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ABSTRACT 

 

The objective of this research is to establish consistency thresholds linked to alpha () 

levels for HDM’s (Hierarchical Decision Model) judgment quantification method.  

Measuring consistency in order to control it is a crucial and inseparable part of any 

AHP/HDM experiment.  The researchers on the subject recommend establishing 

thresholds that are statistically based on hypothesis testing, and are linked to the 

number of decision variables and  level.  Such thresholds provide the means with 

which to evaluate the soundness and validity of an AHP/HDM decision.  The linkage of 

thresholds to  levels allows the decision makers to set an appropriate inconsistency 

tolerance compatible with the situation at hand.  The measurements of judgments are 

unreliable in the absence of an inconsistency measure that includes acceptable limits.  

All of this is essential to the credibility of the entire decision making process and hence 

is extremely useful for practitioners and researchers alike.  This research includes 

distribution fitting for the inconsistencies.  It is a valuable and interesting part of the 

research results and adds usefulness, practicality and insight.  The superb fits obtained 

give confidence that all the statistical inferences based on the fitted distributions 

accurately reflect the HDM’s inconsistency measure. 
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1 INTRODUCTION 
 

 Background 1.1

 

Multi Criteria Decision Analysis (MCDA) is often used to analyze intricate and complex 

decision problems having multiple facets.  It starts with identifying criteria and 

alternatives related to a decision objective.  Numerical measures are then used to 

evaluate the relative importance of alternatives with regard to the criteria.  Finally, the 

alternatives are prioritized and ranked [1].  By using such tools, users can analyze and 

evaluate complex problems having conflicting priorities and at the same time make 

sound decisions based on rational compromise. 

 

The Hierarchical Decision Model (HDM) [2] which is a variant of Saaty’s Analytic 

Hierarchy Process (AHP) [3] is a widely-accepted multi-criteria decision-making tool.   

The first step in the application of these methods involves structuring the decision 

problem into levels consisting of objectives and their associated criteria.  The second 

step involves eliciting the preferences of the decision maker (DM) through pairwise 

comparisons.  The third step is to process the DM’s input and calculate the priorities of 

the objectives.  The final step before analyzing the decision is to check the DM’s 

consistency.  This measure ensures that the pairwise comparisons are neither random 

nor illogical.   



 

2 
 

For the Hierarchical Decision Model (HDM), Cleland and Kocaoglu [4] use a variance-

based approach to calculate the inconsistency, and recommend a 10% limit above which 

the reliability of the expert’s judgment would be considered questionable.  Similarly, for 

the Analytic Hierarchy Process (AHP), Saaty suggests using the consistency ratio (CR) and 

recommends an upper limit of 10% on CR [3].   

 

Saaty’s fixed 10% rule has been the subject of much criticism/dispute for being too 

restrictive, lacking statistical justification, having no  levels, and not being a function of 

the number of elements (decision variables) being compared.  
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 Research Objective 1.2

 

The objective of this research is to:  

1. Establish the significance of this topic in research 

2. Show the research gap for HDM with regard to establishing consistency 

thresholds that are: 

a. Linked to the number of variables. 

b. Based on statistical hypothesis testing. 

c. Linked to corresponding  levels. 

3. Establish how the above-mentioned research gap would be addressed. 

 

The first 2 objectives are addressed by conducting a thorough literature review.  The 3rd 

objective is covered by a new methodology. 

 

The methodology used in this dissertation is based on testing the null hypothesis that 

the judgmental responses obtained from a respondent are random.  Rejecting this null 

hypothesis will mean that the inconsistency of the respondent is significantly lower than 

what would be expected from random judgement responses. 
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 The Hierarchical Decision Model (HDM) 1.3

 

In response to the increasing complexity of decision-making problems in a wide variety 

of environments, multi-attribute hierarchical decision making tools have been 

developed.  One such method is the Hierarchical Decision Model (HDM) proposed by 

Kocaoglu [2].  It is a variant of AHP. 

 

Three concepts form the basis of HDM/AHP modeling: 

1. Structuring the decision problem in a hierarchy consisting of goal, criteria and 

alternatives. 

2. Conducting pairwise comparisons among all variables at every hierarchy of the 

decision model with respect to each criterion on the prior/higher level. 

3. Synthesis of priorities at all levels of the hierarchy after obtaining the relative 

judgment weights, and checking the consistency. 

 

The first stage of building a solution in HDM is to decompose the problem into 

hierarchical levels at the top of which is the Mission as shown in Figure 1.  The bottom 

level should list the alternatives under consideration.  Filling the space between the top 

and bottom are decision criteria (attributes) that are more encompassing as they go up 

and less so as they go down.  HDM assumes preferential independence of decision 

elements at each level.  The construction of the hierarchical structure allows the 
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comparison of several alternatives on the basis of the same set of attributes.  In turn, 

relative importance is determined. 

 

All the second level Objectives are related to the Mission, and therefore must be 

compared to each other in order to determine their relative importance.  However, in 

subsequent levels, the alternatives are not all necessarily related to all decision 

elements in the next higher level.  Therefore, a partial selection of those alternatives 

could be compared to each other based on a subset of relevant elements from the next 

higher level.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1: MOGSA Structure of a Typical HDM  

 M 
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 Judgment Quantification in HDM 1.4

 

Having built the hierarchical structure, the next step is to elicit the judgment of each 

decision maker (DM) in a pairwise fashion.  For example, if four alternatives (A, B, C, D) 

are considered, the pairwise comparisons would be (A : B), (A : C), (A : D), (B : C), (B : D), 

(C : D).  HDM offers 3 input conventions (scales) for the pairwise comparisons: 

1. Constant Sum (CS): The respondent is asked to divide 100 points between 

the two alternatives proportional to their relative values in comparison to 

each other with respect to the decision element under which they are being 

evaluated.  

2. Direct Ratio (DR): The respondent is asked to provide a ratio of the two 

alternatives which is proportional to their respective relative values. 

3. Absolute Value (AV): The respondent is asked to allocate any number of 

points to the two alternatives provided that the allocation is proportional to 

their relative values. 

 

HDM pairwise comparisons can be given in a single format of the above or a 

combination of them.  This allows HDM users speed and flexibility without having to 

mentally or arithmetically convert data into a particular scale.  The fine gradations, 

afforded by these input scales, allow better control and accuracy without the limitation 



 

7 
 

of Saaty’s nine-point scale [5].  This also prevents the negative effects of discretization 

often associated with Saaty’s scale [6, 7]. 

The first step in HDM’s data gathering is pairwise judgment solicitation.  This is usually 

done through a software program that presents the DM with a list of pairwise 

comparisons of the criteria or alternatives which are part of the HDM model.  The DM is 

asked to assign relative values to the alternatives.  Figure 1.1 shows an example of an 

assignment form for pairwise comparison value judgements. 

 

 

Figure 2: Example of Pairwise Assignment Form 
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The next step in HDM is priority calculations.  In HDM, there are 3 matrices, simply 

named Matrix A, Matrix B, and Matrix C.  The representations below assume that 4 

elements (A, B, C, D) are being compared.   

The raw input data are arranged into Matrix A in a column-oriented fashion.  In Matrix 

A, 𝐶𝐷 , for example, means the relative value of C when compared to D.  Matrix A accepts 

input in any of the three formats or any combination of them.   

 A B C D 

A - 𝐵𝐴 𝐶𝐴 𝐷𝐴 

B 𝐴𝐵 - 𝐶𝐵 𝐷𝐵 

C 𝐴𝐶  𝐵𝐶 - 𝐷𝐶  

D 𝐴𝐷 𝐵𝐷 𝐶𝐷 - 

Table ‎1.1: HDM Matrix A – Symbolic Representation 

 

Matrix B contains the ratios of the compared elements arranged in a column-oriented 

fashion as well.  This is identical to Direct Ratio inputs.   The elements of Matrix B above 

and below the main diagonal are reciprocals.   

 A B C D 

A 1 𝐵𝐴/𝐴𝐵 𝐶𝐴/𝐴𝐶  𝐷𝐴/𝐴𝐷 

B 𝐴𝐵/𝐵𝐴 1 𝐶𝐵/𝐵𝐶 𝐷𝐵/𝐵𝐷 

C 𝐴𝐶/𝐶𝐴 𝐵𝐶/𝐶𝐵 1 𝐷𝐶/𝐶𝐷 

D 𝐴𝐷/𝐷𝐴 𝐵𝐷/𝐷𝐵 𝐶𝐷/𝐷𝐶  1 

Table ‎1.2: HDM Matrix B – Symbolic Representation 
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Matrix C gives the direct and indirect ratio relationships among the elements and is 

obtained by dividing each column of matrix B by the next column.  The average of each 

column in Matrix C is used in the next step of calculations.   

 

A/B B/C C/D 

A 1 ÷ 𝐵𝐴/𝐴𝐵 𝐵𝐴/𝐴𝐵 ÷ 𝐶𝐴/𝐴𝐶 𝐶𝐴/𝐴𝐶 ÷ 𝐷𝐴/𝐴𝐷 

B 𝐴𝐵/𝐵𝐴 ÷ 1 1 ÷ 𝐶𝐵/𝐵𝐶 𝐶𝐵/𝐵𝐶 ÷ 𝐷𝐵/𝐵𝐷 

C 𝐴𝐶/𝐶𝐴 ÷ 𝐵𝐶/𝐶𝐵 𝐵𝐶/𝐶𝐵 ÷ 1 1 ÷ 𝐷𝐶/𝐶𝐷 

D 𝐴𝐷/𝐷𝐴 ÷ 𝐵𝐷/𝐷𝐵 𝐵𝐷/𝐷𝐵 ÷ 𝐶𝐷/𝐷𝐶  𝐶𝐷/𝐷𝐶 ÷ 1 

Table ‎1.3: HDM Matrix C – Symbolic Representation 

 

The next step in calculations is the construction of the orientation table.  The first 

column of this table lists all the orientations (permutations of elements) the count of 

which is n factorial.  The table also lists two sets of values for all elements.  The first set 

is before normalization and the second is normalized values.  Normalization means 

adding the values of the elements then dividing each of them by the sum.  This way the 

normalized values of the elements will sum to unity. 

 

To calculate the values of the elements of a single orientation, the last decision element 

of the orientation corresponding to Matrix C is set to 1, the values of the remaining 

elements are calculated based on the Matrix C ratios and their values are normalized.  

This is the vector of ratio scale values for the decision elements in the given orientation, 

(ABCD) in this example.  Note that HDM’s judgement quantification procedure calls for 
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the construction of a single Matrix C for each of the n factorial orientations involved in 

the calculations.  

 

The derivation of priorities in HDM is based on the enumeration of all possible 

orientations of the ordering of decision elements (variables) being compared. There are 

n factorial orientations for n variables, such as ABCD, ACBD, ADBC, BACD, BADC…, etc.  

Each variable is evaluated n factorial times (once for each orientation).  The weight of 

the variable is the arithmetic mean of these n factorial values.  The normalized variable 

weights form the weight vector.  
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1.4.1 Consistency/Inconsistency  

 

Inconsistency is a slight or gross, deliberate or unintentional error in the elicited 

pairwise judgment related to the rank order and mutual preference proportionality of 

alternatives.   

 

There are two types of consistency/inconsistency, ordinal and cardinal.  Ordinal 

consistency requires order of preference of the ranked elements to be maintained.  For 

example, if alternative A is preferred over B, and B is preferred over C, then A must be 

preferred over C.  If, in this example, a user chooses C as preferred over A, then ordinal 

consistency is violated.   

 

In addition to ordinal requirement, cardinal consistency requires preservation of 

preference proportions.  For example, if A is preferred twice over B, and B is preferred 

thrice over C, then A must be preferred 6 times over C.  If in this example, a user 

chooses A to be 5 times preferred over C, then cardinal consistency is violated.   

 

It is important to note that if cardinal consistency is satisfied, then ordinal consistency, 

by definition, is satisfied as well, but not vice versa.  Nonetheless, people in their 

decision-making, or when expressing their judgment are not always perfectly consistent.  
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Consequently, the final result will contain a certain level of inconsistency which must be 

measured and controlled to ensure soundness of the decision. 

It is hard to overemphasize the importance of consistency in any pairwise prioritization 

procedure.  It is a necessary parameter to ensure the reasonableness and accuracy of 

the prioritization result which builds confidence in both the decision and its maker.  

Some but not all pairwise ranking methods provide measures for 

consistency/inconsistency.  In fact, few judgment quantification methods offer their 

own consistency measures.  Moreover, many consistency measures available lack 

meaningful interpretation because of the absence of justifiable thresholds [8] [9]. 

  



 

13 
 

1.4.2 Definition of Inconsistency Measure in HDM 

 

In HDM, each of the n variables is evaluated n factorial times based on the ratios derived 

in matrix “C”.  The arithmetic mean of the values is the weight of the variable.  The 

normalized weights of the variables make up the weight vector.  The variance of the 

mean among the values of a single variable is calculated and the sum of variance is 

computed.  The inconsistency measure for HDM proposed in this research is the square 

root of the sum of variances.  Therefore, the inconsistency is defined as the Root of the 

Sum of Variances (RSV) of the n decision elements: 

 

𝑅𝑆𝑉 = √∑𝜎𝑖
2

𝑛

𝑖=1

 (‎1.1) 

where 𝜎𝑖
2 is the variance of the mean of the ith decision element, and n is the number of 

decisison elements: 

 

𝜎𝑖 = √
1

𝑛!
 ∑(𝑥𝑖𝑗 − 𝑥̅𝑖𝑗)

2
𝑛!

𝑗=1

   ∀ 𝑖 = 1,⋯ , 𝑛 (‎1.2) 

where 𝑥𝑖𝑗  is the normalized relative value of the variable i for the jth orientation in n 

factorial orientations, and 𝑥̅𝑖𝑗 is the mean of the normalized relative value of the 

variable i for the jth orientation: 

 
𝑥̅𝑖𝑗 =

1

𝑛!
 ∑𝑥𝑖𝑗

𝑛!

𝑗=1

 (‎1.3) 
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1.4.3 HDM Method Detail – Constant Sum (CS) Example 

 

The following set of pairwise comparison values is used as an example to illustrate the 

details of HDM’s judgment quantification method.  HDM’s constant sum scale input 

mode is chosen for this example.  The same set of pairwise comparison values will later 

be converted into Saaty’s REV scale and used in a similar fashion to illustrate the details 

of REV judgment quantification method.  

A 30 B 70 

 

A 47 C 53 

 

A 65 D 35 

              B 79 C 21 

 

B 63 D 37 

 

C 17 D 83 

Table ‎1.4: Pairwise Comparisons for Example in HDM’s Constant Sum Scale 
 

 A B C D 

A - 70 53 35 

B 30 - 21 37 

C 47 79 - 83 

D 65 63 17 - 

Table ‎1.5: HDM Matrix A – CS Numerical Example 
 

 A B C D 

A 1.00 2.33 1.13 0.54 

B 0.43 1.00 0.27 0.59 

C 0.89 3.76 1.00 4.88 

D 1.86 1.70 0.20 1.00 

Table ‎1.6: HDM Matrix B – CS Numerical Example 
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A/B B/C C/D 

A 0.43 2.07 2.09 

B 0.43 3.76 0.45 

C 0.24 3.76 0.20 

D 1.09 8.31 0.20 

Mean 0.55 4.48 0.74 

Table ‎1.7: HDM Matrix C Corresponding to the “ABCD” Orientation – CS Numerical 
Example 
 

Note that HDM’s judgment quantification procedure calls for calculating a single C 

Matrix for each orientation.  Many of the columns of these matrices are repetitious.  

Table 1.8 below combines only the unique columns of all of the C matrices for this 

numerical example. 

 A/B A/C A/D B/A B/C B/D C/A C/B C/D D/A D/B D/C 

A 0.43 0.89 1.86 2.33 2.07 4.33 1.13 0.48 2.09 0.54 0.23 0.48 

B 0.43 1.61 0.73 2.33 3.76 1.70 0.62 0.27 0.45 1.37 0.59 2.21 

C 0.24 0.89 0.18 4.24 3.76 0.77 1.13 0.27 0.20 5.51 1.30 4.88 

D 1.09 9.07 1.86 0.92 8.31 1.70 0.11 0.12 0.20 0.54 0.59 4.88 

Mean 0.55 3.11 1.16 2.46 4.48 2.13 0.75 0.28 0.74 1.99 0.68 3.11 

Table ‎1.8: Combination of All Unique Columns of All of the C Matrices - CSM Numerical 
Example 

 

Table 1.9, shown on the next page, is the orientation table.  This table lists the complete 

set of permutations of all the compared alternatives.   These permutations are referred 

to as orientations.  In this example, the orientations are lexicographically ordered for 

ease of illustration.  This is not a requirement of the judgment quantification procedure.  

The value of an alternative is derived either directly from a single ratio or indirectly from 
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several ratios.  The different orientations allow for the evaluation of alternatives in 

different combinations of direct and indirect fashions.   
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 Before normalization  Normalized 

 Orientation A B C D Sum A B C D 

1 ABCD 1.81 3.31 0.74 1.00 6.85 0.26 0.48 0.11 0.15 

2 ABDC 3.61 6.62 1.00 3.11 14.35 0.25 0.46 0.07 0.22 

3 ACBD 1.88 2.13 0.60 1.00 5.61 0.34 0.38 0.11 0.18 

4 ACDB 1.56 1.00 0.50 0.68 3.73 0.42 0.27 0.13 0.18 

5 ADBC 3.50 4.48 1.00 3.03 12.00 0.29 0.37 0.08 0.25 

6 ADCB 1.02 1.00 0.28 0.88 3.19 0.32 0.31 0.09 0.28 

7 BACD 2.30 5.65 0.74 1.00 9.69 0.24 0.58 0.08 0.10 

8 BADC 3.60 8.84 1.00 3.11 16.56 0.22 0.53 0.06 0.19 

9 BCAD 1.16 3.86 0.86 1.00 6.88 0.17 0.56 0.13 0.15 

10 BCDA 1.00 6.58 1.47 1.99 11.04 0.09 0.60 0.13 0.18 

11 BDCA 1.00 4.94 0.75 2.32 9.01 0.11 0.55 0.08 0.26 

12 BDAC 3.11 13.17 1.00 6.19 23.47 0.13 0.56 0.04 0.26 

13 CABD 1.16 2.13 0.87 1.00 5.16 0.23 0.41 0.17 0.19 

14 CADB 0.78 1.00 0.58 0.68 3.04 0.26 0.33 0.19 0.22 

15 CBAD 1.16 2.84 0.81 1.00 5.80 0.20 0.49 0.14 0.17 

16 CBDA 1.00 4.23 1.20 1.99 8.42 0.12 0.50 0.14 0.24 

17 CDAB 0.55 1.00 0.80 1.09 3.43 0.16 0.29 0.23 0.32 

18 CDBA 1.00 2.46 1.23 1.66 6.34 0.16 0.39 0.19 0.26 

19 DACB 0.88 1.00 0.28 1.76 3.92 0.23 0.25 0.07 0.45 

20 DABC 2.44 4.48 1.00 4.86 12.78 0.19 0.35 0.08 0.38 

21 DBAC 3.11 7.65 1.00 5.17 16.93 0.18 0.45 0.06 0.31 

22 DBCA 1.00 3.34 0.75 2.26 7.35 0.14 0.45 0.10 0.31 

23 DCAB 0.55 1.00 0.41 1.27 3.22 0.17 0.31 0.13 0.39 

24 DCBA 1.00 2.46 0.70 2.17 6.32 0.16 0.39 0.11 0.34 

      Mean 0.21 0.43 0.11 0.25 

      𝝈𝟐 0.00591 0.0106 0.00218 0.00710 

Table ‎1.9: Orientation Table - CSM Numerical Example 
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Example calculations for the “ABCD” orientation: 

𝐷 = 1 

𝐶 =
𝐶

𝐷
 (𝐹𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 #9 𝑜𝑓 𝑡𝑎𝑏𝑙𝑒 1.8 = 0.73912) 

𝐶 = 0.74 

𝐵 = 𝐶 ×
𝐵

𝐶
 (𝐹𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 #5 𝑜𝑓 𝑡𝑎𝑏𝑙𝑒 1.8 = 4.47655) 

𝐵 = 0.74 × 4.48 = 3.31 (3.308706) 

𝐴 = 𝐵 ×
𝐴

𝐵
  (𝐹𝑟𝑜𝑚 𝑐𝑜𝑙𝑢𝑚𝑛 #1 𝑜𝑓 𝑡𝑎𝑏𝑙𝑒 1.8 = 0.545894) 

𝐴 = 3.31 × 0.55 = 1.81 (1.806202) 

 

Inconsistency calculations: 

  𝑅𝑆𝑉 =  √∑ 𝜎𝑛
2𝑛

1   (1.1)  

𝑅𝑆𝑉 =  √0.00591 + 0.0106 + 0.00218 + 0.00710 

𝑅𝑆𝑉 = 0.161 
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 Judgment Quantification in AHP 1.5

 

Saaty recommends a 9-point scale for expressing the pairwise preference and the 

principal or right eigenvector (REV) method for ranking the alternatives [10].  The data 

elicited from the decision maker (DM) is organized in the “Pairwise Comparison Matrix” 

(PCM). 

      𝐴1          𝐴2    ⋯     𝐴𝑛 

𝐴1

𝐴2

⋮
𝐴𝑛 [

 
 
 
𝑤1 𝑤1⁄ 𝑤1 𝑤2⁄ ⋯ 𝑤1 𝑤𝑛⁄

𝑤2 𝑤1⁄ 𝑤2 𝑤2⁄ ⋯ 𝑤2 𝑤𝑛⁄

⋮ ⋮ ⋮
𝑤𝑛 𝑤1⁄ 𝑤𝑛 𝑤2⁄ 𝑤𝑛 𝑤𝑛⁄ ]

 
 
 
 

Table ‎1.10:  PCM Proposed by Saaty 

 

Note that in the above PCM proposed by Saaty [10], 𝑤1 𝑤2⁄  is the ratio of the weight of 

element 𝐴1compared to element 𝐴2.  The main diagonal elements of the PCM are by 

definition 1’s.  This is the same as Matrix B in HDM except this is done in a row–oriented 

fashion. 

 A B C D 

A 1 𝐴𝐵/𝐵𝐴 𝐴𝐶/𝐶𝐴 𝐴𝐷/𝐷𝐴 

B 𝐵𝐴/𝐴𝐵 1 𝐵𝐶/𝐶𝐵 𝐵𝐷/𝐷𝐵 

C 𝐶𝐴/𝐴𝐶  𝐶𝐵/𝐵𝐶 1 𝐶𝐷/𝐷𝐶  

D 𝐷𝐴/𝐴𝐷 𝐷𝐵/𝐵𝐷 𝐷𝐶/𝐶𝐷 1 

Table ‎1.11: Pairwise Comparison Matrix (PCM) – Symbolic Representation  
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1.5.1 Saaty’s Discrete Pairwise Comparison “Absolute” Scale 

 

Table ‎1.12: Saaty’s 9-point “Absolute” Scale  

Degree of Preference Alternative A  Alternative B  

According to preset interpretations of the 9 points 
suggested by Saaty 

Any integer 
value in the 
range (1-9) 

The reciprocal 
of A: (1/A) 

Example: A is strongly preferred over B Value of A = 5 Value of B = 1/5 

Degree of Preference Alternative A  Alternative B 

Equally preferred 1 1 

                         Equally to moderately preferred 2 1/2 

Moderately preferred 3 1/3 

                         Moderately to strongly preferred 4 1/4 

Strongly preferred 5 1/5 

                         Strongly to very strongly preferred 6 1/6 

Very strongly preferred 7 1/7 

                         Very strongly to extremely preferred 8 1/8 

Extremely preferred 9 1/9 

 

 

For all the choices in the above table, except equal preference (1 and 1), alternative A is 

preferred to alternative B.  Saaty’s scale is often abridged to 5 points rather than 9 with 

the bold values in the table above considered primary and the others referred to as 

intermediate.  The REV method uses the normalized principal right eigenvector as the 

weight/rank vector.  
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To calculate consistency, Saaty suggests the following measure for REV 

 
𝐶𝑅 =

𝐶𝐼

𝑅𝐼
 (‎1.4) 

 

 
𝐶𝐼 =  

𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (‎1.5) 

where CR is the consistency ratio, CI is the consistency index, RI is the random index, 

𝜆𝑚𝑎𝑥, is the maximum eigenvalue of the PCM, and n is the order of the PCM which is the 

same as the number of elements/variables being compared.  RI is the average value of 

CI for randomly-generated matrices of the same order. 

 

Saaty only accepts a matrix as consistent if CR < 0.1 (CR < 10%).  Below are two sets of 

suggested RI values.  The first set was computed by Forman [11] with variable sample 

size ranging from 13,471 for 𝑛 = 10, to 77,487 for 𝑛 = 3.  These RI numbers were 

reported and used by Saaty [12].  The second set is from the latest RI study carried out 

by Bozoki and Rapcsak [13].  This study used a much larger fixed sample of 107 for  

𝑛 = 3 − 10.  

 

n 3 4 5 6 7 8 9 10 

RI [12] 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 

RI [13] 0.5242 0.8842 1.1087 1.2488 1.3408 1.4004 1.4505 1.4860 

Table ‎1.13: Saaty’s Random Index (RI) 
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1.5.2 Right Eigenvector (REV) Method Detail 

 

The following set of pairwise comparisons was used in the previous example that 

illustrated the method detail of HDM’s constant sum.  The same set will be transformed 

into Saaty’s REV scale values using the conversion table below.  The transformed vales 

will be used to illustrate REV’s method detail. 

 

The conversion is used to make the example more meaningful and allow comparison of 

results for illustrative purposes.  There is no perfect conversion between any two 

pairwise comparison scales.  In addition, any conversion will result in a slight amount of 

error due to discretization.   

 

However, for the most accurate results, the conversion is skipped and the transpose of 

Matrix B is be used directly in REV.  Both methods (with and without conversion) will be 

illustrated. 

 

A 30 B 70 
 

A 47 C 53 
 

A 65 D 35 

              B 79 C 21 
 

B 63 D 37 
 

C 17 D 83 

Table ‎1.14: Pairwise Comparison Values in HDM CS Scale 
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HDM CS Scale  50 67 75 80 83 86 88 89 90 

Saaty’s Absolute Scale  1 2 3 4 5 6 7 8 9 

Table ‎1.15: Conversion Table Used to Transform HDM CS Values to Absolute Scale 
Values 

 

A 1 B 2 
 

A 1 C 1 
 

A 2 D 1 

              B 4 C 1 
 

B 2 D 1 
 

C 1 D 4 

Table ‎1.16: REV Values Converted from HDM CS Values  

 

 A B C D 

A 1 1 2⁄  1 2 

B 2 1 4 2 

C 1 1 4⁄  1 1 4⁄  

D 1 2⁄  1 2⁄  4 1 

Table ‎1.17: Example of PCM for REV in Fractional Format 

 

 A B C D 

A 1 0.5 1 2 

B 2 1 4 2 

C 1 0.25 1 0.25 

D 0.5 0.5 4 1 

Table ‎1.18: Example of PCM for REV in Decimal Format  

 

 A B C D 

A 1 0.43 0.89 1.86 

B 2.33 1 3.76 1.70 

C 1.13 0.27 1 0.20 

D 0.54 0.59 4.88 1 

Table ‎1.19: Transpose of Matrix B from HDM Numerical Example 
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For REV, the weight vector is the normalized right eigenvector: 

 
Using Table 1.18  
(With Scale Conversion)  

 Using Table 1.19 
(Without Scale Conversion) 

Element A B C D  A B C D 

Weight 
0.23

2 
0.41

2 
0.11

6 
0.23

2 
 0.219 0.400 0.117 0.264 

Rank 2 1 3 2  3 1 4 2 

Table ‎1.20: Weight Vectors for REV Numerical Example 

 

For consistency, Saaty’s suggested measure is: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
         𝐶𝐼 =  

𝜆𝑚𝑎𝑥−𝑛

𝑛−1
 (1.2 and 1.3) 

 

 
With Scale 
Conversion 

Without Scale 
Conversion 

n 4 4 

𝝀𝒎𝒂𝒙 4.3860 4.4988 

RI 0.8842 0.8842 

CI 0.1287 0.16627 

CR 14.55% 18.80% 

Table ‎1.21: Consistency Calculations for the REV Numerical Example 

 

According to both methods, CR is above the 10% upper threshold recommended by 

Saaty.  Therefore, the pairwise comparison values would be considered too inconsistent 

to be used, and it is recommended for the DM to revise the pairwise assignments. 
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 Multiplicative versus Additive Pairwise Comparison Matrix (PCM) 1.6

 

The approach used in HDM, REV and the majority of popular prioritization procedures in 

terms of developing and analyzing the PCM is “multiplicative”.  The “additive” approach 

is an alternative.  Cavallo and D'Apuzzo [14] explain as follows:  

 

“Multiplicative PCM:  𝑎𝑖𝑗 represents the preference ratio of 𝑥𝑖 over 𝑥𝑗: 𝑎𝑖𝑗 > 1 implies 

that 𝑥𝑖  is strictly preferred to 𝑥𝑗, whereas 𝑎𝑖𝑗 < 1  expresses the opposite preference, 

and 𝑎𝑖𝑗 = 1 means that 𝑥𝑖 and 𝑥𝑗 are indifferent.  

 

The condition of multiplicative reciprocity is: 

 

 𝑎𝑗𝑖 =
1

𝑎𝑖𝑗
    ∀ 𝑖, 𝑗 = 1,⋯ , 𝑛 (‎1.6) 

 

The condition of multiplicative consistency is: 

 

 𝑎𝑖𝑘 = 𝑎𝑖𝑗𝑎𝑗𝑘     ∀ 𝑖, 𝑗, 𝑘 = 1,⋯ , 𝑛 (‎1.7) 

 

Additive PCM:  𝑎𝑖𝑗 represents the difference of preference between of 𝑥𝑖  and 𝑥𝑗: 𝑎𝑖𝑗 > 0 

implies that 𝑥𝑖 is strictly preferred to 𝑥𝑗, whereas 𝑎𝑖𝑗 < 0  expresses the opposite 

preference, and 𝑎𝑖𝑗 = 0 means that 𝑥𝑖  and 𝑥𝑗 are indifferent.  
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The condition of additive reciprocity is: 

 

 𝑎𝑗𝑖 = −𝑎𝑖𝑗    ∀ 𝑖, 𝑗 = 1,⋯ , 𝑛  &   𝑖 ≠ 𝑗 (‎‎1.8) 

 

The condition of additive consistency is: 

 

 𝑎𝑖𝑘 = 𝑎𝑖𝑗 + 𝑎𝑗𝑘     ∀ 𝑖, 𝑗, 𝑘 = 1,⋯ , 𝑛  &   𝑖 ≠ 𝑗, 𝑗 ≠ 𝑘, 𝑖 ≠ 𝑘" (‎1.9) 
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 Other Judgment Quantification Methods 1.7

 

Choo and Wedley [15] compared the effectiveness of 18 methods for deriving 

preference values from pairwise comparison matrices (PCM).  In the methods studied, 

including REV, a few presume interval-scaled values, while the majority of them use 

ratio-scaled values.   

 

Choo and Wedley [15] used two criteria for measuring the effectiveness of the judgment 

quantification methods.  The first is “correctness in error free cases”.  This means the 

ability of the method to calculate -in a simple way, from column values- the correct rank 

order given a pairwise comparison matrix that is perfectly consistent.  The second 

criterion is “distance minimization”.  This means the ability of the method to calculate -

in a more complicated fashion- the variables’ rank order while minimizing the difference 

among the ratios of the variables in the final rank vector compared to their ratios in the 

pairwise comparison matrix (PCM).   

 

Later on, Lin [16] revised the work of Choo and Wedley and concluded that 3 pairs of 

the distance minimization methods were mathematically equivalent, and in effect 15 

methods were truly unique.  Preference weighted least worst square (PWLWS) is 

equivalent to Preference weighted least absolute error (PWLAE), Least worst square 
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(LWS) is equivalent to Least worst absolute error (LWAE), and Logarithmic least worst 

square (LLWS) is equivalent to Logarithmic least worst absolute error.   

The following table lists the methods studied by Choo and Wedley [15].    

LS  Least square  

LWS  Least worst square  

PWLS  Preference weighted least square  

PWLWS  Preference weighted least worst square  

LAE  Least absolute error consider only  

LWAE  Least worst absolute error  

PWLAE  Preference weighted least absolute error  

PWLWAE  Preference weighted least worst absolute error  

SGM / LLS Simple geometric mean / Logarithmic least square  

LLWS  Logarithmic least worst square  

LLAE  Logarithmic least absolute error  

LLWAE  Logarithmic least worst absolute error  

SCS  Simple column sum  

SNCS  Simple normalized column sum  

REV  Right eigenvector  

NREV  Normalized right eigenvector  

LEV  Left eigenvector  

PWGM  Preference weighted geometric mean  

Table ‎1.22: List of Pairwise Comparison Prioritization Procedures   
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2 LITERATURE REVIEW 
 

 Applicability of AHP Research to HDM  2.1

 

 

HDM and AHP share an almost identical approach and structure.  However, the two 

models use different mathematical methods for the calculation and aggregation of 

priorities, as well as the calculation of the decision maker’s consistency.   

 

The widespread popularity of AHP has sparked an intense research activity resulting in a 

rich research field.  The subject, focus, findings and recommendations of a great deal of 

these studies are directly applicable and perfectly relevant to judgment quantification in 

HDM in general and HDM consistency treatment in particular.   Following are specific 

justifications for the preceding statement and the consequent use of AHP research in 

fulfilling some of the objectives of this work. 

1. Any AHP application can be directly applied using HDM.  The results, as shown in 

the examples given in sections 1.4.3 and 1.5.2, are almost identical with the 

added benefits of better accuracy, speed, and flexibility thanks to HDM’s scale 

options. 

2. HDM’s judgment quantification method falls in the same category as numerous 

prioritization procedures proposed as alternatives to Saaty’s REV.  Eighteen of 

these procedures are listed in table 1.22.  All the evaluation criteria for AHP 
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prioritization procedures are directly applicable to HDM’s prioritization 

procedure. 

3. HDM’s consistency measure falls in the same category as numerous method-

specific consistency measures proposed as alternatives to Saaty’s consistency 

measure (CR).  These consistency measures are described at length in section 2.5 

of this chapter.  All the evaluation criteria for AHP consistency measures are 

directly applicable to HDM’s consistency measure. 

4. All of the AHP consistency research is also directly applicable to HDM’s 

consistency approach.  More specifically: 

a. AHP consistency research provides an historical comprehensive 

treatment of the major topic of pairwise consistency.  As a whole, the 

research is not limited to a particular method, a specific subtopic, or a 

single approach.  As will be shown, numerous research papers are 

extremely relevant to HDM’s consistency measure. 

b. HDM’s and Saaty’s AHP consistency measures recommend a 10% fixed 

threshold.  Therefore, all of the research investigating the validity of this 

approach applies equally well in both cases. 

c. The various statistical analysis and simulation studies concerning AHP 

pairwise consistency are especially relevant to HDM’s consistency 

approach.  The ubiquitous conclusions of a great deal of such studies 

specifying the drawbacks of the fixed threshold approach and their 
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recommendations of a hypothesis testing approach as the most valid and 

reasonable approach form the basis of this research 

 

 Establishing the Significance of the Research Area 2.2

 

2.2.1 Widespread Use of HDM and AHP 

 

There is widespread evidence that AHP and its variants such as HDM are some of the 

most important research areas in the field of decision making.  Merely a decade after its 

proposal, even an AHP critic admitted that AHP has established itself as a “major tool in 

multi-criteria decision analysis” [6].  The widespread acceptance of AHP in the US and 

worldwide is often attributed to the power and simplicity of AHP [17, 18].  The 

applicability and flexibility of AHP has also contributed to its great popularity and has 

helped make it one of the most widely-used decision-making tools [18-21].   AHP and its 

variants have been applied in a multitude of fields across all sectors where decision-

making is needed [18, 21-24].  All of this has given AHP “an impressive record of 

success” [25].  It is of great importance and relevance to point out that the popularity 

and success of AHP has also made it a heavily researched area in decision making [18, 

19, 21, 26].  The sheer volume of research articles on AHP and its variants [21] and 

numerous literature reviews on the same subject [21, 26-28] clearly establish this as one 

of the most important areas of research in decision making science.   
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2.2.2 The Topic of Consistency in HDM/AHP 

 

Before the synthesis of single-level priorities or aggregate priorities across multiple 

levels, HDM/AHP models require assignment of preference to the various elements 

being compared.  This is done by eliciting the input of a decision maker or an expert in 

pairwise comparison of the elements.  Inconsistency in the choices made by a decision 

maker is contradiction in terms of order of preference (ordinal inconsistency) or in 

terms of relative degree of preference (cardinal inconsistency).  Compliance with 

cardinal consistency leads necessarily to compliance with ordinal consistency but not 

vice versa.  Since pairwise consistency/inconsistency can directly affect the quality and 

integrity of the order and degree of preference in the final result, there is consensus 

among decision scientists that inconsistency should be measured and controlled within 

an upper limit. 

 

The importance of consistency in AHP is well stated by AHP’s original author, Thomas 

Saaty, “how to measure inconsistency and improve the judgments to obtain better 

consistency is a concern of the AHP” [29].  Because the soundness of the result of an 

AHP model, or any pairwise comparison for that matter, is directly related to 

consistency, the analysis of this parameter is a critical step [30, 31], and an important 

consideration in AHP [32, 33].  In AHP, improving consistency improves the validity of 
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judgments [1].  All of these considerations have made the topic of consistency one of 

the most researched topics in AHP [34-38].  

2.2.3 Use of Simulation in HDM/AHP Research 

 

Simulation has been extensively used in AHP research.  The following examples do not 

include simulation use for threshold calculation.  These will be discussed in a later 

section. 

 

 Budescu, et al. [39] used simulation to compare the performance of 2 prioritization 

procedures.  Zahedi [40] used simulation to assess the performance of 6 prioritization 

procedures.  Noble and Sanchez [41] introduced the parameter of “entropy” to measure 

the meaningful information contained in an AHP decision maker’s input and used 

simulation to show that “entropy” is normally distributed.  Saaty and Vargas [42] used 

simulation to examine rank reversal under the 3 AHP modes: distributive, ideal, and 

utility.  Genest and Rivest [43] used simulation to evaluate the performance of REV 

versus the geometric mean method (GMM) prioritization procedures.  To facilitate 

pairwise data collection, Carmone Jr, et al. [44] suggest requiring a reduced set of inputs 

from decision makers.  They used simulation to show that AHP models using their 

suggestion do not suffer from inaccuracy due to data loss.  Finan and Hurley [45] used 

simulation to prove that further reduction of inconsistency in matrices already 

considered consistent is still beneficial to the overall decision analysis in AHP.  
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 Zanakis, et al. [46] used simulation to evaluate the performance of 4 multi-attribute 

decision making tools in addition to 4 AHP versions.  Choo and Wedley [15] used 

simulation to assess the performance of 18 prioritization procedures.  Aull-Hyde, et al. 

[47]  used simulation to prove that when using the geometric mean method for 

aggregation of individual judgments in AHP, the group consistency is unaffected by the 

inclusion of a few inconsistent judgments if the group size is sufficiently large.  Ishizaka 

and Lusti [48] used simulation to assess the performance of 4 prioritization procedures.  

Lin [16] used simulation to revise the work of Choo and Wedley [15] and concluded that 

3 pairs of the prioritization methods were mathematically equivalent, and in effect 15 

methods were truly unique.  Mamat and Daniel [49] used simulation to demonstrate the 

benefit of using the singular value decomposition (SVD) method in AHP, in terms of 

speed and reduction of the number of pairwise comparisons required.  Dong, et al. [50]  

used simulation to demonstrate benefit of two proposed consensus models for AHP 

group decisions.  Ishizaka, et al. [51] used simulation to demonstrate the effect of scale 

and aggregation on ranking of alternatives in AHP.  Siraj, et al. [52] used simulation to 

show that a large proportion of PCMs that are deemed consistent according to Saaty’s 

CR measure could actually be ordinally inconsistent.  Their simulation also shows that 

cardinal inconsistency tends to decrease under aggregation whereas ordinal 

inconsistency does not. 
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Table ‎2.1: Summary of AHP Simulation Studies  

Comparison of judgment quantification methods, decision-making tools, or judgement scales 

Article Subject 

Budescu, et al. [39] Comparison of right eigenvalue to geometric mean 

Zahedi [53] Comparison of right eigenvalue, mean transformation, row geometric mean, 

column geometric mean, harmonic mean and simple row average. 

Genest and Rivest [43] Comparison of right eigenvalue to row geometric mean 

Choo and Wedley [15] Comparison of 18 judgment quantification methods (detailed in section 1.7) 

Lin [16] Comparison of distance minimization methods included in Choo and Wedley 

[15]  

Ishizaka and Lusti [48] Comparison of right eigenvector, left eigenvector, geometric mean and mean 

of normalized values. 

Mamat and Daniel [49] Comparison of singular value decomposition to the duality approach in AHP 

Ishizaka, et al. [51] Comparison of the following scales: absolute, power, geometric, logarithmic, 

root square, inverse linear, and balanced. 

Zanakis, et al. [46] Comparison of four multi-attribute decision making: ELECTRE, TOPSIS, 

Multiplicative Exponential Weighting (MEW), Simple Additive Weighting 

(SAW).  Comparison of two AHP scales: absolute versus geometric.  

Comparison of  two AHP methods: right eigenvector versus mean 

transformation. 

(Continued on the next page) 
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2.2.4 HDM Applications 

 

Following are summaries of selected HDM-specific applications.   

 

An early and interesting application of HDM to capital budgeting was carried out by 

Khan [55] who found HDM easy to use and flexible.  The author related HDM 

attractiveness to its ability to rank discrete alternatives and their attributes without 

those being restricted to any particular class.  Through a capital rationing example, Khan 

presented a valuable and thorough explanation of HDM’s structure as well as its 

judgment quantification method for priority ranking and consistency calculations. 

Table ‎2.1: Summary of AHP Simulation Studies  

(Continued from the previous page) 

Examination of a topic or a phenomenon related to AHP 

Article Subject 

Noble and Sanchez [41] Assessment of information content of pairwise comparison data using 

entropy 

Saaty and Vargas [42] Rank reversal in AHP 

Carmone Jr, et al. [44] Streamlining pairwise elicitation procedure by allowing incomplete input 

matrices 

Finan and Hurley [45] Usefulness of further reduction of inconsistency of already consistent 

matrices 

Aull-Hyde, et al. [47] Effect of using geometric mean on aggregate consistency 

Dong, et al. [54]   Test two proposed consensus models for  AHP group decisions  

Siraj, et al. [52] CR could admit ordinally inconsistent matrices.  Cardinal inconsistentcy 

improves by aggregation whereas ordinal does not 
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Gerdsri [56] combined a 4-level HDM structure with the Delphi method to develop a 

Technology Development Envelope (TDE) for emerging technologies.  The author 

validated compliance of the structure with HDM’s assumption of criteria independence.  

The author recommends this method as a systematic approach for developing TDE. 

 

A valuable contribution to HDM’s usefulness, versatility, and robustness was the 

development of a sensitivity analysis (SA) method by Chen and Kocaoglu [57].  The SA 

algorithm provides means for calculating the effect of changes at any local level of the 

HDM structure on the overall rank of priorities.  This expands the understanding of the 

relationships among the alternatives and may lead to simplification of some model 

complexities.  The method is actually independent of the judgment quantification 

method employed and can be used in AHP as well as any of its variants that use additive 

function for priority aggregation.  Chen, et al. [58] apply the SA developed earlier to 

predict future changes to industry-wide economic conditions and provide organizational 

strategies for dealing with them.  

 

Gerdsri and Kocaoglu [59] use HDM to develop a systematic approach for planning R&D 

strategies and policies.  The HDM model used integrated multiple decision levels and 

methodologies to develop a decision making tool suitable for effective allocation of 

national resources to support emerging technologies. 
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In order to operationalize technology roadmapping, Fenwick, et al. [60], use HDM to link 

markets to products, products to technologies, technologies to R&D projects, which are 

in turn linked to technology roadmapping .  The structured HDM is considered over time 

using time-sensitive variables to finally derive the Technology Development Envelope 

(TDE). 

 

Kodali, et al. [61] emphasize the originality of using HDM to demonstrate the 

shortcomings of total productive maintenance (TPM) and to show that world-class 

maintenance systems (WMS) is the best among the proposed “best practices” solutions.  

HDM helps achieve these conclusions by allowing the authors to link and analyze 

performance measures of an organization to its maintenance systems.  In the course of 

using HDM, the paper provides a thorough explanation of HDM’s structure, judgment 

quantification method for calculating priorities, priority aggregation, and pairwise 

judgment consistency.  The authors recommend HDM for all practitioners in the field of 

maintenance management.  

 

Cowan, et al. [62] use a 4-level HDM to explore the impact of technology development 

and adoption on the sustainability objectives of hydroelectric generation & storage 

technologies (HPSTs) in the US Pacific Northwest.  The priorities of the technology 

selection from the HDM structure is fed into a linear programming (LP) model to further 

analyze the sustainability factors in the region.   
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Daim, et al. [63] use a hybrid model of HDM and goal programming (GP) to reverse 

generate the energy policies of France and Germany who represent the 2 extremes of 

national energy mix in Europe.  The interesting approach starts with setting up an HDM 

model which is analyzed/verified in a backward fashion by the GP model. Parts of the 

findings did not match those countries’ energy portfolios suggesting the need for further 

research as well as further refinement of the model.  

 

Harell and Daim [64] develop a selection tool of suitable employee motivational strategy 

using HDM.  Instead of having the HDM model lead to a single selection of motivational 

strategy goal as is the case in previous research, this paper offers a motivational strategy 

pathway giving managers deeper insight on the design and implementation of their 

choices. In addition a survey of 50 professionals if carried out to demonstrate the 

acceptance of the tool and to provide further details regarding employee motivational 

priorities for groups versus subgroups. 

 

Kennedy and Daim [65] use HDM to incorporate goals and aspirations of company 

employees into those of the company’s stakeholders.  Rather than wasting results from 

employee satisfaction surveys, which happens too often, the HDM model is intended to 

utilize such valuable data to enhance employee engagement and retention.  The authors 

suggest pairwise comparison for conducting the employee surveys as a much better  
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alternative to the commonly used Likert scale.  The advantages of doing so include the 

reduction of a great deal of data into manageable size as well as greater detail and 

resolution from the survey responses. 

Wang, et al. [66] develop an HDM to evaluate the most suitable energy resource for 

China.  Further sensitivity analysis (SA) is used to gauge the robustness of the model and 

the change in rank priorities under foreseeable circumstances.  Because “current energy 

infrastructure” is the most critical selection criterion, coal becomes the most favored 

energy source.  However, SA shows that as the criterion of ‘‘environmental impacts’’ 

gains priority, renewable resources will quickly surpass coal as the favored alternative. 

A simple yet effective and useful HDM model for hybrid car selection is presented by 

Fenwick and Daim [67].  The problem faced by many consumers lends itself to HDM 

structure.  The model allows users to determine their priorities through 3 upper level 

criteria and 4 lower level ones.  The model contains a database of vehicle characteristics 

related to model’s attributes.  Combining the user preferences along with available 

vehicle data, the model is able to provide the user with a suggested matching option.  

Based on car salesmen interviews, the authors suggest that future improvements of the 

model could include expanding the criteria numbers to include some secondary options. 
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To carry out assessment and selection of renewable energy generation technologies 

using multiple perspectives, Sheikh, et al. [68] use HDM as the major decision making 

tool.  The authors compare HDM/AHP to Multi-attribute Utility Theory (MAUT), and 

Outranking as multi-criteria decision analysis (MCDA) tools.  They state, based on 

several literature reviews, that HDM/AHP is the most popular tool used in the field of 

energy planning.  The authors also conclude that HDM is most suitable for the objectives 

of their research because of its flexibility and scalability with regard to accommodating 

multiple perspectives.  They also point out HDM’s advantage in integrating individual 

and group rankings. 

Building data centers (DCs) is a costly investment that many businesses must make.  

Therefore, Daim, et al. [69] propose an HDM for site selection for DCs.  The main 

selection criteria include geographical, financial, political, and social factors.  The 

authors gather the pairwise comparison data from experts and use the PCM software 

developed at Portland State University (PSU) to automate HDM’s judgment 

quantification method.  The authors recommend using the model as a valuable decision 

making tool that is readily available.  

In order to assess the performance and ensure compliance of information systems (IS), 

the Korean government has established standard IS audit checks and authorized 
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licensed companies to carry out such audits.  Lee, et al. [70] provide the first HDM 

model to evaluate the relative importance of the standard check items in an IS audit.  In  

order to improve the quality of the audits, the author suggests using the research 

results as basis to introduce logical and systematic changes or modifications to the 

priorities of check items to suit the particular conditions of the system of interest.  
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2.2.5 AHP Applications 

 

This section is included to show the wide-spread use and acceptance of AHP in the field 

of decision making.  

 

Vaidya and Kumar [27] provide this recent and comprehensive survey paper on AHP 

applications.  In total, 150 AHP application papers were reviewed 27 of which were 

analyzed in depth.  In addition to providing an excellent summary of the AHP application 

literature, this paper proves the wide acceptance of AHP as a decision making tool of 

choice in a multitude of truly diverse areas of application.  

  

The usefulness of this paper is in its potential use as a guide to previous application 

work that may help both researchers and practitioners decide the proper fit of AHP to 

their own work.  The chronological organization of research is reflected in the authors’ 

selection of papers for their study.  This allows researchers to track the development of 

concepts in the process of choosing an application method suitable for their situation.   

 

The authors classify the reviewed papers based on their theme of application.  These 

themes are selection, evaluation, benefit–cost analysis, allocations, planning and 

development, priority and ranking, decision-making, forecasting, medicine, and AHP 

application with QFD (Quality Function Deployment).  The areas of application such as: 
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personal, social, manufacturing, political, engineering, education, industry, and 

government are combined with the theme classification to add more resolution and 

relevance to the classification. 

 

The paper provides a useful chart detailing the year of publication of the articles 

covered.  The chart shows that 12% were published prior to 1990, 27% in the period 

(1998 – 2000) and 31% during (2000 – 2003).   Region-wise sorting of AHP applications 

shows USA’s share as 47%, followed by Asia at 33%, then Europe at 18%.  Finally, the 

paper shows the distribution of the reviewed papers among journals.  The lion share 

goes to the European Journal of Operational Research, which incidentally is the 

publisher of the Vaidya and Kumar [27] literature review. 

 

 Statistical Simulation Studies on the Random Index (RI) 2.3

 

As mentioned previously, Saaty recommends the following consistency measure for REV 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
         𝐶𝐼 =  

𝜆𝑚𝑎𝑥−𝑛

𝑛−1
 (Equations 1.2 and 1.3) 

where CR is the consistency ratio, CI is the consistency index which is a mathematical 

quantity calculated from the PCM, and RI is the random index which is the average value 

of CI for a sample of randomly-generated matrices of the same order (number of 

variables).  Saaty’s upper limit for CR is 10%.  Saaty’s calculation of RI involves the  
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generation of randomly populated matrices, calculating their CIs, and then averaging the 

results of the sample.  Obviously, this is done repeatedly for a range of alternatives, 

typically 𝑛 = 3 − 10.   

 

The initial RI numbers reported by Saaty were composite results of 2 simulation runs.  

The first was performed by V.R. Uppuluri (at Oak Ridge) using a sample of 100 matrices, 

and the second was performed by Saaty (at Wharton) using a samples of 500 matrices 

[71].   

 

Lane and Verdini [72] conducted their study to check the validity of Saaty’s 10% rule and 

examine the random distribution of the CI, REV’s inconsistency measure.  For 𝑛 = 3, the 

authors generated the complete probability distribution of CI using the full enumeration 

of 4,913 matrices.  2500 matrices each were used for 𝑛 = 4 − 10, 12, 14, 16, 20, and 24.  

The authors conclude that for 𝑛 = 3 and 4, the 10% rule seems too lax and needed to 

be stricter.  For 𝑛 = 3, they recommend an RI which corresponds to  = 0.05, and for 

𝑛 = 4, they recommend an RI which corresponds to  = 0.01.  For n higher than 4, they 

conclude the 10% rule is much stricter than statistical rules ( levels) and choose to 

support it.  The authors justify their choice by stating that even “semi-rational” DMs are 

able to comply with strict  levels, particularly when n is large, and therefore stricter 

levels were necessary to ensure quality decisions.  This view is not shared by any of the 

other researchers. 
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Golden and Wang [71] conducted their study to answer, among other things, the 

questions: why should the threshold be set at 10%?, and should the threshold be a 

function of matrix size?  Unlike Saaty, Uppulari, and Lane & Verdini, the authors did not 

randomly populate their sample matrices.  Instead, they used a complex algorithm to fill 

their 1,000-matrix samples. The underlying assumption of the fill procedure was that 

DMs will always try, and mostly succeed, in being consistent.  The algorithm employs a 

variable (𝑘 = 1 − 5) which reflects the DM’s ability to be consistent.  The numbers 

reported in the study were based on 𝑘 = 3, indicating the DM is earnestly trying to be 

consistent.   

 

The RI study carried out by Forman [11] was done for incomplete matrices of dimension 

𝑛 = 3 − 7 with 𝑀 = 1 − 15 missing elements.  He used Harker’s [73] algorithm for 

calculating the priorities as well as CI.  

 

Dodd, et al. [74] carried out a simulation study using a sample of 1,000 matrices each for 

𝑛 = 4 − 9.  The authors show that even at 20% of the random mean, few to none of the 

higher order matrices (𝑛 = 6 − 9) passed Saaty’s CR limit.  Since they strongly argue 

against the RI/CR approach, the authors, unlike those of other RI studies, did not report 

the random mean of their study samples (10% of which would be considered RI).  

Instead, as they strongly advocate a statistical hypothesis testing approach, they 
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reported the permitted CI thresholds that correspond to  levels of 0.1%, 0.5%, and 1%-

5%. 

 

Tummala and Wan [75] developed a closed form expression for 𝜆𝑚𝑎𝑥 for PCMs where 

𝑛 = 3, and used the formula to determine the mean and variance of 𝜆𝑚𝑎𝑥.  For higher 

order PCMs, the mean and variance of 𝜆𝑚𝑎𝑥 were determined by simulation.  The 

authors then used these 𝜆𝑚𝑎𝑥 statistical parameters to generate a new set of RI 

numbers. Their formula for a 3 by 3 PCM: 

 

(

1 𝑎 𝑏
1

𝑎⁄ 1 𝑐
1

𝑏⁄
1

𝑐⁄ 1

),    𝜆𝑚𝑎𝑥 = 1 + √
𝑏

𝑎𝑐

3

+ √
𝑎𝑐

𝑏

3
 (‎2.1) 

 

 

In the course of developing thresholds for the consistency measure of the Geometric 

Mean Method, Aguaron and Moreno-Jimenez [8], performed an RI simulation using a 

sample of 100,000 matrices. 

 

Alonso and Lamata [9] did their RI study in the course of developing a new consistency 

measure.  The authors used two sets of sample sizes; the first was 100,000 matrices and 

the second was 500,000 matrices.  They found no difference between the results of the 

two simulation runs.  
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Bozoki and Rapcsak [13] performed the most recent and thorough RI study.  The 

objective of their research was to compare REV’s consistency measure with the one 

proposed by Koczkodaj [76].  The sample they used was 107 matrices for 𝑛 = 3 − 10.  

The 𝜆𝑚𝑎𝑥 plots show it becomes close to being normally distributed particularly for 

higher order matrices (𝑛 = 6 − 10).  The plots also show Saaty’s 10% rule well outside 

to the left of the distribution for the same range.  For REV’s CR, the authors see the 10% 

rule’s lack of linkage to matrix size, and its inability to exclude asymmetric inconsistency 

as major weaknesses.  For Koczkodaj’s CM, the question of extending the recommended 

threshold to higher orders remained an open question. 

 

It is interesting to note that despite being done 21 years earlier than the latest RI study, 

and despite the much smaller sample size (1,000), the results obtained by Golden and 

Wang [71] for n higher than 4 differ on average by less than 0.5% from those obtained 

by the 3 most recent RI studies. 

 

Table 2.2 shown on the next page summarizes the RI studies to date.  Primary source for 

table data is Alonso and Lamata [9].  Sample sizes for the studies of Forman, Tumala & 

Wan, as well as the column (study) of Bozóki & Rapcsák were added by the author of 

this dissertation. 

 



4
9 

Author Uppuluri Saaty 
Lane & 
Verdini 

Golden & 
Wang 

Forman Noble 
Tumala 
& Wan 

Aguaron, 
et al. 

Alonso 
& 

Lamata 

Bozóki & 
Rapcsák 

Sample 
100 500 2,500 1,000 

17,672 to 
77,487 

5,000 
4,600 to 
470,000 

100,000 100,000 107

n 

3 0.382 0.58 0.52 0.5799 0.5233 0.49 0.500 0.525 0.5245 0.5242 

4 0.946 0.90 0.87 0.8921 0.8860 0.82 0.834 0.882 0.8815 0.8842 

5 1.220 1.12 1.10 1.1159 1.1098 1.03 1.046 1.115 1.1086 1.1087 

6 1.032 1.24 1.25 1.2358 1.2539 1.16 1.178 1.252 1.2479 1.2488 

7 1.468 1.32 1.34 1.3322 1.3451 1.25 1.267 1.341 1.3417 1.3408 

8 1.402 1.41 1.40 1.3952 1.31 1.326 1.404 1.4056 1.4004 

9 1.350 1.45 1.45 1.4537 1.36 1.369 1.452 1.4499 1.4505 

10 1.464 1.49 1.49 1.4882 1.39 1.406 1.484 1.4854 1.4860 

11 1.576 1.51 1.5117 1.42 1.433 1.513 1.5141 

12 1.476 1.54 1.5356 1.44 1.456 1.535 1.5365 

13 1.564 1.5571 1.46 1.474 1.555 1.5551 

14 1.568 1.57 1.5714 1.48 1.491 1.570 1.5713 

15 1.586 1.5831 1.49 1.501 1.583 1.5838 

Table ‎2.2: Random Index (RI) Studies Related to REV 
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 Issues Related to AHP’s Consistency Measure 2.4

Barzilai, et al. [77] contend that using the principle right eigenvalue to calculate 

consistency is not justified.  They claim the major fault with this approach is its 

dependence on the problem description.  They also indicate that solving for each level 

separately and then combing the solutions yields different results from combing the 

levels and then calculating the solution.  They call this discrepancy “inter-level 

inconsistency”.  The authors develop a set of desired properties that a prioritization 

procedure should have: 1) If a matrix is consistent, its weight vector should be the 

solution, 2) The solution should be independent of the problem description, and 3) The 

solution should provide inter-level consistent decisions.  The authors show that the 

Geometric Mean Method developed by Crawford and Williams [78] is the only method 

that would satisfy these properties. 

Golden and Wang [71] were first to point out that under the recommended 10% rule for 

CR, some obviously inconsistent matrices could be deemed consistent.  The example the 

authors provide is a 3x3 matrix which violates cardinal consistency, yet its CR is only 8%, 

and thusly the matrix is considered consistent.  The authors generalize from this 

example and others that the 10% rule is easy to satisfy for small matrices (i.e. too lax 

and thereby admits inconsistent matrices) and is too hard to satisfy for larger ones (i.e. 

too restrictive and thereby excludes reasonably consistent matrices).  Aguaron and 
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Moreno-Jimenez [8] as well as Bozoki and Rapcsak [13] state that Saaty [12] suggested 

changing the 𝑛 = 3 threshold to 5 %, and the 𝑛 = 4 threshold to 8%.   

 

Holder [6] suggests that the linear scale used in REV is inappropriate and causes 

“inconsistency” in relative weight determination.  He gives the following example to 

illustrate the point: “A is weakly more important than B (3 on Saaty's scale) and B is 

weakly more important than C (3 on Saaty's scale) imply that A is absolutely more 

important than C (9 on Saaty's scale)”.  Holder also points out the negative 

consequences when assessing consistency due to the scale’s discretization and limited 

upper bound value.  

 

Murphy [7] gave a similar example to that of Golden and Wang’s to show that the upper 

bound of the Saaty’s Absolute 9-point scale forces choices outside the acceptable 

consistency range.  The author states that the problem gets worse as the matrix size 

increases.  Based on Saaty’s 10% rule,  for 𝑛 = 3 − 9, Vargas [79] calculated upper limits 

for 𝜆𝑚𝑎𝑥 beyond which the PCMs would be inconsistent.  Murphy concluded that in 

order to meet Vargas’ criterion for consistency, for 𝑛 = 3 𝑜𝑟 4, the average of adjacent 

elements in the PCM must be less than 5.  For n larger than 4, Murphy recommends 

against using REV unless the average of adjacent elements in the PCM is less than 3. 
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Genest and Rivest [43] criticize the usage of the mean values of the RI distributions 

because the plots are highly skewed, and therefore the mean is not a representative 

parameter.  The authors see the inclusion of RI in CR calculation as a positive 

contribution towards accounting for the concept of lower inconsistency limits when few 

elements are compared and higher allowable inconsistency when more elements are 

compared.  Saaty had pointed out that this feature was “a theoretical confirmation of 

Miller’s psychological observation” [10] [80].  Nonetheless, Genest and Rivest [43] insist 

that a statistical hypothesis testing approach is the recommended approach where such 

a feature is incorporated while accurately setting the consistency limits to 

accommodate the various decision making conditions  

Karapetrovic and Rosenbloom [81] show several examples of quite reasonable matrices 

that are consistent with the views of the DM, yet they fail the standard CR 

recommended for REV.  To remedy such situations, the authors recommend a quality 

control approach.  The consistency indices of several PCMs are plotted on a range 

control chart to assess the DM’s consistency as a process.  If the observations are out of 

control, the matrices are considered inconsistent.  Otherwise, the DM’s choices are 

considered reasonable. 

Salo and Hämäläinen [82] attribute the lack of accuracy using REV scale to the uneven 

weight of scale gradations.  They point out, for example, that the difference in replacing 
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1 by 2 is 15 times the difference between 8 and 9.  They also show that the upper bound 

of the REV scale causes the undesirable effect of restricting the range of the weight 

vector as follows: 

 
𝑤𝑚𝑎𝑥 =

𝑀

𝑛 + 𝑀 + 1
    𝑤𝑚𝑖𝑛 =

𝑀

𝑀(𝑛 − 1) + 1
 (‎2.2) 

where M is the upper scale bound and n is the number of comparison elements. 

 

Bana e Costa and Vansnick [83] test the REV compliance with the Condition of Order 

Preservation (COP). This condition means the following: if, for example, 4 alternatives 

are judged such that 𝐴1 is preferred over 𝐴2 to a greater extent than 𝐴3 is preferred 

over 𝐴4, then the weight vector should be such that: 

1. (w1 >  w2) and (w3 >  w4)⋯Preservation of order 

2. (w1 / w2) > (w3 / w4)⋯  Preservation of intensity 

 

The authors give three examples of PCMs, one of which is Saaty’s own, where they all 

meet the CR requirement, yet they all violate COP.  In the fourth example, the DM’s 

choices make it impossible for the PCM to comply with COP.  Yet again, CR for this 

matrix is well within the 10% CR rule.  In 3 out of the 4 examples, the authors list the 

priority vectors obtained using a different prioritization procedure where COP is 

observed. 
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 Other Consistency Measures  2.5

 

Barzilai and Golany [84] advocate the geometric mean method and claim it is the only 

acceptable method for multiplicative PCMs to simultaneously satisfy immunity to rank 

reversals, independence of problem description, independence of scale inversion, left-

right eigenvector asymmetry, uniqueness, independence of order of operations and 

inter-level consistency.  For additive PCMs, the authors suggest using the arithmetic 

mean method, for which they derive the following consistency measure:   

 
𝜖𝑖𝑗 =

1

𝑛
∑(𝑎𝑖𝑗 + 𝑎𝑗𝑘 + 𝑎𝑘𝑖)

𝑛

𝑘=1

 (‎2.3) 

where 𝜖𝑖𝑗 is the average inconsistency over all triplets with fixed 𝑖 and 𝑗. 

 

Golden and Wang [71] advocate using the Row Geometric Mean Method.  They seek to 

develop a measure of consistency that is easy to use, is a function of matrix size, and has 

an intuitively appealing probability distribution.  The formula for the Row Geometric 

Mean is: 

 

𝑔 = [

𝑔1

𝑔2

⋮
𝑔𝑛

] =

[
 
 
 
 √𝐶11𝐶12 ⋯𝐶1𝑁

𝑁

√𝐶21𝐶22 ⋯𝐶2𝑁
𝑁

⋮

√𝐶𝑁1𝐶𝑁2 ⋯𝐶𝑁𝑁
𝑁

]
 
 
 
 

 (‎2.4) 

where 𝐶𝑖𝑗 are the PCM elements. 
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The weight vector is normalized: 

 𝑔𝑖
∗ =

𝑔𝑖

∑ 𝑔𝑖𝑖
 (‎2.5) 

 

Each column vector is normalized: 

 
𝐶𝑖𝑗

∗ =
𝐶𝑖𝑗

∑ 𝐶𝑖𝑗𝑖
 (‎2.6) 

 

The consistency measure is: 

 
𝐺 =

1

𝑁
∑∑|𝐶𝑖𝑗

∗ − 𝑔𝑖
∗|

𝑗𝑖

 (‎2.7) 

 

In an analogous fashion, the authors suggest a consistency measure for REV as: 

 
𝐸 =

1

𝑛
∑∑|𝐶𝑖𝑗

∗ − 𝑒𝑖
∗|

𝑗𝑖

 (‎2.8) 

where  𝑒𝑖
∗ is the normalized eigenvector based on the principal eigenvalue. 

 

The frequency histograms of 𝐺, generated from a simulation study using 1,000 matrices, 

were plotted.  The distribution of 𝐺  was approximately normal for 𝑛 ≥ 4.  The 

Kolmogorov-Smirnov and the chi-squared tests were used to verify normality.  It was 

observed that the normal distribution provided a good fit for 𝑛 ≥ 4.  The authors 

obtained similar results for the distribution of 𝐸. 
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Ra [85] recommends HDM CS as a prioritization procedure but to measure consistency 

he recommends the Sum of Inverse Column Sums (SICS). The procedure is very simple, 

the columns of the PCM are summed, and then their reciprocals are added.  SICS ranges 

in value from 0 to 1 with 1 indicating perfect consistency.  Based on a simulation study 

using 1,000 matrices, Ra provides thresholds for SISC for 𝑛 = 3 − 13.  The “Standard” 

limits ensure very good consistency compliance, while the “Average” limits ensure 

ordinal consistency with minimal cardinal consistency violation.  In a later effort 

(Kretchik and Ra [86]), SICS is presented as a consistency measure that is easy to use, is 

independent of the prioritization procedure, and is well bounded.   Beta distribution is 

shown to be a good fit for SICS probability distribution.   

 

Table ‎2.3: Thresholds for the Sum of Inverse Column Sums (SICS) Method 

Thresholds for SICS 

n Standard Average 

3 96.65% 85.74% 

4 93.16% 75.89% 

5 90.01% 67.36% 

6 87.18% 59.91% 

7 84.67% 54.92% 

8 82.40% 51.48% 

9 80.38% 48.38% 

10 78.50% 46.38% 

11 76.81% 44.80% 

12 75.24% 42.70% 

13 73.79% 41.20% 
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Jensen and Hicks [87] indicate that when considering tradeoffs regarding validity, 

reliability, consistency, and solution determinacy, being “finely cardinal” is not 

necessarily better or worse than being “coarsely ordinal”.  Strictly for ordinal 

consistency, they propose to use Kendall’s Coefficient of Consistency, and provide 

computation formulas for the cases of with or without preference equivalence.  The 

general formula is: 

 
ζ =

D − d0

D
  (‎2.9) 

where D is maximum number of circular triads for n items being compared, and d0 is the 

observed number of circular triads. 

 

Koczkodaj [76] seeks to develop a consistency measure that is easy to interpret, allows 

easy selection of thresholds, and can link inconsistency to a particular element rather 

than an abstract value such as 𝜆𝑚𝑎𝑥. His new consistency measure is computed among 

each triplet of the PCM elements.  The formula for the consistency measure for a single 

triplet (a, b, c) is: 

 
𝐶𝑀(𝑎, 𝑏, 𝑐) = 𝑚𝑖𝑛 (

1

𝑎
|𝑎 −

𝑏

𝑐
| ,

1

𝑏
|𝑏 − 𝑎𝑐|,

1

𝑐
|𝑐 −

𝑏

𝑎
|) (‎2.10) 

 

 

Bozoki and Rapcsak [13] extend the previous definition to the entire PCM (A for 

example): 
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𝐶𝑀(𝐴) = 𝑚𝑎𝑥 {𝑚𝑖𝑛 {|1 −

𝑏

𝑎𝑐
| , |1 −

𝑎𝑐

𝑏
|} 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 (𝑎, 𝑏, 𝑐)𝑖𝑛 𝐴} (‎2.11) 

 

The number of triplets in any n x n matrix is: 

 
(
𝑛
3
) =

𝑛(𝑛 − 1)(𝑛 − 2)

3!
 (‎2.12) 

 

 

Takeda [88] developed the Measure of Consistency (MC) for the Row Geometric Mean 

Method: 

 

𝑀𝐶 = [
1

𝑁(𝑁 − 1)
] ∑ 𝑎𝑖𝑗𝑐𝑖𝑗

𝑁

𝑖,𝑗=1
𝑖≠𝑗

      𝑎𝑛𝑑         𝑎𝑖𝑗𝑐𝑖𝑗 = [∏(𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖)

𝑁

𝑘=1

]

1
𝑁

 (‎2.13) 

𝑀𝐶 ≥ 1, for all reciprocal matrices 

 

Wedley [89] suggested that for the sake of efficiency, instead of having to fill n(n-1)/2 

paired comparisons, a DM needs only to do n-1 comparisons.  The rest of the 

comparisons are redundant and can be filled by a computer algorithm.  Such a 

procedure, in addition to achieving efficiency, will also build/maintain good ordinal 

consistency.  Wedley’s suggested consistency measure for filling incomplete PCMs 

(AVABDVCI: Average Absolute Deviation in Consistency Indexes) is: 

 

AVABDVCI = ∑
ICIs − ICIs−1

NRs

NRs

s=1

 (‎2.14) 
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where ICIs is the incomplete consistency index at step s, and NRs is the number of 

redundant comparisons to this step.  

 

Takeda and Yu [90] in the course of exploring the usefulness of using subsets of 

comparisons in PCMs to calculate the priority vector, developed the following 

consistency measure: 

 

k = [ ∏ aij

(i,j)∈ℐ

]

1
n

 (‎2.15) 

where ℐ is the collection of the pair indices with which aij is described. 

 

Monsuur [91] seeks to develop a consistency measure that is intrinsic, easily 

interpretable, scale independent, and can be adjusted to the decision situation.  

Monsuur‘s measure is:  

 
𝑘 =

1

2
(1 − 𝜆𝑚𝑎𝑥 + √[𝜆𝑚𝑎𝑥 − 1]2 + 4𝑛) (‎2.16) 

 

The author recommends an upper limit for the consistency measure of 𝑘 ≥ 0.9.  For 

𝑛 = 3 − 9 these thresholds closely match 𝜆𝑚𝑎𝑥 upper limits for consistent PCMs 

calculated by Vargas [79]. 

Salo and Hämäläinen [82] developed a scale-invariant Consistency Measure (CM) which 

is obtained through the equation: 
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𝐶𝑀 =
√

∑ ∑ (𝑎𝑖𝑗 − log
𝑤𝑖

𝑤𝑗
)𝑛

𝑗=𝑖−1
𝑛−1
𝑖=1

𝑛(𝑛 − 1) 2⁄
 

(‎2.17) 

 

 

Barzilai [92] develops consistency measure RC (Relative Consistency) for the 

multiplicative case based on his earlier measure for the additive case [84].  First, the 

multiplicative PCM (M) is transformed to its “equivalent” additive matrix (A). Next the 

consistent components of A are computed: 

  𝐶𝐴 = (𝑐𝑖𝑗) = (𝑤𝑖 − 𝑤𝑗) (‎2.18) 

 

Finally, RC is computed: 

 
𝑅𝐶(𝑀) =

∑ 𝑐𝑖𝑗
2

𝑖𝑗

∑ 𝑎𝑖𝑗
2

𝑖𝑗

 (‎2.19) 

 

 

Shiraishi, et al. [93] show that the characteristic polynomial of a PCM is: 

 𝑃𝐴(𝜆) = 𝜆𝑛 + 𝑐1𝜆
𝑛−1 + ⋯+ 𝑐𝑛−1𝜆 + 𝑐𝑛 (‎2.20) 

 

They further define a new consistency measure “𝑐3” as the coefficient of the 

characteristic polynomial: 

 
𝑐3 = ∑{2 − (

𝑎𝑖𝑗𝑎𝑗𝑘

𝑎𝑖𝑘
+

𝑎𝑖𝑘

𝑎𝑖𝑗𝑎𝑗𝑘
)} (‎2.21) 
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Crawford and Williams [78] developed a consistency measure for the Row Geometric 

Mean Method (RGMM).  Aguaron and Moreno-Jimenez [8] formalized the measure 

calling it the Geometric Consistency Index (GCI), and provided the thresholds associated 

with it.  The formula for GCI is: 

 
GCI =

2

(n − 1)(n − 2)
∑(log(𝑎𝑖𝑗) − log (

𝑤𝑖

𝑤𝑗
))

2

i<j

 (‎2.22) 

where eij = aijwi/wj is the error obtained when the ratio wi/wj is approximated by aij. 

 

Because of GCI’s independence of order, the authors established a relationship to CR in 

order to compute the thresholds: 𝐺𝐶𝐼 = 𝑘(𝑛)𝐶𝑅.  The authors did a simulation study 

for 𝑛 = 3 − 16 using a sample of 100,000 matrices for each.  Three sets of thresholds 

are provided at 4  levels: for 𝑛 = 3, 𝑛 = 4, and for 𝑛 > 4. 

 

Peláez and Lamata [94] seek to develop a Consistency Index (CI*) that is easy to use, is a 

function of matrix size, and is applicable to other types of reciprocal matrices. For   

𝑛 = 3, the consistency measure is the determinant of the matrix.  For 𝑛 ≥ 4, the 

consistency measure is the sum of determinants of all triplets (transitivities/triads) 

divided by the count of triplets.   In other words, for 𝑛 ≥ 4, the consistency measure is 

the average determinant of triplets.  To set limits for use of their consistency measure, 
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the authors carried out a simulation study of 100,000 matrices each for 𝑛 = 3 − 9.  The 

authors list the percentiles as thresholds for CI* 

 

Given PCM 𝑀𝑛×𝑛 

 
𝐶𝐼𝑁<3

∗ = 0,         𝐶𝐼𝑁=3
∗ = det(𝑀)         𝑎𝑛𝑑           𝐶𝐼𝑁>3

∗ =
det (Γ𝑀

∗ )

𝑁𝑇𝑀
 (‎2.23) 

where Γ𝑀
∗  is the collection of all triplets/trasitivities, and 𝑁𝑇𝑀 is the number of 

triplets/transitivities. 

 

Gass and Rapcsák [95] develop the Singular Value Decomposition (SVD) method as a 

prioritization procedure.  They suggest the Frobenius norm of the difference between 

the original PCM and one formed by the SVD as an Inconsistency Measure (IM).  The 

authors note that linking this measure to practical application and the DM’s confidence 

still need to be developed.  Their formula is: 

 

𝐼𝑀 = √∑∑(𝑎𝑖𝑗 −
𝑤𝑖

𝑤𝑗
)

2𝑛

𝑗=1

𝑛

𝑖=1

 
(‎2.24) 

 

Alonso and Lamata [9] developed a statistical consistency acceptance criterion that is 

less restrictive than REV’s, is linked to matrix size, is simpler, and has thresholds which 

are based on  levels.  Their consistency acceptance criterion is:  

 𝜆𝑚𝑎𝑥 ≤ 𝑛 + 𝛼(1.7699𝑛 − 4.3513) (‎2.25) 
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Fedrizzi and Giove [96] develop a method for calculating the missing elements of an 

additive incomplete PCM.  They do so by minimizing their measure of global 

inconsistency (𝜌).   The measure is the mean value of the local consistency indices for all 

the possible triplets (𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘):  

 
𝜌 =

∑ (𝑟𝑖𝑗 − 𝑟𝑖𝑘 − 𝑟𝑘𝑗 + 0.5)
2

𝑖<𝑗<𝑘

(
𝑛
3
)

 
(‎2.26) 

 

Stein and Mizzi [97] suggest using the Harmonic Consistency Index.  Using a 500 sample 

of 4x4 randomly populated matrices, the authors try to show the correlation between 

HCI and REV’s CI.  The harmonic sum 𝐻𝑀(𝑠) is simply the sum of the inverse sum of the 

columns which is identical to what Ra [85], and Kretchik and Ra [86] have proposed 

years earlier.  The authors state that HCI is well bounded and reaches its maximum 

value at the maximally intransitive matrix in a similar fashion to CI. The HCI’s formula is: 

 
𝐻𝐶𝐼 =  

[𝐻𝑀(𝑠) − 𝑛](𝑛 + 1)

𝑛(𝑛 − 1)
 

(‎2.27) 

 

Fedrizzi and Brunelli [98] show that the further the pairwise judgments are from the 

neutral “indifference” position, the harder it is for the DM to achieve consistency, and 

vice versa.  This phenomenon which the authors call “strength of preference effect” 

results in the DM with strong preference choices being penalized.  The authors state 

that almost all consistency measures suffer from this shortcoming.  To remedy this 

situation, they offer a new approach for assessing consistency which they call 
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 “consistency equivalence classes”. By taking strength of preference effect into account, 

a class for either multiplicative of additive matrices is defined.  The consistency level for 

a representative matrix from the class is calculated and is used as a “consistency level” 

for all the class members. 

 

Čaklović [99] utilizes the Potential Method (PM), which represents pairwise comparisons 

through preference graphs to determine their results, to develop a new consistency 

measure.  In PM, inconsistency is defined as the angle between the original preference 

flow and its consistent approximation.   To set the thresholds for this consistency 

measure, the author performs 2 sets of simulations for 𝑛 = 3 − 15.  The first set uses 

normally-distributed randomly-generated perturbations, and the second uses uniformly-

distributed randomly-generated perturbations.  For 𝑛 ≥ 4, the consistency measure was 

found to closely follow a Gumbel distribution.  The author listed the Gumbel distribution 

parameters for both sets of simulations along with the corresponding 5th percentiles as 

recommended upper thresholds. 

 

Matteo, et al. [100] compared 2 pairs of the above mentioned consistency indices: 𝐶𝐼∗ 

from Peláez and Lamata [94] to 𝑐3from Shiraishi, et al. [93], as well as 𝐺𝐶𝐼 from Aguaron 

and Moreno-Jimenez [8] to 𝜌 from Fedrizzi and Giove [96].  The authors prove 

proportionality between the first pair as well as the second.  The authors concluded that 
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their results and similar ones should be used by researchers before embarking on 

developing new consistency measures in order to avoid duplication of effort. 

 

Siraj, et al. [101] develop a new prioritization procedure based on all possible element 

combinations from tree spanning of pairwise comparisons.   In the new method, 

Enumerating All Spanning Trees (EAST), the weight vector is composed of the average of 

individual weights computed for each tree.  The consistency measure is the variance 

among the weight vector: 

 
𝑤 =

1

𝜂
∑𝑤̃(𝜏𝑠)

𝜂

𝑠=1

      𝑎𝑛𝑑         𝜎2 =
1

𝑛(𝜂 − 1)
∑(∑(𝑤𝑖 − 𝑤̃𝑖(𝜏𝑠))

2

𝑠

)

𝑖

 (‎2.28) 

where 𝜂 = 𝑛𝑛−2 is the number of spanning trees. 
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 Analysis of Research Gaps 2.6

 

To establish the significance of the research topic and to identify the research gaps, 

several books and more than 180 journal articles have been reviewed.  The table below 

summarizes the research gaps identified.  

Table ‎2.4: List of Research Gaps 

No Article Critical Issue Discussed Research Gaps 

1 Barzilai and 

Golany [84] 

Provide consistency measure 

for additive Pairwise 

Comparison Matrices (PCMs) 

The multiplicative case is not addressed, no 

thresholds for the measure are provided, and the 

measure is not linked to number of elements or 

 levels.  The results are not in ratio scale. 

2 Golden and 

Wang [71] 

Provide consistency measure 

for Row Geometric Mean 

Method (RGMM) 

The measure is applicable only to RGMM. 

Although the measure is linked to number of 

elements, thresholds and  levels would be hard 

to establish due to the rough fit to normal 

distribution.   

3 Ra [85], 

Kretchik and 

Ra [86] 

Provide consistency measure 

for HDM’s Constant Sum (CS) 

The fit of the measure to a beta distribution is 

quite rough.  This made linking it to number of 

elements weak and consequently multiple 

thresholds and  levels were not established.  No 

theoretical justification for the measure is given, 

and therefore its interpretation is unknown.  

Finally, the upper bound for the measure is 

unproven particularly for higher order matrices.    

4 Jensen and 

Hicks [87] 

Provide ordinal consistency 

measure for pairwise 

comparisons 

Measures only ordinal consistency.  No 

thresholds for the measure are provided, and the 

measure is not linked to number of elements or 

 levels.   
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No Article Critical Issue Discussed Research Gaps 

5 Koczkodaj 

[76] 

Provide consistency measure 

for pairwise comparison 

matrices (PCMs) 

Good measure with the added benefit of locating 

inconsistency within a triplet.  Few 

recommended thresholds have been established 

for low order matrices.  Extending these to 

higher orders is yet to be done.  Thresholds are 

not linked to  levels.   

6 Takeda [88] Provide consistency measure 

for RGMM 

The measure is applicable only to RGMM. No 

thresholds for the measure are provided, and the 

measure is not linked to number of elements or 

 levels.   

7 Wedley [89] Provide a per step 

consistency check for use 

while filling incomplete 

matrices 

The measure is specifically for filling incomplete 

matrices. No thresholds for the measure are 

provided, and the measure is not linked to 

number of elements or  levels. 

8 Takeda and 

Yu [90] 

Provide a consistency 

measure for a subset of a 

Pairwise Comparison Matrix 

(PCM) 

The measure is specifically for a subset of a PCM.  

No thresholds for the measure are provided, and 

the measure is not linked to number of elements 

or  levels.   

9 Monsuur [91] Provide an intrinsic 

consistency measure that is 

scale independent 

The measure is linked to the abstract quantity of 

maximum eigenvalue.  No statistically based 

thresholds or corresponding  levels are 

provided. 

10 Salo and 

Hämäläinen 

[82] 

Provide consistency measure 

that is scale invariant 

The measure is more suitable for distance-

minimizing methods. The measure is not linked 

to the matrix order and no statistically based 

thresholds or corresponding  levels are 

provided. 
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No Article Critical Issue Discussed Research Gaps 

11 Barzilai [92] Provide consistency measure 

that ensures immunity to 

rank reversal, independence 

of problem description, 

independence of scale 

inversion, left-right 

eigenvector asymmetry, 

uniqueness, independence of 

order of operations and 

inter-level consistency 

The measure has many advantages.  However, it 

is cumbersome to calculate (involves 

transforming multiplicative PCMs to their 

additive equivalents), is unbounded, and lacks 

statistically based thresholds and their 

corresponding  levels. 

12 Shiraishi, et 

al. [93] 

Provide consistency measure 

for positive reciprocal 

matrices 

The measure is not linked to the matrix order 

and no statistically based thresholds or 

corresponding  levels are provided. 

13 Crawford and 

Williams [78], 

Aguaron and 

Moreno-

Jimenez [8] 

Provide consistency measure 

for RGMM and provide 

thresholds for the measure 

The measure is applicable only to RGMM. 

Because of GCI’s independence of order, the 

thresholds were approximated by establishing a 

relationship to CR.  The thresholds are provided 

for n = 3, 4, and all matrices > 4.  This makes the 

measure’s link to the number of elements quite 

weak.  Only 4  levels were given.   

14 Peláez and 

Lamata [94] 

Provide a consistency index 

that is easy to use, is a 

function of matrix size, and is 

applicable to other types of 

reciprocal matrices 

The measure is a function of matrix size, has 

statistically based thresholds, and corresponding 

 levels.  However, the thresholds and the  

levels are for Saaty’s scale only, the measure is 

mathematical and its applicability to stochastic 

methods such as judgment quantification in 

HDM is questionable.  Is this measure 

proportional to HDM’s inconsistency measure? 

Will it work in concert with HDM’s statistical 

prioritization procedure?  

15 Gass and 

Rapcsák [95] 

Provide consistency measure 

for Singular Value 

Decomposition (SVD) 

method 

The measure is applicable only to SVD. No 

thresholds for the measure are provided, and the 

measure is not linked to number of elements or 

 levels.   

16 Alonso and 

Lamata [9] 

Provide consistency measure 

for REV method 

The measure is a function of matrix size, has 

statistically based thresholds, and corresponding 

 levels.  However, it is applicable only to REV.  
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No Article Critical Issue Discussed Research Gaps 

17 Fedrizzi and 

Giove [96] 

Provide consistency measure 

for additive PCMs 

The measure is applicable only to additive PCMs. 

No thresholds for the measure are provided, and 

the measure is not linked to number of elements 

or  levels.   

18 Stein and 

Mizzi [97] 

Provide consistency measure 

for PCMs 

The measure is theoretically applicable to all 

PCMs. No thresholds for the measure are 

provided, and the measure is not linked to 

number of elements or  levels.   

19 Fedrizzi and 

Brunelli [98] 

Provide a consistency 

approach that takes into 

account “strength of 

preference effect” 

A consistency approach rather than a measure. 

20 Čaklović [99] Provide consistency measure 

for the Potential Method 

The measure is a function of matrix size, has 

statistically based thresholds, and corresponding 

 levels.  However, it is only applicable to the 

Potential Method.  

21 Siraj, et al. 

[101] 

Provide consistency measure 

for the method of 

Enumerating All Spanning 

Trees (EAST) 

The method is very similar to HDM’s: it is 

stochastic rather than deterministic, and the 

weight vector is the average of variable weights 

which are computed for many “orientations”.  

The consistency measure however is applicable 

only to “EAST”, is not linked to the matrix order 

and no statistically based thresholds or 

corresponding  levels are provided. 

 

There is consensus in the literature on the importance of defining, understanding, 

controlling, and improving consistency in AHP in order to build reliability, confidence 

and meaningfulness in the entire process of AHP decision making [3, 12, 71, 76, 82, 91, 

92, 94, 97].  Considerable research effort on achieving these goals for AHP consistency 

spans the 3 decades since the introduction of this decision-making tool. This proves the 

significance of this topic for both researchers and practitioners.   
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As a variant of AHP, HDM’s procedure for judgment quantification, which was 

developed by D.F. Kocaoglu, defines inconsistency as follows: 

 
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  

1

𝑛
 ∑𝜎𝑖

𝑛

𝑖=1

 (‎2.29) 

where 𝜎𝑖 is the standard deviation of the mean of n factorial normalized relative values 

for the ith decision element, and n is the number of decisison elements. 

The acceptable limit is 0.1.  It does not vary with number of elements, and is not linked 

to a  levels. 

 

In summary, many of the prioritization procedures lack an inconsistency measure, and 

many of the ones that do provide inconsistency measures have global limits defined 

without considering the number of elements involved or the  levels required [8, 9]. 

 

Clearly, this major research gap presents an opportunity to complete the development 

of this important metric. 

 

Wide-spread research [8, 9, 71, 86, 99, 102] indicate that a statistical approach built on 

the estimated probability distribution of the inconsistency parameter is the way to 

achieve the desirable inconsistency properties of  

a) Being a function of the number of elements 

b) Having limits linked to  levels 
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The research presented in this dissertation does this for the Hierarchical Decision Model 

(HDM) procedure. 
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 Statistical Approach to Establishing Consistency Thresholds 2.7

 

Evidence from current research shows there is consensus that a simulation-based 

statistical approach to establishing consistency thresholds is the best justified and most 

adopted by researchers in this field.  Following is a chronological review of research on 

this issue. 

 

Vargas [79] conducted the earliest research on the validity of thresholds related to REV’s 

consistency measure.  His study was based on a simulation that used 500 matrices each 

for 𝑛 = 3 − 9. The author listed the mean of the consistency measure for each matrix 

order, the consistency magnitude at  = 5%, and the corresponding 𝜆𝑚𝑎𝑥 at this 

confidence level.  The author also carried out curve-fitting analysis and concluded that 

REV’s consistency measure followed a Dirichlet distribution.  To measure the goodness 

of fit, the author used the Kolmogorov-Smirnov test (KS-test).  The matrices used in the 

simulation were randomly filled using discrete uniform distribution. 

 

Lane and Verdini [72] carried out a simulation study to establish the distribution of 

REV’s consistency measure and study its implications to the thresholds set by Saaty (the 

10% rule).  The study used the full enumeration of matrices for 𝑛 = 3 (4,913), and 2,500 

matrices for 𝑛 = 4 − 10, 12, 14, 16, 20, and 24.  The authors state that their statistical 

hypothesis-testing approach will enable simulation and measurement of DM’s  
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randomness.  In turn, through establishing the distribution of the consistency measure, 

users can choose a consistency limit which corresponds to an  level suitable for their 

needs.  The matrices used in the simulation were randomly filled. 

 

Golden and Wang [71] carried out a simulation study to investigate the validity of the 

recommended thresholds related to REV’s consistency measure.  The authors used 

samples of 1,000 matrices each for 𝑛 = 3 − 15.  Based on their statistical simulation 

they recommended a new consistency measure for which they also did statistical 

simulation to determine appropriate thresholds.  They recommended using a 

consistency threshold at  = 33%.  The authors also carried out curve-fitting analysis and 

concluded that their new consistency measure roughly followed a normal distribution.  

To measure the goodness of fit, they used the Kolmogorov-Smirnov test (KS-test).  The 

matrices used in the simulation were not randomly but according to an algorithm that 

assumes and simulates a reasonable level of consistency. 

 

Dodd, et al. [102] carried out a simulation study to investigate the validity of the 

recommended thresholds related to REV’s consistency measure.  The authors used 

samples of 1,000 matrices each for 𝑛 = 4 − 10.  Based on their statistical simulation 

they recommended the adoption of new consistency thresholds which are based on the 

probability distribution of the consistency measure and correspond to  levels.  The 
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permitted CI thresholds corresponding to  levels of 0.1%, 0.5%, and 1%-5% were 

reported.   The matrices used in the simulation were randomly filled. 

Noble and Sanchez [41]  carried out a simulation study to establish the distribution of 

entropy as a measure of inconsistency.  Samples of 1,000 matrices each for 𝑛 = 3 − 15  

were used.  The mean random entropy value for each order was reported.  The 

Kolmogorov-Smirnov Lilliefors test for normality was used to show that the entropy 

distribution was normal.  The authors started with randomly filling the first row of a 

matrix. “The rest of the entries 𝑋𝑖𝑗 of the matrix were obtained by direct computation, 

to force the matrix to be totally consistent” [41].  These randomly-initialized consistent 

matrices were then randomly perturbed. 

 

Kretchik and Ra [86] carried out a simulation study to determine appropriate thresholds 

for Ra’s [85] Sum of the Inverse Column Sums (SICS) proposed inconsistency measure.  

Many simulation runs were done with a maximum sample size of 60,000.   Curve-fitting 

analysis was conducted and the authors concluded that the new consistency measure 

followed a beta distribution. The matrices used in the simulation were randomly filled. 

 

Aguaron and Moreno-Jimenez [8]  carried out a simulation study to determine 

appropriate thresholds for the Geometric Consistency Index (GCI) used in conjunction 

with the Row Geometric Mean Method both of which were first proposed by  
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Crawford and Williams [78].  The authors used 100,000 matrices each for 𝑛 = 3 − 15.  

The permitted thresholds for to  levels of 1%, 5%, 10%, and 15% were reported.  The 

matrices used in the simulation were randomly filled. 

Peláez and Lamata [94] carried out a simulation study to determine appropriate 

thresholds for their new proposed consistency index CI*.  The authors used 100,000 

matrices each for 𝑛 = 3 − 9.  The permitted thresholds for CI* at  levels of 1% and 5% 

– 50% in increments of 5% were reported.  The matrices used in the simulation were 

randomly filled. 

 

Alonso and Lamata [9] aimed to develop a new consistency measure for REV that is a 

function of PCM order and is tied to an  level.  They carried out a simulation study to 

determine appropriate thresholds for the proposed measure.  Two sets of samples were 

used, the first was made up of 100,000 matrices and the second of 500,000 matrices 

each for 𝑛 = 3 − 15.  The authors reported they found no differences in results 

between the two sets.  Being a function of the PCM size and level of  was built into the 

formula the authors derived for the new consistency criterion:   

 𝜆𝑚𝑎𝑥 ≤ 𝑛 + 𝛼(1.7699𝑛 + 4.3513) (‎2.30) 
 

Therefore, there was no need to separately list thresholds.  The matrices used in the 

simulation were randomly filled. 
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Bozoki and Rapcsak [13] carried out a simulation study to compare Saaty’s CR to 

Koczkodaj’s Consistency Measure (CM).  Samples of 10,000,000 matrices each were 

used for 𝑛 = 3 − 10.  The results for CR were plotted and the  levels identified.   

For 𝑛 = 6 − 10, the curves show Saaty’s recommended 10% rule well outside to the left 

of the distributions.  The matrices used in the simulation were randomly filled. 

 

Čaklović [99] developed a consistency measure for the Potential Method and carried out 

a simulation study to determine its admissible thresholds.  Samples of 100,000 matrices 

each for 𝑛 = 3 − 9 were used.  The thresholds for the measure were listed at 5%  

level.  The author also carried out curve-fitting analysis and concluded that the 

consistency measure closely followed a Gumbel distribution.  The formula for Gumbel 

distribution was given along with its parameters for the consistency measure for 

𝑛 = 3 − 9.  The matrices used in the simulation were randomly filled. 
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 Summary of Literature Review  2.8

 

The credibility of an AHP/HDM model hinges on having sufficient compliance with 

consistency rules.  Nonetheless, bias in judgment, human error, inaccuracy, and 

inexperience can all contribute to the violation of consistency rules.  If all these factors 

cause gross inconsistency, the AHP/HDM model will be rendered useless.  Because of 

this reason,  a great deal of research effort has been devoted to studying the subject of 

consistency in pairwise comparison Kou, et al. [103]. 

 

It is important to define thresholds that are based on the size of the decision problem 

and are tied to statistical  levels.  To determine such thresholds, research in the field 

clearly shows that simulation of randomly generated input matrices to obtain the 

distribution of the consistency measure is a widely used method.  An added benefit to 

this approach is to perform curve-fitting analysis for identifying the known distribution 

that the inconsistency measure closely follows.  That way, users can directly use the 

distribution’s formula along with specific size parameters to determine the consistency 

threshold corresponding to their choice of  level. 
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3 RESEARCH  
 

 Research Approach 3.1

 

This PhD research has developed a method for analyzing decision inconsistencies using 

the HDM’s judgment quantification method in response to the key gap that has been 

identified in the literature. The research question is: How can HDM’s consistency 

thresholds be defined to comply with the requirements of: 

1. Being a function of the size of the decision problem. 

2. Being subjected to hypothesis testing.  

3. Being defined as a distribution.   

4. Being linked to  levels. 

 

The literature review shows that the method of choice among researchers for defining 

consistency thresholds with the above desired properties is through computer 

simulation of randomly generated inputs into the judgment quantification methods. 

 

HDM inconsistency is defined in this research as the square root of the sum of variances 

(RSV) of the means of n variables calculated in n factorial orientations: 

 

𝑅𝑆𝑉 = √∑𝜎𝑖
2

𝑛

𝑖=1

 (‎‎3.1)  
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It is a modified version of the current inconsistency measure used in HDM, which is  

 
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  

1

𝑛
 ∑𝜎𝑖

𝑛

𝑖=1

 (‎3.2) 

 

This modification was necessary because the numerical values for the current measure 

were very small and the precision was being lost when large numbers of randomly 

generated input matrices were analyzed. 

 

Below is the simulation procedure used for defining the consistency thresholds for 

HDM’s judgment quantification method: 

1. Setup input data structure: This involves building Matrix “A” which is an 

𝑛 × 𝑛 matrix. 

2. Fill in the data structure: This will be done by populating either side of the 

left diagonal of Matrix “A” with randomly generated numbers in the range of 

1 – 99.  The other half of the matrix will be filled with the 100-compliment of 

the mirror positions on the other diagonal side. 

3. Perform necessary calculations: This will involve building matrices “B” and 

“C”, defining the n factorial orientations for all the elements, computing 

elements values for all orientations using the direct and indirect ratios 

derived from Matrix “C”, calculating the standard deviation per element from 

all orientations, and finally computing the average standard deviation as the 

mean of inconsistency.  
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4. Store results:  Save the results from each run. 

5. Repeat the above steps: The above represents the computations for one set 

of simulated judgment inputs.  The process will be repeated for 100,000 sets 

of input data because initial testing shows that stability is reached well 

before that level.  Also, literature shows that there is no statistically 

significant difference in repeating the simulation beyond 100,000 cycles 

under any condition. 

6. Analyze the results: This involves plotting the sample’s histogram, 

determining the sample’s statistical parameters such as the minimum, 

maximum, mean, percentiles, cumulative distribution function (CDF), and 

Quantile function. 

7. Perform curve fitting and test goodness-of-fit (GOF) using the Kolmogorov–

Smirnov test (K–S test).  
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 Research Procedure 3.2

 

3.2.1 Sample Sizes 

 

Sample sizes as small as 500 and as large as 10,000,000 have been used in the 

simulation studies for inconsistencies in other judgment quantification methods.  Larger 

sample sizes do not necessarily mean better or more reliable simulation results.  For 

example, Aguaron and Moreno-Jimenez [8] and Alonso and Lamata [9] used 100,000 

while Bozoki and Rapcsak [13] used 10,000,000 but all have obtained almost identical 

results.  Golden and Wang [71] used a relatively small sample of 1,000, yet their results 

differ by an average of 0.38%, 0.43%, 0.57% from these studies respectively.  Finally, 

Alonso and Lamata [9] used two sets of sample sizes, one with 100,000 and the other 

with 500,000.  They found no difference between the results of the two sets. 

 

As indicated in the requirements of the solution, the results should be fitted to standard 

probability distributions. This is an important step towards making the results much 

more valuable in a practical sense.  Requiring users of HDM to maintain a multitude of 

detailed distribution is cumbersome and somewhat impractical.  Fitting the results to a 

known probability distribution would allow for a great deal of flexibility and portability.  

All the users have to know are merely the parameters for the fitted distribution related 

the number of elements they are using.  Using this information, the users can easily use 

either: 
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 The standard equation for the cumulative distribution function (CDF) to calculate 

the  level for a given magnitude of inconsistency, or   

 The standard equation for the Quantile function (inverse of the cumulative 

distribution function) to calculate the maximum allowed magnitude of 

inconsistency given a specific/desired  level.   

 

In statistical literature, the Kolmogorov-Smirnov test (K-S test) is a widely used for 

goodness of fit (GOF).  The K-S test is non-parametric in the sense that it compares the 

CDF of the empirical distribution obtained through simulation against the CDF of a 

hypothesized probability distribution without basing its results on the statistical 

parameters such as the means, maxima or the minima of the two distributions.  Alas, 

the advantage  of the K-S test can have unintended consequences.  The test is quite 

sensitive to small differences between the empirical and hypothesized probability 

distributions.  Large samples intensify this effect.  Gibbons [104] indicates that for large 

samples, the test will almost always reject the null hypothesis (reject the empirical 

distribution as a bad fit to the hypothesized probability distribution).  Law and Kelton 

[105]  state that such a behavior “is an unfortunate property of these tests since it is 

usually sufficient to have a distribution that is nearly correct”.  Therefore, care must be 

taken in order to strike a balance between the two competing priorities: a large enough 

sample to ensure accuracy and a small enough sample that will give satisfactory 

goodness of fit results. 
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According to Gibbons [104], the calculation of N, the minimum sample size required for 

the K-S test, must satisfy: 

 P(D < d) = 1−∝ (‎3.3) 

where D is the Kolmogorov-Smirnov test statistic, d is maximum allowed error, and 1−∝ 

is the selected probability.  For 99% precision and 95% confidence the minimum sample 

size is 1063 [104].  For 99% precision and 99% confidence the minimum sample size is 

6642. 

 

3.2.2 High Quality Random Number Generator 

 

The random number generator (RNG) provided with the C++ package is unfortunately 

a linear congruential generator (LCG).  Such generators should not be used particularly 

in simulation because they suffer, among other defects, from serial correlation between 

successively generated numbers as well as short periods which could cause 

unacceptable repetitions [106, 107].  

 

Instead of the built in RNG, the solution uses a C++ version of the Mersenne Twister 

which is a high quality RNG [108] with many desirable statistical properties [109] 

including a large period (219937 − 1) [110] and negligible correlation [111].  The 

Mersenne Twister is most suitable for our study because it was designed with statistical 

simulation in mind [112].  All these advatages made the Mersenne Twister the default 
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choice for widespread research software packages such as R, Matlab, and Swarm 

Simulation Systems [113]. 

 

3.2.3 Reducing Computational Intensity 

 

HDM’s judgment quantification method is a statistically-based prioritization procedure.  

The weight/ranking of various alternatives is calculated as the average of their individual 

values from their factorial permutations.  The HDM’s inconsistency measure is based on 

the standard deviation among the individual values.  The computational intensity of the 

calculations increases dramatically as the number of alternatives increases. For example 

if 10 elements are considered, then at least 36,288,000 calculations per data point  

would have to be performed.  This does not include the generation of random numbers 

or the complex matrix operations.  To illustrate this dilemma, a 15 hour experiment was 

conducted to help estimate the time required for 100,000 samples for 10 elements. The 

extrapolated estimate was an astounding 624 days.  The experiment was done on a fast  

Intel Core i7-4790K machine running at 4.0 GHz with 32 Gigabyte of memory. 

 

The first part of the solution was to use SIMD-oriented Fast Mersenne Twister (SFMT).  

This is a new variant of the original Mersenne Twister designed with recent parallelism 

of modern CPUs, such as multi-stage pipelining and SIMD (single instruction multiple 
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data allowing 128-bit integer generation).  This RNG is supposed to be twice faster than 

the original version. 

3.2.4 Programming Language and User Interface  

 

The implementation research of this dissertation was carried out in three phases.  The 

objective of the first one was to test the proposal’s theoretical assumptions and 

produce basic results upon which to design and build the next one.  The second one 

involved a great deal of research to modify and strengthen the implementation as 

suggested by the previous results.  The research of the third and final one provided the 

key solution to make the implementation reliable, robust, and practical. 

 

A significant conclusion of the first stage of development was the need for substantial 

improvement in computational efficiency.  The simulation code was taking too long to 

produce sufficiently large samples and this issue needed to be resolved.  The first step in 

this endeavor was to identify performance bottlenecks and other areas where 

improvements were needed.   

 

The language used in the first research stage was Visual Basic .NET (VB.NET).  This was 

not a good choice for efficiency.  In addition, despite the convenience provided by the 

user-friendly Windows interface, the overhead cost in terms of time associated with the 

interface turned it into a major obstacle. 
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There is almost consensus that for performance, efficiency and speed of execution, C++ 

is the language of choice. Compared to other .NET alternatives, C++ performs much 

better in [114]: 

 Numeric calculation even when compared to C# 

 Memory management 

 Operating system interface and access   

Other languages to consider such as Java offer considerably slower performance than 

C++ even when using appropriate optimizations and regardless of the operating system 

hosting the comparison tests [115]. 

 

Using Open Source languages such as R was not a viable option due to its extreme 

slowness: 243 – 282 times slower than C++ for compiled R code, and 475 – 491 times 

slower than C++ for interpreted R code [116].  

 

In conclusion, C++ is the confirmed choice for speed and efficiency over any other 

alternative [116]. 

 

The success of the simulation program depended on performance and speed of 

execution.  To achieve this end, the above clearly proved that C++ was the tool of 

choice.  Furthermore, using a console application that is driven by command line 

options in C++ seemed the appropriate choice under the circumstances. 
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3.2.5 Procedural Efficiencies in Judgment Quantification Method 

 

In order to evaluate each of the variables in an orientation, the current procedure for 

HDM judgment quantification method calls for the computation of a matrix (Matrix C) 

for every orientation.  To process the entire orientation table would require the 

construction of n factorial (n!) matrices each of which is n by n-1 in size. However, upon 

closer examination, it was observed that these matrices were not unique and that there 

was a great deal of computational redundancy.  In fact, the number of unique columns 

shared by all these matrices was n x (n-1).  The procedure was modified to build a single 

matrix that is n by (n x (n-1)) from which all the relevant ratios would be derived.  This 

modification made the procedure significantly more efficient. 

 

3.2.6 The Need for a Leap in Efficiency 

 

Despite the implementation of the above improvement measures, the gains in efficiency 

and speed of execution were still not enough to make the simulation program practical.  

This was true for large numbers of variables (n ≥ 8) and particularly so for n ≥ 10.  It was 

clear that the computations associated with an exhaustive solution using full 

enumeration of orientations, for large number of variables, were consuming too much 

time.   
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The issue of excessive computational burden due to exhaustive enumeration can often 

make solutions infeasible [117, 118].  This drawback of exhaustive enumeration limits its 

use to small problems [119].  Fortunately, such a disadvantage could be overcome 

through sampling, which usually produces results very close to those of exhaustive 

enumeration, a fact that has been simply verified through various empirical studies in a 

range of fields [120, 121].   

 

The first implementation of this approach was done through randomly sampling the full 

orientation table.  The preliminary results were quite encouraging.  Nonetheless, there 

were two problems with the solution which prevented its adoption: 

  

The minimum accuracy was unpredictable, and therefore could not be guaranteed.  

Increasing the sample size did not necessarily resolve the issue of minimum accuracy. 

 

Upon further research, it was observed that HDM’s lexicographically-ordered rows of 

the fully enumerated orientation table formed subgroups each starting with a different 

element.  The number of subgroups equals the number of elements being evaluated.  A 

more important observation was related to the values of elements within a subgroup 

versus those across subgroups.  The values of elements obtained within each subgroup 

were a lot closer in magnitude to each other in contrast to the values of the same 

elements obtained within other subgroups. 
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The organization of the lexicographically-ordered orientation table with its non-

overlapping subgroups seemed to fit the classic definition of homogenous subgroups 

and their analogous strata [122].  In this case, the stratifying variable was the first 

element in an orientation [123].  Most importantly, it seemed that the key to a stable 

and accurate solution was the implementation of stratified rather than random 

sampling.  This means the sampling strategy required the samples to be “stratified” or 

dispersed evenly among the homogenous subgroups which would address the problem 

of unbalanced representation from which the random sampling suffered. This is a 

sampling technique that is widely used and offers flexibility and power [124]. 

 

In random sampling, which was used first, the homogenous subgroups were not equally 

represented.  The random samples often overrepresented some subgroups while 

underrepresenting others.  This explains the problem of mixed accuracy in random 

sampling.   

 

3.2.7 Producing a Single Permutation Given its Index 

The implementation of stratified sampling required an efficient mapping function 

designed to generate only those specific orientations that were part of the sample.  

Producing all permutations iteratively to select a small subset seems 

counterproductive.  
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The Lehmer code [125] offers a systematic method to uniquely represent a 

permutation.  This is an example of an inversion vector [126], a unique sequence of 

numbers from which the unique corresponding permutation can be reconstructed 

[127]. According to Roberto and Fanja [128], Lehmer’s code-producing function 𝑙, which 

is bijective (gives unique one-to-one correspondence), acts upon a permutation π of 

length 𝑛 to produce the sequence: 

 𝑙(𝜋) = (𝑙1(𝜋)⋯ 𝑙𝑖(𝜋)⋯ 𝑙𝑛(𝜋)) 

where 𝑙𝑖(𝜋) is the number of elements in the set  {𝑗 > 𝑖 ∶  𝜋(𝑗) < 𝜋(𝑖)} [129] 

 

Pesko [130] listed the above and added the expression for the reconstruction of the 

permutation as follows: 

𝜋(𝑘) = 𝑁𝑘[𝑙𝑘(𝜋) + 1],     𝑤ℎ𝑒𝑟𝑒 𝑁𝑘 = {𝜋(1), 𝜋(2),⋯ , 𝜋(𝑘 − 1)} 

  



 

91 
 

The first half of table 3.1 below shows the construction of the Lehmer code of an           

8-element permutation.  The second half shows how the permutation can be recovered 

using its Lehmer code. 

Original Permutation Ordered Permutation Set Lehmer Code for Indicated 
Element 

{ 6 1 4 3 8 5 7 2 } { 1 2 3 4 5 6 7 8 } 5 

{ 1 4 3 8 5 7 2 } { 1 2 3 4 5 7 8 } 0 

{ 4 3 8 5 7 2 } { 2 3 4 5 7 8 } 2 

{ 3 8 5 7 2 } { 2 3 5 7 8 } 1 

{ 8 5 7 2 } { 2 5 7 8 } 3 

{ 5 7 2 } { 2 5 7 } 1 

{ 7 2 } { 2 7 } 1 

{ 2 } { 2 } 0 

Reconstructed 
Permutation 

Ordered Permutation Set Lehmer Code for Indicated 
Element 

 { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 4 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 4 3 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 4 3 8 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 4 3 8 5 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 4 3 8 5 7 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

{ 6 1 4 3 8 5 7 2 } { 1 2 3 4 5 6 7 8 } { 5 0 2 1 3 1 1 0 } 

Table ‎3.1: Construction of Lehmer Code of a Permutation and the Permutation’s 
Recovery from its Lehmer Code   



 

92 
 

As important as Lehmer’s discovery was, it left more to be desired.  Lehmer showed that 

given a permutation, his code could be used to uniquely represent it and then 

reconstruct it.  Nonetheless, the question became: what to do in the absence of the 

permutation itself?  How can the code be generated given the permutation’s 

lexicographic index? 

 

Knuth [131], who cited Hall [132] rather than Lehmer when discussing unique 

permutation codes, provided the crucial answer to the above question by which the 

circle could be completed.  Simply put, the factoradic representation of a permutation’s 

lexicographic index is the permutation’s Lehmer code.  This revelation is powerful 

indeed.   

 

The factoradic, or the factorial numbering system, uses  a varying base (mixed radix) 

which is comprised of the factorial values any number n ∈ (1, 2,⋯ , 𝑛).  For a dimension 

n, the factoradic can be used to uniquely represent each number in the range                 

(0 to n! – 1) [133]. Samarghandi, et al. [134] cite Knuth [131] attributing the uniqueness 

of representation of the factoradic to the identity which states “the sum of consecutive 

factorials multiplied by their index is always the next factorial minus one” [134] 

 
∑𝑖 × 𝑖! = (𝑛 + 1)! − 1

𝑛

𝑖=0

 (‎3.4) 
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Figure 3: Decimal vs. Factoradic Representation of Numbers 
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3.2.8 Implementing the Stratified Sampling 

 

The pair of these mathematical methods enabled the stratified sampling to be 

implemented with outstanding speed and efficiency.  The solution steps are: 

1. Determine an appropriate sample size 

2. Slightly adjust the sample size so it is evenly divisible by n which is the number of 

homogeneous subgroups (strata). 

3. The division of adjusted sample size by n yields the size of stratified sampling 

interval which should enable evenly dispersed sampling among the strata. 

4. The beginning address of each sampling interval is converted from its decimal 

form to its factoradic equivalent.  

5. The permutation is reconstructed from its Lehmer code (factoradic) and is used 

to fill the abridged orientation table. 

6. The reduced orientation table is used for calculations 

 

3.2.9 Testing Stratified Sampling 

 

In order to assess the effectiveness and accuracy of the stratified sampling solution, an 

experiment was conducted on 100 ten by ten input matrices.  The results of the full 

enumeration exhaustive method were compared to those of stratified sampling.  With a 

tiny sample of 10,000 which is merely 0.28% of the full sample space of 3,628,800, the 
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stratified sampling method produced results that matched those from the exhaustive 

method to at least the fourth decimal digit.  Repeated experiments confirmed the same 

minimum accuracy for the same stratified sample size.  This verification confirms that 

not only is the stratified sampling method accurate, fast, and efficient, but also very 

stable. 
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4 RESEARCH RESULTS 
 

 Design of Simulation Study 4.1

 

The original objective of the research included the determination of inconsistency 

thresholds for decision variables in the range of 𝑛 = 3 − 10.  This was expanded to 

cover the range of 𝑛 = 3 − 12.   

 

The simulation study carried out for this research was based on a set of three samples: 

10k, 100k, and 500k.  The sample size choices were made as follows: 

 10k sample: This is a size that well exceeds the minimum sample size of 6642 for 

99% precision and 99% confidence required for the K-S GOF test as indicated by 

Gibbons [104] which is discussed in section 3.2.1.  While meeting and exceeding 

this requirement, the 10k sample size is not too large as to cause the K-S GOF 

test to produce poor fit results as described by Law and Kelton [105].  After 

verification with the empirical data from the three sample sets, the distribution 

fit results and related CDF and Quantile functions from this sample will be used 

as the recommended tools for consistency threshold calculations for HDM.  

 100k sample: This is a large sample size as to allow for greater accuracy and good 

precision when comparing emperical and fit data.  The same sample size of 100k 

was used in many inconsistency simulation studies:  Aguaron and Moreno-

Jimenez [8], Peláez and Lamata [94], Alonso and Lamata [9], and Vargas [135]. 



 

97 
 

 500k sample: This is a very large sample the statistics of which will be used as 

final verification for both the 10k sample statistics and fit as well as the 100k 

sample statistics.  It is iteresting to note that in addition to the 100k sample,  

Alonso and Lamata [9] also generated a 500k sample and found no significant 

differences between the data from the tow sample sets. 

 

 Interpretation of the K-S and other GOF Tests 4.2

 

There are a few concepts to keep in mind while reviewing the distribution fit results.  

The K-S test measures the maximum absolute deviation between the empirical 

distribution (distribution of simulation results) and a “standard theoretical” distribution 

such as the normal, lognormal, beta, or gamma distributions.  Therefore, the larger the 

sample size, regardless of the GOF, the larger is the cumulative deviation and the worse 

is the K-S fit result.  Accordingly, the smaller the K-S statistic of a fit is, the better the fit 

results are and vice versa.  This phenomenon is highlighted by Law and Kelton [105] who 

say “This is an unfortunate property of these tests”.  

 

Distribution fitting is done through hypothesis testing where the null hypothesis 𝐻0 is 

tested against the alternative hypothesis 𝐻𝐴 as follows: 

 𝐻0: The empirical distribution and the “standard” distribution are the same.  

 𝐻𝐴: The empirical distribution and the “standard” distribution are different.  
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If the fit is good, the recommendation with regard to the null hypothesis is “Do Not 

Reject”.  If the fit is poor or not good enough at a particular significance level, the 

recommendation with regard to the null hypothesis is “Reject”.  Once the distribution 

fitting is performed, a GOF statistic is calculated.  Next, the hypothesis testing is done at 

a particular significance level alpha () and a corresponding critical value from the GOF 

statistic table is obtained.  If the GOF statistic is greater than the critical value, the 

recommendation would be to reject the null hypothesis.  If the GOF statistic is smaller 

than the critical value, the recommendation would be to not reject the null hypothesis.   

 

In the case of this research, the desired outcome with regard to distribution fitting, is 

the null hypothesis (a recommendation of “Do Not Reject”).  However, the significance 

level alpha () is the probability of rejecting the null hypothesis when it is true.  

Therefore, higher alpha levels correspond to more stringent requirements of not 

rejecting the null hypothesis and accordingly higher significance in the GOF.  This is the 

reverse of a situation when the alternative hypothesis (not the null) is the research 

hypothesis and the desired outcome.  In that case lower alpha levels would imply higher 

significance.  
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In summary, the facts to keep in mind while reviewing the distribution fit results are: 

 The smaller the K-S statistic, the higher is the GOF 

 The larger the sample, the more difficult it is to obtain a reasonable GOF statistic 

 The minimum sample corresponding to 99% precision and 99% confidence 

required for the K-S GOF test as indicated by Gibbons [104] is 6642 

 A recommendation of “Do Not Reject” with regard to the null hypothesis is the 

desired outcome for distribution fitting 

 The higher the alpha level for the “Do Not Reject” recommendation, the better 

the fit is which corresponds to higher confidence in the GOF 

 

All of the distribution fitting, the fit results including fit parameters, CDF and quantile 

functions as well as goodness of fit test statistics were obtained using the distribution 

fitting software package EasyFit Professional Version 5.5. 
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 Summary of Results 4.3

 

Following is a summary of the highlights of the research results. 

 The inconsistency thresholds were defined for 𝑛 = 3 − 12 and corresponding 

fitted distributions were obtained. 

 For each of the fitted distributions, the equations for the cumulative distribution 

and the quantile functions along with their specific set of parameters were 

identified.  

 For 𝑛 = 3, the fitted distribution is 3-parameter generalized gamma. 

 For 𝑛 = 4 − 12, the fitted distribution is Johnson SB. 

 The GOF results are superb:  

o For 𝑛 = 3, the GOF is “Do Not Reject” at all significance () levels (0.01, 

0.02, .05, 0.1, and 0.2) for the K-S GOF test. 

o For 𝑛 = 4 − 12, the GOF is “Do Not Reject” at all significance () levels 

(0.01, 0.02, .05, 0.1, and 0.2) for all GOF tests (K-S, Anderson-Darling, and 

Chi-Squared) 

 All data verifications were performed with satisfactory outcome:  

o No significant difference was found between the 10k and 100k simulation 

data. 

o No significant difference was found between the 100k and 500k 

simulation data. 
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o No significant difference was found between the results from the fit

equations and 500k simulation data.

RSV is based on the sum of the variances of the decision variable.  The correlation 

among the pairwise comparisons variables decreases as the number of variables 

increases.  This is accompanied by a decrease in variance as well.  Consequently, when 

the number of variables reaches 13, the required growth in variance is no longer 

sufficient to provide the necessary increase for a new set of RSV values suitable for the 

new level (13).  Therefore, the RSV measure cannot be used for calculations involving 

variables higher than 12.   For detailed explanation of this phenomenon, refer to section 

4.5.2. 
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Figure 4 below shows the inconsistency threshold limits for 𝑛 = 3 − 12 variables at  from 0.01 to 0.5. 

Figure 4: Inconsistency Threshold Limits for 3 – 12 Decision Variables 
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Table 4.1 below gives the inconsistency threshold limits for 3 – 12 variables at  from 0.01 to 0.25 in 0.01 intervals. 

Number of variables 

Percentile () 3 4 5 6 7 8 9 10 11 12 

0.01 0.0001 0.0188 0.1495 0.3012 0.4249 0.5100 0.5723 0.6170 0.6521 0.6800 

0.02 0.0002 0.0418 0.1934 0.3462 0.4620 0.5400 0.5961 0.6371 0.6690 0.6945 

0.03 0.0005 0.0596 0.2230 0.3745 0.4847 0.5581 0.6105 0.6493 0.6793 0.7034 

0.04 0.0009 0.0748 0.2460 0.3955 0.5012 0.5713 0.6211 0.6582 0.6868 0.7100 

0.05 0.0014 0.0884 0.2651 0.4124 0.5143 0.5818 0.6295 0.6653 0.6928 0.7152 

0.06 0.0021 0.1008 0.2816 0.4266 0.5253 0.5904 0.6365 0.6712 0.6978 0.7196 

0.07 0.0028 0.1124 0.2963 0.4390 0.5347 0.5979 0.6425 0.6763 0.7022 0.7234 

0.08 0.0037 0.1233 0.3095 0.4499 0.5430 0.6045 0.6478 0.6807 0.7060 0.7267 

0.09 0.0046 0.1337 0.3215 0.4597 0.5505 0.6104 0.6526 0.6848 0.7095 0.7298 

0.10 0.0057 0.1437 0.3327 0.4686 0.5572 0.6157 0.6569 0.6884 0.7126 0.7325 

0.11 0.0069 0.1532 0.3430 0.4769 0.5634 0.6206 0.6609 0.6918 0.7155 0.7350 

0.12 0.0083 0.1625 0.3528 0.4845 0.5691 0.6252 0.6646 0.6949 0.7182 0.7374 

0.13 0.0097 0.1714 0.3620 0.4916 0.5745 0.6294 0.6681 0.6978 0.7207 0.7396 

0.14 0.0113 0.1801 0.3706 0.4983 0.5795 0.6334 0.6713 0.7005 0.7231 0.7417 

0.15 0.0129 0.1886 0.3789 0.5047 0.5842 0.6371 0.6743 0.7031 0.7253 0.7436 

0.16 0.0147 0.1969 0.3868 0.5106 0.5887 0.6406 0.6772 0.7056 0.7274 0.7455 

0.17 0.0166 0.2050 0.3944 0.5163 0.5929 0.6440 0.6800 0.7079 0.7294 0.7473 

0.18 0.0187 0.2129 0.4016 0.5218 0.5970 0.6472 0.6826 0.7101 0.7313 0.7490 

0.19 0.0207 0.2207 0.4086 0.5270 0.6009 0.6502 0.6851 0.7122 0.7332 0.7506 

0.20 0.0230 0.2283 0.4154 0.5320 0.6046 0.6532 0.6875 0.7143 0.7350 0.7521 

0.21 0.0254 0.2359 0.4219 0.5368 0.6081 0.6560 0.6899 0.7163 0.7367 0.7537 

0.22 0.0281 0.2433 0.4282 0.5414 0.6116 0.6587 0.6921 0.7182 0.7383 0.7551 

0.23 0.0306 0.2506 0.4343 0.5459 0.6149 0.6614 0.6943 0.7200 0.7399 0.7565 

0.24 0.0334 0.2578 0.4403 0.5502 0.6181 0.6639 0.6964 0.7218 0.7415 0.7579 

0.25 0.0363 0.2648 0.4461 0.5544 0.6212 0.6664 0.6984 0.7235 0.7430 0.7592 

Table ‎4.1: Inconsistency Threshold Limits for 3 – 12 Decision Variables at  = 0.01 to  = 0.25 
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Table 4.2 below gives the inconsistency threshold limits for 3 – 12 variables at  from 0.26 to 0.50 in 0.01 intervals. 

Number of variables 

Percentile () 3 4 5 6 7 8 9 10 11 12 

0.26 0.0393 0.2719 0.4517 0.5585 0.6243 0.6688 0.7004 0.7252 0.7445 0.7605 

0.27 0.0425 0.2788 0.4572 0.5625 0.6272 0.6711 0.7023 0.7268 0.7459 0.7618 

0.28 0.0457 0.2856 0.4626 0.5664 0.6301 0.6734 0.7042 0.7284 0.7473 0.7630 

0.29 0.0491 0.2924 0.4679 0.5701 0.6329 0.6756 0.7061 0.7300 0.7487 0.7643 

0.30 0.0526 0.2991 0.4730 0.5738 0.6356 0.6778 0.7079 0.7315 0.7500 0.7654 

0.31 0.0564 0.3057 0.4780 0.5774 0.6383 0.6799 0.7096 0.7330 0.7513 0.7666 

0.32 0.0602 0.3123 0.4830 0.5809 0.6409 0.6820 0.7113 0.7345 0.7526 0.7677 

0.33 0.0641 0.3188 0.4878 0.5843 0.6434 0.6840 0.7130 0.7359 0.7538 0.7689 

0.34 0.0682 0.3253 0.4926 0.5877 0.6460 0.6860 0.7147 0.7374 0.7551 0.7700 

0.35 0.0725 0.3317 0.4972 0.5910 0.6484 0.6880 0.7163 0.7388 0.7563 0.7710 

0.36 0.0769 0.3380 0.5018 0.5942 0.6508 0.6899 0.7179 0.7401 0.7575 0.7721 

0.37 0.0815 0.3443 0.5063 0.5974 0.6532 0.6918 0.7195 0.7415 0.7587 0.7732 

0.38 0.0862 0.3506 0.5108 0.6006 0.6555 0.6937 0.7211 0.7428 0.7599 0.7742 

0.39 0.0911 0.3568 0.5152 0.6037 0.6579 0.6955 0.7226 0.7441 0.7610 0.7752 

0.40 0.0960 0.3630 0.5195 0.6067 0.6601 0.6973 0.7241 0.7454 0.7621 0.7762 

0.41 0.1012 0.3691 0.5237 0.6097 0.6624 0.6991 0.7256 0.7467 0.7633 0.7772 

0.42 0.1065 0.3752 0.5279 0.6126 0.6646 0.7009 0.7271 0.7480 0.7644 0.7782 

0.43 0.1119 0.3813 0.5321 0.6155 0.6668 0.7026 0.7286 0.7492 0.7655 0.7792 

0.44 0.1174 0.3873 0.5362 0.6184 0.6689 0.7044 0.7300 0.7505 0.7666 0.7802 

0.45 0.1233 0.3933 0.5402 0.6213 0.6710 0.7061 0.7314 0.7517 0.7677 0.7812 

0.46 0.1292 0.3993 0.5443 0.6241 0.6732 0.7078 0.7329 0.7529 0.7687 0.7821 

0.47 0.1351 0.4052 0.5482 0.6268 0.6752 0.7094 0.7343 0.7541 0.7698 0.7831 

0.48 0.1411 0.4112 0.5521 0.6296 0.6773 0.7111 0.7357 0.7553 0.7709 0.7840 

0.49 0.1473 0.4170 0.5560 0.6323 0.6794 0.7128 0.7371 0.7565 0.7719 0.7849 

0.50 0.1539 0.4229 0.5599 0.6350 0.6814 0.7144 0.7384 0.7577 0.7729 0.7859 

Table ‎4.2: Inconsistency Threshold Limits for 3 – 12 Decision Variables at  = 0.26 to  = 0.50
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The goodness of fit test results for the RSV measure for inconsistency using the 

Generalized Gamma distribution at 𝑛 = 3, and Johnson SB distribution at 

𝑛 = 4 − 12 are summarized in table 4.3 below. 

n 
Sampl
e Size Distribution 

KS 
statistic Level of Confidence for GOF Test 

3 10k 
Gen. Gamma 0.0054

0 
Do not reject at all significance levels - KS GOF 
test 

4 10k Johnson SB 
0.0075

2 
Do not reject at all significance levels - KS GOF 
test 

5 10k Johnson SB 
0.0088

4 
Do not reject at all significance levels - All GOF 
tests 

6 10k Johnson SB 
0.0057

7 
Do not reject at all significance levels - All GOF 
tests 

7 10k Johnson SB 
0.0044

6 
Do not reject at all significance levels - All GOF 
tests 

8 10k Johnson SB 
0.0044

8 
Do not reject at all significance levels - All GOF 
tests 

9 10k Johnson SB 
0.0051

9 
Do not reject at all significance levels - All GOF 
tests 

10 10k Johnson SB 
0.0054

1 
Do not reject at all significance levels - All GOF 
tests 

11 10k Johnson SB 
0.0058

6 
Do not reject at all significance levels - All GOF 
tests 

12 10k Johnson SB 
0.0049

0 
Do not reject at all significance levels - All GOF 
tests 

Table ‎4.3: Goodness of Fit for Variables 3-12 
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The threshold limits shown in figure 4 and tables 4.1 and 4.2 as well as the goodness of 

fit results summarized in table 4.3 are based on 10,000 simulation runs of randomly 

generated pairwise comparison matrices.  However, tests were conducted for 100,000 

and 500,000 simulation runs and no significant deviations were observed in the results.  

Table 4.4 below summarizes the results of those data verification runs.  

n 
10k & 
500k 

100k & 
500k 

100k & 
Fit 500k & Fit 

3 0.0009 0.0002 0.0009 0.0005 

4 0.0012 0.0007 0.0007 0.0032 

5 0.0015 0.0005 0.0005 0.0018 

6 0.0011 0.0011 0.0011 0.0010 

7 0.0007 0.0004 0.0004 0.0006 

8 0.0010 0.0004 0.0004 0.0002 

9 0.0009 0.0002 0.0002 0.0002 

10 0.0007 0.0003 0.0003 0.0001 

11 0.0005 0.0003 0.0003 0.0002 

12 0.0003 0.0003 0.0003 0.0001 

Table ‎4.4: Data Verification – Average Absolute Deviation in First 50 Percentiles 

 

The purpose of data verification is twofold: 

1. Build confidence in data precision, and  

2. Check the validity of the CDF and its inverse derived from the distribution fitting 

 

Data Precision:  Statistical rules generally indicate that the precision of a variable’s 

estimation proportionally increases with sample size [136].  Assuming the 500k 

sample to be the most precise, results of the other sample sizes (10k and 100k) were 
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compared to it.  As shown in the first two columns of table 4.4, no significant 

differences were found. 

 

Validity of Fit Equations:  Data generated from the CDF and its inverse, which were 

both derived from the fitted distributions, were compared to both the 100k and 

500k sample data.  As shown in the last two columns of table 4.4, no significant 

differences were found. 
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 Fitted Distributions 4.4

 

Generalized Gamma  

Generalized gamma is the fitted distribution for 𝑛 = 3.  The distribution has three 

parameters; k, , and .  Those values for the best fit for 𝑛 = 3 are given in table 4.5.  

Generalized Gamma does not have a closed form for the Cumulative Distribution 

Function (CDF).  Therefore, the percentile of the inconsistency in quantified judgments 

for 𝑛 = 3 or the threshold limits for a given percentile cannot be obtained analytically.  

Table 4.1 and 4.2 can be used for that purpose. 

 

Johnson SB 

 The fitted distribution for 𝑛 = 4 − 12 is Johnson SB.  It has four parameters; , , , and 

.  The parameter values for the best fit for 𝑛 = 4 − 12 are given in table 4.5.  Those 

values can be used for calculation of the percentile of the inconsistency (the  level) in 

quantified judgments by using the Johnson SB Cumulative Distribution Function (CDF).  

The values can also be used for calculation of the inconsistency threshold at the desired 

 level by using the Johnson SB Quantile (inverse CDF) function.  The calculated 

threshold levels are also listed for  = 0.01 to 0.5 in tables 4.1 and 4.2. 
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Cumulative distribution function for Johnson SB  

 𝐹(𝑥) = Φ(𝛾 + 𝛿 ln
𝑧

1 − 𝑧
) (‎4.1) 

where: 

 
𝑧 =

𝑥 − 𝜉

𝜆
  (‎4.2) 

Φ(∙) is the cumulative distribution function for standard normal distribution 

x is inconsistency calculated as RSV in the actual data obtained from quantified 

judgments  

 

𝑅𝑆𝑉 = √∑𝜎𝑖
2

𝑛

𝑖=1

 (‎4.3) 

 

 

Quantile (Inverse cumulative distribution) function for Johnson SB  

 
 
 

𝐹−1(𝑃) =
𝜆 exp (

Φ−1(𝑃) − 𝛾
𝛿

)

1 + exp (
Φ−1(𝑃) − 𝛾

𝛿
)

+ 𝜉 (‎4.4) 

where Φ−1(∙)is the inverse cumulative distribution function for standard normal 

distribution. 
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Generalized gamma is the fitted distribution for 𝑛 = 3.  The distribution has three 

parameters; k. , and .  Those values for the best fit for 𝑛 = 3 are given in table 4.5 

below.   The fitted distribution for 𝑛 = 4 − 12 is Johnson SB.  It has four parameters; , 

, , and .  The parameter values for the best fit for 𝑛 = 4 − 12 are given in table 4.5 

below. 

  
Distribution Parameters 

n Fitted Distribution  𝒌 𝜶 𝜷  

3 Generalized 
Gamma 10.691 0.04501 0.70493 

  𝜸 𝜹 𝝀 𝝃 
4 

Johnson SB 
-

0.24235 0.87961 0.83692 
-

0.05284 

5 
Johnson SB -1.1717 1.2564 0.94894 

-
0.12107 

6 
Johnson SB -2.3764 1.7333 1.1499 

-
0.28209 

7 
Johnson SB -4.3678 2.4409 1.6113 

-
0.69925 

8 Johnson SB -7.2967 3.1490 2.5136 -1.5737 

9 Johnson SB -7.5056 3.4448 2.0710 -1.1220 

10 Johnson SB -13.443 4.3652 4.9027 -3.9295 

11 
Johnson SB -9.1512 4.1515 1.9309 

-
0.96609 

12 
Johnson SB -8.6057 4.2984 1.5263 

-
0.55881 

Table ‎4.5: Fitted Distribution Parameters   
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4.4.1 Using the Johnson SB CDF and Quantile Functions 

 

The  level is determined for a calculated inconsistency by using the Johnson SB CDF as 

follows: 

Input for CDF:  

 The inconsistency value (x) 

 The Johnson SB parameters corresponding to the number of variables (, , , ) 

Output of CDF: 

 The  level corresponding to a given inconsistency 

Calculations can be performed in Excel as follows: 

  = NORMSDIST( + *LN(Z/(1-Z))) (‎4.5) 

where: 

NORMSDIST is an Excel function that returns the standard normal cumulative 

distribution function 

 is the gamma parameter for Johnson SB distribution 

 is the delta parameter for Johnson SB distribution 

 
z =

χ − ξ

λ
 (‎4.6) 

where x is the inconsistency value for which  is to be calculated  
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𝑥 = √∑𝜎𝑖
2

𝑛

𝑖=1

 (‎4.7) 

 is the lambda parameter for Johnson SB distribution  

 is the xi parameter for Johnson SB distribution  

Using table 4.5, for 𝑛 = 5:  = -1.1717,  = 1.2564,  = 0.94894,  = -0.121407, and 

choose x = 0.32 

Substituting in 4.6 above:      

 
𝑧 =

𝑥 − 𝜉

𝜆
=

0.32 − (−0.121407)

0.94894
= 0.465158 (‎4.8) 

 

Substituting in 4.5 above:   

 = NORMSDIST(-1.1717 + 1.12564*LN(0.465158/(1-0.465158))) = 0.092  

This is a reasonable  value for 𝑛 = 5, and therefore this level of inconsistency (x = 0.32) 

could be accepted. 
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The inconsistency threshold is determined for a given  level by using the Johnson SB 

Quantile (Inverse CDF) function as follows: 

Input for Quantile (Inverse CDF) function:  

  level  

 The Johnson SB parameters corresponding to the number of variables 

Output of Quantile function:  

  Inconsistency threshold corresponding to the  level  

Calculations can be performed in Excel as follows: 

 Inconsistency = *EXP((NORMSINV()-)/)/(1+EXP((NORMSINV()-)/))+ (‎4.9) 

where: 

NORMSDIST is an Excel function that returns the inverse of the standard normal 

cumulative distribution. 

 is the gamma parameter for Johnson SB distribution 

 is the delta parameter for Johnson SB distribution 

 is the lambda parameter for Johnson SB distribution  

 is the xi parameter for Johnson SB distribution  

 is the  level for which the inconsistency threshold is to be calculated  

Using table 4.5, for 𝑛 = 7:  = -4.3678,  = 2.4409,  = 1.6113,  = -0.69925, and choose 

 = 0.15 
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Inconsistency = *EXP((NORMSINV()-)/)/(1+EXP((NORMSINV()-)/))+ 

Inconsistency = 1.6113*EXP((NORMSINV(0.15)-( -4.3678))/ 

2.4409)/(1+EXP((NORMSINV(0.15)-( -4.3678))/ 2.4409))+( -0.69925) = 0.587 which is 

maximum inconsistency to achieve  = 0.15 for 𝑛 = 7. 
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 Discussion of Results 4.5

 

4.5.1 Note on the Distribution for n = 3 

 

For 𝑛 = 3, the fitted distribution is Generalized Gamma.  This is an exception since for 

the entire range beyond 𝑛 = 3 (𝑛 = 4 − 12), a single distribution (Johnson SB) was 

found to have the best fit.  The 𝑛 = 3 exception is not surprising.  This phenomenon 

(and same curve shape) was reported by previous simulation studies related to 

inconsistency measures.  Relevant examples include Lane and Verdini [72] who 

generated the entire null distribution for 𝑛 = 3 for Saaty’s inconsistency measure.     

Almost identical results were obtained by Bozoki and Rapcsak [13] who also generated a 

huge sample for 𝑛 = 3.  Kretchik and Ra [86] obtained similar results for their sum of 

the inverse column sums consistency measure. Even though those tests were conducted 

on a different inconsistency measure, it is reassuring that the distribution of 

inconsistencies in human judgments was found to have the same shape as the 

distributions we identified in this research.   
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4.5.2 Change of RSV’s Behavior at n = 13 

 

By design (see section 3.1), the RSV parameter was developed to be a function of the 

number of decision variables.  This implies that RSV should comply with the following 

condition: 

 𝑅𝑆𝑉𝛼(𝑛 + 1) > 𝑅𝑆𝑉𝛼(𝑛)   ∀ 𝛼 =  0.01 − 1 (‎4.10) 
 

This means that RSV magnitudes corresponding to a number of decision variables 

should be higher in value than those corresponding to the next lower number of 

decision variables at any given .   RSV complies with the above condition for the range 

𝑛 = 3 − 12.  However, at 𝑛 = 13, RSV values become smaller than those for 𝑛 = 12.  

This change in expected behavior is explained below. 

 

Pairwise comparison decision variables such as those used in AHP/HDM have the 

following mathematical/statistical properties:  

1. They are correlated to each other, directly and indirectly, through pairwise 

comparisons, the values of which are used to calculate the variables’ relative 

weights 

2. Each value of each variable is given only relative to those of others and not as an 

absolute value.   

3. The variables’ values are usually represented as parts of one or percentages of a 

whole.   
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The RSV consistency measure is based on the sum of the variances of the decision 

variables represented by the columns of the orientation table.  Because the variables 

are correlated, the variance of their sum is the sum of their covariances: 

 
𝑉𝑎𝑟 (∑𝑋𝑖

𝑛

𝑖=1

) = ∑𝑉𝑎𝑟 (𝑋𝑖)

𝑛

𝑖=1

+ 2 ∑ ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (‎4.11)  

 

Because of the pairwise data representation form and the properties mentioned above, 

equation (4.11) always yields zero.  The two terms of the equation are directly 

proportional to each other: equal in magnitude and opposite in sign with the first term 

always being positive.  The columns of the orientation table produce the first (positive 

term) and the rows produce the covariance term.  Therefore, if the above equation is 

applied to both the columns and rows of the orientation table, the total will add to zero. 

 

It is important to note that the covariance (2nd term) reflects the correlations among 

the variables, and therefore is directly affected by the strength of such correlations.  In 

the case of two pairwise comparison variables, the relationship is deterministic since 

knowing the value of one enables the determination of the second.  Not only is the 

correlation in this case definitive but is also negative, reaching the maximum correlation 

coefficient of -1, since an increase in either would necessitate a decrease in the other.  

The relationship among three variables may not be as direct as in the case of two, but at 

least two of the three variables would be strongly correlated.  By extending this 
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argument, the conclusion becomes that correlation increases with fewer variables and 

decreases with larger number of variables.  

 

RSV is computed using the first (variance) term of the equation only, but is heavily 

affected by the second (covariance) term due to the fixed sum (zero) nature of the 

equation.  The required proportional growth in RSV as the number of variables increases 

comes from the increase in the variance term brought about by the contribution of an 

additional variable  (additional column in the orientation table).  Nonetheless, as the 

number of variables increases, the correlation among them decreases which contributes 

to the decrease of the covariance term, bringing about a proportional decrease in the 

variance term as well.  This continues to happen until the growth in RSV brought about 

by the contribution of an additional variable is no longer sufficient to compensate for 

the decrease brought about the shrinking covariance.  At that point, which occurs at 13 

variables, it becomes infeasible to use RSV as a consistency measure. 

 

To validate the above explanation of RSV’s change in behavior, a simulation study was 

carried out to characterize the variance.  For 𝑛 = 3 − 13, 100,000 each randomly filled 

matrices were used to calculate the average variance.    

 

The results show that for 𝑛 = 3 − 6, the average variance increases at a diminishing 

rate and reaches its maximum at 𝑛 = 6.  The increase which is augmented by the 
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additional contribution of the variance of an extra element account for the decreasing 

but substantial delta-y between the successive curves of 𝑛 = 3, 4, 5, 𝑎𝑛𝑑 6 as Figure 4 

shows. 

 

For 𝑛 = 7 − 13, the average variance steadily decreases by about 5%.  At 𝑛 = 13, the 

decrease is 21%.  The steady decrease in this range is offset by the additional 

contribution of the variance of an extra element.  However, delta-y between successive 

curves of elements in this range continues to decrease as Figure 4 shows. 

 

At 𝑛 = 13, the 21% drop in average variance causes the sum of the variances to become 

85% of that at 𝑛 = 12 and the necessary increase in the parameter for the new level is 

lost. 

 

The results of the simulation study, shown on the next two pages, validate the 

assumptions and confirm the explanation given in this section. 
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n Average variance % of previous rank Total variance % of previous rank 

3 0.0296  0.0887  

4 0.0513 173% 0.2052 231% 

5 0.0621 121% 0.3104 151% 

6 0.0655 105% 0.3930 127% 

7 0.0651 99% 0.4560 116% 

8 0.0628 96% 0.5027 110% 

9 0.0600 95% 0.5396 107% 

10 0.0569 95% 0.5690 105% 

11 0.0540 95% 0.5937 104% 

12 0.0511 95% 0.6134 103% 

13 0.0403 79% 0.5241 85% 

Table ‎4.6: Average Variance and Related Calculations for n = 3 – 13 

 

 

Figure 5: Average Variance for n = 3 – 13 
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Figure 6: RSV Behavior for n = 3 – 13  
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 Assessment of Current Consistency Measure 4.6
 

The current consistency measure in HDM is based on the arithmetic mean of the 

standard deviation of the decision variables: 

 
𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  

1

𝑛
∑𝜎𝑖

𝑛

𝑖=1

  )‎4.12‎) 

 

A comparative study was carried out to assess the current consistency measure in light 

of the proposed measure.  Data sets of typical values were used to produce 

inconsistency equal to the 10% limit of the current measure.  RSV, the proposed 

measure, was then used to calculate the inconsistency for the same data sets. This was 

done for the range of decision elements 3—12.  The results are as follows: 

 For 𝑛 = 3, the 10% fixed limit corresponds to  = 0.24  

 For 𝑛 = 4, the 10% fixed limit corresponds to  = 0.03  

 For 𝑛 ≥ 5, the 10% fixed limit corresponds to  < 0.01 

 

Based on the above, it is concluded that the recommended fixed limit of 10% for the 

current inconsistency measure is very conservative for 𝑛 > 3, and it becomes 

increasingly so as n becomes larger. 
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The orientation table of the HDM numerical example given in section 1.4.3 is 

reintroduced here to allow for comparison of the values of the proposed RSV and those 

of the current measure (4.12) above. 

 

Recall, RSV is the square root of the sum of variances while the current measure is the 

average standard deviation. 

  Before normalization  Normalized 
# Orientation A B C D Sum A B C D 

1 ABCD 1.81 3.31 0.74 1.00 6.85 0.26 0.48 0.11 0.15 

2 ABDC 3.61 6.62 1.00 3.11 14.35 0.25 0.46 0.07 0.22 

3 ACBD 1.88 2.13 0.60 1.00 5.61 0.34 0.38 0.11 0.18 

4 ACDB 1.56 1.00 0.50 0.68 3.73 0.42 0.27 0.13 0.18 

5 ADBC 3.50 4.48 1.00 3.03 12.00 0.29 0.37 0.08 0.25 

6 ADCB 1.02 1.00 0.28 0.88 3.19 0.32 0.31 0.09 0.28 

7 BACD 2.30 5.65 0.74 1.00 9.69 0.24 0.58 0.08 0.10 

8 BADC 3.60 8.84 1.00 3.11 16.56 0.22 0.53 0.06 0.19 

9 BCAD 1.16 3.86 0.86 1.00 6.88 0.17 0.56 0.13 0.15 

10 BCDA 1.00 6.58 1.47 1.99 11.04 0.09 0.60 0.13 0.18 

11 BDCA 1.00 4.94 0.75 2.32 9.01 0.11 0.55 0.08 0.26 

12 BDAC 3.11 13.17 1.00 6.19 23.47 0.13 0.56 0.04 0.26 

13 CABD 1.16 2.13 0.87 1.00 5.16 0.23 0.41 0.17 0.19 

14 CADB 0.78 1.00 0.58 0.68 3.04 0.26 0.33 0.19 0.22 

15 CBAD 1.16 2.84 0.81 1.00 5.80 0.20 0.49 0.14 0.17 

16 CBDA 1.00 4.23 1.20 1.99 8.42 0.12 0.50 0.14 0.24 

17 CDAB 0.55 1.00 0.80 1.09 3.43 0.16 0.29 0.23 0.32 

18 CDBA 1.00 2.46 1.23 1.66 6.34 0.16 0.39 0.19 0.26 

19 DACB 0.88 1.00 0.28 1.76 3.92 0.23 0.25 0.07 0.45 

20 DABC 2.44 4.48 1.00 4.86 12.78 0.19 0.35 0.08 0.38 

21 DBAC 3.11 7.65 1.00 5.17 16.93 0.18 0.45 0.06 0.31 

22 DBCA 1.00 3.34 0.75 2.26 7.35 0.14 0.45 0.10 0.31 

23 DCAB 0.55 1.00 0.41 1.27 3.22 0.17 0.31 0.13 0.39 

24 DCBA 1.00 2.46 0.70 2.17 6.32 0.16 0.39 0.11 0.34 

      Mean 0.21 0.43 0.11 0.25 

      𝝈𝟐 0.00591 0.0106 0.00218 0.00710 

Table ‎4.7: Orientation Table from HDM Numerical Example in Section 1.4.3  
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Inconsistency Calculations 

 

Proposed Measure: 

  𝑅𝑆𝑉 =  √∑ 𝜎𝑛
2𝑛

1     (‎4.13)  

𝑅𝑆𝑉 =  √0.00591 + 0.0106 + 0.00218 + 0.00710 

𝑅𝑆𝑉 = 0.161 

Using table 4.1 for 𝑛 = 4, this RSV value corresponds to  = 0.12.  This value is 

somewhat high considering 𝑛 = 4.  Therefore, it is recommended for the DM to revise 

the pairwise comparison assignments. 

 

Current Measure: 

𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  
1

𝑛
∑ 𝜎𝑖

𝑛
𝑖=1    (‎4.14) 

𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  
1

4
(√0.00591 + √0.0106 + √0.00218 + √0.00710) 

𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  
1

4
(0.0769 + 0.1029 + 0.0467 + 0.0843) 

𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  7.77% 

The calculated inconsistency is below the maximum fixed 10% threshold, and therefore 

pairwise comparison assignments should be accepted. 

  



 

125 
 

5 CONCLUSION 
 

The importance of measuring and controlling consistency in any AHP/HDM application 

cannot be overemphasized.  Nonetheless, any consistency measure without meaningful 

thresholds remains mainly abstract and offers limited practical benefit.  HDM’s 

proposed new inconsistency measure, RSV, along with the thresholds established as a 

result of this research fulfill all the requirements previously established for a robust, 

useful, and practical consistency measure.  RSV and its thresholds are:  

 A function of the number of decision variables 

 Derived using statistical hypothesis testing 

 Linked to any desired  levels 

The thresholds allow decision makers who provide data through pairwise comparisons 

as well as decision makers who use or apply the decisions based on those pairwise 

choices to assess the soundness and validity of their decisions.  Moreover, the 

thresholds allow the various decision makers to select a particular level of  which is 

appropriate to the specific circumstances of the decision problem. 

 

HDM with its judgement quantification methodology, sensitivity analysis, and the 

proposed robust inconsistency measure with inconsistency thresholds is one of the 

most complete methods available for multi-level, multi-criteria decisions. 
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6 CONTRIBUTION 
 

The contribution of this research is to fill an important research gap identified through 

the literature review by defining the acceptable limits of inconsistency for any number 

of decision elements from 3 to 12 at any given  level in HDM calculations.   

 

A byproduct of this research includes two fundamental improvements to HDM’s 

judgement quantification method to enhance its speed and efficiency while maintaining 

a high degree of accuracy.  This is done by the development of new computation 

algorithms that drastically reduce computational burden thereby greatly increasing the 

method’s speed and consequently making it truly practical.  Sections 3.2.5 – 3.2.9 

contain detailed explanations of these improvements.  
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7 LIMITATIONS 
 

1. The RSV inconsistency measure cannot be used for pairwise comparisons in HDM 

models where 𝑛 > 12.  Because of the limitation of the mathematical formula of 

variance, thresholds for variables above 12 cannot be calculated using the 

current method for RSV. 

However, this is not a major limitation because: 

a. Research [137] shows that as n increases, the ability of a DM to improve  

judgment decreases, and therefore consistency deteriorates.  Saaty and 

Ozdemir [137] argue that at higher n, consistency improvement requires 

small changes to which most human beings are insensitive.  Saaty and 

Ozdemir [137] state “we conclude that to serve both consistency and 

redundancy, it is best to keep the number of elements seven or less”. 

b. There does not seem to be a practical need for pairwise comparisons of 

more than 12 elements.  A review of all the HDM application articles 

discussed in section 2.2.4 shows that in all the models presented, the 

largest number of alternatives evaluated as a group is nine.  Table 7.1 on 

page 130 lists the maximum number of alternatives forming a single 

group in every HDM application article.  

c. Pairwise comparisons of more than 12 elements are not considered 

realistic.  Twelve elements represent 66 pairwise comparisons which is 
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already a formidable number of relationships to track.  The number of 

comparisons jumps to 78 for 13 elements, 91 for 14 and 105 for 15.         

It is very difficult if not impossible for a decision maker to evaluate more 

than 66 comparisons reliably. 

d.  If there are more than 12 elements in the decision problem, the 

elements can be divided into groups and evaluated by chainwise 

comparisons Ra [138].  This way each group can be limited to less than 12 

elements and the consistency measure developed in this dissertation can 

be applied repeatedly.  

2. The inconsistency measure developed in this dissertation is applicable to HDM as 

stated in the research objective.  RSV is the square root of the sum of variances 

of the means of n decision variables obtained in n factorial orientations.  This 

computation is used by the HDM judgment quantification method, not other 

methods.  
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Table 7.1 below lists the maximum number of alternatives forming a single group in 

every HDM application article.  

# HDM Application Article (Section 2.2.4) Maximum Number of Alternatives Evaluated Together 

1 Khan [55] 9 

2 Gerdsri [56]  7 

3 Chen, et al. [58]  5 

4 Gerdsri and Kocaoglu [59] 7 

5 Fenwick, et al. [60] 7 

6 Kodali, et al. [61] 9 

7 Cowan, et al. [62] 7 

8 Daim, et al. [63] 7 

9 Harell and Daim [64]  5 

10 Kennedy and Daim [65]  5 

11 Wang, et al. [66]  6 

12 Fenwick and Daim [67]   4 

13 Sheikh, et al. [68]  8 

14 Daim, et al. [69]  5 

15 Lee, et al. [70]  4 

Table ‎7.1: List of Maximum Number of Alternatives Evaluated All Together in Each of 
the HDM Application Articles 
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8 FUTURE WORK 
 

The development of RSV as a new measure of inconsistency in HDM, with thresholds at 

desired  levels, and defined as a function of the number of decision variables has met 

all the goals set out in the proposal of this dissertation.  It has also identified the 

opportunity for future work to extend the inconsistency measure to one which:  

 Can be used for calculations involving more than twelve decision variables  

 Is independent of the judgment quantification method, thereby eliminating the 

need for the calculation of the variance of the means of n variables in n factorial 

orientations.   

 Is universally applicable to any pairwise-comparison based method. 

 

  



 

131 
 

REFERENCES 

 

[1] T. L. Saaty, "Decision-making with the AHP: Why is the principal eigenvector 
necessary," European Journal of Operational Research, vol. 145, pp. 85-91, 2003. 

[2] D. F. Kocaoglu, "A Participative Approach to Program Evaluation," IEEE 
Transactions on Engineering Management, vol. EM-30, pp. 112-118, August 
1983. 

[3] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting, Resource 
Allocation: McGraw-Hill International Book Co., 1980. 

[4] D. I. Cleland and D. F. Kocaoglu, Engineering Management. New York: McGraw-
Hill, 1981. 

[5] P. Gerdsri and D. Kocaoglu, "A systematic approach to developing national 
technology policy and strategy for emerging technologies: A case study of 
nanotechnology for Thailand's agriculture industry," in PICMET 2009 - 2009 
Portland International Conference on Management of Engineering and 
Technology, August 2, 2009 - August 6, 2009, Portland, OR, United states, 2009, 
pp. 447-461. 

[6] R. D. Holder, "Some Comments on the Analytic Hierarchy Process," The Journal 
of the Operational Research Society, vol. 41, pp. 1073-1076, 1990. 

[7] C. Murphy, "Limits on the analytic hierarchy process from its consistency index," 
European Journal of Operational Research, vol. 65, pp. 138-139, 1993. 

[8] J. Aguaron and J. M. Moreno-Jimenez, "The geometric consistency index: 
Approximated thresholds," European Journal of Operational Research, vol. 147, 
pp. 137-145, 2003. 

[9] J. A. Alonso and M. T. Lamata, "Consistency in the analytic hierarchy process: A 
new approach," International Journal of Uncertainty, Fuzziness and Knowlege-
Based Systems, vol. 14, pp. 445-459, 2006. 

[10] T. L. Saaty, "A scaling method for priorities in hierarchical structures," Journal of 
Mathematical Psychology, vol. 15, pp. 234-281, 1977. 

[11] E. H. Forman, "Random indices for incomplete pairwise comparison matrices," 
European Journal of Operational Research, vol. 48, pp. 153-155, 1990. 

[12] T. L. Saaty, Fundamentals of Decision Making and Priority Theory with the 
Analytic Hierarchy Process. Pittsburgh, PA: RWS Publications, 1994. 

[13] S. Bozoki and T. Rapcsak, "On Saaty's and Koczkodaj's inconsistencies of pairwise 
comparison matrices," Journal of Global Optimization, vol. 42, pp. 157-175, 2008. 

[14] B. Cavallo and L. D'Apuzzo, "A general unified framework for pairwise 
comparison matrices in multicriterial methods," International Journal of 
Intelligent Systems, vol. 24, pp. 377-398, 2009. 

[15] E. U. Choo and W. C. Wedley, "A common framework for deriving preference 
values from pairwise comparison matrices," Computers and Operations 
Research, vol. 31, pp. 893-908, 2004. 



 

132 
 

[16] C.-C. Lin, "A revised framework for deriving preference values from pairwise 
comparison matrices," European Journal of Operational Research, vol. 176, pp. 
1145-1150, 2007. 

[17] E. H. Forman and S. I. Gass, "The analytic hierarchy process-an exposition," 
Operations Research, vol. 49, pp. 469-86, 2001. 

[18] S. Opasanon and P. Lertsanti, "Impact analysis of logistics facility relocation using 
the analytic hierarchy process (AHP)," International Transactions in Operational 
Research, vol. 20, pp. 325-339, 2013. 

[19] S. Sipahi and M. Timor, "The analytic hierarchy process and analytic network 
process: an overview of applications," Management Decision, vol. 48, pp. 775-
808, 2010. 

[20] Z. Xu, "A Practical Method for Improving Consistency of Judgement Matrix in the 
AHP," Journal of Systems Science and Complexity vol. 17, pp. 164-168, 2004. 

[21] H. Maleki and S. Zahir, "A Comprehensive Literature Review of the Rank Reversal 
Phenomenon in the Analytic Hierarchy Process," Journal of Multi-Criteria 
Decision Analysis, vol. 20, pp. 141-155, 2013. 

[22] C.-C. Lin, et al., "Improving AHP for construction with an adaptive AHP approach 
(A3)," Automation in Construction, vol. 17, pp. 180-187, 2008. 

[23] R. Medjoudj, et al., "Decision making on power customer satisfaction and 
enterprise profitability analysis using the Analytic Hierarchy Process," 
International Journal of Production Research, vol. 50, pp. 4793-4805, 2012. 

[24] N. Bhushan and K. Rai, Strategic Decision Making: Applying the Analytic 
Hierarchy Process: Springer, 2004. 

[25] A. Ishizaka, et al., "AHPSort: an AHP-based method for sorting problems," 
International Journal of Production Research, vol. 50, pp. 4767-4784, 2012. 

[26] W. Ho, "Integrated analytic hierarchy process and its applications – A literature 
review," European Journal of Operational Research, vol. 186, pp. 211-228, 2008. 

[27] O. S. Vaidya and S. Kumar, "Analytic hierarchy process: An overview of 
applications," European Journal of Operational Research, vol. 169, pp. 1-29, 
2006. 

[28] A. Ishizaka and A. Labib, "Review of the main developments in the analytic 
hierarchy process," Expert Systems with Applications, vol. 38, pp. 14336-14345, 
2011. 

[29] T. L. Saaty, "Decision making with the analytic hierarchy process," International 
Journal of Services Sciences vol. 1, pp. 83 - 98, 2008. 

[30] D. Cao, et al., "Modifying inconsistent comparison matrix in analytic hierarchy 
process: A heuristic approach," Decision Support Systems, vol. 44, pp. 944-953, 
2008. 

[31] M. Brunelli, et al., "A note on the proportionality between some consistency 
indices in the AHP," Applied Mathematics and Computation, vol. 219, pp. 7901-
7906, 2013. 



 

133 
 

[32] D. R. Anderson, et al., An Introduction to Management Science: Quantitative 
Approaches to Decision Making: Cengage South-Western, 2010. 

[33] M. T. Lamata and J. I. Pelaez, "A method for improving the consistency of 
judgements," International Journal of Uncertainty, Fuzziness and Knowlege-
Based Systems, vol. 10, pp. 677-686, 2002. 

[34] G. Kou, et al., "Enhancing data consistency in decision matrix: Adapting 
Hadamard model to mitigate judgment contradiction," European Journal of 
Operational Research, vol. 236, pp. 261-271, 2014. 

[35] S. Bortot and R. A. Marques Pereira, "Inconsistency and non-additive capacities: 
The Analytic Hierarchy Process in the framework of Choquet integration," Fuzzy 
Sets and Systems, vol. 213, pp. 6-26, 2013. 

[36] C. Lin, et al., "A statistical approach to measure the consistency level of the 
pairwise comparison matrix," Journal of the Operational Research Society, 2013. 

[37] M. Brunelli and M. Fedrizzi, "Axiomatic properties of inconsistency indices for 
pairwise comparisons," Journal of the Operational Research Society, 2013. 

[38] D. Ergu, et al., "A simple method to improve the consistency ratio of the pair-
wise comparison matrix in ANP," European Journal of Operational Research, vol. 
213, pp. 246-259, 2011. 

[39] D. V. Budescu, et al., "A Comparison of the Eigenvalue Method and The 
Geometric Mean Procedure for Ratio Scaling," Applied Psychological 
Measurement, vol. 10, pp. 69-78, 1986. 

[40] F. Zahedi, "A simulation study of estimation methods in the analytic hierarchy 
process," Socio-Economic Planning Sciences, vol. 20, pp. 347-354, 1986. 

[41] E. Noble and P. Sanchez, "A note on the information content of a consistent 
pairwise comparison judgment matrix of an AHP decision maker," Theory and 
Decision, vol. 34, pp. 99-108, 1993. 

[42] T. L. Saaty and L. G. Vargas, "Experiments on rank preservation and reversal in 
relative measurement," Mathematical and Computer Modelling, vol. 17, pp. 13-
18, 1993. 

[43] C. Genest and L.-P. Rivest, "A Statistical Look at Saaty's Method of Estimating 
Pairwise Preferences Expressed on a Ratio Scale," Journal of Mathematical 
Psychology, vol. 38, pp. 477-496, 1994. 

[44] F. J. Carmone Jr, et al., "A Monte Carlo investigation of incomplete pairwise 
comparison matrices in AHP," European Journal of Operational Research, vol. 
102, pp. 538-553, 1997. 

[45] J. S. Finan and W. J. Hurley, "Analytic hierarchy process: Does adjusting a 
pairwise comparison matrix to improve the consistency ratio help?," Computers 
and Operations Research, vol. 24, pp. 749-755, 1997. 

[46] S. H. Zanakis, et al., "Multi-attribute decision making: A simulation comparison of 
select methods," European Journal of Operational Research, vol. 107, pp. 507-
529, 1998. 



 

134 
 

[47] R. Aull-Hyde, et al., "An experiment on the consistency of aggregated 
comparison matrices in AHP," European Journal of Operational Research, vol. 
171, pp. 290-295, 2006. 

[48] A. Ishizaka and M. Lusti, "How to derive priorities in AHP: a comparative study," 
Central European Journal of Operations Research, vol. 14, pp. 387-400, 2006. 

[49] N. J. Z. Mamat and J. K. Daniel, "Statistical analyses on time complexity and rank 
consistency between singular value decomposition and the duality approach in 
AHP: A case study of faculty member selection," Mathematical and Computer 
Modelling, vol. 46, pp. 1099-1106, 2007. 

[50] Y. Dong, et al., "Consensus models for AHP group decision making under row 
geometric mean prioritization method," Decision Support Systems, vol. 49, pp. 
281-289, 2010. 

[51] A. Ishizaka, et al., "Influence of aggregation and measurement scale on ranking a 
compromise alternative in AHP," The Journal of the Operational Research 
Society, vol. 62, pp. 700-710, 2011. 

[52] S. Siraj, et al., "A heuristic method to rectify intransitive judgments in pairwise 
comparison matrices," European Journal of Operational Research, vol. 216, pp. 
420-428, 2012. 

[53] F. Zahedi, "The Analytic Hierarchy Process: A Survey of the Method and Its 
Applications," Interfaces, vol. 16, pp. 96-108, 1986. 

[54] Y. Dong, et al., "A comparative study of the numerical scales and the 
prioritization methods in AHP," European Journal of Operational Research, vol. 
186, pp. 229-242, 2008. 

[55] A. Khan, "Capital Rationing, Priority Setting, and Budget Decisions: An Analytical 
Guide for Public Managers," in Public Budgeting and Finance, Fourth Edition, R. T. 
Golembiewski and J. Rabin, Eds., ed: Taylor & Francis, 1997. 

[56] N. Gerdsri, "An Analytical Apparoach to Building a Technology Development 
Envelope (TDE) for Roadmapping of Emerging Technologies," International 
Journal of Innovation and Technology Management, vol. 4, pp. 121-135, 2007. 

[57] H. Chen and D. F. Kocaoglu, "A sensitivity analysis algorithm for hierarchical 
decision models," European Journal of Operational Research, vol. 185, pp. 266-
288, 2008. 

[58] H. Chen, et al., "A Strategic Technology Planning Framework: A Case of Taiwan’s 
Semiconductor Foundry Industry," IEEE Transactions on Engineering 
Management, vol. 56, pp. 4-15, 2009. 

[59] P. Gerdsri and D. F. Kocaoglu, "HDM for developing national emerging 
technology strategy and policy supporting sustainable economy: A case study of 
nanotechnology for Thailand's agriculture," in 2008 Portland International Center 
for Management of Engineering and Technology, Technology Management for a 
Sustainable Economy, PICMET '08, July 27, 2008 - July 31, 2008, Cape Town, 
South africa, 2008, pp. 344-350. 



 

135 
 

[60] D. Fenwick, et al., "Value Driven Technology Road Mapping (VTRM) process 
integrating decision making and marketing tools: Case of Internet security 
technologies," Technological Forecasting and Social Change, vol. 76, pp. 1055-
1077, 2009. 

[61] R. Kodali, et al., "Justification of world-class maintenance systems using analytic 
hierarchy constant sum method," Journal of Quality in Maintenance Engineering, 
vol. 15, pp. 47-77, 2009. 

[62] K. Cowan, et al., "Exploring the impact of technology development and adoption 
for sustainable hydroelectric power and storage technologies in the Pacific 
Northwest United States," Energy, vol. 35, pp. 4771-4779, 2010. 

[63] T. U. Daim, et al., "Identification of energy policy priorities from existing energy 
portfolios using hierarchical decision model and goal programming: Case of 
Germany and France," International Journal of Energy Sector Management, vol. 
4, pp. 24-43, 2010. 

[64] G. Harell and T. U. Daim, "HDM Modeling as a Tool to Assist Management With 
Employee Motivation: The Case of Silicon Forest," Engineering Management 
Journal, vol. 22, pp. 23-33, 2010. 

[65] E. Kennedy and T. U. Daim, "A strategy to assist management in workforce 
engagement and employee retention in the high tech engineering environment," 
Evaluation and Program Planning, vol. 33, pp. 468-476, 2010. 

[66] B. Wang, et al., "A decision model for energy resource selection in China," Energy 
Policy, vol. 38, pp. 7130-7141, 2010. 

[67] D. Fenwick and T. U. Daim, "Choosing a hybrid car using a hierarchical decision 
model," International Journal of Sustainable Society, vol. 3, pp. 243-257, 2011. 

[68] N. Sheikh, et al., "Use of multiple perspectives and decision modeling for PV 
technology assessment," in Technology Management in the Energy Smart World 
(PICMET), 2011 Proceedings of PICMET '11:, 2011, pp. 1-21. 

[69] T. U. Daim, et al., "Site selection for a data centre – a multi-criteria decision-
making model," International Journal of Sustainable Engineering, vol. 6, pp. 10-
22, 2013/03/01 2012. 

[70] B.-H. Lee, et al., "Relative Priority Analysis of Korean IS Audit Standard Check 
Items Using the Constant-Sum Method," in Network and Parallel Computing. vol. 
7513, J. Park, A. Zomaya, S.-S. Yeo, and S. Sahni, Eds., ed: Springer Berlin 
Heidelberg, 2012, pp. 233-240. 

[71] B. L. Golden and Q. Wang, "An alternate measure of consistency," in The Analytic 
Hierarchy Process, Applications and Studies, B. Golden, E. Wasil, and P. Harker, 
Eds., ed New York: Springer-Verlag 1990. 

[72] E. F. Lane and W. A. Verdini, "A Consistency Test for AHP Decision Makers," 
Decision Sciences, vol. 20, pp. 575-590, 1989. 

[73] P. T. Harker, "Alternative modes of questioning in the analytic hierarchy 
process," Mathematical Modelling, vol. 9, pp. 353-360, 1987. 



 

136 
 

[74] F. J. Dodd, et al., "Inverse inconsistency in analytic hierarchies," European Journal 
of Operational Research, vol. 80, pp. 86-93, 1995. 

[75] V. M. R. Tummala and Y.-w. Wan, "On the mean random inconsistency index of 
analytic hierarchy process (AHP)," Computers and Industrial Engineering, vol. 27, 
pp. 401-404, 1994. 

[76] W. W. Koczkodaj, "A new definition of consistency of pairwise comparisons," 
Mathematical and Computer Modelling, vol. 18, pp. 79-84, 1993. 

[77] J. Barzilai, et al., "Consistent weights for judgements matrices of the relative 
importance of alternatives," Operations Research Letters, vol. 6, pp. 131-134, 
1987. 

[78] G. Crawford and C. Williams, "A note on the analysis of subjective judgment 
matrices," Journal of Mathematical Psychology, vol. 29, pp. 387-405, 1985. 

[79] L. G. Vargas, "Reciprocal matrices with random coefficients," Mathematical 
Modelling, vol. 3, pp. 69-81, 1982. 

[80] G. A. Miller, "The magical number seven, plus or minus two: some limits on our 
capacity for processing information," Psychological Review, vol. 63, pp. 81-97, 
1956. 

[81] S. Karapetrovic and E. S. Rosenbloom, "Quality control approach to consistency 
paradoxes in AHP," European Journal of Operational Research, vol. 119, pp. 704-
718, 1999. 

[82] A. A. Salo and R. P. Hämäläinen, "On the measurement of preferences in the 
analytic hierarchy process," Journal of Multi-Criteria Decision Analysis, vol. 6, pp. 
309-319, 1997. 

[83] C. A. Bana e Costa and J.-C. Vansnick, "A critical analysis of the eigenvalue 
method used to derive priorities in AHP," European Journal of Operational 
Research, vol. 187, pp. 1422-1428, 2008. 

[84] J. Barzilai and B. Golany, "Deriving weights from pairwise comparison matrices: 
The additive case," Operations Research Letters, vol. 9, pp. 407-410, 1990. 

[85] J. W. Ra, "Hierarchical decision process," in Technology Management : the New 
International Language, 1991, pp. 595-599. 

[86] G. Kretchik and J. W. Ra, "Analysis of the sum of the inverse column sums (SICS): 
an alternative consistency measure for pairwise comparisons," in Management 
of Engineering and Technology, 1999. Technology and Innovation Management. 
PICMET '99. Portland International Conference on Management of Engineering 
and Technology, 1999, p. 229 vol.1. 

[87] R. E. Jensen and T. E. Hicks, "Ordinal data AHP analysis: A proposed coefficient of 
consistency and a nonparametric test," Mathematical and Computer Modelling, 
vol. 17, pp. 135-150, 1993. 

[88] E. Takeda, "A note on consistent adjustments of pairwise comparison 
judgments," Mathematical and Computer Modelling, vol. 17, pp. 29-35, 1993. 

[89] W. C. Wedley, "Consistency prediction for incomplete AHP matrices," 
Mathematical and Computer Modelling, vol. 17, pp. 151-161, 1993. 



 

137 
 

[90] E. Takeda and P.-L. Yu, "Assessing priority weights from subsets of pairwise 
comparisons in multiple criteria optimization problems," European Journal of 
Operational Research, vol. 86, pp. 315-331, 1995. 

[91] H. Monsuur, "An intrinsic consistency threshold for reciprocal matrices," 
European Journal of Operational Research, vol. 96, pp. 387-391, 1997. 

[92] J. Barzilai, "Consistency measures for pairwise comparison matrices," Journal of 
Multi-Criteria Decision Analysis, vol. 7, pp. 123-132, 1998. 

[93] S. Shiraishi, et al., "Properties of a Positive Reciprocal Matrix and their 
Application to AHP," Operations Research Society of Japan, vol. 41, pp. 404-414, 
1998. 

[94] J. I. Peláez and M. T. Lamata, "A new measure of consistency for positive 
reciprocal matrices," Computers &amp; Mathematics with Applications, vol. 46, 
pp. 1839-1845, 2003. 

[95] S. I. Gass and T. Rapcsák, "Singular value decomposition in AHP," European 
Journal of Operational Research, vol. 154, pp. 573-584, 2004. 

[96] M. Fedrizzi and S. Giove, "Incomplete pairwise comparison and consistency 
optimization," European Journal of Operational Research, vol. 183, pp. 303-313, 
2007. 

[97] W. E. Stein and P. J. Mizzi, "The harmonic consistency index for the analytic 
hierarchy process," European Journal of Operational Research, vol. 177, pp. 488-
497, 2007. 

[98] M. Fedrizzi and M. Brunelli, "Fair Consistency Evaluation for Reciprocal Relations 
and in Group Decision Making," New Mathematics & Natural Computation, vol. 
5, pp. 407-420, 2009. 

[99] L. Čaklović, "Measure of Inconsistency for the Potential Method," in Modeling 
Decisions for Artificial Intelligence. vol. 7647, V. Torra, Y. Narukawa, B. López, 
and M. Villaret, Eds., ed: Springer Berlin / Heidelberg, 2012, pp. 102-114. 

[100] B. Matteo, et al., "A note on the proportionality between some consistency 
indices in the AHP," CORD Conference Proceedings, 2012. 

[101] S. Siraj, et al., "Enumerating all spanning trees for pairwise comparisons," 
Computers & Operations Research, vol. 39, pp. 191-199, 2012. 

[102] F. J. Dodd, et al., "A statistical approach to consistency in AHP," Mathematical 
and Computer Modelling, vol. 18, pp. 19-22, 1993. 

[103] G. Kou, et al., Data Processing for the AHP/ANP: Springer, 2013. 
[104] J. D. Gibbons, Nonparametric Methods for Quantitative Analysis: American 

Sciences Press, 1985. 
[105] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, Third ed.: 

McGraw-Hill Higher Education, 2000. 
[106] K. Beven, Environmental Modelling: An Uncertain Future?: Taylor & Francis, 

2010. 
[107] R. Korn, et al., Monte Carlo Methods and Models in Finance and Insurance: CRC 

Press, 2010. 



 

138 
 

[108] C. Cioffi-Revilla, "On the Quality of a Social Simulation Model: A Lifecycle 
Framework," in Advances in Social Simulation. vol. 229, B. Kamiński and G. 
Koloch, Eds., ed: Springer Berlin Heidelberg, 2014, pp. 13-23. 

[109] W. Vanderbauwhede and K. Benkrid, High-Performance Computing Using FPGAs: 
Springer, 2013. 

[110] M. Manssen, et al., "Random number generators for massively parallel 
simulations on GPU," The European Physical Journal Special Topics, vol. 210, pp. 
53-71, 2012/08/01 2012. 

[111] A. S. K. Pathan, et al., Simulation Technologies in Networking and 
Communications: Selecting the Best Tool for the Test: Taylor & Francis, 2014. 

[112] M. S. Obaidat and N. A. Boudriga, Fundamentals of Performance Evaluation of 
Computer and Telecommunications Systems: Wiley, 2010. 

[113] T. D. Little, The Oxford Handbook of Quantitative Methods, Volume 1: 
Foundations: Oxford University Press, 2013. 

[114] S. Goldshtein, et al., Pro .NET Performance: Optimize Your C# Applications: 
Apress, 2012. 

[115] L. Gherardi, et al., "A Java vs. C++ Performance Evaluation: A 3D Modeling 
Benchmark," in Simulation, Modeling, and Programming for Autonomous 
Robots. vol. 7628, I. Noda, N. Ando, D. Brugali, and J. Kuffner, Eds., ed: Springer 
Berlin Heidelberg, 2012, pp. 161-172. 

[116] S. B. Aruoba and J. Fernández-Villaverde, "A Comparison of Programming 
Languages in Economics," National Bureau of Economic Research Working Paper 
Series, vol. No. 20263, 2014. 

[117] K. Lange, Numerical Analysis for Statisticians: Springer New York, 2010. 
[118] S. G. Whittington, Numerical Methods for Polymeric Systems: Springer New York, 

2012. 
[119] A. Gosavi, Simulation-Based Optimization: Parametric Optimization Techniques 

and Reinforcement Learning: Springer US, 2014. 
[120] N. Karamanis, et al., "A corpus-based methodology for evaluating metrics of 

coherence for text structuring," in Natural Language Generation, ed: Springer, 
2004, pp. 90-99. 

[121] N. Cressie, Statistics for Spatial Data: Wiley, 2015. 
[122] W. Trochim, et al., Research Methods: The Essential Knowledge Base: Cengage 

Learning, 2015. 
[123] R. B. Johnson and L. Christensen, Educational Research: Quantitative, 

Qualitative, and Mixed Approaches: SAGE Publications, 2013. 
[124] C. E. Särndal, et al., Model Assisted Survey Sampling: Springer New York, 2003. 
[125] D. H. Lehmer, "Teaching combinatorial tricks to a computer," Proc. Sympos. Appl. 

Math. Combinatorial Analysis American Mathematical Society, Providence, R.I., 
vol. 10, pp. 179-193, 1960. 

[126] J. L. Gross, Combinatorial Methods with Computer Applications: Taylor & Francis, 
2007. 



 

139 
 

[127] S. Olariu and A. Y. Zomaya, Handbook of Bioinspired Algorithms and Applications: 
CRC Press, 2005. 

[128] M. Roberto and R. Fanja, "A permutations representation that knows what " E 
ulerian" means," Discrete Mathematics &amp; Theoretical Computer Science; Vol 
4, No 2 (2001), 2006. 

[129] P. Tarau, "A Groupoid of Isomorphic Data Transformations," in Intelligent 
Computer Mathematics. vol. 5625, J. Carette, L. Dixon, C. Coen, and S. Watt, Eds., 
ed: Springer Berlin Heidelberg, 2009, pp. 170-185. 

[130] S. Pesko, "Differential Evolution for Small TSPs with Constraints," in Proceedings 
of the fourth International Scientific Conference: Challenges in Transport and 
Communications, Part III, Pardubice, Czech Republic, 2006, pp. 989–994. 

[131] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching. 
Second Edition: Addison-Wesley Longman Publishing Co., Inc., 1997. 

[132] M. Hall, Proc. Sympos. Appl. Math. Combinatorial Analysis American 
Mathematical Society, Providence, R.I., vol. 6, p. 203 and following, 1956. 

[133] M.-E. Marmion and O. Regnier-Coudert, "Fitness Landscape of the Factoradic 
Representation on the Permutation Flowshop Scheduling Problem," in Learning 
and Intelligent Optimization. vol. 8994, C. Dhaenens, L. Jourdan, and M.-E. 
Marmion, Eds., ed: Springer International Publishing, 2015, pp. 151-164. 

[134] H. Samarghandi, et al., "A particle swarm optimization for the single row facility 
layout problem," Computers & Industrial Engineering, vol. 58, pp. 529-534, 2010. 

[135] L. G. Vargas, "The consistency index in reciprocal matrices: Comparison of 
deterministic and statistical approaches," European Journal of Operational 
Research, vol. 191, pp. 454-463, 2008. 

[136] H. Guerrero, Excel Data Analysis: Modeling and Simulation: Springer Berlin 
Heidelberg, 2010. 

[137] T. L. Saaty and M. S. Ozdemir, "Why the magic number seven plus or minus two," 
Mathematical and Computer Modelling, vol. 38, pp. 233-244, 2003. 

[138] J. W. Ra, "Analysis of Expert Judgments in Hierarchical Decision Process," PhD 
Dissertation, University of Pittsburgh, pp. 118 -128, 1988. 

 



 

140 
 

APPENDIX A: PDF for n = 3 – 12  

 

RSV which is HDM’s inconsistency measure is assumed to be a continuous random 

variable.  The probability density function (PDF) of RSV defines the magnitude of 

probability over the entire range of possible RSV values (the RSV domain).  There are a 

few points to keep in mind when using pdf: 

 Probabilities are measured over intervals and the integral over an interval is the 

probability magnitude.  Since the variable (RSV) is continuous, so is its pdf.  This 

implies that the probability of an exact value is always zero.  If 𝑋 denotes 

particular RSV value for which the probability is to be determined, 𝑎 𝑎𝑛𝑑 𝑏 

denote the lower and upper limits of 𝑋, and 𝑓(𝑥) denotes RSV’s pdf, then the 

probability that 𝑋 falls in (𝑎, 𝑏]  is the area under the graph of 𝑓 

between 𝑎 𝑎𝑛𝑑 𝑏 : 

𝑃{𝑎 < 𝑋 ≤ 𝑏} = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

for every interval  (𝑎, 𝑏].   

 The amplitude of pdf could be higher than one.  However, when pdf is integrated 

over the entire domain of the random variable (RSV in this case), the result 

should always be one.  This unity represents the total probability of all possible 

values: 

∫𝑓(𝑥)𝑑𝑥 = 1 

where the integral is implicitly taken over the entire domain of 𝑋. 

http://www.britannica.com/EBchecked/topic/33377/area
http://www.britannica.com/EBchecked/topic/241997/graph
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Figure 7: Probability Density Function (PDF) for 3 Variables 
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Figure 8: Probability Density Function (PDF) for 4 Variables 
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Figure 9: Probability Density Function (PDF) for 5 Variables 
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Figure 10: Probability Density Function (PDF) for 6 Variables 
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Figure 11: Probability Density Function (PDF) for 7 Variables 
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Figure 12: Probability Density Function (PDF) for 8 Variables 
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Figure 13: Probability Density Function (PDF) for 9 Variables 
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Figure 14: Probability Density Function (PDF) for 10 Variables 
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Figure 15: Probability Density Function (PDF) for 11 Variables 
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Figure 16: Probability Density Function (PDF) for 12 Variables 
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APPENDIX B: CDF for n = 3 – 12  

 

A percentile is a statistic that defines a value below which a given percentage of the 

domain (possible values of a random variable) occurs.  The function that maps the 

percentiles to the domain is the cumulative distribution function (CDF).  If 𝑋 denotes 

particular RSV value for which the percentile is to be determined,  𝑓(𝑥) denotes RSV’s 

pdf, and 𝐹(𝑥) denotes RSV’s CDF, then: 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞

 

There are a few points to keep in mind when using pdf: 

 In the case of HDM’s inconsistency, percentiles are considered the inconsistency 

thresholds (limits).   

 Since inconsistency is a measure of error, the lower the percentile, the more 

consistent the pairwise comparisons and the more sound the decision.  This is 

the same as the  level 
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Figure 17: Cumulative Distribution Function (CDF) for 3 Variables 
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Figure 18: Cumulative Distribution Function (CDF) for 4 Variables 
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Figure 19: Cumulative Distribution Function (CDF) for 5 Variables 
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Figure 20: Cumulative Distribution Function (CDF) for 6 Variables  
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Figure 21: Cumulative Distribution Function (CDF) for 7 Variables 
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Figure 22: Cumulative Distribution Function (CDF) for 8 Variables 
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Figure 23: Cumulative Distribution Function (CDF) for 9 Variables 
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Figure 24: Cumulative Distribution Function (CDF) for 10 Variables 
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Figure 25: Cumulative Distribution Function (CDF) for 11 Variables 
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Figure 26: Cumulative Distribution Function (CDF) for 12 Variables 
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