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CHAPTER 1
INTRODUCT ION

Long distance optical transmission of voice signals has
been the subject of research since the time of Alexander
Graham Bell’”s "Photo—-Phone". But the recent discoveries that
have revolutionized data transmission do not go back more
than two decades. Graded index (lenslike) fibérs, trap a
light beam because their index of refraction is higher in the
core than in the surrounding region. Lenslike media thus
constructed were found in 1970 to be the most efficient data
transmitters [1]. But for high-power applications and in the
frequencies where low—loss fibers are not available metallic
wavegquides are the only solution. In 1964, Marcatili and
Schmeltzer [2], showed that dielectric materials are not
suitable for use in hollow circular waveguides for long
distance optical transmission because of the high loss due to
the slightest curvature of the guide axis. On the other hand
they showed that hollow metallic circular waveguides are far
less sensitive to curvature of the guide axis, and therefore
have less loss. In 1965-66, Kogelnik introduced the ABCD law
for the propagation of Gaussian beams of light through
lenslike media including those with a loss or gain variation

£3—-4]1. Gaussian light beams in inhomogeneous media were



studied by Casperson in 1973 [3). A method for determining
the width of a beam and its displacement from the axis
analytically was introduced; the beam was assumed to have a
Gaussian distribution in the transverse direction, and the
beam parameter equation was solved exactly. Coupling
techniques became a subject of investigation and wavequide
tapering was developed. The earliest studies on bent and
tapered lenslike media used the ray theory approach [6-101.
In 1976 Sawa [11], dealt with tapered lenslike media from the
wave theory point of view. Garmire, et al. [12], showed that
when rectangular guides are bent, propagation tékes place
mainly along the outer walls. Guided beams in concave
metallic waveguides were studied by Casperson and Garfield
£131]. In that study the beam modes were shown to be
expressible in terms of Hermite—Gaussian functions parallel
to the strip and Airy functions in the perpendicular
direction. They proved an important analogy that along the
surface, the equation is similar to that for media with a
quadratic index profile (lenslike material), the
Hermite—Gaussian solutions of which follow sinusaoidal
trajectories while ascillating in width. Related studies
were done by Marhic et al. [14-15]. Also, polarization and
losses of whispering—gallery waves along twisted trajectories
was studied by Marhic in 1979 [26]. Analytical and numerical
solutions of the beam propagation in tapered quadratic index
waveguides have recently been done by Casperson and Kirkwood

[16—-17]. The purpose of this study is to investigate



theoretically a variety of tapered waveguides and test the
theoretical solutions against laboratory experiments.

In order to determine the behavior of light in a tapered
waveguide, we assume that a Gaussian beam propagates. This
assumption leads to differential equations for the beam
width, its radius of curvature, and the displacement of its
amplitude center from the longitudinal axis. These equations
can then be solved exactly by numerical integration
techniques and the results plotted. Therefore the
characteristics of the beam and the effects of various forms

of tapering are determined exactly in graphicaf form.



CHAPTER 11

THEORY

a. Derivation of the Beam Equation:

Tao study the behavior aof a Gaussian beam propagating
along a tapered wavequide, we need to derive a wave equation
and therefore we need to start with the four fundamental

equations of Electromagnetism known as Maxwell’s equationss

VxE = —dB/dt
"™H = db/dt + J
v.B =0

v.D = p

From the first two equations we get:
TXOKE = —~-d/dt (¥xB) =
=—d/dt L[Px(KH)] = —~d/dt L[VHxH — HUxH] (1)
Assuming magnetic homogeneity : M = O for the permeability
H. Therefore the equation becomes:
URPXE = —-ud/dt (YxH) = —Hd/dt (dD/dt +J)
= —H dZD/dt* - HdJd/dt
Now substituting:
J = 6E (which is true for most materials)
and D = moE + P (which is always true) with P

for polarization, we get :



-Heod®E/dt® —-H6 dE/dt = -—pd=p/dt=

Using the identity:
PWKE = W(V,E) — V=g
and:
T(V.E) = -W(E.V=/&)
we get:
~P(E.Pe/x) - YPE= —HmodZE/dt= -HdZP/dt=  ~HodE/dt
Now we assume that:
T(E.Va/=) << WRE
That is, the permittivity « does not change

much in a wavelength. Therefore our equation reduces to:

VEE-Heod®E/dt=—-usdE/dt = H d=P/dt=
Analyzing the polarization P into a background component
Po and a component due to the lasing atoms or ions
Pi1 we get:
P = Po + P,
and we can write: Po = soXoE
where Xo=1 is the suseptibility of vacuum. OQur

equation becomes:

E~Heod*ZE/dt2-uodE/dt = H d=P/dt=
=HeoXod*E/dt 2+ ud=ZP 1 /dt =
where
e = go(l+Xo)

is the electric permittivity.



Now assuming harmonic time dependence we can write:
E = E’” Cos wt = Re E’ exp(iwt)

Pi = C Cos wt + § 8in wt =

Il

Re [C exp(iwt) — iS5 exp(iwt)l1=

Re (C-iS)exp(iwt) =
= Re P’ exp(iwt)
All real parts come out of the equation and our equation
becomes:

V=E’ + HewZE’ — jHOwWE’® =

=—-HWZC + 1Hw=g

The real parts have to be equal if the complex parts are
equal:

C = =X’E’

S = =X"E?
S0 the equation becomes:

VEE’ + L[Hew®(1 + X’) + iHew=(X"-§/mw) IE’=0
ar:

V=E* + k*E’ = 0 2)
which 1s sometimes referred to as the Helmholtz equation.
In this equation k is:

k = (He) * 72w (1+X7) + 1(X"—0/mw)]27=
which is the wave number or the propagation constant and is a
complex number. If X*>,6 and X" are small, then from the
identity:

(l4m) 2172 2 1 + /2
For small = we get:

k = w/c L1 + X*/2 + i/2 (~=5/ew + X*)]1 = P + ia



withs

P =w/c (1 + X*/2) ,

a = w/2c (X" = &/ew)
where a is the gain or loss coefficient and P is the index
coefficient.

Equation (2) is the Wave Equation in Optics. It tells

us E’> once we know k.

b. Solutions of the Beam Equation:

We assume that the beam is uniform in the y direction,
polarized in the x direction and propagates parallel to the z
axis.

For plane waves equation (2) becomes:

d*E’ /dz® + k=E’ = O 3

For a lenslike material, that is a material whose index
of refraction varies quadratically with distance, such as an
optical fiber, we can write for the wave number Kk:
ki{r,z)=ko(z)—-1/2ka2(z)r=

=F + ia
k is a complex number that can be separated into real part @
and imaginary part a:

The real part also can be written as:
£ = 2xn/X
and it denotes the index of refraction. a denotes loss or
gain.

Both a and P can be separated as:



Po—1/2fzr=

ao—1/2azr=

where the subscript O denotes index or gain per wavelength.
Since the gain or loss per wavelength is always small in
practice, ao can be neglected.

k*=KkoZ—kokzr®* +1/4k==r=

We omit the last term as a postulate or appraoximation
since k does not vary a lot.

In cartesian coordinates:
rE=y Sy
Here r=x only. To solve equation (3) a useful substitution
is =

Ex® = A(x,2)expl-isko(z) dz] (4)
Then equation (3) becomes:
d*A/dz*-2i kodA/dz ~idko/dzA=0 (5)

We cancel the first term in eq. (3) in what is

called the Paraxial Approximation. It assumes that A

varies very slowly with 2.

To have a Gaussian Beam solution we need to make another
substitution:
Alx,2)=

=exp—1ilth- (2Z)X=/2485. (z)x+P(2) ]

@ is the Complex Beam Parameter and it governs the size of

the beam and the phase front curvature. § is the Complex



Displacement Parameter and is responsible for the location of
the beam and its direction of propagation. P is the Complex
Phase Parameter and it is related to the phase and amplitude
of the beam. Substituting eq. (&) in eq. (5) and equating
the equal powers aof the equation we get a set of ordinary
differential equations:

8%+kod@/dz+Kkok=z=0 (7)

BS+kodS/dz=0 (8)

dP/dz=(-i@-8%~idko/dz) /2ko {9)

Equation (7) is the Beam Parameter Equatiop and eq. (9)
is called the Fhase Parameter Equation.

The Kagelnik notation for the Complex Beam Radius
(q=ko/Q) is:

1/7g=8/Ko=1/R—-iX/Xw= (10)
where R is the radius of curvature of the spherical phase
fronts, w is 1/e of the amplitude spot-size (width) aof the
beam, and X is the wavelength of the medium.

To solve for the path of the beam, we need to change
variables in eq. (7) to make it a linear, second order
equation. The change of variable would be:

B8=1/x(kodx/dz)

Then the eq. becomes:

dx2/dz2+kz/kox=0

which has solutions in terms of Sin and Cos:

Xx=ACos Z(k=z/Ko)*/%+ BSin z (kz/ko) 272

Thus the beam width in a lenslike material oscillates

sinusoidally about the z axis. The period of oscillation is:
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Period=X(ko/k=z)1r7=
and for real index:
Period=X(no/n=)1/2 (11)

The geaometry of the tapered waveguide, as shown in Fig.
(1), has transverse radius R and longitudinal radius r.

From the previous papers L13-14], it has been shown the
important analogy that the propagation of optical waves along
the surtace of waveguides are similar to propagation in
materialis with a quadratic index profile (lenslike materials)
such as +ibers. They have also shown that the period of
aoscillation in a concave waveguide in terms of R and r is:

Period=xX(rR)*-= (11a)

By comparing eqs. (11) and (l1la) we get:
n=/no=1/rRk (12)
Now we change variables in eqs. (7) and (B) as:
Q7 =0lx/ko
§8*=8nk/ko
and separate 7 and S’ into real and imaginary parts:
O’=Q-"+Q.7
8’=5,"4G,"
Theretore equations (7) and (8) turn into:
d@-? /dz=

=Q,_’2_Qr,'2_pz/po (13)

dQ.* /dz=

==20~’Qs’—-az/Po  (14)
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dS~’ /dz=
=04’5+" -8, (15)
dS.” /dz=
=@-?547-Q.* G- (16)
Equations (13—-16) are Ricatti non—-linear ana first order
differential equations which can be easily solved on computer

using Runge—-Kutta methods explained in Appendix A.
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and

Fig. 1: Normalized plot of the beam displacement

width as a function aof distance along the waveguide.



Fig. 2: Geometry of the tapered waveguide.
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CHAFTER 111

NUMERICAL SOLUTIONS

a. Initial Conditions:

To solve the differential equations (13-16) we need to
specify our initial conditions for Gr*, @Gi*, Sr’, Si’,
F=/f>, and a=z/Po which at
this point of our study we assume no loss or gain therefore
the last term would be equal to zero.

The initial conditions are derived from the steady state
beam parameters with no tapering, i.e. zero change with
respect to z.

Therefore we set equations (13-16) equal to zero. From
eg. (13) we get:

Gi’=2-Qr’>==
=P2/Po

=n=/Nno (17)

The amount of eq. (17) is equal to the tapering shown in
eq. (12) and which will be discussed later. From eq. (10) in
order to have a real spot—-size we need to have an imaginary

B° with a negative sign:

@r’ (S8)=0 (18)
@i’ (58)=
=—(N=/no) 1/= (19)

65 stands +or Steady State. From eq. (16) equated to
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Zzero for steady state and with the value aof eq. (18) we get:
Sr’ (85)=0 (20)
From the study (3], the Beam displacement is shown to be:
da = —-§8i’/Qi’ (21)
Theretore:
8i? (8S)=—da(0O)Wi’ (55) (22)
where da(0) is the initial beam displacement. We assume this
value to be equal to the diameter of the waveguide.
For the tapering we choose different configurations

based on early studies L18-21] and initially we assume no

loss or gain so that a==0 in eq. (14).

b. Types of Tapers:

We investigate two types of tapering in eq. (12) which

denote the index of refraction:

Nz/no=1/rR=C(1+Gz) (23)

and = C/(1-62)= (24)

where C=1/roR when z=0 and G is a constant called

the Taper Coefficient. Table I shows the different tapers
that we have considered and their specifications.

The first set of graphs (Fig. 3-25) show plots of
normalized beam width, and amplitude displacement in tapered
waveguide versus distance in meters. Values for these
quantities are calculated at each step of the integration as
follows:

w/w(SS) = (QA(58)/Qi)*-= (25)

da = —-S8i/Gli (26)
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The beam width has been normalized to produce a solution

that is independent of wavelength.



TABLE 1
Pipes and Tapers

TYPE OF TAPER :

C(1+6z) with 6 = 0.1
Pipe one: 2R = 5/8 inch
cC = 125.98
Pipe two: 2R = 3/4 inch
C = 104.98

Pipe three: 2R = 1/2 inch
C = 157.48
TYPE OF TAPER :
C/(1-6z) (1-62)

Pipe four: 2R = 1/2 inch

C = 157.48
6 = 0.3
Pipe five: 2R = 3/4 inch
C = 104.98
G = 0.4
Pipe six: 2R = 3/4 inch
C = 104.98
6 = 0.5

Pipe seven: 2R = 3/4 inch
C = 104.98

6 = 0.2
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Fig. 3: Beam displacement as a function of

distance for C(1+6z) Taper with G6=0.1,

inch.

C=125.98 and 2R=53/8B
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c. Comments on Theoretical Data:

from the previous graphs for the displacement of the
beam, we observe that as the taper becomes sharper (i.e. G
approaching 0.5), the oscillation frequency increases whereas
the oscillation amplitude (displacement from axis),
decreases.

The beam width (spotsize)., however, oscillates about the
steady state value when the initial widths are above or below

steady state.



CHAPTER 1V

EXPERIMENT

A. Procedure:

In order to make a tapered waveguide we needed to find a
pipe of a material that could be bent easily and without
detormity. This pipe then would be bent according to the
tapering formulas of (23) or (24). As is shown in these
equations, the tapering does not depend on the type of the
material of the wavequide. (The dependence of material is
effective in loss calculations as is shown in Appendix B).
Copper and Aluminum demonstrated easy bending capability
without deformation. Therefore we designed our experiments
to be performed with Cu and Al. Different inner radius of
the pipes are selected from commercial tubings and the sides
of the tubes are chosen to be thick enough to prevent any
significant deformation of the transverse radius of curvature
due to longitudinal bending. A pipe thus bent is sawed in
hal+ and the concave half is selected for the experiment.
Then the inside of the wavequide is cleaned and polished
using different metal detergents and polishes.

A 6328A helium—-neon laser is positioned at one end of
the strip (z=0) so that the beam is initially parallel to the

longitudinal axis of the strip but displaced from this axis
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as far as the strip will allow. The laser beam propagates
sinusoidal along the axis of the waveguide strip. We then
measure the position aof the maxima and minima of the beam
displacement from the axis. Due to the loss associated with
the metal wavequide, the intensity of the beam is.reduced as
z increases until the beam is no longer visible, therefore
there are limited number of maxima and minima visible. Fig.
19 is a picture of the experiment set up and Fig. 16 is a
picture taken from the beam on the waveguide. Fig. 17 is a
schematic drawing of what can be observed on the wavequide

during the experiment.

B. Results:

Table 11 gives the measured distance z for the maxima or
minima of the beam displacement and spotsize along the
different waveguides with different tapering. 2R is the pipe
diameter, DA is the displacement, and W is the spotsize.

Our actual error has been calculated from:

Actual Error = (Theoretical Value — Experimental Data) /
Theoretical Value

The Theoretical Error is due to the error in
measurements and is the limit for our Actual Error. Those
data that exceed this limit have error due to the wavegquide

fabrication and bending-



TaBLE IT

Experimental pData

-TYFE OF TAFPER: C(1+G6z) with G6=0.1

2R z = *+ % ERROR
inch EXF. (cm) THEOR. THEOR. EXP.
5/8 x5 30 3 16
a7 57 3 0
77 85 3 7
3/4 23 20 3 15
59 o5 3 (o)
85 80 3 1)
172 23 20 3 23
S0 S0 3 0

-TYFE OF TAPER: C/(1-6Gz) (1-6z) with G6=0.3

172 27 27 3 o
45 43 3 0
70 70 3 o
88 85 3 3

- with 6=0.4

/4 33 0 3 10
61 595 3 11
86 85 3 1
109 109 3 o



TABLE 11

- with 6=0.5

- with 6=0.2

374 27

S0

7

8]

(cont>d):

a5

?2

128

141

27

62

W A

W W

2]

© o ©

19
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Fig. 15: This picture shows the experiment set-up

in the laboratory. A He—-Ne laser beam enters a waveguide from

the left.
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Fig. 16: This picture, taken in the laboratory,

shows the beam propagation along a waveguide.



Fi 17: Schematic drawing of what Can be ceen
rig. 173

along the waveguide. A3 the taper bECDmes SharDEr

b
displacement gets closer to the auxisg,

the beam

37
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We now superimpose the measured data on the numerical
solutions of each taper in the next set of graphs. It can be
observed that the theoretical solutions agree closely with

experimental data.
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-4

DA
NIy

-.063N

Fig. 18: Experimental data (solid lines) showing

locations of maxima 2nd minima are superimposed over

theoretical solution (dotted line) of Fig. 3.
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Fig. 19: Experimental data (solid lines) showing

locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. 4.

40



.-
-

g.0 L _
-.0dM ; -
|
n.b 1.6 , (Méng.a
‘RS
C(1+GZ) TAPER ‘ )
éR=§/4 INCH

Fig. 20: Experimental data (solid lines) showing

locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. S.
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Fiqg. 21: Experimental data (solid lines) showing
locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. 6.
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Fiq. 22: £Experimental data (solid lines) showing
locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. 7.
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Fig. 23: Experimental data (solid lines) showing
locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. B.
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Fiq. 24: Experimental data (solid lines) showing
locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. 9.
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Fig. 25; Experimental data (solid lines) showing
locations of maxima and minima are superimposed over

theoretical solution (dotted line) ot Fig. 10.
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Fiq. 26; Experimental data (solid lines) showing
locations ot maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. 11.
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Fig. 27: Experimental data (solid lines) showing

locations of maxima and minima are superimpased over

theoretical solution (datted line) of Fig. 13.
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Fiq. 28: Experimental data (solid lines) showing
locations of maxima and minima are superimposed over

theoretical solution (dotted line) of Fig. 14.



C. Error Analysis:

S0

The discrepancies observed between the theoretical

values and the experimental data are due to the following

errars:

1. The experimental data reading error as calculated in

Table 11 by methods suqggested in ref. [25].

2. Propagated error occured during the experimental

set—-up.

For the first taper we have:
1/rR = C(1+B6z2)
where R and C and G are constants.
increase z in 0.1 meter intervals.
ret. [25] the percentage error can

r becomes:

r varies with z as we
Therefore according to

he added and the error for

(4 error in r) = (L error in z)

I

= * 2 %
For the other taper we have:
1/rR = C/(1-6Gz)=
Therefore:
(Z error in r) = 2(%L error in
= 4 %L
The errors in r transfer back
relates to the beam parameters and

displacement and width.

into eq. (13-16) where r

therefore to the beam

3. Error due to the bending of the pipes.
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CONCLUS IONS

We have obtained exact numerical solutions of the
paraxial wave eguation. A method for studying the
propagation of Baussian beams 1n tapered quadratic graded
index wavequldes 1s developed. Equations for the beam width
(aspotsize) and beam displacement as a function of distance
have been derived by making assumptions on the 'initial
conditions of the beam. The results from the experiments
verified the theory that the beam spotsize and displacement
vary sinusoidal. Thus we have verified the analogy between
tapered wavequides with quadratic index media.

Obviously the results of this study are limited by our
assumptions. First, we have assumed guadratic index for the
waveguides and our waves are described by a bGaussian
function. Second, we have used the paraxial beam
approximation. Theret+ore we cannot apply the results of this

study to cases where these approximations are not valid.
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AFFENDICES

A. Runge—-Kutta Method with Gill’s Modification for a System

ot Diftferential kquations{22]:

One-step methods may be used to solve a first-order
dit+ferential equation o+ the +orm:

vy = dy/dx = f(x,y) (A1)
with initial conditions expressed as vo. The
purpose aof a one-step method is to provide a meéns for
calculating a sequence of y values corresponding to discrete
values of the independent variable. The term Runge-Kutta
reters to a large tamily ot methods for handling tirst-order
differenti1al equations. The caiculation formula for this
classical method is:

Yr+1=yn+[K(0)+2K (1) +2K(2)+K(3) 1/6

(A2)

where:

K(O)=hf (Xr,yn) (AT)
K(1)=h¥[xn+0.5h,yn+0.5K(0) 1] (A4)
K(2)=hf(xn+0.5h,yn+0.5K (1)1 (AS)
K(3)=hflxn+h,yn+K(2)] (AGL)

The most commonly used Runge—Kutta formulation is based
on retaining all terms up through h*, and theretore
it 15 called “"the fourth—order method. In order to achieve

optimum et+ficiency in the computational process, we choose h
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to the maximum allowable. Since one can make n first-order
dit+ferenti1al equations from one n-th order dift+erential
equation. As the number of simul taneous equations increases
the Runge-Kutta method requires turther modifications and 1t
also does not handle the round-off errars. Gi1ll developed a
calculation procedure that is well suited tor use on the
microcomputer because of the following features:

1. 1t requires a minimum nNnumber of storage spaces.

2. It gives the highest attainable accuracy in terms of
round-ot+f errors.

. 1t requires only a small number ot computer
instructions to implement.

Gill’s procedure applies to a system of n+1 +i1rst-order
equations of the form:
Y21 (x)=Fs (X, ¥y (x))
1=0,1,2,.....4N (A7)

Values of y are stored in a two-dimensional array
Yi.3:, with the 1ni1ti1al conditions as:
Yo=Yy (Xo) For 1=0,1,2,....Nn
(AQ)

For start, a set ot coefticients need to be loaded as:

a(l)=1/2
b(1)=2
c(ly=1/2

al)y=1-(1/2)*7~

b(2)=1

c(2)=1-(1/2)*7=



a(d)=1+(1/2)*+7=

b(3)=1

c(3)=14(1/2) 2=

a(4)=1/6
b(4)=2
c(4)=1/2

Register Q145 will be used with:

gio(xXxe)=0, Ffor i=0,1,....n

First we set the 1ndex

Kig=falXy-1,y0. 5-1,y

a1,
«caagyYr.3—1)

and

Yis=Ys, 49—2+

+Ca;(hkis—-b.qs,
s—1)1]

and

Qs s=Q1 ., a—1+
+3las(hk: ,-b,qs,

i—1)1~-cihki

are calculated for i=0,1,....N.

step k-, above 1s repeated for

(A10)

(All)

(A12)

the process., the values af x:

X1=Xo+h/2 (A1)

X==xXo+h/2 (Al14)

X ==X o+h (A13)

(AF)

3=1 and then the value of

j=2.3, and 4.

are changed as:

After this process we have:

Then the procedure from

oS8

the
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YL (X+Hh)=yi1a, 1=0,1,....N (Al&)
Now we set:

Yio=ys a (A17)

Qs o=Qi 4 (A18)

for 1=0,1.,....Nn

Then the process starting with the step jj=1 above is
repeated to find subsequent values of yi.

For accuracy control as the method progresses, the usual
procedure is to per+torm two Gi1ll steps ot size h to get:
yi (x+2h)=y,y <22
and then to perform one Gill step of size 2h to get:

Y1 (x+2h) =ys <=

Since the computation involving the two smaller steps
should give greater accuracy, a comparison of these two
results at x+2h should provide a measure of the local
truncated error. If the difference in the two values is
smaller than some prescribed value &, the result is
sai1d ta be sufficiently accurate. I+ the difference is
laraer than the prescribed value, the accuracy can be
improved by decreasing the step size by one-half and
repeating the process. Therefore the truncation error is
Error=
=1/13 Zlys 22—y, 2 1 /q+}

Thus 1if Error>e, then h=h/2 and the
calculations are repeated to find an answer with more
acceptable accuracy prior to going on to the next step. This

step—-size reduction can be repeated as many times as 1s
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necessary to achieve the desired degree ot accuracy.

H.lL.oss Calculations:

For calculating the losses, we support the study done by
Krammer in 1977, (23.,241. In that study, field
contiqurations and attenuation constants of TE-modes in
curved parallel-plate metallic wavegquides are calculated
numerically.

1t is assumed that the distance between the plates is
much larger than the free space wavelength and that the
radius o+ curvature is much larger then the distance between
the plates. The figure bellow shows attenuation constant a
of the tirst 1tE-modes as a tunction ot curvature. For
curvatures nct too small the attenuation constant is shown to
be inversely proportional to the radius o+ curvature, but
independent of the plate distance:

a=1/KR Rell/n3l (E1)
where n is the index of refraction of the material of the
wavequide.

A plausible explanation +tor this result is the energy

concentration near the outer wall with increasing curvature.
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ATTENUATION CONSTANT g (m”)

02 04 06
INVERSE HANMIUS OF CURVATURE R” (m')

Fig. 29: attenuation constant.rof the first TE mudes as a function
of curvature {kd =600, n = 20 = ;59). The mude number is desig-
nated by v The dazhed parabulas are the results of a secund order

perturbation technique.
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