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CHAPTER I

INTRODUCTION

Long distance optical transmission of voice signals has

been the subject of research since the time of Alexander

Graham Bell"s "Photo-Phone". But the recent discoveries that

have revolutionized data transmission do not go back more

than two decades. Graded index (lenslike) fibers, trap a

light beam because their index of refraction is higher in the

core than in the surrounding region. Lenslike media thus

constructed were found in 1970 to be the most efficient data

transmitters [1]. But for high'-power applications and in the

frequencies where low-loss fibers are not available metallic

waveguides are the only solution. In 1964, Marcatili and

Schmeltzer [23, showed that dielectric materials are not

suitable for use in hollow circular waveguides for long

distance optical transmission because of the high loss due to

the slightest curv~ture of the guide axis. On the other hand

they showed that hollow metallic circular waveguides are far

less sensitive to curvature of the guide axis, and therefore

have less loss. In 1965-66, Kogelnik introduced the ABeD law

for the propagation of Gaussian beams of light through

lenslike media including those with a loss or gain variation

[3-43. Gaussian light beams in inhomogeneous media were
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studied by Casperson in 1973 [51. A method for determining

the width of a beam and its displacement from the axis

analytically was introduced; the beam was assumed to have a

Gaussian distribution in the transverse direction, and the

beam parameter equation was solved exactly. Coupling

techniques became a subject of investigation and waveguide

tapering was developed. The earliest studies on bent and

tapered lenslike media used the ray theory approach [6-101.

In 1976 Sawa [Ill, dealt with tapered lenslike media from the

wave theory point of view. Garmire, et ale [12], showed that

when rectangular guides are bent, propagation takes place

mainly along the outer walls. Guided beams in concave

metallic waveguides were studied by Casperson and Garfield

[131. In that study the beam modes were shown to be

expressible in terms of Hermite-Gaussian functions parallel

to the strip and Airy functions in the perpendicular

direction. They proved an important analogy that along the

surface, the equation is similar to that for media with a

Quadratic index profile (lenslike material), the

Hermite-Gaussian solutions of which follow sinusoidal

trajectories whilp. oscillating in width. Related studies

were done by Marhic et ale (14-151. Also, polarization and

losses of whispering-gallery waves along twisted trajectories

was studied by Marhic in 1979 [26J. Analytical and numerical

solutions of the beam propagation in tapered Quadratic index

waveguides have recently been done by Casperson and Kirkwood

[16-17J. The purpose of this study is to investigate
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theoretically a variety of tapered waveguides and test the

theoretical solutions against laboratory experiments.

In order to determine the behavior of light in a tapered

waveguide, we assume that a Gaussian beam propagates. This

assumption leads to differential equations for the beam

width, its radius of curvature, and the displacement of its

amplitude center from the longitudinal axis. These equations

can then be solved exactly by numerical integration

techniques and the results plotted. Therefore the

characteristics of the beam and the effects of various forms

of tapering are determined exactly in graphical form.



CHAPTER II

THEORY

a. Derivation of the Beam Equation:

To study the behavior of a Gaussian beam propagating

alonq a tapered waveguide. we need to derive a wave equation

and therefore we need to start with the four fundamental

equations of Electromagnetism known as Maxwel17s equations:

~E = -dB/dt

't")(H = dD/dt + J

'1'.8 = 0

'ff.D= P
From the first two equations we get:

~~E = -d/dt (~B) =
=-d/dt [~(~H)] = -d/dt [~~xH - ~~HJ (1)

Assuming magnetic homogeneity : 'ff~= 0 for the permeability

~. Therefo.e the equation becomes:

~~E = -~d/dt (~H) = -~d/dt (dD/dt +J)

= -~ d2D/dt2 - ~dJ/dt

Now sUbstituting:

J = 6E (which is true for most materials>

and 0 = KoE + P (which is always true> with P

for polarization. we get :
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Using the identity:

~~E = ~(~. E) - ~E

and:

~(~.E) = -~(E.~~/E)

we get:

-~(E. ""lEI&:) - ~..<lE=-~lEod2£/dt:Z -Jo'd:ZP/dt:z

Now we assume that:

~(E.""E/r;:)« ~E
That is~ the permittivity IS: does not change

much in a wavelength. Therefore our equation reduces to:

-~6dE/dt

~E-""EI:>d:ZE/dt2_""6"dE/dt = ....d:zp/dt:z

Analyzing the polarization P into a background component

Po and a component due to the lasing atoms or ions

P1 we get:

P = Po + PI

and we can wri te: p.:> = EOXoE

where Xo=l is the ~useptibility of vacuum. Our

equation becomes:

~E-""EI:>d2E/dt::C:-""6'dE/dt :: ~ d2P/dt2

=....EoXod2E/dt 2+ ....d:zP 1/dt:;.:

where

e: == 10:':.( l+Xo)

is the electric permittivity.
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Now assuming harmonic time dependence we can write:

E = E' Cos wt = Re E' exp(iwt>

P1 = C Cos wt + 8 Sin wt =
= Re [C exp(iwt> - is exp(iwt>]=

= Re (C-iS)exp(iwt> =
= Re P" exp (iwt>

All real parts come out of the equation and our equation

becomes:

~E' + ~RW2E' - i~6wE' =
=_~W2C + i~w:2S

The real parts have to be equal if the complex parts are

equal:

C :: e:X'E'

8 = e:X"E"

80 the equation becomes:

~E' + [~Ew:2(l + X') + i~Ew2(X"-6'/Ew> JE'=O

or:

~E' + k:2E' = 0 (2)

which is sometimes referred to as the Helmholtz equation.

In this equation k is:
k = (J-IE)1/:2w(1+X') + i(X .. -(J/e:w)]1 ....:;,c

which is the wave number or the propagation constant and is a

complex number.

identity:

If X'~6' and X" are small~ then from the

For small e: we get:

k ~ w/c [1 + X'/2 + i/2 (-aIEw + X")J = ~ + ia
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with:

~ = wlc (1 + X"/2) ,

a = w/2c (X" 6/EW)

where a is the gain or loss coefficient and ~ is the index

coefficient.

Equation (2) is the Wave Equation in Optics.

us E" once we know k.

It tells

b. Solutions 0+ the Beam Equation:

We assume that the beam is uniform in the y direction,

polarized in the x direction and propagates parallel to the z

axis.

For plane waves equation (2) becomes:

(3)

For a lenslike material. that is a material whose index

of refraction varies quadratically with distance, such as an

optical fiber~ we can write for the wave number k:

k(r,z)=ko(z)-1/2k2(z)r2

=~ + ia

k is a complex number that can be separated into real part P

and imaginary part a:

The real part also can be written as:

~ = 2xn/:\t

and it denotes the index of refraction.

gain.

a denotes loss or

Both a and ~ can be separated as:
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~ =

ao-l/2a2r2

where the subscript n denotes index or gain per wavelength.

Since the gain or loss per wavelength is always small in

practice, ao can be neglected.

k~=ko2-kok2r2 +1/4k22r4

We omit the last term as a postulate or approximation

since k does not vary a lot.

In cartesian coordinates:

Here r=x only. To solve equation (3) a useful substitution

is :

EM' = A(x,z)exp[-i§ko(z) dzJ (4)

Then equation (3) becomes:

d2A/dz2-2ikodA/dz-idko/dzA=O (5)
We cancel the first term in eq. (5) in what is

called the Paraxial Approximation. It assumes that A

varies very slowly with z.

To have a Gaussian Beam solution we need to make another

substitution:

A(x,z)=

=exp-i(QM(z)x2/2+SM(z)x+P(z)J

Q is the Complex Beam Parameter and it governs the size of

the beam and the phase front curvature. S is the Complex
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Displacement Parameter and is responsible for the location of

the beam and its direction of propagation. P is the Complex

Phase Parameter and it is related to the phase and amplitude

of the beam. SUbstituting eq. (6) in eQ. (5) and equating

the equal powers of the equation we get a set of ordinary

differential equations:

Q2+kodQ/dz+kok2=0 (7)

QS+kodS/dz=O (8)

dP/dz=(-iQ-S2-idko/dz)/2ko (9)

Equation (7) is the Beam Parameter Equation and eq. (9)

is called the Phase Parameter Equation.

The Kogelnik notation for the Complex Beam Radius

(q=ko/Q) is:

l/q=Q/ko=1/R-i~/xw2 (10)

where R is the radius of curvature of the spherical phase

fronts, w is lIe of the amplitude spot-size (width) of the

beam~ and ~ is the wavelength of the medium.

To solve for the path of the beam, we need to change

variables in eq. (7) to make it a linear, second order

equation. The change of variable would be:

Q=l/x(kodx/dz)

Then the eq. becomes:

dx2/dz2+k2/kox=O

which has solutions in terms of Sin and Cos:

x=ACos Z(k2/ko) 1/2+ BSin Z(k2/ko) 1/2

Thus the beam width in a lenslike material oscillates

sinusoidally about the z axis. The period of oscillation is:
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Period=X(ko/k2) 1/2

and for real index:

Period=X(no/n2) 1/2 (11)

The geometry of the tapered waveguide, as shown in Fig.

(1). has transverse radius R and longitudinal radius r.

From the previous papers [13-14], it has been shown the

important analogy that the propagation of optical waves along

the sur+ace 0+ waveguides are similar to propagation in

materials with a quadratic index profile (lenslike materials)

such as fibers. They have also shown that the period of

oscillation in a concave waveguide in terms of Rand r is:
Period=X(rR)1/':<! (11a)

By comparing eqs. (11) and U1a) we get:

n:z/no=1/rR ( 12)

Now we change variables in eqs. (7) and (8) as:

Q" =(;1.. / k "

S"=S../k.,

and separate Q" and S" into real and imaginary parts:

S"=Sr-"+S:I."

There+ore equations (7) and (8) turn into:

dQr-"/dz=
(13)

dQ1"/dz=

(14)
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Equations (13-16) are Ricatti non-linear and first order

differential equations which can be easily solved on computer

using Runge-Kutta methods explained in Appendix A.
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Fig. 1: Normalized plot of the beam displacement

and width as a function of distance along the waveguide.
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Fig. 2: Geometry of the tapered waveguide.



CHAPTER III

NUMERICAL SOLUTIONS

a. 1niti al Condi tions:

To solve the differential equations (13-16) we need to

specify our initial conditions for Qr~~ Qi~~ Sr~~ Si~,

~2/~o, and a2/~o which at
this point of our study we assume no loss or gain therefore

the last term would be equal to zero.

The initial conditions are derived from the steady state

beam parameters with no tapering, i.e. zero change with

respect to z.
Therefore we set equations (13-16) equal to zero. From

eq. (13) we get:

=n2/n,:> (17)

The amount of eq. (17) is equal to the tapering shown in

eq .. (12) and which will be discussed later. From eq .. (10) in

order to have a real spot-size we need to have an imaginary

Q~ with a negative sign:

Qr~ (55)=0

Qi~ (SS)=

=-(n2/no)1/~ (19)

(18)

5S stands for Steady State. From eq. (16) equated to
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zero for steady state and with the value o~ eq. (18) we get.

SrP (SS)=O (20)

From the study (5), the Beam displacement is shown to be:
da = -SiP/QiP

lheretore:

(21)

SiP (5S)=-da(O)QiP (55) (22)

where da(O) is the initial beam displacement. We assume this

value to be equal to the diameter of the waveguide.

For the tapering we choose different configurations
based on early studies [18-21) and initially we assume no

loss or gain so that a2=O in eq. (14).

b. Types of Tapers:

We investigate two types of tapering in eq. (12) which

denote the index of refraction:

n2/no=l/rR=C(1+Gz)

and = C/(I-Gz)2

(23)

(24)

where C=I/roR when 2=0 and G is a constant called

the Taper Coefficient. Table 1 shows the different tapers

that we have considered and their specifications.
The first set of graphs (Fig. 3-25) show plots of

normalized beam width, and amplitude displacement in tapered

waveguide versus distance in meters. Values for these

quantities are calculated at each step of the integration as

follows:
w/w(SS> = (Q(SS)/Qi)l~~ (25)

da = -Si/Qi (26)
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The beam width has been normalized to produce a solution

that is independent of wavelength.



TABLE I

Pipes and Tapers

TYPE OF TAPER ..
C (l+Gz) with G = 0.1

Pipe one: 2R = 5/8 inch

C = 125.98

Pipe two: 2R = 3/4 inch

C = 104.98

Pipe three: 2R = 1/2 inch

C = 157.48

TYPE OF TAPER ..
C/(l-Gz) (l-Gz)

Pipe four: 2R = 1/2 inch

C = 157.48

G = 0.3

Pipe five: 2R = 3/4 inch

C = 104.98

G = 0.4

Pipe six: 2R = 3/4 inch

C = 104.98

G = 0.5

Pipe seven: 2R = 3/4 inch

C = 104.98

G = 0.2
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c. Comments on Theoretical Data:

From the previous graphs for the displacement of the

beam, we observe that as the taper becomes sharper (i.e. G

approaching 0.5). the oscillation frequency increases whereas

the oscillation amplitude (displacement from axis),

decreases.

The beam width (spotsize), however, oscillates about the

steady state value when the initial widths are above or below

steady state.



CHAPTER IV

EXPERIMENT

A. Procedure:

In order to make a tapered waveguide we needed to Tind a

pipe of a material that could be bent easily and without

deformity. This pipe then would be bent according to the

tapering formulas of (23) or (24). As is shown in these

equations, the tapering does not depend on the type of the

material of the waveguide. (The dependence oT material is

effective in loss calculations as is shown in Appendix B).

Copper and Aluminum demonstrated easy bending capability

without deformation. Therefore we designed our experiments

to be performed with Cu and AI. Different inner radius of

the pipes are selected Trom commercial tubings and the sides

of the tubes are chosen to be thick enough to prevent any

significant deformation of the transverse radius of curvature

due to longitudinal bending. A pipe thus bent is sawed in

half and the concave half is selected for the experiment.

Then the inside of the waveguide is cleaned and polished

using different metal detergents and polishes.

A 6328A helium-neon laser is positioned at one end of

the strip (z=O) so that the beam is initially parallel to the

longitudinal axis of the strip but displaced from this axis
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as far as the strip will allow. The laser beam propagates

sinusoidal along the axis of the waveguide strip. We then

measure the position of the maxima and minima of the beam

displacement from the axis. Due to the loss associated with

the metal waveguide~ the intensity of the beam is reduced as

z increases until the beam is no longer visible~ therefore

there are limited number of maxima and minima visible. Fig.

15 is a picture of the experiment set up and Fig. 16 is a

picture taken from the beam on the waveguide. Fig. 17 is a

schematic drawing of what can be observed on the waveguide

during the experiment.

B. Results:

Table II gives the measured distance z for the maxima or

minima of the beam displacement and spotsize along the

different waveguides with different tapering. 2R is the pipe

diameter~ DA is the displacement~ and W is the spotsize.

Our actual error has been calculated from:

Actual Error = (Theoretical Value - Experimental Data) /

Theoretical Value

The Theoretical Error is due to the error in

measurements and is the limit for our Actual Error. Those

data that exceed this limit have error due to the waveguide

fabrication and bendinq.



TABLE II

ExperImental uata

-TYPE OF TAPER: C (l+Gz) with 5=0.1

2R z z ± x ERROR

inch EXP. (em) THEOR. THEOR. EXP.

----------------_._-----------------------
5/8 ,r:: 3() 3 16o_'..J

57 57 3 0

77 85 3 9

3/4 23 20 3 15

55 55 3 0

85 80 3 6

1/2 25 20 3 25

50 50 3 0

-TYPE OF TAPER: CI (1-6z)(1-6z) with 6=0.3

1/2 27 27 3 0

45 45 3 0

70 70 3 0

88 85 3 3

with G=0.4

3/4 "T, 30 3 10...J~'

61 55 3 11

86 85 3 1

109 109 3 0
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TABLE II (cant"d):

- with G=O.5

3/4 54 55 3 1

92 92 3 0

112 112 3 0

128 128 3 0

143 141 3 1

with G=0.2

3/4 27 27 3 0

50 62 3 19

72 72 3 0

.... I



35

Fig. 15: Thjs picture shows the experiment set-up

in the laboratory. A He-Ne laser beam enters a waveguide from

the left.
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Fig. 16: This picture~ taken in the laboratory~

shows the beam propagation along a waveguide.
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Fig. 17: Schematic drawing of What c
an be seen

along the waveguide. A3 the taper becomes
sharper ,displacement gets closer to the aXis.
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We now superimpose the measured data on the numerical

solutions of each taper in the next set of graphs. It can be

observed that the theoretical solutions agree closely with

experimental data.
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c. ~rror AnalysIs:

The discrepancles observed between the theoretical

values and the experimental data are due to the following

errors:

1. The experimental data reading error as calculated in

Table II by methods suggested in ref. [25].

2. Propagated error occured during the experImental

set-up.

For the first taper we have:

l/rR = C(l+Gz)

where Rand C and G are constants.

increase z in 0.1 meter intervals.

r varIes with z as we

Therefore according to

ref. [25] the percentage error can be added and the error for

r becomes:

(i. error in r) = (i. error in z)

= ± 2 i.

For the other taper we have:

l/rR = C/(l-Gz)~

Therefore:

(i. error in r) = 2<1. error in z)

= ± 4 'l.

lhe errors in r transfer back into eQ. (13-16) where r

relates to the beam parameters and therefore to the beam

displacement and width.

3. Error due to the bending of the pipes.



CHAP1ER V

CONCLUSIONS

We have obtained e~act numerical solutions of the

paraxial wave equation. A method for studying the

propaqation of Gaussian beams in tapered quadratic graded

index waveguides is developed. Equations for the beam width

(Spotslze) and beam displacement as a function of distance

have been derIved by making assumptIons on the 'initial

conditions of the beam. The results from the experiments

verifIed the theory that the beam spotsize and displacement

vary sinusoidal. Thus we have verifIed the analogy between

tapered wavequides with quadratic index media.

ObVIously the results 0+ this study are lImited by our

assumptions. First. we have assumed Quadratic index for the

waveguides and our waves are described by a Gaussian

function. Second. we have used the paraxial beam

approximatIon. There+ore we cannot apply the results of this

stlJdy to cases where these approximations are not valid.
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APPENDICES

A. Runge-Kutta Method with Gill~s Modification for a System

ot Differential EquatIons[22J:

One-step methods may be used to solve a first-order

differential equation of the torm:

y~ = dy/dx = f(x~y) (Al)

with initIal conditions expressed as yo. The

purpose of a one-step method is to provide a means for

calculating a sequence of y values corresponding to discrete

values of the independent variable. The term Runge-Kutta

refers to a large family at methods for handling first-order

differentIal equations.

classical method is:

yn-1=Yn+[K(O)+2K(l)+2K(2)+K(3»)/6

The calculation formula for this

(AZ)

where:

K(O)=hf(xn,yn) (A3)

K(1)=hf[Xn+O.Sh,yn+O.5K(O») (A4)

K(Z)=hf[xn+O.5h,yn+O.5K(1)] (AS)

K(3)=hf[xn+h,yn+K(2)] (Ab)

The most commonly used Runge-Kutta formulation is based

on retaining all terms up through h·, and theretore

it IS called "the fourth-order method. In order to achieve

optImum efficiency in the computational process, we choose h
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to the maximum allowable. Since one can make n first-order

ditferentlal equations from one n-th order differential

equation. As the number of simultaneous equations increases

the Runge-Kutta method requires turther modifications and it

also does not handle the round-off errors. Gill developed a

calculation procedure that is well suited for use on the

microcomputer because of the followlnq features:

1. It requlres a minimum number of storage spaces.

2. It qives the hiqhest attainable accuracy in terms of

round-otf errors.

3. It requires only a small number ot computer

Instructlons to implement.

Gill's procedure applies to a system of n+1 first-order

equations of the form:

y' 1 ( x )=f 1 t x ,y 1 (x))

i =0 ~1,2, •••••• n (A7)

Values of yare stored in a two-dimensional array

v r , J, With the Initial conditions as:

y J. ';'=y l. t x 0 ) f or 1=0. 1,2 •..•• n

(Af::D

For start, a set ot coeftlci~nts need to be loaded as:

a(l)=1/2

b ( 1)=2

c(lJ=1/2

a(2)=1-(l/2) 1/.-

b(2)=1

c(2)=1-(1/2> 1/;"
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a(3)=1+(1/2)1/2

b(3)=1

c:(3)=1+(1/2) 1/~

a(4)=1/6

b(4)=2

c(4)=1/2

Register Q~~ will be used with:

q s I:> ( X .:» =0, for i=O,l, .•• ,n <A9)

First we set the index j=1 and then the value of

••• ,yn • .J-1 ) (AIO)

and

«t a , (hk 1 .J-b .•q:l •

.J-l)] (A 11)

and

q:l .i=q i. • .J - 1+

+3[a.J (hkl j-b.Jq1 •

.J-1)]-c.Jhk:l.J (A12)

are calculated for i=O.l ••••• n. Then the procedure from the

step k· 1 above IS repeated for j=:L.3. and 4.

the process. the values of Xi. are changed as:

Ouring

X 1=x .:>+h/2 (A13)

X ::z=x .:>+h/2

x::o.:=xo+h

(A14)

(AlS)

After thls process we have:
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y j.c x +h )=y j.....,

Now we set:

i =0. l •••.• n (Alb)

q:l.':>=q~"4

(Al7)

(A18)

yj.o=y. 4

for i=O.l ••••• n

'"hen the process starting wIth the step j=l above is

repeated to find subsequent values of yj..

For accuracy control as the method progresses. the usual

procedure is to perform two Gill steps 0+ size h to get:

y j.(x+2h )=y j.(:I. )

and then to perform one Gill step of size 2h to get:

y:l.(x+2h)=yj. (2)

Since the computation involving the two smaller steps

should give greater accuracy. a comparison of these two

results at x+2h should provide a measure of the local

truncated error. If the difference in the two values is

smaller than some prescrIbed value E. the result is

saId to be sufficientlY accurate. If the difference is

laroer than the prescrIbed value. the accuracy can be

Improved by decreasinq the step size by one-half and

repeating the process.

Error=

Therefore the truncation error is

=1/15 1: Iyj.(1 )-y~ (4' I/n+l

rhus if Error>E. then h=h/2 and the

calculations are repeated to fInd an answer with more

acceptable accuracy prIor to gOIng on to the next step.

step-size reduction can be repeated as many times as 15

This
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necessary to achieve the desired degree of accuracy.

B.Loss Calculations:

For calculatlng the losses, we support the study done by

Krammer In 1977~ [~3.24J. In that study, field

contiqurations and attenuation constants of TE-modes in

curved parallel-plate metalliC waveguides are calculated

numerically.

It is assumed that the distance between the plates is

much 1arqer than the free space wavel ength and' that the

radius 0+ curvature is much larqer then the distance betwe~n

the plates. The figure bellow shows attenuation constant a

of the first lE-modes as a +unctlon 0+ curvature. For

curvatures not too small the attenuation constant is shown to

be inversely proportIonal to the radius 0+ curvature. but

independent of the plate distance:

a==l/RReLltn) (B1>

where n is the index of refraction of the material of the

waveguidp.

A plausible e!(planation tor this result is the energy

concentration near the outer wall with increasing curvature.
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