
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

11-26-2008

Graphical User Interfaces as Updatable Views Graphical User Interfaces as Updatable Views

James Felger Terwilliger
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Terwilliger, James Felger, "Graphical User Interfaces as Updatable Views" (2008). Dissertations and
Theses. Paper 2671.
https://doi.org/10.15760/etd.2672

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2671
https://doi.org/10.15760/etd.2672
mailto:pdxscholar@pdx.edu

DISSERTATION APPROVAL

The abstract and dissertation of James Felger Terwilliger for the Doctor of Philosophy

in Computer Science were presented on November 26, 2008, and accepted by the dis-

sertation committee and the doctoral program.

COMMITTEE APPROVALS:

Lois Delcambre, Chair

David Maier

Leonard Shapiro

Andrew Black

Robert Bertini
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM

APPROVAL:
Wu-Chi Feng, Director
Computer Science Ph.D. Program

ABSTRACT

An abstract of the dissertation of James Felger Terwilliger for the Doctor of Philosophy

in Computer Science presented November 26, 2008.

Title: Graphical User Interfaces as Updatable Views

In contrast to a traditional setting where users express queries against the database

schema, we assert that the semantics of data can often be understood by viewing the data

in the context of the user interface (UI) of the software tool used to enter the data. That

is, we believe that users will understand the data in a database by seeing the labels, drop-

down menus, tool tips, help text, control contents, and juxtaposition or arrangement of

controls that are built in to the user interface. Our goal is to allow domain experts with

little technical skill to understand and query data.

In this dissertation, we present our GUi As View (Guava) framework and describe

how we use forms-based UIs to generate a conceptual model that represents the infor-

mation in the user interface. We then describe how we generate a query interface from

the conceptual model. We characterize the resulting query language using a subset of

relational algebra.

2

Since most application developers want to craft a physical database to meet desired

performance needs independent of the schema used by the user interface, we subse-

quently present a general-purpose schema mapping tool called a channel that can be

configured by instantiating a sequence of discrete transformations. Each transformation

is an encapsulation of a physical design decision or business logic process. The channel,

once configured, automatically transforms queries from our query interface into queries

that address the underlying physical database, similar to a view. The channel also trans-

forms data updates, schema updates, and constraint definitions posed against the chan-

nel’s input schema into equivalent forms against the physical schema. We present formal

definitions of each transformation and properties that must be true of transformations,

and prove that our definitions respect the properties.

GRAPHICAL USER INTERFACES AS UPDATABLE VIEWS

by

JAMES FELGER TERWILLIGER

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

Portland State University
2009

i

DEDICATION

To Allison and Kathleen, who travel the path with me

ii

ACKNOWLEDGEMENTS

My first thanks, of course, go to my advisor Lois Delcambre. She has been everything

I could want in a mentor and a friend — helping to take small rough ideas and refine

them into something worthwhile, willing to listen to me ramble on through an idea only

to realize I’ve just proven the opposite of my point, able to see my vision almost as

fast as it comes into my head. She took a student with a bizarre sense of humor and

an uncertain idea of what it means to do research and helped him find faith in himself.

With Lois, there is no such thing as failure — only an opportunity: to learn, or to get

angry, or to find a new audience, but always to make something better.

To Dave Maier, I give my apologies — no human should have to endure as many

puns as I produce. I also give my thanks, for his guidance over the past five years, but

most of all, for creating this family that we call Datalab. I can only hope that my work

will help carry on this legacy of which we are all so proud.

My profound apologies also go to Andrew Black and Rob Bertini, members of my

committee who have my thanks for having to read the many tables of formalism con-

tained in this dissertation, and whose input have been invaluable.

Len Shapiro has a unique ability to ask piercing questions and provide logical coun-

terexamples for what seems like hours on end, even when it becomes clear that he ac-

tually fully agrees with you — all because every opportunity to defend an idea is an

opportunity to explore its boundaries. I will always be grateful for my conversations

iii

with him.

For five years, I have had the privilege of working with an outstanding team of

database researchers. To Dave Archer, Nick Rayner, Susan Price, Jin Li, Bill Howe,

Sun Murthy, Vassilis Papadimos, Laura Bright, and Kristin Tufte, I give my thanks for

our friendly discussions over reading group and for being a sounding board for ideas.

To my good friend and cube mate Rafael de Jesus Fernandez Moctezuma, thanks for

showing me that the best way forward is full speed, regardless of whether I must leave

a James-shaped hole in the wall to do it.

To the students of Portland State University, thank you for letting me be your teacher.

Six times have I had the privilege to work with you, and six times have I had the oppor-

tunity to learn what it is like to see the same new idea from so many different vantage

points.

To Judy Logan, Jennifer Holub, Nora Mattek, Reid Keil, Chris Newcombe, and

the rest of the staff at the Clinical Outcomes Research Initiative, I give my profound

thanks for letting me be a part of their team and conduct research by actually performing

software development on their live code. A special thanks to Judy for being part advisor,

part friend, and part wake-up call if an idea was just too far out there.

Over the nearly three years since the first lines of Guava code were written, I’ve had

the privilege of working with a number of Masters’ students. Thanks to Priya Chavan,

Sutheera Hengcharoen, Shiyan Tao, Akkshayaa Venkatram, Parvathy Subramanian, Raji

Lakshmi, Karthika Kothapally, Supraja Samudrala, Jagriti Agrawal, and Madhura Rama

for all of their hard work, and their ability to work near the cutting edge of programming

tools. A special thanks goes to Jeremy Steinhauer, whose contributions to Guava are still

iv

growing and whose talents astound all around him.

The biggest thanks of all go to my family, without whom I would have never been

born. They also insisted that I reach beyond my grasp and to never be afraid to take

risks. Thanks to both my grandmothers, who insisted that I keep music in my life at any

expense. Thanks to both my grandfathers, who showed me what incredible things can

be built using only your hands, your will, and your imagination. Thanks to my dad, who

taught me that the campsite rule is not good enough — to always leave things better than

what I find them. Thanks to my mom, who is equal parts whimsy and professional, and

is always whichever one is necessary. Thanks to my daughter, Kathleen, through whom

I get to see the joy of simple things. And most importantly, thanks to my wife, Allison,

who teaches me every day what partnership is, and reminds me that every day is a new

chance.

Funding for this research was provided by Collins Medical Trust, by DHHS NIH

National Institute of Diabetes Digestive and Kidney Diseases No. 5-R33-DK061778-

03 awarded to Oregon Health & Science University (OHSU), and by NSF grant No.

0534762.

v

CONTENTS

Acknowledgements . ii

List of Tables . ix

List of Figures . xi

1 Introduction . 1
1.1 Data-Entry Applications . 4
1.2 Research Goals and Contributions . 7

1.2.1 Query Interfaces . 7
1.2.2 Application Middleware . 9
1.2.3 Application Evolution . 16

1.3 Case Study . 19
1.4 Guava: GUI-As-View . 22
1.5 Outline . 24

2 Creating a Relational Schema and a Query Interface from a User Interface 27
2.1 G-Trees and Natural Schemas . 33
2.2 Queries in Guava . 47
2.3 Implementation Notes . 53

2.3.1 Reflection . 54
2.3.2 Interfaces . 54
2.3.3 Query Results and Query Interface 56

2.4 Case Study 1: Modeling an Existing User Interface Using Guava 57
2.4.1 Adapting Controls to Work With Guava 58
2.4.2 Adapting an Entire UI to Use Guava 63
2.4.3 Additional Results . 65

2.5 Case Study 2: Guava as an Addressing Scheme 68
2.6 Related Work . 74
2.7 Summary . 79

vi

3 Transformations and the Channel . 80
3.1 The Guava Data Model . 83

3.1.1 Queries . 84
3.1.2 Updates to Data and Schema 85
3.1.3 Generalized Referential Integrity Constraints 88
3.1.4 Additional Statements . 99

3.2 The Channel . 99
3.2.1 Seven Channel Transformations 105
3.2.2 Transactions and Transactional Semantics 119
3.2.3 Instance Transformations and Copy Inserts 129

3.3 Physical Database Design and Optimization 132
3.3.1 Physical Characteristics . 133
3.3.2 Transformation Equivalences 137

3.4 Implementation Details and Insights 141
3.4.1 Command Trees and the Visitor Pattern 141
3.4.2 The Provider Model . 145

3.5 Case Study 1: CORI . 147
3.6 Performance Analysis . 157
3.7 Case Study 2: InfoSonde . 160
3.8 Related Work . 167
3.9 Summary . 174

4 Extending the Expressive Power of Channels 175
4.1 Generalized Transformations . 177
4.2 Application-Specific Transformations 186

4.2.1 Adorn . 191
4.2.2 Lookup . 196
4.2.3 Audit . 198
4.2.4 Application-Specific Transformations and Equivalences 202

4.3 Correspondence Assertions . 206
4.3.1 Column Equate . 207
4.3.2 Table Equate . 211

4.4 Related Work . 215
4.5 Summary and Implementation Status 217

5 Formal Proofs of Correctness . 218
5.1 Proofs of Query Correctness . 223

5.1.1 HPartition: Single-Table Query 224
5.1.2 HPartition: Query Expression with Select 225

vii

5.1.3 VPartition: Single-Table Query 226
5.1.4 HMerge: Single-Table Query 227
5.1.5 A Note Regarding Invertibility 228

5.2 Proofs of DML Correctness . 230
5.2.1 HPartition: Insert . 231
5.2.2 HPartition: Delete . 233
5.2.3 VMerge: Delete . 236
5.2.4 Pivot: Insert . 238

5.3 Proofs of DDL Correctness . 239
5.3.1 HPartition: Add Table . 240
5.3.2 HPartition: Add Column . 240
5.3.3 HPartition: Add Element . 241
5.3.4 HMerge: Rename Column . 243
5.3.5 Pivot: Add Element . 245
5.3.6 Unpivot: Drop Column . 247

5.4 Proofs of Information Preservation . 248
5.4.1 ColumnEquate: Insert . 248
5.4.2 Audit: Update . 249

5.5 Summary . 250

6 Evolution in Guava: Generating Database Upgrade Scripts 251
6.1 Capturing Changes to the User Interface 253

6.1.1 Atomic Changes . 255
6.1.2 Compound Changes . 257

6.2 Evolving Channels . 262
6.2.1 Comparison Approach . 262
6.2.2 UI Refactoring and the Channel 265

6.3 Case Study . 266
6.3.1 Changes to Data Content of the GUI 267
6.3.2 Changes to Channel . 269

6.4 Related Work . 270
6.5 Summary and Implementation Status 273

7 Conclusions and Future Work . 275
7.1 Alternative Data Models: Guava GUI Tools 279
7.2 Alternative Data Models: Channel . 281
7.3 Defining New Application-Specific Transformations 285
7.4 Beyond a Single Application Environment 288
7.5 Beyond a Single Developer Environment 291

viii

7.6 Additional Future Work . 292

References . 295

ix

LIST OF TABLES

3.1 The DML and DDL statements that channels support. 86
3.2 Seven channel transformations, their descriptions, and their effect on

relational queries. 106
3.3 Defining the action of VPartition. Statements that do not meet any con-

dition pass through unaffected (remains in the transaction). 120
3.4 Defining the action of VMerge. Statements that do not meet any condi-

tion pass through unaffected (remain in the transaction). 121
3.5 Defining the action of HPartition. Statements that do not meet any con-

dition pass through unaffected. 122
3.6 Defining the action of HMerge. Statements that do not meet any condi-

tion pass through unaffected. 123
3.7 Defining the action of Apply. If none of the conditions are met, the

statement passes through the transformation unaffected. Some DDL
statements are not listed because they are unaffected by this transfor-
mation. 124

3.8 Defining the action of Pivot. Statements that either are not listed or do
not meet specified conditions pass through the transformation unaffected. 125

3.9 Defining the action of Unpivot. If none of the conditions are met, the
statement passes through the transformation unaffected. Some DDL
statements are not listed because they are unaffected by this transfor-
mation. 126

3.10 Defining the action of each transformation on table statistics. 136
3.11 Measuring the performance of inserts and queries against a natural schema,

both with an empty channel and a non-empty channel 160

4.1 Additional channel transformations, their descriptions, and their effect
on relational queries. 180

4.2 Defining the action of PPartition. 182
4.3 Defining the action of MultiPivot. Some DDL statements are unaffected. 183
4.4 Defining the action of GVPartition. 184
4.5 Defining the action of augmented transformation operator on table statis-

tics. 185

x

4.6 Encapsulating the action of the Adorn transformation. Statements that
are not listed are unaffected by the transformation 196

4.7 Encapsulating the action of the Lookup transformation. Statements that
are not listed are unaffected by the transformation (including updates,
since we are looking at key columns only) 199

4.8 Encapsulating the action of the Audit transformation. Statements not
listed in the table are unaffected by the transformation 201

4.9 Encapsulating the action of Column Equate. 211
4.10 Encapsulating the action of Table Equate. The symbol T, refers to

whichever of T1 or T2 is not table Ti, and Colsin(T) refers to the list
of columns of T before the transformation is applied 212

5.1 Definition of the action of seven physical design transformations. Any
table in the input schema or instance that is not explicitly referenced by
the transformation is passed to the output unaffected. 221

xi

LIST OF FIGURES

1.1 A screenshot of a form from the CORI software, version 4.0.23 20
1.2 The GUi As View (Guava) software engineering framework 22

2.1 An overview of how components in an application written using cur-
rently available tools (a), compared to how the UI components of Guava
interact and are generated (b) . 29

2.2 A simple forms-based application with two forms. The second form
provides additional details for the same person represented by the first
form, and the second form appears by clicking the first form’s ‘Details’
button . 33

2.3 A grid control (a), how it breaks down into a g-tree fragment (b), and
the underlying type of the grid control (TProviders) expressed in our type
language (c) . 40

2.4 An example g-tree corresponding to the application in Figure 2.2. Any
edge that is not labeled is a Contains edge 41

2.5 The natural schema that represents the data in Figure 2.4 44
2.6 Two possibilities for the Guava query interface. One interface mocks up

each form (a), where each data entry control now becomes a place to
enter print and filter statements. An alternative interface with the same
functionality creates a tree-structure (b) that mimics the structure of the
g-tree . 46

2.7 The pruned, decorated g-tree (a) corresponding to the query in Figure
2.6(a), and the relational algebra query that results from running Algo-
rithm 2.3 on it (b) . 50

2.8 One of the main procedure screens in CORI; clicking on a label on the
left will load a panel of controls into the empty space in the lower right . 59

2.9 A custom checkbox control that exists in CORI that we have modified
to work in Guava . 59

2.10 A custom graphical control that exists in CORI that we have modified to
work in Guava; in data entry mode (a), the user can specify the locations
of findings, and in query mode (b), the user can query for findings based
on location . 62

xii

2.11 The screen in CORI for finding patients and entering new ones 64
2.12 Forms in the CORI app (a) and our converted app (b) that find proce-

dures based on specified criteria . 66
2.13 A g-seed for the Other Findings text box control from Figure 2.2; the

darkened path of nodes through the tree describe the path of forms nec-
essary to reach the Other Findings control in the hierarchy, and in par-
ticular, the Other Findings value for Endoscopy Details number 104 . . 73

3.1 Examples of Tier 1 (a), Tier 2 (b), and Tier 3 (c) foreign keys 92
3.2 The commuting diagram for the information preservation properties of

transformation T operating on table A (a), and an example of the channel
transformation round-tripping condition (b) 101

3.3 An example of a channel with six transformations (a), and a graphical
representation of the same channel (b) 104

3.4 The same channel as in Figure 3.3(a), but when the natural schema is a
virtual instance (i.e., a view over the physical database) 104

3.5 An example of the Apply (a), Vertical Partition (b), and Vertical Merge
(b, in the reverse direction) transformations acting on concrete instances 109

3.6 An example of the Horizontal Partition and Merge transformations (a),
the Pivot and Unpivot transformations (b) acting on concrete instances,
and an example of pushing inserts through a Pivot (c) 110

3.7 Using a channel and an insert statement to move entire instance of a
table through a channel . 130

3.8 Statistics of the code in our prototype channel implementation. Statistics
were gathered as of June 20th, 2008 142

3.9 Part of the relational schema for the CORI application, version 4.0.23 . 149
3.10 The natural schema for our Guava implementation of part of CORI . . . 150
3.11 The schema from Figure 3.9, after applying a channel 153
3.12 Building a channel one transformation at a time, and fully instantiat-

ing the database along the way; this workflow is very similar to how
the InfoSonde workflow currently operates. The final row of this fig-
ure demonstrates how a channel could respond to changes in the left
database in two different ways . 161

3.13 Examples of tables that may exhibit schema-like characteristics without
those characteristics being explicitly present in metadata; one may use
InfoSonde to determine that two different columns in a table are finite-
domain (a), or that a foreign key can be enforced between two tables (b)
where a foreign key does not yet exist 164

xiii

4.1 An example of the PPartition transformation acting on instances 177
4.2 An example of the MultiPivot transformation acting on instances 178
4.3 An example of the GVPartition transformation acting on instances . . . 178
4.4 Examples of the Adorn, Lookup, and Audit transformations acting on

concrete instances . 188
4.5 Processing a change spike in the channel 190
4.6 Example form in an application without the effects of application-specific

transformations (base case) . 193
4.7 Examples of forms from an application, augmented with the effects of

application-specific transformations and assertions; the Table Equate
and Column Equate transformations are introduced in Section 4.3 . . . 194

4.8 The channel used by the forms in Figure 4.7, and how it responds to a
change spike . 195

4.9 An example query interface derived from the form in Figure 4.6 195
4.10 An example of the Column Equate transformation acting on a concrete

instance . 208
4.11 An example of the Table Equate transformation acting on a concrete

instance (a), and the consequences of inserting a new row into one of
the equated tables (b) . 213

6.1 Refactoring a user interface; the forms in both (a) and (b) model the
same information in different ways . 261

6.2 Using the form builder to perform a refactoring from Figure 6.1 262
6.3 Translating changes to a channel into changes to a database by compar-

ing the channel against its state before any changes 264
6.4 Two different options for translating user interface refactorings 266

7.1 An alternative view of a channel, isolating the components necessary to
build one independent of the underlying data model 281

7.2 Two different scenarios for using Guava where multiple applications ac-
cess the same physical database . 289

Chapter 1

INTRODUCTION

A popular class of software system available today, both online and on the desktop, is

the data-entry application. From electronic health record software to tax software to

accounting software, a great deal of effort goes into developing software applications

that people use to enter data into a database for later retrieval. Such software generally

follows a forms paradigm that closely resembles the process of a user filling out data

on a paper form [20, 66]. So, tax software would qualify as a data-entry application,

while a program that monitors a sensor network would not. Software integrated de-

velopment environments (IDEs) (e.g., Visual Studio, Eclipse, and XCode) support the

forms paradigm by including graphical form-building tools, or a Graphical User Inter-

face (GUI) library whose basic unit of development is the form with graphical widgets

that resemble form controls (e.g., text boxes and check boxes).

What separates a data-entry application from other applications is that with a data-

entry application, the user typically enters and views data using the same interface. For

applications where some parts of the application are data-entry but others are not, we

focus here on the data-entry portions.

This dissertation addresses two issues with data-entry applications. First, regardless

of the usability of the forms in an application, the schema of the database of that ap-

plication can be hard to understand, and thus queries are hard to write. If a user wants

2

to create and issue queries, there are currently three possibilities: (1) have a developer

write a specially-designed, user-friendly query interface, (2) write queries using SQL,

or (3) specify the query in a generic reporting application. In all three cases, detailed

knowledge of the schema and specialized knowledge of the query language is required

to write or specify a query. Note that when a developer creates a user-friendly query

interface for domain experts, it requires developer time and expertise, as well as its own

quality assurance process. Also, such a query interface lacks flexibility in adding new

query targets and capabilities.

One reason why query creation can be difficult is that the schema of the database

for an application may be different from the conceptual schema. The database schema

may have more or fewer tables and may use a generic format, where attribute values are

unpivoted to a key-attribute-value representation. The tuple {5, “Name”, “Bob”} is an

example of a tuple in a key-attribute-value representation, meaning the object with key

value 5 has the name Bob. There are many reasons why physical database designers

choose a physical schema that is different from the conceptual schema [1]. Our work

is focused on providing an appropriate query interface for end-users (who are domain

experts) in the presence of an arbitrarily restructured physical schema.

Application forms are designed with a particular type of user in mind: an expert in

the underlying domain of the application. For example, a clinical application is designed

for people who understand clinical terminology and processes. Accounting software is

designed for people who understand accounting practices. Tax software is designed to

have an interface that is simple enough for a general user, but with enough depth so that

details can be filled in by a professional if necessary. In this dissertation, we describe a

3

method that exploits the usability of an application user interface to make queries easier

to write.

A second issue that we address is application evolution. Changes made to an ap-

plication may in turn change the requirements of that application’s physical database

schema (and perhaps data as well). For instance, adding new controls or new forms to

an application may mean that the columns, tables, or domains of the database need to

change to hold the new data. Or, the requirements of the physical schema may need to

change irrespective of the application software, such as to improve the performance of

queries. In both of these cases, the common solution is for a developer to write a script

that makes the necessary changes to the schema and migrates data from the old schema

to the new one. The scripts are written manually, so whether the database upgrade script

actually changes the database in the correct way is a problem left to quality assurance.

The thesis of this dissertation is that a data-entry application serves as a view of its

underlying database. The user interface of the application serves as the schema of the

view, and the middleware of the application acts as the view definition. Furthermore,

both data and schema are updatable through this view. This characteristic is noteworthy

because determining if an arbitrary view definition is updatable to data is in general a

hard problem [19], and determining if a view definition is updatable to schema is rarely

if ever considered. If this thesis is true, then we can treat the user interface itself as a

view schema, and construct a query interface against it that may be more user-friendly.

We further assert that the view definition derived from the application middleware

can be broken down into discrete, algebraic components. If the view is capable of han-

dling schema updates (i.e., an evolving user interface) and can be componentized (i.e.,

4

is capable of being incrementally changed), then it can support the evolution scenarios

described above.

In this chapter, we look at some common attributes of data-entry applications. Next,

we address several problems that one encounters when designing such applications, and

introduce the specific research goals that we address in this dissertation. We introduce

a concrete example of a forms-based data-entry application, one that will serve as a

running example throughout the dissertation. Then, we introduce our research and de-

scribe how it addresses the query interface problem and the application development and

evolution problem. We close the chapter with an outline of the rest of the dissertation.

1.1 DATA-ENTRY APPLICATIONS

Our experience has been that data-entry applications typically have a number of char-

acteristics in common. A survey of a number of business applications both currently

available and from our collective work experiences revealed the following characteris-

tics. First, they tend to use a relational database to store their data. Some data-entry

applications may use alternative data models such as XML for communication between

clients or between tiers of software, but most data-entry applications use a Relational

Database Management System (DBMS) for persistent storage of data. Other attributes

that we have noted that data-entry applications have in common include:

The user interface of a data-entry application is a conceptual model. Devel-

opers may not necessarily create user interfaces with this idea in mind, but the forms

of an application, along with the way in which the forms are linked together, are pre-

cisely the model of the data that is presented to the user. In our work, we demonstrate

5

that it is straightforward to extract the conceptual model that is implicit in the UI. This

conceptual model is a direct result of various forms in an application and the way they

interact. Every form in the application that displays data or allows a user to enter data

corresponds to an entity, and each field on a form represents an attribute of that entity.

The relationships between forms (where clicking on a button or a link launches another

form and hands focus or control to the new form) are represented as relationships among

the underlying entities of those forms.

The user interface of a data-entry application is the only conceptual model the

user sees. There may be other conceptual models that a developer may create or use

during the process of developing an application. The developer may create an Entity-

Relationship diagram as a model of the data that belongs in the database. In addition,

the developer may create a UML diagram or other object-modeling artifact as a model

for underlying classes. However, none of these models is likely to be visible to or

understood by the user who is actually using the application; the user’s view of the data

in the application is heavily influenced by how the data appears in the user interface.

The conceptual model of the user interface of a data-entry application may bear

little or no resemblance to the schema of the underlying database. The physical

database schema is typically optimized for either space or retrieval time, or organized

for easy maintenance and extensibility, and thus may be quite different from the structure

of the user interface. Data may be coded, structured in a generic fashion, partitioned,

or merged in any way that the physical database designer chooses. These database-

oriented decisions are hidden from the user. This situation is an instance of logical data

independence, where the user is presented with a view of data that is insulated from the

6

physical (relational) schema, as well as potential changes to that schema. Traditional

relational views are the classical example of logical data independence [14, 78].

A typical data-entry application serves as an updatable view of its persistent

data. When a user enters data into a user interface, there are some implicit assumptions

that the user makes. First, if a user enters information into a form and then brings

up the data for the same entity in the same form again, the same data should appear

again; in other words, the user makes an implicit assumption that any data entered in

the form becomes persistent. Second, if a user enters information into a form, then

brings up a different, unrelated form, there should not be any unexpected side effects.

For instance, if someone enters a new patient into a software system, then the list of

doctors in the same system should not change, unless there is an explicit relationship in

the user interface (such as a field asking if the patient is also a doctor). In this way, a

GUI acts just like a view of the data in the physical database that is updatable — where

one may issue updates against the view as if it were itself a physical database instance,

even though it is only virtual.

It is conceivable that a software application would allow update side effects that do

not follow some sort of logical pattern, such as introducing random data elements in

other fields. In this dissertation, we assume that all side effects of updates are the result

of deterministic, logical and user-understood semantic relationships.

One of the benefits of a view definition over a data source (i.e., a sequence of oper-

ations defined to draw data from the source) is that one can treat the view as if it were a

data source for the purpose of queries, despite the fact that it is only virtual. In general

terms, the view-update problem is a decision question: For a given view, determine if

7

it is possible to translate updates against the extent of the view into updates against the

original data source in such a way that, when the view definition is re-executed, the new

view extent reflects the update. Research has been done to determine what kinds of op-

erations can be used in view definitions and still have the view be updatable [5, 8, 9, 49];

however, the vast majority of view definitions are not updatable because there is no way

to identify a way to update the base source to effect the correct updated view extent [19].

In short, if our thesis holds, a user interface offers by default and by necessity an answer

to the classic view-update problem.

1.2 RESEARCH GOALS AND CONTRIBUTIONS

In this dissertation, we address a number of different research questions motivated by

forms-based data-entry applications, though several of our research contributions have

implications beyond this class of application. In each of the following subsections,

we describe an opportunity to assist developers when constructing forms applications,

or users when using forms applications. For each opportunity, we present the specific

research goals that we address in later chapters, and a description of the contribution

that we make to address each goal.

1.2.1 Query Interfaces

As mentioned in Section 1.1, the user interface for a data capture tool is typically de-

signed to be easy to use by users who are knowledgeable in the application domain. For

example, a great deal of effort goes into making sure that the user interface of medical

software can be understood by clinicians and other medical staff. It is common for a

8

clinical software user to be well-versed in clinical terminology and medical procedures,

but not have the skill to use SQL or the experience to understand the semantics of a

complex query.

In addition to being a popular design paradigm for applications, a form is also a

popular design paradigm for query interfaces. Software applications and web interfaces

often contain “search forms” that allow a user to specify some simple search parameters

and then build a potentially complex query and execute it behind the scenes. Natural

Forms Query Language (NFQL) [22] is a language for constructing forms that act as a

query interface over a database. Recently, Jayapandian and Jagadish [38] created tools

that generate forms-based query interfaces based on the schema of the database, and the

profiles of queries that have been executed.

All of these form-based query interfaces share two characteristics in common, be-

sides their form-based nature. First, they are all intended to hide some complex query

operations from the user. In most cases, the complex query operation in question is the

join operator. Second, these techniques typically expose only a subset of the data avail-

able in a database. For instance, an application may have a search form for building

complex queries to find medical providers in a database, but that form was custom-built

by a developer anticipating a certain class of query; one cannot then use the same query

form to search for patients. In Jayapandian’s research, one of the metrics that they use

to evaluate their generated search forms is coverage of schema elements (tables and for-

eign keys) because they generate forms only for the most frequently accessed tables and

the most frequently issued queries (to keep the number of generated forms low).

In this dissertation, we describe how to create a query interface that does not require

9

users to specify complex operators such as joins and that is therefore potentially easier

to use. Unlike existing form-based query interfaces, our query interface exposes all the

data that is available in the user interface of the application. The usability of our query

interface comes at the cost of limitation in the kinds of queries that it can express relative

to SQL. This tradeoff between usability and functionality is common in query interfaces

and is present in both NFQL and Jayapandian’s automatic query forms (whose query

capabilities are comparable to ours).

Research Goal 1: Develop an automatic method for constructing query inter-

faces that employs the conceptual model inherent in the user interface and draws

usability features from the user interface, and is complete with respect to that con-

ceptual model. We have developed such a method for application user interfaces written

using a graphical widget library that we created by extending an existing popular widget

library, namely the Windows Forms library that comes with the Microsoft Visual Studio

IDE. By creating a query interface from the user interface of an application, we preserve

and then exploit the contextual clues to the meaning of individual data elements in the

user interface, such as the help text and tool-tip text of each form widget that provides

guidance to the user of an application.

1.2.2 Application Middleware

Any system that satisfies Research Goal 1 will be able to generate an application-specific

query interface. The challenge for such system is how to translate the queries from

said query interface into queries that address the schema of the application’s physical

database. We require that the query interface and application UI communicate with the

10

database using the same mechanisms; if they do not, there can be no guarantee that the

query interface is retrieving the same data that is available in the UI. For this part of

the research, we create a tool that can serve as that communication component — often

called middleware — and that is flexible enough to handle arbitrary queries sent from

the query interface.

Between an application and its database, there are two database schemas: the schema

that the application needs based on its user interface and business logic (which we call

the natural schema), and the schema that the database actually has (which we call the

physical schema). As mentioned above, the structure of and data in the physical schema

may bear little resemblance to the structure and data in the natural schema. There are

two fundamental reasons why this difference may occur. The first is physical database

design. A database developer may construct a physical schema that optimizes space

utilization or disk accesses based on the developer’s understanding of what kinds of

queries and updates may be issued against the database.

Some of the physical design decisions that a developer makes involves choosing

physical structures, like indexes and views. Additionally, the design decisions will often

involve one or more of the following structural transformations:

• The developer may choose to distribute the columns or rows of a table into several

tables. This transformation, called partitioning, is typically used if the developer

notices that many queries being issued against the database refer to only part of

a table. For instance, if 99 percent of all queries issued that involve table T refer

only to three columns in T , it makes sense to partition T into two tables: one

table with the three commonly-used columns, and one table with the rest of the

11

columns.

• Conversely, the developer may choose to combine the columns of several tables

together using joins, or the rows of several tables together using unions. This

transformation, called merging, is typically used if the developer notices that ta-

bles frequently appear in queries together. Thus, pre-computed joins or unions are

stored at the physical level.

• The developer may choose to encode data into a smaller or different represen-

tation. For instance, data that represents long strings of text, such as “patient

unconscious after procedure”, may be reduced to a small integer, such as “0”,

representing the index of the data item in a radio or drop-down list. For another

example, the database may store a single integer that is the bitmask of the val-

ues of many Boolean values, such as the answers to a collection of checkboxes,

which would normally be represented in individual columns. For this physical de-

sign choice, the developer writes an invertible function that can be applied to each

row’s data values to encode them on the way into the database and whose inverse

can be applied to values retrieved from the database. We call this transformation

function application.

• The developer may choose to store data in column-per-attribute rows when the

data is originally represented as key-attribute-value triples, sometimes called a

generic format. This transformation is called pivoting data; pivoting refers to

the process of taking data out of a generic layout (where each row stores a key,

an attribute, and a single data value) and into the more familiar structure where

12

attribute names are part of the schema (columns) rather than part of the data. This

transformation is frequently used in data warehousing, but can also be used in

physical design. For instance, queries that involve conditions on multiple columns

run very slowly on data in a generic format because evaluating the query involves

many self-joins; pivoting the data effectively pre-computes these joins.

• The developer may choose to store data in “generic” key-attribute-value triples

when the data is originally stored in column-per-attribute rows. Since this process

is the opposite of pivoting, this transformation is called unpivoting. One reason

why a developer may prefer to unpivot a table is to eliminate the need to store

null values in the database; if most of the values held in non-key columns of a

table are null, storing the table in a generic form may save a significant amount

of space. Another reason why a developer may prefer a generic triple store is

extensibility; one can add new attributes just by adding new rows to the unpivoted

table rather than having to add any new columns to the schema, thus avoiding

having to change the schema.

A second reason why a physical database may have different data or structure than

the application’s user interface is because of the transformations included in the business

logic. The business rules in a software application may introduce new data or alter data

as it is sent to the database. For instance, a company’s auditing policy may require that

all data be stamped with the name of the user that entered it.

For applications whose physical schema is different from its natural schema, or

whose physical schema contains additional information beyond what is present in its

13

natural schema, a middleware layer typically handles communication between the ap-

plication and database. Middleware comes in many shapes and sizes, from simple

developer-provided, application-specific class libraries that generate SQL statements, to

robust commercially-available packages such as object-relational mappers (ORMs) [33,

39, 49]. Application-specific class libraries suffer the same problem that application-

specific query interfaces do: They are specific to the queries and updates that the de-

veloper anticipates. Because they are hard-coded, though, they accommodate both the

physical design decisions and business logic. ORMs and other middleware tools have

generic translation capabilities that translate queries and updates against some input

schema (similar to our concept of a natural schema) and transforms those statements

into equivalent statements over the physical schema. ORMs are typically limited in the

kinds of transformations that they can accomplish. For instance, developers cannot use

any currently available ORM to establish a relationship between two schemas that have

a pivot or unpivot relationship between them. As a result, tools that use ORMs as ap-

plication middleware frequently also require some sort of hard-coded transformation as

well.

Establishing a relationship between an application’s user interface and its database

schema using middleware is a special case of a more general problem called schema

mapping. There are two primary activities involved in schema mapping: identifying

items in common between two schemas, and providing a mechanism for translating

queries and updates expressed against one of the schemas into equivalent queries and

updates against the other schema. Mappings can be expressed all at once using cor-

respondences [49, 72] or incrementally using discrete transformations [9, 30, 47, 80].

14

Mappings can also be uni-directional [57] or bi-directional [49] in their ability to trans-

form queries or updates. There are a wide variety of techniques and approaches reported

in the database literature dedicated to representing, creating, or deriving relationships

between schemas. Information integration, view derivation, data model conversion, and

many other major areas of database research all relate to schema mapping.

Application middleware is a special case of schema mapping because it has specific

requirements on the mapping between application schema and physical schema. As al-

ready mentioned, the mapping between schemas may include structural transformations

like pivots and business-logic-like transformations. The mapping must also be guar-

anteed to be information preserving, that is to say, the mapping must be lossless (no

information originating from the application is lost) and free of unmotivated side effects

(no information appears in the application when it is not expected).

We go into depth in our analysis of existing mapping languages and their capabilities

in Chapter 3; the conclusion of our analysis is that no existing mapping language can

express all of the physical design transformations listed above, as well as business logic

rules, without escaping from the mapping system and adding hard-coded logic. Since

the application developer must issue data manipulation language (DML) statements —

as well as queries — against the physical schema, we see an opportunity here to extend

the capabilities of the mapping from the conceptual model of the user interface to the

physical schema to handle transformation of DML statements.

Research Goal 2: Develop an information-preserving schema mapping lan-

guage that is expressive enough to handle physical design decisions, and whose

operational capabilities include transforming queries, data updates, and schema

15

updates. We define a general-purpose mapping language that meets the special require-

ment of information preservation. Our language supports pivoting, unpivoting, function

application, partitioning, and merging. The mapping language is also able to accom-

modate schema updates so that we can also handle the major requirement in the next

section, schema evolution. The developer can use a mapping to construct a physical

database without requiring any changes to the application code, and without changing

the user experience. The mapping language thus supports physical database indepen-

dence. Since our mapping language allows developers to write code against the nat-

ural schema derived from the UI, we believe that our mapping language will simplify

application development by reducing the cognitive load on the developer. Because the

mapping language is general-purpose, it can operate on any query expressed in extended

relational algebra issued against the natural schema, not just the limited query language

supported by the query interface that we generate from the user interface (as described

in Research Goal 1).

Research Goal 3: Demonstrate that our mapping language is extensible. Cur-

rently, no mapping language in the literature is expressive enough to accommodate busi-

ness logic. For instance, mappings may describe the fact that a column was added or

dropped [17], but not be expressive enough to describe why the column was added or

dropped, e.g., if a dropped column was redundant and can be reconstructed, or that

the added column is always populated with environment data. Because our mapping

language needs to be able to describe the relationship between an application and its

database fully, we must allow a developer to add new constructs to the mapping lan-

guage as needs arise, e.g., to represent data added by business logic.

16

Research Goal 4: Build a formal framework within which we can prove prop-

erties of our mapping language. To ensure that the query interface from Section 1.2.1

always returns correct data, we must prove that our mapping language is in fact informa-

tion preserving. We also prove equivalences and other formal properties of our mapping

language, such as commutativity and invertibility, to support optimization.

1.2.3 Application Evolution

When a new version of a database-backed application is released, the new version is

almost invariably accompanied by a script that must be run against the database to update

its data and schema to work with the new version of the application. In this section, we

discuss how this script is created, and how we make creating this script easier.

In an ideal world, whenever a developer makes a change to an application, the ap-

propriate changes required for the database to be compatible with the new version of the

application — and to update the data already present in the database to be compatible

with the new application version — would be generated and processed. And, conversely,

whenever a database professional makes a change to the database schema, the queries

and updates contained in the application code would be automatically modified if nec-

essary to address the new schema. For example, in an IDE, one would like to be able to

select a database column and rename it (an example of a refactoring [25]) and have the

environment automatically detect that all other references to that column in queries and

updates in the application need to be renamed as well.

Some modern IDE’s allow developers to view or even edit database schemas in the

same environment as application code [54]. However, if a field in a database is renamed,

17

no tools or IDE’s exist yet that can automatically alter every query in an application to

reference the new column name. Recent research tries to recognize which application

queries or updates need to change if a database evolves in specific ways [46], but it has

a high rate of false positives, and cannot yet describe how the queries or updates should

actually change.

From the application perspective, if a developer were to add a new control to a

form in the application’s user interface, the database will not automatically create a new

column in an appropriate table to hold the control’s data. Changes to the application’s

natural schema do not automatically propagate to the physical schema. Therefore, devel-

opers must manually keep track of these changes and manually propagate them, which

is a potentially error-prone process.

Recent research improves the relationship between application development and

database development. For instance, Chaudhuri et al. [12] have created a framework that

can correlate system log entries from an application with log entries from a database, so

that a developer can associate individual function calls and errors in an application with

queries, updates, and errors in a database. The paper associated with this research ac-

knowledges the disconnect between applications and databases, and how little research

there is in unifying database development with application development.

On the database side of application evolution, there is a great deal of research in-

vestigating the evolution of database schemas [63]. This research often intersects with

the schema mapping research mentioned in Section 1.2.2, since one way to think about

schema evolution is to consider two versions of the same database schema separately,

and to create a mapping between them [6, 17]. However, very little of this research has

18

made its way into available products that developers can use.

Some tools allow a developer to specify the way that they would like to change the

schema of a database and then generate a corresponding upgrade script of DDL state-

ments (e.g., Add Column or Drop Table) that can then be deployed to installations of

that database [54]. These tools do not typically support atomic data-level transforma-

tions (such as function application) or higher-level transformations that involve moving

data (such as partitioning or merging). The developer still needs to manually update any

applications that connect to the evolved database by changing any hard-coded queries

and updates in the code, or by altering any programs that automatically generate queries

and updates.

Most tools that have a schema evolution component follow the model of Ruby on

Rails [67] or SQL Alchemy [73]. In these tools, schema evolution for an application is

encapsulated into discrete modules called migrations; each migration represents all of

the actions necessary to migrate a database schema and instance from one version of the

application to another adjacent version (one revision higher or lower). One can compose

migrations to upgrade or downgrade the version of a database to match the application.

Ruby on Rails and SQL Alchemy both apply migrations automatically at runtime to

ensure that the application and database have version parity. However, the construction

of a migration is not automatic; the DDL or DML statements that constitute a migration

must still be provided by the developer, who must create and test them to ensure that

they match any changes at the application level.

Research Goal 5: Develop a scheme for handling application evolution, both of

the user interface of the application and of the mapping between the user interface

19

and database, such that the resulting database upgrade script is automatically gen-

erated. In our research, we create a unified framework that can handle both evolution of

application components and database components. We treat the database as a function of

the user interface and the mapping. In other words, rather than alter a database directly,

a developer using our tools alters the application’s database mapping, which results in

automatically generated database upgrade statements in DDL and DML corresponding

to the mapping changes. Changes to the UI result in generated database statements as

well, meaning that the developer need not manually generate upgrade scripts between

versions of an application.

1.3 CASE STUDY

This work was originally motivated by our work with software developed at the Clin-

ical Outcomes Research Initiative (CORI) [13]. CORI seeks to improve the practice

of endoscopy by conducting retrospective studies on de-identified patient data (i.e., en-

doscopy reports). To this end, CORI develops and distributes a software reporting tool

that allows the clinician to enter data that describes endoscopic procedures and then

generates endoscopy reports suitable for inclusion in the patient medical record. En-

doscopy reports from nearly 70 sites across the US are being compiled by CORI in a

data warehouse on an ongoing basis. Figure 1.1 shows a screenshot of a form from the

CORI user interface.

CORI supports a number of data analysts who conduct various retrospective studies.

A retrospective study is an attempt to study data that has already been collected for

other purposes — in this case, the reports that have been collected through the CORI

20

Figure 1.1: A screenshot of a form from the CORI software, version 4.0.23

21

software by physicians over the course of patient care. Each study requires that the

analyst select an appropriate subset of the reports in the warehouse, classify the source

data into categories of interest in the study, as appropriate, and then hand off the selected

data, post-classification, for analysis in a statistical package.

We use CORI as our primary case study throughout this dissertation because it exem-

plifies the issues and opportunities that we introduced in Section 1.2. The data analysts’

job is to construct valid, correct queries against a database schema that is not easy to

understand. CORI data analysts can benefit greatly from a query interface derived from

the original user interface because they have experience with clinical data and termi-

nology. The analysts need a comprehensive understanding of the contents of the data

warehouse, but they suffer from the following problems that affect the efficiency of their

work and the reliability of their studies:

• The primary data repository has a generic data structure and encoded data values,

which makes querying difficult, if not impossible,

• both the data and the schema of the data warehouse are arcane because the expla-

nation of how the data is encoded and how it has been restructured is not available

to the analyst in a manner that they can understand, and

• fixing either of the previous problems requires time from and communication with

the development staff. Furthermore, having the developers write queries puts de-

cisions about query creation that affect the semantics of the data in the hands of

people who do not themselves run studies and may not appreciate how an appar-

ently insignificant change in a query may affect the semantics of the associated

22

NS
DB

UI DB
SQL

analyst user
application

UI

Query
Interface

analyst

user

application

DB channel

g-tree

(b) GUAVA: The g-tree is generated from UI, then natural schema and
query interface are generated from g-tree. Analyst uses query interface.

(a) Traditional approach: analyst writes queries against (physical) DB

Figure 1.2: The GUi As View (Guava) software engineering framework

study.

The relationship between the CORI application and its database exhibits many of

the features described in Section 1.2.2 as physical design decisions and business logic.

The database has been unpivoted, merged, and encoded for space efficiency. It has also

been augmented based on the business logic to support security and reporting. Finally,

the CORI development staff is also in the process of upgrading to a new version of their

application and are encountering the prospect of manual database upgrades. Therefore,

CORI serves as a useful case study for each of the research goals mentioned in the

previous section.

1.4 GUAVA: GUI-AS-VIEW

This section introduces our GUi As View (Guava) framework, the primary contribution

of this dissertation. Guava can be thought of as a tool to support user-interface-centric

23

software design. Given a description of a user interface, Guava generates a number of

other artifacts automatically that are usually created manually by developers.

As opposed to the typical scenario such as that in CORI (Figure 1.2(a)) where users

must either use SQL or a custom, separately-designed query interface to access the data,

the query interface in Guava (Figure 1.2(b)) is automatically generated from the user in-

terface. First, the complete structure of the user interface is represented in a conceptual

model — a hierarchical structure called a Guava-tree (g-tree). Guava automatically gen-

erates a g-tree from the user interface controls based on our extensions to an integrated

development environment. Next, Guava translates a g-tree into a simple relational table

structure in what we call a natural schema. Finally, a database designer can transform

the natural schema into the underlying physical database schema by instantiating the

database transformations that comprise our channel mapping language. The channel

is a flexible, information-preserving mapping for relational schemas that transforms the

natural schema into the desired physical schema (at DB design time) and transforms sim-

ple queries from the application-UI-based query interface (as well as data and schema

update statements) from the natural schema to the physical schema (at run time). The

channel supports the Guava query interface, but also presents an interface that allows the

application developer to write queries and DML statements directly against the natural

schema as well. In Chapter 2, we will describe the structure shown in Figure 1.2(b) in

more detail.

In Guava, users are presented with a query interface that leverages all of the effort put

into creating a good user interface. Because the query interface accesses data through

the same mechanisms as the user interface, it is guaranteed to respect the semantics of

24

the UI. Query results may be displayed in a number of ways, including a simple table

that can then be loaded into other tools such as statistical analysis packages, or a mock-

up of the user interface showing the data in-place. The key component of the Guava

architecture is the channel, without which the Guava query interface could not send

queries to the physical schema. However, one can use channels outside the context of

Guava as a general-purpose relational schema mapping tool.

Collectively, the natural schema and the Guava query interface serve to satisfy Re-

search Goal 1. The channel has operational characteristics and expressive power suf-

ficient to satisfy Research Goal 2, and is extensible, thus satisfying Research Goal 3.

Channel transformations are provably information-preserving, i.e., satisfying the formal

framework set out by Research Goal 4. Because a channel instance can accommodate

updates to the schema of the natural schema, thus supporting incremental evolution of

the natural schema and the components that generated it, the channel serves to satisfy

Research Goal 5.

1.5 OUTLINE

The rest of this dissertation proceeds as follows:

Chapter 2 addresses Research Goal 1 by going into detail on how Guava produces a

query interface that closely resembles the look and feel (and semantics) of a user inter-

face. We define and formalize our intermediate data structure called a g-tree, describe

how it is generated, and show how to take a g-tree and produce a default (natural) rela-

tional schema for the application.

In Chapter 3, we address Research Goal 2 by defining and formalizing the channel

25

artifact introduced in Section 1.4. A channel comprises a list of discrete transformations,

each of which represents a physical design decision on the part of a database developer.

We define seven transformations that encapsulate common physical design decisions,

and formalize how each transformation acts on statements posed against the channel’s

input schema. Also, we introduce algebraic relationships between transformations that

define an equivalence relation among channels.

Chapter 4 addresses Research Goal 3 by extending the channel transformation lan-

guage in three different ways. First, we generalize the definitions of three of the transfor-

mations so they are more expressive. Second, we introduce a new class of transforma-

tion that corresponds to business-logic decisions rather than physical-design decisions.

Finally, we introduce a class of transformation that can express relationships between

schema elements in a relational schema and eliminate redundancy that may exist as a

result.

Chapter 5 addresses Research Goal 4 by formally proving the properties that were

introduced in Chapters 3 and 4. We introduce the techniques that are required to prove

the correctness of our transformation definitions; we then prove the correctness of rep-

resentative samples of the transformation definitions from previous chapters.

Chapter 6 addresses Research Goal 5 — the problem of schema and program evo-

lution — by breaking up the problem into two parts: changes to the user interface and

changes to the channel. We consider each class of changes separately, providing a solu-

tion for each.

Discussions of related work appear in Chapters 2, 3, 4, and 6 in related work sections

specifically for the material introduced in that chapter. We also describe the state of our

26

prototype implementation and identify implementation issues that we found noteworthy.

We use CORI as a case study throughout the chapters to demonstrate the efficacy of our

tools; we also point out examples from other applications in Chapters 2 and 3.

Chapter 7 provides a summary of the contributions of our research and describes

several avenues for further research opportunities that extend our research on Guava.

Chapter 2

CREATING A RELATIONAL SCHEMA AND A QUERY INTERFACE FROM A

USER INTERFACE

Many software applications that are designed to capture data use forms as a visual

metaphor. Form-based data entry is a familiar paradigm because of the ubiquitous na-

ture of paper forms in the real world. The forms metaphor is also well-known and well-

studied in software engineering [20], and serves as the foundation of every major GUI

widget programming library (e.g. Swing, Windows Forms, and Motif). This chapter

extends the state of the practice by demonstrating how to use forms as a visual metaphor

for queries as well. We do so by first articulating the conceptual model that is inherent

in the forms of the user interface. We then use the user interface of the software tool that

creates the data as a guide to creating a query interface that closely resembles the origi-

nal UI. Finally, we describe how to express queries using our interface and characterize

the semantics of those queries.

In this chapter, we make the following research contributions:

• We demonstrate that it is possible to create a query interface from the user inter-

face, and evaluate its expressive power.

• We show a way to derive a complete relational schema from a forms-based user

interface (complete in the sense that all data in the user interface can be found in

28

the schema), against which the query interface expresses its queries.

• Characterize what restrictions, if any, exist on the kinds of user interfaces that one

can translate into query interfaces.

• Evaluate the applicability of these techniques through two case studies.

Figure 2.1 demonstrates how the client-side components of a UI interact with a

database, both in the dominant development paradigm (a) and with our proposed frame-

work (b). The status quo, without using Guava, comprises four components: the user

interface, a business logic layer, middleware, and the physical database. A user en-

ters data into the user interface, which is then processed by business logic (to perform

functions such as validation). The data then flows into a middleware layer (which is

sometimes combined with the business logic), where it is further transformed to match

the schema of the physical database. Such transformation may be substantial, since

the tables in the physical database may bear little resemblance to the structure of the

data as it entered the middleware. When the user requests information through the user

interface, a similar process happens: the middleware retrieves data from the database,

transforms it, and sends it to the user’s screen. Applications typically support the so-

called CRUD operations: create data (C), retrieve data via simple pre-defined queries

(R), update data (U), and delete data (D).

There is no query interface present in the application stack shown in Figure 2.1(a).

If users want to run queries over the data that is captured by this software, there are

generally only two options available: have a developer write a special query interface,

or use one of a variety of tools (such as visual query builders, report generators, or

29

User Interface

Business Logic

Physical Storage

Middleware

Raw SQL

(a)

C
o

m
p

o
n

e
n

ts
 o

f
a

n

a
p

p
li

ca
ti

o
n

 w
ri

tt
e

n
 w

it
h

cu
rr

e
n

t
to

o
ls

D
a

ta
b

a
se

 to
o

ls a
n

d
 in

te
rfa

ce
s

Custom-Built Interfaces

Statistical Packages

Report Generators

Visual Query Builders, QBE

A
u

to
m

a
tic

Generates

Generates

User Interface Query Interface

Business Logic
G-Tree

Natural Schema

Physical Storage

Generates

Channel (Discussed in later chapters, takes the place of middleware)

A
u

to
m

a
tic

(b)

Figure 2.1: An overview of how components in an application written using currently

available tools (a), compared to how the UI components of Guava interact and are gen-

erated (b)

30

raw SQL) to express queries against the database schema. The first option requires

developer time and effort, and results in a query interface that is statically coded to

meet the expected query workload from the users and the schema of the data, both of

which can change. The second option requires the user to have both mastery of a query

language and a comprehensive knowledge semantics of the data based on the structure

and names that appear in the schema (perhaps with additional documentation, e.g., in a

data dictionary).

The middleware layer is what prevents the query interface from participating in the

application stack. An application’s middleware is often manually coded due to the com-

plexity of the transformation required to conform data from the user interface to match

the physical schema. Tools exist that can automatically generate middleware (such as

object-relational mappers, discussed in Chapter 3), but the developer typically must

write code as well, to enforce or uphold semantics or perform transformations on the

data that are specific to the application. Manually coded middleware generally does not

support translating arbitrary queries; middleware typically only supports CRUD oper-

ations. Automatically-generated middleware tools sometimes provide an interface that

allows a developer to issue a wide range of object-oriented or SQL-like queries and

translate them into queries against the database [33]. However, the casual user cannot

access such features without the aid of a developer-written query interface. The query

translation features also cannot generally work with additional application-specific data

transformations hard-coded by the developer.

Even if a developer manually implements a query-translation feature in middleware,

and the translation is proven to be correct, the user still needs to understand SQL and

31

the relational schema. Plus, there is an additional problem; we now need to know what

the relational schema is of the input to the middleware, not just the output (the physical

schema). The input schema may be implicit and undocumented, since it only exists in

code and lacks the robust tool support available for schema discovery in databases.

Guava takes the user interface and generates an artifact called a g-tree (Section 2.1);

Guava then in turn generates two additional artifacts from the g-tree, a query interface

and a natural schema (Section 2.2). The natural schema is a relational schema that

resembles the structure of the UI rather than the physical schema. The query interface

also resembles the original UI of the application, presenting the same kinds of contextual

information to the user that, in the UI, assisted the user in determining the meaning of

data elements (e.g., leading text, help text, or proximity to other controls). The dotted

arrows in the figure indicate the generation of artifacts. The large solid arrows in the

diagram indicate the flow of data between components.

The intent of Guava is for the user interface to perform CRUD operations through the

natural schema, thereby accessing the physical database through the same mechanism as

the query interface. Thus, Guava ensures that the query interface is faithful to the data-

access semantics of the original software, which in turn ensures that queries written in

the Guava query interface return the expected results. Whether the application employs

additional business logic is immaterial, so long as any logic that transforms the data

does so between the natural schema and physical database, rather than between the

application and the natural schema. Chapter 4 discusses how to encode business logic in

such a way. The natural schema also serves as an API to the database, as a developer can

issue queries or updates against it. If necessary, the application can ignore the Guava

32

components entirely and connect directly to the database. However, any interactions that

bypass the Guava components are not reflected in the query interface, since the structure

of the underlying database is not represented in the g-tree for the application.

Tools that can automatically generate middleware present an object or relational

interface with which the application can communicate, but the developer must still write

the glue code between the application and the middleware that, for instance, displays

data on a form or sends data back to the interface when the ‘OK’ button is clicked. This

functionality is called a controller, and is part of a design pattern called Model-View-

Controller (MVC) [26]. There are software tools that build controllers automatically

or semi-automatically [67, 73], but rarely are they integrated with the same tool that

generates the middleware [33]. Guava generates these connections between the user

interface and the natural schema as well.

We begin the rest of the chapter by introducing and formalizing the g-tree and natural

schema (Section 2.1). We then show how to generate a query interface from the g-tree,

and describe the kinds of queries that the interface can produce (Section 2.2). Next, we

present notes about our prototype implementation of these tools (Section 2.3), followed

by two case studies: an attempt to re-create part of a commercially-available software

product using Guava (Section 2.4) and an alternative use of Guava that allows external

applications to use Guava forms to uniquely identify data in a database (Section 2.5).

The chapter concludes with an analysis of related work and a summary (Sections 2.6

and 2.7).

33

Figure 2.2: A simple forms-based application with two forms. The second form pro-

vides additional details for the same person represented by the first form, and the second

form appears by clicking the first form’s ‘Details’ button

2.1 G-TREES AND NATURAL SCHEMAS

With Guava, we seek to exploit the hierarchical nature of forms-based user interfaces

to provide a simple representation of the user interface’s information. Figure 2.2 shows

an example user interface; the widgets on each screen form a hierarchy based on the

“contains” relationship, and the forms of an application are structured as a hierarchy

because each form is launched from an event on another, save for the form that appears

at application launch that serves as the root. In Figure 2.2, the form on the right is

launched by the details button of the form on the left.

The rest of this section explains the steps that Guava uses to generate a g-tree. A

Guava-tree (g-tree) represents the information present on a user interface, including the

relationships between forms. Also of interest are the context elements for the widgets,

such as the widget’s type (e.g., text box or checkbox), its default value, and its text. A

34

widget’s text may be simple to find for checkboxes and group boxes where the text is

simply part of the widget, but is often harder to find for text boxes and drop-down lists

where the text is actually in an adjacent label. These context elements are informative

for anyone using the application and for users that want to query the data.

Formally, a g-tree is a rooted directed tree with a set of nodes N and a set of directed

edges E such that:

• Each n ∈ N is labeled with one of the values Entity, Attribute, Container, or

Control.

• Each n ∈ N has a property Name whose value is unique in the tree.

• Each n ∈ N has a partial function h :String→String that associates context element

names with the value of that context element for the control.

• Each e ∈ E is labeled with one of the values Contains, Single-launch, or Multiple-

launch.

The node labels refer to the kind of control the node represents:

• A node marked with the value Entity (also called an entity node) refers to a form.

• A node marked with the value Attribute (also called an attribute node) refers to a

graphical widget on a form that holds data that is saved to or retrieved from the

database.

• A node marked with the value Container (also called an container node) refers to

a graphical widget that is not itself a form and does not present data, but contains

other form widgets.

35

• A node marked with the value Control refers to any graphical widget that cannot

be categorized as one of the above.

The edge labels describe the relationships that can exist between two widgets. A

“Contains” edge from A to B indicates that B represents a widget that is spatially con-

tained by A’s widget. “Single-launch” means that the parent node’s control launches the

child’s control, e.g., by clicking or selecting an item, and that the relationship between

the child form’s data and the form containing the parent is one-to-one. A common exam-

ple of the single-launch relationship is shown in Figure 2.2, where the form on the right

is just a details window for the form on the left. A “Multiple-launch” relationship is

similar to the “Single-launch” relationship, except that the relationship between the two

forms is one-to-many. One example of a multiple-launch relationship is the relationship

between a drop-down list that holds the times and dates of a person’s appointments and

the window with the details of that appointment that is displayed when an appointment

is selected from the drop-down list. The relationship is multiple-launch because a person

can have any number of appointments.

To illustrate the function h in action, consider the check box on the first form in

Figure 2.2. It has several obvious context elements, such as control text, default value,

size, and location. So, for the g-tree node associated with that check box, the function h

is defined as follows:

• h(“Control Text”) = “Procedure Completed”

• h(“Default Value”) = “False”

• h(“Size”) = “(100, 10)”

36

• h(“Location”) = “(10, 90)”

Each type of control supports its own set of context elements. Some context ele-

ments, such as size and location, will exist for all control types. Others, such as text

length, will be supported only by certain control types (in this case, text boxes). Context

elements include both the elements that have a human-readable description of data (e.g.,

control text, help text, and domain values) and elements that are not necessarily useful

to a human user, but necessary for reconstructing the query interface at a later time (e.g.,

control size and location, to describe where those elements will appear in the interface).

In addition, every attribute node a in a g-tree has a domain, denoted as Domain(a).

The domain of a can be one of the following:

• Any subset of one of the standard atomic data type domains, including Boolean,

Integer, Real, and String.

• A reference to an entity node e, coupled with an optional view expression v. This

relationship is denoted as Domain(a) = EntitySet(e), Domain(a) = EntitySet(e, v)

in the presence of a view expression, and is the user interface equivalent of a

relational foreign key.

The view expression v describes how a reference to an entity e is displayed on the

screen, and produces a string representation of an entity. Formally, v is a function

v :Nodes→String that takes as input a subset of the attribute nodes that are immediate

descendants of an entity node (without going through another entity node) and produces

a user-friendly representation of the referenced entity. For instance, if the view expres-

sion is the function v(FirstName, LastName) = LastName + “,” + FirstName where + is

37

the string concatenation operator, then in that control you will see values that look like

“Thomas, Bob” when in fact the control stores an arcane object ID value referencing a

row in another table.

We also define the following useful functions over g-trees:

• For any g-tree g, rootnode(g) is the root node of the g-tree.

• For any node n, Entity(n) is the nearest entity node to n above it in the g-tree,

including n itself. Conceptually, when n represents a control on a form, regard-

less of the node type of n, Entity(n) is the node corresponding to that form. By

definition, Entity(n) = n if n is an entity node.

• For any entity node e, Attributes(e) is the collection of attribute nodes that are

descendants of e following a path that does not include another entity node. Con-

ceptually, since e represents a form, Attributes(e) represents all of the widgets

on that form that display data elements, e.g., widgets that correspond to attribute

nodes.

• For any entity node e, Parent(e) is the nearest entity node to n strictly above it in

the g-tree. Conceptually, since n represents a form, Parent(n) represents the form

that launched it. By convention, Parent(e) = null if e is the root node of a g-tree.

Translating a user interface into a g-tree is straightforward. Each form in the user

interface becomes an entity node, each data-bound widget that holds values from an

atomic domain (i.e., one of the base types supported by the programming language,

such as a string or integer) becomes an attribute node, each container widget (such as a

group box) becomes a container node. Widgets that display data with non-atomic type

38

break down into nodes according to Algorithm 2.1, introduced momentarily. Any other

graphical widget becomes a control node. Our Guava user interface translator derives

the name of each node from the name the developer gives the graphical widget in the

application code. If one form or control c1 contains another control c2 (e.g., when a

group box contains a text box), the translator draws a Contains edge from the node for c1

to the node for c2. If a control launches another form, but the new form merely contains

more details about the first form, the translator draws a Single-Launch edge from the

control to the form. If, instead, the new form allows creation of several instances for each

instance of the first form (evidenced by the presence of new-edit-delete functionality on

a form to manage child instances), the translator draws a Multiple-Launch edge.

For each widget that holds non-atomic data of type T , we assume that the structure

underlying type T (e.g., the constraints governing the structure and values that are stored

in the widget) can be represented recursively in the following language:

• A(D, n, h), an atomic data type, where D is an atomic domain (including any ref-

erence domain EntitySet(e)), n is a name, and h is a context function

• C(t0, t1, . . . , tk, n, h), representing a tuple type, where each ti is another expression

in the language, n is a name, and h is a context function

• E(t, n, h), representing a set type, where t is another expression in the language, n

is a name, and h is a context function (other aggregate types such as lists or bags

can be represented by creating a new type t′ = C(t, p, n′, {}) for some new name

n′ and where p is a integer type representing position or repetition number)

The context functions associated with types may be empty (and are often empty in

39

practice). If a type in the underlying language can be represented as A(D, n, h), then the

widget is in fact atomic, and Algorithm 2.1 need not be run to begin with.

Algorithm 2.1: If type T can be represented in the language, translate it into nodes

in the following way:

• Translate E(t, n, h) into an Entity node with name n and context h, connected to

the tree for type t by a Contains edge.

• Translate C(t0, t1, . . . , tk, n, h) into a Container node with name n and context h,

connected to the trees for types ti by Contains edges.

• Translate A(D, n, h) into an Attribute node with name n, context h, and domain D.

�

Note that the type language and algorithm are effectively building a miniature g-tree

to represent the data type, if possible. For example, the grid control in Figure 2.3 will

be represented by an Entity node, a Container node, and three Attribute nodes, with

domains String, String, and Boolean as also shown in Figure 2.3. If type T cannot be

represented in the language, we treat the type T as if it were atomic by translating the

control into an attribute node whose domain is String, meaning that the control will

serialize its contents to a string.

The context functions for controls involved in Algorithm 2.1 describe the attributes

of the various data structures buried within a compound-value control, and are no dif-

ferent from a context function for an atomic data control (e.g., a text box). For instance,

the context function for the “Specialty” grid column in Figure 2.3 may be defined on

“Default value”, “Tool tip”, and “Is required”.

40

(a) (b)

TProvider = A(String, Provider, {Default=””})

TSpecialty = A(EntitySet(Specialty, VSpecialty), Provider, {Default=””})

VSpecialty(SpecialtyName) = “SpecialtyName”

TIsPrimary = A(Boolean, IsPrimary, {Default=False})

TProvider_Tuple = C(TProvider, TSpecialty, TIsPrimary, Provider_Tuple, {})

TProviders = E(TProvider_Tuple, Providers, {HasMaxNumber=False})

 (c)

Providers

(Entity)

Provider_Tuple

(Container)

Provider

(Attribute)

Specialty

(Attribute)

IsPrimary

(Attribute)

Figure 2.3: A grid control (a), how it breaks down into a g-tree fragment (b), and the

underlying type of the grid control (TProviders) expressed in our type language (c)

41

Endoscopy
(Entity)

Personnel
(Container)

Outcomes
(Container)

Endoscopist
(Attribute)

Anesthetist
(Attribute)

Procedure
Complete
(Attribute)

Severity
(Attribute)

Details
(Control)

Endoscopy Details
(Entity)

Primary
Finding

(Attribute)

Other
Findings

(Attribute)

Anesthesia
Required

(Attribute)

Complications
Occurred

(Attribute)

Post-Operative
Instructions
(Attribute)

Other Surgery
Required

(Attribute)

Single-Launch

Figure 2.4: An example g-tree corresponding to the application in Figure 2.2. Any edge

that is not labeled is a Contains edge

Each data-bound widget, whether or not it has atomic-typed data, must get its data

from the database through the middleware (and, thus, the natural schema, once Guava is

introduced) and put its data back into the database through the same means. Therefore,

we assert that each non-atomic data-bound control must already have some sort of data

structure that the middleware understands how to work with, and mechanisms for read-

ing from and writing to that structure. If that data structure is relational in nature, then it

can be easily described using the language introduced in Algorithm 2.1. If the data in the

control is natively stored as a more complex structure that cannot be described using the

language above, such as a bitmap image or untyped XML document, then (as mentioned

earlier) we treat the control as an atomic-valued control. To store data in such a format

in a relational database, one needs to write serialization and deserialization routines (if

they do not exist natively for the complex type) so that its data can be stored in a single

column.

42

Figure 2.4 shows the g-tree that corresponds to the UI in Figure 2.2. The entity

node for the parent form is the root of the tree, the container nodes representing the

group boxes are its children, and the controls in the group boxes become child nodes

of the group box nodes. The child form also becomes an entity node, which is a child

node of the control that launched it. The edge is labeled as Single-Launch because the

child and parent forms share a one-to-one relationship, since there is no new-edit-delete

functionality in the parent form and a single button launches the form.

Notice that not every g-tree corresponds to a working user interface. For instance,

a single-launch edge leading to an attribute node does not make sense, because that

implies clicking a button would launch a text box or a checkbox, not another form. We

define a g-tree to be valid if it satisfies these properties:

• The root node of the tree is of type Entity.

• The in-edge for all non-Entity nodes is of type Contains.

In Guava, we generate what we call a natural schema, a relational schema where

each form corresponds to a single table using the following algorithm:

Algorithm 2.2: To translate a valid g-tree (N, E) into its natural database schema:

• For each Entity node n ∈ N, create a table with name n.Name, and add a column

called id, an artificially generated primary key.

• For each Entity node n ∈ N that is not the root node, let p = Parent(n). If

n’s in-edge is of type Single-launch, create a foreign key from (n.Name).id to

(p.Name).id. If n’s in-edge is of type Multiple-launch or Contains, create a new

column (n.Name). f k and a foreign key from the new column to (p.Name).id.

43

• For each Attribute node a ∈ N, let p = Entity(a). Create a column named a.Name

in table p.Name. If a has domain EntitySet(e) for some node e, then set the

new column’s domain to be the domain of artificially-generated keys, and cre-

ate a foreign key from a to e.id. Otherwise, set the domain of the new column to

Domain(a). �

Figure 2.5 shows the result of running Algorithm 2.2 on the g-tree in Figure 2.4,

and is consequently the natural schema corresponding to the forms in Figure 2.2. The

natural schema can serve as the schema of the underlying physical database; however,

it is more likely that the schema on disk will be significantly different, to accommodate

physical design issues such as retrieval and update speed. These issues are covered in

the next chapter, Chapter 3.

Given a form G, it is possible that multiple other forms F1, F2, and F3 can launch

G. This idea of multiple form provenance means that a given instance of an entity of

G may be associated with any one of the parent forms. Standard foreign keys can only

reference a single parent table; thus, there is no single construct in the relational model

to support this possibility of multiple parents without using an active construct such as

a trigger.

The underlying data model in Guava is the relational model, but we extend the model

with a generalized notion of foreign keys to support the possibility of multiple parent

forms. We allow multiple foreign keys to be defined on a set of source columns with

‘OR’ semantics, which accommodates multiple form provenance. In the standard rela-

tional model, a table with two foreign keys from the same columns uses ‘AND’ seman-

tics.

44

Figure 2.5: The natural schema that represents the data in Figure 2.4

We make one restriction, which is that a single form will not participate as a child

in both one-to-one and many-to-one relationships. This restriction requires that if there

is a foreign key from G.id to some other table, then G will only be the source of one-

to-one foreign keys, i.e., all the foreign keys are from G.id to the id attribute in other

tables. These multiple foreign keys from G.id have and ‘OR’ semantics. On the other

hand, if there is a foreign key from G. f k to some other table, then G will only be the

source of many-to-one foreign keys, i.e., all of the foreign keys will be from G. f k to

the id attribute in other tables. These multiple foreign keys also have ‘OR’ semantics.

This restriction on foreign keys, coupled with Algorithm 2.2, means that if a table has

a column called f k at all, it will participate in only many-to-one foreign keys. In the

universe of forms, this restriction means that if any form is launched in a single-launch

relationship with its parent, that form must always be launched using a single-launch;

the same can be said for multiple-launch relationships.

In the discussion so far, we have described Guava in a setting with a single UI that

addresses a single underlying database. Consider the case where a developer or company

creates an entire suite of applications to run on a single database. Each application may

be considered individually, with its own g-tree, query interface, and natural schema.

45

We can also consider all of the applications at once, resulting in a forest of g-trees,

a single unified query interface, and a single natural schema. This holistic approach

has the benefit that application A could issue queries against tables that only exist in

application B to retrieve data through the natural schema. It is also possible that, since

the multiple applications are constructed by the same institution, a single form may be

used in multiple applications. We assume that the names of forms are distinct between

applications unless the forms are identical.

The multiple application scenario is not a major focus of our research. However, we

note that there are three interesting cases that may emerge when considering a collection

of applications at one time:

• The sets of forms between the applications are disjoint, and the applications do not

overlap in terms of real-world entities covered. In this case, there is no interesting

interaction between the applications, and no reason to consider the applications

together, unless there is a development reason to do so. In this case, Guava applies

without any new features.

• The sets of forms between the applications are not disjoint. Considering the set

of applications at one time would allow the natural schema to reflect the interrela-

tionships between the applications.

• Two applications each have a form that covers real-world entity set X, but the

forms are not the same. This case presents an integration challenge. The two

forms would become distinct tables in the natural schema with no connection. We

present a potential solution to this case in Chapter 4.

46

(a)

(b)

Figure 2.6: Two possibilities for the Guava query interface. One interface mocks up

each form (a), where each data entry control now becomes a place to enter print and

filter statements. An alternative interface with the same functionality creates a tree-

structure (b) that mimics the structure of the g-tree

47

2.2 QUERIES IN GUAVA

The Guava Native Query Interface is graphical in nature, based on the original interface,

as shown in Figure 2.6(a). Guava uses context information to generate the query inter-

face for the application. To specify a query using the interface in Figure 2.6(a), the user

navigates through the forms just as they would with the original user interface. The user

specifies which attributes to return in the query answer by right clicking on a control

and selecting the “print” option. The user also specifies the conditions on which to filter

rows by filling in data into the various data fields, similar to QBE [87]. For example,

the query in Figure 2.6(a) prints the endoscopist of all completed procedures where the

anesthetist was Bob, the severity was Abnormal, and complications occurred. Unlike

QBE, the user does not need to specify any join conditions; Guava only supports the

joins that are implied by the relationships between forms.

Other query interfaces are also possible, such as one that exposes the controls in an

entire application in a single tree as shown in Figure 2.6(b). The interface in Figure

2.6(b) is similar in functionality to the previous interface, except that the user prints a

data control by checking the box next to that control’s name in the tree. The context of

each control, as well as the interface to specify conditions, can be viewed in a separate

window. The user can also search the tree for data controls: The interface takes a search

term and finds all occurrences of the term in the context elements for each control. The

interface highlights and expands each matching control, and lists the context elements

that matched the term.

Guava takes the query as specified by the user and translates it into relational algebra

against the natural schema. The first step in the translation is to accumulate the query

48

into a data structure.

Definition: A decorated g-tree is a g-tree where, to each entity and attribute node,

we attach two additional pieces of data:

• A Boolean value Print representing the user’s decision to return the value of the

attribute (or ID for the entity), similar to the print flag in QBE. The default value

for Print is false.

• A Boolean function Condition in the form of Node θ Value where Value is any

constant value, Node is the current node, and θ is any of the standard six com-

parison operators. The function can also be a conjunction of such expressions, or

True to indicate that there is no filter for that node.

A decorated g-tree may also have replicated entity children. In other words, if an

entity node e appears as a child of control c in a g-tree, the decorated version of the g-

tree may have multiple, distinct instances of e (and the entire tree beneath e) as children

of c. For instance, one may want to express the query “find all patients who have seen

both doctors Bob and Alice”, where physician is a child node of patient; in this query,

there are two physician child nodes of the patient node.

Intuitively, Guava constructs a decorated g-tree by taking the specified print state-

ments and filtering conditions from the query interface and attaching them to the node

in the g-tree representing the control on which they were found. We define a query in

the Guava architecture as follows:

Definition: A node n in a decorated g-tree is non-trivial if its n.Print = True or its

boolean condition expression is anything other than True.

49

Definition: A g-subtree of a g-tree g′ is a subtree of g where the root node is an

entity node. A pruned g-tree is the smallest g-subtree of a decorated g-tree that contains

all of the non-trivial query nodes of the subtree. This corresponds to the idea that a

query may be able to start with a sub-form of the application, and not have to start with

the root form. That is, a pruned g-tree has an entity node at its root that may be different

from the root of the original tree.

Definition: A Guava query over a g-tree g is a forest of g-subtrees of g where all of

the following are true:

1. One of the g-subtrees g0 is set aside as a “distinguished” subtree, and g0 is pruned.

2. Every non-distinguished subtree t in the forest has an entity node e that can be as-

sociated with an attribute node a in another tree where Domain(a) = EntityS et(e).

3. No two non-distinguished subtrees are associated with the same attribute node in

the same subtree.

4. The associations between subtrees form a tree. In other words, if we were to

consider each association to be an additional edge, the result of putting all of the

the subtrees together is itself a tree.

5. At least one of the nodes in the forest has a boolean print value set to True.

In addition, the query provides a function U that takes an entity node in the forest

and maps it to a unique name. We need this function because there may be entity nodes

in common between subtrees in the query forest (corresponding to the case where the

same form is instantiated more than once over the course of constructing a query), so

we need some way to disambiguate different instances of the same entity nodes.

50

Endoscopy

(Entity)

Personnel

(Container)

Outcomes

(Container)

Endoscopist

(Attribute)

Anesthetist

(Attribute)

= “Bob”

Procedure

Complete

(Attribute)

= true

Severity

(Attribute)

Details

(Control)

Primary

Finding

(Attribute)

Other

Findings

(Attribute)

Anesthesia

Required

(Attribute)

Complications

Occurred

(Attribute)

= true

Post-Operative

Instructions

(Attribute)

Other Surgery

Required

(Attribute)

Single-Launch

Endoscopy Details

(Entity) �
Endoscopist, Severity (�Anesthetist=“Bob”^ProcedureComplete=true(Endoscopy) �ComplicationsOccurred=true(EndoscopyDetails))

(a)

(b)

Figure 2.7: The pruned, decorated g-tree (a) corresponding to the query in Figure 2.6(a),

and the relational algebra query that results from running Algorithm 2.3 on it (b)

Finally, we define SingleTableQuery(e) = ρe.Name→U(e)(σV(e.Name)), where e is an

Entity node in a decorated g-tree, ρ is the relational renaming operator and V is the

conjunction of all boolean condition expressions in Attributes(e) and that of the entity

node e itself. With this machinery in place, we translate a Guava query into relational

algebra.

Algorithm 2.3: To translate a Guava query q over a decorated g-tree g into relational

algebra expressed against the natural schema of g:

1. Begin with the root node r of the distinguished g-subtree in the query.

Set T Q =SingleTableQuery(r).

2. Also, if Print(r) = True, set T P = {U(r).ID}. Otherwise, set T P = ∅.

51

3. Traverse the subtree in depth-first, pre-order fashion.

4. For each entity node e found with a Single-Launch in-edge, set

T Q = T Q ZU(Parent(e)).ID=U(e).ID S ingleTableQuery(e).

5. For each entity node e found with a Multiple-Launch or Contains in-edge, set

T Q = T Q ZU(Parent(e)).ID=U(e).FKSingleTableQuery(e).

6. For each entity node e found with Print(e) = True, set T P = T P ∪ {U(e).ID}.

7. For each attribute node a found that is associated with another g-subtree g′ with

associated entity node e and root node eroot by relationship

Domain(a) = EntityS et(e), construct the query T Q′ associated with g′ (running

the algorithm from the beginning). Then set T Q = T Q ZU(Entity(a)).a=U(e).ID T Q′.

8. For each attribute node a found with Print(a) = True, set

T P = T P ∪ {U(Parent(a)).(a.Name)}.

9. Once traversal of the entire forest is complete, return πT P(T Q). �

Figure 2.7(a) shows the Guava query associated with the query shown in the query

interface of Figure 2.6(a). Pruned nodes are grayed-out in the tree. The result of running

Algorithm 2.3 on the Guava query in Figure 2.7(a) is the relational algebra expression

shown in Figure 2.7(b).

By construction, we see that the resulting Guava query language is a subset of the

relational algebra restricted to the following:

• T for any table in the natural schema

52

• π ~C(Exp) for any collection of columns ~C

• σCθV(Exp) for any column C, value V , and comparator θ

• Exp1 Z Exp2 only if there is a foreign key from Exp2 to Exp1

From the recursive construction of the above subset of relational algebra, we also see

that any expression in the language can also be represented as a Guava query, making

the two languages equivalent:

• For any table T in the natural schema, one can construct a Guava query by finding

an Entity node in a g-tree corresponding to the form for T and decorating the

nodes in Attributes(e) with the Print decorator.

• To represent π ~C(Exp) for any collection of columns ~C, start with the Guava query

for Exp and remove the Print decorator from any node not in ~C.

• To represent σCθV(Exp) for any column C, value V , and comparator θ, start with

the Guava query for Exp and add the appropriate condition decorator to the node

corresponding to C in the query.

• To represent Exp1 Z Exp2 where there is a foreign key from Exp2 to Exp1,

first construct the Guava queries for Exp1 and Exp2. Then, consider whether the

foreign key corresponds to an edge in the g-tree or a Lookup association. If the

foreign key comes from an association, create a new Guava query out of the union

of the original queries’ subtrees. Set the distinguished subtree of the new query

to be the distinguished subtree from the query for Exp1. If the foreign key comes

from a g-tree edge, do the same thing, except take the subtrees from the Exp1 and

53

Exp2 that participate in the foreign key and connect them into the same subtree

along the edge in question.

Therefore, the Guava query language is equivalent in expressive power to single-

statement conjunctive queries where joins are restricted to foreign keys and selection

can use any of the six comparators to relate a column against a constant, but not a

column against another column.

Using Algorithm 2.3, all joins in the language are inner joins, so any query that

spans multiple forms will only return results that matches data that is present in all of

the forms.

2.3 IMPLEMENTATION NOTES

We have implemented portions of the functionality above to demonstrate proof of con-

cept of the query interface in the Microsoft Visual Studio 2008 Integrated Development

Environment (IDE) using the C# programming language. We provide a library of GUI

widgets by subclassing the standard widgets that come with Visual Studio. We have

implemented a framework that can take any application written using those widgets and

generate all of the artifacts in Figure 2.1. One can use the prototype framework with any

language that runs on the .Net framework, e.g., C# or Python, allowing the developer

the freedom of several possible programming languages. One need only to implement

the UI widgets in another language such as Java to extend to yet more languages. In this

section, we describe characteristics of our implementation that are noteworthy.

54

2.3.1 Reflection

Reflection is a feature present in many modern programming languages that allows a

program to examine an object at runtime and determine what properties it has and what

values are in those properties. Using reflection, a program can determine an object’s

type and any interfaces it implements; discover what properties, methods, and fields

exist on the object; and retrieve pointers to methods and properties that can be called,

all without the benefit of knowing the object’s type ahead of time (i.e., without requiring

static typing). Reflection can also be used to generate objects at runtime when the type

of the object is not known a priori. The developer takes the name of a class stored as a

character string and can use reflection to find the constructor for that class and instantiate

it to create an object.

We use reflection in C# to reify the relationships between forms. Suppose that a

developer defines a button on form “foo” that launches form “bar” when clicked. Nor-

mally, to bring about this effect, the developer manually writes code for “foo” associated

with an event that fires when the button is clicked. That event code cannot be queried

at run time, so there is no way to ask of the button questions like “which form do you

launch?” Guava’s version of a button provides a property called “LaunchForm” that

holds the name of the form that the button should launch if clicked. Behind the scenes,

Guava uses reflection to take the value of this property and create an object of that type.

2.3.2 Interfaces

Though reflection can provide the names of methods and properties, it provides no in-

formation about the semantics. Suppose we want to get the current value in a control.

55

If the control is a TextBox, the property that holds the current value in the box is called

“Text”. However, if we want the value in a CheckBox, the property that holds the current

value is called “Value”. What is worse is that the CheckBox control also has a property

called “Text”, but it returns the leading text of the control — in effect, schema informa-

tion rather than data. Reflection would only allow the programmer to find out that both

controls have a property called “Text”, leading one to incorrectly infer that they serve

the same purpose.

We use a different programming language feature — an interface — to document

the uniform semantic meaning of methods and properties across widgets. An interface

is a contract that an object must meet in terms of properties and methods that the ob-

ject supports; the interface provides no implementation of those properties or methods,

so a developer must provide the code. Our interface, called “Guava”, contains many

properties, including the following:

• GName, the name of the control

• GText, the leading text of the control

• GToolTip, the tool-tip text that appears when the pointer hovers over a control

• GDomain, the domain of allowable values for a control

Each of these properties must be connected to existing properties or functionality

of a control, if they exist for the control; otherwise, the programmer must introduce

the new functionality required by the property (which is a very rare occurrence). For

instance, the GText property is set to the “Text” property for a CheckBox control. For a

56

TextBox control, the GText property is set to the text from the label that appears before

the TextBox. Therefore, GText is unambiguously treated as schema, not data.

We subclassed each of the available data-bound controls in the Visual Studio envi-

ronment (e.g., text boxes, check boxes, and grids) so that there are analogs of each of

those controls that implement the Guava interface. For instance, the class “GTextBox”

is precisely a TextBox that has been extended to implement the Guava interface. All that

an existing implementation of a user interface must do to use Guava is include our code

library and change the types of the graphical widget objects to their “G” counterparts.

We talk about implementing custom-built controls to match the Guava interface in the

case study in Section 2.4.1, below.

2.3.3 Query Results and Query Interface

The query language supported by Guava is a subset of relational algebra. Thus, query

results are relations. Therefore, results can be viewed in a grid or table. The current

implementation of our query interface (shown in 2.6(b)) displays results as a grid, and

allows the results to be exported to a spreadsheet. However, since queries can be ex-

pressed in an environment that mimics the original user interface, it makes sense that

one might want to view the query results in that same environment. It would be straight-

forward to implement a browser for the query answer that shows each query result, in

turn, in a display based on the original UI. We would simply show, for each row, a

mockup of each form referenced by the query with each of the “printed” fields filled in.

In a meeting with CORI’s analysts on September 14th, 2006, the existing query

interface and grid layout of query results were presented. Though the analysts clearly

57

were impressed by the prospect of a fully-graphical query interface, they said that the

existing state of the implementation was “exciting” and “very useful”. Though they

thought that viewing results in context might be helpful, their primary use for query

results would be loading them into a statistical package for further analysis, and that the

spreadsheet form of the results were sufficient.

2.4 CASE STUDY 1: MODELING AN EXISTING USER INTERFACE USING

GUAVA

To demonstrate the feasibility of using Guava, we took the existing CORI application

(version 4.0) and converted a significant subset of it to use our Guava implementation.

We did not convert the entire CORI application into the Guava model because a vast

majority of the forms in CORI are small forms with commonly-used controls on them,

such as checkboxes, buttons, and text fields. Thus, there was no compelling reason

to implement all of them in Guava. However, we did implement enough of the CORI

application to demonstrate the following:

• All of the available types of graphical controls used by CORI are available in our

implementation, including both standard Visual Studio data-bound components

and custom controls.

• All of the different ways to launch forms or represent entities in the CORI ap-

plication are available in our implementation. The primary entities in CORI are

patients, staff, procedures, and findings; a complete coverage of CORI for our

purposes needed to include all of these entities.

58

• The procedure query screen in CORI is at least partially implemented, in the sense

that it can cover a similar set of queries as the page in the original application.

CORI includes a screen that allows a user to find any procedure for any patient.

Normally, a procedure is a weak entity of a patient and is accessed through the

patient forms. We implemented a custom procedure search page in our case study

because we felt that it was important to cover at least one case where the appli-

cation UI needs to issue an ad hoc query against the database through the natural

schema.

The next subsections describe the parts of the CORI application that we implemented

with respect to the items above, and our experiences doing so.

2.4.1 Adapting Controls to Work With Guava

Many of the controls used in the CORI application are standard forms widgets that come

with Visual Studio, and therefore are included in the set of controls that we subclassed,

as described in the previous section. Another set of controls used by CORI are func-

tionally equivalent to existing controls; for instance, CORI procedure screens have a

columns of labels lining the left edge of the screen, as in Figure 2.8. Clicking on one of

the labels loads a panel of controls into the main area of the form. This situation is func-

tionally identical to a TabControl, such as the one seen across the top of Figure 2.6(b).

So, our implementation of the CORI application in Guava uses a TabControl instead of

the list of vertical labels. When there is an application with a functionally equivalent

control that already exists in Guava, we document it and use the existing control.

59

Figure 2.8: One of the main procedure screens in CORI; clicking on a label on the left

will load a panel of controls into the empty space in the lower right

Figure 2.9: A custom checkbox control that exists in CORI that we have modified to

work in Guava

60

There are two controls that are custom to CORI that we could not mimic with exist-

ing controls. The first is called a “CheckFlag”, as shown in Figure 2.9. The control is

similar to a standard checkbox control, except that clicking it may launch a new form

if the developer has designated a target form, similar to clicking a standard button con-

trol. The color of the CheckFlag depends on whether there is any data contained in the

launched form. If the launched form is empty, the control’s check mark has the stan-

dard white background; if the launched form contains data, the background is amber, as

shown in the figure. For this custom control, we connected the various properties of the

Guava interface to existing properties without needing to add new functionality; in other

words, we were able to implement all of the GName, GText, GDomain, etc. properties in

one or two lines of code that reference other existing property values of the control.

The second custom control in CORI is called “DrawFinding”, and is shown in Fig-

ure 2.10(a). The control is a graphical representation of anatomy; a user can click on a

location within the anatomy (or draw a small region) to demonstrate that a clinical find-

ing was discovered at that location. Clicking on the location brings up a list of possible

findings for the current procedure; selecting a finding launches a form associated with

that finding.

The biggest problem to overcome when migrating the DrawFinding control to Guava

was a lack of encapsulation. The code of the DrawFinding control was actually spread

between the control itself and each form that could possibly contain the control. For

instance, the code that runs when the user clicks on the control is passed in from the

enclosing form, such as a Colonoscopy form, as procedures that are called as an event.

61

That way, when the user clicks on a DrawFinding control when the application is run-

ning, it brings up a list of procedure-specific findings. Here is part of the code that is

passed into a the DrawFinding control from a Colonoscopy procedure:

case "Arteriovenous Malformation (AVM)":

cform = new CorUI.COL.FindingDetails.ColAVM();

break;

case "Diverticulosis":

cform = new CorUI.COL.FindingDetails.ColDivertic();

break;

case "Fissure / Fistula":

cform = new CorUI.COL.FindingDetails.ColFissureFistula();

break;

The code above associates each finding with the appropriate form to launch if the

finding is chosen.

Because the Guava implementation uses reflection, the Guava-ized version of this

control does not need to have any code passed in. The “GDrawFinding” control has a

single property, “Forms”, that is a list of associations. For instance, one item in the list

might be “Arteriovenous Malformation (AVM)—CorUI.COL.FindingDetails.ColAVM”,

to associate the AVM finding with the ColAVM form.

Other than drawing outside code into the control or into properties whose value can

be set on the designer window (such as the “Forms” property), the remaining code of

62

 (a) (b)

Figure 2.10: A custom graphical control that exists in CORI that we have modified to

work in Guava; in data entry mode (a), the user can specify the locations of findings,

and in query mode (b), the user can query for findings based on location

the DrawFindings control was left untouched, which is an important characteristic: In

both of these custom controls, the existing graphical and behavioral code of the controls

is left undisturbed.

Most controls, especially those that come with Visual Studio, have a clear analog

in a query-by-example framework. For instance, a text box in “query mode” acts as a

filter based on what is in the text box (entering “Bob” in the box limits query results to

those that have “Bob” in that field). The choice of how to implement a query interface

using a DrawFindings control is not so clear; we developed one simple query version

of the control. As shown in Figure 2.10(b), in query mode, the user draws a boundary

box rather than drawing individual points; the query results are then filtered for findings

that are located within that box. We do not assert that there is only one way to alter

63

the control to support visual queries; rather, we demonstrate by proof-of-concept that

custom graphical controls can work in the graphical query metaphor. It took less than

20 minutes to add this query mode extension to DrawFindings.

2.4.2 Adapting an Entire UI to Use Guava

The vast majority of the CORI application is a hierarchical arrangement of data-entry

forms with standard controls, which matches the Guava paradigm. We describe here

the cases where the CORI application has some functionality that diverges from this

paradigm. All of these cases occur on the main screen of CORI that appears when the

application is launched, also known as the Lobby screen.

The first major issue with the Lobby screen is how patients are handled. Figure 2.11

shows the Patient form in the Lobby screen. On this screen, the user provides search

criteria for patients in the upper-left corner of the form. The retrieved patients appear in

a grid in the lower-left corner (position A in the figure). When the user selects a patient,

that patient’s details appear in the upper-right corner (position B in the figure). A list

of the patient’s procedures appears in the lower-right corner (position C in the figure).

From the lower-right corner, the user can open an existing procedure or create a new

one.

This layout is unlike the rest of the application because it does not subscribe to a one-

entity-per-form paradigm. Such a paradigm would have the Lobby screen (its own en-

tity) launch a new form specifically for a Patient when an item in the grid (position A) is

selected. Then, in that new form, a Procedure could be selected. We mocked up this part

of the UI in our implementation of CORI using a one-entity-per-form style. Because this

64

A

B

C

Figure 2.11: The screen in CORI for finding patients and entering new ones

setup is functionally equivalent to the situation where Lobby-Patient-Procedure are flat-

tened into one form, we assert that it would be simple to Guava-ize the compound Lobby

screen without decomposing; we can combine our Lobby-Patient-Procedure forms into

a single, flattened form where the boundary around each nested entity is marked as an

entity node rather than a container node.

The other major difference is the Procedure screen, shown in Figure 2.12(a). This

form (also part of the CORI Lobby) allows a user to query for existing procedures, which

is a departure from the normal Guava paradigm because, within the CORI database, a

procedure is a weak entity of a patient. In other words, procedures are found or added

by looking up a patient, then looking at procedures. The form shown in Figure 2.12(a)

packages up a query over procedure data and returns the list of all matching procedures,

65

irrespective of patient. Procedures are still weak entities; the Lobby merely presents an

alternative access path for finding them.

Figure 2.12(b) shows the same form in our implementation. Our proof-of-concept

version of the procedure query form has fewer displayed options (adding more options

would have been time and labor intensive, but not difficult), but similar functionality:

The user chooses some criteria, the software generates a query, and the list of match-

ing procedures appears. Clicking on a procedure launches the Procedure form for that

entity. So, this form packages a query in relational algebra and sends it to the natural

schema, rather than sending raw SQL to the database. This situation illustrates how

an application’s business logic can still operate on top of the natural schema without

requiring access to the physical database.

2.4.3 Additional Results

According to team member Jeremy Steinhauer, who handled converting CORI forms to

use Guava:

Having not much experience with gui development it took me longer than

expected to figure out what was needed as well as the best approach to

converting the forms to use guava. After trying a couple different ways of

migrating the forms I found that the best way to maintain data requirements,

conserve look and feel, and convert quickly was to copy and paste directly

from the code the form elements, then adjust the properties by deleting ex-

traneous and renaming the similar ones. In the end I was able to get the

conversion time for a single form down to about 30 mins for about 97% of

66

(a) Procedure selector from the CORI application

(b) Procedure selector from our mock-up of the CORI application

Figure 2.12: Forms in the CORI app (a) and our converted app (b) that find procedures

based on specified criteria

67

the code. The other 3% of components required more time but it was noth-

ing that could not be mimicked with more time under the Guava architecture

as far as I could tell. (05/12/2008)

Jeremy’s task was more difficult than would normally be expected because he did not

have access to a running installation of CORI, let alone any familiarity with the source

code. Even in this setting, his experience was simple and positive.

An analysis of the CORI design in Guava yielded the following numbers:

• 124 widgets were non-data related and trivial to switch to Guava.

• 205 widgets (86% of the data-bound widgets) were either built-in Visual Studio

widgets, CheckFlags, or DrawFindings and thus had direct Guava analogs.

• 24 widgets (10% of the data-bound widgets) had functional equivalents that were

already Guava-ized. We assert that explicit, Guava-ized versions of these widgets

could be implemented with a minimum amount of work, given our experience

adapting CheckFlag and DrawFindings.

• 6 widgets were data-bound, but not connected to persistent storage. These con-

trols, such as a list box that lists the “checked” items on a different form, just

derive data from other controls and are simple to code. Because they are not data

bound, they are not in the g-tree of the application and are trivial to switch to

Guava.

• 1 widget required a base data type of binary-large-object because it is an image

widget. Our Guava implementation does not yet support this data type. Support-

ing this data type in the implementation would be simple, so long as we restrict

68

the user from specifying conditions on image types in the query interface (it is

unclear what kinds of conditions could be specified, or even valid to begin with,

on images in standard SQL).

• 1 widget deals with Pathology data. Pathology data comes from entities that do

not have a corresponding form (i.e., there is no single form in the application to

enter Pathology items). Therefore, this is a control that intentionally bypasses the

natural schema and connects directly to the database (which corresponds to its

existing behavior anyway).

From these results, we conclude that the user interface of the CORI application can

be brought into the Guava architecture solely by changing the types of objects from stan-

dard controls to our Guava equivalents and making a small number of custom controls

conform to the Guava object interface.

2.5 CASE STUDY 2: GUAVA AS AN ADDRESSING SCHEME

Context is an idea that is central to Guava; one of the key features of the Guava query

interface is that it provides contextual information to users, so that the user may better

understand schema and data elements when constructing queries. Guava is not the only

research project that seeks to leverage contextual information for the benefit of users.

The SPARCE project (Superimposed Pluggable ARchitecture for Context and Excerpts)

[60] provides an architecture for managing small excerpts of information (called marks)

drawn from base information sources. Each mark contains a number of pieces of in-

formation, including a link back to the document from which the excerpt was drawn.

69

A mark can also be used to draw contextual information about an excerpt, so for in-

formation drawn from a word processing document, SPARCE can determine the text

surrounding the excerpt, the formatting used for the excerpt, the excerpt’s position in a

document outline, etc.

SPARCE can access data in a number of different formats, including word process-

ing documents, spreadsheets, PDF documents, and web pages. It is also an extensible

architecture in the sense that a developer can write a component called a context agent

that allows SPARCE to interact with a new type of data. In this section, we describe our

effort to provide interoperability between the Guava and SPARCE projects by making

the Guava architecture itself act as a context agent, thereby giving SPARCE access to

data that is present on forms from any application built using Guava. Our work demon-

strates an alternative use for our g-tree artifact, where g-tree nodes can be used as an

addressing scheme for data components in an application.

A SPARCE base application is any application that can manage data and has an

associated context agent. For instance, Microsoft Word is a base application because

there is a context agent written that can interact with Word and generate excerpts from

a word-processing document open in the application. A superimposed application is an

application that can store and manage marks from base applications by receiving marks

from context agents. Through a context agent, a superimposed application and a base

application can communicate in three fundamental ways:

• A user can create a mark in a base application and place it in the superimposed

application. For instance, suppose a user has Microsoft Word open with a docu-

ment open. The user can select a segment of text, mark it (the Word context agent

70

is a plug-in into the application, so one can simply click a button in a toolbar to

mark the text), and have the mark appear in the superimposed application. For a

Guava-enabled base application, this functionality means being able to right-click

on any data-bound control in a UI (e.g., a text box), have a “mark” option avail-

able in the resulting pop-up context menu, and have the contents of that control

(for the data currently displayed in the form) made available in the superimposed

application.

• A user can select a mark in a superimposed application and see contextual in-

formation about the mark. For instance, in a superimposed application, the user

may right-click on our mark from Word and select “view context”. The superim-

posed application will invoke the context agent for Word, and the context agent

will then display contextual information about the mark, including information

about the excerpt’s position in the document and all of the other context items

mentioned above. For a Guava-enabled application, this functionality means that

one can view the context information of a marked control (help text, label, etc.)

from the superimposed application, without launching the original application.

• A user can open a mark in a superimposed application and view it in its original

context. For instance, in a superimposed application, the user may right-click on

our mark from Word and select “open base document”. Microsoft Word would

launch, the proper document would open in Word, and document will scroll to

the excerpted text and highlight it. For a Guava-enabled application, this func-

tionality means that the superimposed application can launch the Guava-enabled

application and navigate through the forms of the application, launching them

71

each in turn, to display the form that contains the marked control, and with the

form displaying the same entity’s data that was displayed when the control was

marked.

As a motivating example, consider a situation where a clinic is using the CORI pro-

cedure software from the case study in Section 2.4, and the physicians in the clinic

would like to do rounds. Over a period of time, a physician can collect excerpts from a

patient’s chart (possibly from both CORI and other software applications) into a sum-

mary document. When presenting the summary document at rounds, the physician can

then address questions about a finding in the summary document by displaying the find-

ing in the software that had recorded it, with the patient’s chart open for context and the

finding highlighted.

To extend Guava to function as a SPARCE context agent, we needed to add the

following features to our Guava prototype to enable it to participate in the three functions

above:

• A mechanism to allow a user to select a particular control on a form, excerpt it

(i.e., create a mark), and make it available to an outside application — in the

case of a Guava application, an excerpt means the data contained in the control,

combined with a way to describe the location of the control in the application.

• A mechanism to allow an outside application to access the context information for

a particular control. Since each base application can determine its own definition

of context, we expose the contextual information that is exposed by each control

(and is thus available in each g-tree node).

72

• A mechanism to allow an outside application to launch a Guava-enabled applica-

tion (e.g., CORI) and navigate to a particular place in the form hierarchy.

All three of these items share two base requirements: an addressing scheme for an

arbitrary Guava-enabled application that can uniquely identify a piece of information,

and a navigation scheme to describe, given an address, how to find that address in the

application. We can leverage our g-tree artifact to provide both such schemes. The

granularity of our addressing scheme is at the level of attribute nodes, since those are

the atomic structures in a g-tree that represent the presence of data.

A Guava seed, or g-seed, is a node in a g-tree, combined with the following:

• The path of g-tree nodes from the root of the g-tree to the node.

• A key value for every entity node in the path.

To demonstrate the utility of a g-seed, consider the case of the Other Findings control

in the Endoscopy Details form in Figure 2.2. In this application, we may want to excerpt

the information, “Other Findings for Endoscopy Details number 104”. The address of

this information is the Other Findings textbox on the Endoscopy Details form, when the

form is viewing the details information for key value 104. This address is similar to,

for instance, identifying a field in a database by providing the table name (Endoscopy

Details), column name (Other Findings), and primary key value (104). In a software

application, it is not possible to simply launch the Endoscopy Details form for that par-

ticular key value without navigating through other forms first; rather, one launches the

root form of the application, then navigates through other forms (selecting a particular

73

Endoscopy

(Entity)

Key = 104

Personnel

(Container)

Outcomes

(Container)

Endoscopist

(Attribute)

Anesthetist

(Attribute)

Procedure

Complete

(Attribute)

Severity

(Attribute)

Details

(Control)

Endoscopy Details

(Entity)

Key = 104

Primary

Finding

(Attribute)

Other

Findings

(Attribute)

Anesthesia

Required

(Attribute)

Complications

Occurred

(Attribute)

Post-Operative

Instructions

(Attribute)

Other Surgery

Required

(Attribute)

Lobby

(Entity)

Key = 0

Patients

(Container)

Staff

(Container)

… … … …
… …

Figure 2.13: A g-seed for the Other Findings text box control from Figure 2.2; the

darkened path of nodes through the tree describe the path of forms necessary to reach

the Other Findings control in the hierarchy, and in particular, the Other Findings value

for Endoscopy Details number 104

74

entity of interest for each form along the way) until one arrives at the Endoscopy Details

form for value 104.

A g-seed encapsulates both the addressing scheme and navigation scheme described

above; the specific g-seed describing “Other Findings for Endoscopy Details number

104” is shown in Figure 2.12. The address of the information corresponds to an attribute

node in the tree. The navigation path to that attribute is the path from the root node of

the g-tree to the attribute node, with key values attached to each entity node along the

way, representing which entity’s information is loaded into each form while navigating

to the information of interest.

Solving the addressing and navigation issues using g-seeds was the only interesting

research issue that we encountered in our Guava/SPARCE integration work. Once we

implemented g-seeds as part of our prototype, all of the remaining work was on devel-

oping interfaces so that the two software implementations could interact, and a small

component that can launch Guava-enabled applications and forms.

2.6 RELATED WORK

There are several approaches that model a user interface as a tree structure and view the

associated data as an XML document, including XAML [84], XUL [86], and XForms

[85]. These XML-based approaches are similar in spirit to Guava but they are limited to

describing a single form at a time; there is no automated support for describing the rela-

tionship among forms other than by using a programming language. These technologies

do not have a native query language, though XQuery can be used to query documents in

each format.

75

Several projects have studied the relationship between forms and data. For instance,

Rollinson and Roberts [66] describe how to represent the semantics of a forms-based

interface in a conceptual modeling language. The applications they consider are limited

to ones where the UI and the database are closely related, perhaps even where the UI

is semi-automatically generated from the database. Other studies of forms, such as

that provided by Draheim and Weber [20], extensively study the methodology behind

forms and form-based modeling, but do not expressly describe how to connect forms to

persistent storage nor how to pose queries. We describe our mechanism for connecting

to persistent storage, a channel, in Chapter 3.

The Natural Forms Query Language [22] allows users to write forms that serve as the

interface to an underlying database, both for updates and for queries. The relationship

between NFQL forms and the underlying database is established using name matching,

vocabulary analysis and user-guided heuristics. With Guava, the difference between

the structure of the forms and the database can be much greater than NFQL (by using

a channel, introduced in Chapter 3). NFQL forms must use standard widgets such as

check boxes and text boxes; the Guava query interface can use both standard and custom

widgets.

Several available commercial software packages are dedicated to managing forms

for data entry and coordinating them with a database back-end. IBM has two different

tools [35, 36] that allow a user to create data-entry forms, and have the database auto-

matically generated and connected to the forms. Microsoft Access [50] has a similar

feature, where a developer creates a form and the underlying tables and columns are

generated based on the types of the controls on the forms and the relationships between

76

the controls. These tools focus on individual forms in isolation and do not consider en-

tire applications. Also, the forms in these applications cannot double as query interfaces

— one must run queries directly against the database.

Microsoft InfoPath [51] and Crystal Reports [15] are tools that allow a user to create

a form for viewing query results, then connect the form to an existing data store. In

both of these tools, the predominant way to connect a form to data is using SQL. With

InfoPath, one can also enter data into the forms, similarly to the IBM tools and Microsoft

Access mentioned earlier, if the mapping between the form and the database supports

update. These two tools are marketed as reporting tools that can generate “executive

summaries” of large amounts of data from possibly multiple sources. Their connections

to the underlying databases are as flexible as the mapping language; however, once the

mapping is specified, the connection between form and database is fixed. Thus, one uses

a form to view the result of a pre-determined query rather than to specify a query on the

fly.

One of the key features of Guava’s native query interface is providing contextual

information to the user. Another system that leverages context is the Context Inter-

change project (COIN) [70], which provides contextual information alongside data in a

database. The concept of context within COIN can include the same kinds of context as

Guava, such as caption or help text information, but context in COIN is primarily used

for converting data from one context to another. For instance, in COIN one can say that

the value ‘5’ has context “Units = cm”; when compared against the value “10, Units =

ft”, the ‘5’ is converted to feet so the comparison can occur in the same context. The

context information of the data in COIN is unavailable until a query is processed, and

77

is intended to be implicit until needed rather than be explicit for the benefit of the user.

Also, COIN requires infrastructure within the database to handle the context informa-

tion, where Guava artifacts are entirely in application space.

The traditional artifact used to discover and explore the schema in a database is a

data dictionary. One example of a data dictionary is described in documentation that

accompanies the Logician electronic medical record software (now called Centricity

EMR [11]). This document [44] contains a listing of all of the tables in the database, the

columns in each of the tables, and whether each column participates in a key or a foreign

key. Each table and column is accompanied by a detailed description of its use. The data

dictionary also contains database diagrams in Entity-Relationship format describing the

relationships between the tables. Finally, there is some front matter describing the nam-

ing scheme behind the columns; for instance, the column “pid” always means “patient

id”, while “xid” always means “expiration id”. This documentation was assembled by

a full-time technical writing team, in tandem with information provided by developers.

All of this documentation is intended to help a user execute queries using SQL against

a database, without using any kind of domain-specific interface.

A data dictionary is an example of a broader category of artifact called a metadata

repository. Literature on metadata management and metadata repositories describes

in detail the kinds of information to be tracked. For instance, Hay describes a wide

variety of metadata that can be captured about an information system [31]. On page

9, Hay lays out a variety of kinds of information to be included in his conception of a

metadata repository, including security, event processing, rules, tactics, use cases, state

transitions, and the usual physical data layout information (tables and columns). In

78

particular, Hay’s table includes database design and user interface design, which are the

primary components of a Guava query interface. Hay describes in detail the kinds of

information to track, but provides no insight into gathering this information.

Tools such as SAS Metadata Server [69] can store and track changes to the kinds

of metadata mentioned above. In addition, more modern database systems can generate

reports and diagrams using catalog information on tables, columns, and relationships.

SAS can connect to databases and automatically gather this catalog information. How-

ever, SAS (or any other metadata management tool) will not have any provenance in-

formation regarding the relationship between an application and its database unless it is

manually entered.

One defining characteristic of Guava’s query interface is that it is graphical. Both

the syntax and expressive power of Guava’s query interface are inspired by the graphical

query language Query-By-Example (QBE) [87]. What Guava’s query interface offers

beyond these tools is integrated data dictionary (context) information, automatically

provided from the UI, as well as a look and feel that is familiar to users of the application.

There are a variety of visual query languages whose visual metaphors reflects their

respective underlying data models. GQL [61] is a graphical language with constructs

that appear as repeated application of functions, since it operates on the functional data

model. In Query By Diagram [4], the data model is the ER model, so queries in QBD

look very similar to small ER diagrams. For XML data, the XGL language [24] offers

a graphical interface that resembles small trees of nodes. Guava’s query interface has

a clear visual metaphor as well — a hierarchy of forms — that conforms to Guava’s

modified relational model.

79

Another defining characteristic of Guava’s native query interface is that it is as tai-

lored to a domain expert’s needs as the original application. There are many query envi-

ronments, visual or textual, that are designed to be domain-specific. Like Guava’s query

interface, these query environments are designed to be understandable to domain users.

For example, NeuroQL [77] is a textual query language over a data model designed

for neurological data. Queries in NeuroQL can refer to connections between neurons,

molecular structures, and electrical patterns, all of which are concepts in the underlying

data model and also comprehensible to a user knowledgable in neural biology.

2.7 SUMMARY

In this chapter, we have presented a way to formalize the data content in a forms-based

user interface. These user interfaces have a natural relational representation, which we

can automatically generate. The forms metaphor also lends itself to a QBE-type query

interface; we described how a graphical version of this interface would appear, and

demonstrated how we implemented a query interface with a tree-like look and feel. We

demonstrated, using the CORI application, that converting an existing user interface to

use Guava is feasible with reasonable programming effort.

Chapter 3

TRANSFORMATIONS AND THE CHANNEL

Chapter 2, among other things, outlines a method by which one can derive a relational

schema called the natural schema from an application’s user interface. In many situa-

tions, the database designers may prefer not to use the natural schema as the schema

for the physical database. It is also possible that the application must use an existing

database with a schema that is quite different in structure from the natural schema. In

this chapter, we introduce a tool that connects the natural schema of an application to its

physical schema; this tool is called a channel.

Our channel is, in a way, another solution to the classic view update problem [19];

namely, given a set of view definitions ~V (usually expressed in a query language), de-

termine whether it is possible to translate update statements issued against ~V unam-

biguously into statements against the base schema such that, when the queries in ~V are

re-executed, it appears to the user that the view schema was updated directly. Often, the

view update problem is simplified using syntactic restrictions on the query definitions.

In the SQL:1999 standard, and in most relational DBMS systems, a view is determined

to be updatable if it is limited to using only certain syntactic features. Other approaches

to solving the view update problem focus on identifying a subset of a query language

(e.g., conjunctive queries) and focus on ways of providing proofs of view updatability

for that subset, possibly with directives specified by a developer that give hints as to how

81

to remove ambiguity [9]. Generally, approaches to the view update problem focus on

conjunctive queries, because unambiguously updating through joins, inner and outer, is

a significant problem.

The thesis of this dissertation is that any forms-based software application with

database access is already supporting a view of the data in that database. Moreover,

if the application is largely a data-entry application (introduced in Chapter 2), that ap-

plication already serves as an updatable view. What is interesting about this observation

is that the relationship between an application’s natural schema and its physical database

can rarely be expressed using the limited expressive power of known updatable views.

For instance, in the CORI application, the physical storage for clinical procedures is in

a generic layout — in other words, as key-attribute-value triples. The relationship be-

tween data in this layout and data in a more standard, one-attribute-per-column layout

is called a pivot. No current solution to the view update problem is expressive enough

to handle pivots. In CORI’s case, the pivot operation is hard-coded in the application

middleware.

Our research addressed the view update problem in the opposite direction from the

existing view-update literature. Rather than considering how to make views expressed

in SQL updatable, we start with transformations that we know to be invertible, such

as pivots, and allow the database designer to compose them to form a mapping from

the natural schema to the desired physical schema. The result is a mapping language

with significantly different expressive power from existing updatable view languages.

A channel is a composition of these transformations. Queries, DML updates, or even

schema changes issued by the application against the natural schema are pushed through

82

these transformations one at a time; at each step, the transformation takes each statement

and translates it into an equivalent statement (or set of statements) that is valid over the

transformation’s output schema.

In this chapter, we make the following research contributions:

• We define an extension to the standard relational model that includes an extended

relational algebra, a generalized notion of referential integrity, and incremental

evolution of both foreign keys and column domains.

• We define a mapping language of transformations that is expressive enough to

cover pivoting, unpivoting (the reverse transformation for pivoting), invertible

function application, horizonal and vertical partitioning, and horizontal and verti-

cal merging. The mapping language uses our extended relational model as a basis,

and is closed under the operations that the extended model supports.

• We define the unambiguous action of each transformation on statements (queries,

data updates, and schema updates) expressed against the transformation’s input

schema into a set of equivalent expressions against the transformation’s output

schema.

• We calculate the approximate effect of each transformation on the kinds of phys-

ical data characteristics utilized by contemporary database tuning tools, e.g., row

counts and histograms of data value distributions (so as to allow channels to assist

database designers in database optimization and physical design).

• We evaluate our mapping language by examining an existing database-backed

application, and determining if our mapping language is expressive enough to

83

map the application’s natural schema to its physical schema.

• We further evaluate the expressive power of our mapping language by comparing

it against an alternative transformation language.

• We evaluate the performance of an implementation of channel transformations.

This chapter introduces transformations designed to handle physical design deci-

sions. Chapter 4 will expand the menu of available transformations in several ways,

including transformations intended for purposes other than physical design. One final

note: We envision the channel as a general-purpose database transformation tool, not

just a component of the Guava architecture. In other words, one can design a channel

between two arbitrary database instance, not just between the Guava natural schema and

its physical storage layer.

3.1 THE GUAVA DATA MODEL

The Guava GUI tools in Chapter 2 operate on the relational model, except that referential

integrity (i.e., foreign keys) is extended to allow disjunction. In this chapter, we use a

data model, the Guava Data Model (GDM), that is more expressive in terms of query

language and available data and schema constructs than the model used in Chapter 2.

In this section, we outline the ways in which the GDM extends the relational model.

In particular, we consider the expressiveness of the query language and the allowed

DML and DDL operations, and we describe classes of integrity constraints expressed as

primary and foreign keys.

84

3.1.1 Queries

A channel transforms queries expressed in extended relational algebra. The term “ex-

tended relational algebra” has been used to refer to a number of different languages in

different settings. In general, extended relational algebra includes the standard eight-

operator relational algebra (σ, π, ×, Z, ∪, ∩, −, and ÷), an optional rename operator (ρ),

plus additional operators introduced to serve some specific need, such as aggregation.

For our purposes, the operators we introduce beyond standard relational algebra are:

• Left outer join (AY) and left antisemijoin (X)

• Pivot (↗� ~C,A,V), for a set of values ~C on which to pivot, pivot column A, and pivot-

value column V (translates a relation from a key-attribute-value triple form into a

normalized, column-per-attribute form)

• Unpivot (↙� ~C,A,V), the inverse operation to pivot

• Function application (α~I, ~O, f), applying the function f on input columns ~I and plac-

ing the result in output columns ~O

• Table and row constants

All of the operators above (except function application) can be expressed using stan-

dard relational algebra operators. However, much like the join operator, which can be

expressed in terms of the relational algebra operators cross-product and select, each of

these operators has associated algorithms that are significantly faster than the execution

of an equivalent expression using standard operators. To demonstrate that the operators

85

above can be expressed in relational algebra, consider the following equivalence for the

pivot operator:

↗� ~C,A,V Q ≡ (πcolumns(Q)−{A,V}Q) AY (ρV→C1πcolumns(Q)−{A}σA=C1 Q)

AY . . . AY (ρV→Cnπcolumns(Q)−{A}σA=Cn Q) for C1, . . . ,Cn = ~C

Likewise, the unpivot operator may be expressed as follows:

↙� ~C,A,V Q ≡
⋃

C∈ ~C
(ρC→Vπcolumns(Q)−(~C−{C})σC<>null(Q) × ρ1→A(name(C)))

Examples of these operators acting on instances of data can be found in Figure 3.6(b)

(in Section 3.3). Evaluating either of these operators simply by running the equivalent

query in relational algebra shown here would be very slow; for instance, pivot requires

a great many outer joins, which are costly. Both pivot and unpivot have associated algo-

rithms that can perform the same task in a single pass of the data, provided that the data

is sorted on the key for the pivot operator. Therefore, unpivot can be evaluated in O(n)

I/O’s (compared to O(mn) I/O’s for its union definition, where m is the number of pivot

column), and pivot can be evaluated in O(n log n) I/O’s, dominated by the cost of sort-

ing the data (compared to O(m(n log n)) for its left-outer-join definition). Commercial

database systems include syntax in their proprietary dialect of the SQL language that

can handle pivoting and unpivoting that are evaluated using these optimized algorithms

[16, 53].

3.1.2 Updates to Data and Schema

The full list of update statements for our data model, both DML and DDL, is shown in

Table 3.1. We support the three common DML statements (insert, update, and delete),

86

Table 3.1: The DML and DDL statements that channels support.

Statement Explanation of Variables
Insert
I(T, ~C,Q)

Table to insert rows into (T), columns of the table that will hold the values
(~C), and values of ~C of the new rows (Q). Q may be a constant or a query
result.

Update
U(T, ~F, ~C,Q)

Table to update rows in (T), list of equality conditions on key columns (with
“AND” semantics) to identify rows (~F), non-key columns of the table that
will hold the new values (~C), and new values of the rows specified by query
(or constant) (Q). Query Q may refer to the current (pre-update) row values
as constants. Not all key columns need to have a condition.

Delete
D(T, ~F)

Table to delete rows from (T) and list of conditions (with “AND” semantics)
to identify rows (~F). Each condition in ~F is an equality condition on a key
column. Not all key columns need to have a condition.

Add Table
AT (T, ~C, ~D, ~K)

Name of the new table (T), names of the table’s columns (~C), column do-
mains (~D), and key columns (~K).

Rename Table
RT (To,Tn)

Name of the old table (To) and new name for the table (Tn). Throws error if
Tn causes a schema conflict.

Drop Table
DT (T)

Name of the table to drop (T)

Add Column
AC(T,C,D)

Name of the table (T), and the new column’s name (C) and domain (D).

Rename Column
RC(T,Co,Cn)

Name of the table (T), the column’s old name (Co) and new name (Cn).
Throws error if Cn causes a schema conflict.

Drop Column
DC(T,C)

Name of the table (T) and the (non-key) column to drop (C).

Add Element
AE(T,C, E)

Table (T) and column (C) whose domain is being edited, with the new do-
main value (E).

Rename Element
RE(T,C, Eo, En)

Table (T) and column (C) whose domain is being edited, with the old and
new domain values (Eo, En). Throws error if En conflicts with an existing
element.

Drop Element
DE(T,C, E)

Table (T) and column (C) whose domain is being edited, with the dropped
domain value (E).

87

with the restriction that conditions in update and delete statements are equality condi-

tions on key attributes. So, a channel will accept the statements DELETE FROM T and

DELETE FROM T WHERE A=1 AND B=3 for key columns A and B. A channel will not

accept the statements DELETE FROM T WHERE C=5 for non-key column C, or DELETE

FROM T WHERE A>2 for any column A, for example. We also do not allow updates on

key attributes, assuming that the application will instead issue a delete followed by an

insert if this is necessary, though the DDL Rename Element statement — introduced

shortly — performs a similar task. These restrictions are simplifying assumptions for

the benefit of simpler definitions of the channel transformations. All of the DML up-

dates that are typically generated by a forms-based application satisfy these restrictions,

since they will always update or delete rows based on the key of a selected or visible

entity. One can mimic the action of an arbitrary conditions on an update or delete state-

ment by using a query to retrieve all of the key values for rows that match the statement’s

conditions, then issue an update or delete for each of the qualifying rows using a loop

construct (to be introduced in Section 3.1.4).

Our model also supports statements that add, rename, or drop tables; add, rename,

or drop non-key columns; and add, rename, or drop domain elements — statements that

incrementally evolve a schema. Statements that affect tables and columns are the same

as in standard SQL. The domain element DDL statements are unique to our model and

have some special semantics. If a domain element E in a non-key column C is dropped,

then any row that had a C value of E will have that value set to null. However, if C is a

key column, then any such row will be deleted. In addition, the Rename Element DDL

statement will automatically update an old domain value to the new one. Since renaming

88

an element can happen on any column, key or non-key, renaming elements is a way to

update key values. If an element is being added, renamed, or dropped from a column

that participates in a foreign key, the system verifies that there is a companion statement

in the current transaction modifying the other column participating in the foreign key,

without which the system will throw an error.

3.1.3 Generalized Referential Integrity Constraints

In the GDM, we support three levels (or “tiers”) of referential integrity. The three tiers

offer a trade-off between expressive power and efficiency. Two of these tiers are strictly

more expressive than relational referential integrity. We require additional expressive

power with referential integrity because ordinary referential integrity constraints can-

not be passed through our channel transformations and still be expressed as ordinary

referential integrity constraints over the transformation’s output.

Tier 1 Foreign Keys

A Tier 1 foreign key is a foreign key in the traditional relational model. A Tier 1 foreign

key from a table T to a second table B is expressed as FK(T.~X → B.~Y), where ~Y (a set

of columns) is the primary key of B, and ~X is some set of columns in T with the same

cardinality as ~Y . If the foreign key is in place in a relational database, then the following

logical expression is true:

∀t∈T t[X] , null→ ∃t′∈Bt[X] = t′[Y].

In plain English, every tuple t in table T must have a corresponding tuple b in table B

where t’s values for columns ~X are the values in the primary key columns of b, provided

89

that t.~X contains a value. Figure 3.1(a) shows an example of a Tier 1 foreign key, and

the statement used to define it.

Tier 2 Foreign Keys

A Tier 2 foreign key is a generalization of the standard relational foreign key in several

ways. First of all, the foreign key can reference a subset of the key columns in the

target table (called B previously). Second, the foreign key may reference a subset of

rows in either the source or the target table; a standard foreign key refers to the entire

source table (T) and the entire target table (B). Finally, we allow multiple foreign keys

to be defined on the same source columns with disjunctive semantics. With standard

relational foreign keys, one cannot declare more than one foreign key on the same set of

source table columns because it creates ambiguity with respect to cascading updates and

deletes. With Tier 2 foreign keys, one can express the notion, “the values in columns ~X

must be found in ~Y1 OR ~Y2”. This notion of disjunction in foreign keys subsumes the

extended foreign keys introduced in Chapter 2.

A Tier 2 foreign key can be expressed as a sequence of statements, also called foreign

key fragments:

FK(~F|T.~X → ~G1|B1. ~Y1), FK(~F|T.~X → ~G2|B2. ~Y2), . . . , FK(~F|T.~X → ~Gn|Bn. ~Yn)

where each ~Yi is a (not necessarily proper) subset of the primary key columns of table

Bi. ~F and each ~Gi are collections of conditions on key columns with AND semantics.

The sequence above is defined to be equivalent to the following logical expression:

∀t∈T t |= ~F ∧ t[X] , null −→ ((∃t′∈B1 t[X] = t′[Y1] ∧ t′ |= ~G1)

90

∨(∃t′∈B2 t[X] = t′[Y2] ∧ t′ |= ~G2) ∨ . . . ∨ (∃t′∈Bn t[X] = t′[Yn] ∧ t′ |= ~Gn)).

Figure 3.1(b) shows an example of a Tier 2 foreign key enforced on table instances,

and the statements used to create the foreign key.

Any Tier 1 foreign key can be expressed as a Tier 2 foreign key of the following

form:

FK(true|T.~X → true|B.~Y)

where ~Y is the entire primary key for table B, and no other foreign key is expressed from

columns T.~X. Conversely, any Tier 2 foreign key that can be expressed in this form is

also a Tier 1 foreign key.

Any Tier 2 foreign key that cannot be expressed as Tier 1 also cannot be expressed

as a standard foreign key in a relational database. However, a Tier 2 foreign key can be

enforced in a standard relational database using triggers — specifically, insert and update

triggers on the source table T and a delete trigger on each target table Bi. Translating a

Tier 2 foreign key into triggers is straightforward. The following pseudo-code describes

the algorithms for the triggers generated from the sample Tier 2 above:

begin insert trigger (T)

if new tuple satisfies conditions F

for each i in 1..n

for each tuple t in Bi

if t[Yi] = new tuple[X] and t satisfies Gi

accept insert

reject insert

end trigger

91

(update trigger follows the same pattern as insert trigger)

begin delete trigger (Bi)

if deleted tuple satisfies conditions Gi

for each tuple t in T

if t[X] = deleted tuple[Yi] and t satisfies F

found = false

for each j in 1..n

for each tuple t’ in Bj

if t’[Yj] = t[X] and t satisfies Gj

found = true

break

if found

break

if not found

delete tuple t

end trigger

The second trigger above is a generalized version of cascading deletes. When a row

is deleted from table Bi, the trigger checks to find all tuples in T that match the deleted

row. Then, for each matched row, the trigger checks all of the target tables of the foreign

key to see if the row can match a new target. If not, the row is deleted as part of the

cascade.

Tier 2 foreign keys are likely to have an efficient implementation because of the high

92

ChildTable:

ID ColA ColB ColC

1 R a x

1 S b z

ChildTable:

ID ColA ColB ColC

1 R a x

1 S b z

2 R c z

ChildTable:

ID ColA ColB ColC

1 R a x

1 S b z

ParentTable:

ColB ColC ColD Val

a x 45 19

b z 33 44

a z 48 95

ParentTable1:

ColB ColC Prov Val

a x N 19

d y M 44

a x M 52

ParentTable2:

ColF ColG Prov Val

b z T 44

PivotTable:

ColB x y z

a 19 NULL 95

b NULL NULL 44

FK(true | ChildTable(ColB, ColC)

 true | ParentTable(ColB, ColC))

FK

(ID=1| ChildTable(ColB, ColC)

 true | ParentTable1(ColB, ColC))

FK

(ID=1| ChildTable(ColB, ColC)

 true | ParentTable2(ColF, ColG))

Check (πColB,ColC ChildTable ⊆ πColB,ColC {x,y,z},ColC,Val PivotTable)

(a)

(b)

(c)

Figure 3.1: Examples of Tier 1 (a), Tier 2 (b), and Tier 3 (c) foreign keys

93

probability of index usage. The worst-case scenario is that each of the tables T , B1, . . .,

Bn must be scanned once. The best-case scenario is that there is an index on T.~X; if

there are already indexes on all of the primary keys, which is highly probable, then the

triggers may be able to operate using only index scans.

Since a single Tier 2 foreign key comprises a sequence of statements rather than a

single statement, a Tier 2 foreign key can be constructed one statement at a time. For

instance, one can issue the following statement:

FK(~F|T.~X → ~G1|B1. ~Y1)

One can subsequently issue the following statement:

FK(~F|T.~X → ~G2|B2. ~Y2)

The result effectively relaxes the foreign key, allowing values in T.~X to be found in

either table B1 or table B2 rather than simply table B1.

In addition to incrementally adding new foreign key statements, one can also incre-

mentally drop portions of a Tier 2 foreign key. The drop foreign key statement has the

following syntax:

DFK(~F|T.~X → ~G1|B1. ~Y1)

In our running example, after this statement is issued, the values in T.~X must be

found in table B2, since values are no longer allowed to be found in B1. The parameters

to the alter and drop foreign key statements have identical syntax as the create foreign

key statement.

Whenever a foreign key is updated by a DFK statement, the source table of the for-

eign key must be checked to see if any rows now violate the new foreign key definition.

94

Any rows in table T that satisfy conditions ~F but no longer satisfy the foreign key are

transformed using the same semantics as the Drop Element statement mentioned in Sec-

tion 3.1.2: If any of the columns in T.~X (the foreign key columns of the source table)

are key columns, the violating row is dropped; otherwise, the values of those columns

are set to null.

Similar to referential integrity constraint checking in relational database systems,

referential integrity checks occur at the end of the enclosing transaction. One can is-

sue several foreign key fragments in the same transaction and not have referential in-

tegrity enforced until all statements have been processed. Therefore, one can simulate

the action of “updating” a foreign key by adding and deleting fragments in the same

transaction.

Tier 3 Foreign Keys

A Tier 3 foreign key is a generic containment constraint between two queries. One can

express a Tier 3 foreign key as follows:

Check(Q1 ⊆ Q2)

where Q1 and Q2 are any queries expressed in extended relational algebra. A Tier 3

foreign key has clear semantics: At all points in time, the results of query Q1 must be

a subset of the results of query Q2. Figure 3.1(c) gives an example of a Tier 3 foreign

key, where the target of the foreign key is a pivoted table. The foreign key in the figure

cannot be neatly drawn as arrows in the diagram as could be done with the other tiers of

foreign keys, since the target data of the foreign key exists only in schema.

Just like Tier 2 foreign keys, one can specify multiple Tier 3 foreign key statements.

95

If multiple Tier 3 foreign keys share the same head query, they have disjunctive seman-

tics. In other words, the statement sequence:

Check(Q1 ⊆ Q2),Check(Q1 ⊆ Q3),Check(Q1 ⊆ Q4)

is defined to be equivalent to the statement:

Check(Q1 ⊆ (Q2 ∪ Q3 ∪ Q4))

Also similar to a Tier 2 foreign key, one can incrementally alter parts of the sequence

that defines the key. The statement that drops a Tier 3 component is:

DCheck(Q1 ⊆ Q2)

Any Tier 2 foreign key can be expressed as a Tier 3 foreign key. The statement:

FK(~F|T.~X → ~G|B.~Y)

is equivalent to the statement:

Check(π~Xσ ~FT ⊆ π~Yσ ~GB)

Any Tier 3 foreign key that can be written as an expression in the form above can

also be expressed as a Tier 2 foreign key. If Tier 2 and Tier 3 foreign keys are defined

on the same set of source columns, the composition of the keys is treated as a Tier 3 key.

For example, if one issues the following statement sequence:

FK(~F|T.~X → ~G|B.~Y),Check(π~Xσ ~FT ⊆ π~ZQ)

the result is equivalent to the statement:

Check(π~Xσ ~FT ⊆ ((π~Yσ ~GB) ∪ π~ZQ))

96

Tier 3 foreign keys differ from Tier 2 foreign keys in two additional ways. First,

while Tier 3 foreign keys can be implemented as triggers in relational database systems,

Tier 3 foreign keys are far less efficient than Tier 2 foreign keys. Whereas Tier 2 foreign

keys operate as single table scans at worst or index scans at best, Tier 3 keys may involve

arbitrarily complicated relational algebra queries and may incur a high cost in terms of

disk access and frequency of trigger firing. For instance, the insert trigger for a Tier 3

foreign key must fire each time a tuple is inserted into any of the tables referenced by

the foreign key’s head query.

The final difference between Tier 3 and Tier 2 keys is the effect of incremental mod-

ifications on data instances. Like Tier 2 foreign keys, if a fragment of a Tier 3 foreign

key definition is dropped, the applicable source instance for the foreign key must be

checked to make sure it is still valid. However, since the source of a Tier 3 foreign key

Q1 is potentially an arbitrary query, it may not be possible to identify the specific rows

of the source instance that cause the foreign key violation if one occurs. Therefore, if

query Q1 is of the same form as the source of a Tier 2 foreign key (π ~Cσ ~FT for columns

~C, equality conditions ~F, and table T), then violating rows are updated in the same way

as a Tier 2 foreign key. Otherwise, the system issues an error that referential integrity

is violated and aborts the statement, a similar severity of error as an ordinary referential

integrity violation.

DDL Statements and Their Effect on Foreign Key Fragments

Whenever DDL statements alter schema elements, the foreign key fragments that refer-

ence the altered elements must in turn be altered. For instance, for any schema renaming

97

statement (table, column, or element), all references to the renamed object in the foreign

key fragments defined over the schema must be updated. For instance, if the fragment

FK(~F|S .~X → ~G|B.~Y) is defined on a schema, and the statement RT (S , S ′) is executed

on the database to rename the table S to S ′, the fragment must change to be defined as

FK(~F|S ′.~X → ~G|B.~Y). We can accomplish this effect by dropping the old fragment and

adding the new one within the same transaction.

Dropping schema elements has a more profound impact on foreign key fragments.

Foreign key fragments must be altered so that all references to the dropped elements are

also eliminated, even if that means the fragment itself is dropped. For instance, consider

the Drop Table statement DT (T). Any Tier 2 foreign key fragment FK(~F|S .~X → ~G|B.~Y)

will be dropped if the table S = T or if the table B = T . For a Tier 3 foreign key fragment

Check(Q1 ⊆ Q2), all references to the table T in Q1 and Q2 are replaced with a constant

representing an empty table; if either Q1 or Q2 becomes equivalent to N (the query that

always returns an empty table) as determined by using relational equivalences, we drop

the fragment.

The Drop Column DDL statement removes all references to the column from foreign

key fragments. There are three cases to consider for the statement DC(T,C):

• For each Tier 2 foreign key fragment FK(~F|S .~X → ~G|B.~Y) where S = T and

~X = {C}, drop the fragment, as all of the columns of the foreign key have been

dropped. We need not check to see if the dropped column is in the target of the

fragment, since key columns cannot be dropped in our framework.

• For each Tier 2 foreign key fragment FK(~F|S .~X → ~G|B.~Y) where S = T and

C ∈ ~X, |~X| > 1, if C′ is the name of column that C references in B.~Y , replace the

98

fragment with FK(~F|S . ~X′ → ~G|B. ~Y ′), where ~X′ = ~X − {C} and ~Y ′ = ~Y − {C′}.

In essence, remove the column from both the source and target of the fragment.

Again, we need not check the target of the fragment.

• For each Tier 3 foreign key fragment Check(Q1 ⊆ Q2), replace all instances of

table T in both Q1 and Q2 with π ~CT , where ~C is all of the columns of T after

removing C. If either query becomes invalid because of an operator referencing

an invalid column or any subexpression of the query having a result with zero

columns (determined using relational equivalences), we throw an error, alerting

the system that a Tier 3 constraint definition would be invalid if the statement

commits and identifying the offending fragment. If, instead, either Q1 or Q2 be-

comes equivalent toN as a result, we drop the fragment. If queries Q1 and Q2 are

no longer union-compatible, for each column that was eliminated from Q1, intro-

duce a projection operator to Q2 to remove the corresponding column by position

in the query result, and vice versa.

The Drop Element DDL statement eliminates any equality references to that ele-

ment in foreign key fragments. There are two cases to be considered for the statement

DE(T,C, E):

• For each Tier 2 foreign key fragment FK(~F|S .~X → ~G|B.~Y), if S = T and there

exists an equality condition < C, E >∈ ~F, or B = T and there exists an equality

condition < C, E >∈ ~G, we drop the fragment.

• For each Tier 3 foreign key fragment Check(Q1 ⊆ Q2), replace all instances of

table T in both Q1 and Q2 with σC,ET . If either query becomes equivalent toN as

99

a result (again, determined using relational equivalences), we drop the fragment.

We assume that some entity will interpret DDL statements when they arrive at the

database and automatically adjust the set of foreign key fragments accordingly. Such an

entity may be either the database management system, or some interface above it such

as a provider, introduced in Section 3.2.4.

3.1.4 Additional Statements

Our model supports an error statement Error(Q). The error statement throws an error

and aborts the current transaction if the query Q returns any rows; in other words, the

query Q searches for “bad” rows or rows that may cause some sort of conflict with

statements that may occur after the error check.

Also, our model supports a looping construct, denoted as Loop(t,Q, ~S). The seman-

tics of this statement is similar to a cursor: t is declared as a row variable that loops

through the rows of the result of Q; for each value t takes on, the sequence of statements

~S execute. Statements in ~S may be any of the statements shown in Table 3.1, an error

statement, or another loop construct, and may use the variable t as a row constant.

3.2 THE CHANNEL

In this section, we introduce the channel, the artifact in Guava that handles data and

schema transformation between the natural schema and the physical schema.

Definition: A channel transformation is a mapping between two database schemas

D and D′ in our extended relational model, associated with a collection of translations

100

that convert statements posed against D into statements against D′. The statement trans-

lation algorithms for a transformation T must be information preserving, meaning that

they must satisfy the following properties:

• The statements supported by the GDM are closed under T , meaning that when

T translates a GDM statement, the resulting statements are also in the GDM, as

described in the previous section.

• If one considers fully-materialized valid instances of both database D and database

D′, where D is materialized by issuing the query “SELECT * FROM A” through

the channel for each table A in the natural schema, then when translating the query

Q against D into a query Q′ against D′, the result of executing Q′ against D′ will

always be equal to the result of executing Q against D (Q(D) = Q′(D′)).

• For any table A in the original schema, if one pushes the query “SELECT * FROM

A” through the channel to get result R, and then pushes a DML or DDL update

through the channel, and finally pushes the same query through the channel to get

result R′, the differences between R and R′ are exactly those that correspond to the

update (as if the update had been executed against the query result directly).

This last condition is a round-tripping condition; Figure 3.2(a) shows its commu-

tativity diagram for transformation T , table A, single-table query QA = “SELECT *

FROM A”, and DML or DDL statement ∆. Figure 3.2(b) describes the effect of the

round-trip condition in informal terms. The condition ensures that no updates to the

data are ever lost by the channel, and that there are no unforseen side effects. Note that

the condition does not specify that the update pushed through the channel is to table A;

101

 (a)

 (b)

A

A
T(QA)

T(instin(A))

∆(A)

C(A)

C(A)
)

C(∆(A))

Figure 3.2: The commuting diagram for the information preservation properties of trans-

formation T operating on table A (a), and an example of the channel transformation

round-tripping condition (b)

102

any update to table B, A , B, will have no effect on the results of the single-table query

A (unless effects are expected as a result of a cascading delete). In this way, the infor-

mation preservation property is much like the concept of constant complement in view

update literature [5]; a relational view V satisfies the constant complement property if,

whenever the view is updated, any other view V ′ whose data is mutually-exclusive with

V will remain unchanged. In Chapter 5, we formalize these properties and prove that

the channel transformations introduced in this chapter are information preserving.

A channel is a sequence of channel transformations [T1,T2,T3, ...] with composition

semantics. Because channel transformations satisfy the information-preservation prop-

erties, any channel with multiple transformations will also be information preserving by

induction. The order of transformations is significant, given the sequential operation of

transformations on statements, so channels [T1,T2] and [T2,T1] are not necessarily the

same, though they may have identical results on identical input. We define a notion of

equivalence on channels in Section 3.3.2.

Figure 3.2(a) shows an example of a channel with six transformations. Each of the

transformations in the channel is parametrized to operate on specific schema elements,

e.g., tables and columns (the parameters are not shown in the figure, but must be spec-

ified for each instance of a transformation). For instance, the first Horizontal Merge

transformation in the channel in the figure operates on tables T1, T2, and T3, while the

second Horizontal Merge operates on T4 and T5. The database developer specifies these

parameters when designing a channel. Though a channel is a sequence of operators,

one may think about a channel in a more graphical form based on its parametrization.

Figure 3.2(b) is the same channel as the one shown in Figure 3.2(a) shown in a more

103

user-friendly way that is similar to a workflow display seen in graphical ETL tools, such

as SQL Server Integration Services [52]. It is also true that Figure 3.2(a) is a serialized

representation of Figure 3.2(b) (one of several possible serializations).

One way to define and use channel transformations is to take a database instance

as input, transform it, and produce a database instance as output, which would be a

similar workflow to ETL. Instead, we use the channel dynamically. At run time, the

developer, query writer, or application is able to use the natural schema as if it were the

actual database instance. The channel then translates each query, insert, update, delete,

or schema modification that addresses the natural schema into a corresponding set of

operations that address the physical database (Figure 3.4). Thus, the channel supports

the natural schema as a virtual database, just like a traditional view is a virtual table

defined over the existing tables in the physical database.

A channel is, in a way, a view defined backwards. One starts with the schema that

the application or the user sees (e.g., the natural schema in Guava), and applies trans-

formations one at a time until the desired physical schema is achieved. The physical

schema may belong to a pre-existing database instance, or the physical database might

not exist yet, in which case the channel would create a default instance with the appro-

priate schema. Specifying channel transformations that will be applied to the natural

schema in order is not the only way to build channels, but it explains the naming con-

ventions of the transformations. For instance, Horizontal Merge describes a horizontal

merging of tables from the natural schema into a table in the physical schema, not the

other way around.

104

 (a)

 (b)

T1

T2

T3

T4

T5

T6

T7

T8

HMerge

HMerge

VPartition

Unpivot

Unpivot

Apply

Natural

DB

Physical

DB

HMerge

({T4, T5},

T7)

VPartition

(T7,

{C,D,E}, T8)

Apply

(T7, {C},

{C}, f)

HMerge

({T1, T2,

T3}, T6)

Unpivot

(T6, A, V)

Unpivot

(T8, B, R)

Figure 3.3: An example of a channel with six transformations (a), and a graphical rep-

resentation of the same channel (b)

Natural

DB

Physical

DB

HMerge

({T4, T5},

T7)

VPartition

(T7,

{C,D,E}, T8)

Apply

(T7, {C},

{C}, f)

HMerge

({T1, T2,

T3}, T6)

Unpivot

(T6, A, V)

Unpivot

(T8, B, R)

Relational

Algebra,

Insert,

Update,

Delete, DDL,

Loop, Error,

FK, Check

Relational

Algebra,

Insert,

Update,

Delete, DDL,

Loop, Error,

FK, Check

Figure 3.4: The same channel as in Figure 3.3(a), but when the natural schema is a

virtual instance (i.e., a view over the physical database)

105

3.2.1 Seven Channel Transformations

Our language of seven transformations includes pivots, unpivots, function application,

and the partitioning and merging operations typically found in physical database design

[1] and translations of object class hierarchies to relations [59]. Our seven physical de-

sign transformations are listed in Table 3.2, with a short description of each. Informally,

we can describe each transformation in terms of how it acts on a concrete instance of

the transformation’s input schema, as follows:

• Apply(Ta, ~Cin, ~Cout, f), which applies an invertible function f to each of the rows

in the table Ta. The function input is taken from columns ~Cin, and output is placed

in columns ~Cout. We show an example of the Apply transformation applied to a

concrete instance in Figure 3.5(a).

• VPartition(Ta, ~Cs,Tn), which distributes the columns of table Ta into two tables,

Ta and Tn. The columns in ~Cs are the ones that stay in Ta. We show an example

of the VPartition transformation applied to a concrete instance in Figure 3.5(b),

reading from left to right.

• V Merge(Ta,Tn), which vertically merges two tables Ta and Tn related by a one-

to-one foreign key. We show an example of the VMerge transformation applied

to a concrete instance in Figure 3.5(b), reading from right to left (VMerge and

VPartition are inverses of one another on our sample instance).

• HPartition(Ta,Cin), which horizontally partitions the table Ta based on the valued

in column Cin. We show an example of the HPartition transformation applied to a

concrete instance in Figure 3.6(a), reading from left to right.

106

Ta
bl

e
3.

2:
Se

ve
n

ch
an

ne
lt

ra
ns

fo
rm

at
io

ns
,t

he
ir

de
sc

ri
pt

io
ns

,a
nd

th
ei

re
ff

ec
to

n
re

la
tio

na
lq

ue
ri

es
.

Tr
an

sf
or

m
at

io
n

D
es

cr
ip

tio
n

of
Tr

an
sf

or
m

at
io

n
E

ff
ec

to
n

Q
ue

ry
V

Pa
rt

iti
on

(T
a,
~ C
s,

T
n)

V
er

tic
al

ly
pa

rt
iti

on
a

ta
bl

e
T a

in
to

tw
o

ta
bl

es
T

a
an

d
T n

.L
ea

ve
co

lu
m

ns
~ C
s

in
T

a,
pl

ac
e

al
lo

th
er

s
in

T n
.C

op
y

ke
y

co
lu

m
ns

of
T

in
to

bo
th

T a
an

d
T

n.
T

a
=
⇒

T a
AY

T
n

V
M

er
ge

(T
a,

T n
)

V
er

tic
al

ly
jo

in
tw

o
ta

bl
es

T
a

an
d

T
n

al
on

g
a

fo
re

ig
n

ke
y.

T
he

fo
re

ig
n

ke
y

m
us

tb
e

fr
om

T n
to

T
a

on
lik

e-
na

m
ed

co
lu

m
ns

an
d

m
us

tb
e

un
co

nd
iti

on
al

,
bu

tm
ay

be
pa

rt
ia

l.
T

he
fo

re
ig

n
ke

y
co

lu
m

ns
of

T n
m

us
tb

e
ex

ac
tly

th
e

ke
y

co
lu

m
ns

of
T

n.
T

he
re

su
lti

ng
ta

bl
e

is
T

a.

T
a

=
⇒

π
C

ol
s(

T a
)T

a

T
n

=
⇒

π
C

ol
s(

T
n
)σ

N
N

T
a

(N
N

is
th

e
co

nd
iti

on
th

at
at

le
as

to
ne

va
lu

e
in

(C
ol

s(
T

n)
−K

ey
s(

T
n)

)i
s

no
n-

nu
ll)

O
pt

im
iz

ed
:T

a
AY

T
n

=
⇒

T
a

O
pt

im
iz

ed
:T

a
Z

T
n

=
⇒

σ
(C

ol
s(

T
n
)−

K
ey

s(
T

n
))
,

nu
ll
T

a

H
Pa

rt
iti

on
(T

a,
C

in
)

H
or

iz
on

ta
lly

pa
rt

iti
on

a
ta

bl
e

T
a

in
to

a
co

lle
ct

io
n

of
ta

bl
es

.T
he

de
st

in
at

io
n

of
ea

ch
ro

w
of

T a
is

de
te

rm
in

ed
by

its
C

in
va

lu
e

(C
in

is
a

pa
rt

of
th

e
ke

y)
.

T
a

=
⇒
∪ t
∈D

om
(C

in
)(

t×
{na

m
e(

t)
})

O
pt

im
iz

ed
:σ

C
in

=
T

T
a

=
⇒

T
×
{na

m
e(

T
)}

H
M

er
ge

(~ T
s,

T
a,

C
ou

t)
Ta

ke
th

e
ou

te
ru

ni
on

T
a

of
a

co
lle

ct
io

n
of

ta
bl

es
~ T
s,

an
d

re
co

rd
ea

ch
ro

w
’s

ta
bl

e
of

or
ig

in
in

co
lu

m
n

C
ou

t.
Ta

bl
es

in
~ T
s

m
us

th
av

e
un

io
n-

co
m

pa
tib

le
ke

y
co

lu
m

ns
,a

nd
lik

e-
na

m
ed

co
lu

m
ns

m
us

th
av

e
th

e
sa

m
e

do
m

ai
n.

T
(T
∈
~ T
s)

=
⇒

π
C

ol
s(

T
)σ

C
ou

t=
T

T a

A
pp

ly
(T

a,
~ C
in
,
~ C
ou

t,
f)

A
pp

ly
an

in
ve

rt
ib

le
fu

nc
tio

n
f

to
th

e
~ C
in

co
lu

m
ns

of
ea

ch
ro

w
of

ta
bl

e
T

a,
pl

ac
in

g
th

e
re

su
lt

in
th

e
co

lu
m

ns
~ C
ou

t
an

d
el

im
in

at
in

g
co

lu
m

ns
C

in
.
~ C
in

m
us

tb
e

no
n-

ke
y

at
tr

ib
ut

es
.

T
a

=
⇒

α
C

ou
t,

C
in
,f
−1

T a
O

pt
im

iz
ed

:π
~ C
sT

a(
~ C
s
∩
~ C
in

=
∅

)
=
⇒

π
~ C
sT

a

Pi
vo

t
(T

a,
A
,V

)
Pi

vo
ta

ta
bl

e
T

a
ou

to
fK

ey
-A

ttr
ib

ut
e-

V
al

ue
tr

ip
le

s,
re

su
lti

ng
in

on
e

ro
w

pe
r

ke
y

va
lu

e.
Ta

ke
co

lu
m

n
na

m
es

fr
om

co
lu

m
n

A
an

d
va

lu
es

fr
om

co
lu

m
n

V
.

T
a

=
⇒
↙� D

om
(A

),
A
,V

T a

U
np

iv
ot

(T
a,

A
,V

)
Tr

an
sl

at
e

ta
bl

e
T a

in
to

K
ey

-A
ttr

ib
ut

e-
V

al
ue

fo
rm

,w
ith

at
tr

ib
ut

e
co

lu
m

n
A

an
d

va
lu

e
co

lu
m

n
V

.N
on

-k
ey

co
lu

m
ns

of
T a

m
us

th
av

e
th

e
sa

m
e

do
m

ai
n.

T
a

=
⇒
↗� C

ol
s(

T a
)−

K
ey

s(
T a

),
A
,V

T a

107

• HMerge(~T s,Ta,Cout), which horizontally merges the union-compatible tables in

the set ~T s into a new table Ta, adding a new column Cout that holds the name of

the table that each row came from. We show an example of the HMerge transfor-

mation applied to a concrete instance in Figure 3.6(a), reading from right to left

(HMerge and HPartition are inverses of one another on our sample instance).

• Unpivot(Ta, A,V), which transforms a table Ta from a standard one column per

attribute form into a key-attribute-value generic form, effectively moving column

names into data values in new column A. Data values are placed in column V . We

show an example of the Unpivot transformation applied to a concrete instance in

Figure 3.6(b), reading from left to right.

• Pivot(Ta, A,V), which transforms a table Ta that is in generic key-attribute-value

form into a form with one column per attribute. We show an example of the Pivot

transformation applied to a concrete instance in Figure 3.6(b), reading from right

to left (Unpivot and Pivot are inverses of one another on our sample instance).

Table 3.2 also describes how each transformation operates on queries as they are

passed through the channel. A query posed against the channel’s input schema is pushed

through the channel to produce an equivalent query against the output schema. Each

transformation translates a query in a similar fashion to view unfolding — the transfor-

mation looks for all references to tables in the query and translates them in-place as nec-

essary [29]. For instance, the transformation HPartition(Ta,Cin) looks for all instances

of table Ta in the query and replaces each with the expression ∪t∈Dom(Cin)(t × {name(t)}).

This expression rebuilds the original table T from the data in the output schema of the

108

transformation.

To simplify expressions and possibly save the DBMS’s query optimizer some effort,

each transformation also looks for common patterns in the relational algebra expres-

sions. For example, if HPartition(Ta,Cin) finds both a reference to Ta and the operator

σCin=T above it in the query tree, it will apply an equivalence on the fly and produce

T × {name(T)} (where T is the same value found in the σ operator). Table 3.2 shows

how each transformation translates references to tables in a query. The table also shows

several algebraic equivalences by showing the patterns the transformations look for, and

what each pattern is replaced with when found.

Tables 3.3 through 3.9 fully define the action of each transformation on each sup-

ported statement (how each transformation works on queries was described in Table

3.2). The tables use the following notation and terminology:

• Any function in boldface returns a list

• T refers to the current transaction

• Cols(T) refers to the set of columns of table T ; if T exists both before and after

the transformation, this expression refers to the “before” state

• Keys(T) refers to the key columns of table T

• Domains(T) refers to the domains of the columns of table T

• Dom(C) refers to the domain of the column with name C

• Inputdomains(f) and Outputdomains(f) refer to the set of domains and co-

domains respectively of the function f

109

Patient:

ID Name HeightInch Country

1 Bob 72.0 USA

2 Ted 63.0 Canada

3 Sally 66.0 USA

Patient:

ID Name HeightInch Country

1 Bob 72.0 USA

2 Ted 63.0 Canada

3 Sally NULL NULL

Patient:

ID Name HeightFeet Country

1 Bob 6.0 USA

2 Ted 5.25 Canada

3 Sally 5.5 USA

 Patient:

ID Name

1 Bob

2 Ted

3 Sally

 PatientDetails:

ID HeightInch Country

1 72.0 USA

2 63.0 Canada

FK

VPartition (Patient, {Name}, PatientDetails)

VMerge (Patient, PatientDetails)

(a)

(b)

Apply (Patient, {HeightInch}, {HeightFeet}, f(x) = x/12)

Figure 3.5: An example of the Apply (a), Vertical Partition (b), and Vertical Merge (b,

in the reverse direction) transformations acting on concrete instances

110

Patient:

ID Country Name HeightInch

1 USA Bob 72.0

2 Canada Ted 63.0

Patient:

ID Name City Country

1 Bob Boston USA

2 Ted NULL Canada

 USA:

ID Name HeightFeet

1 Bob 6.0

 Canada:

ID Name HeightFeet

2 Ted 5.25

 Patient:

ID Attr Value

1 Name Bob

1 City Boston

1 Country USA

2 Name Ted

2 Country Canada

Patient:

ID Attr Value

1 Name Bob

1 City Boston

1 Country USA

2 Name Ted

2 Country Canada

2 City Toronto

3 Name Sally

Patient:

ID Name City Country

1 Bob Boston USA

2 Ted Toronto Canada

3 Sally NULL NULL

Unpivot (Patient, Attr, Value)

Pivot (Patient, Attr, Value)

HPartition (Patient, Country)

HMerge ({USA, Canada}, Patient, Country)

(a)

(b)

(c)

Figure 3.6: An example of the Horizontal Partition and Merge transformations (a), the

Pivot and Unpivot transformations (b) acting on concrete instances, and an example of

pushing inserts through a Pivot (c)

111

• < c, v > refers to a condition for update or delete: that the value in the column with

name c equals value v (a shorthand used occasionally in the tables is to represent

multiple conditions at once by having multiple columns in c and values in v, with

“AND” semantics)

• col(D) refers to the column name associated with domain D (we assume that each

domain is augmented with an idea of identity when associated with a column in a

table, in case multiple columns have identical domains, so that the col function is

well defined)

• name(e) represents the name of a column, table, or element

• AdjustForeignKeys(T,C,E), which represents the output of running Algorithm 3.1

(algorithm discussed and defined momentarily)

Not all supported statements appear in the tables that define the action of a transfor-

mation. If a statement S does not appear in a table for transformation T , there are four

possible explanations:

• T does not have any effect on statement S — in other words, S passes through

transformation T unaffected.

• S is a drop foreign-key statement DFK. These statements are not included be-

cause transformations operate on DFK statements in the identical fashion as FK

statements. If the output of a transformation definition includes a Check state-

ment, that statement is replaced with a DCheck statement.

112

• S is a Tier 3 foreign key statement Check(Q1 ⊆ Q2), a Tier 3 drop foreign key

statement DCheck(Q1 ⊆ Q2), an Error statement Error(Q), or a Loop statement

Loop(t,Q, ~S). The transformation simply operates in-place on the parameters of

each statement (e.g., Q1, Q2, Q, and ~S) because T already knows how to operate

on queries and statements.

This list of transformations is not complete in the sense that there are other possi-

ble transformations that are information preserving. Here is one example: consider the

rotate transformation, which re-assigns the keys in a table. Specifically, the transforma-

tion considers the rows in a table as an ordered list, ordered by the key of the table. The

transformation takes the k’th row of the input, for all possible k, and produces a row

in the output with the key of row k and the data of row k + 1 modulo the row count.

In other words, the rotate transformation rotates the keys of a table by one place. One

can define the action of the rotate transformation on each of the supported statements

unambiguously. The transformation is also closed under the supported statements, and

is information preserving. However, this transformation is rarely (if ever) used in prac-

tical software applications. We discuss the process a developer can use to create new,

application-specific channel transformations in Chapter 4.

Element-Level DDL Statements and Foreign Key Evolution

In Tables 3.5 and 3.8, the translation of Add Element statements includes the state-

ment AdjustForeignKeys(T,C,E). The responsibilities of AdjustForeignKeys(T,C,E) are

to re-transform the referential integrity constraints that are defined on the transforma-

tion’s input schema, determine if there has been a change to the constraints on the output

113

schema, and generate the appropriate statements (FK, DFK, Check, or DCheck) as nec-

essary. These foreign key adjustments are required whenever a channel transformation

translates an Add Element DDL statement into a column-level or table-level DDL state-

ment, because these transformations will also translate foreign key fragments in such

a way that the output fragments are dependent on the domain of an input column. For

the seven channel transformations defined in this chapter, Horizontal Partition and Pivot

are the only transformations with this property and thus the only transformations that

require this check.

For example, consider the channel transformation O = HPartition(Ta,Cin), input

schema Ta(id,Cin, A, B), and foreign key fragment F = FK(true|S . f k → true|Ta.id). If

the domain of column Cin is {X,Y}, then according to Table 3.5, the result of applying

O to F is two foreign key fragments FK(true|S . f k → true|X.id) and FK(true|S . f k →

true|Y.id) on the output schema. Note that the number of fragments in the output is

the same as the number of elements in the domain of Cin, supporting the intuition that

changing the number of elements in the domain will change the number of fragments in

the output.

If we subsequently add a new element Z to the domain of the input column Ta.Cin

using the statement AE(Ta,Cin,Z), we recognize that, if we were to push the same

foreign key fragment F through O again, the result would now be three fragments

in the output schema: FK(true|S . f k → true|X.id), FK(true|S . f k → true|Y.id), and

FK(true|S . f k → true|Z.id).

The net effect of the Add Element statement with respect to the foreign key frag-

ments in the output schema is to add a new fragment, Fout = FK(true|S . f k → true|Z.id),

114

which is the difference between the sets of generated foreign key fragments before and

after the Add Element has been processed. Even though fragment F did not change in

the input schema, the transformation O must add the new fragment Fout to the output as

part of the processing of AE(Ta,Cin,Z).

Algorithm 3.1: To evaluate AdjustForeignKeys(T,C,E)), for each Tier 1 or Tier 2

foreign key fragment F = FK(~F|S .~X → ~G|B.~Y) defined over the transformation’s input

schema:

• If S , T and B , T , ignore F and move on to the next fragment. (The transfor-

mation does not affect F .)

• If S = T and there exists some equality condition < C, v >∈ ~F, v , E, or if B = T

and there exists some equality condition < C, v >∈ ~G, v , E, ignore F and move

on to the next fragment. (The transformation may affect this fragment, but the

equality condition means that the fragment’s translation by the transformation is

unaffected by the addition of a new domain element.)

• Otherwise, re-translate F through the current channel transformation both pre-

and post-insertion of the new domain element. Compare the two outputs, and

create the appropriate foreign key fragment modification statements against the

output to account for the differences.

For each Tier 3 foreign key fragment F = Check(Q1 ⊆ Q2) defined over the the

transformation’s input schema:

• If neither query Q1 nor query Q2 contains a reference to table T , ignore F and

move on to the next fragment. (The transformation does not affect F .)

115

• If σC=EQ1 ≡ N or σC=EQ2 ≡ N (where N is the query whose result is always

empty), determined by using relational algebra equivalences, ignore the fragment

and move on to the next one. This case will most commonly happen if there is an-

other operator σC=E′ somewhere else in the query tree, E , E′. (The transforma-

tion may affect this fragment, but the fragment’s translation by the transformation

is unaffected by the addition of a new domain element.)

• Otherwise, re-translate F through the current channel transformation both pre-

and post-insertion of the new domain element. Compare the two outputs, and

create enough foreign key fragment modification statements against the output to

account for the differences. �

In the previous example, the statement Fout = FK(true|S . f k → true|Z.id) is the

difference between the set of fragments before the element translation and the set of

fragments afterward. Therefore, Fout is the result of running Algorithm 3.1 in this case.

In the remainder of this section, we explain the formalism of three of the cells in

Tables 3.3 through 3.9.

Example: Rename Column pushed through the HMerge transformation

Consider the Rename Column statement RC(T,Co,Cn), which renames the Co column

of table T to the new name Cn. The HMerge(~T s,Ta,Cout) transformation (Table 3.6)

assumes that if two tables in ~T s have columns with the same name, then those two

columns also have the same domain and will be merged into the same column in the

output table Ta. So, when a rename statement is passed through the HMerge, there are

two pieces of information to gather: whether any of the tables ~T s − T have a column

116

with the old name Co, and whether any tables in ~T s − T have a column with the new

name Cn. The answer to either question may be yes or no, so there are four cases to

consider.

Case 1: None of ~T s − {T } has columns called Co or Cn. In this case, simply rename

the column, since there are no other side effects.

Case 2: None of ~T s − {T } has a column called Co, but at least one other table in

~T s − T has a column called Cn. This situation means that there is already a column in

the output called Cn, so we cannot just rename the existing column. So, we move all of

the data from the old column Co to the new one with an update statement. Also, because

no other table has a column called Co, we can drop it from the result.

Case 3: None of ~T s − {T } has a column called Cn, but at least one other table in

~T s − T has a column called Co. We need to add a new column Cn to the output, since

one did not exist before. Then, move the data from Co to Cn for rows that came from T .

Do not move any data that comes from other tables. We also do not drop the old column

Co, since at least one table in the merge has active data in it.

Case 4: At least one table in ~T s − {T } has a column called Co, and at least one other

table in ~T s − T has a column called Cn. In this case, move the data in Co over to Cn for

those rows that came from T with an update statement and set the old values to null. We

do not need to add a new column (since it already existed), and we do not need to drop

a column afterward (since at least one other merged table uses it).

117

Example: Insert pushed through the Pivot transformation

In this section, we consider the insert statement processing of Table 3.8. Each row to be

inserted as part of an insert statement that is pushed through a pivot effectively consists

of an address to a field in the pivoted table, along with its new value. In other words,

the pre-pivoted row < K, A,V > that is inserted consists of a key value, an attribute

value, and a data value; the key value uniquely identifies a row in the pivoted table, and

the attribute value specifies the column in the pivoted table. The only difficulty is that

it is not known whether the row exists in the pivoted table yet or not; so, it is unclear

whether we need to update an existing row with a new value or create a new row. So, we

separate the new rows into two parts: those that correspond to existing rows and those

that do not. We use a join against the existing data in the database to find the inserted

rows that match existing rows in the pivoted output table, and an antisemijoin to find the

inserted rows that correspond to pivoted rows that do not yet exist. Figure 3.6(c) shows

an example of pushing inserts that correspond to both an existing row and a new row

through a Pivot transformation.

For the inserted rows that correspond to pivoted rows that already exist, we turn the

insert statement into a sequence of updates. Each inserted row < K, A,V > becomes

an update statement: update the attribute A in the existing row corresponding to key

value K to the new value V . We use a Loop statement to perform the iteration through

each newly inserted row. However, there is a subtle problem: Because the inserted rows

become updates, we must check for primary key violations manually, as evidenced by

the following example.

Consider adding a new row to the table T (K, A,V) with data (1,C, x). If this table

118

were stored in a physical database, there would be a primary key enforced on columns K

and A; so, if row (1,C, y) already existed in the table, the DBMS would throw an error.

For all transformations other than Pivot, there is no problem translating this insert

statement. Consider the case where table T is subject to an HSplit transformation using

column A as the splitting column. If we add (1,C, x) to the pre-channel image of T , the

channel will process the tuple and try to add (1, x) to the post-channel image of table

C. If (1,C, y) already existed in table T in the pre-image, (1, y) already exists in the

post-channel image of C, and the primary key violation will still be thrown. For all

operators except Pivot, we can safely rely on the existing primary key enforcement on

the post-channel image to enforce the primary key semantics of the natural schema.

Now consider the case where table T (K, A,V), rather than being pushed through an

HSplit, is transformed by a Pivot, using column A as the attribute column and V as the

value column. The existing row (1,C, y) corresponds to a row in the pivoted table with

key 1 and whose C value is y. If we try to insert (1,C, x) into the pre-pivot image, x , y,

the post-pivot equivalent is to update the row with key value 1 and set its C value to x.

No error is thrown. However, the primary key semantics of the natural schema would

not be enforced. Therefore, we add an error statement to the translation of inserts. The

error check tests to see if there are any values in common between the new rows and the

existing rows in the pivot table, and if so, returns an error.

For the inserted rows that do not yet exist, we simply take that set of rows, pivot

them, and insert them into the table.

119

Example: Add Element pushed through the Unpivot transformation

The Unpivot transformation (Table 3.9) requires that all of the non-key columns be

union-compatible, i.e., that they have the same domain (so that their values may be

stored in the same column as a result of the Unpivot). If an Add Element statement

is issued to extend the domain of one of the non-key columns, this would cause union

compatibility to fail and throw an error. However, there is one situation in which there

does not need to be an error thrown. If, within the same transaction T there are Add

Element statements for all of the other non-key columns, then union compatibility is

maintained; a single Add Element statement is placed in the output to change the domain

of the single, combined value column.

3.2.2 Transactions and Transactional Semantics

Statements pass through the channel as part of a transaction.

Definition: A transaction in Guava is a sequence {s0, s1, . . . , sk} where each si is one

of the following:

• A query expressed in extended relational algebra

• One of the statements shown in Table 3.1 with its parameters filled in

• One of the foreign key statements (FK, DFK, Check, DCheck), introduced in

Section 3.1.3

120

Table 3.3: Defining the action of VPartition. Statements that do not meet any condition
pass through unaffected (remains in the transaction).

Statement VPartition (Ta, ~Cs,Tn)
Insert
I(T, ~C,Q)

T = Ta =⇒ (~C ∩ ~Cs , ∅)→ I(Ta, (Keys(Ta) ∪ ~Cs) ∩ ~C, π(Keys(Ta)∪ ~Cs)∩ ~C Q),
(~C ∩ (Cols(Ta) − (Keys(Ta ∪ ~Cs)))) , ∅)→ I(Tn, ~C − ~Cs, π ~C− ~CsQ)

Update
U(T, ~F, ~C,Q)

T = Ta =⇒ U(Ta, ~F, ~C ∩ ~Cs, π ~C∩ ~CsQ),
I(Tn,Keys(Ta), πKeys(Ta)σ ~FTa − πKeys(Ta)Tn), U(Tn, ~F, ~C − ~Cs, π ~C− ~CsQ)

Delete
D(T, ~F)

T = Ta =⇒ D(Tn, ~F),D(Ta, ~F)

Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ AT (Ta, ~C ∩ (~Cs ∪ ~K), {d ∈ ~D|col(d) ∈ ~Cs ∪ ~K}, ~K),
AT (Tn, (~C − ~Cs) ∪ ~K, {d ∈ ~D|col(d) ∈ ~C − ~Cs}, ~K),FK(true|Tn. ~K → true|Ta. ~K)

Rename Table
RT (Told,Tnew)

Unaffected

Drop Table
DT (T)

T = Ta =⇒ DT (Ta), DT (Tn)

Add Column
AC(T,C,D)

T = Ta ∧C < ~Cs =⇒ AC(Tn,C,D)

Rename Column
RC(T,Co,Cn)

T = Ta ∧Co < ~Cs =⇒ RC(Tn,Co,Cn)

Drop Column
DC(T,C)

T = Ta ∧C < ~Cs =⇒ DC(Tn,C)

Add Element
AE(T,C, E)

T = Ta ∧C ∈ Keys(Ta) =⇒ AE(Ta,C, E), AE(Tn,C, E)
T = Ta ∧C < (~Cs ∪Keys(Ta)) =⇒ AE(Tn,C, E)

Rename Element
RE(T,C, Eo, En)

T = Ta ∧C ∈ Keys(Ta) =⇒ RE(Ta,C, Eo, En), RE(Tn,C, Eo, En)
T = Ta ∧C < (~Cs ∪Keys(Ta)) =⇒ RE(Tn,C, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∧C ∈ Keys(Ta) =⇒ DE(Ta,C, E), DE(Tn,C, E)
T = Ta ∧C < (~Cs ∪Keys(Ta)) =⇒ DE(Tn,C, E)

Foreign Key
FK(~F|T.~X →
~G|B.~Y)

T = Ta ∧ ~X ⊆ (Cols(Ta) − (~Cs ∪Keys(Ta))) =⇒ FK(~F|Tn.~X → ~G|B.~Y)
T = Ta ∧ ~X ∩ ~Cs , ∅ ∧ ~X ∩ (Cols(Ta) − (~Cs ∪Keys(Ta))) , ∅ =⇒
Check(π~Xσ ~F(Ta AY Tn), π~Yσ ~GB)

121

Table 3.4: Defining the action of VMerge. Statements that do not meet any condition
pass through unaffected (remain in the transaction).

Statement VMerge (Ta,Tn)
Insert
I(T, ~C,Q)

T = Tn =⇒ Loop(t,Q,U(Ta, < Keys(Tn), πKeys(Tn)t >,
~C −Keys(Tn), π ~C−Keys(Tn)t))

Update
U(T, ~F, ~C,Q)

T = Ta ∨ T = Tn =⇒ U(Ta, ~F, ~C,Q)

Delete
D(T, ~F)

T = Tn =⇒ U(Ta, ~F,Cols(Tn) −Keys(Tn),∀c∈Cols(Tn)−Keys(Tn)null)

Add Table
AT (T, ~C, ~D, ~K)

T = Tn ∧ ∃FK(true|Tn.~X→true|Ta.~X)∈T ~X = Keys(Tn) =⇒
∀c∈ ~C−~X AC(Ta, c,Dom(c)), Drop this FK

Rename Table
RT (Told,Tnew)

T = Tn =⇒ Drop statement

Drop Table
DT (T)

T = Tn =⇒ ∀c∈(Cols(Tn)−Keys(Tn))DC(Ta, c)

Add Column
AC(T,C,D)

T = Ta ∨ T = Tn =⇒ AC(Ta,C,D)

Rename Column
RC(T,Co,Cn)

T = Ta ∨ T = Tn =⇒ RC(Ta,Co,Cn)

Drop Column
DC(T,C)

T = Ta ∨ T = Tn =⇒ DC(Ta,C)

Add Element
AE(T,C, E)

T = Ta ∨ T = Tn =⇒ AE(Ta,C, E)

Rename Element
RE(T,C, Eo, En)

T = Ta ∨ T = Tn =⇒ RE(Ta,C, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∨ T = Tn =⇒ DE(Ta,C, E)

Foreign Key
FK(~F|T.~X →
~G|B.~Y)

T = Tn ∧ ~X ∩Keys(Ta) = ∅ =⇒ FK(~F|Ta.~X → ~G|B.~Y)
T = Tn ∧ ~X ∩Keys(Ta) , ∅ =⇒ Check(π~Xσ ~F∧NT, π~Yσ ~GB)
B = Tn ∧ ∀<c,v>∈ ~Gc ∈ Keys(Ta) =⇒ FK(~F|T.~X → ~G|Ta.~Y)
B = Tn ∧ ∃<c,v>∈ ~Gc < Keys(Ta) =⇒ Check(π~Xσ ~FT, π~Yσ ~G∧N B)
(N is the condition that all non-key columns in Tn are not null)

122

Table 3.5: Defining the action of HPartition. Statements that do not meet any condition
pass through unaffected.

Statement HPartition (Ta,Cin)
Insert I(T, ~C,Q) T = Ta =⇒ ∀t∈Dom(Cin)I(t, ~C − {Cin}, π ~C−{Cin}σCin=tQ)
Update
U(T, ~F, ~C,Q)

T = Ta ∧ ∃<c,v>∈ ~Fc = Cin =⇒ U(v, ~F − {< c, v >}, ~C,Q)
T = Ta ∧ @<c,v>∈ ~Fc = Cin =⇒ ∀t∈Dom(Cin)U(t, ~F, ~C,Q)

Delete
D(T, ~F)

T = Ta ∧ ∃<c,v>∈ ~Fc = Cin =⇒ D(v, ~F − {< c, v >})
T = Ta ∧ @<c,v>∈ ~Fc = Cin =⇒ ∀t∈Dom(Cin)D(t, ~F)

Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ ∀c∈Dom(Cin)AT (c, ~C − {Cin}, ~D − {Dom(Cin)}, ~K − {Cin})

Rename Table Drop Statement
Drop Table DT (T) T = Ta =⇒ ∀t∈Dom(Cin)DT (t)
Add Column
AC(T,C,D)

T = Ta =⇒ ∀t∈Dom(Cin)AC(t,C,D)

Rename Column
RC(T,Co,Cn)

T = Ta =⇒ ∀t∈Dom(Cin)RC(t,Co,Cn)

Drop Column
DC(T,C)

T = Ta =⇒ ∀t∈Dom(Cin)DC(t,C)

Add Element
AE(T,C, E)

T = Ta ∧C = Cin =⇒ AT (E,Cols(Ta) − {Cin},Domains(Ta) − {Dom(Cin)},
Keys(Ta) − {Cin}),AdjustForeignKeys(T,C,E)
T = Ta ∧C , Cin =⇒ ∀t∈Dom(Cin)AE(t,C, E)

Rename Element
RE(T,C, Eo, En)

T = Ta ∧C = Cin =⇒ RT (Eo, En)
T = Ta ∧C , Cin =⇒ ∀t∈Dom(Cin)RE(t,C, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∧C = Cin =⇒ DT (E)
T = Ta ∧C , Cin =⇒ ∀t∈Dom(Cin)DE(t,C, E)

Foreign Key
FK(~F|T.~X →
~G|B.~Y)

T = Ta ∧Cin ∈ ~X =⇒ ∀t∈ ~Dom(Cin)Check(π~Xσ ~F(t × {name(t)}), π~Yσ ~GB)
T = Ta ∧ ∃<c,v>∈ ~Fc = Cin ∧Cin < ~X =⇒ FK(~F − {< Cin, v >}|v.~X → ~G|B.~Y)
T = Ta ∧ @<c,v>∈ ~Fc = Cin ∧Cin < ~X =⇒ ∀t∈Dom(Cin)FK(~F|t.~X → ~G|B.~Y)
B = Ta ∧Cin ∈ ~Y =⇒ ∀t∈ ~Dom(Cin)Check(π~Xσ ~FT, π~Yσ ~G(t × {name(t)}))
B = Ta ∧ ∃<c,v>∈ ~Gc = Cin ∧Cin < ~Y =⇒ FK(~F|T.~X → ~G − {< Cin, v >}|v.~Y)
B = Ta ∧ @<c,v>∈ ~Gc = Cin ∧Cin < ~Y) =⇒ ∀t∈Dom(Cin)FK(~F|T.~X → ~G|t.~Y)

123

Table 3.6: Defining the action of HMerge. Statements that do not meet any condition
pass through unaffected.

Statement HMerge (~T s,Ta,Cout)
Insert I(T, ~C,Q) T ∈ ~T s =⇒ I(Ta, ~C ∪ {Cout},Q × {name(T)})
Update U(T, ~F, ~C,Q) T ∈ ~T s =⇒ U(Ta, ~F ∪ {< Cout, name(T) >}, ~C,Q)
Delete D(T, ~F) T ∈ ~T s =⇒ D(Ta, ~F ∪ {< Cout, name(T) >})
Add Table
AT (T, ~C, ~D, ~K)

T ∈ ~T s ∧ Ta has been created =⇒ AE(Ta,Cout,T),
∀c∈Cols(T)(@t∈ ~T sc ∈ Cols(t))→ AC(Ta, c,Dom(c))
T ∈ ~T s ∧ Ta not yet created =⇒ AT (Ta, ~C ∪ {Cout}, ~D ∪ {{T }}, ~K ∪ {Cout})

Rename Table
RT (To,Tn)

T ∈ ~T s =⇒ RE(Ta,Cout,To,Tn)

Drop Table DT (T) T ∈ ~T s =⇒ DE(Ta,Cout,T), ∀c∈Cols(T)((@t∈(~T s−{T })c ∈ Cols(t))→ DC(Ta, c))
Add Column
AC(T,C,D)

T ∈ ~T s ∧ ∀t∈ ~T s−{T }(C < Cols(t) ∨ Dom(t.C) = D) =⇒ AC(Ta,C,D)
T ∈ ~T s ∧ ∃t∈ ~T s−{T }(C ∈ Cols(t) ∧ Dom(t.C) , D) =⇒ Throw error
T ∈ ~T s ∧ ∃t∈ ~T s−{T }(C ∈ Cols(t) ∧ Dom(t.C) = D) =⇒ Drop statement

Rename Column
RC(T,Co,Cn)

T ∈ ~T s ∧ ∃t∈ ~T s−{T }Co ∈ Cols(t) ∧Cn ∈ Cols(Ta) =⇒
U(Ta, < Cout, name(T) >, {Cn,Co}, {Co, null}),
T ∈ ~T s ∧ ∃t∈ ~T s−{T }Co ∈ Cols(t) ∧Cn < Cols(Ta) =⇒
AC(Ta,Cn,Dom(Cold)), U(Ta, < Cout, name(T) >, {Cn,Co}, {Co, null}),
T ∈ ~T s ∧ ∀t∈ ~T s−{T }Co < Cols(t) ∧Cn < Cols(Ta) =⇒ RC(Ta,Co,Cn)
T ∈ ~T s ∧ ∀t∈ ~T s−{T }Co < Cols(t) ∧Cn ∈ Cols(Ta) =⇒
U(Ta, < Cout, name(T) >, {Cn}, {Co}), DC(Ta,Co)

Drop Column
DC(T,C)

T ∈ ~T s ∧ ∀t∈ ~T s−{T }C < Cols(t) =⇒ DC(Ta,C)
T ∈ ~T s ∧ ∃t∈ ~T s−{T }C ∈ Cols(t) =⇒ U(Ta, < Cout, name(T) >,C, null)

Add Element
AE(T,C, E)

T ∈ ~T s ∧ ∀t∈ ~T s(C ∈ Cols(t)→ ∃AE(t,C, E) ∈ T) =⇒ AE(Ta,C, E)
T ∈ ~T s ∧ ∃t∈ ~T s(C ∈ Cols(t)→ @AE(t,C, E) ∈ T) =⇒ Throw error

Rename Element
RE(T,C, Eo, En)

T ∈ ~T s∧∀t∈ ~T s(C ∈ Cols(t)→ ∃RE(t,C, Eo, En) ∈ T) =⇒ RE(Ta,C, Eo, En)
T ∈ ~T s ∧ ∃t∈ ~T s(C ∈ Cols(t)→ @RE(t,C, Eo, En) ∈ T) =⇒ Throw error

Drop Element
DE(T,C, E)

T ∈ ~T s ∧ ∀t∈ ~T s(C ∈ Cols(t)→ ∃DE(t,C, E) ∈ T) =⇒ DE(Ta,C, E)
T ∈ ~T s ∧ ∃t∈ ~T s(C ∈ Cols(t)→ @DE(t,C, E) ∈ T) =⇒ Throw error

Foreign Key
FK(~F|T.~X →
~G|B.~Y)

T ∈ ~T s ∧ B < ~T s =⇒ FK(~F ∪ {< Cout,T >}|Ta.~X → ~G|B.~Y)
T < ~T s ∧ B ∈ ~T s =⇒ FK(~F|T.~X → ~G ∪ {< Cout, B >}|Ta.~Y)
T ∈ ~T s∧ B ∈ ~T s =⇒ FK(~F ∪ {< Cout,T >}|Ta.~X → ~G ∪ {< Cout, B >}|Ta.~Y)

124

Table 3.7: Defining the action of Apply. If none of the conditions are met, the state-
ment passes through the transformation unaffected. Some DDL statements are not listed
because they are unaffected by this transformation.

Statement Apply (Ta, ~Cin, ~Cout, f)
Insert
I(T, ~C,Q)

T = Ta =⇒ I(Ta, ~C − ~Cin ∪ ~Cout, α ~Cin, ~Cout , f
Q)

Update
U(T, ~F, ~C,Q)

T = Ta ∧ ∀c∈ ~Cin
c ∈ ~C =⇒ U(Ta, ~F, (~C − ~Cin) ∪ ~Cout, α ~Cin, ~Cout , f

Q)
T = Ta ∧ ∃c∈ ~Cin

c < ~C ∧ ∃c∈ ~Cin
c ∈ ~C =⇒

U(Ta, ~F, (~C − ~Cin) ∪ ~Cout, α ~Cin, ~Cout , f
((π ~C− ~Cin

Q) × (πCinα ~Cout , ~Cin, f −1σ ~F(Ta))))

Delete
D(T, ~F)

Unaffected

Add Table
AT (T, ~C, ~D, ~K)

T = Ta ∧ (~Cin − ~C , ∅) =⇒
Throw error (need to have all columns used by the function)
T = Ta ∧ (~Cin − ~C = ∅) =⇒
AT (T, ~C − ~Cin ∪ ~Cout, ~D − Inputdomains(f) ∪Outputdomains(f), ~K)

Drop Column
DC(T,C)

T = Ta ∧C ∈ ~Cin =⇒
Throw error

Add Element
AE(T,C, E)

T = Ta ∧C ∈ ~Cin =⇒
Throw error (function not defined on new domain element)

Rename Element
RE(T,C, Eo, En)

T = Ta ∧C ∈ ~Cin =⇒
Throw error (function not defined on new domain element)

Drop Element
DE(T,C, E)

T = Ta ∧C ∈ ~Cin =⇒
Throw error (function not defined on new domain without element E)

Foreign Key
FK(~F|T.~X
→ ~G|B.~Y)

T = Ta ∧ ~X ∩ ~Cin , ∅ =⇒ Check(π~Xσ ~Fα ~Cout , ~Cin, f −1 Ta, π~Yσ ~GB)

125

Table 3.8: Defining the action of Pivot. Statements that either are not listed or do not
meet specified conditions pass through the transformation unaffected.

Statement Pivot (Ta, A,V)
Insert
I(T, ~C,Q)

T = Ta =⇒ Error((πKeysin(Ta)Q Z Ta) ∩ πKeysin(Ta)↙�Dom(A),A,V (πColsout(Ta)(Q Z
Ta))),∀c∈Dom(A)Loop(t, σA=cQ Z (πKeys(Ta)−{A}Ta),U(Ta,

< Keys(Ta) − {A}, πKeys(Ta)−{A}t >, {c}, πV t)),
I(Ta,Colsout(Ta),↗�Dom(A),A,V (QX(πKeys(Ta)−{A}Ta)))
(If ~C does not contain V , perform the above using Q × null)

Update
U(T, ~F, ~C,Q)

T = Ta ∧ ∃<c,v>∈ ~Fc = A =⇒ U(Ta, ~F − {< c, v >}, ~C − {V} ∪ {v},Q)
T = Ta ∧ @<c,v>∈ ~Fc = A =⇒ ∀c∈Dom(A)U(Ta, ~F, ~C − {V} ∪ {c},Q)

Delete D(T, ~F) T = Ta ∧ ∃<c,v>∈ ~Fc = A =⇒ U(Ta, ~F − {< c, v >}, {c}, {null})
Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ AT (Ta,

(~C − {A,V})∪Dom(A), ~D− {Dom(A),Dom(V)} ∪ {∀a∈Dom(A)Dom(V)}, ~K − {A})
Add Column
AC(T,C,D)

Throw error (all columns are either key columns or the value column, so this
should never happen)

Drop Column
DC(T,C)

Throw error (all columns are either key columns or the value column, so this
should never happen)

Add Element
AE(T,C, E)

T = Ta ∧C = A =⇒ AC(Ta, E,Dom(V)), AdjustForeignKeys(T,C,E)
T = Ta ∧C = V =⇒ ∀c∈Dom(A)AE(T, c, E)

Rename Element
RE(T,C, Eo, En)

T = Ta ∧C = A =⇒ RC(Ta, Eo, En)
T = Ta ∧C = V =⇒ ∀c∈Dom(A)RE(T, c, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∧C = A =⇒ DC(Ta, E)
T = Ta ∧C = V =⇒ ∀c∈Dom(A)DE(T, c, E)

Foreign Key
FK(~F|T.~X
→ ~G|B.~Y)

T = Ta ∧ (A ∈ ~X ∨ (∃<c,v>∈ ~Fc = A ∧ V < ~X ∧ A < ~X)) =⇒
Check(π~Xσ ~F↙�Cols(Ta)−Keys(Ta),A,VTa, π~Yσ ~GB)
B = Ta ∧ A ∈ ~Y =⇒ Check(π~Xσ ~FT, π~Yσ ~G↙�Cols(Ta)−Keys(Ta),A,VTa)
T = Ta ∧ ∃<c,v>∈ ~Fc = A ∧ V ∈ ~X ∧ A < ~X =⇒
FK(~F − {< c, v >}|T.(~X − {V} ∪ {v} → ~G|B.~Y))
T = Ta ∧ @<c,v>∈ ~Fc = A ∧ V ∈ ~X ∧ A < ~X =⇒
∀v∈Dom(A)(FK(~F|T.(~X − {V} ∪ {v} → ~G|B.~Y)))

126

Table 3.9: Defining the action of Unpivot. If none of the conditions are met, the state-
ment passes through the transformation unaffected. Some DDL statements are not listed
because they are unaffected by this transformation.

Statement Unpivot (Ta, A,V)
Insert
I(T, ~C,Q)

T = Ta =⇒ ∀c∈ ~C−Keys(Ta)I(Ta,Keys(Ta) ∪ {V, A},
(πKeys(Ta)∪{c}σc,nullQ) × {name(c)})

Update
U(T, ~F, ~C,Q)

T = Ta =⇒ ∀c∈ ~C I(Ta,Keys(Ta)∪{A}, (πKeys(Ta)σ ~FTa−πKeys(Ta)σ ~F∧A=cTa)×{c}),
∀c∈ ~C((π{c}Q , null→ U(Ta, ~F ∪ {< A, c >}, {V}, (π{c}Q)))
∧((π{c}Q = null→ D(Ta, ~F ∪ {< A, c >}))

Delete
D(T, ~F)

Unaffected

Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ AT (Ta, ~K ∪ {A,V}, {d ∈ ~D|col(d) ∈ ~K} ∪ { ~C − ~K}
∪{d|col(d) ∈ ~C − ~K}, ~K ∪ {A})

Add Column
AC(T,C,D)

T = Ta ∧C < Keys(Ta) =⇒ AE(Ta, A,C)

Rename Column
RC(T,Co,Cn)

T = Ta ∧Co < Keys(Ta) =⇒ RE(Ta, A,Co,Cn)

Drop Column
DC(T,C)

T = Ta ∧C < Keys(Ta) =⇒ DE(Ta, A,C)

Add Element
AE(T,C, E)

T = Ta∧C < Keys(Ta)∧∀c∈(Cols(Ta)−Keys(Ta)) ∃AE(Ta, c, E) ∈ T =⇒ AE(Ta,V, E)
T = Ta∧C < Keys(Ta)∧∃c∈(Cols(Ta)−Keys(Ta)) @AE(Ta, c, E) ∈ T =⇒ Throw error

Rename Element
RE(T,C, Eo, En)

T = Ta ∧C < Keys(Ta) ∧ ∀c∈(Cols(Ta)−Keys(Ta))

∃RE(Ta, c, Eo, En) ∈ T =⇒ RE(Ta,V, Eo, En)
T = Ta ∧C < Keys(Ta) ∧ ∃c∈(Cols(Ta)−Keys(Ta))

@RE(Ta, c, Eo, En) ∈ T =⇒ Throw error
Drop Element
DE(T,C, E)

T = Ta ∧C < Keys(Ta) ∧ ∀c∈(Cols(Ta)−Keys(Ta))

∃DE(Ta, c, E) ∈ T =⇒ DE(Ta,V, E)
T = Ta ∧C < Keys(Ta) ∧ ∃c∈(Cols(Ta)−Keys(Ta))

@DE(Ta, c, E) ∈ T =⇒ Throw error
Foreign Key
FK(~F|T.~X
→ ~G|B.~Y)

T = Ta ∧ ~X −Keys(Ta) , ∅ =⇒ Check(π~Xσ ~F↗�Cols(Ta)−Keys(Ta),A,VTa, π~Yσ ~GB)

127

• An error statement Error(Q) that returns an error (aborts transaction), introduced

in Section 3.1.4

• A loop construct Loop(t,Q,T) for some variable t, query Q, and nested transac-

tion T , introduced in Section 3.1.4

Channels process transactions that can contain one or more update statements. When

a transaction is pushed through a channel transformation, the transformation works on

each statement in the transaction in place; if a statement in a transaction is processed

non-trivially by a transformation, the output of that processing replaces the original

statement in the position of the transaction held by that statement. While processing a

transaction, the situation may arise in which one or more or even all of the statements

in the transaction are dropped, in which case no further processing is necessary. It may

also be the case that a transformation throws an error, in which case the entire transaction

needs to be aborted. An error also means that any changes made to the internal state of

the transformations by the transaction must be rolled back.

There are some instances where a transformation will throw an error when it encoun-

ters a statement, which aborts the transaction immediately. This situation only occurs

with DDL statements, namely when:

• A schema change has caused columns to have different domains, where domain

equality is required for a transformation

• A change to the elements of a domain has caused a function’s input to change

• A schema change has invalidated one of the pre-conditions of a transformation,

e.g. adding a second non-key column to a table that will be pivoted

128

On system startup, the DDL statements required to represent the natural schema are

generated automatically and enter the channel just as any other update. This process

initializes the internal state of each transformation, so that it is aware of the schema and

referential integrity constraints at its position in the channel. The process also generates

the DDL for the schema of the physical database as a result, so if the physical database

instance does not yet exist, system initialization creates it.

As additional DDL statements pass through the channel, the various transformations

update their parameters dynamically. For instance, if an Unpivot transformation acts on

the table A, and a Rename Column statement passes through the channel to rename A

to B, the operator will change its operation to work on B. If the rename occurred during

a transaction that is later aborted, that change is rolled back so that, during subsequent

transactions, the Unpivot transformation will revert to operating on table A.

One final note about transactions: Some DDL statements can only pass through a

transformation if other statements are present in the current transaction. For instance,

consider the case introduced above where an Add Element statement is pushed through

an Unpivot transformation. If a single Add Element statement passes through an Un-

pivot, it may cause a union-compatibility error because the non-key domains no longer

have the same domain. However, if Add Element statements for all of the non-key

columns pass through in the same transaction, they collapse into a single Add Element

statement on the new value column, thereby providing transactional consistency: union-

compatibility of the non-key columns both before and after the transaction executes.

129

3.2.3 Instance Transformations and Copy Inserts

We can copy one table, T, into another table with a new name but identical schema,

say T-copy, using the DML statement INSERT INTO T-copy (SELECT * FROM T).

By pushing a statement of this form for each table in a schema through a channel, we

can transform entire instances of a table in both directions: (1) to materialize a table in

the conceptual schema, or (2) to push an instance of a table in the conceptual schema

(assuming that an instance exists), in its entirety, into the physical database. Figure 3.7

gives more details on how a channel can be used to materialize an instance.

First, we recognize that the statement S = INSERT INTO T2 SELECT * FROM T1

is exactly the statement that copies the table T1 into table T2 (we refer to this kind

of statement as a copy insert). Therefore, if T1 = db1.T and T2 = db2.T, the state-

ment is effectively the identity transformation of table T, just moving from database 1 to

database 2. Before channel transformation, both db1 and db2 have the same schema.

Now, consider a given channel C, but constructed two different ways. First, con-

struct the channel C1, which is the channel C with all of its transformations operating

on tables in database db1. We can push S through C1, which would only transform

the query part of the statement, producing S1 = INSERT INTO db2.T C1(SELECT *

FROM db1.T). The insert part of the statement remains unchanged because db2.T is in

database db2 and thus invariant under channel C1. The effect of statement S1 is to pop-

ulate table db2.T with the results of SELECT * FROM db1.T: in effect, materializing

table T in the natural schema. Note that if we consider the natural schema to be a view

over the physical schema, this situation is equivalent to materializing a view.

The other option is to construct the channel C2, which is the channel C with all of

130

Figure 3.7: Using a channel and an insert statement to move entire instance of a table

through a channel

131

its transformations operating on tables in database db2. If we push statement S through

C2, we get statement S2 = C2(INSERT INTO db2.T SELECT * FROM db1.T). The

query portion of this statement will pass through the channel essentially unaffected,

since the transformations in C2 only affect db2; however, the processing of the in-

sert statement may affect the query by treating it as a constant result during state-

ment transformation. For instance, pushing S through VPartition(db2.T, ~Cs, db2.T ′)

will yield two statements, INSERT INTO db2.T SELECT ~A FROM db1.T and INSERT

INTO db2.T’ SELECT ~B FROM db1.T WHERE C (where ~A and ~B are the columns in

the output schema of db2.T and db2.T’ and C is the not-all-nulls condition. The

queries in the two output statements are exactly the single-table query SELECT * FROM

db1.T with some additional operators placed above it in the tree. The effect of statement

S2 is to take the table db2.T and effectively push it in its entirety through the channel

— in the opposite direction as statement S1 was pushed through a channel.

This second application of pushing a copy insert through a channel does not have

a clear analog in the view literature. It would be equivalent to taking a materialized

view and pushing it back through the view definition to create its image in the physical

storage, which can only be done for views that meet the restrictive definition of being

updatable (unless a developer decides to manually develop rules or triggers to define

the update rules). This application can, however, support the typical physical design

workflow; a database developer starts with a database schema, constructs a channel

using the schema as the channel’s input, then “pushes” the instance through the newly-

designed channel using copy inserts, leaving the original schema as the input schema to

the channel and the virtual view of the data.

132

3.3 PHYSICAL DATABASE DESIGN AND OPTIMIZATION

The transformations supported in a channel (listed in Table 3.2) are frequently used by

database developers for physical database design. In other words, by applying one of

these seven transformations, a database designer may be able to save space on disk, or

improve the speed of query execution. But there are a number of other decisions that a

physical database designer makes as well. Tools called database tuning advisors exist

[10, 18] that automatically or semi-automatically recommend physical structures (e.g.,

indexes and materialized views) to create for a database for a given workload of queries,

DML updates, and (in some cases) DDL updates.

Two long-term goals with our channel research are fully automated channel design

and channel optimization. The first of these goals — automated channel design — is

already partially supported by some physical database tuning advisors; for instance, one

database tuning advisor [1] can recommend either horizontal or vertical partitioning.

In general, for any of our seven transformations, it is possible to develop heuristics to

decide whether applying a transformation will provide some benefit.

Consider the case of the Unpivot transformation. One can roughly calculate how

much space one would save by moving to a generic layout using an Unpivot transfor-

mation. More specifically, one can calculate how sparse the database must be for there

to be a space savings. Making two fundamental assumptions — that rows are stored in

a fixed-width representation and that storage overhead for each row and column is neg-

ligible — if I is the number of bytes in the primary key, A is the maximum number of

bytes in an attribute name, S is the size of a data column, N is the number of data (pivot)

columns, R is the number of rows, and P is the percentage of non-null data values, then

133

for an unpivot transformation to save space, the following inequality must hold:

(I + A + S)NPR ≤ (I + NS)R

Solving for P, we have:

P ≤ I/N + S
I + A + S

For some sample values, say A = 4, I = 4, S = 4, and N = 50, we see that for a

50-column natural schema with all columns being 32-bits wide, P ≤ 34%. Of course,

in physical database design, space is not the only concern; the Unpivot transformation

introduces a Pivot query operator into queries. So, even if a table with the above char-

acteristics has a non-null data percentage of 5%, the added query overhead may make

the space savings too expensive.

Incorporating design decisions (such as the analysis above of the Unpivot transfor-

mation) into tuning advisors is still largely future work. We describe here our work that

allows the use of existing database tuning advisors to suggest physical storage struc-

tures when designing a channel, thereby combining the physical design capabilities of a

channel with those of a traditional DBMS tuning advisor in a natural way.

3.3.1 Physical Characteristics

A typical physical tuning advisor requires two inputs: statistics that describe the data

contained in the database and a workload of statements that is representative of the

application workload that will run on the database. As described in Section 3.2.2, a

channel can accept a transaction of statements against the natural schema (i.e., an appli-

cation workload) and translate them into a transaction of statements against the physical

134

database (i.e., a physical workload). To support the use of tuning advisors, we de-

fine here how statistics can be pushed through channel transformations. Specifically,

a transformation can take a row count of a table and histograms of value distributions

of columns in the natural schema and transform them into statistics of the same form

against the physical schema. Therefore, one can specify or gather statistics and a work-

load against the natural schema and push them both through the channel to be fed to

database tuning advisors. It is generally the case that tuning advisors will accept a

workload specified by the user, but will rely on database statistics generated within the

DBMS rather than accept statistics from outside. If the tuning advisor cannot be adapted

to work with outside statistics, as a workaround we can generate a sample database that

meets the statistical characteristics, and then let the DBMS reconstruct the statistics

internally.

Formally, we describe table statistics as a new statement TStat(T,R, ~H), where T is

the name of a table, R is the row count for that table, and ~H is a collection of histograms.

It is this statement that we can push through channel transformations. The ith entry in

the histogram collection hi ∈ ~H describes the distribution of values in the ith column Ci

of the table T , including null values, and is described as a function from (domain(Ci) ∪

{null}) → Q (where Q is the set of rational numbers). So, hid(a) = 5 means that 5 rows

in the table have a value of ‘a’ in the ‘id’ column. The output of the function may be a

rational (non-integral) number to reflect an estimated value. We use the notation hC to

represent the histogram for column C and thus avoid the need to refer to position.

Since each histogram is associated with a particular column, the transformations

must know the input schema to connect each histogram to the proper column, as well

135

as the domain of each column to know the input domains of each histogram. In other

words, before a channel can process a statement in the form TStat(Ta,R, ~H) for some

table Ta, the channel must have at some point in its operation seen a statement of the

form AT (Ta, ~C, ~D, ~K) or other DDL statements describing the state of the input schema.

The channel then knows that the set of histograms ~H correspond to the columns ~C.

A channel transformation operates on statistical information in the same manner as

queries or updates. Given a statement of the form TStat(T,R, ~H) over a transformation’s

input schema, the transformation generates TStat statements representing the estimated

physical characteristics of data over the transformation’s output schema. Table 3.10

describes the action of each of the seven transformations on table statistics, along with

a description of any estimates that are made along the way.

For our purposes, we assume that each histogram is complete, providing statistics

on each member of the active domain for a column. In reality, histograms will store

information on ranges of values, either height-balanced (equal number of data entries

per bucket) or width-balanced (equal number of domain values per bucket). Table 3.10

can be easily extrapolated to work on summarized data, assuming uniform distribution

within each bucket if necessary.

One immediate benefit of pushing statistics through a channel is the ability to esti-

mate the size of the physical database based on the anticipated size of the input data.

Given a statistics statement TStat(Ta,R, ~H) and the list of columns ~C with associated

domains ~D, calculating the size of table Ta is trivial.

136

Table 3.10: Defining the action of each transformation on table statistics.

Transformation Description of Statistics Transformation
VPartition
(Ta, ~Cs,Tn)

TS tat(Ta,R, ~H) =⇒ TS tat(Ta,Ra, ~Ha),TS tat(Tn,Rn, ~Hn), where:
Ra = R, Rn = Ra − K, Ha

C = HC for all C ∈ ~Cs ∪Keys(Ta),
Hn

C = (fC ◦ HC) for all C ∈ Colsin(Ta) − (~Cs ∪Keys(Ta))
fC(x) = x − K (C non-key, null), x (C non-key, non-null), x × ((R − K)/R) (else)
K = bRa ∗ Πc∈Colsin(Ta)−(~Cs∪Keys(Ta))(Hc(null)/Ra)c
(K is an estimate of all-null rows in Tn, assuming random distribution of nulls)

VMerge
(Ta,Tn)

TS tat(Ta,Ra, ~Ha),TS tat(Tn,Rn, ~Hn) =⇒ TS tat(Ta,Ra, ~H), where:
HC = Ha

C for all C ∈ Colsin(Ta), and (fC ◦ Hn
C) for all C ∈ Colsin(Tn) −Keys(Tn)

fC(x) = x + Ra − Rn when value of C is null, x otherwise
HPartition
(Ta,Cin)

TS tat(Ta,R, ~H) =⇒ ∀t∈Dom(Cin)TS tat(t,Rt, ~Ht), where:
Rt = HCin (t), Ht

c for any column c and table t is defined by Ht
c(x) = Hc(x)/HCin (t)

(Assume values in columns Colsin(Ta)−{Cin} evenly distributed among new tables)
HMerge
(~T s,Ta,Cout)

(∀t∈ ~T sTS tat(t,Rt, ~Ht)) =⇒ TS tat(Ta,Ra, ~Ha), where:

Ra = Σt∈ ~T sRt, Ha
Cout

is defined by Ha
Cout

(x) =


0 if x = null

Rx else

Ha
c , c , Cout, is defined by Ha

c (x) =


Σ{t|c is not a column in t}(Rt) if x = null

Σ{t|c is a column in t}(Ht
c(x)) else

Apply
(Ta, ~Cin,

~Cout, f)

TS tat(Ta,R, ~H) =⇒ TS tat(Ta,R, ~Ho) where:
Ho

c = Hc for any column c ∈ Cols(Ta) − ~Cin

Ho
c (x) = R × Σv∈Vx Πb∈ ~Cin

(Hb(vb)/R) where c is the ith member of ~Cout

and Vx = {v = (v1, v2, . . . , v| ~Cin |)| f (v)i = x}
(Assume that there are no correlations between non-key columns)

Pivot
(Ta, A,V)

TS tat(Ta,R, ~H) =⇒ TS tat(Ta,Rp, ~Hp), where:
Rp = min(R,Πc∈Keysin(Ta)−{A}(|activedom(c)|)), where activedom(c) is the number of
distinct values x with non-zero values for Hc(x), Hp

c = Hc for c ∈ Keysin(Ta) − {A}
Hp

c , c ∈ Dom(A), is defined by Hp
c (x) =


Rp − HA(c) if x = null

HV (x) × HA(c)/R else
(Assume that the values in column V are evenly distributed among pivot columns)

Unpivot
(Ta, A,V)

TS tat(Ta,R, ~H) =⇒ TS tat(Ta,Ru, ~Hu), where:
Ru = Σc∈Colsin(Ta)−Keysin(Ta)(R − Hc(null)), Hu

c = Hc for any column c ∈ Keysin(Ta)
Hu

A(x) = R − Hx(null), Hu
V (x) = Σc∈Colsin(Ta)−Keysin(Ta)Hc(x)

137

3.3.2 Transformation Equivalences

Our second long-term goal — optimization — refers to reducing the amount of over-

head that a channel introduces. One simple operational optimization we can make is to

avoid using the entire channel for each statement. If the statements in a transaction S

only reference two tables, and 95% of the transformations in the channel do not have an

effect on those tables, it would be useful if S were only processed by the remaining 5%

of the transformations. The trace of a channel C on a table T (denoted traceC(T)) is the

list of transformations within C that will potentially operate on table T or its interme-

diate products. The channel represents a trace as a bitmap, where each bit represents a

transformation in the channel. One can generate a trace for T by pushing the Add Table

statement for T through the channel, and have each transformation report if it operated

on the transaction. All Add Table statements for the natural schema are pushed through

the channel at system initialization, and any new tables must be also pushed through

the channel, so creating traces requires no extra work. To generate the footprint of a

transaction, simply take the logical ‘or’ of the traces for all of the tables referenced by

the transaction.

To further optimize a channel, we consider equivalences:

Definition 3.3.1 Two channels A and B are equivalent (≡) if, for any transaction T ,

A(T) = B(T), and for any query Q in extended relational algebra, A(Q) is equivalent

to B(Q).

In the definition above, the notation C(S) for transformation C and statement or

transaction S refers to the output of running S through the transformations defined for

138

C. Given a channel C, channel optimization is the process of finding another channel

C′ such that C ≡ C′ and that C′ is more desirable with respect to a metric, for instance,

trace size. We provide a sample of transformation equivalences that one can use to

rewrite channels into equivalent forms. These equivalences fall into two categories:

commutativity and inverses. We use these equivalences to try to create a more efficient

channel in two ways. First, we can use equivalences to reduce the size of traces for

tables, meaning that fewer processing cycles are spent in the channel. Second, we can

use inverse relationships to identify transformations that can be eliminated entirely.

One can use commutativity to move the transformations around within a channel.

This theorem says that two channel transformations can commute if they do not act on

any common tables in the input schema:

Theorem 3.3.1 If channel C = [A, B],

@T (A ∈ traceC(T) ∧ B ∈ traceC(T))→ [A, B] ≡ [B, A]

This theorem is trivial to prove, and follows from the fact that no table will be af-

fected by both of the transformations. There are also examples of commutativity that

are not trivial. We provide two examples here:

Theorem 3.3.2 [V Merge(Ta,Tn), Apply(Ta, ~Cin, ~Cout, f)] ≡

[Apply(Ta, ~Cin, ~Cout, f),V Merge(Ta,Tn)] if ~Cin ⊆ Colsin(Ta)

This theorem allows an Apply to be pushed through a VMerge when the input

columns for the function are not spread over the two tables being merged. The trace

of Tn for the left side of the equivalence has two transformations, while its trace on the

139

right side only has one. A query involving Tn and not Ta will spend fewer processing

cycles in the channel and thus run faster.

There is a companion theorem if the Apply operates on data in the other table:

Theorem 3.3.3 [V Merge(Ta,Tn), Apply(Ta, ~Cin, ~Cout, f)] ≡

[Apply(Tn, ~Cin, ~Cout, f),V Merge(Ta,Tn)] if ~Cin ∩ Cols(Ta) = ∅

Here is another commutativity equivalence:

Theorem 3.3.4 [HMerge(~T s,T,C),Unpivot(T, A,V)] ≡

[∀t∈ ~T sUnpivot(t, A,V),HMerge(~T s,T,C)]

This equivalence pushes an HMerge through an Unpivot — the result is that each of

the HMerged tables is run through its own Unpivot first. This equivalence has no effect

on table traces; any table T in the natural schema will either be affected by both an

Unpivot and an HMerge or by neither, regardless of whether the equivalence is applied.

However, pushing the HMerge through the Unpivot may allow further equivalences to

be applied later.

Finally, we identify inverses, where a combination of transformations produces the

same results as the channel with no operators, ε. Each of the seven transformations has

an inverse transformation. The inverse relationships can be divided into two categories.

First, there are the inverses that can be determined statically, without knowing the natural

schema:

Theorem 3.3.5 [Pivot(Ta, A,V),Unpivot(Ta, A,V)] ≡ ε

[Unpivot(Ta, A,V), Pivot(Ta, A,V)] ≡ ε

140

[Apply(Ta, ~Cin, ~Cout, f), Apply(Ta, ~Cout, ~Cin, f −1)] ≡ ε

[VPartition(Ta, ~Cs,Tn),V Merge(Ta,Tn)] ≡ ε

We provide a proof of the last equivalence shown above in Chapter 5. These inverses

are always true, and should always be applied to reduce work. Second, there are inverses

that can only be determined knowing at least part of the natural schema (if one is using

a graphical channel designer, e.g., Figure 3.2(b), this information would be available, as

it could read in the current natural schema at runtime):

Theorem 3.3.6 [HPartition(Ta,Cin),HMerge(~D,Ta,Cin)] ≡ ε, where ~D is the set of all

elements in the domain of Cin in the channel’s input schema.

In the theorem above, we need to know the domain of column Cin to check if ~D

covers the correct set of values.

Theorem 3.3.7 [HMerge(~T s,Ta,Cout),HPartition(Ta,Cout)] ≡ ε, only if all of the ta-

bles in ~T s are union-compatible.

Theorem 3.3.8 [V Merge(Ta,Tn),VPartition(Ta, ~Cs,Tn)] ≡ ε, where ~Cs is the list of

non-key columns in table Ta in the natural schema.

A channel optimizer, upon encountering the opportunity to apply one of these equiv-

alences, should present it to the developer before applying it, or should only apply the

equivalence at runtime; it may be the case that the developer really meant for both trans-

formations to be in the channel, or that the equivalence will not hold after the schema

evolves.

141

3.4 IMPLEMENTATION DETAILS AND INSIGHTS

We have implemented a prototype of the channel that includes the seven transforma-

tions introduced in this chapter in Visual Studio 2008 using the C# language. Figure 3.8

shows some basic statistics about our implementation. The chart on the top shows a line

count of each of our seven transformations’ implementation. None of the transforma-

tions took more than 800 lines of code to implement, including the relatively complex

Pivot transformation. In Chapter 7, we discuss the possibility of allowing developers

to create their own transformations; 800 lines of code per transformation implies that

new transformations may be relatively simple to write in our framework. The bottom

chart shows the distribution of lines of code in the entire Guava project, sub-divided

by function. The total lines of code for the project was less than 25,000, and could be

substantially smaller if we had access to the source code of the C# GUI widget library

(so that we could avoid redundant code in some places). The compiled size of the entire

framework is about 400k, which is small compared to the approximately 2MB required

by the System.Windows.Forms.dll component that houses the GUI widget library.

Our implementation of the channel can be broken into two components: the visitor

pattern and the provider model. We discuss each of these components individually. Our

work with the visitor pattern and the provider model are inspired by the Microsoft Entity

Framework [8], which uses a similar internal architecture.

3.4.1 Command Trees and the Visitor Pattern

Each supported statement that can be processed as input to a channel in the Guava

model is represented in a tree structure. For example, for each supported operator in

142

0 200 400 600 800 1000

HMerge

HSplit

VMerge

VSplit

Apply

Unpivot

Pivot

����������	�
��	�
874

3035

5316

7306

8199

�
������� ����
 �� ����� �� ��������
SQL Server Provider

Statements

Operators

Natural Schema, Channel,

and DB Connection

UI Library

5-10% of the UI library code relates to superimposed information

Total:

24730

Figure 3.8: Statistics of the code in our prototype channel implementation. Statistics

were gathered as of June 20th, 2008

143

our extended relational model (i.e., each operator that can appear in a query), there

is an object class that defines the structure of that operator. As an example, there is an

object class that represents a join operator; the Join class has two children, representing

the two expressions that the query operator is joining. The class also has properties

representing the join condition between the two expressions. A query is represented

internally as a tree of such objects.

Command statements are also stored in a tree format. There is an object class, for

instance, representing a Drop Element statement. The DropElement class contains the

name of the table and column from which to drop the element, and the name of the

dropped element. Another class, Insert, represents an Insert statement and contains

the name of the table into which to insert the new rows, the columns into which to insert

the data, and the root node of the query tree that represents the data to insert.

Since the commands and queries are stored as trees, we process them using a com-

mon programming paradigm: the visitor pattern [26]. The visitor pattern is, in brief,

a way to traverse a tree structure, where all of the nodes in the tree are objects that

implement a common subclass or interface. All of the object classes that represent the

supported Guava statements derive from a common class called Operator, which has

the following method:

public virtual void Visit(Transform t, Command c)

{

t.Expand(this, c);

}

The first argument, t, is a channel transformation. The second argument, c, is a

144

pointer to the root node of the tree, which contains information such as a list of used

table aliases in the current command (to avoid duplicate aliases within a tree). The class

Transform is an abstract base class from which channel transformations derive. In the

Transform class, there is a wide collection of methods implemented that appear like

the following:

internal virtual void Expand(Insert i, Command c)

{

i.Child.Visit(this, c);

}

internal virtual void Expand(Intersect i, Command c)

{

foreach (Operator o in i.Children)

o.Visit(this, c);

}

internal virtual void Expand(Join j, Command c)

{

j.Child1.Visit(this, c);

j.Child2.Visit(this, c);

}

There is one Expand method for each class that derives from Operator. These

Visit and Expand methods, put together, effectively walk any command tree, because

the method calls alternate between the two classes, visiting the children along the way.

Because the tree is left unaltered by this algorithm, walking the tree in this fashion is

145

effectively a null transform; our implementation of each of the seven transformations

extends the base class Transform and overrides only those methods that the transfor-

mation actually has an effect on.

For instance, consider the Pivot transformation. Looking at Table 3.8, we can see

that Pivot has no effect on Rename Table statements. Therefore, the implementation of

the Pivot class will not override the default transformation of Rename Table. How-

ever, the Expand(Insert i, Command c) method is overridden to translate the insert

statement into an Error statement (Section 3.1.4), a Loop statement (Section 3.1.4), and

an Insert statement (Table 3.1).

3.4.2 The Provider Model

A provider model is a way to generate implementation-specific syntax from an abstract

representation of a language. In the case of channels, we use a provider model to

translate a command tree that emerges from the channel into a concrete instance of a

SQL command in a native SQL dialect. Most relational database systems share a com-

mon syntax for basic constructs like joins, projections, nested queries, and table aliases.

However, each relational database management system may have a different syntax for

constructs that are more complex, or constructs that are more recent in their addition

to the SQL language. Examples of constructs that differ between flavors of the SQL

language are pivots, unpivots, and the use of algebra and arithmetic. We have imple-

mented a provider for the SQL Server 2005 database, which takes our command trees

and translates them into the native SQL dialect, called Transact-SQL.

Our SQL Server provider is implemented as another visitor that traverses a command

146

tree. Here are some examples of the code in our SQL Server provider for translating

Rename Table, Drop Element, and Insert commands:

public SqlText Transform(AlterTableRename atr)

{

SqlText sql = new SqlText();

sql.Command = "EXEC sp_rename ’" + atr.OldName + "’, ’"

+ atr.NewName + "’";

return sql;

}

public SqlText Transform(DropElement de)

{

SqlText sql = new SqlText();

// Determine if we need to set to null or to delete rows

if (keyColumnsPerTable[de.Table].Contains(de.Column))

sql.Command = String.Concat("DELETE FROM ", de.Table,

" WHERE ", de.Column, "=", Common.Wrap(de.Element));

else

sql.Command = String.Concat("UPDATE ", de.Table, " SET ",

de.Column, "=NULL WHERE ", de.Column, "=",

Common.Wrap(de.Element));

return sql;

147

}

public SqlText Transform(Insert i)

{

SqlText sql = new SqlText();

sql.Command = String.Concat("INSERT INTO ", i.Table, " (",

String.Join(",", i.Columns.ToArray()), ") ",

i.Child.Visit(this).ToString());

return sql;

}

Note that in the translation of an AlterTableRename object, the statement becomes

the execution of a stored procedure “sp rename”, which is the SQL Server way to re-

name a table. In the code for translating an Insert, there is a call to “i.Child.Visit(this)”,

which is the visitor pattern at work; the result of the call will be the SQL corresponding

to the query that creates the rows that are to be inserted.

3.5 CASE STUDY 1: CORI

In this case study, we compare the expressive power of our seven channel transforma-

tion against the middleware of a commercially available software application. Figure

3.9 shows part of the schema for the CORI application, version 4.0.23. This part of the

schema corresponds to the part of the application that has been re-implemented using

Guava components. In the CORI schema, there are no foreign keys; due to the intro-

duction of artificial primary keys (e.g., proc main uid), one cannot introduce standard

148

relational foreign keys in their DBMS. So, the foreign keys must be enforced by the

application code in CORI.

Figure 3.10, on the other hand, shows the natural schema of the Guava-ized CORI

sample. The figure shows two types of foreign keys. The first are the type that have

a graphic of a key on at least one end. These keys correspond to a standard foreign

key; the foreign keys with two “key” graphics are one-to-one foreign keys between id

columns, and the keys with only one key graphic are one-to-many foreign keys between

a fk column and an id column. The second kind of foreign key is represented as a solid

line with arrows at the end (there are two in the figure, one black and one grey). This

second kind of foreign key is a Tier 2 foreign key with disjunction (from Section 3.1.3).

For instance, the foreign key from proc find states that the entries in proc find.id

must be found in either COL.id or EGD.id.

We construct a channel to conform the schema in Figure 3.10 to the schema in Figure

3.9 as best we can, maximizing the number of matching columns, tables, and domains

(for brevity, we abbreviate some of the arguments and explain later):

Apply(patient, {White, Asian, HawaiianPacificIslander,

Black, NativeAmerican, OtherEthnicity}, {race}, F)

HMerge({COL, EGD}, proc_data, procType)

VMerge(proc_data, SurgicalHistory)

VPartition(proc_data, proc_strn, C1)

VPartition(proc_data, proc_text, C2)

Apply(proc_data, C0, C0, F0)

Apply(proc_strn, C1, C1, F1)

149

Figure 3.9: Part of the relational schema for the CORI application, version 4.0.23

150

Figure 3.10: The natural schema for our Guava implementation of part of CORI

151

Apply(proc_text, C2, C2, F2)

Unpivot(proc_data, item, numericval)

Unpivot(proc_strn, item, stringval)

Unpivot(proc_text, item, textval)

HMerge({Diverticulosis}, find_data, findType)

VPartition(find_data, find_strn, C4)

VPartition(find_data, find_text, C5)

Apply(proc_data, C3, C3, F3)

Apply(proc_strn, C4, C4, F4)

Apply(proc_text, C5, C5, F5)

Unpivot(find_data, item, numericval)

Unpivot(find_strn, item, stringval)

Unpivot(find_text, item, textval)

Function F is a function that takes the value of each of the race and ethnicity values

and encodes them as a string value. So, if a row has values of “true” for white, other, and

ethnicity (meaning Hispanic), and values of “false” for all other columns, it will have a

value of “WOH” for race in the output.

Column sets C0, C1, and C2 are the columns in proc data that have numeric do-

mains, short text fields (100 characters or fewer), and long text fields (longer than 100

characters) respectively. The functions F0, F1, and F2 are domain-alignment functions

(since each column set is domain-compatible within itself, but not completely equiva-

lent). For instance, the function F0 takes all of the values in columns C0 and translates

them into 32-bit integers. These functions are only necessary because the formalism and

152

implementation of Unpivot require that the domains of all non-key columns be identical.

Note that these functions are tedious to write. A simple solution to this problem is to

extend the definition and implementation of Unpivot to automatically align the domains

of the non-key columns to a domain that is castable from each input domain.

The column sets C3, C4, and C5, and the functions F3, F4, F5, are similar to the

column sets C0, C1, and C2 and functions F0, F1, F2, except they pertain to the finding

tables instead of the procedure tables.

The result of applying the channel above to the schema in Figure 3.10 is the schema

in Figure 3.11. The result is not identical to Figure 3.9. Comparing the two schemas, all

of the information that is present in the Guava version of CORI’s database is present in

CORI’s native database. However, there is some information in CORI’s native database

that is not present in the Guava analog. For the rest of this section, we enumerate and

discuss the differences between the two figures.

The differences between the two schemas fall into six categories:

• Additional columns in the original CORI schema that hold new data not contained

in the natural schema

• Additional columns in the original CORI schema that hold temporal data about

each row

• The item id columns in the procedure tables in the original CORI schema, which

are present in the Guava version but in a different form (item and procType)

• Primary key columns serving as surrogate key columns in the original CORI

schema (for instance, proc main.proc main uid)

153

Figure 3.11: The schema from Figure 3.9, after applying a channel

154

• The separation between procedure (“proc”) tables and finding (“find”) tables,

which are both stored in the procedure tables in the original CORI schema

• Columns that are present and identical in both versions but do not have the same

name — this case is trivial, since it can be overcome simply by renaming the

columns in the original schema (for instance, patient.patient uid becomes

patient.id)

For each of these categories (except the last one), we consider what it would take to

overcome these differences in terms of additional transformations, ones that cannot be

expressed in terms of existing transformations.

As an example of the first difference category, consider the field proc main.signed.

This field represents the ID of the user that signed the procedure. This information is

present nowhere in the natural schema (and, in fact, nowhere in the procedure forms

in the user interface). This information is drawn from the environment; as part of the

business logic of the application, CORI records the ID of the user that is logged in at

the time of signing for later accountability, and so that information can be included in

printouts of the procedures. Other similar columns include the required columns in

the procedure tables (recording whether a particular field was required at the time of

persistence), the addendum signed column of proc main (storing the user ID of the

last user to sign changes to a procedure after it was originally signed), and the site id

column of proc main (storing the value of the site variable at the time the record is

saved). We have abstracted this kind of addition of environmental information as the

Adorn channel transformation, described in Chapter 4.

The second category of difference refers to the addid and delid columns present in

155

all of the procedure-related tables. These two additional columns do more than simply

store environment data: They alter the way that updates and deletes are handled by the

system. Together, the addid and delid columns represent the lifespan for each row.

When a record is inserted into one of these tables, the new row receives a timestamp

value representing the current time into the addid column, and a null value into the

delid column (representing an unknown or non-existent end time). When the CORI

application tries to delete a row, the CORI middleware transforms that instruction into

an update — to take the deleted row and instead “deprecate” it by setting its delid

value, effectively ending the row’s lifespan. Likewise, an update from the application

takes the original rows and sets the delid value on them, then inserts new rows with

the new value (and null delid column value). We have abstracted this treatment of

attributes by defining a channel transformation called Audit, described in Chapter 4.

The item id columns in the procedure table store an integer value. This value is a

key into a lookup table called Control, which is a single table that stores information

about all of the controls from procedure and finding screens in the entire CORI applica-

tion. The corresponding information in Figure 3.6 is stored in the item and procType

or findType columns, information which is also located in the Control table. Given a

value for item id, there is a unique pair of values for item and procType/findType,

and vice versa. We have captured this type of transformation, in either direction, in the

Lookup transformation, described further in Chapter 4.

The surrogate key columns in the procedure tables in Figure 3.9 do not appear any-

where in Figure 3.11. For example, CORI developers added the column proc main uid

156

to table proc main as a primary key column because the primary key would have other-

wise spanned several columns, and the developer preferred to work with single-column

primary keys. The surrogate keys do not participate in any queries or updates issued

from the CORI application; all of the queries and updates issued by the application refer

to the procedure uid and finding uid columns. Therefore, one possible solution for

the current application is to drop the surrogate keys and to assert other combinations of

columns as the new primary keys for each table. However, to accommodate the current

layout of the CORI application without alteration, we would require a new transforma-

tion that would establish surrogate keys for procedure tables, where each inserted row

is assigned a new, globally-unique value.

Finally, we consider the case of merging procedure data with finding data (the fifth

difference category in the list). In the CORI database, the procedure data and the finding

data is stored in the same set of tables. Each of the procedure data tables contain three

different fields that hold globally-unique identifiers: procedure uid, finding uid, and an

additional field named after the current table (a surrogate key). Data in each of these

tables can be broken into two sets of rows: those rows that hold data pertaining to a

procedure (in which case the finding uid is null) and those rows that describe a finding

attached to a procedure (in which case the finding uid is not null). Since a primary key

cannot be used on columns that can contain a null value, the additional GUID field is

used as an artificial key, which is used for no other purpose. To emulate the existing

database in Figure 3.9 from Figure 3.11:

• For each of the procedure data tables (data, strn, and text), change the key to be

the columns proc uid and find uid. Place the old value of id in the proc uid

157

column, and set the find uid value to be the all-zeroes GUID.

• For each of the findings data tables (data, strn, and text), change the key to be

the columns proc uid and find uid. Place the old value of id in the find uid

column, and set the proc uid value to be the result of πidσ f k=G proc f ind, where

G is the GUID of the current finding.

• Union each pair of like tables (data, strn, and text) together.

Collectively, we call this transformation FindingMerge.

None of these five additional transformations can be expressed using the transforma-

tions in Table 3.2. Hence, Figure 3.11 is as close as we can come to Figure 3.9 without

extending our transformation language. In Chapter 4, we introduce new transforma-

tions that cover Adorn, Audit, and Lookup; in Chapter 7, we describe an extensibility

mechanism by which the developer can write new transformations, including Establish

Surrogate Keys and FindingMerge.

3.6 PERFORMANCE ANALYSIS

One hypothesis that we posit is that the overhead of the channel is dominated by the

overhead of accessing the physical database. In other words, the time spent performing

queries and updates in the database is significantly more than the amount of time that

the channel spends processing the queries and update statements. This property of a

channel is important because if the channel introduces as much overhead as the physical

database (or worse, more overhead than the database) then it becomes the dominant

source of latency in the application; developers would then opt to develop a custom,

158

hard-coded alternative to the channel to improve response time.

When it comes to interaction between user and interface, performance becomes a

subjective quality, as many factors contribute to the user’s experience, even including

time spent typing. Different people will have different tolerance and expectation for

what is an acceptable amount of time for a form to appear or for an information re-

quest to complete. As a baseline, we tested how long it takes to perform an insert of

a procedure using the CORI application, version 4.0.23. The “insert” comprised data

for a colonoscopy, some surgical history, and a finding of diverticulosis. We timed how

long it took to perform four such inserts, and broke the timing results into two parts:

time spent in the middleware (restructuring the insert statements), and time spent in the

database (actually issuing the inserts). The results demonstrated that approximately four

times as much time was spent doing operations in the middleware than was spent in the

database. These timings were very informal and potentially misleading; the CORI mid-

dleware code includes functions that have nothing to do with data transformation, such

as data validation, lock management, and PDF generation. However, it is informative to

note that the overhead of the middleware and the overhead of the database were within

an order of magnitude of one another with respect to time; the tests were also run over

a very small database (thousands of rows per table), so over a larger database (millions

of rows per table) the database overhead will be significantly larger with respect to the

middleware.

To test the overhead of a channel, we took the sample application we built as a Guava

analog to CORI 4.0.23 and tested it against a particular workflow. Specifically, we

timed bursts of 100 procedure inserts, where each procedure insert comprised data for a

159

colonoscopy, a surgical history, and a finding of diverticulosis. We also timed bursts of

100 queries, where each query is SELECT * FROM COL WHERE id=g, for some GUID

g that we know to represent a colonoscopy that exists in the database. This kind of query

is indicative of the kind of query issued as part of an application, i.e., retrieving a single

entity from a database for display on a form. We tested both of these workflows under

two different conditions:

• The application has an empty channel (in other words, the physical schema is the

natural schema)

• The application has a channel that includes an HMerge between the COL and

EGD tables, a VMerge between the merged table and Surgical History, a VSplit

to split off some columns, and an Unpivot on the split-off columns

The results of our analysis are in Table 3.11. The “empty channel” tests were run a

total of 3333 times, and the “with channel” tests were run a total of 7582 times. Tests

were initially run on an empty database. Table 3.11 shows the averages and standard

deviations of the timing results of those tests, broken into three components:

• Transformation time: the time spent physically within the channel processing the

insert or query statements (and their intermediate products)

• Provider time: the time spent by the provider translating the statements in a trans-

action into SQL Server-specific syntax

• Database time: the time spent within the database executing the statements

160

Table 3.11: Measuring the performance of inserts and queries against a natural schema,
both with an empty channel and a non-empty channel

Transformation Time Provider Time Database Time
Scenario Mean (ms) Std. Dev. Mean (ms) Std. Dev. Mean (ms) Std. Dev.

Insert,
empty channel

2.87 0.54 8.39 2.36 2456.53 916.24

Insert,
with channel

26.76 1.89 15.76 1.74 3992.78 657.90

Query,
empty channel

1.19 0.48 1.65 0.74 101.92 66.16

Query,
with channel

48.22 3.74 35.40 2.85 123.10 67.54

The key observation to come away with from the results in Table 3.11 is that average

transformation time and average provider time put together (in other words, the total

overhead of the channel, or channel time) is less than the average database time for

all cases. In the case of inserts, with or without transformations in the channel, that

difference is several orders of magnitude. In the case of queries, the difference is less

drastic in the presence of channel, but the channel time is still less than the database

time. Recall that these tests began with an empty database; with a larger database, the

channel time will remain constant, while the insert and query times will increase due to

more disk or index accesses. This result confirms our hypothesis: channel overhead is

dominated by database overhead.

3.7 CASE STUDY 2: INFOSONDE

As a second case study, we compare the expressive power of our seven transformations

against another tool that has a similar atomic transformation paradigm. We thus also

161

����� ���� � ���	�
�����
�������� �������� ��� ������������� ��� �
����� � ����� ��������� ��� ���������� ���� �������� ��������������� � ��
�� �� �������� ����� ������� �������� �������������� � ������� �������������� � ������� ��� �������� �������� �����
� ����� ���� ��� ������� ����������� ����� �� ������������������� ��� ������������ ��� ������� ����������� ��������������� ���� ��������� ��	�
����� ��� ������� �����
���� �������� �������� ����
��� ������ ���������� ���� �
����� ��� � ������	����� �� ��������� �� ���� �������
DB

DB

DB’

DB
n

DB
n

DB

DB
n-1

DB’ DB

DB

Q

Q

Q Q1 Qn

T

Tn T

Tn T T1 T2
…

…

Figure 3.12: Building a channel one transformation at a time, and fully instantiating

the database along the way; this workflow is very similar to how the InfoSonde work-

flow currently operates. The final row of this figure demonstrates how a channel could

respond to changes in the left database in two different ways

demonstrate how to use channels in a scenario independent of the GUI tools of Chapter

2, and unlike any of the usage patterns described in the previous section. In this case

study, we examine using a channel in a scenario similar to Potter’s Wheel [65], where

a data expert applies a transformation at a time to a database instance. Note that this

is a scenario where we are using a channel without any of the GUI components from

Chapter 2.

Our target application in this study is the InfoSonde tool [34]. InfoSonde is part of a

162

larger effort to provide tools that allow a data expert to do empirical schema discovery

over an unfamiliar, schemaless database. InfoSonde in particular works in a way similar

to that shown in Figure 3.12. In this figure, we also show how we support the InfoSonde

workflow by building a channel. A database user begins by being handed a database.

The data may be stored in a generic format and there may be little or no information

about functional dependencies, keys, and foreign keys exists. The user then proceeds

to apply tests to the database; if a test returns a positive result, one of the following

situations has occurred:

• The test demonstrates that there is a transformation that can be applied to the

database that would make the data instance “better” in some sense, e.g., by pivot-

ing the data out of a generic format.

• The test demonstrates that a foreign key, primary key, or functional dependency

exists that is not currently expressed in the database metadata, or would exist were

it not for some small amount of dirty data.

An example query for the first situation is SELECT (SELECT count(DISTINCT Y)

FROM T)/(SELECT count(*) FROM T). If the result of this second query is small

(say, less than 0.05), and the column Y contains text (string) values, and also the col-

umn Y can be considered as part of the primary key for T, the column Y may be a prime

candidate for either a horizontal split or a pivot. For example, consider the table in Fig-

ure 3.13(a). There are two columns in the table that are marked with an arrow; each of

these columns stores data that represents the source of the data, and likely has a small,

finite active domain and thus may be an enumerated domain. These two columns would

163

then be prime candidates for either horizontal partitioning or pivoting (serving as the

attribute column).

An example query for the second situation is the query SELECT count(count(*))

FROM T GROUP BY X HAVING count(*) > 1. This query returns the number of val-

ues in the X column that can be found in more than one row; if the result of this query is

zero, then X appears to be a key for the table. This query can be extended easily to any

number of columns in place of X. For example, consider the tables in Figure 3.13(b).

The two different arrows represent two possible foreign keys between the two tables.

Using some probing queries, we can determine if a foreign key already exists naturally

between the two tables. We can also determine if a functional dependency exists be-

tween the two columns lblcode and firm seq no using a different query. It may also

be the case that a foreign key or functional dependency may exist, except for a rela-

tively small set of (potentially erroneous) rows; in this case, InfoSonde can partition the

listings table in two: those rows that satisfy the dependency or foreign key, and the

small set of those that do not.

Using InfoSonde tools, a user repeatedly applies a specific workflow:

• Apply a test (or series of tests) to the database

• When a test passes, consider applying a schema change or transformation to the

database instance as a whole

• Repeat until no more new tests pass

We can use Guava to support InfoSonde’s workflow in two ways. First, both Guava

164

 (a)

 (b)

Figure 3.13: Examples of tables that may exhibit schema-like characteristics without

those characteristics being explicitly present in metadata; one may use InfoSonde to

determine that two different columns in a table are finite-domain (a), or that a foreign

key can be enforced between two tables (b) where a foreign key does not yet exist

165

and InfoSonde require a finite set of well-defined, encapsulated database transforma-

tions. The standard way to use Guava channels is to connect a virtual database instance

to a concrete one, acting as a view definition. To support InfoSonde, we allow a de-

veloper to apply transformations one-at-a-time to an instantiated database instance, as

shown in Figure 3.12. One can use the copy insert transformations described in Figure

3.7 to translate an entire database instance through a channel in either direction. We start

with a materialized database instance that is effectively in the natural schema (Option 2

in Figure 3.7). Next, we create a separate database that has the schema of the desired

physical schema. Finally, we create copy insert statements for each of the tables in the

natural schema, push them through the channel, and execute them.

In addition, the list of channel transformations and the list of transformations re-

quired for the InfoSonde project overlap; however, neither set of transformations sub-

sumes the other. In common between the two lists are the Pivot, HPartition, and HMerge

transformations. Second, Guava’s data model supports a more expressive form of ref-

erential integrity; using InfoSonde, one may be able to construct a test query that can

expose the existence of Tier 2 foreign keys, which may in turn provide evidence for

further schema modifications or transformations.

The collaboration between InfoSonde and Guava is ongoing. The rest of this section

outlines the lessons that we have learned from our collaboration thus far.

The queries that the user issues as part of the iterative schema discovery process

invariably include aggregation and grouping features. These features are not a part

of Guava’s supported query language in the current implementation. There are two

workarounds for this situation; the simple option is to have the user issue a query using

166

the existing query language, then import the results of that query into a relational engine

and evaluate the aggregation separately. This workflow is simple to implement from a

user interface perspective, and requires no extension of the underlying architecture.

The second option is to extend the Guava query language to include aggregation

and grouping. Doing so would require adding code for new operators, and updating the

SQL Server provider to be able to translate the new operators into native SQL code.

However, due to our use of the visitor pattern in our code, one would not need to update

the implementation of any of the channel transformations. We would also not need to

update the formalism behind Guava at all. The channel transformations process queries

by view unfolding, which does not affect any other operators in the tree. Said differently,

adding new operators to the query language does not affect the closure property of the

supported Guava statements.

There are two transformations that InfoSonde requires that we do not yet provide:

• Predicate Partition (PPartition): Break up a table into multiple tables based on

whether each row satisfies a predicate, similar to a generalized version of HParti-

tion.

• Normalize: The standard normalization transformation along a transitive func-

tional dependency. If a table T has a functional dependency X → Y , where X and

Y are collections of non-key columns, create a new table T ′(X,Y), let T ′ = πX∪YT ,

and let T = πCols(T)−YT .

In Chapter 4, we describe how to add PPartition to our set of supported transforma-

tions. In Chapter 7, we describe how a developer can add additional transformations, in-

cluding Normalize. Functional dependencies are not explicitly part of the Guava model,

167

or the model of most relational database engines. Therefore, the Normalize transfor-

mation is unique among transformations in both Guava and Infosonde in that it is only

information preserving if it assumes a condition on the data to be true in the conceptual

schema that it cannot statically check (compared to, for instance, Vertical Merge, which

requires that the merged tables have a foreign key defined between them that can be

verified as it is a first-class entity in the relational model).

3.8 RELATED WORK

Relational Lenses [9] is an approach that uses an operational list of components to ad-

dress the view update problem. A lens is bi-directional in the same way as a channel

operator: each lens describes how to translate data in one direction and how to unam-

biguously update data in the reverse direction. The current set of operators that we

consider and the set of lenses have different expressive power, though neither subsumes

the other. Lenses, as well as other approaches to data independence [79], use rela-

tional algebra or something similar to define their views, and focus entirely on views

expressed using conjunctive queries. Relational lenses support arbitrary joins. On the

other hand, lenses do not handle schema-level changes in the current literature. Channel

transformations do not mirror relational algebra operators; rather, each transformation

encapsulates a higher-level restructuring of schema and data that has known properties,

including updatability and accommodation of schema-level changes.

PRISM [17] and PRIMA [58] are two frameworks by the same research group that

provide mechanisms for incremental schema changes. Both PRISM and PRIMA sup-

port low-level schema changes such as adding or dropping columns and renaming tables.

168

PRISM goes a step further and provides five high-level transformations that have direct

analogs to the Apply, HPartition, HMerge, VPartition, and VMerge transformations in

Guava. One uses a sequence of these Schema Modification Operators (SMOs) to de-

scribe the relationship between two versions of a physical database; one can then pose a

query against one version of the database, and have that query automatically translated

into equivalent forms that are valid and correct on other versions of the database. In

this way, SMOs between two versions of a database acts like channel transformations

between a natural schema and the physical database in Guava. SMOs cannot propagate

DML updates or DDL updates, since once a version of a database has been made ob-

solete, the contents and schema of that version become static. There is also no SMO

corresponding to Pivot or Unpivot.

There are several more areas of research that aim to describe data transformation

using a collection of discrete, well-understood components [30]. Many of these projects

treat such transformations as uni-directional and to be executed periodically as a batch

process. The most prominent such technology is arguably Extract-Transform-Load

(ETL). Both academic research [80] and commercial products [52] model ETL pro-

cesses as a workflow of operations, where each operation comes from a finite menu of

components. Another such paradigm is database refactoring, which refers to the process

undertaken by a software engineer or database administrator to change the design of a

database without changing the underlying semantics of the data. Ambler and Sadalage

[3] present a list of atomic operations, each of which is a refactoring. Finally, Potter’s

Wheel [65] is a data cleaning and visualization tool that allows the user to apply oper-

ators to “sculpt” data dynamically to fix data errors and to reshape schemas. One can

169

then save Potter’s Wheel operators and compile them into a script that resembles an ETL

process.

There is much functional overlap between our channel transformations and the op-

erators in these projects; for instance, Potter’s Wheel includes pivot and unpivot op-

erations, and Ambler’s refactorings list includes partitioning. However, none of these

projects can handle active communication between schemas. One can think of a chan-

nel as an ETL process or a refactoring that is bi-directional and dynamic. Also, none of

these projects can handle propagation of schema changes through their constructs.

Some projects use declarative mappings rather than discrete operators to establish a

relationship between two schemas. One approach is to compile mappings into a one-

way transformation (e.g., Clio [56, 57]). The other approach is to compile mappings into

a bi-directional transformation or two opposite-facing one-way transforms [49], which

provides updatability at the cost of the expressive power of the mappings. While the

declarative approach is higher-level than specifying operators or workflows, the expres-

sive power of such mappings is generally limited to various flavors of joins and unions.

Most mapping languages cannot express functions or express a pivot or unpivot. Clio

is of particular note because one can associate a function with a mapping, whose effect

is similar to our Apply transformation, and recently introduced constructs that can do

pivot- and unpivot-like transformations [32]. However, Clio’s flexibility comes at the

cost that its mappings are not updatable, and it cannot handle schema evolution.

We introduced the Apply operator to handle attribute transformations; our Apply

operator necessarily needs to use an invertible function so as to meet the invertibility

requirement of Guava transformations. Larson et al. considered the problem of attribute

170

and values equivalences extensively, and provides a formal treatment of the kinds of

value transformations that are invertible [41].

The COIN project [70] focuses on describing attributes with context elements, such

as units. Guava captures context information about each user interface control, such as

the label that appears on the screen. We do not focus specifically on the kind of context

elements considered in the COIN project, such as units for a value, but such context

elements could be easily incorporated in Guava.

There have been several approaches to try to extend the SQL query language to

include enough expressive power to cover pivoting data. SQL Server 2005 [53] added a

PIVOT ON clause to identify a pivot column. SchemaSQL [40] introduces relation and

column variables that can produce the effect of pivoting. FISQL [83] is a variety of SQL

that provides language features similar to SchemaSQL’s relation and column variables,

but with cleaner underlying semantics. Using these approaches, one can construct views

that have similar capabilities as our pivot and unpivot operators, and relation variables

provide a similar functionality as horizontal merging and partitioning. None of these

approaches currently address the update problem, either for data or for schema.

FISQL uses as its formal foundation work from an earlier paper [82] that introduces

five atomic operators as extensions to relational algebra. One can express pivot and un-

pivot as compositions of these five operators. Similar to SchemaSQL, Wyss’s version

of pivot and unpivot does not assume a static schema; a pivot operator may produce a

variable number of output columns depending on the active domain of the pivot col-

umn in the input instance. Also similar to SchemaSQL, FISQL cannot be implemented

171

in a database system without re-implementing the underlying model and all other op-

erators in a DBMS because their version of pivot operates on dynamic schema. Both

SchemaSQL and FISQL push as much of a query down to a static-schema relational

database to leverage its relational engine, then implement the dynamic-schema portions

in a separate module. Guava provides a solution that is a compromise between static

and dynamic schema; we assume a static schema for the relational database and for the

input and output of each operator, but we accommodate schema changes at the element,

column, and relation levels.

Object-relational mapping tools (ORM’s) [33, 49, 73] are an increasingly popular

way to connect client data structures with persistent data. These tools typically provide

a default mapping between a set of classes and a set of tables, and automatically moving

data between the two. ORM’s also come with a way to query objects, and translate those

object queries into relational queries. The level of mapping customizability and expres-

sive power varies between ORM’s. Typically, the mappings used in ORM’s can support

selection, projection, and limited join and union, and cannot handle more complicated

transformations such as pivoting.

In ORM’s, there are three popular paradigms for storing data from objects in tables.

First is Table-per-type, where there is one table in the database for every object class;

if class A is a superclass for B, the table for B only stores the data for attributes unique

to B. Second is Table-per-concrete-type, where there is still one table per class, but

data is stored differently; if class A is a superclass for B, both A and B’s tables have

columns for the attributes of A. The only objects that are stored in the table for class A

172

are those objects that are in class A and no other subclass. Finally, there is Table-per-

hierarchy, which stores all of the data for an entire class hierarchy in the same table;

if an object is type A, in the table the row for that object will have a value of null for

any attributes that do not belong to class A. There is also a provenance column added

to indicate the type of the object in each row. In addition to these three paradigms,

Mork et al. present a flexible method for translating an object hierarchy into persistent

storage structures [59]. Though Guava does not explicitly support object hierarchies,

if one treats each object class as a relation in the input schema of the channel, Guava

can support all of the above paradigms as a combination of GVPartition, HMerge, and

PPartition transformations. We introduce GVPartition, and fully define GVPartition and

PPartition, in the next chapter.

Federated database systems provide another avenue for research into database map-

pings. In a federated database, there is a single schema (the global schema) that serves

as the public view of the data in the federation, and a collection of schemas (the lo-

cal schemas) corresponding to the physical data stored in various databases. The local

databases are likely heterogeneous in the sense that like objects are probably not stored

in like schemas, exhibiting conflicts of various kinds [72]. There are several approaches

to establishing relationships between the global schema and the various local schemas;

each approach provides a mechanism to rewrite queries expressed against the global

schema into queries against the local schemas [42].

Global-as-View (GAV) expresses the global schema as a set of queries over the local

schemas. Local-as-View (LAV) expresses each local schema as a set of queries over

the global schema. Global-and-Local-as-View (GLAV) is a combination of the two;

173

the relationships between global and local schemas are expressed by statements in the

form Ql ⊆ Qg, stating that the result of query Ql over a local schema is contained in

the result of query Qg over the global schema. One final approach, called Both-as-View

(BAV), describes the relationship between the global schema and a local schema as a

sequence of discrete transforms, each adding, modifying, or dropping tables according

to transformation rules. BAV has been demonstrated on both a high-level hypergraph

data model [62] and the relational model [47]. All four of these approaches employ

a query language as their mapping language; therefore, the expressive power of the

mappings provided by any of these approaches depends on the chosen query language.

For instance, Miller [55] uses a restricted form of SchemaSQL as the query language

in a GAV setting, allowing unpivot-like operations from a local schema to the global

schema.

Federated databases offer no guarantee of information preservation; query transla-

tion in federated databases follows maximally contained semantics, in that the resulting

query post-translation offers the most complete set of results possible. Also, because

all relationships in these approaches are expressed using views, processing of updates

is handled in a similar fashion as in the materialized view literature [28] and view-

updatability literature [19]. The ability to update through views, materialized or other-

wise, depends heavily on the query language. Constructs such as unions are considered

difficult, and pivots and unpivots are not considered; these operators are ambiguous

to update in the general case. Guava allows specific instances of these operators in a

channel and can still translate updates because Guava transformations are chosen to be

updatable unambiguously.

174

3.9 SUMMARY

A channel is a tool for establishing a mapping between two schemas, effectively con-

necting a virtual schema to a physical schema, similar to a collection of views. A chan-

nel comprises a sequence of developer-selected transformations that are information

preserving. Once a channel has been created, the channel receives as input statements

issued against the virtual schema and translates them into equivalent statements issued

against the physical schema. Performance results illustrate that our implementation of

channel transformations are efficient enough for run-time applications, using the exist-

ing CORI 4.0.23 application as an objective benchmark. We performed case studies

that compared the expressive power of the seven transformations defined in this chapter

against an existing application middleware as well as a tool that performs data transfor-

mation.

Chapter 4

EXTENDING THE EXPRESSIVE POWER OF CHANNELS

The channel is a tool that introduces data independence between a relational schema and

an underlying physical schema as a sequence of encapsulated transformations from one

schema to another. As demonstrated in the case studies, the seven transformations in

Table 3.2 are useful for modeling the kinds of transformations that exist in applications,

but are not expressive enough to fully describe those transformations. In this chapter,

we extend the expressive power of channels by introducing new transformations.

One assumption that the we made in the previous chapter regarding channels is that

they should be transparent to any application accessing the natural schema. This as-

sumption stems from the fact that all of the transformations from Chapter 3 represent

physical design decisions, which are traditionally transparent to the user. Said another

way, one of the benefits of data independence is precisely that the application can treat

the virtual schema (in our case, the natural schema) as if it were the physical schema

without having to worry about the data access mechanics. Some of the new transfor-

mations that we introduce in this chapter relax this assumption because they perform

transformations that an application may want to know about. For instance, a transfor-

mation might add new data fields as it travels through the channel, and the application

developer may choose to have the query interface present those fields to the user.

Another assumption that we make in Chapter 3 is that the information-preservation

176

property implies locality of updates. In other words, if one issues a DML statement

against table T , one should not see any effects to any table other than T in the natural

schema, unless there are cascading deletes involved. A developer may have additional

knowledge about the extent of the natural schema. For instance, a developer may know

that tables T and T ′ actually refer to the same data, as if they were both views over

the same table. In that case, updates against T will have effects on T ′. Some of the

transformations in this chapter act as a developer directive stating that there exists a

relationship between schema elements in the natural schema that will intentionally cause

side effects.

In this chapter, we extend the expressive power of our channel transformation lan-

guage in three ways. We discuss each of these research contributions separately:

• We demonstrate how to generalize three of the existing transformations: Pivot,

VPartition, and HPartition.

• We introduce a new class of transformations — called application-specific trans-

formations — that correspond to business-logic decisions rather than physical

design decisions. Application-specific transformations provide information, on

request, about the changes that they make to data.

• We introduce a third class of transformations called correspondence assertions

that have applications in information integration. Correspondence assertions also

modify the definition of information preservation to be relative to developer di-

rectives; for instance, if a developer asserts that tables T and T ′ refer to the same

data, then a new row in T will also appear in table T ′. This scenario violates our

177

Items (Input Schema):

ID Source Target Data

1 A X 11

2 B X 12

3 A Y 13

4 B Y 14

FromA (Output Schema):

ID Source Target Data

1 A X 11

3 A Y 13

FromB (Output Schema):

ID Source Target Data

2 B X 12

4 B Y 14

ToX (Output Schema):

ID Source Target Data

1 A X 11

2 B X 12

ToY (Output Schema):

ID Source Target Data

3 A Y 13

4 B Y 14

PPartition

(Items, {FromA, FromB, ToX, ToY},

{Source, Target}, {Source=A,

Source=B, Target=X, Target=Y})

Figure 4.1: An example of the PPartition transformation acting on instances

original definition of information preservation (no unexpected side effects) but is

valid relative to the assertion.

4.1 GENERALIZED TRANSFORMATIONS

The definitions of the transformations in Tables 3.3 through 3.9 are based on how we

have seen these transformations in use in applications. Case study 1 in the previous

chapter demonstrated that the transformations, as defined, are sufficient for the physical-

design part of CORI’s database. Anecdotally, the transformations were also sufficient

to support several other applications we looked at. However, we make the following

observations:

178

Data (Input Schema):

ID A B X Y

1 c e 11 22

1 d f 12 23

2 c e 13 24

2 d e 14 25

Data (Output Schema):

ID X_c_e X_c_f X_d_e X_d_f Y_c_e …

1 11 12 22 …

2 13 14 24 …

MultiPivot (Data, {A,B}, {X,Y})

Figure 4.2: An example of the MultiPivot transformation acting on instances

Patient (Input Schema):

ID Name City State Insured Prov

1 Bob Boston MA T 102

2 Ted Miami FL F 188

Patient (Output Schema):

ID Name Prov

1 Bob 102

2 Ted 188

PatientA (Output Schema):

ID City State

1 Boston MA

2 Miami FL

PatientB (Output Schema):

ID Name Insured

1 Bob T

2 Ted F

GVPartition (Patient, {PatientA, PatientB},

f: f(Patient) = {Name, Prov},

 f(PatientA) = {City, State},

 f(PatientB) = {Name, Insured})

Figure 4.3: An example of the GVPartition transformation acting on instances

179

• The Pivot and Unpivot transformations both operate on a single dimension of

analysis. In other words, they operate with a single attribute column and a single

value column. In data warehousing applications, one may want to pivot or unpivot

on multiple attribute or value columns simultaneously.

• The HPartition and VPartition transformations both produce non-redundant out-

put in the sense that no non-key data is stored in more than one place. However,

one may intentionally want to store non-key data redundantly. For instance, one

may want to vertically partition a table into three tables, where all three tables

have some non-key columns in common (similar to having multiple, overlapping

covering indexes) to speed up certain queries.

In Table 4.1, we define generalized versions of three transformations that were origi-

nally introduced in Chapter 3. PPartition (Predicate Partition, Table 4.2, and an example

in Figure 4.1) is a version of HPartition, where rows are distributed amongst a collection

of tables based on whether each row satisfies the predicate associated with the output

table. With PPartition, each row can end up in multiple tables if the row satisfies more

than one predicate. The MultiPivot transformation (Table 4.3, and an example in Figure

4.2) is a generalization of Pivot, where now multiple attribute and value columns are al-

lowed. GVPartition (Table 4.4, and an example in Figure 4.3) is a version of VPartition

that can produce any number of tables (rather that just two) and that allows columns to

occur in multiple tables.

180

Ta
bl

e
4.

1:
A

dd
iti

on
al

ch
an

ne
lt

ra
ns

fo
rm

at
io

ns
,t

he
ir

de
sc

ri
pt

io
ns

,a
nd

th
ei

re
ff

ec
to

n
re

la
tio

na
lq

ue
ri

es
.

Tr
an

sf
or

m
at

io
n

D
es

cr
ip

tio
n

of
Tr

an
sf

or
m

at
io

n
E

ff
ec

to
n

Q
ue

ry
PP

ar
tit

io
n

(T
a,
~ T
s,
~ C
s,
~ P
s)

H
or

iz
on

ta
lly

pa
rt

iti
on

a
ta

bl
e

T
a

in
to

a
co

lle
ct

io
n

of
ta

bl
es

ac
co

rd
in

g
to

a
co

lle
ct

io
n

of
pr

ed
-

ic
at

es
~ P
s

in
to

ta
bl

es
~ T
s.

~ P
s

m
us

ts
at

is
fy
|~ P|

=
|~ T

s|
an

d
∨

p∈
~ P
s

p
=

tr
ue

.
If

a
tu

pl
e

ts
at

is
fie

s
th

e
i’t

h
pr

ed
ic

at
e

in
~ P
s,

it
w

ill
ap

pe
ar

in
th

e
i’t

h
ta

bl
e

in
~ T
s.

T
hu

s,
tu

pl
es

m
ay

ap
pe

ar
in

m
or

e
th

an
on

e
ou

tp
ut

ta
bl

e,
bu

te
ve

ry
tu

pl
e

m
us

ta
pp

ea
ri

n
at

le
as

to
ne

ou
tp

ut
ta

bl
e.

~ C
s:

th
e

co
lu

m
ns

th
at

ar
e

ex
am

in
ed

by
th

e
pr

ed
ic

at
es

in
~ P
s

p t
:t

he
pr

ed
ic

at
e

in
~ P
s

as
so

ci
at

ed
w

ith
t∈

~ T
s

t p
:t

he
ta

bl
e

as
so

ci
at

ed
w

ith
pr

ed
ic

at
e

p

T a
=
⇒
∪ t
∈~ T

st
σ

cT
a(
∃ p
∈~ P

sc
∧

p
=

c)
=
⇒

σ
ct

p

M
ul

tiP
iv

ot
(T

a,
~ A
s,
~ V
s)

Si
m

ila
r

to
Pi

vo
t,

ex
ce

pt
th

e
“A

ttr
ib

ut
e”

an
d

th
e

“V
al

ue
”

pa
ra

m
et

er
s

m
ay

sp
an

m
ul

ti-
pl

e
at

tr
ib

ut
es

.
T

he
pi

vo
te

d
co

lu
m

n
na

m
es

ar
e

de
fin

ed
by

th
e

fu
nc

tio
n

f n
am

e
:

(~ V
s
×

Π
a∈

~ A
sD

om
(a

))
→

S
tr

in
g

th
at

co
nc

at
en

at
es

th
e

ar
gu

m
en

ts
in

to
a

st
ri

ng
jo

in
ed

by
un

de
rs

co
re

s.
Fo

ri
ns

ta
nc

e,
if

th
e

ta
bl

e
T

a(
K
,A

1,
A

2,
V

1,
V

2)
co

nt
ai

ns
a

tu
pl

e
(1
,X
,Y
,H
,T

),
th

e
va

lu
e

H
w

ill
be

st
or

ed
in

th
e

pi
vo

te
d

ta
bl

e
in

a
co

lu
m

n
ca

lle
d

V
1

X
Y

.
Fu

nc
tio

n
f−

1
na

m
e

ta
ke

s
a

pi
vo

te
d

ta
bl

e
co

lu
m

n
an

d
pr

od
uc

es
va

lu
es

fo
r
~ A
s

an
d

on
e

of
th

e
va

lu
es

fr
om

~ V
.F

or
in

st
an

ce
,

f−
1

na
m

e(
V

1
X

Y
)

=
(V

1,
X
,Y

).
V C

re
fe

rs
to

th
e

va
lu

e
in
~ V

th
at

co
nt

ri
bu

te
st

o
th

e
na

m
e

of
co

lu
m

n
C

.F
or

in
st

an
ce

,f
or

co
lu

m
n

C
=

V
1

X
Y

,V
C

=
V

1.
O

ne
ca

n
ev

al
ua

te
V C

by
ev

al
ua

tin
g
π

1
f−

1
na

m
e(

C
).

T a
=
⇒

↗�
~ V
s,

A
,V
α
{A
},{

A
}∪
~ A
s,

f−
1

na
m

e

↙� C
ol

s o
ut

(T
a
)−

K
ey

s(
T a

),
A
,V

T
a

G
V

Pa
rt

iti
on

(T
a,
~ T

n,
f)

V
er

tic
al

ly
pa

rt
iti

on
a

ta
bl

e
T a

in
to

an
y

nu
m

be
ro

ft
ab

le
s
~ T n

an
d

T
a.

K
ey

s
ar

e
pl

ac
ed

in
al

lo
f

th
e

ta
bl

es
.

Pl
ac

e
ea

ch
no

n-
ke

y
co

lu
m

n
C

in
ea

ch
ta

bl
e

t
∈
~ T n

if
C
∈

f(
t)

w
he

re
f

is
de

fin
ed

as
fo

llo
w

s:
f

:
~ T

n
∪{

T a
}→

2C
ol

s(
T a

)
w

he
re
∀ t∈

~ T
n

f(
t)
,
∅

.A
ll

co
lu

m
ns

th
at

ar
e

no
ta

cc
ou

nt
ed

fo
ri

n
th

e
ou

tp
ut

of
f

ar
e

pl
ac

ed
in

to
T

a.
D

efi
ne

co
ve

ra
ge

(f
)

=
∪ t
∈~ T

n
∪{

T a
}f

(t
).

T a
=
⇒

T
a(
∀ t∈

~ T n
AY

t)
w

he
re

al
lj

oi
ns

ar
e

na
tu

ra
lj

oi
ns

.
O

pt
im

iz
ed

:π
~ C
T a

=
⇒

π
~ C
t

if
∃ t∈

~ T n
(~ C
−

K
ey

s(
T

a)
⊆

f(
t)

)

181

Just like the original seven transformations, these three generalized versions have a

predictable effect on physical database characteristics. Table 4.5 presents the effect of

the generalized transformations on table statistics.

The tradeoff between a transformation from Chapter 3 and its generalized counter-

part is between simplicity and speed on the one hand and expressiveness on the other.

The generalized transformations in Table 4.1 can provide a mapping between schemas

that cannot be expressed using only the transformations in Table 3.2. However, the gen-

eralized transformations require significantly more input to be specified by the database

developer; for instance, HPartition only required the developer to specify a table name

and a column name, while its generalized version PPartition requires the developer to

specify (potentially complicated) predicates along with the desired output table names.

In addition, the generalized transformations have necessarily more complicated algo-

rithms, requiring more in-memory processing, and may yield more complicated output.

For instance, compare the processing of DML delete statements between Pivot and

MultiPivot in their respective tables. Delete processing by a Pivot results in either a sin-

gle update statement or a single delete statement, depending on whether a condition on

the attribute column exists. Delete processing by a MultiPivot may result in many up-

date statements. Also, consider the query processing of the two transformations; Pivot

introduces a single, O(n log n), operator, while MultiPivot introduces two O(n log n) op-

erators and a function application.

182

Table 4.2: Defining the action of PPartition.

Statement PPartition (Ta, ~T s, ~Cs, f)
Insert I(T, ~C,Q) T = Ta =⇒ ∀t∈ ~T sI(t, ~C, σpt Q)
Update
U(T, ~F, ~C,Q)

T = Ta ∧ (~C ∩ ~Cs = ∅) =⇒ ∀t∈ ~T s(~F ∧ pt , f alse)→ U(t, ~F, ~C,Q)
T = Ta ∧ (~C ∩ ~Cs , ∅) =⇒ ∀t∈ ~T s((~F ∧ pt , f alse)→ U(t, ~F, ~C,Q),
Loop(c, (∪t′∈ ~T s−{t}σ ~F∧pt

t′) − t, I(t,Cols(t), c)),
Loop(c, πKeys(t)σ¬pt t,D(t, < Keys(t), c >)))

Delete D(T, ~F) T = Ta =⇒ ∀t∈ ~T s((~F ∧ pt) , f alse)→ D(t, ~F)
Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ ∀t∈ ~T sAT (t, ~C, ~D, ~K)

Rename Table
RT (To,Tn)

Drop statement

Drop Table DT (T) T = Ta =⇒ ∀t∈ ~T sDT (t)
Add Column
AC(T,C,D)

T = Ta =⇒ ∀t∈ ~T sAC(t,C,D)

Rename Column
RC(T,Co,Cn)

T = Ta =⇒ ∀t∈ ~T sRC(t,Co,Cn)

Drop Column
DC(T,C)

T = Ta ∧ C ∈ ~Cs =⇒ Throw error (cannot drop a column involved in
predicates without changing function)
T = Ta ∧C < ~Cs =⇒ ∀t∈ ~T sDC(t,C)

Add Element
AE(T,C, E)

T = Ta ∧ C ∈ ~Cs =⇒ Throw error (cannot alter a column involved in
predicates without changing function)
T = Ta =⇒ ∀t∈ ~T sAE(t,C, E)

Rename Element
RE(T,C, Eo, En)

T = Ta ∧ C ∈ ~Cs =⇒ Throw error (cannot alter a column involved in
predicates without changing function)
T = Ta =⇒ ∀t∈ ~T sRE(t,C, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∧ C ∈ ~Cs =⇒ Throw error (cannot alter a column involved in
predicates without changing function)
T = Ta =⇒ ∀t∈ ~T sDE(t,C, E)

Foreign Key
FK(~F|T.~X → ~G|B.~Y)

T = Ta =⇒ ∀t∈ ~T s)((~F ∧ pt) , f alse)→ FK(~F|t.~X → ~G|B.~Y)
B = Ta =⇒ ∀t∈ ~T s)((~F ∧ pt) , f alse)→ FK(~F|T.~X → ~G|t.~Y)

183

Table 4.3: Defining the action of MultiPivot. Some DDL statements are unaffected.

Statement MultiPivot (Ta, ~As, ~V s)
Insert
I(T, ~C,Q)

T = Ta =⇒ Error((πKeysin(Ta)Q Z Ta) ∩ πKeysin(Ta)α{A},{A}∪ ~As, f −1
name

↙�Colsout(Ta)−Keysout(Ta),A,V (πColsout(Ta)(Q Z Ta))),
∀t∈Πa∈ ~AsDom(a)Loop(t, σ ~As=tQ Z (πKeysout(Ta)Ta),
U(Ta, < Keysout(Ta), πKeysout(Ta)t >,∀c∈ ~C(fname(c × t)), π ~C t)), I(Ta,Colsout(Ta),
↗�Colsout(Ta)−Keysout(Ta),A,Vα{A}∪ ~As,{A}, fname

↙� ~C−Keysout(Ta),A,V (QX(πKeys(Ta)−{A}Ta)))

Update
U(T, ~F, ~C,Q)

T = Ta =⇒ ∀t∈Aspace U(Ta, ~F − ~F0,∀c∈ ~C(fname(c × t)),Q)

where Aspace = Πa∈ ~As


{v} if ∃v < a, v >∈ ~F

Dom(a) else


and ~F0 is the set of all conditions that reference columns in ~As

Delete
D(T, ~F)

T = Ta ∧ ∃<c,v>∈ ~Fc ∈ ~As =⇒ ∀t∈Aspace U(Ta, ~F − ~F0,∀c∈ ~C(fname(c × t)), (null)pad)
T = Ta ∧ @<c,v>∈ ~Fc ∈ ~As =⇒ D(Ta, ~F)

Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ AT (Ta, (~C − (~As ∪ ~V s)) ∪ {∀t∈(~V s×Πa∈ ~AsDom(a)) fname(t)},
~D − (∀a∈ ~AsDom(a) ∪ ∀v∈ ~V sDom(v)) ∪ {∀t∈(~V s×Πa∈ ~AsDom(a))Dom(π1t)}, ~K − ~As)

Add Column
AC(T,C,D)

T = Ta =⇒ ∀t∈Πa∈ ~AsDom(a)AC(Ta, fname(C × t),D)

Rename Column
RC(T,Co,Cn)

T = Ta =⇒ ∀t∈Πa∈ ~AsDom(a)RC(Ta, fname(Co × t), fname(Cn × t))

Drop Column
DC(T,C)

T = Ta =⇒ ∀t∈Πa∈ ~AsDom(a)DC(Ta, fname(C × t))

Add Element
AE(T,C, E)

T = Ta ∧C ∈ ~As =⇒ ∀v∈ ~V s∀t∈Πa∈ ~As−{C}Dom(a))AC(Ta, fname(v × gC(E, t)),Dom(v))
where gC(E, t) is the function that places E in the C position in tuple t
T = Ta ∧C ∈ ~V s =⇒ ∀c∈Colsin (cv = C)→ AE(T, c, E)

Rename Element
RE(T,C, Eo, En)

T = Ta ∧C ∈ ~As =⇒
∀v∈ ~V s∀t∈Πa∈ ~As−{C}Dom(a))RC(Ta, fname(v × gC(Eo, t)), f (v × g(En, t)), En)
T = Ta ∧C ∈ ~V s =⇒ ∀c∈Colsin (cv = C)→ RE(T, c, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∧C ∈ ~As =⇒ ∀v∈ ~V s∀t∈Πa∈ ~As−{C}Dom(a))DC(Ta, fname(v × gC(E, t)))
T = Ta ∧C ∈ ~V s =⇒ ∀c∈Colsin (cv = C)→ DE(T, c, E)

Foreign Key
FK(~F|T.~X
→ ~G|B.~Y)

(T = Ta ∧ ~As ∩ ~X , ∅) ∨ (B = Ta ∧ ~As ∩ ~Y , ∅) =⇒ Treat as Tier 3
T = Ta ∧ ∃<c,v>∈ ~Fc ∈ ~As ∧ ~V s ∩ ~X = ∅ ∧ ~As ∩ ~X = ∅ =⇒ Treat as Tier 3
T = Ta ∧ ~V s ∩ ~X , ∅ ∧ ~As ∩ ~X = ∅ =⇒
∀t∈Aspace (FK(~F|T.(~X − ~V s ∪ ∀c∈~X∩ ~V s fname(c × t)→ ~G|B.~Y)))

184

Table 4.4: Defining the action of GVPartition.

Statement GVPartition (Ta, ~Tn, f)
Insert
I(T, ~C,Q)

T = Ta =⇒ ∀t∈ ~Tn
(~C ∩ f (t) , ∅)→ I(t, (Keys(Ta)∪ (~C ∩ f (t))), π(Keys(Ta)∪(~C∩ f (t)))Q),

I(Ta, (Keys(Ta) ∪ (~C − f (~Tn)) ∪ f (Ta)), π(Keys(Ta)∪(~C− f (~Tn))∪ f (Ta))Q)

Update
U(T, ~F, ~C,Q)

T = Ta =⇒ U(Ta, ~F, (~C − f (~Tn) ∪ f (Ta), π(~C− f (~Tn))∪ f (Ta)))Q,
∀t∈Tn∧(~C ∩ f (t) , ∅)→ I(t,Keys(Ta), πKeys(Ta)σ ~FTa − πKeys(Ta)t),
∀t∈Tn∧(~C ∩ f (t) , ∅)→ U(Tn, ~F, ~C − ~Cs, π ~C− ~CsQ)

Delete T = Ta =⇒ D(Ta, ~F),∀t∈ ~Tn
D(t, ~F)

Add Table
AT (T, ~C, ~D, ~K)

T = Ta =⇒ ∀t∈ ~Tn
AT (t, ~C ∩ (f (t) ∪ ~K), {d ∈ ~D|col(d) ∈ f (t) ∪ ~K}, ~K),

AT (Ta, (~C − coverage(f)) ∪ ~K ∪ f (Ta), {d ∈ ~D|col(d) ∈ (~C − coverage(f))
∪~K ∪ f (Ta)}, ~K),∀t∈ ~Tn

FK(true|t. ~K → true|Ta. ~K)
Rename Table
RT (To,Tn)

Tn ∈ ~Tn =⇒ Throw error (naming conflict)

Drop Table
DT (T)

T = Ta =⇒ ∀t∈ ~Tn∪{Ta}DT (t)

Add Column
AC(T,C,D)

T = Ta ∧C < coverage(f)) =⇒ AC(Ta,C,D)
T = Ta ∧C ∈ coverage(f)) =⇒ ∀t∈ ~Tn

(~C ∩ f (t) , ∅)→ AC(t,C,D)
Rename Col.
RC(T,Co,Cn)

T = Ta ∧Co ∈ Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}RC(t,Co,Cn)
T = Ta ∧Co < coverage(f) ∧Co < Keys(Ta) =⇒ RC(Ta,Co,Cn)
T = Ta ∧Co ∈ coverage(f) =⇒ ∀t∈ ~Tn

Co ∈ f (t)→ RC(t,Co,Cn)
Drop Column
DC(T,C,D)

T = Ta ∧C < coverage(f) =⇒ DC(Ta,C)
T = Ta ∧C ∈ coverage(f) =⇒ ∀t∈ ~Tn

C ∈ f (t)→ DC(t,C)
Add Element
AE(T,C, E)

T = Ta ∧C ∈ Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}AE(t,C, E)
T = Ta ∧C < coverage(f) ∧C < Keys(Ta) =⇒ AE(Ta,C, E)
T = Ta ∧C ∈ coverage(f) ∧C < Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}C ∈ f (t)→ AE(t,C, E)

Rename Elt.
RE
(T,C, Eo, En)

T = Ta ∧C ∈ Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}RE(t,C, Eo, En)
T = Ta ∧C < coverage(f) ∧C < Keys(Ta) =⇒ RE(Ta,C, Eo, En)
T = Ta∧C ∈ coverage(f)∧C < Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}C ∈ f (t)→ RE(t,C, Eo, En)

Drop Element
DE(T,C, E)

T = Ta ∧C ∈ Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}DE(t,C, E)
T = Ta ∧C < coverage(f) ∧C < Keys(Ta) =⇒ DE(Ta,C, E)
T = Ta ∧C ∈ coverage(f) ∧C < Keys(Ta) =⇒ ∀t∈ ~Tn∪{Ta}C ∈ f (t)→ DE(t,C, E)

Foreign Key
FK(~F|T.~X →
~G|B.~Y)

T = Ta ∧ ∃t∈ ~Tn
((~X −Keys(Ta)) ⊆ f (t)) =⇒

∀t∈ ~Tn
((~X −Keys(Ta)) ⊆ f (t))→ FK(~F|t.~X → ~G|B.~Y)

T = Ta ∧ @t∈ ~Tn
((~X −Keys(Ta)) ⊆ f (t)) =⇒ Check(π~Xσ ~FTa(∀t∈ ~Tn

AY t) ⊆ π~Yσ ~GB)

185

Table 4.5: Defining the action of augmented transformation operator on table statistics.

Transformation Effect of Transformation
PPartition
(Ta, ~T s, ~Cs, ~Ps)

TS tat(Ta,R, ~H) =⇒ ∀t∈ ~T sTS tat(t,Rt, ~Ht) where:
Rt = R × Σv∈Vpt

Πb∈ ~Cs(Hb(vb)/R)
Ht

c is the function defined by Ht
c(x) = Hc(x) × Σv∈Vpt

Πb∈ ~Cs(Hb(vb)/R)
Vp is the set of all values v = (v1, v2, . . . , v| ~Cs|) in Πc∈ ~Csdomain(c) such that p(v) =

true.
(Assume that there is no correlation between columns)

MultiPivot
(Ta, ~As, ~V s)

TS tat(Ta,R, ~H) =⇒ TS tat(Ta,Rp, ~Hp), where:
Rp = Πc∈Keysin(Ta)− ~As(|activedom(c)|), where activedom(c) is the active domain of
column c, or the number of distinct values x that have non-zero values for Hc(x),
Hp

c = Hc for any column c ∈ Keysout(Ta)
Hp

c for any column c ∈ Colsout(Ta) −Keysout(Ta) is the function defined by

Hp
c (x) =


Rp × (1 − Patt(c)) if x = null

HVc (x) × Patt(c)/R else
Patt(c) = Πa∈ ~As(Ha(πa(f −1

name(c)))/|Dom(a)|)
(Assume that the values in columns ~V s are evenly distributed among pivot columns,
and that columns Keysin(Ta) are uncorrelated)

GVPartition
(Ta, ~Cs,Tn)

TS tat(Ta,R, ~H) =⇒ TS tat(Ta,Ra, ~Ha),∀t∈ ~Tn
TS tat(Tt,Rt, ~Ht), where:

Ra = R, Rt = Ra − Kt, Ha
C = HC for all C ∈ ~Cs ∪Keys(Ta),

Ht
C = (f t

C ◦ HC) for all C ∈ Cols(Ta) − (~Cs ∪Keys(Ta))

f t
C is defined by f t

C(x) =



x − Kt if x = null and C is non-key
x if x , null and C is non-key

x × ((R − Kt)/R) else
Kt = bRa ∗ Πc∈ f (t)(Hc(null)/Ra)c
(Kt is an estimate of number of all-null rows in Tt, assuming random distribution of
nulls)
Ka = bRa ∗ Πc∈ f (Ta)∪(Cols(Ta)−coverage(f))(Hc(null)/Ra)c

186

4.2 APPLICATION-SPECIFIC TRANSFORMATIONS

So far, all of the transformations we have described have had a particular motivation in

mind: physical database design. Either there is an existing physical database schema to

which the database developer maps, or there is no physical storage layer yet, in which

case the developer uses channel transformations to craft their desired physical database.

Thus, all of the transformations that we have considered so far have been information

preserving. In this section, we consider transformations that have a different purpose.

Namely, we define transformations that correspond to business logic decisions. We are

interested in particular in transformations that perform interesting non-invertible trans-

formations on statements generated by the user interface, and transformations that intro-

duce new data in the business logic. As mentioned in Chapter 1, the channel artifact is

part of application middleware, and there is often business logic included in middleware.

Consider the CORI application. The case study in Chapter 3 revealed that, in addi-

tion to the physical transformations that occur in the CORI middleware, a few additional

changes occur. We can categorize some of these changes as instances of the following

high-level transformations:

• Adorn: Add environment information to tuples, such as current time, user, or

machine (an example is shown in Figure 4.4(a))

• Lookup: Take the value located in a column or set of columns, look it up in a

table, and replace the value with its corresponding key value in the lookup table

(an example is shown in Figure 4.4(b))

• Audit: Change tuple processing so that tuples are never changed or deleted; rather,

187

tuples are assigned a lifespan interval, indicating the time during which the asso-

ciated data is valid (an example is shown in Figure 4.4(c))

We refer to these transformations — and any other transformations that are moti-

vated by business logic decisions — as application-specific transformations. Each of

the application-specific transformation can be defined in the same way that we define

a physical design transformation; that is, as a set of algorithms that transform Guava-

supported statements (e.g., Insert, Update, Rename Table, or Error) into other Guava-

supported statements. For instance, the Lookup transformation will take an Insert state-

ment and produce as output another Insert statement, identical to the input except with

the values in the lookup columns replaced by their corresponding key in the lookup ta-

ble. In addition, application-specific transformations must satisfy the same information-

preservation property; in Chapter 5, we provide proof that Audit information-preserving,

for example. Lookup, on the other hand, replaces existing data with other data.

One difference between a physical-design transformation and an application-specific

transformation is that physical transformations simply restructure data into a new form.

Application-specific transformations, however, may add new data or modify data ac-

cording to business rules. For instance, the Adorn and Audit transformations add new

columns to a table; the values in these columns cannot be reconstructed from other data

in the table, since they come from the environment at the time the transformation occurs.

Applications that access the input schema of a channel (i.e., the natural schema) may

want to access the additional data introduced by the channel. For instance, if an Adorn

transformation adds a new column “X” to a table, the application developer may choose

to allow the query interface that accesses the natural schema to include a new field for

188

Patient (Input Schema):

ID Name City

1 Bob Boston

2 Ted Toronto

Data (Input Schema):

ID Required Data

1 T N

2 F 93

Controls (Lookup Table):

ID Form Item

1 92 36

2 92 62

Patient (Input Schema):

ID Name City

1 Bob Boston

2 Ted Toronto

Patient (Input Schema):

ID Name City

1 Bob Boston

Patient (Input Schema):

ID Name City

1 Bob NYC

3 Sally Toronto

Patient (Output Schema):

ID Name City LastUpdated

1 Bob Boston 20070121

2 Ted Toronto 20070120

Data (Output Schema):

Form Item Required Data

92 36 T N

92 62 F 93

Patient (Output Schema):

ID Name City Insert Delete

1 Bob Boston 2006 null

2 Ted Toronto 2006 null

Patient (Output Schema):

ID Name City Insert Delete

1 Bob Boston 2006 null

2 Ted Toronto 2006 2007

Patient (Output Schema):

ID Name City Insert Delete

1 Bob Boston 2006 2007

2 Ted Toronto 2006 2007

1 Bob NYC 2007 null

3 Sally Toronto 2007 null

Adorn

Assume that data was created in 2006. Then, in 2007, delete the second row.

Now, update the existing row and add a new one.

(a)

(b)

Audit

Lookup

(c)

Figure 4.4: Examples of the Adorn, Lookup, and Audit transformations acting on con-

crete instances

189

“X” to allow the user to have access to that data when the user formulates queries. To

allow application developers to be informed about the changes made by application-

specific transformations in the channel, applications may issue an additional statement

against the channel called a change spike:

Definition: A change spike ∧(T) for a table T is a request made from the application

level and sent through the channel, to accumulate all changes that the channel makes to

table T .

The application may generate change spikes whenever it deems necessary. A likely

scenario for a user interface (or Guava query interface) is to generate a change spike

when a form loads for the first time during each run of an application. The application

or query interface can then choose to display the most complete and up-to-date infor-

mation. For the transformations introduced in this section, the response to a spike ∧(T)

will consist of a (possibly empty) list of change items of the form NewC(C,D), which

represents that a new column was added to T called C with domain D.

Figure 4.5 presents an overview of how the channel responds to a change spike.

For simplicity, we assume that the channel is broken into two segments, called visi-

ble (which contains transformations that may add or change data) and invisible (which

contains physical design operators). (The language of possible change items would be

significantly more complex if, say, change items need to be pushed through complex

transformations such as Unpivot.) Since the application-specific transformations are all

in the visible segment, the spike proceeds forward to the division between the two seg-

ments, where the channel generates an empty list of change items and sends it back

toward the application.

190

Application Layer Channel/Middleware Physical Layer

Physical

DB

Natural

Schema
S1 S2 S3 R3 R4 Application S4 �

(T)

Change List

R2 R1

Visible Invisible

Spike is sent into visible segment of channel

Response begins empty, but accumulates as each

transformation adds its change items, if any

Figure 4.5: Processing a change spike in the channel

Each transformation in the visible segment then, in reverse order, examines whatever

change items exist in the list and alters them to adjust the table and column references if

necessary. We allow application-specific transformations to alter items that already exist

in the change list because the change items are expressed in the transformation’s output

schema. Some alteration may be necessary to make sure that a change item is valid in the

transformation’s input schema (which is also the reason why change items are added and

processed in the reverse direction of the channel). Then, the transformation produces its

own list of changes ∆(T) that the transformation makes to the schema belonging to

table T and adds them to the change list. Once each transformation has produced its

list of changes in turn, the channel returns the complete change list to the application

level. There, the query interface (or other application-level service) consumes the list

and modifies its own appearance or behavior to reflect the changes.

Note that the changes contained in a change list do not affect the input schema of the

channel, but only provides information to the querying application. In other words,

if a change list comes back from the spike ∧(Ta) that includes a new column item

NewC(Time,DateT ime), the table Ta in the natural schema is not changed to add the

191

new column Time. However, an application can issue queries that reference the new col-

umn by explicitly referencing the column, e.g., as part of a projection or selection. So,

for instance, an application can issue the query πName,DOB,TimeTa even though the column

Time is not a valid column in Ta. Such column references are called late-bound because

the column reference may bind to a column introduced at a point midway through the

channel. Late-bound references that never bind to a column on their way through the

channel will (correctly) throw an error when the query is eventually executed against

the database; thus, applications are effectively restricted to posing queries that are valid

against the channel’s input schema with the possibility of late-bound references that

correspond only to NewC entries in the change list.

For the rest of this section, we describe these three application-specific transforma-

tions (Adorn, Lookup, and Audit) one at a time. We then describe how a developer can

write additional application-specific transformations when needed. The section con-

cludes with a discussion of how application-specific transformations relate to the other

properties of channels: namely, inverse relationships, commutativity with other transfor-

mations, and the effect of a transformation on physical properties. In Chapter 7 (future

work), we describe in detail the process by which we envision developers creating their

own transformations, either new versions of the three transformations presented here or

entirely new ones.

4.2.1 Adorn

The Adorn transformation is the simplest of the transformations presented in this chap-

ter. Its purpose is to add environment information to data on its way to the database.

192

If an Adorn transformation is configured to work on the Person table by adding the

currently logged-in user “broberts” into a column called “LastUpdatingUser”, then the

statement:

INSERT INTO Person (ID, FName, LName)

VALUES (6, ‘Bob’, ‘Thompson’)

becomes

INSERT INTO Person (ID, FName, LName, CurrentUser)

VALUES (6, ‘Bob’, ‘Thompson’, ‘broberts’)

The values in the new columns are always set for new tuples by extending insert

statements. The remaining issue is deciding whether to refresh the values of those

columns during an update. We define the Adorn transformation to be given a list of

columns to monitor. Whenever a monitored column is updated, the columns added by

the Adorn transformation are updated to the current values from the environment. For

example, if ‘FName’ is the only monitored column, then:

UPDATE Person SET FName = ‘Ted’ WHERE ID = 6

becomes

UPDATE Person SET FName = ‘Ted’, LastUpdatingUser = ‘broberts’

WHERE ID = 6

whereas

UPDATE Person SET LName = ‘Lassiter’ WHERE ID = 6

remains unaltered.

Figure 4.6 shows a single form in a forms-based application. This form does not

display any information about data that is added or altered by the channel. In Figure

193

Figure 4.6: Example form in an application without the effects of application-specific

transformations (base case)

4.7(a), the form shows a new field, Last Updating User (among other changes), just

beneath the original form, which is the result of using an Adorn operator in the channel.

The effect of the Adorn transformation on an application or query interface is straight-

forward: For the current form, tell the application that additional fields are available and

what their data types are. The application can then decide whether and how to display

the information. In the figure, the added column of data (Last Updating User) appears

as a text box because its domain is “string”. The channel that yields the effects shown

in Figure 4.7 is shown in Figure 4.8

Formalism: The formal declaration for Adorn is Adorn(T, E, ~A, ~M), for table T ,

some function E that accepts zero inputs and produces the values for the new columns,

and a set of names ~A to give the new columns to hold the values that E produces. E must

have the same number of outputs as names in ~A. ~M is the set of columns the operator

monitors for updates. Table 4.6 formalizes the action of the Adorn operator on Guava

194

 (a) Two forms from an application, but with visible changes from Adorn (Last Updating User),

 Audit (Last Updated Time), and Column Equate (context menu on SSN field)

 (b) The same form again, but with a context menu showing the effects of Table Equate

Selecting the “Accounting” item from

the context menu above launches the

form on the left in read-only mode,

filled with data as appropriate

Figure 4.7: Examples of forms from an application, augmented with the effects

of application-specific transformations and assertions; the Table Equate and Column

Equate transformations are introduced in Section 4.3

195

TableEquate

(Person,

Patient)

Audit(Person,

LastUpdatedTime,

EndTime, {}, {}) �
(Patient)

Change List

TableEquate

(Patient,

Payor)

ColumnEquate

(Patient, SSN,

Procedure, Patient ID)

ColumnEquate

(Patient, SSN,

Accounting, Patient ID)

Adorn (Patient, CurrentUser,

LastUpdatingUser, {All

fields}))

NewC(LastUpdatingUser, RedC(SSN, Accounting, RedC(SSN, RedT RedT NewC(LastUpdatedTime,

 String) Patient ID) Procedure, Patient ID) (Payor) (Person) DateTime)

�
(Person)

Figure 4.8: The channel used by the forms in Figure 4.7, and how it responds to a change

spike

Figure 4.9: An example query interface derived from the form in Figure 4.6

196

Table 4.6: Encapsulating the action of the Adorn transformation. Statements that are
not listed are unaffected by the transformation

Statement Adorn (T, E, ~A, ~M)
Query
T query

i

Ti = T∧ There are no references to columns ~A in any other operator in the current
query =⇒ π ~Colsin(T)T

query

Insert
I(Ti, ~C,Q)

Ti = T =⇒ I(Ti, ~C ∪ ~A,Q × Enow), where Enow is the value of E at transformation
time.

Update
U(Ti, ~F, ~C,Q)

Ti = T ∧ ~C ∩ ~M , ∅ =⇒ U(Ti, ~F, ~C ∪ ~A,Q × Enow), where Enow is the value of E
at transformation time.

Add Table
AT (Ti, ~C, ~D, ~K)

Ti = T ∧ ~C ∩ ~A , ∅ =⇒ Throw error (duplicate columns)
Ti = T ∧ ~C ∩ ~A = ∅ =⇒ AT (Ti, ~C ∪ ~A, ~D ∪Outputdomains(E), ~K)

Add Column
AC(Ti,C,D)

Ti = T ∧C ∈ ~A =⇒ Throw error (duplicate column)

Drop Column
DC(Ti,C)

Ti = T ∧C ∈ ~M =⇒ Throw error (cannot remove monitored column)

Change Spike
∧(Ti)

Ti = T =⇒ NewC(c, d) for each column c ∈ ~C and its corresponding domain d
from the range of E

statements. In particular, note that Adorn responds to a change spike by reporting the

columns that have been added with their data types.

In Table 4.6, we see that the Adorn operator adds the current value of the adorning

function during insert (line 2) and update (for monitored columns, line 3), checks for

duplicate column names for added columns (line 4), and responds to a change spike by

describing the adorning elements (last line).

4.2.2 Lookup

At first glance, the Lookup transformation appears to be very much like the Apply trans-

formation: For each row in a table, take the values in a column set ~Cin and perform an

197

invertible transformation that yields values for another column ~Cout. Whereas the Ap-

ply transformation employs an invertible function, written by the developer, the Lookup

transformation uses a table in the database. The lookup table must have two uniqueness

constraints imposed on it, enforced by unique keys or triggers. The Lookup transforma-

tion leverages the uniqueness constraints to create an invertible mapping; if table T has

uniqueness constraints on both column sets ~C1 and ~C2, then the query π ~C2
σ ~C1=~VT will

produce a single ~C2 value vector for each value vector ~V for ~C1. Swapping ~C1 and ~C2

in the query also produces a single value vector for each input vector, and provides the

reverse lookup mechanism.

Another difference between Lookup and Apply is, with a Lookup transformation,

we know that the transformation is determined by a lookup table rather than an opaque

function. Therefore, Lookup transformations can process Rename Element statements

issued against the input of the Lookup, whereas Apply transformations would throw an

error.

Our description of Lookup has one additional difference from Apply, motivated by

the CORI case study. Our description of the Lookup transformation operates on key

columns rather than non-key columns, which was the restriction on the Apply transfor-

mation. Table 4.7 provides a full description of our Lookup transformation.

Formalism: The Lookup transformation is declared as Lookup(T, ~Cin, ~Cout,T L, ~CL
in,

~CL
out, ~K, ~Dout), where T is the name of the table whose column is being replaced, ~Cin

are the input columns for the lookup, and ~Cout are the columns of the output. Table

T L is the name of the lookup table, which must be a table in the physical database; the

implication is that T L is not a table in the natural schema. Columns ~CL
in and ~CL

out are the

198

pair of columns in T L with uniqueness constraints defined. Columns ~Cin and ~CL
in must

have the same domain and cardinality, as must ~Cout and ~CL
out. ~Dout is the list of domains

of the output column of the lookup table (necessary because the transformation does not

have awareness of the lookup table). The set ~K is the set of key columns of T L (again,

specified to give the operator sufficient information about the lookup table). K cannot

overlap with any of the lookup columns.

4.2.3 Audit

The final — and most complex — application-specific transformation that we introduce

in this section is Audit. The problems solved by Audit are similar to those that motivate

temporal database research [71], with a similar solution: Give all tuples in an audited

table two additional date attributes indicating a lifespan. Current data has a null end-

ing time. Whenever data is updated or deleted by the application, the end time of the

corresponding tuples is set to the current time and fresh tuples are added if necessary.

Rather than drop any columns from the physical database, the Audit transformation

keeps track of a list of “deprecated” columns that are no longer in an audited table. The

application may later re-add the dropped column; in that case, all of the data that was

available in the dropped column would become visible in the newly-added column.

199

Ta
bl

e
4.

7:
E

nc
ap

su
la

tin
g

th
e

ac
tio

n
of

th
e

L
oo

ku
p

tr
an

sf
or

m
at

io
n.

St
at

em
en

ts
th

at
ar

e
no

tl
is

te
d

ar
e

un
aff

ec
te

d
by

th
e

tr
an

sf
or

-
m

at
io

n
(i

nc
lu

di
ng

up
da

te
s,

si
nc

e
w

e
ar

e
lo

ok
in

g
at

ke
y

co
lu

m
ns

on
ly

)

St
at

em
en

t
L

oo
ku

p
(T
,
~ C
in
,
~ C
ou

t,
T

L
,
~ C

L in
,
~ C

L ou
t,
~ K
,
~ D
ou

t)
Q

ue
ry

T
qu

er
y

i

T i
=

T
=
⇒

ρ
~ C

L in
→

~ C
in
π

~
C

ol
s in

(T
)∪
~ C

L in
−
~ C
ou

tT
qu

er
y
Z

~ C
ou

t=
~ C

L ou
t

T
L

qu
er

y

In
se

rt
I(

T
i,
~ C
,Q

)
T i

=
T

=
⇒

I(
T i
,(
~ C
−
~ C
in

)∪
~ C
ou

t,
π
~ C

(T
)∪
~ C

L ou
t−

~ C
in

Q
Z

~ C
in

=
~ C

L in
T

L
)

D
el

et
e

D
(T

i,
~ F

)
T i

=
T
∧
∃ <

c,
v>
∈~ F

c
∈
~ C
in

=
⇒

Lo
op

(t
,π

~ C
L ou

tσ
F
′ T

L
,D

(T
i,

(~ F
−
~ F
′)
∪
{<

~ C
ou

t,
t
>
}))

,w
he

re
~ F
′ i

s
th

e
su

bs
et

of
~ F

th
at

re
fe

r

to
co

lu
m

ns
in

~ C
in

A
dd

Ta
bl

e
A

T
(T

i,
~ C
,
~ D
,
~ K

)
T i

=
T
∧
~ C
in
*
~ C

=
⇒

T
hr

ow
er

ro
r(

in
ad

eq
ua

te
co

lu
m

ns
)

T i
=

T
∧
~ C
in
⊆
~ C
∧
~ C
in
*
~ K

=
⇒

T
hr

ow
er

ro
r(

in
ad

eq
ua

te
co

lu
m

ns
)

T i
=

T
∧
~ C
in
⊆
~ C
∧
~ C
in
⊆
~ K

=
⇒

A
T

(T
i,

(~ C
−
~ C
in

)∪
~ C
ou

t,
(~ D
−

~
do

m
ai

ns
(
~ C
in

))
∪

~ D
ou

t,
(~ K
−
~ C
in

)∪
~ C
ou

t)
A

dd
E

le
m

en
t

A
E

(T
i,

C
,E

)
T i

=
T
∧

C
∈
~ C
in

=
⇒

E
rr

or
({(

E
)}
−
π

C
L
T

L
)w

he
re

C
L

is
th

e
co

rr
es

po
nd

in
g

co
lu

m
n

in
th

e
lo

ok
up

ta
bl

e
to

C
(v

er
if

y
th

at
th

e
el

em
en

ta
lr

ea
dy

liv
es

in
th

e
lo

ok
up

ta
bl

e)
R

en
am

e
E

le
m

en
t

R
E

(T
i,

C
,E

n,
E

o)
T i

=
T
∧

C
∈
~ C
in

=
⇒

Lo
op

(t
,π

~ K
σ

C
L
=

E
o
T

L
,U

(T
L
,<

~ K
,t
>
,{C

L
},{

E
n})

)
w

he
re

C
L

is
th

e
co

rr
es

po
nd

in
g

co
lu

m
n

in
th

e
lo

ok
up

ta
bl

e
to

C
(u

pd
at

e
th

e
lo

ok
up

ta
bl

e
w

ith
th

e
ch

an
ge

,l
ea

ve
ou

tp
ut

ta
bl

e
al

on
e)

D
ro

p
E

le
m

en
t

D
E

(T
i,

C
,E

)
T i

=
T
∧

C
∈

~ C
in

=
⇒

Lo
op

(t
,π

~ C
L ou

tσ
C

L
=

E
T

L
,D

(T
,<

~ C
ou

t,
t
>

))
w

he
re

C
L

is
th

e
co

rr
es

po
nd

in
g

co
lu

m
n

in
th

e
lo

ok
up

ta
bl

e
to

C
(d

ro
p

al
lm

at
ch

in
g

tu
pl

es
)

Fo
re

ig
n

K
ey

F
K

(~ F
|T i
.~ X
→

~ G
|B.
~ Y

)
T i

=
T
∧

(C
in
∈
~ X
∨
∃ <

c,
v>
∈~ F

c
∈
~ C
in

)
=
⇒

Tr
ea

ta
s

C
he

ck
(Q

1
⊆

Q
2)

an
d

pr
oc

es
s

qu
er

ie
s

B
=

T
∧

(C
in
∈
~ Y
∨
∃ <

c,
v>
∈~ G

c
∈
~ C
in

)
=
⇒

Tr
ea

ta
s

C
he

ck
(Q

1
⊆

Q
2)

an
d

pr
oc

es
s

qu
er

ie
s

200

Audit exposes a field of type DateTime in response to a change spike. This field acts

as a reference to the beginning of the liveness interval for the tuple of interest. When

displayed on a form in an application, this field will show the time and date when the

tuple was last inserted or updated. However, this field acts as a test on the lifespan when

used in a filtering condition (used in a σ operator). So, in a query interface, the user

can ask questions like, “what was the data like at time T for this table?” Audit will also

expose the list of deprecated columns in response to a spike.

Our implementation of the Audit transformation is meant to solve a specific issue:

ensure that no data is ever deleted from the tables in a database. It is not intended to

implement all of the capabilities of a natively temporal system [45], but only what is

necessary to keep historical information. For instance, we do not coordinate between

Audit transformations to perform any kind of temporal join in the query processing,

such as a global “as of time X” query; our Audit transformation supports “as of” queries

on a table-by-table basis. This particular implementation of Audit was based on our

interaction with CORI; most of their queries of interest are over current data, and the

rare temporal queries that they write tend to be of the form “Show me the following data

items for all patients at time T”, which do not require a temporal join.

The example form shown in Figure 4.7(a) contains a field called Last Updated Time,

which corresponds to the new, temporal attribute added by the Audit operator. The

query interface shown in Figure 4.9 contains the same field, as well as a field Insurance

Carrier that appears in Audit’s deprecated list, meaning it was once in the application

but deleted.

Formalism: The Audit transformation is declared as Audit(T, B, E, ~DC, ~DD), where

201

Table 4.8: Encapsulating the action of the Audit transformation. Statements not listed
in the table are unaffected by the transformation

Statement Audit (T, B, E, ~DC, ~DD)
Query
T query

i

Ti = T∧ There are no references to columns T.B in any operator in the current
query =⇒ πColsin(T)σE=nullT query

σTi.B=V Q Ti = T =⇒ σB≤V∧(E≥V∨E=null)Q
σTi.B>V Q Ti = T =⇒ σB>V∨(B≤V∧(E>V∨E=null))Q (Same for ≥)
σTi.B<V Q Ti = T =⇒ σE<V∨(B<V∧(E≥V∨E=null))Q (Same for ≤)
σTi.B,V Q Ti = T =⇒ σB>V∨E<V Q
Insert
I(Ti, ~C,Q)

Ti = T =⇒ I(T, ~C ∪ {B, E},Q × {CurrentT ime, null})

Update
U(Ti, ~F, ~C,Q)

Ti = T =⇒
I(T,Colsin(Ti) ∪ {B, E}, (πColsin(T)∪{B}σ ~FT) × {CurrentT ime}), followed by
U(T, ~F ∪ {E = null}, ~C ∪ {B},Q × {CurrentT ime})

Delete
D(Ti, ~F)

Ti = T =⇒ U(Ti, ~F ∪ {E = null}, {E}, {CurrentT ime})

Add Table
AT (Ti, ~C, ~D, ~K)

Ti = T ∧ ~C ∩ ({B, E} ∪ ~DC) , ∅ =⇒ Throw error (duplicate columns)
Ti = T ∧ ~C ∩ ({B, E} ∪ ~DC) = ∅ =⇒ AT (Ti, ~C ∪ {B, E} ∪ ~DC, ~D ∪
{DateT ime,DateT ime} ∪ ~DD, ~K ∪ {B})

Add Column
AC(Ti,C,D)

Ti = T ∧C ∈ {B, E} =⇒ Throw error (duplicate column)
Ti = T ∧ C ∈ ~DC =⇒ Check if D matches the column’s old domain in ~DD. If
so, drop statement and remove the column from ~DC and its domain from ~DD.
If not, throw error (domain conflict with deprecated column).

Rename Column
RC(Ti,Co,Cn)

Ti = T ∧Cn ∈ {B, E} ∪ ~DC =⇒ Throw error (duplicate column)

Drop Column
DC(Ti,C)

Ti = T =⇒ Add C to ~DC, add Domain(T.C) to ~DD, and drop the statement

Change Spike
∧(Ti)

Ti = T =⇒ NewC(B,DateT ime), followed by NewC(c, d) for each c, d ∈
~DC, ~DD

202

T is the name of the table to audit and B and E are the names of the begin and end times-

tamp columns respectively. ~DC is a list of the columns that have been dropped from the

table (but still exist in the database), and ~DD are the domains of those columns. From

a user perspective, we expect that at the time a developer places an Audit transforma-

tion in the channel, the list of deprecated columns is empty (unless the developer has

some specific prior knowledge), and that the transformation will maintain the list of

deprecated columns over the lifespan of the application.

For query processing, if column B is not referenced in the query in a select oper-

ator σ, then the transformation assumes that the query will only retrieve current data.

Therefore, query Q becomes query σE=nullQ. Otherwise, the query treats the reference

to B as a test on the lifespan of the query. For instance, the filter σB=V becomes the filter

σB≤V∧(E≥V∨E=null) — a test to see if the value V falls within a tuple’s lifespan. Each σ

operator is shown with a single condition BθV to simplify the exposition in Table 4.8.

A reminder: This implementation of the Audit transformation is only one possibility.

We describe our thoughts on implementing new application-specific transformations,

including alternative implementations of Audit, in Chapter 7.

4.2.4 Application-Specific Transformations and Equivalences

Like the seven transformations in Chapter 3, application-specific transformations can

participate in two classes of equivalence relationships: commutativity and invertibility.

The trivial commutative case still holds, i.e., that two transformations can commute if

they do not appear together in any table’s trace. This property holds even between a

physical design transformation and an application-specific transformation. The visible

203

segment assumption still applies, and is necessary so that we can keep the language

of change items simple (consider the process of pushing a New Column change item

through a Pivot or Unpivot, where in one case, the new column would become a new

element after passing through a Pivot, and in the other case, the new column would

invalidate the action of an Unpivot by having too many value columns).

There are also non-trivial commutativity equivalences involving application-specific

transformations. Here are two of them:

Theorem 4.2.1 [Adorn(T, E, ~A, ~M), Adorn(T, E′, ~A′, ~M′)] ≡

[Adorn(T, E′, ~A′, ~M′), Adorn(T, E, ~A, ~M)], provided ~A∩ ~M′ = ∅ and ~A′∩ ~M = ∅

Theorem 4.2.2 [Audit(T, B, E, ~DC, ~DD),HPartition(T,C)] ≡

[HPartition(T,C),∀t∈domain(T.C)Audit(t, B, E, ~DC, ~DD)]

The first theorem states that Adorn transformations can commute if the second

Adorn transformation is not monitoring changes from the first Adorn. The second the-

orem states that Audit commutes through HPartition, resulting in all of the partitioned

tables being audited.

One property that the application-specific transformations do not share with the

physical design transformations is closure under inverses. Chapter 3 demonstrated that

each of the seven physical design transformations has an inverse that can also be ex-

pressed as a physical design transformation (with the small exception of HMerge, for

which this property is only true if the input schemas are union-compatible, which we

address shortly). Said a different way, each of the seven physical design transformations

can be “undone” by applying another transformation, which is an important property

204

when considering how to deal with evolving channels (a topic we consider in Chap-

ter 6). This property is a product of the fact that physical design transformations are

information-preserving and restructure data in an invertible way.

The same cannot be said about application-specific transformations in general. The

Lookup transformation does have a natural inverse:

Theorem 4.2.3 [Lookup(T, ~Cin, ~Cout,T L, ~CL
in,

~CL
out, ~Dout),

Lookup(T, ~Cout, ~Cin,T L, ~CL
out,

~CL
in,

~domains(~Cin))] = ε

To undo a Lookup, one just performs the reverse Lookup procedure. However, in-

verting an Adorn or Audit cannot be done in an information-preserving way. Because

these transformations add data, their “inverse” transformation necessarily removes data;

so far, we have not considered any transformation that removes data because it is by

definition not information-preserving, and therefore cannot appear in a channel.

The inverse of Adorn(T, E, ~A, ~M) would be the transformation DropPro ject(T, ~A).

DropProject simply drops the referenced columns; clearly, this transformation is not

information-preserving.

The inverse of Audit(T, B, E, ~DC, ~DD) is a pair of transformations, [Filter(T,

< E, null >),DropPro ject(T, ~DC ∪ {B, E})]. The DropProject transformation we have

seen used with the Adorn transformation; the Filter transformation is exactly the re-

lational σ operator, in this case eliminating all rows where the value for the lifespan

end-value E is not null.

The following set of transformations are not information-preserving, but are useful

in defining inverses of transformations that are information-preserving:

• DropProject

205

• Filter

• Union

These transformations also have clear semantics, so for brevity, we omit their full

definition in terms of transformation of statements. Adding these transformations to our

language allows us to define inverses of transformations where we could not before,

including the generalized operators from the previous section:

• The inverse of PPartition is Union (relying on duplicate elimination to remove

redundant rows)

• The general inverse of HMerge (without assuming union compatibility) is HParti-

tion, with DropProjects added to remove columns that were not present in a table

originally

• The inverse of GVPartition is a sequence of VMerge transformations, preceded

by DropProjects to remove redundant columns

Because these transformations are not information-preserving, we do not allow them

to be placed in a channel by a developer. Therefore, defining the inverse of Adorn to be

an instance of DropProject does not provide any benefit in terms of channel optimiza-

tion, because these two transformations will never be present in the same channel. We

will outline an alternative use for inverse transformations in Chapter 6, the chapter on

schema evolution.

206

4.3 CORRESPONDENCE ASSERTIONS

The final class of new transformations we consider are called correspondence asser-

tions. A correspondence assertion is a judgment made by the developer regarding rela-

tionships that exist in the extent of a schema. For instance, consider an application that

includes two forms, one called “Student” and another called “Person”. In the natural

schema for this application, there will be a table for each of these two forms. However,

the developer may decide that, for the purposes of the application and the database, stu-

dents and people are interchangeable. In other words, every time a student is added, that

student should appear as a person in the database, and vice versa.

This kind of relationship cannot be expressed in the application using any modern

form-building library, and cannot be expressed in the relational model. It can, how-

ever, be expressed as a channel transformation. A channel transformation operates by

re-writing statements with respect to a central purpose; in this case, we can create a

transformation that accepts student changes and alters entries in Person accordingly.

Or, the transformation can effectively make Student and Person both access the same

underlying base table (which is how our version of the transformation is implemented).

What separates this class of transformation from the other transformations we have

considered so far is how these transformations respect information preservation. With

physical design or application-specific transformations, information preservation means

that local updates against a table have a predictable effect on that table, and also no effect

on any other table when viewed in the natural schema. With correspondence assertions,

the same is true — but only with respect to the assertion being made. For instance, if a

developer asserts that table T and table T ′ have the same extent, then an insert, update,

207

or delete against T will have an effect on the rows of T ′, but that effect is expected.

For the rest of this section, we consider two correspondence assertions: Column

Equate and Table Equate. We describe what each assertion is meant to do, and formally

define its effect as a channel transformation as we did with other transformations. That

is, we show how these two assertions modify Guava statements. Like the application-

specific transformations, correspondence assertions can have an effect on data that ap-

plications accessing the natural schema may be interested in; therefore, correspondence

assertions will respond to a change spike by adding change items to the response. Thus,

we assume that correspondence assertions occur in the visible segment of the channel.

However, the language of change items returned in response to a spike expands to in-

clude two new possibilities:

• RedC(C,C′,T ′): Column C in spiked table T is redundant; identical data can be

found in column C′ in table T ′.

• RedT (T ′): Table T is redundant and T ′ holds objects in the same entity set.

4.3.1 Column Equate

We define the Column Equate transformation to eliminate redundant information. Specif-

ically, if two different columns X and Y are equated using this transformation, then this

transformation ensures that the value of X always propagates to Y, eliminating the need

for Y to be present in the physical database. This situation may arise in an application

where two different controls, perhaps on different forms, show the same data (e.g., a per-

son’s date of birth) and a change to the value of one must be reflected in the other. This

results in redundant columns in the natural schema. The Column Equate transformation

208

 Person (Input Schema):

ID Name DOB

1 Bob 11/27/75

3 Sally 08/15/64

 Procedure (Input Schema):

PID ID ProcType PtDOB

1 101 EGD 11/27/75

3 102 EGD 08/15/64

1 103 ERCP 11/27/75

Person (Output Schema):

ID Name DOB

1 Bob 11/27/75

3 Sally 08/15/64

Procedure (Output Schema):

ID PID ProcType

101 1 EGD

102 3 EGD

103 1 ERCP

Column Equate

(Person, DOB,

Procedure,

PtDOB)
FK FK

Figure 4.10: An example of the Column Equate transformation acting on a concrete

instance

eliminates one of the columns and, thus, the redundancy. An example of Column Equate

in action is shown in Figure 4.10.

One cannot equate pairs of columns arbitrarily. If one equates column X with col-

umn Y and they happen to be in the same table, or if they are in different tables that

share a 1:1 relationship, there is no problem; for each row in the input schema holding

a value for X, there is a unique row holding the Y value and vice versa. More generally,

so long as each Y value can be mapped to a unique X value, Y can be dropped safely

even if a single X value is associated with multiple rows in Y’s table.

Any column that is dropped by a Column Equate transformation is not visible to any

transformations that appear later on in the channel. For instance, if one equates column

X with column Y, with column Y appearing second and therefore dropped, one cannot

subsequently equate Y with column Z. One can instead equate column X with column

Z, creating an implied relationship between Y and Z via transitivity.

Even though Column Equate transformations drop redundant columns, the columns

209

are still present in the natural schema and thus the applications. The user of an appli-

cation or query interface may want to know if a widget on the screen is redundant, and

if so, find all of the places in the application where the same data can be found. For

example, a user may come across a read-only version of a field such as “date of birth”

and want to find the form that contains an editable version.

The form in Figure 4.7(a) shows an example of a field that is redundant. The SSN

field has a small halo around it, indicating that it can be found in other forms. Right-

clicking the SSN control brings up a context menu that shows all of the other controls

that have been equated with the SSN control. One can select any one of the equivalent

controls from the menu to display the corresponding form in order to see the equivalent

control in context. Note that the SSN data is not actually called SSN in the other tables;

using information provided by Column Equate, the user now knows that SSN and Patient

ID are used interchangeably in the application.

Formalism: Column Equate is declared as ColumnEquate(T, X,T ′,Y), for tables T

and T ′ with columns X and Y respectively. Column Y cannot be a key column, since

it will get eliminated. Also, columns X and Y must have the same domain, and be

column-equatable, meaning that they satisfy the following property:

Definition: Two columns X and Y in tables T and T ′, respectively, are column-

equatable if T and T ′ are the same table or if there exists a unique path of 1:1 or 1:n

relationships from T to T ′. In this situation, column Y is considered droppable because

it can be uniquely associated with a value for X along the relationship path.

Definition: Given two column-equatable columns X and Y in different tables T and

T ′, the join path for X and Y (denoted JXY) is a relational algebra expression T Zcond1

210

T1 Zcond2 T2 Zcond3 · · · Zcondn T ′ that represents the unique way to join table T to

table T ′ across relationships. Because we require there to be a unique join path for this

particular flavor of Column Equate, the join path is inferred from the input schema of

the transformation and need not be specified by the user. That we infer the join path

rather than requiring the developer to provide one was an implementation decision.

To give an example of how the Column Equate formalism works, consider an insert

statement I(Ti, ~C,Q). If the insert places values into a column Y that is being dropped,

then we want to make sure that the value is propagated to its rightful place. So, after

the rest of the insert statement (without Y) has been issued, the transformation creates

a query Q′ that joins the original query Q against the table that will hold the values in

column Y along the join path. This query Q′, in effect, takes each value in Y and finds

the key of the row that will hold that value (we know that each row will exist because

of the one-to-many relationship of the column-equatable property). Finally, we loop

through the results of Q′ and translate the key-value pairs into update statements to set

the new values.

Inverse: An inverted ColumnEquate(T1,C1,T2,C2) is ColumnCopy(T1,C1,T2,C2),

where ColumnCopy is the transformation that takes the data in column C1 from table T1,

follows the join path to T2, and creates a column in T2 called C2 that holds a copy of the

data from C1. ColumnCopy has a straightforward definition as a channel transformation,

so we omit its definition for brevity. Note that the result of this inverse transformation

is exactly the case where columns C1 and C2 hold identical data and may be considered

redundant.

211

Table 4.9: Encapsulating the action of Column Equate.

Statement ColumnEquate (T1,C1,T2,C2)
Query
T query

i

Ti = T2 =⇒ πColumnsin(T2)−{C2}∪{C1}JC1C2

Insert
I(Ti, ~C,Q)

Ti = T2 ∧C2 ∈ ~C =⇒ I(T2, ~C − {C2}, π ~C−{C2}Q),
Loop(t, πKeys(T1)∪Q.C2 (Q ZKeys(T2) JC1C2),U(T1,Keys(T1) = πKeys(T1)t, {C1}, πC2 t)

Update
U(Ti, ~F, ~C,Q)

Ti = T2 ∧C2 ∈ ~C =⇒ U(T2, ~F, ~C − {C2}, π ~C−{C2}Q),
Loop(t, πKeys(T1)(σ ~FJC1C2),U(T1,Keys(T1) = πKeys(T1)t, {C1}, πC2 Q)

Add Table
AT (Ti, ~C, ~D, ~K)

Ti = T2 ∧C2 ∈ ~K =⇒ Throw error (cannot have a redundant key column)
Ti = T2 ∧C2 < ~C =⇒ Throw error (redundant column must exist)
Ti = T2 ∧C2 ∈ ~C ∧C2 < ~K =⇒ AT (T2, ~C − {C2}, ~D, ~K)

Drop Column
DC(Ti,C)

Ti = T2 ∧C = C2 =⇒ Throw error (cannot drop redundant column)

Change Spike
∧(Ti)

Ti = T1 =⇒ RedC(C1,C2,T2)
Ti = T2 =⇒ RedC(C2,C1,T1)

Redundant Col-
umn
RedC(C,C′,T ′)

T ′ = T1 ∧C′ = C1 =⇒ RedC(C,C′,T ′),RedC(C,C2,T2) (Transitivity)

4.3.2 Table Equate

Two tables in a relational schema Person and Patient may refer to the same entity set.

However, the columns in the two tables may not be the same. This scenario corresponds

to a situation where, for instance, two different forms in an application present data on

People; however, one form focuses on demographics information, whereas the other

form focuses on clinical background. The database designer may wish to simply store

the data for both forms in the same table. In addition, a new person added via one form

should be available for viewing and editing in the second form. We call the assertion

that supports this transformation Table Equate. An example of Table Equate appears in

Figure 4.11(a), and the consequence of inserting a new row into an equated table appears

in Figure 4.11(b).

212

Table 4.10: Encapsulating the action of Table Equate. The symbol T, refers to
whichever of T1 or T2 is not table Ti, and Colsin(T) refers to the list of columns of
T before the transformation is applied

Statement TableEquate (T1,T2)
Query
T query

i

Ti = T1 =⇒ πColsin(T1)T
query
1

Ti = T2 =⇒ πColsin(T2)T
query
1

Insert
I(Ti, ~C,Q)

Ti = T2 =⇒ I(T1, ~C,Q)

Update
U(Ti, ~F, ~C,Q)

Ti = T2 =⇒ U(T1, ~F, ~C,Q)

Delete
D(Ti, ~F)

Ti = T2 =⇒ D(T1, ~F)

Add Column
AC(Ti,C,D)

Ti ∈ {T1,T2} ∧C < Colsin(T,) =⇒ AC(T1,C,D)
Ti ∈ {T1,T2} ∧ C ∈ Colsin(T,) ∧ D = Domain(T,.C) =⇒ Drop statement (no
effect)
Ti ∈ {T1,T2} ∧ C ∈ Colsin(T,) ∧ D , Domain(T,.C) =⇒ Throw error (domain
conflict)

Rename Col-
umn
RC(Ti,Co,Cn)

Ti ∈ {T1,T2} ∧Co < Colsin(T,) ∧Cn < Colsin(T,) =⇒ RC(T1,Co,Cn)
Ti ∈ {T1,T2} ∧ (Co ∈ Colsin(T,)∨Cn ∈ Colsin(T,)) =⇒ Throw error (unexpected
side effects)

Drop Column
DC(Ti,C)

Ti ∈ {T1,T2} ∧C < Colsin(T,) =⇒ DC(T1,C)
Ti ∈ {T1,T2} ∧C ∈ Colsin(T,) =⇒ Drop statement (no effect)

Change Spike
∧(Ti)

Ti = T1 ∨ Ti = T2 =⇒ Change to ∧(T1) on its way through. On its way back to
the application, add RedT (T,), followed by RedC(Cd,Cd,T,) for each column Cd

common between T1 and T2

Redundant Col-
umn
RedC(C,C′,T ′)

T ′ = T1 ∧C′ < Colsin(T1) ∧C′ ∈ Colsin(T2) =⇒ RedC(C,C′,T2)
T ′ = T1 ∧ C′ ∈ Colsin(T1) ∧ C′ ∈ Colsin(T2) =⇒ RedC(C,C′,T1), followed by
RedC(C,C′,T2)

Redundant Ta-
ble
RedT (T ′)

T ′ = T1 =⇒ RedT (T1), followed by RedT (T2)

213

Person (Input Schema):

ID Name City

1 Bob NYC

3 Sally Toronto

Patient (Input Schema):

ID Name Provider#

1 Bob 53

3 Sally 19

Person (Input Schema):

ID Name City

1 Bob NYC

3 Sally Toronto

4 Paul Sydney

Person (Output Schema):

ID Name City Provider#

1 Bob NYC 53

3 Sally Toronto 19

Patient (Input Schema):

ID Name Provider#

1 Bob 53

3 Sally 19

4 Paul NULL

Table

Equate

(Person,

Patient)

Effect

of

Insert

(a)

(b)

Figure 4.11: An example of the Table Equate transformation acting on a concrete in-

stance (a), and the consequences of inserting a new row into one of the equated tables

(b)

Similarly to Column Equate, if tables T1 and T2 are considered to represent the

same entities, there is no need to keep both tables; the columns from both tables are

collected into a single table T1. Our implementation assumes that if the same column

name appears in both tables, then the two columns hold the same data, in effect creating

an implicit Column Equate between them. Also, as with Column Equate, one cannot

simply equate any two tables. The criteria for which pairs of tables one may equate are

listed below in the formalism section.

To any form in the application layer, the Table Equate transformation exposes the

list of other forms that hold data about the same entity. In the example above, if the

214

user is viewing the form called Patient, the application has the option to display a link

to the other forms that refer to the same entity set. In Figure 4.7(b), the form gives a

context menu when the user clicks anywhere on the form where there are no controls.

The resulting menu displays a list all of the names of other forms that show the same

data; clicking on any of the items in the menu brings up an instance of the other form so

the user can view the other fields that are available and see what data is in those fields

for the current entity. For the example in Figure 4.7(b), the Patient form holds entities

that are also present in the Person form and the Payor form.

Formalism: The formal declaration for Table Equate is TableEquate(T1,T2), for ta-

bles T1 and T2. The two tables must be table-equatable, which means that the following

conditions hold:

• The number of primary key columns is the same for each table.

• Corresponding key columns of the two tables have the same names and domains.

• If column C exists in both tables and also participates in a foreign key in both

tables, the foreign keys cannot conflict. Since the two columns will be collapsed

into a single column C in the result, there must be an unambiguous target for the

foreign key.

Table 4.10 describes the action of Table Equate on the various kinds of Guava state-

ments. In general, any query or DML statement that references table T2 is changed so

that it references T1. When DDL statements are processed, Table Equate tests to see if

there are any domain conflicts that arise when adding columns, verifies that there are no

215

unexpected side effects, and ensures that the columns of the output table T1 is always

the union of the columns of input tables T1 and T2.

For instance, consider the case of RC(T2, FName, FirstName), a rename column

statement. We assert that if one renames a column or field in the application, the user

does not intend for there to be any effect on the database beyond renaming the column.

However, if column FirstName already exists in table T1, data from both T2.FName

and T1.FirstName would both end up being placed in T1.FirstName. If both of these

columns already hold data, throw an error.

Finally, Table Equate will change the target of a change spike if it refers to the table

that is being dropped. TableEquate(T1,T2) will change the spike ∧(T2) into ∧(T1) as it

passes through the channel so that it no longer refers to a table that does not exist.

Inverse: The inverse of the transformation TableEquate(T1,T2) is the set of trans-

formations [Copy(T1,T2),DropPro ject(T1, ~C1),DropPro ject(T2, ~C2)], where Copy is

the transformation that simply copies the data from T1 into T2, ~C1 is the set of columns

in T2 that are not in T1, and ~C2 is the set of columns in T1 that are not in T2. In effect, the

inverse of Table Equate restores the two tables, where any columns in common between

the two tables hold the same data.

4.4 RELATED WORK

As mentioned before, the Audit transformation is inspired by work on temporal database

systems. The current implementation of the Audit transformation assumes that the soft-

ware runs on a standard DBMS, i.e., one that has not been augmented with temporal

216

capabilities on either the data [45] or schema [81] level. In the event that the underly-

ing database actually has temporal support, we would like to be able to have Audit (or

a more powerful, fully-temporal semantic operator yet to be created) rely on temporal

functionality of the database. For instance, if the database handles row-level timestamp-

ing but does not handle temporal schema changes, Audit will refrain from modifying

DML statements. Audit should still respond the same way to semantic spikes.

Spaccapietra et al present a high-level modeling construct called an Interschema

Correspondence Assertion (ICA) to describe the relationship between the scope of two

entity sets [72]. With an ICA, one can describe the relationship between two entity sets

as equal, a subset, intersecting, or disjoint. The TableEquate transformation works much

like an ICA with an equate relationship, and a ColumnEquate transformation works

similarly to the “With Corresponding Attribute” clause of an ICA.

There is a wide variety of other research projects besides ICA’s that consider estab-

lishing relationships within a relational schema or between relational schemas, some-

times called schema matching [64]. These projects (and ICA’s as well) are generally

used in an information integration context, where heterogeneous schemas from different

sources are brought together into a single, virtual schema, and a database expert subse-

quently identifies portions of the new integrated schema that refer to the same entities,

entity sets, or attributes. Using Guava, assertions may be useful or necessary within

a single relational schema outside of any information-integration context (for instance,

consider the Student-and-Person example at the beginning of Section 4.3).

217

4.5 SUMMARY AND IMPLEMENTATION STATUS

In this chapter, we considered ways to extend the expressive power of the channel trans-

formation language. The extensions provided in this chapter, combined with the original

seven transformations, are sufficiently expressive to cover the scenarios described in the

case studies in Chapter 3. Our new transformations can be grouped into three cate-

gories: generalizations of existing transformations, transformations that serve a particu-

lar application-specific business purpose, and transformations that serve as a correspon-

dence assertion between schema elements in the channel’s input schema. These trans-

formations still satisfy the information-preservation property introduced in Chapter 3.

An application can discover what changes are made within the channel by application-

specific transformations and correspondence assertions by issuing a change spike. Of

the transformations introduced in this chapter, we have thus far implemented the Audit

and Adorn transformations.

Chapter 5

FORMAL PROOFS OF CORRECTNESS

The seven physical design transformations are defined in Chapter 3 in terms of how they

act upon queries, DML updates, and DDL statements. Each of these transformations has

several possible but well-understood semantics in terms of how it acts on instances of

relations. For instance, the Pivot transformation is well-understood in online analyti-

cal processing [16] and federated databases [82], while partitioning and merging, both

horizontally and vertically, are often used in physical design [1]. However, each trans-

formation has several potential variants in the database literature. The Vertical Partition

transformation, for example, may or may not eliminate rows in either output table that

have all null values for non-key columns, depending on the needs of the application. In

this chapter, we demonstrate that our definitions of the action of each physical design

transformation on statements respects a particular instance-at-a-time semantics, which

we introduced informally in Chapter 3 but introduce formally here. We also formally

prove that each transformation satisfies the information preservation property as defined

in Section 3.2.

We first document the standard definition of each physical transformation, in terms

of its effect on a fully materialized database instance, in Table 5.1. Specifically, each

row of the table describes how a transformation affects the schema and the data in an

instance. For each transformation shown in one row in the table, the first column serves

219

as a reminder of the signature of the transformation’s parameters. The entry in the

second column describes the effect of the transformation on the schema of the database

instance on which the transformation is applied; namely, the entry in the column shows

precisely how to compute the output schema of the database instance from the input

schema. The final column describes the effect of the transformation on the instance data

of the database; just as with the schema, the column entry describes how to compute the

output data instance from the input.

For each of the physical transformations, we define its data transformation semantics

in terms of extended relational algebra, which was introduced in Section 3.1.1. We use

extended relational algebra in the table to define the data transformations because each

of the extended operators has well-understood semantics in the database literature. We

add one additional operator to our extended algebra in the table; the outer union operator

(
⊎

) is similar to union, except that the tables need not be union-compatible. The schema

of the outer union is the union of the columns of each of the summands, and input rows

are padded with enough nulls to fill out any new columns. For instance, the outer union

of A(X,Y) and B(X,Z) has columns (X,Y,Z); input rows of A in the form (x,y) will

appear in the output as (x,y,null).

Table 5.1 uses the following notation:

• Anything in boldface is a set

• Tables refers to the set of tables in the schema

• Cols(T) refers to the set of columns in the schema for table T

• Dom(C) refers to the set of elements in the domain of column C

220

• inst(T) refers to the instance of table T

• name(D) refers to the name of the column or table D, returned as a data value

• A subscript of “in”, such as instin, refers to the input of the transformation

• A subscript of “out”, such as instout, refers to the output of the transformation

In this chapter, we prove properties about the transformations as presented in Tables

3.2 through 3.9. Over the next few sections, we prove the following:

• The query translation formulae as given in Table 3.2 are correct with respect to

the data transformations in Table 5.1. That is, we prove that a query will return

results after a channel is applied that are the same as the results it would return if

there were no channel at all.

• The DML translation formulae as given in Tables 3.3 through 3.9 are correct with

respect to the data transformations in Table 5.1. We prove that each transformation

is similar to an updatable view in that the changes made in the output schema

produce exactly the changes desired in the input schema. In other words, each

DML statement on table T is processed by a transformation in such a way that if

the transformed statement is executed on the physical database and the instance

of T is subsequently retrieved by pushing a query through the transformation, the

result of the query is exactly what it would be if the original DML statement were

applied to T ’s pre-transformation, pre-DML-statement image.

221

Ta
bl

e
5.

1:
D

efi
ni

tio
n

of
th

e
ac

tio
n

of
se

ve
n

ph
ys

ic
al

de
si

gn
tr

an
sf

or
m

at
io

ns
.

A
ny

ta
bl

e
in

th
e

in
pu

ts
ch

em
a

or
in

st
an

ce
th

at
is

no
te

xp
lic

itl
y

re
fe

re
nc

ed
by

th
e

tr
an

sf
or

m
at

io
n

is
pa

ss
ed

to
th

e
ou

tp
ut

un
aff

ec
te

d.

Tr
an

sf
or

m
at

io
n

Sc
he

m
a

A
ct

io
n

D
at

a
A

ct
io

n
V

Pa
rt

iti
on

(T
,C

s,
T

n)
Ta

bl
es

ou
t

=
Ta

bl
es

in
∪
{T

n },
C

ol
s o

ut
(T

)
=

K
ey

s in
(T

)∪
C

s
K

ey
s o

ut
(T

)
=

K
ey

s in
(T

),
K

ey
s o

ut
(T

n)
=

K
ey

s in
(T

)
C

ol
s o

ut
(T

n)
=

K
ey

s in
(T

)∪
(C

ol
s in

(T
)−

C
s)

C
re

at
e

fo
re

ig
n

ke
y

fr
om

T
n .

K
ey

s in
(T

)t
o

T
.K

ey
s in

(T
)

in
st

ou
t(T

)
=
π

K
ey

s in
(T

)∪
C

s(
in

st
in

(T
))

in
st

ou
t(T

n)
=
π

C
ol

s in
(T

)−
C

s(
σ

(C
1,

nu
ll)
∨(

C
2,

nu
ll)
∨.
..
∨(

C
k,

nu
ll)

(i
ns

t in
(T

))
)

w
he

re
{C

1,
C

2,
..
.,

C
k}

=
C

ol
s in

(T
)−

(C
s∪

K
ey

s in
(T

))
R

ec
al

l:
co

lu
m

ns
~ C
s

ar
e

no
n-

ke
y

co
lu

m
ns

V
M

er
ge

(T
L
,T

R
)

C
ol

s(
T

L
)

=
C

ol
s(

T
L
)∪

C
ol

s(
T

R
),T

ab
le

s o
ut

=
Ta

bl
es

in
−{

T
R
}

in
st

ou
t(T

L
)

=
in

st
in

(T
L
)
AY
∀ K
∈K

ey
s i

n
(T

L
)(

T
L
.K

=
T

R
.K

)
in

st
in

(T
R
)

H
Pa

rt
iti

on
(T
,C

)
Ta

bl
es

ou
t

=
(T

ab
le

s in
−

T
)∪

D
s(

D
s

=
D

om
(i

ns
t in

(T
.C

))
)

∀T
r
∈D

om
(i

ns
t in

(T
.C

))
,C

ol
s o

ut
(T

r)
=

C
ol

s in
(T

)−
{C
}

∀T
r
∈D

om
(i

ns
t in

(T
.C

))
,K

ey
s o

ut
(T

r)
=

K
ey

s in
(T

)−
{C
}

∀ T
r∈

D
om

(i
ns

t in
(T
.C

))
in

st
ou

t(T
r)

=
π

C
ol

s in
(T

)−
{C
}(
σ

T
.C

=
na

m
e(

T
r)

(i
ns

t in
(T

))
)

H
M

er
ge

(T
s,

T
re

su
lt
,C

)
C

ol
s o

ut
(T

re
su

lt
)

=
⋃

T
∈T

s
C

ol
s in

(T
)∪
{C
}

K
ey

s o
ut

(T
re

su
lt
)

=
K

ey
s in

(T
)f

or
an

y
T
∈T

s
Ta

bl
es

ou
t

=
Ta

bl
es

in
−

T
s∪
{T

re
su

lt
}

in
st

ou
t(T

re
su

lt
)

=
⊎

T
∈T

s(
in

st
in

(T
)
×
{(n

am
e(

T
))
}),

w
he

re
⊎

is
ou

te
ru

ni
on

w
ith

re
sp

ec
tt

o
co

lu
m

n
na

m
e

(a
so

pp
os

ed
to

co
lu

m
n

po
si

tio
n)

A
pp

ly
(T
,C

1,
C

2,
f)

C
ol

s o
ut

(T
)

=
(C

ol
s in

(T
)−

C
1)
∪

C
2

in
st

ou
t(T

)
=
α
~ C

1,
~ C

2,
fi

ns
t in

(T
)

R
ec

al
l:
α

is
th

e
fu

nc
tio

n
ap

pl
ic

at
io

n
qu

er
y

op
er

at
or

Pi
vo

t
(T
,A
,V

)
C

ol
s o

ut
(T

)
=

K
ey

s in
(T

)−
{A
}∪

D
s(

D
s

=
D

om
(i

ns
t in

(T
.A

))
)

K
ey

s o
ut

(T
)

=
K

ey
s in

(T
)−
{A
}

in
st

ou
t(T

)
=
↗� C

ol
s in

(T
)−

K
s,

A
,V

in
st

in
(T

)
R

ec
al

l:
↗�

is
th

e
pi

vo
tq

ue
ry

op
er

at
or

U
np

iv
ot

(T
,A
,V

)
C

ol
s o

ut
(T

)
=

K
ey

s in
(T

)∪
{V
,A
}

K
ey

s o
ut

(T
)

=
K

ey
s in

(T
)∪
{A
}

in
st

ou
t(T

)
=
↙� C

ol
s in

(T
)−

K
ey

s in
(T

),
A
,V

in
st

in
(T

)
R

ec
al

l:
↙�

is
th

e
un

pi
vo

tq
ue

ry
op

er
at

or

222

• The DDL translation formulae as given in Tables 3.3 through 3.9 are correct with

respect to the schema transformations in Table 5.1. We prove that the physical

database schema will always be the after-image of applying the transformation

to the input schema according to Table 5.1, as the input schema of the channel

evolves via DDL statements.

• The transformations as defined in Table 5.1 are invertible and, therefore, informa-

tion preserving.

The definitions (and thus the correctness proofs) of many of the actions of the trans-

formations in Tables 3.2 through 3.9 are similar, both across statements and across trans-

formations. Therefore, we prove all of the properties for one transformation, HPartition,

and then provide proofs for a representative sample of the rest of the transformations.

The final section of the chapter addresses the additional transformations from Chap-

ter 4. In particular, we prove a representative sample of information-preserving prop-

erties of the application-specific transformations and correspondence assertions, given

the transformation’s definition for query, DML, and DDL processing. We do not prove

correctness for these transformations. The Lookup transformation can be expressed as

an instance-at-a-time transformation using a join and a projection, but, in general, the

actions of application-specific transformations and correspondence assertions cannot be

expressed in terms of instance-at-a-time semantics. For instance, consider the Audit

transformation. If Audit had an instance-at-a-time semantics, it would act as a function

from an input instance to an output instance. However, a single input instance could cor-

respond to any number of output instances through an Audit transformation, depending

on the history of statements that were executed against the input instance. So, there is

223

no such function that one can associate with Audit. For application-specific transforma-

tions and correspondence assertions, we treat the action of each transformation on the

various classes of statements as the definitive semantics for that transformation.

5.1 PROOFS OF QUERY CORRECTNESS

To prove query correctness of a channel transformation, we demonstrate that the query

unfolding presented in the transformation’s definition shown in a row in Table 3.2 re-

spects the definition of the transformation in Table 5.1. Specifically, we prove that the

single-table query T for any table T yields the result instin(T), which is the result one

would get when executing the query without a channel. If a transformation processes

single-table queries correctly, then all queries will be processed correctly, since queries

are represented as relational algebra. Relational algebra has the property that, when

given a query, any sub-expression of the query can be substituted with an equivalent

expression. In channel query processing, a transformation replaces an expression E

over the transformation’s input schema with an expression E′ over the transformation’s

output schema. So, if we can prove query correctness for single-table queries, we will

have proven query correctness for arbitrary queries by induction, using the single-table

queries as the base case. The proofs in this chapter demonstrate that E evaluated over the

instance with the input schema will produce the same result as E′ over the instance with

the output schema, satisfying relational algebra’s like-for-like substitution property.

Table 3.2 also contains rules for re-writing expressions that are not single-table refer-

ences. These rules are provided as simple optimizations, and can be easily derived from

the single-table reference case using simple relational algebra equivalences. Therefore,

224

proving properties using single-table references is sufficient. However, we demonstrate

one such equivalence using HPartition; we prove the transformation rule for the query

Q = σCin=T (Ta) directly.

For each transformation, we start with the original query Q = T , for an arbitrary ta-

ble T . We then apply the transformation to get a query expressed on the transformation’s

output schema. Then, we replace all references to tables with their output instances ac-

cording to Table 5.1. Finally, we use equivalences to show the result is equivalent to

instin(T), the query Q = T applied to the input instance.

5.1.1 HPartition: Single-Table Query

Let the transformation O = HPartition(Ta,Cin) as defined in the third row of Table

3.2. We show that the transformation O re-writes the input query, Q = Ta, into a query

that produces equivalent output over the output schema. For any other table T , Ta,

transformation O has no effect on either the query or the table instances, so the proof

that the transformation processes these other tables correctly is trivial.

Proposition: O(Ta) evaluates to instin(Ta).

Note: For this and all subsequent proofs, the justification for each step in the proof

follows the step to which the justification applies.

Proof: O(Ta)

= ∪t∈Dom(Cin)(t × {name(t)})

(push the query through the HPartition transformation according to Table 3.2)

= ∪t∈Dom(Cin)(instout(t) × {name(t)})
(evaluate the query by replacing each table reference with its instance in the output

schema)

225

= ∪t∈Dom(Cin)(πColsin(Ta)−{Cin}(σTa.Cin=name(t)(instin(Ta))) × {name(t)})
(substitute the output instances in terms of the input instances as defined in the

HPartition row of Table 5.1)

= ∪t∈Dom(Cin)(σTa.Cin=name(t)(instin(Ta)))
(we know that name(t) is the value in the column Cin thanks to the σ operator, so

the project operator and the cross-product with the name constant are inverses)

= σTa.Cin=v1∨Ta.Cin=v2∨...∨Ta.Cin=vk(instin(Ta)) where {v1, v2, . . . , vk} = Dom(Cin)
(apply a basic relational algebra equivalence — disjunction in a σ operator and

union are interchangeable)

= instin(Ta)
(because Ta.Cin = v1∨Ta.Cin = v2∨ . . .∨Ta.Cin = vk ≡ true; since {v1, v2, . . . , vk} =

Dom(Cin), this condition evaluates if the value of Cin is in its own domain, which is

trivially true)

�

5.1.2 HPartition: Query Expression with Select

Let the transformation O = HPartition(Ta,Cin). We show that the transformation O

re-writes query Q = σCin=T (Ta) for some value T into a query that produces equivalent

output over the output schema.

Proposition: O(σCin=T (Ta)) evaluates to σCin=T (instin(Ta)).

Proof: O(σCin=T (Ta))

= T × {name(T)}

(push the query through the HPartition transformation according to Table 3.2)

= instout(T) × {name(T)}
(evaluate the query by replacing each table reference with its instance in the output

schema)

226

= πColsin(Ta)−{Cin}(σTa.Cin=T (instin(Ta))) × {name(T)}
(substitute the output instances in terms of the input instances defined in the HPar-

tition row of Table 5.1)

= σTa.Cin=T (instin(Ta)))
(we know that name(T) is the value in the column Cin thanks to the σ operator, so

the project operator and the cross-product with the name constant are inverses)

�

5.1.3 VPartition: Single-Table Query

Let the transformation O = VPartition(Ta, ~Cs,Tn).

Proposition: O(Ta) evaluates to instin(Ta).

Proof: O(Ta)

= Ta AY Tn

(push the query through the VPartition transformation according to Table 3.2)

= instout(Ta) AY instout(Tn)
(evaluate the query by replacing each table reference with its instance in the output

schema)

= πKs∪Cs(instin(Ta)) AY πColsin(Ta)−Cs(σF(instin(Ta))) where F is the condition

that at least one column in Colsin(Ta) − (Cs ∪Ks) is not null
(substitute the output instances in terms of the input instances defined in the VPar-

tition row of Table 5.1)

= (πKs∪Cs(σF(instin(Ta))) Z πColsin(Ta)−Cs(σF(instin(Ta))))

∪(πKs∪Cs(σ¬F(instin(Ta))) × (null, null, . . . , null) where the null tuple

has the same number of columns as Colsin(Ta) − (Cs ∪Ks)
(unfold the definition of left outer join to separate rows on the left that participate

in the join from rows on the left that do not (and are thus padded with nulls))

227

= σF(instin(Ta)) ∪ (πKs∪Cs(σ¬F(instin(Ta))) × (null, null, . . . , null)
(because πK∪AT Z πK∪BT = πK∪A∪BT = T if K ∪ A ∪ B is the entire schema for T ,

and K is the key of the table)

= σF(instin(Ta)) ∪ σ¬F(instin(Ta)
(because we know that the columns in Colsin(Ta) − (Cs ∪ Ks) are all null in the

right summand, so projecting those columns away and padding back with nulls is

just the identity mapping)

= σF∨¬Finstin(Ta) = instin(Ta)

(by basic relational equivalences)

�

5.1.4 HMerge: Single-Table Query

Let the transformation O = HMerge(Ts,Ta,Cout).

Proposition: O(t) evaluates to instin(t), for arbitrary t ∈ Ts.

Proof: O(t)

= πCols(t)σCout=tTa

(push the query through the HMerge transformation according to Table 3.2)

= πCols(t)σCout=tinstout(Ta)
(evaluate the query by replacing each table reference with its instance in the output

schema)

= πCols(t)σCout=t
⊎

T∈Ts(instin(T) × {(name(T))})
(substituting the output instances in terms of the input instances defined in the

HMerge row of Table 5.1)

= πCols(t)(instin(t) × {(name(t))} × (null)pad)
(selecting the one entry in the union corresponding to t; because it is an outer union,

pad with nulls for columns in Cols(Ta) − Cols(t))

228

= instin(t)
(evaluate the project operator; since Cols(t) is precisely the columns of instin(t), this

evaluation effectively gets rid of the constant cross-products)

�

5.1.5 A Note Regarding Invertibility

In Chapter 3, we list the inverse transformation for each channel transformation. With

one exception, the proofs for these inverse relationships follows directly from the proofs

of query correctness as follows. Given a transformation O, parameters P, and inverse

transformation O−1(P−1), we must demonstrate that (O−1(P−1) ◦ O(P)) is the identity

function for single-table queries, and thus for queries in general. Since query transfor-

mation is correct with respect to the transformation semantics given in Table 5.1, then

the transformations are necessarily inverses of one another with respect to how they

transform database instances.

To demonstrate an invertibility proof, consider the case of VPartition and V Merge.

Let the transformation O = VPartition(Ta, ~Cs,Tn), and the transformation O′ =

V Merge(Ta,Tn).

Proposition: O′(O(Ta)) = Ta.

Proof: O′(O(Ta))

= O′(Ta AY Tn)

(by transforms according to Table 3.2)

= Ta

(by transforms according to Table 3.2)

�

229

In the reverse direction, we must prove O(O′(Ta)) = Ta and O′(O(Tn)) = Tn.

Proposition: O(O′(Ta)) = Ta.

Proof: O(O′(Ta))

= O(πcolumnsin(Ta)Ta)

(by transforms according to Table 3.2)

= πcolumnsin(Ta)(Ta AY Tn)

(by transforms according to Table 3.2)

= Ta

(by relational algebra equivalences)

�

The proof for the processing of query Tn is virtually identical to the above and is

omitted.

The exception to the template above for proving invertibility is HMerge. HMerge

performs an outer union of tables, which means that the tables need not be union-

compatible. However, HPartition necessarily creates union-compatible tables as out-

put. So, for parameters P with inverse parameters P−1, HMerge(P−1)◦HPartition(P) is

the identity function, while HPartition(P) ◦HMerge(P−1) is not. For instance, consider

two tables, T (A, B) and T ′(A,C). When these tables undergo an HMerge({T,T ′},Ta,D)

the resulting schema is Ta(A,D, B,C). Running this through HPartition(Ta,D) yields

two tables, T (A, B,C) and T ′(A, B,C). Each output table has one extra column, and that

column will always be null since the original table instances lack those columns.

Running the query T through HPartition(Ta,D) ◦ HMerge({T,T ′},Ta,D) yields

πA,BT , which will always produce the expected results (projecting away the column C,

230

which did not exist in the original table). This scenario is precisely what should happen,

since HMerge and HPartition are both information-preserving. However, to demonstrate

invertibility, we must both produce the expected results AND reduce to the single-table

query. In this case, the resulting query performs the additional projection step to achieve

the proper results, which indicates that the resulting data instance is not the same as the

input instance.

We will address the issue of HMerge and invertibility in Chapter 6. Note, however,

that if we assume that the input tables to HMerge are union-compatible to begin with,

there is no issue because the transformations’s semantics uses a standard union instead

of an outer union, which is exactly the query transformation action of HPartition in

Table 3.2.

5.2 PROOFS OF DML CORRECTNESS

We demonstrate the correctness of DML translation through a transformation by track-

ing the changes made to table instances by the DML statements. For instance, we de-

scribe the correctness a DML statement against table T as a relational query equivalence

that expresses the state of a table after the statement (instafter
out (T)) in terms of the state of

the same table before the statement (instbefore
out (T)), where the “out” is as usual the output

schema):

• The evaluation of the statement I(T, ~C,Q) is represented as the equivalence:

π ~Cinstafter
out (T) ≡ (π ~Cinstbefore

out (T)) ∪ Q.

This equivalence illustrates that the data in the ~C columns of T after the insert is

231

precisely the data that was in the ~C columns of T (π ~CT), together with the newly-

added rows from query Q.

• The evaluation of the statement U(T, ~F, ~C,Q) is represented as the equivalence:

instafter
out (T) ≡ (α ~C, ~C, f (σ ~F(instbefore

out (T)))) ∪ (σ¬ ~F(instbefore
out (T))).

This equivalence illustrates that the rows in the instance after the update are the

rows that match the update conditions updated using the function f , which assigns

the new values to updated rows, combined with the rows that are not updated.

• The evaluation of the statement D(T, ~F) is represented as the equivalence:

instafter
out (T) ≡ σ¬ ~Finstbefore

out (T).

This equivalence illustrates that the rows in the instance after the delete are what-

ever rows existed before the delete that do not meet the delete conditions.

5.2.1 HPartition: Insert

Let the transformation O = HPartition(Ta,Cin). We show that the transformation O

re-writes insert statement I(Ta, ~C,Q) into statements in the output schema such that

pushing the query π ~C(Ta) through the channel produces the result π ~C(instin(Ta)) ∪ Q.

For any other table T , Ta, transformation O has no effect on either the insert statement

or the table instances, so the proof is trivial.

Proposition: Let instbefore
out (Ta) be the result of single-table query Ta in the output schema

before an insert, and instafter
out (Ta) be the result of the same query in the output schema

after the insert has been processed. We show that after statement O(I(Ta, ~C,Q)), pushing

π ~C(Ta) through the channel produces the result π ~C(instin(Ta)) ∪ Q.

232

Note: O(I(Ta, ~C,Q)) = ∀t∈Dom(Cin)I(t, ~C − {Cin}, π ~C−{Cin}σCin=tQ). Therefore, for any table

t ∈ Dom(Cin), π ~C−{Cin}(insta f ter(t)) = π ~C−{Cin}(instin(t))∪ π ~C−{Cin}σCin=tQ (follows from our

definition of Inserts).

Proof: O(π ~C(Ta))

= π ~C(∪t∈Dom(Cin)(t × {name(t)}))

(push the query through the HPartition transformation according to Table 3.2)

= π ~C(∪t∈Dom(Cin)((π ~C−{Cin}t) × {name(t)}))
(introducing the new project operator does not alter the result, since all columns not

in ~C − {Cin} are projected away by the outermost projection, and the union operator

and cross-product are unaffected)

= π ~C(∪t∈Dom(Cin)((π ~C−{Cin}instafter
out (t)) × {name(t)}))

(evaluate the query with the after-insert instance)

= π ~C(∪t∈Dom(Cin)(((π ~C−{Cin}instbefore
out (t)) ∪ π ~C−{Cin}σCin=tQ) × {name(t)}))

(write after-insert instance in terms of before-insert image and inserted rows Q)

= π ~C(∪t∈Dom(Cin)(((π ~C−{Cin}instbefore
out (t)) × {name(t)}) ∪ ((π ~C−{Cin}(σCin=tQ) × {name(t)}))))

(cross-product distributes with union)

= π ~C(∪t∈Dom(Cin)(((π ~C−{Cin}instbefore
out (t)) × {name(t)}) ∪ (σCin=tQ)))

(we know that name(t) is the value in the column Cin thanks to the σ operator, so

the project operator and the cross-product with the name constant are inverses)

= π ~C(∪t∈Dom(Cin)((π ~C−{Cin}πColsin(Ta)−{Cin}(σCin=t(instin(Ta))) × {name(t)}) ∪ (σCin=tQ)))
(substituting the output instances in terms of the input instances defined in the HPar-

tition row of Table 5.1)

= π ~C(∪t∈Dom(Cin)((π ~C−{Cin}(σCin=t(instin(Ta))) × {name(t)}) ∪ (σCin=tQ)))

(cascading projections)

= π ~C(∪t∈Dom(Cin)((π ~CσCin=t(instin(Ta))) ∪ (σCin=tQ)))

233

(we know that name(t) is the value in the column Cin thanks to the σ operator, so

Cin need not be projected away)

= π ~C(∪t∈Dom(Cin)((σCin=tπ ~C(instin(Ta))) ∪ (σCin=tQ)))
(select commutes with projection, when none of the columns referred to by the

selection are projected away)

= π ~C(∪t∈Dom(Cin)(σCin=t(π ~Cinstin(Ta) ∪ Q)))

(select distributes over union)

= ∪t∈Dom(Cin)(σCin=t(π ~Cinstin(Ta) ∪ Q))

(remove redundant projection)

= (σCin=v1∨Cin=v2∨...∨Cin=vk(π ~Cinstin(Ta) ∪ Q)) where {v1, v2, . . . , vk} = Dom(Cin)

(disjunction in a σ operator and union are interchangeable)

= π ~Cinstin(Ta) ∪ Q

(because Cin = v1∨Cin = v2∨. . .∨Cin = vk ≡ true, since {v1, v2, . . . , vk} = Dom(Cin))

�

5.2.2 HPartition: Delete

Let the transformation O = HPartition(Ta,Cin). We show that the transformation O re-

writes delete statement D(Ta, ~F) into statements in the output schema such that pushing

the single-table query Ta through the channel should produce the result σ¬~F(instin(Ta)).

For any other table T , Ta, transformation O has no effect on either the delete statement

or the table instances, so the proof is trivial.

Proposition: Let instbefore
out (Ta) be the result of query Ta in the output schema before

a delete, and instafter
out (Ta) be the result of the same query in the output schema after the

delete has been processed. We show that after statement O(D(Ta, ~F)), Ta pushed through

234

the channel produces σ¬ ~F(instin(Ta)).

Recall: ∃<c,v>∈~Fc = Cin =⇒ O(D(Ta, ~F)) = D(v, ~F − {< c, v >}) (from Table 3.5).

Recall: @<c,v>∈~Fc = Cin =⇒ O(D(Ta, ~F)) = ∀v∈Dom(Cin)D(v, ~F) (from Table 3.5).

Case 1: ∃<c,v>∈~Fc = Cin

Proof: O(Ta)

= ∪t∈Dom(Cin)(t × {name(t)})

(push the query through the HPartition transformation according to Table 3.2)

= ∪t∈Dom(Cin)((instafter
out (t)) × {name(t)})

(evaluate the query with the after-delete instance)

= (∪t∈(Dom(Cin)−{v})((instafter
out (t)) × {name(t)})) ∪ ((instafter

out (v)) × {name(v)})
(separate out the entry in the union corresponding to v, the value in the < Cin, v >

filtering condition)

= (∪t∈(Dom(Cin)−{v})((instbefore
out (t)) × {name(t)})) ∪ ((instafter

out (v)) × {name(v)})
(output instances in the Dom(Cin) − {v} tables are not affected by the condition

< Cin, v >, and since the set of conditions ~F has “and” semantics, the instances are

not affected at all by the delete statement)

= (∪t∈(Dom(Cin)−{v})((instbefore
out (t)) × {name(t)})) ∪ (σ¬(~F−{<Cin,v>})(instbefore

out (v)) × {name(v)})
(because v contains all of the rows that satisfy the condition < Cin, v >, output rows

in the v table are filtered by all of the other conditions in ~F, leaving the rows that

do not satisfy at least one of the conditions ~F − {< Cin, v >})

= (∪t∈(Dom(Cin)−{v})(πColsin(Ta)−{Cin}(σTa.Cin=t(instin(Ta)))) × {name(t)}))

∪(σ¬(~F−{<Cin,v>})(πColsin(Ta)−{Cin}(σTa.Cin=v(instin(Ta)))) × {name(v)})
(substituting the output instances in terms of the input instances defined in the HPar-

tition row of Table 5.1)

= (∪t∈(Dom(Cin)−{v})(σTa.Cin=t(instin(Ta))))

235

∪(σ¬(~F−{<Cin,v>})(σTa.Cin=v(instin(Ta))))
(we know that name(t) (and name(v) for the second clause) is the value in the col-

umn Cin thanks to the σ operator, so the project operator and the cross-product with

the name constant are inverses)

= (σCin∈(Dom(Cin)−{v})(instin(Ta))) ∪ (σ¬(~F−{<Cin,v>})(σCin=v(instin(Ta)))), where the condition

Cin ∈ (Dom(Cin) − {v}) is equivalent to the disjunction

t = c1 ∨ t = c2 ∨ . . . ∨ t = cn, for {c1, c2, . . . , cn} = Dom(Cin) − {v}
(by basic relational algebra equivalence — disjunction in a σ operator and union

are interchangeable)

= (σ¬<Cin,v>(instin(Ta))) ∪ (σ¬(~F−{<Cin,v>})(σCin=v(instin(Ta))))

(because Cin ∈ Dom(Cin) − {v} ≡ Cin , v)

= (σ(¬<Cin,v>)∨(<Cin,v>∧¬(~F−{<Cin,v>}))(instin(Ta)))
(because union becomes disjunction in select, and nested selects become conjunc-

tion)

= σ(¬<Cin,v>∨<Cin,v>)∧(¬<Cin,v>∨¬(~F−{<Cin,v>}))(instin(Ta))

(distribution rule)

= σ¬<Cin,v>∨¬(~F−{<Cin,v>})(instin(Ta))

(annihilation rule)

= σ¬(<Cin,v>∧(~F−{<Cin,v>}))(instin(Ta))

(de Morgan’s rule)

= σ¬~F(instin(Ta))

(set algebra)

�

Case 2: @<c,v>∈~Fc = Cin

Proof: O(Ta)

236

= ∪t∈Dom(Cin)(t × {name(t)})

(push the query through the HPartition transformation according to Table 3.2)

= ∪t∈Dom(Cin)((instafter
out (t)) × {name(t)})

(evaluate the query with the after-delete instance)

= ∪t∈Dom(Cin)(σ¬ ~F(instbefore
out (t)) × {name(t)})

(write after-delete instance in terms of before-delete image — since none of the

conditions in ~F refer to column Cin, this re-writing is syntactically valid and correct)

= σ¬~F ∪t∈Dom(Cin) ((instbefore
out (t)) × {name(t)})

(select commutes with cross-product and union)

= σ¬~Finstin(Ta)

(follows from query equivalence proof in Section 5.1.1)

�

The proof for DML Update follows the same line of reasoning as the proof above

and is omitted for brevity.

5.2.3 VMerge: Delete

Let the transformation O = V Merge(Ta,Tn). We show that the transformation O re-

writes delete statement D(Tn, ~F) into statements in the output schema such that pushing

the single-table query Tn through the channel should produce the result σ¬~F(instin(Tn)).

For table Ta, operator O has no effect on the delete statement, so the proof is trivial.

Proposition: Let instbefore
out (Ta) be the result of query Ta in the output schema before

a delete, and instafter
out (Ta) be the result of the same query in the output schema after

the DML statements have been processed on the output schema. We show that after

processing statement O(D(Tn, ~F)), pushing O(Tn) through the channel should produce

237

the result σ¬ ~F(instin(Tn)).

Recall: O(D(Tn, ~F)) = U(Ta, ~F,Cols(Tn) −Keys(Tn),∀c∈Cols(Tn)−Keys(Tn)null).

Proof: O(Tn)

= πCols(Tn)σ(Cols(Tn)−Keys(Tn)),nullTa, where (Cols(Tn) −Keys(Tn)) , null is the condition

that not all of the non-key columns of Tn are null

(push the query through the VMerge transformation according to Table 3.2)

= πCols(Tn)σ(Cols(Tn)−Keys(Tn)),nullinstafter
out (Ta)

(evaluate the query with the after-delete instance)

= πCols(Tn)σ(Cols(Tn)−Keys(Tn)),null(αCols(Tn)−Keys(Tn),Cols(Tn)−Keys(Tn), f (σ ~F(instbefore
out (Ta))))

∪(σ¬ ~F(instbefore
out (Ta))), where f is the function that sets the columns in

Cols(Tn) −Keys(Tn) to null

(write after-DML instance in terms of before-DML image)

= πCols(Tn)σ(Cols(Tn)−Keys(Tn)),nullσ¬~F(instbefore
out (Ta))

(any row that function f operates on will immediately fail the outer selection con-

dition)

= πCols(Tn)σ(Cols(Tn)−Keys(Tn)),nullσ¬~F(instin(Ta) AY∀K∈Keys(Tn)(Ta.K=Tn.K) instin(Tn))
(substituting the output instances in terms of the input instances defined in the

VMerge row of Table 5.1)

= πCols(Tn)σ¬~F(instin(Ta) Z∀K∈Keys(Tn)(Ta.K=Tn.K) instin(Tn))
(relational algebra equivalence, transforming outer join into inner join because the

selection eliminates all rows that have all nulls on the right)

= σ¬~F(instin(Tn))

(relational algebra equivalence, valid because the join is along a foreign key)

�

238

5.2.4 Pivot: Insert

Let the transformation O = Pivot(Ta, A,V).

Because the transformation of an Insert through a Pivot involves the use of the

Loop construct, there is no clean representation of the translation from instafter
out (Ta) to

instbefore
out (Ta) as in the proofs above. Therefore, we describe the correctness of the trans-

formation informally.

By the nature of the Pivot transformation, transformation O effectively takes table Ta

and translates it into a matrix, whose vertical axis is labeled by the values of Keys(Ta)−

{A} and whose horizontal axis is labeled by the values of domain(A). So, if one finds

the value 5 in the row (i.e., key value) marked 17 and column named Z, then the pre-

transform table had a row (17,Z, 5). If one finds the value null in the row marked 17 and

column marked B, then the pre-transform table had no row for key values (17, B).

When one inserts rows into the pre-transformation table, the result on the pivoted

table comes in three steps:

• Error((πKeysin(Ta)Q Z Ta) ∩↙�Dom(A),A,V(πColsout(Ta)(Q Z Ta))): Check to see if there

will be any existing non-null entries in the pivoted table that conflict with added

rows, and if so, throw an error. The query Q in the error check statement reads as

follows: Find all rows in the pivoted table that have a non-null value in a column

c and also a row in Q that wants to enter a value in that position in the matrix, thus

overwriting the value.

• ∀c∈Dom(A)Loop(t, σA=cQ Z (πKeys(Ta)−{A}Ta),U(Ta, < Keys(Ta)− {A}, πKeys(Ta)−{A}t >

, {c}, πV t)): For each row in Q that corresponds to an existing row in the pivoted

239

table, find the correct row and column in the matrix and set its value.

• I(Ta,Keys(Ta) − {A},↗�Dom(A),A,V(QX(πKeys(Ta)−{A}Ta))): Find the rows in Q that do

not correspond to any existing rows in the pivoted table, pivot those, and add them

to the table. This step is trivially correct, given the inverse relationship between

pivot and unpivot.

Since no values are overwritten, and pivot and unpivot are inverse operations, per-

forming an unpivot on the resulting matrix will necessarily produce the result as if the

original matrix were unpivoted, followed by inserting the rows in Q. �

5.3 PROOFS OF DDL CORRECTNESS

We note that a transformation’s action on an AddTable statement is faithful to that trans-

formation’s action on an instance schema in Table 5.1. Verifying this fact can be done

by inspection.

Consider an AddColumn statement. One can combine the statement S 1 =

AddTable(T, ~C, ~D, ~K) with the statement S 2 = AddColumn(T,C0,D0) to get a single

statement S 3 = AddTable(T, ~C ∪ C0, ~D ∪ D0, ~K) that creates the table T with the new

column already added. To prove the correctness of a transformation’s action on AddCol-

umn, we compare passing S 1 followed by S 2 through the transformation against passing

S 3 through it and verify that they produce the same results.

240

5.3.1 HPartition: Add Table

We construct the HPartition Add Table translation from visual inspection of HPartition’s

schema-translation semantics. Table 5.1 shows that HPartition(Ta,Cin) has the follow-

ing effect on schema.

First, the old table Ta is removed. Because we are dealing with an Add Table state-

ment, we need not worry about removing an old table. Next, new tables are created,

one for each element in Dom(Cin). We add clause ∀c∈Dom(Cin) to add one table for each

domain value. Finally, the schema of each new table corresponds to the original schema

of Ta, with the column Cin removed from both the set of columns and the set of keys.

Each new table draws its name from the domain element. Thus, we need the statement

AT (c, ~C − {Cin}, ~D − {Dom(Cin)}, ~K − {Cin}) for each value c in the domain of Cin. Thus,

we arrive at ∀c∈Dom(Cin) AT (c, ~C − {Cin}, ~D − {Dom(Cin)}, ~K − {Cin}).

The proofs for Rename and Drop Table are trivial.

5.3.2 HPartition: Add Column

Let the transformation O = HPartition(Ta,Cin).

Let the table Ta begin with columns ~C and associated domains ~D and key columns

~K. Now, we want to add a new column C0 with domain D0. This action will result

in a new table Ta with columns ~C ∪ {C0}, domains ~D ∪ {D0}, and keys ~K. This proof

demonstrates that adding the final table in its entirety is equivalent to adding the original

table then adding the column.

Proposition: O(AT (Ta, ~C ∪ {C0}, ~D ∪ {D0}, ~K))

= O(AT (Ta, ~C, ~D, ~K)),

241

O(AC(Ta,C0,D0)).

Proof: O(AT (Ta, ~C ∪ {C0}, ~D ∪ {D0}, ~K))

= ∀c∈Dom(Cin)AT (c, ~C − {Cin} ∪ {C0}, ~D − {Dom(Cin)} ∪ {D0}, ~K − {Cin})

(Push the Add Table statement through the transformation)

= ∀c∈Dom(Cin)(AT (c, ~C − {Cin}, ~D − {Dom(Cin)}, ~K − {Cin}), AC(c,C0,D0))
(DDL equivalence — break the Add Table statements for each new table into an

Add Table followed by an Add Column)

= ∀c∈Dom(Cin)(AT (c, ~C − {Cin}, ~D − {Dom(Cin)}, ~K − {Cin})), ∀c∈Dom(Cin)(AC(c,C0,D0))
(Move all Add Column statements to the end, past Add Table statements for other

tables)

= O(AT (Ta, ~C, ~D, ~K)),O(AC(Ta,C0,D0))

(View the statements in their pre-transformation image)

�

The proofs for Rename or Drop Column follow the same line of reasoning as the

above proof and are omitted.

5.3.3 HPartition: Add Element

Let the transformation O = HPartition(Ta,Cin).

Let the table Ta begin with columns ~C ∪ {C′} and associated domains ~D ∪ {D′} and

key columns ~K. Now, we want to add a new element E0 to the domain D′ of column C′.

This action will result in a table Ta with columns ~C ∪ {C′}, domains ~D∪ {D′∪ {E0}}, and

keys ~K. We will consider two cases: where C′ = Cin and where C′ , Cin. This proof

demonstrates that adding the final table in its entirety is equivalent to adding the original

table then adding the element.

242

Proposition: O(AT (Ta, ~C ∪ {C′}, ~D ∪ {D′ ∪ {E0}}, ~K))

= O(AT (Ta, ~C ∪ {C′}, ~D ∪ {D′}, ~K)), O(AE(Ta,C′, E0)).

Case 1: C′ = Cin

Proof: O(AT (Ta, ~C ∪ {Cin}, ~D ∪ {Din ∪ {E0}}, ~K ∪ {Cin})) (note that the variable ~K has

been adjusted to reflect the key columns of the table that are not the partition column)

= ∀c∈{Din∪{E0}}AT (c, ~C, ~D, ~K)

(Push the Add Table statement through the transformation)

= (∀c∈{Din}AT (c, ~C, ~D, ~K)), AT (E0, ~C, ~D, ~K)

(Separate the table corresponding to E0)

= O(AT (Ta, ~C ∪ {Cin}, ~D ∪ {Din}, ~K ∪ {Cin})),O(AE(Ta,Cin, E0))

(View the statements in their pre-transformation image)

�

Case 2: C′ , Cin

(Note: whether C′ is part of the set ~K is irrelevant to this proof, so long as C′ is not

Cin.)

Proof: O(AT (Ta, ~C ∪ {C′}, ~D ∪ {D′ ∪ {E0}}, ~K))

= ∀c∈Dom(Cin)AT (c, ~C ∪ {C′}, ~D ∪ {D′ ∪ {E0}}, ~K)

(Push the Add Table statement through the transformation)

= ∀c∈Dom(Cin)(AT (c, ~C ∪ {C′}, ~D ∪ {D′}, ~K), AE(c,C′, E0))

(DDL equivalence — separate the new elements into Add Element statements)

= (∀c∈Dom(Cin)AT (c, ~C ∪ {C′}, ~D ∪ {D′}, ~K)), (∀c∈Dom(Cin)AE(c,C′, E0))

(Push the Add Element statements past Add Table statements for other tables)

= O(AT (Ta, ~C ∪ {C′}, ~D ∪ {D′}, ~K)),O(AE(Ta,C′, E0))

243

(View the statements in their pre-transformation image)

�

The proofs for Rename or Drop Element follow the same line of reasoning as the

above proof and are omitted. We also omit the references to foreign keys in the transla-

tion since they do not affect the translated instances, but rather only affect DML state-

ments after the statement translation.

5.3.4 HMerge: Rename Column

Let the transformation O = HMerge(~T s,Ta,Cout).

How HMerge transforms the Rename Column statement RC(T,Co,Cn) for a table T

depends on two conditions:

• Whether the old column name also exists in one of the other merged tables

• Whether the new column name also exists in one of the other merged tables

Therefore, there are four possible cases. We prove two of them here: first, where

neither the old or new names exist in other tables, and second, where the old name

exists but the new name does not. The other two cases follow similar logic, so we omit

them.

Proposition: Without loss of generality, assume that ~T s = {t, t′} and that t′ is added

first, followed by t. Also, account for the possibility that there may be data in table t by

providing data via an insert statement. We prove:

O(AT (t′, ~C′, ~D′, ~K)),O(AT (t, ~C ∪ {C2}, ~D ∪ {D1}, ~K)),O(I(t, ~C ∪ {C2},Q))

= O(AT (t′, ~C′, ~D′, ~K)),O(AT (t, ~C ∪ {C1}, ~D ∪ {D1}, ~K)),O(I(t, ~C ∪ {C1},Q)),

244

O(RC(t,C1,C2)).

Case 1: C1 < ~C′, C2 < ~C′

Proof: O(AT (t′, ~C′, ~D′, ~K)),O(AT (t, ~C ∪ {C2}, ~D ∪ {D1}, ~K)),O(I(t, ~C ∪ {C2},Q))

= AT (Ta, ~C′ ∪ ~C ∪ {C2} ∪ {Cout}, ~D′ ∪ ~D ∪ {D1} ∪ {{t, t′}}, ~K ∪ {Cout}),

O(I(t, ~C ∪ {C2},Q))

(Push the two Add Table statements through the transformation)

= AT (Ta, ~C′ ∪ ~C ∪ {C2} ∪ {Cout}, ~D′ ∪ ~D ∪ {D1} ∪ {{t, t′}}, ~K ∪ {Cout}),

I(Ta, ~C ∪ {C2} ∪ {Cout},Q × {name(t)})

(Push the Insert statement through the transformation)

= AT (Ta, ~C′ ∪ ~C ∪ {C1} ∪ {Cout}, ~D′ ∪ ~D ∪ {D1} ∪ {{t, t′}}, ~K ∪ {Cout}),RC(Ta,C1,C2),

I(Ta, ~C ∪ {C2} ∪ {Cout},Q × {name(t)})

(DDL equivalence — separate out the column to rename)

= AT (Ta, ~C′ ∪ ~C ∪ {C1} ∪ {Cout}, ~D′ ∪ ~D ∪ {D1} ∪ {{t, t′}}, ~K ∪ {Cout}),

I(Ta, ~C ∪ {C1} ∪ {Cout},Q × {name(t)}),RC(Ta,C1,C2)
(Swap the insert and the rename column, changing the name of a column in the

insert to accommodate for the rename column action)

= O(AT (t′, ~C′, ~D′, ~K)),O(AT (t, ~C ∪ {C1}, ~D ∪ {D′}, ~K)),O(I(t, ~C ∪ {C1},Q)),

O(RC(t,C1,C2))

(View the statements in their pre-transformation image)

�

Case 2: C1 ∈ ~C′, C2 < ~C′

Proof: O(AT (t′, ~C′, ~D′, ~K)),O(AT (t, ~C ∪ {C2}, ~D ∪ {D1}, ~K)),O(I(t, ~C ∪ {C2},Q))

= AT (Ta, ~C′ ∪ ~C ∪ {C2} ∪ {Cout}, ~D′ ∪ ~D ∪ {D1} ∪ {{t, t′}}, ~K ∪ {Cout}),

O(I(t, ~C ∪ {C2},Q))

245

(Push the Add Table statements through the transformation)

= AT (Ta, ~C′ ∪ ~C ∪ {Cout}, ~D′ ∪ ~D ∪ {{t, t′}}, ~K ∪ {Cout}), AC(Ta,C2,D1),

O(I(t, ~C ∪ {C2},Q))

(DDL equivalence — separate out the column to rename)

= AT (Ta, ~C′ ∪ ~C ∪ {Cout}, ~D′ ∪ ~D ∪ {{t, t′}}, ~K ∪ {Cout}), AC(Ta,C2,D1),

I(Ta, ~C ∪ {C2} ∪ {Cout},Q × {name(t)}))

(Push the insert statement through the transformation)

= AT (Ta, ~C′ ∪ ~C ∪ {Cout}, ~D′ ∪ ~D ∪ {{t, t′}}, ~K ∪ {Cout}), I(Ta, ~C ∪ {C1} ∪ {Cout},

(Q × {name(t)})), AC(Ta,C2,D1),U(Ta, < Cout, t >, {C2,C1}, {C1, null})
(Moving the Add Column past the insert is not trivial — the insert must now insert

into the old column C1, then move the data from C1 to C2 after the face)

= O(AT (t′, ~C′, ~D′, ~K)),O(AT (t, ~C ∪ {C1}, ~D ∪ {D′}, ~K)),O(I(t, ~C ∪ {C1},Q)),

O(RC(t,C1,C2))
(View the statements in their pre-transformation image, noting that C1 is one of the

columns in ~C′)

�

5.3.5 Pivot: Add Element

Let the transformation O = Pivot(Ta, A,V).

Proposition: O(AT (Ta, ~C ∪ {C′}, ~D ∪ {D′ ∪ {E0}}, ~K))

= O(AT (Ta, ~C ∪ {C′}, ~D ∪ {D′}, ~K)),O(AE(Ta,C′, E0)).

There are three cases to consider: adding an element to column A, column V , or one

of the key columns other than A. For any key column other than A, the Add Element

statement passes through a Pivot without alteration, with trivial proof (since key columns

246

that are not A are retained unaltered by the transformation). We consider the other two

cases. As in HPartition, we omit the references to foreign keys in the translation.

Case 1: Add Element to column A.

Proof: O(AT (Ta, ~C ∪ {A}, ~D ∪ {D′ ∪ {E0}}, ~K ∪ {A}))

= AT (Ta, (~C − {V}) ∪ D′ ∪ {E0}, ~D − {Dom(V)} ∪ {∀a∈D′∪{E0}Dom(V)}, ~K)

(Push the Add Table statement through the transformation)

= AT (Ta, (~C − {V}) ∪ D′, ~D − {Dom(V)} ∪ {∀a∈D′Dom(V)}, ~K), AC(Ta, E0,Dom(V))
(DDL equivalence — pull a column definition out of the Add Table statement, then

add it)

= O(AT (Ta, ~C ∪ {A}, ~D ∪ {D′}, ~K ∪ {D})),O(AE(Ta, A, E0))

(View the statements in their pre-transformation image)

�

Case 2: Add Element to column V .

Proof: O(AT (Ta, ~C ∪ {V}, ~D ∪ {D′ ∪ {E0}}, ~K))

= AT (Ta, (~C − {A}) ∪ Dom(A), ~D − {Dom(A)} ∪ {∀a∈Dom(A)(D′ ∪ {E0})}, ~K)

(Push the Add Table statement through the transformation)

= AT (Ta, (~C − {A}) ∪ Dom(A), ~D − {Dom(A)} ∪ {∀a∈Dom(A)D′}, ~K),

∀a∈Dom(A)AE(Ta, a, E0)
(DDL equivalence — pull element E0 out of all of the new columns from Dom(A),

then add it using Add Element statements)

= O(AT (Ta, ~C ∪ {A}, ~D ∪ {D′}, ~K ∪ {D})),O(AE(Ta, A, E0))

(View the statements in their pre-transformation image)

�

247

5.3.6 Unpivot: Drop Column

Let the transformation O = Unpivot(Ta, A,V).

Proposition: O(AT (Ta, ~C − {C0}, ~D − {D0}, ~K)) = O(AT (Ta, ~C, ~D, ~K)),O(DC(Ta,C0)).

Proof: O(AT (Ta, ~C − {C0}, ~D − {D0}, ~K))

= AT (Ta, ~K ∪ {A,V},

{d ∈ (~D − {D0})|col(d) ∈ ~K} ∪ { ~C − ~K − {C0}} ∪ {d|col(d) ∈ ~C − ~K − {C0}},
~K ∪ {A})

(Push the Add Table statement through the transformation)

= AT (Ta, ~K ∪ {A,V}, {d ∈ ~D|col(d) ∈ ~K} ∪ { ~C − ~K − {C0}} ∪ {d|col(d) ∈ ~C − ~K − {C0}},
~K ∪ {A})

(Domain D0 is not a key column’s domain)

= AT (Ta, ~K ∪ {A,V}, {d ∈ ~D|col(d) ∈ ~K} ∪ { ~C − ~K − {C0}} ∪ {d|col(d) ∈ ~C − ~K},
~K ∪ {A})

(Column C0 has the same domain as some other non-key column, since our version

of Unpivot requires non-key columns to have the same domain, and does not add to

the selection for the domain of column V)

= AT (Ta, ~K ∪ {A,V}, {d ∈ ~D|col(d) ∈ ~K} ∪ { ~C − ~K} ∪ {d|col(d) ∈ ~C − ~K}, ~K ∪ {A}),

DE(Ta, A,C0)

(DDL equivalence)

= O(AT (Ta, ~C, ~D, ~K)),O(DC(Ta,C0))

(View the statements in their pre-transformation image)

�

248

5.4 PROOFS OF INFORMATION PRESERVATION

Proving that the physical design transformations are information preserving follows

from proving that their query-rewriting algorithms are faithful to their semantics in Table

5.1. In other words, we have demonstrated that, for any physical design transformation

O and table T , O(T) = instin(T).

In this section, we prove that for any application-specific transformation or corre-

spondence assertion O and table T , O(T) = instin(T). Proofs for TableEquate and Adorn

are trivial, so we focus on cases for ColumnEquate and Audit.

5.4.1 ColumnEquate: Insert

Let the transformation O = ColumnEquate(T1,C1,T2,C2). Consider the case where we

insert a single row Q into table T2 (inserting rows into T1 is unaffected by transformation

O and is thus a trivial case). From Table 4.9, we know that no existing rows of T2 will

be affected. Therefore, without loss of generality we can assume that table T2 is empty

before the insert.

Proposition: O(T2) = Q (the inserted row).

Proof: O(T2)

= πColumnsin(T2)−{C2}∪{C1}JC1C2 (where the J symbol represents the join path)

(pushing the query through its definition in Table 4.9)

Note: Out of the join expression JC1C2 , we only use the columns from T2 and the

column C1 from table T1 in the query answer. If there are any intermediate tables, none

of their columns are used in the result. We also know the following:

• After the insert, the rows in instout(T2) are exactly πColumnsin(T2)−{C2}Q.

249

• Table T2 is a weak entity (according to the definition of ColumnEquate’s param-

eters), so the new row Q will join with exactly one row t′ ∈ T1 through the join

path.

• The Loop statement in ColumnEquate’s transformation of an Insert will iterate

over exactly one row in T1, and that row is the same row as the previous step (t′).

So, t′ will have its value of C1 updated to πC2 Q.

Continuing the proof from above:

= πColumnsin(T2)−{C2}∪{C1}((πColumnsin(T2)−{C2}Q) Z . . . Z t′) = Q

(by the logic above)

�

5.4.2 Audit: Update

Consider the case where the application issues an update statement on audited table

T with conditions ~F: U(Ti, ~F, ~C,Q). The effect to the application is that the query

Q1 = σ ~FT , the query that finds all rows that satisfy the conditions ~F, should reflect the

new values. In addition, the query Q2 = σ¬ ~FT should remain unchanged. Proving that

Q2 is unchanged is trivial because the logic for update translation only affects rows that

satisfy ~F.

The translation of the update statement becomes an insert followed by an update;

however, all the inserted rows have a non-null end timestamp. When the query Q1 is

passed through the channel, it becomes σE=null∧ ~FT , which means that all of the inserted

rows are ignored. What remains are the updated rows, whose non-timestamp columns

250

are updated in exactly the same fashion as the original update statement. Therefore, Q1

returns exactly the rows that were changed with the proper changes.

�

5.5 SUMMARY

In this chapter, we introduce proof techniques that allow us to reason about whether

channel transformations have correct definitions and are information-preserving. We

further prove, using these techniques, that the HPartition transformation is both correct

with respect to its classical definition and information-preserving. We use a representa-

tive sample of proofs to provide evidence that the other six physical design transforma-

tions are also correct and information-preserving. Finally, we use another sampling of

proofs to demonstrate that our application-specific transformations and correspondence

assertions are information-preserving.

Chapter 6

EVOLUTION IN GUAVA: GENERATING DATABASE UPGRADE SCRIPTS

When a database-backed application moves from one version V1 to a new version V2,

existing instances of databases that conform to version V1 must be upgraded so as to

function with the new version of the application. Frequently, that upgrade is performed

by a script generated by a database developer based on the developer’s understanding

of what has changed in the application. Thus, this process is typically manual. As a

result, database upgrade scripts are potentially error-prone and require frequent testing

on multiple different database instances. Note that creating the new version of the appli-

cation may involve modification of the user interface as well as changes to the physical

database.

With Guava, we provide a mechanism to generate provably-correct database up-

grade processes automatically, leveraging the fact that channel transformations already

understand how to translate DDL statements. In Guava, the developer starts with the

natural schema, and applies channel transformations until the desired physical schema

is achieved. Thus, the database is the direct result of the user interface specification and

the channel. This functional relationship can be thought of as:

f (UI,Channel) = DB

Therefore, a change to the user interface results in a potential change to the schema

252

and data of the underlying database:

f (UI′,Channel) = DB′

Then, in a similar fashion, changes made to the channel will have a potential impact

on the physical schema and data:

f (UI′,Channel′) = DB′′

Since the UI and the channel together fully define the physical database, we can

describe how to migrate a database from one version to another in terms of the changes

made to the user interface and to the channel.

For the UI half of the equation, we characterize the changes that the developer makes

to UI to create UI′ in terms of DML and DDL statements against the application’s

natural schema; we then push those changes through the channel (the old channel, not

the changed one). In effect:

f (∆UI,Channel) = ∆DB

where ∆DB applied to DB yields DB′.

For changes to the channel, we run an algorithm that takes as input the old channel

Channel and the new channel Channel′ and generates a third channel called an upgrade

channel, one that maps the physical database DB′ to DB′′. So, to upgrade a database

from one version to another, one pushes a set of changes through the old channel to

accommodate changes made to the UI, then pushes the resulting database through an

upgrade channel to handle changes made to the channel.

In this chapter, we make the following research contributions:

253

• We construct a framework that describes changes made to the UI and channel

components, and translates those changes into a database upgrade process.

• We evaluate our upgrade framework by using it to describe the changes that were

made to a publicly-available software product during a recent upgrade.

For the purposes of this chapter, we make the assumption that upgrades are per-

formed by a single developer, or by developers using a version control system that pro-

vides mutually exclusive access to files. In Chapter 7, we consider the case where de-

velopers work using a version control system that allows simultaneous editing of files

and merging.

6.1 CAPTURING CHANGES TO THE USER INTERFACE

As a developer uses the form builder in Visual Studio using Guava components, Guava

captures any changes made to the data-bound controls and records relevant changes in a

version change log (VCL). For instance, Guava will record that a control is added or that

its domains elements have changed, but it will not record that it was moved or resized,

since those properties are not relevant to the state of the database. The VCL is a file

that is physically stored with the code of the application and packaged with the final

software product. The version of the application can be verified against the version of

the database whenever the application launches.

Every time a new build of the application is created, a checkpoint ChkPt(X.Y.Z.Build)

is added to the VCL, where X.Y.Z is the current version of the application and Build is

a monotonically-increasing number that increments with each build. Then, every time

the application runs (in development or in production), Guava compares the version of

254

the application against a label in the database, finds the checkpoint corresponding to the

database label, and copies the VCL from that point forward into a new location (called

the active VCL (AVCL)) so Guava may optimize it. The AVCL represents the list of

changes that is required to bring the database up to the necessary version.

The VCL is an always-growing list of changes; it may be possible to use equiv-

alences to create a shorter list of changes that is equivalent to the complete list. For

instance, if one adds a field, then deletes that field, those two changes could be removed

from the log. We apply a collection of equivalences on the AVCL to simplify it, includ-

ing the following:

• Eliminate like Add-Drop pairs. The statements AC(F,C,D) and DC(F,C) are

inverses and cancel each other out, if they appear in that order and no DML state-

ments in the AVCL that reference C occur between them.

• Collapse rename statements. An add column AC(F,C,D) followed by renaming

the same column RC(F,C,C′) becomes AC(F,C′,D).

• If any element DDL statement follows an Add Column statement, they can be

combined. For instance, AC(F,C,D) then AE(F,C, E) becomes AC(F,C,D′),

where the domain D′ is the domain D with the element E added to it.

• If a drop table DT (F) appears, all statements that reference F in the current ver-

sion log prior to the Drop Table statement are eliminated.

Once the AVCL has been optimized, it is ready to be sent to the database. At this

point, it is just a collection of DML and DDL statements, which means that it can be

sent to the database through the channel, as a transaction.

255

For the rest of this section, we consider how developer actions produce statements

in the VCL.

6.1.1 Atomic Changes

Changes are broken down into two categories: atomic and compound. An atomic change

corresponds to a single, natural action in a form designer relating to a data-bound con-

trol. For instance, placing a new text box onto a form is an atomic change. Each atomic

change generates a corresponding DDL statement to be placed in the VCL in a straight-

forward manner:

• Renaming a form F to F′ creates a Rename Table statement RT (F, F′)

• Adding a new control C to a form F creates an Add Column statement AC(F,C,D),

where D is the underlying domain of the control C

• Renaming a control C to C′ on form F creates a Rename Column statement

RC(F,C,C′)

• Deleting a control C on form F creates a Drop Column statement DC(F,C)

• Adding a new item E to the available entries on a finite-domain control C on form

F creates an Add Element statement AE(F,C, E)

• Renaming one of the entries in a finite-domain control C on form F from E to E′

creates a Rename Element statement RE(F,C, E, E′)

• Deleting an item E from a finite-domain control C on form F creates a Drop

Element statement DE(F,C, E)

256

Adding or dropping tables is handled in a different manner. Guava does not mon-

itor whether new classes representing forms are added or deleted from a project, since

simply adding a new form class to a project does not actually make it appear in the ap-

plication. A new form only appears in an application (and, consequently, in the physical

storage) once a launch relationship has been established to it from an existing form in

the application.

For example, consider the situation where a developer creates a new form F. The

developer then drops a button on form F′ that launches form F. The result in the VCL is

an Add Table statement for form F, followed by a foreign key statement from F to F′.

If the developer then drops a button on form F′′ that launches form F, the VCL adds a

new foreign key statement from F to F′′. Thus, we leverage the fact from Chapter 3 that

Tier 2 foreign keys are additive, and that they can be specified by multiple, temporally

separated statements.

Thus, Guava recognizes changes to a form in a form-building application for not just

modifications to the data-bound controls on forms, but also controls that launch forms:

Add one-to-one relationship: The developer adds a control that has a single-launch

relationship with its target B to a form T . Add the table T if it does not exist yet. Then,

create a new foreign key statement FK(T.id → B.id), a foreign key from the key column

of the child form T to the parent table B.

Add many-to-one relationship: The developer adds a control that has a multiple-

launch relationship with its target B to a form T . Add the table T if it does not exist yet.

Then, create a new foreign key column f k in table T if one does not yet exist, and a new

foreign key statement FK(T. f k → B.id) from the new column to the primary key of the

257

parent form’s table.

Drop one-to-one or many-to-one relationship: The developer deletes a control

that launches another form. Create a “drop foreign key” statement DFK(T.c → B.id),

where c is either id or f k depending on the nature of the relationship. Also, drop the

table T if this relationship was the last one for the form (in other words, if it is the last

occurrence of the table T in the application’s g-tree).

Redirect launch: The developer takes a control that currently launches form T

and changes the control so that it launches T ′. This situation is identical to the Drop

Relationship action, followed by an Add Relationship action.

We currently do not support the situation where a one-to-one relationship changes to

a many-to-one relationship, or vice versa, or where a single table participates as the child

in both one-to-one and many-to-one relationships. This situation may not be difficult,

but we have not yet seen a case in software where it is necessary; our experience with

CORI and our observations with other GUI software has been that each form is specif-

ically designed to be either a details window for another screen or a complete entity on

its own, but not both.

6.1.2 Compound Changes

A compound change, by contrast, represents a higher-level change than those found in

Table 3.1. Compound changes consist of two or more atomic ones, but may have some

added significance when considered together. A compound change may also involve

some moving or changing of data, and thus might create some DML statements in addi-

tion to DDL statements.

258

Of particular interest to us are compound changes called user interface refactor-

ings. A UI refactoring is a compound but still incremental update to the user interface

that leaves invariant the data elements that are modeled by the UI. Some example UI

refactorings are:

Create Details Window: This refactoring takes a single form and distributes its

controls between two forms. Figure 6.1 shows an example of the result of this action. In

the figure, a button named “Details” launches the new window on the right. This action

breaks down into an Add Table statement for the new form (table), an Insert statement

to move data from the parent form to the details form, and a sequence of Drop Column

statements to remove the now unnecessary columns from the parent table.

Merge Details Window: This refactoring takes two forms that have a one-to-one

relationship and merges their controls onto a single form. This action is the inverse

from the Create Details Window action. The Merge Details Window action comprises

a sequence of Add Column statements (to add the controls from the details window to

the main one), an Update statement (to move data from the details window to the main

one), and finally a Drop Table statement to eliminate the details form.

Move Field: The Move Field compound change takes a data-bound control off of

one form and places it on another form. There must be a one-to-one relationship between

the two forms, such as the relationship between a form and a details window. This way,

there is an unambiguous way to move data from the old control to the new one. This

action breaks down into an Add Column in the destination form, an Update statement to

move the data, and a Drop Column statement to remove the column from the old table.

Alter Field Domain: This compound change allows the developer to change the

259

elements in a finite domain field, such as a radio list. It may also be used when the

developer wants to change a control from one atomic-domain type to another, such as

from a drop-down list to a free-text field. If the translation of values from the old domain

to the new one is not trivial, the developer may specify a function to transform the values.

This compound change comprises an Add Column statement to create a temporary place

to store the new data, an Update to do the value translation from the old domain to the

new, a Drop Column to get rid of the old column, and a Rename Column so that the

column holding the new domain values takes on the old column’s name.

The Alter Field Domain refactoring differs from the atomic Add-Rename-Drop Ele-

ment statements in that the Alter Field Domain action describes how to migrate the data

from the old domain to the new. The Drop Element statement DE(F,C, E), for instance,

has the semantics of setting all of the C values to null for rows in the table F whenever

the value E is present. With an Alter Field Domain action, the developer has the option

of specifying what the new value for C would be for these rows. The Rename Element

statement does describe how to migrate data by changing all instances of element Eold

into instances of element Enew; however, the transformation is limited to a one-to-one

element migration.

Alter Field Domain can be extended to multiple controls, both in the before and

after state of the refactoring. The only difference is that the number of Add Column

statements (and Drop Column statements) must be the same as the number of controls

in the output (and input) of the refactoring, and that there is a function defined for each

of the controls in the output. One example of a multiple-control Alter Field Domain

refactoring would be changing a single drop-down list into a collection of check boxes.

260

Map Complex Domain: This compound change allows the developer to change a

control from one type to another, but where either the old control or the new control do

not have atomic type, but rather have entity type (for instance, consider the grid control

in Figure 2.3). This case is similar in usage pattern to the Alter Field Domain action in

that the developer can specify a function (or collection of functions) to move data from

the old control to the new. The difference in usage is that the developer must specify a

function for each output column to populate.

Behind the scenes, the Map Complex Domain refactoring produces output similar

to the Alter Field Domain action, except with tables instead of columns. The result is

an Add Table statement if the table does not yet exist, a Tier 1 Foreign Key statement

to link the table to the containing form’s table, and an Insert statement to populate the

table. Finally, cleanup of the old control includes a Drop Foreign Key statement, and

either a Drop Table statement or a Delete, depending upon whether any other controls

use that table, discovered by searching through the application’s g-tree.

Figure 6.1 presents two different form representations of the same data. One gets

from the form in Figure 6.1(a) to the forms in Figure 6.1(b) by applying three refactor-

ings: create a details window (split the form in two), and two alterations of field domain

(date of birth, ethnicity). Since all of the typical motions in a form builder map to atomic

actions, the IDE needs an additional way for a the developer to specify a directive that

a compound change is needed. Figure 6.2 demonstrates a graphical way that the devel-

oper may specify a compound change in a form-based IDE; in the case of the figure, the

developer can refactor the Date of Birth field on the form into other classes of control

with different underlying data types.

261

 (a) One form in a user interface

(b) The same form after 3 refactorings; clicking on the Details button launches the form on the right

Figure 6.1: Refactoring a user interface; the forms in both (a) and (b) model the same

information in different ways

262

Figure 6.2: Using the form builder to perform a refactoring from Figure 6.1

6.2 EVOLVING CHANNELS

In addition to tracking changes to the user interface, Guava must also track changes

made to a channel. In this section, we outline a strategy for translating changes to a

channel into changes to a database instance. We also describe a way to handle database

refactoring that involves channel evolution.

6.2.1 Comparison Approach

Our approach for translating channel changes into database updates involves comparing

the before and after states of the channel. As shown in Figure 6.3, the comparison

approach relies on identifying the point of commonality closest to the beginning of the

channel, whereby the before and after states of the channel are identical up to that point.

The algorithm for the comparison approach is as follows, where Cb is the before-image

of the channel, and Ca is the after-image:

263

• Starting from the beginning of both Cb and Ca, move through the channel trans-

formations one-at-a-time until there is a difference between the two.

• In the rest of the channel, determine if there are any pairs of transformations (one

from each channel) that are identical; if there are, attempt to use commutativity

equivalences to move them each before the point of commonality to provide a

maximal prefix in common. For instance, in Figure 6.3, the transformation O7

appears in both channels, but if O7 and O6 cannot commute, then it cannot be

moved earlier in the channel. If O7 can commute with earlier transformations,

enough to appear before both O4 and O4′, then we do so.

• Construct two channels C′b and C′a, where C′b is the inverse of the portion of Cb

after the point of commonality and C′a is the portion of Ca after the point of com-

monality. In effect, construct a channel that brings the old database instance back

to the point of commonality, and another channel that pushes the database instance

from the point of commonality through the new portion of the channel.

• Create the channel Cu which is the concatenation of C′b and C′a. The channel Cu is

called an upgrade channel.

• Create copy inserts (introduced in Chapter 3) for each table in the old database

schema and push them through the upgrade channel to move data from the old

schema to the new.

This approach has the benefit of being straightforward from the framework we have

already laid out for channels; since each transformation has an inverse that can also be

expressed as a list of transformations, there is always an upgrade channel. However,

264

Natural

Schema

Physical

Schema

Natural

Schema

Physical

Schema’

O1 O2 O3 O4 O5 O6 O7

O1 O2 O3 O4’ O5’ O7 O8

Reverse the channel to the

point of commonality

Forward the new

channel from that point

All transformations have inverses

O7
-1

O6
-1

O5
-1

O4
-1

O4’

O5’

O7

O8

Figure 6.3: Translating changes to a channel into changes to a database by comparing

the channel against its state before any changes

the resulting upgrade channel is potentially lossy in the presence of application-specific

transformations. Consider the case of the Adorn transformation, which adds environ-

ment data to tuples as they pass through. The inverse transformation is DropProject,

which drops columns from tuples and is guaranteed to be lossy. In Figure 6.3, if trans-

formation O7 is the Adorn transformation, all of the data in the Adorned columns will

be dropped as it passes through the upgrade channel and readded later, almost certainly

to values that are different from the original instance. This behavior is incorrect and

undesirable.

Transformations whose inverses are information-preserving do not suffer from this

problem, so only the application-specific transformations are troublesome. The inverse

of HMerge involves a DropProject, but the columns being dropped necessarily contain

265

null values. Our expectation is that most of the time the developer will be adding new

transformations to the existing set rather than modifying or deleting them. In this case,

no loss of information will occur because the existing application-specific transforma-

tions occur before the point of commonality. We consider an alternative approach to

channel evolution involving capturing channel changes in Chapter 7.

6.2.2 UI Refactoring and the Channel

When we introduced user-interface refactorings, we described them in terms of DML

and DDL statements that get executed against the natural schema. In other words, we

assume that the channel remains unchanged. For instance, consider the case in Figure

6.4, where we issue a Create Details Window refactoring resulting in the two forms

at the top of the figure. In Figure 6.4(a), that refactoring manifests itself as an Add

Table statement, an Insert statement, and some Drop Column statements for the columns

moved to the details window.

Figure 6.4(b) demonstrates an alternative way to translate the Create Details Window

refactoring. Rather than generating update statements to be placed in the VCL, this

alternative creates a new channel transformation and prepends it to the channel. The

new transformation — in this case, a VMerge — offsets the effects of the UI refactoring,

leaving both the rest of the channel (i.e., the pre-existing channel) and the physical

database unchanged. The Create Details Window refactoring acts exactly like a vertical

partition transformation on a form, so adding a VMerge to the channel adds the inverse

transformation to the channel to ensure no net effect.

Not every refactoring can be translated in this way. For instance, the Alter Field

266

 (a) Refactoring option 1: translate refactoring into updates through channel

 (b) Refactoring option 2: translate refactoring into a channel transformation

��������� �	
��
�������������������������� �	
��
�����������Create Patient Details table

Move data to details table (Up)

Drop columns from Patient

Figure 6.4: Two different options for translating user interface refactorings

Domain transformation may include a non-invertible function that cannot be offset by

an Apply transformation. In addition, for those refactorings that can either translate as

updates or as a channel transformation, it is left to the developer to decide which is the

appropriate choice based on physical-design requirements and performance.

6.3 CASE STUDY

During the writing of this dissertation, CORI has been in the process of developing

version 4.1 of its software. The first version, 4.0.23, was completely different from the

3.x versions of the software in that version 4.0.23 was re-written from scratch. Also,

267

the 3.x versions of the software were written in Delphi, whereas the 4.x versions of the

software are written in C#. Version 4.1 is the second version of the current incarnation

of the software, and features incremental changes above the 4.0.23 version. Many of

the changes in the software between the two 4.x versions are functional in nature and do

not affect the data content of the application or data persistence; for instance, the new

version fixes a number of issues with PDF generation and faxing of reports. However,

several of the changes between the two versions directly affect the data content of the

user interface.

This case study demonstrates that our approach — capturing changes made to the UI

and to the channel independently — is sufficient to describe the changes made between

versions of the CORI software.

6.3.1 Changes to Data Content of the GUI

In this subsection, we enumerate the kinds of changes that developers are making to

CORI for the 4.1 version of the software. This list is not comprehensive, but it is repre-

sentative because it includes examples of each type of change made.

Rename a form: There are at least two instances of forms that were renamed. The

form ColAdenamatousPolypDetail was renamed to ColIndAdenoPolyp, and the

form ColColorectalCancerDetail was renamed to ColIndCRC. These two changes

translate to Rename Table statements against the natural schema.

Alter control types: There is one situation in the software upgrade where the data

requirements on a form (IndicationsDetails) changed. One of the controls on the

form was a radio button array (named “Anemia Type”), where the user could select one

268

of three options: Iron Deficiency, Pernicious Anemia, and Other Anemia. In the new

version of the software, it was determined that the user should be able to select each

of these options independently; for instance, the user should be able to indicate Iron

Deficiency and Pernicious Anemia simultaneously. To support the new requirements,

the old radio-button-array control was removed and three check boxes were put it its

place, one for each anemia option.

In the natural schema, this process correlates with an Alter Field Domain refac-

toring. The functions to define the data propagation from the old control to the new

controls are simple; for instance, for Iron Deficiency, the value in the column should

be IronDe f iciency = (AnemiaType ==“Iron Deficiency”) (so that IronDeficiency con-

tains a boolean value, describing whether AnemiaType had the particular value “Iron

Deficiency”).

New procedure type: The 4.0.23 version of the software supports four different

types of procedures: colonoscopy, EGD, ERCP, and flexible sigmoidoscopy. The new

version supports one additional procedure type (CAPSULE). The new procedure type

requires a number of new screens to be built, including new types of findings that are

specific to that procedure. However, some screens are reused as well; surgical history

and medical history, for example, are already existing forms that are “details” forms

of each of the previous procedure types that will also serve as a details form for the

CAPSULE procedure.

The changes associated with the new procedure type correlate with Add Table state-

ments, along with Foreign Key statements to associate the forms together.

269

6.3.2 Changes to Channel

Of course, the current implementation of CORI does not use Guava as its framework,

so any changes that they make to their middleware to accommodate the GUI changes

were done manually. In addition, there are no changes that CORI is making in version

4.1 that are motivated strictly by physical-design decisions; all of the changes that will

occur to CORI’s database between these two versions are strictly due to changes in the

information modeled in the CORI UI. As a footnote, it should be noted that CORI has

not yet addressed the issue of generating an upgrade script to migrate data from version

4.0.23 to version 4.1, though they will need to before the new version is released.

In this subsection, we describe the changes that CORI would need to make in its

channel to accommodate each of the UI updates. Recall that we defined part of the

channel associated with version 4.0.23 of the CORI software in Chapter 3.

Rename a form: No changes to the channel need to be made; the Rename Table

statements propagate through the system, and unless a particular transformation in the

channel has a direct conflict with the new name, the statement should move through the

channel without incident.

Alter control types: Updates may need to be made to channel transformations that

refer to columns. In this case, any time the column “AnemiaType” appears in an argu-

ment to a transformation, it must be replaced by the three columns “IronDeficiency”,

“PerniciousAnemia”, and “OtherAnemia”. For instance, looking at Case Study 1 in

Chapter 3, we can assume that there are several VPartition transformations that parti-

tion procedure data according to columns, including Anemia Type, that will need to be

updated with the new columns.

270

New procedure type: As evidenced by the sample channel in Case Study 1, as well

as the proposed FindingMerge transformation, all of the data for the new procedure type

will need to be merged into the three procedure tables. To accomplish this task, enough

VMerge transformations must be added to the channel to merge any details tables with

the primary table for CAPSULE. Then, the primary HMerge transformations that merge

the procedures together and the findings together must be augmented to bring in the

new procedure and the new procedure-specific findings. Finally, the VPartition transfor-

mations that divide the columns according to data type must be updated to include any

new columns that CAPSULE or its findings introduce, and the domain-aligning Apply

transformations must be augmented to accommodate the same columns. At the mo-

ment, a developer would need to perform these channel modifications manually, since

the transformations monitor columns and tables by name.

6.4 RELATED WORK

There is a considerable amount of research covering the evolution of database schemas

[63], on a wide variety of topics and techniques. In this section, we focus on work related

to the two primary contributions of this chapter, namely user interface refactoring and

propagation of schema evolution through complex mappings.

Model management [6, 7] is an algebra of operators that take as input instances of

data models (i.e., schemas) and mappings between model instances. Example operations

in the model management algebra are:

• Match: takes two schemas and returns a mapping between them

• Compose: takes mappings from schema A to schema B and from schema B to

271

schema C and transitively combines them into a mapping from A to C

• Diff: takes a schema A and a mapping from A to schema B and returns all of the

parts of A that do not participate in the mapping

One of the papers on model management [6] frames the schema evolution question

as the following: given a base schema S 1, a set of view schemas over the base schema

V1, and an evolved version of the base schema S 2, construct an evolved version of the

view schema V2 that respects the original mapping between S 1 and V1. Using model

management, one can express this process as a sequence of operators, including the

three operators listed above. The model management operators are strictly syntactic;

matching that requires any additional tools (e.g., ontologies, thesauri) or human exper-

tise are not covered. So, in the Guava context, model management can automatically

handle cases of adding or removing tables and columns, but cannot handle element-

level operations, renaming, or complex refactorings. Model management also cannot

handle mappings between data and schema, and thus cannot handle mappings involving

such translations as horizontal partitioning or pivoting.

The PRIMA [58] and PRISM [17] projects, mentioned in the related work of Chap-

ter 3, describe transformations between one version of a database schema and the next

from a menu of atomic transformations, with an overlapping (but not equivalent or sub-

suming) expressive power as Guava. Both of these languages support the scenario where

a user poses a query against one version of the schema, and the query is re-written to

pull data from all versions of the schema; Guava can be useful in this scenario as well,

since an upgrade channel can translate queries posed against one version of a database

into an equivalent query against a different version.

272

The Both-as-View (BAV) mapping language [47] is unique among federated database

mapping paradigms [42] in that it explicitly supports schema evolution of both the global

schema and the various local schemas [48]. As mentioned in Chapter 3, BAV mappings

are expressed as a sequence of discrete transforms. In BAV, incremental changes to

either global or local schemas are described as insertion, renaming, or deletion of indi-

vidual schema elements, similar to Guava. Furthermore, specific changes to a concrete

schema are grouped into two categories: those changes that can be expressed as an ad-

ditional transform to be either appended or prepended to the existing list, and those that

require changes to the existing transforms. In both cases, the developer must either spec-

ify a new query or modify an existing query to describe how data for the new schema

element interacts with existing data from other schema elements. One cannot specify

changes at the domain level in BAV.

Refactoring is used in other phases of software development. There is research on

refactoring code [25], defined as incremental modification of code while leaving the ex-

ternal interface and behavior invariant. There is also work on refactoring databases [3],

defined as incremental modification of a database leaving its behavior and information

semantics invariant. However, there is little if any work done to formally investigate

refactoring of user interfaces, and we are not aware of other tools that perform this

functionality.

Contemporary web application frameworks [67, 73] allow a developer to specify the

necessary steps to migrate from one version of a database to another. For instance, a

Ruby on Rails migration is a sequence of DDL and DML statements that describe how

to upgrade a database from one version to the next, and a corresponding sequence of

273

DDL and DML statements that describe how to downgrade back to the original version.

Applications running on Ruby on Rails can then automatically apply these migrations

as necessary to ensure that it is always operating on the correct database version. Unlike

Guava, a database developer must specify the content of these migrations manually in

both directions.

The approach that we take assumes that the developer creates a user interface using

a graphical form builder. An alternative approach to building user interfaces is to use

a declarative language, such as HTML, XAML [84] or XUL [86]. If the developer

writes the UI code manually rather that using a user interface building tool, there is

no way to automatically capture changes to the UI as they happen. However, one can

compare two documents written using the same language and break down the differences

in terms of atomic units. For instance, Eder and Wiggisser [21] present an algorithm for

breaking down changes between two directed acyclic graphs into smaller parts; this

algorithm would be applicable because user interfaces specified in UI languages are

hierarchical and thus DAG’s. Once an algorithm generates a list of atomic changes,

pushing it through the channel proceeds as normal. Comparison tools would be unable

to support complex changes such as UI refactorings without some extension to recognize

patterns that may be joined into a single action.

6.5 SUMMARY AND IMPLEMENTATION STATUS

Manual creation of database upgrade scripts between versions of software is error-prone

and requires testing. For applications that use Guava, upgrades to the database instance

can be automatically generated. Database upgrade scripts in Guava come in two parts:

274

Changes to the user interface result in a transaction of statements that are pushed through

the channel, and changes to the channel result in an upgrade channel through which the

physical database is pushed. We analyzed the changes that are being made to a publicly-

available software product and verified that the types of changes that they are making to

the data handling in their application can be described using our upgrade framework.

Two of the features described in this chapter have been implemented in our prototype

system. First, we have implemented the version control log (VCL). Every time a Guava

application launches, it finds a marker in the database containing the version number of

the database and finds that version number in the VCL. The application then compiles

all of the changes from that point forward in the VCL (the AVCL) into a transaction

and pushes it through the channel. Then it updates the version number in the database.

Second, we have implemented functionality that can invert a portion of a channel; given

a transformation in the channel, we can generate the inverse of the portion of the channel

from the given transformation through to the physical database.

Chapter 7

CONCLUSIONS AND FUTURE WORK

This dissertation has presented a method for translating a user interface into a relational

schema, and a tool for mapping relational schemas based on business logic and physical

database design decisions. These two tools put together provide a way to construct

database-backed applications in a user-interface-centric fashion. We described the status

of our prototype implementation of Guava tools, and used the software produced by

CORI as a case study to demonstrate the efficacy of our tools.

With respect to the research goals presented in Chapter 1, this dissertation makes the

following contributions:

Research Goal 1: Develop an automatic method for constructing query interfaces

that presents the conceptual model inherent in the user interface and draws usability

features from the user interface, and is complete with respect to that conceptual model.

Contributions (Chapter 2):

• We described and formalized a method for constructing a relational schema from

the specification for a user interface.

• We described and formalized a method for constructing a query interface that

resembles the original user interface and produces queries against the data model

referred to in the previous item.

276

• We created a prototype implementation of the relational schema and query in-

terface generator that constructs those tools from any application running on our

graphical widget library.

• We conducted a case study demonstrating that a commercially available software

application can be implemented using our prototype implementation.

Chapter 2 also presented a contribution not directly related to this research goal,

where the framework that generates a relational schema from a user interface can also

be used to provide an addressing scheme for the user interface to uniquely identify data

elements in context in an application.

Research Goal 2: Develop an information-preserving schema mapping language

that is expressive enough to handle physical design decisions, and whose operational

capabilities include transforming queries, data updates, and schema updates.

Contributions (Chapter 3):

• We introduced a generalized relational model that includes new relational algebra

operators, schema evolution at the individual element level, and a generalized

notion of referential integrity that allows incremental evolution.

• We defined and formalized an algebraic abstraction called a channel transfor-

mation that serves as a mapping between relational schemas that can translate

queries, DML updates, DDL updates, and referential integrity constraints ex-

pressed in one schema into equivalent statements in the other schema.

• We defined and formalized the conditions that must be satisfied for a channel

transformation to be information-preserving.

277

• We defined seven transformations that correlate to physical-design decisions com-

monly made in both physical database tuning solutions and generally available

software.

• We conducted a case study demonstrating that the middleware of a commercially

available software application can be implemented using a set of discrete trans-

formations, and that all of those transformations that are motivated by physical

design are covered by our set of seven transformations.

• We created a prototype implementation of these seven transformations, and demon-

strated that this implementation is performant relative to an existing software mid-

dleware.

Chapter 3 also presented contributions not directly related to this research goal:

• We presented commutativity and invertibility rules to describe how to rearrange

channel transformations.

• We defined how each of the seven physical-design transformations estimates the

physical characteristics of its output schema given characteristics of its input

schema.

• We introduced the copy insert method for propagating data from the conceptual

schema to the physical schema or vice versa using only insert statement transla-

tion.

Research Goal 3: Demonstrate that our mapping language is extensible.

Contributions (Chapter 4):

278

• We defined new transformations that generalize three physical-design transforma-

tions from Chapter 3.

• We defined application-specific transformations that encapsulate business-logic

decisions, including three transformations motivated by a case study in Chapter 3.

• We defined new transformations that correspond to the notion of correspondence

assertions from the information integration research literature.

Chapter 4 also presented an additional contribution not directly related to this goal:

We defined a mechanism called a change spike that allows transformations to commu-

nicate information about the operation of the transformation back to a channel’s input

schema.

Research Goal 4: Build a formal framework within which we can prove properties

of our mapping language.

Contributions (Chapter 5):

• We provided mathematical proofs of correctness for our definitions of physical-

design transformations relative to alternative definitions of those transformations

on instances of data rather than operations.

• We provided sample mathematical proofs of correctness for application-specific

transformations, where instance-at-a-time semantics may not be available or con-

venient.

Research Goal 5: Develop a scheme for handling application evolution, both of

the user interface of the application and of the mapping between the user interface and

database, such that the resulting database upgrade script is automatically generated.

279

Contributions (Chapter 6):

• We defined a framework for propagating changes to a user interface specification

into an automatically generated script of data and schema upgrade statements.

• We introduced the notion of a user interface refactoring that encapsulates high-

level transformations of a user interface, and showed examples of how form de-

signers can support user interface refactoring.

• We defined a framework for propagating changes to a channel into an automati-

cally generated script that translates database instances to use the new version of

the channel.

• We carried out a case study that used our framework to characterize the changes

made to a commercially available software application.

For the rest of this chapter, we articulate directions for future research in Guava.

7.1 ALTERNATIVE DATA MODELS: GUAVA GUI TOOLS

Our current conception of Guava is that the natural schema and physical database are

in the relational model (with the appropriate foreign key extensions). We chose the

relational model not because it was required, but rather for practical reasons. First,

relational databases are by far the most common choice for data persistence in business

applications currently. Also, most programming environments come with API’s to work

with relational data, either through cursors or through in-memory data structures such

as the .Net DataSet object. However, one may want to consider using other data models

for these artifacts.

280

For example, one may prefer to have the artifacts in the XML data model. Since a

g-tree is already hierarchical in nature, it is relatively simple to translate a g-tree into

an XML schema; therefore, it makes sense to express the natural schema as XML. One

may also want to use XML as the physical storage medium. There are several native

XML databases under development. In addition, all of the major vendors of relational

databases systems support XML, either as a column type (allowing one to store XML in

a field within a relational table) or as a collection of documents (allowing one to store

XML outside of any relational table).

There are other models that a developer may consider. For instance, one obvious

option for object-oriented programming languages is the object-oriented model. Yet

another option is RDF (Resource Description Framework), in which all data is stored as

subject-predicate-object triples.

To use a data model other than the relational model as the natural schema in Guava,

we require the following:

• A data structure that can hold data in the target data model, to act as the natural

schema and as a cache for in-memory data

• An algorithm that translates a g-tree into a schema in the target data model

• An algorithm that translates queries expressed in the Guava query interface into

queries in the target data model (e.g., XQuery in XML or SPARQL in RDF)

281

 Channel Operators

A
v

a
il
a

b
le

 S
ta

te
m

e
n

ts

Invertible Transformations

Natural

Schema

Physical

DB

Query

Updates

DDL

Constraints

Other statements

Figure 7.1: An alternative view of a channel, isolating the components necessary to

build one independent of the underlying data model

7.2 ALTERNATIVE DATA MODELS: CHANNEL

The channel and transformations as defined in Chapter 3 also use our extended relational

model. We chose the relational model for the channel for the same reason that we chose

the relational model for the Guava GUI tools, namely that SQL and the relational model

are the most prevalent tools used to construct forms-based applications. However, more

and more applications are moving in part or in full to a web-based environment, where

XML data is more prevalent. Therefore, we consider here how to construct a channel

that can operate on a non-relational data model.

There are two primary considerations when designing a channel in a new data model,

shown in Figure 7.1 as two orthogonal axes. On one axis is the set of invertible transfor-

mations that one can place in the channel. On the other axis is the language of statements

that one can issue against the natural schema and that the channel understands. We now

treat these axes individually.

On the transformation axis, one must identify transformations of data in the intended

282

data model that are invertible. Those transformations do not necessarily correspond

to the the seven relational transformations we define in this dissertation, though each

of those operators may have an analog in another model. For instance, the unpivot

transformation in the relational model corresponds roughly to an edge mapping in XML,

where the schema of an XML tree becomes data. Just as we describe in Chapter 4 for

the relational model, a developer can create application-specific transformations, but just

as with the relational model, there may be a small set of well-known transformations in

common use that one can pre-define and formalize. In the case of XML, for instance, the

following transformations are invertible and have clear motivations in terms of usage:

• Invert Hierarchy, in which a tree or forest is restructured so that a different element

serves as the root

• Promote Attribute, in which an attribute becomes a child element

• Demote Attribute, in which an child element with atomic domain, no children, and

single cardinality becomes an attribute

• Partition, in which a single tree is broken into multiple trees according to specified

criteria

One final note about channel transformations and alternative data models: In ad-

dition to considering channel transformations whose input and output models are the

same, we could also consider transformations from one model to another. One such

transformation is an edge mapping, which is the lossless transformation of XML data

into a single relation that stores one row per edge in the original XML document.

283

On the statement axis, one must provide analogs for each of the various classes of

statements introduced in Chapter 3. The Loop and Error statements are recursively

defined in terms of other statements, so one must find model-specific instances of the

other classes (query, DML, DDL, and constraints). For the XML data model, some of

these classes are easier to find analogs for than others.

Queries: The XML model supports several query languages, including XSLT, XPath,

and XQuery. XPath is not likely to be powerful enough to remain closed under channel

transformation; in other words, some transformations in the channel may be so complex

that an input query expressed in XPath may not have an equivalent expression in XPath

on the output. Since XQuery is a Turing-complete language, it is likely to be closed

under XML channel transformation.

DML Updates: There is not yet a standard data update language for XML, but there

are several options provide by both research and industry. For instance, SQL Server

2005 provides an update language for XML that can insert or remove nodes or change

atomic data values at a location identified by an XPath expression. Given a set of XML

channel transformations, one would need to verify that the update language is closed

under those transforms.

DDL Updates: There is a standard schema-definition language, XML Schema, that

one can use to establish a schema. There is not yet a standard data-definition language

for incremental schema updates in XML, though at least one research project has pre-

sented a sound and complete list of primitive updates to XML schemas [27].

The difficulty of schema evolution in XML is that, unlike the relational model, the

schema of an XML document does not necessarily have any effect on the storage of

284

that document. In relational storage, the tuples are stored in a fashion that conforms

to the schema, so schema changes to the relational model are tightly coupled to atomic

changes in storage structure; in XML, documents are validated against a schema at

insertion time. Also, a single XML document can successfully validate against multiple

XML schemas. So, the common scenario for XML is that if the schema changes, one

issues a completely new schema and validates the documents against the new schema.

In addition, XML schemas are far more expressive than relational schemas; there-

fore, the range of possible schema changes is much greater. Some schema changes

have clear similarities between the relational and XML models. For instance, an “Add

Column” statement in the relational model is very similar to an “Add Child Element”

in XML (or would be, if such a language existed). However, some possible schema

changes in XML have no relational analog, such as “Change Order of Elements” and

“Change Cardinality”.

Even without a formal schema evolution language, we can emulate one by describ-

ing each incremental evolution as a pair of XSLT or XML DML operations: one that

transforms the XML Schema document, and one that transforms any XML document

that conforms to the old schema into one that conforms to the new one. So, if one de-

velops an internal language that can represent XML Schema evolution primitives, the

XML provider may be able to translate those primitives into XSLT statements.

Constraints: XML schemas have an ID-based system of foreign keys, similar to

pointers in object-oriented programming. Primary keys (or more specifically, unique-

ness constraints) can be expressed as an XPath expression that must always return

unique results. It is still an open problem whether these constructs would need to be

285

generalized to be processed by a channel, and if so, what level of generalization is appro-

priate. For instance, an XPath expression representing a primary key may be translated

by a channel into an XQuery expression that is not strictly XPath. However, similar to

pushing foreign keys through relational channels, there may be an intermediate, “Tier

2” query language less expressive than full XQuery that is useful in this situation.

7.3 DEFINING NEW APPLICATION-SPECIFIC TRANSFORMATIONS

The three application-specific transformations presented in Chapter 4 are the ones re-

quired to meet the needs of CORI. Other applications will have different requirements

for business logic, and may require additional transformations beyond these three. Other

applications may also require versions of Adorn, Lookup, or Audit with different algo-

rithms; for instance, an application may require a version of the Adorn transformation

where the conditions for refreshing the adorned values are specified as Rule Interchange

Format rules [68]. Or, an application may require a version of Audit with different trans-

formation characteristics. Or, an application may require a transformation that cannot

be constructed by any combination of the existing transformations presented here (for

instance, the Normalize transformation required by InfoSonde, or the CORI transforma-

tion FindingMerge).

Fundamentally, a developer can write a new transformation by subclassing the class

Transform; as demonstrated in the implementation section of Chapter 3, all of our im-

plementations of transformations are written in this fashion. However, for each of the

transformations presented in this dissertation, we describe the transformation formally,

which allows us to prove that each transformation is information-preserving. We do

286

not expect the developer to formally describe every new transformation and prove the

information-preservation properties. However, it is possible to empirically provide ev-

idence that a channel is information-preserving with respect to a particular schema S .

We call this process channel certification.

Consider the following sequence of transactions: First, generate the transaction of

Guava statements that creates schema S . Then, for each table T in the schema S , gen-

erate a sequence of transactions, one transaction per line in the following list:

• Insert statements that create data for the table T

• Insert statements that create data that conflict with existing rows in T (which

should fail, due to primary key violation)

• A Rename Table statement, renaming table T to T ′

• Update statements that alter data from T ′

• Delete statements that remove data from table T ′ (but not so many deletes as to

empty the table)

• A Rename Table statement, renaming the table back to T

• Add, Rename, and Drop Column statements from table T

• Add, Rename, and Drop Element statements from table T

Each transaction should contain a suitably large number of statements that cover the

domains of each attribute and in many combinations. After each transaction in the list,

issue a query transaction, querying each table in the schema S individually. The query

287

transaction verifies that the table T (or T ′, midway through the list) has been altered in

the necessary way, and that no other tables have. If there are any foreign keys (first or

second tier) defined with table T as the source, then some added steps occur just before

the previous list of transactions:

• For each foreign key, attempt to create rows in T that satisfy the head of the foreign

key but have no counterpart in the target of the foreign key. The attempt should

fail.

• For each foreign key, create rows in the target table that satisfy the tail of the

foreign key (so that rows can be safely added to T without throwing any more

errors).

If a channel passes the tests above, then we say the channel is minimally certified

with respect to S . We would expect that Guava would automatically generate all of these

transactions based upon the input schema of the transformation. The tests empirically

demonstrate that the information-preservation properties hold by generating a sample

workload and verifying that, at all times, the contents of all tables in S contain exactly

the same data as if there were no channel and the natural schema exactly matched the

physical schema.

The certification is “minimal” because the set of above tests does not cover every

single possible combination of statements. It is possible that a custom-built transforma-

tion has some bizarre side effect that does not preserve information for statements with

particular values. Since we cannot test every single possible insert statement against

S , for instance, the transformation drops statements that have negative values in some

288

columns. We may be able to improve the coverage of a channel certification by allow-

ing a quality assurance expert to define data distributions for each possible statement to

cover potentially known interesting cases.

We can empirically analyze the effect of a transformation on physical characteris-

tics. Given statistics on row counts and value distributions over a transformation’s input

schema, we can generate a database with a substantial amount of data that matches those

characteristics, in a similar fashion to the sample data generator that comes as part of

Microsoft Visual Studio Team System Database Edition [54]. We can then push that

data through the transformation and measure statistics over the output.

Finally, we can also empirically certify inverse relationships. If the developer speci-

fies that the inverse of a newly-developed transformation T is the sequence of transfor-

mations [T1,T2, . . . , Tn] (where the transformations Ti need not themselves be information-

preserving, as in the case of Audit), we can empirically demonstrate through sample

workloads that [T,T1,T2, . . . , Tn] is equivalent to the empty channel ε.

7.4 BEYOND A SINGLE APPLICATION ENVIRONMENT

In this dissertation, we have described an architecture for building software with a single

GUI operating over a single data source. Here, we briefly consider directions for using

Guava to handle multiple applications accessing a single data source. There is a vast

amount of research in the field of information integration that covers the general case

of integrating multiple data sources (including Interschema Correspondence Assertions

[72], which were the inspiration for correspondence assertion transformations in the

channel).

289

 (a) Multiple applications on a single natural schema

 (b) Multiple applications on multiple natural schemas

Natural Schema 2

Physical Storage

Channel 2 Channel n

User Interface 1

Guava GUI Library

User Interface 2

Guava GUI Library

User Interface n

Guava GUI Library

Natural Schema 1

Channel 1

Integration Directives (Correspondences)

…

Natural Schema n …

…

User Interface 1

Guava GUI Library

User Interface 2

Guava GUI Library

User Interface n

Guava GUI Library

Natural Schema

Channel (Middleware)

Physical Storage

User Interface Specification Language (Correspondences)

…

Figure 7.2: Two different scenarios for using Guava where multiple applications access

the same physical database

290

Figure 7.2 shows two potential ways to handle the multiple application scenario;

the primary difference between the two situations is which actor handles the correspon-

dence assertions. In Figure 7.2(a), the many applications share a single natural schema;

correspondence assertions are specified by the user interface designer (possibly as an ex-

tension to the form builder, like the user interface refactorings). The channel transforma-

tions that correspond to the user interface designer’s directives appear at the beginning

of the channel. This way of specifying correspondences is appropriate for situations

where the multiple applications are developed in the same place using the same tools,

since specifying a correspondence between heterogeneous environments may require

significant additions to each form building application.

In Figure 7.2(b), the many applications each have their own natural schema and

channel, and the database designer introduces correspondence assertions to unify their

physical schemas. This situation is like the classical information integration problem,

where all applications are developed independently and their physical database needs to

be unified after the fact.

In the first situation, where correspondence assertions can be specified as directives

in a form builder, there is the additional question of how those assertions can be speci-

fied, and how they appear to the UI developer in the builder once specified. In both of

these situations, the open question is how (or, for that matter, if) one can describe inter-

schema correspondences (such as the ICA’s from Spaccapietra [72]) beyond Column

and Table Equate as channel transformations, including relationships such as inclusion,

overlap, or mutual exclusion.

291

7.5 BEYOND A SINGLE DEVELOPER ENVIRONMENT

The VCL introduced in Chapter 6 works as designed in a single-developer environ-

ment. When in a multiple-developer environment, some aspects of the VCL need to be

changed:

• The concept of “version” carries a different meaning in a multiple-developer en-

vironment, since different people constructing builds simultaneously will have

different concepts of what the current build number is

• Since the VCL is itself an artifact in source control, different developers’ VCLs

will need to be reconciled when checking in source code

The issue of multiple build numbers can be resolved in a number of ways; for in-

stance, we can change the idea of build number so that it is a vector, representing the

current build with respect to each developer. Or, the build number in each checkpoint

entry may be independently managed by each developer, but the primary version number

X.Y.Z is managed centrally within source code.

With respect to merging VCL lists, some merging can happen automatically if the

artifacts in the VCL do not conflict. The following situations would cause conflicts:

• Entry A from one VCL and entry B from another VCL yield one final result if A

comes before B but yield a different result if B comes before A

• Having both entries C and D in a VCL at the same time would cause an error,

whereas each individually would not cause an error (for instance, if both entries

are Add Column statements adding a column with the same name)

292

We would expect that, in these cases, conflicts would be resolved in a similar fashion

to how conflicts are resolved when code is being merged in source control: a developer

is presented with the code that is causing a conflict, and the developer is tasked with

making a judgement about how to resolve the conflict. Some conflicts in a VCL merge,

however, are the direct result of a conflict in the code; for example, if a VCL conflict

arises from two different statements trying to add columns with the same name, that is

a direct result of two different controls with the same name trying to be added to the

same form, which will cause a build error. Thus, fixing the error in the code would

effectively fix the merge problem. The open question here is if conflicts at the VCL

level can always be mapped to conflicts at the GUI level, and if so, whether fixing the

GUI conflict simultaneously fixes the VCL conflict.

7.6 ADDITIONAL FUTURE WORK

Tables 3.10 and 4.5 describe what effects channel transformations have on table statis-

tics. Also, we introduce commutativity and invertibility rules that one can use to trans-

late channels into equivalent channels. One open question is whether it is possible to

construct an automated channel generator and optimizer — given a natural schema and

a workload, construct a channel (or, more specifically, the part of the channel pertaining

to physical design) that is either optimal for time or for space or both. This process

would need to be coupled with a physical design tool [1] to leverage existing work on

generating physical structures such as indexes and materialized views. An alternative

option would be to take an existing physical design tool and extend its capabilities to be

able to work with all of the transformations that the channel can offer.

293

In Chapter 6, we introduced the comparison approach to translating changes to a

channel into changes to a database instance. Just as in the user interface changes, if

we assume that there is a tool available to assist the developer with building a channel,

that tool may be able to recognize incremental changes to the channel. In the incre-

mental approach to channel evolution, an atomic change to a channel translates into a

transaction of DML and DDL updates that are pushed through a portion of the channel.

For instance, if a VPartition transformation is created at the sixth position from the end

of a channel, a set of DML and DDL statements are pushed through only the last five

transformations in the channel.

In the incremental approach, each channel transformation must include descriptions

for how to translate each of the following actions into DML and DDL:

• Insert Transformation: describe the DML and DDL that is generated when a trans-

formation is inserted into a channel

• Delete Transformation: describe the DML and DDL that is generated when a

transformation is deleted from a channel

• Modify Transformation Parameters: describe the DML and DDL that is generated

when the parameters for a transformation are altered by the developer; note that

this means the transformation must know how to handle modifications to any of its

parameters, including parameters that are lists and parameters that are functions

It is an open question as to the best way to integrate incremental changes of the GUI

with incremental changes to the channel. One possibility is that they may both somehow

be encoded in the VCL simultaneously.

294

There are emerging benchmarks in the field of schema mappings and matching [2].

It would be informative to compare a channel against other mapping languages and

techniques using these benchmarks, once they have been refined and gained more ac-

ceptance.

Currently, the only constraints that we have defined in our data model (and, there-

fore, that our transformations know how to operate upon) are foreign keys and primary

keys. We may be able to extend the model and each transformation to include other con-

straints, including functional dependencies or, more generally, conditional functional

dependencies [23].

Finally, we have some hypotheses that we would like to test empirically with regard

to users. Because a Guava query interface derives directly from the user interface and

because it connects to the database through the same mechanisms as the user interface,

we believe that the Guava query interface can give domain experts both productivity and

quality gains in their queries. It is an open question whether the Guava query interface

can offer these gains; one way to evaluate this hypothesis would be to conduct user

studies.

295

REFERENCES

[1] S. Agrawal, V. Narasayya, and B. Yang. Integrating Veritcal and Horizontal Parti-

tioning into Automatic Physical Database Design. SIGMOD 2004, June 2004.

[2] B. Alexe, W. Tan, and Y. Velegrakis. STBenchmark: Towards a Benchmark for

Mapping Systems. VLDB 2008, Auckland, New Zealand, August 25–28, 2008,

230–244.

[3] S. W. Ambler and P. J. Sadalage. Refactoring Databases. Addison-Wesley, pub-

lisher. c©2006.

[4] M. Angelaccio, T. Catarci, and G. Santucci. QBD*: A Graphical Query Lan-

guage with Recursion. IEEE Transactions on Software Engineering, October,

1990, 16(10):1150–1163.

[5] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM Trans-

actions on Database Systems, December 1981, 6(4):557–575.

[6] P. A. Bernstein. Applying Model Management to Classical Meta Data Problems.

CIDR 2003, Asilomar, California, January 5–8, 2003, 209–220.

[7] P. A. Bernstein, S. Melnik. Model management 2.0: Manipulating Richer Map-

pings. SIGMOD 2007, Beijing, China, June 12–14, 2007, 1–12.

296

[8] J. A. Blakeley, D. Campbell, S. Muralidhar, and A. Nori. The ADO.Net Entity

Framework: Making the Conceptual Level Real. SIGMOD Record, December

2006, 35(4):31–38.

[9] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language for

updatable views. PODS ’06, Chicago, IL, USA, 2006, 338–347.

[10] N. Bruno and S. Chaudhuri. Automatic Physical Database Tuning: A Relaxation

Approach. SIGMOD 2005, June 2005, 227–238.

[11] Centricity EMR, formerly Logician. http://support.medicalogic.com/.

[12] S. Chaudhuri, V. R. Narasayya, and M. Syamala. Bridging the Application and

DBMS Profiling Divide for Database Application Developers. In VLDB 2007, Vi-

enna, Austria, September 23-27, 2007, 1252–1262.

[13] Clinical Outcomes Research Initiative. http://www.cori.org/.

[14] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communi-

cations of the ACM, 1970, 13(6):377-387.

[15] Crystal Reports. http://www.businessobjects.com/product/catalog/crystalreports/.

[16] C. Cunningham, G. Graefe and C. A. Galindo-Legaria. PIVOT and UNPIVOT:

Optimization and Execution Strategies in an RDBMS. VLDB 2004, 998–1009.

[17] C. Curino, H. Moon, and C. Zaniolo. Graceful Database Schema Evolution: the

PRISM Workbench. VLDB 2008, Auckland, New Zealand, August 25–28, 2008,

761–772.

297

[18] B. Dageville, D. Das, and K. Dias. Automatic SQL Tuning in Oracle 10g. VLDB

2004, 1098–1109.

[19] U. Dayal and P. Bernstein. On the Correct Translation of Update Operations

on Relational Views. ACM Transactions on Database Systems, September 1982,

8(3):381–416.

[20] D. Draheim and G. Weber. Form-Oriented Analysis. Springer-Verlag, publisher.

c©2005.

[21] J. Eder, K. Wiggisser. A DAG Comparison Algorithm and Its Application to Tem-

poral Data Warehousing. ER Workshops 2006 (ECDM 2006), 217–226.

[22] D. W. Embley. NFQL: the natural forms query language. ACM Transactions on

Database Systems, June 1989, 14(2):168–211.

[23] W. Fan et al. Propagating Functional Dependencies with Conditions. VLDB 2008,

Auckland, New Zealand, August 25–28, 2008, 391–407.

[24] S. Flesca, F. Furfaro and S. Greco. XGL: a graphical query language for XML.

Proceedings of the International Database Engineering and Applications Sympo-

sium (IDEAS02), Washington, DC, USA, 2002, 86–95.

[25] M. Fowler et al. Refactoring: Improving the Design of Existing Code. Addison-

Wesley Professional, publisher. c©1999.

[26] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional, publisher. c©1994.

298

[27] G. Guerrini, M. Mesiti, and D. Rossi. Impact of XML Schema Evolution on Valid

Documents. Proceedings of the International Workshop on Web Information and

Data Management (WIDM), CIKM 2005 Workshop, Bremen, Germany, November

5, 2005, 39–44.

[28] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Tech-

niques, and Applications. IEEE Data Engineering Bulletin, 1995, 18(2):3-18.

[29] A. Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal, 2001,

10(4):270–294.

[30] J-L. Hainaut. The Transformational Approach to Database Engineering. Genera-

tive and Transformational Tech. in Software Engineering, 2006, LNCS 4143:89–

138.

[31] D. C. Hay. Data Model Patterns: A Metadata Map. Morgan Kaufman, publisher.

c©2006

[32] M. Hernandez, P. Papotti, and W. Tan. Data Exchange with Data-Metadata Trans-

lations. VLDB 2008, Auckland, New Zealand, August 25–28, 2008, 260–273.

[33] Hibernate. http://www.hibernate.org/.

[34] B. Howe et al. Quarrying dataspaces: Schemaless profiling of unfamiliar informa-

tion sources. ICDE Workshops 2008, Cancun, Mexico, 270–277.

[35] IBM FileNet Forms Manager. http://www-306.ibm.com/software/data/content-

management/filenet-forms-manager/.

299

[36] IBM Lotus Forms. http://www-306.ibm.com/software/lotus/forms/.

[37] H. V. Jagadish et al. Making Database Systems Usable. SIGMOD 2007, Beijing,

China, 2007, 13–24.

[38] M. Jayapandian, H. V. Jagadish. Automated Creation of a Forms-based Database

Query Interface. VLDB 2008, Auckland, New Zealand, August 25–28, 2008, 695–

709.

[39] A.M. Keller, R. Jensen, and S. Agrawal. Persistence Software: Bridging Object-

Oriented Programming and Relational Databases. SIGMOD 1993, 523–528

[40] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On efficiently imple-

menting SchemaSQL on a SQL database system. VLDB 99, Edinburg, Scotland,

September 1999, 471–482.

[41] J. A. Larson, S. B. Navathe, and R. Elmasri. A Theory of Attribute Equivalence in

Databases with Application to Schema Integration. IEEE Transactions on Software

Engineering, April 1989, 15(4):449–463.

[42] M. Lenzerini. Data Integration: A Theoretical Perspective. PODS 2002, 233–246.

[43] J. Logan, J. F. Terwilliger, and L. M. L. Delcambre. Exploiting the User Inter-

face for Tomorrow’s Clinical Data Analysis. Journal on Information Technology

in Healthcare, April 2008, 6(2):138-149. Reprinted from Todays Information for

Tomorrows Improvements 2007, an international conference addressing Informa-

tion Technology and Communications in Health (ITCH 2007).

300

[44] Logician Data Schema, Release 5. MedicaLogic Inc. (now GE Medical Systems)

P/N 2487-04. c©1999.

[45] D. Lomet et al. Transaction Time Support Inside a Database Engine. ICDE 2006,

Atlanta, Georgia, USA, 2006.

[46] A. Maule, W. Emmerich, and D. S. Rosenblum. Impact Analysis of Database

Schema Changes. ICSE 2008, Leipzig, Germany, May 10–18, 2008.

[47] P. McBrien and A. Poulovassilis. Data Integration by Bi-Directional Schema

Transformation Rules. ICDE 2003, 227–238.

[48] P. McBrien and A. Poulovassilis. Schema Evolution in Heterogeneous Database

Architectures, a Schema Transformation Approach. CAiSE 2002, 2002, 484–499.

[49] S. Melnik, A. Adya, and P. A. Bernstein. Compiling Mappings to Bridge Applica-

tions and Databases. SIGMOD 2007, Beijing, China, 2007, 461–472.

[50] Microsoft Office Access. http://office.microsoft.com/en-us/access.

[51] Microsoft Office InfoPath. http://office.microsoft.com/en-us/infopath.

[52] Microsoft SQL Server Integration Services.

http://www.microsoft.com/sql/technologies/integration/default.mspx.

[53] Microsoft SQL Server 2005. http://www.microsoft.com/sql/default.mspx.

[54] Microsoft Visual Studio Team System Database Edition.

http://msdn.microsoft.com/en-us/vsts2008/db/default.aspx.

301

[55] R. J. Miller. Using Schematically Heterogeneous Structures. SIGMOD 1998, Seat-

tle, WA, June 1998, 27(2):189–200.

[56] R. J. Miller, L. M. Haas, and M. A. Hernndez. Schema Mapping as Query Discov-

ery. VLDB 2000, San Francisco, CA, USA, 2000, 77–88.

[57] R. J. Miller et al. The Clio Project: Managing Heterogeneity. SIGMOD Record,

2001, 30(1):78–83.

[58] H. Moon et al. Managing and Querying Transaction-time Databases under Schema

Evolution. VLDB 2008, Auckland, New Zealand, August 25–28, 2008, 882–895.

[59] P. Mork, P. A. Bernstein, and S. Melnik. Teaching a Schema Translator to Produce

O/R Views. ER 2007, Aukland, New Zealand, 2007, 102–119.

[60] S. Murthy, L. M. L. Delcambre, and D. Maier. Explicitly Representing Superim-

posed Information in a Conceptual Model. ER 2006, Tucson, Arizona, Nov. 6–9,

2006, 126–139.

[61] A. Papantonakis and P. J. H. King. Gql, a declarative graphical query language

based on the functional data model. In Proceedings of the workshop on Advanced

visual interfaces (AVI 94), a SIGCHI workshop, Bari, Italy, 1994, 113–122.

[62] A. Poulovassilis and P. McBrien. A General Formal Framework for Schema Trans-

formation. Journal of Data and Knowledge Engineering (DKE), October 1998,

28(1):47–71.

[63] E. Rahm and P. A. Bernstein. An Online Bibliography on Schema Evolution. SIG-

MOD Record, December 2006, 35(4):30–31.

302

[64] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-

ing. VLDB Journal, 2001, 10(4):334–350.

[65] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interactive Data Cleaning

System. VLDB 2001, San Francisco, CA, USA, 2001, 381–390.

[66] S. R. Rollinson and S. A. Roberts. Formalizing the Informational Content of

Database User Interfaces. In Proceedings of the 17th International Conference on

Conceptual Modeling (ER98), Singapore, November 16-19, 1998, 65–77.

[67] Ruby on Rails. http://www.rubyonrails.org/.

[68] Rule Interchange Format (RIF). http://www.w3.org/2005/rules/.

[69] SAS Metadata Server.

http://www.sas.com/technologies/bi/appdev/base/metadatasrv.html.

[70] E. Sciore, M. Siegel, and A. Rosenthal. Using semantic values to facilitate in-

teroperability among heterogeneous information systems. ACM Transactions on

Database Systems, June 1994, 19(2):254–290.

[71] R. T. Snodgrass. Developing Time-Oriented Database Applications in SQL. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[72] S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for inte-

gration of heterogeneous schemas. VLDB Journal, 1992(1):81-126.

[73] SQL Alchemy. http://www.sqlalchemy.org/.

303

[74] J. F. Terwilliger, L. M. L. Delcambre, and J. Logan. Context-Sensitive Data Inte-

gration. In Proceedings of the EDBT 2006 Workshop on Information Integration in

Healthcare Applications (IIHA), Munich, Germany, March 26, 2006, 20–31.

[75] J. F. Terwilliger, L. M. L. Delcambre, and J. Logan. The User Interface is the

Conceptual Model. ER 2006, Tucson, Arizona, USA, November 6–9, 2006, 424-

436.

[76] J. F. Terwilliger, L. M. L. Delcambre, and J. Logan. Querying through a user

interface. Journal of Data and Knowledge Engineering (DKE), December 2007,

63(3):748–768.

[77] H. Tian et al. NeuroQL: A Domain-Specific Query Language for Neuroscience

Data. In Proceedings of the 2006 EDBT Workshops 2006, Workshop on Query

Languages and Query Processing, Munich, Germany, March 26–31, 2006, 613–

624.

[78] D. Tsichritzis and A. C. Klug. ANSI/X3/SPARC DBMS Framework. Report of

the study group on data base management systems, AFIPS Press, Arlington, Va.,

1977.

[79] O. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The GMAP: A Versatile Tool

for Physical Data Independence. The VLDB Journal, April 1996, 5(2):101–118.

[80] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S. Skiadopoulos. A

generic and customizable framework for the design of ETL scenarios. Information

Systems, November 2005, 30(7):492–525.

304

[81] H. Wei and R. Elmasri. PMTV: A Schema Versioning Approach for Bi-Temporal

Databases. TIME 2000, Washington, DC, USA, 2000, 143–151.

[82] C. M. Wyss and E. L. Robertson. A Formal Characterization of PIVOT/UNPIVOT.

CIKM 2005, Bremen, Germany, October/November 2005, 602–608.

[83] C. M. Wyss and F. I. Wyss. Extending relational query optimization to dynamic

schemas for information integration in multidatabases. SIGMOD 2007, Beijing,

China, 2007, 473–484.

[84] XAML. http://www.xaml.net/.

[85] XForms. http://www.w3.org/TR/xforms/.

[86] XUL. http://www.xulplanet.com/.

[87] M. M. Zloof. QBE/OBE: A Language for Office and Business Automation. IEEE

Computer, 1981, 14(5):13–22.

	Graphical User Interfaces as Updatable Views
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1454083341.pdf.Xppyp

