation between its constituent cells. For example, the

figure suggests that in the result grid G, the 1-cell x0 is incident to the 2-cells

A0 and xw. This relationship makes sense, since in the grid E, the 1-cell x was

incident to the 2-cell A, and in the grid F , the node 0 was incident to the 1-cell w.

We can further explain the intuition behind cross product by considering one

dimension at a time. The cells of G, by dimension, are given by

G0 = E0 × F0

G1 = (E1 × F0) ∪ (E0 × F1)

G2 = (E2 × F0) ∪ (E1 × F1)

G3 = E2 × F1

Evaluating these expressions, we obtain

G0 = {20, 30, 40, 21, 31, 41}

G1 = {x0, y0, z0, x1, y1, z1, 2w, 3w, 4w}

G2 = {A0, A1, xw, yw, zw}

G3 = {Aw}
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Definition 6. Let E = (X,�E) and F = (Y,�F ) be grids, and let d = dim(E) +

dim(F ). The cross of E and F , written E ⊗ F , is a grid G = (X × Y,�G) where

pq �G rs if and only if p �E r and q �F s. The cells of G for a particular dimension

k are given by Gk =
⋃k

j=0 Xj × Yk−j, for 0 ≤ k ≤ d.

We have used the cross-product operator frequently in expressing the data

products of the CORIE system. The 3-D CORIE grid is the cross product of a 2-

D horizontal grid and a 1-D vertical grid. Oceanographers refer to this construction

(where the depth grid is linear) as an extruded grid. The cross operator generalizes

the concept of an extruded grid. Time can be incorporated with another cross

product. Note that simpler rectilinear grids can be modeled as the cross product

of two 1-D grids. By commuting other operations through the cross product, we

can reduce its expense or remove it altogether. Tools that do not provide an

explicit cross-product operator do not have access to these optimizations, as we

shall see.

2.2.4 Gridfields

Consider a digital elevation map (DEM): a triangulation of space (the grid), where

each node is assigned a height above sea level (the bound data). A DEM cannot

be expressed as a grid, but it can be expressed as a gridfield.

When data are bound to a grid G, the result is a gridfield G. The set of all

gridfields is written GF . Bound data are organized into attributes. Let V be a

universe of values. A distinguished value ⊥, assumed to have a distinguished type

〈⊥〉, is included in V . We will sometimes use the term rank when speaking of a

dimension at which data is bound; e.g., “the attributes at rank k.”

To define a DEM over a triangulation G, we need to create an attribute rep-

resenting the elevations at each node. The values themselves are modeled as a

function h from nodes to floating point numbers. To create an attribute, we equip

h with a name, the grid on which it is defined, an integer dimension (0 in this
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case), and a return type. Since the type of the function h depends on the grid G,

we cannot typecheck gridfield expressions in conventional type systems. Rather

than require a dependent type system, we reify the function’s domain and range.

Generally, an attribute is a triple (a, τ, f) where a is a string (the attribute

name), τ is a type, and f is a function mapping cells in Gi to values of type τ for

some dimension i. If c is a cell in Gi and (a, τ, f) is an attribute, we will use a(c)

and f(c) interchangeably to indicate the value of the attribute named a associated

with the cell c.

Each rank of a grid may be associated with a set of attributes. A gridfield

is written (G, g0, g1, . . . , gn), where each gi is a set of attributes such that each

member of gi has the form (a, τ, f). The grid of a gridfield may be written grid(G),

and the set of attributes for a gridfield may be written field(G). The scheme at rank

i of a gridfield (G, g0, g1, . . . , gn), written schi(G) is the set {(a, τ) | (a, τ, f) ∈ gi}.

This construct is used for notational convenience. At rank 0, the scheme of the

DEM we are building is simply {(“elevation”, float)}. We constrain this set to

have unique attribute names. A tuple for a cell c ∈ Gi, written gi[c] is a set

{(a, f(c)) | (a, τ, f) ∈ gi}. The value of an individual attribute named a at a cell c

is written a[c]. Note that we adopt a named perspective [AHV95] for tuples rather

than relying on tuple ordering.

We will not develop a formal type system for extensible records in this work;

c.f. Jones et al. for one proposal implemented for Haskell [JJ99]. Informally, we

will say that gi[c] for c ∈ Gi has type schi(G), written gi[c] : schi(G). We will say

that a tuple t of type schi(G) conforms to another tuple type s if schi(G) ⊂ s,

ignoring attributes with type 〈⊥〉. The set of all tuples whose type conforms to a

scheme s is written [s]. The set of all tuples is denoted T .

Some operators will accept functions over tuples as arguments: A predicate on

tuples is a function [s] → Bool, and a unary tuple function is a function [s] → υ,

where s is the scheme of some gridfield at some rank, and υ is some value type.
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An attribute function need not be total; the distinguished null value ⊥ is as-

sumed to be returned when such a function is applied to cells outside its domain.

Further, if no data are bound to the cells of a particular dimension k, gk[c] is

assumed to return an empty tuple for all cells, denoted ().

Consider a trussed bridge modeled as a 1-dimensional (non-embeddable) grid.

A gridfield defined over such a grid might return the net force at each node and the

linear force along each truss. A gridfield can capture both cases by binding data to

the 0-cells and 1-cells, respectively. Images can be viewed naturally as data bound

to the 2-cells of a rectilinear product grid. We can also model unstructured sets of

values as a gridfield over a grid consisting solely of 0-cells.

To support multiple geometric embeddings of a grid, geometric information is

modeled as ordinary data values bound to the cells of a grid. A simple example is a

2-D grid with a gridfield binding (x, y)-pairs to the nodes, which embeds the grid in

2-D Euclidean space, assuming edges are line segments and faces are polygons. Ad-

ditional coordinate systems can be captured through additional attributes. Many

models distinguish geometric attributes from other data [Ber00, HLC91, SML96],

consequently requiring two versions of common operations: one for geometric at-

tributes and one for ordinary attributes. Non-standard geometries that are not

anticipated by the system designer are left unsupported. For example, the curvi-

linear grid shown in Figure 2.2 requires interpolation functions to be associated

with each k-cell to specify how the cell curves in a geometric space. Our model can

express such an embedding. Systems commonly use geometry as the identifying

feature of a grid, thereby obscuring the topological equivalence among the three

grids in Figure 2.5.

2.3 GRID COMPUTATION REQUIREMENTS

The gridfield model as described only defines the information that a grid must pro-

vide. We have not yet discussed how this information is accessed by computations
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involving gridfields.

We now analyze several examples of computations over grids and gridded

datasets to see what kind of requirements they impose on the gridfield model.

We provide pseudo-code algorithms for each; the operations shared among these

algorithms are easier to identify syntactically than semantically. The first two

examples are adapted from Berti’s dissertation [Ber00], where they are used for

similar expository purposes.

2.3.1 Grid Serialization

To store a mesh (grid and geometry) to disk or transmit it over the network,

the components must be serialized. There are many potential serializations; the

following example is derived from a custom format used by the CORIE EOFS.

Comments begin with a double slash and are italicized.

n // number of nodes

m // number of cells

x0, y0 // x,y coordinates for each node

x1, y1

...

xn, yn

// each cell is an integer si representing the number of nodes

// followed by a sequence of si node references.

// e.g., a triangle might be represented as 3: 0, 1, 2

s0: v00, v01, . . . , v0s0

s1: v10, v11, . . . , v1s1

...

sm: vm0, vm1, . . . , vmsm
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Algorithm 1 Grid Serialization

Input: A 2-D grid G.
Input: A writable I/O stream.
Output: The grid G is serialized to the I/O stream.

write |G0| //the number of nodes
write |G2| //the number of cells
for each v ∈ G0 do

write x[v], y[v] //coordinates of each node
end for
for each c ∈ G2 do

n← number of nodes in c
write n //the number of nodes incident to this cell
i← 0
for each v ∈ G0 such that v � c do

write i //a reference to a node
i← i + 1

end for
end for

Algorithm 1 generates an appropriate serialization, and suggests the following

requirements for a grid model:

1. Access to the global number of nodes.

2. Access to the global number of cells (taken to be polygons in this case).

3. Iteration over the nodes.

4. Access to data values associated with the nodes.

5. Iteration over all cells in the grid of a given dimension.

6. Iteration over nodes for a given cell.

7. Ability to impose a total order on the nodes (each node is assigned an integer

i).

2.3.2 Direct Rendering

Data products are frequently visualizations; we need an algorithm to render a grid

to the screen. We assume access to an appropriate function for drawing primitive

graphics objects such as points, lines, and polygons.
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Algorithm 2, renders the outside surface of a 3-D grid. A 2-cell is determined

to be on the outside surface if it is incident to just one 3-cell.
Algorithm 2 Direct Rendering

Input: A grid G equipped with x, y, z coordinates at the nodes and a scalar value
at each face.

Input: A function DrawPolygon accepting a floating point between 0 and 1
representing a color and a sequence of (x, y) pairs.

Input: The range of values (l, h) to be assigned to colors; values lower than l or
higher than h will be clamped to l and h, respectively.

Output: The grid G is drawn to the screen.
for each c ∈ G2 do

if |{d | d ∈ G3, c ≺ d}| = 1 then
colorval← (c.scalar− l)/(h− l)
P ← empty sequence of coordinate pairs
for each v ∈ G0 such that v � c do

append (v.x, v.y) to P
end for
DrawPolygon(colorval, P )

end if
end for

The requirements for Algorithm 2 are similar to the serialization algorithm,

except the grid is now 3-D, we must perform some additional manipulation of data

values.

1. Iteration over all cells in the grid at a particular dimension.

2. Iteration over the faces of a cell.

3. Iteration over the nodes of a face.

4. Access to geometry data associated with each node.

5. Access to a data value associated with each face.

6. Ability to perform arithmetic on data values.

2.3.3 Smoothing

Given a noisy scalar field associated with the nodes of a grid, we can smooth the

field by averaging over a local neighborhood. In this case, two nodes are in the
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same neighborhood if they are both incident to a common 1-cell.

Algorithm 3 Scalar Smoothing

Input: A grid G equipped with a scalar value h at the nodes.
Input: A weighting factor wo for the original value.
Input: A weighting factor wn for the neighbors.
Output: The grid G is equipped with a smoothed scalar value avgh at the nodes.

for each v ∈ G0 do
sumh ← 0
counth ← 1
for each e ∈ G1 such that e � v do

for each n ∈ G0 such that n � e do
if v 6= n then

sumh ← sumh + h[n]
counth ← counth + 1

end if
end for

end for
v.avgh← wn · sumh/counth + wov̇.h

end for

An illustration of the smoothing algorithm appears in Figure 2.10. The node

labeled “c” will be assigned the average of the values associated with the hollow

nodes. These nodes are accessed by traversing the shaded edges.

The requirements for a smoothing operation involve iterating over edges as-

sociated with a node as well as nodes associated with an edge. In the previous

algorithms, we iterated over lower dimensional cells associated with a higher di-

mensional cell only. Specifically, the requirements are as follows:

1. Iteration over the nodes in the grid.

2. Iteration over the edges to which a node is incident.

3. Iteration over the nodes incident to an edge.

4. Access to scalar data associated with each node.

5. Ability to perform arithmetic on data values.

6. Ability to update the value at each node.
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Figure 2.10: The node labeled “c” will be assigned the average of the values associated

with the nodes labeled “x”. The shaded nodes are accessed by traversing the shaded

edges.

2.3.4 Streamlines

Streamlines are a visualization technique for a vector field. In Figure 2.11, stream-

lines are used to indicate the path of blood flow at the surface of an aneurysm

[LH05]. Given a grid equipped with a vector at each node, a seed point, and a

time interval, a streamlines algorithm integrates the vector field and produces a

sequence of points representing the path of the flow starting from the seed loca-

tion. We use a simple Euler method of integration in this example, meaning the

next location in the sequence is computed as the current velocity times the time

interval. That is, the position vector x at time t0 + ∆t can be expressed as

x(t0 + ∆t) = x(t0) + v ·∆t · x(t0)

Alternative methods (e.g., Runge-Kutta) improve accuracy by incorporating infor-

mation from a local neighborhood of velocity values.

Algorithm 4 is used for visualizing steady flows; the velocity is dependent on

the position only.

Algorithm 4 searches locally for the next cell by raycasting in the direction of

the vector. There are two cases to consider: 1) The ray crosses an edge of the

polygon, and we should check the appropriate adjacent cell, and 2) the ray passes
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Algorithm 4 Streamlines

Input: A gridfield G equipped with vector values (u, v) on the cells and (x, y)-
coordinates on the nodes.

Input: A seed point p equipped with (x0, y0).
Input: A time step ∆t.
Input: A maximum time tmax.
Output: A sequence of (xi, yi) coordinates.

P ← empty sequence of points
next ← c ∈ G2 such that polygon(c) contains point(x0, y0)
x, y ← x0, y0

t← 0
5: while t < tmax do

t← ∆t + t
add x, y to P
u, v ← next.u, next.v
x, y ← x + u∆t, y + v∆t
//search locally for the next cell
//ray exits through an edge?

10: while polygon(next) does not contain point(x, y) do
next ← NULL
for each e ∈ G1 such that e � c do

p1, p2 ← [point(n) | n ∈ G0 ∧ n � e]
if ray(x, y, u, v) crosses line(p1, p2) then

15: next ← [c | e � c ∧ c 6= next]
end if

end for
//ray exits through a node?
for each n ∈ G0 such that n � c do

if ray(x, y, u, v) passes through point(n) then
20: next← [d | d ∈ G2∧n � d∧c 6= d∧ ray(x, y, u, v) crosses polygon(d)]

end if
end for
//if no next cell was found
if next is NULL then

return P
25: end if

end while
end while
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Figure 2.11: Streamlines indicating the direction of blood flow near the surface of an

aneurysm. [LH05]

through a node v of the cell, in which case we need to check all cells that share the

node v. In either case, we may need to continue searching from the new cell next.

The polygon, line, and point functions access the geometry information of a

cell’s nodes as in the previous algorithm. These functions create a geometric region

from a topological cell. The region includes the boundary of the cell: The function

polygon(c) contains the region represented by the 1-cells incident to c. Varia-

tions on this algorithm include different search methods and different integration

methods. The requirements suggested by this streamlines algorithm include the

following:

1. Iteration over all cells in the grid at a particular dimension.

2. Access to data associated with the nodes.

3. Access to data associated with each cell.

4. Access to a cell that shares a node with a given cell.

5. Access to a cell that shares an edge with a given cell.

6. Conversion of a cell to a geometric object.

7. Repetition of blocks of code; non-topological iteration.
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2.3.5 Feature Extraction

We have argued that simulation is necessarily a coarse, bottom-up approach to

scientific discovery. Scientists model systems holistically first and study specific

phenomena second. A frequent operation, therefore, is to identify portions of a grid

that capture a specific feature and cull the remainder. A feature can often be de-

scribed as a spatially connected region for which some invariant holds throughout.

For example, a vortex feature in a fluid can be defined as a region of low pressure,

a region of high average vorticity, or a region of high helicity; other definitions

exist [BS94a].

Each of these variants involve traversal of neighborhoods, an activity for which

we have already provided examples. We therefore use the simplest method and

emphasize the thresholding activity.

Algorithm 5 produces a set of gridfields, each representing a connected region

of low pressure. As with the streamlines algorithm, there is an iterative structure

to the algorithm in addition to the navigation of topology. We also see the runtime

construction of gridfields. The requirements we may extract are:

1. Search for cells with a minimum value.

2. Iteration over nodes that satisfy a particular criteria.

3. Access to data associated with each cell.

4. Access to nodes adjacent to a node.

5. Insertion of cells and nodes into a gridfield.

6. Repetition of blocks of code.

2.3.6 From Algorithms to Recipes

In this section, we introduce two properties of algorithms useful for reasoning about

how to connect algorithms together: the stencil for describing a neighborhood of
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Algorithm 5 Feature Extraction

Input: A grid G equipped with pressure values p at the nodes.
Input: A threshold pressure ρ.
Output: A sequence of grids S, each representing a vortex.

V ← empty grid
for each v ∈ G0 do

if v.p < ρ then
add v to V

end if
end for
S ← empty sequence
i← 0
while there are unused nodes in V do

seed ← unused node with lowest pressure
mark seed as used
S[i]← empty grid
add seed to S[i]
for each unused node v ∈ V adjacent to a node in S[i] do

mark v as used
add v to S[i]
for each c ∈ G2 such that v � c do

if the set of nodes incident to c are in S[i] then
add c to S[i]

end if
end for

end for
i← i + 1

end while
return S
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cells, and the scheme for describing input and output requirements of an algorithm.

Each algorithm we described represents an individual task. These tasks may

be composed into a recipe, a sequence of coupled tasks designed to produce a

single result. Composition of simpler tasks into a recipe generates new require-

ments related to the communication between sub-tasks. We distilled the following

requirements from the algorithms in this section:

1. Iteration over cells of a particular dimension.

2. Iteration over incident cells of dimension i given a cell of dimension j.

3. Read and write access to data values associated with cells of arbitrary di-

mension.

4. Identification of cells that satisfy a particular condition on their data.

5. Ability to construct a new grid using cells from a given grid.

6. Repetition of operations; recursion.

What additional requirements do recipes generate? We must ensure that each

sub-task has access to the data it needs. Two concepts are useful in this regard.

First, we observe that many algorithms involve one or more stencils describing

the manner in which incidence information is accessed. A stencil is a sequence

of integers s0s1 . . . sn representing a pattern of iteration over a neighborhood of

cells. For example, a stencil appropriate for Algorithm 3 is 010, which describes

any algorithm of the following form:

for each cell c of dimension 0:

for each cell f of dimension 1 to which c is incident:

for each cell v of dimension 0 incident to f:

do something

Let halo be a function for retrieving nearby cells using a stencil. The halo of a
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cell c with respect to a stencil σs in the context of a grid G is defined as follows:

haloG(c, s) =

 {c}, s = dim(c)

undefined, otherwise

haloG(c, σs) = {e | e ≷ d and dim(e) = s and d ∈ haloG(c, σ) and c 6= e}

where s is an integer dimension and σ is a prefix of the stencil σs. For example, if σ

is 01 and s is 0, σs is the stencil 010. This notation is meant to resemble language-

theoretic string notation. The subscript denoting the grid my be dropped if it is

apparent from the context.

In the previous pseudo-code, the halo would be only the set of cells assigned

to the variable v, ignoring the cells assigned to the variables c and f. In Figure

2.10, halo(c, 010) is the set of nodes indicated by large circles marked with “x”,

and halo(c, 01) is the set of shaded edges.

Given a root cell c, a stencil σ can also be used to construct a grid whose

boundary is halo(c, σ).

Definition 7. Let G = (X,�G) be a grid, c be a k-cell in G, and σ be a stencil σ =

s0s1 . . . sn such that k = s0. The stencil grid Gσ
c is a subgrid of G defined as F =

(Y,�F ), where x �F y if x, y ∈ F and x �G y, and F =
⋃

i≤n haloG(c, s0s1 . . . si).

For example, for the grid G in Figure 2.6, G10
x consists of the edge x and its

incident nodes, 2 and 3. The grid G02
4 consists of the node 4 and the 2-cell A.

For a well-supported grid, the closure grid of c in G, cG, is equivalent to the

stencil grid of c for the stencil (dim(c), dim(c)− 1, . . . , 0).

We have pointed out that each algorithm involves one or more stencils. We also

observe that each algorithm accesses a certain set of attributes at each dimension,

placing minimal requirements on the scheme of the input. For example, let G

be the input to Algorithm 2. The algorithm requires that sch0(G) ⊇ {x, y} and

sch1(G) ⊇ {scalar}.
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The scheme concept helps characterize the dependencies between sub-tasks in

a recipe. Applied to an input G, Algorithm 3 requires that sch0(G) ⊇ {x,y,h} and

produces a gridfield F such that sch0(F) ⊇ {h}. Dependencies between operations

can be used to 1) statically check for errors, and 2) expose efficient evaluation plans.

An operation whose inputs do not have the required attributes raises an exception.

An operation p that accesses an attribute supplied by a another operation q must

be performed after q. We can evaluate independent operations in any order we

like.

These concepts can also be used to reason about algebraic optimization. If

we wish to both smooth a gridfield and extract a feature, can we perform these

operations in either order? To perform the smoothing operation, we must have

access to the cells of the smoothing operation’s stencil 010 and to the attribute

being smoothed. To perform the feature extraction, we must have access to the

attribute over which the feature predicate is defined, and we must have access to the

cells defined by the feature extraction stencil, 020. We cannot, therefore, extract

the feature first, since cells needed by the smoothing operation may be removed.

The nodes on the boundary of the feature will not be smoothed properly since only

a portion of their stencil grid is available. We will show how this situation can be

rectified to allow such operations to commute in Section 2.4.6.

Some algorithms may impose other conditions on their input besides a scheme.

For example, line 13 in Algorithm 4 asserts that each edge will have exactly two

nodes incident to it. This check and others that cannot be cast as a condition on

the scheme or stencil must be checked explicitly at runtime.

Expression and analysis of gridfield computations in terms of operators, sten-

cils, and schema make it easier to reason about efficiency and correctness of the

computation, as well as properties of the result. Informed by the distilled require-

ments and the reasoning tools described in this section, we are now ready to derive

a set of general operators to replace task-specific algorithms.



64

2.4 GRIDFIELD ALGEBRA

The operators for manipulating gridfields must correctly handle both the under-

lying grid and the bound data values. Some operators we define are analogous to

relational operators, but grid-enabled. For example, our restrict operator filters

a gridfield by removing cells whose bound data values do not satisfy a predicate.

However, restrict also ensures that the output grid retains certain properties. Other

operators are novel, such as regrid. The regrid operator maps data from one grid

onto the cells of another and then aggregates to produce a single value per cell.

2.4.1 Bind

The bind operator changes the attributes of a gridfield at some rank k. In many

cases, bind acts simply as a constructor, providing a gridfield with its first attribute.

Attributes are modeled as functions, and functions may be applied to a subset of

their domain. Therefore, we can use bind to associate an attribute (a, τ, f) to not

only a grid G, but any subgrid of G.

Definition 8. Given a gridfield G = (G, g0, . . . , gd), an integer k where 0 ≤

k ≤ d, and an attribute (a, τ, f), the expression bind(G, k, a) produces a gridfield

G = (G, g0, . . . , gk ∪ {a}, . . . , gd) where the domain of f is Gk.

For the CORIE application, the simulation produces arrays for each of several

variables: salinity, temperature, and velocity, among others. The bind operator

allows us to read each array separately, avoiding contact with data that is not

necessary for the task at hand. Others have argued the benefits of this column-

oriented approach when working with read-mostly data [SAB+05].

2.4.2 Restrict

The restrict operator behaves like a relational select where each result satisfies some

predicate. However, when data values are culled, associated cells and possibly some
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neighboring cells are also removed from the grid.

The predicate is defined over cells of a particular dimension, i. For each cell

that fails the predicate, which nearby cells should also be removed? There are

several ways we might identify these dropped cells. The Simple semantics excludes

exactly those cells that fail to satisfy the predicate, a scheme which removes as

few cells as possible. The Drop semantics operates at the other extreme: only

cells that satisfy the predicate are retained; all others are removed. The Extensive

semantics retains any cell sharing an incidence relationship with at least one cell

that satisfies the predicate. The Intensive semantics, conversely, removes any cell

that shares an incidence relationship with a cell that fails the predicate. The

Exact semantics strikes a balance between the extensive and intensive semantics

by considering dimension: lower-dimensional cells follow the Intensive semantics,

and higher-dimensional cells follow the Extensive semantics. This choice has the

following property: if a cell c is retained in the result, then so is its closure grid,

preserving well-supportedness.

Let F = (X,�F ) be a grid and let F = (F, f0, . . . , fd) be a gridfield of dimension

d. Also, let p be a predicate [schi(F)] → Bool for some i, 0 ≤ i ≤ d. The

various semantics for the grid G in the definition (G, f0, . . . , fd) = restrict(p, i,F)

are defined formally below:

Simple

Gi = {c | c ∈ Fi and p(fi[c]))}

Gk 6=i = {d | d ∈ Fk}

Drop

Gi = {c | c ∈ Fi and p(fi[c]))}

Gk 6=i = {}
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Extensive

Gi = {c | c ∈ Fi and p(fi[c]))}

Gk 6=i = {d | d ∈ Fk and ∃c.(p(fi[c]) and c ≷F d)}

Intensive

Gi = {c | c ∈ Fi and p(fi[c]))}

Gk 6=i = {d | d ∈ Fk and ∀c.((c ∈ Fi and c ≷F d)⇒ p(fi[c]))}

Exact

Gi = {c | c ∈ Fi and p(fi[c]))}

Gk>i = {d | d ∈ Fk and ∀c.((c ∈ Fi and c ≷F d)⇒ p(fi[c]))}

Gk<i = {d | d ∈ Fk and ∃c.(p(fi[c]) and c ≷ d)}

In each case, the incidence relation of G is defined as �G, where x �G y if and

only if x ∈ X, y ∈ X and x �F y. This fact makes G a subgrid of F . Figure 2.12

illustrates the intuition behind each of these possible semantics.

Which of these semantics is an appropriate choice for our operator? The Exact

semantics tend to properly capture intuition and algorithmic requirements in most

cases. The primary requirement for all these possible semantics is that every i-cell

in the result must satisfy the predicate. Beyond this requirement, we observe that a

common stencil for operations has the form d, d−1, . . . , 0, where d is the dimension

of the grid. The Exact semantics preserves this stencil. Further, the Exact seman-

tics preserves the well-supportedness property, since all cells incident to a retained

cell are themselves retained. Extensive semantics lead to non-well-supported grids

when k < dim(G), and Intensive semantics lead to non-well-supported grids when

k > 0. A different semantics can be emulated using the accrete operator, described

after restrict.
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Figure 2.12: Possible semantics for restrict: (a) Simple, (b) Drop, (c) Extensive, (d)

Intensive, (e) Exact. We adopt (e) Exact to preserve well-supportedness. The integers

at the left indicate which dimension we are operating on; restrict is parameterized by

dimension.

Definition 9. Let F = (X,�F ) be a grid and let F = (F, f0, . . . , fd) be a gridfield.

Also, let p be a predicate [schi(F)]→ Bool and i be an integer such that 0 ≤ i ≤ d.

Then restrict(p, i,F) is a gridfield G = (G, f0, . . . , fd) such that G is defined using

the Exact semantics.

2.4.3 Accrete

The accrete operator grows a gridfield E by adding cells selected from a base

gridfield B. The cells selected from B are connected topologically to some cell

that appears in both E and B. The topological relationship between the cells in E

and the cells selected from B are defined by a stencil. In Figure 2.13, the stencil

is 120, indicating that for each 1-cell e in E, we are to find the set of 2-cells in B

to which e is incident (c and d in this case) and add them to the result. Further,
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Figure 2.13: An example of the accrete operator, whose result consists of cells from E

plus a neighborhood of cells from B. The neighborhood is defined by a stencil. Since

the stencil is 120, the result includes the 1-cell e in E, plus any 2-cells in B to which it

is incident, plus any 0-cells incident to a 2-cell already included.

we are next to find 0-cells in B incident to c or d and add them to the result (in

this case x and y). The gridfield E need not be distinct from B. When they are

the same, accrete acts as a kind of selection condition on the topology rather than

the data values.

The data associated with the new grid is taken from the E at the “root”

dimension and taken from B at all other dimensions. For example, any data

associated with the edge e in the gridfield B is ignored in Figure 2.13.

This operator allows us to restore a neighborhood of cells that was potentially

removed by a restrict operator or a merge operator (described after accrete). The

accrete operator also allows us to incrementally grow a grid, which is a requirement

of Algorithm 4 and Algorithm 5.

Definition 10. Let E = (E, e0, . . . , ec) and B = (B, b0, . . . , bd) be gridfields. Let

σ = k, x1, . . . , xn be a stencil. Then accrete(σ,E,B) produces a gridfield G =

(G, g0, . . . , gn) composed of stencil grids, where G =
⋃

c∈Ek
Bσ

c and gk = ek and

gi = bi for i 6= k.
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Figure 2.14: An illustration of the semantics of merge: an intersection of grids and a

union of attributes.

2.4.4 Merge

The merge operator computes the intersection of two grids and retains data values

defined over this intersection. Merge is not associative, since there may be name

conflicts in the attributes of the two arguments. In the case of conflicts, the values

from the first argument are used. A more general operator might accept a function

for handling the conflicts (perhaps averaging the two values, for example), but we

have found the first definition useful in practice. The intuition behind the utility

of this non-associative semantics is that the merge operator restricts the attribute

functions of the first argument to the domain defined by the second.

Definition 11. Let E = (E, e0, . . . , ec) and F = (F, f0, . . . , fd) be gridfields. Let

n = min(c, d). Then merge(E,F) produces a gridfield G = (E ∩ F, h0, . . . , hn)

where hi = ei ∪ (fi − ei) (Recall that ei and fi are sets of attributes at rank i.)

The definition involves a slight abuse of notation. When defining hi to be

ei∪fi− ei, we are avoiding name conflicts in the result by favoring attributes from

the left argument over attributes from the right argument. Each member of the

set ei is actually a triple (a, τ, f), but we assume set membership is defined by the

pair (a, τ).
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2.4.5 Cross Product

The cross-product operator for gridfields builds on the cross-product operator on

grids.

Definition 12. Let E = (E, e0, . . . , en) and F = (F, f0, . . . , fm) be gridfields. The

cross product of E and F, written E⊗ F, is a gridfield G = (E ⊗ F, g0, . . . , gn+m)

where gk[cd] =
⋃k

i=0{ei[c]∪fk−i[d]} for each product cell cd in Gk. Naming conflicts

between the attributes in ei and fk−i cause an exception.

This definition can result in a gridfield with values undefined at some cells at

ranks 0 < k < d, since there are multiple ways to form cells at that rank and each

way of forming cells gives rise to different attributes. Consider gridfields E and F

with the following schemes at each rank, ignoring types for the moment.

sch0(E) = (a) sch0(F ) = (w, x)

sch1(E) = (b, c) sch1(F ) = (z)

The cross product gridfield G = E⊗F will have the following schemes at each

rank.

sch0(G) = (a, w, x)

sch1(G) = (a, z, b, c, w, x)

sch2(G) = (b, c, z)

The 1-cells in the result are generated by both E0 × F1 and F0 × E1. Each of

these sets of cells alone would have data of different schemes; namely, (a, z) and

(b, c, w, x) respectively. However, since all cells at a particular rank must have

the same type in our model, we adopt a kind of “union” type: (a, z, b, c, w, x).

Since some cells will not have a value for a or z, we declare these values to be

⊥. Therefore, all tuples at rank 1 in the result gridfield G will be of the form
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(a, z,⊥,⊥,⊥,⊥) or of the form (⊥,⊥, b, c, w, x). Functions that operate on tuples

must handle the value ⊥.

In the relational algebra, an analogous issue is the requirement that relations be

“union-compatible” before their union can be computed. The analogous solution

is to coerce them to the same type, performing an “outer union,” by padding the

tuples with NULL to enforce union compatibility.

2.4.6 Regrid

The regrid operator maps a source gridfield’s cells onto a target gridfield’s cells,

then aggregates the data values bound to the mapped cells and binds the result

to the target gridfield. The behavior of regrid is controlled by two functions, an

assignment function (for mapping cells) and an aggregation function (for aggregat-

ing data values). The assignment function associates each cell c in the target grid

with a set of cells in the source grid, which we refer to as the preimage of c. To

perform the assignment, this function might use topological information only (e.g.,

a “neighbors” function that identifies adjacent cells), or it may use the attributes

of the two gridfields (e.g., an “overlaps” function that uses geometry data). The

aggregation function is applied separately to each preimage.

To illustrate a simple use of regrid, consider a timeseries of temperature values

for a particular point in the river. We discretize the time dimension using a 1-

D source grid S, as shown in Figure 2.15(a). One use of the regrid operator is

to perform a “chunking” operation to coarsen the resolution of the grid. The

assignment function maps each node in the target grid T to a set of three nodes,

the chunk, in the source grid S (Figure 2.15(b)). The aggregation function can

then, say, average the value at the three nodes to obtain a single value (Figure

2.15(c)).

We could also pass a “window” function as the assignment function to perform a

smoothing operation. The target grid and the source grid are the same in that case.
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Figure 2.15: An example of the regrid operator. (a) A 1-D gridfield returning tempera-

tures. (b) Assignment to the target grid. (c) Aggregation using arithmetic mean.

For target node i, the window function assigns source nodes [i−k, i−k+1, . . . , i, i+

1, . . . , i+k], assuming nodes are numbered linearly. The aggregation function could

be anything, but for smoothing, an arithmetic or weighted mean seems appropriate.

We have used a 1-D example for illustration, but multidimensional window and

chunking functions are common.

Definition 13. Let E = (E, e0, . . . , ec) be a target gridfield and F = (F, f0, . . . , fd)

be a source gridfield. Let i and j be integer dimensions such that 0 ≤ i ≤ c and

0 ≤ j ≤ d. Let m be an assignment function m : GF × C →P(C), where P(·) is

the powerset function, such that when applied to the source gridfield F and a target

cell in Ei, m returns a subset of Fj. Let a be an aggregation function a : [schi(E)]×

P([schj(F)])→ γ returning a tuple of type γ. Then regrid(E, i,F, j,m, a) produces

a gridfield G = (E, g0, . . . , gc) where gi[x] = a(ei[x], {fj[y] | y ∈ m(F, x)}) and for

k 6= i, gk = ek.

A regrid operator computes a new gridfield with the same grid as the target,

but with new values at a particular rank i. The new values are computed using

1) the existing tuple in the target gridfield, and 2) values in the source gridfield at

a particular rank j. We include the target tuple ei[x] in the definition in order to
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allow complex aggregation functions such as weighted averages.

To perform aggregations at multiple ranks, multiple regrid operators must be

used. Although we operate on only one dimension at a time, there are no special

restrictions on how the assignment function m can be defined. Specifically, m may

reference data bound to other dimensions. For example, imagine we have two 2-

dimensional gridfields E and F both with x, y coordinates bound to their nodes.

Further, the source grid F of F has a temperature dataset bound to its 2-cells.

A common aggregation is to “regrid” the temperature dataset by averaging the

values of 2-cells that overlap a given target 2-cell [HMG94]. In this case, i = j = 2.

However, the geometry data bound to the nodes of the grids must also be accessed

to evaluate the “overlaps” predicate. Specifically, the assignment function returns

the set of polygons in F that overlap a given polygon in E. Intuitively, the regrid

operator mimics the functionality (in the relational algebra) of a (possibly spatial)

join followed by a group-by.

Specializing and Optimizing Regrid

The strengths of the regrid operator are expressiveness and extensibility, but these

characteristics can also make it difficult to optimize. To process regrid operations

efficiently, we must identify and exploit special cases.

The design of the regrid operator, and indeed the algebra itself, reflects the

fact that the data has a great deal more structure than a relation. A grid gives a

dataset a kind of “shape” that exposes its cardinality and local organization. The

operators are designed to modify this shape in a predictable manner. For example,

we could have produced an inner join operator that assigned cells of a grid S to

cells of another grid T using an arbitrary predicate. The result would be a set of

pairs of cells rather than a grid. Instead, we exchange the predicate for a function

from T to S, guaranteeing at the logical level that the result data is bound to the

known grid T .
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This design also allows a critical optimization opportunity: The commutativity

of restrict and regrid. A restriction whose predicate does not depend on the newly

aggregated values may be pushed through the regrid. That is,

RestrictRegrid

a has type [schi(T)]×P([schj(S)])→ γ

p has type [schi(T)− γ]→ Bool

restrict(p, i, regrid(T, i,S, j,m, a))

regrid(restrict(p, i,T), i,S, j,m, a)

This transformation restricts the domain of the assignment function, but does not

affect its answers. The analogous transformation in the relational algebra is to

push a selection through a group-by if the predicate involves only the grouping

attributes.

The assignment function dictates the behavior of the regrid operator, and there-

fore guides the processing strategy. We have identified several assignment functions

that afford specialized, efficient implementations.

The most common use of the regrid operator is to simply apply an arithmetic

expression to each of the tuples, generating one or more new attributes. The

assignment function in this case is simply the identity function, and the aggregation

function is the user-defined arithmetic expression suitably extended to singleton

preimages. The apply operator supports this usage efficiently.

Definition 14. Let G = (G, g0, g1, . . . , gn) be a gridfield and let f be a function

[schi(G)]→ γ. Then apply(G, i, f) = regrid(G, i,G, i, id, h), where id is the identity

function and h(gi[c], {c}) = f(gi[c]).

The project operator is another specialization that uses the identity function for

assignments. The project operator removes unwanted attributes from the source

gridfield.
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Definition 15. Let G = (G, g0, g1, . . . , gn) be a gridfield and let A be a set of

(name, type)-pairs {(a0, τ0), (a1, τ1) . . . , (am, τm)}. Then project(G, i, A) is equiv-

alent to regrid(G, i,G, i, id, f), where id is the identity function and f(gi[c], ∗) =

{(a, v) | (a, τ) ∈ A and (a, v) ∈ gi[c]}.

The unify operator aggregates all of the values in a grid to a single value. The

target grid of the unify operator is the unit grid consisting of a single node and no

higher-dimensional cells. The assignment function used in the unify operator maps

every cell in the source grid to the single node in the unit grid; the user supplies

only an integer rank and an arbitrary aggregation function.

Definition 16. Let G = (G, g0, g1, . . . , gn) be a gridfield and let f be an aggre-

gation function. Then unify(G, i, f) = regrid(U, 0,G, i, all, f), where U is the unit

gridfield (({c}, ∅), ∅) and all assigns all i-cells in G to c, the only cell in the grid of

U.

We also define the accumulate operator for iterating over the cells at a given

dimension and recording intermediate results of an aggregation for each cell. For

example, we can call

accumulate(G, i, “x=0”, “x=x+1”)

to assign a unique integer to each cell at domain i, beginning at zero. The first

argument is a gridfield and the second argument is an integer dimension, as usual.

The third argument is a seed expression initializing the value of an attribute “x”

at the first i-cell to 0. The fourth argument is a step expression which tells the

operator how to compute the next value from the previous value; in this case, the

step expression simply increments the previous value by one.

Since the semantics of this operator relies on the physical order of the cells in

the representation, we do not provide a formal definition.
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The neighborhood operator can express computations over local neighborhoods

of cells as defined by a stencil (see Section 2.3.6). The smoothing algorithm de-

scribed in Section 2.3.3 and illustrated in Figure 2.10 is such a computation. The

halo function, equipped with a stencil, takes the place of the assignment function

in the general regrid operator. For example, we can use the assignment function

(λc.halo(c, 20)) to assign neighboring 0-cells to each 2-cell c. (Refer to Section 2.3.6

for details.)

Definition 17. Let G = (G, g0, . . . , gd) be a gridfield of dimension d. Let σ be a

stencil s0s1 . . . sn. Let a be an aggregation function. Then neighborhood(G, σ, a) =

regrid(G, s0,G, sn, m, a), where m(c) = haloG(c, σ).

The assignment function only depends on cells and data contained in the local

neighborhood of a given cell, as defined by the stencil. In some cases, this limitation

allows restrict and merge to commute with neighborhood down the source branch

as well as the target branch.

Specifically, we have the following rewrite rules.

RestrictNhood
restrict(p, i, neighborhood(G, σ, a))

restrict(p, i, (neighborhood(accrete(σ, restrict(p, i,G),G), σ, a)))

MergeNhood
merge(neighborhood(G, σ, a),H)

merge(neighborhood(accrete(σ, merge(G,H),G), σ, a),H)

The idea behind both of these rules is that the neighborhood operator only

needs access to local information for each target cell. The restrict operator could

not normally be commuted through regrid, since the assignment function might

return different results on the restricted gridfield than it would on the original

gridfield. However, the accrete operator ensures that the entire local neighborhood

is available. The value of this rewrite is that, under certain conditions, the restrict
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operator can commute with the neighborhood operator, producing a less expensive

recipe.

As an example, consider the grid in Figure 2.10. Let G be a gridfield de-

fined over this grid, with an attribute x. The expression neighborhood(G, 010,

average(x)) computes the average value of x for each local neighborhood of nodes,

where a neighborhood is defined by the stencil 010. Imagine the user is only inter-

ested in the average value at one cell c, and he or she is able to define a predicate

that only c satisfies, only c. Then the user can write

R = restrict(only c, 0, neighborhood(G, 010, average(x)))

This expression can be rewritten to

A = accrete(010, restrict(only c, 0,G),G)

R = restrict(only c, 0, neighborhood(A, 010, average(x)))

The intermediate result A contains the shaded 0-cells in Figure 2.10: The

restrict operator removes everything but c, and the accrete operator includes the

appropriate neighborhood. The neighborhood operator can then be evaluated for

fewer cells. The last restrict is a pre-application of the predicate to shed the cells

in which the user is not interested. Whether or not this rewrite is cost effective

depends on the selectivity of the predicate, the cost of the aggregation function,

and the overhead of each operator.

Another specialization of regrid involves a cross-product operator appearing

upstream in the recipe. Recipes of the form regrid(A, bind(A ⊗ B, attr)) appear

frequently. This fragment involves constructing a potentially large intermediate

result from the cross product, binding a new attribute, then aggregating the new

values back onto A using an assignment function that collapses the product struc-

ture of the grid. A better strategy uses iteration to avoid construction of the large

intermediate product gridfield A⊗B. For each cell in A, we bind a subset of the
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data to B, then aggregate to produce one output value. This technique involves

more than just a specialized implementation of the regrid operator, as we must

identify and replace a specific surrounding pattern in the overall plan.

Iterative execution of recipes is common in our system. Animated data prod-

ucts will call for repeated execution of a subplan of the form regrid(B, bind(A),

data). As data on A for each frame of animation is read via the bind operator,

they must be interpolated onto a different grid B for display. The assignment func-

tion is based on the geometry of the two grids, which we assume for this example

does not change over time. Therefore, recomputing the assignment for each frame

is wasteful. There are two conceptual phases to the regrid operator: assignment

and aggregation. To improve performance, the assignment portion of computation

can be factored out of the loop structure using an analogue of a join index.

In a relational setting, the analogy is a join between tables R and S where the

non-join attributes of S are frequently updated. Rather than recomputing the join

whenever new answers are needed (and rather than maintaining an updateable

materialized view), we can compute a join index: Store a pair of addresses for each

pair of tuples from R× S that satisfy the join predicate.

We simulate a join index without requiring a full indexing subsystem using

the regrid operator. For each cell in the target grid T , execute the assignment

function, construct a collection object holding the assigned cell ids taken from the

source grid, and record these collection objects as a new attribute on the target

grid. The aggregation function is a collection constructor in this case.

To exploit this index attribute, we use another regrid operator with a less

expensive assignment function. The assignment function only needs to know how

to open up the collection and dereference the cell-id pointers stored inside. Recall

that the original assignment function implemented an interpolation, requiring a

search through the source gridfield to find geometrically overlapping cells. Even if

we have access to an R-tree or other spatial index, having direct access to pointers
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saves a log n lookup for each cell in the target grid.

2.4.7 Abstract Syntax and the Fixpoint Operator

We have assumed thus far that the parameters controlling the behavior of our

operators are provided as literals by the user writing the algebraic expression. We

now generalize the situation by assuming the existence of a global environment

in which the recipes are executed, allowing variables from this environment to

appear as parameters to operators. The names of gridfields appear in this global

environment. Also, the names of functions (attributes) passed to bind or appearing

in predicates and functions passed to restrict or regrid also appear in this global

environment.

The default global environment, which we will call the catalog, is a 6-tuple

(GF, A, M, F, P ). Let Sbe a universe of symbols. These components are defined

as

• GF ⊂ S × GF , a set of named gridfields.

• A ⊂ S×(all attributes), a set of named attributes.

• M ⊂ S×(all assignment functions), a set of named assignment functions.

• F ⊂ S×(all aggregation functions), a set of named aggregation functions.

• P ⊂ S×(all predicates), a set of named predicates.

Although we show the catalog being indexed by symbols, the catalog may

provide functions that return gridfields and attributes using numeric values. For

example, the catalog for the CORIE system can return gridfields and attributes

given a year, a day of the year, and a logical “timestep.” Calls to these functions

appear in the place of symbols at the leaves of expression trees.

Using the catalog, we can define an abstract syntax for a language implementing

the gridfield algebra (using Haskell notation).

GFExp =
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| GridField GF

| Bind GFExp Dim A

| Restrict GFExp P

| Cross GFExp GFExp

| Accrete [Dim] GFExp GFExp

| Merge GFExp GFExp

| Union GFExp GFExp

| Difference GFExp GFExp

| Regrid GFExp Dim GFExp Dim M F

The symbol Dim is an integer representing a dimension. The notation [Dim]

indicates a sequence of Dim.

Armed with the abstract syntax, we can define an eval function that walks an

expression tree instantiating and evaluating the operators, accessing the catalog

when necessary.

The complete abstract syntax that includes the fixpoint operator is this:

GFExp =

| Hole Int -- Id

| GridField GF

| Bind GFExp Dim A

| Restrict GFExp P

| Cross GFExp GFExp

| Accrete [Dim] GFExp GFExp

| Merge GFExp GFExp

| Regrid GFExp Dim GFExp Dim M F

| Fixpoint GFExp GFExp Int -- Body , Init , Id

The value Hole represents a variable in an expression. Each Hole is associated

with exactly one instance of the fixpoint operator. This relationship between Holes
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and fixpoint operators is maintained by integer identifiers passed to the construc-

tors.

The fixpoint operator repeatedly evaluates its “Body, ” which may contain

multiple occurrences of Hole. Prior to the first evaluation, the “Init” argument is

evaluated. Any occurrences of Hole in the “Init” argument throws an exception2.

Each subsequent evaluation replaces Hole with the result of the previous evaluation.

The fixpoint operator terminates when the result is the same for two consecutive

evaluations.

Let E = (F, f0, f1, . . . , fn) be a gridfield and let Exp be a gridfield expression

containing one or more occurrences of the value Hole. Let eval be a function

GFExp → GF that evaluates a gridfield expression according to the semantics of

the operators as defined in this chapter. Let Expid→F be the gridfield expression

formed from Exp by substituting the gridfield F for each occurrence of Hole with

identifier id.

Definition 18.

fixpoint(F, Exp, id) =

 F if F = eval(Expid→F〉)

fixpoint(eval(Expid→F), Exp, id) otherwise

The fixpoint operator allows us to implement iterative recipes, one of the re-

quirements from Section 2.3.6. We will show an example of its use in Section

2.5.

2.4.8 Feature Summary

Using only the gridfield operators defined so far, we can write recipes that express

data products from several domains, including various 3-dimensional visualizations,

horizontal and vertical “slices,” aggregations over space and time, vorticity and

gradient calculations, and 1-dimensional plots against time.

2We can use the Haskell type system to enforce this restriction, but we adopt the simpler
abstract syntax for clarity.
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Our recipes generally involve five to ten operators. Existing custom routines to

create these data products have hundreds of lines of array manipulations. Using

visualization software, some burden was offloaded to library functions, but domain-

specific optimizations were sacrificed. Our operators were able to re-express the

semantic optimizations that were previously coded by hand.

We summarize the features of our data model:

• Grids are first-class and of arbitrary dimension.

• Properties of grids can be described and reasoned about.

• The sharing of grids between datasets is explicit, as in Figure 1.5.

• Geometry is modeled as ordinary data, exposing topological equivalences

between distinct geometric interpretations, e.g., different coordinate systems.

• Data can be associated with cells of any dimension, avoiding awkward con-

ventions for associating, for instance, a cell’s area with one of its nodes. For

example, Figure 1.5 would be difficult to encode if we could associate data

only with nodes.

• The data model captures irregular grids directly, while the cross-product

operator can express the repeating patterns of regular and extruded grids.

• The regrid operator is extensible, admitting application-specific assignment

and aggregation functions, as well as specialized implementations.

• The operators admit alternative implementations and accommodate different

underlying gridfield representations.

• Subgrid relationships, though not always explicit, can be inferred statically.

2.5 EXAMPLES AND DISCUSSION

In this section, we exercise our model using data products from the CORIE system.
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(a) (b)

Figure 2.16: A horizontal grid (a) and a vertical grid (b) used to discretize the

domain of the Columbia River Estuary.

2.5.1 Example: Wetgrid

Many of the CORIE datasets are defined over a 3-D grid constructed as the cross

product of a 2-D irregular grid and a 1-D linear grid. The 2-D grid H describes

the domain parallel to the earth’s surface, a horizontal orientation. The 1-D grid

V extends in a vertical direction normal to the earth’s surface. These grids are

illustrated in Figures 2.16(a) and 2.16(b), respectively.

Although the simulation code operates over the grid formed from the cross

product of H and V , the output datasets are produced on a reduced grid. To

see why, consider Figure 2.16(b). The shaded region illustrates the bathymetry

(depth) of the river. The horizontal grid is defined to cover the entire surface

of the water. Below the surface, some nodes in the full 3-D cross product grid

are positioned underground! The simulation code outputs only valid, “wet,” data

values to conserve disk space. Therefore, we must define this “wet” grid to obtain

an adequate description of the topology of the data. The bathymetry data can be

modeled as a gridfield over the horizontal grid H, binding a depth to each node.

To filter out nodes in the product grid that are deeper than the river bottom, we
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⊗

H
0
: (x,y,b)

V
0
: (z)

restrict(z>b) bind(salt) restrict(region) render

“wetgrid”

0 0 0

O
0
: (x,y,b,z,salt)

Figure 2.17: A recipe for visualizing a 3-D CORIE dataset.

need to compare the node’s depth (bound to V ) with the bottom depth (bound

to H). In the following, we will refer to a gridfield H constructed from the 2-D

horizontal grid H and tuples of the form (x, y, b) bound to the nodes. The attribute

b captures the river’s bathymetry at a particular location, and the attibutes x and

y are geometric coordinates. We will also refer to a gridfield V constructed from

the 1-D vertical grid V with tuples of the form (z) bound to the nodes, where z is

the depth below mean sea level.

The task is to construct the grid over which the simulation outputs are defined,

bind a dataset to it, restrict to a region of interest, and visualize the results. The

recipe for this task is shown in Figure 2.17. Each gray oval is an operator in our

algebra. The unfilled oval at the right represents a client task: Render the grid

as an image. The recipe begins at left with the H and V gridfields, constructed

using application-specific access methods. The notation H0:(x,y,b) in Figure 2.17

indicates that the functions at dimension 0 of the gridfield returns tuples of the

form (x, y, b). The cross operator combines H and V to produce a different, 3-

dimensional gridfield. After using restrict to filter out everything below the river

bottom, we have our “wetgrid” (at the point labelled as such in Figure 2.17). After

binding a salinity dataset to the wetgrid, we restrict the grid to a user-supplied

region. In this example, the word “region” is shorthand for a predicate over x and

y values that returns true for only those nodes positioned outside of the river’s

estuary. After evaluating the last restrict operator, we obtain a gridfield O for

“ocean”, which we will use in the next example.
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2.5.2 Example: Plume Volume

The plume is the jet of fresh water that extends into the ocean at the mouth

of a river. Plume dynamics are an active area of research in coastal research

and oceanography with a variety of applications. For example, the plume of the

Columbia River Estuary is an important salmon habitat. The fish are known to

congregate near the edge of the plume; tracking the movement of this region can

improve fisheries’ efficiency. The volume of the plume is also of interest; large-scale

oceanographic processes can be analyzed by studying plume size.

The plume is defined as the region of water outside the mouth of the river with

a salt content below a given threshold. The recipe to compute the plume builds

on the recipe that binds salinity to the “wetgrid” in Section 2.5.1.

Instead of restricting the wetgrid to a user-specified region, however, we want to

identify the plume. We said that the plume is defined by the region 1) outside the

mouth of the river and 2) with salinity less than a given threshold. We have already

obtained a recipe for the region outside of the mouth of the river in Figure 2.17

based on the “region” predicate. We now assume this result has been previously

computed and is available for reuse. The bottom gridfield in Figure 2.18 is the

same as the result of the shaded portion of the recipe in Figure 2.17 (the gridfield

O).

To illustrate the expressiveness of our operators, we compute the plume’s vol-

ume using topological information. The first step is to compute the area of the

2-cells in H and the length of the 1-cells in V, using a regrid operator in each case.

We consider the aggregation over H first. The regrid operator uses H for both

source and target gridfield, which is the meaning of the double lines connecting H

to the operator oval. To compute the area of the 2-cells in H, we use an assignment

function that maps nodes to the 2-cells to which they are incident, and then use

an aggregation function that knows how to compute the area of a polygon given

a sequence of (x, y) pairs defining its perimeter. These two functions appear as
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⊗

H
0
: (x,y,b)

V
0
: (z)

merge

regrid(2, 0, 

incid, area)

unify(3,sum)

O
0
: (x,y,b,z,salt)

apply(3,vol=area*len)

restrict(salt >15, 0)

regrid(1, 0, 

incid, length)

Figure 2.18: A plan for computing the volume of the plume, building on the wetgrid

recipe in Figure 2.17. The double lines at left represent that the regrid operator taking

two input gridfields that happen to be the same here.

“incid” and “area”, respectively, in the arguments to the regrid operator in Figure

2.18.

The aggregation over V is nearly identical, except the aggregation function

computes the length of a 1-cell instead of the area of a 2-cell. Once we have

computed these measures for H and V, we compute the cross product of the

resulting gridfields.

The gridfield O in Figure 2.17 also appears at the bottom of Figure 2.18 as

the input to a restrict operator. The restriction defines the plume according to a

salinity threshold. This result is compatible (see Section 2.2.3) with the result of

the cross product, so we can merge the two gridfields and obtain reasonable results.

After the merge operator, we have a gridfield representing the region outside of the

river’s estuary with geometry and salinity datasets bound to the 0-cells, and with

length and area datasets bound to the 3-cells. We can now employ our specialized

regrid operator apply to multiply area and length, resulting in each 3-cell being

associated with its volume.

Finally, we use the unify operator to compute the volume of the entire plume.

The unify operator, like the apply operator, is a specialization of the regrid operator.

Any aggregation function may be used with unify; here we wish to sum the volumes

of the individual cells.
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Note that this plan assumes that the cells have straight edges. If our grid

consisted of curvilinear cells, expressed by associating data to the 1-cells, then we

would have a different geometric embedding, and therefore a different volume cal-

culation. However, polyhedron formed by linearly translating a polygon through

3-dimensional space can be correctly handled by this plan, varying only the func-

tion that is applied.

2.5.3 Example: Minimum Cell Diameter

The ability to predict the running time of a simulation statically is important

for scheduling computations on a computational cluster. The running time of

a simulation depends on the “cardinality” of the grid used, as measured by the

number of cells of a particular dimension. (The choice of dimension is not usually

important, as the different measures are correlated by the correctness criteria of

grid-generation packages, bounding the number of cells to which a node is incident.)

The running time of a simulation may also depend on the data, as iterative solvers

take longer to converge on, for example, an ill-conditioned matrix. The stability

and accuracy of the solvers demand that the size of the timestep relative to the size

of the smallest cell of a grid be bounded. Therefore, highly refined grids demand

small timesteps, which leads to increased running time. The size of the smallest

cells in the grid can therefore allow an estimate of the running time of a step of

the simulation.

Figure 2.19 shows a recipe to compute the minimum diameter of any cell in a

2-D gridfield. The diameter of a cell is the diameter of the circle with the same

area as the cell. This recipe demonstrates the generality of the regrid operator;

each operation in the recipe is implemented using a form of regrid. Each instance

of regrid exercises a particular specialized implementation as well, however. The

first operator maps nodes to cells so that area can be computed; this task is

implemented as an instance of the neighborhood operator. The second operator
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regrid(2, 2, 

id, “d=sqrt(area/pi)”)
H
0
: (x,y,b)

regrid(0, 2,   

all, min(“d”))

regrid(2, 0, 

I20, area)

apply(2, 

“d=2*sqrt(area/pi)”)
H
0
: (x,y,b) unify(2, min(“d”))

neighborhood

( 20, area)

(a)

(b)

source source source

target

targettarget

U
0
: ()

Figure 2.19: (a) A plan for computing the minimum “diameter” of the 2-cells in a

gridfield using three regrid operators. (b) An equivalent plan using three specializations

of the regrid operator. The minimum cell diameter is used to estimate completion time

of a simulation.

applies an arithmetic operation to the area value. The assignment function in this

case is simply the identity function, so we can use the apply operator. Finally,

the results are aggregated using the unify operator, which maps all i-cells to the

single node of the unit grid. The attribute d on the unit grid holds the minimum

diameter of all cells in the gridfield H.

2.5.4 Example: Feature Extraction

Algorithm 5 in Section 2.3.5 is a pseudocode implementation for extracting con-

nected regions from a dataset. The gridfield algebra can express this algorithm

using the fixpoint operator. Figure 2.20 gives a plan in the gridfield algebra for

extracting a region of low pressure from a 2-D gridfield.

The left-most restrict operator produces a gridfield containing only those nodes

that are below the specified threshold, ρ. The unshaded operators compute the seed

value. The apparent complexity of this sub-plan is due to fact that many cells may

be associated with the minimum pressure value, and we must select one of them to

seed the iteration. First we find the maximum value using the unify operator. Also,

we use the apply operator to copy the attribute id to a new attribute newid. The
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H
0
: (x,y,p)

accrete(020)

restrict(p<ρ, 0)

base

seed

fixpoint

init

step

Hole

unify(max(p))

apply(newid=id)

restrict(count>0,0)

regrid(maxp=p, choose)

source

target

regrid(newid=id, count)

source

target

Figure 2.20: A plan for extracting a feature: a connected region with pressure values

below a certain threshold.

id attribute is an implicit attribute uniquely identifying each cell. Next, we use the

regrid operator to implement a join between the gridfield with pressure values and

the unit gridfield with the max pressure value. The aggregation function choose

chooses one of the matching tuples and returns it. One of the attributes in this

tuple is newid. The next regrid associates a count of 1 with the cell matching the

chosen value of newid and associates a count of zero with all others. Finally, we

use restrict to remove all cells with a count of 0. Note that the latter two operators

implement a semijoin. With the seed defined, we now iteratively grow a gridfield

using fixpoint and accrete. On each iteration, the gridfield representing the feature

is extended by including neighboring cells via the accrete operator with stencil 020.

2.5.5 Discussion

The examples in this section all involve data from the CORIE EOFS, but they

demonstrate a range of capabilities. The first example is constructive, in that it is

used to assemble a gridfield from constituent parts. The ability to express gridfield

assembly within the gridfield algebra itself aids integration with l egacy data.

We find that applications rarely have pre-packaged, self-contained, self-describing



90

datasets ready to be read in as gridfields. Rather, the grid and each attribute

may be in separate files and become available at different times. Gathering these

data together for processing need not be outside the scope of the model, but it

frequently is. For example, data must be loaded into a relational database before

queries may be answered. Using the visualization library VTK [SML96], we were

forced to design custom readers that effectively implemented cross product and

bind in order to construct a gridfield for further processing. We will return to this

issue in Chapter 4, where we present a mechanism for describing the ad hoc file

formats used in practice and how to connect gridfields to them. We will show that

generic readers for ad hoc file formats are competitive with hand-coded readers.

We report empirical results from experiments with VTK in Chapter 6.

The second example performs geometric processing on the cells of the gridfield.

Although the model itself does not explicitly involve geometry, functions to com-

pute distance, area, volume, and so forth can be used as arguments to the regrid

operator. In this sense, the gridfield algebra is extensible. Each of the data prod-

ucts we have encountered in practice can be expressed with the gridfield algebra

and suitable assignment and aggregation functions.

The third example illustrates that gridfield algebra expressions can be used to

compute scalar quantities in addition to topological structures. Scalar quantities

(and, in fact, vector quantities) are captured with attributes bound to the unit

grid.

The fourth example illustrates an iterative algorithm expressed as a gridfield

recipe. Gridfields need not be relegated to simple functional transformation of

datasets, but can be applied to complex computational tasks as well.

In the next chapter, we will discuss the implementation of the model, consid-

ering several alternative data structures to manage the topology of the grid.



Chapter 3

DATA STRUCTURES FOR GRIDFIELDS

Recall our thesis: Programs manipulating scientific datasets exhibit an algebraic

structure that can be exploited to reason about their results and improve their

performance. Having developed the model and shown examples of its use, the

next step is to define a reference implementation for empirical evaluation.

In this chapter, we derive a reference implementation of gridfields, focusing on

core data structures rather than recipe-level evaluation and optimization. We will

derive a minimal interface from the requirements in Chapter 2, then consider alter-

natives for implementing the API using proposals from the literature. We find that

many of these proposals are too specialized for use as a reference implementation

of gridfields. We experimentally compare alternatives that are sufficiently general

and select one for implementation on that basis. Details of operator implementa-

tion will be considered when they illuminate features or shortcomings of the data

structure under consideration.

The requirements for manipulating gridded datasets derived informally in Chap-

ter 2 are repeated here as a starting point for refinement.

1. Iteration over cells of a particular dimension.

2. Iteration over incident cells of dimension i given a cell of dimension j.

3. Read and write access to data values associated with cells of arbitrary di-

mension (though usually just one dimension at a time).

4. Identification of cells that satisfy a particular condition on their data.

5. Ability to construct a new gridfield using cells from a given gridfield.
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6. Repetition of operations; recursion.

The first two requirements involve iterating over cells. The concept of an it-

erator offers a generic interface to a collection of cells and is widely supported by

programming languages.

class iterator <T> {

void next ();

T value ();

bool done ();

}

The syntax is Generic Java, which supports polymorphism using a syntax resem-

bling C++ templates. The iterator interface controls access to a collection of

values of type T with three methods: next for advancing to the next element,

value for retrieving the current value, and a boolean test done indicating that no

more values are available. Equivalent formulations are possible.

A cell has identity, and two cells may therefore be compared for equality. A cell

also has a dimension member of type integer. According to the model, the same

cell may be used in multiple grids, so incident cells and data bound to a cell are

not naturally part of the cell’s definition. A grid data structure is not prevented

from representing incidence information within a cell, however.

class Cell {

bool equals(Cell c);

int dimension;

}

A grid should support iteration over the cells at rank k. Given a k-cell c, a grid also

allows iteration over the j-cells sharing an incidence relation with c. A gridfield

allows access to the value of an attribute a given an k-cell c. Attribute values may

also be mutated to allow efficient in-place implementations of operators.
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class Grid {

iterator <Cell > kcells(int k);

iterator <Cell > incidence(int k, Cell c);

bool incident(Cell c, Cell d);

}

class GridField public Grid {

Value GetValue(string a, int dim , Cell c);

void SetValue(string a, int dim , Cell c, Value v);

}

This core interface suffices to implement all the gridfield operators we have

introduced, but a specific data structure may offer more efficient methods. For

example:

• Testing membership of a cell in a grid requires a linear scan using the interface

above, but can be implemented in constant time if the cell ids are known to

occupy a contiguous range of integers.

• The incident method can be used to test two cells for incidence, but inci-

dence relationships may be derivable from the cell identifiers. For example,

an efficient representation of a 1-dimensional trajectory declares a node i to

be incident to the edges i and i + 1. More generally, the 0-cells and 1-cells

themselves might be entirely implicit and their incidence to higher dimen-

sional cells calculable from the representation of those cells.

• A cell’s adjacent cells can be retrieved through an index rather than by two

calls to the incident method.

• The restrict operator requires a linear scan to identify cells whose bound data

satisfy a predicate using this API, but a data structure may be equipped with

an index for faster lookup.

In Chapter 2, we introduced compatibility between two grids, defined as the
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existence of a mutual supergrid. We will work with subgrids frequently, appealing

to the existence of a supergrid to reason about properties. For example, if we

know we have a subgrid of a well-supported grid, we need not not materialize

every cell in the grid at every step of a recipe. A recipe that computes the global

average temperature over a region needs access to the nodes only. The logical,

unmaterialized supergrid contains all cells in the grid, however, and they can be

restored later if needed. Another example: Triangles are usually represented as

a sequence of nodes, and the edges are implicit, so a data structure that requires

explicit edges is at a disadvantage. We can operate “edgelessly” with a 2-D gridfield

with only 2-cells and 0-cells, knowing that the logical supergrid holds the edges.

If they must be reified physically, then the catalog will supply them (perhaps

dynamically via a view).

The number of cells accessed through the iterator returned by incident is

limited in practice by requirements on cell quality [Ber98]. In two dimensions, for

example, the minimum angle of a triangle is bounded to avoid “skinny” triangles

that incur numerical interpolation errors. The result is that each i-cell tends to

touch only a few j-cells. Calls to incident may therefore return an explicit set or

vector for iteration.

Physical operator implementations can use the interface above to reduce depen-

dence on a particular physical representation. This API is also exposed to authors

of assignment functions passed to the regrid operator (see Section 13). To prevent

brittle, unmaintainable libraries of assignment functions, we keep the grid API

narrow. As described in Chapter 2, we identify common uses of the API to craft

specialized implementations of the regrid operator. For example, the neighborhood

operator access the local neighborhood of a cell through a stencil implemented as

a small, finite number of calls to the incidence method.

In the remainder of the chapter, we will use the following notation to refer to

the core API methods.
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• Ck: Iterator for cells of dimension k.

• Iij(c): Iterator for the j-cells touching the i-cell c.

• Fk(a, c): Access to the value of attribute a bound to cell c at dimension k.

3.1 CHARACTERIZING GRID REPRESENTATIONS

Grid data structures are typically designed to provide constant time access to

incidence information with as little space overhead as possible. For example, a

traversal of the n incident nodes of a polygon should require O(n) time.

The model for grids we have described can be implemented directly as an

incidence graph [Ede87]. Each cell becomes a node in the graph, and each incidence

relationship becomes an edge. An incidence graph can be represented with familiar

graph data structures; for example, a set of adjacency lists or an adjacency matrix

of cells. These representations ignore dimension however. Operators generally

access grids one dimension at a time: We want direct access to the nodes of a

tetrahedron without having to search through the edges and faces. One solution

is to divide the graph structure into multiple adjacency lists instead.

A fully generalized incidence graph representation has two problems: First,

pathological grids can be constructed that are difficult to interpret in real applica-

tions (see Chapter 2, Section 2.2.2), and, second, accessing the incidence relation

either requires time linear in the grid size (which is generally unacceptable) or

significant redundancy. For example, the 0-cells might store pointers to the 2-cells

so that I02 can be evaluated efficiently, but then 2-cells must also store pointers to

0-cells so that I20 can be evaluated efficiently. Incidence relationships implied by

the transitive closure may also be represented redundantly.

Other grid representations proposed in the literature solve these problems by

specializing on grids that obey certain properties: For example, only 2-D or 3-D

grids may be allowed, or each cell must be a simplex (a triangle in 2-D or a tetrahe-

dron in 3-D), or a d-dimensional grid must be embeddable in a d-dimensional space.
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By targeting a narrower class of grids, designers can simplify the data structure

(improving performance) and guarantee that only proper grids are constructed.

For example, the edge-based data structures we will discuss can only represent

2-D connected, embeddable grids. Grid construction with this data structure pro-

ceeds by sewing edges together. Besides guaranteeing the embeddable and con-

nected properties, this restriction avoids the need to build a separate object for

each node, edge, and face; faces and nodes can be represented as members of the

edge object. Also, the incidence relationship is implicit, so I10 and I12 can be

evaluated in constant time. However, such restrictions exclude grids we encounter

in our motivating applications: The CORIE grids are non-simplicial, for example.

Once a grid is constructed, verification of an arbitrary property may be difficult

or even undecidable. For example, verification that a cellular complex (a formal

foundation for some grid data structures) describes a three-manifold reduces to

the Sphere Recognition problem. This problem is easy for d ≤ 3 thanks to Euler’s

formula relating the number of nodes, edges, faces, and polyhedra in a grid. How-

ever, for d = 4, the problem is in NP, for d = 5 the problem is open, and for d = 6,

the problem is known to be undecidable [Mar58].

So verification of grid properties may be expensive or impossible, and special-

ized data structures are often too restrictive for our purposes. In practice, we

find that the lack of enforcement grid properties does not cause problems. Why

should this be the case? The answer is that the gridfield algebra prevents low-level

insertions of cells that can produce meaningless grids. Every operator except ⊗

produces a result that is compatible with its argument(s), meaning that properties

preserved through compatibility are preserved through a class of gridfield algebra

expressions. More precisely:

Proposition 5. Given a tree T of gridfield operators from the set {⊗, union,

merge, restrict, bind, accrete, regrid} in the gridfield algebra, construct a tree T ′ by
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applying the following transformations:

merge(A,B)→ A

restrict(p, i,A)→ A

bind(A, i, a)→ A

accrete(σ,B,A)→ A

regrid(A, i,B, j,m, a)→ A

Then the grid of the result of T is a subgrid of the result of T ′.

The consequence is that we can reason about the correctness of gridfield algebra

expressions in terms of the correctness of their inputs. If a property is preserved

through union, cross, and the subgrid relationship, then it is preserved through the

gridfield algebra.

A gridfield representation must also allow access to data values bound to cells.

All of the structures we discuss have some ability to associate data with cells. There

are at least four ways to do so: 1) The cell’s definition may include a pointer to

a tuple, 2) an auxiliary structure may relate each cell with a tuple, 3) each tuple

may hold a pointer to a cell, or 4) an array of cells may be positionally aligned

(“parallel”) with an array of tuples, an implicit representation of both 2) and 3).

An advantage of the fourth solution is that more than one array of tuples can be

bound to a grid; conversely, each attribute within a tuple may constitute its own

positionally aligned array. This configuration allows attributes to be bound to a

grid and projected out of a grid in constant time. Further, positionally aligned

arrays (“parallel arrays”) are a common idiom in both scientific data processing and

visualization, classes of systems with which gridfields must interact. Positionally

aligned arrays also do not require an explicit cell object to be constructed. For

example, a 0-dimensional gridfield consisting of 100 nodes and a single attribute x

requires one integer (the number of 0-cells) and 100 floating point numbers. The

nodes themselves are entirely implicit.
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The validity of a particular solution method for a numerical simulation de-

pends crucially on the characteristics of the boundary conditions. For example,

the value of the solution may be fixed at a boundary (Von Neuman boundary

conditions), or the value of the derivative of the solution may be fixed (Dirichlet

boundary conditions); each is solved in a different way. Data structures for ma-

nipulating gridded datasets may have a built-in representation of the boundary, or

the boundary may be represented as a separate structure. The boundary of a grid

may also be efficiently derivable from the full grid.

Let us summarize this introductory discussion: The gridfield model admits a

direct representation based on incidence graphs. A full incidence graph is redun-

dant and inefficient, and does not prevent the construction of pathological grids.

However, we can work at times with only a portion of the full incidence graph,

since the gridfield operators preserve or allow recovery of the important grid prop-

erties. Other important characteristics of a gridfield data structure include how

data values are associated with the cells, and how boundaries are represented.

We will consider specialized data structures, many of which will prove too re-

strictive given the grids we encounter in practice. Three data structures prove

worthy of further analysis and testing: the NGMap of Lienhardt [Lie94]; the in-

dexed cell set(ICS) representation, popular for its simplicity; and our modified,

tailorable incidence graph, TIGraph. We will then describe implementation de-

tails of the gridfield model with respect to these data structures. Finally, we will

compare them experimentally using the restrict operator and the neighborhood op-

erator. The restrict operator is an appropriate test case since it involves topology

queries, access to bound data, and potentially the construction of a new result grid-

field. The neighborhood operator is edifying since it involves repeated incidence

queries to implement stencils. We conclude that the ICS representation, optionally

extended with features of the TIGraph representation, offers the best balance of

performance and flexibility.
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Figure 3.1: A simple grid we use to illustrate representation alternatives.

3.2 REVIEW OF GRID DATA STRUCTURES

In this section, we will use the grid in Figure 3.1 as a running example to illustrate

data structures proposed in the literature.

3.2.1 Incidence Graph

The grid model can be directly implemented with an explicit incidence graph

[Ede87] whose nodes are cells and whose edges are incidence relationships. We

refer collectively to the all variants of this representation as TIGraph. The cells

are partitioned by dimension and the incidence relation is constrained to be a

partial order respecting dimension. A Hasse diagram of the incidence graph of the

mesh in Figure 3.1 appears in Figure 3.2. Edges implied by the transitive closure

of the partial order are omitted.

The representation of the graph edges varies among concrete TIGraph imple-

mentations. A simple adjacency matrix is likely to be space inefficient. Mesh

quality metrics usually prevent more than 5-10 cells from touching any one cell, so

the resulting adjacency matrix would be very sparse.

Adjacency lists (adjacency in the sense of graphs rather than grids) are more
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Figure 3.2: A Hasse diagram of the incidence graph of the grid in Figure 3.1. The edges

are incidence relationships, though the relationships implied by the transitive closure,

such as (A, 0), are implicit in the vertical stratification of the graph vertices.

common, but a decision must be made about which dimensions will be explicitly

linked. For example, an edge may explicitly list its incident nodes, but the nodes

need not explicitly reference the edges. More complex inferences are common: The

edges of a triangle can be inferred from an ordered list of nodes; neither the edges

themselves nor the corresponding incidence relationships need be explicit.

A recent exemplary variation on the incidence graph is the Simplified Incidence

Graph (SIG) of de Floriani, Greenfieldboyce, and Hui [FGH04]. A SIG explicitly

stores Ii(i−1) for all 0 < i ≤ dim(G), which the authors refer to as boundary

relations, as well as a partial co-boundary relation (PCBR) for 0 ≤ i < dim(G).

A partial co-boundary relation is a subset of Ii(i+1); specifically, a single arbitrary

(i + 1)-cell is stored for each i-cell. The PCBR allows upward traversal of the

incidence graph (upward with respect to increasing dimension), while minimizing

redundancy.

The benefits of this representation include efficient space utilization relative to

other variations of the incidence graph, as well as amortized constant time access

for incidence and adjacency queries (generally assumed to be a requirement for



101

topological representations). The SIG representation is applicable only to simpli-

cies however, so we cannot apply it directly to all the grids we find in practice.

3.2.2 Indexed Cell Set

A popular representation of unstructured grids—favored by the visualization com-

munity for its compactness—is the indexed cell set (ICS) [SCESL02]. ICS can

be considered a variation of an incidence graph representation that specifies rep-

resentations of geometric coordinates and relies on conventions for representing

common cell shapes. ICS stores an explicit Id0 relation as well as an array of tu-

ples representing geometric coordinates, where d is the dimension of the grid. Id0

is represented as an adjacency list where order matters; the k-cells for 0 < k < d

are inferred by the API implementation (or by the application) based on the order

of nodes.

Before we describe this idea in detail, consider Figure 3.3, an example of the

ICS representation of the 2-D grid of Figure 3.1, extended with some geometric

information implied by the illustration.

A list of geometric coordinates for each node is followed by a sequence of 2-cells.

Each 2-cell consists of an integer n (the number of nodes) followed by n node

indexes into the list of coordinates. The example ICS is written using ASCII

values; ordinarily these numbers would be in a packed binary format.

The ICS representation is a variation on an adjacency list representation of

the incidence graph, with two differences. First, it was designed for geometric

models, and so includes a specification for representing geometric data as well as

the topology. Second, the only portion of the incidence relation represented is

between d-cells and 0-cells. The i-cells for 0 ≤ i ≤ d can sometimes be inferred

from the order of the 0-cells.

For example, a 2-D grid encoded in an ICS representation is assumed to be

well-supported, so the 1-cells can be derived implicitly from the order of the node
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0 0.0, 1.0

1 0.0, 0.0

2 1.0, 0.0

3 1.6, 0.4

4 1.0, 1.0

5 4; 0, 1, 2, 4

6 3; 2, 3, 4

Figure 3.3: An example of the ICS representation. The numbers delineated to the left

are line numbers only. A sequence of x, y coordinate pairs is followed by a sequence of

cell definitions. Each cell definition is a sequence of node references, preceded by the

sequence length.

references for each 2-cell. A 2-cell encoded as (2, 3, 4) implies the existence of a

1-cell to which nodes 2 and 3 are incident, another 1-cell to which nodes 3 and 4

are incident, and a third 1-cell to which nodes 4 and 2 are incident.

Relying on implicit representation of cells has disadvantages. Most prominently,

there is not enough information in an ICS to express arbitrary grids. Cells are

limited to pre-defined shapes identified by the length of the node list and the

overall dimension of the grid: three nodes indicates a triangle, four nodes indicates

a quadrilateral in two dimensions and a tetrahedron in three, six nodes indicates a

hexagon in two dimensions and a prism with triangular bases in three, eight nodes

indicates a cube in three dimensions. Most common cell types can be discerned

with this convention, but one can imagine pathological cells. For example, both

a prism with triangular bases and an octahedral cell are three dimensional cells

represented with six nodes. The use of convention to define topology can lead

to errors that are difficult to detect combinatorially. For example, an incorrect

ordering of nodes representing a prism can lead to a self-intersecting degenerate
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Figure 3.4: An Indexed Cell Set (ICS) representation relies on the ordering of nodes to

indicate faces and edges in three dimensions. An unconventional ordering of nodes can

lead to degenerate cells, a condition that is expensive to check for.

cell, as in Figure 3.4. However, a test for this condition is specific to each cell type

and potentially expensive, requiring evaluation of geometric relationships between

multiple pairs of nodes.

The ICS representation exploits implicit information so as to require less space

than an explicit incidence relation, but can only capture well-supported grids. An

incidence relation may be represented by a sequence of pairs of the form (c2, d0),

where c2 and d0 are explicit references to a 2-cell and a 0-cell respectively. This

representation requires 2N integers, where N is the number of relationships that

must be modeled. The ICS representation requires N +M integers, where M is the

number of 2-cells. For a well-supported grid, all 2-cells have at least one incident

node, so M < N . If M > N , we could not use the ICS representation.

Note that homogeneity is not enforced or required by this representation; there

may be nodes that are not referenced by any 2-cell (Every 1-cell implicitly is.)
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The portion of the complete incidence relation that must be handled implicitly

by the API scales exponentially with dimension. For each triangle in a 2-D grid

we must infer the existence of three edges. For each tetrahedron in a 3-D grid,

we must infer the existence of four triangles. For an nD simplicial grid, we must

infer the existence of (n + 1)! k-cells. However, the only information we have to

determine an appropriate shape for a n-cell is the number of nodes involved and

the dimension of the grid. The basic ICS representation is therefore unsuitable for

representing grids of dimension higher than three.

The extended ICS representation allows additional lists of explicit cells for

dimensions less than d. For example, if only the boundary of our running example

(Figure 3.1) was present and the internal edges were absent, we could add another

section to the ICS representation containing only these edges:

2; 0, 1

2; 1, 2

2; 2, 3

2; 3, 4

2; 4, 0

The 2-D ICS representation, under the well-supportedness assumption, can be

used to implement I20 and I21 efficiently. We can support additional methods

efficiently by augmenting (or replacing) the base representation with additional

information. For example, we can add inverse mappings from nodes to k-cells,

efficiently implementing I0k, or an adjacency relation associating d-cells that share

an incident cell.

Since CORIE data is initially generated in an ICS representation, and visual-

ization clients frequently use an ICS representation, convenient translation to and

from an ICS representation is desirable. As mentioned, ICS is a specialization of

TIGraph, where only the Ik0 relationships are explicit. Our tested implementation

of ICS is similar to the extended ICS representation, but with two distinctions: We
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Figure 3.5: The winged-edge data structure. (a) An illustration of the information

in the winged-edge record for edge w. The solid white arrows indicate left and right

traversals of neighboring faces. (b) The vertex and face tables linking each node (edge)

to an arbitrary touching edge. (c) The edge table of the winged edge representation.

Empty fields (null pointers) capture boundary information.

separate geometric data from topology data, storing x and y values as column-wise

attributes of nodes (see Section 3.3.1), and we extend ICS with an inverse map-

ping from nodes to k-cells, implementing I0k. The inverse mapping is constructed

automatically when an operator calls I0k (which makes the first call expensive).

An array of cells is encoded as a contiguous array of lists of node references, and

the inverse mapping is a hash index mapping nodes to lists of k-cells.

What about Iij, where i 6= 0 and j 6= 0? There are two choices: Grids generated

by tools for narrow cases (2-D simplicial grids, for example) have the property

that nodes(x) ⊆ nodes(y) ⇔ x � y, so Iij may be implemented via Ii0 and Ij0.

Alternatively, additional explicit Iij methods can be provided.
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3.2.3 Edge-based Structures

Edge-based structures can only represent 2-D surfaces. There may be additional

properties that must hold for the surface being represented; we will review them

informally here. An orientable surface has two discernible “sides;” a Möbius strip

is the typical example of a non-orientable surface. A closed surface has no holes

in its one-dimensional boundary. A manifold surface locally resembles Euclidean

space, but may have a more complex global structure.

The winged-edge data structure [Bau72] can represent 2-D, manifold, complex,

orientable, closed surfaces. As with several of the representations we will dis-

cuss, the winged-edge structure adopts the edge as the fundamental object. For

each edge, a record is inserted into an edge table (Figure 3.5). Each edge record

holds pointers to its left and right faces, its origin and destination nodes, and four

adjacent edges. The four adjacent edges correspond to a forward and backward

traversal of the left face, and a forward and backward traversal of the right face.

In addition to the edge table, a node table and a face table map each node (face)

to a single incident edge. From that edge, the remaining edges can be gathered

via the edge table.

Iteration over edges associated with a node and edges associated with a cell are

straightforward, but accessing the faces associated with a node is awkward since

there is no consistent way to order the pointers. That is, a pointer to an edge

does not consider which direction we are coming from. The data structure can be

extended with an extra bit for each edge-pointer, but this extension complicates

the implementation.

The half-edge data structure solves the orientation problem by splitting each

edge into two half-edges representing the edge as well as its orientation. Each half-

edge record stores a pointer to its opposing half-edge, an incident node, and a face

to which it is incident. The choice between the origin and destination nodes is a

matter of convention; the term split-edge is sometimes used to refer to the choice
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Figure 3.6: The quad-edge data structure. (a) Four quad-edge structures are used to

represent each edge in the original grid. (b) The edge algebra elegantly allows access to

neighboring edges in both the primal and dual grid.

of faces as the origin.

If we store half edges from node to node as well as dual half-edges from face to

face, we have the quad-edge data structure proposed by Guibas and Stolfi in 1984

[GS95]. The quad-edge structure again adopts the edge as the primary interface to

the topology information, but implements a formal edge algebra rather than pre-

scribing a particular table of data. The edge algebra provides four ways of looking

at the same edge, depending on the orientation of the beholder. If we imagine a

bug standing on the edge, it may be facing the origin node, the destination node,

the left face, or the right face. To represent orientation, some implementations

allow the bug to flip upside down to be standing on the underside of the surface,

providing four additional orientation options.

Operators for changing the bug’s orientation and movement to a “next” edge

allow traversal of the surface. An illustration of the quad-edge structure and the

operators appears in Figure 3.6. This set of operators form an elegant algebra

obeying many laws. The common operators are shown in Table 3.1, along with
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Operator Action Implementation

Rot Rotate 90 degrees. Explicit pointer.

Onext The next edge around the origin. Explicit pointer

Flip Flip upside down. Set a flipped bit.

Sym Rotate 180 degrees. Rot2

InvRot Rotate -90 degrees. Rot3 or Flip Rot Flip

Dnext The next edge around the destination node. Sym Onext Sym

Lnext The next edge around the left face. InvRot Onext Sym

Rnext The next edge around the right face. Rot Onext InvRot

Oprev The previous edge around the origin node. Rot Onext Rot

Dprev The previous edge around the destination node. Rot3 Onext Rot3

Lprev The previous edge around the left face. Onext Sym

Rprev The previous edge around the right face. Sym Onext

Table 3.1: Operators for the Quad-Edge data structure.

their usual implementation. Of course, the algebraic equivalences allow alternative

implementations. All rotations and orderings are counter-clockwise.

Although we defined the operators in terms of nodes and faces, there is actually

no way to distinguish the two concepts. Put differently, the mesh and its dual

are represented simultaneously. An edge can be described in terms of its origin

and destination node; its dual edge can be described in terms of its origin and

destination faces.

The physical data structure involves four oriented edge objects to represent

each unoriented edge and its dual. Data can be associated with the nodes via a

pointer to the origin node of each record.

The quad-edge structure can only represent 2-D, orientable, closed surfaces.

Non-manifold “dangling” edges can be represented by a fixpoint for the onext

operator, but other violations of the manifold property, specifically edges that

are incident to more than two faces, cannot be represented. (Note that we are
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describing properties defined on the infinite, continuous, topological surface, not

the discrete, combinatorial data structure.)

3.2.4 Cell Tuples

A grid G of dimension d can be represented as a set of cell tuples [Bri89] together

with a sequence of operators switchi for 0 ≤ i ≤ k. Each cell tuple (ck, ck−1, . . . , c0)

satisfies ck � ck−1 � . . . c0. Each operator switchi maps a cell tuple d to another

cell tuple e such that d and e differ only at dimension i. There is a unique cell

tuple satisfying this condition if the underlying topological space being modeled is

manifold; i.e., each k-cell is homeomorphic to the open k-ball.

The set of cell tuples representing the grid in Figure 3.1 is

(A, z, 2) (A, z, 1) (A, y, 1) (A, y, 0)

(A, x, 0) (A, x, 4) (A, w, 4) (A, w, 2)

(B, w, 4) (B, v, 4) (B, v, 3) (B, u, 3)

(B, u, 2) (B, w, 2)

Some examples of switch operators applied to the cell tuples of representing Figure

3.1 are

switch0((A, z, 2)) = (A, z, 1)

switch1((A, z, 2)) = (A, w, 2)

switch2((A, w, 2)) = (B, w, 2)

The boundary of a grid can be represented by allowing fixpoints for switchk;

defining, for example, switch2((A, z, 2)) to be (A, z, 2). Alternatively, the set of

cells may be extended with an additional k-cell Ω representing the exterior of the

grid, so that, for example,

switch2((A, z, 2)) = (Ω, z, 2). Every (k − 1)-cell on the boundary of the grid is

incident to Ω.

The formal development of the cell tuple representation stems from the barycen-

tric subdivison of a grid. The barycentric subdivision B of a grid G is a grid
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Figure 3.7: The barycentric subdivision of the grid in Figure 3.1, which is repeated in

the inset. The resulting simplicial complex provides the technical machinery to develop

the cell tuple data structure.

constructed as follows. For each cell c in G, add a 0-cell vc to B. If x ≺ y in

G, then add a 1-cell exy to B and assert vx ≺ exy and vy ≺ exy. If w ≺ x ≺ y

in G, add a 2-cell twxy to B and assert the appropriate incidence relations. This

process can be continued for grids of arbitrary dimension, forming a d-dimensional

simplicial complex. Each d-cell in this complex corresponds to a cell tuple. The

barycentric subdivision of the grid in Figure 3.1 appears in Figure 3.7. The 13

numbered d-cells correspond to the 13 cell tuples listed previously.

The switch operators, switchi, link pairs of adjacent d-cells (e.g., switch0(2) = 3

and switch2(13) = 7 in Figure 3.7). Using the switch operators, we can define orbits

that allow access to incident cells. For example, to visit the nodes around a face,

follow the orbit defined by repeated application {switch1, switch2}. The concept

of orbits will be revisited in the next section.

3.2.5 Generalized Combinatorial Maps

A generalization of cell tuples proposed by Lienhardt [Lie94] allows representation

of some forms of non-manifold surfaces. We have defined embeddable grids as grids
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in which each (d− 1)-cell cell is incident to no more than two d-cells. A 2-D grid

with isolated nodes or dangling edges is embeddable but not manifold.

Lienhardt’s n-dimensional generalized combinatorial map, or NGMap, can rep-

resent non-homogeneous grids and grids that are not strongly-connected, but can-

not represent grids that branch. Using properties as we defined them in Chapter

2, we say that NGmaps can represent embeddable grids.

An NGMap representing a grid G of dimension k is a set of darts D and a set

of involutions αi on D. Just like a cell tuple, a dart represents the relationship

between a d-cell, a (d − 1)-cell, and so on down to a 0-cell. The term involution

implies that αi(αi(c)) = c. These involutions are essentially “wiring” information

about darts.

An illustration of an NGMap representing the grid in Figure 3.1 appears in

Figure 3.8. Intuitively, αi may be thought of as a movement from one dart to

another, so that the new dart only differs at dimension i. Using the labeled darts

in Figure 3.8, we can give some examples of αi:

α0(2) = 3 α0(3) = 2

α0(9) = 10 α1(4) = 3

α1(10) = 11 α2(3) = 3

α2(7) = 13

In the first example, we move from dart 2 to dart 3, staying in contact with the

edge y and the face A. In the third example in the left column, we move from

dart 10 to dart 11, staying in contact with the node 3 and the face B. In the last

example, we move from dart 7 to dart 13, staying in contact with the node 2 and

the edge w.

These involutions offer an elegant method of traversing the incidence informa-

tion (and implementing the incident method). To visit all the edges around a
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Figure 3.8: Each arrow corresponds to a dart in the NGmap representing the grid of

Figure 3.1. The numbers associated with the darts correspond to the labeled d-cells in

the barycentric subdivision of Figure 3.7.

face, we can successively apply the composition α0α1. The sequence of darts re-

turned by this process is called an orbit, written < α0α1 >. For example, in Figure

3.8, the orbit < α0α1 > beginning at the dart labeled 8 is the sequence 9, 10, 11,

12, 13, and 8 in that order. To visit all the faces adjacent to a face, we traverse the

orbit < α2α1α0α2 >. An orbit is a set of darts rather than a set of cells, so to avoid

duplication each dart must be associated with cell identifiers. An implementation

may use a pointer to a data object or an explicit cell identifier.

In addition to being an involution each function αi has the following property,

ensuring that darts are sewn together completely or not at all:

∀i, j.0 ≤ i < j − 2, j ≤ k, αi ◦ αj is an involution.

Both darts and cell tuples represent the relationship between cells rather than

the cells themselves. For a closed manifold grid, darts correspond exactly to cell

tuples and involutions are equivalent to the switch operators [Bri89].

In order to model only closed, manifold grids, fixpoints are allowed only for

αd. Fixpoints for αd indicate darts on the boundary of a connected region. This

restriction precludes the pathological grids iii) and iv) in Figure 2.7. In many
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treatments, fixpoints are allowed at other dimensions to represent solitary nodes,

“dangling” edges, or other non-manifold artifacts.

Invariants (e.g., manifoldness) are enforced constructively in the implementa-

tions of four methods

Dart mkDart()

killDart(x : Dart)

sew(i : int, x : Dart, y : Dart)

unsew(i : int, x : Dart, y : Dart)

The method mkDart initializes a dart. This operation is sometimes interpreted

as creating an isolated node. However, a dart really represents the relationship

between d + 1 different cells (for a d-dimensional grid), so such an interpretation

is incomplete. To sew darts x and y at dimension i, they both must be free at

dimension i, meaning that both x and y are fixpoints for αi. (Treatments that do

not permit fixpoints at any dimension must define higher-level operators, based on

sew and unsew, that maintain the appropriate invariant.) After sewing, we have

αi(x) = y and αi(y) = x, and the condition that ∀i, j.0 ≤ i < j − 2, j ≤ k, αi ◦ αj

is an involution. This last condition prevents “partial” sewings; for example, two

darts constituting an edge sewn to different faces. The method unsew frees the

dart at the given dimension. The method killDart frees the dart at all dimensions,

and excises it from the grid.

3.2.6 A Relational Implementation

The data structures described thus far were all designed specifically for grids. What

about adapting more general data models for use with grids, such as the relational

data model?
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A direct representation of the grid model would consist of two relations

C(id, dim), I(from, to)

where C(i, k) indicates a k-cell with a numeric id and I(c, d) means x � y. The

relationship between the cell tuple and NGMap representations can be expressed

in the relational algebra. First, we derive the cell tuple representation using the

relational algebra. Let

Ci = ρid→i(πid(σdim=i(C)))

Ci ./I Dj = πi,j(Ci ./id=from I ./to=id Dj)

where ρ is the rename operator, π is the project operator, and σ is the select

operator.

The cell tuple relation D of a grid G = (X, I) can then be expressed as

Gd ./I Gd−1 ./I . . . ./I G1 ./I G0

When used to represent a d-dimensional grid, this relation has d + 1 columns. We

assume that the column corresponding to dimension i is named ci, though we omit

explicit rename operators for clarity.

The set of darts D of the NGMap (D, α0, α1, . . . , αd) is exactly the cell tuples

and has scheme D(c0, c1, . . . , cd). Let each involution αi(x) in the NGMap can be

expressed as a relation

D ./(c0=c0)∧...(c(i−1)=c(i−1))∧(c(i+1)=c(i+1))∧···∧(cd=cd) D

that is, an equijoin on all attributes except i. For an embeddable grid, the result

of this expression will have one or two tuples [Lie94], depending on whether or not

the cell is part of the boundary.

The other data structures we have considered exhibit an obvious tabular struc-

ture; devising an appropriate relational implementation is straightforward.
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So the relational model can adequately express the individual data structures

used to represent grids. However, there are some difficulties when attempting to

model a large and growing number of datasets bound to a relatively small number

of grids. Four possible schemas for capturing gridfields bound to the same fully

general grid are:

1. Var1(cell, value), Var2(cell, value), . . .

2. CellData(cell, var1, var2, . . . )

3. CellData(cell, var id, value)

4. CellData(cid, var id, value), Cell(cid, grid id)

Schema 1 models each dataset Vari as a separate relation. This design agrees

with the existing storage format in the CORIE system, as every simulation run

generates many arrays, each stored separately. In a relational setting, however,

this design suffers from several disadvantages. First, each new dataset requires a

change to to the schema, making robust queries difficult to write and maintain.

The CORIE system generates data-sets continuously; continuous schema changes

are undesirable. Second, the grid is obscured; the fact that all of these datasets are

bound to the same grid is not captured. Third, each cell definition is redundantly

stored in several tables.

Schema 2 models each dataset vari as an attribute in a single large relation. We

still must modify the schema whenever new datasets are added, but the common

grid between these datasets is exposed and the redundancy is removed. However,

this design is constrained by table attribute limits found in many popular RDBMS.

Also, a recipe is not likely to access all attributes of these very long tuples, resulting

in a great deal of wasted I/O (unless you use a column-store [SAB+05]).

Schema 3 uses a single relation with only three attributes. Each tuple holds a

cell definition, a dataset identifier var id, and a data value. No schema changes

are required to add a new dataset, though each new dataset must have the same
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type (e.g., integer, float). Multiple copies of the same cell are still stored, however.

This design also requires multiple self-joins to bind many attributes to the same

grid. Finally, the common grid between var1, var2, etc. is again obscured. If an

erroneous “extra” cell is inserted into the grid for a particular variable, no error

can be raised by the database.

Schema 4 is Schema 3 extended with an assignment of each cell to a grid.

Schema 4, like Schema 3, does not require changes when new datasets appear.

Schema 4 also solves the problem of inserting “illegal” cells—cid is a foreign key

to the Cell relation. To reduce redundancy, we use a surrogate key (an integer)

for the cell definitions. In the Cell relation, we also add a grid id attribute so

that multiple grids can be represented. Like Schema 3, however, Schema 4 will

generate a very large CellData table. Further, queries will commonly align

multiple variables on the same grid for processing; this task requires one less self-

join than the number of variables aligned.

For another challenge, consider a product grid such as our running “wetgrid”

example. The 3-D cells must be stored explicitly, or they must at least hold

foreign key values to their source cells. For example, a prism is constructed as the

product of a triangle and an edge. In order to associate a value with the prism,

the prism itself, or the triangle and the edge, or identifiers for the triangle and

the edge must be stored explicitly. In the source representation, these identifiers

were encoded implicitly in the ordering of the cell sequences. We will return to

this issue experimentally in Chapter 6.

These somewhat unpleasant choices for modeling grids in relational databases

suggest that sets of tuples with fixed schemas are not the correct model for scientific

data.
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3.2.7 A Data Structure for Visualization

The data structures discussed so far were designed for general applications. Vi-

sualization libraries also require grid data structures, but their design reflects the

requirements of visualization algorithms. For example, the manipulation of several

attributes simultaneously is awkward; VTK uses a distinguished attribute labeled

the “SCALARS” and another (composite) attribute labeled the “VECTORS.”

Working with multiple attributes sometimes requires promoting them to one of

these distinguished roles so the algorithms may act on them. For example, if the

programmer wishes to switch the view from salinity to temperature, he or she will

promote the temperature attribute to the distinguished “SCALARS” position via

a method call.

These libraries in general tend to emphasize manipulation of a single dataset at

a time, and therefore provide little support for reasoning about the relationships

between datasets. We have argued that recognizing and exploiting relationships

between datasets is a good source of optimization opportunities. The focus on

specific algorithms (isosurfaces, streamlines, cutting planes) instead of higher-level

algebraic operations can burden the programmer, as each tool has complicated and

nuanced semantics.

Software libraries provide functions (or objects) for each specific task. The

programmer is often asked to choose between two similar functions that differ

only in the type of data on which they operate or the particular algorithm they

implement. For example, in the Visualization Toolkit (VTK) [SML96], to extract

a subset of a grid (essentially a restrict operator), there are a variety of functions

to choose from. The operation vtkExtractUnstructuredGrid accepts internal ids

of points and cells, or a function over the geometry of the points. The operation

vtkExtractGrid works only on regular, rectilinear grids and computes a subgrid

using a range of indices for each dimension, as opposed to geometric information

or other data. The operation vtkExtractGeometry works on a wider range of
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datasets, but defines regions in terms of geometric functions rather than topological

connectivity. A more efficient version, vtkExtractPolyDataGeometry, is available

for polygonal data. Another operator, vtkThreshold filters grids based on non-

geometric attributes.

In VTK, the physical concerns of representations and algorithms are intermin-

gled with semantic concerns such as which data are used to filter the grid. All

of the operations above can be implemented using the restrict operator, possibly

with the regrid operator to evaluate complex geometric functions. The distinction

between filtering geometric data and other bound data is removed in our model.

As we gained experience with VTK and another visualization library called

OpenDX [IBM93], we found that the simple concepts we used to describe our data

products in English often did not have counterparts in these libraries. Below we

list some specific concepts we found weak or missing.

• Irregular Grids. Manipulating regular, rectilinear grids is easier than manip-

ulating irregular grids consisting of arbitrary cells. The CORIE system uses

both kinds of grids.

• Extruded grids. Some grids exhibit repeating patterns but are not rectilinear.

Many of these grids can be expressed concisely as the cross product of two

other grids.

• Shared grids. Two datasets defined over related grids should permit efficient

and convenient merging into one dataset.

• Combinatorial algorithms that do not depend on a specific geometric embed-

ding. Berti observes that combinatorial algorithms for grid manipulation are

superior to geometric algorithms [Ber00].

• Regrid. Both libraries we reviewed implement specific cases of regridding,

but do not provide or acknowledge the general abstraction.

• Time. We found it useful to reason about time without distinguishing it from

the other dimensions. The time dimension is either not supported or poorly
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integrated by the systems we investigated.

3.3 IMPLEMENTING AND TESTING GRIDFIELD STRUCTURES

For grids, we chose to implement and test the Indexed Cell Set (ICS) represen-

tation, the NGMap representation, and a novel form of the Incidence Graph rep-

resentation that we refer to as the Targeted Incidence Graph, or TIGraph. ICS

matches the storage formats found in practice, and is also the basis for the in-

memory data structures used in the visualization tools VTK and OpenDX. An

NGMap efficiently and uniformly supports many types of incidence and adjacency

queries, and can model certain types of non-manifold grids. The Targeted Inci-

dence Graph is a generalization of ICS that can be tailored to support a specific

gridfield expression with a minimum of overhead. The other representations, es-

pecially edge-based representations, were effective only for low-dimensional grids

with specific properties and were therefore inappropriate for our purposes.

Before describing the grid representations, we describe how the data bound to

the grids are represented. This mechanism is common to all grid representations

we consider.

3.3.1 Bound Attributes

The data bound to a grid can be represented as a sequence of tuples (ordered

arbitrarily), or a tuple of sequences. We choose the latter representation for several

reasons.

First, attributes are stored as contiguous arrays as they are generated by the

CORIE simulation programs, and contiguous arrays are expected by client-side

visualization libraries [IBM93, SML96] and stored in standard file formats (cf.

netCDF [JS92]). A tuple-based storage representation would require preprocessing

prior to manipulation, and postprocessing prior to delivery of results.
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Second, tuple-based representations, such as those found in relational systems,

are designed to support transaction-processing workloads with many insertions,

updates, and deletions of individual tuples. The grid structure that organizes the

logical tuples is not typically updated in this manner. Individual cells are not added

to or removed from grids, but entire attributes are. For example, animated data

products require the re-execution of gridfield recipes over several timesteps. On

each iteration, we can efficiently read in a block of contiguous data and overwrite

the previous values, streaming the new timestep directly into the rendering system

without expensive copying into a tuple format.

Third, prefetching can mitigate one of the common complaints about column-

oriented processing. The complaint is this: If a restrict operator must evaluate a

complex predicate involving several attributes, a page of each attribute must be

read into memory, and a line of each page must be read into the cache. If the data

were organized as tuples, a single cache block would hold all the attributes for a

single tuple (assuming that the block size is larger than the tuple size). However,

prefetching support built into the disk controller (for the I/O system) and built

into the cache hardware and compiler (for main memory) is well suited to this

multiple sequential access pattern.

Fourth, the model of the overall data repository is one of “few grids, many

attributes,” meaning that there are many possible datasets that conform to the

shape prescribed by a particular grid. For example, each timestep of a CORIE

simulation conforms to the same 3-D grid. Each timestep can therefore be con-

sidered a separate attribute. The “attribute” holding data for timestep 5 and the

“attribute” holding data at timestep 10 should not necessarily be zipped together

and stored as a sequence of pairs simply because we encounter a recipe that re-

quires simultaneous access to both. Also, new attributes conforming to old grids

are generated continuously: Should we continuously reorganize the prior data to

maintain a tuple-based format? Instead, we provide the ability to retrieve these



121

attributes from the repository on demand using the bind operator.

In the logical model, data is associated with cells via a function mapping cells

to tuples. In the physical representation, attributes are represented as arrays,

and cell ids are represented by positions in these arrays. A namespace, then, is a

function from logical cell ids to physical positions in the bound data.

Imagine we have a gridfield G from which we want to derive a subgrid G′ using

the restrict operator or by using the merge operator and another grid. The gridfield

G is equipped with a namespace namespace(G) that maps each cell id in grid(G)

to a position in the attributes of G. How should we represent the new subgrid

G′? Two choices seem natural: an independent representation and a dependent

representation. An independent representation requires that we derive a new grid

G′, derive a new set of attributes D′, and derive a new namespace to relate the

cells to attribute values. A dependent representation derives a new grid G′, but

reuses the attributes and namespace of the original gridfield. In the former case,

the operator is more expensive to evaluate due to copying, but the result will be

smaller in memory and the supergrid’s memory may be reclaimed. In the latter

case, the operator is less expensive (since only the cells need to be copied—not

the bound data), but we must keep track of the dependency between the two grids

and be careful not to free memory in use.

We will make use of the following physical operators involving namespaces in

the algorithms that follow.

RangeRestrict

The rangerestrict operator filters a set of attributes (the range) by copying the data

associated with a particular subgrid (the domain). Each attribute is logically a

function from a domain (k-cells in a grid) to a range (a tuple type). Given a subset

of the domain, this operator identifies and copies the associated restricted range

at the physical level. The rangerestrict operator is used in the implementation of
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the logical restrict and merge operators.

NewNamespace

The newnamespace operator maps all integer cell ids to a contiguous range of

integers beginning with 0. In a sense, the ids are “swizzled” such that they can

be used as direct pointers. Any Iij links may hold references to the old ids that

must be updated; this operator takes care of this task as well. This transformation

allows the cells to represented implicitly thenceforth.

3.3.2 Cells and Grids

Having discussed how the attributes are represented, we now discuss the details of

how cells, topology, and grids are represented for our three chosen representations.

Indexed Cell Set

The data structure we use in memory for our ICS representation appears in Figure

3.9. The record at the top holds a sequence of pairs of the form (Gi, fi), where

Gi is an array of cells and fi is a sequence of attributes. An attribute is simply a

named array of primitive numeric values. In Figure 3.9, the sequence a0i, . . . , ani

represents the names of the attributes, and the arrows represent pointers to arrays

of actual data. Cells of dimension k are aligned positionally with the attribute

arrays.

Individual cells are stored as a sequence of nodes. A hash index (H in Figure

3.9) maps a cell’s definition (a sequence of nodes) to its ordinal position. The cells

of a particular dimension are stored contiguously. This index, along with a cell’s

dimension, allows the function semantics prescribed by the model to be evaluated

in constant time on average. A cell definition is mapped to an array index, which is

then used to lookup a data value in each of the attribute arrays for that particular

rank. The hash function used is based on the dimension of the cell and the first



123

…

H
dimension
& cell 
position

cell

Hash (Gd, fd)

a0k, …, ank

…

(G0, f0) … (Gk, fk)

Figure 3.9: Internal representation of a gridfield for the ICS representation.

node in its definition, exploiting the fact that a node is seldom incident to more

than four or five cells. Our tests show that this hash function generates very few

collisions while offering fast evaluation time.

Tailorable Incidence Graph

Our incidence graph representation, referred to as TIGraph, stores a set of cell

identifiers for each dimension 0 ≤ i ≤ d. Each cell identifier is used as an offset

into the bound attributes of the full gridfield, as with the ICS representation. In

this way, we can represent both independent gridfields with their own namespace

or dependent grids that use the namespace of a supergrid. The cell identifiers at

dimension k in an independent grid are a contiguous range of integers from 0 to

|Gk|, and can therefore be represented implicitly.

To represent topology, we store a set of hash indexes Iij, called links, mapping

each cell of dimension i to a sequence of cells of dimension j. Since we work with

sequences instead of sets, we can preserve the ordering information of the ICS

representation.

The key feature of this representation is that not all cell sets need be populated,

and not all links need exist; the representation is tailored to a particular recipe.

At runtime, we access only the cells and links required by the recipe. For example,
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interpolation onto the centroid of a cell requires the nodes but not the edges.

The ICS representation is a special case of the TIGraph representation, with a

set of d-cells, a set of 0-cells, and a single link Id0.

To analyze a recipe, we consider 1) the explicit cell sets and links that are

already part of the grid, and 2) the links we can derive at runtime. For example,

given a link I20, we can build the inverted link I02. Given a TIGraph representation

with an explicit I20 link, we can use the ordering information to derive I21.

Algorithm 6 implements the restrict operator and illustrates the use of this

representation. This version creates a new independent TIGraph with its own

namespace for the result.

Algorithms implementing restrict have four phases: 1) identify the cells that

satisfy the predicate, 2) handle the higher-dimensional cells, 3) handle the lower-

dimensional cells, and 4) update any references to missing cells (i.e., use the new-

namespace operator).

Phase 1) is written here as a simple linear traversal of the cells. A predicate

is represented as a string involving comparison operators, boolean operators, and

arithmetic expressions. This string is parsed and compiled to bytecodes for effi-

cient runtime evaluation using a specialized library [Nie]. An index on attributes

involved in the predicate, if available, could also be used in this phase.

For phase 2), Algorithm 6 uses the backward links Iki for i < k ≤ dim(G) to

join the cells in Gk with the cells in Ri. Variations on this algorithm could use

the forward links if they exist to navigate from the cells in Ri to the cells in Gk.

The flexibility of this representation is that different physical plans can be chosen

based on the data that is available.

We cannot use the accrete operator to implement phase 2), because the se-

mantics of the restrict specify that cells are passed through to the result only if

all of their incident i-cells satisfy the predicate. The accrete operator does not

implement this universal quantification, so we implement it “manually” here.



125

Algorithm 6 RestrictTIGraph

Input: A gridfield G = (G, g0, g1, . . . , gn), where G is implemented as an TIGraph,
and a dimension i, a predicate p : [schi(G)]→ Bool.

Output: A gridfield restricted to those cells satisfying the predicate, along with
their neighborhoods defined by the semantics of restrict.
G← grid(G)
R← empty Grid
//add the cells that satisfy the predicate.
for each c ∈ Gi do

if p(fi[c]) then
add c to Ri

end if
end for
//handle the higher dimensional cells.
for each i < k ≤ dim(()G) do

for each c ∈ Gk do
if Iki(c) ⊂ Ri then

add c to Rk

for each d ∈ Iki(c) do
assert c ≺ d in R

end for
end if

end for
end for
//handle the lower dimensional cells.
for each 0 ≤ k < i do

for each c ∈ Gk do
if Iki(c) ∩Ri is not empty then

add c to Rk

for each d ∈ Iki(c) do
assert c ≺ d in R

end for
end if

end for
end for
H← rangerestrict(R, g0, g1, . . . , gn)
return newnamespace(H)



126

Phase 3) performs a similar task to phase 2), except that the lower dimensional

cells are existentially quantified.

Phase 4) uses the newnamespace operator to assign new identifiers to newly-

created s-cell and update references to the old ones.

Generalized Combinatorial Map

In our NGMap representation, a dart is an instance of the class Dart, and each

function αi is represented by a pointer to another Dart. These pointers are stored

in an array whose size is determined by a compile-time template parameter, the

dimension of the grid.

In an NGMap, each k-cell is represented implicitly as an orbit of darts. To

iterate over all cells of dimension k, we traverse the darts and return an iterator

for each unique instance of the orbit < α0, . . . , αk−1, αk+1, . . . , αd >. Each visited

dart is marked to ensure termination and prevent duplicates.

In C++, we implement these orbits in an efficient and generic way using the

iterator idiom and template classes. The involutions to be traversed in the orbit

are supplied at compile time, allowing a specialized implementation to be emitted

by the compiler. The general algorithm for traversing an orbit involves a breadth-

first search through the graph represented by the involutions. The frontier of the

breadth-first search must be maintained with a stack and visited darts must be

marked. However, the orbit < αi, αi+1 > can be implemented as a loop for d-

dimensional manifold grid (where d ≥ 2), alternatively navigating αi and αi+1.

For such a grid, each dart is guaranteed to be visited only once.

Although orbits provide a correct and complete representation of k-cells, re-

trieving all orbits for k-cells of fixed dimension k requires maintaining state. The

algorithm consists of iterating over the darts, returning orbits as they are encoun-

tered. Each dart involved in an orbit is marked as it is encountered; marked darts

are skipped when looking for the next orbit. The algorithm to iterate over cells of
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dimension k is

for each dart d:

if unmarked(d):

cell = Orbit(k,d)

for e in cell:

mark(e)

yield cell

where Orbit(k,d) returns an iterator over the darts in the orbit

< α0, α1, . . . , αk−1, αk+1, . . . , αdim(G) >

Set-like operations on grids require 1) cell identity and 2) efficient random

access to cells. A pure NGMap implementation represents a cell only implicitly

as an orbit. Darts cannot provide cell identity across multiple grids. A single

dart cannot be reused in multiple grids, since the pointers implementing the α

involutions would need to be different. The involutions for a cell c present in two

grids may be different in two ways: αi(c) may be a fixpoint in one grid but not the

other, or it may point to a different dart altogether. Compatibility (see Chapter 2)

between grids prevents the latter case, but not the former. The former case occurs

when the dart c is on the boundary of a subgrid but in the interior of a supergrid.

To represent cells, then, we extend the dart implementation with an array of cell

ids for each dimension. This extension allows identity to be traced across multiple

grids. However, random access to cells by id still requires a linear traversal of the

darts.

To solve this problem, we extend the NGMap implementation with an index

mapping each cell id to a key dart for each dimension requiring iteration. This

index directly supports iteration over cells. To then access topology information,

operators can follow the pointers of the key dart. The cell id also serves as an
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offset into each attribute array at a particular dimension. For example, a node

with id 5 is associated with the fifth value in each attribute bound at rank 0.

We have described three structures in our extended NGMap implementation:

1. The NGMap itself representing the grid as a set of darts. Each dart is

equipped with two arrays of length dim(G): an array of cell ids for accessing

data and an array of pointers to darts for accessing topology.

2. The field representing the bound data as a set of attribute arrays for each

dimension. Each of these arrays is indexed by cell ids.

3. The key index mapping each cell id to a key dart.

With these three structures, operators can access cell ids from darts, data from

cell ids, and darts from cell ids, respectively.

Algorithm 7 implements the restrict operator over our NGMap representation

and illustrates maintenance of the involution pointers. Let a j-cell that does not

satisfy the predicate be referred to as a failed cell. The algorithm marks each dart

involved in the orbit of a failed cell. Further, to implement the Exact semantics of

restrict, the algorithm visits the darts involved in the orbits of neighboring k-cells,

k > j, and marks them as well.

The orbit representing a k-cell c is a superset of the orbit representing a j-cell

c′ if c′ � c, for k > j. So in order to cull all k-cells to which a failed cell is incident,

it is sufficient to cull the darts involved in each k-cell to which the failed cell is

incident.

Once the new set of darts is established and properly sewn, the associated data

must be copied as well. The rangerestrict operator (line 31) performs this task

while building an associative array mapping the old cell ids to the new cell ids.

The newnamespace operator (line 32) uses this associative array to 1) update the

old cell ids held by each dart, and 2) build the key index mapping each cell id to

a key dart.
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Algorithm 7 RestrictnGmap

Input: A gridfield G = (D, g0, g1, . . . , gn) (where D is a set of darts), a predicate
p : [schi(G)]→ Bool, and a dimension i.

Output: A gridfield restricted to those cells satisfying the predicate, along with
their neighborhoods defined by the semantics of restrict.
map ← an associative array of type Dart → Dart
for each x ∈ D do

//mark darts that are associated with a cell to be culled.
if not p(fi[x]) then

5: mark(x)
for each e ∈ 〈α0, . . . , αk−1, αk+1, . . . , αd〉(d) do

for each f ∈ 〈α0, . . . , αd−1〉(e) do
mark(f)

end for
10: end for

end if
end for
//copy the unmarked darts
for each x ∈ D do

15: if x is not marked then
map[x] ← a copy of x

end if
end for
//sew things up correctly

20: for each x ∈ map do
for each 0 ≤ i ≤ dim(G) do

if αi(x) is in map then
sew(map[x], map[αi(x)])

else
25: //the dart is on the boundary of the new grid

sew(map[x], map[x])
end if

end for
end for

30: R← ({y | y ∈ map }, g0, g1 . . . gn)
H← rangerestrict(R, g0, g1, . . . , gn)
return newnamespace(H)



130

3.4 EXPERIMENTS

We evaluated the implemented representations using the restrict operator and the

neighborhood operator over two different datasets. We find that the NGMap rep-

resentation does not scale as well as the ICS and the more general TIGraph rep-

resentations.

The experiments are carried out on a platform designed to be identical to the

cluster nodes used on the CORIE project. The computer has two 2.4GHz CPUs

and 4GB of RAM connected with a 400MHz front side bus. There are two SATA

disks in a RAID 0 configuration; however, I/O is not exercised in these experiments.

The machine is representative of commodity server machines found in clusters

and used for a variety of applications. Gridfield algebra expressions are intended

to be evaluated as queries on the server side rather than on a scientist’s desktop,

so this machine is representative of the platforms used in practice.

The CORIE dataset describes the estuary and surrounding ocean of the Columbia

River. For this experiment we use just the horizontal gridfield H describing the

surface of the water with three attributes bound to the 0-cells: x, y, elevation.

The attribute elevation gives the vertical offset of the bottom of the ocean from

the mean sea level (msl) in meters.

The Quake dataset was generated by the Quake project at Carnegie Mellon Uni-

versity and describes the San Fernando Valley in Southern California [ABB+03].

The 3-D grid consists entirely of tetrahedra. Three attributes x, y, z bound to

the 0-cells provide the geometric coordinates. Three additional attributes swave,

pwave, and density bound to the 3-cells are material properties of the earth in the

region.
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3.4.1 Restrict Operator over ICS, NGMap, and TIGraph

The first experiment evaluates the restrict operator over the x and y coordinates, re-

stricting the grid to a bounding box of varying size. The gridfield has 29602 0-cells

and 55081 2-cells, some of which are triangles and some of which are quadrilaterals.

The TIGraph representation is tailored to represent only the I20 link. Algorithm

6 uses only the forward links Iij for i > j and therefore requires no other I indexes

to be built. In this sense, the ICS and TIGraph implementations behave very

similarly.

Figure 3.10 shows the relationship between running time of the recipe and the

selectivity of the bounding box, defined as the number of 0-cells in the result. The

time to read in the data from disk is not included. Since the data is represented

on disk in an ICS format, the preprocessing required to construct an NGMap

representation would bias the results. If the NGMap representation is more efficient

once constructed, we would consider storing gridfields in a compatible format on

disk. Each representation scales linearly with respect to the selectivity of the

bounding box. All representations evaluate the operator over this small dataset

at near-interactive speeds. However, the NGMap representation scales with a

higher constant than either the ICS or TIGraph representations. The performance

of the NGMap representation is worse for two reasons: First, since topology is

represented completely with an NGMap, more information needs to be copied to

the result during processing. Second, the algorithm requires two passes over the

darts: one to identify the darts that belong in the result and a second to sew them

up correctly.

The number of darts that must be stored and manipulated scales super-linearly

with dimension. We therefore expect that the performance ratio of NGMap to

TIGraph (and ICS) to get worse in higher dimensions. For two other experiments

involving the Quake dataset, we see that this is indeed the case. In Figure 3.11,

we see the ratio of runtime using NGMap to runtime using TIGraph for three
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Figure 3.10: Performance of the restrict operator using three different representations.

The NGMap representation implements all incidence relationships and requires more

data movement. The TIGraph and ICS representations admit algorithms that only need

a single incidence relationship: I20.



133

0

5

10

15

20

~15% selectivity ~50% selectivity ~85% selectivity

F
a
c
to
r 
o
f 
im
p
ro
v
e
m
e
n
t 
u
s
in
g
  
T
IG
ra
p
h
  
  
  

CORIE, 2D, 0-cells

Quake, 3D, 3-cells

Quake, 3D, 0-cells

Figure 3.11: Performance improvement using TIGraph for three different situations

at three different selectivities. The performance penalty using NGMap increases with

dimension, especially at low selectivities.

experiments at three different selectivities. The first is the same experiment as

in Figure 3.10, using the CORIE dataset. The second is a similar bounding box

experiment using the Quake dataset. The third also uses the Quake dataset but

applies the predicate to the 3-cells instead of the 0-cells. The results show that

in three dimensions, the performance improvement using TIGraph is considerable.

Also, at low selectivities, there is less overhead from inserting data into the hash

indexes of the TIGraph representation, and the performance improvement over

NGMap is even better.

Since the ICS representation models incidence as a subset relationship between

shared nodes, it cannot model completely general grids. In this experiment, we use

the ICS representation extended with links as necessary. This extension effectively

unifies the ICS representation and the TIGraph representation, so we omit the ICS

results in Figure 3.11.
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3.4.2 Neighborhood Operator over NGMap and TIGraph

The NGMap representation was designed for quick access to incidence information,

but the restrict operator involves copying portions of the cell and attribute data

to a new structure. The neighborhood operator is intuitively better suited for

the NGMap representation, since it navigates the topology but does not require

any modifications or copying. However, we find that the NGMap is limited when

working in higher dimensions.

Recall that the neighborhood operator uses a stencil to identify neighboring

cells, then aggregates the values associated with those cells. We test the call

neighborhood(303, avg(swave)), which indicates that for each 3-cell, we compute

the average value of the swave attribute of all adjacent 3-cells. The 3-cells we

want to access share a node with the target cell; we could use the stencil 323 to

access adjacent cells that share a face with the target cell.

The efficiency of NGMap when traversing stencils depends critically on the orbit

used to implement the traversal. For example, consider the orbit < α1α2 >, which

means “visit every dart reachable through successive applications of the function

α1 ◦α2.” For a 2-D grid, this orbit traverses the 1-cells and 2-cells around a 0-cell.

When the grid is manifold, the number of 2-cells visited is the same as the number

of 1-cells visited, and, most importantly, the same as the number of darts visited.

For example, consider the grid in Figure 3.12. The bold lines and large black

circles represent 1-cells and 0-cells in the original grid, respectively. The large tri-

angles bounded by heavy lines represent 2-cells in the original grid. The light lines

and small gray circles represent 1-cells and 0-cells in the barycentric subdivision

of the original grid. Recall that in the barycentric subdivision, each 2-cell corre-

sponds to a dart in the NGMap. Each large triangle contains 6 small triangles

corresponding to the 6 darts needed to represent its topology. Beginning at the

white dart labeled “s,” we can visit the other white darts in a counter-clockwise

order through successive applications of α1α2 without visiting the same dart twice.
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s
α1α2

α2α1
Figure 3.12: An efficient traversal of cells neighboring the center node. The traversal

relies on the property that each dart visited corresponds to a unique cell. The bold lines

and large black circles represent 1-cells and 0-cells in the original grid, respectively. The

large triangles bounded by heavy lines represent 2-cells in the original grid. The light

lines and small gray circles represent 1-cells and 0-cells in the barycentric subdivision

of the original grid (see Section 3.2.4). Each large triangle contains 6 small triangles

corresponding to the 6 darts needed to represent its topology. Beginning at the white

dart labeled “s,” we can visit the other white darts in a counter-clockwise order through

successive applications of α1α2. For many traversals, especially in 3-D, this efficient

iteration with no repeat visits cannot be performed.

Similarly, we could traverse the white darts in clockwise order through successive

applications of α2α1 without repetition. Each dart we visit corresponds to a unique

1-cell and a unique 2-cell in the original grid to which the middle node is incident.

Further, from each white dart d we can access an adjacent node using α0. This

feature allows us to visit the cells required by the stencil 010 by dereferencing 3

pointers per dart. For most stencils, however, especially those in three dimen-

sions, we cannot guarantee that any particular orbit will visit each required cell

once and once only. We therefore must implement a breadth first search of neigh-

boring cells, collecting the visited cells into a set. The performance difference
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Figure 3.13: NGMap outperforms TIGraph when an efficient orbit can be found, as in

the 2-D case. Most access patterns do not admit an efficient orbit, however.

between the traversal and search orbit algorithms is dramatic, as we see in Figure

3.13. For the 2-D stencil 010, NGMap significantly outperforms TIGraph. For the

3-D stencil 303 however, no efficient traversal can be found, and we must use a

breadth-first search to collect the adjacent cells.

In the literature, most examples and results applicable to NGMap involve 2-D

grids. In three dimensions the elegance and performance of using NGmaps is

questionable.

3.5 CONCLUSIONS

The work in this chapter resulted in a C++ implementation of the algebra making

heavy use of the Standard Template Library. Python interfaces to the C++ objects

were written to allow recipe-level manipulation and optimization to be performed

more conveniently. The code base consists of about 40000 lines of combined C++

and Python.
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In this chapter, we investigated physical data structures for representing grid-

fields. We refined the requirements of Chapter 2 and produced a simple API that

all grid data structures should implement. We discussed some subtle issues facing

the designer, including binding data to the cells at multiple ranks and representing

the boundary of grids.

Next, we reviewed proposals for grid data structures found in the literature.

Most of these were designed to target specific kinds of grids, such as 2-D or simplex

grids; such restrictions preclude their use in most applications we have encountered.

Three classes of data structures passed the first round of evaluation, surviving

to be implemented for further analysis: the the indexed cell set (ICS), the tailorable

incidence graph (TIGraph), and the n-dimensional generalized combinatorial map

(NGMap). A TIGraph allows arbitrary subsets of well-supported grids; we say it

can be tailored for specific purpose. For example, if a recipe does not involve the

1-cells, they need not be included in a TIGraph. Correctness guarantees offered

by more restrictive data structures cannot be proved for a TIGraph. However,

the grid-level operations of the algebra prevent the construction of pathological

grids. Specifically, every result grid can be related to the source grids through

Proposition 5.

The ICS representation is actually a specialization of the TIGraph, where the

only incidence relations supported are of the form Ii0 or I0j. Some grids allow a

surrogate definition of incidence based on the nodes: x � y ⇔ nodes(x) ⊆ nodes(y).

If this property does not hold, then a recipe that accesses the missing incidence

information cannot be evaluated without extending the ICS representation to the

TIGraph representation.

The NGMap data structure offers an elegant solution for managing topology

information, but suffers scalability problems with respect to dimension.

After describing our implementations, we tested the performance of individual

operator algorithms on each of the three data structures. We find that the ability
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to tailor the representation to a specific recipe offers significant savings.

In conclusion: We chose the ICS representation as a reference implementation

of the gridfield algebra. Its limitations are not encountered in the applications we

considered, and it can be readily extended to the TIGraph representation where

necessary.



Chapter 4

RETROFITTING GRIDFIELDS ONTO EXISTING DATA

The data we wish to manipulate with the gridfield model are usually stored as a

collection of packed binary files arranged in an intricate directory structure, rather

than in a database. The decomposition of data into files is designed to simplify or

optimize writing rather than reading. The natural grouping of data for analysis

tasks may be rather different than the one chosen for convenient writing. For

example, if each simulated variable is stored as a separate array in memory, then

each might become a separate file on disk. In contrast, an analysis task to compare

two simulated variables would prefer them to be in the same file. A parallel

simulation will decompose data spatially; each portion of the decomposed grid will

become a separate file. Analysis tasks must accommodate this file boundary.

In this chapter, we show how to expose these native data sources as gridfields

without preprocessing, bulk-loading, or other prohibitively expensive operations.

We describe native directory structures and file content using a simple schema

language based on nested, variable-length arrays. Equipped with a schema, logical

datasets may be accessed by name rather than by location, providing physical

data independence. Further, no custom access methods need to be written by

application programmers; files are both described and queried independently and

declaratively.

We explore a variety of techniques to improve performance. Since each file

may be large and one logical dataset may span multiple files, only the relevant

portions of each file are loaded into memory. We use the file’s schema to deduce

an efficient plan for striding through large files and reading these relevant portions.
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We test these schema-level techniques by using optimizations such as code genera-

tion, memory-mapped files, and partial evaluation, and find that generic optimized

access methods can be competitive with hand-written access methods.

4.1 INTRODUCTION

Integration of data within institutional and regional environmental systems is hin-

dered, in part, by the heterogeneity of data formats. For example, the North-

west Association of Ocean Observing Systems (NANOOS) [ND05], chartered in

response to a congressional initiative, aims to federate various institutional sys-

tems to provide a more comprehensive view of the coastal ocean in the Pacific

Northwest. The NANOOS charter acknowledges the significant number of ocean

observing systems, but warns that these systems are not integrated in that they

“do not share standards or protocols.” The data involved can be logically described

in terms of gridfields, but there is no language to describe the physical structures:

directories, files, binary file content. In the interest of accelerating this kind of

federation effort, we advocate inserting a layer of indirection between gridfield

applications and the native source data as an alternative to mass conversion of

existing data.

The salient feature of the gridfield model is that the grid structure of the

datasets is explicit. Traditionally, gridded datasets are stored and manipulated as

a collection of arrays; the logical grid structure appeared only in the code itself.

By making this hidden grid structure explicit, we are better able to describe and

implement a variety of manipulations using a small set of algebraic operators.

Further, the data model helps separate logical and physical concerns, insulating

software layers from changing physical representations.

However, in order to use gridfields to manipulate data from current disparate

sources, we must be able to read and interpret existing stored data; that is, we

need appropriate access methods. Environmental datasets (indeed, most scientific
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datasets) are stored directly on a filesystem in packed binary files. Legacy appli-

cations can interpret these files, but new applications based on gridfields cannot.

One approach to allow access to these data via gridfields is to convert existing

datasets to a special format already equipped with a gridfield interface. Indeed,

database vendors frequently assume this approach: Before your data can be ma-

nipulated using the relational model, you must surrender control to the RDBMS

via bulk-load operations. Unfortunately, the growth rate of collected scientific

data is sufficiently large that sweeping conversion efforts are unlikely to succeed.

Besides scalability issues, legacy analysis tools dependent on a particular format

are common in scientific domains; mandatory rewrites of these tools would be

unpopular.

Our initial solution was to hand-code custom access methods for each file format

and directory structure we encountered. To generate a gridfield, routines to iterate

over multiple files are layered on routines to interpret each file’s format. The

results are used to assemble gridfield objects suitable for manipulation with the

gridfield algebra. Creation of these routines became repetitive enough to motivate

a more general abstraction [HM04c]. In this chapter, we describe languages and

tools for accessing filesystem data with arbitrary structure without resorting to

mass conversion. We do not discuss the output of gridfield expressions; results are

generally piped into a visualization system for interactive analysis or direct image

generation.

The model we describe in this chapter simplifies the task of maintaining “read-

ers” for creating gridfields from source data. Data creators describe their file

formats and directory structures declaratively, while application writers can access

the parts of these files they need by name rather than by location. Given a de-

scription of the filesystem and a set of requested names, the software will generate

appropriate access methods.
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We again refer to the CORIE Environmental Observation and Forecasting Sys-

tem as a source of examples. In a particular run of a CORIE simulation, 3-D

spatial datasets are produced at regular intervals of simulated time, for each of

several physical variables. Each of these variables are stored in a separate file.

These timestep datasets are distributed across several checkpoint files, each one

usually covering a 24-hour period of simulated time. Checkpoint files have a cus-

tom binary format, and are arranged in a directory structure by week, by code

version, and sometimes by purpose—calibration runs as opposed to final results.

For example, the run directory names in the middle column of Figure 4.3(a) in

Section 4.4.1 contain the week and the year, while the names of the checkpoint

files in the right-most column contain the day of the week. Every application ac-

cessing these data must understand the semantics of directory and file names, or

interpret custom binary file formats, or both. The resulting situation is that much

of the CORIE software is rather brittle with respect to changes in either directory

structure, directory and file naming, or file format.

As we see with the CORIE system, logical datasets are not necessarily one-to-

one with the files that house them. The physical organization of logical datasets

is subject to operational constraints, and can sometimes be inconvenient for ap-

plication writers. One dataset may span several files due to file size limits of the

OS, for example. Portions of a dataset arriving at different times may be stored

in separate files, as with the checkpoint files described above. Several datasets

may be stored together in one file to simplify transfer over a network or to share

metadata in the file path.

The boundary between file name and file content is not inherent in the logical

structure of the data, and can change depending on the situation. For example,

the directory tree illustrated in Figure 4.3(a) has a separate file for each day of the

week (per variable). In this case, the day of the week and the week number are

not stored within the file, and are therefore inaccessible to tools that reason only
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about a file’s content [MC03, WB03]. This representation reflects the manner in

which the data was generated: A checkpoint file was recorded by the simulation

model for each day of the week to simplify recovery in case of failure. An individual

researcher’s ad hoc experiment might not require such caution; she might lump

a week’s worth of results into a single file without saving any checkpoints. In

order to provide transparent access to either of these two representations, the

model must allow uniform access to data stored in a file or data stored in the

surrounding directory structure. Further, access methods should accommodate

changes in physical organization without significant programming effort.

Since existing data comes in two forms—embedded in the directory structure

and inside files—two physical access methods are required. However, adopting a

single logical interface to both forms is desirable for conceptual economy.

Imagine we wish to visualize the average temperature near the water’s surface

for each week in 2004. The gridfield model allows us to perform aggregation and

visualization, but first we must collect the appropriate data from the filesystem.

Pseudo-code to gather the data is of the form

for each run in 2004:

for the temperature variable:

for each timestep:

for each horizontal surface node:

for the first two vertical depths:

append the value to the result

The boundary between directory-level data and file content data is not apparent

from the pseudo-code, nor should it be. We want the system to accept queries in

terms of the logical structure, invoking the appropriate physical access method

as necessary. To provide such functionality, the system must understand that a

“run” corresponds to a directory, that “temperature” and other variables are each

stored in a separate file, and that each of these files contain horizontal and vertical
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dimensions nested within a time dimension. Further, we need the ability to identify

the runs for 2004, and the “first two” depths.

To communicate the physical structure of the data repository to the system,

a user writes a schema file in which they declare relevant types. Each type is

associated with either 1) a regular expression identifying a set of files, or 2) an

expression describing a block of binary data. With an appropriate schema file, we

can express the pseudo-code above with the following extraction query :

run[year=2004].temp.times.horizs.depths[0:2]

The result is an array built by copying the values to a sequential block of

memory. This array can then be used as part of a gridfield object for further

processing. The code to traverse directories, iterate over files, and interpret a file’s

content efficiently is provided by the system. Application writers are provided two

forms of physical data independence: 1) they can access data by name rather than

by location, and 2) they can ignore file boundaries.

The layers of abstraction required to provide these forms of physical data inde-

pendence can degrade performance, especially when accessing multiple gigabyte-

scale files with a single expression. The näıve evaluation strategy resembles the

pseudo-code above: nested iteration over every value in the file. Values included in

the query are copied and all others are skipped. The techniques we use to improve

performance fall in two categories: 1) analytical techniques that reduce the num-

ber of load and copy operations, and 2) operational techniques that can reduce the

overhead from various sources. We consider the following techniques to improve

performance over the performance obtained with this basic implementation

Analytic: Static Optimization By inspecting the schema, we identify arrays

with known sizes that can be skipped or returned with a single read call.

Analytic: Dynamic Optimization Re-analyze the schema after reading some

preliminary information from the source file.
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Analytic: Schema Transformation Simplify the schema with respect to a par-

ticular query so that the same data can be accessed with fewer operations.

Operational: Code Generation Generate and compile programs that read the

data for a particular query to reduce the work to be done at runtime.

Operational: Partial Evaluation Assume that many files share similar struc-

ture and use the results of a dynamic optimization on one file to improve

performance for reading other files.

Operational: Memory-mapped files Reduce the number of system calls exe-

cuted by allowing the operating system to automatically load pages of the

file as they are accessed.

In summary, this chapter presents

• A data model for describing binary file formats.

• A complementary data model for describing data embedded in directory

structures and file names. We refer to these two mini-models jointly as the

Native Data Model.

• Optimization techniques to efficiently evaluate queries over native content.

• Experimental evidence based on real data showing that suitably optimized

generic access methods can perform competitively with hand-coded access

methods.

In Sections 4.2 and 4.3, we present related work and introduce a running ex-

ample, respectively. In Section 4.4, we give examples of schema files for accessing

binary file content as well as data encoded in the directory structure. In Sections

4.5 and 4.6, we focus on evaluation techniques and experimental results, respec-

tively, for accessing binary content. We end by discussing conclusions and possible

extensions.
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4.2 RELATED WORK

The Datascript language [Bac02] is used to describe binary file formats similar to

ours. Features include discriminated union types, constraints, arbitrary offsets, and

variable-length arrays. However, types spanning multiple files are not considered,

and there is no consideration for efficient I/O strategies for large files. Datascript

also aims to faithfully recreate the on-disk types in memory; the two data models,

both based on C, are identical. We use two different data models: a simple array-

based data model in memory and a more complex data model for describing the

realities of file formats.

The PADS system [FG05] is designed for “processing ad hoc data.” Like Data-

script, PADS maps on-disk types into C-style structs, unions, and arrays. Given a

file description, PADS generates parsers for each type. PADS parsers are designed

to work not only on files but on streams of records, such as those found in telecom-

munications applications. PADS features include sophisticated error-handling for

non-conforming data, recursive types, union types, support for both ASCII and

binary data, and accumulators and histogram operations for collecting summaries

of data streams. Our work differs from PADS in the access patterns supported:

Our on-disk types are large enough to span disk blocks and files; applications need

the ability to extract only the relevant portion of these large types with an efficient

I/O strategy. The PADS system is designed for processing smaller data types, but

at high speeds. Applications using PADS expect to touch every record, but the

complicated code to read, interpret, and validate the record is handled by PADS.

PADX [FFGM06] couples an XQuery engine to the PADS system to allow

XQuery expressions to be evaluated over non-XML data. The access patterns

considered in PADX are bulk-load, in which all data is read into memory (and

converted to XML) prior to query evaluation, on-demand, in which PADS data

is loaded when the the XQuery engine first references the relevant XML node,
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and paged, in which files are assumed to have the form HR∗F ; a header followed

by some number of small records followed by a footer. The file formats we work

with contain large arrays with variable lengths; the appropriate unit of iteration

cannot be deduced statically. We will return to this issue when we discuss query

evaluation.

Scientific applications today in some ways resemble business applications circa

1977. Copious amounts of data are stored in files with intricate formats. Skepticism

regarding database technology is prolific. Legacy systems are built from efficient

but brittle software components. To mitigate the perceived (and real) risk of

adopting unproven database systems, early data models were implemented as file

transformation engines.

The EXPRESS system [SHT+77] provided two languages: one for describing

a file’s structure, and another for transforming that structure. Transformations

were used as a query facility, but also as a bulk-load facility to translate legacy

data into a new format. Our approach is similar, though we distinguish two data

models: one for source data (directory structures and file content) and another

for target data (gridfields). We have not yet considered materializing gridfields

assembled using schema files. That is, we do not permanently transform source

data into gridfields, but rather retrofit a gridfield interface onto in situ data.

Batory gave a taxonomy of record-oriented file structures used by commercial

databases in terms of fields and pointers [Bat85]. Our work similarly provides a

description of file structures in terms of arrays.

The Binary Format Description Language (BFD) [MC03] is an XML dialect

that describes binary formats and allows transformation of binary data to XML

data. While this tool has a niche, our interest is to support efficient and flexible

access to binary data—converting binary data to XML is clearly impractical for

large datasets. The BinX [WB03] library can be used to access binary data de-

scribed using instances of a specialized XML Schema. An API allows access to
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the data and automatic reformatting according to the local machine’s byte order

and bit order. The most recent version adds support for nested arrays, but only if

their length is fixed.

The External Data Representation standard (XDR) [Sri95] is a data format

language focused on machine-level number-representation issues. Variable-length

arrays in XDR must have homogeneous elements (i.e., their elements are not

variable-length), and their lengths must be encoded directly prior to the first ele-

ment. Further, XDR obviously does not describe directory structures, preventing

access to datasets that span multiple files.

Platforms for scientific query and analysis include AQSIM [LCA+03] and the

Active Data Repository [KaC+01]. Both of these systems require preprocessing of

data repositories in order to construct indices, compute statistics, or to bulk load

data into a managed environment. Other systems such as Chimera [FVWZ02] and

Godiva [MWN+04] supervise the execution of data access programs, but rely on

users to write them in the first place. Our techniques are used to derive an efficient

reader given only a set of queries and a declarative description of the data.

One technique we use to optimize our access methods is inspired by partial

evaluation. Partial evaluation has been studied extensively for a variety of pro-

gramming languages [And94, Bon93, BW93, Thi98, BGZ94], sometimes specifically

in the context of scientific computing [BW90, BS94b]. Partial evaluation exploits

the fact that some arguments to a function become available sooner than oth-

ers. Instead of waiting for all arguments to become available, the function may

be partially evaluated with available arguments to generate a new function. The

new function is hopefully more efficient at runtime. Similarly, our query engine

consumes a query, a schema, and a portion of a file instance and produces a more

efficient function for extracting the query result. This generated function can be

applied to other files with a similar structure to amortize the cost of its creation.

The generalization of partial evaluation to multi-stage programming [TS00]
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is relevant here as well—an access method may be specialized multiple times as

increasingly restrictive assumptions are made about the files it is applied to. For

example, a schema for a record-based file format might have a header, some number

of variable-length records, and a footer. A specialized schema for files with similar

headers may be derived such that the header can be skipped during reads. A fur-

ther specialization for fixed length records may be subsequently derived, allowing

efficient random access to any record.

Our schema files assign a type to large binary files. Since the length of the

arrays depend on values in the file itself, the files are dependently typed. More

specifically, they are instances of dependent sum types, where
∑

xA.B is the type

of pairs with the first element of type A and the second element of type B, and B

depends on the value x. Using languages such as Cayenne [Aug98] and Epigram

[MM04], or provers such as Agda [Coq06], one can prove properties about the

results of dependently-typed computations at compile-time; a frequent application

of this facility is to bound the size of the result of array computations.

4.3 RUNNING EXAMPLE

The CORIE system uses several different forms of grid to model coastal and ocean

waters. One early form of grid used to describe the Columbia River Estuary and

surrounding waters was constructed as follows: A 2-dimensional unstructured grid

models the surface of the water around the mouth of the Columbia River Estuary

(Figure 4.1(a)). This horizontal grid is repeated at each depth in a 1-dimensional

structured grid, creating a 3-dimensional extruded grid. The sloping bathymetry

of the river causes many of the grid cells of this 3-dimensional grid to be positioned

underground. Figure 4.1(b) illustrates the situation. Each dotted line represents

a copy of the horizontal surface grid repeated at a particular depth and oriented

perpendicularly to the plane of the page. The shaded region represents the bottom

of the river. The horizontal levels towards the bottom contain fewer valid “wet”
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(a) (b)

Figure 4.1: (a) The horizontal unstructured CORIE grid. (b) Illustration of the

river’s bathymetry. The shaded region is underground.

cells than the levels near the surface. These invalid cells must be removed to

correctly interpret CORIE datasets.

Given a horizontal grid H and a vertical grid V , the following expression gener-

ates the appropriate 3-dimensional gridfield for the CORIE system and associates

a dataset salt for further processing:

G = bind(salt, 0, restrict(b < z, cross(H, V ))) (4.1)

The cross product of H and V (the cross operator) represents the full 3-D domain

of the Columbia River estuary and surrounding ocean. The restrict operator cuts

away the portion of the grid positioned underground (the shaded region in Figure

4.1(b)). The bind operator reads in an array named salt and attaches it as an

attribute of the grid’s 0-cells.

In Equation 4.1, the names salt, H, and V are assumed to refer to an attribute

(an array), a gridfield, and another gridfield, respectively. How are these gridfields

and attributes constructed from the raw data on disk? Examples of code to as-

semble gridfields appear in Figure 4.2. The quoted, path-like expressions in Figure

4.2 are extraction queries over the schema in Figure 4.7. These expressions will be
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0:  context = “week[=01]/year[=2006]/day[=1]/”

1:  H = Gridfield()
2:  H.cells[0] = idrange(0, context + “/nodes”)
3:  H.cells[2] = “context/cells”
4:  Bind(H, 0, “x”,    context + “/nodedata/x”)
5:  Bind(H, 0, “y”,    context + “/nodedata/y”)
6:  Bind(H, 0, “bath”, context + “/nodedata/b”)

7: V = GridField()
8:  V.cells[0] = idrange(0, context + “/levels”)
9:  Bind(V, 0, context + “/zcor”)

10: G = Restrict( “b < v”, 0, Cross( H, V ) )
11: Bind(G, 0, “salt”, context + “/timedata[0]/hori zontal/depths/vector/val”)

Figure 4.2: Examples of gridfield assembly. These statements constitute a program for

constructing gridfields from base components.

described in Section 4.4. Line 0 assigns an extraction query to a variable context,

which is used as a prefix in the other extraction queries. Extraction queries used to

specify an attribute (e.g., line 4) must return a one-dimensional array. Extraction

queries used to specify a set of cells (e.g., line 3) may have a more complicated form

corresponding to one of the representations discussed in Chapter 3. For example, a

set of polygonal cells can be represented as an array of arrays, where the elements

of the inner array represent cell nodes.

The 0-cells of the grid are often specified implicitly, using the function idrange

(lines 2 and 8), which generates a contiguous range of integer cell ids given a

starting id and stopping id. Cells of higher dimensions are defined as sequences of

integer references to 0-cells. A triangle will have three references, a quadrilateral

will have four, and so on. Attributes are also specified using extraction queries.

To bind an attribute x to cells of dimension 0, we use a form of the bind operator,

passing it as in line 4 of the figure.

Gridfields can also be constructed through expressions in the gridfield algebra,

as in line 10 of the figure. Line 10 specifies the same gridfield as in Equation 4.1.
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4.4 NATIVE DATA MODEL

In this section, we discuss the lower-level data models for accessing data encoded

in directory structures and data encoded in binary files.

A filesystem-based data repository is described via a collection of declarations

housed in a schema file. There are two types of declarations. FileType declarations

describe relevant directory structures and allow access to data encoded within file

and directory names. BlockType declarations describe the layout of portions of

binary files. Application writers access data using extraction queries that abstract

some details of file organization, data format, and the boundary between file name

metadata and file content.

4.4.1 Data From Directory Structures

Scientists frequently store and manage their data using direct filesystem interfaces,

using filenames and directory structures equipped with metadata. For example, a

dataset available from the National Climate Data Center (NCDC) website is stored

in a file named meso-eta 215 20030803 1800 fff [Nat06]. The string “20030803”

is evidently a date, but the other fields require some external information to parse1.

A schema file gives data administrators a place to put this external information.

Schema files provide executable documentation for one’s filesystem organization

conventions. Moreover, schema files allow data administrators to provide access

to data unilaterally; they need not consult application writers to find out how the

data is to be used.

Consider the filesystem in Figure 4.3(a). The root directory run contains direc-

tories with simulation results for each week of 2004 in the form <week number>-2004.

Each week directory contains 14 files, one for each variable (salinity, temperature)

and day of the week (1-7).

1The number 215 is the day of the year, and the number 1800 is the start time—6:00 pm.
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/horiz.grd
/vert.grd

/grids

/do_run.pl/scripts

/1_salt.63
/1_temp.63
/2_salt.63
:

/02-2004

/1_salt.63
/1_temp.63
/2_salt.63
:

/01-2004/run 1: FileType week/year = /run/%i-%i/

2: FileType saltday = %i_salt.63

3: FileType tempday = %i_temp.63

(a) (b)

Figure 4.3: (a) Simulation results stored on an ordinary filesystem. (b) FileType dec-

larations describing the filesystem.

To access the data embedded in these file names, we write an expression in the

style of the Unix scanf command.

week/year/saltday = /runs/%i-%i/%i salt.63

The left-hand side of this expression is a tuple of variable names formatted in a

path-like notation. The right-hand side is a pattern matched against the set of all

files in some filesystem context. The variable names on the left will be bound to

values generated by a successful match of the pattern on the right. Each match will

generate a sequence of values by evaluating the pattern in a particular filesystem

context. For example, the variable week corresponds to the sequence (01, 02) when

the pattern is evaluated in the context of Figure 4.3(a). Note that the sequence

order is determined by the manner in which the directory is traversed by the system

calls for a particular OS.

To extract data from a filesystem, we write a path-like expression navigating

through the FileTypes, where the right-most identifier is a variable name.

week/year/saltday

This expression returns an “array” of all day values extracted from salt63 files

in all weekly run directories. A natural extension to this basic form is to allow
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BlockType ragged : {
header : 10c
n : i
r_sizes : n * {

r_size : i
}
outer : n * {

inner : r_size * {
v:f u:f

}
}

}

“RAGGED_ARR”

4

1, 3, 1, 2

(0.6,0.4)
(0.2,0.9),(1,3),(1.7,2.6)
(2.1,9.4)
(3.8,8.9),(4.2,1.6) 

5241 4747 4544 5f41 5252 
0000 0400 0000 0100 0000 
0300 0000 0100 0000 0200 
0000 9a99 193f cdcc cc3e
cdcc 4c3e 6666 663f 9a99 
993f cdcc 4c40 9a99 d93f 
6666 2640 6666 0640 6666 
1641 3333 7340 6666 0e41 
6666 8640 cdcc cc3f

(a) (b) (c)

Figure 4.4: (a) A schema file for extracting binary file content. (b) An ASCII inter-

pretation of a file instance. (c) A hexadecimal representation. Each color of shading

represents a different logical component in the schema.

XPath-like conditions:

week[=04]/year/saltday[<3]

This expression restricts the results to a particular week and particular days. To

reflect the array semantics, we can also allow array-style indexing expressions. An

expression name[n : m] returns all elements name[i] for n ≤ i < m. For example,

the expression

week[0:2]/year/saltday[1:3]

selects the zeroth and first week, and the first and second saltday files. The

indices refer to the ordering of the files as returned by the operating system.

These expressions are passed as strings to an evaluation function by the pro-

grammer; the result is an array of typed values in the native language. The

prototype is implemented in Python using the numarray extension [GMWH].

Note that FileType declarations are not linked to each other; a schema does

not prescribe an overall directory hierarchy. Different queries may express different

sequences of FileTypes. Any, all, or none of these sequences may be valid with

respect to a particular filesystem context. For example, an individual scientist may
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have several “loose” salt63 files stored in his or her home directory. Queries can

then reference those files directly, without having to first navigate through a run

directory.

BlockTypes, described in the next section, do impose a particular structure for

the content they describe. If a query attempts to navigate the binary data in an

manner not supported by the schema, an error is raised.

4.4.2 Data From Binary Files

Scientists frequently use packed binary encodings of large datasets to conserve

space and improve performance. In this section we describe a model of this data

and its interface with the model of the directory structure. We model the con-

tent of binary files as a sequence of one or more components. Each component

is either a primitive component with an associated name and typecode, or an ar-

ray component, with a name, a length, and an element type, or an anonymous

struct component. Our examples will use the primitive typecodes ‘f’, ‘i’, and ‘nc’,

representing floating point numbers, integers, and character arrays of fixed length

‘n’. The element type of an array is another sequence of components. In the tree

resulting from these nested sequences, each leaf is a primitive component and each

internal node except the root is an array component. Arrays are one-dimensional;

multidimensionality is captured through nesting.

A file format for storing a simple ragged array is described in Figure 4.4(a),

an instance of the file, in ASCII, is shown in Figure 4.4(b), and a hexadecimal

representation is shown in Figure 4.4(c). The root component in Figure 4.4(a) is

labelled as a BinaryBlock and given the name ragged. The top-level components,

in order of their appearance in the file instance, are a 10-character string named

header, an integer n, an array r sizes and an array outer. Primitive components

are written name : type. Array components are written x ∗ {components}, where

x is a length expression evaluating to an integer and components is a sequence of
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components describing structure of the array’s elements. The length expression of

an array can be an integer literal, a reference to a primitive component appearing

earlier in the file, or an arithmetic expression using either. In Figure 4.4(a), the

length of the array outer is a reference to the component n. The element type of the

array outer is another array component, inner, representing a second dimension.

Components referenced in a length expression may appear anywhere in the file

prior to the reference. This freedom generalizes other binary description formats

that require that the length of a variable-length array be defined immediately prior

to the array’s elements [MC03, WB03]. Many formats, including netCDF [JS92],

HDF [hdf04], and CORIE’s own internal format require this generalization.

Scanning the raw file instance in Figure 4.4(c) sequentially, we can inter-

pret the data as in Figure 4.4(b). First, we encounter a ten-character header

“RAGGED ARR”, then the integer 4, then four integers 1, 3, 1, 2, and finally a

longer sequence of floating point numbers.

The length of the array inner is a reference to the integer component r size,

which itself is a sub-component of an array r sizes. For each element of outer,

a different size is specified by indexing into the array r sizes. The portion of

the instance in Figure 4.4(b) corresponding to the component inner consists of

1+3+1+2 pairs of floating point values. Each pair has a value for the component

u and the component v. Since the two arrays outer and r sizes have the same

expression for their array length (the expression ‘n’), there is no ambiguity as to

which particular element of r sizes is being referenced.

The files used by scientists are effectively dependently typed—the type of the

file depends on data appearing in the file. Dependently typed files allow enormous

flexibility in describing a file format, but makes it difficult to derive an efficient

reader in the general case. Systems such as PADS [FG05] and BinXML [WB03]

also support dependent types, but the application is generally in charge of accessing

the data efficiently.
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4.4.3 Extraction Queries

Programmers can access file data by writing path expressions constructed as a

sequence of named components from the schema. At each nesting level, an array

expression may be used to further restrict which values should be returned. An

individual array element can be specified through conventional integer indexing.

An array can also be “sliced” to produce another array as in APL or Matlab. All

of the following expressions are valid extraction queries over the schema in Figure

4.4(a).

ragged/n

ragged/outer/inner[1]

ragged/outer/inner/u

ragged/outer[0:4]/inner/u

ragged/outer/inner[0:1]/v

Given a description of a file’s content, how do we load the data required by an

application into memory? A component can be naturally interpreted as a type in

C: A sequence of components becomes a C struct, an array component becomes a

C array, or a primitive component becomes the appropriate primitive type in C.

This translation suggests a natural way of reading the data into memory: Create

the appropriate type for the entire file’s content and populate it when the file

is read. Extraction queries can be evaluated over this structure to copy out the

desired data.

This approach is inadequate for two reasons: First, files may be large and

applications may access multiple files; the entirety of all these files may not fit in

memory. Second, applications must accommodate the C type system (as with the

PADS system [FG05]), a restriction that may preclude the use of other high-level

languages.

A solution to the first problem is to allow applications to request a specific

portion of the file and have the software figure out the best way to extract that
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portion from the file and load it in memory. A solution to the second problem is to

restrict the “requestable portions” to simple structures. We solve both problems

by providing a simple query language where each result is a one-dimensional array

whose element type is a primitive.

The ability to extract a component by name rather than by location in the

file provides physical data independence. For example, the components u and v in

Figure 4.4 could appear in reverse order without affecting applications. However,

applications are not insulated from all changes in physical organization—if outer

and inner were transposed such that outer was nested inside of inner, all but

the first extraction query would throw an error.

4.5 EVALUATING QUERIES OVER BINARY DATA

In this section we describe the engine for evaluating extraction queries. We wrote

the prototype in Python extended with the numarray library for handling large

numeric arrays efficiently [GMWH]. C code was emitted for the code generation

experiments. After writing a schema file, users can parse and process it by

calling Python functions. Figure 4.5(a) illustrates the internal representation of

the schema file in Figure 4.4(a). Each oval corresponds to a component object and

each arrow corresponds to a reference to an object. Figure 4.5(b) illustrates an

instance of the schema. The dashed ovals represent individual data values from

a particular file. Query answers are a sequence formed from a subset of these

values. For example, the query outer[1].inner[0].u returns the value u21 in

Figure 4.5(b) and the query outer.inner.v returns all the values in Figure 4.5(b)

with labels of the form vij.

In order to read a datum from a file, we must know its position within the file

and its size in bytes. The position of any datum is the sum of the sizes of the data

that appear before it. The size of a primitive value is defined by its type (e.g.,

4 bytes for floats and integers). The size of an array is its length multiplied by
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uuuun1v
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u

v21

u21 r_size2

r_size

v

u
r_size1

n

header

n

r_size1

v11

u11

header

r_sizes

outer

n

r_size

inner

v

u

(a) (b)

r_sizen

uuuvn1

Figure 4.5: (a) Internal representation of a schema file. (b) An illustrated instance of a

schema.

the size of its element type. The length of an array may depend on other data

appearing earlier in the file. This situation can lead to significant complexity in

file formats.

We now illustrate a näıve computation of size and position using the schema

and instance of Figure 4.5. For a given file, let pos(x) be the offset of the datum

x, and size(x) be the total number of bytes occupied by the datum x. Suppose

we wish to read the datum uxy in Figure 4.5(b) in order to answer the query

outer[x].inner[y].u. The required computation can be expressed as follows.
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pos(uxy) = pos(v11)

+
x−1∑
i=1

r sizei∑
j=1

(size(vij) + size(uij))

+
y−1∑
j=1

(size(vxj) + size(uxj))

= pos(v11) +
x−1∑
i=1

8(r sizei) + 8(y − 1)

where

pos(v11) = size(header) + size(x)

+
x∑

i=1

size(r sizei)

= 14 + 4x

This computation can be simplified, as shown, by exploiting static information

such as the size of primitive types and constant array sizes supplied in the schema.

(The latter case does not appear in this example.) We refer to this simplification

process as static optimization. Once the position is computed, we can invoke a

system call to seek there and read the value.

To evaluate the query outer.inner.u, we could repeat the computation above

for each value uij in Figure 4.5(b). However, this strategy leads to millions of

system calls. To improve performance, we want to minimize the number of read

calls required.

The unknown quantities in the computation above, the value of n and the values

of the array r sizes, prevent us from completing the computation statically. If we

read these data first, we can derive the position and size of every other datum in the

file, and read larger blocks of data at a time. We refer to the process of prereading
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certain data to further simplify the computations as dynamic optimization, since

the process requires a particular file instance.

Static and dynamic optimization allow us to partially complete the size and po-

sition computations required to evaluate queries. We offer two means of exploiting

these computations. The first is by annotating the schema graph representation,

in memory, with size and position information as it becomes available. The an-

notated schema graph can then be used to evaluate queries more efficiently. We

liken this evaluation method to an interpreter. The second method is to generate

programs able to evaluate queries efficiently. This method evaluates queries using

a compiled program.

In order to perform dynamic evaluation, we must physically read values from

a file instance. Using the interpretation method of evaluation, we can perform

dynamic optimization on the fly as a query is received. However, we cannot gener-

ate, compile, and execute programs at run time in response to user queries without

incurring significant cost. The reader might assume that dynamic optimization is

therefore not available for use by the compiled program method of evaluation.

However, we find in practice that many file instances share the same structure,

even if they are not guaranteed to do so. Therefore, we can use a typical file

instance, called a file exemplar, to perform dynamic optimization and generate

programs specialized for answering queries over files that share structure with the

file exemplar. Such a program would also include checks that the current file

matches the exemplar in the appropriate components.

The programmer is responsible for supplying a file exemplar and specifying the

components that will be read and used for specialization. For example, consider a

set of files S conforming to the schema of Figure 4.4(a). Consider further that a

substantial subset of these files R ⊂ S agree on their values for n and r sizes. The

programmer can provide a file r ∈ R as an exemplar, and specify the components n

and r sizes, and the system will generate an optimized program able to efficiently
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answer queries over all the members of R.

The use of a file exemplar implies two different binding times: one for reading

some structural information about the file and another for reading the remainder.

The use of multiple binding times suggests that we are exploiting a form of partial

evaluation.

The evaluation strategies we have described so far assume that the system calls

seek and read are used to perform the actual file I/O. Query evaluation may

potentially make many of these expensive system calls. An alternative is to use

memory mapped files and allow the operating system to manage the loading of

data from disk to memory. Memory mapped files can be significantly faster than

“manual” I/O. Database systems typically do not use memory mapped files, since

they tend to know much more about the data than does the operating system, and

can therefore make better decisions about when to load and evict pages. Paging

policies for files whose structure is not available until runtime, however, are more

difficult to determine. We find that the use of memory-mapped files improves per-

formance by around 30%. The experimental results in Section 4.6 are all reported

using memory-mapped files, except in the hand-coded case.

4.5.1 Schema Transformation

By reading certain components early, we can partially evaluate the computations

required to answer queries. Another approach to optimization we have explored

is to transform and simplify a schema in response to a particular query. Given a

query Q over a schema s describing a file instance f , there exist a set of schemas

s0, s1, . . . , sn that return the same result: Q[s0] = Q[s1] = · · · = Q[sn]. Some

schemas require fewer read calls.

Consider the query outer[0:2].inner.u over the schema of Figure 4.4(a). In

Figure 4.6(a), we show a transformed version of the schema. We have blended the

two components u and v into a single component named uv. Further, the nested,
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BinaryBlock transformed : {
header : 6c
n : i
sizes : n * {

size : i
}
outer_inner : (2 * sum(size)) * {

uv:f
}

}

u
1
, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6, u7, v7

Q = outer[0:2].inner.u

Q' = outer_inner[0:7:2].uv

(a)

(b)

Figure 4.6: (a) A transformation of the schema in Figure 4.4(a). (b) A transformed

query compatible with the transformed schema.

ragged array has been flattened into a one longer array. The new length is the sum

of all the size values times two (since there are two floats, u and v).

In Figure 4.6(b), we have a sequence of values representing the contents of

the schema instance in Figure 4.4(b). The query Q is the original, and Q′ is the

result of transformation. The values to be returned by both queries are the same;

they appear in bold. The brackets represent the grouping structure specified by

the original schema (the top brackets) and the transformed schema (the bottom

brackets).

This transformation allows us to treat a nested array with a complex element

type as a one-dimensional array with a primitive element type. The reason this

transformation is useful is that our query evaluation engine is already capable

of reading, slicing, and returning one-dimensional arrays. We find it easier to

“program” the query evaluator by changing the schema than to empower it with

the full types system used to describe data.

We apply schema transformation rules after dynamic optimization. As we
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recursively descend the schema graph reading data, we may apply “temporary”

schema transformation rules multiple times. The schema and query rewrites, along

with any conditions for their application, are described by the following rules. The

notation S = expr (Q = expr) means that the schema (query) being considered is

expr. The rules below can be read “if the schema is sexpr, and the query is qexpr,

then an equivalent schema and query are sexpr′ and qexpr′”

enstruct
S = a : n ∗ {b : m ∗ {x : t}} Q = a[sa : ea].b[sb : eb].x

S = a : n ∗ {prefix, b : (eb − sb) ∗ {x : t}, suffix}

Q = a[sa : ea].b.x

destruct

sizeof(ti) = sizeof(tj) for all i, j

S = a : n ∗ {x0 : t0, x1 : t1, . . . xm : tm} Q = a[s : e].xi

S = a : (nm) ∗ {x : ti} Q = a[s + i : e ∗ i : i]

flatten
S = a : n ∗ {b : m ∗ {x : t}} Q = a[sa : ea].b.x

S = ab : (n ∗m) ∗ {x0 : t} Q = ab[sa ∗m : ea ∗m].x

group
S = a : n ∗ {x : t} Q = a.x

S = x : (sizeof(t)n)c} Q = x

The rule ENSTRUCT breaks a nested array into a skippable prefix, a slice to

read, and a skippable suffix, and transforms the query to access the slice portion

only. The prefix is described by the schema prefix : (sizeof(t)sb)c and the suffix

is described by the schema suffix : (sizeof(t)(m − eb))c. The query evaluator no

longer needs to iterate over each element of the outer array and each element of

the inner array, but can stride over portions of the array that do not need to be

returned.

The rule DESTRUCT converts an array with a complex element type into an
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array with a simple element type as in Figure 4.6. DESTRUCT is a generalization

of FLATTEN. The benefit in this case is that an array with a simple element type

is read all at once and then sliced.

The rule FLATTEN converts a nested array with a primitive element type

into a one-dimensional array. This rule allows a contiguous block to be read and

returned with one call.

The rule GROUP converts an array with a primitive element type into a block

of uninterpreted bytes. An array can be read with a single call, but arrays incur

some overhead since elements are interpreted as typed values. GROUP avoids this

overhead and just copies the bytes into memory directly.

These rules provide the basis for optimizing extraction queries using schema

transformations. The list of rules is probably not complete; we expect more rules

to be discovered for various situations. The key idea is that thinking in terms of

transforming the schema as well as the queries seems like a promising conceptual

framework for optimizing extraction queries.

4.6 EXPERIMENTAL RESULTS

Figure 4.7 shows the schema for the simulation result files from the CORIE project

on which we ran our experiments. Logically, these files house a timeseries of three-

dimensional datasets bound to a grid. For each simulation run, one of these files is

produced for each of 7 to 10 variables, for each day of simulated time. The sizes of

these files range from 35MB for two-dimensional variables such as surface elevation

or wind pressure at the surface, to 655MB for horizontal velocity vectors for each

three-dimensional point. The entire data repository holds around 5000 simulation

runs, with additional runs executed daily.

The header portion of each file, shown in plain type, contains time-independent

information, including the horizontal and vertical grids and the river’s bathymetry.

The time-varying portion of the file, highlighted in bold type, is a nested array
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magic : 48c, version_string : 48c
start_time : 48c, variable_nm : 48c
variable_dim : 48c, nsteps : i, timestep : f
skip : i, rank : i, idim : i, 
vpos : f, zmsl : f, levels : i
zcor : levels * { z : f }
nodes : i
elements : i
nodedata : nodes * {

x : f,  y : f,  h : f,  bathymetry : i
}
cells : elements * { nodeids : 3 * { id :i } }
timedata : nsteps * {

tstamp : f, tstep : i
surfdata : nodes * { surf : i  }
horizontal : nodes * {

depths : (levels - bathymetry + 1) * {
vector : rank * { val : f }

}
}

}

Figure 4.7: A BinaryBlock describing the CORIE simulation output. The bold text

indicates the time-varying portion of the dataset.

component with four layers of nesting over the actual values of the simulated

variables: timedata, horizontal, depths, and vector. The array surf, similar to

the array bathymetry, contains indices into the vertical grid. This index represents

the surface of the water: the highest level that still holds valid data. However, the

water’s surface changes over time, so we need a separate surface array for each

timestep.

We compare the performance of four representative queries using seven different

techniques. The queries are listed in Table 4.1 and the results are presented in Table

4.2. Query 1 extracts the first complete timestep of data from the file, copying

it to an array in memory. Query 2 accesses all timesteps, but extracts only a

relatively small portion of the horizontal data; 2999 nodes. Query 3 extracts the

first two depth levels for every horizontal node, for every timestep. Since we do not

know how many depth levels exist at each node until we read the file’s header, we
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cannot derive the result size statically; some nodes may have as few as one depth

level. Query 3 returned the largest result size in practice, at 5.6 million floating-

point numbers. This query also proved most challenging for our software. Query

4 extracts the surface information for timesteps 30 through 44. This query does

not directly involve any variable-length arrays and is therefore easier to compute

for most techniques. Also, this query also had the smallest result size.

The experiments were conducted on a platform almost identical to the nodes of

the cluster used to run the CORIE simulations. The machine runs Linux on a 2.4

GHz processor with 4GB of main memory. We report the average of eight exper-

iments run on two different days with the machine unencumbered. The variance

was less than 1% in all cases, demonstrating stability of the results.

The simplest technique we tested was to use the internal representation pro-

duced by the static optimizer directly (Experiment (a) in Table 4.2). While this

basic tool worked well on small files during testing and development, it strug-

gled on the large files of the CORIE system. After 500 seconds, we stopped the

experiments. The use of the Dynamic Optimizer leads to improved performance

(Experiment (b)). The Dynamic Optimizer prefetches information from the header

during query evaluation, and is therefore able to simplify or eliminate many com-

putations.

Experiment (c) in Table 4.2 uses a small class of schema and query transforma-

tions (see Section 4.5). These transformations act as shortcuts, allowing us to read

large blocks of data from the file and then “slice” them to extract the appropriate

values. For example, Q1 returns an entire timestep. The system can detect that

there is no need to iterate over each horizontal node and each vertical level; it

can simply compute the size s of a timestep from the header information, seek to

the beginning of the relevant section, and read all s bytes. The result is dramatic

improvement in performance. The effect is especially pronounced due to our choice

of technology. The Python language can perform well when expensive routines are
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Table 4.1: Tested queries with result sizes.

label query result size

Q1 timesteps[0:1].H.V.vector.v 3.3MB

Q2 timesteps.H[2000:5000].V.vector.v 16.3MB

Q3 timesteps.H.V[0:2].vector.v 22.7MB

Q4 timesteps[30:45].surfdata.surf 1.77MB

pushed down into the compiled C code underpinning the language. Reading and

slicing arrays are examples of these fast operations.

Note that for Q3, we are unable to identify an appropriate transformation.

Since the vertical component has a variable length, there is no simple pattern we

can use to extract the data values we want. We must access much more data to

navigate through the file. The hand-coded reader (Experiment (g) in Table 4.2)

is able to evaluate this query efficiently by precomputing cumulative sizes of the

variable-length arrays and striding through them as necessary. It remains future

work to incorporate the general form of this technique. Of course, the hand-coded

reader will operate correctly only on files with this exact schema.

Experiment (d) executes identical code to Experiment (c). For this case, we

subtract the time spent prefetching and optimizing. The rationale is that for large

classes of similar files, this work may be done once rather than for each file.

Experiments (e) and (f) use generated C programs to compute the results. The

first is a program generated directly from the static optimizer’s output. We per-

formed these experiments to see whether a compiled language would outperform

the Python routines even without significant optimization. The results show that

traversing these large files without guidance is prohibitively expensive even for a

compiled C program. The specialized generated program is created from the results

of the Dynamic Optimizer and is specialized for a particular class of file instances.

The rationale is that many of these specialized readers could be generated and
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Table 4.2: Response time in seconds by query.

Experiment Q1 Q2 Q3 Q4

(a) interpreted, static >500 >500 >500 >500

(b) interpreted, dynamic 28.1 138. 284. 8.64

(c) same as (b), plus transformations 0.83 1. 86. 0.85

(d) same as (c), runtime only 0.02 0.24 85. 0.26

(e) compiled, static 65. 104. >500 3.2

(f) compiled, dynamic 4.7 22. 32. 2.6

(g) by hand 0.02 0.5 0.6 0.02

stored by the system. When planning evaluation of a query, the specialized pro-

grams could be considered as fast alternative access methods. Unfortunately, these

generated programs do not perform as well as expected. The reason is that the

transformation optimizations that gave good performance in Experiments (c) and

(d) are not incorporated in the generated code. In ongoing work we are improving

the quality and performance of the generated programs. Note that the specialized

generated program exhibits stability; it was able to evaluate Q3 without incurring

the same magnitude of penalty as the other approaches.

4.7 CONCLUSIONS

In our experience, scientists tend to prefer lightweight tools that they can deploy

incrementally. Transformative solutions such as relational databases require a

significant up-front investment of resources. Since the gridfield model represents a

significant departure from the status quo, we have explored ways of “softening the

blow” and improving the odds of adoption.

Specifically, we have described simple software layers that hide the complexity

and diversity of existing file formats and directory structures without compromis-

ing performance. We prefer this process of “retrofitting” gridfields onto existing
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datasets to the alternatives. Converting terabytes of data to support new data

models is infeasible, and continuously writing access methods for changing for-

mats is time consuming.

Our results show that although file formats with high variability can be expen-

sive to process without programmer guidance, hand-coded access methods can be

replaced with generic or generated access methods. We recognize that a logical

dataset can often span multiple files in practice, and that the directory structure

and filename can encode part of the dataset’s structure. Our techniques can fa-

cilitate data sharing between research groups and institutions with heterogeneous

data formats, and make it easier to leverage the gridfield model.



Chapter 5

APPLICATIONS AND INTERFACES

We have considered three distinct aspects of the gridfield approach: the model

(Chapter 2), alternative data structures with which to implement the model (Chap-

ter 3) and an application of these data structures to existing, ad hoc, file-based

data (Chapter 4). In this chapter, we synthesize these ideas and argue that grid-

fields offer conceptual economy, optimization opportunities, and a separation of

of logical and physical concerns at several stages of application development. We

describe narratively how these benefits are realized by tracing the the evolution of

the model and implementation from an abstract reasoning tool, to a programming

aid, and finally to a gridfield-powered data-visualization application.

Section 5.1 describes gridfields as an abstract language useful for reasoning

about complicated gridded datasets even in the absence of an implementation.

Section 5.2 describes our experience programming with gridfields, and how this

experience led to model-level refinements. Section 5.3 describes how the various

way gridfield expressions can be evaluated.

5.1 REASONING WITH GRIDFIELDS

Gridfields emerged first as a data-product description language that bridged the

gap between English and code. For example, the evolution of the CORIE En-

vironmental Observation and Forecasting System has been punctuated by major

releases involving a significant change in the structure of the simulation mesh.

All stages of the forecast pipeline are affected by these changes: processing of
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(a) (b) (c) (d)

Figure 5.1: The CORIE grid evolved over time, requiring significant changes to the

analysis pipeline. (a) The mouth of the Columbia River Estuary shaded by bathymetry

with a highlighted region in white. (b) The original CORIE grid extended below the

bathymetry. (c) To save space, these invalid values were culled, complicating the file

format. (d) A newer model uses a σ-grid, with a fixed number of depth levels that follow

the contours of the bathymetry.

atmospheric and river inputs, the finite element methods used in the simulation

kernel, and generation of data products. Gridfields became a useful way to charac-

terize each of these components, allowing us to conduct a “sensitivity” analysis of

the overall system. If the timestep is changed, which programs should be affected?

Which programs rely on the fact that the grid only involves triangles? Figure

5.1 illustrates a particularly inconvenient series of changes to the grid structure.

Figure 5.1(a) is an illustration of the area around the mouth of the Columbia River

shaded by depth measured as meters below Mean Sea Level (oriented downward).

Figure 5.1(b), (c), and (d) are sections cut from three different grids modeling

the same region, highlighted in (a) by a white rectangle. In each illustration, the

transluscent surface represents the water’s surface at a particular timestep, and
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the solid surface represents bathymetry. The earliest grid used by CORIE had the

form of Figure 5.1(b). This grid extends below the bathymetry; a distinguished

value (-99) is stored for these underground positions to indicate they are invalid.

The distinguished value is also used to indicate mesh nodes positioned above the

water’s surface.

The gridfield expression to construct this grid appears in Figure 5.2(b). Figure

5.2(a) is a reminder of the shape of the grids H and V . The vertical grid V has

z-coordinates bound statically—the z-coordinates do not change over time, though

the status of nodes as valid or invalid does change as the water’s elevation changes.

The largest z-coordinates in the vertical grid, corresponding to the deepest parts

of the ocean, are only “wet” for a very small portion of the overall grid. Elsewhere,

they are positioned underground. In the region around the mouth of the Columbia

river shown in Figure 5.1(a), most of the vertical grid V is invalid—the river’s

mouth is very shallow relative to the ocean depths. The H grid in this region is

also highly refined to accurately capture the complex interaction between the tides,

fresh and saltwater mixing, and irregular shoreline. Consequently, most of the

nodes in the overall product grid H ⊗V are positioned underground. Storing −99

for each invalid position is therefore rather wasteful. As inexpensive as secondary

storage has become, the simulation outputs are regularly deleted to make room for

more. Freeing almost 50% of one’s space with no loss of information is therefore

an attractive option.

To recover this wasted space, the CORIE grid evolved into the form in Figure

5.1(c). Now, the positions below the bottom of the river are culled from the grid

itself rather than simply marked as invalid. Programs manipulating grids and at-

tributes as raw arrays were significantly affected by this change: They must now

accommodate “ragged” arrays that do not have a rectangular shape. Unfortu-

nately, the full-sized rectangular arrays tend to reappear during processing, since
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tools such as MATLAB, netCDF, HDF, and APL are not well suited to manipu-

lating ragged arrays. Using gridfields, the new grid can be expressed by adding a

single restrict operator after the cross product, as in Figure 5.2(c). The result is

no more troublesome to reason about than the original grid.

Although the grid in Figure 5.1(c) wastes less space, the static z-coordinates

still make it difficult to increase resolution in shallow areas. It helps that the z-

levels need not be distributed uniformly: Their density is higher near the surface

than near the bottom to capture high-frequency variation in the shallow waters.

However, this resolution is wasteful in the open ocean where the low frequency

features such as global currents and seasonality dominate at all depths.

To better fit the multi-scale domain, a fine grid near the mouth of the river

and a coarse grid in the open ocean is desirable. A similar problem motivates the

use of the unstructured horizontal grid to discretize the (x, y)-plane parallel to the

Earth’s surface. Many small triangles and quadrilaterals with areas no more than a

few square meters are used to model the estuary, while large triangles with areas of

several square kilometers are used in the open ocean. An analogous solution exists

for the depth-resolution problem: Convert to a full three-dimensional unstructured

grid consisting of tetrahedra. However, the currents in the ocean and river are

predominately lateral; this asymmetry between (x, y) directions and the z direction

is exploited in the simulation to reduce running time. Another solution is to retain

the prism shape of the cells, but to relax the condition that the edges of the prisms

must be aligned with coordinate axes. Instead of a stair-step pattern at the bottom

of the river and ocean, the grid fits flush, as in Figure 5.1(d). This configuration is

referred to as a σ-grid. The σ-grid also follows the surface of the water, such that

the z-coordinates bound to the nodes are now time-dependent.

The value σ ranges from 0 to 1 and represents a proportion of the total depth

rather than a fixed z-coordinate. Therefore, the grid is topologically similar to

Figure 5.1(a), in that it is formed from the cross product of the horizontal grid
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apply(0, z=(surf − b)* σ )
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H

V

bind(0, surf)

restrict(0, z >b)

Figure 5.2: The structural differences between CORIE grids are expressed succinctly

using gridfields. (a) The form of the horizontal and vertical grids. Plans (b), (c), and (d)

implement the construction of the grids shows in Figure 5.1(b), (c), and (d), respectively.

and the vertical grid. However, the geometry of this product grid (specifically, the

z-coordinate) depends on not just the node in the vertical grid, but the bathymetry

and the water’s surface as well as the node in the vertical grid. Remarkably, the

surface, and hence the geometry of the grid, now changes over time. The gridfield

expression in Figure 5.2(d) describes how the sigma grid is constructed. The

z-coordinates now depend on the water’s surface, which varies with time. We

therefore bind the surface attribute before computing the cross product. The

calculation of the z-coordinate appears as an apply operator with the expression

z = (b− surf)∗σ, where b is the bathymetry (the surface value is subtracted from

the bathymetry since the z-axis is oriented downward).

The opaque surface representing bathymetry in Figure 5.1(d) appears to be

different than in Figure 5.1(b) and Figure 5.1(c). Indeed, the bathymetry can be

modeled more accurately with the σ-grid since the interpolation errors introduced

by the stair-step patterns are avoided. Hence the sharp peak in the Figure 5.1(c),
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which was suppressed in Figure 5.1(b) and (c).

With each change to the grid, a gridfield expression that captures the change

precisely was straightforward to write down and reason about. Even before a

gridfield implementation was available, such descriptions served to aid the dis-

cussion about consequences of grid changes. Once the grid changes were fully

implemented, the gridfield diagrams served as documentation—“before and after”

pictures to orient visitors and incoming students.

5.2 PROGRAMMING WITH GRIDFIELDS

After successfully deploying the gridfield model as a reasoning tool, we imple-

mented the algebra in C++. The grid, the attribute, the gridfield, and each

operator was implemented with a separate class, organized into an appropriate in-

heritance hierarchy. Recipes were constructed by wiring together trees of operator

objects, then calling the getResult method. The algorithms implementing the op-

erators recursively called the getResult method on their children; at the leaves,

the scan and bind operators accessed files directly. The results were piped into

VTK for direct visualization. More complex visualizations could be constructed

by drawing multiple gridfields in the same scene.

Once implemented, gridfields provided a narrow interface with which to manip-

ulate scientific simulation results. By working with only a few operators, program-

mers could incrementally and interactively develop data product recipes without

continually researching documentation. Since the algebra is closed, i.e., all opera-

tors consume and produce gridfields, most results can be inspected visually with a

single function call and two arguments: the root gridfield operator and an attribute

name with which to color the visualization. This capability proved useful during

debugging and testing.

In this section, we describe three examples of programming with gridfields and

use them to motivate design decisions in the gridfield model.
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Figure 5.3: A visualization of average velocity over time interpolated to a particular

depth.

5.2.1 Persistent Eddies

Figure 5.3 shows a common vector field visualization technique: associate an arrow

glyph with each node or cell oriented in the direction of the flow. To investigate

persistent eddies in Vancouver BC driven by the Fraser River, one student needed

to compute and visualize the average velocity at various depths over a period of

several weeks. This data product requires access to around 10GB per week of

simulated time.

The average velocity data product motivated some extensions to the data model

and the execution model. First, the original gridfield model allowed attributes to be

bound at only one dimension at a time. To work with data at multiple dimensions,

the programmer would have to use the merge operator and the regrid operator. For

example, imagine a programmer wants to find the air-surface flux values, a function

of the 2-cells, within a custom bounding box. The restriction to a bounding box
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flat result

vertical “spikes”

(a) (b)

Figure 5.4: Each node in the flat shaded result 2-D gridfield depends on two values

from the full 3-D gridfield: the value directly above and the value directly below. The

close-up at (b) illustrates the intersection of the flat result with two vertical spikes.

requires a gridfield on 0-cells with bound attributes representing x and y. The

restricted gridfield can then be merged with the flux-carrying gridfield over 2-cells.

The one-rank-only gridfield model simplified the definition and implementation

of the individual operators, but queries became unnecessarily complicated due to

frequent “rank-switching” operations. For example, both recipes in Figure 5.5 and

Figure 5.6 compute the interpolation of a dataset at an arbitrary depth in the

σ-grid of Figure 5.1(a). Figure 5.5 uses the one-rank-only model and Figure 5.6

uses the current multi-rank model. Besides requiring more operators, Figure 5.5

requires processing along two distinct paths, corresponding to processing at two

different ranks. In Figure 5.6, both ranks can be processed using a non-branching

sequence of operators.

Specifically, the recipes in Figure 5.5 and Figure 5.6 interpolate the velocity

field at a particular depth for a particular user-defined region. The result must be

a flat 2-D gridfield at a fixed, user-defined depth (3 meters below Mean Sea Level

in this example). However, the data we are interpolating from is bound to the

σ-grid of Figure 5.1(d), whose cells follow the bathymetry of the river. Each node

in the flat result grid intersects a single vertical 1-cell.
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Figure 5.4(a) is an intermediate result displaying two gridfields: one is the 2-D

result gridfield at a fixed depth, and the second is a collection of vertically oriented

1-cells to which the data to be interpolated has been bound. To gather these

“spikes,” we use the accrete operator to remove all cells except the nodes from the

horizontal gridfield H. Then we compute the cross product of this zero-dimensional

gridfield with the one-dimensional gridfield V. The gridfield V has been altered,

however: Each 1-cell has two incident nodes with associated σ values. The lower

of the two is mapped as “minsigma” and the higher of the two is mapped is

“maxsigma.” Specifically, the two σ values are taken from the two 0-cells incident to

a given 1-cell (Figure 5.4(b)). The regrid operator accomplishes this alteration with

an assignment function mapping to each 1-cell c the set of incident nodes {n | n ≺

c}, and selecting the minimum and maximum value from this set. The value σ

multiplied by the difference between the water’s surface and the water’s bathymetry

produces a z-coordinate suitable for comparison with the user’s selected depth. A

restrict operator finds those 1-cells whose minimum and maximum z coordinates

form an interval that contains the user’s chosen depth. The result of this restrict

operator are the “spikes” in Figure 5.4. The velocity components u and v are

bound to the spikes, then interpolated onto the result grid using another instance

of regrid.

The refinement of the gridfield model to allow data bound to multiple ranks si-

multaneously sometimes led to simpler recipes, as this example demonstrates. This

example also demonstrates the use of gridfields as a visual algorithm development

environment. Efficient recipes can be derived by reasoning about and visualizing

the intermediate results. Finally, this example demonstrates the utility in thinking

about the grid separately from the bound data—the interpolation algorithm has a

topological component that can be worked out independently from how the data

is organized.
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Scan(H)

Accumulate(hpos, hpos+1, 0, 0)

Restrict((96644<x) & (x<430040) & (5221584<y) & (y<5607198))

Apply(z= -3 * 100)

H0

Merge

Scan(V)

Accumulate(vpos, vpos+1, 0, 0)

X

Apply(z=(h)*z*100)

Apply(addr=hpos*37+vpos)

Bind(u, addr)

Bind(v, addr)

Regrid(Nodes, dotwo)

X

Bind(surf, hpos)

Apply(loz = (minsigma*(h-surf)); hiz = (maxsigma*(h-surf)))

Restrict((loz < -3) & ((-3 < hiz) | (-3 = hiz)))

Extend(0)

Merge

Regrid(match, interpolate1Dfloat)

Apply(mag=(u^2 + v^2)^(1/2))

Figure 5.5: This recipe for interpolating values at a particular depth is complicated

by the movement of data from one rank to another. Recipes such as this motivated

the current multi-rank gridfield data model. The accumulate operator (used near

the leaves) is a specialization of the regrid operator used to assign an identifier to

each cell (see Section 2.4.6).
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Scan(H)

Accumulate(hpos, hpos+1, 0, 0, 0)

Bind(surf, 0, hpos)

Restrict((96644<x) & (x<430040) & (5221584<y) & (y<5607198))

Apply(z=-3, 0)

Extend(0)

Scan(V)

Accumulate(vpos, vpos+1, 0, 0, 0)

Regrid(Nodes, dotwo)

X

Apply(loz=minsigma*(h-surf);  hiz=maxsigma*(h-surf), 0)

Restrict((loz < -3) & ((-3 < hiz) | (-3 = hiz)))

Apply(addr=hpos*10+vpos, 0)

Bind(u, 0, addr)

Bind(v, 0, addr)

Regrid(match, interpolate1Dfloat)

Apply(mag=(u^2 + v^2)^(1/2), 0)

Figure 5.6: In this recipe for interpolating values at a particular depth, all ranks can

be processed with a non-branching sequence of operators. This recipe computes the

interpolation of data at a particular depth over the σ-grid in Figure 5.1. Recipes

such as this motivated the current multi-rank gridfield data model. The accumulate

operator (used near the leaves) is a specialization of the regrid operator used to

assign an identifier to each cell (see Section 2.4.6).
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⊗
restrict(p(x,y))

restrict(p(z))

restrict(z>b) bind(salt)

H : (x,y,b)

V : (z)

0

0 0

0
render

⊗
H
0
: (x,y,b)

V
0
: (z)

restrict(z>b) bind(salt) restrict(region)
0 0 0

render(a)

(b)

Figure 5.7: (a) The original recipe for visualizing a 3-D CORIE dataset. (b) An opti-

mized equivalent recipe. The integer decorations indicate the dimension argument passed

to the operator immediately to the right.

5.2.2 Pushing restricts

Recall the recipe of Figure 2.17, repeated in Figure 5.7(a), that computes a 3-D

salinity gridfield and zooms in to a user-specified region. The logical model allows

us to freely commute the restrict operator with the bind, and then with the cross

product to significantly reduce the size of the intermediate results. However, the

physical implementation materializes functions as arrays, so special handling is

required. The array we wish to bind can only be correctly interpreted using the

ordinal positions of the wetgrid. If we push the restrict earlier, we will produce

a grid smaller than the wetgrid, and the bound array will be misaligned. In this

section, we give a simple example of the solution to this problem; in Section 5.3.2,

we will describe the general form of the technique.

To solve the problem, we can pre-compute the ordinal positions of cells in the

wetgrid and record these values in an attribute. This attribute can then be passed

to the bind operator and used as offsets into the array on disk.

Our goal is to push the restrict on “region” before the cross product, but there

are two obstacles. One is the cross product itself, and the other is another restrict
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involving attributes b and z from H and V, respectively1 A cell’s ordinal position

in a cross product grid can be derived from the ordinal positions of the cells used

to construct it. However, the grid we want is not just a cross product of two grids,

but the restriction of a cross product. Therefore, the ordinals of the cells of the

wetgrid are dependent on the condition used to filter out the “dry” cells.

In the general case, the 1000th cell in the grid prior to a restrict could be the 1st

cell or the 1000th cell in the restricted grid. However, we know a physical property

of the gridfield V: it is sorted on the attribute z. We can therefore compute the

positions of the wetgrid’s cells without actually materializing the grid itself.

Recall the attribute b of the gridfield H stores bathymetry information for the

river. Specifically, b is an index into the gridfield V. Since V is sorted on z, we can

use b to determine the number of cells in each vertical column of water. With these

cell counts, we can compute an offset into the array to be bound to the wetgrid.

The result of these transformations is the optimized recipe shown in Figure 5.7.

The potentially highly selective restricts on x, y and z are evaluated prior to the

cross product.

5.2.3 Optimizing Slice Products

Two common 2-D CORIE data products are horizontal and vertical “slices.” Ex-

amples of these data products for the salinity variable are shown in Figure 5.8.

One way to express the horizontal slice data product is to use the same plan as

in Figure 2.17, but restrict the z dimension to a single value. As in Section 5.2.2,

we could push the restricts through the cross. This time, though, we observe that

restricting V to a single node produces the unit grid. Since the unit grid is the

identity for the cross-product operator, we can remove the cross-product operator

altogether.

1This restrict involves attributes from both H and V and does therefore not commute with
the cross product.
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(a)

(b)

Figure 5.8: (a) A vertical slice data product. (b) A horizontal slice data product.

This optimization is unavailable to systems that cannot reason about grids

alge-braically. We have not only produced a more efficient recipe, but we have

also naturally expressed a critical correctness criteria: The output grid is 2-D and

identical to one of the input grids. Although the wetgrid is constructed from prism-

shaped cells, this data product is defined over triangles. (We have assumed that

the depth at which a slice is to be taken corresponds to one of the depths in the

vertical grid V , and that the depths do not vary over time. We could relax these

assumptions by using a regrid operator equipped with an interpolation function.)

Computing a vertical slice is more difficult. The horizontal grid H has an

irregular topology consisting of triangles. To take a vertical slice, we must still

project the 3-D grid down to two dimensions, but the target is a new grid not

appearing elsewhere in the plan. Consider a user who wants to view a vertical

profile of the salinity intrusion along a deep channel near the mouth of the estuary.

To specify “along a deep channel” to the system, the user selects a sequence of

points in the xy plane, as shown in Figure 5.9(a). We can connect these points

to form a 1-D grid, P . A cross product with the vertical grid gives us a grid
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b) Q = P ⊗⊗⊗⊗ V
a) User selects points to 
form a grid P

c) M = cells in H that 
contain points in P

d) G = M ⊗⊗⊗⊗ V'

Figure 5.9: A summary of the four intermediate steps in an efficient “vertical slice”

recipe.

representing the 2-D slice, P ⊗ V (Figure 5.9(b)).

Using the Visualization Toolkit library (VTK), we must manually construct the

grid P ⊗ V producing points in 3-D space. For each point, we must search in the

3-D wetgrid for the cell that contains the point, then perform a 3-D interpolation

of salinity values. With the gridfield algebra, we can do the work in two dimensions

for considerable savings. Each point in P can be positioned in a triangle in the

horizontal grid H. We can restrict H to only those cells that contain one or more

points in P using the regrid operator followed by a restrict, producing a grid M

(Figure 5.9(c)).

Since the grid M is a restriction of the grid H, we can commute the restrict

operator (as we did previously) to construct a 3-D grid (not shown in Figure 5.9)

and bind the appropriate salinity values to it. We can now perform the same

search-and-interpolate operation required by VTK, but using a much smaller 3-D

grid.

An additional optimization is possible. Instead of considering V as a 1-D grid,

we prune the 1-cells using the accrete operator, leaving only the nodes. Call this
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grid V ′. The grid M ⊗ V ′ consists of “stacks” of 2-D triangles (Figure 5.9(d)),

rather than a connected set of 3-D prisms. To guarantee the same output, we

exploit a property of bi-linear interpolation: Interpolation on the base of the 3-D

prism is the same as interpolation on the 2-D triangle alone, with the latter being

much less costly.

By working primarily in two dimensions and reasoning about the product struc-

ture of the grid we were able to produce a less expensive plan. Lowering the dimen-

sion of the intermediate results saves time since 1) higher dimensional gridfields

tend to have more cells, and 2) algorithms for manipulating 3-D cells are more

expensive than their 2-D counterparts. We will analyze the performance of this

optimization in Chapter 6.

This optimization is rather specialized to a particular situation and would be

difficult to apply automatically. However, it demonstrates that reasoning at the

grid level can expose such optimizations, and that they can be expressed with the

gridfield algebra.

Real images from the steps of the algorithm illustrated in Figure 5.9 are shown

in Figure 5.10. The actual intermediate results are easy to visualize since they are

the same type of object as the final results; i.e., the gridfield algebra is closed.

5.2.4 Plume Front

The dominant feature of the interface between the Columbia River and the Pacific

Ocean is a large, persistent plume of fresh water. The gradual mixing of fresh

and salty water (as well as cold and warm water) provides an attractive habitat

to various organisms, especially salmon. The economics and science of the salmon

industry is an important issue in the Pacific Northwest. Models such as CORIE can

be used to perform investigative analysis of the consequences of policy decisions.

The effect of river dredging, factory run-off (both as a chemical and temperature

pollutant), and even climate change can be studied in the context of simulation.
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Figure 5.10: The polygons containing user-selected points for computing a transect.

Salmon tend to congregate at the forward edge of the plume. An immediate

question is how to define the “forward edge.” While the ultimate answer is left

up to the scientists, gridfields provide a simple way of testing various definitions.

One proposal was to identify regions outside the mouth of the river where the

magnitude of the gradient of the salinity field is above a given threshold. There

was concern that this definition would be too simplistic, but rather than speculate,

we designed a data product that computed the gradient and visualized the results.

In Figure 5.11(a), the lightly shaded areas represent high gradient and the

heavily shaded areas represent lower gradient. The vaguely circular shape of the

plume is clearly visible, as are the large eddies forming in the “wings” of the plume.

The mouth of the river (labeled) is especially turbulent and powers significant

mixing between salty ocean water and fresh river water. The gradient of the salinity

field therefore reaches extremely high magnitudes in this region. To improve the

visualization, gradient values above a given threshold gmax are set to gmax. In

Figure 5.11(b), we illustrate this gradient calculation implemented using the regrid

operator. For each node in the grid, we compute the sum of all vectors vx, where

vx points in the direction of an adjacent node x and has magnitude equal to the
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river mouth

(a)
(b)

(c)

Figure 5.11: (a) The plume front computed as a low-pass filter on the gradient magni-

tude. The gradient is calculated using the regrid operator either (b) on each node using

the values at adjacent nodes, or (c) on each cell using incident nodes. Method (b) was

used to generate the image at (a).

salinity value at x. An alternative appears in Figure 5.11(c). The gradient can

be computed at the center of each 2-cell rather than at the nodes. There are two

advantages of (c). 1) Due to our choice of representation, navigating I20 is more

efficient than finding adjacent nodes by navigating I01 and then I10 (or I02 and then

I20). 2) The gradient is simply the slope of the plane equation for the triangle,

a quantity that can be calculated directly. The disadvantages are that 1) only

triangles unambiguously define a plane (and there are quadrilaterals to consider),

2) fewer nodes are used in the calculation, leading to a less accurate approximation,

and 3) a custom aggregation function is required: It must compute the cell center of

a polygon and derive the plane equation. In (b), the aggregation function is simply

a vector sum, a function already included as part of the core gridfield library.

In this example, gridfields provided low-level control over the important part of

the computation—the method of approximating the gradient—without requiring
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Figure 5.12: A finished data product derived from the same recipe used in Figure 5.11.

The left panel represents only those cells where the salinity gradient is above a threshold,

while the right panel is colored by salinity itself.

excessive attention on the more mundane parts—finding a particular region of the

larger grid, interpolating at a particular depth, and gathering the relevant variables

from different files.

A variation on this product appear in Figure 5.12. Here the panel at the left

is colored by the gradient and the panel at the right is colored by salinity itself

facilitating a side-by-side comparison. Only the cells with a gradient above the

threshold are visible; the rest having been removed prior to rendering using the

restrict operator. Both Figure 5.11 and Figure 5.12 are animated to show plume

development through time.

5.3 EVALUATING GRIDFIELD EXPRESSIONS

We have described the utility of gridfields at two stages of maturity: first as an

abstract language for describing and reasoning about the logical structure of grid-

ded datasets, and second as an interactive data product development environment.
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Now we describe the various ways gridfield expressions are evaluated.

Gridfield programmers build recipes by calling operator constructors with the

appropriate parameters. Although the core data structures and operators are

written in C++ for performance, we provide a Python interface to them to facilitate

recipe manipulation and rapid development. The techniques described in this

section are all implemented in the Python layer.

Consider the following Python syntax of a gridfield algebra expression:

1 context = {‘‘year’’:‘‘2006’’, ‘‘day’’:134, ‘‘timestep’’:0}

2 Sh = Scan(context , ‘‘H’’)

3 Sv = Scan(context , ‘‘V’’)

4 C = Cross(Sh, Sv)

5 R = Restrict(C, 0, ‘‘z > b’’)

6 B = Bind(context , ‘‘salt , temp’’, 0, R)

Lines 1-5 describe the mesh in Figure 5.1(c), and line 6 binds two attributes

to the 0-cells. Line 1 establishes a context identifying particular datasets in the

catalog (for which the model and implementation were described in Chapters 2 and

4 respectively). A context is a Python dictionary mapping properties to values.

This context is passed to the scan operator to inform the catalog which gridfield

named “H” the programmer is interested in. When the scan operator is evaluated,

the catalog may construct a filename, execute a query over a relational database,

or use any other means available to resolve the name.

After the two scan operators are constructed, they are passed as arguments

to the cross operator. After using restrict to remove invalid cells, the salt and

temp attributes can be bound. The context object passed to bind need not be

the same as the one passed to the scan operators. The CORIE grid changes only

infrequently, but many copies of each grid exist on the filesystem. Therefore, it

may be appropriate to bind this week’s attributes to last week’s copy of H. The
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catalog is assumed to be able to resolve these equivalences.

The gridfield expression can be evaluated in two ways: query mode and inter-

active mode. In query mode, an application constructs a tree of operators as above

and submits the tree to the gridfield server for evaluation. The server is free to

transform the recipe prior to and during evaluation. Once evaluated, the results

are shipped back to the application.

In interactive mode, the application may request the result of any operator in

the tree at any time by calling the getResult method. When a result is requested,

the operator checks to see if a result has already been computed. If not, the

operator calls getResult on each of its input operators recursively. If so, the

operator checks to see whether the previously computed result is stale. The result

of operator A is stale if any operator in the subtree rooted at A has been modified

since the result was generated. This condition requires keeping track of the time

each result is computed as well as a dirty flag.

The dirty flag is set whenever the operator’s arguments are updated. Most

arguments to operators may be changed after initial construction through SetP

methods, where P is the name of the parameter. Interactive mode is similar to the

evaluation model of visualization libraries such OpenDX and VTK. Each node in

the pipeline is only re-evaluated if it has changed.

Using interactive mode, one can construct a pipeline to display the average

salinity for Monday, then repeatedly change the context of the bind operator to see

the results for Tuesday, Wednesday, and Thursday.

The result of any operator is only guaranteed valid until a downstream operator

is recomputed through a call to getResult. This weak guarantee allows aggressive

sharing of sets of cells, incidence relations, and attributes. We collectively refer to

these three kinds of objects as components.

Each physical operator logically creates a new gridfield from a) components

of its inputs, and b) new components constructed from scratch. For example,
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G

apply(d=a+b+c)

G

apply(c=c*10)

cbacba d

(a) (b)

Figure 5.13: Operators (a) can share or (b) destructively update grids and attributes

(the latter is done only when safe).

apply(tempC=(tempF-32)*9/5, 0, G) creates a new attribute tempC representing

temperature in degrees Celsius. The cell arrays, incidence relationships, and other

attributes appear in the result unmodified, while the tempC attribute is new.

The restrict operator, however, is an example of an operator that may modify all

components of a gridfield.

Each component in the result gridfield may be created according to one of

two methods: 1) by allocating a new component, or 2) by destructively updating

an input component. To evaluate a restrict operator, for example, cells whose

bound attributes do not satisfy the predicate may be removed from the input grid

directly, or cells whose attributes do satisfy the predicate may be copied into a

newly allocated structure. Figure 5.13 illustrates the distinction between these

two methods in the context of the apply operator.

In query mode, the intermediate results of a long gridfield expression are not

visible to the application, so the system will try to use destructive update to con-

serve memory and avoid expensive copying. In interactive mode, the application

may hold references to upstream results, so nothing is destructively updated.

The term “mode” suggests that the programmer explicitly declares which mode

he or she will be using. In fact, the situation is simple: Execution proceeds in

interactive mode except in the following circumstances.
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1. The programmer optimizes a recipe, or

2. The recipe root is a fetch operator.

To optimize a recipe, the programmer calls the optimize function passing the

recipe as the only argument. The return value is a recipe different from the input in

two ways. First, the optimize function may have applied algebraic optimizations,

and second, the operators, when evaluated, will aggressively share components.

The optimized recipe is still composed of operators— as opposed to having been

compiled to an object language—but it is considered opaque to the programmer.

Preventing all access to the intermediate results in practice is difficult, since Python

objects do not enforce encapsulation. The optimized recipe is therefore not truly

opaque, but no guarantees are made about the validity of intermediate results.

The fetch operator is used in a recipe as any other operator. A logical no-op, the

fetch operator accepts an input operator and a URL. When the getResult method

is called, fetch marshals its subtree and ships it to a remote server (designated by

the URL) for evaluation via the XML-RPC protocol. The gridfield server receives

the message, compiles the recipe, evaluates it, and ships the result back to the caller

in a packed binary form. Any other fetch operators in the transmitted recipe are

evaluated similarly, with the initial server acting as the client. Simple distributed

evaluation of gridfield plans is therefore possible. Although the fetch operator

has been used manually in this work, the capability admits simple distributed

optimization, where fetch operators are injected into a recipe automatically by the

system in order to balance load or “search” for data requested but not available

locally.

Iterative recipes pose a problem for fetch; as described, the communication

of intermediate results is one-way—from the server back to the client. The fetch

operator inspects its subtree before sending it to the server—if any operators have

been previously evaluated, meaning that their result is already materialized locally,

an exception is raised.
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5.3.1 Catalog Interface: Scan and Bind

Client programs manipulating gridfields should be guaranteed some measure of

safety: Attempts to bind a time-dependent attribute to a spatial grid, for example,

should return an error, preferably as early as possible. Attempts to refer to at-

tributes or gridfields that do not exist should also be handled neatly. An RDBMS

solves this problem by requiring that one’s data be reformatted and inserted into a

managed environment before being accessed. Subsequent queries are guaranteed to

be “safe.” Our goal of a lightweight system enabling access to native data requires

that there exist a layer of software that operates in an unsafe environment—there

is no ultimate authority that can tell us if a particular array can be bound to a

particular grid safely.

The catalog provides a safe interface to the data stored in the unsafe environ-

ment. The catalog exposes a set of Base Gridfields (BGs) against which clients

write their recipes. Clients can therefore refer to gridfields and attributes by name

rather than by location, achieving a form of data independence. In Chapter 4,

we described the tools needed to implement a catalog: a language for extracting

arrays from a filesystem for use with scan and bind, and how gridfield expressions

could be collected in a schema file to provide BGs.

Base Gridfields are similar to views in relational databases when the base tables

are not accessible for security reasons. Safety rather than security is the motivation

for encapsulating the source data behind the BG interface.

To ensure a robust BG interface, the bind operator should be used only in

the definition of a BG, and not in client recipes. The bind operator identifies

an arbitrary attribute and an arbitrary grid, and attempts to bind the former to

the latter. To ensure the safety of this operation, the catalog must know which

attributes can be bound to which grids. One approach to provide this service

would be to maintain a list of (grid, attribute)-pairs, and refer to this list when

type checking recipes prior to evaluation. However, the semantics of bind also
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allow an attribute a of a grid G to be bound to any subgrid of G, G′. Since it is

not feasible to explicitly list every possible subgrid of G, we must have some means

of detecting when a grid A is a subgrid of a grid B.

One solution is this: Let α be the gridfield recipe whose result we wish to bind

an attribute a to, and let β be the gridfield expression whose result the attribute a

may be legally bound. We can simply evaluate α and β to produce two gridfields

A and B, respectively, and explicitly check that A ⊂ B. There are two problems

with this solution. First, the cost of a runtime check of the subgrid relationship is

prohibitive, and second, optimization of the recipe is not possible, since each new

recipe generated would have to be evaluated to check safety! The alternative is a

syntactic check that compares α and β directly to see if α is guaranteed to produce

a subgrid of β in every case. Unfortunately, such a test is undecidable in the

general case. To see why, consider that we allow arbitrary arithmetic expressions

as predicates in the restrict operator. Even two very simple recipes require a test

to see if one predicate implies another. For example:

A = restrict(p, 0, scan(X))

B = restrict(q, 0, scan(X))

In this example, A is a subgrid of B if and only if p ⇒ q. Since p and q may

involve arbitrary arithmetic, the test is undecidable.

Despite the undecidability of the general case, there are many cases in which

a subgrid relationship can be determined. In fact, due to the formulation of the

gridfield algebra, specifically with regard to the regrid operator, the grid of every

intermediate result can be related to the grid of the inputs to a recipe.

Recall that the regrid operator associates a set of cells in a source grid with

a each cell in a target grid. The regrid operator often serves the same purpose

as a join in the relational algebra: relating two sets on some condition over their

elements. However, since it is formulated as a function from target to source, the
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Expression (R =) grid(R) schi(R) Bounds on |Ri|

bind(G, k, a) G schk(G) ∪ {(a, τ)} |Ri| = |Gi|

restrict(p, i,G) R ⊆ G schi(G) |Ri| < |Gi|

A⊗B A⊗B
schi(A)

∪ schdim(R)−i(B)
|Ri| =

∑i
j=0 |Aj | ∗ |Bi−j |

merge(A,B) A ∩B schi(A) ∪ schi(B) |Ri| < |Ai| ∧ |Ri| < |Bi|

regrid(T, i,S, j,

m, f)
T schi(T) ∪ t[f ] |Ri| = |Ti|

A ∪B A ∪B schi(A) = schi(B) |Ri| ≤ |Ai|+ |Bi|

accrete(s,A,B) R ⊆ A ∪B

 schsi(A), i = 0

schsi(B), i > 0
|Ri| < |Ai|+ |Bi|

Table 5.1: Propagation of grid, scheme, and size through the gridfield operators.

result grid is always the same as the input target grid—only the attributes are

different. Therefore, the grid of the output is predictable statically.

A prerequisite to optimization (and indeed, any kind of gainful reasoning) is the

ability to trace the propagation of properties inductively through each operator.

Table 5.1 shows the grid and scheme of the output of each of several operators in

the language.

The algebra allows us to define a partial order on the grids of the intermediate

results with the ⊂ relationship. Although we cannot derive a total order, most

grids are comparable using the ⊂ relationship, primarily due to the formulation of

regrid. The cardinality of the intermediate results can also be bounded from this

relationship, as illustrated in the right-most column of Table 5.1. We estimate the

size of a gridfield as the sum of the sizes at each rank, computed as the cardinality

at rank i times the arity of the tuple in the function’s type. The arity of a tuple

type is the number of elements in the tuple. The arity of other primitive types is
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one. More precisely,

size((G, k, f)) ∼= |Gk| ∗ arity(f)

Now, some (assignment function, aggregation function)-pairs produce complex

objects rather than primitive values. For example, a frequent idiom is to group

all the nodes of a cell together and then generate a polygon object from them

for further processing. However, the size of the complex objects are bounded,

in practice, by grid quality measures. Constraints on the shape of the cells are

reflected in the number of neighboring cells. While certainly possible to define

pathological assignment functions, such cases appear to be rare and only affect

our ability to estimate the size of intermediate results.

Instead of providing a guarantee of bind safety, then, we propose that bind

operators only appear in BG definitions behind the catalog interface. Client recipes

written against the BGs are then insulated from the physical characteristics of the

source data.

The theme of the BG approach is that data administrators erect a safer in-

terface using the gridfield model instead of bulk loading data into a managed

environment or writing wrappers in a separate language outside the model. In

a sense, the gridfield language is both a Data Definition Language (DDL) and a

Data Manipulation Language (DML). To summarize, accessing unmanaged data

is dirty work, but someone has to do it—gridfields are the natural choice.

5.3.2 Optimization in the Presence of bind

With all bind operators appearing behind the BG interface, we have argued that

the clients are shielded from a particular source of complexity when writing recipes.

The simplest way to evaluate recipes over BGs would be to 1) evaluate all BGs,

then 2) evaluate the user recipes.

Recall that relational queries involving views can be optimized as a whole after

substituting the view definition in for the view name. Recipes involving BGs
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should be amenable to similar optimization. In this section, we consider a simple

and prolific optimization: pushing restrictions to the leaves of a recipe in the

presence of the bind operator.

The bind operator, logically, accepts a function from cells to attribute values.

Physically, each function is implemented as an array. Each array can be bound

to one dimension of its natural grid; namely, the grid to which it is bound in the

BG definition in which it appears. When associating an array with its natural

grid G, bind may be implemented as a “zip” of an array of cells with an array of

values. When binding an array to a subgrid of G, bind must use a more complicated

algorithm.

For example, consider Figure 5.14. Gridfield G uses the natural grid of the

attribute x. In Figure 5.14(a), the cells of G0 are aligned with the values of x,

and the bind operator can implement the simple “zip” algorithm. However, if we

commute a restrict operator through the bind, we can no longer perform a “zip”

since we must skip over the missing cells. Of course, the problem is easily remedied

in this case: Simply record the ordinal positions of the cells before computing the

restrict, then have the bind operator use the ordinal positions to implement a

“merge” algorithm. In general, once the ordinal positions are materialized, we can

safely bind an attribute x to a subgrid of its natural grid G.

All logical bind operators appearing in a BG are instances of the physical zipbind

operator. The requirements to use zipbind are that the attribute values are a) one-

to-one with the cells of a grid G to which they will be bound and b) arranged in

the correct order. When binding to a subgrid of G, condition a) is violated, and

we must use the physical mergebind operator. The relevant rewrite rules are as

follows.
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G0 x r(G0) x

scan restrict

record ordinal positions

scan bind

(a) (b)

bind

Figure 5.14: An array can be bound to its “natural” grid gridfield bound.

ZipMerge

zipbind(k, v,G)

(pos, int) ∈ schk(G) ∀c ∈ Gk, pos(c) ≥ 0 and pos(c) < |Gk|

mergebind(d, v, pos,G)

RestrictBind

restrict(p, i, mergebind(k, v, pos,G))

p : τ → Bool v /∈ τ

mergebind(k, v, pos, restrict(p, i,G))

The ZipMerge rule performs a bounds check on the arrays and ensures that

the pos attribute is of the correct type (int). If these conditions are met, then the

(slower) mergebind can be substituted for the (faster) zipbind. Once the zipbind is

replaced with an instance of mergebind, a restrict operator can be safely commuted

through it using the RestrictBind rule.

In some cases, the ordinal positions of the cells of an operator’s result can be

computed from static information about its input. In such cases, subgrid-inducing

operators (restrict and merge) can be commuted through bind, frequently resulting

in a more efficient recipe.

In Table 5.1, all the operators produce an equal grid or a subgrid of one of their
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inputs except for cross and disjoint union. For these two operators, we must provide

an explicit calculation of the ordinal positions in the output using information

about the inputs.

Cross Product Ordinals

Consider a recipe of the form C = A⊗B. For each cell c in Gk, there is a cell a

in the grid A and a cell b in the grid B such that c = (a, b). The position of c in

Gk can be expressed as follows.

posC(c) =
k−1∑
j=0

|Aj||Bk−1−j|+ posA(a)|Bk−1−dim(a)|+ posB(b) (5.1)

where posX(x) is the position of a k-cell x in Xk.

In addition to the cardinality of of the inputs grids at different ranks, this

expression involves the dimension of a, the position of a in Adim(a), and the position

of b in Bk−dim(a). All three of these values can be recorded explicitly prior to the

cross. The dimension can be recorded and stored efficiently at each rank k with

a constant-valued attribute. These values are carried through the cross product

operation and are available as attributes of c. In some cases, the dimension may

not be necessary: If k = 0, then dim(a) = 0, and if k = dim(A) + dim(B) then

dim(a) = dim(A).

The extra attributes required to calculate and store the position information

can be computed with gridfield operators, as shown in rewrite rule CrossCalc.

The extra attributes can be hidden from the client using the project operator, if

necessary.

CrossCalc

G = A⊗B

G = apply(posC = f(posA, posB), k, A′ ⊗B′)
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where f(posA, posB) is the right-hand side of Equation 5.1,

A′ = apply(posA = id, k,A), B′ = apply(posB = id, k,B), and id is a distinguished,

implicit attribute holding a cell’s position in the current grid.

The result is that we can push restrict operators through bind, and then through

a cross operator in order to evaluate them as close to the leaves of a recipe as

possible. The BGs can be defined at design time to ensure the safety of the bind

operator, but user restrictions can be exploited to reduce the size of intermediate

results and improve performance.

Union

The ordinal positions of cells in the union of two grids C = A ∪ B cannot be

expressed in terms of the positions of cells in A and the positions of cells in B unless

A and B are known to be disjoint. Consider a recipe of the form C = AtB, where

t represents the disjoint union operator. The calculation of the ordinal positions

in the result is:

posC(c) =

 posA(a) if c ∈ Ak;

|Ak|+ posB(b) otherwise.
(5.2)

Equation 5.2 involves the positions of the cells in each argument, as with cross,

as well as a means of discriminating between cells originating in A and cells orig-

inating in B. A key representing the originating gridfield can be recorded as a

constant attribute using the apply operator.

DUnionCalc

G = A tB

G = apply(posC = g(posA, posB), k, apply(key = 0, k,A) t apply(key = 1, k,B))

where g(posA, posB) is the right-hand side of Equation 5.2, and id is as before.

The expressions key = 0 and key = 1 are passed to the apply operator to indicate
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a new attribute called key with a constant value should be allocated. In the union

gridfield, the key attribute indicates the source of each k-cell—A or B. With this

information, we can use Equation 5.2 to compute the appropriate positions.

If a BG is defined with only cross, bind, and regrid, then a restrict operator

applied at the root can be pushed down through the recipe limited only by the

attributes mentioned in the predicate. If a BG definition involves other operators,

the calculation of ordinal positions needed by bind may still be possible, but cannot

necessarily be derived automatically and must be provided by the BG author.

5.3.3 Animation and Parallelism

The multidimensional scientific datasets we have encountered can be assembled

in the gridfield algebra with a recipe of the form R(A ⊗ B ⊗ . . . ), where R is a

recipe involving restrictions, binds, merges, or regrids. For example, an animation

of the Earthquake in the San Fernando valley [ABB+03] is the cross product of a

0-D gridfield T representing timesteps, and a 3-D gridfield G representing the rock

and soil in the area. The displacement of the earth, a time-dependent attribute is

expressed as a bind operation on this 4-D gridfield.

bind(0, disp,T⊗G)

This formulation is easy to express, but direct evaluation would be inefficient. A

large 4-D intermediate result must be constructed, only to be iterated over by the

client to produce the desired animation.

As an alternative, we allow a cross operator to be evaluated iteratively to

improve performance. Recall that all cells in a homogeneous grid are incident to

a cell of maximal dimension. A homogeneous grid can be expressed as a union of
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closure grids as follows:

Decompose
G is homogeneous

G =
⋃

c∈Gdim(G)

(cG)

where cG is the closure grid of a d-cell c and d = dim(G); that is, the grid formed

from the cell c and all cells incident to c. This rule can be lifted to gridfields: the

data bound to a cell in cG is just the data bound to the same cell in G.

There are many ways we might decompose a grid into a union of smaller grids,

but this particular decomposition is remarkably easy to implement in many prac-

tical cases. If G is a 0-D gridfield, then Decompose represents a partition of

the grid into |G0| grids with one 0-cell each, which we can implement by simply

iterating over the d-cells, where d = 0. If G is represented using ICS (see Chapter

3) and dim(G) = d, then each d-cell is represented as a sequence of nodes, and

the intermediate cells are represented implicitly. Therefore, given a d-cell c, cG is

immediately available. We can implement the decomposition just by iterating over

the d-cells.

The other gridfield operators commute with this decomposition, subject to

some restrictions.

DecLeft
G = A⊗B A is homogeneous

G =
⋃

a∈Adim(A)

(ā⊗B)

DecRight
G = A⊗B B is homogeneous

G =
⋃

b∈Bdim(B)

(A⊗ b̄)
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DecBind
G = bind(a, i,A) A is homogeneous

G =
⋃

a∈Adim(A)

bind(a, i, ā)

DecRestrict
G = restrict(p, i,A) A is homogeneous

G =
⋃

a∈Adim(A)

restrict(p, i, ā)

DecMerge
G = merge(A,B) A is homogeneous

G =
⋃

a∈Adim(A)

merge(ā,B)

DecAccrete

G = accrete((x0, xi, . . . , xn),A,B)

if j > i then xj < xi A is homogeneous

G =
⋃

a∈Adim(A)

accrete((x0, x1, . . . , xn), ā,B)

DecTarget

G = regrid(E, i,F, j, fassign, gaggregate)

i = dim(E) E is homogeneous

G =
⋃

x∈Ei

regrid(x̄, i,F, j, fassign, gaggregate)

DecSource

G = regrid(E, i,F, j, fassign, gaggregate)

i = dim(E) j = dim(F ) E,F are homogeneous

G =
⋃

x∈Ei

regrid(xE, i, fassign(x)F , j, fassign, gaggregate)

The cross, bind, restrict, and merge operators naturally commute with decom-

position, as captured in rules DecLeft, DecRight, DecBind, DecRestrict,
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DecMerge. The accrete operator only commutes with union if the stencil is a

subset of the closure of a d-cell, for example 20 or 321 for a 3-D gridfield (Rule

DecAccrete). This condition is met when the sequence of integers defining the

stencil is monotonically decreasing. The regrid operator will also commute with

decomposition if the decomposed gridfield is the target (Rule DecTarget). If

the decomposed gridfield is the source, then commutativity requires that the cells

returned by the assignment function f must appear in the source grid, which we

indicate with a slight abuse of the closure grid notation extended to a set of cells

rather than an individual cell (Rule DecSource). Further, decomposing the

source without decomposing the target would not admit an iterative evaluation

strategy, so the rule decomposes both.

Decomposition is used to break a recipe into independent computations. Used

internally on the server, decomposition offers flexibility in the physical evaluation:

Each computation can be evaluated in a separate thread to hide I/O or on a

separate machine for parallelism.

If every operator in a user’s recipe commutes with decomposition, then the

results can be streamed back to the client, one piece at a time. However, how

can the user indicate which gridfields are to be decomposed and which gridfields

are to be collected whole? As an alternative to the compile function, we provide a

iterate function that accepts two arguments: a set of gridfield names and a recipe

involving those names. For example, the call

iterate({“T”}, bind(0, disp,T⊗G)

indicates that the gridfield T is to be decomposed. If all the operators in the recipe

commute with the decomposition, then the results can be returned efficiently, one

piece at a time. The user simply calls getResult repeatedly. If the recipe does

not commute with decomposition, then the full cross product will need to be

constructed and decomposed in a separate step.
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Besides being used to stream results back to the client, the iterate operator can

be used to evaluate aggregations over a product gridfield efficiently. Consider the

following recipe:

regrid(A, i, bind(0, disp,A⊗B), i, (λx . x⊗B), sum)

If A and B represent rows and columns of a matrix, then this expression sums

the values in each row. Rather than compute the recipe in the order given, we can

use the rule DecTarget to produce a more efficient iterative recipe (if the rule’s

conditions are met):⋃
c∈Ai

regrid(c̄, i, bind(0, disp, c̄⊗B), j, (λx . x⊗B), sum)

This expression divides the target grid A into a set of smaller grids, one for

each cell c ∈ A. With this recipe, each portion of the decomposed grid can be

evaluated independently.

In summary, decomposition provides semantics for the efficient iterative recipes

used in aggregation, animation, and parallel evaluation.

5.3.4 Conclusion: A Canonical Gridfield Application

The evolution of the gridfield model and implementation led to the release of a

standard gridfield visualization application for building data products, DPBuilder.

Figure 5.15 shows a screenshot of DPBuilder. The image on the left shows the

current data product, as rendered by translating a gridfield into a a VTK object.

On the right is the script window in which gridfield recipes are written. At any

time, the user can view the current plan graphically by clicking the “Graph” tab.

This tab displays the current recipe in the style of Figure 5.5. We consider graphical

editing of the recipes as future work.

As the user writes a gridfield recipe, he or she can inspect intermediate results

by calling the inspect function and passing it a list of gridfields. This function
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Figure 5.15: A screenshot from a prototypical gridfield application, DPBuilder. Grid-

field expressions written at right drive the visualization at left.

translates each gridfield to a VTK object and renders it. To encourage its use as a

debugging tool, the inspect function uses heuristics to derive a suitable visualization

automatically based on the dimension of the grid and the attributes available.

For example, attributes named x, y, or z are interpreted geometrically. Other

attributes may be interpreted geometrically if these attributes are not available.

The most recently added attribute is mapped to color, under the assumption that

the most recent calculation is the motivation for calling inspect. Gridfields of

dimension 0 are translated to a cloud of points in VTK, rendered as circular glyphs.

Vector attributes, either identified heuristically by name or specified explicitly by

the user, are used to produce arrow glyphs as in Figure 5.3.

When multiple gridfields are passed to inspect, by default, they are super-

imposed as in Figure 5.4. The user may also specify an on-screen layout as in

Figure 5.15 with a list of coordinate pairs the same length as the list of gridfields;

e.g., use the user would pass [(0,0), (0,1)] to generate the layout in Figure 5.15, or

[(0,0),(1,0)] to arrange the two images in a single column. Arbitrary drag-and-drop

placement of gridfield visualizations is a feature left as future work.

The recipes may be evaluated locally, or they may be shipped to a server using
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Catalog

Base 
Gridfields

User 
Recipes

Optimizer

GridField
Processor
GridField
ProcessorRecipe 
Processor

Rendering

Figure 5.16: The server-side architecture supporting DPBuilder. User recipes are writ-

ten against Base Gridfields and can be optimized as a whole. Currently, most optimiza-

tions are encoded explicitly within the BG definitions.

the fetch operator. The server architecture is shown in Figure 5.16. The BGs

may reference data stored in a variety of sources (the disk icons at the left of

Figure 5.16). User recipes reference BGs defined on the server. The BGs are

then dereferenced during evaluation and the recipe can be optimized as a whole.

The only optimization rule that is applied automatically is to push the restrict

operator down toward the leaves. Decomposition applied at the server must be

manually specified within a BG definition. When a gridfield is decomposed, each

independent computation can be evaluated in a separate thread, or potentially a

separate computer, illustrated by the multiple boxes in the upper right of Figure

5.16. Each of these processes sends their data back to the client.

In this chapter, we have demonstrated the conceptual and practical utility of

the gridfield model by applying it to various problems of expression, evaluation,

and optimization. We have also described an architecture for deploying gridfields

in a lightweight manner, allowing multiple modes of programming. Finally, we

briefly described a prototype application powered by gridfields.
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EXPERIMENTAL EVALUATION

We position gridfields between personal visualization applications and monolithic

database solutions and evaluate expressiveness and performance relative to each.

We find visualization applications too highly specialized; we say they are algorithm-

oriented rather than model-oriented. Consequently, they provide excellent perfor-

mance for specialized tasks, but obscure logical similarities and thwart optimiza-

tion. Relational databases are model-oriented, but exhibit a significant barrier to

entry with respect to schema design, data loading, and performance tuning. Re-

markably, we do not find the resulting performance particularly good, even if this

effort is invested.

Figure 6.1 illustrates our expectation of how scientific simulation applications

evolve from a single researcher’s desktop experiments to a project involving many

users, many variations of the core model, and many applications. Over time,

more and more users become interested in running simulations and analyzing re-

sults. The simulations themselves may generate new kinds of grids (Chapter 5), or

new kinds of grids may appear as intermediate results during the analysis phase.

Gridfields are general enough to accommodate this increase in diversity, but light-

weight enough to integrate with users’ favorite tools. We say that gridfields offer a

smoother return on investment curve than heavyweight, transformative solutions

such as relational databases [HMB07].

When developing a new model of a physical process, a personal visualization

application is sufficient: The developer scrutinizes each result before adjusting

parameters, working out bugs, and repeating the run. As the code matures, more
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# of grids 

per user

Time, # of users

RDBMSViz Apps

Gridfields

Figure 6.1: As the number of users increases over time, the number of grids to manip-

ulate increases beyond what can be comfortably handled with a desktop visualization

application. For a lasting, successful project, the number of new users will overtake the

number of new grids, and the costs associated with a comprehensive relational database

solution may then be justifiable. Gridfields bridge the gap between personal visualization

applications and comprehensive database solutions.

potential applications emerge, and results are generated at a faster rate. Interest

in perfect results for a narrowly defined problem shifts to interest in “coverage”

of a class of related problems: (“Now that we have successfully modeled the fetal

heart at 10 weeks, we need to investigate all stages of growth.”) The rate of dataset

production increases beyond the capacity of one-file-at-a-time tools. The analysis

of individual datasets is extended with comparisons between datasets. Empirical

data, usually in a different format, are compared with simulation results. These

new uses require logical and physical changes to the data inventory, as described

in Chapter 5.

Consider whether desktop visualization applications accommodate this increas-

ing grid diversity. In Chapter 3, we described how the Visualization Toolkit (VTK)

is organized by algorithm, each encoded as a C++ class inheriting from an abstract

“Filter” class. The consequence is that different types of grid tend to require dif-

ferent algorithms and data structures. We gave a concrete example: To extract a
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subset of a grid, there are a variety of functions to choose from. The operation

vtkExtractUnstructuredGrid accepts internal ids of points and cells, or a func-

tion over the geometry of the points. The operation vtkExtractGrid works only

on regular, rectilinear grids and computes a subgrid using a range of indices for

each dimension, as opposed to geometric information or other data. The operation

vtkExtractGeometry works on a wider range of datasets, but defines regions in

terms of geometric functions rather than topological connectivity. A more efficient

version, vtkExtractPolyDataGeometry, is available for polygonal data. Another

operator, vtkThreshold filters grids based on non-geometric attributes.

Gridfields provide a uniform way of describing and manipulating different types

of grids. As the number of grids and grid types increases over time, the number

of algorithms and data structures used to manage them increases as well. The

conceptual economy of the gridfield model becomes increasingly attractive.

Over time, the requirements for the simulation application may converge, and

the number of new users grows faster than the number of new grids. A few im-

portant and popular grids (corresponding to a few important and popular types

of experiment) may emerge as candidates for implementation in a comprehensive

database solution [HG05, KaC+01]. However, there are some significant obstacles

to overcome before a high-performance database-backed visualization system can

be realized.

First, either the model program must be rewired to insert results directly into

the database, or the results must be loaded into the database before query and

subsequent visualization is possible. Large load operations are rather expensive

with modern relational databases, perhaps since they are optimized for Online

Transaction Processing (OLTP) traffic. Systems designed for Extract, Transform

and Load (ETL) operations offer improvement, but are rather hardware depen-

dent. For example, UNISYS and SAS set ETL benchmarking records in 2005 by

loading 324M tuples (77.2GB) in 3 hours—on a platform with 64GB of RAM, 16
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processors, and 8 2GB/s Fibre Channel HBAs accessing a pair of storage appli-

ances each with 8GB of cache and 45 drives operating at 15k RPM [etl05]. This

system was obviously designed with high-performance I/O in mind. Second, good

performance once the data is loaded is not guaranteed, as it depends crucially on

the interaction between specialized hardware, physical database design, and data-

base configuration settings, as we will discuss. Third, although the number of grids

in use stabilizes, the absolute number of grids may still be high. A fixed database

schema that can accommodate many different grid types can be elusive.

In this chapter, we present experimental evidence that gridfields are the best

choice for the “adolescent” simulation applications characterized by grid size and

diversity. We will justify this claim by analyzing the performance of gridfield

recipes for different types of grids, each with millions of cells. Specifically, we

consider highly-regular grids that admit specialized algorithms, partially-regular

grids from the CORIE system, and irregular grids from the medical and geological

domains.

All of the experiments were run on a Linux i386 2.4 GHz processor with 2GB

of RAM available. This machine is nearly identical to one node of the cluster on

which the CORIE simulations are executed.

6.1 HIGHLY REGULAR DATASETS

We test a restrict-like task with both VTK and gridfields on a variety of datasets.

These datasets are highly regular—they consist solely of rectilinear cells of ho-

mogeneous dimension. In VTK, these datasets may be encoded using the class

vtkStructuredPoints. The topology and geometry of instances of this class are

entirely implicit; the programmer need only specify an origin vector, a spacing

vector, and a dimensions vector to determine the geometry and the topology. This

implicit representation leads to very efficient manipulation for some tasks.

Gridfields are designed to accommodate all types of grids, but the paucity of
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tools for handling unstructured grids was a primary motivation. Using gridfields,

a structured grid is expressed as the product of simpler grids. The cross oper-

ator, when evaluated, eagerly generates the full grid and attributes specified by

the model. An alternative would be a “lazy” evaluation, where the gridfield pro-

duced would be an instance of a special ProductGrid class. The significant cost

of evaluating the product operator would be postponed, but not necessarily elimi-

nated. Lazy evaluation only improves performance if the postponed work can be

ultimately avoided.

VTK assumes that most tasks will not require each cell to be explicitly defined.

For example, to inspect the internal structure of a 3-D volume, we may compute

an isosurface for a few different values. For each cell through which the isosurface

passes, a properly oriented polygon is appended to the output. The edges, faces,

and cells of the input need not be materialized. To visualize the wireframe mesh,

the edges of the input need to be computed, but the faces and 3-cells do not.

Volume rendering techniques assign opacity values to each cell in the volume and

add up their contributions to produce the final image. These techniques may

require explicit 3-cells, but not necessarily explicit edges or faces.

In VTK, a separate filter class exists for each of these cases. To view the

wireframe mesh, the programmer uses the class vtkExtractEdges, instances of

which accept any dataset as input and produce a collection of edges as output—an

instance of vtkPolyData.

Our approach is to express these different cases algebraically, emphasizing their

similarities. For example, each instance of vtkStructuredPoints can be expressed

as the product of gridfields:

R = A⊗ (B⊗C)

To visualize the 1-cells as a mesh, we want to render the edges but suppress

the faces and 3-cells. In VTK, we would use vtkExtractEdges; in the gridfield
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algebra, we use the accrete operator:

X = A⊗ (B⊗C)

R = accrete(1,X) (6.1)

This expression applies the simple stencil 1 to indicate that the output should

include only 1-cells. The cross operator, however, is fully evaluated even though

we are only interested in the 1-cells. An equivalent but perhaps less expensive

formulation is

X = accrete(10,A⊗B)

R = accrete(1,X⊗C) (6.2)

The accrete operator is used in manner reminiscent of the relational project

operator: the complete dataset is projected onto the portion involving the 1-cells.

This pattern appears frequently enough that we allow the cross operator to be

programmed to avoid computing cells at particular dimensions. We refer to this

implementation of cross as projecting cross. Let A⊗s B = accrete(s,A⊗B). The

new expression is

R = (A⊗10 B)⊗1 C (6.3)

This expression requires fewer cells and incidence relationships to be allocated

and is therefore cheaper.

Sample visualizations and sizes of the datasets tested appear in Figure 6.2; they

will be referred to in the text by the labels assigned in the figure. Carotid is an

MRI scan of a carotid artery [vtk]. Fuel is a simulation of fuel injection into a

combustion chamber [volb]. IronProt is a simulation of the electrostatic potential

in an iron-related protein [vtk]. Hydrogen is a simulation of the electron probability
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IronProt 

(68 x 68 x 68)

Head

(256 x 256 x 109)

Engine

(256 x 256 x 110)

Hydrogen

(128 x 128 x 128)

Carotid

(76 x 49 x 45)

Fuel

(64 x 64 x 64)

Tomato

(256 x 256 x 64)

Figure 6.2: Seven sample datasets, each formed as the cross product of 3 linear grids.

function around a hydrogen atom [volb]. Tomato is a CT scan of a tomato [who].

Head is an MRI scan of a human head taken on the Siemens Magnetom [unc].

Engine is a model of an engine block provided by General Electric [vola].

In Figure 6.3, we compare the performance of the vtkExtractEdges filter

against the expressions in Equations 6.1 (AccreteCross), 6.2 (CrossAccrete), and

6.3 (FastCross).

The gridfield formulations of the task are more efficient than the special VTK

class vtkExtractEdges. The output of vtkExtractEdges is an instance of

vtkPolyData, a class designed to hold any combination of points, lines, polygons,

and polyhedra. The insertion of millions of edges into this structure one at a time

is slower than our block allocation of memory inside the cross operator. Knowledge

of the algebraic structure of the dataset exposes the resources required to create

and store the cells and topology. This knowledge translates into a performance
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Figure 6.3: A comparison of three gridfield recipes and a specialized VTK algorithm

for extracting the edges of a mesh. The y-axis is log-scaled. VTK requires the use of a

special single-purpose class to perform this task (vtkExtractEdges) but performs worse

than the gridfield expressions on all datasets except Carotid.

advantage for this task.

What of the other kinds of tasks introduced at the start of this discussion—

those that do not require explicit enumeration of cells? Consider a simple operation

to extract a rectilinear “subslab” of the 3-D dataset by providing a bounding box of

the form (xmin, xmax, ymin, ymax, zmin, zmax). A subslab of a vtkStructuredPoints

is another instance of vtkStructuredPoints; no cells need to be explicitly con-

structed. The implicit representation of vtkStructuredPoints, corresponding to

a lazy evaluation of the cross operator, should perform better in this case. Simply

put, it does. The benefits are illustrated by the results in Figure 6.4. However,

these results also reveal that the performance of the explicit, eagerly-evaluated

gridfield approach is sensitive to algebraic optimizations.

We use three gridfield formulations of the subslab task. In each case, we push

the restrict operators through the cross operator, as permitted by the algebra.

The formulation using this optimization alone is labeled “gffull” in Figure 6.4.
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Figure 6.4: Completion time for a “subslab” operation, where each dimension is re-

stricted by the same percentage. The result size is thus proportional to ( x
100)3, where x

is the selectivity on the x-axis. The vertical axis is log scaled: The fully implicit rep-

resentation of VTK is far superior for this task, though gridfield optimizations make a

significant difference.
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The results labeled “gfzero” uses projecting cross to construct only the 0-cells.

This formulation is useful if the topology is unimportant: perhaps the result

is to be converted to a set of parallel multidimensional arrays, an instance of

vtkStructuredPoints for further visualization, or just a cloud of points for stor-

age in a relational database. The results labeled “gfdirect” were generated without

the use of the cross operator. Consider that a 0-D grid G constructed as the prod-

uct of 3 0-D grids A⊗B ⊗C is still just a 0-D grid. We can therefore remove the

cross operator and produce the result grid directly as a set of |A0||B0||C0| 0-cells.

Further, we can produce any subslab A′⊗B′⊗C ′ of the original product grid since

we know the sizes of each dimension |A′|, |B′|, and |C ′|. To bind attributes to the

subslab, however, we have more work to do: For each cell in the subslab, we must

carefully calculate its address in the original grid G.

Let G = X(0)⊗X(1)⊗. . . X(N) denote the product of N 0-D grids (parenthesized

subscripts are used since Xi notation was defined to to the the set of i-cells in the

grid X). Let ([a0, b0), [a1, b1), . . . , [aN−1, bN−1)) denote the bounding box of the

N -D subslab of G, where 0 ≤ ai < |Xi| and 0 ≤ bi < |Xi|, and ai < bi. Let x

be the address of an element in the subslab’s coordinates and f(x) be the address

in G. Finally, assume that the dimensions are listed in decreasing order of their

rate of change with respect to address; i.e. listing rows before columns implies a

row-major format. Then f(x) is

f(x) =
N−1∑
d=0

[(
N−1∏

i=d+1

|Xi|

)(⌊
x mod

∏N−1
i=d bi − ai∏N−1

i=d+1 bi − ai

⌋
+ ad

)]
(6.4)

where x > y implies
∑y

x f(i) = 0 and
∏y

x f(i) = 1.

For example, consider a 0-D grid G = X ⊗ Y , where |X0| = 3 and |Y0| = 4.

Let ([0, 2), [2, 3)) be the bounding box of the subslab of interest, as in Figure 6.5.

For a position x in the subslab, the corresponding position in the original grid is
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Figure 6.5: The address of a cell in the original grid (the numbers in the lower right of

each cell) can be calculated from its address in the subslab (the boldface numbers in the

upper left of each shaded cell) and the subslab’s bounding box.

f(x) =

[
(4)

(
x mod (2− 0)(3− 2)

(3− 2)
+ 0

)]
+ [x mod (3− 2) + 2]

= 4(x mod 2)) + x + 2

Although this expression allows direct computation of the positions of the cells

and obviates the need to evaluate a cross operator, it is also rather complex, and

consequently, expensive to evaluate. The results in Figure 6.4 demonstrate the

superiority of the implicit implementation for these highly regular datasets. Con-

sidering the log scale, we see that only the most efficient gridfield formulation,

“gfdirect” performs within a factor of 5 of the VTK implementation. A fully-

implicit representation of product gridfields, similar to the representation used by

VTK, would be more effective for this task than the explicit representation we use.

Another implementation of the cross-product operator exploits the fact that it is

followed immediately by a restrict. In the relational algebra, a join is semantically

equivalent to a cross product followed by a select. We can create an analogous

join operator that evaluates the restrict as the cross product is computed, never

materializing cells that will not be in the final result.

We compare the projecting implementation, the join implementation, and the
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Figure 6.6: Comparing implementations of the cross-product operator.

core cross operator evaluating the “wetgrid” example from Chapter 2, Section

2.5.1. The projecting implementation computes only the nodes and polyhedra

of the 3-D cross product, leaving out the 1-cells and 2-cells. Figure 6.6 shows

results for the original cross product implementation (“no opt”), the “projecting”

implementation (“proj”) and with both improvements (“proj+join”). If Cw and

Cr are the cardinalities of the wetgrid and the result gridfield, respectively, then

the selectivity (x-axis) is Cr

Cw
. The selectivity varies according to a user-specified

region of interest. In these experiments, we tested four different regions with

different sizes.

Times reflect overall execution time. The difference in times highlights the

cross-product operator’s significant cost relative to the other operators in the

recipe, since the recipes are otherwise identical.

The graph shows that avoiding cell materialization does indeed improve per-

formance. On average, the projecting implementation results in 35% faster times

than computing the full cross product. The join implementation does not provide

a consistent improvement. With the standard cross product implementation, we

can predict precisely the space requirements of the output. With the join imple-

mentation, we must estimate the selectivity of the join condition and dynamically
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render(a)
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Figure 6.7: (a) Unoptimized recipe for visualizing a 3-D CORIE dataset. (b) Optimized

recipe for the same task.

resize attribute arrays in the gridfield when we are wrong. Although the join

implementation produces no unnecessary cells, the extra complexity of memory

management washes out the performance gain.

6.2 PARTIALLY REGULAR DATASETS

The first experiment involving partially-regular datasets from the CORIE project

compares our algebraically optimized recipe in Figure 6.7(b) with the unoptimized

recipe in Figure 6.7(a). (These recipes first appeared in Figure 2.17 and Figure

5.7, respectively.) We also tested 1) a relational database extended with spatial

data types to represent the cells, and 2) a VTK program extended with custom

code to handle those operations inexpressible in VTK.

The CORIE horizontal grid we used consists of 29,602 nodes and 55,081 2-cells.

The vertical grid has 62 nodes and 61 1-cells. The wetgrid has 829,852 nodes, and

therefore each timestep of each dataset has 829,852 values.

The relational approach implements the recipe using SQL queries. Our test

DBMS was PostgreSQL [SRH90], configured appropriately for the large main mem-

ory of our experiment platform. We also use the polygon type supplied by the

PostGIS geometric extensions [SHRL06] to PostgreSQL. In this schema, the data
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values are stored separately from the cells to which they are bound, and a join is

required to produce the complete gridfield. The 2-D cells are captured as polygons

for more efficient spatial searching, at the cost of redundant storage of the coordi-

nates of shared points. That is, two triangles that share a point both must store

its coordinates.

The physical design for which results are reported constitutes the best of several

configurations. Indices (ordinary B-Trees) are constructed on all join attributes

and an R-Tree is constructed on the geometry attributes. We assume that, in

practice, the data are partitioned by time such that only a single simulation run

need be scanned during query evaluation, so only a single run was loaded into the

database.

The times for the relational approach are conservative, as we did not include

the time to extract the results to the client. Instead, the results were simply

loaded into a temporary table on the server. We felt that the diversity of potential

client interfaces muddles the results, and a query-only experiment represents a

conservative lower bound. For our own approach, we did include the time required

to convert our gridfield representation into a form suitable for rendering by a third-

party library, but did not include the rendering time itself.

The implementation in VTK requires a custom reader for our file formats.

Restrictions are implemented using the VTKThreshold object. The cross product

and bind operators are implemented in the custom reader, since these operations

are not available in VTK. Unlike our general operators, we were free to design the

reader for specific tasks: reading in a CORIE dataset, computing the wetgrid, and

building a VTK object. This focused goal afforded a very efficient design. Indeed,

the reader was not the bottleneck despite representing the majority of the work.

Figure 6.8 shows test results for various size regions, which translate to vari-

ous selectivities of the full wetgrid. Observe that our unoptimized plan is slower

than the VTK implementation, even though they implement similar recipes. The
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Figure 6.8: The performance of optimized and unoptimized recipes compared with VTK

and PostgreSQL implementations.

specialized reader for VTK (implementing the cross product, restrict, and bind

operations) constitutes only about 15% of the total execution time. In our im-

plementation, these operations constitute about 30% of the total. The specialized

reader is indeed more efficient than the generic operators.

The optimized gridfield recipe performs better in all but the highest selectivi-

ties. The advantage of reducing dataset size as early as possible is apparent here

just as it is in relational processing. Note that VTK’s times are effectively the same

for all selectivities, as is expected given that the recipe of Figure 2.17. Regardless

of the region being displayed, the entire 3-D grid is generated and traversed. The

relational approach is far behind for all but the most selective predicates. Al-

though the optimizer produces query plans that behave like our optimized recipe,

the overhead of processing gridded datasets using joins dwarfs the improvement.

The second experiment using partially-regular CORIE datasets involves the

vertical slice data product described in Chapter 5, Section 5.2.3. Recall that

the optimized vertical slice recipe involved interpolating the 3-D grid onto a user-

provided 2-D grid oriented perpendicularly to the surface of the water. We compare

the optimized recipe with a VTK program.
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The results appear in Figure 6.9. The bar labelled “interp” uses 2-D point-

in-cell interpolation by passing an appropriate aggregation function to the regrid

operator as described in Chapter 5, Section 5.2.3. The bar labelled “simple” uses a

less accurate but also less expensive interpolation function—it simply assigns the

value of the first node in the cell rather than interpolating a value based on all the

nodes in the cell. The notion of “first” is defined by the order the nodes appear in

the data structure and is essentially random. Such a simple interpolation function

may or may not be useful in practice, but we use it here to expose the cost of the

interpolation method relative to the overall run time. The labels with the ‘ o’ suffix

make use of the following observation: Any cell that contains a user-provided point

p will intersect the bounding box of the whole user-provided grid. We therefore

use the restrict restrict operator to identify the relevant region before searching for

cells using the regrid operator. Even our recipes that do not exploit this semantic

optimization outperform the VTK program.

The selectivity of the bounding box is dependent on the user-provided data.

The optimization is more effective when the user data is axially aligned: a very

skinny bounding box provides sufficient coverage. The optimization may have been

more effective in our experiment than the average case, since the Columbia River

flows primarily in the x direction, and user-specified transects tend to follow this

flow.

We did not test a relational implementation of this data product, since the GIS

extensions do not fully support 3-D objects and functions.

From these experiments, we can conclude that algebraic optimization can have

a significant effect on overall evaluation time. Although visualization libraries pro-

vide efficient algorithms for specialized tasks, organization of these algorithms into

a rigorous logical framework can admit new optimization opportunities by expos-

ing equivalences between grids within complex recipes. We also conclude that GIS

extensions for relational databases do not necessarily benefit queries on partially
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Figure 6.9: Experimental results for the vertical slice data product. Again we find that

since the structure of a dataset is opaque to VTK, a simple but powerful optimization

is unavailable.

regular datasets. The query time is dominated by the construction of the 3-D

dataset rather than the spatial search. This test supports the conclusions drawn

by others on the efficacy of using relational databases to store multidimensional

numeric arrays [Bau99, MS97, WB98].

In the next section, we will test a commercial database with an aggregation

workload, which is more conducive to implementation within a relational database.

6.3 DESIGN AND POPULATION OF A RELATIONAL DATABASE

Aggregation allows apprehension of datasets too large to examine directly or even

to visualize effectively. Aggregation is a core feature of relational databases, but is

not supported by the Visualization Toolkit. We therefore tested the performance

of aggregate queries against the large CORIE datasets using a commercial DBMS,

IBM’s DB2.

In this experiment, we do not use the spatial features of DB2 since 1) we wish

to minimize the storage overhead, and 2) the aggregation queries we test would

not benefit from spatial indexing.
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H0( hid, x, y )

V0( vid, z )

T0( tid, t )

TxHxV( tid, hid, vid, salt, temp, 
tdiff, zcor, u, v, w )

TxH( tid, hid, surf )

H20( cid, hid, order )

V1( eid, vid1, vid2 )

H2( cid )

Figure 6.10: A relational schema for storing CORIE simulation results.

The schema we use to store these datasets appears in Figure 6.10. The relation-

ship lines point in the direction of the diamond and should be read as “references,”

as in “TxH references T0 and H0.” Italicized attributes are floating point numbers

and non-italicized attributes are unsigned integers. Primary keys are underlined.

The relation TxHxV holds the great majority of the data—three unsigned integer

identifiers and five floating point numbers for each node in 3-D grid, for each of 96

timesteps. The relation H2 holds identifiers for the 2-cells in the horizontal grid.

Attributes dependent only on the cell would be added as attributes to this relation.

We used a CORIE forecast for the Fraser River in the Pacific Northwest for

this experiment. This forecast produces one 364MB file for each of 5 variables,

a 717MB file for the horizontal velocity data, and several smaller data files for

variables defined on the surface. The only surface-dependent variable loaded was

elevation.

The data load operation occurs in three phases. The first phase was to parse the

CORIE native files and prepare files for use with DB2’s load command, a second to

load the prepared files (using the efficient LOAD command of DB2), and a third to

verify constraints on the loaded data. The horizontal, vertical, and time grids took

relatively little time to process for all three phases—about 10 seconds total. The

bound attributes took considerably longer: 2 hours and 20 minutes to prepare the
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files and about 50 minutes to load them. We loaded each timestep separately; each

timestep took approximately the same amount of time to prepare (88 seconds) and

load (31 seconds). The commit interval during load was set to commit every 10,000

tuples; adjustments to this parameter did not have a significant effect (unless, of

course, the number was set high enough to fill the transaction log and throw an

exception.)

The load files were prepared in an ASCII format, so the database was forced to

convert ASCII numbers to internal binary representations as the data were loaded.

The process was consequently CPU bound, suggesting that performance could be

improved by 1) preparing a native binary format or 2) using multiple threads to

load the data, one for each CPU in the test platform system. The third phase,

constraint checking, took 30 minutes.

Once loaded, there are 88,292,064 tuples in the TxHxV relation, the largest.

The entire database occupies 2,432,053 4k pages for almost 10GB—over three times

the size of the data in its original format. Most of this increase can be attributed to

the explicit storage of the i, j, k indices, which were entirely implicit in the original

files.

Operationally, bulk loading a relational database with large datasets is not a

trivial task. The transaction logs will fill on large inserts, so the user must know

or learn to turn off logging or divide the data into smaller chunks manually. DB2’s

LOAD command accepts a commit-frequency argument, which simplifies this task.

When moving data from one table to another within the database, however, there

is no analogous option.

After testing some aggregation queries to validate the loaded data, we noticed

that the DBMS was reporting spilled sorts, indicating that if more memory were

available for sorting, sort-based queries might perform better. After increasing the

memory until we no longer received spilled sort messages, we were rewarded with

a 17% speedup in a particular aggregation query. We left these settings for the
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remainder of the tests.

Our recount of the load operation and subsequent configuration is meant to

demonstrate that deployment of a relational database in this domain requires some

effort. The schema we adopt is appropriate for storing exactly one of the grids

used by CORIE. To extend the schema to support another grid, either additional

relations must be added (complicating queries and management) or another foreign

key must be used to link cells to their grid (exacerbating the space inflation).

Even once this data are loaded, good performance is not guaranteed. Selecting

an individual timestep exercises the primary key index, and is quite efficient. The

following query computes the average salinity over depth at a particular timestep

for each node in the horizontal grid. The query takes only 6.177 seconds with no

additional indices and the default configuration settings.

SELECT x,y,avg(salt)

FROM TxHxV p, H0 h, T0 t

WHERE p.hid = h.id

AND p.tid = t.id

AND timestep = 20

GROUP BY x, y

In contrast, the gridfield expression in Figure 6.11 must spend some time con-

structing the large 3-D grid, and takes 17.8 seconds.

To aggregate over the horizontal area as well as depth, however, the DBMS

must stride through the data just as with the non-indexed gridfield recipe. The

following query computes the average salinity over all depths and all timesteps for

those nodes within a particular bounding box. In this query, we reduce the size

over which to aggregate (to a region in which a student was looking for persistent

eddies, incidentally).
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SELECT timestep , avg(salt)

FROM TxHxV p, H0 h, time t

WHERE p.hid = h.id

AND p.tid = t.id

AND x BETWEEN 96644 AND 430040

AND y BETWEEN 5221584 AND 5607198

GROUP BY timestep

This query completes in 293.7 seconds. A gridfield implementation of the query

that can exploit the array-like structure of the data (Figure 6.12) takes 83.3 sec-

onds.

Adding an index on the (x, y)-coordinates improves performance on this query,

but not by much (3%). The time is not being spent on winnowing the tuples from

the small H0 table, but in simply processing the hash aggregate.

Apart from performance during loading and querying, relational databases de-

mand a line be drawn between static and dynamic information: That which is

static becomes the schema and that which is dynamic becomes the instance. They

make a further demand that the static information be declared first.

In a scientific-data-processing environment, this line is blurred. The production

system may change the grid only infrequently, at a rate that can be accommodated

by schema “releases”. However, individual scientists may test different grids and

data organizations much more frequently during development. Tools to manipulate

and integrate results from different experiments are required. The organizational

“churn” that characterizes any scientific activity is not amenable to static, fixed

structure. Gridfields provide a lightweight alternative, wherein data products can

be constructed on the fly from base data, yet common structure is still apparent

and can be exploited.

Assuming the relevant simulation programs already emit files, the creation of
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Scan(H)

Accumulate(hpos, hpos+1, 0, 0, 0)

Accumulate(column, column+37-b, 0, 0, -1)

Bind(surf, 0, hpos)

Scan(V)

Accumulate(vpos, vpos+1, 0, 0, 0)

Extend(0)

Restrict(vpos>-1)

X

Restrict((vpos>b))

Apply(addr=column - b + vpos, 0)

Bind(u, 0, addr)

Bind(v, 0, addr)

Apply(z=(vpos>16)*z*(h-surf)*60 + (vpos<17)*z*60, 0)

Regrid(sortedmatch, dotwo)

Apply(u=sumu/count;  v=sumv/count, 0)

Figure 6.11: Gridfield recipe implementing aggregation over depth at a particular

timestep. The accumulate operator is used to assign positions to the cells; see

Section 2.4.6.
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Scan(H)

Accumulate(hpos, hpos+1, 0, 0, 0)

Accumulate(column, column+37-b, 0, 0, -1)

Restrict((96644<x) & (x<430040) & (5221584<y) & (y<5607198))

Bind(surf, 0, hpos)

Scan(V)

Accumulate(vpos, vpos+1, 0, 0, 0)

Extend(0)

Restrict(vpos>-1)

X

Restrict((vpos>b))

Apply(addr=column - b + vpos, 0)

Bind(u, 0, addr)

Bind(v, 0, addr)

Apply(z=(vpos>16)*z*(h-surf)*60 + (vpos<17)*z*60, 0)

Regrid(sortedmatch, dotwo)

Apply(u=sumu/count;  v=sumv/count, 0) Scan(T)

Iterate

Figure 6.12: Gridfield recipe implementing aggregation over depth for a specific

bounding box, but for all timesteps. The accumulate operator is used to assign

positions to the cells; see Section 2.4.6.
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a schema inserts an extra step in the cycle of scientific inquiry via simulation:

devise→ develop→ run→ analyze→ devise

Between run and analyze, there is a step to design the appropriate storage

structures to hold their results. With gridfields, we seek to minimize the time

spent translating data from one form to another and maximize the time spent

visualizing and analyzing the results. Anecdotally: We once asked the CORIE

scientists to relate which aspects of their system they did not expect to change

much. After a moment of thought, one staff member replied, “Well, the Earth will

probably remain round.”

6.4 IRREGULAR DATASETS

Several of the optimizations we have discussed and tested exploit regularity in the

dataset indicated by the presence of the cross operator. In this section we consider

an experiment involving a fully-irregular dataset.

In Chapter 2, Section 2.5.2, we used the merge operator to combine two related

gridfields, one with area and length datasets and one representing the plume. We

now explore optimizations available in a similar situation involving blood flow

simulation results.

Consider a data product designed to find and visualize regions at risk of causing

a stroke in an artery. Regions of negative pressure and high velocity in stenosed

arteries (i.e., artificially constricted by plaque) are associated with turbulent flow,

which can dislodge plaque and cause a stroke [Sch02]. Assume we have two grid-

fields S and T with identical grids but different data. The gridfield S holds pressure

data, and the gridfield T holds velocity (flow) data. To find regions of negative

pressure, we use a restriction on S. To find regions of high velocity, we use a

restriction on T. Finally, we will merge these two datasets for visualization.

We need to perform two restrict operations (r) and one merge operation (m) to
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merge

(a)

Si : (s) Tj : (t)

restrict(s,t) merge

restrict(s)

(b)

Si : (s) Tj : (t)

restrict(t)

merge

(c)

Si : (s) Tj : (t)

restrict(t)

restrict(s)

Figure 6.13: Three equivalent sub-recipes. (a) Restrict operations are combined into

one. (b) The restrict operators are pushed through a merge, resulting in a less efficient

plan. (c) Evaluating one restrict at a time might require less memory.

obtain the correct output, but in what order should these operations be evaluated?

Three equivalent versions of this recipe fragment are shown in Figure 6.13. Fig-

ure 6.13(a) shows the two restrictions evaluated after the merge. Previously, we

improved performance by evaluating restricts early, as in Figure 6.13(b). In this

case the merge operator must compute the intersection of two grids—an O(nm)

algorithm, where n and m are the number of cells in S and T, respectively. But

observe that in Figure 6.13(a), both arguments to the merge operator are defined

over the same grid. This knowledge allows the merge to be evaluated trivially. The

recipe in Figure 6.13(c) may also be a good choice. Since grid(T) is known to be a

subgrid of grid(S), we can still evaluate the merge in linear time. We can also evict

the attribute array t from memory right after we have evaluated the first restrict,

possibly lowering the memory footprint of the overall recipe.

There are 4M nodes in the Carotid dataset organized into 2M (irregular) hexa-

hedrons. The overall shape of the dataset is illustrated in Figure 6.14. The carotid

artery leads to the brain, so the z direction would normally be oriented upwards

in the human body; we lay the patient on his or her side for presentation pur-

poses. The dataset contains the artery itself and its interior. The stenosed region

is the narrow portion of the upper branch just after the bifurcation. Well after the

stenosed region is an area of low pressure, and just before the stenosed region is



234

Figure 6.14: A model of a carotid artery equipped with pressure data.

an area of high pressure.

The region of low pressure and high velocity is shown in Figure 6.15. The

rough surfaces correspond to the cells of the computational grid; this result does

not include the smooth outer surface of the artery.

We tested the five recipes for merging the velocity and pressure datasets; the

time in seconds to complete each recipe are as follows:

merge(restrictpressure(S), restrictvelocity(T)) : 20.15s

restrictpressure(merge(S, restrictvelocity(T)) : 13.06s

restrictvelocity(merge(restrictpressure(S),T)) : 10.53s

restrictvelocity(restrictpressure(merge(S,T))) : 12.77s

restrictvelocity∧pressure(merge(S,T))) : 10.75s

The effect of the order of the two restrictions is due to a difference in their re-

spective selectivities; the pressure condition is 20% more selective. The conclusion
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Figure 6.15: A region of a carotid artery associated with increased risk of dislodged

plaque and stroke due to high velocity (a) and negative pressure (b).

is that evaluating restrictions as early as possible is not always the optimal plan.

This result demonstrates that the optimization rules for working with gridded

datasets are not always derived from an analogous rule in the relational algebra.

The relational version of this situation would often favor pushing restricts as far

down the plan as possible, at least at the logical level. In our case, however, the

merge operator can be implemented trivially if the two arguments are known to be

defined on the same grid. An analog can be found in column-oriented databases

[SAB+05] that have access to a positional join that behaves like a zip merge.

6.5 CONCLUSIONS

Gridfields are designed to be used with a variety of grids. The design is agnostic

with respect to the dimension of the grid, the presence or absence of regular pat-

terns in the grid, the types of cells, and the rank at which attributes are bound.

Chapter 5 included evidence of the reasoning power of gridfields with respect to
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the complex grid structures used in the CORIE project. In this chapter, we exam-

ine the performance of the gridfield implementation with respect to these CORIE

datasets as well as more conventional datasets such as the fully regular datasets

and fully irregular datasets we examined.

We began by exploring the performance of gridfields when manipulating highly-

regular datasets modeled with a series of cross operators. These datasets admit a

fully implicit representation of topology that can be very efficient in certain cases.

The fully implicit representation corresponds to a lazy evaluation of the cross op-

erator: No cells are materialized unnecessarily, and costs are significantly reduced.

However, if many cells are to be materialized in the result anyway, then the implicit

representation offers no benefit. A performance penalty was actually incurred due

to cell-by-cell allocation and copying during the transition from an implicit repre-

sentation to an explicit representation. The cross operator, conversely, knows the

global size and structure of its output and can allocate and copy cells in blocks.

The algebraic properties of the gridfield language also mitigate the disadvantage

when lazy evaluation is effective and magnify the improvement when it is not.

Cells that are not relevant to the task can be filtered out by inserting an accrete

operator into the recipe, reducing the size of intermediate results. The accrete can

be physically implemented inside the cross operator for additional savings.

For these datasets, we conclude that an implicit representation of product grids

(corresponding to a lazy evaluation of the cross operator) does situationally im-

prove performance and is therefore useful in a gridfield implementation. How-

ever, this extension must not come at the cost of algebraic reasoning, which offers

broader improvements.

For the partially regular datasets found in the CORIE system, we again find

that algebraic reasoning leads to significant cost savings. We are able to derive and

express recipes that exploit the regularity of the gridfields and even the properties

of the interpolation methods to offer savings for the horizontal and vertical slice
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recipes described in Chapter 5.

We then presented a relational implementation of these recipes in a commer-

cial RDBMS, including an application-specific schema, configuration settings, and

data ingest procedures in addition to the relevant SQL queries. We conclude that

the “time to insight” is longer using these tools than with gridfields due to the

additional design tasks required. Further, use of a relational database incurred

significant overhead in space on disk: a factor of 3. Finally, the performance of

queries that access a great deal of data is almost a factor of 3 slower than the grid-

field implementation, since joins are computed using explicit keys (the hallmark of

relational modeling) rather than implicit position.

We also tested the efficacy of a specific algebraic optimization using gridfields

with fully irregular datasets. The purpose of this test is primarily to demonstrate

that not every optimization rule has a relational analogue. In this case, perfor-

mance proved worse when restrict operators were pushed towards the leaves of

the recipe. This transformation destroyed the equality of two intermediate grids,

which in turn had allowed a constant time implementation of the merge operator.

These results provide evidence that gridfields are effective as a “jack-of-all-

trades” model capable of handling many kinds of grids without sacrificing perfor-

mance. Specialized tasks on specialized grids admit more efficient algorithms, but

gridfields offer a lightweight, balanced, and flexible solution.
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CONCLUSIONS AND OUTLOOK

Once again, we recall the thesis: Programs written to manipulate simulation results

in the sciences exhibit an algebraic structure useful for reasoning and optimization.

We began in Chapter 1 by describing scientific and engineering modeling ap-

plications in which these programs frequently appear. Scientists and engineers

are modeling increasingly complex domains, such as engine manifolds and jagged

coastlines. The differential equations governing these models cannot be solved an-

alytically. To solve the equations numerically, they must be converted to a set of

algebraic equations suitable for solution within the computer. The conversion is

straightforward for primitive domains such as line segments, triangles, quadrilat-

erals, tetrahedra, and prisms, so complex domains are decomposed into primitive

domains—the cells of a grid. The system of equations for each of these cells is

locally constrained to agree with its neighbors on shared values and globally con-

strained to minimize an error metric. Prepared in this manner, the equations

can be solved using conventional matrix manipulation routines augmented with

problem-specific methods to improve accuracy.

The datasets produced and consumed by these simulations bind data values to

the cells of one or more dimensions. These data are ordinarily stored as arrays;

their assembly into a logical grid structure is the responsibility of the programmer.

The alternative is to design a model specialized for these datasets, bottom up.

We presented the requirements for such a model in Chapter 2 by describing

the grid structures found in practice and analyzing pseudo-code for representative



239

tasks. We found that the common low-level operations in each case included iter-

ation over cells, access to bound data, and traversal of the incidence relationship

between cells. Suitable high-level operations include applying arithmetic expres-

sions, selecting a region of interest, mapping one grid onto another, and combining

two grids.

Using these requirements, we developed a general combinatorial model of grids

that separated the geometry (and other bound data) from the topology. The

set-based structures admit set-based operations (e.g., union and intersection) and

relationships (e.g., the subgrid relationship). We then defined properties of grids

that correspond to intuitive correctness criteria in certain situations. For example,

a homogeneous grid of dimension 2 contains no dangling edges or isolated nodes:

Every cell is incident to a 2-cell. These properties are not enforced by the model,

since the model must accommodate grids found in practice that violate them.

However, the ability to reason about and selectively enforce these properties has

proven useful, and the grid model provides a succinct language for doing so.

The definition of a grid was extended to allow data values to be bound to the

cells of one or more dimensions. Some operators for manipulating grids can be

lifted to operate on gridfields, others are particular to the interaction between the

grid and the data.

The cross and regrid operators have proven especially useful, allowing us to

express topological repetition and map one grid onto another, respectively. The

restrict operator provides a means of changing the topology of a gridfield using the

bound data—it is unique in this regard. Using restrict, one can only produce a

legal subgrid of the input, which is an important correctness criteria. The accrete

operator “seeds” a new grid with the cells of a particular dimension, then grows

a connected grid by including neighboring cells in the result. Using the fixpoint

operator, we can repeat the process to grow connected gridfields whose cells all

satisfy some condition on their bound data.
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Using several examples, we demonstrated that the gridfield model is sufficiently

general to express gridfields and gridfield computations we found in practice.

In Chapter 3, we describe an evaluation of candidate data structures for grids

and gridfields, finding that, remarkably, the more flexible data structure also offered

better performance. Several data structures were not sufficiently general for our

purposes. For example, the quad-edge data structure and its variants can only store

2-D manifold grids. (Informally, a d-dimensional manifold grid can be embedded

in a d-dimensional space.) We evaluated three data structures general enough

for our purposes: TIGraph, based on incidence graphs; Indexed Cell Set (ICS), a

special case of TIGraph; and NGMaps, based on combinatorial involutions. The

ICS representation integrates well with existing software, but does not support

the full generality of the gridfield model. The enforcement of grid properties is

easier with an NGMap, as a TIGraph allows an arbitrary set of cells linked by an

arbitrary incidence relation. Since an NGMap can be specialized for grids that

obey certain properties, it would seem that we could capitalize on the restricted

domain to improve performance. However, we can build an TIGraph involving

only those cells and incidence relationships relevant to the user’s current task, for

considerable savings in such cases. The relevant subgrid cannot be expressed as

an NGMap, since it violates the grid correctness criteria that the NGMap was

designed to enforce. For example, a task that does not need access to the 1-cells

need not include them in an TIGraph representation. However, the 1-cells cannot

be excluded in an NGMap representation without violating invariants of the data

structure. We decided to adopt an ICS representation where possible, and extend

it to the more general TIGraph representation where necessary.

The data structure we use with gridfields includes an explicit incidence relation

for each dimension. The incidence relation maps k-cells to 0-cells for each dimen-

sion k. The 0-cells are therefore distinguished at the physical level. In practice,

we have not encountered many gridfields that do not need access to to the 0-cells,
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so requiring their presence does not incur a significant additional cost.

The gridfield data structures must be populated from the scientists’ simulation

results. It is unlikely that the native data formats used by scientists will correspond

directly to our chosen representation in memory, so some form of conversion must

take place. The formats are generally designed to simplify initial creation rather

than simplify access and analysis. In Chapter 4, we develop a simple language

for extracting arrays from collections of files. The logical array values may appear

embedded in the names of files and directories or in the files themselves. The arrays

may span multiple files, and one file may contain multiple arrays. Once extracted,

these arrays become the components of the gridfield data structures—attributes,

cells, and incidence relations. We develop several techniques for interpreting the

structure of a file (described by a schema) to improve performance when extracting

the file’s content. We tested code generation and partial evaluation techniques and

found that these techniques were competitive with hand-coded readers optimized

for (and coupled to) a single format.

In the interest of developing an end-to-end system for analyzing gridded data-

sets, we describe in Chapter 5 how gridfields can be used at all stages of devel-

opment of a simulation-processing system. First, as a reasoning tool, we demon-

strated that gridfields could express the CORIE grids at different stages of evo-

lution, exposing equivalences between them. We then described interfaces for

programming with gridfields, including physical operators for animations and dis-

tributed computing. Finally, we described a gridfield application for scripting

gridfield-powered visualizations.

We investigated the performance of gridfields relative to 1) a popular visual-

ization library, VTK, and 2) a commercial relational database. We found that by

using specialized data structures of VTK for specialized tasks, one can outper-

form the more general gridfield implementation. However, no solution was able to

outperform gridfields across the spectrum of gridded datasets we tested—highly
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regular gridfields, fully irregular gridfields, and partially regular gridfields such as

those found in the context of CORIE. We also found that the preliminary tasks

required to use a relational database in the scientific domain (schema design, con-

figuration, and bulk-loading) were quite expensive.

The chapters in this work were organized by topic; the chronological list of

milestones reached during development of the model and implementation found

below provides additional context.

• Chapter 1: Analyze scientific data products for commonalities [HMB03]

• Chapter 2: Develop initial data model of gridfields to express common data

characteristics and operations [HM04a]

• Chapter 2: Implement the gridfield model [HM04a]

• Chapter 6: Perform preliminary tests against conventional technologies [HM04b]

• Chapter 4: Develop a language for describing native data sources [HM05]

• Chapter 4: Develop optimization techniques for accessing native data sources

[HM05]

• Chapter 2: Develop a library of assignment and aggregation functions for use

with regrid.

• Chapter 5: Develop a prototypical gridfield application, DPBuilder

• Chapter 2: Extend the model to allow data bound to multiple ranks simul-

taneously, simplifying many recipes

• Chapter 2: Extend the algebra with the iterate operator for expressing ani-

mations and small-footprint aggregation

• Chapter 2: Extend the algebra with the accrete operator for building con-

nected regions

• Chapter 2: Generalize the iterate operator with the fixpoint operator to ac-

commodate recipes that grow from seed cells

• Chapter 3: Adapt, implement and test alternative data structures derived

from the literature for housing gridfields



243

• Chapter 5: Implement a catalog interface through which the scan and bind

operators can access native data sources

• Chapter 5: Derive algebraic transformations for operating on partitioned

grids

• Chapter 5: Describe and implement an evaluation model for gridfield expres-

sions.

• Chapter 6: Test the gridfield implementation against a popular visualization

library

• Chapter 6: Evaluate the use of relational databases to store gridfield data

• Chapter 7: Articulate a vision of how gridfields may be injected in a large-

scale e-Science project

Reflecting on the evolution of the gridfield model and implementation, the

following lessons stand out as keystones to the success of the project.

Topology vs. Geometry. We reaffirmed Berti’s observation that many grid-

manipulation programs did not need access to geometry information. We extended

this idea by separating topology and geometry completely, modeling the latter as

ordinary data. This design resolved issues with conventionally problematic grids—

for example, those grids whose geometry changed over time.

Pay-as-you-go. Even before the implementation was available, we deployed

the model as a reasoning tool. Early implementations were deployed as part of

prepackaged scripts for generating specific data products. Though there was a

temptation to postpone deployment until the software was “complete,” we made

a conscious effort to maintain a smooth return on investment.

Localized Extensibility. We realized early on that computational science

as an activity would continue to produce new methods of discretizing a domain,

and therefore new types of geometric cells (e.g., curvilinear, concave, hexagonal).

Rather than try and anticipate the needs of future scientists, we made the algebra

extensible through the regrid operator. Interpolation methods, point-in-region tests
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and other techniques that rely on special handling of geometry can be encapsulated

as custom assignment and aggregation functions. We gathered these specialized

routines in one place so as not to interfere with our ability to reason globally

about gridfield recipes. Allowing user-defined operators, in contrast, would have

obstructed the definition of rewrite rules.

In the next section, we describe some directions of future work.

7.1 FUTURE WORK

Gridfields offer a novel approach to working with scientific simulation results. A

logical model guided the development of concrete middleware for transforming na-

tive data stored in ad hoc file formats into data products. Although we have striven

for a comprehensive approach to manipulating gridded datasets, there are still sev-

eral avenues for additional research. In this section, we describe the following four

areas, anticipating that they will be especially fruitful:

1. Hierarchical grids

2. Adaptive grids

3. Automatic Optimization

4. Proliferating Gridfields

We anticipate that the gridfield model can accommodate these extensions with-

out major surgery. For example, we have experimented with gridfield-valued at-

tributes to model hierarchical grids.

Hierarchical Grids

Figure 7.1 illustrates an example of a hierarchical grid, which is a grid whose cells

may be recursively subdivided into other cells, instituting a parent-child relation-

ship between cells. This relationship implies geometric and topological contain-

ment between parent and child cells, which has at least four applications: (1) for



245

Figure 7.1: A hierarchical grid used for improving the scalability of large grids.

searching for leaf cells efficiently by using the hierarchical structure as an index,

(2) for reducing redundancy in the description of the overall grid when reusing

the same subdivision for multiple parent cells, or (3) for multiresolution process-

ing, where operations that can tolerate approximate answers might not descend

the hierarchy below a fixed level, and (4) for parallel processing where separate

branches of the hierarchy are handled by separate processes and potentially on

separate hardware.

As a first attempt to modeling these structures using the gridfield model, we

might express a hierarchical grid as the union of its leaf grids. For example, the

hierarchical grid in Figure 7.1 may be expressed as the union of the its four quad-

rants, where each quadrant is represented by a grid. This approach might be useful

for application (2), since the same grid can be reused in multiple locations. How-

ever, applications (1) and (3) each require new hierarchy-aware implementations

of our operators.

For example, a frequent use of the restrict operator is to locate cells whose

geometric realization is contained within a bounding box. This task is expressed

by passing in the bounding box as a boolean condition over geometric attributes;

e.g.:

x > 5 & x < 10 & y > 15 & y < 30
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To exploit the hierarchy and improve performance for this task, three conditions

must be met: (a) the parent cell must be guaranteed to contain (geometrically)

the child cells, (b) the parent cell must record information about its own geometry

(for example, its minimum bounding rectangle), and (c) the restrict operator must

be aware of (a) and (b).

For application (3), the regrid operator must be extended to understand the

geometric and topological relationship between a parent cell and its children, and

the gridfield representation must record new information with each parent cell.

For example, each parent cell could cache the min, max, and average value of all

it children, and the regrid operator could sometimes use this information to avoid

accessing the children. [RBS02].

This type of grid is important for scalability. Some operations are intrinsically

O(n); e.g., multiply salinity by 5 for every cell and visualize the result. Linear

time operations will not scale to very large datasets, so parallel or approximate

algorithms must be employed. A parallel algorithm must access the same amount

of data but divides the work among many processors; an approximate algorithm

sacrifices accuracy for performance given fixed resources. In the simple example

given in this paragraph, an approximate algorithm might use the pre-calculated

average salinity over a large region and multiplying that by 5 rather than physically

accessing each and every cell.

Adaptive Grids

Unstructured grids are used to improve precision in modeling highly dynamic

processes. For example, many more small cells are used to model the turbulent es-

tuary than are used to model the relatively calm ocean. However, what if the ocean

became turbulent and the estuary became calm as the simulation was running? It

might be beneficial to increase resolution in the ocean and decrease resolution in

the estuary. While this particular scenario involving a turbulent ocean is not very
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likely, changes in dynamic regions are common for many applications.

Adaptive grids [BDF94, HT04b] change their topology at runtime in response

to changing conditions. At each timestep, a cell may be split to create two or more

smaller cells, or multiple cells may be merged into one. The gridfield algebra cannot

express these modifications of topology. Only the cross operator can generate new

cells at runtime, and it does so only in a very predictable manner.

This restriction was intentional: bounds on the size and “shape” of all inter-

mediate results can be traced through a gridfield recipe, a useful step towards

cost-based optimization.

To extend the gridfield model with the capability of creating and deleting cells,

we have begun investigating a rule language for expressing cell-to-cell transforma-

tions. For example, a rule of the form of Figure 7.2 could express the splitting of

two large cells into four smaller cells.

The rule language could be defined using a generalization of stencils that match

involve not only patterns of topology, but patterns of bound attributes. Such a

language could likely express more than just adaptive grids; we have informally

experimented with such rules to express the grid algorithms in Chapter 2. We

anticipate that a suitably defined rule language (acting as a grid calculus) would

be strictly more expressive than the gridfield algebra.

The ability to change the topology at runtime was intentionally omitted from

the features of the gridfield algebra so that we could place static bounds on the

sizes of intermediate results. A rules language would require a change to this opti-

mization strategy. A very interesting question is whether the rule language could

be defined such that useful properties of intermediate results could be discovered

through static analysis.
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Figure 7.2: Rules describing cell transformations may be suitable for implementing

adaptive grids and more.

Automatic Optimization

We have automated a limited number of heuristic optimizations, as described in

Chapter 5. The next step is fully automatic and transparent optimization, as is

provided by relational databases.

A heuristic optimizer becomes complex and potentially unsound as more and

more rules are implemented. Cost-based optimization then becomes an attractive

alternative. There are two components to a cost-based optimizer: a cost function

and a search strategy. We anticipate that a suitable cost function can be derived

from the size of intermediate results. One of the features of the gridfield language

is that bounds on these sizes can be traced through every recipe. Also, some

operators (e.g., merge) are mainly grid-dependent and not data-dependent. The

observed cost on one gridfield is therefore a good indicator if cost on another

gridfield with the same grid.

We expect the cost of recipe evaluation to dominate the cost of optimization,

so exhaustive search may be a suitable strategy initially. Also, we frequently

encounter situations in which the same sub-recipe must be evaluated many times

(e.g., during an animation), so the cost of optimization is amortized over multiple

executions.

There are other optimization techniques we have considered:

Static Sub-recipes. There are also opportunities to take advantage of static

parts of a recipe. For example, a regrid operator repeatedly evaluated may not
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need to recompute its assignment function over and over, if the cell assignment

does not change on each execution. This situation occurs, for example, when

the assignment function depends on topology only (e.g., when instantiated as a

neighborhood operator). The cell assignment can be computed only once and reused

over and over. A We implement this type of optimization by hand currently.

Pipelined Recipes. To evaluate recipes where not all data fits in memory, we

need to extend the work on iterator-introduction rules we present in Section 5.3.3.

The rules state the conditions that must be met in order to pipeline a recipe, but

algorithms to partition a large gridfield with respect to these conditions need to

be found and implemented.

Specialized Representations. We showed in Chapter 6 that specialized

representations will outperform general representations in some cases. Techniques

for transparently switching to these representations when beneficial to do so would

make gridfields competitive with even highly focused tools and algorithms. We

anticipate that the logical model would not need to be changed to accommodate

new representations, though new operator algorithms would be necessary.

Distributed Evaluation. The physical fetch operator described in Chapter 5

ships a recipe to a remote server for evaluation, but algorithms automating when

and how to use this operator have not been studied.

Proliferating Gridfields

Integration with existing tools increases proliferation of new technology. There are

two likely targets for gridfield technology: relational databases and visualization

software libraries.

In the former case, gridfields, grids, and attributes may be cast as user-defined

types, and each operator may be implemented as a user-defined function. Algebraic

expressions can then be included in SQL statements as usual. The disadvantage
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of this approach is that gridfields can become very large. Since gridfield expres-

sions are opaque to the optimizer, performance can suffer. A data architect can

reduce the size of individual gridfield values by splitting large product gridfields

into multiple tuples. For example, we have expressed the CORIE datasets as a

gridfield expression of the form H⊗V⊗T. Instead of one tuple holding the entire

dataset, each of |V0||T0| tuples could hold one gridfield with grid H. Further, we

can abstract out the shared grid and store only the attributes. The relationship

between these attributes and the grid H can be maintained by foreign keys.

Gridfield operators can be injected into a visualization library in two ways:

First, operators providing novel capabilities can be implemented alongside the

native algorithms. For example, the cross operator and the regrid operator are

good candidates for inclusion in the VTK library, as there are currently no direct

counterparts. Second, many VTK classes effectively implement the same logical

gridfield operator. If this relationship could be made explicit, gridfield recipes could

be compiled into VTK programs. An optimizing compiler might choose among

several VTK algorithms depending on the characteristics of the source data—e.g.,

structured grid algorithms employed for structured grids. Gridfields may also be

used to massage native data into a form usable by VTK. We frequently use VTK

in this manner—as a rendering and visualization engine for gridfield recipe results.

In the next section, we consider gridfields as as middleware for a large-scale

e-Science project that involves more than just simulation. We then conclude by

considering the future potential of gridfields as a general-purpose data model.

7.2 GRIDFIELDS AS SCIENTIFIC MIDDLEWARE

The following describes the Ocean Observatories Initiative (OOI) [ooi], a significant

project underway to instrument and study the oceans on an unprecedented global

scale.
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Major advances in our understanding of the oceans are currently limited

by our ability to make sustained observations over large areas. Continu-

ous, long-term measurements of physical, chemical, geological, and biological

variables in the oceans and the sea floor below are required to understand

trends and cyclic changes and to capture episodic events such as major

earthquakes and harmful algal blooms. Enhanced capabilities for making

sustained measurements of the ocean will open up new research opportuni-

ties and lead to improved detection and forecasting of environmental changes

and their effects on biodiversity, coastal ecosystems, and climate. These ad-

vances will provide the tools for improved management of ocean resources

such as fisheries, and better-informed decisions on the use of the coastal zone

for recreation, development, and commerce. The National Science Foun-

dations (NSF) Ocean Research Interactive Observatory Networks (ORION)

Program will capitalize on new technical capabilities provided by Ocean Ob-

servatories Initiative (OOI) infrastructure to meet this recent convergence

of basic research and societal needs.

The OOI . . . will construct networks of ocean observatories using funds

from NSF’s Major Research Equipment and Facilities Construction account.

These observatories will be linked to the Internet via seafloor cables or satel-

lites, allowing global data access. Analysis and visualization tools developed

by ORION scientists and made publicly available will permit all users to ma-

nipulate the data, thereby gaining a better appreciation of topical issues such

as earthquake and tsunami mechanics, fisheries and coastal resource man-

agement, and natural and human influences on ocean and climate systems.

The ORION Program will increase public awareness of the oceans through

a comprehensive education and outreach program.

Although the focus is on observation, modeling of ocean processes is of signif-

icant interest to the researchers. Manipulation and visualization of observations

and model results, as well as comparisons between them, must be efficient and
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(a)
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(b)

Figure 7.3: Heterogeneous observation methods [DWB]. (a) A buoy equipped with

a cable-climbing profiling sensor. (b) A sensor affixed to the ocean floor. (c) Cabled

seismographic sensors. (d) Underwater Autonomous Vehicles equipped with sensors. (e)

Coastal radar installation for measuring surface elevation. (f) Research vessel with towed

sensor arrays. (g) Remote sensing via aircraft.

convenient in spite of the extreme heterogeneity. We have argued that gridfields

are designed for breadth: performance and convenience in a wide variety of cases.

This feature is critical for a data integration and analysis effort on the scale of the

OOI.

We have discussed how gridfields may be used for modeling, manipulation,

and visualization, but the examples have been drawn from simulation results. In

this section, we describe how gridfields can serve as middleware for integrating

data from observational platforms with the simulation results we have discussed

previously.
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Figure 7.3 illustrates a variety of observation capabilities. At (a) and (b), a

sensor is attached to the sea floor. The sensor at (a) can climb the cable attached

to a buoy to provide a vertical profile, while the sensor at (b) is stationary. The

measurements reported by the platform at (b) depends on time, but the horizontal

location and the depth are fixed. For these fixed stations, a timeseries of salinity

measurements may be described by a gridfield computation:

A0:x,y,z,time,salt = P0:x,y,z ⊗ bind(salt, 0,T0:time)

where grid(P) is the unit grid consisting of a single node. The left hand side

of this expression (and of those to follow) are variables assigned gridfield values.

The vertical profiling platform’s observations can be modeled by allowing the z

coordinate to depend on time, or by considering each vertical sweep as a single

observation, depending on ratio of observation frequency to the speed of the cable

crawler. In the latter case, we have:

A0:x,y,z,time,salt = P0:x,y ⊗ bind(salt, 0,V0:z ⊗T0:time)

The gridfield V describes the vertical discretization, and T, as before, describe

the temporal discretization. If we wish to reason in terms of observation intervals

rather than a timeseries, the time gridfield might appear as T1:δt rather than T0:t.

Figure 7.3(c) uses an array of sensors laid on the ocean floor. A grid L describes

the topological arrangement of these sensors, and we associate x and y coordinates

with each point in this grid. The depth varies over the length of the array, but

does not change over time. The authoritative bathymetry reference is delivered on

a 2-D unstructured grid, B. To integrate these data, we have:

A0:x,y,depth,time,salt =bind(salt, 0,

regrid(L0:x,y, 0,B0:x,y,depth, 2, contained by2, interpolate)

⊗T0:time

)
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The regrid operator finds a polygon in B that contains each point in L and

interpolates the data onto it. The product of the result and a time grid is the grid

to which the salinity measurements may be bound.

Figure 7.3(d) shows an Underwater Autonomous Vehicle (UAV), capable of

sampling in four dimensions. One useful topology to overlay on a UAV’s obser-

vations is to simply link the node-based observations with 1-cells indicating the

order in which they were observed, with the overall grid capturing the path taken

by the UAV. Sensor measurements are sometimes averaged in situ over a brief

time interval to help ensure quality. These averaged data may be more naturally

associated with the 1-cells of the path rather than with the nodes. An alternative

to this path-grid is to program the UAV to visit the nodes of a prescribed 2-D grid,

though it may be difficult to achieve acceptable accuracy with this approach.

Figure 7.3(e) shows a fixed coastal installation. In the figure, the installation

appears to be solely a satellite communication uplink. However, there is a type

of shore-based radar, similarly deployed, that measures surface elevation over a

wide area. These measurements can be modeled as a 2-D gridfield of the water’s

surface. The topology may be regular (i.e., the grid is constructed as a product of

linear grids) or irregular (e.g., the spatial resolution of the device decreases with

distance from the installation).

The vessel in Figure 7.3(f), like the UAV, follows a path, but is constrained to

the surface of the water. Measurements may be taken at a fixed depth below the

changing surface. The surface information may be bound to the same grid as the

bathymetry, except that the surface varies with time:

S0:surf,x,y,depth,t = bind(surf, 0,B0:x,y,depth ⊗T)

P′
0:x,y,surf,depth,t = regrid(P0:x,y,t, 0,S, 3, contained by3, interpolate)

A0:x,y,surf,depth,time,salt = bind(salt, 0,P′
0:x,y,surf,depth,t)
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This time, we use a 3-D version of the contained by function: two spatial dimensions

(represented by the attributes x and y) and the time dimension (represented by

the attribute t).

A vessel may also be equipped with an acoustic Doppler profiler (ADP), ori-

ented downwards. An ADP is used to measure velocity of the water using sound

waves bouncing off suspended particles. Velocities can be observed at several

depths at a time. This instrument produces a gridfield similar to our model of the

cable-crawling profiler.

The 2-D and 3-D simulation results described in previous chapters must be vali-

dated against these forms of observation. Observations collected through different

methods covering the same area are validated against each other. These cross-

validation operations require mapping gridfields onto gridfields and interpolating

the results. We envision the gridfield model as the logical and physical framework

by which this interpolation occurs.

The reader may notice that many examples involve node-bound data. There

are a few prominent reasons for the higher frequency of node-bound data relative

to data bound at other dimensions. First, the geometry of a region is formalized

as a set of points, each equipped with a coordinate vector. A discretization of a

continuous region is naturally viewed as a sampling of points; each point naturally

retains its coordinate vector. Second, data creators are conditioned to associate

data with the nodes due to file formats that do not offer another choice. Finally,

programs that manipulate gridded datasets are complicated by the need to move

data from one dimension to another. These programs are much simpler if all data

are bound to the nodes.

This section predicts a new role for gridfields beyond the manipulation of sim-

ulation data: a general data type for manipulating continuous spatio-temporal

data discretely within the computer. In this capacity, they serve as a higher-level,

more general version of the file formats favored by scientists, but without the bloat
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associated with relational and object databases.

7.3 INTERPRETING DATA MODELS TOPOLOGICALLY

The design of a data model involves deciding which features of the data will be rep-

resented by built-in structures and which features will be represented in the data

itself. The relational model uses minimal built-in structures: An entity is described

by a record in the database, but relationships between entities are encoded in the

data rather than physical pointers. The advantage is simplicity for the modeler,

the data creator, and the application writer, at the expense of performance. How-

ever, performance has proven ultimately satisfactory due to algebraic optimization

augmented with decades of intense research. Interpreted topologically, a record in

a table is not structurally close to any other record—we say that the relational

model has the discrete topology, where each entity is an isolated point with no

explicitly encoded neighborhood.

Sometimes a domain may have a dominant relationship that deserves explicit

encoding in the model itself. For example, the popularity of XML suggests that

many people consider their data to have a dominant hierarchical structure—entities

tend to have a natural parent entity. We might characterize the hierarchy as a

topology on the entity descriptions. Given an entity, we can traverse a neighbor-

hood of nearby entities, where “nearby” is defined by some composition of the

parent, child, and sibling relationships.

Graph-based data models such as RDF operate at the other end of the implicit-

explicit spectrum: Each and every relationship between entities is encoded as an

explicit structure in the model (an edge). Neighborhoods of data can be explored

by traversing the graph edges. Although this model is capable of representing any

data one might encounter, the model provides no guidance to the application about

how to interpret an instance—an edge in the graph could mean literally anything.

With a tree-based model, one or more relationships in the data are distinguished
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as dominant and encoded structurally in the tree. If properly chosen, this anointed

relationship matches the intuition of the application writers, and the data is easier

to manipulate. Graph-based models proclaim that all relationships be created

equal, leaving application writers to organize the data in a manner convenient for

their users. Observing that reorganizing data can be expensive, advocates of this

approach attempt to relieve application writers of this burden by not favoring any

one dominant organization. The consequence, however, seems to be that by not

favoring any particular application, all applications must perform some level of

reorganization.

Stream, sequence, and timeseries data models also have a topology derived

from the total order imposed on the entities. The neighborhood of an entity is

defined by a composition of “next” and “previous” operations. One might imagine

that the order need not be encoded explicitly in the data model; a timestamp of

some form will indicate order. In practice, however, items are known to arrive

out-of-order with respect to their timestamps [SCZ05, TM03].

Each of these data models (tables, trees, graphs, and streams) can be charac-

terized in terms of the topology they superimpose on data. A data model oriented

toward a fifth class of topology has been the topic of this dissertation. Scientific

datasets may exhibit a very general sort of topology, where neighborhoods are de-

fined by traversing an incidence relation over cells of various dimensions. Although

gridfields use a very general notion of topology, the model is not necessarily recom-

mended for expressing relational, tree-based, or graph-based data: The emphasis

on numeric values, fixed schema at a particular dimension, and the array-based im-

plementation are all specialized for scientific applications. Gridfields do, however,

represent an end-to-end solution for modeling and manipulating datasets with a

mesh-based topology, a concept of similar generality, importance, and utility as

the discrete topology of sets, the linear, totally-ordered topology of streams, the

tree-based topology of XML, and the graph-based topology of RDF.
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