
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

11-2008

Irrelevance, Polymorphism, and Erasure in Type Irrelevance, Polymorphism, and Erasure in Type

Theory Theory

Richard Nathan Mishra-Linger
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mishra-Linger, Richard Nathan, "Irrelevance, Polymorphism, and Erasure in Type Theory" (2008).
Dissertations and Theses. Paper 2674.
https://doi.org/10.15760/etd.2669

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2674&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2674
https://doi.org/10.15760/etd.2669
mailto:pdxscholar@pdx.edu

DISSERTATION APPROVAL

The abstract and dissertation of Richard Nathan Mishra-Linger for the Doctor

of Philosophy in Computer Science were presented on November 7, 2008, and

accepted by the dissertation committee and the doctoral program.

COMMITTEE APPROVALS:

Timothy Sheard, Chair

James Hook

Mark Jones

Andrew Black

Sava Krstić

Malgorzata Chrzanowska-Jeske
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM

APPROVAL:
Wu-Chi Feng, Director
Computer Science Ph.D. Program

ABSTRACT

An abstract of the dissertation of Richard Nathan Mishra-Linger for the Doctor

of Philosophy in Computer Science presented November 7, 2008.

Title: Irrelevance, Polymorphism, and Erasure in Type Theory

Dependent type theory is a proven technology for verified functional program-

ming in which programs and their correctness proofs may be developed using the

same rules in a single formal system. In practice, large portions of programs de-

veloped in this way have no computational relevance to the ultimate result of the

program and should therefore be removed prior to program execution. In previous

work on identifying and removing irrelevant portions of programs, computational

irrelevance is usually treated as an intrinsic property of program expressions. We

find that such an approach forces programmers to maintain two copies of commonly

used datatypes: a computationally relevant one and a computationally irrelevant

one.

We instead develop an extrinsic notion of computational irrelevance and find

that it yields several benefits including (1) avoidance of the above mentioned

code duplication problem; (2) an identification of computational irrelevance with

a highly general form of parametric polymorphism; and (3) an elective (i.e., user-

2

directed) notion of proof irrelevance. We also develop a program analysis for iden-

tifying irrelevant expressions and show how previously studied types embodying

computational irrelevance (including subset types and squash types) are express-

ible in the extension of type theory developed herein.

IRRELEVANCE, POLYMORPHISM, AND ERASURE IN TYPE THEORY

by

RICHARD NATHAN MISHRA-LINGER

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

Portland State University

2008

i

DEDICATION

This work is dedicated to Jesus Christ, in whom are hidden all the treasures of

wisdom and knowledge (Colossians 2:3).

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Tim Sheard for introducing me to many inter-

esting problems and ideas. His insight guided me, and his enthusiasm motivated

me to pursue my own ideas. May this dissertation give him pride.

I thank Mark Jones, Sava Krstić, and John Launchbury for the quality of their

instruction both inside and outside the classroom. They are excellent teachers and

I enjoyed learning from them.

Thanks to Emir Pašalić, Iavor Diatchki, and Tom Harke for many discussions

in which they taught me so much and listened to my half-baked ideas and new

discoveries.

I thank Lyle Kopnicky, Dan Brown, Tom Harke, and Amber Telfer for their

friendship on and off campus. You made my time here enjoyable.

Thanks to my spiritual family at West Valley Community Church, through

whose prayers and friendship God has given me strength.

Thanks to my parents and sister for their love and support. They taught me

the intrinsic value of education by word and example.

I am especially thankful to and for my wife Taniya, whose love delights and

comforts me and whose hard work inspires me. Meeting and marrying you was by

far the best “result” I obtained in my graduate work. I love you.

Finally, I thank God for giving me the opportunity to study such interesting

things with such interesting people and the ability to make significant contributions

in my field.

iii

CONTENTS

Acknowledgements . ii

List of Tables . vii

List of Figures . viii

1 Introduction . 1

1.1 Type Systems and Expressiveness 1

1.2 Thesis . 3

1.3 Contributions . 4

1.4 Computational Irrelevance . 5

1.4.1 Intrinsic View Leads to Code Duplication 5

1.4.2 Extrinsic View . 8

1.5 Methodology and Overview . 13

2 Review of Pure Type Systems . 15

2.1 History . 15

2.2 The λ-calculus . 18

2.3 Church’s Simply-Typed λ-calculus 24

2.4 The Girard/Reynolds Polymorphic λ-calculus 28

2.4.1 Impredicative Encodings . 31

2.4.2 Relational Parametricity . 32

2.5 Girard’s System Fω . 34

2.6 The Edinburgh Logical Framework 38

2.7 Coquand and Huet’s Calculus of Constructions 42

2.8 Barendregt’s λ-cube . 45

2.9 Pure Type Systems . 49

2.9.1 Specifications . 49

2.9.2 Syntax . 52

2.9.3 Typing Rules . 53

iv

2.10 Pure Type System Examples . 55

2.10.1 Systems in the λ-cube . 55

2.10.2 Hindley-Milner Polymorphism 56

2.10.3 Extended Calculus of Constructions 58

3 Erasure Semantics . 59

3.1 Erasure Pure Type Systems . 59

3.1.1 Syntax . 60

3.1.2 Type System . 61

3.1.3 Semantics . 68

3.1.4 Meta-theory . 69

3.2 Implicit Pure Type Systems . 72

3.3 The Erasure Translation . 75

3.3.1 Meta-theory . 76

3.3.2 Erasure Semantics . 81

3.4 Implementation . 82

3.5 Conclusions . 86

4 Erasability Analysis . 87

4.1 An Example . 87

4.2 Constraint Generation . 89

4.2.1 Syntax of Annotations and Constraints in EPTSC 89

4.2.2 Constraint-Generating Typing Rules 92

4.2.3 Proof of Correctness . 93

4.2.4 Logical Structure of Generated Constraints 98

4.2.5 Implementation . 99

4.3 Constraint Solving . 101

4.3.1 Terminology . 101

4.3.2 The TOP-SAT Problem . 101

4.3.3 An Algorithm for our Special Case 102

4.3.4 Partial Annotation . 105

4.3.5 Implementation . 105

4.4 Conclusions . 107

5 Inductive Types . 109

5.1 Introduction . 110

5.1.1 Parameterized Inductive Types 114

v

5.1.2 Indexed Inductive Types . 115

5.1.3 Parameterized Indexed Inductive Types 116

5.2 Opportunities for Erasure . 118

5.2.1 Eliminator Argument Erasure 119

5.2.2 Constructor Argument Erasure 124

5.2.3 Eliminator Target Erasure 128

5.3 A Paradigmatic Example: Various Sum Types 136

5.3.1 Strong Sums . 137

5.3.2 Weak Sums . 138

5.3.3 Subset Types . 140

5.4 Squash Types . 142

5.4.1 Relating # and ⇒ . 143

5.4.2 Correspondence with Nuprl’s Squash Type 145

5.4.3 Usage of the Squash Type 147

5.4.4 Laws Concerning # . 148

5.5 Comparison with Nuprl and Coq 150

5.6 Conclusions . 153

6 Proof Irrelevance . 156

6.1 Extra Expressiveness of CONV• . 157

6.1.1 Elective Proof Irrelevance 157

6.1.2 Uniformity Principle . 159

6.1.3 Streicher’s K “Axiom” is Provable 159

6.2 Non-computational Axioms . 163

6.2.1 Axioms for Classical Reasoning 165

6.2.2 The #-flattening Axiom . 166

6.3 EPTS• . 168

6.3.1 Meta-theory of Erasure . 168

6.3.2 Equivalence with IPTS . 169

6.4 Erasability Analysis . 170

7 Related Work . 173

7.1 Useless Variable Elimination . 173

7.2 Subset and Squash Types . 180

7.3 Program Extraction . 181

7.3.1 Realizability Interpretations 182

vi

7.3.2 The Theory of Specifications 186

7.3.3 Pruning Methods . 188

7.4 Miscellaneous . 192

8 Conclusion . 194

8.1 Summary . 194

8.2 Significance . 200

8.3 Limitations and Future Work . 201

References . 203

A Proofs . 214

A.1 Meta-theory of EPTS . 214

A.2 Meta-theory of Erasure . 242

A.3 Implementation of Erasure Contexts 270

A.4 Meta-theory of EPTSC . 276

A.5 Meta-theory of EPTS• . 302

vii

LIST OF TABLES

5.1 Concrete syntax for erasure annotations 119

viii

LIST OF FIGURES

1.1 Computationally relevant and irrelevant naturals in Coq 9

1.2 Illustration of the relativity of computational relevance. 10

1.3 Graph induced by the “may-flow-to” relation of a simple program . 12

1.4 Two-phase approach to erasure semantics 13

2.1 The λ-calculus . 19

2.2 Simply typed λ-calculus . 25

2.3 System F . 29

2.4 System Fω . 35

2.5 The Edinburgh Logical Framework 39

2.6 The Calculus of Constructions (1/2) 43

2.7 The Calculus of Constructions (2/2) 44

2.8 The λ-cube . 47

2.9 Typing rules for PTS . 53

3.1 Typing rules for EPTS . 62

3.2 Simple typing derivation in EPTS 65

3.3 Typing rules for IPTS . 73

3.4 Meta-theory of EPTS . 77

3.5 Clever Implementation of Typing Contexts 83

4.1 Sketch of erasability analysis and erasure 88

4.2 How a typical constraint arises. 93

4.3 Constraint generating typing rules for EPTSC 94

4.4 Constraint generating conversion rules for EPTSC 95

5.1 Example showing shortcomings of token type target erasure 135

5.2 An isomorphism between A ⇒ B and #A → B 144

5.3 An isomorphism between two squash type representations 146

ix

5.4 Division of computational and non-computational entities into two

type universes . 151

5.5 Division of computational and non-computational entities inside a

single type universe using squash types 152

6.1 Lemmas in Altenkirch’s proof that a behavioral uniformity principle

implies uniqueness of identity proofs 161

6.2 Proof of Uniqueness of (Reflexive) Identity Proofs 162

6.3 Two consequences of Streicher’s K eliminator and Uniqueness of

Reflexive Identity Proofs . 164

6.4 Relationships between four PTS variants 168

7.1 A Coq term and its corresponding extracted looping program . . . 190

Chapter 1

INTRODUCTION

1.1 TYPE SYSTEMS AND EXPRESSIVENESS

In the past half century, type theory has emerged as a unifying principle in pro-

gramming language design. In the 1960s, a deep connection between constructive

logic and functional programming was discovered, the so-called propositions-as-

types correspondence, enabling significant subsequent cross-fertilization between

these two fields [30, 89, 42]. At the heart of this correspondence lies the promise

of a unified language for both programming and proving programs correct. We

briefly outline the history of type theory in Section 2.1.

In a programming language, types categorize the values in a program. A type

system provides a structured way to assign meaning to program values. By the

propositions-as-types correspondence, we may also think of a type as a logical

formula or proposition stating some correctness property of program values. By

this view, a static type system for a programming language corresponds to an

internal logic of program correctness. Such a logic provides the formal specification

for a type checker – a program analyzer which automatically identifies certain

program errors before a program is even run, at which point they are relatively

inexpensive to fix. For this reason, type systems are an important approach to

taming the error-prone process of software development.

Some type systems are stronger than others – their internal logic of program

2

correctness is more expressive in terms of what program properties it can state.

The more program properties a programmer can state in the type system, the

more bugs a type checker can catch. For this reason, programming languages

have evolved ever more expressive type systems. This drive towards increased ex-

pressiveness inevitably leads to dependent types, a proven technology for verifying

strong correctness properties of real programs [69, 52, 11, 50]. For this reason,

researchers have long sought practical ways to include dependent types in pro-

gramming languages. As regards expressiveness, the internal logic of a typical

dependently typed language is strong enough to formalize all of mathematics.

However, as the strength of a type system increases, so does the amount of

extra bookkeeping information that a programmer must insert into programs to

ensure that type-checking remains decidable. In the limit, programs must contain

proofs of otherwise undecidable program properties. As the strength of the internal

logic increases, a type checker thus transitions from an automatic theorem prover

(for a relatively weak logic) to a proof checker (for a relatively strong logic).

For this reason, heavy use of dependent types often involves embedding proofs

of program properties into the program text itself. Often, such proofs play no

essential part in the execution of the program. They are necessary only for “con-

vincing” the type-checker that various program properties hold. We would like

to erase these computationally irrelevant portions of our program prior to run-

time, so as to avoid the needless cost of evaluating them and storing their values.

This notion of an erasure phase prior to run-time is called an erasure semantics.

Because embedded proofs can be quite large, an erasure semantics is critical for

practical implementation of a dependently typed programming language.

Proofs are not the only erasable parts of a program. In general, all dead code

is erasable. Our erasure semantics will in some sense approximate dead code

elimination. Another way of thinking of erasure is in terms of polymorphism. Any

time a program exhibits parametric polymorphism, whether over proofs, types,

3

numbers, or any other kind of value, there are portions of the program that can

be erased. In fact, parametric polymorphism can be understood entirely in terms

of erasure. This claim is a major component of my thesis.

1.2 THESIS

The thesis of this dissertation is:

An extrinsic view of computational irrelevance results in (1) a flexi-

ble erasure semantics for dependently typed languages; (2) a generic

form of parametric polymorphism; and (3) an elective notion of proof

irrelevance.

The remainder of this dissertation is spent explaining and defending this statement.

For now, we give a basic overview of terminology in the thesis.

Intrinsic vs. extrinsic views of computational irrelevance. A property

of an entity is intrinsic if it is an essential or inherent to that entity. Examples

include mass and sex. In contrast, an extrinsic property of an entity depends on

the relationship between that entity and its context or environment. Examples

include weight (dependent on position with respect to other masses) and marital

status (dependent on social context).

In Section 1.4, we discuss common approaches to identifying computationally

irrelevant portions of a program – those parts which do not affect the execution of

the program one way or the other. We identify an intrinsic view of computational

irrelevance in all these approaches that leads to a problem of forced code duplica-

tion. In contrast, we advocate an extrinsic view of computational irrelevance.

Flexible erasure semantics. By flexible, we mean that the same program ex-

pression may be erased if it appears in some program contexts but not in others.

4

This is essentially the extrinsic view of erasure. The consequence of this view is

that we may write subprograms without any concern about their erasure behav-

ior and then add erasure annotations later. In fact, erasure annotations may be

introduced completely automatically.

Generic parametric polymorphism. The polymorphic λ-calculus (System F)

is the paradigmatic language exhibiting parametric polymorphism. In this lan-

guage, we may parameterize a program by the types at which it operates. Such

type-parameterized programs behave uniformly at all types to which they are in-

stantiated. In our development, we generalize this notion of parametric polymor-

phism over types to a generic notion of parametric polymorphism over any kind of

program entity (types, numbers, proofs, etc.).

Elective proof irrelevance. Proof irrelevance is a principle whereby two proofs

of the same proposition are considered equal. When proofs are embedded in

datatypes, this principle is often needed to reflect the user’s intentions about what

objects are considered equal. Rather than decide once and for all that all proofs

are considered equal, an elective notion of proof irrelevance allows the programmer

to determine where to use the principle of proof irrelevance.

1.3 CONTRIBUTIONS

The contributions of this dissertation are:

1. Identification of the intrinsic view of erasure as the root of the code duplica-

tion problem exhibited by all previous attempts to combine dependent types

and erasure semantics (Section 1.4.1)

2. An operationally motivated extrinsic notion of erasure that solves the dupli-

cation problem (Section 1.4.2)

5

3. Formal development of an erasure semantics for Pure Type Systems. (Chap-

ter 3)

4. Illumination of the relationship between erasure and parametric polymor-

phism as exhibited in Miquel’s Implicit Pure Type Systems (Chapter 3)

5. Formal development of a program analysis that determines all erasable por-

tions of a program. (Chapter 4)

6. Expression of previously known type-based information hiding methods in

terms of inductive types with erasure annotations (Chapter 5)

7. Development of a form of elective proof irrelevance in terms of erasure.

(Chapter 6)

1.4 COMPUTATIONAL IRRELEVANCE

Existing languages combining dependent types and erasure semantics have the

common shortcoming of forced code duplication. In this section I explain this

problem and diagnose its cause: an intrinsic view of computational irrelevance.

1.4.1 Intrinsic View of Erasure Leads to Code Duplication

Current languages combining dependent types and erasure semantics may be di-

vided into two categories: erasure first and dependent types first.

Erasure first

Languages in this category start with a commitment to erasure semantics in the

form of a syntactic phase distinction whereby types and program values may not

depend on each other computationally. Singleton types are then used to simulate

dependently typed programming. Examples of this approach include Dependent

6

ML [97], Ωmega [83, 82], Applied Type Systems [17], and Haskell with generalized

algebraic datatypes (GADTs) [72].

Singleton types are type constructors T : I → Type for which each type index

i : I uniquely determines the one value of type T (i). For example, the declara-

tions

datakind nat↑ : kind

where zero↑ : nat↑

succ↑ : nat↑ → nat↑

datatype nat! : nat↑ → Type

where zero! : nat! zero↑

succ! : nat! n → nat! (succ↑ n)

introduce a singleton type family for the naturals. The datakind declaration defines

a copy of the natural numbers at the type-level. The singleton type nat! then

connects the type-level version nat↑ to the level of run-time expressions. To see

the one-to-one correspondence, consider the following terms and their types.

zero! : nat! zero↑

succ! zero! : nat! (succ↑ zero↑)

succ! (succ! zero!) : nat! (succ↑ (succ↑ zero↑))

succ! (succ! (succ! zero!)) : nat! (succ↑ (succ↑ (succ↑ zero↑)))

Notice the singleton property: The only term of type nat! n is a term n′ with exactly

the same structure as n. However n′ and n are not the same thing. One (n) is a

type expression (a compile-time entity) and the other (n′) is a term expression (a

run-time entity).

A singleton type acts as a proxy between run-time and compile-time notions

of the same datatype: natural numbers in this case. Whenever a program does

case analysis on the value of a singleton type, the type-checker benefits from the

same case analysis at the type-level. In this way, dependence of types on values is

7

simulated. The following program exhibits this behavior.

datatype boollist : nat↑ → Type

where nil : boollist zero↑

cons : bool → boollist n → boollist (succ↑ n)

fill : ∀n : nat↑. bool → nat! n → boollist n

fill x (zero!) = nil

fill x (succ! m) = cons x (fill x m)

The type boollist n is the type of lists of length n containing natural numbers

for elements. The function call fill x n returns a list of length n in which every

element is a copy of x. In each equation defining fill , the type-checker obtains

more specific information about the type variable n due to the pattern matching

on the argument of singleton type nat! n.

Dependent types first

Languages in this category start with full dependent types. An erasure phase

then strips out parts of the program that are irrelevant to its run-time execution.

Examples of this approach include Cayenne [1], Coq [24], and Epigram [60, 13].

In Cayenne and Coq, the erasability of a subterm depends on its type. All

types, subterms of type Type, are erased in Cayenne and Epigram1. Coq’s pro-

gram extraction mechanism supports erasure of proofs as well as types. A proof

is distinguished by having a proposition as its type, and propositions are distin-

guished as terms of type Prop. In contrast to the universe Prop, Coq has another

universe Set that is the type of the types of all non-erasable program terms.

This distinction between proofs and programs is concisely captured by the

1Some work on representations of inductive types in Epigram [14] notes that values of type
families need not store certain indices that, regardless of their type, are uniquely determined by
the value’s data constructor.

8

statements

〈proof〉 : 〈proposition〉 : Prop

〈program〉 : 〈program type〉 : Set

where the relation A : B means “A has type B”. This triplet pattern ending in a

special constant (here Prop or Set) is one we will see again when we review Pure

Type Systems in Chapter 2.

Code duplication

Because languages in both categories treat erasability as an intrinsic property of an

expression, usually determined by its type, users of these languages are sometimes

forced to duplicate definitions of datatypes and functions over them in order to

achieve a desired erasure behavior. In the erasure-first approach, programming

with singleton types requires duplication of datatype definitions at the “type” and

“kind” levels of the type hierarchy, as well as duplication of functions that operate

on them. In the dependent-types-first approach, duplication of datatypes is also

required if we want values of a particular type to be erased in one part of a program

but not in another.

For example, it is likely that one would want natural numbers to be erased in

some parts of a Coq program, but preserved in other parts. To get this behavior,

one must define copies in Prop and Set of the same type. Any needed functions

over naturals, such as addition, would need to be duplicated as well. See Figure 1.1

for these definitions.

1.4.2 Extrinsic View of Erasure

The computationally irrelevant parts of a program2 are those that may be erased

in an erasure semantics. Our investigation of erasure semantics is grounded in a

2For our purposes here, a program is a term in a typed λ-calculus. We will review λ-calculus
in Chapter 2.

9

Inductive SNat : Set :=

SZero : SNat

| SSucc : SNat -> SNat.

Fixpoint splus (a b : SNat) {struct a} : SNat :=

match a with

| SZero => b

| SSucc a’ => SSucc (splus a’ b)

end.

Inductive PNat : Prop :=

PZero : PNat

| PSucc : PNat -> PNat.

Fixpoint pplus (a b : PNat) {struct a} : PNat :=

match a with

| PZero => b

| PSucc a’ => PSucc (pplus a’ b)

end.

Figure 1.1: Computationally relevant and irrelevant naturals in Coq

10

M

N

P

Consider terms M > N > P (where ≤ is the

subterm ordering) such that N depends com-

putationally on P but M does not depend

computationally on N . Then M does not de-

pend computationally on P since it may do

so only via N .

Therefore P is both computationally relevant

(with respect to N) and irrelevant (with re-

spect to M).

Figure 1.2: Illustration of the relativity of computational relevance.

simple observation: computational irrelevance of a program expression P is not

a property of P itself but rather a property of the context in which we find it.

Irrelevance of P is determined not by what it is, but by how it is used. In other

words, computational irrelevance is an extrinsic rather than an intrinsic prop-

erty. Figure 1.2 illustrates this fact in the abstract. We give several examples

demonstrating this principle in the remainder of this section.

Type annotations

The domain annotation A in the β rule,

(λx:A. M) N →β M [N/x]

is simply discarded during reduction. For this reason, we may safely erase the

domain annotations of all λ-abstractions in a program without changing their

computational behavior. In this case, the context in which A appears determines

its erasability.

11

Dummy λ-binders

The erasure of domain annotations may cause some λ-binders to become superflu-

ous. Consider the term (λα:Type. λx:α. x) N at 5. After erasing type annotations,

we are left with (λα. λx. x) N at 5, in which the binder λα is superfluous because

α no longer appears anywhere in its scope. For any such dummy binder λx, the

resulting specialized β rule

(λx. M) N →β M if x 6∈ FV (M)

discards both the dummy binder λx and the argument N to which it would other-

wise bind x. Therefore we may erase both the binding site λx and any argument

N at an application site to which this λ-abstraction may flow during program ex-

ecution. By this reasoning, we may erase the underlined portions of our previous

example term, resulting in (λx. x) 5.

However, during the execution of a program, other λ-abstractions may flow to

some of those same application sites. We should not erase the argument N at an

application site3 M@N unless every λ-abstraction that may flow to be the value of

M has a dummy binder that also ends up being erased. Similarly, we should not

erase a dummy binder unless we also erase every argument to whose application site

it may otherwise flow. In general, the “may-flow-to” relation induces a bipartite

graph (see Figure 1.3). We call this graph the λ/@ graph of a term. In order to

decide if a given λ-binder or @-argument may be safely erased, we must analyze

all λ-binders in its connected component (CC) in the λ/@ graph. If they are all

dummies, then every λ-binder and @-argument in the CC may be safely erased.

In this case, we call the CC erasable.

In this type of erasure step, the usage of a term determines its erasability. The

(local) erasability of a binder λx depends on how x is (or is not) used in its scope.

3We sometimes write @ for application in order to have a more tangible notation than mere
juxtaposition.

12

λ1

@4

λ2

@5

λ3

@6

let f = λ1x. 5 in

let g = λ2y. y in

let h = λ3z. z@47 in

(h@5f, h@6g)

6⇒

let f = 5 in

let g = λy. y in

let h = λz. z in

(h f, h g)

Figure 1.3: The λ/@ graph induced by the “may-flow-to” relation of a simple

program. The fact that λ2 is non-dummy prevents erasure of both the @4-argument

and the λ1-binder. The interdependence of λ1 and λ2 is reflected in the λ/@ graph.

The erasability of an argument N depends on its context — whether the function

that is applied to it always ends up being a λ-abstraction with a dummy binder.

Cascading Erasure

Erasure of @-arguments may make other λ-binders into dummies, thereby enabling

erasure in other CCs of the λ/@ graph. Consider the following program that defines

a family of identity functions.

let id0 = λa:s. λx:a. x in

let id1 = λa:s. λx:a. id0 a x in

let id2 = λa:s. λx:a. id1 a x in

let id3 = λa:s. λx:a. id2 a x in

· · ·

⇒

let id0 = λa. λx. x in

let id1 = λa. λx. id0 a x in

let id2 = λa. λx. id1 a x in

let id3 = λa. λx. id2 a x in

· · ·

After the initial erasure of domain annotations, a cascading sequence of λ/@ era-

sure steps is possible in this program. (Consider the λa binders).

In summary, we have explored several situations in which erasure of some part

of a program was justified. In each instance, the rationale for erasing part of a

program had to do with the context in which a term (e.g., a type annotation or a

variable) appeared.

13

Π

PTS

Πr/Πc

EPTS

Π/∀

IPTS
analysis erasure

Figure 1.4: Two-phase approach to erasure semantics for Pure Type Systems in

terms of two PTS variants EPTS and IPTS with support for erasure annotations

and implicit polymorphism, respectively.

1.5 METHODOLOGY AND OVERVIEW

We treat computational irrelevance as a property not of a term itself, but of the

context in which it is used. In λ-calculus, functions reify contexts of use, so we

track relevance as a property of functions by distinguishing between functions that

do not depend computationally on their arguments (of type ∀x:A. B) and those

that might (of type Πx:A. B).

Note that the same A is used in both cases, because erasability is no longer an

intrinsic property of x, but rather a property of the (functional) contexts making

use of x. In this way we avoid the code duplication problem. We have one type A

and therefore functions over A can be written once.

Our study of erasure semantics for dependently typed languages takes place in

the context of three different families of typed λ-calculi, shown in Figure 1.4. The

first family is Pure Type Systems (PTS), a well-known formalism that encompasses

and organizes a wide variety of type systems [4]. Most dependently typed languages

have a PTS at their core, therefore PTS is a good setting for studying features of

dependently types languages. Chapter 2 briefly reviews the basics of PTS.

The next two language families are Erasure Pure Type Systems (EPTS) and

Implicit Pure Type Systems (IPTS). Each is a conservative extension of PTS.

EPTS extends PTS with support for erasure annotations indicating the computa-

14

tional relevance of various parts of a program. IPTS extends PTS with support

for implicit parametric polymorphism over values of any type. IPTS is closely

related to Miquel’s Implicit Calculus of Constructions [64], but EPTS is a novel

contribution of this thesis.

Two translations connect these three languages: (1) A program analysis that

introduces optimal erasure annotations into a program and (2) an erasure phase

guided by these annotations that removes the portions of a program marked as

computationally irrelevant.

The erasure operation is the basis for the erasure semantics (Section 3.3.2). We

prove that erasure exhibits properties one would expect: It respects the static and

dynamic semantics of programs and eliminates portions of the source program that

do not affect its final value.

The division of labor in Figure 1.4 is reminiscent of off-line partial evaluation,

which consists of two tasks: a binding time analysis phase that annotates a pro-

gram for specialization and a program specialization phase that simply obeys these

annotations. This separation of concerns allows us to see the issues involved more

clearly and allows the possibility of programming directly in the annotated lan-

guage. In partial evaluation, MetaML4 and its successor MetaOCaml5 are each

examples of such an annotated intermediate language.

4http://www.cse.ogi.edu/PacSoft/projects/metaml/
5http://www.metaocaml.org/

Chapter 2

REVIEW OF PURE TYPE SYSTEMS

The framework of Pure Type Systems (PTS) organizes type theory by illuminating

the common structure in several notions previously thought to be unrelated: func-

tions, parametric polymorphism, type constructors, and dependent types. This

chapter introduces several type systems of increasing strength, culminating in the

definition of PTS. It is hoped that seeing the range of type systems that may be

cast as a Pure Type System will demonstrate the expressiveness of the formalism.

2.1 HISTORY

We first place Pure Type Systems in their historical context by briefly outlining the

history of type theory in computer science and its application to proof assistants

and programming languages. The remaining sections of this chapter will formally

present several of the type theories discussed in this section in uniform, modern

notation.

In 1932 and 1933, Alonzo Church developed the λ-calculus with the goal of

formalizing mathematics [19, 20]. The λ-calculus turned out to be a universal

model of computation. In 1940, Church applied the simple theory of types to

his calculus and showed how to represent well-formed logical formulae with typed

λ-terms [21].

In 1934, Gerhard Gentzen ushered in a new era of proof theory by introducing

the notions of natural deduction, sequent calculus, and cut elimination [35, 36].

These constructions formalize proofs as mathematical objects whose structure can

16

be rigorously analyzed. Natural deduction formalizes the rules of logic as they

are used by mathematicians. Sequent calculus is another way of looking at proofs

that highlights the symmetries of classical logic. Cut elimination is a rule for

normalizing proofs so that they use no intermediate lemmas.

In the late 1950s and 1960s, Church’s λ-calculus began to impact actual pro-

gramming languages. In 1958, John McCarthy created LISP, the first functional

programming language [62]. It supported the λ notation for anonymous functions.

In 1965, Peter Landin identified the λ-calculus as the core of ALGOL [47, 48] and

outlined the design of ISWIM [49], a hypothetical functional language that had a

large influence on later functional languages including ML, Miranda, and Haskell.

Landin also developed the SECD machine, an abstract machine for evaluating

λ-terms [46].

Also in the late 1950s and 1960s, the so-called propositions as types correspon-

dence between various constructive logics and typed λ-calculi was discovered. In

1958, Haskell Curry observed “a close correspondence between axioms of posi-

tive implicational propositional logic, on the one hand, and basic combinators on

the other hand” [30]. In 1967, William Tait discovered a correspondence between

cut elimination and reduction in the λ-calculus [89]. In 1969, William Howard

circulated a manuscript clarifying the correspondence [42]. The “Curry-Howard

correspondence” was born.

The main idea of the correspondence is that a typed λ-calculus can be inter-

preted as a proof system in natural deduction style for a constructive logic. In this

interpretation, types are read as logical propositions and a term inhabiting a type

is read as a proof for the corresponding proposition. Furthermore, β-reducing a

λ-term translates to eliminating a cut step in the corresponding proof. Howard’s

manuscript demonstrates this correspondence for two logics: propositional logic

and Heyting arithmetic.

Also during the 1960s, Nicolaas G. de Bruijn’s AUTOMATH project pioneered

17

the area of computer-verified mathematics [31]. AUTOMATH was a series of

languages for writing mathematical proofs that were then checked for validity by a

computer. These languages were built on the propositions-as-types principle and

were the first computer implementation of this idea.

The 1970s saw the extension of the Curry-Howard correspondence to more

expressive logics. In 1971, Jean-Yves Girard extended the correspondence to first-

order (and higher-order) propositional logic with the introduction of System F, a

calculus in which terms may be parameterized by types (and type constructors) [37,

38]. In his study of polymorphism in programming languages, John Reynolds

independently developed essentially the same language in 1974 [76, 75]. In the

1970s, Per Martin-Löf introduced his type theory in several iterations [55, 56, 57].

Martin-Löf’s type theory extended the correspondence to higher-order predicate

logic with the introduction of general product and sum types that correspond to

universal and existential quantifiers.

In 1984, Thierry Coquand and Gérard Huet developed the Calculus of Con-

structions [27, 25, 28], effectively combining the impredicative System F of Girard

and the predicative type theory of Martin-Löf into a single calculus. The Calculus

of Constructions is an expressive logic as well as a programming language. Chris-

tine Paulin-Mohring later extended this pure λ-calculus with inductive datatypes,

thereby making it more practical as a programming language.

In 1987, Robert Harper, Furio Honsell, and Gordon Plotkin developed LF,

the Edinburgh Logical Framework [39]. LF allows one to encode the formulas

and typing derivations of many diverse logical systems as terms in a dependently

typed λ-calculus. The LF type checker is then able to check the well-formedness

of logical formulae as well as the validity of proofs encoded as LF terms. LF

has similar goals to AUTOMATH, but with an emphasis on a methodology for

encoding a wide variety of logics.

In 1989, Henk Barendregt analyzed the fine structure of the Calculus of Con-

18

structions by categorizing all its possible dependencies into four kinds: (1) terms

depending on terms (regular functions), (2) terms depending on types (polymor-

phism), (3) types depending on types (type constructors), and (4) types depending

on terms (dependent types). While all λ-calculi support dependencies of kind 1,

Barendregt showed that any combination of the remaining choices 2–4 leads to

a meaningful calculus [3, 4]. For example, previously known calculi such as the

simply-typed λ-calculus, System F, System Fω, and LF fall out as instances of

this general scheme. Shortly thereafter, Stefano Berardi and Jan Terlouw inde-

pendently introduced Pure Type Systems as a generalization of Barendregt’s cube

that captures even more known calculi [4].

The arrival of the λ-cube and Pure Type Systems gave structure to what had

become a diverse jungle of typed λ-calculi. It clarified relationships between various

type theories and provided a general setting in which results about type theories

may be proved once and instantiated at any particular PTS.

2.2 THE λ-CALCULUS

Church’s λ-calculus is defined in modern notation in Figure 2.1. It is a pure calculus

of anonymous functions. The function f defined as f(x) = M (where M is the

body of the function being defined) is expressed as λx. M . Such a term is called a

λ-abstraction and represents an anonymous function. We call M the body and x

the parameter of the λ-abstraction. Successive λ-abstractions λx1. λx2. · · ·λxn. M

may be abbreviated as λx1, x2, · · · , xn. M . Application of a function M to an

argument N is written simply as the juxtaposition M N , instead of the more

standard mathematical notation M(N) with parentheses.

We call the calculus pure because functions are the only things one can di-

rectly express in the language. The only three forms of terms are variables (x),

anonymous functions (λx. M), and function applications (M N). The meaning of

a function is embodied in the Beta reduction rule (λx. M) N →β M [N/x]. This

19

Syntax

(terms) M, N ::= x | λx. M | M N

Reduction M →β M ′

Beta

(λx. M) N →β M [N/x]

LamCong

M →β M ′

λx. M →β λx. M ′

AppCong1

M →β M ′

M N →β M ′ N

AppCong2

N →β N ′

M N →β M N ′

Conversion M =β M ′

Step

M →β N

M =β N

Refl

M =β M

Symm

M =β M ′

M ′ =β M

Trans

M =β M ′ M ′ =β M ′′

M =β M ′′

Figure 2.1: The λ-calculus

20

rule says how to compute the application of a known function to an argument:

by substitution of the argument N for the function parameter x in the function

body M .

Before defining substitution M [N/x], we must introduce the notions of bound

and free occurrences of variables in a term. In a λ-abstraction λx. M , the λ serves

to introduce the variable x inside a particular scope, namely the body M . We say

that the λ-abstraction is a binding construct (also λ is a binder) and that the λ

binds x in M . However, there may be other variables in M that are not bound by

any enclosing λ-binder in M . These variables are said to be free in M (and also

in λx. M). These notions are formalized as follows:

Definition 2.2.1 Free and bound variables in a term. FV (M) and BV (M)

FV (x) = {x}

FV (λx. M) = FV (M) / {x}

FV (M N) = FV (M) ∪ FV (N)

BV (x) = ∅

BV (λx. M) = BV (M) ∪ {x}

BV (M N) = BV (M) ∪ BV (N)

Note that a variable can occur both free and bound in a term. For example, if

M = (λx. x) x, then FV (M) = BV (M) = {x}. The meaning of bound variable

occurrences in a term M is determined by the enclosing λ-binder. But the meaning

of the free variables in M are determined by the context in which we find M .

Now we can define substitution. The definition is surprisingly involved because

we want to respect the relationship between a variable occurrence and its binder.

For instance, when substituting y for x in λx. x, we should not return λx. y because

that would break the relationship between the occurrence of x in the body of λx. x

with the binder λx. Conversely, when substituting x for y in λx. y, we should

not return λx. x because that would introduces a binding relationship for x where

there was not one before. The latter issue is called variable capture and is more

subtle than the former.

21

Definition 2.2.2 Substitution of N for free occurrences of x in M . M [N/x]

(y)[N/x] =





N if x = y

y if x 6= y
(M M ′)[N/x] = (M [N/x]) (M ′[N/x])

(λy. M)[N/x] =






λy. M if x = y

λy. M [N/x] if x 6= y and y 6∈ FV (N)

λz. (M [z/y])[N/x] if x 6= y and y ∈ FV (N)

where z 6∈ FV (M) ∪ FV (N) ∪ {x}

Bound variables can always be renamed consistently within their scope without

changing the meaning of the term. Consider the definitions f(x) = x + 1 and

f(y) = y + 1. They define the exact same function because renaming the variable

x doesn’t change the function being defined. This notion of equivalence up to

renaming of bound variables is known as α-equivalence or α-conversion.

Definition 2.2.3 α-conversion M =α N

z 6∈ FV (M)

λy. M =α λz. M [z/y]

As is common, we consider α-equivalent terms to be syntactically identical.

Another equality that is sometimes considered in λ-calculus is η-conversion.

Definition 2.2.4 η-conversion M =η N

x 6∈ FV (M)

λx. M x =η M

η-conversion is a weak extensionality principle. These two functions are in some

sense equivalent, because they have the same result when applied to any argument.

In this language, all functions take a single argument. Functions of two argu-

ments are represented as functions of one argument whose value is another function

22

of one argument. For example, the function f defined as f(x, y) = M is repre-

sented as λx. λy. M . The application of this function f to arguments N1 and N2

is written as (f N1) N2 rather than f(N1, N2). The application operation is left-

associative, so we may write f N1 N2 instead of (f N1) N2. This representation

technique for multi-argument functions is knows as currying, after Haskell Curry,

and it readily generalizes to n-argument functions for n ≥ 2.

The λ-calculus comes equipped with a term-rewriting semantics given by the

reduction relation M →β N , indicating that M transitions to N in a single step of

computation. Such a step happens when the Beta rule applies somewhere inside

the term M . Such a reducible subterm in M is always of the form (λx. M) N and

is known as a β-redex.

We will sometimes refer to various closures of this single-step relation. The

relation →+
β is the transitive closure of →β and the relation →∗

β is the reflexive

transitive closure. The most basic notion of computational equality for the λ-

calculus is that of β-conversion (=β), which is defined as the reflexive, symmetric,

transitive closure of the β-reduction relation →β (see Figure 2.2).

One of the most important properties of the →β relation is confluence. The

confluence property of →β states that any time a term M may step to two different

terms N1 and N2, then there is a common term M ′ to which both N1 and N2 step

(in zero or more steps). In symbols:

Theorem 2.2.5 (Confluence of →β / Church-Rosser)

If M →β N1 and M →β N2, then there is some M ′ such that N1 →∗
β M ′ and

N2 →
∗
β M ′.

Though the λ-calculus allows one to speak directly only of functions, other

mathematical entities may be encoded as λ-calculus terms as well. For example,

the natural numbers may be encoded as λ-terms in the following way:

23

Definition 2.2.6 The Church encoding n of the natural number n

n = λs. λz. sn(z)

This definition relies on an auxiliary definition of iterated application

Definition 2.2.7 Iterated application Mn(N)

M0(N) = N

Mn+1(N) = Mn(M N)

The representation of n is, therefore, a two-argument iteration function that applies

its first argument n times to its second argument. For example

4 = λs. λz. s (s (s (s z))).

This is but one example of a more general scheme of Church encodings, a general

scheme whereby any algebraic datatype may be encoded in λ-calculus.

We may also encode the operations of addition (plus) and multiplication (times)

in such a way that n + m =β plus n m and n × m =β times n m.

Definition 2.2.8 Encodings of addition and multiplication

plus = λn. λm. λs. λz. n s (m s z)

times = λn. λm. λs. λz. n (m s) z

In fact, one may encode all computable functions as λ-terms, and thereby prove

that the λ-calculus is a Turing-complete system of computation. As such, this

calculus can be seen as the core of modern day functional programming languages.

However complete the language may be for computation, it has some prob-

lematic aspects when considered as a language for formalizing mathematics. In

particular, the meaning of some terms is in unclear, because they never reduce

24

down to some irreducible term. For example, the term (λx. x x) (λx. x x) reduces

in one step to itself:

(λx. x x) (λx. x x) →β (x x)[(λx. x x)/x]

= (x[(λx. x x)/x]) (x[(λx. x x)/x])

= (λx. x x) (λx. x x)

A term like this in which we may continue making reduction steps forever is said to

be divergent. Non-divergent terms — those which have some terminating sequence

of reduction steps — are called weakly normalizing. Due to confluence of →β,

every weakly normalizing term M is also strongly normalizing (i.e., every reduction

sequence starting at M terminates).

It is impossible to distinguish normalizing and divergent terms mechanically.

However, with the introduction of types one can often ensure that well-typed pro-

grams don’t diverge. Several of the typed languages we will now discuss have this

property. Assuming that type-checking is decidable, this means that there will

always be some normalizing terms that our type system will reject as ill-typed.

However, functions requiring a such term for their definition are rare in practice.

2.3 CHURCH’S SIMPLY-TYPED λ-CALCULUS

In 1940 Church applied the simple theory of types to his calculus and showed how

to represent well-formed logical formulae with typed λ-terms [21]. The resulting

language is known as the simply typed λ-calculus (STLC) and is presented in

Figure 2.2. There are only two forms of types: function types and type variables.

The function arrow → associates to the right, so that we may write the type

A1 → (A2 → B) of a curried two-argument function as A1 → A2 → B. The

syntax of terms is the same as in the untyped λ-calculus, except that λ-abstractions

are annotated with the domain type of the represented function. Successive λ-

25

Syntax

(types) A, B ::= α | A → B

(terms) M, N ::= x | λx:A. M | M N

(contexts) Γ, ∆ ::= ε | Γ, x:A

Typing Rules Γ ` M : A

Var

x:A ∈ Γ

Γ ` x : A

→Intro

Γ, x:A ` M : B

Γ ` λx:A. M : A → B

→Elim

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

Figure 2.2: Simply typed λ-calculus

abstractions with the same domain annotation λx1:A. λx2:A. · · ·λxn:A. M may be

abbreviated as λx1, x2, . . . , xn:A. M .

In addition to the reduction rules for the untyped λ-calculus, the simply-typed

λ-calculus has a type system: an inference system for the judgment Γ ` M : A.

This judgment means that term M has type A under assumptions Γ. The assump-

tions in Γ state the types of the free variables in M . (We assume that the term

variables in Γ are distinct.)

The typing rules are straightforward. Rule Var says a variable has the type

assigned to it by the typing context Γ. Rule →Intro says a λ-abstraction has the

type A → B if A matches the domain annotation on the abstraction and the body

M of the abstraction has type B under the additional assumption that the formal

parameter x has type A. Rule →Elim says an application of a function of type

A → B to an argument of type A has type B.

The inference rules for the type system can also be viewed as a minimal logical

system. Under this interpretation, the types are read as propositions — either

propositional variables α or implications A → B (read “A implies B”) — and the

terms are read as proof terms. The typing rules are then seen as inference rules.

26

Rules Var and →Intro capture hypothetical reasoning and the rule →Elim is

the well-known rule of modus ponens. The logic formalized by these rules is called

minimal intuitionistic propositional logic. The first to notice this correspondence

was Curry [30].

For example, if one interprets the variables α1, α2, and α3 to stand for the

propositions “It is raining”, “I am wet”, and “I am cold”, respectively, then the

derivation

Γ ` f : α2 → α3

Γ ` g : α1 → α2 Γ ` x : α1

Γ ` g x : α2

Γ ` f (g x) : α3

f :α2 → α3, g:α1 → α2 ` λx:α1. f (g x) : α1 → α3

f :α2 → α3 ` λg:α1 → α2. λx:α1. f (g x) : (α1 → α2) → α1 → α3

` λf :α2 → α3. λg:α1 → α2. λx:α1. f (g x) : (α2 → α3) → (α1 → α2) → α1 → α3

(where Γ = f :α2 → α3, g:α1 → α2, x:α1) ensures that

λf :α2 → α3. λg:α1 → α2. λx:α1. f (g x)

is a well-formed proof of (α2 → α3) → (α1 → α2) → α1 → α3, which is interpreted

as the following proposition:

If it is the case that (1) if I am wet then I am also cold, and (2) if it

is raining then I am wet, and (3) it is raining, then it is also the case

that I am cold.

The correspondence between the simply-typed λ-calculus and logic also extends

to the reduction relation M →β N . This relation preserves types, so that if

Γ ` M : A and M →β N , then Γ ` N : A. With programming in mind, this says

that if our program computes a value (reduces eventually to some irreducible term),

then that value has the same type as the original term. With logic in mind, this

says that we may regard term reduction as a form of proof simplification. Tait [89]

was the first to note that the typing correspondence extends to β-reduction. All the

27

type systems reviewed in this chapter have this property that reduction preserves

types, known as subject reduction.

One interesting property of the simply-typed λ-calculus is that every well-typed

term is strongly normalizing. Because this holds of any well-typed term in the

language, we say that the simply-typed λ-calculus itself is strongly normalizing.

This means that the language is not Turing complete. However, the language may

be used to program certain forms of iteration, as in the natural numbers of the

previous section.

Church’s original motivation for the simply-typed λ-calculus was to represent

logical formulas. For example, one may introduce a special type variable o as the

type of logical formulas and introduce the following typed constants1.

¬ : o → o

∧ : o → o → o

⇒ : o → o → o

∀A : (A → o) → o

∃A : (A → o) → o

=A : A → A → o

In this way, one may represent the logical formula

∀x, y, z : A. x =A y ∧ y =A z ⇒ x =A z

as the λ-term

∀A(λx:A. ∀A(λy:A. ∀A(λz:A.⇒ (∧ (=A x y) (=A y z)) (=A x z))))

Note that we are introducing an infinite number of constants here: because there

are an infinite number of types A, there are infinitely many constants =A (similarly

for ∀A and ∃A).

The typing rules of the simply-typed λ-calculus ensure that logical formulas rep-

resented in this way are syntactically well-formed. The types also prevent certain

paradoxes from arising. For example, let us represent sets of objects as o-valued

functions in the following way:

1A constant is treated like a variable with global scope. It has no reduction rules, and is
assigned the same type at each occurrence.

28

1. The set comprehension {x : A | M} is represented as the λ-abstraction

λx:A. M .

2. The set membership operation N ∈ M is represented as the application

M N .

Under this encoding, Russell’s paradox — that the set of all sets that do not

include themselves (S = {X | X 6∈ X}) both is and is not a member of itself

(S ∈ S ⇐⇒ S 6∈ S) — is represented by the divergent λ-term R = S S where

S = λA:x.¬ (x x) for some type A. This leads to a paradox, because R =β ¬R.

R = S S = (λA:x.¬ (x x)) (λA:x.¬ (x x))

→β ¬ ((λA:x.¬ (x x)) (λA:x.¬ (x x))) = ¬ (S S) = ¬ R

However, the term R is not well-formed because the parameter x in S must have

both types A and A → o, thereby violating the inductive nature of the syntax

of types. In this way, the type system renders certain vicious circles of logic as

circular types, which are themselves illegal and easy to spot.

Note that the use of simply typed λ-terms to represent logical formulas is

different from the Curry-Howard correspondence. In the former, propositions are

represented as terms, while in the latter, propositions correspond directly to types.

In the latter, well-typed terms correspond to proofs, but in the former, we have no

way of representing proofs, although in Section 2.6 will introduce a more powerful

type system in which terms may represent proofs.

2.4 THE GIRARD/REYNOLDS POLYMORPHIC λ-CALCULUS

In the simply-typed λ-calculus, one can define an identity function λx:A. x of

type A → A for each type A. However, we cannot define one identity function

that works for any type A. Reynolds invented the polymorphic λ-calculus in

order to program families of functions of this sort. Girard, seeking to extend

29

Syntax

(types) A, B ::= α | A → B | ∀α. B

(terms) M, N ::= x | λx:A. M | M N | λα. M | M A

(contexts) Γ, ∆ ::= ε | Γ, x:A | Γ, α type

Well-formed types Γ ` A type

TyVar

α type ∈ Γ

Γ ` α type

→-Form

Γ ` A type Γ ` B type

Γ ` A → B type

∀-Form

Γ, α type ` B type

Γ ` ∀α. B type

Well-formed terms Γ ` M : A

Var

x:A ∈ Γ

Γ ` x : A

→-Intro

Γ ` A type Γ, x:A ` M : B

Γ ` λx:A. M : A → B

→-Elim

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

∀-Intro

Γ, α type ` M : B

Γ ` λα. M : ∀α. B

∀-Elim

Γ ` M : ∀α. B Γ ` A type

Γ ` M A : B[A/α]

Figure 2.3: System F / The polymorphic λ-calculus

30

the Curry-Howard isomorphism to (intuitionistic) second-order propositional logic,

independently developed the same calculus and gave it the name System F.

In this language, one can write I = λα. λx:α. x which has type ∀α. α → α. In

fact, our original identity function at type A is equivalent in this language to I A

of type A → A. The upshot is that programmers can define such polymorphic

functions once and reuse them at many different types. System F has inspired the

use of polymorphism in the type systems of many functional languages.

Figure 2.3 contains the syntax and typing rules for System F. There is an ad-

ditional type former ∀α. B indicating the type of a polymorphic entity that may

take on the type B[A/α] for any type A. At the level of terms, we have two

new constructs for introducing (λα. M) and eliminating (M A) polymorphic en-

tities. The typing rules ∀-Intro and ∀-Elim show how these terms are typed.

We also have a new form of context entry α type and a new typing judgment Γ `

A type. The purpose of the new typing judgment is basically to enforce the scop-

ing rules for type variables. As before, successive λ-binders λα1. λα2. · · ·λαn. M

may be abbreviated as λα1, α2, . . . , αn. M . Similarly, ∀α1, α2, . . . , αn. B abbrevi-

ates ∀α1. ∀α2. · · · ∀αn. B.

This form of polymorphism is called parametric polymorphism as opposed to

ad hoc polymorphism2. Parametric polymorphism occurs when a value like I has

several different types, but at each type it behaves in exactly the same way. Ad

hoc polymorphism occurs when a value like plus has different types (in this case,

int → int → int, float → float → float, etc.) and behaves in different ways at

each of those types.

2The distinction between parametric and ad hoc polymorphism is due to Strachey [86].

31

2.4.1 Impredicative Encodings

The encodings of datatypes that we discussed in the setting of untyped λ-calculus

can be typed in simply-typed λ-calculus, but they can be given even more precise

types in System F. For example, the natural numbers can be encoded using the

type Nat = ∀α. (α → α) → α → α. The previous encodings for zero, successor,

etc. become:

zero = λα. λs:α → α. λz:α. z : Nat

succ = λn:Nat . λα. λs:α → α. λz:α. s (n α s z) : Nat → Nat

plus = λn, m:Nat . λα. λs:α → α. λz:α. n α s (m α s z) : Nat → Nat → Nat

times = λn, m:Nat . λα. λs:α → α. λz:α. n α (m α s) z : Nat → Nat → Nat

We can then encode additional types in terms of those already encoded. For

example, the type of lists of naturals may be defined as

NatList = ∀α. (Nat → α → α) → α → α.

Then we may define several operations on lists, for example:

nil : NatList

nil = λα. λc:Nat → α → α. λn:α. n

cons : Nat → NatList → NatList

cons = λx:Nat . λxs:NatList .

λα. λc:Nat → α → α. λn:α.

c x (xs α c n)

map : (Nat → Nat) → NatList → NatList

map = λf :Nat → Nat . λxs:NatList .

λα. λc:Nat → α → α. λn:α.

xs α (λh:Nat . λt:α. c (f h) t) n

32

append : NatList → NatList → NatList

append = λxs, ys:NatList .

λα. λc:Nat → α → α. λn:α.

xs α c (ys α c n)

There is a certain type of circularity inherent in the System F rules for type

formation. For example, in the type Nat = ∀α. (α → α) → α → α, the type vari-

able α ranges over all types, including the type Nat itself. This sort of circularity

— where one quantifies over some class of objects in order to define a member of

that class — is called impredicativity. Remarkably, impredicativity does not lead

to any paradox in System F. Girard proved that System F is strongly normalizing

and therefore sound as a logic.

2.4.2 Relational Parametricity

Reynolds, in his celebrated abstraction theorem, proved that the type at which a

polymorphic entity is instantiated does not affect its subsequent behavior [77]. He

characterized this behavioral invariance by interpreting type variables as abstract

types which can be implemented in several different ways. He then proved that

the equivalent implementations yield equivalent behavior in clients of the abstract

type. We try to explain his result here.

Consider an abstract type α of natural numbers supporting the operations zero :

α, succ : α → α, and even : α → boolean. This type and its associated operations

may be implemented in multiple ways. Say we have two implementations, namely

{A1, zero1, succ1, even1} and {A2, zero2, succ2, even2}. Now we want to say that

these two implementations are observationally equivalent. How can we formalize

that? First of all we say that there is a relation R : A1 ↔ A2 relating A1 objects

and A2 objects that represent the same (abstract) natural number. In other words,

33

for a1 : A1 and a2 : A2, it is the case that R(a1, a2) holds iff a1 and a2 represent the

same natural number. Furthermore, we want the exported operations zero, succ,

and even to respect this relation. The meaning of “respecting the relation” varies

according to the type of each operation. Specifically, we require

• R(zero1, zero2) — zero1 and zero2 represent the same number;

• For all x1 : A1 and x2 : A2 such that R(x1, x2), we have R(succ1 x1, succ2 x2)

— parallel applications of the two successor operations to (two represen-

tations of) the same input yield (two representations of) the same output;

and

• For all x1 : A1 and x2 : A2 such that R(x1, x2), we have even1 x1 = even2 x2

— any two observations of two representations of the same natural number

have the same outcome.

The property of being R-respecting for the various operations in the abstract inter-

face may be systematically derived from their types α, α → α, and α → boolean.

Now consider a client N of the abstract type α. Without loss of generality,

we assume N has the type ∀α. α → (α → α) → (α → boolean) → B for some type

B. We may “link” this code to either of our two implementations of natural

numbers by forming the applications M1 = N A1 zero1 succ1 even1 and M2 =

N A2 zero2 succ2 even2. What we want to say is that these two terms behave in

the same way up to the pseudo-equivalence R whenever R is a relation between

A1 and A2 that is respected by the two implementations. This is exactly what

Reynolds abstraction theorem says (in a more general way, of course) about the

polymorphic λ-calculus.

We have been explaining Reynolds’ abstraction theorem from the perspective

of the implementation side of an abstraction barrier. When viewed from the client

side, the abstraction theorem also says something about the behavior of polymor-

phic terms, such as our client code N . Because N must behave the same way when

34

“linked” against related implementations of α, it cannot be the case that N is able

to inspect the structure of the particular α to which it is applied and determine

its behavior based on the outcome of the inspection. Otherwise, it might behave

differently when linked against different implementations of the same type, in con-

tradiction to the abstraction theorem. Therefore, the notion of polymorphism in

System F is parametric, rather than ad-hoc.

Wadler showed that this client-side view of the abstraction theorem can be

used to prove useful properties about polymorphic functions [93]. He used the

term parametricity3 to refer to the constraint that Reynolds’ abstraction theorem

places on the behavior of polymorphic programs. Wadler demonstrated that several

known and useful properties of polymorphic functions commonly used in functional

programming follow by parametricity simply by virtue of the type of the function.

These so-called “theorems for free” are beloved of functional programmers. The

principle behind this class of properties is referred to as relational parametricity

because it illuminates the nature of parametric polymorphism by interpreting types

as relations.

2.5 GIRARD’S SYSTEM Fω

Girard further developed System F into System Fω, by generalizing to intuitionistic

higher-order propositional logic. Figure 2.4 presents this language.

From a programming perspective, moving from System F to System Fω means

adding the language feature of type constructors (a.k.a. type operators). For exam-

ple, in the previous section we defined a type for encoding lists of natural numbers,

namely ∀α. (Nat → α → α) → α → α. However, one usually wants to program

with lists of various element types. In System F, we must define a new list type

for each new element type. But in System Fω, we can write the single type con-

3Wadler credits Bainbridge, Freyd, Girard, Scedrov, and Scott with coining the term “para-
metricity”.

35

Syntax

(kinds) K ::= ∗ | K → K ′

(types) A, B ::= α | A → B | ∀α:K. A | λα:K. A | A B

(terms) M, N ::= x | λx:A. M | M N | λα:K. M | M A

(contexts) Γ, ∆ ::= ε | Γ, x:A | Γ, α:K

Well-formed types Γ ` A : K

TyVar

α:K ∈ Γ

Γ ` α : K

→-Form

Γ ` A : ? Γ ` B : ?

Γ ` A → B : ?

∀-Form

Γ, α:K ` A : ?

Γ ` ∀α:K. A : ?

→-Intro

Γ, α:K ` A : K ′

Γ ` λα:K. A : K → K ′

→-Elim

Γ ` A : K → K ′ Γ ` B : K

Γ ` A B : K ′

Well-formed terms Γ ` M : A

Var

x:A ∈ Γ

Γ ` x : A

→-Intro

Γ ` A : ? Γ, x:A ` M : B

Γ ` λx:A. M : A → B

→-Elim

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

∀-Intro

Γ, α:K ` M : B

Γ ` λα:K. M : ∀α. KB

∀-Elim

Γ ` M : ∀α:K. B Γ ` A : K

Γ ` M A : B[A/α]

Conv

Γ ` M : A Γ ` B : ? A =β B

Γ ` M : B

Figure 2.4: System Fω

36

structor List = λβ:?. ∀α:?. (β → α → α) → α → α. Then List Nat recovers the

original type of lists of naturals, and we also have List Bool , List (List Nat), etc.

The presentation of System Fω extends that of System F in four ways. First,

there are λ-abstractions and applications at the level of types. We have already

seen a type-level λ-abstraction in the definition List = λβ:?. · · ·, and we have

already seen type-level application in the examples of various concrete list types

(e.g., List Nat).

Secondly, there is a new syntactic category called kinds. Kinds are to types as

types are to terms. In other words, kinds are the types of type expressions. The

well-formedness rules for types use kinds to prevent meaningless type expressions

such as (λα:?. α) → (λα:?. α). Kinds take one of two forms: the base kind ?

(pronounced “star”) or a function kind K → K ′. ? is the kind of all proper

types, that is types A of which it is meaningful to ask whether Γ ` M : A for

some M and Γ. Function kinds are the kinds of type constructors. Notice that

there are type constructors with more complicated kinds than simply ? → ?. For

example, we may have type constructors with two (proper) type arguments (of kind

? → ? → ?) or type constructors which take a type constructor as an argument

(of kind (? → ?) → ?, for instance).

Thirdly, now that type variables may have kinds other than ?, we annotate

each type-variable binding construct with the kind of that type variable.

Fourthly, because types may now contain beta-redices such as (λα:K. A) B, we

need a more general notion of what it means for two types to be the same. In the

type systems we have described previously, two types were considered to be the

same whenever they were syntactically equal (up to α-conversion). But for type

constructors to be at all useful, the type system must consider List Nat , which is

simply an abbreviation for

(λβ:?. ∀α. (β → α → α) → α → α) (∀γ. (γ → γ) → γ → γ),

37

to be equal to ∀α. (Nat → α → α) → α → α , which is simply an abbreviation for

∀α. ((∀γ. (γ → γ) → γ → γ) → α → α) → α → α.

This is accomplished in the typing rules for System Fω by the so-called conversion

rule (named Conv in Figure 2.4). That rule says that if M has type A and if

B is another type that is β-convertible with A, then M also has type B. The

notion of equality specified in the conversion rule is also known as the definitional

equality for the system because it provides the relationship between types that are

considered to be equivalent by definition.

To complete the generic list type example, we generalize the definitions previ-

ously given for operations on lists of naturals.

nil : ∀β:?.List β

nil = λβ:?. λα:?. λc:β → α → α. λn:α. n

cons : ∀β:?. β → List β → List β

cons = λβ:?. λx:β. λxs:List β.

λα:?. λc:β → α → α. λn:α.

c x (xs α c n)

map : ∀β, γ:?. (β → γ) → List β → List γ

map = λβ, γ:?. λf :β → γ. λxs:List β.

λα:?. λc:γ → α → α. λn:α.

xs α (λh:β. λt:α. c (f h) t) n

append : ∀β:?.List β → List β → List β

append = λβ:?. λxs, ys:List β.

λα:?. λc:β → α → α. λn:α. xs α c (ys α c n)

38

These polymorphic operations can be instantiated for use on lists of any element

type. Notice how the type of map has been generalized so as to work with two

different types of list.

2.6 THE EDINBURGH LOGICAL FRAMEWORK

The languages we have considered so far all correspond to various propositional

logics, where all variables appearing in types range over propositions or (possibly

higher-order) propositional functions. We now consider a type-theoretic rendering

of predicate logic, where logical formulas can quantify over individuals in some

domain of discourse.

The type system feature corresponding to predicate logic is called dependent

types. Dependent types are types that depend on non-types. The simplest λ-

calculus exhibiting dependent types is that of the Edinburgh Logical Framework

(LF), defined in Figure 2.5. This language corresponds to intuitionistic first-order

predicate logic.

The Π type-former has replaced the → of the simply-typed λ-calculus. The

meaning of Πx:A. B is similar to that of A → B, except that the former names the

eventual argument to which a function of this type will be applied. This name, x,

may appear inside B, the return type of the function. In this way, the type of a

function application may depend on the actual parameter passed to the function.

The typing rule Π-Elim2 in Figure 2.5 shows how this happens. We continue to

write A → B as an abbreviation for Πx:A. B in the special case that x does not

appear free in B.

Furthermore, we have an additional Π kind-former, as well as term-abstractions

and term-applications at the type level. Using these, we may work with types

dependent on terms. The typing rules for the Π at the kind level are similar to

those for the Π at the type level. Again, we write A → K as an abbreviation for

Πx:A. K when x does not appear free in K.

39

Syntax

(kinds) K ::= ? | Πx:A. K

(types) A, B ::= α | Πx:A. B | λx:A. B | A N

(terms) M, N ::= x | λx:A. M | M N

(contexts) Γ, ∆ ::= ε | Γ, x:A

Well-formed kinds Γ ` K kind

Star

Γ ` ? kind

Π-Form1

Γ ` A : ? Γ, x:A ` K kind

Γ ` Πx:A. K kind

Well-formed types Γ ` A : K

TyVar

α:K ∈ Γ

Γ ` α : K

Π-Form2

Γ ` A : ? Γ, x:A ` B : ?

Γ ` Πx:A. B : ?

Π-Intro1

Γ, x:A ` B : K

Γ ` λx:A. B : Πx:A. K

Π-Elim1

Γ ` A : Πx:A. K Γ ` N : A

Γ ` A N : K[N/x]

Conv1

Γ ` A : K Γ ` K ′ kind K =β K ′

Γ ` A : K ′

Well-formed terms Γ ` M : A

Var

x:A ∈ Γ

Γ ` x : A

Π-Intro2

Γ ` A : ? Γ, x:A ` M : B

Γ ` λx:A. M : Πx:A. B

Π-Elim2

Γ ` M : Πx:A. B Γ ` N : A

Γ ` M N : B[N/x]

Conv2

Γ ` M : A Γ ` B : ? A =β B

Γ ` M : B

Figure 2.5: The Edinburgh Logical Framework (LF)

40

In Section 2.3, we saw that simply-typed λ-calculus can be used to represent

logical formulas in such a way that type-correctness of the λ-term representing a

logical formula φ guarantees the syntactic well-formedness of φ. In LF, we can

go further and represent logical inference rules as types in such a way that type-

correctness of certain “proof” terms ensures correctness of the proof so represented.

Consider the following fragment of propositional logic:

φ ::= P | φ ∧ φ′ | φ ⇒ φ′ | ⊥

where P indicates a propositional variable, and ⊥ is the formula denoting a con-

stant falsehood. Using the following simple LF signature (i.e., typing context), we

may represent formulas of this logic as LF terms of type o.

o : ? and : o → o → o imp : o → o → o false : o

Often, intuitionistic negation is presented as a derived notion, defined as ¬φ =

φ ⇒ ⊥. We can also define this logical connective as a derived notion.

not = λp:o. imp p false : o → o

This much was possible in the simply-typed λ-calculus. However, in LF we can

also declare a type of proofs of a particular proposition.

proof : o → ?

The expression o → ? is a kind. The unique thing about this kind is that it is built

up from a type (o) and a kind (?) rather than from two kinds. A functional kind

with a type for a domain and a kind for a codomain indicates a dependent type,

because it classifies type expressions (of kind ?) parameterized over terms (of type

o). We now declare constructors for the proof type with which we may build LF

terms representing proofs in the same way that we can build LF terms of type o

representing logical formulas.

41

and intro : Πa,b:o. proof a → proof b → proof (and a b)

and elim1 : Πa,b:o. proof (and a b) → proof a

and elim2 : Πa,b:o. proof (and a b) → proof b

false elim : Πa:o. proof false → proof a

imp intro : Πa,b:o. (proof a → proof b) → proof (imp a b)

imp elim : Πa,b:o. proof (imp a b) → proof a → proof b

These declarations correspond to the following inference rules for our logic.

` A ` B

` A ∧ B

` A ∧ B

` A

` A ∧ B

` B

` ⊥

` A

[A]
...

` B

` A ⇒ B

` A ⇒ B ` A

` B

So far, we have merely declared and applied constants with dependent types.

Using the new form of λ-abstraction at the level of types, we may also define new

terms with dependent types. For example, we may define inference rules for ¬ in

terms of those for ⊥ and ⇒.

not elim : Πa,b:o. proof a → proof (not a) → proof b

not elim = λa,b:o. λp:proof a. λq:proof (not a).

false elim b (imp elim a false q p)

This LF definition corresponds to the following derived rule in our logic.

` A ` ¬A

` B
7→

` ¬A

` A ⇒ ⊥
========

` A

` ⊥

` B

By representing a formula as a term M of type o and representing a proof of

that formula as a term N of type proof M , we can apply the typing rules for LF to

42

check syntactic well-formedness of the formula M as well as validity of the proof

N . This is the purpose of a logical framework — a general purpose system for

defining and implementing logics. An implementation of (a type-checker for) LF

can be used to check proofs in whatever logic we can encode as a LF signature.

2.7 COQUAND AND HUET’S CALCULUS OF CONSTRUCTIONS

All the previous languages may be combined into a single language: Coquand and

Huet’s Calculus of Constructions [28]. This language has the following syntax

(kinds) K ::= ∗ | Πα:K. K ′ | Πx:A. K

(types) A, B ::= α | Πx:A. B | ∀α:K. A | λα:K. A | A B | λx:A. B | A N

(terms) M, N ::= x | λx:A. M | M N | λα:K. M | M A

(contexts) Γ, ∆ ::= ε | Γ, x:A | Γ, α:K

and Figures 2.6 and 2.7 presents the type system.

The Calculus of Constructions (CC) corresponds to intuitionistic higher-order

logic. As such, it is extremely expressive, including as features, impredicative

polymorphism, type constructors, and dependent types. Due to this assortment

of features, the system as presented in Figures 2.6 and 2.7 is quite large. In the

next section we will see that the system can be much more compactly presented

by identifying a common pattern that occurs several times over in the language.

The Calculus of Constructions provides the extra expressiveness necessary to

extend our generic list type so that it is indexed by the list length. After doing

so, the following typing relationships should hold (after desugaring the syntax for

lists and naturals):

[] : List Nat 0

[4] : List Nat 1

[5, 3] : List Nat 2

43

Well-formed kinds Γ ` K kind

Star

Γ ` ? kind

Π-Form

Γ ` K kind Γ, α:K ` K ′ kind

Γ ` Πα:K. K ′ kind

Π-Form1

Γ ` A : ? Γ, x:A ` K kind

Γ ` Πx:A. K kind

Well-formed types Γ ` A : K

TyVar

α:K ∈ Γ

Γ ` α : K

Π-Form2

Γ ` A : ? Γ, x:A ` B : ?

Γ ` Πx:A. B : ?

∀-Form

Γ ` K kind Γ, α:K ` A : ?

Γ ` ∀α:K. A : ?

Π-Intro

Γ ` K kind Γ, α:K ` A : K ′

Γ ` λα:K. A : Πα:K. K ′

Π-Elim

Γ ` A : Πα:K. K ′ Γ ` B : K

Γ ` A B : K ′[B/α]

Π-Intro1

Γ ` A : ? Γ, x:A ` B : K

Γ ` λx:A. B : Πx:A. K

Π-Elim1

Γ ` A : Πx:A. K Γ ` N : A

Γ ` A N : K[N/x]

Conv1

Γ ` A : K Γ ` K ′ kind

K =β K ′

Γ ` A : K ′

Figure 2.6: The Calculus of Constructions. Rules for well-formed kinds and types

44

Well-formed terms Γ ` M : A

Var

x:A ∈ Γ

Γ ` x : A

Π-Intro2

Γ ` A : ? Γ, x:A ` M : B

Γ ` λx:A. M : Πx:A. B

Π-Elim2

Γ ` M : Πx:A. B Γ ` N : A

Γ ` M N : B[N/x]

∀-Intro

Γ ` K kind Γ, α:K ` M : B

Γ ` λα:K. M : ∀α:K. B

∀-Elim

Γ ` M : ∀α:K. B Γ ` A : K

Γ ` M A : B[A/α]

Conv2

Γ ` M : A Γ ` B : ?

A =β B

Γ ` M : B

Figure 2.7: The Calculus of Constructions. Rules for Well-formed terms.

With this goal in mind, we redefine the List type as follows:

List = λβ:?. λn:Nat .

∀α:Nat → ?. (Πm:Nat . β → α m → α (succ m)) → α zero → α n

Now we may define length-aware versions of the previous operations.

nil : ∀β:?.List β zero

nil = λβ:?. λα:Nat → ?. λc:(Πm:Nat . β → α m → α (succ m)). λe:α zero. e

cons : ∀β:?. Πn:Nat . β → List β n → List β (succ n)

cons = λβ:?. λn:Nat . λx:β. λxs:List β n.

λα:Nat → ?. λc:(Πm:Nat . β → α m → α (succ m)). λe:α zero.

c n x (xs α c e)

45

map : ∀β, γ:?. Πn:Nat . (β → γ) → List β n → List γ n

map = λβ, γ:?. λn:Nat . λf :β → γ. λxs:List β n.

λα:Nat → ?. λc:(Πm:Nat . γ → α m → α (succ m)). λe:α zero.

xs α (λm:Nat . λh:β. λt:α. c m (f h) t) e

append : ∀β:?. Πn, m:Nat .List β n → List β m → List β (plus n m)

append = λβ:?. λn, m:Nat . λxs:List β n. λys:List β m.

λα:Nat → ?. λc:(Πl:Nat . β → α l → α (succ l)). λe:α zero.

xs (λn:Nat . α (plus n m))

(λl:Nat . λx:β. λxs:α (plus l m). c (plus l m) x xs)

(ys α c e)

Note: In order to type-check append, it must be the case that plus zero m

is definitionally equal to m and that plus (succ l) m is definitionally equal to

succ (plus l m). The former condition requires that the notion of definitional

equality include η-conversion.

2.8 BARENDREGT’S λ-CUBE

The typing rules for the Calculus of Constructions can can be organized in two

different ways. In Figures 2.6 and 2.7 they are organized by syntactic categories:

where they fit into the typing hierarchy. However, we might also organize them so

that rules with similar structures are grouped together.

Star Var, TyVar Conv1, Conv2

Π-Form, Π-Form1,

Π-Form2, ∀-Form

Π-Intro, Π-Intro1,

Π-Intro2, ∀-Intro

Π-Elim, Π-Elim1,

Π-Elim2, ∀-Elim

46

The following changes serve to highlight the similarities of typing rules within each

of these boxes.

1. Merge the syntactic categories of terms, types, and kinds into a single syn-

tactic category (called terms). Also merge the syntactic categories of term

and type variables.

2. Write Π to indicate parametric polymorphism instead of ∀.

3. Introduce a new symbol 2 to name the type of all kinds and accordingly

replace the judgment Γ ` K kind with Γ ` K : 2

4. Introduce a special syntactic category of sorts, for special symbols that act

as the “type” of an entire class of “types”. Include ? and 2 in this category.

After making these changes, each of the above mentioned boxes of similar typing

rules collapses down to a single rule (shown in Figure 2.8). In the case of the box

of Π-Intro rules, we index the resulting rule by the set

R = {(?, ?), (2, ?), (2, 2), (?, 2)}.

Each element of R allows a particular form of parameterization and corresponds

to a distinct feature of the Calculus of Constructions: The element (?, ?) ∈ R al-

lows us to parameterize terms over terms (i.e., to form functions)4; The element

(2, ?) ∈ R allows us to parameterize terms over types as in System F (i.e., the

feature of parametric polymorphism); The element (2, 2) ∈ R allows us to param-

eterize types over types as in System Fω (i.e., the feature of type constructors);

The element (?, 2) ∈ R allows us to parameterize types over terms as in LF. (i.e.,

the feature of dependent types).

4Here, we mean terms in the original Calculus of Constructions sense, as opposed to types
and kinds.

47

Syntax

(sorts) s ::= ∗ | 2

(terms) M, N, A, B, K ::= x | λx:A. M | M N | Πx:A. B | s

(contexts) Γ, ∆ ::= ε | Γ, x:A

Typing rules Γ ` M : A

Star

Γ ` ? : 2

Var

x:A ∈ Γ

Γ ` x : A

Π-Form

(s, s′) ∈ R Γ ` A : s Γ ` B : s′

Γ ` Πx:A. B : s′

Π-Intro

Γ ` A : s Γ, x:A ` M : B

Γ ` λx:A. M : Πx:A. B

Π-Elim

Γ ` M : Πx:A. B Γ ` N : A

Γ ` M N : B[N/x]

Conv

Γ ` M : A Γ ` B : s A =β B

Γ ` M : B

Possible rules: R ⊆ {(?, ?), (2, ?), (2, 2), (?, 2)} and (?, ?) ∈ R

(�, ∗) ∈ R

(∗,�) ∈ R

(�,�) ∈ R

STLC

F
Fω

LF

CC

Figure 2.8: The λ-cube. A family of eight typed λ-calculi parameterized by R.

48

With the exception of (?, ?), these elements of R may be removed in any

combination to restrict the features of the language. In fact, each previous typed

λ-calculus in this chapter results from a particular selection of these features, as

shown in the following table.

(?, ?) (2, ?) (2, 2) (?, 2)

STLC X

System F X X

System Fω X X X

LF X X

CC X X X X

Because the decisions to keep or drop elements (2, ?), (2, 2), and (?, 2) from

R can be made independently, we can coordinatize the resulting languages along

three dimensions and map them to the corners of a cube. For this reason, the

resulting family of λ-calculi is known as the λ-cube. The full definition for all the

systems of the λ-cube may be found in Figure 2.8. Each corner corresponds to a

language studied in the literature (see Barendregt [4] for a full bibliography).

Though we have collapsed all syntactic categories into a single category called

terms, we informally use metavariables M and N differently than A and B and

K. We use metavariables A and B when we want to emphasize that a particular

λ-cube term is a type, in the sense that it may classify other expressions. We

only say “may” because it is possible that a type have no inhabitants, just as it is

possible that a proposition have no proofs. For example, in an empty context, false

propositions have no inhabitants. The next section will define this new notion of

type much more precisely.

Note that the new notion of type is more general than before — what we pre-

viously called either types or kinds, we now call types. Unless otherwise indicated,

we will now say “CC types” and “CC kinds” to indicate the prior concepts. We

tend to use the metavariable K to indicate a CC kind. The word “term” has a

49

similar capacity for confusion. For the prior notion, we will say “CC term”.

While discussing terminology, we note that the term expression will be (and

has been) used to refer to any bit of syntax, no matter in what syntactic category it

happens to belong. In the λ-cube or PTS, “expression” is coextensive with “term”

because there is but one syntactic category.

2.9 PURE TYPE SYSTEMS

Pure type systems are a natural generalization of the λ-cube. Instead of parame-

terizing only the Π-Intro typing rule, we parameterize everything in the language

having to do with sorts.

2.9.1 Specifications

Pure Type Systems are a family of typed λ-calculi. Each member of this family is

identified by a specification consisting of a set S of sorts (a.k.a. universes), a set

A ⊆ S × S of axioms, and a set R ⊆ S × S × S of rules. We discuss the role of

each specification component in turn.

In the Calculus of Constructions, both (proper) types and kinds act like types

in the more general sense that they classify other expressions in the language.

How might we characterize this more general notion of types? In the λ-cube, CC

types and CC kinds are distinguished not syntactically, but by the type system:

If Γ ` M : ? holds, then M is a CC type; If Γ ` M : 2 holds, then M is a CC

kind. In this way sorts in the λ-cube serve to name different universes of types.

For this reason sorts are sometimes called universes. This idea is made more clear

if we give sorts the same name as the universe they represent. For example, if we

rename ? as type and 2 as kind, then the judgments Γ ` M : type and Γ ` M : kind

become much clearer.

Because sorts are types of types, each sort sits atop a three-level structure in

50

the λ-cube. The sort ? classifies all proper CC types, which in turn classify all

well-formed CC terms. Similarly, the sort 2 classifies all proper CC kinds5, which

in turn classify all CC types. Therefore the following pattern arises.

:

w
el

l-
fo

rm
ed

te
rm

s

:
p
ro

p
er

ty
p
es

? :

w
el

l-
fo

rm
ed

ty
p
es

:

p
ro

p
er

k
in

d
s

Every well-formed expression in the Calculus of Constructions belongs somewhere

in this figure.

In PTS, we generalize from {?, 2} to an arbitrary set of sorts S. However, the

following theorem of PTS shows that the pattern observed above holds for PTS as

well.

Theorem 2.9.1 (Coherence)

If Γ ` M : A, then either A = s or Γ ` A : s for some sort s ∈ S.

This theorem says that every PTS-type is either a sort or belongs to the universe

named by a sort. In fact, we take this to be the definition of a type in PTS.

The next component of a PTS specification is the set A of axioms. Axioms

specify the typing relationship between sorts and thereby place type universes into

a hierarchical relationship. For example, in the λ-cube, we have the single axiom

? : 2, stating that the sort ? is a kind. This axiom orders the universes of CC

types and CC kinds as follows:

5The term “proper kinds” is redundant because there are no kind constructors in CC. However,
the designation is accurate.

51

: : ?: :

Note the induced overlap since proper types are a (proper) subset of well-formed

types.

In PTS, we generalize from the single axiom ? : 2 to a set of axioms A. Each

element (s1, s2) ∈ A corresponds to an axiom s1 : s2. In this way, the hierarchical

structure of type universes in a particular PTS is determined by its specification.

The third component of a PTS specification is the set R of rules. Rules enumer-

ate the permitted forms of dependency between various expressions in the language

in terms of the universes to which their types belong. We have already seen how

every possible form of dependence between CC terms and CC types corresponds

to a particular rule in the λ-cube specification R. For example, the dependence

of a CC type of kind K on a CC term of type A is permitted because the rule

(?, 2) ∈ R allows us to specialize the λ-cube typing rule Π-Form as follows:

Π-Form

(s, s′) ∈ R Γ ` A : s Γ ` B : s′

Γ ` Πx:A. B : s′
7→

Γ ` A : ? Γ ` K : 2

Γ ` Πx:A. K : 2

When we move to PTS, the Π-Form rule is similarly parameterized by a set

R of rules, but rules are triples instead of pairs.

Π-Form

(s1, s2, s3) ∈ R Γ ` A : s1 Γ, x:A ` B : s2

Γ ` Πx:A. B : s3

The reason for using triples is the following. When we talk about one entity

depending on another, there are actually three expressions involved: the expression

52

M denoting the dependent entity, the expression x denoting the entity upon which

the first depends, and the expression λx:A. M that witnesses the dependence. In

general, the types of these three expressions may belong to three different universes.

Section 2.10 demonstrates languages leveraging this extra measure of flexibility.

However, since many pure type systems of interest have the property that s2 = s3

for all (s1, s2, s3) ∈ R, it is common to abuse notation and write (s, s′) ∈ R as an

abbreviation for (s, s′, s′) ∈ R when discussing such a system.

2.9.2 Syntax

The syntax of PTS terms and typing contexts is as follows:

(terms) M, N, A, B ::= x | λx:A. M | M N | Πx:A. B | s

(contexts) Γ, ∆ ::= ε | Γ, x:A

The metavariable x stands for a program variable and the metavariable s stands

for a sort in S. As in the λ-cube, there is no distinct syntactic category for types.

The term Πx:A. B is a function type with domain A and codomain B(x) where

x names the value to which the function is ultimately applied. In this way, the

return type of a function may depend on the value of the actual parameter. When

x 6∈ FV (B) the type Πx:A. B indicates a regular (non-dependent) function space

and may be abbreviated as A → B.

Though we haven’t mentioned it previously, we should note here that typing

contexts Γ are ordered sequences of bindings rather than sets of bindings. The

order in such a sequence matters, because variables bound in the sequence may

appear in types that occur later in the sequence (to the right). For this reason,

it may not make sense to re-order the sequence of bindings lest some occurrence

of a variable move to a position preceding its binding. Again, we require that all

variables bound in a typing context are distinct.

53

Γ ` M : A

Axiom

(s1, s2) ∈ A

` s1 : s2

Var

Γ ` A : s

Γ, x:A ` x : A

Weak

Γ ` A : s Γ ` M : B

Γ, x:A ` M : B

Π-Form

(s1, s2, s3) ∈ R

Γ ` A : s1 Γ, x:A ` B : s2

Γ ` Πx:A. B : s3

Π-Intro

Γ ` Πx:A. B : s Γ, x:A ` M : B

Γ ` λx:A. M : Πx:A. B

Π-Elim

Γ ` M : Πx:A. B Γ ` N : A

Γ ` M N : B[N/x]

Conv

Γ ` M : A Γ ` B : s A =β B

Γ ` M : B

Figure 2.9: Typing rules for PTS

2.9.3 Typing Rules

The typing rules for PTS are shown in Figure 2.9. The A and R components

of the specification determine the typing relationship between sorts (rule Axiom)

and the permitted forms of dependency in the language (rule Π-Form).

Because Pure Type Systems are the formalism upon which the work presented

in this dissertation is based, we will spend some time describing each of its typing

rules

• Axiom: This rule states the typing relationship between sorts s ∈ S. Axiom

is actually a family of rules, one for each pair (s1, s2) ∈ A, where A is part

of the PTS specification.

54

• Var: This rule says that a variable has exactly the type that the typing

context says it does. The premise ensures that the type of the context entry

is well-formed as a type.

• Weak: This rule says we need not use all variables in the typing context.

Again, it must be the case that the type of the context entry is well-formed

as a type.

• Π-Form: This rule states the well-formedness conditions for Π-types. As

Π-types classify λ-abstractions, this rule determines the allowable forms of

dependence in the language (i.e., what types of things may be abstracted

over what other types of things). As with Axiom, this is actually a family of

typing rules, one for each triple (s1, s2, s3) ∈ R where R is part of the PTS

specification.

• Π-Intro: This rule says when a functional abstraction λx:A. M is well-

formed — whenever one can show that M has type B under the additional

assumption that x has type A. Furthermore, the type Πx:A. B of the abstrac-

tion must be a well-formed type. This is how the rule Π-Form (indirectly)

determines the allowable forms of λ-abstractions.

• Π-Elim: This rule gives the type of a function application. The function

must have a function type Πx:A. B and the argument must have the same

type as the function domain A. Note, however, that the return type of the

application is not simply B, but rather B[N/x]. This is because PTS is a

family of dependently typed calculi by default. The return type of a function

may depend on the argument to which that function is applied.

• Conv: The conversion rule determines the language’s notion of equality be-

tween types. As we saw in rule Π-elim, arbitrary terms may be lifted up

into types. In general, therefore, comparing two types for equality requires

55

comparing arbitrary terms for equality. The notion of equality used is β-

conversion. For β-conversion to be decidable, it is necessary that well-typed

terms are strongly normalizing. Because no evidence is required of the pro-

grammer indicating why A and B are equal, we say that they are equal by

definition. For this reason, the notion of equality (β-equality in this case)

used in the conversion rule is called definitional equality.

In many type systems for λ-calculi, it is assumed in the typing rules that typing

contexts are well-formed. However, in PTS, this requirement is made explicit in

that rules that inspect the typing context (Var and Weak) ensure that each type

A in the typing context is well-formed as a type in the preceding portion Γ of the

typing context (i.e., Γ ` A : s for some s).

Another difference between these typing rules and those of the λ-cube is that

the Var rule of the λ-cube is split into the Var and Weak rules of PTS. This

change helps emphasize the sequential nature of typing contexts.

2.10 PURE TYPE SYSTEM EXAMPLES

In this section, we discuss several examples of Pure Type Systems.

2.10.1 Systems in the λ-cube

As expected, all eight calculi in the λ-cube are examples of Pure Type Systems.

Each one has a specification with S = {?, 2} and A = {(?, 2)}. They differ only

with respect to the R component of the specifications. Each one has a specification

R ⊆ {(?, ?), (2, ?), (2, 2), (?, 2)} such that (?, ?) ∈ R.

That such a wide variety of typed λ-calculi appear as special cases of the PTS

formalism underscores the expressiveness of the formalism.

56

2.10.2 Hindley-Milner Polymorphism

So far we have not discussed any PTS in which s2 6= s3 for some (s1, s2, s3) ∈ R.

This section introduces one such example: a PTS with the same expressiveness

as Hindley-Milner polymorphism, due to Barthe and Coquand [6], who discuss

several other PTS examples.

Statically typed functional languages feature a form of parametric polymor-

phism along the lines of the System F. However, these languages also support type

inference so that the programmer need not write the type of every single vari-

able. Polymorphism is largely implicit in such languages, meaning that explicit

type-abstractions and type-applications need not be written out as they are in

System F.

However, inferring types as well as type-abstractions and type-applications for

System F is undecidable [95], so how can these languages provide implicit polymor-

phism? The answer is that polymorphic types are restricted to a particular form,

namely ∀α1 . . . αn. B where B contains no ∀. This restricted form of polymorphic

type is called a scheme and is given by the following grammar:

(schemes) σ ::= ∀α. σ | τ

(types) τ ::= α | τ → τ ′

Therefore, in the Hindley-Milner PTS we have sorts for types (?) and schemes

(4) as well as the usual one for kinds (2).

S = {?,4, 2}

Both types and schemes are classified by kinds.

A = {(?, 2), (4, 2)}

In order to capture in a PTS specification the restriction on occurrences of

∀, we distinguish between three types of “function space” that cover all possible

cases.

57

• (τ → τ ′) the abstraction of one monomorphic entity over another to form a

third

• (∀α. τ) the abstraction of a monomorphic entity over a type to form a poly-

morphic entity

• (∀α. σ) the abstraction of a polymorphic entity over a type to form a poly-

morphic entity

The Π-formation rules simply follow this enumeration. (As promised, s2 6= s3 in

the middle rule.)

R = {(?, ?, ?), (2, ?,4), (2,4,4)}

Let (SHM ,AHM ,RHM) and (SF ,AF ,RF) be the PTS specifications for the

Hindley-Milner PTS and the System F PTS, respectively. Then the following

mapping from SHM to SF extends to an embedding of the Hindley-Milner PTS

into the System F PTS. (Notice how the mapping sends AHM to AF and RHM to

RF .)

HM F

S : 2 7→ 2

?,4 7→ ?

A : (?, 2), (4, 2) 7→ (?, 2)

R : (?, ?, ?) 7→ (?, ?)

(2, ?,4), (2,4,4) 7→ (2, ?)

The rules for System F use the previously-mentioned abbreviation, so that, for

example, (?, ?) ∈ RF really means (?, ?, ?) ∈ RF .

Perhaps as important as the rules that appear in RHM are two rules that do

not appear, namely (2, ?, ?) and (2,4, ?). These rules would allow one to form a

“monomorphic term” by abstracting a (monomorphic or polymorphic) term over

a type, thereby directly contradicting the meaning of “monomorphic”.

58

2.10.3 Extended Calculus of Constructions

A particularly expressive type theory, called the Extended Calculus of Construc-

tions (ECC), was developed by Zhaohui Luo in his Ph.D. thesis [53]. It adds to

the Calculus of Constructions a predicative hierarchy of universes (sorts).

20 : 21 : 22 : · · · (where 2 = 20)

In this hierarchy, we may form Π-types as long as they are not of the form A =

Πx:2i. B where A : 2i, as this would indicate impredicativity.

The core of ECC can be cast as a PTS with the following specification:

S = {?} ∪ {2i | i ∈ N} A = {(?, 2i) | i ∈ N} ∪ {(2i, 2j) | i, j ∈ N ∧ i < j}

R = {(s, ?, s′) | s, s′ ∈ S} ∪ {(?, 2j, 2k) | j, k ∈ N ∧ j ≤ k}

∪ {(2i, 2j , 2k) | i, j, k ∈ N ∧ i, j ≤ k}

While this notation is suggestive of the Calculus of Constructions, a more

compact presentation of the same specification is possible.

S = N A = {(i, j) | i < j} R = {(i, 0, 0) | i ∈ N} ∪ {(i, j, k) | i, j ≤ k}

The PTS formalism is not expressive enough to include some features of ECC.

In particular, ECC includes a notion of subtyping called full cumulativity whereby

each type universe is a subtype of all higher universes (i.e., ? ⊆ 2j and 2i ⊆ 2j

whenever i < j). Our PTS specification approximates full cumulativity in the A

and R components. ECC also supports strong Σ-types in the predicative hierarchy

(Σ is to existential quantification and pairs as Π is to universal quantification and

functions).

Chapter 3

ERASURE SEMANTICS

In this chapter and the next, we develop an erasure semantics for Pure Type

Systems consisting of two type-respecting translations: (1) a program analysis

that introduces erasure annotations, and (2) a type-respecting erasure translation

that is guided by these annotations. We prove that our program analysis is correct

and optimal in the sense of marking as much of a program for erasure as possible,

and that our erasure translation is meaning preserving and removes computational

overhead.

Our approach is based upon an extrinsic view of computational irrelevance.

Type theoretically, our approach amounts to a distinction between non-computa-

tional and computational function spaces. This approach eliminates the code du-

plication problem inherent in previous approaches to combining dependent types

and erasure semantics that we discussed in Section 1.4.

We will see that the meaning of the non-computational function space is a

highly generic form of parametric polymorphism. The target language of the era-

sure translation is Alexandre Miquel’s Implicit Pure Type Systems, which includes

a ∀ type-former indicating implicit parametric polymorphism. Our erasure trans-

lation maps the non-computational function space to Miquel’s ∀.

3.1 ERASURE PURE TYPE SYSTEMS

At the heart of our approach to erasure semantics lies the framework of Erasure

Pure Type Systems (EPTS), an extension of Pure Type Systems (PTS) with anno-

60

tations indicating computationally irrelevant parts of a program. EPTS is one of

the contributions of this dissertation. The EPTS typing rules enforce a phase dis-

tinction between computationally relevant and irrelevant portions of the program,

guaranteeing that the former do not depend computationally on the latter.

Later we will define an erasure translation that strips out the parts of a program

marked as computationally irrelevant. The phase distinction in EPTS guarantees

that the erasure translation produces meaningful programs.

3.1.1 Syntax

The syntax of EPTS is that of PTS with erasure annotations added.

(terms) M, N, A, B ::= x | λτx:A. M | M@τN | Πτx:A. B | s

(contexts) Γ, ∆ ::= ε | Γ, x:τA

(annotations) τ ::= c | r

The metavariable τ ranges over erasure annotations. The annotation r means

“run-time”. Syntax with this annotation behaves just as it would in PTS without

any annotation. The annotation c means “compile-time” and indicates erasable

portions of a program. The notions of run-time and compile-time are used because,

in the erasure semantics, the c-marked portions are needed only at compile-time in

order to type-check the program and will be erased afterwards. Only the r-marked

portions will survive erasure and exist at run-time.

Every Π, λ, and @ is annotated with a τ . The annotation on a Π type distin-

guishes between two forms of function space.

• Πrx:A. B is the type of functions whose body may depend computationally

on the parameter x.

• Πcx:A. B is the type of functions whose body does not depend computation-

ally on the parameter x. In other words, the parameter x is computationally

irrelevant in the function body.

61

Again, the abbreviation A
τ
→ B stands for Πτx:A. B where x does not occur free

in B. Similarly, the annotation τ of a λ-abstraction λτx:A. M indicates the com-

putational relevance of the formal parameter x in the body M and the annotation

τ of an application M@τN indicates the computational relevance of the actual

parameter N . These annotations guide the erasure translation to be defined in

Section 3.3.

3.1.2 Type System

The type system for EPTS enforces two sorts of invariants.

• Type-correctness. The underlying PTS term, obtained by ignoring all

erasure annotations, is well-formed.

• Phase-correctness. A phase distinction is maintained between compile-

time and run-time entities in the term, whereby the latter may not depend

computationally on the former.

We achieve the type-correctness invariant by simply annotating the PTS typing

rules to obtain EPTS typing rules. This ensures that the underlying type structure

of EPTS is the same as that of PTS. Phase-correctness is our chief concern in this

chapter, though it will not be completely formalized and proved until Section 3.3.

Figure 3.1 contains the typing rules for EPTS. The typing judgment Γ ` M :τ A

is indexed by an erasure annotation τ indicating its mode. The r-mode judgment

Γ ` M :r A says that M is a well-formed run-time entity, while the c-mode judg-

ment Γ ` M :c A says that M is a well-formed compile-time entity. Similarly, we

saw in the previous section outlining the syntax of EPTS that context entries x:τA

are also annotated, indicating whether x is a run-time or a compile-time entity.

When discussing the components of a typing rule, the judgments above the

line are called its premises and the judgment below the line its conclusion. In a

62

Γ ` M :τ A

Axiom

(s1, s2) ∈ A

` s1 :r s2

Var

Γ ` A :c s

Γ, x:rA ` x :r A

Weak

Γ ` A :c s Γ ` M :r B

Γ, x:τA ` M :r B

Π-Form

(s1, s2, s3) ∈ R Γ ` A :r s1 Γ, x:rA ` B :r s2

Γ ` Πτx:A. B :r s3

Π-Intro

Γ ` Πτx:A. B :c s Γ, x:τA ` M :r B

Γ ` λτx:A. M :r Πτx:A. B

Π-Elim

Γ ` M :r Πτx:A. B Γ ` N :τ A

Γ ` M@τN :r B[N/x]

Conv

Γ ` M :r A Γ ` B :c s A =β B

Γ ` M :r B

Reset

Γ◦ ` M :r A

Γ ` M :c A

Figure 3.1: Typing rules for EPTS

63

judgment of the form Γ ` M :τ A, we call Γ its typing context, τ its mode, M its

subject, and A its object.

To enforce phase-correctness of EPTS terms, the type system must ensure

that all λ-binders and @-arguments marked with c are erasable. Recall from Sec-

tion 1.4.2 that erasability of λ-binders and @-arguments in the λ/@ graph must

be considered one connected component at a time. The flow analysis implicit in

the typing rules ensures that each λ and @ in a particular connected component

is annotated with the same τ . Therefore, if every λc-binder is a dummy binder,

then every @c-argument is erasable. So we need only check that for each abstrac-

tion λcx:A. M in the program, all free occurrences of x in M must appear either

inside a type annotation or inside an @c-argument (i.e., inside N ′ in an application

N@cN ′).

The typing rules enforce this invariant using the following technique, which we

learned from Pfenning [73], who credits Momigliano [66] with a similar idea.

1. Each λc-bound variable x is flagged as a compile-time entity when it is added

to the typing context (see the Π-Intro rule when τ is instantiated to c).

2. However, we require that the x is flagged as a run-time entity whenever we

reach an occurrence of x (see rule Var where the context entry must be r).

3. To overcome this mismatch for occurrences of x in positions that are com-

putationally irrelevant with respect to the overall λ-abstraction, this flag is

then locally reset (so that x is considered a run-time entity) whenever we

check a type annotation or @c-argument (see both the Π-Elim rule when τ

is instantiated to c and the Reset rule for typing in c-mode). The operation

of locally resetting context entry annotations is defined as follows.

Definition 3.1.1 (Context Reset Operation) Γ◦

ε◦ = ε (Γ, x:τA)◦ = Γ◦, x:rA

64

This strategy ensures that all occurrences of λc-bound variables occur in positions

marked for erasure, and therefore all λc-binders are dummy binders after we erase

their bodies.

Figure 3.2 shows a simple example derivation exhibiting all the features of

this strategy. Each λ-bound variable is initially annotated in the typing context

with the same annotation as its λ-binder. In particular, the variable a is initially

annotated in the typing context with annotation c. However, when we get down

to typing the occurrences of a, rule Var requires that its context annotation be r.

This tension is resolved by requiring all occurrences of a to happen in a compile-

time setting. In this example, the λ-bound a occurs only inside the argument of a

c-application (i.e., in a compile-time setting). Whenever we move into a compile-

time setting, we switch the mode of the typing judgment to c. The Reset rule says

how to type check in a compile-time setting: simply pretend that all compile-time

assumptions in the typing context are run-time assumptions. In this example, the

Reset rule changes the annotation on the context entry for a from c to r.

Principles of Computational Irrelevance The preceding discussion of the

type system focused on the intended application of erasure, but more fundamental

than the application of erasure is the notion by which it is justified in the first

place, namely, computational irrelevance. We now introduce four principles of

computational irrelevance and how they are reflected in the way that our type

system handles erasure annotations.

1. It is meaningful to compute the value of any term. In a pure λ-calculus,

computation is simply reduction, which may be carried out on any term. For

this reason, every syntactic form in the language (even sorts and Π-types)

appears as the subject of its own dedicated typing rule concluding in an

r-mode typing judgment (Var, Π-Intro, Π-Elim, Π-Form, Axiom).

2. A variable depends computationally on itself. If the subterm we want to

65

...

Γ ` f :r Πca:∗. a
r
→ a

...
Γ◦ ` a :r ∗ (Reset)
Γ ` a :c ∗

(Π-Elim)
Γ ` f@ca :r a

r
→ a

...
Γ ` x :r a

(Π-Elim)
f :rΠca:∗. a

r
→ a, a:c∗, x:ra ` f@ca@rx :r a

(Π-Intro)
f :rΠca:∗. a

r
→ a, a:c∗ ` λrx:a. f@ca@rx :r a

r
→ a

(Π-Intro)
f :rΠca:∗. a

r
→ a ` λca:∗. λrx:a. f@ca@rx :r Πca:∗. a

r
→ a

where

Γ = f :rΠca:∗. a
r
→ a, a:c∗, x:ra

and, therefore,

Γ◦ = f :rΠca:∗. a
r
→ a, a:r∗, x:ra

Figure 3.2: Fragment of a simple typing derivation in EPTS with the underlying

PTS specification of System F. (To save space, we omit the first premise in all

instances of the Π-Intro rule.)

66

compute consists solely of a variable, then we must be in a run-time context

where that variable is bound either to a pre-computed value or to another

expression whose value we can compute.

This principle is embodied in the typing rule Var. In that rule, we conclude

that x is a run-time entity (the concluding judgment is a r-mode judgment)

under the assumption that x is a run-time entity (the context entry is anno-

tated with r). The typing context in the typing judgment is a compile-time

approximation to the ultimate run-time contexts in which x will be evalu-

ated. Context entries annotated with r approximate actual value bindings at

run-time, but those annotated with c have no run-time counterpart, because

they exist only for type-checking purposes.

3. No term depends computationally on its type. Just as the typing context

approximates the eventual run-time contexts in which a term may be eval-

uated, the type of a term approximates the value that it computes in one

of those run-time contexts. Given this view of typing rules, the principle in

question simply states that everything needed to compute the value of a term

is found in the term itself and in the context in which it is evaluated. One

need not foresee the value to which a term evaluates in order to compute

that very same value.

Several typing rules have a premise in c-mode rather than r-mode because of

this principle. Rules Var, Weak, Π-Intro, and Conv each have a premise

of the form Γ ` A :c s. The purpose of each such premise is to check that A

is well-formed as a type of some other entity in the rule. Because A occurs in

the remainder of the rule only as the type of other variables or as the object

(main type) of other judgments, we conclude that the subject of the rules’

conclusion judgment does not depend computationally on A, and therefore

we may type A in c-mode. In particular, note that the domain annotation

67

A of the λ-abstraction in the rule Π-Intro is considered as a compile-time

entity.

4. Computational relevance is relative. As argued in Section 1.4, computational

relevance is a relative notion. In other words, we should not ask in absolute

terms whether a particular term is computationally relevant, but rather we

should ask whether a subterm of a larger term M is computationally relevant

with respect to (the task of computing the value of) M .

While typing N under Γ as a subterm of M , the annotations on context

entries in Γ indicate which of the variables that may appear in N will be

assigned at run-time (after erasure) to values at the time computation of N

begins. An entry x:cA in Γ indicates that x will not be bound to a value at

the time N is evaluated.

This is the reason that Reset, the sole typing rule with a c-mode conclusion,

is defined in terms of a single r-mode premise. One types N in a compile

time setting by simply promoting all computationally irrelevant context en-

tries (marked with c) to computationally relevant ones (marked with r). This

change is a “promotion” because the Var rule only recognizes computation-

ally relevant context entries.

Of all the rules, the Π-Form rule is perhaps the least intuitive. Since Π is a

type former, one might expect this rule to use the c rather than r judgment form.

However, in a dependently typed language, terms may evaluate (at run-time) to

types, so the mode r is appropriate, as per Principle 1. Another possible surprise

is that the context entry for x is marked with r rather than τ in the typing context

of B. This is because the binding site of the x will never be erased: The only

purpose of the context mark c is to enforce erasability of a λc-binder.

68

Type-Correctness. The type-correctness invariant is easily seen to hold by sim-

ply ignoring all erasure annotations in Figure 3.1. The resulting rules are exactly

those of PTS from Figure 2.9, plus an additional, useless typing rule

Γ ` M : A

Γ ` M : A

resulting from ignoring annotations in the EPTS Reset rule (if we ignore all

erasure annotations, Γ and Γ◦ correspond to the same underlying PTS context).

Phase distinctions in type theory. Note that our notion of phase distinction

is different from another notion of phase distinction found in the literature [16, 40],

whereby compile-time entities are prevented from depending computationally on

run-time entities. The motivation for this other form of phase distinction comes

from languages that admit non-terminating run-time entities. In order to preserve

decidability of type-checking, all such divergent terms must be prevented from

appearing in types, where they would ruin the decidability of type equality.

In contrast, we prevent run-time entities from depending computationally on

compile-time entities. Our motivation is that only run-time entities will survive

the erasure phase, and therefore a run-time entity will be impossible to compute

if it depends computationally on a previously erased compile-time entity.

3.1.3 Semantics

The default operational semantics of EPTS is simply β-reduction. We do not

commit to any particular evaluation order, so the single-step reduction relation is

non-deterministic.

Actually this is only one of two different operational semantics for EPTS. The

remainder of this paper introduces an erasure semantics with potential for more

efficient execution.

69

3.1.4 Meta-theory

Figure 3.4 on page 77 concisely presents all of the meta-theory of both EPTS (in

the top half) and the erasure translation (in the bottom half). Each box in the

figure contains a particular result of the meta-theory. As the development follows

closely that of Pure Type Systems, we focus on the changes due to introducing

erasure annotations. In this section we state each result, discuss its meaning, and

outline a brief sketch of the proof. Full proofs of all the results mentioned here are

found in Appendix A.1.

Relative Strength of Judgment Modes

We first investigate the relative strength of typing judgments and typing assump-

tions in c-mode and r-mode. Because the c-mode typing judgment is defined in

terms of context reset, we start with properties of that operation.

The context reset operation is idempotent.

Lemma 3.1.2 (Reset Idempotence)

Γ◦◦ = Γ◦

Once all context entry annotations have been set to r, it does not accomplish

anything to set them all to r again. This is easily proved by induction on Γ.

Because run-time variables may be used in places that compile-time variables

may not, the assumption x:rA is stronger than x:cA. For this reason, context reset

strengthens the typing context and, contravariantly, weakens the overall judgment.

Lemma 3.1.3 (Reset Weakening)

Γ, ∆ ` M :τ A

Γ◦, ∆ ` M :τ A

70

Splitting the typing context into Γ and ∆ in the statement of this lemma yields

a more useful induction hypothesis. Proof Sketch: The proof is by structural

induction on the typing derivation. The interesting cases are Reset, where we

appeal to the idempotence of context reset operation, and Var and Weak, which

proceed by cases on whether ∆ = ε or not.

An immediate consequence of the reset weakening lemma is that it is easier to

prove Γ ` M :c A than Γ ` M :r A because the former is equivalent to Γ◦ ` M :r A,

in which we have a stronger typing context. This observation is embodied in an

admissible phase-weakening rule.

Corollary 3.1.4 (Phase Weakening)

Γ ` M :r A

Γ ` M :c A

The upshot of these results is that assumptions and conclusions are stronger in

r-mode than c-mode. This is because, in general, fewer resources from the original

program are available at run-time due to erasure.

Substitution Lemma

Next, we prove a substitution lemma.

Lemma 3.1.5 (Substitution)

Γ, x:τ1A, ∆ ` M :τ2 B Γ ` N :τ1 A

Γ, ∆[N/x] ` M [N/x] :τ2 B[N/x]

The only novelty here is that the mode τ1 of the typing judgment for the term N

to be substituted must match the context entry mark of the variable x for which

it will be substituted. Also, the mode τ2 of the subject M is the same before and

after the substitution.

71

Proof Sketch: By induction on the typing derivation. The interesting cases are

Reset (requiring Phase Weakening) and Var and Weak (each proceeding by

cases of whether ∆ = ε or not).

Coherence Lemma

The Coherence Lemma says that our type system is internally coherent in the

following way — If one can derive that M has type A, then one can also prove

that A is a type.

Lemma 3.1.6 (Coherence)

Γ ` M :τ A

(∃s) A = s ∨ Γ ` A :c s

Proof Sketch: By structural induction on the typing derivation. The interesting

cases are Reset, using Reset Idempotence, and Π-Elim, which makes use of Phase

Weakening and the Substitution Lemma.

Subject Reduction

Finally, we prove that reduction preserves types. This result is known as subject

reduction.

Lemma 3.1.7 (Subject Reduction)

Γ ` M :τ A M →β N

Γ ` N :τ A

Note that the mode τ of the typing judgment is preserved as well as the type.

Proof Sketch: By structural induction on the typing derivation. The most

interesting case is Π-Elim in which we use the Substitution Lemma.

72

3.2 IMPLICIT PURE TYPE SYSTEMS

The target language of the erasure translation is Implicit Pure Type Systems

(IPTS), a family of implicitly typed calculi with both explicit and implicit de-

pendent products. This calculus is modeled after Miquel’s Implicit Calculus of

Constructions (ICC) [64, 65].

The syntax of IPTS is as follows:

(terms) M, N, A, B ::= x | λx. M | M N | Πx:A. B | ∀x:A. B | s

(contexts) Γ, ∆ ::= ε | Γ, x:A

Note the distinction between Πx:A. B (explicit product) and ∀x:A. B (implicit

product) as well as the omission of domain labels from λ-abstractions.

The difference between explicit and implicit products shows up in the type

system (Figure 3.3). Whereas the explicit product is introduced by functional ab-

straction (rule Π-Intro) and eliminated by function application (rule Π-Elim),

no syntactic cues indicate introduction or elimination of the implicit product (rules

∀-Intro and ∀-Elim). This is what is meant by the terms “explicit” and “im-

plicit”.

Another way to think of the difference between Π and ∀ is that Π indicates

functional abstraction (as usual) and ∀ indicates a highly generic form of para-

metric polymorphism. We say that ∀ indicates polymorphism because the ∀-Elim

rule shows that a term M of type ∀x:A. B also has the type B[N/x] whenever N

has type A. So M can take on many types and is therefore polymorphic. This

notion of polymorphism is parametric because all instantiations M : B[N/x] of a

polymorphic term M : ∀x:A. B behave in the same way, because they are all the

same term, namely M .

This form of parametric polymorphism is highly generic because the parameter

x : A over which M is polymorphic can be just about anything. If A is a sort

(like ? in System F), then x is a type and we have the familiar notion of type-

73

Γ ` M : A

Axiom

(s1, s2) ∈ A

` s1 : s2

Var

Γ ` A : s

Γ, x:A ` x : A

Weak

Γ ` A : s Γ ` M : B

Γ, x:A ` M : B

Π-Form

(s1, s2, s3) ∈ R

Γ ` A : s1 Γ, x:A ` B : s2

Γ ` Πx:A. B : s3

∀-Form

(s1, s2, s3) ∈ R

Γ ` A : s1 Γ, x:A ` B : s2

Γ ` ∀x:A. B : s3

Π-Intro

Γ ` Πx:A. B : s Γ, x:A ` M : B

Γ ` λx. M : Πx:A. B

∀-Intro

x 6∈ FV (M)

Γ ` ∀x:A. B : s Γ, x:A ` M : B

Γ ` M : ∀x:A. B

Π-Elim

Γ ` M : Πx:A. B Γ ` N : A

Γ ` M N : B[N/x]

∀-Elim

Γ ` M : ∀x:A. B Γ ` N : A

Γ ` M : B[N/x]

Conv

Γ ` M : A Γ ` B : s A =β B

Γ ` M : B

Figure 3.3: Typing rules for IPTS. Note that ∀-Intro and ∀-Elim are not syntax-

directed.

74

polymorphism. If A is a type such as Nat, then the type ∀x:Nat. B expresses

polymorphism over the number x. The possibilities are only limited by the rules

of type-formation, embodied by the R component of the underlying PTS speci-

fication. Therefore this notion of polymorphism is generic in the type A of the

parameter x over which one may form polymorphic entities.

IPTS is both more general and less general than Miquel’s ICC. It is more

general because IPTS is defined in terms of an arbitrary PTS specification whereas

ICC commits to a particular specification, namely the same specification as Luo’s

Extended Calculus of Constructions (ECC)1. It is less general because (1) ICC

uses βη-conversion instead of β-conversion in determining type equality, (2) ICC

supports a notion of universe subtyping called cumulativity as in ECC, and (3)

ICC contains extra typing rules ensuring η subject reduction.

ICC also has a rich (derived) notion of subtyping that orders the many types

one may assign to a particular Church encoding in a natural way according to how

precisely they characterize their inhabitants [64]. As it does not relate to our goals,

we have not studied subtyping in IPTS.

Miquel’s stated motivation for developing ICC was to overcome the “inherent

verbosity” of programs in “PTS-based formalisms”. He notes that this verbosity

makes PTS programs more difficult to write than programs written using the

implicit polymorphism of “ML-style languages” and “tends to hide the real com-

putational contents of proof-terms behind a lot of ‘noise’ ”. Though he hints at a

distinction, this motivation seems to conflate two different issues:

1. Some subterms in a program are specificationally redundant (i.e., completely

determined by the type system given their context) and therefore may be

inferred even if omitted.

2. Some subterms in a program are computationally irrelevant (i.e., needed

1See Section 2.10.3 for an explanation of the Extended Calculus of Constructions.

75

for type-checking but cannot affect the ultimate value of the program) and

therefore may be elided before evaluation.

Towards the end of the paper introducing ICC, Miquel gives an example of a

function parameter that is redundant but not irrelevant, and concludes in a foot-

note that these two issues are largely independent. We agree. In our view, ICC

addresses issue 2 but not issue 1.

For our purposes, IPTS turns out to be a perfect target language for erasure.

The fact that IPTS supports parametric polymorphism will provide an insight into

the meaning of the non-computational function space Πcx:A. B of EPTS.

3.3 THE ERASURE TRANSLATION

The erasure translation from EPTS to IPTS strips out all the portions of a program

annotated as computationally irrelevant. This translation is defined as follows:

Definition 3.3.1 (Erasure) Γ• and M•

ε• = ε (Γ, x:τA)• = Γ•, x:A• x• = x s• = s

(Πrx:A. B)• = Πx:A•. B• (λrx:A. M)• = λx. M• (M@rN)• = M• N•

(Πcx:A. B)• = ∀x:A•. B• (λcx:A. M)• = M• (M@cN)• = M•

Note that both λc-binders and @c-arguments are erased in the translation, as are

domain type annotations in λr-abstractions. Note also that Πc translates to ∀.

The fact that this translation is sensible (as we prove in the remainder of this

section) shows that Πc actually indicates parametric polymorphism in EPTS. This

supports our claim that parametric polymorphism can be understood entirely in

terms of erasure.

76

3.3.1 Meta-theory

The bottom half of Figure 3.4 sketches out the meta-theory of erasure. We now

discuss the significance of the results listed there.

Post-erasure Variable Occurrences

A key lemma characterizes which variables’ occurrences in a term may survive

erasure: they are all r-annotated in the typing context.

Definition 3.3.2 (Context variables and run-time variables)

CV (Γ) RV (Γ)

CV (ε) = ∅ RV (ε) = ∅

CV (Γ, x:τA) = CV (Γ) ∪ {x} RV (Γ, x:rA) = RV (Γ) ∪ {x}

RV (Γ, x:cA) = RV (Γ)

Lemma 3.3.3 (Variable Survival)

Γ ` M :r A

FV (M•) ⊆ RV (Γ)

The proof is by a straightforward induction on the typing derivation.

Preservation of Reductions

Since computation happens by substitution, we first show that erasure commutes

with substitution.

Lemma 3.3.4 (Erasure/Substitution Commutativity)

(M [N/x])• = M•[N•/x]

Proof: Erasure/Substitution Commutativity is proved by straightforward induc-

tion on M .

77

Γ◦◦ = Γ◦
Γ,∆ ` M :τ A

Γ◦,∆ ` M :τ A

Γ ` M :r A

Γ ` M :c A

Γ, x:τ1A, ∆ ` M :τ2 B Γ ` N :τ1 A

Γ,∆[N/x] ` M [N/x] :τ2 B[N/x]

Γ ` M :τ A

(∃s) A = s ∨ Γ ` A :c s

Γ ` M :τ A M →β N

Γ ` N :τ A

Γ ` M :r A

FV (M•) ⊆ RV (Γ)

(M [N/x])
•

= M•[N•/x]
Γ ` M :τ A M →β N

M• →β N• ∨ M• = N•

Γ ` M :τ A M →∗

β N

M• →∗

β N•

Γ ` M :τ1 A ∆ ` N :τ2 B
M =β N

M• =β N•

Γ ` M :τ A M• →β E

(∃N) N• = E ∧ M →+

β N

Γ◦• = Γ•
Γ ` M :τ A

Γ• ` M• : A•

Reset
Idempotence

Reset
Weakening

Phase
Weakening

Substitution
Lemma Coherence

Subject
Reduction

Variable
Survival

Erasure/Substitution
Commutativity

Erasure Reflects Reductions

Reset
Annihilation

Erasure
Respects Types

Erasure
Respects Reductions

Figure 3.4: Identities and admissible rules in the meta-theory of EPTS (above the

dotted line) and erasure (below it). Arrows indicate proof dependencies.

78

We then show that erasure respects reduction in the following sense: Each

reduction step of a well-formed term in EPTS maps to either one or zero reduction

steps in IPTS.

Theorem 3.3.5 (Erasure Respects Reduction)

Γ ` M :τ A M →β N

M• →β N• ∨ M• = N•

Proof: The proof that erasure respects reductions proceeds by straightforward

induction over the typing derivation. The interesting cases are Π-Intro and Π-

Elim, where we proceed by cases on τ . In the Π-Elim case when the reduction

step is β, the proof depends on Erasure/Substitution Commutativity when τ = r

and on Variable Survival when τ = c.

The proof that erasure respects reduction shows that some EPTS reductions

in fact do no work when viewed through the lens of erasure. This is precisely why

we want an erasure semantics — to eliminate the work associated with run-time-

irrelevant portions of a program. Examination of the proof shows where erasure

eliminates work. As expected, the eliminated work includes erased redices (terms of

the form (λcx:A. M)@cN , which erase to just M•) as well as unnecessary reduction

steps inside domain-annotations and erased arguments.

The following corollaries follow immediately.

Corollary 3.3.6

Γ ` M :τ A M →∗
β N

M• →∗
β N•

Γ ` M :τ1 A ∆ ` N :τ2 B

M =β N

M• =β N•

Note: the proof of the latter requires the Church-Rosser theorem for EPTS.

79

Preservation of Typing

Again, we first investigate the properties of the context reset operation. The

erasure operation annihilates it.

Lemma 3.3.7 (Reset Annihilation)

Γ◦• = Γ•

Proof: By straightforward induction on Γ.

Then we prove that erasure respects types.

Theorem 3.3.8 (Erasure Respects Types)

Γ ` M :τ A

Γ• ` M• : A•

Proof: We prove this theorem by structural induction on the typing derivation.

The interesting cases are:

• Reset, in which Reset Annihilation is used to simplify Γ◦•;

• Π-Intro, in which Variable Survival is used to ensure the premise x 6∈

FV (M•) of the ∀-Intro rule of IPTS;

• Π-Elim, in which Erasure/Substitution Commutativity is used to simplify

the type of the application; and

• Conv, in which Coherence and the fact that erasure preserves conversion

are used to establish the premise A• =β B• of the IPTS Conv rule.

Reflection of Reductions

Next we show that a reduction of a post-erasure IPTS term can be reflected back

into one or more EPTS reductions.

80

Theorem 3.3.9

Γ ` M :τ A M• →β E

(∃N) N• = E ∧ M →+
β N

Proof: By structural induction on the typing derivation. The interesting case is Π-

Elim when the @-annotation is τ = r and the reduction is a β-step (λx. P •) N0
• →β

P •[N0
•/x]. In this case, M = M0@

rN0 and M0
• = λx. P • and E = P •[N0

•/x]. The

only way M0
• can be λx. P • is if M0 is a λrx:B. P nested under some (perhaps zero)

“frames” of the form λcy:C. [] or []@cN . Because the type of M0 is Πrx:A. B, we

know the top-most (outer-most) frame cannot be a λc. Similarly, for typing reasons,

the bottom-most (inner-most) frame cannot be a @c, because it would be applied to

a λr. Therefore, if there are any frames at all on top of λrx:B. P , then there are at

least two, and at some point there is a λc frame just underneath a @c one, forming

a redex. If we reduce this redex, the rest of the frame structure remains intact,

and the number of frames decreases by two. We may repeat this process until no

intermediate frames are left. Then M0 →∗
β λrx:B[θ]. P [θ] where θ is the sequence

of substitutions effected by the sequence of reductions. Because θ is comprised

solely of substitutions for λc-bound variables, Variable Survival tells us there will

be no occurrences of these variables inside P •. Therefore P [θ]• = P •[θ•] = P •.

Let N = P [θ][N0/x]. Then

N• = P [θ][N0/x]• = P [θ]•[N0
•/x] = P •[N0

•/x] = E

and M →+
β N because

M = M0@
rN0 →

∗
β (λrx:B[θ]. P [θ])@rN0 →β P [θ][N0/x] = M ′,

thereby completing this case of the proof. 2

This proof shows that certain reduction steps in IPTS (of post-erasure EPTS

terms) require additional reductions in the original EPTS term before an EPTS

reduction corresponding to the IPTS reduction can take place. This means that

some of the work that erasure avoids is unavoidable, in general, without erasure.

81

This theorem says that any post-erasure reduction corresponds to a potential

pre-erasure reduction. In other words, the erasure of a well-formed EPTS term

cannot reduce in IPTS in a strange way that was not possible in EPTS.

3.3.2 Erasure Semantics

The erasure semantics for EPTS is simply this: First erase and then execute in

IPTS. The meta-theory supports the claim that this is a good erasure semantics.

Theorem 3.3.5 : erasure eliminates some old work

Theorem 3.3.8 : erasure does not introduce any new work

Theorem 3.3.9 : erasure preserves the meanings (types) of programs

One final result supports the validity of our erasure semantics for EPTS. We

would not want a PTS program to compute to a value while some annotation of

it diverges under the erasure semantics. Thankfully, this cannot happen.

Theorem 3.3.10 (Erasure Preserves Strong Normalization)

For a strongly normalizing PTS, any well-typed term in the corresponding EPTS

erases to a strongly normalizing IPTS term.

Proof: Suppose there is an infinite reduction sequence in IPTS starting with the

erasure of a well-typed term M in EPTS. Because erasure reflects reductions and

we have EPTS Subject Reduction, this reflects back onto an infinite reduction

sequence in EPTS starting with M . Because [(the erasure-annotation-forgetting

map from EPTS to PTS) preserves both reduction steps and typing judgments,

we obtain an infinite reduction sequence in the underlying PTS starting with the

well-typed term M [. But this contradicts our assumption that the underlying PTS

is strong-normalizing. 2

82

3.4 IMPLEMENTATION

The similarity between the typing rules for PTS and EPTS indicates that using

types to track computational irrelevance does not require a radical restructuring

of the typing rules. One would hope, then, that it is similarly straightforward to

extend an existing type-checker to handle erasure annotations. We have indeed

found this to be the case in a prototype implementation of a simple dependently

typed language.

One must add τ annotations to the abstract syntax and some extra logic to

the type-checker to handle these annotations properly. As for efficiency of type-

checking, the only potential increase in the time complexity comes from the context

reset operation. The naive implementation of this operation, as defined in Defini-

tion 3.1.1, takes time proportional to the length of the typing context.

However, our implementation uses a clever representation of typing contexts

that renders context reset a constant-time operation. The new representation of

typing contexts is as follows (where i denotes an integer):

(typing contexts) Γ ::= JΓ̂Ki

(internal contexts) Γ̂ ::= ε̂ | Γ̂, x:iA

This representation of typing contexts consists of a pair of an integer i and an

underlying context Γ̂ annotated with integers rather than erasure annotations.

The top-level integer is called the reset count because it counts how many times

prefixes of Γ have been reset. Every integer annotation on context entries is either

(a) less than or equal to the reset count (representing the annotation r) or (b) equal

to the reset count plus one (representing the annotation c). More concisely, for

every cleverly represented typing context JΓ̂Ki, it must be the case that j ≤ i + 1

for each each integer annotation j in Γ̂. This invariant must be maintained at all

times.

Given this representation, the original context operations are re-implemented

83

Representation of typing contexts

(typing contexts) Γ ::= JΓ̂Ki

(internal contexts) Γ̂ ::= ε̂ | Γ̂, x:iA

Core operations

ε

ε = Jε̂K0

Γ, x:τA

JΓ̂Ki, x:cA = JΓ̂, x:i+1AKi

JΓ̂Ki, x:rA = JΓ̂, x:iAKi

Γ◦

JΓ̂K◦i = JΓ̂Ki+1

x:rA ∈ Γ

x:rA ∈ JΓ̂Ki iff x:jA ∈ Γ̂ and j ≤ i

Figure 3.5: Clever Implementation of Typing Contexts

as shown in Figure 3.5. Clearly the context reset operation is a constant time

operation in this representation. Inspection reveals that each operation preserves

the above-mentioned invariant.

We must show that this representation is equivalent to the naive representation

introduced in Section 3.1.1 with the definition of context reset (Definition 3.1.1).

We will state this equivalence in terms of two mappings going back and forth

between the two different representations.

The mapping from the naive representation to the clever implementation is

effectively given by the previously stated re-implementations of ε and Γ, x:τA in

this section. We write this mapping as Γ].

Definition 3.4.1 Γ]

ε] = Jε̂K0

(Γ, x:cA)] = JΓ̂, x:i+1AKi

where Γ] = JΓ̂Ki

(Γ, x:rA)] = JΓ̂, x:iAKi

where Γ] = JΓ̂Ki

We define the mapping from the clever to the naive implementation as follows:

84

Definition 3.4.2 Γ[

Jε̂K[
i = ε JΓ̂, x:jAK[

i =





JΓ̂K[

i, x:rA if j ≤ i

JΓ̂K[
i, x:cA otherwise

We think of the [mapping as defining the meaning of a cleverly represented

context. As there may be multiple cleverly represented contexts with the same

meaning, the appropriate notion of equality for cleverly represented contexts is

equality of their meanings (i.e., their corresponding naive representations).

Definition 3.4.3 Γ ∼= ∆

Γ ∼= ∆ iff Γ[= ∆[(i.e., JΓ̂Ki
∼= J∆̂Kj iff JΓ̂K[

i = J∆̂K[
j)

We are abusing notation somewhat in using the metavariable Γ to stand for

typing contexts in both the naive and clever representations. However, it should

always be apparent from context which representation is meant.

We prove that the naive representation of typing contexts is isomorphic to

the clever representation quotiented by the ∼= relation. The term “isomorphic”

means that there is a bijection between the two sets that respects each of the core

operations on typing contexts.

First, we must show that the basic typing context operations are well-defined

on ∼=-equivalence classes of cleverly represented typing contexts.

Lemma 3.4.4 If Γ ∼= ∆ then Γ, x:τA ∼= ∆, x:τA.

Lemma 3.4.5 If Γ ∼= ∆ then Γ◦ ∼= ∆◦

Lemma 3.4.6 If Γ ∼= ∆ then x:rA ∈ Γ iff x:rA ∈ ∆

This means that out of all the cleverly represented Γs with the same meaning

(i.e., corresponding to the same naively represented ∆), it doesn’t matter which Γ

85

we pick to represent ∆ because all the operations on cleverly represented typing

contexts are meaning preserving.

Next, we must show that both mappings between representations respect the

structure of typing contexts.

Theorem 3.4.7 (Soundness) The following identities hold:

ε = ε[Γ[, x:τA = (Γ, x:τA)[(Γ[)◦ = (Γ◦)[x:rA ∈ Γ iff x:rA ∈ Γ[

Theorem 3.4.8 (Completeness) The following identities hold:

ε ∼= ε] Γ], x:τA ∼= (Γ, x:τA)] (Γ])◦ ∼= (Γ◦)] x:rA ∈ Γ iff x:rA ∈ Γ]

In mathematical parlance, the] and [mappings are homomorphisms in the ab-

stract algebra of typing contexts. This means that they are meaningful as mappings

between algebras as opposed to merely being meaningful as mappings between sets.

Finally, we must show that the mappings] and [are inverses of each other.

Lemma 3.4.9 ([undoes])

(Γ])[= Γ

Corollary 3.4.10 (] undoes [)

Γ ∼= ∆ =⇒ (Γ [)] ∼= ∆

This means that the [and] homomorphisms witness an isomorphism between the

naive and clever algebras of typing contexts.

In summary, these results (which are all proved in Appendix A.3) show that the

naive and clever implementations of typing contexts are functionally equivalent.

However, the clever version is more efficient, so it is the one we prefer to implement.

86

3.5 CONCLUSIONS

Languages combining dependent types with erasure semantics sometimes require

users to maintain more than one copy of a datatype to ensure erasure of some of its

values but not others. This problem stems from the treatment of computational

irrelevance as an intrinsic property of data, rather than a property of the way that

data is used.

By treating computational irrelevance extrinsically — in particular, by distin-

guishing functions that may not depend computationally on their arguments from

those that may — we arrive at a flexible notion of erasure semantics that general-

izes both type erasure and proof erasure (i.e., program extraction) and overcomes

the code duplication problem. The meta-theory of the erasure translation shows

that the resulting erasure semantics is both sound and useful for eliminating extra

work.

The erasure translation also exposes the fact our notion of erasure corresponds

to a highly generic form of parametric polymorphism over arbitrary sorts of en-

tities (types, proofs, numbers, etcetera). Because parametric polymorphism is a

familiar concept from typed functional programming languages, we hope that pro-

gramming in an EPTS-like language will be somewhat natural for ML and Haskell

programmers.

Chapter 4

ERASABILITY ANALYSIS

The previous chapter showed how to equip Pure Type Systems with an erasure

semantics. This erasure semantics is entirely guided by annotations in EPTS

terms. However, manual program annotation may be undesirable or infeasible in

some situations (e.g., for large legacy programs). For this reason we would also

like to support programs written in an erasure-oblivious style.

In this chapter, we develop an automatic program analysis that determines

which portions of a program should be erased. The output of this analysis is

a well-annotated (i.e., phase correct) EPTS term. We prove that our analysis

decorates well-typed PTS terms with erasure annotations that mark as much of a

program for erasure as possible.

4.1 AN EXAMPLE

Figure 4.1 shows in greater detail how the following example program goes through

the various stages of analysis and erasure depicted in Figure 1.4. The erasure phase

is straightforward, but the analysis phase is more involved.

(∗ in PTS ∗)

let f = λx:N. 5 in

let g = λy:N. 9 in

let h = λz:N → N. z 7 in

(h f, h g)

=⇒

(∗ in IPTS ∗)

let f = 5 in

let g = 9 in

let h = λz. z in

(h f, h g)

88

(A)

=⇒

let f = λα1x:N. 5 in

let g = λα2y:N. 9 in

let h = λα3z:N
α7→ N. z@α47 in

(h@α5f, h@α6g)

(B)

=⇒

(α7 = α4) ∧ (α3 = α5) ∧

(α1 = α7) ∧ (α3 = α6) ∧

(α2 = α7) ∧ (¬α3)

(C)






(α7 = α4) ∧ (α3 = α5) ∧ (α1 = α7) ∧ (α3 = α6) ∧ (α2 = α7) ∧ (¬α3)

↪→ (α7 = α4) ∧ (false = α5) ∧ (α1 = α7) ∧ (false = α6) ∧ (α2 = α7)

↪→ (α7 = α4) ∧ (α1 = α7) ∧ (α2 = α7)

↪→ α3, α5, α6 := false; α7, α4, α1, α2 := true;

(D)

=⇒

let f = λcx:N. 5 in

let g = λcy:N. 9 in

let h = λrz:N
c
→ N. z@c7 in

(h@rf, h@rg)

(E)

=⇒

let f = 5 in

let g = 9 in

let h = λz. z in

(h f, h g)

Figure 4.1: Sketch of erasability analysis and erasure for an example program.

Erasability analysis consists of (A) annotation with annotation variables; (B) con-

straint generation; (C) optimal constraint solution; and (D) solution-determined

erasure annotation. Erasure consists of (E) an annotation-guided erasure phase.

89

In this example, the analysis identifies f and g as syntactically constant functions

and identifies the argument 7 to which they are applied. These parts of the program

are then marked for erasure. In a more realistic program, these erasable portions

can be quite large.

The first step of analysis is to annotate a program with annotation variables

that will later be assigned to concrete erasure annotations (A). In this step, every

Π, λ, and @ is annotated with a distinct variable. Then we generate constraints in

propositional logic whose solutions correspond to well-formed annotations of the

underlying PTS term (B, Section 4.2). Then we find an optimal solution to the

generated constraints corresponding to erasure annotations that mark as much of

the program as possible for erasure (C, Section 4.3). Finally, this optimal solution

is applied to the original program, decorating it with concrete erasure annotations

(D) that guide the erasure phase (E).

4.2 CONSTRAINT GENERATION

In this section, we augment the syntax and typing rules of EPTS (explained in

Section 3.1) to generate a constraint stating the phase-correctness of a program in

terms of its annotation variables. The result is a variant of EPTS called EPTSC .

We then prove that solutions to the generated constraint correspond to legal erasure

annotations of the original program.

The generated constraints are formulas of propositional logic with annotation

variables doubling as propositional variables. In order to identify erasure annota-

tions and boolean values, we interpret c as true and r as false.

4.2.1 Syntax of Annotations and Constraints in EPTSC

We now describe the syntactic form of erasure annotations and generated con-

straints in EPTSC and how they follow naturally from a careful study of the typing

90

rules of EPTS. While reading this section, it may be useful to refer back to the

EPTS typing rules in Figure 3.1 and even to look ahead to the EPTSC typing rules

in Figure 4.3

The input to the constraint generation phase is an arbitrary PTS term, in which

each λ, @, and Π is annotated with a distinct annotation variable. The constraint

generation phase then generates a constraint in terms of these annotation variables.

Therefore the syntax of EPTSC terms is as follows:

(term) M, N, A, B ::= x | λαx:A. M | M@αN | Παx:A. B | s

Where α is an annotation variable rather than a concrete annotation τ ∈ {r, c}.

Because we interpret annotations as booleans, α is also a propositional variable.

What of the erasure annotation on the EPTS typing judgment? Along with the

usual judgment forms Γ ` N :r A and Γ ` N :c A, we now need an additional judg-

ment form Γ ` N :α A. This is because applications are annotated with variables,

so the Π-Elim typing rule of EPTSC will have a premise of the form Γ ` N :α A.

For this reason, we introduce a new syntactic category ρ of judgment modes.

(judgment mode) ρ ::= α | r | c

The next question is what form an erasure annotation on a context entry may

take. Each context entry starts out marked with either an r from a Π-binder (as in

the rule Π-Form) or an α from a λα-binder (as in the rule Π-Intro). However,

the full form of context entries is as follows:

(typing context) Γ ::= ε | Γ, x:γA

(context entry annotation) γ ::= α | r | ¬ρ ∧ γ

How does the syntax rule for context entry annotations γ ::= ¬ρ ∧ γ arise? It

results from the EPTSC version of the context-reset operation. We will discuss the

EPTSC version of this operation presently.

91

As in EPTS, we will see that most EPTSC typing rules have mode ρ = r. The

mode ρ = c is as easy to handle as in EPTS. However, to handle the mode ρ = α,

we need to generalize the Reset rule as follows:

Γ◦ ` M :r A

Γ ` M :c A
7→

Γ◦(ρ) ` M :r A

Γ ` M :ρ A

where Γ◦(ρ) is some generalization of Γ◦, the operation that sets each context entry

annotation in Γ to r in the EPTS typing rule Reset.

How should we define Γ◦(ρ)? To properly generalize the context reset operation

of EPTS, we require that Γ◦(c) = Γ◦ so that the new Reset rule for EPTSC

instantiates to the old Reset rule for EPTS when ρ = c. Similarly, when ρ = r,

we require that Γ◦(r) = Γ, because the premise of the Reset rule is already in

r-mode. Therefore we define

(Γ, x:γA)◦(ρ) = Γ◦(ρ), x:γ◦ρA

where

γ ◦ ρ = if ρ = r then γ else r

Under our boolean interpretation of erasure annotations (c = true and r = false),

we can express the conditional logic in the definition of γ ◦ ρ more succinctly:

γ ◦ ρ = if ρ = r then γ else r = if ¬ ρ then γ else false = ¬ ρ ∧ γ

This is how a context entry annotation may take the form ¬ ρ ∧ γ.

Definition 4.2.1 (Generalized Reset Operation) Γ◦(ρ)

ε◦(ρ) = ε (Γ, x:γA)◦(ρ) = Γ◦(ρ), x:¬ρ∧γA

Lastly, we ask what is the form of the generated constraints? When typing

occurrences of a variable x (in the Var rule), we require its context annotation γ

92

to be r (false). Therefore, one form of atomic constraint is ¬ γ. The other form of

atomic constraint is α = α′, which occurs when we need to identify annotations.

The overall constraint is a conjunction of atomic constraints. Therefore, we arrive

at the following syntax for constraints, typing contexts, context entry annotations,

and typing judgment modes.

(constraint) C,D, E ::= true | C ∧ D | ¬ γ | α = α′

(typing context) Γ ::= ε | Γ, x:γA

(context annotation) γ ::= α | r | ¬ρ ∧ γ

(judgment mode) ρ ::= α | r | c

We identify both constraints and context annotations up to logical equivalence.

4.2.2 Constraint-Generating Typing Rules

Figure 4.2 shows how a typical constraint arises. It is useful to keep this typical

case in mind when studying the typing rules.

Figures 4.3 and 4.4 contain the constraint-generating typing rules for EPTSC .

The judgment forms are C ; Γ ` M :ρ A and C ` M =β N , the constraint-generating

version of Γ ` M :τ A and M =β N , respectively.

The rules in Figure 4.3 follow the same pattern as the typing rules for EPTS in

Figure 3.1. The only differences have to do with how constraints are gathered and

how erasure annotations are represented (as described in the previous section). The

constraint in the conclusion of each rule consists of the constraints of each premise

that must be propagated as well as any constraint generated by the rule itself

combined together into a single conjunction. In the Axiom rule this conjunction

is the trivial empty conjunction true. The only typing rules that generate their

own constraints are Var, in which the generated constraint ¬ γ corresponds to the

requirement that the context entry of x be r (false), and Π-Intro, in which the

generated constraint α = α′ corresponds to requirement that a λ-abstraction and

its Π-type carry the same annotation.

93

λαx

@α1

· · ·

@αN

· · ·

x

· ·
·

· ·
·

··
·

If each αi = r, then this occurrence of x will not be

erased, and, therefore, neither can the λ binder, so

α must be r. Therefore this occurrence of x gives

rise to the constraint

(α1 = r ∧ · · · ∧ αN = r) ⇒ α = r,

which, since r = false, equals

(¬α1 ∧ · · · ∧ ¬αN) ⇒ ¬α,

and also (by De Morgan’s laws)

α1 ∨ · · · ∨ αN ∨ ¬α.

Figure 4.2: How a typical constraint arises.

The rules in Figure 4.4 behave similarly to those in Figure 4.3 in terms of con-

straint generation. The underlying rules (ignoring constraints) are a fairly straight-

forward non-algorithmic presentation of β-conversion. The congruence rules each

generate a constraint corresponding to the requirement that normal forms of con-

vertible terms have matching annotations.

A final point to note is that the Reset rule uses the generalized context reset

operation Γ◦(ρ) to account for the generalized judgment mode ρ that may be either

c or r or some annotation variable α.

4.2.3 Proof of Correctness

We now prove that the typing rules for EPTSC are both sound and complete with

respect to those of EPTS. In this section, the notation σ � C means that the

variable assignment σ satisfies the formula C (i.e., C evaluates to true under σ).

The next four lemmas concern the operation of applying an annotation variable

94

C ; Γ ` M :ρ A

Axiom

(s1, s2) ∈ A

true ; ε ` s1 :r s2

Var

C ; Γ ` A :c s

C ∧ ¬ γ ; Γ, x:γA ` x :r A

Weak

C ; Γ ` A :c s D ; Γ ` M :r B

C ∧ D ; Γ, x:γA ` M :r B

Π-Form

(s1, s2, s3) ∈ R C ; Γ ` A :r s1 D ; Γ, x:rA ` B :r s2

C ∧ D ; Γ ` Παx:A. B :r s3

Π-Intro

C ; Γ ` Πα′

x:A. B :c s D ; Γ, x:αA ` M :r B

C ∧ D ∧ α = α′ ; Γ ` λαx:A. M :r Πα′

x:A. B

Π-Elim

C ; Γ ` M :r Παx:A. B D ; Γ ` N :α
′

A

C ∧ D ∧ α = α′ ; Γ ` M@α′

N :r B[N/x]

Conv

C ; Γ ` M :r A D ; Γ ` B :c s E ` A =β B

C ∧ D ∧ E ; Γ ` M :r B

Reset

C ; Γ◦(ρ) ` M :r A

C ; Γ ` M :ρ A

Figure 4.3: Constraint generating typing rules for EPTSC

95

C ` M =β N

Refl

true ` M =β M

Symm

C ` M =β N

C ` N =β M

Trans

C ` M =β M ′′ D ` M ′′ =β M ′

C ∧ D ` M =β M ′

Beta

true ` (λαx:A. M)@α′

N =β M [N/x]

CongPi

C ` A =β A′ D ` B =β B′

α = α′ ∧ C ∧ D ` Παx:A. B =β Πα′

x:A′. B′

CongLam

C ` A =β A′ D ` M =β M ′

α = α′ ∧ C ∧ D ` λαx:A. M =β λα′

x:A′. M ′

CongApp

C ` M =β M ′ D ` N =β N ′

α = α′ ∧ C ∧ D ` M@αN =β M ′@α′

N ′

Figure 4.4: Constraint generating conversion rules for EPTSC

96

assignment σ to a term or context and how it interacts with other operations and

relations such as context reset, substitution, and reduction.

Lemma 4.2.2 (Correctness of Generalized Context Reset)

σ(Γ◦(ρ)) =





σΓ if σ(ρ) = r

(σΓ)◦ if σ(ρ) = c

Proof Sketch: By an easy induction on Γ.

Lemma 4.2.3 σ(M [N/x]) = σM [σN/x]

Proof Sketch: Straightforward induction on M .

Lemma 4.2.4 If σP = M [σN/x], then M = σM ′ for some M ′.

Proof Sketch: By straightforward induction on M .

Lemma 4.2.5

σP →β Q

(∃Q′) σQ′ = Q ∧ P →β Q′

Proof Sketch: By straightforward induction on the structure of the derivation of

σP →β Q. All the congruence cases are easy. In the case where the reduction step

is a single β reduction, the proof makes use of Lemma 4.2.3

The next two lemmas state that the EPTSC conversion judgment subsumes

the single-step reduction relation and that it is complete for terms with the same

underlying structure.

Lemma 4.2.6 If M →β N , then true ` M =β N .

Proof Sketch: By induction over the structure of the derivation of M →β N . In

the case of a simple β-reduction, use the rule Beta. In any of the congruence cases

for the reduction, use the corresponding congruence rule (CongPi, CongLam, or

CongApp).

97

Lemma 4.2.7 (Pre-Completeness of EPTSC conversion rules)

σM = σN

(∃ C) C ` M =β N ∧ σ � C

Proof Sketch: By straightforward induction on σM .

Now we prove soundness and completeness of the EPTSC conversion rules. The

next two theorems say that two EPTSC terms M and N are provably convertible

in EPTSC under some condition C satisfied by σ if, and only if, σ instantiates them

to β-convertible terms in EPTS.

Theorem 4.2.8 (Soundness of EPTSC conversion rules)

C ` M =β N σ � C

σM =β σN

Proof Sketch: Straightforward induction on the derivation of C ` M =β N . The

interesting cases are Beta, in which we use Lemma 4.2.3, and the congruence

cases, in which we make use of the fact that σ � α = α′ implies σα = σα′. (In

fact, the two are logically equivalent).

Theorem 4.2.9 (Completeness of EPTSC conversion rules)

σM =β σN

(∃ C) C ` M =β N ∧ σ � C

Proof: Since σM =β σN , there exists a term P̂ such that σM →∗
β P̂ and σN →∗

β P̂

(by the Church-Rosser Theorem). By repeated applications of Lemma 4.2.5, there

exists P1 and P2 such that σP1 = σP2 = P̂ and M →∗
β P1 and N →∗

β P2. By

Lemma 4.2.7, there is some constraint C such that C ` P1 =β P2 and σ � C.

By repeated applications of Lemma 4.2.6, we have true ` M =β P1 and true `

N =β P2. Therefore, by some applications of Symm and Trans, we can derive

C ` M =β N , and we already know that σ � C. 2

98

Finally we prove soundness and completeness of the EPTSC typing rules. The

next two theorems say that an EPTSC term M is typable in EPTSC under some

condition C satisfied by σ if and only if σ instantiates M to a well-typed EPTS

term.

Theorem 4.2.10 (Soundness of EPTSC typing rules)

C ; Γ ` M :ρ A σ � C

σΓ ` σM :σρ σA

Proof Sketch: By straightforward induction on typing derivations. The interesting

cases are: Var, which makes use of our boolean interpretation of formulas; Conv,

which makes use of Lemma 4.2.8; and Reset, which makes use of Lemma 4.2.2.

Theorem 4.2.11 (Completeness of EPTSC typing rules)

σΓ ` σM :σρ σA

(∃ C) C ; Γ ` M :ρ A ∧ σ � C

Proof Sketch: By straightforward induction on typing derivations. The interesting

cases are: Var, which makes use of our boolean interpretation of formulas; Conv,

which makes use of Lemma 4.2.8; Π-Elim, which makes use of Lemma 4.2.4; and

Reset, which makes use of Lemma 4.2.2.

4.2.4 Logical Structure of Generated Constraints

Now we investigate the logical structure of context annotations and atomic con-

straints. Recall the form of context annotations.

(context entry annotation) γ ::= α | r | ¬ρ ∧ γ

Each context annotation γ is a conjunction of a base annotation α or r and the

negations of zero or more ρs: either α ∧ ¬ρ1 ∧ · · · ∧ ¬ρn or r ∧ ¬ρ1 ∧ · · · ∧ ¬ρn.

99

If the base annotation is r (false) then γ = false. Similarly, if any ρi is c (true)

then γ = false. In either case, the atomic constraint ¬ γ equals true. If any ρi is r,

then that conjunct evaluates to true and may therefore be elided from the overall

conjunction. In the remaining case, when the base annotation and each ρi are all

variables, γ has the form

α ∧ ¬α1 ∧ · · · ∧ ¬αn,

and, by De Morgan’s laws, the atomic constraint ¬ γ equals

¬α ∨ α1 ∨ · · · ∨ αn.

In other words, atomic constraints generated by the Var rule are logically equiv-

alent to either a trivially true constraint or a disjunction of one negated variable

and zero or more other variables. Trivially true atomic constraints may be elided

from the conjunction forming the overall constraint.

Interestingly, equations between annotation variables can also be expressed as

a conjunction of atomic constraints in this form:

α = α′ = (α ⇒ α′) ∧ (α′ ⇒ α)

= (¬α ∨ α′) ∧ (¬α′ ∨ α)

We conclude that the constraints generated by the EPTSC typing rules are

logically equivalent to a conjunction of disjunctions of one negated variable with

zero or more other variables.

4.2.5 Implementation

The typing rules for PTS are not syntax-directed. This means that the typing

rules, when viewed as a program, express a non-deterministic algorithm. Our

presentations of EPTS and EPTSC inherit this aspect of PTS.

Type checking is not decidable for all Pure Type Systems. However, for many

Pure Type Systems, there exist algorithmic presentations of the typing rules that

are amenable to direct implementation [91].

100

We believe that a parallel situation holds for Erasure Pure Type Systems.

For strongly normalizing functional Pure Type Systems, it should be completely

straightforward to derive algorithmic versions of the typing rules for the corre-

sponding EPTS that abstractly specify the behavior of a type-checker. The rules

for constraint generation should fit easily into such a type-checker.

One piece missing from the formal development of EPTSC is a coherence theo-

rem. There may be several ways to prove (i.e., derive) that a particular term M is

well-formed in a particular context Γ. Different derivations will, in general, corre-

spond to different constraints. If these different constraints have different optimal

solutions, then different portions of M will be marked for erasure in each case. We

don’t want the (erasure) semantics of a program to depend on the particular way

in which it was type-checked. To satisfy ourselves that this cannot happen, we

would like to prove something like the following coherence result.

Conjecture 4.2.12 (Coherence)

C1 ; Γ ` M :ρ A C2 ; Γ ` M :ρ A

C1 =⇒ C2

However, this problem is somewhat theoretical, as any language implementa-

tion will fix a particular deterministic type-checking algorithm in which typing

annotations are checked in a fixed manner. In this situation, coherence is not

an issue because there is at most one way in which a program is type-checked,

and therefore at most one possible constraint C that will be generated once the

checking algorithm is instrumented to generate constraints on erasure annotations.

We are confident that the formal development presented in this chapter will carry

over naturally to the algorithmic presentation of the type system underlying such

a type-checker.

101

4.3 CONSTRAINT SOLVING

Now we turn to the problem of solving the constraints generated in the previous

section. In general, this is simply the boolean satisfiability problem (SAT) —

finding a satisfying assignment σ for a formula φ in propositional logic. However,

we prefer solutions that assign as many variables to true (c) as possible, so that

more of the program is marked for erasure.

4.3.1 Terminology

Modern SAT solvers typically take their input formula in Conjunctive Normal

Form (CNF) — as a conjunction of clauses where each clause is a disjunction

of literals. A literal is either a propositional variable (a positive literal) or the

negation of a propositional variable (a negative literal). The negation −L of a

literal L has the same underlying variable but opposite sign (positive or negative).

An occurrence of a literal L in a formula is called a positive occurrence of L and a

negative occurrence of −L. A unit clause is a clause consisting of a single literal.

4.3.2 The TOP-SAT Problem

For certain applications some solutions are better than others. We consider the

booleans to be totally ordered by setting true > false. This ordering has a minimum

element false and extends point-wise to boolean-valued functions (e.g., variable

assignments) as follows:

σ ≥ σ′ ⇔ ∀α. σ(α) ≥ σ′(α)

The Variable Maximizing SAT Problem (hereafter TOP-SAT1) is as follows:

Given a formula φ in propositional logic, find a solution σ that is maximal in the

1A more obvious name choice would be “MAX-SAT”, but it already refers to the problem of
maximizing the number of satisfied clauses.

102

point-wise ordering, that is

∀σ′. σ′
� φ ⇒ σ ≥ σ′.

A program solving the TOP-SAT problem for φ should first indicate whether a

maximal solution for φ exists and, if so, give the solution.

In terms of erasure annotations, a maximal solution sets more annotations to c

than any other, and therefore marks as much of a program for erasure as possible.

4.3.3 An Algorithm for our Special Case

The constraints generated by EPTSC are in CNF with the special property that

each clause contains exactly one negative literal. In this case, there is an efficient

algorithm for TOP-SAT.

Let φ be a propositional logic formula in CNF with the property that each

clause in φ contains exactly one negative literal.

φ = (¬α1 ∨ ϕ1) ∧ (¬α2 ∨ ϕ2) ∧ · · · ∧ (¬αN ∨ ϕN)

(each ϕi is a (possibly empty) disjunction of positive literals). Notice that assigning

all variables to false in this situation satisfies φ, though (likely) not optimally.

Definition 4.3.1 (The Algorithm) 1. Unit Clause Propagation. While

φ contains a unit clause L, assign L = true and then simplify φ — Remove

from φ all clauses with positive occurrences of L and remove all negative

occurrences of L in other clauses.

2. Completion. When no unit clauses are left, assign all remaining unassigned

variables to true.

Lemma 4.3.2 (Invariant) Each step of Unit Clause Propagation preserves the

invariant that all clauses in φ contain exactly one negative literal.

103

Proof: Assuming every clause in φ contains a single negative literal, the unit

clause that we propagate must consist of a single negative literal ¬α. We assign

this literal to true (by setting α to false) and simplify. Every clause containing ¬α

will be removed and every occurrence of α will be removed from its clause. Each

remaining clause still contains its sole negative literal because only positive literals

were removed from any (surviving) clause. 2

Lemma 4.3.3 (Correctness of Step 1) If a Unit Clause Propagation step takes

φ to φ′, then any TOP-SAT solution of φ′ is uniquely extensible to a TOP-SAT

solution for φ.

Proof: Because φ is a conjunction containing a unit clause ¬α, any assignment

satisfying φ must set α to false. Let σ′ be some assignment satisfying φ′. Then

σ′ satisfies every clause in φ that was not removed, because each such clause is

logically weaker than its corresponding clause in φ′. The extended assignment

σ′[false/α] also satisfies the clauses that were removed from φ. Because σ′ maxi-

mizes the number of non-α variables set to true in an assignment satisfying φ′, so

does σ′[false/α] for φ, because we may not choose α = true and still satisfy φ. 2

Lemma 4.3.4 (Correctness of Step 2) If φ contains no unit clauses and each

clause in φ contains exactly one negative literal, then λα. true is the maximal sat-

isfying assignment for φ.

Proof: In this case, φ is of the form

(¬α1 ∨ ϕ1) ∧ (¬α2 ∨ ϕ2) ∧ · · · ∧ (¬αN ∨ ϕN)

where each ϕi is a disjunction of positive literals. Because φ contains no unit

clauses, each ϕi is non-empty. Let σ be the assignment λα. true. Then σ(ϕi) = true

104

because ϕi is non-empty and contains positive literals. Therefore σ satisfies φ

σ(φ) = σ

(
∧

i

¬αi ∨ ϕi

)

=
∧

i

σ(¬αi) ∨ σ(ϕi)

=
∧

i

false ∨ true

= true

and is clearly the maximum solution. 2

Theorem 4.3.5 (Correctness) If each clause in φ contains exactly one negative

literal, then this algorithm returns the maximal assignment satisfying φ.

Proof: By Lemma 4.3.2, each step of Unit Clause Propagation preserves the invari-

ant that each clause contains exactly one negative literal. When the Unit Clause

Propagation loop finishes, any remaining clauses are of size ≥ 2 and the invariant

holds, so, by Lemma 4.3.4, setting all as-yet-undetermined variables to true maxi-

mally satisfies the remaining formula. By Lemma 4.3.3, this solution extends to a

maximal solution of the original φ. 2

Discussion Unit clause propagation can be explained in terms of erasure anno-

tations, Recall the cause of a typical phase-ordering constraint α1 ∨ · · · ∨αN ∨¬α

from Figure 4.2. A unit clause ¬α corresponds to a variable occurrence for which

every enclosing αi in its scope has been determined to equal r, and therefore α

must be r. The process is initiated by occurrences of λ-bound variables that do

not appear inside any @-arguments (or domain annotations) in their scope (i.e.,

N = 0).

In this way, the algorithm deduces which annotations must be r. When no

more annotations can be deduced to equal r, we set all remaining variables to c.

The algorithm discussed here calculates a sort of greatest fixed-point. Contrast

this to the informal least fixed-point algorithm outlined in Section 1.4.2.

105

4.3.4 Partial Annotation

It may be useful for programmers to have the ability to annotate some parts of their

program without having to annotate everything. In this case, we would like to run

the erasability analysis on partially annotated programs and fill in the remainder

of the unspecified annotations in an optimal way. The analysis algorithm stated

thus far can be extended to handle this case.

As for constraint generation, we need to add in extra equations of the form

α1 = r and α2 = c for positions in the term with user-provided annotations. Under

our boolean interpretation, these constraints are simply unit clauses ¬α1 and α2,

respectively. Admitting clauses of this second form violates the invariant that each

clause has exactly one negative literal.

In this case, we instead maintain the invariant that each clause has at most one

negative literal. The proofs of Lemmas 4.3.2, 4.3.3, and 4.3.4 may all be extended

to this more general case. The only difference is that now the algorithm may fail

to find a satisfying assignment. This is because user-provided annotations may be

inconsistent. For example, the constraint ¬α1 ∧ α2 ∧ (α1 = α2) has no solution.

In terms of unit clause propagation, this inconsistency manifests itself in a

clause being simplified to the point that it becomes empty and therefore false.

This could not happen before because every clause always had at least one literal,

namely the negative one. In the example just given, the constraint expands to

¬α1 ∧α2 ∧ (¬α1 ∨α2)∧ (α1 ∨¬α2), in which the fourth clause will become empty

after doing unit propagation on the first two clauses.

4.3.5 Implementation

Modern SAT solvers rely heavily on unit clause propagation and use clever data

structures to implement it efficiently. We have used these same techniques to

implement a constraint solver.

106

In a naive implementation of unit propagation, we maintain for each literal L

a list of all the clauses in which it appears. Any time a literal L is set to false, we

visit each clause it appears in to check if that clause has become a unit clause.

The designers of the Chaff SAT solver [68] pioneered a technique called two

watched literals. Their insight was that we need not visit a clause of original length

n to check if it has become unit until it changes from size n − 2 to n − 1 and this

can never happen as long as there are at least two unassigned literals in the clause.

This insight leads to an implementation where we pick two unassigned literals in

each clause to watch. Now we maintain for each literal a list of all the clauses in

which it is watched, rather than a list of all the clauses in which it appears. When

a literal L is set to false, we need only visit the clauses in which it is watched to see

if that clause has become a unit clause. Any other clause C in which L appears

but is not watched cannot become unit by assigning L = false, because C still

contains two unassigned watched literals. This change of implementation greatly

speeds up unit clause propagation in general.

When doing erasability analysis on a partially-annotated program, contradic-

tory constraints may arise due to inconsistent annotations. In this case, the pro-

gram analyzer should give the user some feedback about which annotations are

inconsistent. In our situation, each clause of the SAT formula comes from a par-

ticular variable occurrence in the program. We would like to list the variable oc-

currences that are to blame in case of an error. This requires some sort of conflict

explanation facility in the SAT algorithm. Fortunately for us, modern SAT solvers

do clause-based learning, a process that relies on exactly the sort of explanation

facility that we require.

Whenever a SAT solver makes inconsistent guesses about propositional vari-

ables, it will derive a contradiction and then backtrack to a consistent state by

“un-guessing” some previous guesses. To ensure that it doesn’t end up deriving

the same sorts of contradictions over and over again, the solver can analyze the

107

contradiction to see which of the guesses it made were contradictory. Let’s say it

finds that of all the current guesses it has made, only three are responsible for the

contradiction: α6 = true, α47 = false, and α99 = true. The fact that these lead to a

contradiction means that the formula φ = α6∧¬α47∧α99 =⇒ false is a consequence

of the overall formula we’re trying to satisfy. Therefore φ may be rewritten as the

clause ¬α6 ∨ α47 ∨ ¬α99 and added to the overall formula. The addition of this

learned clause will keep the SAT solver out of this particular contradictory corner

of the search space in the future.

The contradiction inspection mechanism of a SAT solver is easily adapted to

find all the clauses that are to blame for a contradiction. Because each clause arises

from a particular variable occurrence in the source program, this information may

be used to generate intelligent error messages outlining which variable occurrences

in a program caused the phase error.

We have implemented a prototype constraint solver weighing in at under 250

lines of OCaml2. Following the ideas of this section, our implementation uses

common SAT algorithms and data structures and supports conflict explanation.

4.4 CONCLUSIONS

We have developed a two-phase constraint generation and solving strategy for

determining optimal erasure annotations for PTS terms. The constraint-generation

scheme is sound and complete with respect to the EPTS type system that checks

(among other things) correctness of erasure annotations. Though our presentation

of EPTSC is not algorithmic, it should be straightforward to adapt to any type-

checker for a particular PTS. The constraint solver we describe exploits state of

the art data structures and algorithms from modern SAT solvers.

Because the erasure annotations resulting from our approach are provably op-

2http://caml.inria.fr/

108

timal, programmers need not bother with manual annotation in order to achieve

efficient execution of dependently typed programs.

The separation of erasure semantics into two phases leaves open the possibility

of programming in either an erasure-oblivious style (in PTS), an erasure-aware

style (in EPTS), or anywhere in between (by partially annotating the program).

Chapter 5

INDUCTIVE TYPES

So far, we have developed an erasure semantics for a family of dependently typed

λ-calculi. However, programming in such a language would be extremely tedious

for any practical application. Two prominent features of modern (statically typed)

functional languages that are especially suited to practical applications are alge-

braic datatypes and, conversely, function definition by pattern matching.

In this chapter we discuss inductively defined types, the type theorist’s version

of algebraic datatypes, and the interplay between this language feature and EPTS-

style erasure annotations as developed in Chapter 3.

Along the way, we will see how some features that other languages have used

for handling non-computational aspects of programming can be expressed using

erasure annotations. These examples demonstrate the expressive power of erasure

annotations.

Note the following notational conventions used in this chapter: Lower case

names like xs and cong stand for program variables. Upper case names like M and

A are meta-variables standing for program terms. Sans-serif names like list and

zero are used for all type constructors and data constructors. Also, keywords like

data and else are sans-serif and underlined.

In this chapter we follow the precedent set by Cayenne in writing (x : A) → B

instead of Πx:A. B. We find this notation more palatable for programming. We

omit type annotations when they are inferable from the context, that is we write

λx. M for λx:A. M when A is obvious. The following iterated versions of the

110

syntax are also used: we write (x, y : A) → B for (x : A) → (y : A) → B; we write

λx, y:A. M for λx:A. λy:A. M ; and we write λx, y. M for λx:A. λy:B. M .

5.1 INTRODUCTION

Inductively defined types in type theory are similar to algebraic datatypes in the

functional languages ML and Haskell. For example, the following declarations

data bool : ∗ where

true : bool

false : bool

data nat : ∗ where

zero : nat

succ : nat → nat

data blist : ∗ where

bnil : blist

bcons : bool → blist → blist

define some commonly used inductive types. Each data declaration defines a type

constructor t : ∗ and some data constructors for constructing inhabitants of type

t. Type definitions of this form are known as algebraic datatypes in functional

programming because they define a free algebra with the constructors playing the

role of operators. (We follow the convention of universal algebra by referring to

constant constructors such as true or zero as “operations” of arity zero.) Freeness

means two things: (1) the constructors are injective (e.g., succ n = succ m implies

n = m) and (2) they construct distinct values (e.g., for all n, zero 6= succ n). The

type t is the smallest type closed under its constructor operations subject to these

restrictions.

At run-time, the operational behavior of a constructor is allocation and copy-

ing. For example, the evaluation of the expression bcons H T proceeds as follows

(assuming a call-by-value implementation):

1. H is evaluated to some value vh and T is evaluated to some value vt

2. a region ρ of memory is allocated

3. the values of vh and vt are written into ρ along with a “tag” value distin-

guishing bcons values from bnil values

111

4. the (address of) memory region ρ is returned as the value of bcons

Furthermore, each inductively defined type comes with its own induction prin-

ciple. For example, the natural numbers are equipped with the following familiar

induction principle:

` n:nat ` P (zero)

` P (m)
...

` P (succ m)

` P (n)

This induction principle is made available in the form of an eliminator of type

elimnat : (n : nat) →

(p : nat → ∗) →

p zero →

((m : nat) → p m → p (succ m)) →

p n.

The type of elimnat says if, for some predicate p on naturals, one can prove that p

holds of zero and is preserved by succ, then p holds of any particular natural n.

In general, the type of elimt says that every predicate preserved by each data

constructor of t holds of every inhabitant of t. The induction principle for t reflects

back into the language the knowledge that every inhabitant of type t is formed by

finitely many applications of the constructors, and therefore we can always replace

any canonical term M : t with a proof having the same structure as M . For

example, if Z and S are terms of types P zero and (n : nat) → P n → P (succ n)

respectively, then

Z : P (zero),

S (zero) (Z) : P (succ (zero)),

S (succ zero) (S (zero) (Z)) : P (succ (succ (zero))),

112

and so on. If we ignore (erase) the first argument of each application of S then

this sequence becomes.

Z : P (zero)

S (Z) : P (succ (zero))

S (S (Z)) : P (succ (succ (zero)))

The pattern is clear. Replacing each constructor in t : t, with the corresponding

proof combinator, we end up with a proof of P t.

In functional programming, this sort of operation is called a fold or catamor-

phism, and is well known to embody the notion of structural recursion. In this

setting, elimt has a more general type than fold t, due to dependent types. In

fact one can implement fold t in terms of elimt by instantiating P : t → ∗ with a

constant function λ . C, for some type C into which we would like to fold. For

example, we can implement foldnat as follows:

foldnat : nat → (c : ∗) → c → (c → c) → c

foldnat = λn. λc. λz. λs. elimnat n (λ . c) z (λ . λx. s x)

The elimt operator is equipped with reduction rules that are incorporated into

the language’s notion of definitional equality. For elimnat the reduction rules are:

elimnat (zero) P Z S →β Z : P zero

elimnat (succ N) P Z S →β S N (elimnat N P Z S) : P (succ N)

The elimt operation encapsulates the notion of pattern matching on t-constructors

as well as the notion of recursion over t-values.

A simple example making use of foldnat is addition.

plus : nat → nat → nat

plus = λn. λm. foldnat n nat m succ

113

The reduction behavior of plus is as follows:

plus (zero) M →∗
β M

plus (succ N) M =β succ (plus N M)

How might one go about proving that plus M zero = M for all M? Assuming we

have a type equal : (a : ∗) → a → a → ∗, we can state this property with the type

(n : nat) → equal nat (plus n zero) n.

The way to prove this is by induction (i.e., with elimnat). Assuming equal satisfies

the following properties

refl : (a : ∗) → (x : a) → equal a x x

cong : (a, b : ∗) → (f : a → b) → (x, y : a) → equal a x y → equal b (f x) (f y)

we may prove the identity as follows:

zero right unit : (n : nat) → equal nat (plus n zero) n

zero right unit = λn. elimnat n (λn. equal nat (plus n zero) n)

(refl nat zero)

(λm, p. cong nat nat succ (plus m zero) m p)

The inductive structure of the argument can be seen in the type of the partial

application elimnat n (λn. equal nat (plus n zero) n), namely,

equal nat (plus zero zero) zero →

((m : nat) →

equal nat (plus m zero) m →

equal nat (plus (succ m) zero) (succ m)) →

equal nat (plus n zero) n

The base case is proved by reflexivity, because plus zero zero =β zero. The inductive

case is proved by congruence, since plus (succ m) zero =β succ (plus m zero).

114

The plus and zero right unit examples serve to demonstrate that type theory

provides a common language for both programming and reasoning about programs.

In the case of inductive types, we can use eliminators for both programming prim-

itive recursive functions and reasoning by induction.

5.1.1 Parameterized Inductive Types

The blist datatype is useful, but limited to storing elements of type bool. We may

also require lists of other types – lists of naturals, lists of lists of booleans, etc.

Rather than define roughly the same type over and over again, we would like to

define an entire family of list types parameterized by the element type. We declare

this family of types as follows:

data plist (a : ∗) : ∗ where

pnil : plist a

pcons : a → plist a → plist a

The types assigned to pnil and pcons fall inside the scope of the parameter

a : ∗. However, when we use these constructors in other locations, their types

as they appear in this declaration must be parameterized by a in order to make

sense. Therefore, the following types are assigned to all subsequent uses of these

constructors:

pnil : (a : ∗) → plist a

pcons : (a : ∗) → a → plist a → plist a

The induction principle for plist is also parameterized by a.

elimplist : (a : ∗) → (t : plist a) →

(p : plist a → ∗) →

p (pnil a) →

((x : a) → (xs : plist a) → p xs → p (pcons a x xs)) →

p t.

115

Compared to the induction principle for blist,

elimblist : (t : blist) →

(p : blist → ∗) →

p bnil →

((x : bool) → (xs : blist) → p xs → p (bcons x xs)) →

p t

there is an additional argument a to elimplist. The induction principle for plist a

is simply elimplist a. In this way, the parameterized family of inductively defined

types gives rise to a parameterized family of induction principles.

Functional languages such as ML and Haskell have featured parameterized

algebraic datatypes since their inception, as this feature goes hand in hand with

parametric polymorphism, the cornerstone of their type systems.

5.1.2 Indexed Inductive Types

Dependent types afford us the possibility of indexing a type with some data that

reveals something of the structure of that type. For example, we can inductively

define a type family of boolean lists indexed by their length.

data ilist : nat → ∗ where

inil : ilist zero

icons : (n : nat) → bool → ilist n → ilist (succ n)

The length information in the type ilist n allows us to write more expressive

types for list manipulating functions. For example, we may define a function

append of type

(n, m : nat) → ilist n → ilist m → ilist (plus n m)

and a function head of type

(n : nat) → ilist (succ n) → bool.

116

This extra information in types leads to safer programs. For example, we are

assured that head will never give rise to the run-time error of taking the head of

an empty list, because such an application of head is ill-typed.

What induction principle do we get for an inductive family of types? The

induction principle for the ilist family is

elimilist : (n : nat) → (t : ilist n) →

(p : (n : nat) → ilist n → ∗) →

p zero inil →

((m : nat) → (x : bool) → (xs : ilist m) →

p m xs → p (succ m) (icons m x xs)) →

p n t.

The difference between this induction principle and elimblist is that p is now a

predicate over both a ilist and its length.

Functional programming languages have just recently begun to explore the

idea of inductive families of types. The idea has been introduced by several re-

searchers under several names: Xi’s “guarded algebraic datatypes” [96], Hinze and

Cheney’s “first-class phantom types” [18], Sheard’s “equality-qualified types” [83].

The functional programming community has converged on the term “generalized

algebraic datatypes” (GADTs) for the core idea unifying these various approaches.

Recently, the Glasgow Haskell Compiler (GHC), probably the most widely used

Haskell compiler, added support for GADTs [72].

5.1.3 Parameterized Indexed Inductive Types

The same type can have both parameters and indices. To complete our running

example, we define a list type that is both indexed by length and parameterized

117

by element type.

data list (a : ∗) : nat → ∗ where

nil : list a zero

cons : (n : nat) → a → list a n → list a (succ n)

The clause list (a : ∗) : nat → ∗ declares list to have type ∗ → nat → ∗ where the

first argument is a parameter and the second an index. The mediating colon after

serves to partition the arguments of list into parameters (to the left) and indices

(to the right).

Note how the index argument changes from one occurrence of list to the next

(becoming zero, n, and succ n in different places), but the parameter argument is

used uniformly (always simply a). In fact, it is a requirement that any parameter

in any inductive type t must be used uniformly in the definition across all recursive

occurrences of t.

The eliminator for list is parameterized and the induction hypothesis is indexed.

elimlist : (a : ∗) → (m : nat) → (t : list a m) →

(p : (n : nat) → list a n → ∗) →

p zero (nil a) →

((n : nat) → (x : a) → (xs : list a n) →

p n xs → p (succ n) (cons a x xs)) →

p m t

Another common and useful example of a type that is both parameterized and

indexed is the equality type (a.k.a. the identity type).

data equal (a : ∗) (x : a) : a → ∗ where

refl : equal a x x

In this case, the parameters are a type a and one of its inhabitants x and the

index is another a-object. The indexed type defined with these parameters can be

118

thought of as the predicate “is equal to x” on a-objects. The single constructor

refl simply states reflexivity of equality: x is equal to x.

Outside this definition, the parameterization must be made explicit, so refl is

assigned the following type:

refl : (a : ∗) → (x : a) → equal a x x

Using the eliminator for equal, one can define functions of the following types

symm : (a : ∗) → (x, y : a) → equal a x y → equal a y x

trans : (a : ∗) → (x, y, z : a) → equal a x y → equal a y z → equal a x z

thereby demonstrating that equal is symmetric and transitive as well as reflexive.

5.2 OPPORTUNITIES FOR ERASURE

Now we consider a type theory with both erasure annotations (as in EPTS) and

inductive types. How do these two language features interact?

First a small point on notation. The use of erasure annotations used in pre-

vious chapters is concise and close to what one would use for abstract syntax in

an implementation, but it is overly cumbersome as the surface syntax for a pro-

gramming language, as it involves annotations on nearly every single syntactic

construct. Table 5.1 introduces the concrete syntax we will use in this chapter

and relates it to (1) the abstract syntax used up to this point and (2) a possible

rendering in ASCII.

Compile-time application with @ has the same precedence and associativity as

run-time application by juxtaposition. For example, the application f w @x y @z

is correctly parsed as (((f w) @x) y) @z rather than ((f w) @(x y)) @z . The @

symbol is simply an optional annotation preceding the argument in an application.

119

mode abstract syntax concrete syntax ASCII rendering

relevant Πrx:A. B (x:A) → B (x:A) -> B

A
r
→ B A → B A -> B

λrx:A. M λx:A. M \x:A. M

M@rN M N M N

irrelevant Πcx:A. B (x:A) ⇒ B (x:A) => B

A
c
→ B A ⇒ B A => B

λcx:A. M λλx:A. M \\x:A. M

M@cN M@N M @ N

Table 5.1: Concrete syntax for erasure annotations

5.2.1 Eliminator Argument Erasure

Since the reduction rules of an inductive type are tied up with applications of

its eliminator, we first investigate the computational relevance of eliminator argu-

ments.

In order to fruitfully discuss eliminator arguments, we follow the terminol-

ogy of Conor McBride in naming various categories of eliminator arguments [59].

Consider the eliminator for list, the type of lists indexed by their length and pa-

rameterized by their element type.

elimlist : (a : ∗) → (n : nat) → (t : list a n) →

(p : list a zero → ∗) →

(mnil : p nil) →

(mcons : (m : nat) → (x : bool) → (xs : list a) →

p xs → p (cons m x xs)) →

p t

We categorize the arguments of this eliminator as follows:

120

• Argument a is a parameter of the type to be eliminated, and argument n is

an index of the type to be eliminated.

• Argument t is the target as its type is the one we are eliminating. Together

with any parameters and indices, the target states what is being eliminated.

• Argument p is the motive as it states the knowledge we stand to gain by the

elimination. The motive states why the target is being eliminated.

• Arguments mnil and mcons are the methods by which each data constructor

is destructed during the elimination. The methods state how the target may

be eliminated.

We will now consider each category of eliminator arguments in turn, investigating

which arguments are relevant to the computation of the eliminator.

Motives

Consider the eliminator for natural numbers discussed in Section 5.1.

elimnat : (n : nat) →

(p : nat → ∗) →

p zero →

((n : nat) → p n → p (succ n)) →

p n

Recall that this eliminator has the following computational behavior:

elimnat (zero) P Z S →β Z

elimnat (succ N) P Z S →β S N (elimnat N P Z S)

It is apparent that the motive P plays no role in the computation of elimnat,

as it only appears on the right-hand side in the same computationally irrelevant

121

argument position in which it started on the left hand side. Therefore, in a language

with erasure annotations, we may assign elimnat the following more precise type:

elimnat : (n : nat) →

(p : nat → ∗) ⇒

p zero →

((n : nat) → p n → p (succ n)) →

p n

At run-time (i.e., after erasure), the computation rules for nat then become

elimnat (zero) Z S →β Z

elimnat (succ N) Z S →β S N (elimnat N Z S)

This observation holds in general for other types besides nat — the motive

argument to an eliminator is computationally irrelevant to the execution of that

eliminator and the eliminator’s type should be strengthened to reflect this fact.

Parameters and Indices

Recall the parameterized family of list types.

data plist (a : ∗) : ∗ where

pnil : plist a

pcons : a → plist a → plist a

The eliminator for plist has the following type (given the previous improvement

regarding the motive p):

elimplist : (a : ∗) → (t : plist a) →

(p : plist a → ∗) ⇒

p pnil →

((x : bool) → (xs : plist a) → p xs → p (pcons x xs)) →

p t

122

and the following post-erasure computational behavior:

elimplist A (pnil A) N C →β N

elimplist A (pcons A H T) N C →β C H T (elimplist A T N C)

Note that the parameter argument A is irrelevant to the computation of elimplist.

Therefore, we again increase the precision of the eliminator’s type.

elimplist : (a : ∗) ⇒ (t : plist a) →

(p : plist a → ∗) ⇒

p pnil →

((x : bool) → (xs : plist a) → p xs → p (pcons x xs)) →

p t.

The run-time behavior then becomes:

elimplist (pnil A) N C →β N

elimplist (pcons A H T) N C →β C H T (elimplist T N C)

Since (1) the A component of both pnil and pcons objects is not needed by the

eliminator, and (2) the eliminator is the primitive provided by the language for

inspection of plist values, we conclude that these A components are not necessary

to store inside the representation of plist objects. As we will see in Section 5.2.2,

the way to omit certain constructor arguments from the run-time representation of

objects is to update the type of the constructor so that those arguments are marked

as computationally irrelevant. For example, we now update the type assignment

of constructors pnil and pcons as follows:

pnil : (a : ∗) ⇒ plist a

pcons : (a : ∗) ⇒ a → plist a → plist a

The post-erasure run-time behavior of elimplist then becomes

elimplist (pnil) N C →β N

elimplist (pcons H T) N C →β C H T (elimplist T N C).

123

Now let us consider indexed type families, such as ilist, the family of length-

indexed list types. The eliminator for ilist has the type

elimilist : (n : nat) → (t : ilist n) →

(p : (n : nat) → ilist n → ∗) ⇒

p zero inil →

((n : nat) → (x : bool) → (xs : ilist n) →

p n xs → p (succ n) (icons n x xs)) →

p n t.

The computation rules for elimilist are as follows:

elimilist (zero) (inil) @P Mn Mc →β Mn

elimilist (succ N) (icons N H T) @P Mn Mc

→β Mc N H T (elimilist N T @P Mn Mc)

If we view these rules as pattern-matching equations, the second one that matches

against the constructors succ and icons has the undesirable property of reusing

the meta-variable N . However, this does not mean that we need to test the two

occurrences of N for equality in order to proceed with the match. Indeed, the fact

that the constructor icons is found as the top constructor of the target argument

ensures that the two occurrences of N are the same (i.e., definitionally equal)

whenever the left-hand side is well-typed.

Brady et al. make the same observation [14]. Furthermore, they note that the

entire succ N argument is determined by the constructor icons. Similarly, the

constructor inil in the first reduction rule determines the preceding argument zero,

so that elimilist need not inspect its first argument at all after inspecting the target.

In our terminology, the index argument to elimilist is computationally irrelevant.

Therefore, the type of elimilist may be strengthened as in the case of elimplist by

changing the annotation on the first argument from (n : nat) → to (n : nat) ⇒.

124

Again, these observations hold in general — parameters of families of inductive

types are computationally irrelevant as arguments of both eliminators and con-

structors, and indices of inductive families of types are computationally irrelevant

as eliminator arguments. Using erasure annotations, the types of eliminators and

constructors can and should be strengthened to reflect these facts.

Methods and the Target

No matter the type, the target argument and the method arguments of the elim-

inator are computationally relevant. This is because each reduction rule for an

eliminator inspects the top-most constructor of the target argument and, based on

what constructor it finds, executes the corresponding method with the arguments

of the constructor and the results of any necessary recursive calls to the eliminator.

Two apparent exceptions to this rule are discussed in Section 5.2.3.

5.2.2 Constructor Argument Erasure

What happens if we use the computationally-irrelevant function space when as-

signing types to constructors? For example, we might redefine length-indexed lists

as follows:

data ilist : nat → ∗ where

inil : ilist zero

icons : (n : nat) ⇒ bool → ilist n → ilist (succ n)

The difference between this definition and the original one is that icons has been

assigned the type

(n : nat) ⇒ bool → ilist n → ilist (succ n)

in which n : nat is declared to be irrelevant to the computation of icons.

What does it mean to say that icons does not depend computationally on

one of its arguments? Recall from Section 5.1 the operational description of how

125

constructors evaluate: icons allocates some memory and writes some values into

that memory. If icons does not depend computationally on the value of n : nat then

that must mean that n is not written into the memory allocated for representing

a icons object.

This interpretation is consistent with the definition of the erasure translation,

in which arguments marked for erasure are simply discarded. In this case, non-

computational arguments to a constructor are simply not part of the representation

of data constructed by that constructor. For example, the list

icons @2 true (icons @1 false (icons @0 true inil))

(presented using syntactic sugar for natural number literals) is erased to

icons true (icons false (icons true inil))

which corresponds to the way icons will store things in memory.

Given the optimizations discussed so far, the original eliminator for ilist has the

type

elimilist : (n : nat) ⇒ (t : ilist n) →

(p : (n : nat) → ilist n → ∗) ⇒

p zero inil →

((n : nat) → (x : bool) → (xs : ilist n) →

p n xs → p (succ n) (icons n x xs)) →

p n t.

and the pre-erasure computation rule for elimilist on icons is

elimilist @(succ N) (icons @N H T) @P Mn Mc

→β Mc N H T (elimilist @N T @P Mn Mc).

The post-erasure version of this computation rule is

elimilist (icons H T) Mn Mc →β Mc N H T (elimilist T Mn Mc).

126

However, this rule exhibits a phase error. On the right-hand side of this rule an

N has appeared out of nowhere, rendering the rule non-deterministic and broken.

We may fix the rule by ensuring that Mc not require at run-time that which is

not available. This is achieved by updating the type of Mc from

((n : nat) → (x : bool) → (xs : ilist n) → p n xs → p (succ n) (icons n x xs))

to

((n : nat) ⇒ (x : bool) → (xs : ilist n) → p n xs → p (succ n) (icons n x xs))

(Note the change in the relevance of n : nat). Then the type system will guarantee

that Mc does not depend computationally on n (i.e., N) and the rule will erase to

the phase-correct rule

elimilist (icons H T) Mn Mc →β Mc H T (elimilist T Mn Mc).

Therefore the ultimate type of the eliminator for ilist is

elimilist : (n : nat) ⇒ (t : ilist n) →

(p : (n : nat) → ilist n → ∗) ⇒

p zero inil →

((n : nat) ⇒ (x : bool) → (xs : ilist n) →

p n xs → p (succ n) (icons n x xs)) →

p n t.

One further possibility is that a recursive argument to a constructor is declared

computationally irrelevant. Consider the following (somewhat contrived) variant

of the natural numbers:

data bnat : ∗ where

bzero : bnat

bsucc : bnat ⇒ bnat

127

This type is a strange hybrid of the natural number type (at compile-time) and the

boolean type (at run-time) because the sole argument of bsucc is always marked

for erasure.

At this point, the reduction rule for elimbnat on bsucc is

elimbnat (bsucc @N) @P Z S →β S @N (elimbnat N @P Z S)

which erases to

elimbnat (bsucc) Z S →β S (elimbnat N Z S).

This final rule is phase-incorrect due to the occurrence of N on the right-hand side.

We cannot arrange for the N argument to elimbnat to be erased, because elim-

inators always depends computationally on their target argument. Instead, our

only recourse is to force S not to depend computationally on the result of the

recursive call. This solution leads to the following type for elimbnat

elimbnat : (n : bnat) →

(p : bnat → ∗) ⇒

p bzero →

((n : bnat) ⇒ p n ⇒ p (bsucc n)) →

p n

and the following pre-erasure

elimbnat (bsucc @N) @P Z S →β S @N @(elimbnat N @P Z S)

and post-erasure

elimbnat (bsucc) Z S →β S

reduction rules for elimbnat on bsucc.

In general, any constructor argument may be declared computationally irrele-

vant by the choice of arrow (→ or ⇒) used in the constructor’s type. The type

128

of the corresponding method argument of the eliminator must then be similarly

updated so that it does not depend computationally on either the constructor ar-

gument in question or, in the case that this constructor argument is a recursive

one, the result of the recursive call of the eliminator on that argument (i.e., the

evidence of the induction hypothesis for that argument).

Brady et al. study further omissions that can be made in the representation of a

datatype [14]. Erasure annotations allow us to declare some of the representation

schemes that they develop. However, their analysis is more general in that it

sometimes infers that the tag component of a datatype representation is redundant

given the other arguments of the eliminator. This sort of redundancy analysis is

foreign to our approach.

5.2.3 Eliminator Target Erasure

In Section 5.2.1 we stated that the target argument of an eliminator is always

computationally relevant to the computation of that eliminator. In this section, we

discuss two classes of inductively defined types in which erasure of the eliminator’s

target argument at first appears to be warranted, but upon further inspection ends

up having undesirable consequences.

Empty Type Target Erasure

An extreme class of inductive types are those having no constructors. Consider

the type bottom.

data bottom : ∗ where

(∗ no constructors ∗)

In the sequel, we abbreviate bottom as ⊥. When read logically, the type ⊥ cor-

responds to the propositional constant false. Since ⊥ has no constructors, the

eliminator

elim⊥ : (t : ⊥) → (p : ⊥ → ∗) ⇒ p t

129

has no method arguments nor any computation rules.

The ⊥ type is useful when we find ourselves in a contradictory context. Assum-

ing our language is consistent as a logic and we use a weak evaluation strategy at

run-time, subterms in contradictory contexts will never be evaluated and are thus

dead code. Because we prefer to avoid writing code for dead execution branches,

it is useful to have an undefined expression that can take on any type in such a

situation. The elim⊥ operation provides a way out in such situations because we

are in a context with contradictory assumptions, we can produce a proof of ⊥ and

then, by elim⊥, produce a term of whatever type is required.

Since elim⊥ has no computation rules, it does not ever reduce to anything and

therefore it does not depend computationally on any of its arguments, even the

target t : ⊥. Therefore, we may prefer to give elim⊥ the more precise type

elim⊥ : (t : ⊥) ⇒ (p : ⊥ → ∗) ⇒ p t.

A system in which elim⊥ is assigned this type is said to support empty type target

erasure (ETTE).

ETTE ensures that any application elim⊥ @T @P will simply erase to elim⊥,

so that the proof T of ⊥ is erased at run-time. Erasure of T , however, may

enable further erasure of λ-binders introducing assumptions upon which T depends

computationally. This ripple effect eventually leads to an undesirable consequence.

Theorem 5.2.1 In a language with empty type target erasure, it is the case that,

for any contradictory context Γ = x1:A1, x2:A2, . . . , xn:An, there is a closed term

M of type

(x1 : A1) ⇒ (x2 : A2) ⇒ · · · ⇒ (xn : An) ⇒ B

such that the erasure of M evaluates to some normal form stuck on elim⊥ rather

than a canonical value of type B.

Proof: If Γ is contradictory then, by definition, we can derive Γ ` T :r ⊥ for some

130

term T . In this case, the term

M = λλx1:A1. λλx2:A2. · · ·λλxn:An. elim⊥ @T @B

has the required type because each assumption xi:
cAi is reset to xi:

rAi while typing

T . The erasure of M is simply elim⊥, a term in normal form. 2

If our language is consistent as a logic (i.e., there is no closed proof of ⊥) and

the target language of erasure is evaluated using a weak reduction strategy (as

is standard in functional languages), then the situation outlined in the previous

theorem seems to be the only one in which the token elim⊥ can cause post-erasure

evaluation to become stuck.

Theorem 5.2.1 contradicts somewhat the previously given motivation for the

type ⊥: providing an escape hatch in the form of elim⊥ for avoiding writing dead

code. The theorem says that such branches may not actually be dead code after

erasure, because evaluation of the erasure of a program may depend on elim⊥.

This mismatch of motivation and outcome is entirely due to empty type target

erasure and may be avoided by eliding that feature. For this reason, we feel that

ETTE is too permissive and therefore we do not consider it further in the sequel.

The Top Type

Besides the type ⊥, the simplest possible inductive type is top, which has only a

single constructor unit with no arguments.

data top : ∗ where

unit : top

In the sequel, we abbreviate top as >.

The sole inhabitant unit of type > contains no information. It is merely a token

that we may pass around and inspect to determine that which we already know:

that it equals unit. This sort of inspection is accomplished by the > eliminator.

elim> : (t : >) → (p : > → ∗) ⇒ p unit → p t

131

The eliminator has the following behavior.

elim> unit @P M →β M

Its type indicates that computation of elim> depends on its target argument

t : >, but is that really true? In general, an eliminator behaves as follows:

1. The topmost data constructor of the target is inspected and the correspond-

ing method argument is picked for execution.

2. The immediate subterms of the target (arguments of the aforementioned top-

most constructor) are passed along to the selected method, along with the

results of any required recursive calls to the eliminator.

In the case of the type >, neither of these steps imply a computational dependence

of elim> on the target argument t : >.

1. There is only one method, so we always know to pick it without inspecting

the top-level constructor of t.

2. As unit has no arguments, there are no components of t that must be passed

to the selected method.

For these reasons, we may try to strengthen the type of elim> to

elim> : (t : >) ⇒ (p : > → ∗) ⇒ p unit → p t

This eliminator has the following behavior.

elim> @unit @P M →β M

At run-time (i.e., after erasure), this rule becomes

elim> M →β M .

132

Equality Types (a.k.a Identity Types)

Recall from Section 5.1.3 the definition of equality as a parameterized indexed

inductive type.

data equal (a : ∗) (x : a) : (y : a) → ∗ where

refl : equal a x x

As we now know, refl can be assigned the type (a : ∗) ⇒ (x : a) ⇒ equal a x x.

This means that refl has no computationally relevant arguments, so all proofs

refl @a @x will erase to the same run-time object, namely the token refl. In other

words, every equality type equal a x y will become a unit type at run-time.

The usefulness of the equality type comes from its ability to let us cast from

one type to another if we can prove those types are equal. We do this using the

eliminator for equal.

elimequal : (a : ∗) ⇒ (x, y : a) ⇒ (t : equal a x y) →

(p : (y : a) → equal a x y → ∗) ⇒

p x (refl @a @x) →

p y t

which has the single run-time reduction rule:

elimequal refl M →β M

This eliminator is used to define a cast operation between provably equal types.

cast : (a : ∗) ⇒ (x, y : a) ⇒ equal a x y →

(p : a → ∗) ⇒ p x → p y

cast = λλa. λλx. λλy. λt. λλp. λm.

elimequal @a @x @y t @(λy. λ . p y) m

If x equals y then p x and p y are equal as types. Therefore we may safely cast from

one type to the other. Given its definition in terms of elimequal, the cast operation

133

reduces as follows at run-time:

cast refl M →∗
β M

Token Type Target Erasure

The types equal and > share the following property: at run-time they are both

represented by a single token that carries no sub-component information. We

argued in the case of > that the eliminator elim> does not depend computationally

on its target. Since the single token refl is the run-time representation of all values

of type equal a x y, the same argument applies to elimequal.

This means we can change the type of elimequal to

elimequal : (a : ∗) ⇒ (x, y : a) ⇒ (t : equal a x y) ⇒

(p : (y : a) → equal a x y → ∗) ⇒

p x (refl @a @x) →

p y t

(note the computational irrelevance of the target argument t : equal a x y). The

behavior of elimequal then becomes

elimequal @A @X @X @(refl @A @X) @P M →β M .

At run-time (after erasure) the behavior of elimequal is

elimequal M →β M .

The optimization of token type eliminators just described destroys any hope of

preserving an analog of Theorem 3.3.9 that says any post-erasure reduction of a

type- and phase-correct term corresponds to one or more pre-erasure reductions.

Theorem 3.3.9 was the basis for Theorem 3.3.10, which also fails to have an anal-

ogous version in the language with both erasure annotations and inductive types.

The following example proves these claims.

134

Example: Consider the following variation on the token type equal that allows

us to state the equivalence of two types:

data tyeq (a : ∗) : ∗ → ∗ where

tyrefl : tyeq a a

By the principle of token type target erasure, it has the following eliminator:

elimtyeq : (a, b : ∗) ⇒ (t : tyeq a b) ⇒

(p : (b : ∗) → tyeq a b → ∗) ⇒

p a (tyrefl @a) →

p b t

This eliminator has the following behavior at compile-time:

elimtyeq @A @B @(tyrefl @A) @P M →β M

and the following behavior at run-time (after erasure):

elimtyeq M →β M

Figure 5.1 defines a term loopy in terms of tyeq that, after erasure, reduces

to (λx. x x) (λx. x x), the canonical divergent λ-calculus term. The trick used to

define loopy is to make a patently false assumption, namely p : tyeq a (a → b).

Given this assumption, we can apply something of type a (or a → b) to itself after

some suitable coercions. Token type target erasure allows us to write the example

in such a way that the binder for p, and all case analysis on p (calls to elimtyeq)

are erased, leaving only a diverging term.

This example shows that token type target erasure ruins any hope for results

analogous to the following properties of erasure in EPTS:

1. Erasure Reflects Reductions (Theorem 3.3.9), and

2. Erasure Preserves Strong Normalization (Theorem 3.3.10)

135

data tyeq (a : ∗) : ∗ → ∗ where

tyrefl : tyeq a a

coerce : (a, b : ∗) ⇒ tyeq a b ⇒ a → b

coerce = λλa, b, t. λx:a. elimtyeq @a @b @t @(λb. λ . b) x

symm : (a, b : ∗) ⇒ tyeq a b ⇒ tyeq b a

symm = λλa, b, t. elimtyeq @a @b @t @(λc. λ . tyeq c a) (tyrefl @a)

loopy : (a, b : ∗) ⇒ tyeq a (a → b) ⇒ b

loopy = λλa, b. λλp.

let w : a → b

w = λx:a. coerce @a @(a → b) @p x x

in w (coerce @(a → b) @a @(symm @a @(a → b) @p) w)

coerce• = λx. elimtyeq x →∗
β λx. x

loopy• = let w = λx. coerce• x x in w (coerce• w) →∗
β (λx. x x) (λx. x x)

Figure 5.1: Example showing that token type target erasure prevents one from

extending theorems that erasure reflects reductions (Theorem 3.3.9) and preserves

strong normalization (Theorem 3.3.10)

136

If we do not allow token type target erasure, the terms coerce, symm, and loopy

must be re-annotated with fewer opportunities for erasure. The resulting erasure

of loopy becomes

loopy• = λp. elimtyeq p

(elimtyeq (elimtyeq p tyrefl) (λx. elimtyeq p x x))

(elimtyeq (elimtyeq p tyrefl) (λx. elimtyeq p x x)).

This term is in normal form, because every call to elimtyeq is blocked from executing

due to the variable p.

This is a serious problem. Termination is an important program property that

should be preserved by an erasure semantics. For this reason, we do not allow

token type target erasure.

5.3 A PARADIGMATIC EXAMPLE: VARIOUS SUM TYPES

Chapter 2 discusses how certain typed λ-calculi may be viewed as both formal logics

and primitive programming languages. In this discussion, we saw that universal

quantifiers from logic correspond to dependent product types. This suggests the

question: what types, if any, correspond to existential quantifiers?

The existentially quantified formula ∃x:A. B, says that there exists an x of type

A such that B holds of x (in this formula the scope of x is B, so B may certainly

mention x). A proof of this formula consists of

1. a witness M of type A, and

2. a proof N that B holds of M (i.e., N proves B[M/x])

In type theory, therefore, ∃x:A. B is interpreted as a type of pairs 〈M, N〉 in which

M has type A and N has type B[M/x]. In this way, the type of the second

component of the pair is allowed to depend on the value of the first component.

Type theoretically, this is a sum type and it is usually written as Σx:A. B.

137

5.3.1 Strong Sums

Some type theories include sum types as a built-in type former. However, in a

language supporting inductively defined types, we may define them on our own as

the following family of inductive types:

data sum (a : ∗) (b : a → ∗) : ∗ where

pair : (x : a) → b x → sum a b

This declaration introduces the following type constructor and data constructor

sum : (a : ∗) → (b : a → ∗) → ∗

pair : (a : ∗) ⇒ (b : a → ∗) ⇒ (x : a) → b x → sum a b

as well as the following eliminator

elimsum : (a : ∗) ⇒ (b : a → ∗) ⇒ (t : sum a b) →

(p : sum a b → ∗) ⇒

((x : a) → (y : b x) → p (pair @a @b x y)) →

p t

which behaves as follows at run-time:

elimsum (pair X Y) M →β M X Y

This sum type is strong in the sense that both components of such pairs, in-

cluding the witness, may be projected out. These projections are provided by the

functions

fst : (a : ∗) ⇒ (b : a → ∗) ⇒ sum a b → a

snd : (a : ∗) ⇒ (b : a → ∗) ⇒ (t : sum a b) → b (fst @a @b t)

which are defined as follows:

fst = λλa. λλb. λt. elimsum @a @b t @(λ . a) (λx. λy. x)

snd = λλa. λλb. λt. elimsum @a @b t @(λ . b (fst @a @b t)) (λx. λy. y)

138

An example of a strong sum is sum nat (λn. list A n), the type of length indexed

lists paired with their length. In the usual notation, we would write this type as

Σn : nat. list A n. It is easy to extract both the length of a list stored in this way

as well as the underlying length-indexed list using fst and snd .

5.3.2 Weak Sums

There is also a weaker form of sum type in which the witness may not be directly

observed through projection. We may define this type as follows.

data exists (a : ∗) (b : a → ∗) : ∗ where

pack : (x : a) ⇒ b x → exists a b

This type has the eliminator

elimexists : (a : ∗) ⇒ (b : a → ∗) ⇒ (t : exists a b) →

(p : exists a b → ∗) ⇒

((x : a) ⇒ (y : b x) → p (pack @a @b @x y)) →

p t

with the following lone run-time reduction rule:

elimexists (pack Y) M →β M Y

The only difference between sum and exists is that the first component of pairs

in the latter type are marked for erasure. The type of the eliminator reflects

this change, as outlined in the Section 5.2.2. Due to this change, elimexists has a

weaker type than elimsum, because it expects a stronger requirement on the method

argument, namely that it not depend computationally on the first component of

the pair. For this reason, the definition of fst given in Section 5.3.1 may not be

adapted to the exists type (and renamed witness), as it would be phase-incorrect.

witness : (a : ∗) ⇒ (b : a → ∗) ⇒ exists a b → a

witness = λλa. λλb. λt. elimexists @a @b t @(λ . a) (λλx. λy. x)

139

We may see the phase error clearly by inspecting the erasure of the definiens

λt. elimexists (λy. x) t

and noting the exposed variable x.

What can be done then with the first component of the pair? The eliminator

for exists can be used to program the following unpacking operator:

unpack : (a : ∗) ⇒ (b : a → ∗) ⇒ exists a b →

(c : ∗) ⇒ ((x : a) ⇒ b x → c) → c

unpack = λλa. λλb. λt. λλc. λm. elimexists @a @b t @(λ . c) m

Notice the restriction that clients m of unpack may not depend computationally

on the existential witness since they have the type (x : a) ⇒ b x → c which is

polymorphic in x : a. This feature of exists is what earns it the name “weak”

sum: no program may depending computationally on the witness component of an

existential.

An example making use of the weak sum is the following function that injects

boolean lists into length-indexed boolean lists of some particular length n.

embed : blist → exists nat (λn. ilist n)

embed = λt. elimblist t @(λ . exists nat (λn. ilist n))

(pack @nat @(λn. ilist n) @zero inil)

(λx:bool. λxs :blist. λfxs :exists nat (λn. ilist n).

unpack @nat @(λn. ilist n) fxs @(exists nat (λn. ilist n))

(λλm:nat. λys :ilist m.

pack @nat @(λn. ilist n) @(succ m) (icons @m x ys)))

Since definitions in terms of eliminators can be difficult to read, we offer the fol-

140

lowing pseudocode for embed as a convenience to the reader.

embed (bnil) = pack @nat @(λn. ilist n) @zero inil

embed (bcons x xs) = let pack @ @ @m ys = unpack (embed xs) in

pack @nat @(λn. ilist n) @(succ m) (icons @m x ys)

The embed function may be useful if we have a blist and we want to perform

some ilist operations on it. Note how the recursive case of this function uses unpack

to temporarily handle in a non-computational way the length m of ys , the list

resulting from the recursive call. This length is passed along to two compile-time

contexts, namely the new length of the return value, and the tail length argument

of icons.

Weak sums are useful for data abstraction [54]. When x is a type1, then the

existential construction hides the representation of that type from clients of data

packaged in this way and therefore protects them from any future changes made

to that representation that do not affect the interface b.

5.3.3 Subset Types

Another variation on dependent sum types are the so-called subset types. The idea

here is to have a type former analogous to set comprehensions in set theory. For

example, the set {n ∈ nat | even n} is the set of all the even natural numbers. More

generally, the set {x ∈ A | B} is the subset of A consisting of elements x for which

B holds (in general, B mentions x). We prefer the name “type comprehensions”

for this construction, but “subset types” is already an established term.

At first glance, dependent sums seem like a good implementation for subset

types. A dependent pair contains both the element x : A as well as the evidence

1This is only possible given the definition of exists if there is some sort 4 : ∗, so that we may
have a = 4 in x : a : ∗. Otherwise, a variant of exists must be used in which a has a sort higher
than ∗.

141

that it satisfies the property B. However one does not usually consider evidence

for B to be a component of elements of {x ∈ A | B}. This is where erasure comes

into play.

We can define subset types as dependent sums with the evidence component

of the pair marked for erasure.

data subset (a : ∗) (b : a → ∗) : ∗ where

member : (x : a) → b x ⇒ subset a b

The subset type has the following eliminator:

elimsubset : (a : ∗) ⇒ (b : a → ∗) ⇒ (t : subset a b) →

(p : subset a b → ∗) ⇒

((x : a) → (y : b x) ⇒ p (member @a @b x @y)) →

p t

with the following lone run-time reduction rule:

elimsubset (member X) M →β M X

Since the inhabitant of A is computationally relevant to member, we may define

inject , the analog of fst from Section 5.3.1,

inject : (a : ∗) ⇒ (b : a → ∗) ⇒ subset a b → a

inject = λλa. λλb. λt. elimsubset @a @b t @(λ . a) (λx. λλy. x)

but the analog of snd is not well-formed

evidence : (a : ∗) ⇒ (b : a → ∗) ⇒ (t : subset a b) → b (inject @a @b t)

evidence = λλa. λλb. λt. elimsubset @a @b t @(λ . b (inject @a @b t)) (λx. λλy. y)

due to the phase-incorrect occurrence of y.

Salvesen and Smith [79], working in the context of Martin-Löf’s intensional

type theory extended with subset types, prove that one cannot project out the

142

evidence B(x) from a subset element x ∈ {z ∈ A | B(z)} unless one can do so for

the entire type, that is, unless ∀x : A. B(x) is provable. Their result is consistent

with our observations here.

5.4 SQUASH TYPES

Just as we divided function types into computational and non-computational va-

rieties, we now define type constructor that serves to divide the world of types

into computational and non-computational types. This type is reminiscent of the

squash type of Nuprl [22, Section 10.3], so we name it squash:

data squash (a : ∗) : ∗ where

poof : a ⇒ squash a

The data constructor poof is so named because all its arguments disappear (are

erased) before run-time. In fact, squash a is a token type and therefore all its

inhabitants share a common run-time representation: the token poof. The name

“squash” was chosen (in Nuprl), precisely because all elements of a squash type are

identified — all informational content has been squashed out of its inhabitants. As

we will see in the Section 5.4.4, squash is a logical modality. We therefore abbreviate

squash A as #A (and squash as #).

The eliminator for squash is

elim# : (a : ∗) ⇒ (t : #a) →

(p : #a → ∗) ⇒

((x : a) ⇒ p (poof @a @x)) →

p t.

A special case of this eliminator is

case# : (a, c : ∗) ⇒ #a → (a ⇒ c) → c

case# = λλa. λλc. λt. λm. elim# @a t @(λ . c) m

143

The behavior of this operator is as follows:

(at compile-time) case# @A @C (poof @A @X) M →∗
β M @X

(at run-time) case# poof M →∗
β M

5.4.1 Relating # and ⇒

The modality # is essentially the type constructor form of the non-dependent

non-computational function arrow ⇒. In fact, we have the following isomorphism:

A ⇒ B ∼= #A → B

Data witnessing the isomorphism between these two types appears in Figure 5.2.

• Functions in and out between these two types, and

• Terms out in and in out proving that in and out are inverses (each one

cancels out the other)

The first proof (out in) follows immediately by reflexivity, since the two sides of

the equality are definitionally equal.

out (in m) @x →∗
β in m (poof @A @x)

= case# @A @C (poof @A @x) m →∗
β m @x

The second proof (in out), makes use of elim# to reduce the problem of proving

(y : #A) → equal C (in (out f) y) (f y)

to the simpler problem of proving

(x : A) ⇒ equal C (in (out f) (poof @A @x)) (f (poof @A @x)).

This latter problem is solved quite easily since the two sides of the equality are

definitionally equal.

in (out f) (poof @A @x) →∗
β case# @A @C (poof @A @x) (out f)

→∗
β out f @x →∗

β f (poof @A @x)

144

in = λf. λt. case# @A @C t f : (A ⇒ C) → (#A → C)

out = λf. λλx. f (poof @A @x) : (#A → C) → (A ⇒ C)

out in : (m : A ⇒ C) → (x : A) ⇒ equal C (out (in m) @x) (m @x)

in out : (f : #A → C) → (y : #A) → equal C (in (out f) y) (f y)

out in = λm. λλx. refl @A @(m @x)

in out = λf. λt. elim# @A t

@(λy:#A. equal C (in (out f) y) (f y))

(λλx:A. refl @C @(f (poof @A @x)))

Figure 5.2: An isomorphism between A ⇒ B and #A → B

Although the non-dependent function space A ⇒ B is equivalent to #A → B,

the dependent function space (x : A) ⇒ B is not equivalent to (x : #A) → B. To

see why, recall the typing rule for (x : A) ⇒ B from Chapter 3.

Πc
-Form

(s1, s2, s3) ∈ R Γ ` A :r s1 Γ, x:rA ` B :r s2

Γ ` Πcx:A. B :r s3

(Remember that (x : A) ⇒ B is syntactic sugar for Πcx:A. B.) This rule says that

the B in (x : A) ⇒ B may depend computationally on x : A, but in the type

(x : #A) → B, the B may depend computationally only on x : #A, a far weaker

premise.

The following example makes essential use of the extra expressiveness afforded

by our rule for typing (x : A) → B. Consider the following definition of a boolean

list type of a particular length.

blist : nat → ∗

blist zero = >

blist (succ n) = bool × blist n

145

In contrast to the inductively defined type blist, this type is defined by recursion

over a natural number. An equivalent definition can be encoded using an eliminator

for natural numbers allowing one to eliminate into a higher sort than ∗. Clearly

blist depends computationally on its natural number argument. Now consider the

following specialized identity function for blists.

blist identity : (n : nat) ⇒ blist n → blist n

blist identity = λλn:nat. λxs :blist n. xs

This is a perfectly valid definition in which the well-formedness of the type of

blist identity relies essentially on the fact that blist n → blist n can depend com-

putationally on n : nat.

We conclude that ⇒ is more expressive than # in a language with a facility

for defining inductive types, since we can express # in terms of ⇒, but we cannot

express non-computational dependent function space (x : A) ⇒ B in terms of #.

We view this fact as a principal advantage of our approach over squash types.

5.4.2 Correspondence with Nuprl’s Squash Type

In Nuprl, the squash type is written as ↓A and is defined as

↓A = {x : > | A}.

One justification for calling #A a squash type is that #A is isomorphic to ↓A

given the corresponding definition of ↓A in terms of the subset type defined in

Section 5.3.3.

↓A = subset > (λ . A)

146

to : #A → ↓A

from : ↓A → #A

to = λt. elim# @A t @(λ . ↓A) (λλy. poof @A @y)

from = λt. elim↓ @A t @(λ . #A) (λλy. poof @A @y)

to from : (t : ↓A) → equal (↓A) (to (from t)) t

from to : (t : #A) → equal (#A) (from (to t)) t

to from = λt. elim↓ @A t

@(λt. equal (↓A) (to (from t)) t)

(λλx. refl @(↓A) @(poof @A @x))

from to = λt. elim# @A t

@(λt. equal (#A) (from (to t)) t)

(λλx. refl @(#A) @(poof @A @x))

Figure 5.3: An isomorphism between two squash type representations

147

It is easier to work with this type if we define our own custom introduction and

elimination functions:

poof : (a : ∗) ⇒ a ⇒ ↓a

poof = λλa, x. member @> @(λ . a) unit @x

elim↓ : (a : ∗) ⇒ (t : ↓a) → (p : ↓a → ∗) ⇒ ((x : a) ⇒ p (poof @a @x)) → p t

elim↓ = λλa. λt. λλp. λf.

elimsubset @> @(λ . a) t @p

(λx. elim> x @(λx. (y : a) ⇒ p (member @> @(λ . a) x @y)) f)

Note that elim↓ also simulates elim#

elim↓ @A (poof @A @X) @P F →∗
β F@X

Given this interface for ↓A, it is almost trivial to construct an isomorphism between

↓A and #A, as is shown in Figure 5.3.

5.4.3 Usage of the Squash Type

In Nuprl squash types are defined in terms of subset types (see Section 5.3.3) and

these two mechanisms are put to use to demarcate the non-computational portions

of a program development which mostly involve proofs of properties of the rest of

the program. Squash types have been put to good use in the Nuprl system for

many years.

In Section 5.3.3, we discussed the impossibility of projecting out the evidence

component of a subset type {x ∈ A | B}. We can now repair that example using

the squash type.

evidence : (a : ∗) ⇒ (b : a → ∗) ⇒ (t : subset a b) → # (b (inject @a @b t))

evidence = λλa. λλb. λt. elimsubset @a @b t

@(λt. #(b (inject @a @b t)))

(λx. λλy. poof @(b x) @y)

148

As noted in Section 5.3.3, the subset construction in Martin-Löf type theory is

somewhat weak, since one cannot prove the seemingly trivial statement that x ∈

{z ∈ A | B(z)} implies B(x). To remedy this deficiency, Nordström, Petersson, and

Smith (NPS) developed the so-called subset theory, a type theory with the subset

type that can be interpreted in basic type theory without subsets [70, Part II]. In

the subset theory, the notions of type and proposition are distinct, and one has the

judgment form A is true in addition to the usual judgment form a ∈ A. Finally,

the details of the interpretation guarantee that one can prove B(a) is true given

a ∈ {x ∈ A | B(x)}.

In light of how the type # similarly revives the effort to extract evidence of the

subset property (see the type of evidence above), it may be fruitful to think of #A

as a type internalizing the judgment A is true from the subset theory of NPS. In

his doctoral thesis [15, Section 3.3.1], Caldwell cites Salvesen and Smith’s negative

result [79] concerning the weakness of the subset type in intensional type theory.

Caldwell concludes that

[Salvesen and Smith’s result] does seem to indicate an essential weak-

ness in the intensional theory since they show unequivocally that it

cannot be extended to reasonably accommodate a subset type.

To the contrary, the type subset appears to be a reasonable implementation of

subset types in an intensional type theory. The extension of type theory to handle

erasure annotations seems to us less cumbersome than the additional layer of inter-

pretation found in the NPS approach, especially since erasure annotations have the

additional benefit of expressing parametric polymorphism in the source language.

5.4.4 Laws Concerning #

We informally interpret the # modality as “for some unknown reason”. This

modality satisfies the following basic laws:

149

(Forgetfulness) A → #A

(Blind Reasoning) #(A → B) → #A → #B

Forgetfulness says that we may intentionally forget the reason for the truth of a

proposition A at any time by moving from A to #A. Blind Reasoning says that

modus ponens applies even when we do not know the original reasons for A → B

and A, although we must remain ignorant about the ultimate reason for B as it is

composed from reasons about which we know nothing.

Forgetfulness and Blind Reasoning may be proved by applying the isomorphism

A ⇒ B ∼= #A → B to the following terms:

λλx. poof @A @x : A ⇒ #A

λλf, x. poof @A @(f x) : (A → B) ⇒ A ⇒ #B

The laws of Forgetfulness and Blind Reasoning ensure that the modality # is a

normal modal logic.

McBride and Paterson recently introduced applicative functors as a means of

structuring effectful programs in a purely functional language [61]. It is straight-

forward to prove (within the language itself) that # is an applicative functor using

the obvious morphisms indicated above.

A potential law that seems impossible to prove is ##A → #A. This law

holds of squash types in Nuprl. We could definitely prove this if we allow token

type target erasure in #-elimination (by instantiating case# at c = #A). In this

case, # becomes a monad (with monad laws provable within the language itself).

Although monads have proved useful in functional programming, the usefulness of

this particular monad seems suspect. Perhaps more importantly one can prove,

given squash target erasure, that ##A and #A are isomorphic types.

However, we have eschewed token type target erasure because of its bad meta-

theoretical properties. A more restricted form of token type target erasure that

only holds for inductive types with no type indices (but perhaps type parameters)

150

would allow # to be a monad while precluding target erasure for the type equal,

which was the basis of the problematic example in Section 5.2.3. The question

remains, however, whether this restricted form of target erasure admits a similarly

problematic example.

Note that the squash types in Nuprl satisfy many more laws than our # (see

Caldwell [15] Section 3.3). This undoubtedly has to do with the fact that Nuprl

is an extensional type theory wherein the notion of definitional equality is much

stronger than mere β-conversion. In contrast, this dissertation deals only with

intensional type theory.

5.5 COMPARISON WITH NUPRL AND COQ

Squash types (and the fact that they are definable in terms of erasure annotations)

demonstrate another way that our approach is flexible: The squash type serves to

distinguish between non-computational and computational versions of the same

type, so that distinct computational and non-computational versions of A need not

be defined separately.

We have seen that a primitive distinction between non-computational and com-

putational function space is more expressive than the addition of a squash type

to the language, since the former has more liberal rules for non-computational

dependent function space formation.

Also, it seems that programs using ⇒ will have more opportunities for erasure

than those using #. To see why this is, look at the isomorphism A ⇒ B ∼= #A →

B. Inhabitants of the type A ⇒ B are inherently more concise than those of

#A → B at run-time, as the former need not ever be applied, but the latter do.

The universe hierarchy of Coq is divided up as shown in Figure 5.4. The

universes Set and Prop are more or less logically equivalent. The reason for distin-

guishing between them is to express a distinction between computationally relevant

and irrelevant portions of a program. Proofs (i.e., inhabitants of propositions) are

151

non-computational
objects

propositions

Prop

computational
objects

sets

Set

⇐=

Figure 5.4: Division of computational and non-computational entities into two

type universes

allowed to depend computationally on programs (i.e., inhabitants of sets), but

programs may depend on proofs only in a very limited set of circumstances.2 The

arrow in the diagram represents the allowable direction of computational depen-

dence. In type theory, computation happens when the introduction and elimi-

nation forms for a type come together and cancel each other out. Therefore the

prohibition of programs depending on proofs is expressed in rules prohibiting the

elimination of proofs (i.e., non-computational entities) while constructing programs

(i.e., computational entities).

However, the purpose of the type hierarchy is not to distinguish between compu-

tational and non-computational data, but rather to outline the conceptual land-

scape of types and the allowable logical dependencies between levels they may

express. In our opinion, the computational/non-computational distinction does

not belong in the type hierarchy, but within the language of types itself. Using

squash types, one may achieve the same separation of computational and non-

computational types within a single universe, as depicted in Figure 5.5. In this

2These limited circumstances are closely related to empty type target erasure and token type
target erasure.

152

⇐=

#A

#B #C

non-
computational

types

A

B C

computational
types

Prop = Set

Figure 5.5: Division of computational and non-computational entities inside a

single type universe using squash types

setting, non-computational entities may depend on computational ones, as is evi-

denced by the Law of Forgetfulness (A → #A). However, computational entities

may not depend on non-computational ones, as there is no way to prove #A → A

in general.

In the solution based on squash types, an isomorphism between ##A and #A

would indicate that there is not an infinite hierarchy of non-computational types,

non-computationally non-computational types, etc. The # modality divides the

language of types into exactly two halves, the squash types and the non-squash

types. The difficulty in proving such an isomorphism is discussed in the previous

section.

It is a generally accepted rule of language design that implementations of dis-

tinct language features should have as few interactions as possible, so that they

may be combined in arbitrarily complex ways. The universe hierarchy and the

mechanism for distinguishing computationally relevant and irrelevant portions of

a program should be completely orthogonal concerns in a fully satisfying language

153

design. We believe that the Coq approach of grafting a distinction between non-

computational and computational entities onto the universe hierarchy violates this

principle.

In contrast, the approach outlined in this dissertation is more satisfying in this

respect. The consequences of our approach are

• increased flexibility in that the same type A may be used in both in compu-

tationally relevant and irrelevant ways. This flexibility is available both for

function parameters (A → B versus A ⇒ B) and function results (A versus

#A).

• the distinction between computational and non-computational entities may

be applied anywhere in the type hierarchy. This means our approach lends

itself to language extensions supporting intensional polymorphism, or run-

time inspection of types.

• the language design does not encourage the erroneous idea that all proofs

and propositions are computationally irrelevant and all non-proofs are com-

putationally relevant. In our view, the question of whether or not a type can

be interpreted as a proposition is independent of whether or not values of

that type may be inspected during a computation.

We find these to be compelling advantages over the Coq approach.

5.6 CONCLUSIONS

In this section we have explored the design space of a programming language with

both erasure annotations and inductively defined datatypes. There are two ways

in which erasure annotations affect the implementation of inductive types

• Use of the non-computational function space in the declared type of a con-

structor is seen to indicate an omission from the run-time representation of

154

that datatype.

• The index, parameter, and motive arguments of an eliminator of an induc-

tive type are always computationally irrelevant and may therefore safely be

marked for erasure in the eliminator’s type.

There are two special cases in which erasure of an eliminator’s target argu-

ment seems warranted at first. In each case, however, the additional erasure has

unfortunate consequences on the meta-theory of post-erasure evaluation.

• Empty type target erasure — When the run-time representation of a type is

equivalent to ⊥, the trivial type with zero inhabitants, target erasure inad-

vertently introduces additional post-erasure normal forms at certain types

involving contradictory assumptions.

• Token type target erasure — When the run-time representation of a type is

equivalent to >, the trivial type with one inhabitant, target erasure inadver-

tently introduces additional post-erasure non-normalizing terms at certain

types involving contradictory assumptions.

For these reasons, we abandon all target argument erasure for eliminators.

Sum types of various strengths can be defined by varying erasability of two of

the arguments of the lone data constructor of the sum type. Among these include

weak sums (a.k.a. weak existentials) and subset types. In each case, the types so

defined seem to have the essential characteristics of the types from the literature

whose names they share.

Finally, a squash type is defined that seems to have the essential properties of

a type by the same name studied in the setting of Martin-Löf’s intensional type

theory. Use of the squash type in conjunction with subset types indicates that the

latter can be given a reasonable implementation in intensional type theory.

155

The squash type, though no replacement for the more expressive feature of

non-computational dependent function spaces, seems to provide a mechanism for

distinguishing between computational and non-computational types within a sin-

gle universe as opposed to the two universe mechanism in Coq. Whereas non-

computational functions are useful for specifying when a function argument is

computationally irrelevant, squash types are useful for specifying when a function

result is non-computational.

Chapter 6

PROOF IRRELEVANCE

In a dependently typed language, the conversion typing rule reflects the semantics

of the language back into its type system.

Conv

Γ ` M :r A Γ ` B :c s A =β B

Γ ` M :r B

Two terms that reduce to the same normal form are considered definitionally equal

and the type system can not distinguish between them as subterms of types.

In EPTS, however, there are two notions of operational semantics. The Conv

rule of EPTS reflects the default semantics rather than the erasure semantics. In

a sense EPTS, when considered with an erasure semantics, is a sort of hybrid

language in which definitional equality does not reflect the full semantics of the

language. We may recover internal consistency in this area by modifying the Conv

rule as follows:

Conv
•

Γ ` M :r A Γ ` B :c s A• =β B•

Γ ` M :r B

We choose the name EPTS• for the resulting EPTS variant.

The notion of definitional equality in EPTS• is more permissive than that

of EPTS, so that more pairs of terms are considered definitionally equal. The

remainder of this chapter investigates the expressiveness of EPTS• as compared to

EPTS when both are extended with inductive types, as well as the meta-theory of

157

pure EPTS•. In particular, we will see that EPTS• admits an elective notion of

proof irrelevance.

6.1 EXTRA EXPRESSIVENESS OF CONV•

What sorts of programs are accepted by the type system of EPTS• that are not

accepted by the type system of EPTS? The only difference is that definitional

equality in EPTS• is more permissive than definitional equality in EPTS. This

extra permissiveness has three broad consequences of which we are aware.

1. Elective Proof Irrelevance (Section 6.1.1)

2. Internalized Behavioral Uniformity Principle (Section 6.1.2)

3. Provability of Streicher’s K “axiom” (Section 6.1.3)

Note: All the code in this section is type-checked using the rule Conv• rather

than Conv.

6.1.1 Elective Proof Irrelevance

Recall the type subset A B from Section 5.3.3. This type captures the notion of

a “type comprehension” — the type of all elements x of type A for which the the

type B x is inhabited (i.e., the proposition B x holds, when B x is considered a

proposition). For example subset nat even is the type of even natural numbers.

Consider two inhabitants M = member 8 @P and N = member 8 @Q of type

subset nat even. Given our informal understanding of subsets, one may reasonably

consider M and N to be the same inhabitant of subset nat even — they both

represent the even number 8 — even when P and Q are two different proofs of 8’s

evenness. Indeed, since M and N both erase to the same term member 8, they

are definitionally equal given the modified conversion rule Conv•. However, the

158

original EPTS conversion rule distinguishes between M and N since the two terms

are not β-convertible before erasure.

In system with inductive types and the Conv• typing rule, one can prove

(a : ∗) ⇒ (b : a → ∗) ⇒ (s, t : subset a b) →

equal a (inject @a @b s) (inject @a @b t) → equal (subset a b) s t

where inject is the previously defined injection from subset a b back to a.

The feature of considering two proofs definitionally equal whenever they prove

the same thing, regardless of how they prove it, is called proof irrelevance. The

subset example shows that Conv
• affords EPTS• with a form of proof irrelevance:

proofs of propositions that are marked for erasure will never be distinguished by

the post-erasure β-conversion notion of definitional equality.

We call this form of proof irrelevance elective because the programmer deter-

mines which portions of a data structure are irrelevant in terms of the conversion

check by means of erasure annotations placed on the types of data constructors.

This notion stands in contrast to what may be termed a universal notion of proof

irrelevance, whereby any two proofs of any proposition are always considered com-

putationally equivalent. In Coq, for example, where proofs are identified by the

sort of their type, a universal proof irrelevance principle may be introduced by

means of the following axiom

∀p:Prop. ∀a, b:p. a =p b

This axiom says that any two proofs a and b of any particular proposition p are

considered to be equal.

Using squash types, we may prove a similar result, namely that all inhabitants

159

of any particular squash type are identified.

poof irrelevance : (a : type) ⇒ (u, v : #a) → equal (#a) u v

poof irrelevance = λλa. λu. λv.

elim# @a u @(λu. equal (#a) u v) (λλx.

elim# @a v @(λv. equal (#a) (poof @a @x) v) (λλy.

refl @(#a) @(poof @a @x)))

Again, the type-correctness of this term depends essentially on the Conv• typing

rule so that the type equal (#a) (poof @a @x) (poof @a @x) of the application of refl

is definitionally equal to the required type equal (#a) (poof @a @x) (poof @a @y).

6.1.2 Uniformity Principle

However, elective proof irrelevance is not the only use of the modified conversion

rule. The Conv• rule also identifies the following terms from the EPTS with the

underlying PTS specification of System F:

M = λx:((a : ?) ⇒ a → a). x @((a : ?) ⇒ a → a) x

N = λx:((a : ?) ⇒ a → a). λλa:?. x @(a → a) (x @a)

In this example, M and N both have type ((a : ?) ⇒ a → a) → ((a : ?) ⇒ a → a)

and both erase to λx. x x. In this case, there seems to be an interesting interplay

between impredicativity and type-erasure. Using relational parametricity (see Sec-

tion 2.4.2) one can prove that M and N are extensionally equivalent. This example

indicates that Conv• places our system somewhere between intensional and ex-

tensional type theory.

6.1.3 Streicher’s K “Axiom” is Provable

In 1993, Thomas Streicher and Thorsten Altenkirch introduced the idea of unique-

ness of identity proofs, whereby one may prove that any proof of equal a x x is

160

equivalent to refl @a @x. This proposition is stated by the following type:

(a : ∗) ⇒ (x : a) ⇒ (t : equal a x x) → equal (equal a x x) (refl @a @x) t

Though this result seems like it should be straightforward to prove, it resisted all

attempts at a proof, and eventually was shown to be unprovable in type theory by

model theoretic means [41]. However, it is satisfied by most known models of type

theory, so we might reasonably accept it as an axiom.

This principle is not merely of theoretical interest. It is essential for integrating

into type theory the programming style of function definition by pattern matching

as is usual in functional programming languages [26, 58]. This ought to be welcome

news to anyone who attempted to read code written in the more logically motivated

“eliminator style” from the previous chapter. Just as functional programmers

prefer not to write all their programs in terms of “fold-like” operators, we prefer

some options besides “eliminator style” programming.

The good news we present here is that uniqueness of identity proofs is in fact

provable in our system. The extra flexibility afforded by Conv• enriches our

language enough to prove this elusive proposition. The proof follows an argument

of Thorsten Altenkirch as related by Thomas Streicher [88, Section 1.5]. The

argument goes like this: Assuming a : ∗, x : a, and t : equal a x x, one can prove

the following two propositions:

(1) equal (equal a x x) (refl @a @x) (cast @a @x @x t @(λz:a. equal a z x) t)

(2) equal (equal a x x) (cast @a @x @x t @(λz:a. equal a x x) t) t

Terms thorsten1 and thorsten2 in Figure 6.1 prove these two propositions. Propo-

sitions (1) and (2) contain subterms

λz:a. equal a z x and λz:a. equal a x x,

respectively. Although these two terms are distinct, they both occur in compu-

tationally irrelevant portions of an enclosing cast expression, so we see that they

161

thorsten1 : (a : ∗) ⇒ (x : a) ⇒ (t : equal a x x) →

equal (equal a x x)

(refl @a @x) (cast @a @x @x t @(λz:a. equal a z x) t)

thorsten1 = λλa:∗. λλx:a. λt:equal a x x.

elimequal @a @x @x t

@(λy:a. λq:equal a x y.

equal (equal a y y)

(refl @a @y)

(cast @a @x @y q @(λz:a. equal a z y) q))

(refl @(equal a x x) @(refl @a @x))

thorsten2 : (a : ∗) ⇒ (x : a) ⇒ (t : equal a x x) →

equal (equal a x x)

(cast @a @x @x t @(λz:a. equal a x x) t) t

thorsten2 = λλa:∗. λλx:a. λt:equal a x x.

elimequal @a @x @x t

@(λy:a. λq. equal a x y

equal (equal a x x)

(cast @a @x @y q @(λz:a. equal a x x) t)

t)

(refl @(equal a x x) @t)

Figure 6.1: Lemmas in Altenkirch’s proof that a behavioral uniformity principle

implies uniqueness of identity proofs

162

trans : (a : ∗) ⇒ (x, y, z : a) ⇒ equal a x y → equal a y z → equal a x z

trans = λλa, x, y, z. λs, t. cast @a @y @z t @(λz. equal a x z) s

urip : (a : ∗) ⇒ (x : a) ⇒ (t : equal a x x) →

equal (equal a x x) (refl @a @x) t

urip = λλa:∗. λλx:a. λt:equal a x x.

trans @(equal a x x)

@(refl @a @x) @(cast @a @x @x t @(λz:a. equal a z x) t) @t

(thorsten1 @a @x t) (thorsten2 @a @x t)

Figure 6.2: Proof of Uniqueness of (Reflexive) Identity Proofs

have the same behavior. Altenkirch could only go this far. He said if there is some

way to consider as definitionally equal types that differ only by such behaviorally

equivalent types, then one could then prove the uniqueness of identity proofs by

transitivity of equality.

The rule Conv• gives us exactly this power. The two cast expressions in (1)

and (2) both erase to cast t t, and so according to Conv•, these two terms are

definitionally equal. Given this observation, one may easily prove by transitivity

that any reflexive identity proof of type equal a x x equals the canonical proof

refl @a @x. The proof term urip is shown in Figure 6.2. The well-formedness of

urip relies essentially on this aspect of definitional equality.

Using the uniqueness of identity proofs, one can define an alternative elimina-

tion rule for equal that only operates “along the diagonal”, known as Streicher’s

163

K eliminator.

streichersK : (a : ∗) ⇒ (x : a) ⇒ (t : equal a x x) →

(p : equal a x x → ∗) ⇒ p (refl @a @x) → p t

streichersK = λλa, x. λt. λλp. λm.

cast @(equal a x x) @(refl@a@x) @t (urip @a @x t) @p m

The erasure of streichersK normalizes to

streichersK • = λt. λm. elimequal (elimequal (elimequal t refl) (elimequal t refl)) m

Therefore, the post-erasure reduction behavior of streichersK is

streichersK • refl M →∗
β M

Note that this behavior is identical to that of the standard eliminator for equal.

elimequal refl M →β M

Some other consequences the uniqueness of identity proofs can be found in in

the Coq standard library1. Two of these consequences are proved in Figure 6.3.

Another consequence is that McBride’s heterogeneous equality is programmable

in our language [58, Section 5.1].

6.2 NON-COMPUTATIONAL AXIOMS

In a language with Conv•, after a definition x = M : A is type-checked, the non-

computational parts of M and A will never be needed again. There are only two

circumstances in which the definition of x may be required after x is defined: (1)

in order to type-check some term mentioning x in the remainder of the program,

and (2) in order to evaluate some other term mentioning x at run-time. Given

1See Coq.Logic.EqdepFacts at the URL http://coq.inria.fr/library/.

164

Substitution Invariance

subst invariance : (a : ∗) ⇒ (x : a) ⇒ (p : a → ∗) ⇒ (m : p x) →

(t : equal a x x) → equal (p x) (cast @a @x @x t @p m) m

subst invariance = λλa:∗. λλx:a. λλp:a → ∗. λm:p x. λt:equal a x x.

streichersK @a @x t

@(λt. equal (p x) (cast @a @x @x t @p m) m)

(refl @(p x) @m)

Uniqueness of (not necessarily reflexive) identity proofs

uip : (a : ∗) ⇒ (x, y : a) ⇒ (t, s : equal a x y) → equal (equal a x y) t s

uip = λλa:∗. λλx:a. λλy:a. λt:equal a x y.

elimequal @a @x @y t

@(λz:a. λt:equal a x z. (s : equal a x z) → equal (equal a x z) t s)

(urip @a @x)

Figure 6.3: Two consequences of Streicher’s K eliminator and Uniqueness of Re-

flexive Identity Proofs

165

an erasure semantics, (2) only happens after erasure, so that we need M• rather

than M . In a language with the Conv• conversion rule, the notion of definitional

equality is post-erasure β-conversion. Therefore (1) only ever requires A• and M•.

Consequently, after type-checking a definition of the form x = poof @A @M :

#A, we need only store the erasure of the definition of x, namely x = poof : #(A•).

Any subsequent evaluation of x will immediately return the value poof.

Now suppose one would like to introduce an axiom A in the non-computational

fragment of the language. We may do so by simply introducing the run-time

definition my axiom = poof : #A into the global typing context. In this case no

proof M is given. We simply type-check #A to make sure it is a valid type and

continue checking the rest of the program. We call my axiom a non-computational

axiom. From here on out, we use the syntax

axiom my axiom : #A

to introduce the non-computational axiom A.

6.2.1 Axioms for Classical Reasoning

For example, one may perform classical reasoning in the # fragment of the language

by introducing any one of the following axioms:

axiom excluded middle : #((a : ∗) ⇒ a ∨ not a)

axiom non contradiction : #((a : ∗) ⇒ not (not a) → a)

axiom pierce : #((a : ∗) ⇒ (not a → a) → a)

(6.1)

(6.2)

(6.3)

Where not : ∗ → ∗ is defined as not = λx. x → ⊥ and ∨ (i.e., propositional

disjunction) is defined as a parameterized inductive type as usual. Since each

axiom has the same computational content, namely the constructor poof, there is

no need to extend the language with control structures to evaluate terms using

these classical axioms.

166

6.2.2 The #-flattening Axiom

Another interesting axiom one might add (in the # fragment) is that #A implies

A for any type A:

axiom flat : #((a : ∗) ⇒ #a → a) (6.4)

This axiom may be used in the # fragment of the language. Effectively, it states

that #A and A are logically equivalent underneath #, so that there is no infinite

hierarchy of degrees of non-computationality. The infinite sequence of types

A, #A, ##A, ###A, · · · collapses to A, #A, #A, #A, · · · ,

thus explaining why the axiom in question is named flat .

An immediate consequence of flat is that # becomes a monad. In the formu-

lation of monads in terms of map, return, and join, the only difficult function to

define is join. Using flat , we may define join as follows.

join : (a : ∗) ⇒ ##a → #a

join = λλa. λm.

elim# @((a : ∗) ⇒ #a → a) flat @(λ . #a) (λλrun.

elim# @(#a) m @(λ . #a) (λλx.

poof @a @(run @a x)))

Once join is defined, the monad laws are trivial to prove due to poof irrelevance.

The pattern elim# @((a : ∗) ⇒ #a → a) flat @(λ . #a) (λλrun . · · ·) in the

definition of join occurs over and over again when using flat , so we abstract it out

into the following function:

withflat : (c : ∗) ⇒ (((a : ∗) ⇒ #a → a) ⇒ c) → c

withflat = λλc. λf. elim# @((a : ∗) ⇒ #a → a) flat @(λ . c) f

167

Another consequence of flat is a version of the axiom of choice for subset types:

ac : (a : ∗) ⇒ (b : a → ∗) ⇒ (p : (x : a) → b x → ∗) ⇒

((x : a) → subset (b x) (λy. p x y)) →

subset ((x : a) → b x) (λf. (x : a) → p x (f x))

Using a nicer notation for subsets, the proposition becomes.

((x:A) → {y : B(x) | P (x, y)}) → {f : (x : A) → B(x) | (x:A) → P (x, f x)}

This type corresponds to the following proposition: if for all x : A there is some

y : B(x) such that P (x, y) is true, then there is a function f : (x : A) → B(x) such

that for all x : A, it is true that P (x, f x). This formulation of the axiom of choice

may be proved using withflat as follows:

ac = λλa, b, p. λg:((x : a) → subset (b x) (λy. p x y)).

withflat

@(subset((x : a) → b x) (λf. (x : a) → p x (f x)))

(λλrun:((a : ∗) ⇒ #a → a).

member @((x : a) → b x) @(λf. (x : a) → p x (f x))

(λx.witness @(b x) @(λy. p x y) (g x))

@(λx. run

@(p x (witness @(b x) @(λy. p x y) (g x)))

(evidence @(b x) @(λy. p x y) (g x))))

Without flat , the closest thing one can prove to the axiom of choice for subset

types is the proposition

(a : ∗) ⇒ (b : a → ∗) ⇒ (p : (x : a) → b x → ∗) ⇒

((x : a) → subset (b x) (λy. p x y)) →

subset ((x : a) → b x) (λf. (x : a) → #(p x (f x)))

containing an unfortunate # in the conclusion.

168

Π

PTS

Πr/Πc

EPTS

Πr/Πc

EPTS•

Π/∀

IPTS
analysis inclusion

collapse

erasure

retraction

Figure 6.4: Relationships between four PTS variants

6.3 EPTS•

In this section, we formally investigate the properties of EPTS•. We will see that

it is essentially an explicitly typed version of IPTS.

6.3.1 Meta-theory of Erasure

EPTS and EPTS• have identical syntax. Only their type systems differ. For this

reason, the erasure operation defined in Section 3.3 also maps EPTS• terms to

IPTS terms.

Happily, each meta-theoretical result for EPTS that appears in Figure 3.4 re-

mains valid for EPTS•. The proofs for these results change only slightly.

• The Π-Form case of the subject reduction proof for EPTS• depends on the

result that erasure respects reductions. No such dependency exists in the

EPTS meta-theory.

• The Conv case of the proof that erasure respects types in EPTS depends

on the fact that erasure respects reductions. No such dependency exists in

the EPTS• meta-theory, because the Conv• rule is stronger.

So it happens that some proofs become simpler, while others become more difficult.

The updated set of proof dependencies remains acyclic, however.

One significant property about EPTS• is that it is strongly normalizing when-

ever the same can be said of the underlying IPTS. This follows immediately from

169

the subject reduction property and the fact that erasure preserves both reductions

and types.

Lastly, we show that EPTS• is roughly equivalent to IPTS because there is a

direct mapping from IPTS derivations to EPTS• derivations, for which erasure is

a retraction.

6.3.2 Equivalence with IPTS

We have already seen that erasure maps well-typed EPTS• terms to well-typed

IPTS terms. In this section, we show that typing derivations in IPTS also map

back to typing derivations in EPTS•.

In order to state the result, we first need a notion of well-formed contexts.

A context is well-formed when every type in it is well-formed as a type in the

preceding portion of the overall context.

Definition 6.3.1 (Well-formed contexts) ` Γ ctx

OkNil

` ε ctx

OkExt

` Γ ctx Γ ` A :c s

` Γ, x:τA ctx

The reset operation on typing contexts preserves well-formedness.

Lemma 6.3.2 If ` Γ ctx then ` Γ◦ ctx.

Now we can state the property that IPTS typing derivations map back to

EPTS• ones. The proof has two main parts. First, we prove that any typing

derivation under the erasure of a well-formed EPTS• context Γ maps back to an

EPTS• typing derivation under Γ. The only stipulation is that when we want the

resulting EPTS• judgment to be in r-mode, it is required that all free variables

of the subject M of the conclusion typing judgment are r-marked in Γ. Secondly

we prove that there is such an EPTS• context corresponding to every context in a

valid IPTS typing judgment.

170

Theorem 6.3.3 (Elaboration in r mode)

` Γ ctx Γ• ` M : A FV (M) ⊆ RV (Γ)

(∃M ′ A′) Γ ` M ′ :r A′ M ′• = M A′• = A

Corollary 6.3.4 (Elaboration in c mode)

` Γ ctx Γ• ` M : A

(∃M ′ A′) Γ ` M ′ :c A′ M ′• = M A′• = A

Then we show that can extract a well-formed EPTS• context from the context

of any typing judgment in IPTS.

Lemma 6.3.5 (Context Elaboration)

Γ ` M : A

(∃Γ′) ` Γ′ ctx Γ′• = Γ

From these three lemmas, it immediately follows that for any mode τ , we may

map any IPTS typing derivation back to an EPTS• typing derivation in that mode.

Corollary 6.3.6 (Elaboration)

Γ ` M : A

(∃Γ′ M ′ A′) Γ′ ` M ′ :τ A′ Γ′• = Γ M ′• = M A′• = A

6.4 ERASABILITY ANALYSIS

How might we try to extend the constraint-generation process (of Section 4.2) for

Conv? The original rule for testing convertibility of applications in head normal

form was

CongApp

C ` M =β M ′ D ` N =β N ′

α = α′ ∧ C ∧ D ` M@αN =β M ′@α′

N ′
.

However, if either α or α′ is c, then erasure will prevent the conversion test between

M ′ and N ′. There are four cases to consider

171

1. α = r = α′ — the generated constraint should be C ∧ D

2. α = c = α′ — the generated constraint should be C

3. α = c, α′ = r — compare M with M ′@rN ′ to obtain the constraint E , and

then return E

4. α = r, α′ = c — compare M@rN with M ′ to obtain the constraint F , and

then return F

These considerations together yield the following rule

CongApp

C ` M =β M ′ D ` N =β N ′

E ` M =β M ′@rN ′ F ` M@rN =β M ′

(¬α ∧ ¬α′ ⇒ C ∧ D) ∧ (α ∧ α′ ⇒ C)

∧ (α ∧ ¬α′ ⇒ E) ∧ (α ∧ ¬α′ ⇒ F)
` M@αN =β M ′@α′

N ′

The result of this rule will be to run conversion tests on every possible combi-

nation of c and r assignments to application annotation variables in neutral terms.

For instance, comparing x@α1M1@
α2M2 · · ·@

αmMm and y@β1N1@
β2N2 · · ·@

βnNn

will require testing n · m different pairs (Mi, Nj) for conversion. This strategy

seems hopelessly inefficient.

One possible way out is to sacrifice completeness, using the following simple

rule that ignores the possibility that α may not equal α′.

CongApp

C ` M =β M ′ D ` N =β N ′

α = α′ ∧ C ∧ (α ∨ D) ` M@αN =β M ′@α′

N ′
.

This restriction still allows the applications of elective irrelevance outlined above,

but precludes the possibility of inferring convertibility of the exotic example from

Section 6.1.2.

The constraint of the form α∨D may be transformed into conjunctive normal

form (CNF) when C is already in CNF by distributing the ∨ over each ∧ in the

172

conjunction C. Furthermore, this operation preserves the invariant that each clause

in a CNF constraint has at most one negated literal.

Of course, in an implementation of a constraint-generator following these rules,

we would treat concrete annotations specially when they allow us to “short circuit”

certain tests. Such optimizations are justified by instantiations of the previous rule,

such as

CongAppShortCircuit1

C ` M =β M ′

α′ ∧ C ` M@cN =β M ′@α′

N ′
and

CongAppShortCircuit2

C ` M =β M ′

α ∧ C ` M@αN =β M ′@cN ′
.

However, these rules over-optimize CongApp in the sense that we test N and

N ′ not only to generate a constraint, but also to see whether such a constraint

exists. In other words, N and N ′ may fail to be convertible altogether in the

rule CongApp. In this case, CongApp is too strong and we need another rule

asserting that both α = c and α′ = c.

CongAppFail

C ` M =β M ′ 6` N =β N ′

α ∧ α′ ∧ C ` M@αN =β M ′@α′

N ′

.

The upshot is that a complete analysis is infeasible for EPTS•, but a heuristic

and sound analysis is feasible. It remains to be seen whether the heuristic approach

is practical for implementations of programming languages with erasure semantics

based on EPTS•.

Chapter 7

RELATED WORK

In this chapter, we outline several bodies of related work and discuss how our

research is related to them.

7.1 USELESS VARIABLE ELIMINATION

The simplest body of related work is on a problem known as useless variable

elimination (UVE) for functional programming languages.

In 1991, Olin Shivers introduced UVE in his doctoral dissertation [84, Sec-

tion 7.2]. UVE is a program analysis and optimization whereby variables whose

values never affect the outcome of a computation are eliminated from the program.

Shivers presents UVE as an application of his control flow analysis for functional

programs. In a follow up workshop paper [85], he provides more details of how to

implement UVE.

In 1999, Mitchell Wand and Igor Siveroni [94] formalized a constraint-based

useless variable analysis, proved it sound, and then showed that correctness of the

subsequent UVE step follows from soundness of the analysis. The presentation is

much more precise than that of Shivers, but the algorithm is essentially the same.

They note that UVE can be thought of as a form of “dead code elimination” where

code is considered dead if it contributes nothing to the end result of a computation.

In 2000, Naoki Kobayashi showed how to do UVE for a typed language as a

simple variation on the usual Hindley-Milner type inference algorithm [44]. His

UVE algorithm is based on pruning — replacing subterms of the original program

174

with unit, the sole constructor of a unit type such as >. To be useful, pruning

must be followed by a unit removal phase to reduce time spent passing around

unit values. The second phase consists of selectively applying the following type

isomorphisms

> → B ∼= B A → > ∼= > A ×> ∼= A >× B ∼= B

The analysis phase does a type inference in a demand-driven way so that any

subterm that may be assigned the type > is replaced with unit.

A useful feature of each UVE algorithm listed so far is that dead code identified

by the analysis phase does not affect which parts of the code are marked as dead

by the analysis. Consider the following example program and its pruned version,

due to Wand and Siveroni [94]:

let f1 = λx. λy. x

f2 = λx. λy. x + x

f3 = λx. λy. y

g = if P then f1 else f2

h = if Q then f1 else f3

in g x h

let f1 = λx. λy. x

f2 = λx. λy. x + x

f3 = unit

g = if P then f1 else f2

h = unit

in g x unit

The use of f1 and f3 as opposite branches of the if expression comprising the

definition of h seems to indicate that, for the purposes of static analysis, one must

assume that both f1 and f3 depend computationally on their second argument

(since f3 does, so must f1, because we cannot know which one will be the value of

h). However, as the body of h is dead code, we are free from any considerations

arising from the analysis of this expression.

In 2001, Adam Fischbach and John Hannan developed an alternative approach

to type-based UVE that comes close to our own approach for erasure semantics [34].

As we do, they divide function types into two categories, based on whether the

function parameter is needed for the computation of the function’s result.

175

• A
u
→ B — the function parameter is not needed (unneeded)

• A
n
→ B — the function parameter may be needed

They study UVE for languages with “necessity” annotations n and u that decorate

function arrows (as above) and application nodes. Function abstractions λx. M are

not annotated since their “mode” is determined in a completely local fashion based

on whether x ∈ FV (M). This presents no problems since their UVE program

transformation does not erase any λ-binders.

The type system for their language includes a subtyping mechanism. The

subtyping relation is generated by the axiom that A
u
→ B is a subtype of A

n
→ B

— any function that definitely does not need its parameter is also a function that

may (but just happens not to) need its parameter. Therefore the annotation n

indicates a lack of precise knowledge and the subtype relation orders types by

precision. More precise types are subtypes of less precise types.

Fischbach and Hannan’s UVE does not erase λ-binders or unneeded function

arguments, but rather it simply replaces unneeded function arguments with free

dummy variables. A non-standard evaluation relation then discards unneeded

arguments and λ-binders on the fly as they come into contact with each other.

The semantics they give their language includes1 the non-standard reduction rule

(λx. M)@uN →β M

for application of a function to an unneeded argument.

Fischbach and Hannan also study a form of annotation polymorphism. Just as

System F allows one to form expressions that are polymorphic in a particular type

by explicit parameterization over that type and then instantiate polymorphic val-

ues to a particular type, they study a language extension whereby expressions may

1Actually, they give a big-step operational semantics to their language, but the rule we give
here accomplishes the same thing for a small-step operational semantics.

176

be parameterized by and instantiated to “neededness” annotations. This feature

enables a sort of dynamically determined erasure where evaluation of one instanti-

ation of an annotation-polymorphic function may enjoy more erasure than another

at run-time. As far as expressiveness is concerned, annotation polymorphism al-

lows the language to express the results of a polyvariant UVA.

Comparison

Our approach to erasure semantics for dependently type languages has much in

common with UVE. Erasure annotations on context entries in EPTS correspond

to the usefulness designation of a variable: r-marked variables are (conservatively)

considered useful while c-marked variables are considered useless.

The UVE process may be broken into two phases, analysis and program trans-

formation. For the remainder of this section we reserve the term UVE for the

program transformation phase and refer to the analysis phase as UVA (useless

variable analysis).

For UVA, both Shivers [85] and Wand and Siveroni [94] make use of the n-CFA

family of control flow analyses introduced by Shivers in his dissertation [84]. These

analyses try to determine which λ-abstractions occurring in the source program

evaluate to function values that may end up being applied at particular application

sites during the course of program evaluation. The underlying reasoning is set-

theoretic, as it involves sets of λ-abstractions.

In contrast, Kobayashi [44] and Fischbach and Hannan [34] consider typed

languages and base UVA on the flow analysis implicit in the type system. We also

take this approach. Kobayashi’s UVA does demand-driven type inference where

expressions of type > are not type-checked because they will be replaced with unit

during UVE. In this way, his UVA algorithm identifies useless expressions rather

than useless variables. It is only a later pass (after UVE) that removes certain

λ-binders of > type.

177

In a sense, Fischbach and Hannan do not do UVA at all, because the onus is on

the programmer to provide “neededness” annotations. Their type system merely

checks that those annotations are consistent with each other. In contrast, our

UVA algorithm (developed in Chapter 4) infers optimal erasure annotations for an

unannotated PTS program. Our approach does not, however, extend completely

to EPTS•, the extension of EPTS with proof irrelevance (discussed in Chapter 6).

Of all the UVA algorithms reported here, we find our own to be the simplest

to understand, because we use no ad hoc constructions and merely state it as

an optimizing SAT problem. The SAT algorithm we use is built from easy to

understand, off-the-shelf algorithms and data structures developed for SAT solvers.

However, the relative strength of our UVA as compared to the others is not obvious.

On the one hand, our analysis works for dependently typed languages whereas the

other UVAa for typed languages deal with weaker type systems. On the other

hand, some of those UVAs enjoy the previously mentioned property that dead

code identified by UVA can not weaken the precision of the analysis of other code.

However, this deficiency may be remedied by introducing η-expansions in the

source program. Such a transformation is well-known to improve the precision of

various automatic program analyses, such as binding time analysis. First, let us

make the type application and abstraction of the previous example explicit.

let f1 = λa:∗. λx:nat. λy:a. x

f2 = λa:∗. λx:nat. λy:a. x + x

f3 = λa:∗. λx:a. λy:nat. y

g = if P then f1 else f2

h = if Q then f1 nat else f3 nat

in g (nat → nat → nat) x h

Our UVA will not obtain the desired level of erasure for this program as listed.

But if we η-expand the occurrences of f1 and f3 in the body of h, then our UVA

178

yields the following annotation:

let f1 = λλa:∗. λx:nat. λλy:a. x

f2 = λλa:∗. λx:nat. λλy:a. x + x

@f3 = λλa:∗. λλx:a. λy:nat. y

g = if P then f1 else f2

@h = if Q then λx:nat. λy:nat. f1 nat x @y

else λx:nat. λy:nat. f3 nat @x y

in g (nat → nat → nat) x h

We are treating let as syntactic sugar for a β-redex, which may be annotated

throughout either with r or c. The f3 and h bindings are annotated with c by our

UVA, as indicated by the extra @ syntax on their let-bindings. This program now

erases to

let f1 = λx. x

f2 = λx. x + x

g = if P then f1 else f2

in g x h ,

just as in the UVE algorithms of Shivers, Wand and Siveroni, and Kobayashi.

Fischbach and Hannan start out in much the same way that we do, distinguish-

ing between definitely non-computational functions and possibly computational

ones by having two categories of function types. However, our approaches differ

with regards to subtyping and erasure.

Fischbach and Hannan assign all dummy λ-abstraction a u-annotated type,

regardless of whether or not all the application sites at which they may be applied

only ever apply other dummy λ-abstractions (Recall the discussion on erasability

of λ-binders in Section 1.4.2). This choice does not cause any typing difficulties,

because their subtyping mechanism always allows for implicit type coercions that

serve to reduce the precision of the local analysis whenever a type mismatch may

be avoided by doing so.

179

However, the use of subtyping with implicit coercion is fundamentally incom-

patible with the erasure of dummy λ-binders and unneeded arguments, because

implicit coercion of a post-erasure value of type A
u
→ B to a value of type A

u
→ B

would require the introduction of a dummy λ-binder. In EPTS or EPTS•, such

coercions may be introduced explicitly. If M has type Πcx:A. B then λrx:A. M@cx

has type Πrx:A. B. Note that the post-erasure effect of such a coercion is that

M• is transformed into λx. M• where λx is a dummy binder. One may con-

struct coercions that operate deep within a function type by nesting η-expansions

that alternate from r to c mode whenever necessary, as in the above example.

For example, if F [] coerces from A′ to A and G[] coerces from B to B′, then

H [] = λτ ′

x:A′. G[[]@τF [x]] coerces from Πτx:A. B to Πτ ′

x:A′. B′ (assuming that

τ = c only if τ ′ = c, as is required by the subtyping relation).

The relative lack of erasure of Fischbach and Hannan’s UVE means that era-

sure must be delayed until run-time, resulting in an ad hoc semantics as well as

additional run-time overhead for annotation inspection. In short, they give up

some efficiency and simplicity of the run-time execution mechanism in exchange

for increased flexibility in the type system so that programmers need not write

their own coercions. However, this trade-off does not seem to be advantageous,

since one may add coercive subtyping support to the language, if required, in the

manner described above with automatically constructed coercions. This solution

would retain the advantages of both compile-time erasure and implicit subtyping.

Annotation polymorphism as studied by Fischbach and Hannan is also at odds

with our desire that the erasure take place at compile-time. Unlike implicit subtyp-

ing, however, this feature undoubtedly increases the expressiveness of the language.

It is not clear, however, whether the additional run-time overhead required to cre-

ate closures for annotation abstractions and pass around annotations at run-time

is worth the savings one would obtain from additional dynamically determined

erasure.

180

7.2 SUBSET AND SQUASH TYPES

As mentioned in Chapter 5, subset types and squash types have been introduced

in the context of Martin-Löf type theory in order to cope with computationally

irrelevant portions of dependently typed programs. Both concepts originated with

Nuprl, an implementation of the extensional version of Martin-Löf type theory [22,

Sections 2.4 and 10.3] developed by the research group of Robert Constable at

Cornell in the 1980’s. The implementation contained subset types as a primitive

and squash types defined in terms of subset types.

To review, a term M is an inhabitant of the subset type {x : A | B} if M : A and

B[M/x] is inhabited. In other words, {x : A | B} is the subtype of A containing

exactly those inhabitants x that satisfy the proposition B.

These ideas never caught on in implementations of intensional type theories, in

part due to the observations of Salvesen and Smith that the information that an

inhabitant of {x : A | B(x)} satisfies B cannot be used in non-trivial ways [79, 78].

In particular, they proved that the type (y : {x : A | B}) → B(y) is inhabited

in intensional type theory only if (y : A) → C(y) is also inhabited. This fact

corresponds to our inability to define a second projection function for subset types

in Section 5.3.3.

In 1990, Bengt Nordström, Kent Petersson, and Jan M. Smith further devel-

oped the notion of subset types in intensional type theory in their book “Pro-

gramming in Martin-Löf’s Type Theory” [70, Part II]. Their subset theory is a

complete revision of Martin-Löf type theory around the idea of subset types. This

theory includes two additional judgments. In addition to the judgment that A is

a type, there is a new judgment that A is a proposition. In addition to the judg-

ment M : A that says M is an inhabitant of the type A, there is a new judgment

A true that says A is a true proposition. This language solves the aforementioned

problem with subset types because now one can conclude that B(y) true from the

181

assumption y : {x : A | B}.

The squash type #A may be thought of as an internalization of the judgment

A true of the subset theory. The definability of the function evidence from Sec-

tion 5.4.3 in terms of the squash type supports this assertion. Chapter 5 shows

how subset types may be useful in intensional type theory without requiring the

semantic interpretive overhead of the subset theory. Thus Caldwell’s suggestion

that intensional type theory is not suitable for reasoning with subset types [15,

Section 3.3.1] is unwarranted.

In 1992, Thompson [90] also argues that the complexity of the subset theory

is too high a price to pay for subset types. He claims that subsets are not in

fact necessary because programs can always be reorganized in such a way as to

isolate the core algorithms from the proofs of correctness, and that choosing a

lazy evaluation strategy for our language ensures that computationally irrelevant

portions of a program will never be evaluated. However, it is widely held that lazy

evaluation imposes significant overhead on the efficiency of most programs and

that it also makes it very difficult to reason about the space behavior of programs

(how much memory they will consume and when they will release it for garbage

collection).

I believe that subset and squash types never caught on in implementations

of intensional type theory because, until now, no one knew how to support them

without radically restructuring the entire language. Our results show how one may

accomplish this goal.

7.3 PROGRAM EXTRACTION

It is well-known that proofs have computational content, but sometimes the com-

putational content is obscured by non-computational content. The goal of program

extraction is to identify a program embodying the computational content of a given

proof. This is an old problem that many researchers have tackled. We divide the

182

bodies of work into three categories: realizability interpretations, the theory of

specifications, and pruning methods.

7.3.1 Realizability Interpretations

The earliest research on this topic was done even before the invention of the dig-

ital computer when mathematicians were investigating the constructive nature of

intuitionistic logic. In this context, Kleene introduced the notion of realizability in

1945 [43]. He defines a relation between numbers n and intuitionistic formulas φ

that says, roughly speaking, that n encodes just enough information to allow one

to reconstruct an intuitionistic proof of φ from n (assuming one knows the coding

scheme and the formula φ). In this case we say that n realizes φ or n is a realizer

of φ. The information encoded in n is a simple value where a value is either (1)

a pair of values, (2) a computable function from values to values, or (3) a natural

number2.

In 1959, Kreisel introduced modified realizability [45, Paragraph 3.52], which

differs from Kleene’s realizability in that a realizer is no longer merely a number but

a simply typed entity with a type τ formed according to the following grammar:

τ ::= nat | τ → τ | τ × τ

The type of a realizer is determined by the structure of the formula that it realizes.

In this way, the notion of modified realizability of a formula φ involves a type τ of

potential realizers as well as a predicate over τ satisfied by the actual realizers of

φ, namely the relation x realizes φ [87].

In 1989, Christine Paulin-Mohring developed a program extraction algorithm

for the Calculus of Constructions (CC) based on modified realizability [71]. This

algorithm eventually became the basis for the program extraction facility of Coq.

2The language under Kleene’s study was intuitionistic number theory, so the witness of an
existential formula was a number.

183

In this case the realizers are System Fω terms, which are also CC terms because

System Fω is a sub-language of CC. Since types and terms in CC live in the

same syntactic category, a single extraction function E serves both to define the

System Fω type of potential realizers of a formula A in CC as well as to extract

the actual realizer from a proof of A.

Paulin-Mohring also partitions the type structure of CC into so-called infor-

mative and non-informative fragments by splitting the sort ∗ of CC into Set (in-

formative) and Prop (non-informative), as described in Section 5.5. The function

E is similar to our erasure translation in that it erases λ-binders and function

arguments when the range of the corresponding function type belongs to the non-

informative fragment of the language. However, E also erases Π-binders in this

case, which we do not. The erasure of Π-binders accounts for the fact that the

language of realizers (System Fω) has a strictly simpler type structure than the

source language (CC).

In 2005, Ulrich Berger developed a realizability interpretation for Heyting arith-

metic, one of the oldest formal languages based on intuitionistic logic [10]. The

novelty of his approach was the use of so-called uniform or non-computational

quantifiers {∀} and {∃}3. The introduction rule for {∀} is stricter than that for

∀ in that it additionally requires that the parameter x in the introduction form

for {∀} may not appear as a computationally relevant variable in its scope. Con-

versely, the elimination rule for {∃} is stricter than that for ∃. The reader may

have guessed (correctly) that {∀} corresponds to our Πc and {∃} to our exists, al-

though in Heyting arithmetic the range of quantification is limited to simply typed

values while we may quantify over much more complicated types in EPTS.

3Actually Berger introduced {∀} in 1993, but it was not explained in as much detail then [9].

184

Comparison

With the exception of the uniform quantifiers, all of these approaches erase λ-

binders and their corresponding arguments only when the domain A of the cor-

responding function space is considered to be non-computational as a type. In

other words, the notion of computational irrelevance is intrinsic. The thesis of this

dissertation is that an extrinsic view of computational irrelevance is more flexi-

ble to use for programming. Section 1.4.1 discusses a problems with the intrinsic

approach that is overcome by the extrinsic approach.

One advantage of the realizability approach over our own is that extracted

programs have much simpler types than the original proof development. The way

this happens is that the type of realizers of Πx:A. B is taken to be simply the

type of realizers of B whenever A is a non-informative type. However, the type

we assign in this circumstance, namely ∀x:A•. B•, contains more information than

B• while being represented in the same way!

In fact, it seems our erasure translation can itself be viewed as a realizability in-

terpretation similar to that of Paulin-Mohring. First we define program extraction

simply as our erasure translation

E [M] = M• E [Γ] = Γ•

Then we define the realization relation: R[A](M) states that the IPTS term M

realizes the EPTS (or EPTS•) type A. This function is also defined on typing

contexts.

R[s] = λa. a → s
R[Πrx:A. B] = λf. Πx:E [A]. Πx̂:R[A](x).R[B](f x)

R[Πcx:A. B] = λf. Πx:E [A]. Πx̂:R[A](x).R[B](f)

R[λτx:A. M] = λx. λx̂.R[M] R[M@τN] = R[M] E [N] R[N] R[x] = x̂

R[ε] = ε R[Γ, x:τA] = R[Γ], x:E [A], x̂:R[A](x)

The meta-theoretical results we now need to prove are the following.

185

Proposition 7.3.1 (Correctness of Realizability Interpretation)

Γ ` M :τ A

E [Γ] ` E [M] : E [A]

Γ ` M :τ A

R[Γ] ` R[M] : R[A](E [M])

The first states that program extraction respects the type systems involved. This

has already been proved for EPTS (and EPTS•). The second proposition states

that any program extracted from a well-typed term M realizes the type A of that

term. It seems that this result should be straightforward to prove by induction

except perhaps in the Weak and Conv cases.

As Paulin-Mohring points out, a realizability interpretation provides one with

a means for demonstrating the consistency of axioms introduced in the source

language. Say we want to add the type A as an axiom to EPTS. The axiom is

consistent with the rest of the theory if, and only if, x : A ` ⊥ is not deriv-

able. If A is realizable, then x : A ` m : ⊥ is not derivable for any M , since

the realizability interpretation would send such a derivation to a derivation of

x : E [A], x̂ : R[A](x) ` R[⊥](E [M]) which implies that ⊥ is provable because A is

realizable and R[⊥](N) implies ⊥. Therefore A’s realizability implies its consis-

tency as an axiom. This argument is easily extended to the case of several axioms:

if A1 . . .An are realizable, then consistency of the source language is preserved by

adding them axioms.

For example, if the realizability interpretation extends to encompass inductive

datatypes, then we may use it to prove consistency of the axiom join : (a : ∗) ⇒

##a → #a discussed previously. The realization predicate for # (i.e., squash) is

defined as follows:

data rsquash (a : ∗) (r : a → ∗) : squash a → ∗ where

rpoof : (x : a) → r x → rsquash a r poof

To see why this is so, recall the definition of squash

data squash (a : ∗) : ∗ where

poof : (x : a) → squash a

186

and apply the realizability interpretation defined above.

The realizer for join must be some term M of type

E [(a : ∗) ⇒ ##a → #a] = (a : ∗) ⇒ ##a → #a

that satisfies the realizability predicate

R[(a : ∗) ⇒ ##a → #a]

= λf. (a : ∗) → (r : a → ∗) →

(x : ##a) → (e : rsquash (#a) (rsquash a r) x) → rsquash a r (f x)

Note: we have α-renamed â to r and x̂ to e for improved clarity. One such realizer

is simply M = λ . poof.

An interesting consequence of the definition of rsquash is that

Proposition 7.3.2 #A is realizable iff A is realizable.

An immediate corollary is

Proposition 7.3.3 If #A is inhabited then A is realizable.

This justifies somewhat our use of non-computational axioms. However, the axiom

#((a : ∗) ⇒ #a → a) proposed in Section 6.2 does not appear to be realizable.

7.3.2 The Theory of Specifications

In the years 2001-2003, Paula Severi, Nora Szasz, Femke van Raamsdonk, Mari-

bel Fernández, and Ian Mackie developed an extension of type theory called the

theory of specifications for the purpose of program extraction [81, 92, 33, 32]. The

best way to describe this language is by way of analogy. Just as calculi of explicit

substitutions differ from more standard λ-calculi by internalizing the meta-level

operation of substitution, the theory of specifications differs from more standard

type theories by internalizing the meta-level operation of realizability interpreta-

tion.

187

The technical means by which realizability is internalized is called ultra Σ-

types. An ultra Σ-type Σx:A.B is a specification consisting of a type A of x, the

entity specified, together with some property B that x must satisfy. Inhabitants

of this type are pairs of a realizer x together with evidence that x realizes the

specification. The reduction rules for inhabitants of ultra Σ-types incrementally

accomplish the realizability interpretation (just as additional reduction rules in

calculi of explicit substitutions incrementally accomplish substitution). The rules

for well-formedness of specification expressions prevent the realizer component x

(of type A) from depending on the evidence of realization (of type B(x)).

Comparison

For our purposes, the theory of specifications offers no advantages over a standard

realizability interpretation. A program whose execution involves dynamic program

extraction is certainly less efficient, both in space and time, than one that has

already been extracted statically.

However, the incremental presentation of a realizability interpretation embod-

ied in the theory of specifications does help one understand them better. Ultra

Σ-types serve to highlight the relationship between modified realizability and sub-

set types. Both involve a type of potential realizers/programs satisfying some

desired correctness predicate over that type. In both cases, the inhabitant of the

former may not depend computationally on the evidence for the latter.

This explanation of realizability in terms of subset types highlights the fact

that the semantics given by Nordström, Petersson, and Smith [70, Part II] to their

subset theory is essentially a modified realizability interpretation. They interpret

each type in the subset theory as pair of a type and a predicate over that type in

the underlying standard type theory without subset types.

188

7.3.3 Pruning Methods

Another area of related work is pruning methods for program extraction. A pruning

algorithm replaces some of the subterms of a program with dummy terms. The

goal is to prune away computationally irrelevant portions of the program in order

to improve program efficiency.

In 1994, Stefano Berardi introduced the idea of pruning in the context of the

simply typed λ-calculus [7]. His algorithm prunes by replacing subterms with the

constant unit of type >. He proved that a pruning that leaves the overall type of

a program undisturbed yields a program operationally equivalent to the original.

Later that same year, Luca Boerio extended these results from simply typed λ-

calculus to System F [12]. The work of Kobayashi cited in Section 7.1 is essentially

a re-implementation of these results with a supposedly more efficient algorithm.

In 1996, Mario Coppo, Ferruccio Damiani, and Paola Giannini further devel-

oped the work of Berardi and Boerio by annotating types as either computational

or not (rather than using the catch-all type > for all non-computational entities)

and introducing a notion of subtyping whereby the non-computational types are

subsumed by their computational counterparts [23]. Note that their notion of com-

putational relevance is intrinsic rather than extrinsic — a type A is annotated as

Aω if its inhabitants may not be used in the computation and as Aδ otherwise.

By their subtyping relation, Aδ is a subtype of Aω, indicating that an entity may

waive its right to be used in a computationally relevant context at any time.

The use of subtyping goes some way towards silencing our objections to the

intrinsic approach to computational irrelevance. Just as we may always apply

(instantiate) a function of type Πcx:A. B to a value y:rA in our approach, the type

Aω → Bδ may be applied to y : Aδ by subtyping. In each case, the result is that

computational relevance depends on context. What is relevant in one context may

be irrelevant in another.

The pruning algorithms discussed so far in this section are only the first half of

189

program extraction. To be practical, pruning must be followed by a function and

tuple simplification phase wherein λ-binders and function arguments correspond-

ing to non-computational function parameters are erased and non-computational

components of tuples are erased. In 2000, several of the same authors — Stefano

Berardi, Mario Coppo, Ferruccio Damiani, Paola Giannini — showed how to fuse

these two phases into one [8]. The resulting program transformation is similar to

our erasure translation.

In 2002, Pierre Letouzey overhauled the program extraction mechanism of

Coq [51]. The approach of Paulin-Mohring based on a realizability interpreta-

tion was abandoned since it did not handle the full Coq language. Letouzey’s

extraction instead uses a pruning algorithm that simply replaces certain subterms

with a dummy token 2. A second, post-pruning pass elides all token type elimina-

tions, replaces empty type eliminations with code that raises an exception, does an

optimization akin to the Haskell newtype optimization4, and removes superfluous

lambda-binders and applications, leaving a protecting dummy binder whenever

necessary.

Comparison

Of all the work cited here, Letouzey’s program extraction is the closest to our work

on erasure semantics, since Coq is a a dependently typed language. None of the

other pruning algorithms deal with type systems more complex than System F.

The optimization of token type and empty type elimination is reminiscent of

the language features of token type target erasure and empty type target erasure

discussed in Chapter 5. Figure 7.1 shows our loopy example of Figure 5.1 ported

4In Haskell, the declaration newtype T a b c = C A introduces a datatype with a single
constructor C with a single argument of type A. Haskell guarantees that the run-time represen-
tation of T-values is simply the representation of A with no extra information corresponding to
the constructor C. In general, this optimization is possible whenever the lone constructor C has
multiple arguments, so long as exactly one of them survives program extraction. Two examples
of such types are weak sums and subset types as defined in Chapter 5.

190

A Coq development.

Inductive TyEq (A : Set) : Set -> Prop := TyRefl : TyEq A A.

(* coerce = \x. x *)

Definition coerce (A B : Set) (p : TyEq A B) (x : A) :=

TyEq_rec A (fun C : Set => C) x B p.

(* symm = TyRefl *)

Definition symm (A B : Set) (p : TyEq A B) :=

TyEq_ind A (fun C : Set => TyEq C A) (TyRefl A) B p.

(* loopy = (\x. x x) (\x. x x) *)

Definition loopy (A B : Set) (p : TyEq A (A -> B)) :=

let selfapp x := coerce A (A->B) p x x in

selfapp (coerce (A -> B) A (symm A (A -> B) p) selfapp).

Extraction Language Scheme. Recursive Extraction loopy.

The resulting extracted Scheme program.

(define coerce (lambda (x) x))

(define loopy (lambda (_)

(let ((selfapply (lambda (x) ((coerce x) x))))

(selfapply (coerce selfapply)))))

Figure 7.1: A Coq term and its corresponding extracted looping program

191

to Coq. Note that Letouzey’s extraction algorithm removes everything that token

type target erasure would have, except that the resulting extracted program is

protected from non-termination by wrapping it with a dummy λ-binder.

(define loopy (lambda () . . .))

This means that program extraction preserves termination, and it is the responsi-

bility of the programmer compiling against extracted code to only dispatch to that

code when the appropriate preconditions are met, or else risk the possibility of a

raised exception.

We see nothing preventing one from performing Letouzey’s post-processing

simplifications after our erasure translation. In fact, some such optimization may

be required for practical applications since equality reasoning and manipulation of

other token types is common in formal proofs.

As a final remark, we note one flaw common to both Paulin-Mohring’s and

Letouzey’s approach to program extraction in Coq: they both consider the non-

computational aspects of a proof to be the “logical” parts, namely the types and

proofs. This assumption seems true since those are the most pervasive (in the case

of types) and largest (in the case of proofs) examples of computationally irrelevant

portions in actual developments. However, these two notions notions are actually

orthogonal.

• Types are not necessarily non-computational. Letouzey cites a program of

David Monniaux whose purpose is to compute types of lattices [51, 67]. In

this case, the program definitely depends computationally on a type!

• Proofs are not necessarily non-computational. In a case study of Coq’s pro-

gram extraction facility, Lúıs Cruz-Filipe and Bas Spitters report that proofs

are often computationally relevant [29] and this fact must be taken into ac-

count when developing proofs with an eye towards eventual program extrac-

tion.

192

• Non-computational parts are not necessarily types or proofs. Consider a map-

ping function over lists of a particular length

map : (a, b : ∗) ⇒ (n : nat) ⇒ (a → b) → list a n → list b n

The execution of map only depends on the function and list arguments. In

particular, the list length argument is computationally irrelevant, though it

is neither a type nor a proof.

In light of these insights, our approach decouples the notion of computational

irrelevance from proofs and types.

7.4 MISCELLANEOUS

We now discuss several related works that do not fit into any particular category.

The EPTS type system was heavily inspired by Frank Pfenning’s treatment

of proof irrelevance in the context of the Edinburgh Logical Framework [73] in

2001. Pfenning associates various logical modalities such as proof-irrelevance and

intensionality with different “flavors” of function space. Our notion of compu-

tational irrelevance is closely related to his notion of proof irrelevance. In the

same paper, Pfenning also informally considers the connection between his proof-

irrelevant function space and the squash type of Nuprl. One may view our work

as an extension of Pfenning’s to calculi with more complicated type structure.

One significant difference between our work and Pfenning’s is in the well-

formedness rules for the type Πcx:A. B — Pfenning checks B in a context where x

is c-bound to the type A whereas in our work, x is considered r-bound in B. This

aspect of our work follows from the decision to treat computational irrelevance ex-

trinsically. In this case, the function parameter x may be computationally relevant

to the type of a function’s return value even if it is not computationally relevant

to the return value itself.

193

Obviously, Alexandre Miquel’s work on the Implicit Calculus of Constructions

(ICC) is related to IPTS [64, 65]. As has already been mentioned in Chapter 3,

ICC is basically Zhaohui Luo’s Extended Calculus of Constructions [53] (ECC)

extended with ∀, an implicit product type former denoting large type intersection.

Roughly speaking, ICC is the particular IPTS with the underlying PTS specifica-

tion of ECC. We say “roughly speaking” because there are still several important

differences between ICC and that particular IPTS, as outlined in Chapter 3.

Independently from our work, Bruno Barras and Bruno Bernardo have recently

been studying ICC∗, an explicitly typed version of ICC, as a type theory with a

built-in notion of program extraction [5]. The extensions that they make to ICC to

ensure decidable type checking bring the language very close to our own EPTS. One

may view our work on EPTS and EPTS• as showing how to efficiently implement

type theories in the style of ICC∗.

In 1989, Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman

identified a class of extensions to type theory involving “types with information

loss” [2, Section 3.4] wherein certain premises of the introduction rule for a par-

ticular type are omitted in the conclusion from the inhabitant of that type. They

discuss several examples of this phenomenon, including subset types, union types,

and intersection types. Their subset types are as we have described subset types

here. Their union types are effectively the weak sums of Section 5.3.2 and their

intersection types are effectively our non-computational dependent product (i.e.,

function) types. The interpretation of weak existentials and non-computational

function spaces as unions and intersections is quite an interesting semantic view-

point. In fact, Miquel interprets ∀ types as intersections in his denotational se-

mantics for IPTS [63].

Chapter 8

CONCLUSION

In this section, we summarize our thesis and supporting research, outlining its

significance, limitations, and the new questions that it raises.

8.1 SUMMARY

The thesis of this dissertation is that an extrinsic view of computational relevance

results in (1) a flexible erasure semantics for dependently typed languages; (2)

a generic form of parametric polymorphism; and (3) an elective notion of proof

irrelevance.

In Chapter 1, we discussed the main problem with existing approaches to com-

bining dependent types and erasure semantics — viewing computational relevance

as an intrinsic property of a term determined by its type forces programmers to

duplicate certain type and function definitions so that they may be used in both

computationally relevant and irrelevant settings. We argued that the intrinsic view

of computational irrelevance is flawed: the notion of computational relevance of a

particular term depends on the overall term whose value we are trying to compute.

A subterm may be computationally relevant with respect to some enclosing term,

but irrelevant with respect to another, larger, enclosing term.

Given the considerations of Chapter 1, we developed a core erasure semantics

for PTS in Chapter 3. This erasure semantics depends on an intermediate language

EPTS with erasure annotations indicating which variables and expressions are com-

putationally irrelevant with respect to particular contexts of use (represented in the

195

language by functions). The chief technical device used is that all function types

Πτx:A. B are categorized as either computational (τ = r) or non-computational

(τ = c) depending on whether the functions they classify use their parameter in the

computation of their result. Such a classification is necessarily approximate. The

type system errs on the side of assuming functions to be computational if they do

not meet a simple syntactic criterion for being non-computational. We show how

this simple criterion can be efficiently implemented using a clever representation

of typing contexts.

An erasure translation cuts out both the formal parameters (λ-binders) and

actual parameters (function arguments) of non-computational functions. We prove

that erasure respects both the operational semantics and type systems of the source

and target languages. Effectively, →∗
β in the target language simulates →β in

the source language, and →+
β in the source language simulates →β in the target

language. The proofs of these statements show that the erasure translation forms

an effective erasure semantics because it (1) eliminates old work, (2) introduces no

new work, and (3) preserves the meaning of programs (with respect to both static

and dynamic semantics).

The erasure translation targets IPTS, a generalization of Miquel’s Implicit Cal-

culus of Constructions. IPTS supports explicit and implicit dependent products.

The explicit product Πx:A. B is the type of functions introduced by λ-abstraction

and eliminated by function application. The implicit product ∀x:A. B is the type

of polymorphic values and there are no corresponding syntactic cues for intro-

duction and elimination. Erasure sends Πr to Π and Πc to ∀, indicating that

non-computational functions exhibit a highly general form of parametric polymor-

phism: polymorphism not only over types, but also over numbers, proofs, or any

other entity whose type may appear as the domain of a well-formed Πc type.

To use the results of Chapter 3 directly as the basis for an erasure semantics,

one must work in a source language with erasure annotations. However, this is

196

not always possible or desirable. Chapter 4 presented an algorithm for automatic

optimal annotation of a PTS term to obtain an EPTS term. The basic idea is to

augment the EPTS type system so that it generates constraints in terms of those

variables. Solutions to these constraints correspond to correct annotations of the

original program and therefore to a type-preserving map from PTS to EPTS for

the particular term with which we are working. We showed that the constraints

generated by the augmented type system are SAT problems (under a suitable

interpretation of erasure annotations as booleans). We prove that the resulting

SAT problem φ has an solution σ that is optimal in the following sense: if a

particular propositional variable α is set to true under any solution to φ, then

it is set to true by σ. Since true corresponds to c, this means that the analysis

algorithm marks for erasure as much of the original program as possible.

Chapter 5 explored the consequences of programming directly with erasure

annotations in a dependently typed language with inductively defined datatypes.

We first introduced such types as they appear in modern languages, and then we

examined the reduction rules for inductive types to see what opportunities they

afford for additional erasure in a natural extension to the erasure semantics of

Chapter 3. We found that elimination of an inhabitant of an inductively defined

type only depends computationally on the target of the elimination (i.e., the entity

of the type to be eliminated) and on the methods for the elimination (i.e., the

functions with which elimination replaces the various data constructors of that

type). In two cases, erasure of the target argument of a datatype eliminator

appears to be warranted, but upon further inspection these two cases lead either

to additional unwanted normal forms or to the possibility of non-termination in

post-erasure execution of programs.

The use of the non-computational function space in types assigned to data

constructors affords the programmer with a crude mechanism for simplifying the

run-time representation of an inductive type by causing certain constructor ar-

197

guments at certain positions to be erased prior to run-time. We show several

paradigmatic examples of this mechanism, namely weak sum types, subset types,

and squash types. We study several properties of squash types, including their

the relationship with the types of the same name in Nuprl. Finally, we discuss

how squash types provide an alternative way to partition the space of types into

“informative” and “non-informative” fragments, as in Coq, while avoiding the ad

hoc distinction between Prop and Set.

Chapter 6 explored the consequences of integrating the erasure semantics of

EPTS into the notion of definitional equality used in the EPTS type system. We

proved that the language EPTS• resulting from this modification is basically an

explicitly typed version of IPTS. This is important, because type checking IPTS

is always undecidable whereas type-checking EPTS is decidable if the underlying

IPTS is strongly normalizing. The meta-theory of EPTS carries over to EPTS•

essentially unchanged, so that all the same properties of the erasure semantics hold

when EPTS• is considered to be the source language rather than EPTS.

Adding inductive types to an EPTS•-style base language has several interesting

consequences. Firstly, computationally irrelevant constructor arguments play no

part in the compile-time conversion check (i.e., definitional equality). The effect is

that certain types exhibit a form of proof irrelevance. For instance, two inhabitants

of a particular subset type are considered definitionally equal so long as their first

components (of the “superset” type) are definitionally equal, regardless of whether

the second components providing evidence for the defining property of the subset

are equal.

Another consequence is that token types such as squash types and equality

types have the property that any two elements of that type are provably equivalent.

In the case of equality types, this property is well-studied and has the important

consequence that Streicher’s “axiom K” in fact becomes provable. The importance

of this result is that the familiar functional programming style of defining functions

198

by pattern matching equations is only justified in the presence of the K axiom.

In Chapter 7, we outlined the major bodies of work related to the research

presented here, namely useless variable elimination, subset and squash types, and

program extraction. The major program extraction techniques we discussed were

realizability interpretations, the theory of specifications, and pruning methods.

Useless variable elimination (UVE) is a technique for simplifying functional

programs that bind variables to values that have no impact on the ultimate value

of the overall program. While human programmers would likely not ever write such

code, machine generated code often exhibits this property. Early UVE algorithms

leveraged general control flow analyses in identifying useless variables and code.

Later approaches were integrated with the type system of the source language,

and fell into the category of pruning techniques. UVE is analogous to program

extraction, but studied in the functional programming community rather than the

dependent type theory community.

Subset and squash types were studied in the context of Martin-Löf type theory

as a way of delimiting the non-computational aspects of a proof development so

that when proofs are considered as programs, they do not carry along computa-

tionally irrelevant baggage. As language features, subset and squash types only

caught on in proof assistants based on extensional type theory, such as Nuprl. In

intensional type theory, subsets are practically impossible to use unless one has a

way to distinguish between computationally relevant and computationally irrele-

vant conclusions drawn from some assumption of a subset type. The subset theory

of Nordström et al. introduces an additional judgment form of non-computational

conclusions in order to overcome this limitation. The semantics of the subset the-

ory is essentially a realizability interpretation of a type theory with subset types

into one without them.

One way to understand the squash type is as an internalization of the non-

computational judgment form of the subset theory. An EPTS or EPTS•-based

199

language allows one to work in an intensional type theory with subsets and squash

types in a similar way as one would in the subset theory but without having to

understand a complex realizability interpretation.

Most research in program extraction falls into three general categories, realiz-

ability interpretations, theory of specifications, and pruning methods. Realizability

interpretations have the oldest history, originating in the work of Kleene in 1945.

Most applications to proof extraction make use of Kreisel’s modified realizability

because it takes typed terms in a functional language as realizers. Paulin-Mohring

extended the technique of modified realizability to the sophisticated logical system

of the calculus of constructions. Berger showed how non-computational quantifiers

can be used in conjunction with a realizability interpretation in order to improve

the efficiency (reduce the size) of extracted programs. Our erasure translation also

appears to be a realizability interpretation combining the best features of these

two prior works: supporting a very expressive type theory as does Paulin-Mohring

and non-computational quantifiers as does Berger.

The theory of specifications internalizes the notion of realizability interpretation

into the language in much the same way as calculi of explicit substitutions inter-

nalize the notion of substitution. The internalization makes use of an extremely

strong version of Σ types that represent program specifications. One defining

characteristic of this work that, in our view, makes it unsuitable as the basis for

program extraction is the fact that extraction happens dynamically every time a

program is executed instead of statically once and for all.

Pruning methods are those whereby computationally irrelevant subterms of

an input program are replaced by some dummy expressions that require no fur-

ther evaluation. Combined with subtyping, this approach seems to yield good

improvements in program space and execution speed. However, for languages with

expressive type systems, the approach relies on a vaguely defined second pass that

attempts to eliminate unnecessary run-time manipulation of dummy values. The

200

latest survey of work on pruning arrives at an erasure based approach quite similar

to our own.

8.2 SIGNIFICANCE

The chief contribution of our research is a language design combining dependent

types with an erasure semantics. This design advances the state of the art by

avoiding the problem of forcing programmers to duplicate code in order to achieve

the amount of erasure one desires. Our solution admits an efficient implementation,

both in terms of automatically annotating unannotated programs and in terms of

type-checking annotated programs.

Our investigations have uncovered a strong correspondence between our par-

ticular notion of computational irrelevance and the widely known and practically

useful notion of parametric polymorphism. In light of this correspondence, we feel

that functional programmers familiar with the statically typed languages like ML

and Haskell should have little problem programming in a language with explicit

erasure annotations.

Once inductive types are included in such a language, we see how to program

from scratch certain language constructs that previously required direct language

support such as weak sum types, subset types, and squash types. Accounting for

these old constructs in a common framework yields a conceptual economy with

practical benefits — there are now fewer primitives to understand and implement.

If we start with EPTS as the basis for a programing language with erasure

annotations, it is possible to integrate our erasure semantics into the notion of def-

initional equality used to type our programs. Doing so yields a much more liberal

definitional equality relation while still remaining intensional. The benefits of this

extra freedom include a user-directed form of proof-irrelevance that can be used

to justify the common functional programming style of programming functions by

pattern matching equations. Equational reasoning about programs written in this

201

style is often more natural than equational reasoning about programs written with

eliminators as in Chapter 5. Theoretically, the move from EPTS to EPTS• further

underscores the relationship between computational irrelevance and parametric

polymorphism because EPTS• is a closer relative to IPTS than is EPTS.

8.3 LIMITATIONS AND FUTURE WORK

We know of several limitations of our research and list them here. Each limitation

is a starting point for further research.

We do not know if our erasability analysis scales from EPTS to EPTS•. At this

point it seems as though it does not. If it does not, then one must forego either

(1) the benefits of programming without any regard to erasure and still reaping

the benefits of an erasure semantics, or (2) the extra liberality afforded by the

modified conversion rule Conv• that implies a certain measure of user-directed

proof irrelevance and the derivability of the theoretically important “axiom K”.

We leave as future work the question of what is the best practical way to handle

this tradeoff, or if it can be avoided altogether.

The treatment of the program analysis in terms of a non syntax-directed type

system such as is standard for PTS means that different theoretical runs of the

constraint generation “algorithm” may yield different outputs for the same inputs.

Though we feel that the same approach we have taken could easily be replayed for

a syntax directed type system, we have no formal proof of this statement.

A final known limitation of the work presented in this dissertation is the lack of

known models for IPTS with inductively defined types. Currently known models

for IPTS are based on coherence spaces which do not support indexed union as

a type-forming operation in the same way that they support indexed intersection

(the interpretation of the ∀ types in IPTS). This means that the extension of such

models to handle inductive types is suspect, because, in particular, the weak sum

202

type should be interpreted as a union1. One hopes that either this limitation can

be removed from models based on coherence spaces or that entirely new models

can be constructed that support inductively defined types.

It is not known whether the post-pruning suite of program optimizations de-

scribed by Letouzey could be applied after our own erasure translation with similar

effectiveness. We do know that our erasure semantics scales from two levels (c and

r) to three (c and r and d) where c conclusions may depend on any assumptions, r

conclusions may depend only on r and d assumptions, and d conclusions may de-

pend only on d assumptions. In this way, the old r phase splits into the new r and

d phases. Entities marked c are erased as before prior to run-time (and perhaps

even prior to conversion checks). The d mark is used exclusively for the target

arguments of token types and empty types. Entities marked d cannot be erased

in the way we have outlined in this dissertation, but perhaps they can be erased

in the slightly less aggressive way that Letouzey describes in his post-processing

phase. Experience with an implementation of this hybrid strategy is required to

determine feasibility of the approach.

1Many thanks to Bruno Barras for explaining to us the limitations of models of Miquel’s
Implicit Calculus of Constructions.

203

REFERENCES

[1] Lennart Augustsson. Cayenne – a language with dependent types. In Pro-

ceedings of the Third ACM SIGPLAN International Conference on Functional

Programming, pages 239–250, 1998.

[2] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman. Do-it-

yourself type theory. Formal Aspects of Computing, 1(1):19–84, 1989.

[3] Henk Barendregt. Introduction to generalised type systems. Journal of Func-

tional Programming, 1(2):125–154, 1991.

[4] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.

Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer

Science, volume 2. Oxford University Press, 1992.

[5] Bruno Barras and Bruno Bernardo. The Implicit Calculus of Constructions as

a programming language with dependent types. In Proceedings of the Eleventh

International Conference on Foundations of Software Science and Computa-

tion Structures, volume 4962 of Lecture Notes in Computer Science, pages

365–379, 2004.

[6] Gilles Barthe and Thierry Coquand. An introduction to dependent type the-

ory. In Applied Semantics. Lecture Notes for the APPSEM Summer School,

volume 2395 of Lecture Notes in Computer Science, pages 1–41, 2002.

[7] Stefano Berardi. Pruning simply typed lambda terms. Journal of Logic and

Computation, 6(5):663–681, 1996.

204

[8] Stefano Berardi, Mario Coppo, Ferruccio Damiani, and Paola Giannini. Type-

based useless-code elimination for functional programs. In Proceedings of the

Workshop on Semantics, Applications, and Implementation of Program Gen-

eration, volume 1924 of Lecture Notes in Computer Science, pages 172–189,

2000.

[9] Ulrich Berger. Program extraction from normalization proofs. In Typed

Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer

Science, pages 91–106, 1993.

[10] Ulrich Berger. Uniform Heyting Arithmetic. Annals of Pure and Applied

Logic, 133:125–148, 2005.

[11] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a

C compiler front-end. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski,

editors, 14th International Symposium on Formal Methods, volume 4085 of

Lecture Notes in Computer Science, pages 460–475, 2006.

[12] Luca Boerio. Extending pruning techniques to polymorphic second order

lambda-calculus. In Programming Languages and Systems, Fifth European

Symposium on Programming, pages 120–134, 1994.

[13] Edwin Brady. Practical Implementation of a Dependently Typed Functional

Programming Language. PhD thesis, University of Durham, 2005.

[14] Edwin Brady, Conor McBride, and James McKinna. Inductive families need

not store their indices. In Types for Proofs and Programs, volume 3085 of

Lecture Notes in Computer Science, pages 115–129, 2004.

[15] James L. Caldwell. Decidability Extracted: Synthesizing “Correct-by-Con-

struction” Decision Procedures from Constructive Proofs. Ph.D. thesis, Cornell

University, 1998.

205

[16] Luca Cardelli. Phase distinctions in type theory. Available at http://

research.microsoft.com/Users/luca/Papers/PhaseDistinctions.pdf,

1988.

[17] Chiyan Chen and Hongwei Xi. Combining programming with theorem prov-

ing. In Proceedings of the Tenth ACM SIGPLAN International Conference

on Functional Programming, pages 66–77, 2005.

[18] James Cheney and Ralf Hinze. First class phantom types. Technical Report

CUCIS TR2003-1901, Cornell University, 2003.

[19] Alonzo Church. A set of postulates for the foundation of logic. Annals of

Mathematics, 2nd Ser., 33(2):346–366, April 1932.

[20] Alonzo Church. A set of postulates for the foundation of logic. Annals of

Mathematics, 2nd Ser., 34(4):839–864, October 1933.

[21] Alonzo Church. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5(2):56–68, 1940.

[22] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.

Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler,

P. Panangaden, James T. Sasaki, and Scott F. Smith. Implementing Mathe-

matics with the Nuprl Development System. Prentice-Hall, 1986.

[23] Mario Coppo, Ferruccio Damiani, and Paola Giannini. Refinement types for

program analysis. In Third International Symposium on Static Analysis, vol-

ume 1145 of Lecture Notes in Computer Science, pages 143–158, 1996.

[24] The Coq proof assistant. http://coq.inria.fr.

[25] Thierry Coquand. Une Théorie des Constructions. Thèse de troisième cycle,

Université Paris VII, 1985.

206

[26] Thierry Coquand. Pattern matching with dependent types. In In Proceedings

of the Workshop on Types for Proofs and Programs, pages 71–83, 1992.

[27] Thierry Coquand and Gérard Huet. A theory of constructions. Presented at

the International Symposium on Semantics of Data Types, Sophia-Antipolis,

June 1984.

[28] Thierry Coquand and Gérard Huet. The calculus of constructions. Informa-

tion and Computation, 76(2/3):95–120, Feb/Mar 1988.

[29] Lúıs Cruz-Filipe and Bas Spitters. Program extraction from large proof de-

velopments. In 16th International Conference on Theorem Proving in Higher

Order Logics, volume 2758 of Lecture Notes in Computer Science, pages 205–

220, 2003.

[30] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland,

Amsterdam, 1958.

[31] N. G. de Bruijn. A survey of the project AUTOMATH. In Seldin and Hindley

[80], pages 579–606.

[32] Maribel Fernández, Ian Mackie, Paula Severi, and Nora Szasz. Reduction

strategies for program extraction. CLEI Electronic Journal, 6(1), 2003.

[33] Maribel Fernández and Paula Severi. An operational approach to program

extraction in the calculus of constructions. In 12th International Workshop

on Logic Based Program Synthesis and Tranformation, pages 111–125, 2002.

[34] Adam Fischbach and John Hannan. Type systems for useless-variable elimi-

nation. In Proceedings of the Second Symposium on Programs as Data Objects,

pages 25–38, 2001.

207

[35] Gerhard Gentzen. Untersuchungen über das logische Schliessen. Mathema-

tische Zeitschrift, 39:176–210, 405–431, 1934. Translated in [36] Szabo (ed.),

The Collected Papers of Gerhard Gentzen as “Investigations into Logical De-

duction”.

[36] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E.

Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-

Holland, Amsterdam, 1969.

[37] J.-Y. Girard. Une extension de l’interprétation de gödel à l’analyse, et son

application à l’élimination des coupures dans l’analyse et la théorie des types.

In J. E. Fenstad, editor, Second Scandinavian Logic Symposium, pages 63–92.

North-Holland, 1971.

[38] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans

l’arithmétique d’ordre supérieur. Thèse de doctorat d’etat, University of Paris

VII, 1972.

[39] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining

logics. Journal of the ACM, 40(1):143–184, January 1993.

[40] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules

and the phase distinction. In Proceedings of the Seventeenth ACM SIGPLAN

Symposium on Principles of Programming Languages, pages 341–354, 1990.

[41] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type

theory. In Twenty-Five Years of Constructive Type Theory, pages 83–111.

Oxford University Press, 1998.

[42] W. A. Howard. The formulae-as-types notion of construction. In Seldin and

Hindley [80], pages 479–490. A version of this paper was privately circulated

in 1969.

208

[43] Stephen Cole Kleene. On the interpretation of intuitionistic number theory.

Journal of Symbolic Computation, 10(4):109–124, 1945.

[44] Naoki Kobayashi. Type-based useless-variable elimination. Higher-Order and

Symbolic Computation, 14(2-3):221–260, 2001.

[45] Georg Kreisel. Interpretation of analysis by means of functionals of finite

type. In Arend Heyting, editor, Constructivity in Mathematics, pages 101–

128. North-Holland, 1959.

[46] P. J. Landin. The mechanical evaluation of expressions. The Computer Jour-

nal, 6(4):308–320, 1964.

[47] P. J. Landin. Correspondence between ALGOL 60 and Church’s lambda-

notation: Part I. Communications of the ACM, 8(2):89–101, 1965.

[48] P. J. Landin. A correspondence between ALGOL 60 and Church’s lambda-

notation: Part II. Communications of the ACM, 8(3):158–167, 1965.

[49] P. J. Landin. The next 700 programming languages. Communications of the

ACM, 9(3):157–166, 1966.

[50] Xavier Leroy. Formal certification of a compiler back-end, or: programming

a compiler with a proof assistant. In Proceedings of the 33rd ACM SIGPLAN

Symposium on Principles of Programming Languages, pages 42–54, 2006.

[51] Pierre Letouzey. A new extraction for Coq. In Second International Workshop

on Types for Proofs and Programs, volume 2646 of Lecture Notes in Computer

Science, pages 200–219, 2003.

[52] Chunxiao Lin, Andrew McCreight, Zhong Shao, Yiyun Chen, and Yu Guo.

Foundational typed assembly language with certified garbage collection. In

209

First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engi-

neering, pages 326–338. IEEE Computer Society Press, 2007.

[53] Zhaohui Luo. Computation and reasoning: a type theory for computer science.

Oxford University Press, 1994.

[54] David B. MacQueen. Using dependent types to express modular structure.

In Proceedings of the Thirteenth ACM SIGPLAN Symposium on Principles of

Programming Languages, pages 277–286, 1986.

[55] Per Martin-Löf. A theory of types. Unpublished manuscript, October 1971.

[56] Per Martin-Löf. An intuitionistic theory of types. Unpublished manuscript,

1972.

[57] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H. E.

Rose and J. C. Shepherdson, editors, Logic Colloquium ’73, pages 73–118.

North-Holland, 1975.

[58] Conor McBride. Dependently Typed Functional Programs and their Proofs.

PhD thesis, University of Edinburgh, 1999.

[59] Conor McBride. Elimination with a motive. In Selected papers from the Inter-

national Workshop on Types for Proofs and Programs (TYPES ’00), volume

2277 of Lecture Notes in Computer Science, pages 197–216, 2002.

[60] Conor McBride and James McKinna. The view from the left. Journal of

Functional Programming, 14(1):69–111, 2004.

[61] Conor McBride and Ross Paterson. Applicative programming with effects.

Journal of Functional Programming, 18(1):1–13, 2008.

210

[62] John McCarthy. Recursive functions of symbolic expressions and their compu-

tation by machine, Part I. Communications of the ACM, 3(4):184–195, April

1960.

[63] Alexandre Miquel. A model for impredicative type systems, universes, inter-

section types and subtyping. In 15th Annual Symposium on Logic in Computer

Science, pages 18–29, 2000.

[64] Alexandre Miquel. The implicit calculus of constructions. In Proceedings

of 5th International Conference on Typed Lambda Calculi and Applications,

volume 2044 of Lecture Notes in Computer Science, pages 344–359, 2001.

[65] Alexandre Miquel. Le Calcul des Constructions Implicite: Syntaxe et

Sémantique. PhD thesis, Université Paris 7, 2001.

[66] Alberto Momigliano. Elimination of Negation in a Logical Framework. PhD

thesis, School of Computer Science, 2000. available as Technical Report CMU-

CS-00-175.

[67] David Monniaux. Réalisation mécanisée d’interpréteurs abstraits. Rapport

de DEA, Université Paris VII, 1998.

[68] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and

Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of

the 38th Design Automation Conference, pages 530–535. ACM Press, 2001.

[69] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM

SIGPLAN Symposium on Principles of Programming Languages, pages 106–

119, 1997.

[70] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in

Martin-Löf’s Type Theory. Oxford University Press, 1990.

211

[71] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the cal-

culus of constructions. In Proceedings of the Sixteenth ACM SIGPLAN Sym-

posium on Principles of Programming Languages, pages 89–104, 1989.

[72] Simon Peyton-Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey

Washburn. Simple unification-based type inference for GADTs. In Proceed-

ings of the Eleventh ACM SIGPLAN International Conference on Functional

Programming, 2006.

[73] Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal

type theory. In Proceedings of the 16th Annual Symposium on Logic in Com-

puter Science, pages 221–230. IEEE Computer Society Press, June 2001.

[74] Proceedings of the 26th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages, 1999.

[75] J. C. Reynolds. Introduction to polymorphic lambda-calculus. In G. Huet, ed-

itor, Logical Foundations of Functional Programming, pages 77–86. Addison-

Wesley, 1990.

[76] John C. Reynolds. Towards a theory of type structure. In Programming

Symposium, Proceedings, Colloque sur la Programmation, volume 19 of Lecture

Notes in Computer Science, pages 408–425, 1974.

[77] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP

Congress, pages 513–523. North-Holland, 1983.

[78] Anne Salvesen. On specifications, subset types and interpretation of proposi-

tion in type theory. BIT Numerical Mathematics, 32(1):84–101, 1992.

[79] Anne Salvesen and Jan M. Smith. The strength of the subset type in Martin-

Löf’s type theory. In Proceedings of the Third Annual Symposium on Logic in

Computer Science, pages 384–391, 1988.

212

[80] J. P. Seldin and J. R. Hindley, editors. To H. B. Curry: Essays on Combina-

tory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[81] Paula Severi and Nora Szasz. Studies of a theory of specifications with built-in

program extraction. Journal of Automated Reasoning, 27(1):61–87, 2001.

[82] Tim Sheard. Languages of the future. In Proceedings of the Nineteenth ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 116–119, 2004. OOPSLA Companion Volume.

[83] Tim Sheard and Emir Pašalić. Meta-programming with built-in type equality.

In Proceedings of the Fourth International Workshop on Logical Frameworks

and Meta-Languages, pages 106–124, 2004.

[84] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,

Carnegie Mellon University, 1991. Technical Report CMU-CS-91-145, School

of Computer Science.

[85] Olin Shivers. Useless-variable elimination. In Proceedings of the Workshop on

Static Analysis of Equational, Functional and Logic Programs, pages 197–201,

1991.

[86] Christopher Strachey. Fundamental concepts in programming languages.

Higher-Order and Symbolic Computation, 13(1/2):11–49, 2000.

[87] Thomas Streicher. Intensional type theory, modified realizability. TYPES

mailing list, May 1992. Archived at http://www.cis.upenn.edu/~bcpierce/

types/archives/1992/msg00076.html.

[88] Thomas Streicher. Investigations into Intensional Type Theory. Habilitation-

sschrift, LMU Munich, 1993.

213

[89] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal

of Symbolic Logic, 32(2):198–212, 1967.

[90] Simon Thompson. Are subsets necessary in Martin-Löf type theory? In Con-

structivity in Computer Science, Summer Symposium, volume 613 of Lecture

Notes in Computer Science, pages 46–57, 1992.

[91] L. S. van Benthem Jutting. Typing in pure type systems. Information and

Computation, 105(1):30–41, 1993.

[92] Femke van Raamsdonk and Paula Severi. Eliminating proofs from programs.

Electronic Notes in Theoretical Computer Science, 70(2), 2002.

[93] Philip Wadler. Theorems for free! In Functional Programming Languages and

Computer Architecture, pages 347–359. ACM Press, September 1989.

[94] Mitchell Wand and Igor Siveroni. Constraint systems for useless variable

elimination. In POPL:99 [74], pages 291–302.

[95] J. B. Wells. Typability and type checking in System F are equivalent and

undecidable. Annals of Pure and Applied Logic, 98(1–3):111–156, 1999.

[96] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype con-

structors. In Proceedings of the 30th ACM SIGPLAN Symposium on Princi-

ples of Programming Languages, pages 224–235, 2003.

[97] Hongwei Xi and Frank Pfenning. Dependent types in practical programming.

In POPL:99 [74], pages 214–227.

Appendix A

PROOFS

A.1 META-THEORY OF EPTS

Lemma A.1.1 (Idempotence of Context Reset)

Γ◦◦ = Γ◦

Proof. By induction on the structure of Γ.

Case Step Justification

ε ε◦◦ = ε◦ def. of ◦

Γ, x:τA (Γ, x:τA)◦◦ = (Γ◦, x:rA)◦ def. of ◦

= Γ◦◦, x:rA def. of ◦

= Γ◦, x:rA ind. hyp. on Γ

= (Γ, x:τA)◦ def. of ◦

2

Lemma A.1.2 (Context Phase Weakening)

Γ, ∆ ` M :τ A

Γ◦, ∆ ` M :τ A

Proof. By induction on the derivation of Γ, ∆ ` M :τ A.

215

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





1. M = s1 hypothesis

2. A = s2 hypothesis

3. Γ, ∆ = ε hypothesis

4. Γ = ε




 by 3
5. ∆ = ε

6. (s1, s2) ∈ A hypothesis

7. Γ◦ = ε by 4, def. of ◦

8. Γ◦, ∆ ` s1 :r s2 Axiom, 6, 7, 5

9. Γ◦, ∆ ` M :r A by 8, 1, 2

Var case



Γ′ ` A :c s

Γ′, x:rA ` x :r A





1. M = x hypothesis

2. Γ, ∆ = Γ′, x:rA hypothesis

3. Γ′ ` A :c s hypothesis

4. (∆ = ε) ∨ (∆ 6= ε) tautology



5. ∆ = ε assumption

6. Γ = Γ′, x:rA by 2, 5

7. Γ◦ = Γ′◦, x:rA by 6, def. of ◦

8. Γ′◦ ` A :c s ind. hyp. on 3 with ∆ := ε

9. Γ′◦, x:rA ` x :r A Axiom, 8

10. Γ◦, ∆ ` x :r A by 9, 7, 5
⌈

11. ∆ 6= ε assumption

216

Step Justification

12. ∆ = ∆′, x:rA




 by 2, 11 (for some ∆′)
13. Γ′ = Γ, ∆′

14. Γ, ∆′ ` A :c s by 3, 13

15. Γ◦, ∆′ ` A :c s ind. hyp. on 14 with ∆ := ∆′

16. Γ◦, ∆′, x:rA ` x :r A Axiom, 15

17. Γ◦, ∆ ` x :r A by 16, 12

18. Γ◦, ∆ ` x :r A ∨-elim, 4, 5–10, 11–17

19. Γ◦, ∆ ` M :r A by 18, 1

Weak case



Γ′ ` B :c s Γ′ ` M :r A

Γ′, x:τB ` M :r A





1. Γ, ∆ = Γ′, x:τB hypothesis

2. Γ′ ` B :c s hypothesis

3. Γ′ ` M :r A hypothesis

4. (∆ = ε) ∨ (∆ 6= ε) tautology



5. ∆ = ε assumption

6. Γ = Γ′, x:τB by 1, 5

7. Γ◦ = Γ′◦, x:rB by 6, def. of ◦

8. Γ′◦ ` B :c s ind. hyp. on 2 with ∆ := ε

9. Γ′◦ ` M :r A ind. hyp. on 3 with ∆ := ε

10. Γ′◦, x:rB ` M :r A Weak, 8, 9

11. Γ◦, ∆ ` M :r A by 10, 7, 5



12. ∆ 6= ε assumption

13. ∆ = ∆′, x:τB




by 1, 12 (for some ∆′)
14. Γ′ = Γ, ∆′

15. Γ, ∆′ ` B :c s by 2, 14

217

Step Justification

16. Γ, ∆′ ` M :r A by 3, 14

17. Γ◦, ∆′ ` B :c s ind. hyp. on 15 with ∆ := ∆′

18. Γ◦, ∆′ ` M :r A ind. hyp. on 16 with ∆ := ∆′

19. Γ◦, ∆′, x:τB ` M :r A Weak, 17, 18

20. Γ◦, ∆ ` M :r A by 19, 13

21. Γ◦, ∆ ` M :r A ∨-elim, 4, 5–11, 12–20

Π-Form case



(s1, s2, s3) ∈ R Γ, ∆ ` B :r s1 Γ, ∆, x:rB ` C :r s2

Γ, ∆ ` Πτx:B. C :r s3





1. M = Πτx:B. C hypothesis

2. A = s3 hypothesis

3. (s1, s2, s3) ∈ R hypothesis

4. Γ, ∆ ` B :r s1 hypothesis

5. Γ, ∆, x:rB ` C :r s2 hypothesis

6. Γ◦, ∆ ` B :r s1 ind. hyp. on 4

7. Γ◦, ∆, x:rB ` C :r s2 ind. hyp. on 5

8. Γ◦, ∆ ` Πτx:B. C :r s3 Π-Form on 3, 6, 7

9. Γ◦, ∆ ` M :r A by 8, 1, 2

Π-Intro case (similar to the Π-Form case)

Π-Elim case (similar to the Π-Form case)

Conv case (similar to the Π-Form case)

Reset case



(Γ, ∆)◦ ` M :r A

Γ, ∆ ` M :c A





1. (Γ, ∆)◦ ` M :r A hypothesis

2. (Γ, ∆)◦ = Γ◦, ∆◦ def. of ◦ (almost)

218

Step Justification

3. Γ◦, ∆◦ ` M :r A by 1, 2

4. Γ◦ = Γ◦◦ Lemma A.1.1

5. Γ◦◦, ∆◦ ` M :r A by 3, 4

6. (Γ◦, ∆)◦ = Γ◦◦, ∆◦ def. of ◦ (almost)

7. (Γ◦, ∆)◦ ` M :r A by 5, 6

5. Γ◦, ∆ ` M :c A Reset, 7

2

Corollary A.1.3 (Phase Weakening)

Γ ` M :r A

Γ ` M :c A

Proof. Assuming Γ ` M :r A, we obtain Γ◦ ` M :r A from Lemma A.1.2 (by

setting ∆ := ε). Then Reset yields Γ ` M :c A. 2

Lemma A.1.4 (Substitution Lemma)

Γ, x:τ1A, ∆ ` M :τ2 B Γ ` N :τ1 A

Γ, ∆[N/x] ` M [N/x] :τ2 B[N/x]

Proof. By induction on the derivation of Γ, x:τ1A, ∆ ` M :τ2 B.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





this case is impossible, as it requires Γ, x:τ1A, ∆ = ε

219

Step Justification

Var case



Γ′ ` B :c s

Γ′, y:rB ` y :r B





1. Γ ` N :τ1 A assumption

2. M = y hypothesis

3. Γ, x:τ1A, ∆ = Γ′, y:rB hypothesis

4. Γ′ ` B :c s hypothesis

5. (∆ = ε) ∨ (∆ 6= ε) tautology



6. ∆ = ε assumption

7. Γ = Γ′






by 3, 6
8. x = y

9. τ1 = r

10. A = B

11. Γ ` N :r B by 1, 8, 10

12. ∆[N/x] = ε by 6, def. of subst.

13. M [N/x] = N by 2, 8, def. of subst.

14. x 6∈ FV (B) b/c x (= y) does not ap-

pear in Γ′

15. B[N/x] = B by 14

16. Γ, ∆[N/x] ` M [N/x] :r B[N/x] by 11, 12, 13, 15



17. ∆ 6= ε assumption

18. ∆ = ∆′, y:rB




 by 3, 17 (for some ∆′)
19. Γ′ = Γ, x:τ1A, ∆′

20. Γ, x:τ1A, ∆′ ` B :c s by 3, 19

21. Γ, ∆′[N/x] ` B[N/x] :c s[N/x] ind. hyp. on 20, 1

22. s[N/x] = s def. of subst.

23. Γ, ∆′[N/x] ` B[N/x] :c s by 21, 22

220

Step Justification

24. Γ, ∆′[N/x], y:rB[N/x] ` y :r B[N/x] Var, 23

25. Γ, ∆[N/x] ` y :r B[N/x] by 24, 18, def. of subst.

26. x 6= y b/c they appear in the

same context

27. M [N/x] = y by 2, 26, def. of subst.

28. Γ, ∆[N/x] ` M [N/x] :r B[N/x] by 24, 26

28. Γ, ∆[N/x] ` M [N/x] :r B[N/x] ∨-elim, 5, 6–16, 17–28

Weak case



Γ′ ` C :c s Γ′ ` M :r B

Γ′, y:τC ` M :r B





1. Γ ` N :τ1 A assumption

2. Γ, x:τ1A, ∆ = Γ′, y:τB hypothesis

3. Γ′ ` C :c s hypothesis

4. Γ′ ` M :r B hypothesis

5. (∆ = ε) ∨ (∆ 6= ε) tautology



6. ∆ = ε assumption

7. Γ = Γ′






by 2, 6
8. x = y

9. τ1 = τ

10. A = B

11. y 6∈ FV (M) y is not bound in Γ′

12. y 6∈ FV (B) y is not bound in Γ′

13. M [N/x] = M by 11, 8

14. B[N/x] = B by 12, 8

15. ∆[N/x] = ε by 6, def. of subst.

16. Γ, ∆[N/x] ` M [N/x] :r B[N/x] by 4, 7, 15, 13, 14

221

Step Justification



17. ∆ 6= ε assumption

18. ∆ = ∆′, y:τC




 by 2, 17 (for some ∆′)
19. Γ′ = Γ, x:τ1A, ∆′

20. Γ, x:τ1A, ∆′ ` C :c s hypothesis

21. Γ, x:τ1A, ∆′ ` M :r B hypothesis

22. Γ, ∆′[N/x] ` C[N/x] :c s[N/x] ind. hyp. on 20, 1

23. Γ, ∆′[N/x] ` C[N/x] :c s by 22, def. of subst.

24. Γ, ∆′[N/x] ` M [N/x] :r B[N/x] ind. hyp. on 21, 1

25. Γ, ∆′[N/x] ` M [N/x] :r B[N/x] ∨-elim, 5, 6–16, 17–24

Π-Form case



(s1, s2, s3) ∈ R Γ, x:τ1A, ∆ ` C :r s1 Γ, x:τ1A, ∆, x:rC ` D :r s2

Γ, x:τ1A, ∆ ` Πτx:C. D :r s3





1. Γ ` N :τ1 A assumption

2. M = Πτx:C. D hypothesis

3. B = s3 hypothesis

4. (s1, s2, s3) ∈ R hypothesis

5. Γ, x:τ1A, ∆ ` C :r s1 hypothesis

6. Γ, x:τ1A, ∆, x:rC ` D :r s2 hypothesis

7. Γ, ∆[N/x] ` C[N/x] :r s1[N/x] ind. hyp. on 5, 1

8. Γ, ∆[N/x] ` C[N/x] :r s1 by 7, def. of subst.

9. Γ, ∆[N/x], x:rC[N/x] ` D[N/x] :r s2[N/x] ind. hyp. on 6, 1

10. Γ, ∆[N/x], x:rC[N/x] ` D[N/x] :r s2 by 9, def. of subst.

11. Γ, ∆[N/x] ` (Πτx:C. D)[N/x] :r s3 Π-Form, 10

12. Γ, ∆[N/x] ` M [N/x] :r B[N/x] by 11, 2, 3, def. of subst.

Π-Intro case (similar to the Π-Form case.)

Π-Elim case (similar to the Π-Form case, but

222

Step Justification

requires the identity (B[N/x])[M [N/x]/y] = B[M/y][N/x].)

Conv case (similar to the Π-Form case, but

requires the lemma that A =β B implies A[N/x] = B[N/x].)

Reset case (similar to the Π-Form case, but

requires the identity ∆◦[N/x] = (∆[N/x])◦.)

2

Lemma A.1.5 (Context Conversion)

Γ, x:τ1A, ∆ ` M :τ2 C Γ ` B :c s A =β B

Γ, x:τ1B, ∆ ` M :τ2 C

Proof. By induction on the derivation of Γ, x:τ1A, ∆ ` M :τ2 C.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





1. ε = Γ, x:τ1A, ∆ hypothesis

2. contradiction! 1 is impossible

Var case



Γ′ ` C :c s

Γ′, y:rC ` y :r C





1. Γ ` B :c s assumption

2. A =β B assumption

3. Γ′ ` C :c s hypothesis

4. Γ′, y:rC = Γ, x:τ1A, ∆ hypothesis

5. ∆ = ε ∨ ∆ 6= ε tautology

223

Step Justification



6. ∆ = ε assumption

7. Γ = Γ′






by 4, 6
8. τ1 = r

9. x = y

10. A = C

11. Γ′, x:rB ` x :r B by 1, 7, Var

12. B =β C by 2, 10

13. Γ′, x:rB ` x :r C Conv, 11, 3, 12

14. Γ, x:τ1B, ∆ ` y :r C by 13, 7, 8, 6, 9



15. ∆ 6= ε assumption

16. ∆ = ∆′, y:rC




 by 4, 15 (for some ∆′)
17. Γ′ = Γ, x:τ1A, ∆′

18. Γ, x:τ1A, ∆′ ` C :c s by 3, 17

19. Γ, x:τ1B, ∆′ ` C :c s ind. hyp. on 18, 1, 2

20. Γ, x:τ1B, ∆′, y:rC ` y :r C Var, 19

21. Γ, x:τ1B, ∆ ` y :r C by 20, 16

22. Γ, x:τ1B, ∆ ` y :r C ∨-elim, 5, 6–14, 15–21

Weak case



Γ′ ` D :c s Γ′ ` M :r C

Γ′, y:τD ` M :r C





1. Γ ` B :c s assumption

2. A =β B assumption

3. Γ′ ` D :c s hypothesis

4. Γ′ ` M :r C hypothesis

5. Γ′, y:τD = Γ, x:τ1A, ∆ hypothesis

6. ∆ = ε ∨ ∆ 6= ε tautology

224

Step Justification



7. ∆ = ε assumption

8. Γ = Γ′






by 5, 7
9. τ1 = τ

10. x = y

11. A = D

12. Γ′, x:τ1B ` M :r C Weak, 1, 8, 4

13. Γ, x:τ1B, ∆ ` M :r C by 12, 8, 7



14. ∆ 6= ε assumption

15. ∆ = ∆′, y:τD




 by 5, 14 (for some ∆′)
16. Γ′ = Γ, x:τ1A, ∆′

17. Γ, x:τ1A, ∆′ ` D :c s by 3, 16

18. Γ, x:τ1B, ∆′ ` D :c s ind. hyp. on 17, 1, 2

19. Γ, x:τ1A, ∆′ ` M :r C by 4, 16

20. Γ, x:τ1B, ∆′ ` M :r C ind. hyp. on 19, 1, 2

21. Γ, x:τ1B, ∆′, y:τD ` M :r C Weak, 18, 20

22. Γ, x:τ1B, ∆ ` M :r C by 21, 15

23. Γ, x:τ1B, ∆ ` M :r C ∨-elim, 6, 7–13, 14–22

Π-Form case



(s1, s2, s3) ∈ R Γ, x:τ1A, ∆ ` C :r s1 Γ, x:τ1A, ∆, y:rC ` D :r s2

Γ, x:τ1A, ∆ ` Πτy:C. D :r s3





1. Γ ` B :c s assumption

2. A =β B assumption

3. (s1, s2, s3) ∈ R hypothesis

4. Γ, x:τ1A, ∆ ` C :r s1 hypothesis

5. Γ, x:τ1A, ∆, y:rC ` D :r s2 hypothesis

6. Γ, x:τ1B, ∆ ` C :r s1 ind. hyp. on 4, 1, 2

225

Step Justification

7. Γ, x:τ1B, ∆, y:rC ` D :r s2 ind. hyp. on 5, 1, 2

8. Γ, x:τ1B, ∆ ` Πτy:C. D :r s3 Π-Form on 3, 6, 7

Π-Intro, Π-Elim, and Conv cases are similar to the Π-Form case

Reset case



(Γ, x:τ1A, ∆)◦ ` M :r C

Γ, x:τ1A, ∆ ` M :c C





1. Γ◦ ` B :c s assumption

2. A =β B assumption

3. (Γ, x:τ1A, ∆)◦ ` M :r C hypothesis

4. (Γ, x:τ1A, ∆)◦ = Γ◦, x:rA, ∆◦ def. of ◦

5. Γ◦, x:rA, ∆◦ ` M :r C by 3, 4

6. Γ◦, x:rB, ∆◦ ` M :r C ind. hyp. on 5, 1, 2

7. Γ◦, x:rB, ∆◦ = (Γ, x:τ1B, ∆)◦ def. of ◦

8. (Γ, x:τ1B, ∆)◦ ` M :r C by 6, 7

9. Γ, x:τ1B, ∆ ` M :c C Reset, 8

2

Lemma A.1.6 (Generalized Weakening)

Γ ` A :c s Γ, ∆ ` M :τ
′

B

Γ, x:τA, ∆ ` M :τ
′

B

Proof. By induction on the derivation Γ, ∆ ` M :τ
′

B.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





226

Step Justification

1. Γ ` A :c s assumption

2. Γ = ∆ = ε hypothesis

3. (s1, s2) ∈ A hypothesis

4. ` (s1 :r s2 Axiom, 3

5. x:τA ` s1 :r s2 Weak, 1, 4, 2

Var case



Γ′ ` B :c s

Γ′, y:rB ` y :r B





1. Γ ` A :c s assumption

2. Γ, ∆ = Γ′, y:rB hypothesis

3. Γ′ ` B :c s hypothesis

4. ∆ = ε ∨ ∆ 6= ε tautology



5. ∆ = ε assumption

6. Γ = Γ′, y:rB by 2, 5

7. Γ′, y:rB ` y :r B Var, 3

8. Γ′, y:rB ` A :c s by 1, 5, 6

9. Γ′, y:rB, x:τA ` y :r B Weak, 8, 7

10. Γ, x:τA, ∆ ` y :r B by 9, 5, 6



11. ∆ 6= ε assumption

12. ∆ = ∆′, y:rB





by 2, 11

13. Γ′ = Γ, ∆′ (for some ∆′)

14. Γ, ∆′ ` B :c s by 3, 13

15. Γ, x:τA, ∆′ ` B :c s ind. hyp. on 14, 1

16. Γ, x:τA, ∆′, y:rB ` y :c B Var, 15

17. Γ, x:τA, ∆ ` y :c B by 16, 12

18. Γ, x:τA, ∆ ` y :c B ∨-elim, 4, 5–10, 11–17

227

Step Justification

Weak case



Γ′ ` B :c s Γ′ ` M :r C

Γ′, y:τ
′

B ` M :r C





1. Γ ` A :c s assumption

2. Γ, ∆ = Γ′, y:τ
′

B hypothesis

3. Γ′ ` B :c s hypothesis

4. Γ′ ` M :r C hypothesis

5. ∆ = ε ∨ ∆ 6= ε tautology



6. ∆ = ε assumption

7. Γ = Γ′, y:τ
′

B by 2, 6

8. Γ′, y:τ
′

B ` A :c s by 1, 7

9. Γ′, y:τ
′

B ` M :r C Weak, 3, 4

10. Γ′, y:τ
′

B, x:τA ` M :r C Weak, 8, 9

11. Γ, x:τA, ∆ ` M :r C by 10, 6, 7



12. ∆ 6= ε assumption

13. ∆ = ∆′, y:τ
′

B





by 5, 14

14. Γ′ = Γ, ∆′ (for some ∆′)

15. Γ, ∆′ ` B :c s by 14, 3

16. Γ, ∆′ ` M :r C by 14, 4

17. Γ, x:τA, ∆′ ` B :c s ind. hyp. on 15, 1

18. Γ, x:τA, ∆′ ` M :r C ind. hyp. on 16, 1

19. Γ, x:τA, ∆′, y:τ
′

B ` M :r C Weak, 17, 18

20. Γ, x:τA, ∆ ` M :r C by 13, 19

23. Γ, x:τB, ∆ ` M :r C ∨-elim, 5, 6–11, 12–20

228

Step Justification

Π-Form case



(s1, s2, s3) ∈ R Γ, ∆ ` B :r s1 Γ, ∆, y:rB ` C :r s2

Γ, ∆ ` Πτ ′

y:B. C :r s3





1. Γ ` A :c s assumption

2. (s1, s2, s3) ∈ R hypothesis

3. Γ, ∆ ` B :r s1 hypothesis

4. Γ, ∆, y:rB ` C :r s2 hypothesis

5. Γ, x:τA, ∆ ` B :r s1 ind. hyp. on 3, 1

6. Γ, x:τA, ∆, y:rB ` C :r s2 ind. hyp. on 4, 1

7. Γ, x:τA, ∆ ` Πτ ′

y:B. C :r s3 Π-Form, 2, 5, 6

Π-Intro, Π-Elim, and Conv cases are similar to the Π-Form case

Reset case



(Γ, ∆)◦ ` M :r B

Γ, ∆ ` M :c B





1. Γ ` A :c s assumption

2. (Γ, ∆)◦ ` M :r B hypothesis

3. (Γ, ∆)◦ = Γ◦, ∆◦

4. Γ◦, ∆◦ ` M :r B by 2, 3

5. Γ◦, x:rA, ∆◦ ` M :r B ind. hyp. on 4, 1

6. (Γ, x:τA, ∆)◦ = Γ◦, x:rA, ∆◦ def. of ◦

7. (Γ, x:τA, ∆)◦ ` M :r B by 5, 6

8. Γ, x:τA, ∆ ` M :c B Reset, 7

2

229

Lemma A.1.7 (Π-Inversion)

Γ ` Πτx:A. B :r C

(∃ (s1, s2, s3) ∈ R) C =β s3 ∧ Γ ` A :r s1 ∧ Γ, x:rA ` B :r s2

Proof. By induction on the derivation of Γ ` Πτx:A. B :r C. The only rules by

which this judgment can possibly be derived are Π-Form, Weak, and Conv, so

we omit all other (trivial) cases of the proof.

Step Justification

Weak case



Γ ` D :c s Γ ` Πτx:A. B :r C

Γ, y:τ
′

D ` Πτx:A. B :r C





1. Γ ` D :c s hypothesis

2. Γ ` Πτx:A. B :r C hypothesis

3. (s1, s2, s3) ∈ R





ind. hyp. on 2
4. C =β s3

5. Γ ` A :r s1

6. Γ, x:rA ` B :r s2

7. Γ, y:τ
′

D ` A :r s1 Lemma A.1.6, 1, 5

8. Γ, y:τ
′

D, x:rA ` B :r s2 Lemma A.1.6, 1, 6

9. (∃ (s1, s2, s3) ∈ R)

C =β s3 ∧ Γ, y:τ
′

D ` A :r s1

∧ Γ, y:τ
′

D, x:rA ` B :r s2 by 3, 4, 7, 8

Π-Form case



(s1, s2, s3) ∈ R Γ ` A :r s1 Γ, x:rA ` B :r s2

Γ ` Πτx:A. B :r s3





1. C = s3 hypothesis

2. (s1, s2, s3) ∈ R hypothesis

230

Step Justification

3. Γ ` A :r s1 hypothesis

4. Γ, x:rA ` B :r s2 hypothesis

5. C =β s3 by 1

6. (∃ (s1, s2, s3) ∈ R)

C =β s3 ∧ Γ ` A :r s1

∧ Γ, x:rA ` B :r s2 by 2, 5, 3, 4

Conv case



Γ ` Πτx:A. B :r D Γ ` C :c s D =β C

Γ ` Πτx:A. B :r C





1. Γ ` Πτx:A. B :r D hypothesis

2. Γ ` C :c s hypothesis

3. D =β C hypothesis

4. (s1, s2, s3) ∈ R





ind. hyp. on 1
5. D =β s3

6. Γ ` A :r s1

7. Γ, x:rA ` B :r s2

8. C =β s3

9. (∃ (s1, s2, s3) ∈ R)

C =β s3 ∧ Γ ` A :r s1

∧ Γ, x:rA ` B :r s2 by 4, 8, 6, 7

2

Corollary A.1.8 (Π-Inversion in c-mode)

Γ ` Πτx:A. B :c C

(∃ (s1, s2, s3) ∈ R) C =β s3 ∧ Γ ` A :c s1 ∧ Γ, x:τA ` B :c s2

Proof.

231

Step Justification

1. Γ ` Πτx:A. B :c C assumption

2. Γ◦ ` Πτx:A. B :r C inversion on 1

3. (s1, s2, s3) ∈ R





4. C =β s3 by 2

5. Γ◦ ` A :r s1 (Lemma A.1.7)

6. Γ◦, x:rA ` B :r s2

7. Γ ` A :c s1 Reset, 5

8. (Γ, x:τA)◦ = Γ◦, x:rA def. of ◦

9. (Γ, x:τA)◦ ` B :r s2 by 6, 8

10. Γ, x:τA ` B :c s2 Reset, 9

11. (∃ (s1, s2, s3) ∈ R)

C =β s3 ∧ Γ ` A :c s1

∧ Γ, x:τA ` B :c s2 by 3, 4, 7, 10

2

Lemma A.1.9 (λ-Inversion)

Γ ` λτx:A. M :r C

(∃ B, s) C =β Πτx:A. B ∧ Γ ` Πτx:A. B :c s ∧ Γ, x:τA ` M :r B

Proof. By induction on the derivation of Γ ` λτx:A. M :r C. The only rules by

which this judgment can possibly be derived are Π-Intro, Weak, and Conv, so

we omit all other (trivial) cases of the proof.

Step Justification

Weak case



Γ ` D :c s Γ ` λτx:A. M :r C

Γ, y:τ
′

D ` λτx:A. M :r C





1. Γ ` D :c s hypothesis

232

Step Justification

2. Γ ` λτx:A. M :r C hypothesis

3. C =β Πτx:A. B




ind. hyp. on 24. Γ ` Πτx:A. B :c s

5. Γ, x:τA ` M :r B

6. Γ, y:τ
′

D, x:τA ` M :r B Lemma A.1.6, 1, 5

7. (∃ B, s) C =β Πτx:A. B

∧ Γ ` Πτx:A. B :c s

∧ Γ, y:τ
′

D, x:τA ` M :r B by 3, 4, 6

Π-Intro case



Γ ` Πτx:A. B :c s Γ, x:τA ` M :r B

Γ ` λτx:A. M :r Πτx:A. B





1. C = Πτx:A. B hypothesis

2. Γ ` Πτx:A. B :c s hypothesis

3. Γ, x:τA ` M :r B hypothesis

4. C =β Πτx:A. B by 1

5. (∃ B, s) C =β Πτx:A. B

∧ Γ ` Πτx:A. B :c s

∧ Γ, x:τA ` M :r B by 4, 2, 3

Conv case



Γ ` λτx:A. M :r D Γ ` C :c s D =β C

Γ ` λτx:A. M :r C





1. Γ ` λτx:A. M :r D hypothesis

2. Γ ` C :c s hypothesis

3. D =β C hypothesis

4. D =β Πτx:A. B




ind. hyp. on 1
5. Γ ` Πτx:A. B :c s

233

Step Justification

6. Γ, x:τA ` M :r B (also) ind. hyp. on 1

7. C =β Πτx:A. B by 3, 4

8. (∃ B, s) C =β Πτx:A. B

∧ Γ ` Πτx:A. B :c s

∧ Γ, x:τA ` M :r B by 7, 5, 6

2

Lemma A.1.10 (@-Inversion)

Γ ` M@τN :r C

(∃ x, A, B) C =β B[N/x] ∧ Γ ` M :r Πτx:A. B ∧ Γ ` N :τ A

Proof. By induction on the derivation of Γ ` M@τN :r C. The only rules by

which this judgment can possibly be derived are Π-Elim, Weak, and Conv, so

we omit all other (trivial) cases of the proof.

Step Justification

Weak case



Γ ` D :c s Γ ` M@τN :r C

Γ, y:τ
′

D ` M@τN :r C





1. Γ ` D :c s hypothesis

2. Γ ` M@τN :r C hypothesis

3. C =β B[N/x]




4. Γ ` M :r Πτx:A. B ind. hyp. on 2

5. Γ ` N :τ A (for some x, A, B)

6. Γ, y:τ
′

D ` M :r Πτx:A. B Weak, 1, 4

7. Γ, y:τ
′

D ` N :τ A Lemma A.1.6, 1, 5

8. (∃ x, A, B) C =β B[N/x]

∧ Γ, y:τ
′

D ` M :r Πτx:A. B

234

Step Justification

∧ Γ, y:τ
′

D ` N :τ A by 3, 6, 7

Π-Elim case



Γ ` M :r Πτx:A. B Γ ` N :τ A

Γ ` M@τN :r B[N/x]





1. C = B[N/x] hypothesis

2. Γ ` M :r Πτx:A. B hypothesis

3. Γ ` N :τ A hypothesis

4. C =β B[N/x] by 1

5. (∃ x, A, B) C =β B[N/x]

∧ Γ ` M :r Πτx:A. B

∧ Γ ` N :τ A by 4, 2, 3

Conv case



Γ ` M@τN :r D Γ ` C :c s D =β C

Γ ` M@τN :r C





1. Γ ` M@τN :r D hypothesis

2. Γ ` C :c s hypothesis

3. D =β C hypothesis

4. D =β B[N/x]





ind. hyp. on 15. Γ ` M :r Πτx:A. B

6. Γ ` N :τ A

7. C =β B[N/x] by 3, 4

8. (∃ x, A, B) C =β B[N/x]

∧ Γ ` M :r Πτx:A. B

∧ Γ ` N :τ A by 7, 5, 6

2

235

Lemma A.1.11 (Coherence Lemma)

Γ ` M :τ A

(∃s) A = s ∨ Γ ` A :c s

Proof. By induction on the derivation of Γ ` M :τ A.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





1. A = s2 hypothesis

Var case



Γ ` A :c s

Γ, x:rA ` x :r A





1. Γ ` A :c s hypothesis

2. Γ◦ ` A :r s inversion on 1

3. Γ◦ ` A :c s Corollary A.1.3 on 2

4. Γ◦, x:rA ` A :r s Weak, 3, 2

5. Γ◦, x:rA = (Γ, x:rA)◦ def. of ◦

6. Γ, x:rA ` A :c s by 4, 5, Reset

Weak case



Γ ` B :c s Γ ` M :r A

Γ, x:τB ` M :r A





1. Γ ` B :c s hypothesis

2. Γ ` M :r A hypothesis

3. A = s′ ∨ Γ ` A :c s′ ind. hyp. on 2 (for some s′)

 4. A = s′ assumption

5. (∃s′) A = s′ ∨ Γ, x:τB ` A :c s′ by 4

236

Step Justification



6. Γ ` A :c s′ assumption

7. Γ◦ ` A :r s′ inversion on 6

8. Γ◦ ` A :c s′ Corollary A.1.3 on 7

9. Γ◦, x:rA ` A :r s′ Weak on 8, 7

10. Γ◦, x:rA = (Γ, x:τA)◦ def. of ◦

11. Γ, x:τA ` A :c s′ Reset, 9, 10

12. (∃s′) A = s′ ∨ Γ, x:τB ` A :c s′ by 11

13. (∃s′) A = s′ ∨ Γ, x:τB ` A :c s′ ∨-elim, 3, 4–5, 6–12

Π-Form case



(s1, s2, s3) ∈ R Γ ` B :r s1 Γ, x:rB ` C :r s2

Γ ` Πτx:B. C :r s3





1. A = s3 hypothesis

Π-Intro case



Γ ` Πτx:B. C :c s Γ, x:τB ` M :r C

Γ ` λτx:B. M :r Πτx:B. C





1. A = Πτx:B. C hypothesis

2. Γ ` Πτx:B. C :c s hypothesis

3. Γ ` A :c s by 1, 2

Π-Elim case



Γ ` M :r Πτx:B. C Γ ` N :τ B

Γ ` M@τN :r C[N/x]





1. A = C[N/x] hypothesis

2. Γ ` M :r Πτx:B. C hypothesis

3. Γ ` N :τ B hypothesis

4. Πτx:B. C = s ∨ Γ ` Πτx:B. C :c s ind. hyp. on 2 (for some s)

5. Γ ` Πτx:B. C :c s by 4

237

Step Justification

6. Γ, x:τB ` C :c s′ Corollary A.1.8 on 5 (for some s′)

7. Γ ` C[N/x] :c s′[N/x] Lemma A.1.4, 6, 3

8. s′[N/x] = s′ def. of subst.

9. Γ ` A :c s′ by 1, 7, 8

Conv case



Γ ` M :r B Γ ` A :c s B =β A

Γ ` M :r A





1. Γ ` A :c s hypothesis

Reset case



Γ◦ ` M :r A

Γ ` M :c A





1. Γ◦ ` M :r A hypothesis

2. A = s ∨ Γ◦ ` A :c s ind. hyp. on (for some s)

 3. A = s assumption

4. (∃s) A = s ∨ Γ ` A :c s by 3



5. Γ◦ ` A :c s assumption

6. Γ◦◦ ` A :r s by 5

7. Γ◦ ` A :r s by 6, Lemma A.1.1

8. Γ ` A :c s by 7, Reset

9. (∃s) A = s ∨ Γ ` A :c s by 8

10 (∃s) A = s ∨ Γ ` A :c s ∨-elim, 3–4, 5–9

2

Corollary A.1.12 (λΠ-Inversion)

Γ ` λτ ′

x:A′. M :r Πτx:A. B

(∃ B) τ ′ = τ ∧ Γ, x:τA ` M :r B

238

Proof.

Step Justification

1. Γ ` λτ ′

x:A′. M :r Πτx:A. B assumption

2. Πτx:A. B =β Πτ ′

x:A′. B′





3. Γ ` Πτ ′

x:A′. B′ :c s by 1

4. Γ, x:τ
′

A′ ` M :r B′ (Lemma A.1.9)

6. τ ′ = τ




by 27. A′ =β A

8. B′ =β B

9. Γ ` Πτx:A. B :c s3 Lemma A.1.11, 1

10. Γ ` A :c s1





by 9

11. Γ, x:τA ` B :c s2 (Lemma A.1.8)

12. Γ, x:τ
′

A ` M :r B′ Lemma A.1.5, 4, 10, 7

13. Γ, x:τ
′

A ` M :r B Conv, 12, 11, 8

14. (∃ B) τ ′ = τ ∧ Γ, x:τA ` M :r B by 6, 13

2

Lemma A.1.13 (Subject Reduction)

Γ ` M :τ A M →β N

Γ ` N :τ A

Proof. By induction on the derivation of Γ ` M :τ A.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





1. M →β N assumption

2. M = s1 hypothesis

239

Step Justification

3. contradiction! by 1, 2, def. of →β

Var case



Γ ` A :c s

Γ, x:rA ` x :r A





1. M →β N assumption

2. M = x hypothesis

3. contradiction! by 1, 2, def. of →β

Weak case



Γ ` B :c s Γ ` M :r A

Γ, x:τB ` M :r A





1. M →β N assumption

2. Γ ` B :c s hypothesis

3. Γ ` M :r A hypothesis

4. Γ ` N :r A ind. hyp. on 3, 1

5. Γ, x:τB ` N :r A Weak, 2, 4

Π-Form case



(s1, s2, s3) ∈ R Γ ` B :r s1 Γ, x:rB ` C :r s2

Γ ` Πτx:B. C :r s3





1. M →β N assumption

2. M = Πτx:B. C hypothesis

3. (s1, s2, s3) ∈ R hypothesis

4. Γ ` B :r s1 hypothesis

5. Γ, x:rB ` C :r s2 hypothesis

6. (∃B′. B →β B′ ∧ N = Πτx:B′. C) ∨

(∃C ′. C →β C ′ ∧ N = Πτx:B. C ′) by 1, 2, def. of →β⌈
7. B →β B′

}
assumption . . .

240

Step Justification

8. N = Πτx:B′. C
}

. . . (for some B′)

9. Γ ` B′ :r s1 ind. hyp. on 4, 7

10. B =β B′ by 7

11. Γ, x:rB′ ` C :r s2 Lemma A.1.5 on 5, 9, 10

12. Γ ` Πτx:B′. C :r s3 Π-Form on 3, 9, 11

13. Γ ` N :r s3 by 12, 8



14. C →β C ′





assumption

15. N = Πτx:B. C ′ (for some C ′)

16. Γ, x:rB ` C ′ :r s2 ind. hyp. on 5, 14

17. Γ ` Πτx:B. C ′ :r s3 Π-Form on 3, 4, 16

18. Γ ` N :r s3 by 17, 15

19. Γ ` N :r s3 ∨-elim, 6, 7–13, 14–18

Π-Intro case is similar to the Π-Form case.

Π-Elim case



Γ ` P :r Πτx:A. B Γ ` Q :τ A

Γ ` P@τQ :r B[Q/x]





1. M →β N assumption

2. M = P@τQ hypothesis

3. Γ ` P :r Πτx:A. B hypothesis

4. Γ ` Q :τ A hypothesis

5. ((∃ P ′) P →β P ′ ∧ N = P ′@τQ) ∨

((∃ Q′) Q →β Q′ ∧ N = P@τQ′) ∨

((∃ A′ P ′) P = λτ ′

x:A′. P ′

∧ N = P ′[Q/x]) by 1, def. of →β



6. P →β P ′





assumption

7. N = P ′@τQ (for some P ′)

241

Step Justification

8. Γ ` P ′ :r Πτx:A. B ind. hyp. on 3

9. Γ ` P ′@τQ :r B[Q/x] Π-Elim, 8, 4

10. Γ ` N :r B[Q/x] by 9, 7



11. Q →β Q′





assumption

12. N = P@τQ′ (for some Q′)

13. Γ ` Q′ :τ A ind. hyp. on 4, 11

14. Γ ` P@τQ′ :r B[Q/x] Π-Elim, 3, 13

15. Γ ` N :r B[Q/x] by 14, 12



16. P = λτ ′

x:A′. P ′





assumption

17. N = P ′[Q/x] (for some A′, P ′)

18. Γ ` λτ ′

x:A′. P ′ :r Πτx:A. B by 3, 16

19. Γ, x:τA ` P ′ :r B by 18, Corollary A.1.12

20. Γ ` P ′[Q/x] :r B[Q/x] Lemma A.1.4, 19, 4

21. Γ ` N :r B[Q/x] by 20, 17

22. Γ ` N :r B[Q/x] ∨-elim, 5,

6–10, 11–15, 16–21

Conv case



Γ ` M :r B Γ ` A :c s B =β A

Γ ` M :r A





1. M →β N assumption

2. Γ ` M :r B hypothesis

3. Γ ` A :c s hypothesis

4. B =β A hypothesis

5. Γ ` N :r B ind. hyp. on 2, 1

6. Γ ` N :r A Conv on 5, 3, 4

Reset case is similar to the Conv case

242

Step Justification

2

A.2 META-THEORY OF ERASURE

The RV operation gathers all run-time variables in a context Γ into a set. It was

defined in Definition 3.3.2 as follows:

RV (ε) = ∅ RV (Γ, x:rA) = RV (Γ) ∪ {x} RV (Γ, x:cA) = RV (Γ)

Lemma A.2.1 (Variable Survival)

Γ ` M :r A

FV (M•) ⊆ RV (Γ)

Proof. By induction on the derivation of Γ ` M :r A.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





1. M = s1 hypothesis

2. s1
• = s1 def. of •

3. FV (s1) = ∅ def. of FV

4. ∅ ⊆ RV (Γ) def. of ⊆

5. FV (M•) ⊆ RV (Γ) by 1, 2, 3, 4

Var case



∆ ` A :c s

∆, x:rA ` x :r A





1. M = x hypothesis

2. Γ = ∆, x:rA hypothesis

243

Step Justification

3. x• = x def. of •

4. FV (x) = {x} def. of FV

5. RV (∆, x:rA) = RV (∆) ∪ {x} def. of RV

6. {x} ⊆ RV (∆) ∪ {x} def. of ⊆

7. FV (M•) ⊆ RV (Γ) by 1, 3, 4, 6, 5, 2

Weak case



∆ ` B :c s ∆ ` M :r A

∆, x:τB ` M :r A





1. Γ = ∆, x:τB hypothesis

2. ∆ ` M :r A hypothesis

3. FV (M•) ⊆ RV (∆) ind. hyp. on 2

4. RV (∆) ⊆ RV (∆, x:τB) def. of RV , ⊆

5. FV (M•) ⊆ RV (∆, x:τB) by 3, 4

Π-Form case



(s1, s2, s3) ∈ R Γ ` B :r s1 Γ, x:rB ` C :r s2

Γ ` Πτx:B. C :r s3





1. M = Πτx:B. C hypothesis

2. Γ ` B :r s1 hypothesis

3. Γ, x:rB ` C :r s2 hypothesis

4. FV (B•) ⊆ RV (Γ) ind. hyp. on 2

5. FV (C•) ⊆ RV (Γ, x:rB) ind. hyp. on 3

6. RV (Γ, x:rB) = RV (Γ) ∪ {x} def. of RV

7. FV (C•) ⊆ RV (Γ) ∪ {x} by 5, 6

8. FV (C•) − {x} ⊆ RV (Γ) by 7

9. FV (B•) ∪ (FV (C•) − {x}) ⊆ RV (Γ) by 4, 8

10. τ = r ∨ τ = c tautology

244

Step Justification



11. τ = r assumption

12. (Πrx:B. C)• = Πx:B•. C• def. of •

13. FV (Πx:B•. C•) =

FV (B•) ∪ (FV (C•) − {x}) def. of FV

14. FV (M•) ⊆ RV (Γ) by 1, 11, 12, 13, 9



15. τ = c assumption

16. (Πrx:B. C)• = ∀x:B•. C• def. of •

17. FV (∀x:B•. C•) =

FV (B•) ∪ (FV (C•) − {x}) def. of FV

18. FV (M•) ⊆ RV (Γ) by 1, 15, 16, 17, 9

19. FV (M•) ⊆ RV (Γ) ∨-elim, 10, 11–14, 15–18

Π-Intro case



Γ ` Πτx:A. B :c s Γ, x:τA ` N :r B

Γ ` λτx:A. N :r Πτx:A. B





1. M = λτx:A. N hypothesis

2. Γ, x:τA ` N :r B hypothesis

3. FV (N•) ⊆ RV (Γ, x:τA) ind. hyp. on 2

4. τ = r ∨ τ = c tautology



5. τ = r assumption

6. (λrx:A. N)• = λx. N• def. of •

7. FV (λx. N•) = FV (N•) − {x} def. of FV

8. RV (Γ, x:rA) = RV (Γ) ∪ {x} def. of RV

9. FV (N•) ⊆ RV (Γ) ∪ {x} by 3, 5, 8

10. FV (N•) − {x} ⊆ RV (Γ) by 9

11. FV (M•) ⊆ RV (Γ) by 1, 5, 6, 7, 10
⌈

12. τ = c assumption

245

Step Justification

13. (λcx:A. N)• = N• def. of •

14. RV (Γ, x:cA) = RV (Γ) def. of RV

15. FV (M•) ⊆ RV (Γ) by 1, 12, 13, 3, 14

16. FV (M•) ⊆ RV (Γ) ∨-elim, 4, 5–11, 12–15

Π-Elim case



Γ ` P :r Πτx:B. C Γ ` N :τ B

Γ ` P@τN :r C[N/x]





1. M = P@τN hypothesis

2. Γ ` P :r Πτx:B. C hypothesis

3. Γ ` N :τ B hypothesis

4. FV (P •) ⊆ RV (Γ) ind. hyp. on 2

5. τ = r ∨ τ = c tautology



6. τ = r assumption

7. (P@rN)• = P • N• def. of •

8. FV (P • N•) = FV (P •) ∪ FV (N•) def. of FV

9. FV (N•) ⊆ RV (Γ) by 6, ind. hyp. on 3

10. FV (P •) ∪ FV (N•) ⊆ RV (Γ) by 4, 9

11. FV (M•) ⊆ RV (Γ) by 1, 6, 7, 8, 10



12. τ = c assumption

13. (P@cN)• = P • def. of •

14. FV (M•) ⊆ RV (Γ) by 1, 12, 13, 4

15. FV (M•) ⊆ RV (Γ) ∨-elim, 5, 6–11, 12–14

Conv case



Γ ` M :r B Γ ` A :c s B =β A

Γ ` M :r A





1. Γ ` M :r B assumption

246

Step Justification

2. FV (M•) ⊆ RV (Γ) ind. hyp. on 1

Reset case



Γ◦ ` M :r A

Γ ` M :c A





1. r = c hypothesis

2. contradiction! by 1

2

Lemma A.2.2 (Erasure Commutes with Substitution)

(M [N/x])• = M•[N•/x]

Proof. By induction on M .

Case Step Justification

case M = x

(x[N/x])• = N• def. of subst.

= x[N•/x] def. of subst.

= x•[N•/x] def. of •

case M = y 6= x

(y[N/x])• = y• def. of subst.

= y def. of •

= y[N•/x] def. of subst.

= y•[N•/x] def. of •

case M = λry:A. M0

((λry:A. M0)[N/x])• = (λry:A[N/x]. M0[N/x])• def. of subst.

= λy. (M0[N/x])• def. of •

= λy. M0
•[N•/x] ind. hyp. on M0

247

Case Step Justification

= (λy. M0
•)[N•/x] def. of subst.

= (λry:A. M0)
•[N•/x] def. of •

case M = λcy:A. M0

((λcy:A. M0)[N/x])• = (λcy:A[N/x]. M0[N/x])• def. of subst.

= (M0[N/x])• def. of •

= M0
•[N•/x] ind. hyp. on M0

= (λcy:A. M0)
•[N•/x] def. of •

case M = M0@
rN0

((M0@
rN0)[N/x])• = (M0[N/x]@rN0[N/x])• def. of subst.

= (M0[N/x])• (N0[N/x])• def. of •

= (M0
•[N•/x]) (N0

•[N•/x]) ind. hyp. on M0

= (M0
• N0

•)[N•/x] def. of subst.

= (M0@
rN0)

•[N•/x] def. of •

case M = M0@
cN0

((M0@
cN0)[N/x])• = (M0[N/x]@cN0[N/x])• def. of subst.

= (M0[N/x])• def. of •

= M0
•[N•/x] ind. hyp. on M0

= (M0@
cN0)

•[N•/x] def. of •

case M = Πry:A. B

((Πry:A. B)[N/x])• = (Πry:A[N/x]. B[N/x])• def. of subst.

= Πy:(A[N/x])•. (B[N/x])• def. of •

= Πy:A•[N•/x]. B•[N•/x] ind. hyp. on A, B

= (Πy:A•. B•)[N•/x] def. of subst.

= (Πry:A. B)•[N•/x] def. of •

case M = Πcy:A. B

((Πcy:A. B)[N/x])• = (Πcy:A[N/x]. B[N/x])• def. of subst.

= ∀y:(A[N/x])•. (B[N/x])• def. of •

248

Case Step Justification

= ∀y:A•[N•/x]. B•[N•/x] ind. hyp. on A, B

= (∀y:A•. B•)[N•/x] def. of subst.

= (Πcy:A. B)•[N•/x] def. of •

case M = s

(s[N/x])• = s• def. of subst.

= s def. of •

= s[N•/x] def. of subst.

= s•[N•/x] def. of •

2

Theorem A.2.3 (Erasure Respects Reduction)

Γ ` M :τ A M →β N

M• →β N• ∨ M• = N•

Note. During this proof, it will be convenient to have a notation for (Πτx:A. B)•

when τ is unknown We define Π•τx:A. B as follows

Π•rx:A. B = Πx:A. B Π•cx:A. B = ∀x:A. B

so that (Πτx:A. B)• = Π•τx:A•. B•.

Proof. By induction on the derivation of Γ ` M :τ A.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





1. M →β N assumption

2. M = s1 hypothesis

249

Step Justification

3. contradiction! by 1, 2

Var case



Γ ` A :c s

Γ, x:rA ` x :r A





1. M →β N assumption

2. M = x hypothesis

3. contradiction! by 1, 2

Weak case



Γ ` B :c s Γ ` M :r A

Γ, x:τB ` M :r A





1. M →β N assumption

2. Γ ` M :r A hypothesis

3. M• →β N• ∨ M• = N• ind. hyp. on 2, 1

Π-Form case



(s1, s2, s3) ∈ R Γ ` B :r s1 Γ, x:rB ` C :r s2

Γ ` Πτx:B. C :r s3





1. M →β N assumption

2. M = Πτx:B. C hypothesis

3. Γ ` B :r s1 hypothesis

4. Γ, x:rB ` C :r s2 hypothesis

5. M• = Π•τx:B•. C• by 2, def. of •

6. ((∃ B′) B →β B′ ∧ N = Πτx:B′. C) ∨

((∃ C ′) C →β C ′ ∧ N = Πτx:B. C ′) by 1, 2, def. of →β



7. B →β B′ assumption (for some B′)

8. N = Πτx:B′. C assumption

9. N• = Π•τx:B′•. C• by 8, def. of •

250

Step Justification

10. B• →β B′• ∨ B• = B′• ind. hyp. on 3, 7



11. B• →β B′• assumption

12. M• →β N• by 5, 8, 11

13. M• →β N• ∨ M• = N• ∨-intro, 12



14. B• = B′• assumption

15. M• = N• by 5, 8, 14

16. M• →β N• ∨ M• = N• ∨-intro, 15

17. M• →β N• ∨ M• = N• ∨-elim, 10, 11–13, 14–16



18. C →β C ′ assumption (for some C ′)

19. N = Πτx:B. C ′ assumption

20. N• = Π•τx:B•. C ′• by 19, def. of •

21. C• →β C ′• ∨ C• = C ′• ind. hyp. on 4, 18



22. C• →β C ′• assumption

23. M• →β N• by 5, 20, 22

24. M• →β N• ∨ M• = N• ∨-intro, 23



25. C• = C ′• assumption

26. M• = N• by 5, 20, 25

27. M• →β N• ∨ M• = N• ∨-intro, 26

28. M• →β N• ∨ M• = N• ∨-elim, 21, 22–24, 25–27

29. M• →β N• ∨ M• = N• ∨-elim, 6, 7–17, 18–28

Πr-Intro case



Γ ` Πrx:A. B :c s Γ, x:rA ` P :r B

Γ ` λrx:A. P :r Πrx:A. B





1. M →β N assumption

2. M = λrx:A. P hypothesis

3. Γ, x:rA ` P :r B hypothesis

251

Step Justification

4. M• = λx. P • by 2, def. of •

5. ((∃ A′) A →β A′ ∧ N = λrx:A′. P) ∨

((∃ P ′) P →β P ′ ∧ N = λrx:A. P ′) by 1, 2, def. of →β



6. A →β A′ assumption (for some A′)

7. N = λrx:A′. P assumption

8. N• = λx. P • by 7, def. of •

9. M• = N• by 4, 8

10. M• →β N• ∨ M• = N• ∨-intro, 9



11. P →β P ′ assumption (for some P ′)

12. N = λrx:A. P ′ assumption

13. N• = λx. P ′• by 12, def. of •

14. P • →β P ′• ∨ P • = P ′• ind. hyp. on 3, 11



15. P • →β P ′• assumption

16. M• →β N• by 4, 13, 15

17. M• →β N• ∨ M• = N• ∨-intro, 16



18. P • = P ′• assumption

19. M• = N• by 4, 13, 18

20. M• →β N• ∨ M• = N• ∨-intro, 19

21. M• →β N• ∨ M• = N• ∨-elim, 14, 15–17, 18–20

22. M• →β N• ∨ M• = N• ∨-elim, 5, 6–10, 11–21

Πc-Intro case



Γ ` Πcx:A. B :c s Γ, x:cA ` P :r B

Γ ` λcx:A. P :r Πcx:A. B





1. M →β N assumption

2. M = λcx:A. P hypothesis

3. Γ, x:cA ` P :r B hypothesis

252

Step Justification

4. M• = P • by 2, def. of •

5. ((∃ A′) A →β A′ ∧ N = λcx:A′. P) ∨

((∃ P ′) P →β P ′ ∧ N = λcx:A. P ′) by 1, 2, def. of →β



6. A →β A′ assumption (for some A′)

7. N = λcx:A′. P assumption

8. N• = P • by 7, def. of •

9. M• = N• by 4, 8

10. M• →β N• ∨ M• = N• ∨-intro, 9



11. P →β P ′ assumption (for some P ′)

12. N = λcx:A. P ′ assumption

13. N• = P ′• by 12, def. of •

14. P • →β P ′• ∨ P • = P ′• ind. hyp. on 3, 11

15. M• →β N• ∨ M• = N• by 4, 13, 14

16. M• →β N• ∨ M• = N• ∨-elim, 5, 6–10, 11–15

Πr-Elim case



Γ ` P :r Πrx:B. C Γ ` Q :r B

Γ ` P@rQ :r C[Q/x]





1. M →β N assumption

2. M = P@rQ hypothesis

3. Γ ` P :r Πrx:B. C hypothesis

4. Γ ` Q :r B hypothesis

5. M• = P • Q• by 3, def. of •

6. ((∃ P ′) P →β P ′ ∧ N = P ′@rQ) ∨

((∃ Q′) Q →β Q′ ∧ N = P@rQ′) ∨

((∃ A′ M ′) P = λτx:A′. M ′

∧ N = M ′[Q/x]) by 1, 2, def. of →β

253

Step Justification



7. P →β P ′ assumption (for some P ′)

8. N = P ′@rQ assumption

9. N• = P ′• Q• by 8, def. of •

10. P • →β P ′• ∨ P • = P ′• ind. hyp. on 3, 7



11. P • →β P ′• assumption

12. M• →β N• by 5, 9, 11

13. M• →β N• ∨ M• = N• ∨-intro, 12



14. P • = P ′• assumption

15. M• = N• by 5, 9, 14

16. M• →β N• ∨ M• = N• ∨-intro, 15

17. M• →β N• ∨ M• = N• ∨-elim, 10, 11–13, 14–16



18. Q →β Q′ assumption (for some Q′)

19. N = P@rQ′ assumption

20. N• = P • Q′• by 19, def. of •

21. Q• →β Q′• ∨ Q• = Q′• ind. hyp. on 4, 18



22. Q• →β Q′• assumption

23. M• →β N• by 5, 20, 22

24. M• →β N• ∨ M• = N• ∨-intro, 23



25. Q• = Q′• assumption

26. M• = N• by 5, 20, 25

27. M• →β N• ∨ M• = N• ∨-intro, 26

28. M• →β N• ∨ M• = N• ∨-elim, 21, 22–24, 25–27



29. P = λτx:A′. M ′ assumption (for some A′, M ′)

30. N = M ′[Q/x] assumption

31. N• = M ′•[Q•/x] by 30, Lemma A.2.2

32. Γ ` λτx:A′. M ′ :r Πrx:B. C by 29, 3

33. τ = r Corollary A.1.12 on 32

254

Step Justification

34. P • = λx. M ′• by 33, 29, def. of •

35. (λx. M ′•) Q• →β M ′•[Q•/x] def. of →β

36. M• →β N• by 35, 31, 34, 5

37. M• →β N• ∨ M• = N• ∨-intro, 36

38. M• →β N• ∨ M• = N• ∨-elim, 6, 7–17, 18–28, 29–36

Πc-Elim case



Γ ` P :r Πcx:B. C Γ ` Q :c B

Γ ` P@cQ :r C[Q/x]





1. M →β N assumption

2. M = P@cQ hypothesis

3. Γ ` P :r Πcx:B. C hypothesis

4. Γ ` Q :c B hypothesis

5. M• = P • by 3, def. of •

6. ((∃ P ′) P →β P ′ ∧ N = P ′@cQ) ∨

((∃ Q′) Q →β Q′ ∧ N = P@cQ′) ∨

((∃ A′ M ′) P = λτx:A′. M ′

∧ N = M ′[Q/x]) by 1, 2, def. of →β



7. P →β P ′ assumption (for some P ′)

8. N = P ′@cQ assumption

9. N• = P ′• by 8, def. of •

10. P • →β P ′• ∨ P • = P ′• ind. hyp. on 3, 7



11. P • →β P ′• assumption

12. M• →β N• by 5, 9, 11

13. M• →β N• ∨ M• = N• ∨-intro, 12



14. P • = P ′• assumption

15. M• = N• by 5, 9, 14

255

Step Justification
⌊

16. M• →β N• ∨ M• = N• ∨-intro, 15

17. M• →β N• ∨ M• = N• ∨-elim, 10, 11–13, 14–16



18. Q →β Q′ assumption (for some Q′)

19. N = P@cQ′ assumption

20. N• = P • by 19, def. of •

26. M• = N• by 5, 20

28. M• →β N• ∨ M• = N• ∨-intro, 26



29. P = λτx:A′. M ′ assumption (for some A′, M ′)

30. N = M ′[Q/x] assumption

31. N• = M ′•[Q•/x] by 30, Lemma A.2.2

32. Γ ` λτx:A′. M ′ :r Πcx:B. C by 29, 3

33. τ = c




 Corollary A.1.12 on 32
34. Γ, x:cB ` M ′ :r C

35. P • = M ′• by 33, 29, def. of •

36. FV (M ′•) ⊆ RV (Γ, x:cB) Lemma A.2.1, 34

37. x 6∈ RV (Γ, x:cB) def. of RV

38. x 6∈ FV (M ′•) by 36, 37

39. M ′•[Q•/x] = M ′• by 38

40. M• = N• by 5, 35, 39, 31

41. M• →β N• ∨ M• = N• ∨-intro, 40

42. M• →β N• ∨ M• = N• ∨-elim, 6, 7–17, 18–28, 29–41

Conv case



Γ ` M :r B Γ ` A :c s B =β A

Γ ` M :r A





1. M →β N assumption

2. Γ ` M :r B hypothesis

256

Step Justification

3. M• →β N• ∨ M• = N• ind. hyp. on 2, 1

Reset case



Γ◦ ` M :r A

Γ ` M :c A





1. M →β N assumption

2. Γ◦ ` M :r A hypothesis

3. M• →β N• ∨ M• = N• ind. hyp. on 2, 1

2

Corollary A.2.4 (Erasure Respects Reductions)

Γ ` M :τ A M →∗
β N

M• →∗
β N•

Proof. Follows immediately from Theorem A.2.3 and Lemma A.1.13 by induc-

tion on the length of the reduction path for M →∗
β N . 2

Corollary A.2.5 (Erasure Respects β-Conversion)

Γ ` M :τ1 A ∆ ` N :τ2 B

M =β N

M• =β N•

Proof. Since M =β N , there is a term P to which both M , and N reduce, that

is, M →∗
β P and M →∗

β N . Since M and N are both well formed, we may apply

Corollary A.2.4 to obtain M• →∗
β P • and M• →∗

β N•. 2

Theorem A.2.6 (Reflection Lemma)

Γ ` M :r Πrx:A. B M• = λx. P •

(∃ A′, P ′) M →∗
β λrx:A′. P ′ ∧ P ′• = P •

257

Proof. We recount the discussion from Section 3.3.1 that proves this result at a

high level of abstraction (a low level of detail). At present, I do not see how to

formalize this proof any more without doing violence to the core argument.

The only way M• can be λx. P • is if M consists of a subterm λrx:C. P nested

under some (perhaps zero) “frames” of the form λcy:C. [] or []@cN . Because the

type of M is Πrx:A. B, we know the top-most (outer-most) frame cannot be a λc.

Similarly, for typing reasons, the bottom-most (inner-most) frame cannot be a @c,

because it would be applied to a λr. Therefore, if there are any frames at all on

top of λrx:C. P , then there are at least two, and at some point there is a λc frame

just underneath a @c one, forming a redex. If we reduce this redex, the rest of the

frame structure remains in tact, and the number of frames decreases by two. We

may repeat this process until no intermediate frames are left (formally, the proof is

by strong induction on the length of the frame stack). Then M →∗
β λrx:C[θ]. P [θ]

where θ is the sequence of substitutions effected by the sequence of reductions.

Because θ is comprised solely of substitutions for λc-bound variables, the Variable

Survival Lemma (A.2.1) tells us there will be no occurrences of these variables

inside P •. Therefore P [θ]• = P •[θ•] = P •. We conclude by setting A′ = C[θ] and

P ′ = P [θ]. 2

Theorem A.2.7 (Erasure Reflects Reductions)

Γ ` M :τ A M• →β E

(∃N) N• = E ∧ M →+
β N

Proof. By induction on the derivation of Γ ` M :τ A.

Step Justification

Axiom case



(s1, s2) ∈ A

` s1 :r s2





258

Step Justification

1. M• →β E assumption

2. M = s1 hypothesis

3. s1
• = s1 def. of •

4. s1 6→β def. of →β

5. contradiction! by 1, 2, 3, 4

Var case



Γ ` A :c s

Γ, x:rA ` x :r A





1. M• →β E assumption

2. M = x hypothesis

3. x• = x def. of •

4. x 6→β def. of →β

5. contradiction! by 1, 2, 3, 4

Weak case



Γ ` A :c s Γ ` M :r B

Γ, x:τA ` M :r B





1. M• →β E assumption

2. Γ ` M :r B hypothesis

3. (∃ N) N• = E ∧ M →+
β N ind. hyp. on 2, 1

Πr-Form case



(s1, s2, s3) ∈ R Γ ` A :r s1 Γ, x:rA ` B :r s2

Γ ` Πrx:A. B :r s3





1. M• →β E assumption

2. M = Πrx:A. B hypothesis

3. Γ ` A :r s1 hypothesis

4. Γ, x:rA ` B :r s2 hypothesis

259

Step Justification

5. (Πrx:A. B)• = Πx:A•. B• def. of •

6. Πx:A•. B• →β E by 1, 2, 5

7. ((∃ A′) A• →β A′ ∧ E = Πx:A′. B•) ∨

((∃ B′) B• →β B′ ∧ E = Πx:A•. B′) by 6



8. A• →β A′





assumption

9. E = Πx:A′. B• (for some A′)

10. P • = A′





ind. hyp. on 3, 8

11. A →+
β P (for some P)

12. let N = Πrx:P . B definition

13. N• = Πx:P •. B• def. of •, 12

14. N• = E by 13, 9, 10

15. M →+
β N by 2, 12, 11

16. (∃ N) N• = E ∧ M →+
β N by 12, 14, 15



17. B• →β B′





assumption

18. E = Πx:A•. B′ (for some B′)

19. P • = B′





ind. hyp. on 4, 17

20. B →+
β P (for some P)

21. let N = Πrx:A. P definition

22. N• = Πx:A•. P • def. of •, 21

23. N• = E by 22, 18, 19

24. M →+
β N by 2, 21, 20

25. (∃ N) N• = E ∧ M →+
β N by 21, 23, 24

26. (∃ N) N• = E ∧ M →+
β N ∨-elim, 7, 8–16, 17–25

Πc-Form case



(s1, s2, s3) ∈ R Γ ` A :r s1 Γ, x:rA ` B :r s2

Γ ` Πcx:A. B :r s3





260

Step Justification

1. M• →β E assumption

2. M = Πcx:A. B hypothesis

3. Γ ` A :r s1 hypothesis

4. Γ, x:rA ` B :r s2 hypothesis

5. (Πcx:A. B)• = ∀x:A•. B• def. of •

6. ∀x:A•. B• →β E by 1, 2, 5

7. ((∃ A′) A• →β A′ ∧ E = ∀x:A′. B•) ∨

((∃ B′) B• →β B′ ∧ E = ∀x:A•. B′) by 6



8. A• →β A′





assumption

9. E = ∀x:A′. B• (for some A′)

10. P • = A′





ind. hyp. on 3, 8

11. A →+
β P (for some P)

12. let N = Πcx:P . B definition

13. N• = ∀x:P •. B• def. of •, 12

14. N• = E by 13, 9, 10

15. M →+
β N by 2, 12, 11

16. (∃ N) N• = E ∧ M →+
β N by 12, 14, 15



17. B• →β B′





assumption

18. E = ∀x:A•. B′ (for some B′)

19. P • = B′





ind. hyp. on 4, 17

20. B →+
β P (for some P)

21. let N = Πcx:A. P definition

22. N• = ∀x:A•. P • def. of •, 21

23. N• = E by 22, 18, 19

24. M →+
β N by 2, 21, 20

25. (∃ N) N• = E ∧ M →+
β N by 21, 23, 24

261

Step Justification

26. (∃ N) N• = E ∧ M →+
β N ∨-elim, 7, 8–16, 17–25

Πr-Intro case



Γ ` Πrx:A. B :c s Γ, x:rA ` P :r B

Γ ` λrx:A. P :r Πrx:A. B





1. M• →β E assumption

2. M = λrx:A. P hypothesis

3. Γ ` Πrx:A. B :c s hypothesis

4. Γ, x:rA ` P :r B hypothesis

5. M• = λx. P • by 2, def. of •

6. P • →β F





def. of →β, 1, 5

7. E = λx. F (for some F)

8. P ′• = F





ind. hyp. on 4, 6

9. P →+
β P ′ (for some P ′)

10. let N = λrx:A. P ′ definition

11. N• = λx. P ′• def. of •

12. N• = E by 11, 8, 7

13. M →+
β N by 2, 10, 9

14. (∃ N) N• = E ∧ M →+
β N by 10, 12, 13

Πc-Intro case



Γ ` Πcx:A. B :c s Γ, x:cA ` P :r B

Γ ` λcx:A. P :r Πcx:A. B





1. M• →β E assumption

2. M = λcx:A. P hypothesis

3. Γ ` Πcx:A. B :c s hypothesis

4. Γ, x:cA ` P :r B hypothesis

5. M• = P • by 2, def. of •

262

Step Justification

6. P • →β E by 1, 5

7. P ′• = E





ind. hyp. on 4, 6

8. P →+
β P ′ (for some P ′)

9. let N = λcx:A. P ′ definition

10. N• = P ′• def. of •

11. N• = E by 10, 7

12. M →+
β N by 2, 9, 8

13. (∃ N) N• = E ∧ M →+
β N by 9, 11, 12

Πr-Elim case



Γ ` P :r Πrx:A. B Γ ` Q :r A

Γ ` P@rQ :r B[Q/x]





1. M• →β E assumption

2. M = P@rQ hypothesis

3. Γ ` P :r Πrx:A. B hypothesis

4. Γ ` Q :r A hypothesis

5. M• = P • Q• def. of •, 2

6. ((∃ F) P • →β F ∧ E = F Q•) ∨

((∃ F) Q• →β F ∧ E = P • F) ∨

((∃ R) P • = λx. R• ∧ E = R•[Q•/x]) def. of →β, 1, 5



7. P • →β F





assumption

8. E = F Q• (for some F)

9. P ′• = F





ind. hyp. on 3, 7

10. P →+
β P ′ (for some P ′)

11. let N = P ′@rQ definition

12. N• = P ′• Q• def. of •, 11

13. N• = E by 12, 9, 8

263

Step Justification 14. M →+
β N by 2, 11, 10

15. (∃ N) N• = E ∧ M →+
β N by 11, 13, 14



16. Q• →β F





assumption

17. E = P • F (for some F)

18. Q′• = F





ind. hyp. on 4, 16

19. Q →+
β Q′ (for some Q′)

20. let N = P@rQ′ definition

21. N• = P • Q′• def. of •, 20

22. N• = E by 21, 18, 17

23. M →+
β N by 2, 20, 19

24. (∃ N) N• = E ∧ M →+
β N by 20, 22, 23



25. P • = λx. R•





assumption

26. E = R•[Q•/x] (for some R)

27. P →∗
β λrx:A′. R′





Lemma A.2.6, 3, 25

28. R′• = R• (for some A′, R′)

29. let N = R′[Q/x] definition

30. N• = (R′[Q/x])• def. of •, 29

31. (R′[Q/x])• = R′•[Q•/x] Lemma A.2.2

32. N• = E by 30, 31, 28, 26

33. (λrx:A′. R′)@rQ →β R′[Q/x] def. of →β

34. M →+
β N by 2, 27, 33, 29

35. (∃ N) N• = E ∧ M →+
β N by 29, 32, 34

36. (∃ N) N• = E ∧ M →+
β N ∨-elim, 6, 7–15, 16–24, 25–35

Πc-Elim case



Γ ` P :r Πcx:A. B Γ ` Q :c A

Γ ` P@cQ :r B[Q/x]





264

Step Justification

1. M• →β E assumption

2. M = P@cQ hypothesis

3. Γ ` P :r Πcx:A. B hypothesis

4. Γ ` Q :c A hypothesis

5. M• = P • def. of •, 2

6. P • →β E by 1, 5

7. P ′• = E





ind. hyp. of 3, 6

8. P →+
β P ′ (for some P ′)

9. let N = P ′@cQ definition

10. N• = P ′• def. of •, 9

11. N• = E by 10, 7

12. M →+
β N by 2, 9, 8

13. (∃ N) N• = E ∧ M →+
β N by 9, 11, 12

Conv and Reset cases are similar to the Weak case

2

Lemma A.2.8 (Erasure Annihilates Context Reset)

Γ◦• = Γ•

Proof. By induction on the structure of Γ.

Case Step Justification

ε ε◦• = ε• def. of ◦

Γ, x:τA (Γ, x:τA)◦• = (Γ◦, x:rA)• def. of ◦

= Γ◦•, x:A def. of •

= Γ•, x:A ind. hyp. on Γ

= (Γ, x:τA)• def. of •

2

265

Theorem A.2.9 (Erasure Respects Types)

Γ ` M :τ A

Γ• ` M• : A•

Note. In the following proof, we often apply the induction hypothesis to a judg-

ment of the form Γ ` A :τ s. In this case, the conclusion is equivalent to Γ• ` A• : s

since s• = s. For this reason, we implicitly consider the judgments Γ• ` A• : s•

and Γ• ` A• : s to be equivalent in the following proof.

Proof. By induction on the derivation of Γ ` M :τ A.

Step Justification

Axiom case



(s1, s2) ∈ A

ε ` s1 :r s2





1. (s1, s2) ∈ A hypothesis

2. ε• = ε def. of •

3. s1
• = s1 def. of •

4. ` s1 : s2 Axiom, 1

5. ε• ` s1
• : s2 by 2, 3, 4

Var case



Γ ` A :c s

Γ, x:rA ` x :r A





1. Γ ` A :c s hypothesis

2. Γ• ` A• : s ind. hyp. on

3. Γ•, x:A• ` x : A• Var, 2

4. (Γ, x:rA)• = Γ•, x:A• def. of •

5. x• = x def. of •

6. (Γ, x:rA)• ` x• : A• by 3, 4, 5

266

Step Justification

Weak case



Γ ` A :c s Γ ` M :r B

Γ, x:τA ` M :r B





1. Γ ` A :c s hypothesis

2. Γ ` M :r B hypothesis

3. Γ• ` A• : s ind. hyp. on 1

4. Γ• ` M• : B• ind. hyp. on 2

5. Γ•, x:A• ` M• : B• Weak, 3, 4

6. (Γ, x:τA)• = Γ•, x:A• def. of •

7. (Γ, x:τA)• ` M• : B• by 5, 6

Π-Form case



(s1, s2, s3) ∈ R Γ ` A :r s1 Γ, x:rA ` B :r s2

Γ ` Πτx:A. B :r s3





1. (s1, s2, s3) ∈ R hypothesis

2. Γ ` A :r s1 hypothesis

3. Γ, x:rA ` B :r s2 hypothesis

4. Γ• ` A• : s1 ind. hyp. on 2

5. (Γ, x:rA)• ` B• : s2 ind. hyp. on 3

6. (Γ, x:rA)• = Γ•, x:A• def. of •

7. Γ•, x:A• ` B• : s2 by 5, 6

8. τ = r ∨ τ = c tautology



9. τ = r assumption

10. Γ• ` Πx:A•. B• : s3 Π-Form, 1, 4, 7

11. (Πτx:A. B)• = Πx:A•. B• by 9, def. of •

12. Γ• ` (Πτx:A. B)• : s3 by 10, 11
⌈

13. τ = c assumption

267

Step Justification

14. Γ• ` ∀x:A•. B• : s3 ∀-Form, 1, 4, 7

15. (Πτx:A. B)• = ∀x:A•. B• by 13, def. of •

16. Γ• ` (Πτx:A. B)• : s3 by 14, 15

17. Γ• ` (Πτx:A. B)• : s3 ∨-elim 8, 9–12, 13–16

Π-Intro case



Γ ` Πτx:A. B :c s Γ, x:τA ` M :r B

Γ ` λτx:A. M :r Πτx:A. B





1. Γ ` Πτx:A. B :c s hypothesis

2. Γ, x:τA ` M :r B hypothesis

3. Γ• ` (Πτx:A. B)• : s ind. hyp. on 1

4. (Γ, x:τA)• ` M• : B• ind. hyp. on 2

5. (Γ, x:τA)• = Γ•, x:A• def. of •

6. Γ•, x:A• ` M• : B• by 4, 5

7. τ = r ∨ τ = c tautology



8. τ = r assumption

9. (Πτx:A. B)• = Πx:A•. B• by 8, def. of •

10. Γ• ` Πx:A•. B• : s by 3, 9

11. Γ• ` λx. M• : Πx:A•. B• Π-Intro, 10, 6

12. (λτx:A. M)• = λx. M• by 8, def. of •

13. Γ• ` (λτx:A. M)• : (Πτx:A. B)• by 11, 12, 9



14. τ = c assumption

15. (Πτx:A. B)• = ∀x:A•. B• by 8, def. of •

16. Γ• ` ∀x:A•. B• : s by 3, 15

17. Γ, x:cA ` M :r B by 2, 14

18. FV (M•) ⊆ RV (Γ, x:cA) Lemma A.2.1, 17

19. x 6∈ RV (Γ, x:cA) def. of RV

268

Step Justification

20. x 6∈ FV (M•) by 18, 19

21. Γ• ` M• : ∀x:A•. B• ∀-Intro, 16, 6, 20

22. (λτx:A. M)• = M• by 14, def. of •

23. Γ• ` (λτx:A. M)• : (Πτx:A. B)• by 21, 22, 15

24. Γ• ` (λτx:A. M)• : (Πτx:A. B)• ∨-elim, 7, 8–13, 14–23

Π-Elim case



Γ ` M :r Πτx:A. B Γ ` N :τ A

Γ ` M@τN :r B[N/x]





1. Γ ` M :r Πτx:A. B hypothesis

2. Γ ` N :τ A hypothesis

3. Γ• ` M• : (Πτx:A. B)• ind. hyp. on 1

4. Γ• ` N• : A• ind. hyp. on 2

5. (B[N/x])• = B•[N•/x] Lemma A.2.2

6. τ = r ∨ τ = c tautology



7. τ = r assumption

8. (Πτx:A. B)• = Πx:A•. B• by 7, def. of •

9. (M@τN)• = M• N• by 7, def. of •

10. Γ• ` M• : Πx:A•. B• by 3, 8

11. Γ• ` M• N• : B•[N•/x] Π-Elim, 10, 4

12. Γ• ` (M@τN)• : (B[N/x])• by 11, 9, 5



13. τ = c assumption

14. (Πτx:A. B)• = ∀x:A•. B• by 11, def. of •

15. (M@τN)• = M• by 13, def. of •

16. Γ• ` M• : ∀x:A•. B• by 3, 14

17. Γ• ` M• : B•[N•/x] ∀-Intro, 16, 4

18. Γ• ` (M@τN)• : (B[N/x])• by 17, 15, 5

269

Step Justification

19. Γ• ` (M@τN)• : (B[N/x])• ∨-elim, 6, 7–12, 13–18

Conv case



Γ ` M :r A Γ ` B :c s A =β B

Γ ` M :r B





1. Γ ` M :r A hypothesis

2. Γ ` B :c s hypothesis

3. A =β B hypothesis

4. Γ• ` M• : A• ind. hyp. on 1

5. Γ• ` B• : s ind. hyp. on 2

6. A = s′ ∨ Γ ` A :c s′ Lemma A.1.11, 1



7. A = s′ assumption

8. B →∗
β s′ by 7, 3

9. B• →∗
β s′• Corollary A.2.4, 2, 8

10. A• =β B• by 7, 9

 11. Γ ` A :c s′ assumption

12. A• =β B• Corollary A.2.5, 11, 2, 3

13. A• =β B• ∨-elim, 6, 7–10, 11–12

14. Γ• ` M• : B• Conv, 4, 5, 13

Reset case



Γ◦ ` M :r A

Γ ` M :c A





1. Γ◦ ` M :r A hypothesis

2. Γ◦• ` M• : A• ind. hyp. on 1

3. Γ◦• = Γ• Lemma A.2.8

4. Γ• ` M• : A• by 2, 3

2

270

A.3 IMPLEMENTATION OF ERASURE CONTEXTS

Typing Context Operations are Well-Defined on ∼=-Equivalence Classes

of Cleverly Represented Typing Contexts

Lemma A.3.1 If Γ ∼= ∆ then Γ, x:τA ∼= ∆, x:τA.

Proof. Let Γ = JΓ̂Ki and ∆ = J∆̂Kj . The assumption Γ ∼= ∆, is then logically

equivalent to JΓ̂Ki
∼= J∆̂Kj and JΓ̂K[

i = J∆̂K[
j . We use this final form to prove the

conjecture.

We want to prove Γ, x:τA ∼= ∆, x:τA. We proceed by handling the two cases

τ = c and τ = r separately. Both of the following columns consist of a progression

of logically equivalent equations starting with the equation we seek to prove and

finishing with an equation that follows immediately from JΓ̂K[
i = J∆̂K[

j.

JΓ̂Ki, x:cA ∼= J∆̂Kj , x:cA

JΓ̂, x:i+1AKi
∼= J∆̂, x:j+1AKj

JΓ̂, x:i+1AK[
i = J∆̂, x:j+1AK[

j

JΓ̂K[
i, x:cA = J∆̂K[

j , x:cA

JΓ̂Ki, x:rA ∼= J∆̂Kj, x:rA

JΓ̂, x:iAKi
∼= J∆̂, x:jAKj

JΓ̂, x:iAK[
i = J∆̂, x:jAK[

j

JΓ̂K[
i, x:rA = J∆̂K[

j, x:rA

2

Lemma A.3.2 If Γ ∼= ∆ then Γ◦ ∼= ∆◦

Proof. Let Γ = JΓ̂Ki and ∆ = J∆̂Kj . After unfolding some definitions, we see

that our goal is really to prove JΓ̂K[
i+1 = J∆̂K[

j+1 given the assumption JΓ̂K[
i = J∆̂K[

j .

We proceed by induction on the length of JΓ̂K[
i (=J∆̂K[

j). In each case, we reason

backwards from the goal to some obviously true statement.

In the case that JΓ̂K[
i = J∆̂K[

j = ε, both Γ̂ and ∆̂ must equal ε̂. In this case, the

reasoning proceeds as follows:

Jε̂K[
i+1 = Jε̂K[

j+1

ε = ε

271

In the case that JΓ̂K[
i = J∆̂K[

j 6= ε, then there must be some Γ̂′, x, k, A, ∆̂′, y,

h, and B such that Γ̂ = Γ̂′, x:kA and ∆̂ = ∆̂′, y:hB. Since JΓ̂K[
i = J∆̂K[

j , it must be

that x = y and A = B and JΓ̂′K[
i = J∆̂′K[

j . In this case, the reasoning proceeds as

follows:

JΓ̂′, x:kAK[
i+1 = J∆̂′, x:hAK[

j+1



JΓ̂′K[

i+1, x:rA if k ≤ i + 1

JΓ̂′K[
i+1, x:cA otherwise

=





J∆̂′K[

j+1, x:rA if h ≤ j + 1

J∆̂′K[
j+1, x:cA otherwise

At this point, we note that k ≤ i + 1 and h ≤ j + 1 are exactly the invariants that

we have been careful to maintain about Γ and ∆.

JΓ̂′K[
i+1, x:rA = J∆̂′K[

j+1, x:rA

We prove this remaining goal by using the induction hypothesis on JΓ̂′K[
i = J∆̂′K[

j

to conclude that JΓ̂′K[
i+1 = J∆̂′K[

j+1. 2

Lemma A.3.3 If Γ ∼= ∆ then x:rA ∈ Γ iff x:rA ∈ ∆

Proof. Let Γ = JΓ̂Ki and ∆ = J∆̂Kj . After unfolding some definitions, we see

that our goal is really to prove x:rA ∈ JΓ̂Ki iff x:rA ∈ J∆̂Kj given the assumption

JΓ̂K[
i = J∆̂K[

j . We proceed by induction on the length of JΓ̂K[
i (=J∆̂K[

j). In each

case, we reason backwards from the goal to some obviously true statement.

In the case that JΓ̂K[
i = J∆̂K[

j = ε, both Γ̂ and ∆̂ must equal ε̂. In this case, the

reasoning proceeds as follows:

x:rA ∈ Jε̂Ki iff x:rA ∈ Jε̂Kj

false iff false

In the case that JΓ̂K[
i = J∆̂K[

j 6= ε, then there must be some Γ̂′, y, k, B, ∆̂′, z,

h, and C such that Γ̂ = Γ̂′, y:kB and ∆̂ = ∆̂′, z:hC. Since JΓ̂K[
i = J∆̂K[

j , it must be

272

that y = z, B = C, JΓ̂′K[
i = J∆̂′K[

j, and k ≤ i iff h ≤ j. In this case, the following

two logical equivalences hold:

x:rA ∈ JΓ̂′, y:kBKi iff x:rA ∈ JΓ̂′Ki ∨ (x = y ∧ A = B ∧ k ≤ i)

x:rA ∈ J∆̂′, y:hBKj iff x:rA ∈ J∆̂′Kj ∨ (x = y ∧ A = B ∧ h ≤ j)

The two right-hand sides are equivalent because we know k ≤ i iff h ≤ j and we

know x:rA ∈ JΓ̂′Ki iff x:rA ∈ J∆̂′Kj by the induction hypothesis on JΓ̂′K[
i = J∆̂′K[

j .

Therefore, the two left-hand sides are equivalent:

x:rA ∈ JΓ̂′, y:kBKi iff x:rA ∈ J∆̂′, y:hBKj

2

Both [and] preserve the structure of typing contexts

Theorem A.3.4 (Soundness) The following identities hold:

ε = ε[Γ[, x:τA = (Γ, x:τA)[(Γ[)◦ = (Γ◦)[x:rA ∈ Γ iff x:rA ∈ Γ[

Proof. The first identity is obvious:

ε[= Jε̂K[
0 = ε.

The second is proved by simple equational reasoning:

Γ[, x:τA = JΓ̂K[
i, x:τA =





(JΓ̂K[

i, x:cA) if τ = c

(JΓ̂K[
i, x:rA) if τ = r

=





JΓ̂, x:i+1AK[

i if τ = c

JΓ̂, x:iAK[
i if τ = r

=









JΓ̂, x:i+1AKi if τ = c

JΓ̂, x:iAKi if τ = r




[

=

(JΓ̂Ki, x:τA)[= (Γ, x:τA)[

273

The third identity simplifies to JΓ̂K[◦
i = JΓ̂K[

i+1, which we prove by induction on Γ̂.

In the case that Γ̂ = ε̂, we immediately conclude Jε̂K[◦
i = ε = Jε̂K[

i+1. In the case

that Γ̂ = Γ̂′, x:jA, we have

JΓ̂′, x:jAK[◦
i =









JΓ̂′K[

i, x:rA if j ≤ i

JΓ̂′K[
i, x:cA if j = i + 1




◦

=





(JΓ̂′K[

i, x:rA)◦ if j ≤ i

(JΓ̂′K[
i, x:cA)◦ if j = i + 1

= JΓ̂′K[◦
i , x:rA

and

JΓ̂′, x:jAK[
i+1 =





JΓ̂′K[

i+1, x:rA if j ≤ i + 1

JΓ̂′K[
i+1, x:cA if j = i + 2

= JΓ̂′K[
i+1, x:rA

Where the final step follows from the invariant for cleverly represented typing

contexts. In this case, we use the invariant to conclude j ≤ i since JΓ̂′, x:jAKi is

well-formed. The final terms in each string of equations are equal to each other by

the induction hypothesis on Γ̂′.

The fourth identity, namely “x:rA ∈ JΓ̂Ki iff x:rA ∈ JΓ̂K[
i”, proceeds by induc-

tion over Γ̂. In the case that Γ̂ = ε̂, both the left- and right-hand sides are false.

In the case that Γ̂ = Γ̂′, y:jB, we have

x:rA ∈ JΓ̂′, y:jBKi iff x:rA ∈ JΓ̂′Ki ∨ (x = y ∧ j ≤ i ∧ A = B)

and

x:rA ∈ JΓ̂′, y:jBK[
i iff x:rA ∈





JΓ̂′K[

i, y:rB if j ≤ i

JΓ̂′K[
i, y:cB if j = i + 1

iff x:rA ∈ JΓ̂′K[
i ∨ (x = y ∧ j ≤ i ∧ A = B)

The final formulas in each string of equations are equal to each other by the

induction hypothesis on Γ̂′. 2

274

Theorem A.3.5 (Completeness) The following identities hold:

ε ∼= ε] Γ], x:τA ∼= (Γ, x:τA)] (Γ])◦ ∼= (Γ◦)] x:rA ∈ Γ iff x:rA ∈ Γ]

Proof. The first identity follows from simple equational reasoning. The clever

implementation of ε is Jε̂K0, which equals ε]. Therefore ε] = ε and ε] ∼= ε, because

∼= is reflexive.

The second identity follows by simple equational reasoning. Let JΓ̂Ki be the

value of Γ]. Then we simply calculate

Γ], x:τA = JΓ̂Ki, x:τA =





JΓ̂, x:i+1AKi iff τ = c

JΓ̂, x:iAKi iff τ = r
= (Γ, x:τA)].

Therefore Γ], x:τA ∼= (Γ, x:τA)], again by reflexivity of ∼=.

The third identity is proved by induction on Γ. In the case where Γ = ε, we

have (ε])◦ = Jε̂K◦0 = Jε̂K1 and (ε◦)] = ε] = Jε̂K0. The map [sends both Jε̂K1 and

Jε̂K0 to ε. Therefore (ε])◦ ∼= (ε◦)]. Now consider the case where Γ = Γ′, x:τA. Let

JΓ̂′Ki be the value of Γ′]. Then, by the induction hypothesis, we have

Γ′ ◦] = Γ′] ◦ = JΓ̂′K◦i = JΓ̂′Ki+1.

Therefore, the left-hand side reduces as follows

(Γ′, x:τA)◦] = (Γ′ ◦, x:rA)] = JΓ̂′, x:i+1A)Ki+1

and, after applying [, we have

(Γ′, x:τA)◦] [= JΓ̂′, x:i+1A)K[
i+1 = JΓ̂′K[

i+1, x:rA.

Meanwhile, on the right-hand side:

(Γ′, x:τA)] ◦ =









JΓ̂′, x:i+1AKi if τ = c

JΓ̂′, x:iAKi if τ = r




◦

=





JΓ̂′, x:i+1AKi+1 if τ = c

JΓ̂′, x:iAKi+1 if τ = r

275

and, after applying [,

(Γ′, x:τA)] ◦ [=





JΓ̂′, x:i+1AK[

i+1 if τ = c

JΓ̂′, x:iAK[
i+1 if τ = r

=





JΓ̂′K[

i+1, x:rA if τ = c

JΓ̂′K[
i+1, x:rA if τ = r

= JΓ̂′K[
i+1, x:rA

Therefore,

(Γ′, x:τA)◦] [= (Γ′, x:τA)] ◦ [

which is the same as saying

(Γ′, x:τA)◦] ∼= (Γ′, x:τA)] ◦

The fourth identity is proved by induction over Γ. In the case that Γ = ε, both

x:rA ∈ ε and x:rA ∈ ε] (iff x:rA ∈ Jε̂K0) are false. In the case that Γ = Γ′, y:τB, we

have

x:rA ∈ Γ′, y:τB iff x:rA ∈ Γ′ ∨ (x = y ∧ τ = r ∧ A = B)

and, assuming Γ′] = JΓ̂′Ki,

x:rA ∈ (Γ′, y:τB)] iff





x:rA ∈ JΓ̂′, y:i+1BKi if τ = c

x:rA ∈ JΓ̂′, y:iBKi if τ = r

iff





x:rA ∈ JΓ̂′Ki if τ = c

x:rA ∈ JΓ̂′Ki ∨ (x = y ∧ A = B) if τ = r

iff x:rA ∈ JΓ̂′Ki ∨ (x = y ∧ τ = r ∧ A = B)

The final terms in each string of equations are equal to each other by the induction

hypothesis on Γ′. 2

The mappings] and [are inverses

Lemma A.3.6 ([undoes])

(Γ])[= Γ

276

Proof. By induction on Γ. In the base case, Γ = ε and we have (ε])[= Jε̂K[
0 = ε.

The inductive case proceeds as follows:

((Γ, x:τA)])[=









JΓ̂, x:j+1AKj if τ = c

JΓ̂, x:jAKj if τ = r
where Γ] = JΓ̂Kj




[

=





JΓ̂, x:j+1AK[

j if τ = c

JΓ̂, x:jAK[
j if τ = r

where Γ] = JΓ̂Kj

=





JΓ̂K[

j , x:cA if τ = c

JΓ̂K[
j , x:rA if τ = r

where Γ] = JΓ̂Kj

= JΓ̂K[
j, x:τA where Γ] = JΓ̂Kj

= (Γ])[, x:τA = Γ, x:τA

where the last step uses the induction hypothesis. 2

Corollary A.3.7 (] undoes [)

Γ ∼= ∆ =⇒ (Γ [)] ∼= ∆

Proof. Assume Γ ∼= ∆. By definition, this means Γ [= ∆[. By the previous

lemma, ((Γ [)])[= Γ[. By transitivity, we have ((Γ [)])[= ∆[, which is equivalent,

by definition, to (Γ [)] ∼= ∆. 2

A.4 META-THEORY OF EPTSC

Lemma A.4.1 (Correctness of Generalized Context Reset)

σ(Γ◦(ρ)) =





σΓ if σ(ρ) = r

(σΓ)◦ if σ(ρ) = c

Proof. By induction on Γ. In each case we proceed by cases on σ(ρ).

277

The ε case:

Assuming σ(ρ) = r : Assuming σ(ρ) = c :

σ(ε◦ρ) = σε σ(ε◦ρ) = σε = ε = ε◦ = (σε)◦

The Γ, x:γA case:

Assuming σ(ρ) = r : Assuming σ(ρ) = c :

σ((∆, x:γA))◦(ρ) σ((∆, x:γA))◦(ρ)

= σ(∆◦(ρ), x:¬ρ∧γA) = σ(∆◦(ρ), x:¬ρ∧γA)

= σ(∆◦(ρ)), x:¬σ(ρ)∧σ(γ)σA = σ(∆◦(ρ)), x:¬σ(ρ)∧σ(γ)σA

= (σ∆), x:¬r∧σ(γ)σA = (σ∆)◦, x:¬c∧σ(γ)σA

= (σ∆), x:σ(γ)σA = (σ∆)◦, x:rσA

= (σ(∆, x:γA)) = (σ∆, x:σγσA)◦

= (σ(∆, x:γA))◦

since c = true and r = false. 2

Lemma A.4.2 σ(M [N/x]) = σM [σN/x]

Proof. By induction on M .

Step Justification

Case x σ(x[N/x])

= σN def. of subst.

= x[σN/x] def. of subst.

= σx[σN/x] def. of subst.

Case y(6= x) σ(y[N/x])

= σy def. of subst.

= y[σN/x] def. of subst.

= σy[σN/x] def. of subst.

278

Step Justification

Case Παy:A. B σ((Παy:A. B)[N/x])

= σ(Παy:A[N/x]. B[N/x]) def. of subst.

= Πσαy:σ(A[N/x]). σ(B[N/x]) def. of eval.

= Πσαy:σA[σN/x]. σB[σN/x] ind. hyp.

= (Πσαy:σA. σB)[σN/x] def. of subst.

= (σ(Παy:A. B))[σN/x] def. of eval.

Case λαy:A. M similar to the Παy:A. B case

Case M@αN similar to the Παy:A. B case

Case s similar to the y(6= x) case

Lemma A.4.3 If σP = M [σN/x], then M = σM ′ for some M ′.

Proof. By induction on M .

Step Justification

Case y

1. y = σy def. of eval.

Case Πτy:A. B

1. σP = (Πτy:A. B)[σN/x] hypothesis

2. σP = Πτy:A[σN/x]. B[σN/x] by 1, def. of subst.

3. P = Παy:Q. R





4. σα = τ by 2

5. σQ = A[σN/x] (for some α, Q, R)

6. σR = B[σN/x]

7. A = σA′ ind. hyp. on 5 (for some A′)

8. B = σB′ ind. hyp. on 6 (for some B′)

9. Πτy:A. B = σ(Παy:A′. B′) by 4, 7, 8

Cases λαy:A. M and M@αN

279

Step Justification

similar to the Παy:A. B case

Case s

similar to the y case

2

Lemma A.4.4

σP →β Q

(∃Q′) σQ′ = Q ∧ P →β Q′

Proof. By induction on the derivation of σP →β Q.

Step Justification

Case Beta: (λτx:A. M)@τ ′

N →β M [N/x]

1. σP = (λτx:A. M)@τ ′

N hypothesis

2. Q = M [N/x] hypothesis

3. P = (λαx:A′. M ′)@α′

N ′






4. σα = τ

5. σA′ = A by 1

6. σM ′ = M (for some α, α′,

7. σα′ = τ ′ A′, M ′, N ′)

8. σN ′ = N

9. let Q′ = M ′[N ′/x] definition

10. σ(M ′[N ′/x]) = σM ′[σN ′/x] by Lemma A.4.2

11. σQ′ = Q ∧ P →β Q′ by 9, 10, 6, 8, 2, 3, Beta

Case Π-Cong1:




A →β B

Πτx:A. C →β Πτx:B. C





1. σP = Πτx:A. C hypothesis

2. Q = Πτx:B. C hypothesis

280

Step Justification

3. A →β B hypothesis

4. P = Παx:R. C ′






5. σα = τ by 1

6. σR = A (for some α, R, B′)

7. σC ′ = C

8. σR′ = B





ind. hyp. on 6, 3

9. R →β R′ (for some R′)

10. let Q′ = Παx:R′. C ′ definition

11. σQ′ = Q by 10, 5, 8, 7, 2

12. P →β Q′ by 4, 9, 10, Π-Cong1

13. σQ′ = Q ∧ P →β Q′ by 11, 12

All other Congruence Cases

similar to the Π-Cong1 case

2

Lemma A.4.5 If M →β N , then true ` M =β N .

Proof. By induction on the derivation of M →β N .

Step Justification

Case Beta: (λαx:A. M)@α′

N →β M [N/x]

1. true ` (λαx:A. M)@α′

N =β M [N/x] Beta

Case Π-Cong1:




A →β B

Παx:A. C →β Παx:B. C





1. A →β B hypothesis

2. true ` A =β B ind. hyp. on 1

3. true ` C =β C by Refl

4. α = α ∧ true ∧ true ` Παx:A. C =β Παx:B. C by CongPi, 2, 3

281

Step Justification

5. (α = α ∧ true ∧ true) = true tautology

6. true ` Παx:A. C =β Παx:B. C by 4, 5

All other Congruence Cases

similar to the Π-Cong1 case

2

Lemma A.4.6 (Pre-Completeness of EPTSC conversion rules)

σM = σN

(∃ C) C ` M =β N ∧ σ � C

Proof. By induction on σM .

Step Justification

Case x

1. σM = σN assumption

2. σM = x hypothesis

3. M = x by 2

4. N = x by 1, 2

5. let C = true definition

6. C ` M =β N by 3, 4, Refl

7. σ � true def. of �

Case Πτx:A. B

1. σM = σN assumption

2. σM = Πτx:A. B hypothesis

3. M = Πα′

x:A′. B′






4. σα′ = τ by 2

5. σA′ = A (for some α′, A′, B′)

6. σB′ = B

282

Step Justification

7. N = Πα′′

x:A′′. B′′






8. σα′′ = τ by 2

9. σA′′ = A (for some α′′, A′′, B′′)

10. σB′′ = B

11. A′ = A′′ by 5, 9

12. C1 ` A′ =β A′′





ind. hyp. on 11

13. σ � C1 (for some C1)

14. σB′ = σB′′ by 6, 10

15. C2 ` A′ =β A′′





ind. hyp. on 14

16. σ � C2 (for some C2)

17. let C = α′ = α′′ ∧ C1 ∧ C2 definition

18. C ` M =β N by 17, 3, 7, CongPi, 12, 15

19. C � α′ = α′′ by 4, 8

20. σ � C by 17, 13, 16, 19

21. C ` M =β N ∧ σ � C by 18, 20

Cases λαx:A. M and M@αN

similar to the Παx:A. B case

Case s

similar to the x case

2

Lemma A.4.7

σP = M [σN/x]

(∃M ′, C) M = σM ′ C ` P =β M ′[N/x] σ � C

Proof. By induction on M .

283

Step Justification

Case M = x

1. σP = x[σN/x] hypothesis

2. x[σN/x] = σN def. of subst.

3. σP = σN by 1, 2

4. C ` P =β N





by Lemma A.4.6

5. σ � C (for some C)

6. let M ′ = x definition

7. σx = x def. of eval.

8. σM ′ = M by 7, 6

9. M ′[N/x] = N by 7, def. of subst.

10. C ` P =β M ′[N/x] by 4, 9

conclusions 5, 8, and 10 goal!

Case M = y(6= x)

1. σP = y[σN/x] hypothesis

2. y[σN/x] = y def. of subst.

3. σP = y by 1, 2

4. P = y by 3

5. let M ′ = y definition

6. true ` y =β y Refl

7. M ′[N/x] = y by 5, def. of subst.

8. true ` P =β M ′[N/x] by 6, 4, 7

9. σ � true def. of �

10. σM ′ = M by 5, def. of eval.

conclusions 8, 9, and 10 goal!

Case M = Πτy:A. B

1. σP = (Πτy:A. B)[σN/x] hypothesis

2. σP = Πτy:A[σN/x]. B[σN/x] by 1, def. of subst.

284

Step Justification

3. P = Παy:Q. R





4. σα = τ by 2

5. σQ = A[σN/x] (for some α, Q, R)

6. σR = B[σN/x]

7. A = σA′





8. C ` Q =β A′[N/x] ind. hyp. on 5

9. σ � C (for some A′)

10. B = σB′





11. D ` R =β B′[N/x] ind. hyp. on 6

12. σ � D (for some B′)

13. C ∧ D ` Παy:Q. R =β Παy:A′[N/x]. B′[N/x] CongPi on 8, 11

14. let M ′ = Παy:A′. B′ definition

15. C ∧ D ` P =β M ′[N/x] by 13, 3, 14, def. of subst.

16. σ � C ∧ D by 9, 12

17. σM ′ = M by 14, 4, 7, 10

Cases λαy:A. M and M@αN

similar to the Παy:A. B case

Case s

similar to the y case

2

Theorem A.4.8 (Soundness of EPTSC conversion rules)

C ` M =β N σ � C

σM =β σN

Proof. By induction on the derivation of C ` M =β N .

285

Step Justification

Case Refl:




true ` M =β M





1. σM = σM reflexivity of =β

Case Symm:




C ` M =β N

C ` N =β M





1. σ � C assumption

2. C ` M =β N hypothesis

3. σM =β σN ind. hyp. on 2, 1

4. σN =β σM by 3, symmetry of =β

Case Trans:




C ` M =β M ′′ C ` M ′′ =β M ′

C ` M =β M ′





1. σ � C assumption

2. C ` M =β M ′′ hypothesis

3. C ` M ′′ =β M ′ hypothesis

3. σM =β σM ′′ ind. hyp. on 2, 1

4. σM ′′ =β σM ′ ind. hyp. on 3, 1

5. σM =β σM ′ by 3, 4, transitivity of =β

Case Beta:




true ` (λαx:A. M)@α′

N =β M [N/x]





1. σ � C assumption

2. σ((λαx:A. M)@α′

N) = (λσαx:σA. σM)@α′

σN def. of eval.

3. (λσαx:σA. σM)@α′

σN →β σM [σN/x] β-reduction

4. σM [σN/x] = σ(M [N/x]) def. of eval.

5. σ(λαx:A. M)@α′

N →β σ(M [N/x]) by 2, 3, 4

Case CongPi:




C ` A =β A′ D ` B =β B′

α = α′ ∧ C ∧ D ` Παx:A. B =β Πα′

x:A′. B′





286

Step Justification

1. σ � α = α′ ∧ C ∧ D assumption

2. C ` A =β A′ hypothesis

3. D ` B =β B′ hypothesis

4. σ � α = α′





5. σ � C by 1

6. σ � D

7. σA =β σA′ ind. hyp. on 2, 5

8. σB =β σB′ ind. hyp. on 3, 6

9. σα = σα′ by 4

10. Πσαx:σA. σB =β Πσα′

x:σA′. σB′ by 7, 8, 9

11. σ(Παx:A. B) =β σ(Πα′

x:A′. B′) by 10, def. of eval.

Cases CongLam and CongApp

similar to the CongPi case

2

Theorem A.4.9 (Completeness of EPTSC conversion rules)

σM =β σN

(∃ C) C ` M =β N ∧ σ � C

Proof. Since σM =β σN , there exists a term P̂ such that σM →∗
β P̂ and σN →∗

β

P̂ (by the Church-Rosser Theorem). By repeated applications of Lemma A.4.4,

there exists P1 and P2 such that σP1 = σP2 = P̂ and M →∗
β P1 and N →∗

β P2.

By Lemma A.4.6, there is some constraint C such that C ` P1 =β P2 and σ � C.

By repeated applications of Lemma A.4.5, we have true ` M =β P1 and true `

N =β P2. Therefore, by some applications of Symm and Trans, we can derive

C ` M =β N , and we already know that σ � C. 2

287

Theorem A.4.10 (Soundness of EPTSC typing rules)

C ; Γ ` M :ρ A σ � C

σΓ ` σM :σρ σA

Proof. By induction on the derivation of C ; Γ ` M :ρ A.

Step Justification

Case Axiom:




(s1, s2) ∈ A

true ; ε ` s1 :r s2





1. (s1, s2) ∈ A hypothesis

2. σε = ε def. of eval.

3. ∀s. σs = s def. of eval.

4. σr = r def. of eval.

5. σε ` σs1 :σr σs2 by 1, 2, 3, 4, Axiom

Case Var:




C ; Γ ` A :c s

C ∧ ¬γ ; Γ, x:γA ` x :r A





1. σ � C ∧ ¬γ assumption

2. C ; Γ ` A :c s hypothesis

3. σ � C



 by 1
4. σ � ¬γ

5. σΓ ` σA :c s ind. hyp. on 1, 2

6. σγ = r by 4

7. σΓ, x:rσA ` x :r σA by 5, Var

8. σΓ, x:rσA = σ(Γ, x:γA) by 6, def. of eval.

9. σ(Γ, x:γA) ` σx :σr σA by 8, def. of eval.

Case Weak:




C ; Γ ` A :c s D ; Γ ` M :τ B

C ∧ D ; Γ, x:γA ` M :τ B





1. σ � C ∧ D assumption

288

Step Justification

2. C ; Γ ` A :c s hypothesis

3. D ; Γ ` M :τ B hypothesis

4. σ � C



 by 1
5. σ � D

6. σΓ ` σA :c s ind. hyp. on 2, 4

7. σΓ ` σM :τ σB ind. hyp. on 3, 5

8. σΓ, x:σγσA ` σM :τ σB by 6, 7, Weak1

9. σ(Γ, x:γA) ` σM :στ σB by 7, def. of eval.

Case Π-Form:




(s1, s2, s3) ∈ R C ; Γ ` A :r s1 D ; Γ, x:rA ` B :r s2

C ∧ D ; Γ ` Παx:A. B :r s3





1. σ � C ∧ D assumption

2. (s1, s2, s3) ∈ R hypothesis

3. C ; Γ ` A :r s1 hypothesis

4. D ; Γ, x:rA ` B :r s2 hypothesis

5. σ � C



by 1
6. σ � D

7. σΓ ` σA :r s1 by 3, 5, ind. hyp.

8. σ(Γ, x:rA) ` σB :r s2 by 4, 6, ind. hyp.

9. σΓ, x:rσA ` σB :r s2 by 8, def. of eval.

10. σΓ, x:rσA ` Πσαx:σA. σB :r s3 by 2, 7, 9, Π-Form

11. σ(Γ, x:rA) ` σ(Παx:A. B) :σr σs3 by 10, def. of eval.

Case Π-Intro:




C ; Γ ` Πα′

x:A. B :c s D ; Γ, x:αA ` M :r B

C ∧ D ∧ α = α′ ; Γ ` λαx:A. M :r Πα′

x:A. B





1. σ � C ∧ D ∧ α = α′ assumption

1What is actually required is a slight generalization of Weak in that is easy to prove using
the Phase Weakening theorem, namely, that Γ, x:τ

′

A ` M :τ B follows from Γ ` A :c s and
Γ ` M :τ B.

289

Step Justification

2. C ; Γ ` Πα′

x:A. B :c s hypothesis

3. D ; Γ, x:αA ` M :r B hypothesis

4. σ � C




5. σ � D by 1

6. σ � α = α′

7. σα = σα′ by 6

8. σΓ ` σ(Πα′

x:A. B) :c s ind. hyp. on 2, 4

9. σ(Γ, x:αA) ` σM :r σB ind. hyp. on 2, 5

Case Π-Elim:




C ; Γ ` M :r Πα1x:A. B D ; Γ ` N :α2 A

C ∧ D ∧ α1 = α2 ; Γ ` M@α2N :r B[N/x]





1. σ � C ∧ D ∧ α1 = α2 assumption

2. C ; Γ ` M :r Πα1x:A. B hypothesis

3. D ; Γ ` N :α2 A hypothesis

4. σ � C by 1

5. σ � D by 1

6. σ � α1 = α2 by 1

7. σα1 = σα2 by 6

8. σΓ ` σM :r Πσ(α1)x:σA. σB ind. hyp. on 2, 4

9. σΓ ` σN :σ(α2) σA ind. hyp. on 3, 5

10. σΓ ` σM@σ(α2)σN :r σB[σN/x] Π-Elim on 8, 9, 7

11. σB[σN/x] = σ(B[N/x]) by Lemma A.4.2

12. σr = r def. of eval.

13. σΓ ` σ(M@α2N) :σr σ(B[N/x]) by 10, 11, 12

Case Conv:




C ; Γ ` M :r A D ; Γ ` B :c s E ` A =β B

C ∧ D ∧ E ; Γ ` M :r B





1. σ � C ∧ D ∧ E assumption

290

Step Justification

2. C ; Γ ` M :r A hypothesis

3. D ; Γ ` B :c s hypothesis

4. E ` A =β B hypothesis

5. σ � C




6. σ � D by 1

7. σ � E

8. σΓ ` σM :r σA ind. hyp. on 2, 5

9. σΓ ` σB :c s ind. hyp. on 3, 6

10. σA =β σB by Lemma A.4.8, 4, 7

11. σΓ ` σM :r σB by 8, 9, 10, Conv

12. σr = r def. of eval.

13. σΓ ` σM :σr σB by 11, 12

Case Reset:




C ; Γ◦(ρ) ` M :r A

C ; Γ ` M :ρ A





1. σ � C assumption

2. C ; Γ◦(ρ) ` M :r A hypothesis

3. σ(Γ◦(ρ)) ` σM :r σA ind. hyp. on 2, 1

4. σ(ρ) = r ∨ σ(ρ) = c tautology



5. σ(ρ) = r assumption

6. σ(Γ◦(ρ)) = σΓ by Lemma A.4.1, 5

7. σΓ ` σM :σ(ρ) σA by 3, 6, 5



8. σ(ρ) = c assumption

9. σ(Γ◦(ρ)) = (σΓ)◦ by Lemma A.4.1, 8

10. (σΓ)◦ ` σM :r σA by 3, 9

11. σΓ ` σM :c σA by 10, Reset

12. σΓ ` σM :σ(ρ) σA by 11, 8

291

Step Justification

13. σΓ ` σM :σ(ρ) σA by ∨-elimination, 4, 5–7, 8–12

2

Definition A.4.11 (Assignment extension σ′
� σ)

σ′
� σ = dom(σ) ⊆ dom(σ′) ∧ ∀α ∈ dom(σ). σ(α) = σ′(α)

Lemma A.4.12 (Basic Properties of �)

The relation � is a pre-order — it is reflexive, transitive, and anti-symmetric.

Proof. Immediate from the definition of �.

Lemma A.4.13 For all σ and M there exist σ′ and M ′ such that σ′
� σ and

σ′M ′ = M .

Proof. By induction on M .

Step Justification

Case x

1. let M ′ = x definition

2. let σ′ = σ definition

3. σ′
� σ by 2, reflexivity of �

4. σ′M ′ = x by 3, def. of eval.

Case Πτx:A. B

1. σ1 � σ





ind. hyp. on A

2. σ1A
′ = A (for some σ1, A′)

3. σ2 � σ1





ind. hyp. on B

4. σ2B
′ = B (for some σ2, B′)

5. α 6∈ dom(σ2) for some fresh α

6. let σ3 = σ2{α := τ} definition

292

Step Justification

7. σ3 � σ2 by 5, 6

8. σ3(α) = τ by 7

9. σ3 � σ 7, 3, 1, transitivity of �

10. σ3(Π
αx:A′. B′) = Πτx:A. B by 8, 2, 3, 4, 7

all other cases are similar to these two

2

Theorem A.4.14 (Completeness of EPTSC typing rules)

σΓ ` σM :σρ σA

(∃ C, σ′) C ; Γ ` M :ρ A ∧ σ′
� C ∧ σ′

� σ

Note. One possible proof of this theorem is by induction on the derivation of

σΓ ` σM :σρ σA. Each case of this proof proceeds by cases by whether or not ρ

is an annotation variable α. If ρ = α, some additional wrapper logic is required

around the primary reasoning for that case of the proof. Viewing the proof as a

functional program that manipulates derivations, it is good practice to abstract

out this repeated wrapper logic into an auxiliary function.

This step requires care, however, as the auxiliary function G does sometimes

calls the main function F on sub-derivations of its input that are not proper (i.e.,

a call to G(X) results in a call to F (X) on the same derivation X). For this

reason, if F were to call G on something that is not a proper sub-derivation of F ’s

argument, we have the possibility that some calls to F and G may not terminate,

meaning that they do not represent valid proofs. Fortunately F only calls G on

proper sub-derivations of its argument, so every recursive call from G to G via F

happens on a structurally smaller value than G’s original argument.

For reasons stated above, we may restate Theorem A.4.14 as the conjunction

293

of the following two lemmas (named F and G as in the previous paragraph):

F ::




σΓ ` σM :τ σA

(∃ C, σ′) C ; Γ ` M :τ A ∧ σ′
� C ∧ σ′

� σ





G ::




σΓ ` σM :σα σA

(∃ C, σ′) C ; Γ ` M :α A ∧ σ′
� C ∧ σ′

� σ





The proof of F is by induction on the derivation of the typing judgment above the

line. The proof of G is by cases on whether σ(α) equals r or c. The proof of F may

appeal to G only on proper sub-derivations of its input derivation while G may

appeal to F on any (not necessarily proper) sub-derivation of its input derivation.

Proof of G. By cases on σα.

Step Justification

Case σα = c

1. σΓ ` σM :σα σA assumption

2. σα = c hypothesis

3. σΓ ` σM :c σA by 1, 2

4. (σΓ)◦ ` σM :r σA by 2, inversion

5. (σΓ)◦ = σ(Γ◦(α)) by 2, Lemma A.4.1

6. σ(Γ◦(α)) ` σM :r σA by 4, 5

7. C ; Γ◦(α) ` M :r A




8. σ′ � C by F , 6

9. σ′
� σ (for some σ′, C)

10. C ; Γ ` M :α A by Reset, 7

Case σα = r

1. σΓ ` σM :σα σA assumption

2. σα = c hypothesis

3. σΓ ` σM :r σA assumption

294

Step Justification

4. σΓ = σ(Γ◦(α)) by 2, Lemma A.4.1

5. σ(Γ◦(α)) ` σM :r σA by 3, 4

6. C ; Γ◦(α) ` M :r A





7. σ′

� C by F , 5

8. σ′
� σ (for some σ′, C)

9. C ; Γ ` M :α A by Reset, 6

Proof of F . By induction on the derivation of σΓ ` σM :τ σA.

Step Justification

Case Axiom:




(s1, s2) ∈ A

ε ` s1 :r s2





1. (s1, s2) ∈ A hypothesis

2. σΓ = ε hypothesis

3. σM = s1 hypothesis

4. σA = s2 hypothesis

5. Γ = ε by 2

6. M = s1 by 3

7. A = s2 by 4

8. true ; ε ` s1 :r s2 by Axiom, 1

9. let C = true definition

10. let σ′ = σ definition

11. σ′
� σ by 10, reflexivity

12. σ′ � C by 8

13. C ; Γ ` M :r A by 8, 9, 5, 6, 7

Case Var:




∆ ` B :c s

∆, x:rB ` x :r B





295

Step Justification

1. ∆ ` B :c s hypothesis

2. σΓ = ∆, x:rB hypothesis

3. σM = x hypothesis

4. σA = B hypothesis

5. Γ = ∆′, x:γB′






6. σ∆′ = ∆ by 2

7. σγ = r (for some ∆′, γ, B′)

8. σB′ = B

9. σs = s def. of eval.

10. σ∆′ ` σB′ :c σs by 1, 6, 8, 9

11. C ; ∆′ ` B′ :c s





12. σ′

� σ ind. hyp. on 10

13. σ′ � C (for some σ′, C)

14. C ∧ ¬γ ; ∆′, x:γB′ ` x :r B′ by 11, Var

15. σB′ = σA by 4, 8

16. D ` B′ =β A





Lemma A.4.6 on 15

17. σ � D (for some D)

18. σ′∆′ ` σ′A :c σ′s by 1, 12, 6, 4, 9

19. E ; ∆′ ` A :c s




20. σ′′

� σ′ ind. hyp. on 18

21. σ′′ � E (for some σ′′, E)

22. C ∧ E ; ∆′, x:γB′ ` A :c s by Weak, 11, 19

23. C ∧ ¬γ ∧ D ∧ E ; ∆′, x:γB′ ` x :r A by Conv, 14, 22, 16

24. M = x by 3

25. C ∧ ¬γ ∧ D ∧ E ; Γ ` M :r A by 23, 5, 24

26. σ′′ � C ∧ ¬γ ∧ D ∧ E by 20, 12, 13, 7, 17, 21

296

Step Justification

27. σ′′
� σ by 20, 12, transitivity

Case Weak:




∆ ` B :c s ∆ ` N :r C

∆, x:τB ` N :r C





1. σΓ = ∆, x:τB hypothesis

2. σM = N hypothesis

3. σA = C hypothesis

4. ∆ ` B :c s hypothesis

5. ∆ ` N :r C hypothesis

6. Γ = ∆′, x:γB′






7. σ∆′ = ∆ by 1

8. σγ = τ (for some ∆′, γ, B′)

9. σB′ = B

10. σs = s def. of eval.

11. σ∆′ ` σB′ :c σs by 4, 7, 9, 10

12. C ; ∆′ ` B′ :c s




13. σ′

� σ ind. hyp. on 11

14. σ′ � C (for some C, σ′)

15. σ′∆′ ` σ′M :r σ′A by 5, 7, 2, 3, 13

16. D ; ∆′ ` M :r A




17. σ′′

� σ′ ind. hyp. on 11

18. σ′′ � D (for some D, σ′′)

19. C ∧ D ; ∆′, x:γB′ ` M :r A by Weak, 12, 16

20. C ∧ D ; Γ ` M :r A by 19, 6

21. σ′′ � C ∧ D by 18, 14, 17

22. σ′′
� σ by 17, 13, transitivity

297

Step Justification

Case Π-Form:




(s1, s2, s3) ∈ R ∆ ` B :r s1 ∆, x:rB ` C :r s2

∆ ` Πτx:B. C :r s3





1. σΓ = ∆ hypothesis

2. σM = Πτx:B. C hypothesis

3. σA = s3 hypothesis

4. (s1, s2, s3) ∈ R hypothesis

5. ∆ ` B :r s1 hypothesis

6. ∆, x:rB ` C :r s2 hypothesis

7. M = Παx:B′. C ′






8. σα = τ by 2

9. σB′ = B (for some α, B′, C ′)

10. σC ′ = C

11. σs1 = s1 def. of eval.

12. σΓ ` σB′ :r σs1 by 5, 1, 9, 11

13. C ; Γ ` B′ :r s1





14. σ′

� σ ind. hyp. on 12

15. σ′ � C

16. σ′(Γ, x:rB′) = ∆, x:rB by 1, 9, 14

18. σs2 = s2 def. of eval.

19. σ′(Γ, x:rB′) ` σ′C ′ :r σ′s2 by 6, 16, 10, 18, 14

20. D ; Γ, x:rB′ ` C ′ :r s2





21. σ′′ � D ind. hyp. on 19

22. σ′′
� σ′ (for some D, σ′′)

23. C ∧ D ; Γ ` Παx:B′. C ′ :r s3 by Π-Form, 4, 13, 20

24. A = s3 by 3

24. C ∧ D ; Γ ` M :r A by 23, 7, 24

25. σ′′
� C ∧ D by 15, 22, 21

298

Step Justification

26. σ′′
� σ by 22, 14

Case Π-Intro:




∆ ` Πτx:B. C :c s ∆, x:τB ` N :r C

∆ ` λτx:B. N :r Πτx:B. C





1. σΓ = ∆ hypothesis

2. σM = λτx:B. N hypothesis

3. σA = Πτx:B. C hypothesis

4. ∆ ` Πτx:B. C :c s hypothesis

5. ∆, x:τB ` N :r C hypothesis

6. M = λα1x:B′. N ′






7. σα1 = τ by 2

8. σB′ = B (for some α1, B′, N ′)

9. σN ′ = N

10. A = Πα2x:B′′. C ′






11. σα2 = τ by 3

12. σB′′ = B (for some α2, B′′, C ′)

13. σC ′ = C

14. σΓ ` σ(Πα2x:B′. C ′) :c σs by 4, 1, 11, 8, 13

15. C ; Γ ` Πα2x:B′. C ′ :c s





16. σ′ � C ind. hyp. on 14

17. σ′
� σ (for some C, σ′)

18. σ(Γ, x:α1B′) = ∆, x:τB by 1, 7, 8

19. σ′(Γ, x:α1B′) ` σ′N ′ :r σ′C ′ by 5, 18, 9, 13, 17

20. D ; Γ, x:α1B′ ` N ′ :r C ′





21. σ′′ � D by ind. hyp. on 19

22. σ′′
� σ′ (for some D, σ′′)

23. σ′′Γ ` σ′′(Πα2x:B′′. C ′) :c σ′′s by 4, 1, 11, 12, 13, 22, 17

299

Step Justification

24. E ; Γ ` Πα2x:B′′. C ′ :c s





25. σ′′′ � E ind. hyp. on 23

26. σ′′′
� σ′′ (for some E , σ′′′)

27. σB′ = σB′′ by 8, 12

28. σ(Πα2x:B′. C ′) = σ(Πα2x:B′′. C ′) by 27

29. F ` Πα2x:B′. C ′ =β Πα2x:B′′. C ′





Lemma A.4.6 on 27

30. σ � F (for some F)

31. C ∧ D ∧ α1 = α2; Γ `

λα1x:B′. N ′ :r Πα2x:B′. C ′ Π-Intro on 15, 20

32. C ∧ D ∧ α1 = α2 ∧ E ∧ F ; Γ `

λα1x:B′. N ′ :r Πα2x:B′′. C ′
Conv on 31, 24, 29

33. let G = C ∧ D ∧ α1 = α2 ∧ E ∧ F definition

34. G ; Γ ` M :r A by 32, 33, 6, 10

35. σ′′′ � G by 33, 16, 21, 7, 11,

25, 30, 26, 22, 17

36. σ′′′
� σ by 26, 22, 17, transitivity

Case Π-Elim:




∆ ` N :r Πτx:B. C ∆ ` P :τ B

∆ ` N@τP :r C[P/x]





1. σΓ = ∆ hypothesis

2. σM = N@τP hypothesis

3. σA = C[P/x] hypothesis

4. ∆ ` N :r Πτx:B. C hypothesis

5. ∆ ` P :τ B hypothesis

6. M = N ′@α1P ′





7. σN ′ = N by 2

8. σα1 = τ (for some N ′, α1, P ′)

300

Step Justification

9. σP ′ = P
}

(continued)

10. σA = C[σP ′/x] by 3, 9

11. σC ′ = C





12. C ` A =β C ′[P ′/x] Lemma A.4.7 on 10

13. σ � C (for some C, A′)

14. σ1B
′ = B





Lemma A.4.13

15. σ1 � σ (for some B′, σ1)

16. let σ2 = σ1{α2 = τ}




definition

17. σ2 � σ1 for some fresh α2

18. σ2Γ ` σ2N
′ :r σ2(Π

α2x:B′. C ′) by 4, 1, 7, 16, 14, 11

19. D ; Γ ` N ′ :r Πα2x:B′. C ′





20. σ3 � D ind. hyp. on 18

21. σ3 � σ2 (for some D)

22. σ3Γ ` σ3P
′ :σ3α1 σ3B

′ by 5, 1, 9, 16, 14, 11

23. E ; Γ ` P ′ :α1 B′





24. σ4 � E by G on 22

25. σ4 � σ3 (for some E , σ4)

26. D ∧ E ∧ α1 = α2; Γ `

N ′@α1P ′ :r C ′[P ′/x] Π-Elim on 19, 23

27. σ4Γ ` σ4A :c σ4s by Coherence2

28. F ; Γ ` A :c s




29. σ5 � F by ind. hyp. on 27

30. σ5 � σ4 (for some F , σ5)

31. D ∧ E ∧ α1 = α2 ∧ F ∧ C; Γ `

2We are actually working with an EPTS variant in which the Π-Elim rule contains the premise
Γ ` C[P/x] :c s. Such a premise is required here in order to validate the appeal to the induction
hypothesis in steps 28–30. The coherence theorem shows that this variant of EPTS is no stronger
than the original EPTS.

301

Step Justification

M :r A by Conv on 26, 28, 12, 6

32. σ5 � D ∧ E ∧ α1 = α2 ∧ F ∧ C by 20, 24, 8, 16, 29, 13,

30, 25, 21, 17, 15

33. σ5 � σ by 30, 25, 21, 17, 15

Case Conv:




∆ ` N :r B ∆ ` C :c s B =β C

∆ ` N :r C





1. σΓ = ∆ hypothesis

2. σM = N hypothesis

3. σA = C hypothesis

4. ∆ ` N :r B hypothesis

5. ∆ ` C :c s hypothesis

6. B =β C hypothesis

7. σ′B′ = B





Lemma A.4.13

8. σ′
� σ (for some B′, σ′)

9. σ′Γ ` σ′M :r σ′B′ by 4, 1, 2, 7, 8

10. C ; Γ ` M :r B′





11. σ′′ � C ind. hyp. on 9

12. σ′′
� σ′ (for some C, σ′′)

13. σ′′s = s def. of eval.

14. σ′′Γ ` σ′′A :c σ′′s by 5, 2, 13, 12, 8

15. D ; Γ ` A :c s




16. σ′′′ � D ind. hyp. on 9

17. σ′′′
� σ′′ (for some D, σ′′′)

18. σ′′′B′ =β σ′′′A by 6, 3, 7, 8, 12, 17

19. E ` B′ =β A





Theorem A.4.9 on 18

20. σ′′′ � E (for some D)

302

Step Justification

21. C ∧ D ∧ E ; Γ ` M :r A by Conv, 10, 15, 19

22. σ′′′ � C ∧ D ∧ E by 11, 17, 16, 20

23. σ′′′
� σ by 17, 12, 8

Case Reset:




∆◦ ` N :r B

∆ ` N :c B





1. σΓ = ∆ hypothesis

2. σM = N hypothesis

3. σA = B hypothesis

4. ∆◦ ` N :r B hypothesis

5. (σΓ)◦ = σ(Γ◦(c)) by Lemma A.4.1

6. σ(Γ◦(c)) ` σM :r σA by 4, 1, 5, 2, 3

7. C ; Γ◦(c) ` M :r A




8. σ′ � C ind. hyp. on 6

9. σ′
� σ (for some C, σ′)

10. C ; Γ ` M :c A by Reset, 7

2

A.5 META-THEORY OF EPTS•

Lemma A.5.1

` Γ ctx

` Γ◦ ctx

Proof. By induction on Γ.

Case Step Justification

ε 1. ε◦ = ε definition of ◦

2. ` ε ctx OkNil

303

3. ` ε◦ ctx by 1, 2

Γ, x:τA 1. ` Γ ctx hypothesis

2. Γ ` A :c s hypothesis

3. ` Γ◦ ctx induction hypothesis on 1

4. Γ◦ ` A :c s by Lemma 3.1.3, 2

5. ` Γ◦, x:rA ctx by OkExt, 3, 4

6. (Γ, x:τA)◦ = Γ◦, x:rA definition of ◦

7. ` (Γ, x:τA)◦ ctx by 5, 6

2

Theorem A.5.2 (Elaboration in r mode)

` Γ ctx Γ• ` M : A FV (M) ⊆ RV (Γ)

(∃M ′ A′) Γ ` M ′ :r A′ M ′• = M A′• = A

Note. While proving the main theorem, we often use the following chain of

reasoning over and over again after invoking an induction hypothesis. Therefore

the proof is streamlined by factoring out the following corollary, which we may

use in any place the induction hypothesis is permitted (on structurally smaller

sub-derivations).

304

Corollary A.5.3 (Elaboration in c mode)

` Γ ctx Γ• ` M : A

(∃M ′ A′) Γ ` M ′ :c A′ M ′• = M A′• = A

Proof. Because Γ• = Γ◦• (see Lemma A.2.8), we have Γ◦• ` M : A. Also `

Γ◦ ctx follows from ` Γ ctx by Lemma A.5.1 and FV (M) ⊆ CV (Γ) = RV (Γ◦).

Therefore, we can apply the theorem to obtain Γ◦ ` M ′ :r A′ and M ′• = M and

A′• = A. for some M ′ and A′. By Reset, we obtain Γ ` M ′ :c A′. 2

Proof of Theorem A.5.2. By induction on the derivation of Γ• ` M : A.

Step Justification

Case Axiom:




(s1, s2) ∈ A

ε ` s1 : s2





1. Γ• = ε assumption

2. (s1, s2) ∈ A hypothesis

3. let M ′ = s1 definition

4. let A′ = s2 definition

5. Γ = ε by 1, def. of •

6. ε ` s1 :r s2 by Axiom, 1

7. Γ ` M ′ :r A′ by 6, 5, 3, 4

8. s1
• = s1 def. of •

9. M ′• = M by 8, 3, 4

10. s2
• = s2 def. of •

11. A′• = A by 10, 3, 4

12. Γ ` M ′ :r A′ ∧

M ′• = M ∧ A′• = A by 7, 9, 11

Case Var:




∆ ` A : s

∆, x:A ` x : A





305

Step Justification

1. FV (x) ⊆ RV (Γ) assumption

2. ` Γ ctx assumption

3. Γ• = ∆, x:A hypothesis

4. ∆ ` A : s hypothesis

5. x ∈ RV (Γ) by 1, def. of FV

6. Γ = ∆′, x:τA′





7. ∆′• = ∆ by 3

8. A′• = A (for some ∆′, τ , A′)

9. τ = r by 5, 6, def. of RV

10. ` ∆′ ctx





by 2, 6

11. ∆′ ` A′ :c s′ (for some s′)

12. ∆′, x:rA′ ` x :r A′ by Var, 11

13. let M ′ = x definition

14. x• = x def. of •

14. Γ = ∆′, M ′:rA′ ∧

M ′• = x ∧ A′• = A by 6, 9, 13, 14, 8

Case Weak:




∆ ` A : s ∆ ` M : B

∆, x:A ` M : B





1. ` Γ ctx assumption

2. FV (M) ⊆ RV (Γ) assumption

3. Γ• = ∆, x:A hypothesis

4. ∆ ` A : s hypothesis

5. ∆ ` M : B hypothesis

6. Γ = ∆′, x:τA′





7. ∆′• = ∆ by 3

8. A′• = A (for some ∆′, τ , A′)

306

Step Justification

9. ` ∆′ ctx





by 1, 6

10. ∆′ ` A′ :c s′ (for some s′)

11. ∆′ ` M ′ :r B′





12. M ′• = M ind. hyp. on 5, 7, 9, 2

13. B′• = B (for some M ′, B′)

14. ∆′, x:τA′ ` M ′ :r B′ by Weak, 10, 11

15. Γ ` M ′ :r B′ ∧

M ′• = M ∧ B′• = B by 14, 6, 12, 13

Case Π-Form:




(s1, s2, s3) ∈ R ∆ ` A : s1 ∆, x:A ` B : s2

∆ ` Πx:A. B : s3





1. ` Γ ctx assumption

2. FV (Πx:A. B) ⊆ RV (Γ) assumption

3. Γ• = ∆ hypothesis

4. (s1, s2, s3) ∈ R hypothesis

5. ∆ ` A : s1 hypothesis

6. ∆, x:A ` B : s2 hypothesis

7. FV (Πx:A. B)

= FV (A) ∪ (FV (B) − {x}) def. of FV

8. FV (A) ⊆ RV (Γ) by 2, 7

9. Γ ` A′ :r s′1





10. A′• = A ind. hyp. on 5, 3, 1, 8

11. s′1
• = s1 (for some A′, s′1)

12. Γ ` A′ :c s′1 phase weakening on 9

13. ` Γ, x:rA′ ctx by 1, 12

14. (Γ, x:rA′)• = ∆, x:A by 3, 10, def. of •

15. FV (B) − {x} ⊆ RV (Γ) by 7, 2

307

Step Justification

16. FV (B) ⊆ RV (Γ) ∪ {x} by 15

17. RV (Γ) ∪ {x} = RV (Γ, x:rA′) by 15

18. FV (B) ⊆ RV (Γ, x:rA′) by 16, 17

19. Γ, x:rA′ ` B′ :r s′2






ind. hyp. on

20. B′• = B 6, 14, 13, 18

21. s′2
• = s2 (for some B′, s′2)

22. s′1 = s1 by 11, def. of •

23. s′2 = s2 by 21, def. of •

24. Γ ` Πrx:A′. B′ :r s3 Π-Form on 4, 22, 9, 23, 19

25. (Πrx:A′. B′)• = Πx:A. B by def. of •, 10, 20

26. Γ ` Πrx:A′. B′ :r s3

∧ (Πrx:A′. B′)• = Πx:A. B

∧ s3
• = s3 by 24, 25, def. of •

Case ∀-Form:




(s1, s2, s3) ∈ R Γ ` A : s1 Γ, x:A ` B : s2

Γ ` ∀x:A. B : s3





similar to the Π-Form case

Case Π-Intro:




∆ ` Πx:A. B : s ∆, x:A ` M : B

∆ ` λx. M : Πx:A. B





1. ` Γ ctx assumption

2. FV (λx. M) ⊆ RV (Γ) assumption

3. Γ• = ∆ hypothesis

4. ∆ ` Πx:A. B : s hypothesis

5. ∆, x:A ` M : B hypothesis

6. Γ ` C :c s′





by Corollary A.5.3

7. C• = Πx:A. B on 4, 1, 2

8. s′• = s (for some C, s′)

308

Step Justification

9. C = Πrx:A′. B′





10. A′• = A by 7

11. B′• = B (for some A′, B′)

12. Γ ` A′ :c s′1





by Corollary A.1.8

13. Γ, x:rA′ ` B′ :c s′2 on 6, 9

14. ` Γ, x:rA′ ctx by 1, 12

15. (Γ, x:rA′)• = ∆, x:A by 3, 10, def. of •

16. FV (λx. M) = FV (M) − {x} def. of FV

17. FV (M) − {x} ⊆ RV (Γ) by 2, 16

18. FV (M) ⊆ RV (Γ) ∪ {x} by 17

19. RV (Γ, x:rA′) = RV (Γ) ∪ {x} def. of RV

20. FV (M) ⊆ RV (Γ, x:rA′) by 18, 19

21. Γ, x:rA′ ` M ′ :r B′′






ind. hyp. on

22. M ′• = M 5, 15, 14, 20

23. B′′• = B (for some M ′, B′′)

24. B′′• = B′• by 11, 23

25. B′′• =β B′• by 24, reflexivity of =β

26. Γ, x:rA′ ` M ′ :r B′ by Conv on 21, 13, 25

27. Γ ` λrx:A′. M ′ :r Πrx:A′. B′ by Π-Intro on 6, 9, 26

28. (λrx:A′. M ′)• = λx. M by def. of •, 22

29. (Πrx:A′. B′)• = Πx:A. B by def. of •, 10, 11

30. Γ ` λrx:A′. M ′ :r Πrx:A′. B′

∧ (λrx:A′. M ′)• = λx. M

∧ (Πrx:A′. B′)• = Πx:A. B by 27, 28, 29

Case ∀-Intro:




∆ ` ∀x:A. B : s ∆, x:A ` M : B x 6∈ FV (M)

∆ ` M : ∀x:A. B





309

Step Justification

1. ` Γ ctx assumption

2. FV (M) ⊆ RV (Γ) assumption

3. Γ• = ∆ hypothesis

4. ∆ ` ∀x:A. B : s hypothesis

5. ∆, x:A ` M : B hypothesis

6. x 6∈ FV (M) hypothesis

7. Γ ` C :c s′





by Corollary A.5.3

8. C• = ∀x:A. B on 4, 1, 2

9. s′• = s (for some C, s′)

10. C = Πcx:A′. B′





11. A′• = A by 8

12. B′• = B (for some A′, B′)

13. Γ ` A′ :c s′1





by Corollary A.1.8

14. Γ, x:cA′ ` B′ :c s′2 on 7, 10

15. ` Γ, x:cA′ ctx by 1, 13

16. (Γ, x:cA′)• = ∆, x:A by 3, 11, def. of •

17. RV (Γ, x:cA′) = RV (Γ) def. of RV

18. FV (M) ⊆ RV (Γ, x:cA′) by 2, 17

19. Γ, x:cA′ ` M ′ :r B′′






ind. hyp. on

20. M ′• = M 5, 16, 15, 18

21. B′′• = B (for some M ′, B′′)

22. B′′• = B′• by 12, 21

23. B′′• =β B′• by 22, reflexivity of =β

24. Γ, x:cA′ ` M ′ :r B′ by Conv on 19, 14, 23

25. Γ ` λcx:A′. M ′ :r Πcx:A′. B′ by Π-Intro on 7, 10, 24

26. (λcx:A′. M ′)• = M by def. of •, 20

27. (Πcx:A′. B′)• = ∀x:A. B by def. of •, 11, 12

310

Step Justification

28. Γ ` λcx:A′. M ′ :r Πcx:A′. B′

∧ (λcx:A′. M ′)• = M

∧ (Πcx:A′. B′)• = ∀x:A. B by 25, 26, 27

Case Π-Elim:




∆ ` M : Πx:A. B ∆ ` N : A

∆ ` M N : B[N/x]





1. ` Γ ctx assumption

2. FV (M N) ⊆ RV (Γ) assumption

3. Γ• = ∆ hypothesis

4. ∆ ` M : Πx:A. B hypothesis

5. ∆ ` N : A hypothesis

6. FV (M N) = FV (M) ∪ FV (N) by def. of FV

7. FV (M) ⊆ RV (Γ) by 2, 6

8. FV (N) ⊆ RV (Γ) by 2, 6

9. Γ ` M ′ :r C





by ind. hyp.

10. M ′• = M on 4, 3, 1, 7

11. C• = Πx:A. B (for some M ′, C)

12. C = Πrx:A′. B′





13. A′• = A by 11

14. B′• = B (for some A′, B′)

15. Γ ` N ′ :r A′′






by ind. hyp.

16. N ′• = N on 5, 3, 1, 8

17. A′′• = A (for some N ′, A′′)

18. A′′• = A′• by 17, 13

19. A′′• =β A′• by 18, reflexivity of =β

20. Γ ` Πrx:A′. B′ :c s3 Coherence on 9, 12

21. Γ ` A′ :c s1 Corollary A.1.8 on 20

311

Step Justification

22. Γ ` N ′ :r A′ Conv on 15, 21, 19

23. Γ ` M@rN ′ :r B′[N ′/x] Π-Elim on 9, 12, 22

24. (M ′@rN ′)• = M N by def. of •, 10, 16

25. (B′[N ′/x])• = B′•[N ′•/x] by Lemma A.2.2

26. B′•[N ′•/x] = B[N/x] by 14, 16

27. (B′[N ′/x])• = B[N/x] by 25, 26

28. Γ ` M@rN ′ :r B′[N ′/x]

∧ (M ′@rN ′)• = M N

∧ (B′[N ′/x])• = B[N/x] by 23, 24, 27

Case ∀-Elim:




∆ ` M : ∀x:A. B ∆ ` N : A

∆ ` M : B[N/x]





1. ` Γ ctx assumption

2. FV (M) ⊆ RV (Γ) assumption

3. Γ• = ∆ hypothesis

4. ∆ ` M : ∀x:A. B hypothesis

5. ∆ ` N : A hypothesis

6. Γ ` M ′ :r C





by ind. hyp.

7. M ′• = M on 4, 3, 1, 7

8. C• = ∀x:A. B (for some M ′, C)

9. C = Πcx:A′. B′





10. A′• = A by 8

11. B′• = B (for some A′, B′)

12. Γ ` N ′ :c A′′






by Corollary A.5.3

13. N ′• = N on 5, 3, 1

14. A′′• = A (for some N ′, A′′)

15. A′′• = A′• by 14, 10

312

Step Justification

16. A′′• =β A′• by 15, reflexivity of =β

17. Γ ` Πcx:A′. B′ :c s3 Coherence on 6, 9

18. Γ ` A′ :c s1 Corollary A.1.8 on 17

19. Γ◦ ` N ′ :r A′′ by 12

20. Γ◦ ` A′ :c s1 Lemma A.1.2 on 18

21. Γ◦ ` N ′ :r A′ Conv• on 19, 20, 16

22. Γ ` N ′ :c A′ Reset on 21

23. Γ ` M@cN ′ :r B′[N ′/x] ∀-Elim on 6, 9, 22

24. (M ′@cN ′)• = M by def. of •, 7, 13

25. (B′[N ′/x])• = B′•[N ′•/x] by Lemma A.2.2

26. B′•[N ′•/x] = B[N/x] by 11, 13

27. (B′[N ′/x])• = B[N/x] by 25, 26

28. Γ ` M@cN ′ :r B′[N ′/x]

∧ (M ′@cN ′)• = M

∧ (B′[N ′/x])• = B[N/x] by 23, 24, 27

Case Conv:




∆ ` M : A ∆ ` B : s A =β B

∆ ` M : B





1. ` Γ ctx assumption

2. FV (M) ⊆ RV (Γ) assumption

3. Γ• = ∆ hypothesis

4. ∆ ` M : A hypothesis

5. ∆ ` B : s hypothesis

6. A =β B hypothesis

7. Γ ` M ′ :r A′






by ind. hyp.

8. M ′• = M on 4, 3, 1, 2

9. A′• = A (for some M ′, A′)

313

Step Justification

10. Γ ` B′ :c s′





by Corollary A.5.3

11. B′• = B on 4, 3, 1

12. s′• = s (for some M ′, A′)

13. A′• =β B′• by 6, 9, 11

14. Γ ` M ′ :r B′ by Conv• on 7, 10, 13

15. Γ ` M ′ :r B′

∧ M ′• = M ∧ B′• = B by 14, 8, 11

2

Lemma A.5.4 (Context Elaboration)

Γ ` M : A

(∃Γ′) ` Γ′ ctx Γ′• = Γ

Proof. By induction on the derivation of Γ ` M : A.

Step Justification

Case Axiom:




(s1, s2) ∈ A

ε ` s1 : s2





1. ` ε ctx def. of ctx

2. ε• = ε def. of •

3. ` ε ctx ∧ ε• = ε by 1, 2

Case Var:




Γ ` A : s

Γ, x:A ` x : A





1. Γ ` A : s hypothesis

2. ` Γ′ ctx





ind. hyp. on 1

3. Γ′• = Γ (for some Γ′)

4. Γ′ ` A′ :c s′
}

Lemma A.5.3 . . .

314

Step Justification

5. A′• = A





. . . on 1, 2, 3

6. s′• = s (for some A′, s′)

7. ` Γ′, x:τA′ ctx by 2, 4 (for an arbitrary τ)

8. (Γ′, x:τA′)• = Γ, x:A by 3, 5

9. ` Γ′, x:τA′ ctx

∧ (Γ′, x:τA′)• = Γ, x:A by 7, 8

Case Weak

similar to the Var case

Case Π-Form:




(s1, s2, s3) ∈ R Γ ` A : s1 Γ, x:A ` B : s2

Γ ` Πx:A. B : s3





1. Γ ` A : s1 hypothesis

2. ` Γ′ ctx





ind. hyp. on 1

∧ Γ′• = Γ (for some Γ′)

Cases ∀-Form, Π-Intro, ∀-Intro, Π-Elim, ∀-Elim, and Conv

similar to the Π-Form case

2

Corollary A.5.5 (Elaboration)

Γ ` M : A

(∃Γ′ M ′ A′) Γ′ ` M ′ :τ A′ Γ′• = Γ M ′• = M A′• = A

Proof. By Lemma A.5.4, we have ` Γ′ ctx for some Γ′ such that Γ′• = Γ. Note

from the proof of Lemma A.5.4 that the annotations on context entries in Γ′ may

be chosen in any way we choose (see the arbitrary τ in the Var case). In particular,

we may arrange things so that all the annotations on context entries for variables

that appear free in M are set to r — In other words, that FV (M) ⊆ RV (Γ′).

At this point Lemma A.5.2 applies, yielding Γ′ ` M ′ :r A′. If τ = r then we have

315

already proved Γ′ ` M ′ :τ A′. If τ = c then Γ′ ` M ′ :c A′ (i.e., Γ′ ` M ′ :τ A′)

follows by phase weakening. In either case, we have Γ′ ` M ′ :τ A′ for some Γ′, M ′,

and A′ such that Γ′• = Γ, M ′• = M , and A′• = A. 2

	Irrelevance, Polymorphism, and Erasure in Type Theory
	Let us know how access to this document benefits you.
	Recommended Citation

	dissertation.dvi

