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ABSTRACT

An abstract of the dissertation of Emerson Murphy-Hill for the Doctor of Philoso-

phy in Computer Science presented February 26, 2009.

Title: Programmer Friendly Refactoring Tools

Tools that perform semi-automated refactoring are currently under-utilized by

programmers. If more programmers adopted refactoring tools, software projects

could make enormous productivity gains. However, as more advanced refactor-

ing tools are designed, a great chasm widens between how the tools must be used

and how programmers want to use them. This dissertation begins to bridge this

chasm by exposing usability guidelines to direct the design of the next generation of

programmer-friendly refactoring tools, so that refactoring tools fit the way program-

mers behave, not vice-versa.
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Chapter 1

A Roadmap

Refactoring — the process of changing the structure of software without changing

the way that it behaves — has been practiced by programmers for many years. More

recently, tools that semi-automate the process of refactoring have emerged in vari-

ous programming environments. These tools have promised to increase the speed

at which programmers can write and maintain code while decreasing the likelihood

that programmers will introduce new bugs. However, this promise remains largely

unfulfilled, because programmers do not use the tools as much as they could. In this

dissertation, I argue that one reason for this underuse is poor usability, meaning that

the user interface of existing refactoring tools is sometimes too slow, too error-prone,

and too unpleasant. I also take several steps to address the usability problem, guided

by the following thesis statement:

Applying a specified set of user-interface guidelines can help build more

usable refactoring tools.

In this dissertation I explore the formation of those guidelines and the rationale be-

hind them, as well as evaluate the effect that they have on refactoring tools’ usability.

In Chapter 2, I introduce the concept of refactoring. In Chapter 3, I discuss how

refactoring is actually practiced in the wild. In Chapter 4, I introduce usability, make

the case that poor usability a problem with refactoring tools, and break down the



CHAPTER 1. A ROADMAP 2

process of refactoring into individual steps. In Chapters 5 through 9, I look at five of

these steps; I propose usability guidelines for each, reify those guidelines in the form

of several novel user interfaces, and evaluate those user interfaces (and, indirectly,

the guidelines that inspired them). Taken as a whole, I hope these new usability

guidelines and tools will inform the next generation of refactoring tools, which will

in turn more completely fulfill the tools’ original promise.



Chapter 2

Refactoring Theory: Techniques and Tools 1

In this chapter, I introduce previous work on the practice of refactoring and tools that

perform refactoring semi-automatically. I also introduce my own distinction between

two different tactics for refactoring — floss and root canal refactoring. I then propose

five principles that characterize successful floss refactoring tools, five principles that

can help programmers to choose the most appropriate refactoring tools and also help

toolsmiths to design tools that fit the programmer’s purpose.

2.1 Contributions

The major contributions of this chapter are:

• The distinction between, and description of, floss and root canal refactoring

(Section 2.3), and

• A model of how programmers use conventional refactoring tools (Section 2.5).

2.2 What is Refactoring?

Refactoring is the process of changing the structure of software while preserving its

external behavior, a practice described in early research by Opdyke and Johnson [59]

1Parts of this chapter appeared as part of a journal paper in IEEE Software [50].
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and Griswold [23]. Later, it was popularized by Martin Fowler’s book [22], but refac-

toring has been practiced for as long as programmers have been writing programs.

Fowler’s book is largely a catalog of refactorings; each refactoring captures a struc-

tural change that has been observed repeatedly in various programming languages

and application domains.

Some refactorings make localized changes to a program, while others make more

global changes. As an example of a localized change, when you perform Fowler’s

INLINE TEMP refactoring, you replace each occurrence of a temporary variable with

its value. Taking a method from java.lang.Long,

public static Long valueOf(long l) {

final int offset = 128;

if (l >= -128 && l <= 127) { // will cache

return LongCache.cache[(int)l + offset];

}

return new Long(l);

}

you might apply the INLINE TEMP refactoring to the variable offset. Here is the

result:

public static Long valueOf(long l) {

if (l >= -128 && l <= 127) { // will cache

return LongCache.cache[(int)l + 128];

}

return new Long(l);

}

The inverse operation, in which you take the second of these methods and intro-

duce a new temporary variable to represent 128, is also a refactoring, which Fowler

calls INTRODUCE EXPLAINING VARIABLE. Whether the version of the code with

or without the temporary variable is better depends on the context. The first version

would be better if you were about to change the code so that offset appeared a

second time; the second version might be better if you prefer more concise code.
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Figure 2.1: A stream class hierarchy in java.io (top, black) and a refactored version of
the same hierarchy (bottom, black). In grey, an equivalent change is made in each version.

So, whether a refactoring improves your code depends on the context: you must still

exercise good judgement.

Refactoring is an important technique because it helps you prepare to make se-

mantic changes to your program. For example, to motivate a more global refactor-

ing, suppose that you want to add the ability to read and write to a video stream

to java.io. The relevant existing classes are shown in black at the top of Fig-

ure 2.1. Unfortunately, this top class hierarchy confounds two concerns: the direc-

tion of the stream (input or output) and the kind of storage that the stream works

over (file or byte array). It would be difficult to add video streaming to the original

java.io because you would have to add two new classes, VideoInputStream

and VideoOutputStream, as shown by the grey boxes at the top of Figure 2.1. You

would inevitably be forced to duplicate code between these two classes because their

functionality would be similar.
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Fortunately, you can separate these concerns by applying Fowler’s TEASE APART

INHERITANCE refactoring to produce the two separate stream and storage hierarchies

shown in black at the bottom of Figure 2.1 on the preceding page. It is easier to

add video streaming in the refactored version: all that you need do is add a class

VideoStorage as a subclass of Storage, as shown by the grey box at the bottom

of Figure 2.1 on the previous page. Because it enables software change, “Refactoring

helps you develop code more quickly” [22, p. 57].

2.3 When Should Programmers Refactor?

On one hand, some experts have recommended refactoring in small steps, interleav-

ing refactoring and writing code. For instance, Fowler states:

In almost all cases, I’m opposed to setting aside time for refactoring. In

my view refactoring is not an activity you set aside time to do. Refactor-

ing is something you do all the time in little bursts. [22, p. 58]

Agile consultant Jim Shore has given similar advice:

Avoid the temptation to stop work and refactor for several weeks. Even

the most disciplined team inadvertently takes on design debt, so elimi-

nating debt needs to be an ongoing activity. Have your team get used to

refactoring as part of their daily work. [72]

On the other hand, the literature has also described a more heavyweight kind of

refactoring, where programmers set aside specific time for refactoring planning and

execution:

Here, we want to use refactoring to improve a code base that has

gone astray for several man-years without any noticeable rework in be-

tween!. . . This paper presented the results of a 5 months case study trying
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to imrove [sic] the quality of a commercial, medium size code base by

refactoring. [63]

I call the first tactic floss refactoring, because the intent is to maintain healthy

software by frequent refactoring, intermingled with other kinds of program changes.

In contrast, I call the second tactic root canal refactoring. This is characterized

by infrequent, protracted periods of refactoring, during which programmers perform

few if any other kinds of program changes. You perform floss refactoring to main-

tain healthy code, and you perform root canal refactoring to correct unhealthy code.

When I talk about refactoring tactics, I am referring to the choices that you make

about how to mix refactoring with your other programing tasks, and about how fre-

quently you choose to refactor.

I use the dental metaphor because, for many people, flossing one’s teeth every day

is a practice they know that they should follow, but which they sometimes put off.

Neglecting to floss can lead to tooth decay, which can be corrected with a painful

and expensive trip to the dentist for a root canal procedure. Likewise, a program

that is refactored frequently and dutifully may be healthier and less expensive in

the long run than a program whose refactoring is deferred until the most recent bug

cannot be fixed or the next feature cannot be added. Like delaying dental flossing,

the decision to delay refactoring may initially save time, but eventually may have

painful consequences.

2.4 Refactoring Tools

Refactoring tools automate refactorings that you would otherwise perform with an

editor.2 Many popular development environments for a variety of languages — such

as Eclipse [18], Microsoft Visual Studio [46], Xcode [31], and Squeak [21] — now

include refactoring tools.
2When I say “editor,” I mean a user-interface component with which you edit program text.
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For example, suppose that you are the developer of the class java.lang.Float,

and want to use refactoring tools in Eclipse to refactor code in that class. First, you

choose the code you want refactored, typically by selecting it in an editor. In this

example, you will choose the conditional expression in an if statement (Figure 2.2

on the following page) that checks to make sure that f is in subnormal form. Suppose

that you want to put this condition into its own method so that you can give it an

intention-revealing name and so that you can reuse it elsewhere in the Float class.

After selecting the expression, you choose the desired refactoring from a menu. The

refactoring that you want is labeled EXTRACT METHOD (Figure 2.3 on page 10).

The menu selection starts the refactoring tool, which brings up a dialog asking

you to supply configuration options (Figure 2.4 on page 11). You have to provide a

name for the new method: you will call it isSubnormal. You can also select some

other options. You then have the choice of clicking OK, which would perform the

refactoring immediately, or Preview >.

The preview page (Figure 2.5 on page 12) shows the differences between the

original code and the refactored version. If you like what you see, you can click OK

to have the tool apply the transformation. The tool then returns you to the editor,

where you can resume your previous task.

Of course, you could have performed the same refactoring by hand: you could

have used the editor to make a new method called isSubnormal, cutting-and-

pasting the desired expression into the new method, and editing the if statement

so that it uses the new method name. However, using a refactoring tool can have two

advantages.

1. The tool is less likely to make a mistake than is a programmer refactoring by

hand. In the example, the tool correctly inferred the necessary argument and

return types for the newly created method, as well as deducing that the method

should be static. When refactoring by hand, you can easily make mistakes on
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Figure 2.2: Selected code to be refactored in Eclipse.
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Figure 2.3: A context menu in Eclipse. The next step is to select Extract Method. . . in the
menu.
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Figure 2.4: A configuration dialog asks you to enter information. The next step is to type
“isSubnormal” into the Method name text box, after which the Preview > and OK buttons
will become active.
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Figure 2.5: A preview of the changes that will be made to the code. At the top, you can see
a summary of the changes. The original code is on the left, and the refactored code on the
right. You press OK to have the changes applied.
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such details.

2. The tool is faster than refactoring by hand. Doing it by hand, you would have

to take time to make sure that you got the details right, whereas a tool can

make the transformation almost instantly. Furthermore, refactorings that affect

many locations throughout the source code, such as renaming a class, can be

quite time-consuming to perform manually. They can be accomplished almost

instantly by a refactoring tool.

In short, refactoring tools allow you to program faster and with fewer mistakes — but

only if you choose to use them. Unfortunately, refactoring tools are not being used as

much as they could be; the evidence for this claim is set out in Chapter 3. My goal is

to make tools that programmers will choose to use more often. As a first step towards

that goal, I next describe a model that I will use throughout this dissertation to speak

more generally about how programmers use refactoring tools, without having to refer

to specific tools or specific refactorings.

2.5 A Model of How Programmers Use Refactoring Tools

Figure 2.6 on the following page shows my model of how programmers use con-

ventional refactoring tools. I started by examining Mealy and colleagues’ 4-step

model [45], Kataoka and colleagues’ 3-step model [35], Fowler’s description of small

refactorings [22], and Lippert’s description of large refactorings [38]. I expanded

these simpler models into my new model by adding finer-grained steps, and the pos-

sibility of a recursive workflow, based my own observations of programmers refac-

toring. I have found this model useful both for reasoning about how programmers use

refactoring tools and for improving the usability of those tools. However, while the

model is meant to cover the most common refactoring tools, new tools are not com-
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Figure 2.6: A model of how programmers use conventional refactoring tools. Steps outlined
in black are the focus of this dissertation.

pelled to follow it; indeed, as I will show in Section 8.5, reordering or eliminating

some of the steps can be beneficial.

I will explain the model by applying it to a simple refactoring. You begin by find-

ing code that should be refactored (the Identify step). Then, you tell the tool which

program element to refactor (Select), often by selecting code in an editor. You ini-

tiate the refactoring tool (Initiate), often by choosing the desired refactoring from a

menu. You then give the tool some configuration information (Configure), such as

by typing a new name into a dialog box. You signal the tool to actually transform

the program (Execute), often by clicking an “OK” button in the dialog. You make

sure that the tool performed the refactoring that you were expecting (Interpret Re-

sults). Finally, you may choose to perform some Clean Up refactorings. While not

explicitly shown, you may abandon using the tool at any point, which corresponds to

transitioning to a failure state from any step in the model.

The model also captures more complicated refactorings. When a precondition

is violated, you typically must interpret an error message and choose an appropriate

course of action (Interpret Error). When an unexpected result is encountered, you
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may revert the program to its original state (Undo). You may recursively perform a

sub-refactoring (Refactor) in order to make the desired refactoring successful. When

you want to refactor several program elements at once, such as renaming several re-

lated variables, you must repeat the Select, Initiate, Configure, and Execute steps.

This model is a generalization: it describes how refactoring tools are typically

used, but some programmers and specific tools may diverge from it in at least three

ways. First, different tools provide different levels of support at each step. For in-

stance, only a few tools help identify candidates for refactoring. Second, although

the model defines a recursive refactoring strategy, a linear refactoring strategy is also

possible. In a linear strategy, you perform sub-refactorings first, and avoid errors be-

fore they occur. I do not favor a strictly linear refactoring strategy because it requires

foresight about what the tool will do, which I consider an unnecessary burden on

programmers. In Section 4.5.3, I observe that such foresight — guessing what error

messages a tool might produce — can lead programmers to avoid using a refactoring

tool altogether. Third, some steps can be reordered or skipped entirely; for example,

some tools provide a refactoring preview so that you may interpret the results of a

refactoring before it is executed.

2.6 The Structure of this Dissertation

I have introduced refactoring and refactoring tools in this chapter, providing the nec-

essary background to understand the remainder of the dissertation.

In Chapter 3, I will describe how programmers refactor in practice, based on

data from programmers using existing refactoring tools, and on inspection of a code

base where refactoring took place. Chapter 3 will lay the foundation of data for

later propositions on how to improve refactoring tools. A central finding is that

refactoring tools are underused, which means that the potential of refactoring tools

is as yet unfulfilled.
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In Chapter 4, I will argue that poor usability of current refactoring tools is a

significant cause of underuse. This argument is based on existing research and on

my own data on how programmers use — and do not use — refactoring tools.

Rather than finding and correcting a single usability problem with refactoring

tools, I take a divide-and-conquer approach. Specifically, in each of the remaining

chapters, I propose usability guidelines and new refactoring tool user interfaces for

individual steps in my refactoring model (Section 2.5):

• In Chapter 5, I present how tools can more effectively help programmers iden-

tify code suitable for refactoring.

• In Chapter 6, I present how program elements can be more easily selected for

refactoring.

• In Chapter 7, I present how the programmer can more easily initiate the refac-

toring she wants to perform.

• In Chapter 8, I present how configuration of refactoring tools can be made

optional for the programmer.

• In Chapter 9, I present how the representation of refactoring errors can be

improved.

Each of these Chapters 5–9 has a common set of components:

• In each chapter, I discuss related approaches and user interfaces for that refac-

toring step.

• I postulate new user interface guidelines to guide the construction of new refac-

toring tools that align with how programmers typically refactor.
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• I describe a new user interface designed either (a) to address specific usabil-

ity problems, or (b) to fit the postulated usability guidelines. Although my

prototypes have been built for the Java programming language in the Eclipse

environment, the techniques embodied in these interfaces should apply to other

object-oriented and imperative programming languages and environments.

• Finally, I describe an evaluation of the proposed user interface, which forms

an indirect evaluation of the guidelines embodied in the tool.

In Chapters 6 and 9, I first describe the tools that I created and then describe the

guidelines that make them different from previous tools, whereas in Chapters 5, 7,

and 8, I first postulate guidelines and then discuss how I implemented tools based

on those guidelines. Ideally, I have learned, the latter ordering is preferable from a

scientific standpoint; you have a hypothesis about what makes tools good, and then

you test that hypothesis. I learned this halfway through the research described in this

dissertation, and thus I describe orderings because that is the way my research was

conducted.

The goal of this dissertation is to improve usability of refactoring tools by propos-

ing usability guidelines combined with novel refactoring tool user interfaces, with the

hope of increasing refactoring tool adoption and thus fulfilling the original produc-

tivity promise of refactoring tools.



Chapter 3

Refactoring Practice: What We Know and How We Know It 1

In the last chapter, I discussed how refactoring has been prescribed by experts. In

this chapter, I describe how my colleague Chris Parnin and I examined four data

sets spanning more than 13 000 developers, 240 000 tool-assisted refactorings, 2500

developer hours, and 3400 version control commits. Using these data, I cast doubt

on several previously stated assumptions about how programmers refactor, while

validating others. For example, I find that programmers frequently do not indicate

refactoring activity in commit logs, which contradicts assumptions made by several

previous researchers. In contrast, I was able to confirm the assumption that program-

mers do frequently intersperse refactoring with other program changes.

3.1 Introduction

In his book on refactoring, Fowler claims that refactoring produces significant ben-

efits based on his own experience: it can help programmers to prepare to add func-

tionality, fix bugs, and understand software [22, pp. 55-57]. Indeed, case studies have

demonstrated that refactoring is a common practice [85] and that it can improve code

metrics [5].

However, conclusions drawn from a single case study may not hold in general.

1Parts of this chapter are scheduled to appear as part of the Proceedings of the 2009 International
Conference on Software Engineering [52].
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Studies that investigate a phenomenon using a single research method also may not

hold. To see why, one particular example that uses a single research method is

Weißgerber and Diehl’s study of three open source projects [84]. Their research

method was to apply a tool to the version history of each project to detect high-level

refactorings such as RENAME METHOD and MOVE CLASS. Low- and medium-

level refactorings, such as RENAME LOCAL VARIABLE and EXTRACT METHOD,

were classified as non-refactoring code changes. One of their findings was that, on

every day on which refactoring took place, non-refactoring code changes also took

place. What you can learn from this depends on the relative frequency of high-level

and mid-to-low-level refactorings. If the latter are scarce, you can infer that refac-

torings and changes to the projects’ functionality are usually interleaved at a fine

granularity. However, if mid-to-low-level refactorings are common, then you cannot

draw this inference from Weißgerber and Diehl’s data alone.

In general, validating conclusions drawn from an individual study involves both

replicating the study in wider contexts and exploring factors that previous authors

may not have explored. In this chapter, I use both of these methods to confirm —

and disconfirm — several conclusions that have been published in the refactoring

literature.

3.2 Contributions

In Section 3.3 I characterize the data that I used for this work. My experimental

method takes data from four different sources (described in Section 3.3) and applies

several different refactoring-detection strategies to them. I use this data to test eight

hypotheses about refactoring. The contributions of my work lie in both the exper-

imental method used when testing these hypotheses, and in the observations that I

make about refactoring:
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• The RENAME refactoring tool is used more frequently by tool-users than by

toolsmiths (Section 3.4.1).

• About 40% of refactorings performed using a tool occur in batches (Sec-

tion 3.4.2).

• About 90% of configuration defaults of refactoring tools remain unchanged

when programmers use the tools (Section 3.4.3).

• Messages written by programmers in version histories are unreliable indicators

of refactoring (Section 3.4.4).

• Floss refactoring, in which refactoring is interleaved with other types of pro-

gramming activity, is used frequently (Section 3.4.5).

• Refactorings are performed frequently (Section 3.4.6).

• Almost 90% of refactorings are performed manually, without the help of tools

(Section 3.4.7).

• The kind of refactoring performed with tools differs from the kind performed

manually (Section 3.4.8).

In Section 3.5 I discuss the interaction between these conclusions and the assump-

tions and conclusions of other researchers.

3.3 The Data that We Analyzed

The work described in this chapter is based on four sets of data. The first set, which I

will call Users, was originally collected in the latter half of 2005 by Murphy and col-

leagues [47], who used the Mylyn Monitor tool to capture and analyze fine-grained

usage data from 41 volunteer programmers in the wild using the Eclipse develop-

ment environment [18]. These data capture an average of 66 hours of development
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time per programmer; about 95 percent of the programmers wrote in Java. The data

include information on which Eclipse commands were executed, and at what time.

Murphy and colleagues originally used these data to characterize the way program-

mers used Eclipse, including a coarse-grained analysis of which refactoring tools

were used most often.

The second set of data, which I will call Everyone, is publicly available from

the Eclipse Usage Collector [78], and includes data requested from every user of the

Eclipse Ganymede release who consented to an automated request to send the data

back to the Eclipse Foundation. These data aggregate activity from over 13 000 Java

developers between April 2008 and January 2009, but also include non-Java devel-

opers. The data count how many programmers have used each Eclipse command,

including refactoring commands, and how many times each command was executed.

I know of no other research that has used these data for characterizing programmer

behavior.

The third set of data, which I will call Toolsmiths, includes refactoring histories

from four developers who maintain Eclipse’s refactoring tools. These data include

detailed histories of which refactorings were executed, when they were performed,

and with what configuration parameters. These data include all the information nec-

essary to recreate the usage of a refactoring tool, assuming that the original source

code is also available. These data were collected between December 2005 and Au-

gust 2007, although the date ranges are different for each developer. This data set

is not publicly available and has not previously been described in the literature. The

only study that I know of using similar data was published by Robbes [68]; it reports

on refactoring tool usage by Robbes himself and one other developer.

The fourth set of data I will call Eclipse CVS, because it is the version history of

the Eclipse and JUnit (http://junit.org) code bases as extracted from their Concurrent

Versioning System (CVS) repositories. Specifically, Chris Parnin and I randomly

http://junit.org
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sampled from about 3400 source file commits (Section 3.4.4) that correspond to the

same time period, the same projects, and the same developers represented in Tool-

smiths. Using these data, we inferred which refactorings were performed by compar-

ing adjacent commits manually. While many authors have mined software reposito-

ries automatically for refactorings (for example, Weißgerber and Diehl [84]), I know

of no other research that compares refactoring tool logs with code histories.

3.4 Findings on Refactoring Behavior

In each of the following subsections, I describe a hypothesis about refactoring be-

havior; discuss why I suspect that the hypothesis is true; describe the results of an

experiment that tests the hypothesis, using one or more of the data sets; and state the

main limitations of the experiment. Each subsection heading briefly summarizes the

subsection’s findings.

3.4.1 Toolsmiths and Users Differ

I hypothesize that the refactoring behavior of the programmers who develop the

Eclipse refactoring tools differs from that of the programmers who use them. Tole-

man and Welsh assume a variant of this hypothesis — that the designers of software

tools erroneously consider themselves typical tool users — and argue that the usabil-

ity of software tools should be evaluated objectively [81]. However, as far as I know,

no previous research has tested this hypothesis, at least not in the context of refactor-

ing tools. To do so, I compared the refactoring tool usage in the Toolsmiths data set

against the tool usage in the User and Everyone data sets.

In Table 3.1 on the next page, the “Uses” columns indicate the total number

of times each refactoring tool was invoked in that data set. The “Use %” column

presents the same measure as a percentage of the total number of refactorings. No-

tice that while the rank order of each tool is similar across the three data sets —
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RENAME, for example, always ranks first — the proportion of occurrence of the

individual refactorings varies widely between Toolsmiths and Users/Everyone. In

Toolsmiths, RENAME accounts for about 29% of all refactorings, whereas in Users it

accounts for about 62% and in Everyone for about 75%. I suspect that this difference

is not because Users and Everyone perform more RENAMES than Toolsmiths, but

because Toolsmiths are more frequent users of the other refactoring tools.

This analysis is limited in two ways. First, each data set was gathered over a

different period of time, and the tools themselves may have changed between those

periods. Second, the Users data include both Java and non-Java RENAME and MOVE

refactorings, but the Toolsmiths and Everyone data report on just Java refactorings.

This may inflate actual RENAME and MOVE percentages in Users relative to the

other two data sets.

3.4.2 Programmers Repeat Refactorings

I hypothesize that when programmers perform a refactoring, they typically perform

several refactorings of the same kind within a short time period. For instance, a

programmer may perform several EXTRACT LOCAL VARIABLES in preparation for

a single EXTRACT METHOD, or may RENAME several related instance variables at

once. Based on personal experience and anecdotes from programmers, I suspect that

programmers often refactor several pieces of code because several related program

elements may need to be refactored in order to perform a composite refactoring. In

Section 6.6.3, I describe a tool that allows the programmer to select several program

elements at once, something that is not possible with traditional tools.

To determine how often programmers do repeat refactorings, I used the Tool-

smiths and the Users data to measure the temporal proximity of refactorings to one

another. I say that refactorings of the same kind that execute within 60 seconds of

each another form a batch. From my personal experience, I think that 60 seconds is
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long enough for a programmer to complete a typical Eclipse wizard-based refactor-

ing, yet short enough to exclude refactorings that are not part of the same conceptual

group. Additionally, a few refactoring tools, such as PULL UP in Eclipse, can refactor

multiple program elements, so a single application of such a tool can be an explicit

batch of related refactorings. For such tools, I counted the total number of tool uses

that refactored only one program element (not an explicit batch of refactorings) and

the number of tool uses that refactored more than one program element (an explicit

batch of refactorings) in Toolsmiths.

In Table 3.1 on page 23, each “Batched” column indicates the number of refactor-

ings that appeared as part of a batch, while each “Batched %” column indicates the

percentage of refactorings appearing as part of a batch. Overall, you can see that cer-

tain refactorings, such as RENAME, INTRODUCE PARAMETER, and ENCAPSULATE

FIELD, are more likely to appear as part of a batch for both Toolsmiths and Users,

while others, such as EXTRACT METHOD and PULL UP, are less likely to appear

in a batch. In total, you see that 30% of Toolsmiths refactorings and 47% of Users

refactorings appear as part of a batch.2 For comparison, Figure 3.1 on the next page

displays the percentage of batched refactorings for several different batch thresholds.

In Toolsmiths, the number of explicit batches varied between tools (Table 3.2 on

the following page). Although the total number of uses of these refactoring tools is

fairly small, Table 3.2 suggests refactorings are batched about 25% of the time for

tools that can refactor several program elements.

This analysis has two main limitations. First, while I wished to measure how

often several related refactorings are performed in sequence, I instead used a 60-

second heuristic. It is almost certain that some related refactorings occur outside my

60-second window, and that some unrelated refactorings occur inside the window.

2I suspect that the difference in percentages arises partially because the Toolsmiths data set counts
the number of completed refactorings while Users counts the number of initiated refactorings. I
have observed that programmers occasionally initiate a refactoring tool on some code, cancel the
refactoring, and then re-initiate the same refactoring shortly thereafter (Section 4.5.3).
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Figure 3.1: Percentage of refactorings that appear in batches as a function of batch threshold,
in seconds. 60-seconds, the batch size used in Table 3.1 on page 23, is drawn in green.

Refactoring Tool Uses Explicitly Batched Explicitly Batched %
MOVE 147 22 15.0%
PULL UP 12 11 91.6%
EXTRACT SUPERCLASS 7 6 85.7%
EXTRACT INTERFACE 2 1 50.0%
PUSH DOWN 1 1 100.0%
Total 169 42 24.8%

Table 3.2: The number and percentage of explicitly batched refactorings, for all Eclipse tool-
based refactorings that support explicit batches. Some tool logging began in the middle of
the Toolsmiths data collection (shown in light grey).

Other metrics for detecting batches should be investigated in the future. As a conse-

quence, the percentage of refactorings that appear as part of a group is a statistic that

only estimates the population parameter of interest: how often programmers repeat

refactorings. Second, I could ascertain how often explicit batches are used in only

the Toolsmiths data set: the other data sets are not sufficiently detailed.
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3.4.3 Programmers Often Do Not Configure Refactoring Tools

Refactoring tools are typically of two kinds: either they force the programmer to pro-

vide configuration information, such as whether a newly created method should be

public or private, or they perform a refactoring without allowing any configura-

tion at all. Configurable refactoring tools are more common in some environments,

such as Netbeans [53], whereas non-configurable tools are more common in others,

such as X-develop [75]. Which interface is preferable depends on how often pro-

grammers configure refactoring tools. I hypothesize that programmers do not often

configure refactoring tools. I suspect this because tweaking code manually after the

refactoring may be easier than configuring the tool.

In the past, I have found some limited evidence that programmers perform only

a small amount of configuration of refactoring tools. When I did a small survey in

September 2007 at a Portland Java User’s Group meeting, 8 programmers estimated

that, on average, they supply configuration information only 25% of the time.

To validate this hypothesis, I analyzed the 5 most popular refactorings performed

by Toolsmiths to see how often programmers used various configuration options. I

skipped refactorings that did not have configuration options.

The results of the analysis are shown in Table 3.3 on the next page. “Configura-

tion Option” refers to a configuration parameter that the user can change. “Default

Value” refers to the default value that the tool assigns to that option. “Change %”

refers to how often a user used a configuration option other than the default. The

data suggest that refactoring tools are configured very little: the overall mean change

percentage for these options is just under 10%. Although different configuration op-

tions are changed from defaults with varying percentages, all configuration options

that I inspected were below the average configuration percentage predicted by the

Portland Java User’s Group survey.

This analysis has several limitations. First, I did not have detailed-enough infor-
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mation in the other data sets to cross-validate my results outside Toolsmiths. Second,

I could not count how often certain configuration options were changed, such as how

often parameters are reordered when EXTRACT METHOD is performed. Third, I

examined only the 5 most-common refactorings; configuration may be more or less

common for less popular refactorings.

3.4.4 Commit Messages Do Not Predict Refactoring

Several researchers have used messages attached to commits in a version control sys-

tem, such as CVS, as indicators of refactoring activity [28, 66, 67, 76]. For example,

if a programmer commits code to CVS and attaches the commit message “refactored

class Foo,” you might assume that the committed code contains more refactoring

activity than if a programmer commits with a message that does not contain the

word stem “refactor.” However, I hypothesize that this assumption is false. I sus-

pect this because refactoring may be an unconscious activity [9, p. 47], or because

the programmer may consider it subordinate to some other activity, such as adding a

feature [50].

In his dissertation, Ratzinger describes the most sophisticated strategy for finding

refactoring messages of which I am aware [66]: searching for the occurrence of 13

keywords, such as “move” and “rename,” and excluding “needs refactoring.” Using

two different project histories, the author randomly drew 100 file modifications from

each project and classified each as either a refactoring or as some other change. He

found that his keyword technique accurately classified modifications 95.5% of the

time. Based on this technique, combined with a technique for finding bug fixes,

Ratzinger and colleagues concluded that an increase in refactoring activity tends to

be followed by a decrease in software defects [67].

Chris Parnin and I replicated Ratzinger’s experiment for the Eclipse code base.

Using the Eclipse CVS data, I grouped individual file revisions into global commits:
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Change Labeled Unlabeled
Pure Whitespace 1 3

No Refactoring 8 11
Some Refactoring 5 (1,4,11,15,17) 6 (2,9,11,23,30,37)
Pure Refactoring 6 (1,1,2,3,3,5) 0

Total 20(63) 20(112)

Table 3.4: Refactoring between commits in Eclipse CVS. Plain numbers count commits in
the given category; tuples contain the number of refactorings in each commit.

revisions were grouped if they were made by the same developer, had the same mes-

sage, and were made within 60 seconds of each other. Henceforth, I use the word

“revision” to refer to a particular version of a file, and the word “commit” to refer to

one of these global commit groups. I then removed commits to CVS branches, which

would have complicated my analysis, and commits that did not include a change to

a Java file. Parnin and I also manually removed commits whose messages referred

to changes to a refactoring tool (for example, “105654 [refactoring] CONVERT LO-

CAL VARIABLE TO FIELD has problems with arrays”), because such changes are

false positives that occur only because the project is itself a refactoring tool project.

Next, using Ratzinger’s 13 keywords, I automatically classified the log messages for

the remaining 2788 commits. 10% of these commits matched the keywords, which

compares with Ratzinger’s reported 11% and 13% for two other projects [66]. Next,

we randomly drew 20 commits from the set that matched the keywords (which I

will call “Labeled”) and 20 from the set that did not match (“Unlabeled”). Without

knowing whether a commit was in the Labeled or Unlabeled group, Parnin and I

manually compared each committed version of Eclipse against the previous version,

inferring how many and which refactorings were performed, and whether at least one

non-refactoring change was made. Together, over about a 6 hour period, we did this

comparison for the 40 commits using a single computer and the standard compare

tool in Eclipse.
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The results are shown in Table 3.4 on the preceding page. In the left column,

the kind of Change is listed. “Pure Whitespace” means that the developer changed

only whitespace or comments; “No Refactoring” means that the developer did not

refactor but did change program behavior; “Some Refactoring” means that the devel-

oper both refactored and changed program behavior, and “Pure Refactoring” means

the programmer refactored but did not change program behavior. The center col-

umn counts the number of Labeled commits with each kind of change, and the right

column counts the number of Unlabeled commits. The parenthesized lists record the

number of refactorings found in each commit. For instance, the Table shows that, in

5 out of 40 inspected commits, a programmer mentioned a refactoring keyword in

the CVS commit message and made both functional and refactoring changes. The 5

commits contained 1, 4, 11, 15, and 17 refactorings.

These results suggest that classifying CVS commits by commit message does

not provide a complete picture of refactoring activity. While all 6 pure-refactoring

commits were identified by commit messages that contained one of the refactoring

keywords, commits labeled with a refactoring keyword contained far fewer refactor-

ings (63, or 36% of the total) than those not so labeled (112, or 64%). Figure 3.2

on the next page shows the variety of refactorings in Labeled (dark blue and purple)

commits and Unlabeled (light blue and pink) commits.

There are several limitations to this analysis. First, while I tried to replicate

Ratzinger’s experiment [66] as closely as was practicable, the original experiment

was not completely specified, so I cannot say with certainty that the observed dif-

ferences were not due to methodology. Likewise, observed differences may be due

to differences in the projects studied. Indeed, after I completed this analysis, a per-

sonal communication with Ratzinger revealed that the original experiment included

and excluded keywords specific to the projects being analyzed. Second, because

the process of gathering and inspecting subsequent code revisions is labor intensive,
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Tool     (Labeled)

Tool     (Unlabeled)

Figure 3.2: Refactorings over 40 intervals.
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my sample size (40 commits in total) is smaller than would otherwise be desirable.

Third, the classification of a code change as a refactoring is somewhat subjective.

For example, if a developer removes code known to her to never be executed, then

she may legitimately classify that activity as a refactoring, although to an outside

observer it may appear to be the removal of a feature. Parnin and I tried to be con-

servative, classifying changes as refactorings only when we were confident that they

preserved behavior. Moreover, because the comparison was blind, any bias intro-

duced in classification would have applied equally to both Labeled and Unlabeled

commit sets.

3.4.5 Floss Refactoring is Common

In Chapter 2.3, I introduced the distinction between floss and root canal refactoring.

During floss refactoring, the programmer intersperses refactoring with other kinds

of program changes to keep code healthy. Root-canal refactoring, in contrast, is

used for correcting deteriorated code and involves a protracted process consisting of

exclusive refactoring. A survey of the literature suggested that floss refactoring is

the recommended tactic, but it did not provide evidence that it is the more common

tactic.

Why does this matter? Case studies in the literature, for example those reported

by Pizka [63] and by Bourqun and Keller [5], describe root-canal refactoring. How-

ever, inferences drawn from these studies will be generally applicable only if most

refactorings are indeed root-canals.

I can estimate which refactoring tactic is used more frequently from the Eclipse

CVS data. I first define behavioral indicators of floss and root-canal refactoring dur-

ing programming intervals, which (in contrast to the intentional definitions given

above) I can hope to recognize in the data. For convenience, let a programming

interval be the period of time between consecutive commits to CVS by a single pro-



CHAPTER 3. REFACTORING PRACTICE 34

grammer. In a particular interval, if a programmer both refactors and makes a se-

mantic change, then I say that that the programmer is floss refactoring. If a program-

mer refactors during an interval but does not change the semantics of the program,

then I say that the programmer is root-canal refactoring. Note that a true root-canal

refactoring must also last an extended period of time, or take place over several in-

tervals. The above behavioral definitions relax this requirement and so will tend to

over-estimate the number of root canals.

Returning to Table 3.4 on page 30, you can see that “Some Refactoring”, indica-

tive of floss refactoring, accounted for 28% of commits, while “Pure Refactoring”,

indicative of root-canal refactoring, accounts for 15%. Normalizing for the relative

frequency of commits labeled with refactoring keywords in Eclipse CVS, commits

indicating floss refactoring would account for 30% of commits while commits indi-

cating root-canal would account for only 3% of commits.

Also notice in Table 3.4 on page 30 that the “Some Refactoring” (floss) row tends

to show more refactorings per commit than the “Pure Refactoring” (root-canal) row.

Again normalizing for labeled commits, 98% of individual refactorings would occur

as part of a “Some Refactoring” (floss) commit, while only 2% would occur as part

of a “Pure Refactoring” (root-canal) commit.

Pure refactoring with tools is infrequent in the Users data set, suggesting that

very little root-canal refactoring occurred in Users as well. I counted the number of

refactorings performed using a tool during intervals in that data. In no more than 10

out of 2671 commits did programmers use a refactoring tool without also manually

editing their program. In other words, in less that 0.4% of commits did I observe the

possibility of root-canal refactoring using only refactoring tools.

My analysis of Table 3.4 on page 30 is subject to the same limitations described

in Section 3.4.4. The analysis of the Users data set (but not the analysis of Table 3.4)

is also limited in that I consider only those refactorings performed using tools. Some
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refactorings may have been performed by hand; these would appear in the data as

edits, thus possibly inflating the count of floss refactoring and reducing the count of

root-canal refactoring.

3.4.6 Refactorings are Frequent

While the concept of refactoring is now popular, it is not entirely clear how com-

monly refactoring is practiced. In Xing and Stroulia’s automated analysis of the

Eclipse code base, the authors conclude that “indeed refactoring is a frequent prac-

tice” [85]. The authors make this claim largely based on observing a large number

of structural changes, 70% of which are considered to be refactoring. However,

this figure is based on manually excluding 75% of semantic changes — resulting in

refactorings that account for 16% of all changes. Further, their automated approach

suffers from several limitations, such as the failure to detect low-level refactorings,

imprecision when distinguishing signature changes from semantic changes, and the

limited window of granularity offered by CVS inspection.

To validate the hypothesis that refactoring is a frequent practice, Parnin and I

characterized the occurrence of refactoring activity in the Users and Toolsmiths data.

In order for refactoring activity to be defined as frequent, I sought to apply criteria

that require refactoring to be habitual and occurring at regular intervals. For exam-

ple, if refactoring activity occurs just before a software release, but not at other times,

then I would not want to claim that refactoring is frequent. First, Parnin examined

the Toolsmiths data to determine how refactoring activity was spread throughout de-

velopment. Second, Parnin and I examined the Users data to determine how often

refactoring occurred within a programming interval and whether there was signifi-

cant variation among the population.

In the Toolsmiths data, Parnin found that refactoring activity occurred throughout

the Eclipse development cycle. In 2006, an average of 30 refactorings took place
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each week; in 2007, there were 46 refactorings per week. Only two weeks in 2006

did not have any refactoring activity, and one of these was a winter holiday week. In

2007, refactoring occurred every week.

In the Users data set, Parnin and I found refactoring activity distributed through-

out the programming intervals. Overall, 41% of programming intervals contained

refactoring activity. More interestingly, intervals that did not have refactoring activ-

ity contained an order of magnitude fewer edits than intervals with refactoring, on

average. The intervals that contained refactoring also contained, on average, 71% of

the total edits made by the programmer. This was consistent across the population:

22 of 31 programmers had an average greater than 72%, whereas the remaining 9

ranged from 0% to 63%. This analysis of the Users data suggests that, when pro-

grammers must make large changes to a code base, refactoring is a common way to

prepare for those changes.

Inspecting refactorings performed using a tool does not have the limitations of

automated analysis; it is independent of the granularity of commits and semantic

changes, and captures all levels of refactoring activity. However, it has its own limi-

tation: the exclusion of manual refactoring. Including manual refactorings can only

increase the observed frequency of refactoring. Indeed, this is likely: as you will see

in Section 3.4.7, many refactorings are in fact performed manually.

3.4.7 Refactoring Tools are Underused

A programmer may perform a refactoring manually, or may choose to use an auto-

mated refactoring tool if one is available for the refactoring that she needs to per-

form. Ideally, a programmer will always use a refactoring tool if one is available, be-

cause automated refactorings are theoretically faster and less error-prone than manual

refactorings. However, several pieces of existing data suggest that programmers do

not use refactoring tools as much as they could:



CHAPTER 3. REFACTORING PRACTICE 37

• From my own observations, it appears that few programmers in an academic

setting use refactoring tools. Of the 16 students who participated in the experi-

ment described in Section 4.5.2, only 2 reported having used refactoring tools,

and even then only for 20% and 60% of the time3. Furthermore, between

September 2006 and December 2007, of the 42 people who used Eclipse on

networked college computers, only 6 had tried Eclipse’s refactoring tools.

• Professional programmers also appear not to use refactoring tools as much as

they could. I surveyed 112 people at the Agile Open Northwest 2007 confer-

ence. I found that, on average, when a refactoring tool is available for a refac-

toring that programmers want to perform, they choose to use the tool 68% of

the time3; the rest of the time they refactor by hand. Because agile program-

mers are often enthusiastic about refactoring, tool use by conventional (i.e.,

non-agile) programmers may be lower.

• When I compared predicted usage rates of two refactorings against the usage

rates of the corresponding refactoring tools observed in the field, I found a

surprising discrepancy. In a small experiment, Mäntylä and Lassenius [44]

demonstrated that programmers wanted to perform EXTRACT METHOD more

urgently, and several-fold more often, than RENAME. However, Murphy

and colleagues’ study [47] of 41 professional software developers provided

data that suggest that Eclipse’s EXTRACT METHOD tool is used significantly

less often and by fewer programmers than its RENAME tool (Figure 3.3 on

page 39). Comparing these two studies, I infer that some refactoring tools —

the EXTRACT METHOD tool in this case — may be underused because the

refactoring that programmers most want to perform is EXTRACT METHOD,

3 The question’s wording was ambiguous, so it is unclear whether respondents interpreted it as a
percentage of time spent refactoring or as a percentage of uses of a refactoring tool, versus refactoring
by hand
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but the refactoring that they most perform with tools is RENAME.

These estimates of usage are surprisingly low, but they are still only estimates. I hy-

pothesize that programmers often do not use refactoring tools. I suspect this because

existing tools may not have a sufficiently usable user-interface.

To validate this hypothesis, I correlated the refactorings that Parnin and I ob-

served by manually inspecting Eclipse CVS commits with the refactoring tool usages

in the Toolsmiths data set. A refactoring found by manual inspection can be cor-

related with the application of a refactoring tool by looking for tool applications

between commits. For example, the Toolsmiths data provides sufficient detail (the

new variable name and location) to correlate an EXTRACT LOCAL VARIABLE with

an EXTRACT LOCAL VARIABLE observed by manually inspecting adjacent commits

in Eclipse CVS.

After analysis, I was unable to link 89% of 145 observed refactorings that had

tool support to any use of a refactoring tool (also 89% when normalized). This

suggests that Toolsmiths primarily refactor manually. An unexpected finding was

that 31 refactorings that were performed with tools were not visible by comparing

revisions in CVS. It appeared that most of these refactorings occurred in methods or

expressions that were later removed or in newly created code that had not yet been

committed to CVS. Overall, the results support the hypothesis that programmers are

manually refactoring in lieu of using tools, but actual tool usage was lower than

the median estimate in the professional agile developer survey. This suggests that

either programmers overestimate their tool usage (perhaps refactoring is often not a

conscious activity) or that expert programmers prefer to refactor manually.

This analysis suffers from two main limitations. First, some tool usage data may

be missing. If programmers used multiple computers during development, some of

which were not included in the data set, this would result in under-reporting of tool

usage. Given a single commit, I can be more certain that I have a record of all
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refactoring tool uses over code in that commit if there is a record of at least one

refactoring tool use applied to that code since the previous commit. If I apply my

analysis only to those commits, then 73% of refactorings (also 73% when normalized

for the frequency of Labeled commits) cannot be linked with a tool usage. Second,

refactorings that occurred at an earlier time might not be committed until much later;

this would inflate the count of refactorings found in CVS that I could not correlate to

the use of a tool, and thus cause me to underestimate tool usage. I tried to limit this

possibility by looking back several days before a commit to find uses of refactoring

tools, but I may not have been completely successful.

3.4.8 Different Refactorings are Performed with and without Tools

Some refactorings are more prone than others to being performed by hand. In Sec-

tion 3.4.7, I inferred that the EXTRACT METHOD tool is underused: the refactoring

is instead being performed manually. However, it is unclear what other refactor-

ing tools are underused. Moreover, there may be some refactorings that must be

performed manually because no tool yet exists. I suspect that the reason that some

kinds of refactoring — especially RENAME — are more often performed with tools

is because these tools have simpler user interfaces.

To validate this hypothesis, I examined how the kind of refactorings differed

between refactorings performed by hand and refactorings performed using a tool.

Again, I correlated the refactorings that Parnin and I found by manually inspect-

ing Eclipse CVS commits with the refactoring tool usage in the Toolsmiths data. In

addition, when inspecting the Eclipse CVS commits, Parnin and I identified several

refactorings that currently have no tool support.

The results are shown in Figure 3.2 on page 32. Tool indicates how many refac-

torings were performed with a tool; Manual indicates how many were performed

without. The figure shows that manual refactorings were performed much more of-
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ten for certain kinds of refactorings. For example, EXTRACT METHOD is performed

9 times manually but just once with a tool; REMOVE PARAMETER is performed 8

times manually and once with a tool. However, a few kinds of refactoring show the

opposite tendency; RENAME METHOD, for example, is most often performed with a

tool. You can also see from the figure that many kinds of refactorings were performed

exclusively by hand, despite having tool support.

Parnin and I also observed 30 refactorings that did not have tool support; the most

popular of these was MODIFY ENTITY PROPERTY, performed 8 times, which would

allow developers to modify properties, such as static or final, without changing

behavior. The same limitations apply as in Section 3.4.7.

3.5 Discussion

How do the results presented in Section 3.4 affect future refactoring research and

tools?

3.5.1 Tool-Usage Behavior

Several of my findings have reflected on the behavior of programmers using refac-

toring tools. For example, my finding about how toolsmiths differ from regular pro-

grammers in terms of refactoring tool usage (Section 3.4.1) suggests that most kinds

of refactorings will not be used as frequently as the toolsmiths hoped, when com-

pared to the frequently used RENAME refactoring. For the toolsmith, this means that

improving underused tools (or their documentation), especially tools for EXTRACT

LOCAL VARIABLE, may increase tool use.

Other findings provide insight into the typical work flow involved in refactoring.

Consider that refactoring tools are often used repeatedly (Section 3.4.2), and that

programmers often do not configure refactoring tools (Section 3.4.3). For the tool-

smith, this means that configuration-less refactoring tools, which have recently seen
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increasing support in Eclipse and other environments, will suit the majority of, but

not all, refactoring situations. In addition, my findings about the batching of refac-

torings provides evidence that tools that force the programmer to repeatedly select,

initiate, and configure can waste programmers’ time.

Questions still remain for researchers to answer. Why is the RENAME refactoring

tool so much more popular than other refactoring tools? Why do some refactor-

ings tend to be batched while others do not? Moreover, my experiments should be

repeated in other projects and for other refactorings to confirm or disconfirm my

findings.

3.5.2 Detecting Refactoring

In my experiments I have investigated the assumptions underlying several commonly

used refactoring-detection techniques. Unfortunately, some techniques may need re-

finement to address the concerns that I have uncovered. My finding that commit

messages in version histories are unreliable indicators of refactoring activity (Sec-

tion 3.4.4) is at variance with an earlier finding by Ratzinger [66]. It also casts doubt

on previous research that relies on this technique [28, 67, 76]. Thus, further repli-

cation of this experiment in other contexts is needed to establish more conclusive

results. My finding that many refactorings are medium or low-level suggests that

refactoring-detection techniques used by Weißgerber and Diehl [84], Dig and col-

leagues [12], Counsell and colleagues [10], and to a lesser extent, Xing and Strou-

lia [85], will not detect a significant proportion of refactorings. The effect that this

has on the conclusions drawn by these authors depends on the scope of those con-

clusions. For example, Xing and Stroulia’s conclusion that refactorings are frequent

can only be bolstered when low-level refactorings are taken into consideration. On

the other hand, Dig and colleagues’ tool was intended to help upgrade library clients

automatically, and thus has no need to find low-level refactorings. In general, re-
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searchers who wish to detect refactorings automatically should be aware of what

level of refactorings their tool can detect.

Researchers can make refactoring detection techniques more comprehensive. For

example, I observed that a common reason for Ratzinger’s keyword-matching to mis-

classify changes as refactorings was that a bug-report title had been included in the

commit message, and this title contained refactoring keywords. By excluding bug-

report titles from the keyword search, accuracy could be increased. In general, future

research can complement existing refactoring detection tools with refactoring logs

from tools to increase recall of low-level refactorings.

3.5.3 Refactoring Practice

Several of my findings bolster existing evidence about refactoring practice across a

large population of programmers. Unfortunately, the findings also suggest that refac-

toring tools need further improvements before programmers will use them frequently.

First, my finding that programmers refactor frequently (Section 3.4.6) confirms the

same finding by Weißgerber and Diehl [84] and Xing and Stroulia [85]. For tool-

smiths, this highlights the potential of refactoring tools, telling them that increased

tool support for refactoring may be beneficial to programmers.

Second, my finding that floss refactoring is a more frequently practiced refactor-

ing tactic than root-canal refactoring (Section 3.4.5) confirms that floss refactoring, in

addition to being recommended by experts [22], is also popular among programmers.

This has implications for toolsmiths, researchers, and educators. For toolsmiths, this

means that refactoring tools should support flossing by allowing the programmer to

switch quickly between refactoring and other development activities, which is not

always possible with existing refactoring tools, such as those that force the program-

mer’s attention away from the task at hand with modal dialog boxes (Section 3.4.5).

For researchers, studies should focus on floss refactoring for the greatest general-
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ity. For educators, it means that when they teach refactoring to students, they should

teach it throughout the course rather than as one unit during which students are taught

to refactor their programs intensively.

Finally, my findings that many refactorings are performed without the help of

tools (Section 3.4.7) and that the kinds of refactorings performed with tools differ

from those performed manually (Section 3.4.8) confirm the results of my Agile Open

Northwest 2007 survey on programmers’ under-use of refactoring tools. Note that

these findings are based on toolsmiths’ refactoring tool usage, which I regard as the

best case. Indeed, if even toolsmiths do not use their own refactoring tools very

much, why would other programmers use them more? Toolsmiths need to explore

alternative interfaces and identify common refactoring workflows, such as reminding

users to EXTRACT LOCAL VARIABLE before an EXTRACT METHOD or finding a

easy way to combine these refactorings: the goal should be to encourage and support

programmers in taking full advantage of refactoring tools. For researchers, more

study is needed about exactly why programmers do not use refactoring tools as much

as they could.

3.5.4 Limitations of this Study

First, all the data report on refactoring behavior for the Java language in the Eclipse

environment. While this is a widely-used language and environment, the results pre-

sented in this chapter may not hold for other languages and environments. Second,

Users and Toolsmiths may not represent programmers in general. Third, the Users

and Everyone data sets may overlap with the Toolsmiths data set: both the Users

and Everyone data sets were gathered from volunteers, and some of those volunteers

may have been Toolsmiths. However, the size of the subject pools limit the impact of

any overlap: fewer than 10% of the members of Users and 0.1% of the members of

Everyone could be members of Toolsmiths.
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3.5.5 Study Details

Details of my methodology, including my publicly available data, the SQL queries

used for correlating and summarizing that data, the tools I used for batching refactor-

ings and grouping CVS revisions, my experimenters’ notebook, and my normaliza-

tion procedure, can be found at http://multiview.cs.pdx.edu/refactoring/experiments.

3.6 Conclusions

In this chapter, I have presented a study that re-examined several previously-held

assumptions and conclusions about how programmers refactor. I confirmed some

assumptions and conclusions, and disconfirmed others. In the short term, the results

will lay a foundation for the guidelines and tools that I discuss in the remainder of

this dissertation:

• In the next chapter, I argue that because refactoring tools are underused and

because refactoring is frequent, productivity can be improved by encouraging

programmers to use refactoring tools more frequently.

• In Section 4.7, I use the finding that floss refactoring is common to motivate

the need for most refactoring tools to align with floss refactoring.

• In Section 6.6.3, I use the finding that programmers repeat refactorings to mo-

tivate the need for tools that allow programmers to repeatedly apply a refac-

toring to several pieces of code.

• In Section 8.4, I use the finding that programmers do not often configure refac-

toring tools to motivate the need for tools that allow programmers to skip con-

figuration.

In the long term, I hope that these results change the way that researchers think about

refactoring and the way that they conduct research on refactoring behavior.

http://multiview.cs.pdx.edu/refactoring/experiments


Chapter 4

A Problem with Refactoring Tools: Usability 1

From the data presented in the last chapter, it appears that refactoring is a common

practice, yet refactoring tools are underused. This is a missed opportunity: every time

that programmers refactor without a tool, they may be refactoring more slowly and

in a more error-prone manner than if they had used a refactoring tool. This prompts

the question: why do programmers not use refactoring tools when they could? In this

chapter, I present data that suggest that usability is at least one underlying cause of

this underuse.

4.1 Contributions

The major contributions of this chapter are as follows:

• An exploratory study of programmers during refactoring that uncovers two

significant usability barriers to refactoring tools (Section 4.5).

• A survey of 112 people that suggests that slow user-interfaces in refactoring

tools are at least one cause of refactoring tool underuse (Section 4.6).

1Parts of this chapter appeared in the Proceedings of the 2008 International Conference on Soft-
ware Engineering [49], as part of a journal paper in IEEE Software [50], and as part of my thesis
proposal.
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4.2 Usability, Guidelines, and the Value of Guidelines Specific to

Refactoring

Usability is a property of a tool’s user interface. Nielsen describes five components of

usability: learnability, efficiency, memorability, errors, and satisfaction [54, p. 26].

Learnability is the ease with which users can learn to use a tool. Efficiency is the

level of productivity users can achieve after learning the tool. Memorability is how

well users remember how to use the tool after some period of time. Errors are the

mistakes that users make when using a tool. Satisfaction is how well the tool pleases

the users.

In this dissertation, I focus on efficiency, errors, and satisfaction. In later chap-

ters, I measure efficiency by examining how quickly programmers can use refactor-

ing tools, measure errors by determining the mistakes that programmers make while

using the tools, and measure satisfaction by asking programmers their opinions of the

tools. With the exception of Section 7.5.2, I do not address memorability or learn-

ability, because the short-term experiments in which I demonstrate improvements in

efficiency, errors, and satisfaction are generally unsuitable for demonstrating long-

term improvements in learnability or memorability.

The first usability contribution of this dissertation is a set of guidelines for refac-

toring tools. One way to demonstrate improved usability is by comparing one tool

against another; if one or more of the usability components are better when using

one of the tools (without sacrificing the other components), then you can say that us-

ability is better in that tool. If one tool has good usability, a common way to capture

what makes that tool’s user interface good is by distilling the “goodness” in the form

of guidelines [55, 65, 71]. In this way, I build guidelines specifically for refactoring

tools.

Several researchers and practitioners have created general guidelines based on

user-interface experiments and experience, including Nielsen [55], Raskin [65] and
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Shneiderman [71]footnote A more complete set of general usability guidelines can

be found in Mealy and colleagues’ collection [45, Appendix A].. The guidelines that

I will present in the remainder of this dissertation are a refined version of broad us-

ability guidelines, where the refinements are derived from observations about refac-

toring tool usage. For instance, my guideline “Refactoring tool configuration should

not force the programmer to view or enter unnecessary configuration information”

(Section 8.2) is a more specialized version of Shneiderman’s “Minimal input actions

by user” [71, p. 72]. Throughout this dissertation, I will link my guidelines to such

previously proposed guidelines where applicable.

General guidelines, such as those proposed by Shneiderman, Nielsen, and

Raskin, are just that — general — so interface designers and toolsmiths may find it

difficult to apply them to specific user interfaces. Thus, Shneiderman states, general

guidelines “must be interpreted, refined, and extended for each environment” [71,

p. 62]: in this dissertation I interpret, refine, and extend them for refactoring tools.

The second usability contribution of this dissertation is a collection of refactoring

tools that exemplify my guidelines. This is important because guidelines alone can

be too vague to be useful to a user-interface designer or developer. Thus, as Tetzlaff

and Schwartz have stated, guidelines should be “developed primarily to complement

toolkits and interactive examples” [77]. The primary usability contributions of this

dissertation, then, are (1) guidelines and (2) tools that exemplify those guidelines; my

hope is that the two together will help inspire improved usability in future refactoring

tools.

4.3 Why Usability is Important to Refactoring Tools

The success of a refactoring tool depends on the quality of its interface more than

does the success of other software tools. For example, even though a compiler may

have terrible error messages, the programmer is largely dependent on the compiler
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and will develop strategies to cope with the poor interface. This is not so with refac-

toring tools: if the tool does not help programmers to be more efficient, they can

simply refactor by hand. And as mentioned in Section 2.4, if a programmer refactors

by hand, she may be refactoring more slowly and introducing more errors than had

she used a refactoring tool.

4.4 Related Work

Several pieces of previous work have suggested that poor usability is an important

problem with refactoring tools.

In his dissertation on refactoring, Opdyke pointed out that the user interface is

a significant part of refactoring tools: “Speed and clarity of the user interface are

important in a refactoring tool that supports design exploration. A refactoring tool

that is too slow will ‘get in the way’ and discourage trying out alternative designs.

Ideally, a refactoring should execute instantaneously.” [58]

After creating one of the first refactoring tools, Roberts [69] noted that the tool

“was rarely used, even by ourselves.” In response, the tool was improved by follow-

ing three usability guidelines: speed in program transformation, support for undoing

refactorings, and tight integration with the development environment. It appears that

most refactoring tools since then have heeded these guidelines, yet new usability

issues have sprung up, as I have discovered (Section 4.5). In my work I build on

Roberts’ guidelines to improve usability of refactoring tools.

More recently, Mealy and colleagues [45] distilled specific requirements for

refactoring tools from general usability guidelines. Mealy and colleagues’ work is

top-down (that is, concerned with producing a complete set of refactoring tool guide-

lines based on general guidelines), while my research is bottom-up (that is, concerned

with producing guidelines derived from specific bottlenecks in the refactoring pro-

cess). As Mealy and colleagues develop and evaluate a proof-of-concept refactoring



CHAPTER 4. A PROBLEM WITH REFACTORING TOOLS 50

tool, I expect that it will become more clear how to implement their requirements.

Even more recently, based on their experience building and testing refactoring

tools at Microsoft and Developer Express, Campbell and Miller have found usabil-

ity to be an issue. They write: “Unfortunately, many refactoring tools suffer from

deep discoverability and usability problems that make them less useful for general

development” [7].

Thus, it appears that usability was, and remains, a problem with refactoring tools.

4.5 An Exploratory Study of Refactoring

Beginning in late 2005, I undertook a formative study of programmers during refac-

toring to better understand the usability problems that exist in modern refactoring

tools. In my personal experience, error messages emitted by existing tools are non-

specific and unhelpful in diagnosing problems. The purpose of this study was to

ascertain if other programmers also find these messages unhelpful.

4.5.1 The Extract Method Refactoring

One refactoring that has enjoyed widespread tool support is called EXTRACT

METHOD. A tool that performs EXTRACT METHOD takes a sequence of statements,

copies them into a new method, and then replaces the original statements with an in-

vocation of the new method. This refactoring is useful when duplicated code should

be factored out and when a long method contains several code segments that are

conceptually separate.

I studied the EXTRACT METHOD tool in the Eclipse programming environ-

ment [18]. I reasoned that the EXTRACT METHOD tool in Eclipse is worthy of study

because it is a mature, non-trivial refactoring tool and because most refactoring tool

user-interfaces are very similar. This claim of similarity is based on my review of 16

refactoring tools in 2005 [48, p 3]
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Figure 4.1: A code selection (above, highlighted in blue) that a tool cannot extract into a new
method.

0 The selected code must be a list of statements.

1 Within the selection, there must be no assignments to variables that
might be used later in the flow of execution. For Java, this can be re-
laxed to allow assignment to one variable, the value of which can be
returned from the new method.

2 Within the selection, there must be no conditional returns. In other
words, the code in the selection must either always return, or always
flow beginning to end.

3 Within the selection, there must be no branches to code outside of the
selection. For Java, this means no break or continue statements, unless
the selection also contains their corresponding targets.

Table 4.1: Preconditions to the EXTRACT METHOD refactoring, based on Opdyke’s precon-
ditions [58]. I have omitted preconditions that were not encountered during the formative
study.
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To use the Eclipse EXTRACT METHOD tool, the programmer first selects code to

be refactored, then chooses a refactoring to perform, then configures the refactoring

via a “refactoring wizard,” and then presses “OK” to execute the refactoring. If there

is a precondition violation, the browser then presents the user with a generic textual

error message. Figure 4.1 on the previous page displays an example of such an error

message in Eclipse. Table 4.1 lists several preconditions for the EXTRACT METHOD

refactoring.

4.5.2 Methodology

I observed eleven programmers perform a number of EXTRACT METHOD refactor-

ings. Six of the programmers were Ph.D. students and two were professors from

Portland State University; three were commercial software developers.

I asked the participants to use the Eclipse EXTRACT METHOD tool to refactor

parts of several large, open-source projects:

• Azureus, a peer-to-peer file-sharing client (http://azureus.sourceforge.net);

• GanttProject, a project scheduling application (http://ganttproject.biz);

• JasperReports, a report generation library (http://jasperforge.org);

• Jython, a Java implementation of the Python programming language (http://

www.jython.org); and

• the Java 1.4.2 libraries (http://java.sun.com/j2se/1.4.2/download.html).

I picked these projects because of their size and maturity.

Programmers were free to refactor whatever code they thought necessary. To

give some direction, the programmers were allowed to use a tool to help find long

methods, which can be good candidates for refactoring. However, the programmers

http://azureus.sourceforge.net
http://ganttproject.biz
http://jasperforge.org
http://www.jython.org
http://www.jython.org
http://java.sun.com/j2se/1.4.2/download.html
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chose on which projects to run the long-method tool, and which candidates to refac-

tor. I trained the subjects by showing them how to use the long-method finding tool

and the standard Eclipse EXTRACT METHOD tool, by demonstrating how the tools

can find a large method and extract a new method from it. Each refactoring session

was limited to 30 minutes; programmers successfully extracted between 2 and 16

methods during that time.

4.5.3 Results

The study led to some interesting observations about how often programmers can

perform EXTRACT METHOD successfully:

• In all, 9 out of 11 programmers experienced at least one error message while

trying to extract code. The two exceptions performed some of the fewest ex-

tractions in the group, so were among the least likely to encounter errors. Fur-

thermore, these two exceptions were among the most experienced program-

mers in the group, and seemed to avoid code that might possibly generate error

messages.

• Some programmers experienced many more error messages than others. One

programmer attempted to extract 34 methods and encountered errors during 23

of these attempts, while 2 programmers experienced no errors at all.

• Error messages regarding syntactic selection occurred about as frequently as

any other type of error message (violating Precondition 0 in Table 4.1 on

page 51). In other words, programmers frequently had problems selecting a

desired piece of code. This was usually due to unusual formatting in the source

code or to the programmer trying to select statements that required the editor

to scroll.
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• The remaining error messages concerned multiple assignments and control

flow (violations of Preconditions 1 through 3 in Table 4.1 on page 51).

• The tool reported only one precondition violation, even if multiple violations

existed. These observations suggest that, while trying to perform EXTRACT

METHOD, programmers fairly frequently encounter a variety of errors arising

from violated refactoring preconditions.

Based on my observations of programmers struggling with refactoring error mes-

sages, I make the following conjectures:

• Error messages were insufficiently descriptive. Programmers, especially refac-

toring tool novices, may not understand an error message that they have not

seen before. When I asked what an error message was saying, several pro-

grammers were unable to explain the problem correctly.

• Programmers conflated error messages. All the errors were presented as

graphically-identical text boxes with identically formatted text. At times, pro-

grammers interpreted one error message as an unrelated error message because

the errors appeared identical at a quick glance. The clarity of the message text

is irrelevant when the programmer does not take the time to read it.

• Error messages discouraged programmers from refactoring at all. For instance,

if the tool said that a method could not be extracted because there were mul-

tiple assignments to local variables (Figure 4.1 on page 51), the next time a

particular programmer came across any assignments to local variables, the pro-

grammer did not try to refactor, even if no precondition was violated.

This study reveals room for two types of improvements to EXTRACT METHOD

tools. First, to prevent a large number of mis-selection errors, programmers need sup-

port in making a valid selection. Second, to help programmers recover successfully
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from violated preconditions, programmers need expressive, distinguishable, and un-

derstandable feedback that conveys the meaning of precondition violations. More

generally, this study suggests that usability is a problem with refactoring tools.

4.6 A Survey about Refactoring Behavior

I conducted a survey at Agile Open Northwest 2007 [48], a regional conference for

enthusiasts of Agile programming. I asked 112 people why they chose not to use

refactoring tools when they were available using a multiple-choice question. Among

71 people who used programing environments that have refactoring tools, a popular

response was that “I can refactor faster by hand than with a tool” (n = 24). At the

same time, only 2 people marked that “My code base is so large that the refactoring

tool takes too long,” suggesting that the back-end (code transformation) component

is sufficiently fast in most cases. Together, these two responses suggest that, if the

user interface to refactoring tools were faster, programmers would be more willing

to use them.

4.7 Usable Floss Refactoring Tools

In this section, I propose principles for better refactoring tools based on previously

presented data on how programmers refactor (an argument whose structure I will use

repeatedly in the remaining chapters). Using the definition of floss refactoring (Sec-

tion 2.3) and the observation that floss refactoring is more common (Section 3.4.5),

I then argue that current refactoring tools do not support floss refactoring as well

as they could, and that more usable refactoring tools can be built by supporting this

common tactic.
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4.7.1 Principles for Tools that Support Floss Refactoring

If a tool is suitable for floss refactoring, then the tool must support frequent bursts of

refactoring interleaved with other programming activities. I propose five principles

to characterize such support:

Principle 1 Allow the programmer to choose the desired refactoring quickly.

Principle 2 Allow the programmer to switch seamlessly between program editing

and refactoring.

Principle 3 Allow the programmer to view and navigate the program code while

using the tool.

Principle 4 Allow the programmer to avoid providing explicit configuration infor-

mation.

Principle 5 Allow the programmer to access all the other tools normally available

in the development environment while using the refactoring tool.

Unfortunately, refactoring tools do not always align with these principles; as a result,

floss refactoring with tools can be cumbersome.

Recall performing the EXTRACT METHOD refactoring using Eclipse, as de-

scribed in Section 2.4. After selecting the code to be refactored, you needed to choose

which refactoring to perform, which you did using a menu (Figure 2.3 on page 10).

Menus containing refactorings can be quite long and difficult to navigate; this prob-

lem gets worse as more refactorings are added to development environments. As one

respondent complained in the free-form part of my Agile 2007 survey, the “[refac-

toring] menu is too big sometimes, so searching [for] the refactoring takes too long.”

Choosing the name that most closely matches the transformation that you have in

your head is also a distraction: the mapping from the transformation to the name is
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not always obvious. Thus, using a menu as the mechanism to initiate a refactoring

tool violates Principle 1.

Next, most refactoring tools require configuration (Figure 2.4 on page 11). This

makes the transition between editing and refactoring particularly awkward, as you

must change your focus from the code to the refactoring tool. Moreover, it is difficult

to choose contextually-appropriate configuration information without viewing the

context, and a modal configuration dialog like that shown in Figure 2.4 on page 11

obscures your view of the context. Furthermore, you cannot proceed unless you

provide the name of the new method, even if you do not care what the name is. Thus,

such configuration dialogs violates Principle 2, Principle 3, and Principle 4.

Before deciding whether to apply the refactoring, you are given the opportunity to

preview the changes in a difference viewer (Figure 2.5 on page 12). While it is useful

to compare your code before and after refactoring, presenting the code in this way

forces you to stay inside the refactoring tool, where no other tools are available. For

instance, in the difference viewer you cannot hover over a method reference to see

its documentation — something that can be done in the normal editing view. Thus, a

separate, modal refactoring preview violates Principle 5.

Although this discussion used the Eclipse EXTRACT METHOD tool as an exam-

ple, I have found similar problems with other tools. These problems make the tools

less useful for floss refactoring than might otherwise be the case.

4.7.2 Tools for Floss Refactoring

Fortunately, some tools support floss refactoring well, and align with my principles.

Here are several examples.

In Eclipse, while you initiate most refactorings with a cumbersome hierarchy

of menus, you can perform a MOVE CLASS refactoring simply by dragging a class

icon in the Package Explorer from one package icon to another. All references to
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Figure 4.2: At the top, a method in java.lang.Long in an X-develop editor. At the
bottom, the code immediately after the completion of the EXTRACT METHOD refactoring.
The name of the new method is m, but the cursor is positioned to facilitate an immediate
RENAME refactoring.

the moved class will be updated to reflect its new location. This simple mechanism

allows the refactoring tool to stay out of your way; because the class and target

package are implicitly chosen by the drag gesture, you have already provided all

the configuration information required to execute the refactoring. Because of the

simplicity and speed of this refactoring initiation mechanism, it adheres to Principle

1, Principle 2, and Principle 4.

The X-develop environment [75] makes a significant effort to avoid modal dialog

boxes for configuring its refactoring tools. For instance, the EXTRACT METHOD

refactoring is performed without any configuration at all, as shown in Figure 4.2.

Instead, the new method is given an automatically generated name. After the refac-

toring is complete, you can change the name by placing the cursor over the generated

name, and typing a new name: this is actually a RENAME refactoring, and the tool
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makes sure that all references are updated appropriately. X-develop refactoring tools

adhere to Principle 2 and Principle 4.

Rather than displaying a refactoring preview in a separate difference view, Refac-

tor! Pro [15] marks the code that a refactoring will modify with preview hints. Pre-

view hints are editor annotations that let you investigate the effect of a refactoring

before you commit to it. Because you do not have to leave the editor to see the effect

of a refactoring, preview hints adhere to Principle 3 and Principle 5.

Thus, characteristics make tools are less suited to how programmers usually

refactor, while others are more suited. What is the difference between the two

groups of tools? In the remaining chapters, I discuss this difference by proposing

new user interfaces for refactoring tools that align with how programmers usually

refactor. I also present guidelines that have informed the design of these user inter-

faces, guidelines that I hope will promote the development of more usable refactoring

tools in the future.



Chapter 5

The Identification Step: Finding Opportunities for Refactoring 1

Before a programmer can refactor code, she must recognize the need for refactoring

(Figure 2.6 on page 14). Smells are patterns in code that can help programmers

recognize that code should be refactored [22]. For example, consider the following

code snippet:

class TrainStation{

int lengthOf(Train t) {

return t.locomotiveCount() +

t.boxcarCount() +

1; //the caboose

}

...

The method lengthOf exhibits the FEATURE ENVY smell, because the method

sends several messages to a Train object, but it sends no messages to the

TrainStation object. FEATURE ENVY is a problem that can make software more

difficult to change because a class’s responsibilities are not contained in the class

itself, but are spread throughout “envious” classes that access the class’s members.

Table 5.1 on the next page describes several other code smells. In general, code

smells indicate that refactoring may be appropriate, but are highly subjective and

context-dependent.

1A preliminary version of this chapter appeared in the Proceedings of the International Workshop
on Recommendation Systems for Software Engineering [51].
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DATA CLUMPS A group of data objects that is duplicated across
code [22]

FEATURE ENVY Code that uses many features from classes other than
its own [22]

REFUSED BEQUEST A method that overrides a superclass method, but
does not use the super method’s functionality [22]

SWITCH STATEMENT A switch statement, typically duplicated across
code [22]

MESSAGE CHAIN A series of method calls to “drill down” to a desired
object [22]

TYPECAST Changing an object from one type to another type [13]

INSTANCEOF An operator that introspects on the type of an ob-
ject [13]

MAGIC NUMBER A hard-coded value that is poorly documented [22]

LONG METHOD A method with too much code [22]

LARGE CLASS A class with too much code [22]

COMMENTS Comments indicate that code is not self-
explanatory [22]

Table 5.1: Some smell names and descriptions

FEATURE ENVY can be alleviated by delegating the functionality to the Train

class by sequencing three smaller refactorings: EXTRACT METHOD, then MOVE

METHOD, and then RENAME METHOD, to produce the following code:
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class TrainStation{

int lengthOf(Train t) {

return t.length();

}

...

class Train{

int length() {

return locomotiveCount() +

boxcarCount() +

1; //the caboose

}

...

The mechanics of these refactorings are not the topic of this chapter; instead I focus

on how the programmer recognizes that code needs to be refactored.

Until recently, programmers have been forced to identify smells manually, which

can be difficult for two reasons. First, novice programmers sometimes cannot locate

smells as proficiently as more experienced programmers, as Mäntylä has demon-

strated in an experiment [43]. Second, it is burdensome, even for expert program-

mers, to inspect every piece of code for every possible smell (22 are cataloged in

Fowler’s book alone [22]).

Fortunately, many smells can be detected automatically by tools called smell de-

tectors. As future work, Opdyke’s dissertation stated the need for user-interface re-

search into smell detectors: “User interface approaches could be studied for assisting

a user in making refactoring related design decisions” [58, p. 183]. Once a smell

detector has found a smell, how can it communicate its findings to the programmer

as efficiently as possible?

5.1 Contributions

The major contributions of this chapter are as follows:

• User-interface guidelines for making more usable tools that help programmers
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to find candidates for refactoring, guidelines derived from the strengths of ex-

isting tools (Section 5.2).

• A new tool, called Stench Blossom, to find candidates for refactoring that is

designed to fit into the floss refactoring workflow (Section 5.3).

• The first experiment to put such a tool in the hands of programmers. The

experiment provides evidence that Stench Blossom helps programmers find

more candidates for refactoring; that programmers generally believe that my

postulated guidelines state desirable properties of smell detectors; and that my

tool generally obeys those guidelines (Section 5.4).

5.2 Guidelines and Related Work

To better understand what makes an effective smell detection tool, and to postulate

user-interface guidelines for such a tool, I examine two existing approaches for dis-

playing code smells. The first, visualizations, typically provides a view separate from

the source code, in which smells are represented graphically (for example, Figure 5.1

on the following page). The second, editor annotations, layers graphics or text on top

of the programmer’s editor to convey smell information (for example, Figure 5.2 on

the next page). I will discuss each in turn; it is important to note that the strengths of

visualizations are often the weaknesses of editor annotations, and vice versa. How-

ever, when I speak about the weaknesses of visualizations and editor annotations, I

am speaking about how they typically are designed. Indeed, limitations of both kinds

of user interfaces could be overcome with some creative retooling.

5.2.1 Visualizations

Several smell detector visualizations have been proposed in prior work. The

Crocodile tool displays code smells using a 3-dimensional visualization where the
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Figure 5.1: Examples of a smell visualization in Noseprints [62]. On the left, information
about LONG METHOD for 3 classes, and on the right, information about LARGE CLASS for
3 other classes. This visualization appears inside of a window when the programmer asks the
Visual Studio programming environment to find smells in a code base. Screenshots provided
courtesy of Chris Parnin.

Figure 5.2: A compilation warning in Eclipse, shown as a squiggly line underneath program
code. This line, for example, calls attention to the fact that this expression is being TYPE-
CAST.

distance between objects represents some smell [73]. The jCosmo tool analyzes the

entire program and displays a graph; the size and color of the graph nodes show

which parts of the system are affected by which code smells [13]. More recently,

the Noseprints tool (Figure 5.1) displays smells using a 2-dimensional, full-screen

visualization [62]. These three visualizations have at least six desirable properties

when displaying smells.

First, visualizations are Scalable. Code smells can emanate from many pieces

of code, and one piece of code can emit several smells. Consider again the

TrainStation example. While it is a relatively small method, it contains at least

three code smells: FEATURE ENVY, MAGIC NUMBER, and COMMENTS. Depend-

ing on the rest of the program, other smells such as REFUSED BEQUEST may be

present in the snippet as well. Indeed, nearly all the code in this method smells!

Underlining everything that contains even a whiff of a code smell could quickly
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overwhelm the programmer, making the detector useless. Thus:

� Scalability. A smell detector should not display smell information in such a

way that a proliferation of code smells overloads the programmer.

Scalability is an important quality of many user interfaces, usually expressed as the

avoidance of “information overload” [41].

Visualizations are scalable because zooming in or out of a visualization allows

the programmer to grasp smell data more easily. Editor annotations are not scalable,

because almost every piece of code in a programmer’s editor could be annotated and

because several annotations may overlap on the same source code.

Second, visualizations can be relational. Sometimes a smell does not emanate

from a single point in the code, but instead speaks of relationships between sev-

eral program elements. Like compilation errors, code smells can relate to several

program elements that may be distributed across the program text. For instance, RE-

FUSED BEQUEST is not simply a problem with an overriding method: it is a problem

with that method, with its overridden superclass method, and potentially with sibling

methods that override that superclass method but do not call super. Thus:

� Relationality. A smell detector should display smell information relationally

when related code fragments give rise to smells.

Visualizations can easily show related program elements by linking them together

with connectors or colors. Editor annotations are generally not relational; they point

at one particular contiguous piece of code as problematic. Moreover, editor annota-

tions cannot easily show relations between non-local program elements.

Third, visualizations are Biased. Not every kind of smell that a tool can detect

has equal value to the programmer. This is because some smells are obvious to the

naked eye (e.g., LONG METHOD), while others are difficult for a programmer to find

(e.g., FEATURE ENVY) [43]. Thus:
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� Bias. A smell detector should place emphasis on smells that are more difficult

to recognize without a tool.

Visualizations can be biased because one smell can easily be emphasized over

another, such as by varying glyph size or hue. Editor annotations are typically not

biased because code is either annotated (contains a smell) or is not annotated (does

not contain a smell), with no room in between.

Fourth, visualizations are task-centric. Because floss refactoring does not en-

courage refactoring for its own sake, it is important that a smell detector does not

encourage a programmer to refactor excessively. Thus:

� Task-centricity. A smell detector should not distract from the programmer’s

primary task, if the need for refactoring is weak.

Task-centricity is an important property of information display in general; as Raskin

puts it, “Systems should be designed to allow users to concentrate on their jobs” [65].

Visualization tools are usually implemented in a task-centric manner because

they are only shown when the programmer asks for them. Editor annotations can

distract from a programmer’s task because they are always overlaid on program text,

and may encourage the programmer to refactor at the slightest whiff of a code smell.

Fifth, visualizations are estimable. Smells such as DUPLICATION may be spread

throughout a whole class whereas others may be localized in only one place. The

extent of such spread can help the programmer determine whether or not a smell

should be refactored away, and how much effort and reward such a refactoring would

entail. Thus:

� Estimability. A smell detector should help the programmer estimate the extent

of the smell spread throughout the code.
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Estimability is similar to Shneiderman’s recommendation for constructive guidance,

although that recommendation was in the domain of recovering from errors [70,

p. 58].

Visualizations can help programmers estimate the extent of smells in their code

by, for example, increasing the size or clustering of visual objects with their increas-

ing spread. Editor annotations sometimes do not help the programmer estimate the

extent of a smell because annotations are typically binary, either being shown or not

shown depending on whether the tool judges that the smell exists or not.

5.2.2 Editor Annotations

Editor annotations have been proposed by several researchers for use in smell detec-

tors. Built on top of the Eclipse programming environment, CodeNose underlines lo-

cations in the program text where smells have been detected [74], much like Eclipse’s

standard compilation warnings (Figure 5.2 on page 64). A similar line-based indica-

tor for smell detectors has been independently proposed by Hayashi and colleagues

[26], Bisanz [3], and Tsantalis and colleagues [82]. These editor annotations have at

least four desirable properties when displaying smells.

First, editor annotations have high availability. If a programmer were to use a

smell detector during floss refactoring, she would need to run it frequently, inter-

leaved with program modifications. During floss refactoring, the programmer should

not have to frequently go through a series of steps to see if a tool finds any code

smells. Thus, I postulate that availability is an important guideline of smell detec-

tors:

� Availability. A smell detector should make smell information as available as

soon as possible, with little effort on the part of the programmer.

Highly-available code smell detection has been expressed as a tool requirement by
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Mealy and colleagues: “Provide incremental exception (code smell) checking with

inline, non-disruptive feedback” [45].

Editor annotations can be always available because program analysis can run in

the background and show the results on top of the source code. Visualizations are

typically not available unless the programmer specifically requests them by running

a special tool and viewing the results in a separate window. However, either of these

user-interfaces could be built with high or low availability.

Second, editor annotations are unobtrusive. Due to interleaving of coding

and refactoring during floss refactoring (Section 3.4.5), a smell detector should be

unobtrusive:

� Unobtrusiveness. A smell detector should should not stop the programmer

from programming while gathering, analyzing, and displaying information

about smells.

Unobtrusiveness is similar to Shneiderman’s recommendation regarding internal

locus of control: “experienced operators strongly desire the sense that they are in

charge of the system and that the system responds to their actions” [71, p. 62].

Editor annotations are unobtrusive because they can be seen while working on a

primary coding task, and can be used even without directly looking at them; having

editor annotations on the programmer’s visual periphery may be sufficient to make

her aware that her code is smelly. Visualizations are typically obtrusive, again, be-

cause they often require the programmer to wait to see the visualization, while the

tool analyzes the code.

Third, editor annotations are context-sensitive. Because the programmer per-

forms floss refactorings only if they help to accomplish an immediate programming

goal, the programmer is most interested in smells related to the code on which she

is currently working. Fixing smells in a context-insensitive manner may be an ineffi-
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cient way of using resources, or may even be counter-productive. Thus:

� Context-Sensitivity. A smell detector should first and foremost point out

smells relevant to the current programming context.

Mankoff and colleagues have stated that context-sensitivity is important in infor-

mation displays: “the information should be useful and relevant to the users in the

intended setting” [42].

Editor annotations are context-sensitive because they decorate the code that the

programmer is working on. Visualizations are typically not context sensitive, because

they either visualize the whole program [13] or programmer-specified parts of the

program [73, 62].

Finally, both editor annotations and visualizations can be expressive. Smells

can be complex and difficult to understand. Why is this? Smells are potentially

more difficult to understand than compilation errors because a piece of code either

generates a compilation error or it does not, but an instance of a code smell may

be subtle or flagrant, widespread or centralized, or anywhere in between. A smell

detector that communicates these properties may be helpful to the programmer when

she judges whether or not to refactor. Thus:

� Expressiveness. A smell detector should go further than simply telling the pro-

grammer that a smell exists; it should help the programmer find the source(s)

of the problem by explaining why the smell exists.

Like Estimability, Expressiveness is a way to achieve Shneiderman’s recommenda-

tion for constructive guidance so that the programmer can make intelligent choices

about the next step [70, p. 58].

Editor annotations can be expressive when they provide more information at a

programmer’s request; the typical user interface to accomplish this is a tooltip, where
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a programmer hovers over a code annotation to reveal a textual description of the

smell. Visualizations can be expressive as well, although the mechanism will vary

from tool to tool.

In this section I have demonstrated that visualizations and editor annotations have

complementary strengths. This raises the question of whether it is possible to com-

bine all of these strengths in one user interface?

5.3 Tool Description

To demonstrate how all of the guidelines in Section 5.2 can be implemented, I have

built a prototype smell detector called Stench Blossom that provides three views

of code smells. By default, Ambient View shows a smell visualization while the

developer is working with code. Then, if the programmer notices something unusual,

she mouses over the visualization to identify specific smells in Active View. If she

desires details, she requests more information by mouse clicking to reveal details in

Explanation View. While I describe the tool textually in this section, it is more useful

to see it in action; a series of short screencasts can be found at http://multiview.cs.

pdx.edu/refactoring/smells. In the description that follows, I emphasize how Stench

Blossom satisfies a guideline by setting the name of the guideline in bold.

5.3.1 Ambient View

The initial view of the smell detector is an ambient information display [61], where

a visual representation of contextually relevant smells is displayed in the editor, but

behind the program text (Figure 5.3 on the following page). This visualization is

intended to be visible and available at all times during code editing and navigating.

It is also intended to be light enough to avoid being distracting, and thus it is intended

to be task-centric. Analysis also happens in the background without the programmer

http://multiview.cs.pdx.edu/refactoring/smells
http://multiview.cs.pdx.edu/refactoring/smells
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Figure 5.3: Ambient View, displaying the severity of several smells at the right of the editor.

having to request it, somewhat like Eclipse’s incremental compilation [18], and thus

is designed to be unobtrusive.

The visualization is composed of sectors of a circle, which I call petals, radiating

from a central point in a half-circle. Each petal represents a code smell, and the

radius of each petal represents the severity of the smell in the current programming

context. For example, in Figure 5.3, the southernmost petal indicates the strongest

smell while the northernmost petal indicates the weakest smell. As the programmer

navigates through the code, the program text flows in front of the visualization, and

the radius of each petal changes as the programmer’s context changes. The radius of

each petal is controlled by a smell analyzer that evaluates a smell in the programmer’s
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context. However, the maximum screen area available for each petal is bounded, and

thus the visualization is designed to scale as the number of smells increases.

Petals are colored from red-to-green, north-to-south. Smells are assigned to

petals such that the southernmost (and greenest) petal is the most obvious smell and

the northernmost (and reddest) petal is the least obvious smell. My subjective obvi-

ousness ordering is reflected in Table 5.1 on page 61, where the least obvious smell

appears at the top, as it does in Ambient View2. For example, in Figure 5.3 on the

preceding page, the view indicates that there is a strong unobvious smell (in this

case, FEATURE ENVY, although the smell names are intentionally omitted from this

view) as well as a strong obvious smell (LARGE CLASS). This feature is intended

to allow the programmer to judge bias at a glance because more obvious smells are

visually distinguishable from less obvious smells, both spatially (top-to-bottom) and

chromatically (red-to-green). If the programmer notices that the visualization is gen-

erally top-heavy (and mostly red), then there is a strong smell that the programmer

may not otherwise notice; in contrast, if the visualization is generally bottom-heavy

(and mostly green), the programmer can infer that while there is a strong smell, she

is more likely to be already aware of it.

The purpose of this view is to allow the programmer to occasionally attend to

the visualization to see if there are any strong, relevant code smells and to get a

rough estimate of their degree. Little work or commitment is required on the part

of a programmer to find out whether a smell exists; she needs only to glance at the

visualization. This is unlike most existing smell detection tools, which require the

programmer to activate the tool and to inspect the results. Indeed, such existing smell

detectors are designed to be usable only while inspecting code, but not while fixing

bugs or adding features, making them usable only in one out of three of Fowler’s

refactoring tasks [22, pp.58-59].

2I have implemented analyzers for all the smells in Table 5.1 on page 61, except for REFUSED
BEQUEST, MAGIC NUMBER, and COMMENTS.
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Figure 5.4: Active View, where the programmer has placed the mouse cursor over a petal
representing FEATURE ENVY to reveal the name of the smell and a clickable [+] to allow the
programmer to transition to Explanation View.

5.3.2 Active View

If the programmer observes something interesting or unusual in the Ambient View,

she can then mouse-over a petal to reveal the name of that petal’s associated smell.

Furthermore, the petal’s color is darkened to bring it into the programmer’s focus. In

Figure 5.4, the programmer has moused-over the second smell from the top. If the

programmer is interested in further details of the detected smell, she can click on the

smell label to activate Explanation View.

The purpose of Active View is to provide a little more information than Ambient

View, and to help the programmer transition to Explanation View. Again, the transi-

tion from view to view in order to reveal more information was designed to be as fast

and as painless as possible.
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Figure 5.5: Explanation View, showing details about the smell named in Figure 5.4 on the
previous page.

5.3.3 Explanation View

Explanation View provides detailed information about a particular smell. In essence,

this view was designed to explain why the smell’s petal has the displayed radius in

the most expressive way possible. Each smell is displayed using different visual el-

ements, but the display of Explanation View typically has two common components.

Summary Pane. In Figure 5.5, a summary pane is displayed at the upper right

of the editor. This pane is fixed relative to the program code (that is, it does not

move when the programmer navigates away), but may be moved by the programmer

using the mouse. Generally, this pane displays a summary of the data collected from

the smell analyzer. In Figure 5.5, the summary pane for the FEATURE ENVY smell
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shows that 22 members from the DHTTransportFullStats class are accessed,

while only one member of the current class is accessed; this is the reason that Stench

Blossom rates FEATURE ENVY as so severe. The DataOutputStream class label

is moused over in the figure; this caused all references to members in that class to be

outlined in black.

Editor Annotations. The code in the editor is typically annotated to point out the

origin of smells. For example, in the Figure you can see where the members of the

DataOutputStream class are referenced in the code. All references to a particular

external class are related visually by using the same color highlight. The extent of

the problem is also estimable; for instance, in Figure 5.5 on the preceding page,

you can see that many messages are sent to DHTTransportFullStats throughout

this code. Looking at the code in this figure from a programmer’s perspective, I

might judge that because the code “envies” the DHTTransportFullStats class,

this code would be more cohesive if I refactored it and placed it in a new method in

the DHTTransportFullStats class.

In summary, Explanation View was built to help the programmer not only under-

stand if code smells, but why the code smells.

5.3.4 Details of Stench Blossom

While I have outlined how Stench Blossom works in general, a number of details

have significant bearing on the tool’s practicality.

First, how does Stench Blossom determine the radius of each petal in Ambient

View? The maximum size of each petal is fixed so that it does not monopolize the ed-

itor. Each individual smell analyzer is responsible for calculating a scalar metric for

one smell in the programmer’s working context, a calculation that produces a value

between zero and the maximum radius of the petal. The formula for this metric is

different for different analyzers; some formulae are more complex than others. For
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instance, LARGE CLASS uses a relatively simple metric because the radius increases

as the size of the class increases, while the metric for FEATURE ENVY incorporates

the number of external classes referenced, the number of external members refer-

enced, and whether internal members are referenced.

Second, how does the Stench Blossom search for smells efficiently? Several

smell analyzers require complex program analysis, so as the number and complex-

ity of analyzers increase, the development environment may begin to respond more

slowly. Having detection run in a background thread and caching smell results for

unchanged program elements are important techniques for maintaining acceptable

performance. Moreover, I hope that a more intelligent search strategy, starting in

the programmer’s current context and radiating outward to less contextually relevant

code, will improve performance even further. Smell analysis may also be made

more efficient by using heuristics to analyze smells for Ambient View, but using full

static analysis in Explanation View. In this way, the development environment can

remain responsive during normal development and be fully accurate during smell

inspection.

Third, what constitutes the programmer’s “current context?” In my implementa-

tion, I define current context as the union of all methods, whole or partial, that are

visible in the active editor. In the future, I may use more sophisticated definitions of

context, such as the task contexts used by the Mylyn tool [36] or Parnin and Görg’s

usage contexts [60].

5.4 Evaluation

I evaluated Stench Blossom, and thus, indirectly, my guidelines, by conducting an

experiment where programmers used the tool to find and analyze smells. Experiment

materials, including the experimenter’s notebook and the results database, can be

found at http://multiview.cs.pdx.edu/refactoring/experiments.

http://multiview.cs.pdx.edu/refactoring/experiments
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Professionals Students Both

Count 6 6 12

Years of programming experience
(median)

12.5 5.5 9.5

Hours spent per week programing
(median)

30 17.5 30

At least some refactoring knowl-
edge (subject count)

6 4 10

At least some smell knowledge
(subject count)

4 0 4

Eclipse users (subject count) 4 5 9

Refactoring tool users (subject
count)

4 1 5

Table 5.2: Programming experience of subjects.

5.4.1 Subjects

I recruited a total of 12 subjects: 6 commercial Java developers and 6 Portland State

University students from a graduate class on relational database management sys-

tems. Subjects were recruited using an email that stated that participants needed to

be at least moderately familiar with Java, and unfamiliar with the smell detector de-

scribed here. During the experiment, all subjects confirmed that they were familiar

with Java, and additionally that they were familiar with refactoring. The majority

reported that they had at least heard of the concept of code smells.

Subjects from the class were asked to volunteer to participate in exchange for

extra credit on one programming assignment. Professional subjects were drawn from

a pool of local professional programmers who had volunteered previously at Java and

Eclipse user group meetings. Professional subjects were not compensated, although

every subject was offered a beverage during the experiment.

Table 5.2 lists the experience of the professional and student programmers, as
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self-reported in a pre-experiment questionnaire. Additionally, all subjects use Inte-

grated Development Environments, and are at least moderately familiar with Java.

These data suggest that subjects arrived with the requisite amount of programming

experience, and a varying level of experience with refactoring and smells.

5.4.2 Methodology

I conducted the experiment using a laptop (1.7 GHz, 2GB of RAM, 15.4 inch wide

screen display running 1280 × 800 resolution) with an external mouse. I conducted

each experiment one-on-one, with one subject and myself as experiment administra-

tor.

Subjects were divided into four groups to mitigate learning effects. Half of the

subjects did smell detection tasks without the aid of Stench Blossom first, then with

the aid of Stench Blossom, while the other half did the smell detection with Stench

Blossom first, then without it. Within these two groups, half of the subjects worked

over codeset A first, then B second, and half over codeset B first, then A second. I

chose codesets A and B to contain an approximately equal variety of smells.

The experiment had four parts. First, the subject filled out a 1-page questionnaire

regarding their programming, refactoring, and smell-detection experience. Subjects

were then given eight 3 × 5 cards, each containing a smell name and description on

the front, and an example on the back. Subjects were asked to read these cards within

a few minutes, and were told that they would later be asked to find smells as well as

explore some smell details.

Second, subjects were asked to skim four java files, top to bottom, and mention

any smells that they noticed. For two of the files, subjects looked for the smells man-

ually, and for the other two they used the smell detector. Before using the detector, I

gave each subject a demonstration as I read aloud the following description:

The tool is represented by a visualization behind your Java code. It looks



CHAPTER 5. THE IDENTIFICATION STEP 79

a bit like a bunch of petals on a flower. Each petal represents a smell, and

you can hover over to see the name of the smell. The size of the petal

represents how bad that smell is in the code that you are looking at. As

this tripwire passes over methods, or when the cursor is in a method, the

smells for that method are visualized. This part of the tool is intended to

give you an idea of which smells are present. There’s more detail to the

tool, but I’ll get to that later.

The programmer then began the task, and I recorded which of the 8 smells that the

programmer noticed, with and without Stench Blossom.

Third, subjects analyzed FEATURE ENVY in four different methods: two methods

with Stench Blossom, and two methods without. I gave the subjects a demonstration

as I read aloud the following description:

Suppose that I glance at the smell indicator and see that Feature Envy

is high. I can then click on its label, and get a detailed view of what’s

going on. The movable sheet shows me which classes members are ref-

erenced, and assigns each class a color. So, for instance, I can see that

many members of DHTTransportFullStats are referenced, but only one

member in this class is referenced. The associated members are high-

lighted in source code, and I can mouse-over the classes and members

to emphasize their occurrences in code. Looking at this detail, I might

conclude that the method, or some parts of it, should be moved to DHT-

TransportFullStats.

I then read subjects the following task description:

So the task that I want you to do is to use the tool to help you make

some judgments about the code; how widespread the Feature Envy is,

how likely you are to remove it, and how you might do it.
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During the experiment, I recorded these judgements.

In the fourth and final part, a post-experiment questionnaire, I asked program-

mers about their experiences using Stench Blossom, as well as their opinion about

smell detectors in general. Specifically, I asked programmers to rate whether the 9

usability guidelines were important, and whether the smell detector adhered to those

guidelines.

Additionally, the questionnaire asked programmers to rate two other guidelines

that a smell detector might exhibit but that I did not postulate in Section 5.2:

• Decidability, the property that the tool should help the programmer decide

whether to remove a smell. This is similar to Shneiderman’s recommendation

for constructive guidance [70, p. 58].

• Consistency the property that the tool should have a user interface consistent

with the rest of the environment. This derives directly from Nielsen’s “consis-

tency and standards” heuristic [55].

I included these two guidelines because I hypothesize that they are not important

to smell detectors, and thus they can provide a baseline against which to test the

guidelines that I do postulate.

5.4.3 Results

5.4.3.1 Quantitative Results

Regarding the first task — recognizing smells in code — the median number of smells

found without the assistance of Stench Blossom was 11, while the median number of

smells found with the assistance of Stench Blossom was 21. The difference between

smells found with Stench Blossom and those found without is statistically significant

(p = .003, df = 11, z = 2.98, using a Wilcoxon matched-pairs signed-ranks test). This

aligned with subjects’ opinions: all indicated that it was difficult to look for all 8
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smells at once. All subjects indicated that the smell detector found information that

they would not have found as quickly. Eight of the twelve indicated that the detector

found information that they would not have found at all. All subjects indicated that

Stench Blossom was useful for the given tasks, and all but one indicated that they

would use the smell detector when they code, if it were available. The sole dissenter

did not say why she would not use the tool.

Table 5.3 on the following page lists how subjects rated each guideline that I

postulated in Section 5.2. In the left column, after the guideline name, the guideline

description is listed as it appeared in the post-experiment questionnaire (the name

of each guideline did not appear). The middle major column lists how the subjects

rated each guideline in general; the questionnaire labeled this column as “How im-

portant is the characteristic to any smell detection tool?” The right major column

lists how well Stench Blossom obeyed that guideline; the questionnaire labeled this

column as “Do you agree that the characteristic applies to the tool you just used?”

In the questionnaire subjects marked one entry in each major column. In Table 5.3,

the aggregates of all responses are displayed; the darker the table cell, the more par-

ticipants marked that response. In Table 5.3, I order guidelines primarily with the

highest mean guideline scores appearing first, and secondarily by the highest mean

obedience scores.

Guidelines that were not included in the originally postulated list of 9 guidelines

(Section 5.2) are italicized in Table 5.3. Note that subjects tended to rank the pos-

tulated guidelines, as a whole, significantly higher than the guidelines that I did not

postulate (p < .001, df = 130, z = 3.69, using a Wilcoxon rank-sum test), suggesting

that programmers do indeed believe that my guidelines are generally important to

usable smell detectors.
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General Importance Tool Obedience
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Unobtrusiveness: The tool should not
block me from my other work while it an-
alyzes or finds smells.

0 0 0 1 11 0 0 1 2 9

Context-Sensitivity: The tool should tell
me first and foremost about smells related
to the code I’m working on.

0 1 1 3 7 0 2 1 4 5

Scalability: The tool should not over-
whelm me with the smells that it detects.

0 1 1 3 7 0 2 4 2 4

Bias: The tool should emphasize smells
that are difficult to see with the naked eye.

0 1 0 6 5 0 0 1 4 7

Estimability: The tool should help me es-
timate the extent of a smell in the code.

0 0 3 3 6 0 0 1 6 5

Task-centricity: The tool should not dis-
tract me.

0 1 1 5 5 0 2 0 5 5

Relationality: When showing me details
about code smells, the tool should show me
the relationships between effected program
elements.

1 1 3 4 3 1 1 1 7 2

Availability: The tool should make smell
information available to me at all times.

1 2 2 4 3 0 0 1 4 7

Consistency: The tool should have a user
interface consistent with the rest of the en-
vironment.

1 2 2 5 2 1 2 2 5 2

Expressiveness: In addition to finding
smells for me, the tool should tell me why
smells exist.

3 0 3 3 3 1 1 3 6 1

Decidability: The tool should help me de-
cide whether to remove a smell from the
code.

3 2 4 2 1 1 4 2 4 1

Table 5.3: Post-experiment results regarding guidelines.



CHAPTER 5. THE IDENTIFICATION STEP 83

5.4.3.2 How Smells were Identified without Stench Blossom

When I asked subjects to look for the 8 smells in the code, subjects reported that they

found it difficult to keep them all in mind at once. Overall, 4 subjects “somewhat

agreed” and 8 “strongly agreed” that “it was difficult to look for all 8 smells at the

same time.” While looking for smells, a subject remarked “I realize [that] I forgot

about the LONG METHOD one” and “TYPECAST: I’d totally forgotten,” even though

this subject had reviewed the smells less than 10 minutes prior and was among the

3 programmers who rated themselves most knowledgeable about code smells. Like-

wise, even when readily apparent by inspecting code, some smells were sometimes

overlooked by programmers. For example, after overlooking a switch statement

several times, one programmer commented “I can’t believe I didn’t see it.”

Both when looking for code smells and when judging whether or not to refactor,

subjects sometimes used simple heuristics for analyzing code rather than full anal-

ysis. Consider DATA CLUMPS, where, for example, the parameters int a, int b,

int c, int d, int e, int f, all appear in several different method declarations.

During the experiment, when asked about why she said that DATA CLUMPS were

present in the source code, one subject said that a method declaration contained six

parameters, yet she did confirm that any of those six parameters were repeated in

other method declarations. The programmer may not have done this check because

it would be too time consuming to do so; indeed, another programmer remarked “it’s

hard to find data clumping...I have to go back and forth” between method declara-

tions.

Likewise, programmers used heuristics for making judgements about FEATURE

ENVY, where, for example, the members of some class are referenced many times

outside of that class in “envying” code. One explicitly mentioned heuristic was that

if the method being inspected “is static. . . [then] we’re not referencing. . . this class.”

This heuristic is useful in that a static method cannot reference instance members, but
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fails when the method references static members. Another heuristic, used by several

programmers, attempts to find referenced classes by assuming that each variable is

of a different class. This works when each variable is of a different class, but is not

effective when several variables are of the same class, or for member references to the

super class, which appear identical to references to the current class. For example,

this code snippet encountered during the experiment from javax.print contains

a variable flavor that is tested to see whether it meets one of several different

properties:

public Object getSupportedAttributeValues(...,DocFlavor flavor,...){

...

if (flavor == null ||

flavor.equals(DocFlavor.SERVICE_FORMATTED.PAGEABLE) ||

flavor.equals(DocFlavor.SERVICE_FORMATTED.PRINTABLE) ||

flavor.equals(DocFlavor.BYTE_ARRAY.GIF) ||

flavor.equals(DocFlavor.INPUT_STREAM.GIF) ||

flavor.equals(DocFlavor.URL.GIF) ||

...

Using the heuristic, programmers were often unable to recognize the full extent of

the FEATURE ENVY in this code. If you use the heuristic, you would look at all

the messages sent to the variable flavor, and conclude that the code is referencing

flavor’s class’s members exactly 5 times (specifically, 5 references to equals).

What you might fail to notice, however, is that flavor’s class is DocFlavor,

exactly the same DocFlavor whose static members are referenced 5 other times

(specifically, two references to SERVICE FORMATTED, one to BYTE ARRAY, one

to INPUT STREAM, and one to URL). In total, the code is actually referencing the

DocFlavor class 10 times, using both an instance method and several static fields.

Indeed, it appeared that several subjects did not recognize this, and proposed refac-

torings that produced code similar to this:
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public Object getSupportedAttributeValues(...,DocFlavor flavor,...){

...

if (flavor == null ||

flavor.isSupported(new DocFlavor[]{

DocFlavor.SERVICE_FORMATTED.PAGEABLE,

DocFlavor.SERVICE_FORMATTED.PRINTABLE,

DocFlavor.BYTE_ARRAY.GIF,

DocFlavor.INPUT_STREAM.GIF,

DocFlavor.URL.GIF,

...

public class DocFlavor{

...

public boolean isSupported(DocFlavor[] flavors){

for(DocFlavor flavor : flavors)

if(this.equals(flavor))

return true;

return false;

}

...

In the above code, programmers did not realize that they did not need to pass in an

array of DocFlavors to the isSupported method3. Instead, isSupported could

be responsible for those DocFlavors itself, suggesting the more concise and more

cohesive:

3Like all refactoring decisions, this isn’t necessarily the “right” decision. Subjects had the choice
of passing in DocFlavors or not; the point here is that subjects appeared unaware of the choice
when making the refactoring decision.
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public Object getSupportedAttributeValues(...,DocFlavor flavor,...){

...

if (flavor == null ||

flavor.isSupported()){

...

public class DocFlavor{

public boolean isSupported(){

return equals(SERVICE_FORMATTED.PAGEABLE) ||

equals(SERVICE_FORMATTED.PRINTABLE) ||

equals(BYTE_ARRAY.GIF) ||

equals(INPUT_STREAM.GIF) ||

equals(URL.GIF) ||

...

}

}

At times, then, such code analysis heuristics used by programmers led them to results

that may not be optimal.

5.4.3.3 How Smells were Identified with Stench Blossom

Subjects confirmed that code smells were highly subjective. For example, several

programmers had different definitions of what “too big” means for LONG METHOD

and LARGE CLASS. Several subjects agreed with Stench Blossom — that counting

the number of characters is a useful for gauging how long something is — although

some commented that the tool should not have included comments when gauging

size. Some subjects stated that counting statements or expressions in the abstract

syntax tree is the only useful metric for length. One subject noted that “if it fits on

the page, it’s reasonable.” Likewise, programmers made comments indicating that

smells were not binary, but encompassed a range of severities; for instance, smells

were “borderline,” “obvious,” or “relative” to the surrounding code.

During the experiment, I observed that, when subjects are looking for smells

using Stench Blossom, they sometimes ignored the smell indicators. Several subjects
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ignored the visualization when the petals were small; others sometimes ignored the

visualization regardless of the petal size.

I observed subjects use Stench Blossom to find smells in two different ways. As

I expected, some subjects looked at the visualization, then at the code to see if they

agreed with what the visualization was telling them. However, some subjects looked

at the code first, then looked at the visualization to see if the tool confirmed their

findings.

Judging as an external observer, it appeared to me that subjects made refactoring

judgements about FEATURE ENVY with about equal confidence with and without the

tool. However, upon questioning, 10 out of 12 subjects said that the tool improved

their confidence in their refactoring judgement, and 11 out of 12 said that the tool

helped them to make more informed judgements.

5.4.3.4 Suggestions for Tool Improvements

Subjects made many suggestions on what could be improved in Stench Blossom.

A frequent request was the need for configurability, which the tool does not cur-

rently provide (although this was mentioned by Mealy and colleagues [45]). This

was especially true of the size of the petals; some programmers felt that the petals

were sometimes overstating the smells, sometimes the opposite. A machine learning

approach (such as neural networks) combined with a direct manipulation of the vi-

sualization (such as dragging the radius of the petal when the programmer disagrees

with it) may help provide configurability in a way that is unobtrusive.

Some programmers wanted to be able to zoom out on the code when using the

Explanation View, often because the code under consideration spanned more than

one screen. While it is difficult to have both the ability to zoom out and the ability to

edit code at the same time, it may be sufficient to reduce the font size of the code on

demand to achieve this result.
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The inclusion of LARGE CLASS with the rest of the smells proved problematic for

some programmers, largely because it is class-wide whereas the other smells are only

method-wide. This difference in scope is a problem because LARGE CLASS and the

other smells are presented in the same way. Behaviorally, this problem manifested

itself in that some programmers repeatedly looked at the LARGE CLASS petal, even

though it did not change as the programmer navigated from method to method within

the same class.

While I designed the smell detector to provide quick access to detailed smell

information, several programmers desired even faster access. One programmer com-

mented that the detector should forgo the Active View altogether; when a petal is

moused-over, it should show Explanation View immediately. The cost of this mod-

ification would be that the programmer may inadvertently activate the Explanation

View when moving the mouse near the right scroll bar. Another programmer com-

mented that all smell names, not just from one petal, should be displayed on mouse

over. This modification may make it difficult for the programmer to visually asso-

ciate a smell name with a specific petal. While both of these suggestions would entail

such design tradeoffs, they both also increase information efficiency [65], and thus

are worthy of consideration for future smell detector design.

5.4.4 Threats to Validity

There are several threats to validity in this experiment. First, the experiment was not

comparative; I did not compare my smell detector against an existing smell detector.

As a consequence, I cannot claim that Stench Blossom is better than an existing tool.

I did not perform a comparative experiment for two reasons:

• There is no representative existing tool to compare against. Although there

are Eclipse smell detector plugins that utilize the underlining interface that I
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could compare Stench Blossom against, I am not aware of any Eclipse smell

visualizations.

• Any comparison against an existing tool would require the experiment to work

within the boundaries of the intersection of all the tools, a space that would be

extremely small. For instance, van Emden and Moonen’s tool [13] implements

only two smells (INSTANCEOF and TYPECAST); having an experiment with

only these two smells would produce only very limited results.

A second limitation is that the experiment simulated two inspection tasks, yet I

have claimed Stench Blossom is more useful for coding tasks. I did not perform an

experiment with coding tasks for several reasons:

• Performing a coding task requires that the code and coding task is sufficiently

simple that it can be rapidly learned, but this requirement conflicts with two

other requirements of the experiment: programmers must traverse a sufficiently

large and smelly code base so that they can observe a large number of smells.

• During a realistic coding task, there is no guarantee that the programmer will

interact with the tool sufficiently frequently to allow them to make informed

judgments about it. Indeed, I would not expect programmers to be interacting

with this tool more than 10% of the time. By having the programmers use

the tool frequently, I have higher confidence that programmers made informed

judgements.

The biggest difference between coding and inspecting is that when coding, program-

mers would likely be more focused on their coding task than on looking for defects

or smells in code. There is a danger, then, that programmers would either be too

distracted by the tool while coding, or wouldn’t notice the tool if it was trying to

convey information. Thus, I asked programmers to estimate if the tool would be too
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distracting or whether it would get their attention at the right time while coding. Ten

out of twelve programmers estimated that the tool would not be too distracting, while

ten out of twelve estimated that it would get their attention at the right time.

Another threat to validity in this experiment is that the 6 students received extra

credit for participating, and thus I may have attracted a non-representative sample of

students who were performing poorly in the class and needed the extra credit. Again,

this is a general threat to all experiments that offer extra credit for participation.

However, I attempted to counterbalance this somewhat by taking a stratified sample

where half of the participants were uncompensated volunteer programmers.

A final threat to validity is that subjects may have biased the results by wanting to

please the experimenter. While this is a threat to many experiments, it is especially

salient in this experiment because much of my results are derived from programmers’

estimations and opinions, rather than direct measurements how they used this tool.

This is a side-effect of smell detectors in general, because there is no an objective

standard of what is the “right” response from a programmer when it comes to smells.

For example, if a programmer comes across a method that Stench Blossom says is

very long and the programmer says nothing about it exhibiting a LONG METHOD

smell, I cannot conclude that the tool failed, because she may have judged that the

method is small enough in her opinion.

An attempt that I made to mitigate this threat was not to disclose that I had built

Stench Blossom myself4 until after the experiment, so that programmers would be

less likely to withhold opinions to avoid hurting my feelings. Likewise, most

opinions that I asked of the programmers were written down on paper by the subjects

themselves, and I did not read what the subject wrote until after they had left the

experiment room. Thus, I believe that I mitigated this risk as much as was reasonably

possible.

4 One exception to this occurred when a subject asked in the middle of the experiment whether I
made the tool myself.
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5.4.5 Discussion

Looking at the results, it appears that Stench Blossom is useful for locating smells

and for helping programmers to make more informed, confident, refactoring judge-

ments. The results suggest that the tool has value in general to ease the mental burden

of remembering several smells at once, even when those smells are clearly present

in the code. Moreover, it appears that the tool also has value in accurately bringing

together relevant information for making refactoring judgements, and avoiding the

need for error-prone heuristics.

On the matter of whether my postulated guidelines are useful guidelines for build-

ing more usable smell detectors, the results appear positive. In general, most of my

guidelines appear to be rated as important by the programmers, although a minority

of programmers appear to believe that some guidelines are not at all important. For

example, the postulated guideline that was judged the least important, expressive-

ness, was judged as “not important” by 3 subjects. Interestingly, these 3 program-

mers were all volunteers from the classroom, and were the second, third, and fourth

least experienced programmers among the 12 subjects. This suggests that, perhaps,

less experienced programmers do not value a tool that can explain its reasoning, and

believe that needing such an explanation is a sign of poor programming ability.

Programmers also appear to believe that Stench Blossom obeys these guidelines,

again with some disagreement between individuals. The two guidelines over which

there was the most disagreement were whether tool was scalable and expressive; the

reason for this disagreement is unclear.

After observing programmers use Stench Blossom, I am more convinced that

code highlighting for communicating smells is not an effective mechanism for com-

municating smells to programmers. This is because programmers have a wide variety

of opinions on what smells bad and what does not. Any binary indicator such as un-

derlining, would either miss or overemphasize smells that the programmer disagrees
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with. Thus, such false-negatives and false-positives may erode programmers’ trust

in the tool, making them less likely to use it in the future.

5.5 Future Work

The need for configurability was a frequent request among experiment subjects, so

research into how to make this efficient is future work. Further work on the balance

between getting a programmer’s attention and not being too distracting is also nec-

essary. Small bugs and improvements were revealed during the experiment as well,

and are deserving of further attention. Finally, a longer-term evaluation of the smell

detector may reveal more interesting usage patterns, especially whether the tool can

get a programmer’s attention at the right times.

5.6 Conclusions

In this chapter, I have addressed the usability of tools that help programmers during

the identify step if the refactoring process (Section 2.5). I introduced guidelines for

building tools to help programmers identify opportunities for refactoring that align

with how programmers refactor, guidelines derived from the strengths of the user-

interfaces of existing smell detectors. I also described how these guidelines could be

built into a single tool as a behind-code, always-up-to-date visualization. The eval-

uation that I presented in this chapter suggests that my smell detection tool, Stench

Blossom, can help programmers to find and understand more smells with greater

confidence. The evaluation also suggests that programmers value the guidelines, and

that my smell detector aligns well with those guidelines.



Chapter 6

The Selection Step: Communicating What Code to Refactor 1

Every use of a refactoring tool requires the programmer to choose program elements

to be refactored. This is commonly done by selecting characters in an editor. As

the formative study described in Section 4.5 demonstrated, selecting code as input

to a refactoring tool can be surprisingly difficult for programmers. In this chapter

I explore how to build tools that help programmers during the selection step of the

refactoring process (Section 2.5).

6.1 Contributions

The major contributions of this chapter are as follows:

• Two new tools to help programmers select program statements for input to

refactoring tools (Section 6.2).

• An experiment that demonstrates that these two tools can help programmers re-

duce code selection errors by 84 percent and 95 percent, and improve selection

speed by 46 percent and 24 percent (Section 6.3).

• Guidelines for making tools that help programmers select code for refactoring

(Sections 6.4 and 6.6.2).

1Parts of this chapter appeared in the Proceedings of the 2008 International Conference on Soft-
ware Engineering [49] and as part of my thesis proposal.
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Figure 6.1: The Selection Assist tool in the Eclipse environment, shown covering the entire
if statement, in green. The user’s selection is partially overlaid, darker.

• A user interface, called refactoring cues, that eliminates syntax selection errors,

keeps the programmer’s focus in the editor and enables selection of multiple

program elements for refactoring (Section 6.6.3).

6.2 Tool Description

In this section, I describe two tools that I have built for the Eclipse environment [18]

that address the problem of accurately selecting code as input to the EXTRACT

METHOD refactoring demonstrated in the formative study (Chapter 4). These tools

are built to prevent the selection errors encountered during that study, as recom-

mended by Nielsen: “even better than good error messages is a careful design which

prevents a problem from occurring in the first place” [55]. You can download the

tools and view a short screencast here: http://www.multiview.cs.pdx.edu/refactoring.

6.2.1 Selection Assist

The Selection Assist tool helps programmers in selecting whole statements by pro-

viding a visual cue of the textual extent of a program statement. The programmer

begins by placing the cursor in the white space in front of a statement. A green high-

light is then displayed on top of the text, from the beginning to the end of a statement,

as shown in Figure 6.1. Using the green highlight as a guide, a programmer can then

select the statement normally with the mouse or keyboard.

This tool is similar to tools found in other development environments. DrScheme,

http://www.multiview.cs.pdx.edu/refactoring
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Figure 6.2: Box View tool in the Eclipse environment, to the left of the program code.

for example, highlights the area between two parentheses in a similar manner [16],

although that highlighting disappears whenever cursor selection begins, making it

ineffective as a selection cue. Vi and other text editors have mechanisms for bracket

matching [34], but brackets do not delimit most statements in Java, so these tools

are not always useful for selecting statements. Some environments, such as Eclipse,

have special keyboard commands to select statements, but some programmers prefer

the mouse. Selection Assist allows the programmer to use either the mouse or the

keyboard for selection tasks.

6.2.2 Box View

I designed a second tool to assist with selection, called Box View; it displays nested

statements as a series of nested boxes. Box View occupies a panel adjacent to pro-

gram text in which it displays a uniform representation of the code, as shown in

Figure 6.2. Box View represents a class as a box with labeled method boxes inside

of it. Inside of each method are a number of nested boxes, each representing a nested

statement. When the programmer selects a part of a statement in the editor, the corre-

sponding box is colored orange. When the programmer selects a whole statement in

the editor, the corresponding box is colored light blue. When the programmer selects

a box, Box View selects the corresponding program statement in the program code.

Like Selection Assist, programmers can operate Box View using the mouse or

keyboard. Using the mouse, the programmer can click on boxes to select code, or
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select code and glance at the boxes to check that the selection includes only full

statements (contiguous light blue). Using the keyboard, the programmer can select

sibling, parent and child statements. Box View was inspired by a similar tool in

Adobe GoLive (http://www.adobe.com/products/golive) that displays an outline of

an HTML table.

Box View scales fairly well as the level of statement nesting increases. In meth-

ods with less than ten levels of nesting, Box View requires no more screen real estate

than the standard Eclipse Outline View. In more extreme cases, Box View can be

expanded horizontally to enable the selection of more deeply nested code.

6.3 Evaluation

Having demonstrated that programmers have difficulty in selecting code as input to

EXTRACT METHOD tools (Chapter 4) and having proposed two new selection tools

as solutions, I conducted a study to ascertain whether or not the new tools overcome

this usability problem.

6.3.1 Subjects

I drew subjects from Professor Andrew Black’s object-oriented programming class.

Professor Black gave every student the option of either participating in the experi-

ment or reading and summarizing two papers about refactoring. In all, 16 out of 18

students elected to participate. Most students had around 5 years of programming

experience and three had about 20 years.

About half the students typically used integrated development environments such

as Eclipse, while the other half typically used editors such as vi [34]. All students

were at least somewhat familiar with the practice of refactoring.

http://www.adobe.com/products/golive
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6.3.2 Methodology

The experiments were performed over the period of a week, and lasted between 1
2

and 11
2

hours per subject. The subjects first used three selection tools: mouse and

keyboard, Selection Assist, and Box View. Subjects were randomly assigned to one

of five blocks; code and tools was presented in a different, randomized order between

blocks. I chose code from the open source projects described in Chapter 4. Each

subject used every tool.

When subjects began the experiment, the test administrator showed them how to

use the first of the three selection tools, depending on which block she was assigned

to. The administrator demonstrated the tool for about a minute, told subjects that

their task was to select all if statements in a method, and then allowed them to

practice the task using the selection tool until they were satisfied that they could

complete the task (usually less than 3 minutes). Subject were then told to perform

the task in 3 different methods from 3 classes; the methods contained about two

dozen if statements in total. I classified a selection as correct when it spanned from

just before the “i” in if to just after the if statement’s closing bracket “}”, being

permissive of any additional selected whitespace. I classified all other selections as

mis-selections, such as when the selection does not include the closing bracket. The

training session and the selection task were then repeated for the two other tools on

two different code sets.

6.3.3 Results

Table 6.1 on the next page shows the combined number of if statements that subjects

selected correctly and incorrectly with each tool. Table 6.2 on the following page

shows the mean time across all participants to select an if statement, and the time

normalized as a percentage of the selection time for the mouse and keyboard.

From Table 6.1, you can see that there were far more mis-selections using the
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Total Mis-Selected if
Statements

Total Correctly Selected
if Statements

Mouse/Keyboard 37 303
Selection Assist 6 355
Box View 2 357

Table 6.1: Total number of correctly selected and mis-selected if statements over all subjects
for each tool.

Mean Selection
Time

Selection time as Percentage of
Mouse/Keyboard Selection Time

Mouse/Keyboard 10.2 seconds 100%
Selection Assist 5.5 seconds 54%
Box View 7.8 seconds 76%

Table 6.2: Mean correct selection time over all subjects for each tool.

mouse and keyboard than using Selection Assist, and that Box View had the fewest

mis-selections. Table 6.2 indicates that Selection Assist decreased mean selection

time from 10.2 seconds to 5.5 seconds (46% faster), and that Box View decreased

selection time to 7.8 seconds (24% faster). Both speed increases are statistically

significant (p < .001, using a t-test with a logarithmic transform to normalize long

selection-time outliers).

The left graph in Figure 6.3 on the next page shows individual subjects’ mean

times for selecting if statements using the mouse and keyboard against Selection

Assist. Here you can see that all subjects but one (labeled ’a’) were faster using the

Selection Assist than using the mouse and keyboard (subjects below the dashed line).

You can also see that all subjects but one (labeled ’b’) were more error prone using

the mouse and keyboard than with Selection Assist. The difference in error-rate is

statistically significant (p = .003, df = 15, z = 3.01, using a Wilcoxon matched-pairs

signed-ranks test).

The right graph in Figure 6.3 on the following page compares the mouse and

keyboard against Box View. Here you see that 11 of the 16 subjects are faster using
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Box View than using the mouse and keyboard. You can also see that all subjects

except one (labeled ’c’) are less error prone with Box View. The difference in error-

rate is statistically significant (p = .001, df = 15, z = 3.35, using a Wilcoxon matched-

pairs signed-ranks test).

I administered a post-test questionnaire that allowed the subjects to express their

preferences among the three tools. The survey itself and a summary of the responses

can be found in my technical report [48]. Significance levels are reported using a

two-tailed Wilcoxon matched-pairs signed-ranks test.

Most users did not find the keyboard or mouse alone helpful in selecting if

statements, and rated the mouse and keyboard significantly lower than either Box

View (p = .001, df = 15, z = 3.25) or Selection Assist (p = .002, df = 15, z = 3.13). All

users were either neutral or positive about the helpfulness of Box View, but were

divided about whether they were likely to use it again. Selection Assist scored the

highest of the selection tools, with 15 of 16 users reporting that it was helpful and

that they were likely to use it again.

Overall, the subjects’ responses showed that they found Selection Assist and Box

View superior to their traditional counterparts for the tasks given to them. More

importantly, the responses also showed that the subjects felt that the new tools would

be helpful outside the context of the study.

6.3.4 Threats to Validity

Although the quantitative results discussed in this section are encouraging, several

factors must be considered when interpreting these results.

Every subject used every tool, but a flaw in the study design caused the distribu-

tion of tools to code sets to be uneven as shown in Table 6.3 on the next page. In the

most extreme instance of unevenness, one code set was traversed only twice with the

mouse and keyboard while another code set was traversed eight times using Selection
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Tool Code Set A Code Set B Code Set C
Mouse/Keyboard 6 6 4
Selection Assist 2 6 8
Box View 8 4 4

Table 6.3: The number of times subjects used each tool to select if statements in each code
set.

Assist. However, because each code set was chosen to be of roughly equal content

and difficulty, I do not believe this biased the results in favor of any particular tool.

The experiment tested how well programmers can use tools to select code, but

tool usability is also affected by factors that I did not test. For example, while Box

View is more accurate than Selection Assist, Box View takes up more screen real

estate and requires switching between views, which may be disorienting. In short,

each tool has usability tradeoffs that are not visible in these results.

Finally, the code samples selected in these experiments may not be representa-

tive. I tried to mitigate this by choosing code from large, mature software projects.

Likewise, the programmers in this experiment may not be representative, although

the subjects reported a wide variety of programming experience.

6.3.5 Discussion

Both Box View and Selection Assist help programmers to select code quickly and ac-

curately. Box View appears to be preferable when the probability of mis-selection is

high, such as when statements span several lines or are formatted irregularly. Selec-

tion Assist appears to be preferable when a more lightweight mechanism is desired

and statements are less than a few lines long.
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6.4 Guidelines

The tools described in this chapter are demonstrably faster, more accurate, and more

satisfying to use. However, they represent only a small contribution: they are im-

provements to only one out of dozens of refactoring tools. Nevertheless, I reason

that the interaction techniques embodied in these tools are applicable to almost all

refactoring tools because most refactoring tools require the programmer to select a

piece of code to be refactored.

By studying how programmers use existing refactoring tools and the new tools

that I have described in this chapter, I have induced a number of usability guidelines

for refactoring tools. In this section, I link my experiment and the design of my tools

to each guideline.

Users can normally select code quickly and efficiently, and any tool to assist se-

lection should not add overhead to slow down the common case. Box View adds

context switching overhead from the editor to the view, which I believe contributed

to its relative slowness and lower likeliness-to-use-again rating, as compared to Se-

lection Assist. Thus:

� Task-centricity. A tool that assists in selection should not distract from the

programmer’s primary task.

Both Box View and Selection Assist work regardless of the format of code; in

particular, Box View abstracts away formatting completely by displaying statements

uniformly. Thus:

� Uniformity. A tool that assists in selection should help the programmer to

overcome unfamiliar or unusual code formatting.

The accuracy improvement of Box View over Selection Assist appears to be be-

cause the only possible selections in Box View were sequences of whole program



CHAPTER 6. THE SELECTION STEP 103

statements. Thus:

� Atomicity. A tool that assists in selection should help eliminate as many selec-

tion errors as possible by separating character-based selection from program-

element selection: the only possible selections should be those that are valid

inputs to the refactoring tool.

Because standard editor selection is task-agnostic, programmers made selection

errors during the experiment. Conversely, because Box View and Selection Assist

are optimized for EXTRACT METHOD, they reduced selection errors. Thus:

� Task-specificity. A tool that assists in selection should be task specific.

While these guidelines may seem self-evident, they are rarely implemented in

contemporary refactoring tools. These guidelines, however, are specific versions of

the general usability principle of avoiding errors [71, p. 63].

6.5 Related Work: Alternative Selection Techniques

O’Connor and colleagues implemented an EXTRACT METHOD tool using a graph

notation to help the programmer recognize and eliminate code duplication [57]. This

approach avoids selection mistakes by presenting program structure as an abstract

syntax tree where nodes are the only valid selections.

Several development environments, including Eclipse, include editor commands

that enable the programmer to expand or contract their current selection to surround-

ing or contained program elements. When the programmer has not selected a whole

statement, EXTRACT METHOD in Eclipse sometimes suggests that the programmer

execute these commands to correct the selection. Selection Assist could be paired

with this suggestion to provide visual feedback as to what currently is and what

would be selected if the programmer were to accept the suggestion.
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An outline, such as the Eclipse Outline View, displays classes, methods and fields

as a hierarchy of icons, usually in a pane adjacent to the program text. Any program

element can be selected merely by clicking on its icon, an operation that is more

error resistant than text selection in an editor. Icon selection also allows multiple

elements to be selected for refactoring. However, multiple icon selection has two

chief disadvantages. First, it does not apply to program elements at a finer granularity

than presented by the outline, such as statements, as needed for EXTRACT METHOD.

Second, it requires the programmer to change focus from the text view to the outline

view, which may itself slow the programmer down.

In iXj, a programmer can select several program elements at once using a pro-

gram transformation language based on examples [4]. Code is selected by first

mouse-selecting an example in the editor and then generalizing that example us-

ing the mouse in a separate view. This interaction may not be fast enough for floss

refactoring. Furthermore, while iXj can assist in selecting some kinds of program

elements, such as expressions, it does not help select every kind of program element

that a programmer might want to restructure.

In summary, while previous approaches have improved the accuracy of selection

and added the ability to select several program elements at once, they cannot be

generalized to the selection of every kind of program element.

6.6 Generalization to Other Refactorings

So far, I have introduced two tools to help programmers select code appropriate for

refactoring: Selection Assist and Box View. However, neither tool follows every

guideline in Section 6.4. Furthermore, while programmers using these tools demon-

strated significant improvements in both speed and accuracy of selection, the tools

were limited to just one refactoring. In this section, I describe a running example

that I use in this and subsequent chapters (Section 6.6.1), two new selection guide-
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lines (Section 6.6.2), and a tool that implements all of my selection guidelines (Sec-

tion 6.6.3).

6.6.1 A Running Example

In the remainder of this chapter, and in Chapters 6 through 8, I use a small program

restructuring as a running example. It is an EXTRACT LOCAL VARIABLE refactor-

ing.

Suppose that you start with this code in a video game application:

characterCount = 4 + 1;

Now suppose you realize that you want to say explicitly that 4 is the number of ghosts

in your game. So you would like to extract 4 into a local variable with a meaningful

name, to produce this code:

int ghostCount = 4;

. . .

characterCount = ghostCount + 1;

I will use this EXTRACT LOCAL VARIABLE refactoring to motivate some addi-

tional guidelines and in several tool examples that follow.

6.6.2 Two More Selection Guidelines

In addition to the guidelines presented in Section 6.4, here I present two additional

guidelines. I did not introduce these guidelines earlier in this chapter because their

need was not apparent until after I performed the formative study2 (Section 4.5).

The programmer may not know what selections are valid inputs to the tool, espe-

cially if she has not previously used that tool. For instance, if a programmer wants to

2 The need for these guidelines was not apparent in the study by the nature of the task that I
assigned to participants.
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move a method up into a superclass (the PULL UP refactoring), it may not be clear

whether she should select the whole method declaration, the method heading, or the

method name. To make clear what to select to perform a refactoring, I propose that

� Explicitness. A refactoring tool should allow the programmer to explicitly see

what the tool expects as input before selection begins.

This guideline is somewhat similar to Nielsen’s “recognition rather than recall,”

which states that a tool should minimize a user’s memory load [55].

Selecting multiple program elements for refactoring is usually impossible with

present-day refactoring tools. For instance, I know of no existing tool that can extract

both the constants 4 and 1 of the running example into variables in a single step.

However, it seems that programmers would benefit from this ability, as I observed

two data sets where refactoring tool uses appear in such groups 30% and 47% of the

time (Section 3.4.2). Based on these observations, I propose that a refactoring tool

� Multiplicity. A tool that assists in selection should allow the programmer to

select several program elements at once.

This guideline is a special case of Shneiderman’s “minimal input actions by the user,”

which states that “fewer input actions means greater operator productivity” and “re-

dundant data entry should be avoided” [71].

6.6.3 Tool Description: Refactoring Cues

In this subsection, I describe a tool called refactoring cues that is used for selecting

code and configuring refactoring tools. I encourage the reader to watch screencasts,

which provide a short but illuminating look at how this tool works in practice (http:

//multiview.cs.pdx.edu/refactoring/activation).

http://multiview.cs.pdx.edu/refactoring/activation
http://multiview.cs.pdx.edu/refactoring/activation
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Refactoring cues were designed to improve the selection and configuration steps

of the refactoring process (Section 2.5) by taking an “action-first” approach. This

means that choosing the refactoring (the action) precedes choosing what to refactor.

The programmer begins by clicking on a refactoring from the adjacent, non-

modal palette (Figure 6.4a, right pane), which displays the available refactorings.

After a refactoring is initiated, two things happen simultaneously. (1) The palette

item expands to reveal configuration options (Figure 6.4b, right pane) and (2) cues

(highlighted program elements with thin borders) are drawn over the program text

to show all the program elements to which the selected refactoring can be applied

(Figure 6.4b, left).

The programmer now chooses specific program elements to be refactored. To

choose a program element, she mouse clicks anywhere inside the overlaid cue, an

interaction that I call targeting. Cues that are not targeted are colored green while

those that are targeted (that is, are chosen for refactoring) are colored pink. A cue

with nested children can be targeted by clicking on the cue directly, or by clicking

repeatedly on one of the cue’s children. For example, Figure 6.4c illustrates what

happens when the programmer clicks on 4 several times. A targeted cue (pink, cen-

ter column) indicates the expression to be refactored (right column). If a cue is not

targeted (green), then a mouse click targets it (first row). If a cue or one of its an-

cestors is targeted, then the targeted cue becomes un-targeted and its parent becomes

targeted (second and third rows). Clicking within an already-targeted outermost cue

un-targets all children (last row).

In the example, the programmer wants to extract the number 4, so she clicks on

4 once. She then presses a hotkey or button to perform the transformation. At this

point, the refactoring engine modifies the code and gives default names to any newly

created program elements. At the same time, the configuration options are hidden in

the palette and the cues are removed from the editor. Finally, the cursor is positioned
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(a)

(b)

(c)

Mouse
Click

Cue Coloration Program element
to be refactored

First 4

Second 4 + 1

Third characterCount = 4 + 1

Fourth (none)

(d)

(e)

Figure 6.4: The several-step process of using refactoring cues.
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Figure 6.5: Targeting several cues (the pink rectangles) at once using a single selection; the
programmer’s selection is shown by the grey overlay.

to allow the programmer to change the newly created, default-named program ele-

ments with a standard Eclipse linked in-line RENAME, as shown in Figure 6.4d and

6.4e.

Although I have described just one interaction with refactoring cues, the user

interface allows some flexibility in the way that the programmer interacts with the

tool.

• In addition to using the palette, programmers have the option of using any other

initiation mechanism, such as hotkeys, linear menus, or pie menus.

• Because initiation happens before selection, multiple program elements are

targeted in the same way as a single program element. In the example, this

means that, during the selection step, the programmer may click the 4 and then

the 1, indicating that both should be refactored in one transformation.

• As an alternative to clicking to target a refactoring cue, a programmer can use

an ordinary text selection to target a cue or several cues (Figure 6.5). This tech-

nique not only reduces the effort required to target several program elements

at once, but it also provides backward compatibility with existing refactoring

tools: any selection valid as input to a standard refactoring tool is also valid for

refactoring cues. Selection using the keyboard is also supported.
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Refactoring cues meet all of the guidelines proposed in Sections 6.4 and 6.6.2.

They were designed to reduce selection errors by making all cues acceptable input

to the refactoring tool. The technique of targeting program elements for refactor-

ing using visual cues can be applied to all refactorings. Refactoring cues were also

designed to be faster than standard refactoring tools because multiple elements can

be refactored at once. They make what is refactorable explicit, which may reduce

programmer guesswork by making explicit what is refactorable, and also may al-

low the programmer to remain focused on the text of the program rather than on a

configuration panel.

An evaluation of refactoring cues can be found in Section 8.5. The evaluation

suggests that programmers can select code at least as quickly and accurately with

refactoring cues as with the mouse or keyboard, and that programmers believe that

they would use refactoring cues in conjunction with existing tools.

6.7 Conclusions

In this chapter, I have addressed the usability of tools that help programmers during

the selection step if the refactoring process (Section 2.5). Selecting code as input to

a refactoring tool can be a surprisingly difficult task for programmers. Better tools

can help programmers in this task by allowing them to select code more quickly and

accurately. Such tools can be as conservative as Selection Assist, which is passive

and does not change the programmer workflow at all, or can be as progressive as

refactoring cues, which change that workflow considerably. In this chapter, I have

stated several guidelines that characterize what makes these tools usable, with the

hope that toolsmiths will take these guidelines, tools, and supporting evidence into

consideration when building the selection mechanisms for the next generation of

refactoring tools.



Chapter 7

The Initiation Step: Choosing which Refactoring Tool to Execute

To use a refactoring tool, a programmer must at some point communicate to the

programming environment which refactoring that it should perform. I call this the

initiation step of the refactoring process (Section 2.5).

7.1 Contributions

The major contributions of this chapter are as follows:

• Guidelines for making refactoring tools that are easier to initiate (Section 7.2).

• The use of pie menus in refactoring tools, which provide a fast and memorable

user interface for tool initiation (Section 7.4).

• An experiment that explores the relationship between pie menu item placement

and memory recall (Section 7.5.2), a contribution that has implications outside

the domain of refactoring tools.

7.2 Guidelines

Once a program element has been selected, the programmer must indicate which

refactoring tool to initiate, usually with a linear menu or a hotkey (Figure 7.1 on

the next page). A linear menu is a system or context menu where items appear in a



CHAPTER 7. THE INITIATION STEP 112

Figure 7.1: Initializing a refactoring from a system menu in Eclipse, with hotkeys displayed
for some refactorings.

linear list, possibly with submenus. A hotkey is a combination of key presses on a

keyboard.

System menus can be slow, because the user must take significant time to navi-

gate to them, then through them, and finally point at the desired menu item [6]. For

refactoring, the problem is worsened when development environments offer a very

long list of possible refactorings from which the programmer must choose. As one

programmer complained in my Agile survey, the “[refactoring] menu is too big some-

times, so searching [for] the refactoring takes too long.” Context menus — which

appear at the cursor and whose contents depends on the cursor location — avoid the

problem of navigating to the menu, but worsen the problem of navigating through

the menu, because the context menu must be shared with a large number of non-

refactoring items.

The slowness of linear menus is a problem during refactoring because using a

refactoring tool must be fast during floss refactoring (Section 4.7). The speed at

which a refactoring can be initiated is critical, suggesting that the tool should:
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� Task-centricity. Initiation of a refactoring tool should not distract from the

programmer’s primary task.

This guideline is similar to Shneiderman’s “enable frequent users to use short-

cuts” [71, p. 61] to “increase the pace of interaction.”

Using a hotkey might seem to be an ideal way of speeding up the initiation of

refactoring tools. However, hotkeys are difficult to remember [24], especially for

refactorings. One reason is that the mapping from a code transformation to a hotkey

is often indirect. A programmer must take the structural transformation that she

wants to perform (such as “take this expression and assign it to a temporary vari-

able”), recall the name of that refactoring (EXTRACT LOCAL VARIABLE), and finally

map that name to a contrived hotkey (remembering that “Alt+Shift” means refactor,

and that “L” is for “Local”). The task is especially difficult because the names of

the refactorings are themselves somewhat capricious1, and because the refactorings

must compete with the hundreds of other hotkey commands in the development en-

vironment. In Murphy and colleagues’ data describing 41 Eclipse developers [47],

the median number of hotkeys that programmers used for refactoring was just 2; the

maximum number of hotkeys used by any programmer was 5. This suggests that

programmers do not often use hotkeys for initiating refactoring tools. Thus:

� Identifiability. Initiation of a refactoring tool should not rely exclusively

on the names of refactorings, but rather use a mechanism that more closely

matches how programmers think about refactoring, such as structurally or spa-

tially.

This guideline is similar to Nielsen’s heuristic, “Match between system and the real

world” [55] by using “concepts familiar to the user, rather than system-oriented

terms.”
1For example, Eclipse’s EXTRACT LOCAL VARIABLE is called INTRODUCE EXPLAINING

VARIABLE in Fowler’s book [22].
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7.3 Related Work: Alternative Tool Initiation Techniques

To my knowledge, all existing refactoring tools are invoked with hotkeys, linear

menus, or some combination of the two. However, alternative techniques are used to

initiate commands outside of the domain of refactoring tools.

My guideline about using an initiation mechanism that matches the structural and

spatial nature of refactorings aligns with the directionality of pie and marking menus.

Pie menus are special types of context menus where items appear around a circle,

rather than in a linear list [6]. Marking menus are pie menus where you can gesture

in the direction of item that you want, even before that item is displayed [37]. In the

Fabrik programming environment [40], programmers can initiate common program-

ming commands using a mechanism similar to pie menus, commands such as those

that connect and disconnect visual program components. However, such menus do

not appear to have made inroads into modern Integrated Development Environments.

7.4 Tool Description

In this section, I describe a tool called pie menus for refactoring that are used for

initiating a refactoring tool. I encourage the reader to watch my screencasts, which

provide a short but illuminating look at how this user interface works in practice

(http://multiview.cs.pdx.edu/refactoring/activation).

Pie menus for refactoring2 are designed to speed the initiation step of the refac-

toring process. My implementation of pie menus is based on the SATIN implemen-

tation [29]. Pie menus are not new; my contribution is the application of pie menus

to refactoring and the rules for placing refactorings in particular directions.

To further speed the process, once the refactoring has been initiated using the pie

menu, the transformation is executed immediately, rather than displaying a config-

2Technically, what I here call pie menus are actually marking menus, because they allow the user
to gesture to initiate a refactoring.

http://multiview.cs.pdx.edu/refactoring/activation
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Figure 7.2: Two pie menus for refactoring, showing applicable refactorings for a method and
temporary variable, respectively.

uration dialog. Pie menus for refactoring are invoked like a standard context menu,

but with a dedicated mouse button or hotkey; the default is the middle mouse but-

ton. Pie menus are context sensitive, so different menus are associated with different

kinds of program elements, such as statements, method names, and variable names.

Figure 7.2 shows two examples.

The advantage of pie menus for refactoring is that the structural nature of many

refactorings can be mapped onto the placement of the labels around the pie menu. I

use three rules to determine the placement of a refactoring. First, directional refac-

torings are placed in their respective direction, so, for example, PULL UP is on top.

Second, refactorings that are inverses are placed on opposite sides of the menu, so,

for example, INLINE METHOD is opposite EXTRACT METHOD. Third, refactorings

that are conceptually similar are placed in the same location in different contexts,

so, for example, INLINE METHOD and INLINE LOCAL VARIABLE occupy the same

quadrant in different menus. Refactoring appears to be one of the applications of pie

menus that Callahan and colleagues say “seem to fit well into the mold of the pie

menu design,” and for which they demonstrated that pie menus have a distinct speed

advantage [6].
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Moreover, I hypothesize that my placement rules help programmers recall or in-

fer the location of refactoring menu items, even before the programmer builds muscle

memory. This is important for refactorings, because most refactoring tools are cur-

rently used infrequently (Section 3.4.7), and so muscle memory would not be an

effective recall mechanism for those refactorings. I validate this hypothesis with an

experiment described in Section 7.5.2.

My pie menus are restricted to four items with no submenus. The restriction

to four items increases the speed at which pie menus can be used [37] and reduces

the complexity of user interaction. Furthermore, because some programmers prefer

to use the keyboard, the restriction allows programmers to use the menus with a

simple hotkey scheme (one button to bring-up the menu and then a press of the up,

down, left, or right arrow to invoke an item). In fact, my placement rules could be

used without pie menus, in a pure hotkey scheme that might reduce the cognitive

overhead of name-based hotkeys. Of 22 refactorings that can be initiated via a linear

menu in Eclipse, 11 can be initiated with my pie menus; my menus also support three

additional refactorings not currently in Eclipse. In comparison, six refactorings can

be initiated with hotkeys by default in Eclipse. Table 7.1 on page 118 shows how

each refactoring tool in Eclipse can be initiated.

The restriction also means that certain refactorings do not appear on my pie

menus, especially refactorings that seem to have no associated direction, such as

RENAME. However, I do not view incompleteness as a problem for several reasons.

First, programmers currently use several mechanisms for initiating different refactor-

ings [47], and thus programmers may be willing to use some other initiation mech-

anism in addition to pie menus. Second, my pie menu design could provide for the

initiation of all refactorings by allowing submenus, or more than 4 items per menu,

although this would compromise speed or accuracy of selecting menu items. Third,

I argue that completeness at the expense of simplicity is not always desirable when
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it comes to user interfaces; indeed, the length of the menu containing all refactorings

in Eclipse may have been the cause of my survey respondent’s usability complaint

mentioned in Section 7.2.

Pie menus for refactoring were designed to meet each of the guidelines outlined

in Section 7.2. In short, using pie menus to initiate refactorings gives programmers

the speed of hotkeys with the low entry barrier of linear menus. Pie menus that use

my placement rules may facilitate the transition from beginner (a programmer who

uses refactoring tools infrequently) to expert (a programmer who always uses the

tool when refactoring) in a way that is not possible with name-based hotkeys, linear

menus, or pie menus without my placement rules.

7.5 Evaluation

7.5.1 Previous Studies: Pie Menus vs. Linear Menus

Here I compare pie menus for refactoring to the state-of-the-practice refactoring tool

initiation mechanism, which is the linear menus. I do not compare pie menus against

hotkeys, both because refactoring hotkeys are user-mappable and thus can be as fast

as pressing a single key, and because users of hotkeys can continue to use hotkeys

with pie menus.

Two previous studies suggest that four-item marking menus are faster and less

error-prone than linear context menus. Callahan and colleagues [6] described a study

in which the speed improvement of pie menus over linear context menus was statis-

tically significant. Furthermore, when Callahan and colleagues’ measurements are

compared with Kurtenbach and Buxton’s measurements [37], marking menus are

more than 3 times faster than pie menus. Callahan and colleagues also observed that

pie menus are less error-prone than linear menus, but the statistical significance was

marginal. These results strongly suggest that programmers should be able to use my
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Refactoring Linear Menus Hotkeys Pie Menus
Rename Yes Alt+Shift+R
Move Yes Alt+Shift+V
Change Method Signature Yes Alt+Shift+C

Extract Method Yes Alt+Shift+M Right
Extract Local Variable Yes Alt+Shift+L Right
Extract Constant Yes

Inline Yes Alt+Shift+I Left
Convert Anonymous Class to
Nested

Yes Right

Convert Member Type to Top
Level

Yes Right

Convert Local Variable to Field Yes Right
Extract Superclass Yes
Extract Interface Yes

Use Supertype Where Possible Yes
Push Down Yes Bottom
Pull Up Yes Top

Introduce Indirection Yes Right
Introduce Factory Yes Right
Introduce Parameter Object Yes

Introduce Parameter Yes
Encapsulate Field Yes Right
Generalize Declared Type Yes

Infer Generic Type Arguments Yes

Convert Nested to Anonymous No Left
Increase Visibility No Right
Decrease Visibility No Left

Table 7.1: How refactorings can be initiated using Eclipse 3.3 and my current implementation
of pie menus, in the order in which each refactoring appears on the system menu (Figure 7.1
on page 112); for pie menus, the direction in which the menu item appears is shown in the
third column. I implemented the last three refactorings specifically for pie menus.
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pie menus3 faster and with fewer errors than a linear menu of the same size.

7.5.2 Memorability Study: Pie Menus with and without Placement

Rules

In Section 7.4, I noted that users of pie menus for refactoring may not become experts

(that is, know a priori the gesture of the desired refactoring) because becoming an

expert requires repeated use of a refactoring tool. I hypothesized that my placement

rules help programmers to recall the direction of items on a pie menu. In this section

I describe an experiment that tests this hypothesis by measuring memory recall. This

is the first experiment to explore the effect of pie-menu item placement on recall.

7.5.2.1 Methodology

In this experiment, I asked programmers to memorize the direction (left, right, top,

or bottom) of a refactoring on a pie menu. In the training phase, I gave programmers

a paper packet containing 9 pages. Each page contained an initial piece of code, a

refactored piece of code, and a pie menu with the associated refactoring highlighted

on one of the four menu quadrants (Figure 7.3, top). I told programmers to try to

associate the before-and-after code with the direction on the pie menu.

In the testing phase immediately following the training phase, I gave the pro-

grammers the same 9 pages, but in a different order and with the labels on the pie

menus removed. I told programmers to try to recall where the refactoring appeared

on the pie menu. During the training phase, I allowed programmers 30 seconds to

read and understand the refactoring from the before-and-after code, and also to re-

member the direction of each refactoring. I gave subjects such a short period because

I wanted them to spend most of the time reading and understanding the code transfor-

mation, and only a small amount of time remembering the direction of a refactoring
3Recall that my pie menus are actually marking menus, so for my implementation, Kurtenbach

and Buxton’s results are better predictors than those of Callahan and colleagues.



CHAPTER 7. THE INITIATION STEP 120

�

����������������	�������	�
�

�

� 
�������	�	�
��������
��������������������

� �

� 

�����	�
�����������
�������������������
�

� � �

� � 	�
�����������������������

� � ���
�������������� �����
������

� !�

!�

����������������	�������	�
�

�

� 
�������	�	�
��������
��������������������

� 
�������	�
����������������

� �

� 

�����	�
�����������
�������������������
�

� � �

� � �������������������

� � ���
�������������� �����
������

� !�

!�

�

����������������	�������	�
�

�

� 
�������	�	�
��������
��������������������

� �

� 

�����	�
�����������
�������������������
�

� � �

� � 	�
�����������������������

� � ���
�������������� �����
������

� !�

!�

����������������	�������	�
�

�

� 
�������	�	�
��������
��������������������

� 
�������	�
����������������

� �

� 

�����	�
�����������
�������������������
�

� � �

� � �������������������

� � ���
�������������� �����
������

� !�

!�

�

Figure 7.3: A sample training page (top) and a sample recall page (bottom). The refactorings
(left, as program code before-and-after refactoring) are the same on both pages. Subjects
were instructed to put a check mark in the appropriate direction on the recall page.
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item. This was because few programmers in the wild are going to spend significant

time memorizing the direction of items on a pie menu. Interviewing some dry-run

experiment participants informally confirmed that little time was spent memorizing.

Using before-and-after code to identify the refactoring, rather than using only its

name, had several advantages:

• Programmers who had no knowledge of refactoring terminology could still

participate in the experiment.

• My choice of refactoring names would not confuse programmers who had

experience with refactoring, but who used different terminology (see Sec-

tion 8.2).

• If programmers think of a refactoring as a transformation of code and not as

a name in a book or in a development environment, then the experiment more

closely matches how programmers refactor in the wild.

During the testing phase, programmers were given a total of 5 minutes to recall

the direction of all 9 refactorings. The bottom of Figure 7.3 shows an example of

a recall page. Additionally, during that time programmers were asked to guess the

direction of a refactoring that they had not seen during the training period. The

refactoring to be guessed was EXTRACT LOCAL VARIABLE, which, according to

my placement rules, should appear in the same direction as the CONVERT LOCAL

TO FIELD, ENCAPSULATE FIELD, and INTRODUCE INDIRECTION (see Table 7.1

on page 118), three refactorings that the subjects had seen during training.

More information about this experiment, including the test materials and the re-

sulting data set can be found at http://multiview.cs.pdx.edu/refactoring/experiments.

http://multiview.cs.pdx.edu/refactoring/experiments
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7.5.2.2 Subjects

I recruited 18 programmers to participate in this experiment. In an attempt to sample

a diverse population, these programmers were recruited from three sources. Seven

were students from a graduate programming class on Java design patterns, six were

computer-science research assistants, and five were programmers from industry. To

expose the programming class to the concept of refactoring, I gave students a 20-

minute presentation on refactoring two weeks prior to the experiment.

The only prerequisite for participating in the experiment was the ability to read

Java code. Two subjects were removed from the programming class set because one

did not meet this prerequisite and one did not follow directions during the experi-

ment, leaving a total of 16 participants. With the exception of offering refreshments

during the experiment, I did not compensate the participants for their time.

Within each set, each programmer was randomly assigned to one of two groups.

In the experimental group, programmers were trained on pie menus that contained

refactoring items placed according to my rules. In the control group, programmers

were trained on pie menus that contained refactoring items placed in opposition to

each of my rules4.

7.5.2.3 Results

Overall, subjects in the control group could recall a median of 3 refactoring direc-

tions, while subjects in the experimental group could recall a median of 7.5 refactor-

ing directions. The difference is statistically significant (p = .011, df = 14, z = 2.553

using a Wilcoxon rank-sum test). The results of the experiment are shown in Fig-

ure 7.4 on the next page.

Six out of the eight subjects in the experimental group correctly guessed the di-

4I placed them in opposition rather than randomly because most random placements happen to
obey one or more of my rules
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Figure 7.4: A histogram of the results of the pie menu experiment. Each subject is overlaid as
one stick figure. Subjects from the experimental group who correctly guessed the refactoring
that they did not see during training are denoted with a dashed oval.

rection of the refactoring that they had not seen during training. This suggests that

this group of programmers were not simply recalling what they had learned, but had

synthesized a mental model regarding where refactorings “should” appear.

7.5.2.4 Threats to Validity

There are three limitations of this experiment. First, subjects were asked to mem-

orize the direction of 9 refactorings, which represent only about one-tenth of the

refactorings cataloged by Fowler [22]. The effect of trying to recall the full catalog

of refactorings is unclear. Second, I cannot easily explain the outliers in the data set

(one overperforming control group subject and two underperforming experimental

group subjects, Figure 7.4). It may be the case that some programmers can easily

recall the direction of a refactoring on a pie menu, regardless of their placement, and

that some programmers have difficulty recalling the direction, even when placed us-

ing my rules. Third, the experiment was conducted in such a way that it is difficult to

discern which of the three placement rules (outlined in Section 7.4) was most helpful.
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Tool Generality Keyboard or Mouse Speed Memorability
Hotkeys Some Keyboard Fast Low
Linear Menus All Both Slow *
Pie Menus Some Both Fast High

Table 7.2: A comparison of initiation mechanisms for refactorings tools.

7.5.2.5 Discussion

The results of the experiment confirm the hypothesis that my placement rules help

programmers to recall the direction of refactorings. More importantly, the results

support my theory that refactorings map intuitively to the directionality provided by

pie menus. I believe that this will help programmers to initiate refactorings quickly,

while building muscle memory, and without having to resort to rote memorization.

Combined with the speed and error-resistance demonstrated in previous studies (Sec-

tion 7.5.1), this improvement in recall suggests that pie menus for refactoring, and

the guidelines that inspired their implementation, provide improved usability over

conventional mechanisms for initiating refactoring tools. In addition to the results

presented in this section, I describe a study regarding programmers’ opinions of pie

menus for refactoring in Section 8.5.2.

7.5.3 Summary: A Comparison

Table 7.2 compares the features and performance of pie menus for refactoring with

existing refactoring tool user interfaces. By Generality I mean the number of refac-

torings the tool supports. For example, all refactorings can be initiated with linear

menus, but typically (by default) only a subset can be initiated with hotkeys. The

Keyboard or Mouse column refers to whether a tool can be used with the keyboard,

the mouse, or both. The Speed and Memorability columns are summaries of the

results presented in this chapter. The asterisk indicates that a column does not apply

to that tool.
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Figure 7.5: A pie menu for refactoring with distance-from-center indicating what kind of
configuration to perform.

7.6 Future Work

I would like to investigate how to integrate pie menus for refactoring and refactoring

cues. This could be accomplished by allowing pie menus to initiate a refactoring with

no configuration (as in the current implementation), configuration through refactor-

ing cues (allowing the programmer to select more code to refactor), or configuration

through standard Eclipse wizards, depending on the mouse distance from the menu’s

center (Figure 7.5). Heuristically, the greater the distance from the marking menu’s

center, the more heavyweight the configuration. This approach makes pie menus for

refactoring much more like control menus [64].

I would also like to address deficiencies exposed during my programmer in-

terviews (Section 8.5.2). The most common dislike of programmers regarding pie

menus was that they were “too ugly” and, ironically, obtrusive. In response, I plan

on implementing a labels-only design, allowing a large proportion of the circular

menu to be transparent or translucent.
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7.7 Conclusions

In this chapter, I have presented guidelines for the initiation of refactoring tools (Sec-

tion 2.5), and pie menus for refactoring, an initiation mechanism designed to meet

those guidelines. Previous results have suggest that pie menus for refactoring will

be faster than traditional linear menus of equivalent size. The study presented in this

chapter suggests further that my design rules for placing refactorings on pie menus

improves memorability, which I hope will aid programmers as they use refactoring

tools with increasing frequency and build muscle memory.



Chapter 8

The Configuration Step: Tweaking how a Refactoring Tool Executes

In addition to telling the refactoring tool which refactoring to perform, a programmer

may also supply configuration information regarding additional information that the

tool should use to perform the refactoring. This is called the error interpretation step

of the refactoring process (Section 2.5).

8.1 Contributions

The major contributions of this chapter are as follows:

• Guidelines for making refactoring tools that are easier to configure (Sec-

tion 8.2).

• Refactoring cues, a tool previously described in (Section 6.6.3), which includes

a user interface that allows the programmer to bypass tool configuration when

it is unnecessary (Section 8.4).

• An analysis that shows that refactoring cues are at least as fast and error-

resistant as traditional refactoring tools (Section 8.5.1).

• A survey that suggests that programmers are willing to try refactoring cues.
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Figure 8.1: Configuration gets in the way: an Eclipse configuration wizard obscures program
code.

8.2 Guidelines

Once a tool has been initiated, programmers sometimes configure it. In the example

from Section 6.6.1, you want to choose a name for the new local variable. Most

refactoring tools use a modal dialog box or multi-page “wizard” for configuration.

The Eclipse EXTRACT LOCAL VARIABLE configuration interface is illustrated in

Figure 8.1.

A modal dialog box compels programmers to configure the refactoring by not let-

ting them do anything else until the configuration is finished. However, it appears that

programmers rarely perform any configuration at all. In Section 3.4.2, I presented

data that showed that one group of 4 programmers changed default configuration pa-

rameters less than 10% of the time, while another group of 6 programmers estimated

that they changed default parameters 25% of the time. Thus, users should be able to

bypass configuration entirely the remainder of the time, revealing this guideline:

� Bypassability. Refactoring tool configuration should not force the program-
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mer to view or enter unnecessary configuration information.

This guideline is a more specific form of Shneiderman’s proposed guideline, “Mini-

mal input actions by user” [71, p. 72].

A modal configuration dialog also forces the refactoring tool to become the pro-

grammer’s primary focus. This is undesirable because refactoring is a subsidiary task

in floss refactoring, as I explained in Section 7.2. Thus:

� Task-centricity. Refactoring tool configuration should not interrupt the pro-

grammer’s primary task.

Disrupting a programmer’s focus may cause visual disorientation, a problematic is-

sue in modern development environments [11].

Furthermore, the configuration dialog may obstruct the view of the source code,

which can hinder the programmer’s ability to configure the refactoring. For exam-

ple, choosing a meaningful variable name may require using programming tools to

examine the rest of the program. So I recommend that:

� Accessibility. Refactoring tool configuration should not obstruct a program-

mer’s access to other tools, including the source code editor itself.

This guideline is similar to Raskin’s comment that “it is always safe to avoid

modes” [65, p. 50]. The reason, according to Raskin, is that you sometimes make

errors when you think that a system is in one state, but it is actually in another be-

cause it is modal. In the case of refactoring, the programmer would expect to have

access to her normal programming tools, but this is not the case when configuration

is modal.
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Figure 8.2: The user begins refactoring by selecting the 4 in X-develop, as usual (top). After
initiating EXTRACT LOCAL VARIABLE (middle), the user types “ghostC” (bottom), using a
linked in-line RENAME refactoring tool.

8.3 Related Work: Alternative Configuration Techniques

To avoid the distraction of configuring a refactoring, some development environ-

ments try to avoid configuration altogether. In the X-develop environment [75], the

programmer supplies the name of a newly-created program element after the refac-

toring has been performed, using a linked in-line RENAME. For example, when an

EXTRACT LOCAL VARIABLE refactoring is performed, the tool extracts an expres-

sion into a new variable, which is given a default name (Figure 8.2, middle). The

programmer may change the name by typing (Figure 8.2, middle and bottom), which

causes all references to that variable to be updated in real time by the refactoring tool.

I feel that this is a natural way to bypass configuration, but it is not applicable to all

refactorings. Eclipse and IntelliJ IDEA [32] also use this in-line rename technique

for some refactorings.

8.4 Tool Description

The refactoring cues tool, described in Section 6.6.3 and pictured in Figure 6.4 on

page 108, handles configuration by providing configuration options in a non-modal

palette to the right of the program editor. The palette is designed to stay out of the

programmers’ way because it is non-modal, and appears to the side of the screen
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rather than in the center. Moreover, because the palette takes up valuable screen real

estate, it does not have to be displayed by default. Instead, programmers can des-

ignate it as an Eclipse “Fast View,” bringing it up only when they wish to perform

configuration. The individual user interface widgets in the palette are the same as

those widgets that would appear on a standard modal refactoring wizard, with one

important exception: rather than typing names of any newly created program ele-

ment into the palette, new names are typed directly into the editor using the standard

Eclipse in-line rename.

8.5 Evaluations

I present two studies that suggest that refactoring cues are an improvement over exist-

ing user interfaces to refactoring tools. In the first study, I compare refactoring cues

to conventional refactoring tools analytically with respect to speed and error rate. In

the second study, I describe an interview that I conducted to determine professional

programmers’ opinions towards refactoring cues, as well as the previously described

pie menus (Section 7.4).

8.5.1 Analytical Study: Refactoring Cues vs. Traditional Tools

In this section I will argue that refactoring cues are faster and less error prone than

conventional refactoring tools. By a conventional refactoring tool I mean one that

requires that the user select code, initiate the refactoring, and then configure it with

a wizard or dialog, as described in Section 8.2. I will use a step-by-step analysis to

compare the speed and likelihood of error using refactoring cues and conventional

refactoring tools.
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Method for goal: Refactor with Traditional Tool
Step 1. Select Code SCT

Operator: Make selection with mouse

Step 2. Initiate Tool ICT

Step 3. Type element name NCT

Step 4. Enter other information in GUI GCT

Step 5. Execute ECT

Step 6. If More code to refactor Then MCT

go to Step 1
Return with goal accomplished

Method for goal: Refactor with Refactoring Cues
Step 1. Initiate Tool IRC

Step 2. Select Code SRC

Operator: Make selection with mouse

Step 3. Enter other information in GUI GRC

Step 4. If More code to refactor Then MRC

go to Step 2
Step 5. Execute ERC

Step 6. Type element name NRC

Return with goal accomplished

Figure 8.3: NGOMSL methods for conventional refactoring tools (top) and refactoring cues
(bottom).

8.5.1.1 Analysis by Stepwise Comparison

Here I argue in a stepwise manner that refactoring cues are at least as fast and

error-resistant as conventional refactoring tools by comparing their NGOMSL meth-

ods [33]. An NGOMSL method is a sequential list of user interface actions for

achieving a goal, used for measuring a user interface’s efficiency. While traditional

NGOMSL analysis does not allow for errors made by the user, this comparison of

NGOMSL methods does consider such errors made by programmers when using

refactoring tools.
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In Figure 8.3 on the previous page, I outline the major steps necessary to use

each refactoring tool. To keep the methods general, I omit details for several steps,

such as how one enters configuration information in each tool’s GUI. To the right of

each step, a capital letter and a subscript labels which tool the step belongs to. For

example, ECT refers to the Execution step using a Conventional Tool. The NGOMSL

method for conventional tools refers to the selection, initiation, and configuration

steps of the model shown in Figure 2.6 on page 14.

I chose NGOMSL as a way to describe how programmers use refactoring tools

because of its standardized structure, convenient and flexible notation, and ability

to express high-level goals rather than individual keystrokes. Usually, NGOMSL

is used to estimate how long it takes for a human to learn and use a user interface

by assigning times to user interface operations. Here, instead, I use NGOMSL to

compare two different user interface operations in terms of both speed and error-

resistance.

I will use colors for clarity and introduce some notation for brevity. I have color-

coded the steps in each method so that the correspondence between the steps in the

two methods is more obvious. I will use = to mean “is equally fast and error-resistant

as,” � to mean “is faster or more error-resistant than,” and � to mean “is at least as

fast and error-resistant as.” Thus, you can think of = to mean “as good as,”� to mean

“is better than,” and � to mean “is at least as good as.” Step-by-step, I demonstrate

that refactoring using refactoring cues is at least as fast and error-resistant as with

conventional tools.

SRC � SCT . Any valid editor selection in conventional refactoring tools is a valid

cue selection with refactoring cues, so in these cases, SRC = SCT . Furthermore,

refactoring cues are more error-resistant in certain cases, such as when a pro-

grammer over-selects by a few parentheses. In other cases, refactoring cues

allow program elements that are leaves (that is, do not contain other program
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elements of the same kind, such as constants) to be selected with a single drag

gesture. So in a some cases SRC � SCT , otherwise SRC = SCT .

IRC � ICT . Whatever initiation mechanism is used for conventional refactoring

tools can also be used for refactoring cues, whether it be hotkeys, linear menus,

or pie menus. In these cases, IRC = ICT . I have also made available a third ini-

tiation mechanism, the palette, which has various advantages and disadvantages

when compared to hotkeys and menus (which will not be compared here). If

the palette is advantageous and is used then IRC � ICT , otherwise IRC = ICT

when it is not used.

NRC = NCT . Names are entered into a text box using conventional tools and

directly into the editor with a linked, in-line rename using refactoring cues.

However, from the user’s perspective, using either tool for entering a new name

is a matter of typing, so assuming that the same editing operations are available

in both the text box and editor, NRC = NCT .

GRC � GCT . Configuration with the GUI in refactoring cues is no different from

configuration with conventional tools, except that the user need not restart the

process when she wishes to navigate the underlying source code. In cases when

the programmer does not wish to perform any configuration, she can retain fo-

cus on the editor with refactoring cues but must shift focus to a dialog with

conventional tools. In these cases, GRC � GCT , otherwise GRC = GCT .

ERC = ECT . The underlying refactoring engine is the same for both refactoring

cues and conventional tools, and both tools are initiated with a keystroke or

button press, so the execution step is identical. Therefore, ERC = ECT .

MRC � MCT . In Section 6.4, I showed that refactoring multiple elements was a

significant use case. A programmer may choose to refactor multiple program
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element using either tool. With a conventional tool, she must repeat steps 1

through 5, but with refactoring cues, she need repeat only steps 2 and 3. So

when multiple program elements need to be refactored, MRC � MCT , other-

wise (when the programmer wishes to refactor only one element) MRC = MCT .

8.5.1.2 Threats to Validity

NGOMSL, and the GOMS family of analysis techniques in general, is limited in

that it considers only procedural aspects of usability, not perceptual issues or users’

conceptual knowledge of the system [33]. This analysis also does not consider mental

operations, such as when the programmer is deciding which refactoring she wants to

perform.

Additionally, a limitation of my analysis is that it does not take into account every

use case. The most significant omitted cases are as follows:

• The programmer does not have to perform every step; she can bypass enter-

ing information into the GUI or typing an element name. These steps can be

completely skipped using refactoring cues, but the programmer must at least

dismiss a dialog when using conventional tools. Refactoring cues are slightly

faster in this situation.

• Some steps can be reordered, such as NCT and GCT . However, this should not

significantly change the speed and error-resistance of the refactoring cues.

• While the programmer can use the keyboard or mouse for selection, my anal-

ysis assumes that the selection step is performed with the mouse. However,

using the keyboard for selection when using refactoring cues requires one key

press more than when using a conventional tool. I am confident that the cost of

this key press is overwhelmed by the speed improvements achieved elsewhere

with refactoring cues, but I cannot show this with the step-by-step comparison
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given here. Therefore, for this analysis, I excluded the use of the keyboard

during the selection step.

8.5.1.3 Discussion

The analysis suggests that refactoring cues are at least as fast and error-resistant as

conventional refactoring tools because using both interfaces involves similar steps,

just in a different order. When the order of the steps is factored out, both tools can

be used in similar ways, and under certain significant use cases, refactoring cues are

more error-resistant or faster, according to my analysis. These two improvements

suggest that refactoring cues, and the guidelines that inspired their implementation,

provide improved usability over the traditional refactoring tool user interface.

8.5.2 Opinion Study: Pie Menus, Refactoring Cues, Hotkeys, and Lin-

ear Menus

So far in this section I have talked about how quickly and accurately refactoring

cues and pie menus for refactoring can be used, but I have neglected programmer

satisfaction. If a programmer does not want to use a tool, then it does not matter how

fast or accurate it is.

8.5.2.1 Methodology

In an attempt to assess how programmers feel about using my pie menus and refac-

toring cues, I conducted interviews at the 2007 O’Reilly Open Source Convention

in Portland, Oregon. Each interview lasted about 20 minutes. Subjects answered

a brief oral questionnaire regarding their programming and refactoring experience.

Subjects were then shown four videos, each lasting about 90 seconds, demonstrating

a programmer’s development environment while performing a refactoring:
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• In the first video, the programmer is shown initiating a number of refactorings

in series via a linear popup menu.

• In contrast, the second video shows the programmer performing the same

refactorings with pie menus (albeit slowly, to allow the viewer to read the

menus).

• In the third video, a programmer is shown using a conventional refactoring tool

for several refactorings.

• In contrast, the fourth video shows the programmer performing the same refac-

torings with refactoring cues.

Each of these videos can be viewed at http://multiview.cs.pdx.edu/refactoring/

activation. After the second and fourth video, the interviewer compared pie menus

for refactoring and refactoring cues with the standard Eclipse tools by verbally enu-

merating the advantages and disadvantages of each tool. This reiterated the qualities

of the tools shown in the videos and highlight some disadvantages that were not obvi-

ous from the videos. For instance, programmers were told that I placed items on pie

menus in a way that I believed was memorable, but also that I omitted some popular

refactorings for which my placement rules provide no guidance, such as RENAME.

A full list of the advantages and disadvantages presented to each subject is shown in

Table 8.1 on the next page. I believe that telling the programmers about the advan-

tages and disadvantages allowed them to make a more informed estimate of how the

tools might effect their refactoring behavior.

I chose to show the subjects videos instead of allowing them to use the tools for

two reasons. First, the videos ensured that each subject saw the tool working over

the same code in the same manner. Second, because my tool was a prototype when I

conducted the evaluation, the videos ensured that the subjects did not encounter bugs

in my implementation that might have interfered with the experiment.

http://multiview.cs.pdx.edu/refactoring/activation
http://multiview.cs.pdx.edu/refactoring/activation
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Pie Menus for Refactoring
+ Can be activated using hotkeys or the mouse
+ Faster to activate than context menus
+ Easier to remember than hotkeys
+ Placement should be especially memorable
– Some refactorings do not make sense to put on this menu
– Adding new refactorings will disrupt memory

Refactoring Cues
+ Can be activated using hotkeys or mouse
+ Many items can be refactored at once
+ Selection errors are cut down
+ Makes “what is refactorable” explicit
+ Configuration becomes optional
– All refactoring activators must be shown

Table 8.1: Advantages and disadvantages of pie menus and refactoring cues enumerated by
the interviewer, labeled with + for advantage and – for disadvantage.

More information about this experiment, including the survey and results, can be

found at http://multiview.cs.pdx.edu/refactoring/experiments.

8.5.2.2 Subjects

I approached conference attendees to determine whether they were appropriate inter-

viewees. I attempted to approach attendees indiscriminately, and interviewees were

chosen if they had recently programmed Java, knew what refactoring was, and did

not know the interviewer or his research. Of all the attendees that the interviewer

approached, about one quarter met these criteria. While the interviewees cannot be

considered a random sample of programmers, I believe that the interviewees were un-

biased and fairly representative because I sampled from a national conference whose

topic was orthogonal to refactoring. In total, I fully interviewed 15 attendees, while

one declined to complete the interview due to time constraints. Subjects were not

compensated.

http://multiview.cs.pdx.edu/refactoring/experiments
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The 15 interviewees reported a mean of 16 years of programming experience and

spent an average of about 27 hours per week programming; 13 of the 15 interviewees

were Eclipse users. I characterize the group as experienced programmers because 13

of 15 subjects had been programming for at least 10 years and because 13 of 15

subjects spent at least 20 hours per week programming at the time of the interview.

8.5.2.3 Results

When asked whether having the option of using pie menus, in addition to other initi-

ation mechanisms, would increase their usage of refactoring tools, most interviewees

said that they would use the tools to refactor the same amount as they use them cur-

rently. However, 6 of 15 interviewees estimated that the presence of pie menus would

encourage them to refactor more. When I asked the same question about refactoring

cues, 8 of 15 reported that they would use refactoring tools more often if refactoring

cues were available. Several subjects expressed difficulty in answering this ques-

tion without using the tools, but the positive responses indicate that both tools may

encourage programmers to refactor more often using tools and less often by hand.

I asked one additional question at the end of the last 11 interviews. In that ques-

tion, interviewees were asked to estimate how often they might use refactoring tools

with hotkeys, linear menus, pie menus, or refactoring cues, if all were available in the

same development environment. On average, pie menus were rated higher than linear

menus, a difference that was statistically significant (p = .028, df = 10, z = 2.2, using

a Wilcoxon matched-pairs signed-rank test). This result is notable, because subjects

initially reported that linear menus were the frequent method of initiating refactoring

tools. No other differences were statistically significant; refactoring cues, pie menus,

and hotkeys were all estimated to be used about the same amount.
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8.5.2.4 Threats to Validity

There are two main limitations of this survey. First, the programmers saw videos of

how the tools worked, but were not able to try the tools themselves; programmers’

actual usage of the tool will vary from their estimated usage. Second, the refactor-

ings in the videos were created to exercise the features of each new refactoring tool.

Therefore, the refactorings shown to the programmers may not be representative of

typical refactorings in the wild.

8.5.2.5 Discussion

The results of the experiment suggest that programmers are willing to try both pie

menus and refactoring cues as part of their existing refactoring toolbox.

8.5.3 Summary: A Comparison

Table 8.2 on the following page compares the features and performance of refactor-

ing cues with existing refactoring tool user interfaces. The Steps Addressed column

names the steps in the refactoring model that the tool helps the programmer to ac-

complish (Section 2.5). By Generality, I mean the number of refactorings that the

tool supports. The Selection Error-Resistance column refers to how well the tool

helps programmers to avoid and recover from mis-selected program elements, again,

in a simplified manner. The Stay in Editor column refers to whether a tool allows

programmers to stay focused in the editor while refactoring. An asterisk indicates

that a column does not apply to a tool.

8.6 Future Work

Conducting a case-study evaluation of my refactoring tools would be valuable in the

future. While it has been helpful to conduct interviews and laboratory experiments,
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Tool Steps
Addressed

Generality Selection Error-
Resistance

Stay in
Editor

Editor Selection Selection All Low Yes
Selection Assist Selection One Medium Yes
Box View Selection One High No
Wizard/Dialog Configuration All * No
Linked In-line Configuration Some * Yes
Refactoring Cues Selection &

Configuration
All High Yes

Table 8.2: A comparison of selection and configuration mechanisms for refactoring tools.

I believe that observing long-term tool usage is a better predictor of how program-

mers will behave in the wild. Such a study should measure what kinds of errors are

made; how long it takes to perform individual refactorings; the number and variety

of refactorings that are performed over the long-term; and whether users are satisfied

after using my refactoring tools for several weeks.

Cues may not be readable after many levels of nesting because many nested cues

are so dark that they completely obscure program text, and thus alternative cue color-

ing strategies may be desirable. One such strategy is cushion tree maps [39], which

give the illusion of cue depth without the need for varied saturation. Cue colors

should be changed as well, as color-blind programmers report difficulty in distin-

guishing pink and green cues.

I designed refactoring cues to make it faster to refactor several program elements

at once, and two future improvements may make this use case even faster. First, if

multiple refactorings are executed at once, it may be possible to amortize the cost

of precondition checking and code transformation in the refactoring engine itself.

Second, refactoring cues could be modified to refactor-on-select, eliminating a key

press in the refactoring process.



CHAPTER 8. THE CONFIGURATION STEP 142

8.7 Conclusions

In this chapter, I have addressed the usability of tools that help programmers dur-

ing the configuration step if the refactoring process (Section 2.5). Refactoring tools

that provide a user interface for configuration typically block the programmer from

accessing other tools and shifts focus from the code to the refactoring tool itself. Be-

cause refactoring tools are rarely configured, it behooves toolsmiths to build refac-

toring tools that do not force programmers to configure them. While compelling

programmers into configuration has long been the required workflow for using refac-

toring tools, refactoring cues and the guidelines that I have presented in this chapter

illustrate how non-obtrusive configuration can be achieved.



Chapter 9

The Error Interpretation Step: Recovering When Refactorings Go

Wrong 1

When a refactoring tool is unable to perform a programmer-requested refactoring —

a violation of a refactoring precondition — it generally presents a message in a di-

alog box in an attempt to explain what precondition was violated and why. As my

exploratory study demonstrated in Section 4.5, programmers can have difficulty un-

derstanding such error messages. In this chapter I demonstrate that changing the

user-interface to refactoring tools can improve programmers’ ability to understand

precondition violations. This is called the error interpretation step of the refactoring

process (Section 2.5).

9.1 Contributions

The major contributions of this chapter are as follows:

• A new in-code visualization to help programmers understand violations of EX-

TRACT METHOD preconditions (Section 9.2).

• An experiment that shows that this visualization can improve the diagnosis of

precondition violations for EXTRACT METHOD by between 79 percent and 91

1Parts of this chapter appeared in the Proceedings of the 2008 International Conference on Soft-
ware Engineering [49].
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Figure 9.1: Refactoring Annotations overlaid on program code. The programmer has selected
two lines of code (between the dotted lines) to extract. Here, Refactoring Annotations show
how the variable will be used: front and rear will be parameters, as indicated by the
arrows into the code to be extracted, and trued will be returned, as indicated by the arrow
out of the code to be extracted.

percent, as well as speeding up diagnoses by 72 percent (Section 9.3).

• Guidelines for making better representations of precondition violations for

refactoring tools (Section 9.4).

• A taxonomy of refactoring preconditions, which I derived from refactoring

tools for 4 different languages, and an application of the guidelines to the tax-

onomy (Section 9.6.1).

• An evaluation that suggests that refactoring tool usability is improved when

violations are presented in accordance with the guidelines (Section 9.6.2).

9.2 Tool Description

In this section, I describe a tool that I built for the Eclipse environment [18] that

addresses the problems demonstrated in the formative study described in Chapter 4.

You can download the tool, called Refactoring Annotations, and view a short screen-

cast here: http://www.multiview.cs.pdx.edu/refactoring/refactoring annotations.

In Section 4.5, I described the EXTRACT METHOD refactoring, in which a set of

contiguous statements are moved from an existing block of code into a new method.

http://www.multiview.cs.pdx.edu/refactoring/refactoring_annotations
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In that section I also presented several preconditions that must be true before a refac-

toring tool can execute EXTRACT METHOD (Table 4.1 on page 51). As the results

of the formative study described in Section 4.5 suggest, programmers have difficulty

understanding the textual error messages presented by refactoring tools, messages

that attempt to explain why these preconditions are violated. Figure 4.1 on page 51

shows an example. As an alternative to error messages, I designed Refactoring An-

notations to display violated preconditions for the EXTRACT METHOD refactoring.

More broadly, Refactoring Annotations can be thought of as a kind of graphical error

message.

Refactoring Annotations overlay program text to express control- and data-flow

information about a specific extraction. Each variable is assigned a distinct color, and

each occurrence of the varible is highlighted, as shown in Figure 9.1 on the previous

page. Across the top of the selection, an arrow points to the first use of a variable that

will have to be passed as an argument into the extracted method. Across the bottom,

an arrow points from the last assignment of a variable that will have to be returned.

L-values have black boxes around them, while r-values do not. An arrow to the left

of the selection simply indicates that control flows from beginning to end.

These annotations are intended to be most useful when preconditions are vio-

lated, as shown in Figure 9.2 on the following page. When the selection contains

assignments to more than one variable, multiple arrows are drawn across the bottom

showing multiple return values (Figure 9.2 on the next page, top). When a selec-

tion contains a conditional return, an arrow is drawn from the return statement to

the left, crossing the beginning-to-end arrow (Figure 9.2 on the following page, mid-

dle). When the selection contains a branch (break or continue) statement, a line is

drawn from the branch statement to its corresponding target (Figure 9.2 on the next

page, bottom). In each case, Xs are displayed over the arrows, indicating the location

of the violated precondition.
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Figure 9.2: Refactoring Annotations display an instance of a violation of refactoring precon-
dition 1 (goOnVacation), precondition 2 (curbHop), and precondition 3 (goForRide),
described in Table 4.1 on page 51.

When code violates a precondition, Refactoring Annotations are intended to give

the programmer an idea of how to correct the violation. Often the programmer can

enlarge or reduce the selection to allow the extraction of a method. Other solutions

include changing program logic to eliminate break and continue statements; this

is another kind of refactoring.

Refactoring Annotations are intended to scale well as the amount of code to be

extracted increases. For code blocks of tens or hundreds of lines, only a few values

are typically passed in or returned, and only the variables holding those values are

colored. In the case when a piece of code uses or assigns to many variables, the
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annotations become visually complex. However, I reason that this is desirable: the

more values that are passed in or returned, the less cohesive the extracted method.

Thus, I feel that code with visually complex Refactoring Annotations should proba-

bly not have EXTRACT METHOD performed on it. As one developer has commented,

Refactoring Annotations visualize a useful complexity metric.

Refactoring Annotations are intended to assist the programmer in resolving pre-

condition violations in two ways. First, because Refactoring Annotations can indi-

cate multiple precondition violations simultaneously, the annotations give the pro-

grammer an idea of the severity of the problem. Correcting a conditional return

alone will be easier than correcting a conditional return, and a branch, and multiple

assignments. Likewise, correcting two assignments is likely easier than correcting

six assignments. Second, Refactoring Annotations give specific, spatial cues that can

help programmers to diagnose the violated preconditions.

Refactoring Annotations are similar to a variety of prior visualizations. My con-

trol flow annotations are visually similar to Control Structure Diagrams [27]. How-

ever, unlike Control Structure Diagrams, Refactoring Annotations depend on the

programmer’s selection, and visualize only the information that is relevant to the

refactoring task. Variable highlighting is like the highlighting tool in Eclipse, where

the programmer can select an occurrence of a variable, and every other occurrence

is highlighted. Unlike Eclipse’s variable highlighter, Refactoring Annotations dis-

tinguish between variables using different colors; moreover, the variables relevant to

the refactoring are highlighted automatically. In Refactoring Annotations, the arrows

drawn on parameters and return values are similar to the arrows in the DrScheme en-

vironment [16], which draws arrows between a variable declaration and each variable

reference. Unlike the arrows in DrScheme, Refactoring Annotations automatically

draw a single arrow for each parameter and for each return value. Finally, Refactor-

ing Annotations’ data-flow arrows are like the code annotations drawn in a program
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slicing tool built by Ernst [14], where arrows and colors display the input data de-

pendencies for a code fragment. While Ernst’s tool uses more sophisticated program

analysis than the current version of Refactoring Annotations, it does not include a

representation of either variable output or control flow.

9.3 Evaluation

In the experiment described in this section, programmers used both the standard

error message dialogs in Eclipse and Refactoring Annotations to identify problems

in a selection that violated preconditions of the EXTRACT METHOD refactoring. I

evaluated subjects’ responses for speed and correctness.

9.3.1 Subjects

I conducted this experiment just after the selection experiment described in Sec-

tion 6.3 and with the same 16 students from the object-oriented programming class.

9.3.2 Methodology

I randomly assigned subjects to one of two blocks; a different random code pre-

sentation order was used for each block. When subjects began this experiment,

I showed them how the EXTRACT METHOD refactoring works using the standard

Eclipse refactoring tool. I then demonstrated and explained each precondition viola-

tion error message shown in a dialog box by this tool; this took about 5 minutes. I

then told subjects that their task was to identify each and every violated precondition

in a given code selection, assisted by the tool’s diagnostic message. I then allowed

subjects to practice using the tool until they were satisfied that they could complete

the task; this usually took less than 5 minutes. The subjects were then told to per-

form the task on 4 different EXTRACT METHOD candidates from different classes.
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Missed Violation Irrelevant Code Mean Identification Time
Error Message 11 28 165 seconds
Refactoring An-
notations

1 6 46 seconds

Table 9.1: The number and type of mistakes when finding problems during the EXTRACT

METHOD refactoring over all subjects, for each tool, and the mean time to correctly identify
all violated preconditions. Subjects diagnosed errors in a total of 64 refactorings with each
tool. Smaller numbers indicate better performance.

The experiment was then repeated using Refactoring Annotations on a different code

base.

9.3.3 Results

Table 9.1 counts two kinds of mistakes made by subjects. “Missed Violation” means

that a subject failed to recognize one or more preconditions that were being violated.

“Irrelevant Code” means that a subject identified some piece of code that was irrel-

evant to the violated precondition, such as identifying a break statement when the

problem was a conditional return.

Table 9.1 indicates that programmers made fewer mistakes with Refactoring An-

notations than with the error messages. Using Refactoring Annotations, subjects

were much less likely to miss a violation and much less likely to misidentify the

precondition violations. The overall difference in the number of programmer mis-

takes per refactoring was statistically significant (p = .003, df = 15, z = 2.95, using a

Wilcoxon matched-pairs signed-ranks test).

Table 9.1 also shows the mean time to find all precondition violations correctly,

across all subjects. On average, subjects recognized precondition violations more

than three times faster using Refactoring Annotations than using the error messages.

The recognition time difference was statistically significant (p < .001 using a t-test

with a logarithmic transform to remedy long recognition time outliers).
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Figure 9.3: For each subject, mean time to identify precondition violations correctly using
error messages versus Refactoring Annotations. Each subject is represented as an X, where
the distance between the bottom legs represents the number of imperfect identifications using
the error messages and the distance between the top arms represents the number of imperfect
identifications using Refactoring Annotations.

Figure 9.3 shows the mean time to identify all precondition violations correctly

for each tool and each user. Note that I omitted two subjects from the plot, because

they did not correctly identify precondition violations for any code using the error

messages. The dashed line represents equal mean speed using either tool. Since all

subjects are below the dashed line, all subjects are faster with Refactoring Annota-

tions. Most users were also more accurate using Refactoring Annotations.

Overall, Refactoring Annotations helped the subjects to identify every precondi-

tion violation in 45 out of 64 cases. In only 26 out of 64 cases, the error messages

allowed the subjects to identify every precondition violation. Subjects were faster

and more accurate using Refactoring Annotations than using error messages.

I administered a post-test questionnaire that allowed the subjects to express their

preferences for the two tools they tried. Significance levels are reported using a

Wilcoxon matched-pairs signed-ranks test.

Subjects were unanimously positive on the helpfulness of Refactoring Annota-

tions and all subjects said they were likely to use them again. In comparison, the

reviews of the error messages were mixed. Differences between the tools in help-

fulness (p = .003, df = 15, z = 3.02) and likeliness to use (p = .002, df = 15, z = 3.11)
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were both statistically significant. Concerning error messages, subjects reported that

they “still have to find out what the problem is” and are “confused about the error

message[s].” In reference to the error messages produced by the Eclipse tool, one

subject quipped, “who reads alert boxes?”

Overall, the subjects’ responses showed that they found the Refactoring Annota-

tions superior to error messages for the tasks given to them. More importantly, the

responses also showed that the subjects felt that Refactoring Annotations would be

helpful outside of the context of the study. Materials from this experiment, includ-

ing raw results, questionnaires, and my experimenter’s notebook, can be found at

http://multiview.cs.pdx.edu/refactoring/experiments.

9.3.4 Threats to Validity

Although the quantitative results discussed in this section are encouraging, one major

limitation must be considered when interpreting these results in addition to the limi-

tations discussed in Section 6.3.4. Every subject first used the Eclipse error messages

and then used Refactoring Annotations. I originally reasoned that the fixed order was

necessary to educate programmers about how EXTRACT METHOD is performed be-

cause my tool did not transform the code itself. Unfortunately, the fixed order may

have biased the results to favor Refactoring Annotations due to a learning effect. In

hindsight, I should have made an effort to vary the tool usage order. However, the

magnitude of the differences in errors and speed, coupled with the strong subject

preference, suggests that Refactoring Annotations are preferable to refactoring error

message dialog boxes.

9.3.5 Discussion

The results of the experiment suggest that Refactoring Annotations are preferable

to an error-message-based approach for showing precondition violations during the

http://multiview.cs.pdx.edu/refactoring/experiments
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EXTRACT METHOD refactoring. Furthermore, the results indicate that Refactoring

Annotations communicate the precondition violations effectively. When a program-

mer has a better understanding of refactoring problems, I believe the programmer is

likely to be able to correct the problems and successfully perform the refactoring.

9.4 Guidelines

By studying how programmers use both existing refactoring tools and the new tools

that I have described in this chapter, I have induced a number of usability guide-

lines for refactoring tools. In this section, I link my experiment and the design of

Refactoring Annotations to each guideline.

During the experiment, error messages required programmers to invest significant

time to decipher the message. Refactoring Annotations reduced that time. Thus:

� Expressiveness. Representations of refactoring errors should help the pro-

grammer to comprehend the problem quickly by clearly expressing the details:

the programmer should not have to spend significant time understanding the

cause of an error.

By coloring the location of precondition violations in the editor, programmers

could quickly and accurately locate problems using Refactoring Annotations during

the experiment. With standard error messages, programmers were forced to find

the violation locations manually. A tool should tell the programmer what it just

discovered, rather than requiring the programmer “to basically compile the whole

snippet in my head,” as one Eclipse bug reporter complained regarding an EXTRACT

METHOD error message [1]. Thus:

� Locatability. Representations of refactoring errors should indicate the loca-

tion(s) of the problem.
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Refactoring Annotations show all errors at once: during the experiment, pro-

grammers could quickly find all violated preconditions. In contrast, programmers

that used error messages in dialog boxes had to fix one violation to find the next.

Thus, to help programmers assess the severity of the problem:

� Completeness. Representations of refactoring errors should show all problems

at once.

Counting the number of Xs using Refactoring Annotations gives programmers

a visual estimate of the degree of the problem, whereas the error messages do not.

For instance, the error messages did not indicate how many values would need to be

returned from an extracted method, just that the number was greater than one. The

programmer should be able to tell whether a violation means that the code can be

refactored after a few minor changes, or whether the refactoring is nearly hopeless.

Thus:

� Estimability. Representations of refactoring errors should help the program-

mer estimate the amount of work required to fix violated preconditions.

Violations are often not caused at a single character position, but instead arise

from a number of related pieces of source code. Refactoring Annotations related

variable declarations and references using the same color, allowing the programmer

to analyze the problem one variable at a time. More generally, relations can be

represented using arrows and colors, for example. Thus:

� Relationality. Representations of refactoring errors should display error infor-

mation relationally, when appropriate.

Looking for Xs in the Refactoring Annotations allowed programmers to quickly

distinguish errors from other types of information. In other words, programmers

should not have to wonder whether there is a problem with the refactoring. Thus:
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� Perceptibility. Representations of refactoring errors should allow program-

mers to easily distinguish precondition violations (showstoppers) from warn-

ings and advisories.

In the experiment, programmers using error messages confused one kind of vio-

lation for another kind. This wasted programmers’ time because they tried to track

down violations that did not exist. Programmers using Refactoring Annotations,

which use distinct representations for distinct errors, rarely conflated different kinds

of violations. Thus:

� Distinguishability. Representations of refactoring errors should allow the pro-

grammer to easily distinguish between different types of violations.

Comprehensibility, Locatability, and Relationality are similar to Shneiderman’s

recommendation that error messages be specific rather than general, so that the user

understands the cause of the error [70, p. 59]. Likewise, Locatability, Complete-

ness, and Estimability are all designed to achieve Shneiderman’s recommendation

for constructive guidance, so that the user can successfully recover from an error [70,

p. 58]. Perceptibility and Distinguishability are similar to Nielsen’s “Help users

recognize. . . errors” and “consistency and standards,” the latter of which states that

“users should not have to wonder whether different words, situations, or actions mean

the same thing” [55].

9.5 Related Work: Existing Research on Refactoring Errors

Research on refactoring preconditions has largely focused on ensuring behavior

preservation, rather than on how to present preconditions in an understandable man-

ner to the programmer. Opdyke showed that program behavior is preserved when cer-

tain preconditions are satisfied in the C++ programming language [58]. At about the
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same time, Griswold defined preconditions for meaning-preserving program trans-

formations for Scheme [23].

Many tools provide support for the EXTRACT METHOD refactoring, but few de-

viate from the wizard-and-error-message interface described in Section 4.5.1. How-

ever, some tools silently resolve some precondition violations. For instance, when

you try to extract an invalid selection in Code Guide, the environment expands the

selection to a valid list of statements [25]. With a tool that makes such a strong as-

sumption about what you wanted, you may then end up extracting more than you

intended. With Xrefactory, if you try to use EXTRACT METHOD on code that would

return more than one value, the tool generates a new tuple class [86]. Again, this tool

makes strong assumptions about what you intended.

9.6 Generalization to Other Refactorings

Thus far in this chapter, I have demonstrated how error messages for the EXTRACT

METHOD refactoring can be improved by using a graphical representation. What I

have not yet discussed is whether the guidelines presented in Section 9.4 are gen-

eralizable to precondition violations for other refactorings. In the remainder of this

chapter, I characterize precondition violations and explain how the existing guide-

lines can be extended to other precondition violations (Section 9.6.1). I also describe

an evaluation of this extension (Section 9.6.2).

9.6.1 A Taxonomy of Refactoring Preconditions

It would be ideal to define a taxonomy of refactoring preconditions by studying a

formal, language-agnostic foundation of refactorings, but such a foundation does not

yet exist. Perhaps the closest such foundation that I know of is Opdyke’s disserta-

tion, in which Opdyke rigorously studied refactorings for the C++ language [58], but

the refactorings that he studied are based on refactorings observed in just one case



CHAPTER 9. THE ERROR INTERPRETATION STEP 156

study. Thus, Opdyke’s refactorings (and preconditions) are not complete, nor neces-

sarily representative of the variety of refactorings that most programmers perform.

Indeed, much of what is known about refactoring preconditions is language specific

and has little formal foundation. Refactoring preconditions vary from refactoring to

refactoring, and from language to language. However, there are some preconditions

common to many refactorings across several languages. For example, whether per-

forming EXTRACT LOCAL VARIABLE or RENAME CLASS, whether refactoring in

Java or in C++, the name of the new variable or class must be different from the name

of any existing variable or class in scope.

Instead of a formal foundation, I built my taxonomy of preconditions on error

messages displayed by existing refactoring tools. This is because, in practice, much

information about refactoring preconditions is buried in the refactoring tools them-

selves, although how many preconditions a particular tool checks for depends on

the tool’s maturity. For example, while a refactoring toolsmith may take great pains

to ensure that a tool checks all preconditions that she can think of, a few unantici-

pated preconditions inevitably slip through the cracks [83] and may emerge some-

time down the road in the form of bug reports. In this section, I identify refactoring

preconditions by examining the internals of refactoring tools.

9.6.1.1 Methodology for Deriving a Precondition Taxonomy

My goal is to draw general conclusions about how to represent preconditions. Thus

I am not overly concerned about undiscovered refactoring preconditions, as long as I

can say I have studied a fairly representative sample of refactoring preconditions. To

find such a sample, I have classified refactoring preconditions detected by 4 different

refactoring tools.

• Eclipse JDT. This tool is the standard Eclipse Java refactoring tool [20]. I

gathered preconditions from a key-value text file used to store each precon-
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dition error message. This is the most mature refactoring tool in the group,

containing 537 error messages in total. I inspected a version from the Eclipse

CVS repository checked out on August 4, 2008.

• Eclipse CDT. This tool is built for C++ as a plugin [17] to the C/C++ envi-

ronment for Eclipse [19]. I gathered precondition error messages in the same

way as with Eclipse JDT. This refactoring tool contained a total of 77 error

messages. I inspected version “0.1.0.qualifier”.

• Eclipse RDT. This tool is built for the Ruby environment for Eclipse [2]. I

gathered precondition error messages in the same way as with Eclipse JDT,

although the error messages were spread among several files. This refactoring

tool contained a total of 73 error messages. I inspected Subversion revision

1297.

• HaRe. This tool is built for refactoring Haskell programs [79]. I gathered pre-

condition error messages by searching for invocations of the error function,

which was typically followed by an error message that indicated a violated

refactoring precondition. This refactoring tool contained a total of 204 error

messages. I inspected the March 27, 2008 update of HaRe 0.4.

9.6.1.2 Taxonomy Description

For each error message, I manually gave it a primary classification based on simi-

larities to other error messages, and I iterated on this taxonomy until similar error

messages appeared in the same category. Table 9.2 on page 159 shows my final tax-

onomy. Categories are indented when they are a subcategory; for instance, inaccurate

analysis is a kind of analysis problem. You should note that the number of error mes-

sages in each taxonomy category is not indicative of the importance of a particular

category. This is because some general error messages that apply to several refactor-



CHAPTER 9. THE ERROR INTERPRETATION STEP 158

ings appear just once, and also because some tool categories are unpopulated because

of the relative immaturity of the tool. Next, I explain each category, provide a few

example error messages from actual tools, and describe how my guidelines apply to

that category. I will also provide mockups of how Refactoring Annotations can be ex-

tended to preconditions in the taxonomy. A database containing the taxonomized er-

ror messages can be found at http://multiview.cs.pdx.edu/refactoring/error taxonomy.

• Analysis problems occur when the refactoring tool encounters problems

while analyzing code. This category is subdivided into inaccurate analysis,

incompatibility, compilation errors, internal error, and inconsistent state.

– Inaccurate analysis occurs when the refactoring engine cannot analyze

some piece of source code, and thus is not confident about the accuracy of

the results. Below are some examples of error messages in this category

(· · · denotes text that a refactoring tool supplies dynamically).

Example: Inaccurate Analysis Errors

Tool Refactoring Message

JDT EXTRACT METHOD Several type parameters cannot be mapped to

the super type · · ·

CDT ENCAPSULATE FIELD No such method · · ·

RDT INLINE METHOD Sorry, could not guess the type of the selected

object.

HaRe Multiple Can’t find module name

Errors in inaccurate analysis are too vague to provide any useful represen-

tation to the programmer. For the most part, this category encapsulates

exceptions that are encountered in situations that the toolsmith did not

expect, and thus little can be done to improve error expressiveness to the

http://multiview.cs.pdx.edu/refactoring/error_taxonomy


CHAPTER 9. THE ERROR INTERPRETATION STEP 159

Category JDT CDT RDT HaRe
analysis problem 0 0 0 0
inaccurate analysis 35 4 2 2
incompatibility 5 1 0 0
compilation errors 27 1 3 0
internal error 24 5 0 36
inconsistent state 15 2 0 0

unsaved 4 1 0 0
deleted 4 0 0 0

misselection 0 0 0 0
selection not understood 30 26 19 33
improper quantity 0 5 0 2

misconfiguration 3 0 0 0
illegal name 6 7 1 15
unconventional name 11 0 0 0
identity configuration 4 0 7 3
unbound configuration 7 2 0 2

unchangeable 3 0 0 0
unchangeable reference 2 0 0 0
unchangeable source 16 0 0 0
unchangeable target 12 0 0 0

unbinding 12 0 0 1
control unbinding 35 2 4 10
data unbinding 18 5 3 4
name unbinding 20 0 0 2
inheritance unbinding 11 0 1 0

clash 6 5 0 24
control clash 17 3 5 9
data clash 16 0 3 3
name clash 38 3 0 2
inheritance clash 9 0 0 0

inherent 0 0 0 0
context 38 0 7 4

own parent 4 0 0 0
structure 17 0 13 9
property 45 3 3 0

vague 37 1 0 22
unknown 6 1 2 21

Table 9.2: A precondition taxonomy (left column), with counts of error messages in each
taxonomy category for each refactoring tool (right columns).
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programmer. The error and the programmers’ context may be relayed

back to the toolsmith, so that the tool can be improved in the future.

– Incompatibility refers to errors that occur when the refactoring tool tries

to produce code that the current, outdated compiler does not understand.

Example: Incompatibility Errors

Tool Refactoring Message

JDT PULL UP Moving · · · which contains varargs to desti-

nation type · · · will result in compile errors,

since the destination is not J2SE 5.0 compati-

ble.

CDT Multiple Unsupported Dialect.

Errors in the incompatibility category can be improved in two ways in

accordance with the guidelines. Comprehensibility may be improved

by providing links to help documents that explain why one type of refac-

toring can have incompatibility problems. For instance, for the second

example in the table, the help document could state what varargs are and

that they do not exist in versions of Java prior to 5.0. Locatability may

be improved by showing which program elements are incompatible, and

also where compatibility information can be changed. For example, fix-

ing Java 5.0 incompatibility issues can be achieved by changing project

settings in Eclipse, so showing how the programmer can access those

settings improves locatability.

– Compilation errors occur when the refactoring tool cannot analyze source

code because it contains compilation errors.
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Example: Compilation Error Errors

Tool Refactoring Message

JDT INLINE METHOD The method declaration contains compile er-

rors. To perform the operation you will need

to fix the errors.

CDT Multiple The translationunit contains one or several

problems. This can be caused by a syntax er-

ror in the code or a parser flaw. The refactor-

ing will possibly fail.

RDT Multiple There is a syntax error somewhere in the

project, the refactoring might not work on

these files.

Improving compilation errors is largely a matter of improving represen-

tation of compilation errors themselves, which has already been a subject

of extensive research [8, 30, 56, 80, 87]. For refactoring, Relationality

and locatability can be improved by showing which compilation errors

will have an impact on the correctness of a refactoring, and by prioritiz-

ing those that are most likely to interfere with correctness. For exam-

ple, when inlining a private method, fixing compilation errors within the

method’s containing class would increase the likelihood of maintaining

behavior, but fixing compilation errors on all other classes will not im-

prove correctness, in general. Estimability may be improved by display-

ing how many compilation errors exist, especially on relevant program

elements, but again, this depends on the usability of the underlying tool

producing the compilation errors.

– Internal error occurs when the refactoring tool encounters an error for an

unknown reason.
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Example: Internal Error Errors

Tool Refactoring Message

JDT EXTRACT INTERFACE An internal error occurred during precondi-

tion checking. See the error log for more de-

tails.

CDT HIDE METHOD Can not load translation unit.

HaRe Multiple HaRe: Error in addLocInfo!

Internal errors, like those in the inaccurate analysis category, are bugs in

the tool, and thus the toolsmith could not provide any useful representa-

tion for the error.

– Inconsistent state occurs when some program element changes between

when a programmer initiated a refactoring and when the refactoring tool

tries to analyze it.

Example: Inconsistent State Errors

Tool Refactoring Message

JDT Multiple The workspace has been modified since the

refactoring change object has been created

CDT Multiple File not found.

Several improvements can be made to errors in this category and sub-

categories. Locatability may be improved by showing which program

elements have changed. Estimability may be improved by displaying

how many program elements have changed. Relationality may be im-

proved by showing the relationship between the original and the changed

program element. This category is subdivided into unsaved and deleted.

∗ Unsaved occurs when the refactoring tool tries to analyze or modify

code that is contained inside of an open editor buffer.



CHAPTER 9. THE ERROR INTERPRETATION STEP 163

Example: Unsaved Errors

Tool Refactoring Message

JDT RENAME TYPE Type · · · does not exist in the saved ver-

sion of · · ·

CDT HIDE METHOD Editor is not saved

In addition to the improvements described in inconsistent state, com-

prehensibility of unsaved errors may be improved by showing the

programmer the difference between the saved and unsaved code us-

ing a difference viewer.

∗ Deleted occurs when the refactoring tool tries to analyze or modify

code that has been deleted, possibly because the programmer chose

code for refactoring in a view that has not been updated since the

deletion.

Example: Deleted Errors

Tool Refactoring Message

JDT RENAME FIELD The selected field has been deleted from

· · ·

In addition to the improvements described in inconsistent state, com-

prehensibility may be improved if the refactoring tool can describe

how and when the code was deleted, if that information is known.

• Misselection is an error that indicates a problem with the programmer’s selec-

tion. This category is subdivided into selection not understood and improper

quantity.

– Selection not understood occurs when the programmer selects some piece

of code that the refactoring tool doesn’t expect as input.
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Example: Selection Not Understood Errors

Tool Refactoring Message

JDT EXTRACT METHOD The selection does not cover a set of state-

ments or an expression. Extend selection to

a valid range using the ’Expand Selection To’

actions from the ’Edit’ menu.

CDT HIDE METHOD No proper Selection!

RDT MOVE METHOD The caret needs to be inside of a class.

HaRe REMOVE PARAMETER The selected identifier is not a function/simple

pattern name, or is not defined in this module

Like other violations, this kind of violation can be avoided with tools such

as Box View (Section 6.2.2) or refactoring cues (Section 6.6.3). When

such a tool is not used, one precondition guideline may help improve the

comprehensibility of selection not understood violations. The tool can

indicate what kind of program element it does expect, can give concrete

examples of such program elements in the programmer’s current editor,

and can allow the programmer to change her selection to the nearest such

examples.

– Improper quantity occurs when the programmer did not select the ex-

pected number of program elements.

Example: Improper Quantity Errors

Tool Refactoring Message

CDT EXTRACT CONSTANT Too many literals selected.

HaRe MERGE DEFINITIONS Only two functions may be fused together!

Comprehensibility of improper quantity violations may be improved in a

similar way as selection not understood, by suggesting some additions or

reductions to the selection that would make it a valid selection, and then
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making it quick and easy to change to one of those options. Compre-

hensibility may also be improved by saying exactly how many program

elements are expected. Locatability and estimability may be improved

by highlighting each of the selected program elements and allowing the

programmer to individually deselect or reselect elements in the existing

and adjacent highlights.

• Misconfiguration is a violation that occurs as the programmer chooses options

when configuring a refactoring. Violations in this category could likely be

pushed into subcategories, if the messages were more specific.

Example: Misconfiguration Errors

Tool Refactoring Message

JDT RENAME PACKAGE Choose another name.

This category is subdivided into illegal name, unconventional name, identity

configuration, and unbound configuration.

– Illegal name occurs when the programmer enters the name of a program

element to be created, but the name violates the rules of the programming

language.

Example: Illegal Name Errors

Tool Refactoring Message

JDT Multiple Type name cannot contain a dot (.).

CDT Multiple · · · contains an unidentified mistake.

RDT RENAME Please enter a valid name for the variable.

HaRe RENAME The new name should be an operator!

Illegal name violation representations can be improved in terms of com-

prehensibility by displaying what characters (or character combination)
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x  cannot contain the . character

.

.

x  cannot contain the @ character

@

Figure 9.4: Illegal name violations, displayed normally in Eclipse (at left), and how such
violations would be implemented following the guidelines (at right). The green violation
indicators at right indicate that two invalid characters were typed into the new name text
field.

are invalid (such as in the first error message) and, if possible, what char-

acters are valid. Locatability may be improved by pointing at which en-

tered character or characters are invalid. Estimability may be improved

by pointing at each and every invalid character. Figure 9.4 shows an ex-

ample of what such a user interface might look like.

– Unconventional name occurs when the programmer enters the name of a

program element to be created, but that name violates some convention.

Example: Unconventional Name Errors

Tool Refactoring Message

JDT EXTRACT LOCAL

VARIABLE

This name is discouraged. According to con-

vention, names of local variables should start

with a lowercase letter.

Unconventional name violation representations can be improved in the

same way as those for illegal name, although the representations for

unconventional name should be displayed in a manner that conveys less

urgency.
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– Identity configuration occurs when the programmer enters input that re-

sults in a refactoring that does not not modify the underlying source code.

Example: Identity Configuration Errors

Tool Refactoring Message

JDT CHANGE SIGNATURE Method signature and return type are un-

changed.

RDT RENAME Nothing to refactor.

HaRe RENAME The new name is same as the old name

The guidelines do not appear to dictate any particular way to improve

identity configuration violation representations. It may be more fruit-

ful to address identity configuration in the “interpret results” step of the

refactoring process (Section 2.5).

– Unbound configuration occurs when the programmer types configuration

information into a refactoring tool and that information should, but does

not, refer to some programming element.

Example: Unbound Configuration Errors

Tool Refactoring Message

JDT CHANGE SIGNATURE · · · is not a valid return type.

CDT Multiple No return-value (void).

HaRe ADD FIELD Please enter a field name ( to omit) and a field

type!

Unbound configuration may be prevented by providing a default value

for the input in question and, as discussed in Chapter 6, allowing only

valid input to be selectable. For instance, the first CHANGE SIGNATURE

error message could be eliminated if a widget were used where the pro-

grammer could select only from valid types. When preventing unbound
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Figure 9.5: Eclipse offering a quick-assist of all available return types in a refactoring dialog.

configuration violations is not desirable, comprehensibility may likewise

be improved by allowing the programmer to see an example of input that

is bound to some existing program element. Eclipse currently offers this

functionality using a quick-assist to choose from available types for sev-

eral refactorings (Figure 9.5), although it still accepts arbitrary input into

the text box, only to later display an error message if that text does not

indicate an existing type.

• Unchangeable violations are those that occur because some programming ele-

ment cannot be modified. Error messages that appear in this category should

be placed in subcategories, but were too vague to be classified appropriately.

Example: Unchangeable Errors

Tool Refactoring Message

JDT MULTIPLE · · · is read only

Comprehensibility may be improved if the type of the unchangeable element
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is displayed, such as whether it is binary or has been tagged as read-only. Lo-

catability may be improved if the unchangeable element or elements are dis-

played to the programmer. Estimability may be improved if each unchange-

able program elements are shown, or if the total number of unchangeable

program elements is shown. This category is subdivided into unchangeable

reference, unchangeable source, and unchangeable target.

– Unchangeable reference violations occur when a reference to a refactored

program element cannot be modified.

Example: Unchangeable Reference Errors

Tool Refactoring Message

JDT INTRODUCE FACTORY Constructor call sites in binary classes cannot

be replaced by factory method calls.

JDT MOVE METHOD The method invocations to the moved method

in resource · · · cannot be updated.

Apart from the improvements stated for the category unchangeable,

unchangeable reference violation representations may improve relation-

ality by showing the relationships between the referencer and the refer-

enced program element.

– Unchangeable source violations occur because the original program ele-

ment to be refactored cannot be modified.
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Example: Unchangeable Source Errors

Tool Refactoring Message

JDT CHANGE TYPE Type of selected declaration cannot be

changed

JDT PULL UP Pull up is not allowed on members of binary

types.

JDT Multiple Moving of members declared in read-only

types is not supported

Unchangeable source may be improved in the same way as unchangeable.

– Unchangeable destination violations occur when the programmer re-

quests to have some program element moved to a location that cannot

be modified

Example: Unchangeable Destination Errors

Tool Refactoring Message

JDT INTRODUCE INDIREC-

TION

Cannot place new method in a binary class.

JDT Multiple The selected destination is not accessible

Unchangeable destination may be improved in the same manner as

unchangeable.

Unbinding occurs when the refactoring tool tries to modify some code that

contains references, but doing so would cause those references to become un-

resolved.
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Example: Unbinding Errors

Tool Refactoring Message

JDT PUSH DOWN Pushed down member · · · is referenced by · · ·

HaRe ADD DEFINITION The free identifiers: · · · which are used by the defini-

tion to be moved are not in scope in the target module

· · · !

Error messages that appear in this category are too vague to be pushed down

into a subcategory, but I suspect that most such error messages in context

could be placed in a subcategory. In general, unbinding violations refer to

both “source” and “destination” program elements. For example, the source

in the first error message in the table is the class that originally contained the

member, and the destination is the subclass that the member would be pushed

down to. Moreover, referencing program elements, either to the source or the

target, may be relevant. Thus, Locatability may be improved by displaying

source, target, and referencing program elements, and relationality may also

be improved by showing the relationship between these elements. Moreover,

because relationships are broken in unbinding violations, changes to that rela-

tionship should be shown. Estimability may be improved by displaying how

many relationships are broken.

This category is subdivided into control unbinding, data unbinding, name

unbinding, and inheritance unbinding.

– Control unbinding occurs when the refactoring tool tries to modify some

code that contains control flow references (method calls, function calls, or

inter-procedural control flow), but doing so would break those references.
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Example: Control Unbinding Errors

Tool Refactoring Message

JDT MOVE MEMBERS Accessed method · · · will not be visible from

· · ·

CDT EXTRACT METHOD Extracting break statements without the sur-

rounding loop is not possible. Please adjust

your selection.

RDT EXTRACT METHOD Extracting methods not possible when the se-

lected code contains super calls

HaRe MOVE DEFINITION The ’main’ function defined in a ’Main’ mod-

ule should not be renamed!

Improving inter-procedural Relationality may be done using control-

flow techniques already described using Refactoring Annotations for EX-

TRACT METHOD. Relationality between methods and method calls is

slightly more difficult because such control flow does not necessarily

have any intuitive direction. However, if you extend the “top is value

in-flow and bottom is value out-flow” metaphor used in Refactoring An-

notations for EXTRACT METHOD, then you have “top is method/function

callers and bottom is method/function callees.” Thus, any lines coming

in the top of function represent callers and lines coming out the bottom

represent callees. Xs can then be placed where such relationships are bro-

ken, and the programmer can click on the unattached end the relationship

to go the source. Figure 9.6 on the next page is an example mockup for

an unsuccessful MOVE METHOD refactoring.

– Data unbinding occurs when the refactoring tool tries to modify some

code that contains references to or from variables, and the modification

would break those references.
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initMedia()

mediaPrintables
mediaPrintables

mediaPrintables

x        attributeValueSupported(...) calls this method

x  this method accesses    mediaPrintablesx   this method calls      initMedia()

Figure 9.6: A mockup of how the guidelines inform the display of control unbinding (top and
bottom left) and data unbinding (bottom right) for an attempted MOVE METHOD refactoring.
The purple top annotation indicates that isAttributeValueSupported(...) calls
this method, which is a problem because this method would not be visible outside in the desti-
nation. The initMedia() annotations indicate that this method calls the initMedia()
method, which would not be visible from the destination. The mediaPrintables anno-
tations indicate that this method uses the mediaPrintables field, which would not be
visible from the destination.

Example: Data Unbinding Errors

Tool Refactoring Message

JDT CONVERT ANONY-

MOUS TO NESTED

Class accesses fields in enclosing anonymous

type. The refactored code will not compile.

CDT MOVE FIELD Field is used in a Subclass. Maybe the tar-

get class is not visible in the subclass and the

refactoring will result in compiler errors.

RDT MOVE METHOD The method · · · contains the class field · · · .

Moving it might affect the functionality of the

class · · · .

HaRe REMOVE PARAMETER This parameter can not be removed, as it is

used!
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Data unbinding may be improved in the same way as control unbinding.

Figure 9.6 on the preceding page shows an example mockup.

– Name unbinding occurs when the refactoring tool tries to modify some

code that contains references to or from named entities (such as types),

but doing so would break those references or cause them to be illegal in

some other sense.

Example: Name Unbinding Errors

Tool Refactoring Message

JDT MOVE MEMBER Accessed type · · · will not be visible from · · ·

HaRe MOVE FUNCTION Moving the definition to module · · · will

cause mutually recursive modules!

Name unbinding may be improved in the same way as control unbinding.

Figure 9.7 on the next page is an example mockup for an unsuccessful

MOVE METHOD refactoring.

– Inheritance unbinding occurs when the refactoring tool tries to modify

some code that contains inheritance relationships, but doing so would

break those references.

Example: Inheritance Unbinding Errors

Tool Refactoring Message

JDT RENAME FIELD Cannot be renamed because it is declared in a

supertype

RDT INLINE CLASS The inlne [sic] target is subclassed and thus

cannot be inlined.

Inheritance unbinding may be improved in the same way as control

unbinding. Extending the top/bottom metaphor, if a name is used inside
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transferQueue

transferQueue
lookupTransferQueue

x   this method overriden by        lookupTransferQueue(...) 

x        lookupTransferQueue(...) overrides this method

x        transferQueue is not visible in destination

Figure 9.7: A mockup of how the guidelines inform the display of name unbinding (in purple)
and inheritance unbinding (in green) for an attempted MOVE METHOD refactoring, where
the destination class is the class of this mon. The purple tranferQueue annotations
indicate that this method relies on a class transferQueue, which will not be accessible
in the destination. The green lookupTransferQueue annotations indicate that the cur-
rent method overrides a superclass method (top) and some subclass method (bottom), so the
method cannot be moved.

a code block, then lines come out the bottom of that block; if that block

defines a name that is used elsewhere, then lines come in the top. Fig-

ure 9.7 shows an example mockup for an unsuccessful MOVE METHOD

refactoring.

• Clash refers to a conflict that would be introduced if the refactoring is executed.

Violations in this category should be pushed down to subcategories when they

can be made more concrete.
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Example: Clash Errors

Tool Refactoring Message

JDT Multiple Problem in · · · . Another name will shadow access

to the renamed element

CDT Multiple · · · is already defined in this scope.

HaRe RENAME Name · · · already existed

Locatability of clash violations may be improved by displaying the program

elements that clash, both the original and the new element.

This category is subdivided into control clash, data clash, name clash, and

inheritance clash.

– Control clash occurs when a refactoring tool needs to create a new

method or function that clashes with an existing method or function.

Example: Control Clash Errors

Tool Refactoring Message

JDT Multiple If you proceed, the method · · · in · · · will

have a constructor name.

CDT EXTRACT METHOD Name already in use.

RDT Multiple New method name is not unique.

HaRe MERGE DEFINITIONS the use of the name: · · · is already in scope!

Control clashes should be displayed the same as general clashes. An

example is shown in Figure 9.8 on the next page.

– Data clash occurs when a refactoring tool needs to create a new data

element, but the new data element clashes with an existing data element.
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x       isValid already exists

Figure 9.8: A mockup of how the guidelines inform the display of control clash for an at-
tempted RENAME METHOD refactoring, where the method at bottom has just been renamed
to isValid() using Eclipse’s in-line rename refactoring tool. At top, the existing method
that the newly renamed method conflicts with, in a floating editor that can be used to perform
recursive refactorings, such as renaming the original isValid() method.

Example: Data Clash Errors

Tool Refactoring Message

JDT RENAME FIELD A field with name · · · is already defined in

· · · .

RDT RENAME The chosen variable name already exists!

Please go back and change it.

HaRe ADD PARAMETER The new parameter name will cause name

clash or semantics change, please select an-

other name!

Data clashes should be displayed the same as general clashes.

– Name clash occurs when a refactoring tool needs to create a new program

element, but the new program element’s name clashes with an existing

program element’s name. These program elements are typically types or

modules.
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Example: Name Clash Errors

Tool Refactoring Message

JDT EXTRACT INTERFACE A type named · · · already exists in package

· · ·

CDT Multiple File already exists: · · ·

HaRe MOVE DEFINITION BE-

TWEEN MODULES

The pattern names: · · · are already defined in

module · · · !

Name clashes should be displayed the same as general clashes.

– Inheritance clash occurs when the refactoring tool attempts to create a

program element that will clash with another program element in the in-

heritance hierarchy.

Example: Inheritance Clash Errors

Tool Refactoring Message

JDT PULL UP Field · · · declared in type · · · has a different

type than its moved counterpart

Inheritance clashes should be displayed the same as general clashes.

• Inherent is a category of violations where some input to the refactoring tool is

inherently not suitable for refactoring. This category is subdivided into context,

structure, and property.

– Context occurs when the program element to be refactored, or the result-

ing program element after refactoring, is not appropriate because of the

program context in which it occurs.
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x  Members       in interfaces cannot be moved

modalityPopped

Figure 9.9: A mockup of how the guidelines inform the display of context for an attempted
MOVE METHOD refactoring, pointing out that the method modalityPopped(...) can-
not be moved because interface methods cannot be moved. The original Eclipse modal error
message states “Members in interfaces cannot be moved.”

Example: Context Errors

Tool Refactoring Message

JDT EXTRACT METHOD Cannot extract increment part of a ’for’ state-

ment.

RDT TEMP TO FIELD There is no enclosing class to insert fields.

HaRe CLEAN IMPORTS The selected identifier is not a top level iden-

tifier!

Locatability and Relationality may be improved by displaying the con-

text, or lack thereof, that is causing the problem. Figure 9.9 shows an

example. This category is contains the more specialized own parent cat-

egory.

∗ Own parent violations occur when the programmer requests to move
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a program element to its parent.

Example: Own Parent Errors

Tool Refactoring Message

JDT MOVE A file or folder cannot be moved to its

own parent.

JDT MOVE A package cannot be moved to its own

parent.

Own parent is similar to identity configuration, in that it is not clear

that this should be a violation at all, but instead information that

tells the programmer that nothing has changed during the “interpret

results” step (Section 2.5).

– Structure violations occur when a refactoring cannot proceed because of

the structure of the program element being refactored.

Example: Structure Errors

Tool Refactoring Message

JDT INLINE METHOD Method declaration contains recursive call.

RDT MERGE WITH EXTER-

NAL CLASS PARTS

There is no class in the current file that has

external parts to merge

HaRe MERGE DEFINITIONS The guards between the two functions do not

match!

Locatability may be improved by making the structure of the program

element to be refactored more explicit. Relationality may be improved

by relating relevant pieces of the structure with one another. Figure 9.10

on the next page and 9.11 on page 182 shows two examples. To improve

Comprehensibility, supplementary explanation may be required in Fig-

ure 9.11 on page 182 to explain what a “blank final” is.
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originating_contact

originating_contac

originating_contact

originating_contact

originating_contact

x   Cannot convert parameter to �eld

Figure 9.10: A mockup of how the guidelines inform the display of structure for an at-
tempted CONVERT LOCAL TO FIELD refactoring, pointing out that the selected variable
originating contact is a parameter, which cannot be inlined. The original Eclipse
modal error message states “Cannot convert method parameters to fields.”

– Property violations occur when the selected program element to be refac-

tored has some property that makes it unsuitable for refactoring.
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theEnvironment

theEnvironment

theEnvironment

x  cannot inline blank �nals

Figure 9.11: A mockup of how the guidelines inform the display of structure for an attempted
INLINE CONSTANT refactoring, pointing out that the selected constant theEnvironment
is blank, meaning that it is not assigned to at its declaration. The original Eclipse modal error
message states “Inline Constant cannot inline blank finals.”

Example: Property Errors

Tool Refactoring Message

JDT EXTRACT LOCAL Operation not applicable to an array initial-

izer.

CDT MOVE FIELD Move Field can’t move a Method use Move

Method instead.

RDT INLINE LOCAL Cannot inline method parameters.

Property violations are too varied to suggest any general way to apply my

guidelines.

• Vague includes error messages that I could not classify from the message alone.

• Unknown similarly includes error messages that I simply did not understand.
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Several caveats are worth stating before drawing conclusions about how the

guidelines apply to the taxonomy of refactoring preconditions:

• The taxonomy shown is a best-effort attempt to classify real-world error mes-

sages; similar error messages may appear in different categories. The size

of the error message corpus (891 messages in total) combined with the tex-

tual inconsistencies between messages mean that doing a completely accurate

classification is nearly impossible. For example, several completely different

EXTRACT METHOD error messages appear to refer to the same violation: “No

statement selected,” “There is nothing to extract,” and “Cannot extract a single

method name.” While these messages may have identical causes, they have

no words in common. Indeed, messages are difficult to classify because they

can be stated in ways that are positive or negative, constructive or declarative,

programmer-oriented or tool-oriented.

• Likewise, some messages could be placed in more than one category. For

example, the error message “The elements in project · · · referenced from

· · · cannot be updated, since the project is binary” could appear in either in

unchangeable or in unbinding. As another example, the error message “Re-

moved parameter · · · is used in method · · · declared in type · · · ” could ap-

pear in either inheritance unbinding or in data unbinding. However, I put each

message into one and only one category. Moreover, because I created the tax-

onomy as I inspected the error messages, which category each message went

into is based on what categories were known when I inspected each message.

Notwithstanding this ambiguity, not every category can overlap with another

category. For example, given a selection not understood violation, that vio-

lation cannot also be an unbinding or clash message, because unbinding and

clash messages appear only when the refactoring tool understands the pro-
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x        site_pre�x is used

Figure 9.12: A mockup of how the non-local violations can be displayed in the program
editor. Here, the variable site prefix is referenced somewhere further down the editor.

grammer’s selection.

• Thus far, in this section on violation generalization, I have chosen examples

in the figures that fit onto one editor screen. What happens if a violation is

not located on screen in the editor? In that case, the guideline for locatability

(showing the violation close to relevant program elements) conflicts with the

guideline for completeness (showing all preconditions at once). Figure 9.12

gives an example of a refactoring where one precondition is violated, but the

editor annotation that would normally be displayed onscreen is indicating that

part of the violation is displayed somewhere further down the editor. Figure 9.8

on page 177 gives another example of how this problem can be addressed

using a floating editor. Using these techniques, such annotations can maintain

locatability without sacrificing completeness.
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9.6.1.3 Application of the Remaining Guidelines to the Taxonomy

As I postulated in Section 9.4, completeness (showing every refactoring precondi-

tion violation) is an important guideline to a usable user-interface for representing

violations of refactoring preconditions. Completeness may be achieved in the same

way as by Refactoring Annotations in EXTRACT METHOD: by overlaying each mes-

sage on top of program code or in the configuration user interface. For example, in

Figure 9.6 on page 173, three different Refactoring Annotations are represented at

once.

Likewise, I postulated perceptibility (enabling the programmer to distinguish

easily violations from non-violations) as a usability guideline. Again, as with Refac-

toring Annotations for Extract Method, Refactoring Annotations in general may

achieve perceptibility by drawing Xs for every violated precondition.

The last guideline that I postulated was distinguishability, allowing the program-

mer to easily distinguish between different types of precondition violations. With

standard Refactoring Annotations, I provided a representation for two different cat-

egories in the taxonomy, control unbinding, the black lines in the margins, and data

unbinding, the colored lines. In this section, I’ve proposed more than two dozen cat-

egories of violated refactoring preconditions; how can the programmer distinguish

all of them?

Traditional error messages use two different mechanisms to help programmers

distinguish between different kinds of messages:

• The text of the error message. As I have mentioned, however, programmers

sometimes do not read these messages (Section 4.5).

• The timing of the error message. Different messages may appear at different

times; for example, selection not understood always occurs near the begin-

ning of the use of a refactoring tool, while name clash only occurs after the
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programmer has done some configuration. Because the original Refactoring

Annotations all appeared at the same time during refactoring, it is unclear how

effective timing is in helping programmers to distinguish between precondition

violations.

Furthermore, there are at least three other ways to help programmers distinguish

between different kinds of messages:

• An iconic representation of the violation. For example, a series of 1’s and 0’s

is a familiar iconic representation of “binary,” and thus may be useful for rep-

resenting the unchangeable category when the unchangeable element is binary,

such as a library. Likewise, in Figures 9.6 on page 173 and 9.7 on page 175,

Refactoring Annotations use field, method, and class icons to distinguish be-

tween data unbinding, control unbinding, and name unbinding, respectively.

Even if the meaning of the icons is not intuitively grasped immediately, if the

icons are encountered with enough frequency, programmers may be able to

recognize problems from icons more quickly than by reading text.

• Shapes and patterns. Like icons, shapes and patterns may be used to help

programmers distinguish between different kinds of precondition violations.

For example, consider the straight arrows used in Figure 9.6 on page 173 and

the curved arrows used in Figure 9.8 on page 177; differently shaped arrows

represent different kinds of violations. Although the shapes do not intuitively

imply different violations, I hope that the difference would help programmers

distinguish between the violations, if only at a subconscious level.

• Word emphasis. Some error messages are overly wordy, making them dif-

ficult to understand. This difficulty arises because the cause of the problem

may not be apparent, as it is hidden in prose that is not central to the problem.
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For example, the following error message may be overly wordy: “Extracting

methods is not possible when the selected Method contains internal methods.”

Assuming that the programmer remembers the refactoring that she just per-

formed and that she just selected some method, all she needs to know from an

error message is why. In the example above, the only information pertinent to

why can be summarized in 3 words: “contains internal methods.” Thus, em-

phasizing the why words may help improve not only comprehensibility, but

also distinguishability because the programmer would have fewer words to

compare when wondering “is this error message like the last one that I saw?”

As a positive example, notice that in Figure 9.11 on page 182, a single word is

bolded to emphasize why a constant is not suitable to be inlined.

I have presented this list of methods of distinguishing between preconditions to show

that several methods exist (hopefully a sufficient number). I am not suggesting a way

to apply them to the precondition taxonomy. Knowing the frequency with which

these violations arise in practice and which pairs of violations are conflated by pro-

grammers should help to define what categories should be made most distinguish-

able. This remains future work.

9.6.2 Evaluation

In the previous section (Section 9.6.1), I discussed how my guidelines for improving

the representation of precondition violations can be applied to such representations

in general. The guidelines clearly can be applied, but it is not yet clear that the

guidelines improve the representation of precondition violations. In this section, I

describe an evaluation which suggests that that the guidelines do indeed improve

usability.

To summarize, the experiment described in this section is similar to the previous

experiment (Section 9.3): I ask programmers to use Refactoring Annotations and
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error messages to diagnose violations of refactoring preconditions. I compare their

ability to correctly identify the source of those violations, and report on their personal

opinions of both tools. Unlike the previous evaluation, it is a paper-based evaluation

of two hypothetical tools and explores a variety of refactorings and refactoring pre-

conditions.

9.6.2.1 Subjects

I drew subjects from three upper-level graduate and undergraduate courses: Schol-

arship Skills, Advanced Programming, and Languages and Compiler Design. I en-

couraged students to participate in the experiment by offering 10 dollar gift cards

from the Portland State bookstore to participants, requiring only that the participants

have programmed in Java. Thirteen students volunteered to participate, but two had

scheduling conflicts and one was somewhat familiar with this research: all three were

excused. As a result, a total of 10 students participated.

Subjects reported a mean of about 6 years of programming experience and 19

hours per week of programming over the last year. Eight of the subjects used In-

tegrated Development Environments at least part of the time when programming:

these environments included Visual Studio, Eclipse, Netbeans, and Xcode. Six sub-

jects were at least somewhat familiar with the concept of refactoring, and two of

them had used refactoring tools. All subjects were at least somewhat familiar with

Java and C++.

9.6.2.2 Methodology

I randomly placed subjects into one of four groups to ensure that average task diffi-

culty was balanced, as shown in Table 9.3 on the following page. Half of the sub-

jects used Refactoring Annotations to help them diagnose violated preconditions on

8 individual refactorings during the first phase of the experiment, then used error
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1 Refactoring A Refactoring B Error A Error B

Annotations Annotations Messages Messages
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2 Error B Error A Refactoring B Refactoring A

Messages Messages Annotations Annotations

Table 9.3: In which order the four different groups of subjects used the two refactoring tools
over the two code sets.

messages to help diagnose violated preconditions on 8 other individual refactorings

in the second phase. The other half used error messages in the first phase, then used

Refactoring Annotations in the second phase. Additionally, half of the subjects ana-

lyzed violations in one order (call it “A”) in the first phase, then in another order (call

it “B”) in the second phase, and vice-versa for the other half of subjects. Of the 10

subjects who participated, I assigned two to Group 1, three to Group 2, two to Group

3, and three to Group 4.

I chose three refactorings for subjects to analyze to try to balance having a suffi-

cient variety of refactorings and having few enough refactorings that subjects would

not find it difficult to remember how the refactorings work. I selected the refactorings

RENAME, EXTRACT LOCAL VARIABLE, and INLINE METHOD because they are

currently among the most popular refactorings performed with tools (see Table 3.1

on page 23).

I selected violations of refactoring preconditions for the 3 refactorings by the

following criteria:

• The chosen violations should span several precondition categories (Figure 9.2

on page 159), so that I am evaluating a substantial cross section of the precon-

dition taxonomy.

• Preference should be given to violation categories to which the guidelines ap-
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Refactoring
Kind

Refactoring
Number

Category Message

RENAME 1 Data Clash A field with this name is already de-
fined.

2 Illegal
Name

Type name cannot contain a dot (.).

INLINE

METHOD

3 Stucture Method declaration contains recursive
call.

Inheritance
Unbinding

Method to be inlined implements
method from interface · · · .

4 Property Cannot inline abstract methods.
5 Stucture Cannot inline a method that uses qual-

ified this expressions.
EXTRACT

LOCAL

6 Illegal
Name

· · · is not a valid identifier.

7 Data Clash A variable with name · · · is already de-
fined in the visible scope.

8 Context Cannot extract assignment that is part
of another expression.

Table 9.4: Refactorings and precondition violations used in the experiment.

ply, so that the results of the experiment highlight the difference between the

two violation representations. For example, I did not select internal errors be-

cause the guidelines do not apply to errors in this category.

• Some violation categories should appear twice, but for different refactorings,

so that subjects might notice similarities between violations.

• Some refactorings should exhibit two different violated preconditions at the

same time to simulate when the refactoring tool only informs the developer of

the first violation that it finds (Section 4.5.3).

Table 9.4 displays the precondition violations that I chose. The Refactoring col-

umn refers to one of the three chosen refactorings, Category refers to the category

in which that violation occurs, and Message lists a specific error message that the
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Eclipse refactoring tool would display had that violation occurred. Refactoring num-

ber 3 (in the third row of Table 9.4 on the preceding page) contains two different

violations; Eclipse version 3.2 reports only the upper one to the programmer.

I first randomized the order of appearance of the three kinds of refactorings

(RENAME, INLINE METHOD, and EXTRACT LOCAL) and then randomized the or-

der of each kind. In othe words, I did not mix the different kinds of refactorings to

reduce the likelihood that programmers would be confused about which refactoring

was being performed. The two orders in which subjects were asked to diagnose vio-

lations were A=(1,2,7,6,8,5,3,4) and B=(1,2,4,3,5,8,6,7). Finally, I selected example

code for subjects to refactor (and thus to encounter the violations) from PyUnicode,

a unicode Java class from the Jython project (described in Section 4.5.2), revision

number 5791. This class contains 5 private inner classes that can be used to iterate

over collections. This code was selected because 5 of the 9 precondition violations

shown in Table 9.4 on the previous page could naturally arise when refactoring that

code. I manually changed the code in two ways:

• I inserted code that would cause the programmer to violate the remaining four

preconditions when refactoring, and

• I changed code to avoid making the cause of a violation trivially apparent. For

example, if the error message says “A field with this name is already defined,”

then the field with the same name should not appear directly adjacent to the

renamed field.

This code spanned 202 lines, small enough to fit on three 8.5×11 inch sheets of

paper, but large enough to contain code that could generate two violations of each

refactoring precondition in Table 9.4 (once for error messages, once for Refactoring

Annotations).
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9.6.2.3 Example Experiment Run

When a subject arrived to participate in the experiment, I offered her a refresh-

ment and gave her a letter of informed consent. I then asked her to complete a

pre-experiment questionnaire in which she noted her programming and refactoring

experience.

I gave the subject a brief overview of the experiment, and a short review of the 3

refactorings. I then told her that she was going to see 16 attempted refactorings on

the same code base, but that none of these refactorings would be successful. Instead,

the tool would produce either an error message in a dialog box or a graphical repre-

sentation on top of the code, to indicate why the refactoring could not be performed.

I told the subject that her task was to diagnose the violated precondition, and indicate

the pieces of relevant source code.

Assume, for example, that a subject is assigned to Group 3 (Table 9.3 on

page 189), and thus uses error messages first with precondition ordering A, then

uses Refactoring Annotations with precondition ordering B. For the first task, I give

the subject the code in the form of 3 pieces of 8.5× 11 inch paper, placed vertically

on a flip chart. Figure 9.13 on the next page depicts a simulated experiment situation.

I point out what the programmer selected, which refactoring was attempted, and the

error message that the programmer encountered. I then told the subject to place small

sticky notes next to the code, or the refactoring tool configuration window, that they

felt was responsible for the violation. In this case, the first error message encountered

was number 1 (Table 9.4 on page 190), and a correct answer was to place a sticky

note next to the field that the new name clashes with. The subject then indicated

that she was satisfied with her response, and moved on to the next task. This task

was repeated with 7 other individual refactorings, and then repeated again, in this

case, with Refactoring Annotations on the same code base (but on slightly different

individual refactorings) with precondition ordering B. I recorded the aggregate time
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Figure 9.13: An example of an experiment run. The experiment participant (at left), considers
where to place a sticky note on the code responsible for the violation. The experiment ad-
ministrator (at right), records observations about the participant’s reasoning regarding where
he places the note.

it took for the subject to complete the 8 tasks, making one timing measurement with

Refactoring Annotations and one timing measurement with error messages.

After the tasks were complete, I gave the subject a post-experiment questionnaire

to help her to express her opinions of the tools; this was followed by a brief interview.

The subject was then thanked and released.
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Missed Location Irrelevant Location Total Time
Error Messages 54 19 666 seconds

Refactoring Annotations 23 4 876 seconds*

Table 9.5: The number and type of mistakes when diagnosing violations of refactoring pre-
conditions, for each tool. The right-most column lists the total mean amount of time subjects
spent diagnosing preconditions for all 8 refactorings. The asterisk (*) indicates that a timing
was not obtained for one subject, so I could not include it in the mean. Subjects diagnosed
errors in a total of 80 refactorings with each tool. Smaller numbers indicate better perfor-
mance.

9.6.2.4 Results

Eight out of 10 subjects reported that Refactoring Annotations helped them under-

stand violations better than error messages. The difference between subject ratings is

statistically significant (p = .046, df = 9, z = 2.00)2. The measured results confirm this

opinion; Table 9.5 shows the total number of program locations that subjects missed,

as well as the number of irrelevant code fragments that subjects selected. The dif-

ference in missed locations was statistically significant (p = .007, df = 9, z = 2.70) as

was the difference in choosing irrelevant locations (p = .017, df = 9, z = 2.39).

Six out of 10 subjects reported that they would be more likely to use Refactoring

Annotations than error messages and 4 out of 10 said that they would be equally

likely to use either. The difference between subject ratings is statistically significant

(p = .026, df = 9, z = 2.23).

Nine out of 10 subjects reported that they felt that Refactoring Annotations helped

them figure out what went wrong faster than with error messages. The difference

between subject ratings is statistically significant (p = .026, df = 9, z = 2.23). The

measured results confirm this opinion; subjects took on average 24% less time with

Refactoring Annotations compared to error messages (Table 9.5), but the size of the

effect depended on which tool the subject used first. When a subject used Refactoring

2This and the the remaining significance tests in this chapter were performed using a using a
Wilcoxon matched-pairs signed-ranks test.
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Annotations first and then used error messages, on average she took about 3% less

time using Refactoring Annotations. When a subject used error messages first, on

average she took about 41% less time.

Five out of 10 subjects reported that they felt that Refactoring Annotations made

them more confident of their judgements than error messages, and 4 out of 10 said

that they were equally confident with either tool. The difference between subject

ratings is not statistically significant (p = .084, df = 9, z = 1.73). The one subject that

said that she was less confident using Refactoring Annotations said that the reason

was that “they give such great information, I feel like, ‘Am I missing something?”’

The subjects’ ability to identify the causes of violations, and the speed at which

they could do it, varied from refactoring to refactoring:

• Refactoring numbers 1 and 7 (Table 9.4 on page 190), in which the program-

mer attempted to make a new program element that element conflicted with

an existing program element, was usually understood with both error mes-

sages and Refactoring Annotations. However, subjects were sometimes un-

able to find the existing program element. With Refactoring Annotations, only

one programmer did not correctly identify the conflicting program element,

whereas with error messages, it was not identified 5 times. Moreover, using er-

ror messages, subjects incorrectly identified some irrelevant program element

as conflicting 3 times. It appeared that this task was difficult because subjects

generally performed linear searches through the given code, which not only

took a significant amount of time, but often required repeated passes over the

same code until they found the conflicting element. Several subjects mentioned

that they would usually enlist the help of a find tool, such as Unix grep, to find

candidates and then sort through those candidates manually to find the conflict-

ing element. While useful, this technique would likely include false positives.

Two subjects mentioned that they would use Eclipse’s “Open Declaration” tool
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to help in the task, but this would only be useful once they found a reference

to the conflicting element in the code.

• Refactoring number 2 (Table 9.4 on page 190), in which an illegal identifier

was typed that contained two dots, and refactoring number 6, where an illegal

identifier was typed that contained a # or @ sign and began with a number,

were sometimes problematic for subjects, especially those using error mes-

sages. With Refactoring Annotations, only once did a programmer select some

irrelevant code when she thought there was a problem with the original code

selection (she apparently saw a == sign, interpreted that as assignment, and

thought that there was a violation similar to that shown in refactoring number

8). With error messages, 3 subjects noticed that the # or @ was a problem,

but failed to also notice that the identifier started with a digit. Moreover, 2

subjects erroneously thought that Java identifiers could not contain any digits,

and thus incorrectly said that digits inside of an identifier were a problem. One

programmer said that she would use Google to find out whether # and @ were

legal characters in Java identifiers. However, if typed literally, Google ignores

these characters.

• Refactoring number 3 (Table 9.4 on page 190), in which INLINE METHOD was

attempted on a method that contained two recursive calls and also implemented

a method from an Iterator, was rarely answered perfectly. With both Refac-

toring Annotations and error messages, most subjects appeared to understand

why recursion was a problem, but finding each recursive call was much more

difficult with error messages. With error messages, 7 subjects missed at least

one recursive call, but only 1 programmer missed them with Refactoring An-

notations. As for the method implementing a method from an interface, no

programmer using error messages noticed this problem. This appeared to be
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because the refactoring tool didn’t tell them about it; it told them only about a

recursive call. When using Refactoring Annotations, five subjects noticed the

problem with the interface, although only one of them could provide a coherent

explanation as to why it was a problem.

• Refactoring number 4 (Table 9.4 on page 190), inlining an abstract method,

appeared to be generally understood by all subjects, regardless of whether they

used Refactoring Annotations or error messages. Subjects located the abstract

method 9 out of 10 times using Refactoring Annotations, and 7 out of 10 times

with error messages.

• Refactoring number 5 (Table 9.4 on page 190) was about inlining a method that

contains a qualified this expression (such as ClassName.this.member).

In it, subjects performed about equivalently with both Refactoring Annotations

and error messages. With both tools, 7 out of 10 subjects were able to locate

the problem, but apparently neither representation of the error was descriptive

enough to help subjects understand why refactoring that code was a problem.

This may be because the qualified this notation is relatively obscure. Only

one programmer was able to explain the problem correctly.

• On refactoring number 8 (Table 9.4 on page 190), extracting a local variable

from an expression containing an assignment, subjects performed about equiv-

alently with both Refactoring Annotations and error messages. However, it

appeared that neither representation helped any programmer to understand the

cause of the problem.

When I interviewed subjects after the experiment, all seemed to prefer Refactor-

ing Annotations, although to differing degrees. Subjects described them as “unobtru-

sive,” “a little more helpful,” “more informative,” giving “more specific information,”

being “across the board helpful,” “sav[ing me] some seconds,” showing “more errors,
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more like a compiler,” showing “where the problem is,” and “ mak[ing] refactoring

part of my usual error fixing strategy: read all, fix all at once.” Subjects disliked error

messages because they “cover too much area,” “tend to get in the way,” required the

programmer to scan the code manually, and because “they are modal [and they say]:

‘Tackle Me before You Do Anything Else!”’

9.6.2.5 Discussion

The results of the evaluation suggest that these generalized Refactoring Annotations

are preferred by programmers, help them find the causes of precondition violations

more accurately, and improve the speed at which they find those causes when com-

pared to error messages. Because Refactoring Annotations were designed according

to the guidelines discussed in Section 9.4, these results suggest that the guidelines

can help improve the usability of refactoring tool precondition violations. As a con-

sequence, implementing tools to represent violations for future refactoring tools ac-

cording to those guidelines appears to be warranted. Materials from this experiment,

including raw results, questionnaires, and my experimenter’s notebook, can be found

at http://multiview.cs.pdx.edu/refactoring/experiments.

For refactorings 5 and 8, Refactoring Annotations were not sufficiently detailed

to help subjects understand why the tool could not perform the refactoring. It appears

that a more detailed textual explanation of the problem might be helpful, including

descriptions of language semantics. For instance, a help document might be use-

ful for explaining what a qualified this statement is, and what the consequences

would be if its containing method were inlined. However, the fact that programmers

sometimes do not spend much time trying to understand a single sentence about a

refactoring error (Section 4.5.3) suggests that they may not spend any time reading a

detailed help document.

Reflecting upon the experiment, it appears that refactoring 5, which I originally

http://multiview.cs.pdx.edu/refactoring/experiments
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classified as a structure violation, might better be classified as a name unbinding vi-

olation. Why? A qualified this statement cannot be moved largely because it liter-

ally references a containing class, and that class reference will not be resolved at the

method call sites. Thus, future replications of this experiment might show that sub-

jects understand this violation better if it is represented as a name unbinding. This is

because my guidelines suggest that name unbinding (unlike structure) should display

what program element the refactored code is being unbound from; this information

may help programmers better understand the violation.

9.6.2.6 Threats to Validity

While encouraging, there are several threats to validity for this experiment. First,

I chose code by hand and modified it so that it would cause a violation of at least

one refactoring precondition. The code may not be representative of code found

in the wild. Second, subjects were volunteers from several classes at Portland State

University, and likewise may not be representative of the average programmer. Third,

the task given to subjects was on paper, and would likely vary somewhat if it were

in a real development environment. Fourth, when placing sticky notes on code to

indicate the location of violations, subjects may have simply been parroting what

Refactoring Annotations (and to a lesser extent, error messages) were telling them,

without any real understanding of the violation. To mitigate this threat, I had subjects

briefly explain why they put a sticky note where they did, and tried to discern to what

extent they understood the problem. Even if a programmer does not understand a

violation, locating the pieces of code that are part of the problem is valuable because

it focuses the programmer’s attention on the relevant code.
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9.7 Future Work

More study of the unknown and vague categories may reveal whether their members

can be reclassified into other categories, or whether new categories emerge. Like-

wise, study of refactoring tools in other languages and paradigms may reveal new

categories, or may simply reinforce existing categories.

A study of refactoring errors in the wild could determine which categories are

encountered with the highest frequency by programmers. The results would help to

determine which categories are deserving of further research. A deeper empirical

evaluation of which precondition violations are most commonly conflated by pro-

grammers would also help to drive future research.

In addition to helping define how my guidelines apply to other kinds of error mes-

sages, the precondition taxonomy may also help design refactoring tools themselves.

For example, while the clash category spans many refactorings, the guidelines dic-

tate that a representation of a clash violation should show the relationship between

the clashing program elements. Rather than a string describing the violation, a vio-

lation display routine in the development environment could take as arguments both

of the program elements, and display their relationship, regardless of what refactor-

ing generated the violation. This might help amortize the cost of implementing a

graphical error system such as Refactoring Annotations.

Refactoring Annotations may also prove to be an enormous opportunity to help

the programmer not just to understand precondition violations, but also to resolve

them. This is because the graphics provide convenient “hooks” for implementing

further functionality for highly-focused, detailed programmer interaction. For exam-

ple, consider again Figure 9.6 on page 173. It may be useful to allow the programmer

to interact with the two bottom arrows and messages to:

• open those elements in the existing editor, a new editor, or an embedded editor,
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• make one or both of those members public so that they can be accessed in

the destination class, or

• collect one or both of those members into the refactoring, so that they are

moved along with the method.

In this way, specific graphical representations of precondition violations provide not

only a way to enhance understanding of the precondition violations, but perhaps also

a method of resolving them.

9.8 Conclusions

In this chapter, I have addressed the usability of tools that help programmers during

the error interpretation step if the refactoring process (Section 2.5). I have presented

guidelines and a tool called Refactoring Annotations, both designed to help program-

mers understand and recover from violated refactoring preconditions. The results of

my evaluation suggest that Refactoring Annotations do indeed improve usability, in

terms of speed, correct understanding, and programmer preference. Violations of

refactoring preconditions continue to be difficult for programmers to understand, but

the work presented in this chapter begins to aid that understanding.



Chapter 10

Conclusion

In this dissertation, I have presented data that suggests that programmers underuse

refactoring tools, and that poor usability is one cause of that underuse. For five

stages of the refactoring process, I have demonstrated how usability can be improved

by way of usability guidelines, in the hope that this improvement will increase tool

adoption and programmer efficiency.

10.1 Summary of Contributions

While I have laid out my specific contributions in each chapter of this dissertation,

these contributions can be summarized as follows:

• The distinction between root-canal and floss refactoring (Section 2.3). An anal-

ysis shows that floss refactoring is the more popular refactoring tactic (Sec-

tion 3.4.5). I outline what is necessary to build tools that are suitable for floss

refactoring (Section 4.7.2).

• A study that confirms, and disconfirms, several previously held assumptions

and conclusions about how programmers refactor in the wild (Section 3).

• Guidelines for building more usable refactoring tools in the future, based on

current research about how programmers refactor (Chapters 5–9).
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• Tools that show how those guidelines can be reified (Chapters 5–9), which is

important because guidelines alone may be too ambiguous for toolsmiths to

implement (Section 4.4).

• Evaluations of those tools, demonstrating improved usability (Chapters 5–9).

10.2 Limitations

Apart from the threats to validity discussed in each individual study, several addi-

tional limitations should be considered:

• First, while I have argued that underuse of refactoring tools is a significant

problem, I have not provided direct evidence that usability will actually lead

to increased adoption. Increased adoption can only be demonstrated over the

long term, and, even if more usable tools see higher adoption and usage rates,

other factors (such as marketing) may have confounding effects.

• Second, while I have addressed several steps of the refactoring process (Sec-

tion 2.5), several other steps remain unaddressed. Specifically, I have not dis-

cussed how to improve usability for the following steps: Execute, Interpret

results, Undo, Refactor (recursive), and Clean Up.

• Third, in improving the usability of refactoring tools, I have attempted to show

improvements in efficiency, errors, and satisfaction, but have not addressed

learnability or (with the exception of Section 7.5.2) memorability, two other

key usability properties (Section 4.2).

• Fourth, while I have directly demonstrated improved usability of my user inter-

faces, I have shown only indirectly that the usability guidelines that informed

their design are responsible. More detailed studies might apply each guide-

line individually in an attempt to explore how that guideline affects usability.
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However, it was impractical to conduct such studies as part of this dissertation

research.

10.3 Future Work

Several areas remain open for future work:

• Longer term study is needed of how improvements in the user interface affect

refactoring and refactoring tool adoption.

• More study is needed outside of the Eclipse Java environment [18] because

many of the results in this dissertation rely on data from programmers using

only Eclipse. Although Eclipse for Java is a popular environment, future work

should examine how the results might differ in other environments, especially

non-object-oriented ones.

• A study should be performed on how programmers can be made aware that

they are refactoring, and how a tool could help them in this task. This is another

avenue to improve the adoption of refactoring tools.

• This research may be expanded outside of the context of refactoring tools.

Although my research focused on the usability of refactoring tools, some of

this work can be extended to other tools that employ static program analysis.

For instance, my guidelines on usability of refactoring tool error messages may

also apply to compilation errors.

• Future work on usability of refactoring tools could investigate not just usability

within steps of my model, but usability between steps. A tool could make it

easier to transition from step-to-step. For example, a smell detector might not

only tell you about a smell, but also select the code that smells on your behalf,

anticipating that you will want to refactor it with a tool.
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• Future research must examine what other guidelines might be necessary to

improve the usability of refactoring tools, in addition to the guidelines that

I have presented in this dissertation. Indeed, I fully expect new guidelines

to emerge as researchers learn more about how programmers refactor, and as

programmers’ behavior changes in the presence of new refactoring tools and

programming paradigms.

10.4 The Thesis Statement

My thesis statement, as introduced in the first chapter, is:

Applying a specified set of user-interface guidelines can help build more

usable refactoring tools.

Throughout this dissertation, I have postulated these guidelines and applied them

to several refactoring tool user interfaces. The guidelines and tools are listed in

Table 10.1 on page 209. The evaluations suggest that the tools are indeed more

usable, and as I have argued, this implies that the guidelines are responsible. Thus,

generally speaking, I have supported my thesis.

However, the guidelines are numerous and varied, and the amount of confidence

that you can have that each guideline will improve usability varies between them.

For example, consider the Expressiveness guideline for the Identify step (Table 10.1

on page 209). Programmers directly rated this guideline less important than other

guidelines, which somewhat reduces its relative importance in terms of inspiring

improved usability. In contrast, consider the Task-centricity guideline, which was

demonstrated as important to usability in four separate steps of the refactoring pro-

cess: Identify, Select, Initiate, and Configure. The fact that it appeared repeatedly

makes it more likely that it contributes to improved usability of refactoring tools.

Having more support for some guidelines and less support for others has the positive
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effect of helping toolsmiths prioritize which guidelines to follow in new refactoring

tools, based on which ones are more likely to improve usability.

Programmers need usable refactoring tools: otherwise, they will not be used.

This underuse is a missed opportunity; rather than harnessing the speed and correct-

ness that refactoring tools afford, programmers who do not use tools may instead be

slower and introduce more bugs. In this dissertation, I have presented guidelines to

help improve usability, and provided evidence that the guidelines do so. I hope that,

with these guidelines in hand, toolsmiths can build more usable refactoring tools

that allow programmers to re-take this missed opportunity and enjoy the productivity

benefits that were originally promised.
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