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ABSTRACT 
 

The Strawberry Volcanics of Northeast Oregon are a group of geochemically related 

lavas with a diverse chemical range (basalt to rhyolite) that erupted between 16.2 and 

12.5 Ma and co-erupted with the large, (~200,000 km3) Middle Miocene tholeiitic lavas 

of the Columbia River Basalt Group (CRBG), which erupted near and geographically 

surround the Strawberry Volcanics. The rhyolitic lavas of the Strawberry Volcanics 

produced the oldest 40Ar/39Ar ages measured in this study with ages ranging from 16.2 

Ma to 14.6 Ma, and have an estimated total erupted volume of 100 km3. The mafic and 

intermediate lavas of the Strawberry Volcanics include both tholeiitic and calc-alkaline 

compositions; calc-alkaline andesite is the dominant type by volume. 40Ar/39Ar ages of 

the mafic and intermediate lava flows range from 15.6 Ma to 12.5 Ma, and volume 

estimates of the intermediate lavas are approximately 1,100 km3. The magmas that gave 

rise to the Strawberry Volcanics traveled to the surface through numerous dikes, some of 

which have been exposed at the surface and supplied lava to fissure – style eruptions 

and/or shield volcanoes. Herein, we show that the Strawberry Volcanics are related to the 

CRBG in both time and space and share a chemical affinity, specifically to the Steens 

Basalt. Chemical similarities are observed in normalized trace element patterns, selected 

trace element ratios, and radiogenic isotopes. Comparison of the Strawberry Volcanic 

rhyolites to the other Middle Miocene rhyolites of eastern Oregon associated with the 

initiation of the Yellowstone – Snake River mantle plume reveals similar eruption ages, 

trace element compositions, including the rare earth elements (REEs), and “A-type” 
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rhyolite characteristics. These data suggest that the Strawberry Volcanics are part of the 

regional volcanism (basalt to rhyolite) of the Columbia River Basalt Province. The 

petrogenesis of the Strawberry Volcanics can be explained as follows: 1) The tholeiitic, 

intermediate magmas were produced by fractional crystallization of mafic magmas, 

which have a commonality with the surrounding Columbia River Basalt Group; 2) The 

calc-alkaline magmas are a result of mixing between tholeiitic basalt, rhyolite, and crust. 

The arc-like signature of the calc-alkaline lavas (elevated large ion lithophiles) is a result 

of both the melting source region and the end-members with which the mafic magmas 

mixed/contaminated. Other authors have produced similar findings from within the Basin 

and Range/Oregon-Idaho graben and CRB province. The difference at the Strawberry 

Volcanics is that there is no need for a primitive calc-alkaline magma or extensive 

fractional crystallization to generate the calc-alkaline andesite series. Alternatively, the 

calc-alkaline magmas of the Strawberry Volcanics were generated by a more primitive 

tholeiitic magma than erupted at the surface, which interacted with crustal melts and 

assimilated crustal lithologies from the complex zone of assimilated terranes that make 

up the basement of eastern Oregon. 
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* Steiner, A.R., and Streck, M. J., 2013, The Strawberry Volcanics: generation of ‘orogenic’andesites from 
tholeiite within an intra-continental volcanic suite centred on the Columbia River flood basalt province, 
USA, Geological Society, London, Special Publications, v. 385(1), 281-302. 
 
40Ar/39Ar ages analysis presented here are slightly different than the published paper and recalibrated using 
FCT-NM (R98) (4E36-14) (28.201±0.003 Ma)  

CHAPTER 1 
 

*THE STRAWBERRY VOLCANICS: GENERATION OF ‘OROGENIC’ ANDESITES 
FROM THOLEIITE WITHIN AN INTRA-CONTINENTAL VOLCANIC SUITE 

CENTERED ON THE COLUMBIA RIVER FLOOD BASALT PROVINCE, USA. 
 

Abstract 

 

The widely distributed, mid-Miocene lavas of the Strawberry Volcanics of NE Oregon 

are compositionally diverse ranging from basalt to rhyolite. They are mainly composed of 

calc-alkaline and mildly tholeiitic basaltic andesite and andesite. Ar-Ar dating and 

stratigraphic relationships indicate that the volcanic field was active from >16 Ma to ~12 

Ma and thus is coeval for the first 1-2 m.y. with strongly tholeiitic flood basalts of the 

Columbia River Province that encircle the Strawberry Volcanics. Tholeiitic and calc-

alkaline compositions develop subtle but noticeable differences towards higher silica 

contents. At silica contents of <55 wt.% SiO2, calc-alkaline and tholeiitic lavas are 

essentially indistinguishable. Trace element constraints among Strawberry Volcanics and 

crustal rocks indicate that open-system processes such as assimilation or magma mixing 

are responsible for evolution along a calc-alkaline trend leading to ‘orogenic’ andesites 

from tholeiite. Exclusively tholeiitic basalts carrying evidence for a metasomatized 

mantle source erupted during the mid-Miocene of eastern Oregon. Consequently, tholeiite 

imparted the “subduction signals” and crustal processing generated the calc-alkaline 
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character to end up with compositions of typical ‘orogenic’ andesites at the Strawberry 

Volcanics. No primitive calc-alkaline basalt from the mantle is needed as parental magma 

here and possibly at other similar intra-continental calc-alkaline suites. 
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Introduction 

 

Magmas of calc-alkaline affinity (see Arculus, 2003) are the typical magmas of 

subduction zone settings, yet they occur in other tectonic regimes. Because of their 

prevalence at active plate margins, the generation of the calc-alkaline trend has been 

closely tied to processes that occur as a consequence of the subduction of hydrated 

oceanic lithosphere. Key parameters that drive magmas toward calc-alkaline evolution 

are higher water content and higher degree of oxidation, which researchers have pointed 

out for many years (e.g., Hora et al., 2009; Zimmer et al., 2010 and references therein). 

At subduction zones, these two conditions likely exist at primary magma generation in 

the mantle wedge although this has been recently questioned (Lee et al., 2005). In regions 

without active subduction (i.e. intra-continental or anorogenic settings), explanation of 

magmas with calc-alkaline character is more challenging, as there is no dehydrating slab 

that can introduce fluids to the overlying mantle. However, in such settings, partial 

melting of mantle that was previously affected by subduction zone magmatism during an 

earlier stage is thought to be the principal control (e.g., Hawkesworth et al. 1995, Hooper 

et al., 1995, Christiansen and McCurry, 2008). Thus, even in such non-subduction 

settings, most workers would argue that primitive calc-alkaline basalts originating from 

the melting of a subduction modified (i.e. metasomatized) mantle is required in order to 

generate the calc-alkaline trend with andesite as their intermediate magmas. In this study, 

we address this issue and present data on generating voluminous calc-alkaline ‘orogenic’ 

andesites from tholeiitic parents instead of primitive mafic parents that already are calc-
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alkaline. Our case study is centered on a volcanic field located in NE Oregon, USA called 

the Strawberry Volcanics and which consists of a diverse suite of calc-alkaline and 

mildly tholeiitic lavas (Figs. 1.1, 1.2). The Strawberry Volcanics are coeval with flood 

basalts of the Columbia River Basalt Group (CRBG) that were issued from vents 

geographically encircling the Strawberry Volcanics (Robyn, 1977, this study) 

documenting that the prevalent magmas from the mantle during activity of the Strawberry 

Volcanics were tholeiitic. Our primary focus in this contribution is to document the 

distribution, age, and composition of mafic to intermediate lavas of the Strawberry 

Volcanics followed by a discussion of likely petrogenetic causes.  
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Methods 

 

 Major and selected trace elements were analyzed using an X-ray fluorescence 

spectrometer (XRF) at Washington State University (WSU). Sample preparation 

followed the analytical procedures of the WSU geochemical lab. Beads were fused at 

1000ºC using a 2:1 dilithium tetraborate (Li2B4O7) flux to powered sample. Selected trace 

elements and rare earth elements (REEs) were analyzed using inductively-coupled 

plasma mass spectrometry (ICP-MS) at WSU. Samples were analyzed following standard 

analytical procedures at the geochemical lab at WSU: samples are ground into fine 

powder and mixed with an equal amount of dilithium tetraborate flux and fused at 

1000°C.  The beads are then re-ground to a fine grained powder and dissolved for final 

analysis.  

40Ar/39Ar analyses were conducted on fresh groundmass samples which were 

handpicked after crushing and sieving whole rock samples at the Noble Gas Mass 

Spectrometry Lab at Oregon State University. All samples were washed in a solution of 

diluted HCL (<5 %) for approximately 10 minutes to remove any secondary carbonation. 

All samples with small quantities of mineral monitor FCT-3 biotite (28.030 ± 0.003 Ma , 

Renne et al., 1998) were loaded in quartz vials and irradiated at the OSU TRIGA research 

reactor. All samples were recalculated using FCT-NM (R98) (4E36-14) (28.201 ± 0.023 

Ma, Kuiper et al., 2008). 40Ar/39Ar analysis was performed on samples using an MAP 

215-50 gas mass spectrometer using the incremental heating method. Starting 

temperature of 400°C was followed by 100°C incremental increases until significant 39Ar 
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was released. Thereafter, temperature was increased in 50 to 100°C steps until reaching 

1400°C. We reduced the isotopic data and made age calculations using the ArArCALC 

software provided by Koppers (2002) using the currently accepted 40K decay constant 

(Steiger and Jäger, 1977). Further details of the analytical procedures are described in 

Duncan and Keller (2004) and on the laboratory website 

(http://www.coas.oregonstate.edu/research/mgg/chronology.html).  

Five samples were chosen to represent the large area of the Strawberry Volcanics. 

One sample from each cardinal direction (N, E, S and W) along with a central location 

was chosen for 40Ar/39Ar analysis (Table 1.1). All samples were basaltic andesite to 

andesite in composition (53-58 wt. % SiO2) and field studies indicate that they represent 

the upper stratigraphy of the Strawberry Volcanics.  

  

http://www.coas.oregonstate.edu/research/mgg/chronology.html
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Results 

 

 The lavas of the Strawberry Volcanics are distributed over 3,600 km2 and make 

up a diverse volcanic suite which spans the range of compositions from basalt to rhyolite 

(Figs. 1.1, 1.2). Below, we present our current data on field relationships of the 

Strawberry Volcanics, when and for how long volcanic activity occurred, and the erupted 

magma types.  

 

Stratigraphy and new ages of the Strawberry Volcanics  

Field Relationships 

 The Strawberry Volcanics were named after Strawberry Mountain located along 

the southeastern margin of the John Day Valley in NE Oregon (Fig. 1.1) (Thayer, 1957). 

There, uplift and glaciation produced the largest continuously exposed sections consisting 

of 30 or more, mostly conformably overlying lava flows (Figs. 1.3, 1.4).  Lava flow 

sections can reach thicknesses of approximately 1000 m. Where large continuous sections 

are exposed, thickness of individual lava flows varies dramatically from the lower to 

upper sections. Near the base of the Strawberry Volcanics lava thickness can reach > 40 

m while the upper sections thicknesses decrease to no greater than 15 m (Fig. 1.3). 

Independent of thickness, individual lava flow thickness appears nearly constant for the 

length of exposed section which can reach several kilometers along fault blocks (Fig. 

1.3). At Strawberry Mountain, andesitic lava flows dominate and are typically phenocryst 

poor (<3%) to essentially aphyric. The groundmass includes microphenocrysts of 
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plagioclase and pyroxene. Phenocrysts occasionally occur as crystal clots instead of 

single crystals of ~1-3 mm dominated by plagioclase, orthopyroxene and minor 

clinopyroxene. Xenoliths >3 cm of the same mineral assemblage with plutonic textures 

have also been observed. Strawberry Volcanics are emplaced on top of pre-Tertiary 

accreted terranes of the Blue Mountain Province (Thayer, 1957), Mesozoic plutonic 

rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age (Thayer et 

al., 1967).  More specifically, Strawberry Volcanics overlie Oligocene volcanic rocks to 

the north and east of Strawberry Mountain, and Paleozoic marine sediment (Izee terrane) 

and ophiolitic sequences (Baker terrane) to the south and west (Fig. 1.1b). Oligocene 

volcanic rocks are typically phenocryst-rich and display large phenocrysts (>0.5–3 mm). 

This lithological contrast has been used to differentiate Strawberry Volcanics from older 

intermediate volcanic rocks. Silica undersaturated alkali basaltic lavas erupted within the 

area of this study and overlie Strawberry Volcanics in the southern portion and are 

thought to be late Miocene/Pliocene in age (Fig. 1.1b). In addition, several regional 

ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma 

Rattlesnake Tuff (cf., Streck and Grunder, 1995, Green, 1972, Jordan et al., 2004) overlie 

the Strawberry Volcanics. The 15.9-15.4 Ma Dinner Creek Tuff (Streck et al., 2011) is 

also mid-Miocene and clear stratigraphic relationships are found only in one area where 

the tuff is intercalated between thick Strawberry Volcanics lava flows (Fig. 1.4). Lavas 

with characteristic Strawberry Volcanics lithology have a wide distribution and are at 

least distributed over an area of 40 x 90 km centered 20 km SW of Strawberry Mountain 

proper (Fig. 1.1b). The more mafic flows locally exhibit inflated pahoehoe and a’a 
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features.  Lavas with characteristics similar to Strawberry Volcanics occur south of 44oN 

and north of 44o30’N (Fig. 1.1b) but our investigation does not go past these 2 limits. 

Massive rhyolites (~ 300 m) are exposed mainly along the western flank (Fig. 1.1b) and 

underlie the intermediate composition lavas. Because of the proximity to Strawberry 

Mountain proper, we group these rhyolites with the Strawberry Volcanics as was done by 

earlier investigators for the northernmost rhyolites (Thayer et al., 1967; and Robyn, 

1977). These rhyolites are phenocryst-poor (≤1%) and range from obsidian to devitrified 

flows. We previously named them Strawberry Rhyolites (Steiner and Streck, 2011) 

whereas Thayer (1967) and Robyn (1977) referred to them as the Wildcat Rhyolite 

Member of the Strawberry Volcanics. Other rhyolites that also appear slightly older than 

intermediate lavas of the Strawberry Volcanics crop out along the NE near the town of 

Unity (Fig. 1.1b). This location is where a series of other rhyolite occurrences are found 

nearby as well (Fig. 1.1b). These rhyolites are more phenocryst rich (>10%) and include 

mineral phases of plagioclase, quartz, biotite, and occasional amphibole. Mafic lavas of 

the Strawberry Volcanics occur sporadically throughout the area but are concentrated in 

the northeast where mostly basaltic andesites have been called Slide Creek Basalts 

(Robyn, 1977, Goles et al.,1989) and this is also the area where lava flows of the 

Strawberry Volcanics interfinger with flows of the CRBG (Picture Gorge Member) 

(Thayer, 1957). These basalts have an ophitic texture dominated by plagioclase, 

clinopyroxene, and olivine. 

 Eruption sites have locally been identified either by the accumulation of near vent 

pyroclastic material or by intrusive rocks and contacts. The most prominent occurs at 
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Strawberry Mountain where an elongated intrusion >500 m wide cross cuts more than 

1000 m of lava flows (Fig. 1.1b). The intrusions are fine-grained with interlocking crystal 

boundaries. Similar but smaller vent structures appear throughout the area (Fig. 1.1b).  In 

addition, numerous NW-SE trending dikes accompany these volcanic intrusions (Fig. 

1.1b, 1.3b and c). 

 

40Ar/39Ar ages of Strawberry Volcanics and stratigraphic relationships to mid-Miocene 
flood basalts and other regional rock units 
 

New 40Ar/39Ar ages indicate calc-alkaline and tholeiitic basaltic andesites to 

andesites of the Strawberry Volcanics erupted from 14.87 ± 0.13 Ma (2σ) to 12.52 ± 0.12 

Ma (2σ) (Table 1.1, Fig. 1.5). This demonstrates magmatism of the Strawberry Volcanics 

was ongoing during the eruptions of the Wanapum Basalt (15-14.5 Ma) and the Saddle 

Mountain Basalts (13-6 Ma) of the CRBG (Table 1.1, Fig. 1.5). We expect to extend this 

range to older ages as our last field work revealed a regional stratigraphic marker bed 

intercalated with the Strawberry Volcanics. This maker bed (Fig. 1.4) consists of two 

ignimbrites that we tentatively correlate with the 15.9-15.4 Ma Dinner Creek Tuff (Streck 

et al., 2011). The sample southwest of Strawberry Mountain, AS-SV-156, gave the oldest 

date of 14.87 ± 0.13 Ma (2σ) while to the southeast, AS-SV-82 yielded the second oldest 

date of 14.21 ± 0.26 Ma (2σ) (Table 1). The sample to the north of Strawberry Mountain 

(the Slide Creek Basalt member) yielded an age of 13.76 ± 0.16 Ma (2σ) and the sample 

to the east yielded an age of 13.53 ± 0.24 Ma (2σ) (Table 1.1). The sample directly from 

Strawberry Mountain (AS-SV-192) is a micronorite volcanic neck/plug with the youngest 
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age of 12.52 ± 0.12 Ma (2σ) (Table 1.1). Previously, the eruption period of the 

Strawberry Volcanics was bracketed by K-Ar ages of 19.8 ± 0.38 Ma (2σ) and 12.4 ± 

0.41 Ma (2σ) (Robyn, 1977). Robyn considered dacites that were dated at 19.8 ± 0.38 Ma 

(2σ) and 18.1 ± 0.50 Ma (2σ) to be part of the Strawberry Volcanics. These dacites 

underlie the Strawberry Volcanics and we argue that they are not likely part of them 

because they are texturally and compositionally distinct. Other reported ages (Robyn, 

1977) are 14.9 ± 0.85 Ma (2σ) on a basalt and 12.4 ± 0.41 (2σ) Ma on basaltic andesite. 

Both of these ages closely correspond with our new Ar-Ar ages.  

 

Geochemistry 

 Based on the discrimination scheme by Miyashiro (1974) and Arculus (2003), 

mafic to intermediate magmas of the Strawberry Volcanics are both tholeiitic and calc-

alkaline (Fig. 1.2).  All basalts of the Strawberry Volcanics are tholeiitic whereas lavas of 

intermediate compositions are either tholeiitic or calc-alkaline (Fig. 1.2). As 

compositions become more evolved, the range in tholeiitic vs. calc-alkaline character 

increases with transitional samples in between (Fig. 1.2). Continuous ranges from 

tholeiite to calc-alkaline similar to those of the Strawberry Volcanics have been observed 

in other magma series (e.g., Arculus, 2003; Hora et al., 2009, Brueseke and Hart, 2009). 

 

Tholeiitic lavas of the Strawberry Volcanics 

 The tholeiitic lavas of the Strawberry Volcanics comprise compositions ranging 

from basalt (49-50 wt.% SiO2) to andesite (57-60 wt.% SiO2) (Table 1.2). All tholeiitic 
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lavas have high Al2O3 ranging from 16–17 wt.%. MgO decreases from 8.9–5.9 wt.% in 

the basalts to 2.5 wt.% in the andesites. As MgO decreases FeO* decreases as well yet 

not as fast and it is more variable. FeO* values range from 9.9–13.7 wt.% in basalts to 

7.4 wt.% in andesites (Table 1.2). Consequently, the range in terms of FeO*/MgO 

generally becomes wider towards higher SiO2 contents (Fig. 1.2b). In a total alkalies vs. 

SiO2 diagram, tholeiitic lavas plot on or very near the subalkaline/alkaline divide (Fig. 

1.2a).  

 Select incompatible element ranges are as follows: Rb (4-37 ppm), Ba (408-929 

ppm), La (18-34 ppm), Th (1.2-3.5 ppm), U (0.33-2.10 ppm) and K2O (1.80–0.45 wt.%) 

with the basalts being the least enriched (Table 1.2). The high field strength (HFS) trace 

elements (Nb, Ta, Zr, Hf ) display near constant or slightly decreasing concentrations 

towards andesitic compositions (Fig. 1.6). There are no Eu anomalies. Rare earth element 

(REE) patterns have negative slopes with (La/Yb)N values ranging from 4.9-7.4, 

(La/Sm)N from 2.1-2.9, and (Gd/Yb)N  from 2.1-1.7 (Fig. 1.7). Incompatible trace 

element concentrations of the tholeiitic lavas of the Strawberry Volcanics indicate 

elevated concentrations at 20 to 100 times primitive mantle with the most incompatible 

elements being most enriched (Table 1.2, Figs. 1.8, 1.9). Normalized incompatible trace 

element patterns indicate distinct spikes at Ba, Pb, and in some samples Sr and K (Figs. 

1.8, 1. 9). Ta and Nb have small troughs relative to neighboring elements.  
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The calc-alkaline suite of the Strawberry Volcanics 

 The calc-alkaline lavas (excluding rhyolites) mostly consist of basaltic andesite 

and andesite (53-63 wt.% SiO2). Only a few dacitic lavas and no calc-alkaline basalt have 

been found (Fig. 1.2).  All calc-alkaline compositions plot in the sub-alkaline field and 

contain generally less total alkalies than tholeiitic samples. Al2O3 is similar to tholeiitic 

lavas with a range of 16.0–17.9 wt.%. MgO and FeO* decrease with increased silica 

ranging from 6.2–2.0 wt.% and 9.2–5.2 wt.%, respectively. FeO*/MgO ratios display no 

increase to a slight increase and trend horizontally from the tholeiitic/calc-alkaline 

dividing line towards higher SiO2 to straddling it (Table 1.2, Fig. 1.2).  

 Normalized incompatible trace element patterns indicate similar enrichment levels 

and patterns as tholeiitic samples (Table 1.2, Figs. 1.6, 1.8). Select element ranges for 

samples of the calc-alkaline suite are: Rb (10.8–42.0 ppm), Ba (550–1124 ppm), Th (0.8–

4.0 ppm), U (0.3–2.3), and K2O wt.% (0.9–2.8) (Table 1.2). Typical incompatible 

elements during evolution from basaltic andesite to andesite behave variably within the 

calc-alkaline suite of the Strawberry Volcanics. Incompatible elements that do increase 

include Rb, Ba, Th, U, those that are nearly constant include Zr, Hf, and others decrease 

including Nb, Ta. Another noteworthy feature is that Sr also stays constant. (La/Yb)N 

values of the calc-alkaline lavas range from 5.6–9.0, (La/Sm)N from 2.4–3.5 and  

(Gd/Yb)N from 1.5–1.9 (Fig. 1.7). Some of the more evolved samples indicate small 

negative Eu anomalies.  
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Compositional difference between tholeiitic and calc-alkaline suite 

 The calc-alkaline suite strongly overlaps with the tholeiitic suite in regards to 

most major elements (Table 1.2). Both suites are medium to high K lavas (Le Bas et al. 

1986) and normalized trace element patterns are comparable and similar to the most Mg-

rich basalt (Fig. 1.8).  Despite these similarities, there are distinct compositional 

differences – albeit some are quite small – between calc-alkaline and tholeiitic samples. 

Differences become more notable the more evolved samples are and the greater their 

relative difference in FeO*/MgO (Figs. 1.8, 1.9). Tholeiitic samples are generally lower 

in the LILE elements (e.g. Rb, Ba, Th, U and K) and tend to be higher in HFSE (Figs. 

1.6, 1.8, 1.9).  There is also a difference in the slope of the REE pattern. The slope of 

LREE-MREE is generally steeper and slope of MREE-HREE shallower in calc-alkaline 

samples than in tholeiitic samples (Fig. 1.7). And finally, Ti and P are lower in calc-

alkaline than in tholeiitic samples (Table 1.2, Fig. 1.8).  

 The range in FeO*/MgO at any given SiO2 concentration among lavas of the 

Strawberry Volcanics allows to investigate whether the mentioned differences change 

progressively from samples with highest to lowest tholeiitic index. Using a series of 

samples at 55-62 wt.% SiO2 and comparing normalized trace element diagrams illustrates 

how observed changes correlate with tholeiitic index at a given SiO2 (Fig. 1.9).  
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Discussion 

 

Field interpretations 

 One question to answer is did lavas of the Strawberry Volcanics erupt from 

central vent volcanoes with a few localized general eruption sites or did eruptions occur 

from numerous vents widely distributed constituting a volcanic field without prominent 

topographic edifices. Evidence that bears on this question includes field data on thickness 

distribution of lava flows, on location of venting sites, and distribution of dikes. Erosional 

levels as encountered within the area of the Strawberry Volcanics are likely to be near 

(~< 1 km) of the original surface as judged from intrusive contact relationships and 

volcanic textures of intrusive magmas cooled in a subvolcanic environment. The 

exception may be recorded at Strawberry Mountain where rocks do begin to show 

interlocking plutonic textures. With this in mind, we have no evidence for the existence 

of a major volcanic edifice rising 1000-2000 m above its base existed anywhere in the 

area as could have been expected given the intermediate magma composition which is 

typical for volcanic arcs. To the contrary, equal thicknesses of single lava flows over 

considerable distances argue that original landscape was relatively flat for lava flows to 

spread out evenly with or without inflation. Dike patterns follow a regional NNW-SSE 

trend as seen, for example, by the nearby Monument dike swarms that gave rise to the 

Picture Gorge Basalt (Fig. 1.1) (Wilcox and Fisher, 1966) instead of radial arrangements 

characteristic for large composite volcanoes. These data point to the interpretation that a 

volcanic field with topographically subdued volcanic edifices in form of fissure eruptions 
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or small central vent volcanoes produced the lavas of the Strawberry Volcanics. A likely 

analogue to the Strawberry Volcanics is found in the Harney Basin of the eastern High 

Lava Plains, eastern Oregon where intermediate composition magmas erupted during the 

late Miocene from small, mostly low relief venting sites, as identified by agglutinates and 

other pyroclastic material, to form thin lava flows (Streck and Grunder, 2012).    

 The eruptions of lavas of the Strawberry Volcanics were not only coeval with the 

eruptions of the Wanapum member (15-14.5 Ma) but likely also with earlier units of the 

CRBG (Camp and Hooper, 1981; Baksi, 1989) because our oldest age of 14.8 Ma (Table 

1.1) does not correspond with the activity onset of the Strawberry Volcanics. Onset must 

have been considerably earlier as approximately 850 m of lavas sit underneath the lava 

flow that yielded the oldest date reported here. The intercalated ash-flow tuffs (Fig. 1.4), 

that we correlate with the 15.4-15.9 Ma Dinner Creek Tuff (Streck et al., 2011), is found 

in the lower section, indicating some lavas flows of the Strawberry Volcanics are even 

older than Dinner Creek Tuff. Therefore, it is reasonable to infer that activity started 

around 16 Ma, if not before.  The shallow intrusive andesite plug of Strawberry Mountain 

dated at 12.52±0.12 Ma is probably close to the terminal activity of the Strawberry 

Volcanics (Table 1.1).  

 Rhyolite lava flows subordinate in volume to basaltic and andesitic lava flows 

mainly crop out in the west and south of the area (southwest of Strawberry Mountain) 

(Fig. 1.1b). Field evidence suggests a stratigraphic level of the rhyolites below basalts 

and andesites and thus rhyolites constitute the first erupted phase of the Strawberry 

Volcanics. One date of 17.3 ± 0.36 Ma (Robyn, 1977) places these rhyolites at the very 
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onset of plume-head related rhyolites associated with the CRBG (Pierce and Morgan, 

1992; Coble and Mahood, 2012). There is no evidence for a significant time hiatus, such 

as paleosol development, scouring, or reworking between the emplacement of rhyolite 

lavas and the basalt to intermediate flows of the Strawberry Volcanics. This suggests 

earliest eruptions of basalts and andesites closely followed those of rhyolite that in turn 

also suggests an onset of basaltic to andesitic volcanism of the Strawberry Volcanics at ≥ 

16 Ma.  

 In summary, basaltic to andesitic magmas of the Strawberry Volcanics erupted 

over a period of ~3-4 million years from ≥16 to ~12 Ma and for the first 1-2 million years 

were coeval with the eruption of flood basalts of the Wanapum, Picture Gorge, and 

Grande Ronde members of the CRBG, and possibly even with Imnaha and Steens Basalt 

(Camp and Hooper, 1981; Baksi, 1989). The volcanic suite of the Strawberry Volcanics 

is surrounded by the voluminous (230,000 km3) exclusively tholeiitic flood basalts and 

basaltic andesites of the CRBG (Fig. 1.1a). The upshot of the Strawberry Volcanics being 

in the center of and coeval to CRBG magmatism is that the melting anomaly responsible 

for the mid-Miocene Columbia River flood basalt province likely also caused magmatism 

at the Strawberry Volcanics, yet at the Strawberry Volcanics we observe calc-alkaline 

and mildly tholeiitic volcanism contrasting with CRBG magmas (Fig. 1.2).  
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Common parent for calc-alkaline and tholeiitic magmas 

 The calc-alkaline and tholeiitic rock suite of the Strawberry Volcanics and the 

tholeiites of the CRBG all converge towards higher Mg concentrations to a composition 

with about 8 wt.% MgO (Fig. 1.2c). This suggests the same parental basalt composition 

in terms of Fe/Mg ratio can lead to vastly different trajectories in a FeO* vs MgO 

diagram, leading to both tholeiitic and calc-alkaline compositions. This is not only 

observed for eastern Oregon during the mid-Miocene but has also been documented for a 

late Miocene/Pliocene basaltic suite from farther SSW along the High Lava Plains 

(Streck and Grunder, 2012). There, an evolved high-alumina olivine tholeiite gave rise to 

a strongly calc-alkaline suite – just like the calc-alkaline Strawberry Volcanics – as well 

as a ferrotrachytic suite (Streck and Grunder, 2012). Furthermore, there is trace element 

evidence that tholeiitic and calc-alkaline magmas of the Strawberry Volcanics developed 

from the same tholeiitic parent. Incompatible trace element and REE patterns among 

tholeiitic and calc-alkaline basaltic andesites (≤ 53 wt.% SiO2) are identical suggesting 

that both have a common parent (Fig. 1.8c). The mentioned subtle differences between 

tholeiitic and calc-alkaline compositions become only significant at higher silica contents 

(Fig. 1.8a) and are discussed in the next section but compositions are essentially 

indistinguishable at lower silica contents irrespectively whether tholeiitic or calc-alkaline 

in character. Some variations among Strawberry Volcanics basalts do exist but our 

current data also include compositions that are compatible with being parental to basaltic 

andesites, again judged from nearly identical trace element concentrations and REE 

patterns (Table 1.2, Fig. 1.8c). Furthermore, tholeiitic basalts of the Strawberry Volcanics 
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and lavas of the CRBG lavas overlap in some trace-element ratios (Fig. 1.10) and are 

otherwise similar in their incompatible trace element patterns (Fig. 1.11). This is 

testimony that Strawberry basalts are derived from a more or less similar mantle source 

as the flood basalts of the CRBG. The fact that all CRBG magmas and all basalts of the 

Strawberry volcanics are tholeiitic indicates that this mantle source apparently gave rise 

to only tholeiitic magmas during the mid Miocene in eastern Oregon. This is further 

supported by the fact that neither our study to date nor any other published data have 

revealed the existence of any calc-alkaline basalt among tholeiites. The mantle source for 

the tholeiites was metasomatized by subduction processes at some earlier point in time 

because all CRBG and Strawberry tholeiites show clear geochemical signs in form of 

elevated concentrations levels of e.g. Ba, Pb, Sr and lower Nb, Ta relative to similarly 

incompatible elements (Figs. 1.10, 1.11) (Brandon et al., 1993; Carlson, 1984, Wolff et 

al., 2008). It is such tholeiitic magma that is parental to the compositional intermediate, 

tholeiitic as well as the calc-alkaline suites of the Strawberry Volcanics as based on 

geological and geochemical arguments. There is no evidence for and no need to call upon 

an unseen calc-alkaline basalt magma from which calc-alkaline lavas evolved.  

  



20 
 

 

Compositional changes and petrogenesis associated with calc-alkaline and tholeiitic 

evolution 

 As Strawberry Volcanics magmas become more silica rich and more evolved their 

compositional diversity increases in terms of being less or more strongly calc-alkaline. 

Here we evaluate what compositional changes take place along with changes in the calc-

alkalinity index of the magmas and use this in turn as constraints for the processes 

involved. Detailed modeling of these trends is beyond the scope of this paper but will the 

subject of subsequent work. The main changes between the strongest calc-alkaline and 

tholeiitic andesite of the Strawberry Volcanics is that tholeiitic andesites tend to be 

slightly richer in REE, P, Ti, Ta and Nb, (Figs. 1.7, 1.8, 1.9 Table 1.2). All other elements 

are practically indistinguishable. Also, calc-alkaline REE patterns have in general a 

steeper LREE-MREE (higher (La/Sm)N ratios) part and a shallower MREE-HREE 

portion (i.e. lower (Gd/Yb)N ratios) (Fig. 1.7). If these differences were to be explained 

by fractional crystallization processes then observed compositional systematics would be 

consistent with fractionating liquidus minerals for the calc-alkaline magmas that include 

more Ti-Fe oxides, apatite and silicates that preferentially uptake the MREE such as 

amphibole compared to tholeiitic magmas. However, near constant incompatible element 

concentrations going from basalt to silicic andesites as observed for example for Zr and 

La (Fig. 1.6b, c) are inconsistent with a dominant control by fractional crystallization 

except for some tholeiitic magmas (Fig. 1.6e). Even more striking are the generally 

decreasing Nb concentrations towards calc-alkaline andesite (Fig. 1.6a) that violates any 

reasonable fractional crystallization scenario (Fig. 1.6f). Consequently, evolution towards 
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calc-alkaline andesite must therefore be controlled by open-system processes either in 

form of crustal contamination, magma mixing processes, or a combination thereof. 

Contaminant or magma for magma mixing must be silicic in order to generate the more 

silicic compositions of the Strawberry Volcanics. Some of the Strawberry rhyolites have 

compositions that make them suitable for magma mixing as they have concentrations of 

incompatible elements as low, lower, or only slightly higher than basalt, which means 

concentrations around 8-9, 110, and 28 ppm for the key elements Nb, Zr, and La, 

respectively (Fig. 1.6, Table 1.3). Similarly our preliminary data on composition of 

crustal rocks also indicate low Nb, Zr, and La and thus they are permissive as 

contaminants in case of silicic bulk composition (>65 wt.% SiO2) or suitable as source 

rocks to generate permissive silicic partial melts when crustal rocks are more mafic (Fig. 

1.6, Table 1.3). 

 

Implications for other intra-continental settings with calc-alkaline suites 

 Calc-alkaline suites of intra-continental settings are numerous. Examples from 

Oregon include the late Miocene Harney Basin suite (Streck and Grunder, 2012), other 

mid Miocene suites of the Powder River Volcanics (Hooper et al., 1995; Ferns and 

McClaughry, 2013) and of the Owyhee volcanic field (Camp et al., 2003; Ferns and 

McClaughry, in press), Oligocene suites of the Steens Mountain Volcanics (Langer, 

1991) and Tower Mountain volcanic complex (Ferns et al., 2001). They are equally 

abundant throughout the western US, for example in the Basin and Range province (e.g. 

Hawkesworth et al., 1995) and elsewhere (Zielinski and Lipman, 1976; Ewart et al., 
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1982; Lipman, 2000; Kürkcüoglu et al., 2001, Harangi et al., 2007). Some of the calc-

alkaline centers that occur in an intra-continental setting have been interpreted to be due 

to very shallow subduction that caused volcanic-arc style volcanism much farther inward 

than is known from modern volcanic arc settings. This was championed by Lipman et al. 

(1972) for the Oligocene San Juan volcanic field. In fact, the occurrence of calc-alkaline 

suites of older age, where the original geotectonic setting is unsure, is traditionally used 

to argue for a subduction setting. Even in cases of calc-alkaline suites of young age where 

a non-subduction setting is unquestionable, a common precondition for the generation of 

calc-alkaline magmas is a mantle that has previously been metasomatized by earlier 

subduction processes from which first calc-alkaline basalt is generated (Hawkesworth et 

al., 1995; Hooper et al., 1995; Harangi et al., 2007). It is here where the record of the 

Strawberry Volcanics has implications. Calc-alkaline rocks of the Strawberry Volcanics 

indeed show evidence of this metasomatized mantle but this signal was most likely 

imparted by tholeiites and not by calc-alkaline basalt. Instead, as we discussed open-

system processes in form of contamination and mixing facilitated the development along 

calc-alkaline evolution with the production of arc-like orogenic andesites from ambient 

tholeiitic magmas delivered from the mantle. The follow up question is how much of the 

other intra-continental calc-alkaline systems indeed require delivery of calc-alkaline 

basalt from the mantle that serves as parent to calc-alkaline intermediate lavas. Tholeiites 

carrying subduction signals as those of the mid-Miocene of eastern Oregon are able to 

spawn calc-alkaline andesites during crustal processing eliminating the need of a mantle 

derived calc-alkaline basalt. Our example of the Strawberry Volcanics calls into question 
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the general interpretation that a metasomatized mantle signal is imparted to the more 

evolved magmas by calc-alkaline basalts when the most mafic lavas are basaltic andesite 

or more silicic. In case of the Strawberry Volcanics, calc-alkaline basaltic andesites have 

undergone already some crustal processing despite that some are fairly mafic with MgO 

and Cr of around 6 wt.% and 200 ppm, respectively (Table 1.2). Such compositions are 

often the most mafic samples encountered at other intra-continental calc-alkaline systems 

(e.g., Zielinski and Lipman, 1976; Askren et al., 1997). The up-shot of this is that even 

though calc-alkaline basaltic andesites and andesites of intra-continental settings carry 

compositional evidence for being derived from a mantle that experienced some 

compositional overprint by subduction (e.g. high Ba/Zr), there it is no guarantee that 

parental mantle magmas were already calc-alkaline as tholeiitic magmas can be carrier of 

subduction signals just as well – as our study demonstrates. This challenges the a priori 

interpretation that when chemical subduction signals are observed in basaltic andesites 

and andesites that they are coming indeed from calc-alkaline basalt. Our study is showing 

that crustal interactions and/or magma mixing can solely be responsible for developing a 

calc-alkaline trend from tholeiite and therefore merging the subduction signals with calc-

alkaline character.  
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Conclusions 

 

 The Strawberry Volcanics is a diverse group of lavas ranging from basalt to 

rhyolite and from tholeiitic to calc-alkaline. The most primitive lavas of the Strawberry 

Volcanics are tholeiitic basalts and are also the parent to the intermediate calc-alkaline 

lavas. Calc-alkaline and tholeiitic basaltic andesites show identical enrichment and 

depletion patterns on trace element normalization diagrams that are similar to the ones of 

basalts attesting to their common tholeiitic ancestry. Subtle differences show up as 

magmas evolve and acquire progressively stronger calc-alkaline or tholeiitic character. 

Decreasing, constant, or increasing incompatible element abundances along with 

increased silica contents among calc-alkaline compositions are un-reconcilable with 

fractional crystallization scenarios but instead require open-system processes in form of 

crustal contamination and magma mixing and are the main driver for developing a calc-

alkaline suite. Preliminary evaluations indicate that observed rhyolites and nearby 

exposed crustal rocks have compositions suitable for magma mixing and/or 

contamination. Crustal interactions appear to be important for the early stage of the calc-

alkaline liquid line in order to diverge from the regional tholeiitic trend.  

 Our study holds implications for intra-continental calc-alkaline suites where 

relationships to tholeiitic magma are equivocal or do not exist. When calc-alkaline 

basaltic andesites and andesites of intra-continental settings carry compositional evidence 

for being derived from a mantle influenced by subduction then this signal may also have 

been delivered by tholeiitic magmas that subsequently evolved a calc-alkaline suite 
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during open system processes in the crust. Therefore, the notion that chemical subduction 

signals as observed in evolved mafic magmas must come from calc-alkaline basalt is to 

be reevaluated. Subsequent crustal processing can solely be responsible for developing a 

calc-alkaline trend including ‘orogenic’ andesites and therefore merging the subduction 

signals and calc-alkaline character – just as observed at volcanic arcs.  
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CHAPTER 2 
 

THE VOLUMINOUS AND COMPOSITIONALLY DIVERSE, MID-MIOCENE 
STRAWBERRY MOUNTAIN VOLCANICS OF NORTHEASTERN OREGON AND 

THEIR RELATIONSHIPS TO BASALTIC AND RHYOLITIC VOLCANISM OF THE 
COLUMBIA RIVER BASALT PROVINCE. 

 

Abstract 

 

The Strawberry Volcanics of northeastern Oregon play an important role in our 

understanding of the intra-continental mid-Miocene volcanic history of the Pacific 

Northwest. Because of the timing, location and diversity of these erupted units. The 

Strawberry Volcanics may hold valuable information about the role that crustal 

modification has during large volcanic events such as hot-spot volcanism. Here we 

determine the eruptive sequence of events of the Strawberry Volcanics. The eruptions 

began at 16.2 Ma with low silica rhyolite, and high silica, A-type rhyolite eruptions 

followed at 15.3 Ma. The silicic eruptions continued until 14.6 Ma, with a estimated total 

volume up to ~100 km3. The first eruptions of the intermediate lava flows occur at 15.6 

Ma and continue with both tholeiitic and calc-alkaline and transitional lavas until 12.5 

Ma. Volume estimates of the intermediate lavas are approximately 1,100 km3. The mafic 

lavas are sparse (~2 % of total volume) and are distributed throughout the upper 

sequences and appear to be near-last to arrive at the surface. Here we show that the 

Strawberry Volcanics are not only related in time and space to the CRBG but also share a 

chemical affinity specifically to the Steens Basalt, such as overlapping normalized 
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incompatible trace element patterns, selected trace element ratios, and radiogenic 

isotopes. Furthermore, we compare the Strawberry Mountain rhyolites to the other mid-

Miocene rhyolites of eastern Oregon associated with the inception of the Yellowstone – 

Snake River mantle plume and find similar eruption ages, trace and rare earth element 

composition and “A-type” rhyolite characteristics. Therefore, this research suggests that 

the Strawberry Volcanics are part of regional basalt to rhyolite magmatism of the 

Columbia River Basalt province.  
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Introduction 

The name Strawberry Volcanics was given to a diverse group of volcanic rocks 

(Fig. 2.1, Thayer, 1957) that crop out along the southeastern margin of the John Day 

valley of NE Oregon and are mid-Miocene in age. Thayer (1957), Brown and Thayer 

(1966), and Robyn (1977) published the first works on the Strawberry Volcanic lavas 

providing data on their areal extent, geologic relationships to regionally occurring, 

stratigraphically younger and older units, and delineating their general geochemical and 

petrographic characteristics. These works established the overall calc-alkaline character 

and prevalence of andesitic lavas of this volcanic field (Fig. 2.2). It was also noted that 

these voluminous andesites are located in an intra-continental setting and not generated 

due to subduction processes (Robyn, 1979). The only subsequent work of note on the 

Strawberry Volcanics after the 1950s to ‘70s was that by Brandon and Goles (1988) who 

presented isotopic data for basaltic andesites of the Slide Creek member (Thayer, 1957), 

located in the NNE portion of the field. No more recent data exist on this enigmatic mid-

Miocene calc-alkaline field. However, these earlier studies have brought to light aspects 

that make the Strawberry Volcanics an important field to understand and these include: 1) 

the petrogenetic evolution of a voluminous volcanic field dominated by intra-continental 

calc-alkaline andesites, 2) the relationship of mafic magmas to the surrounding 

contemporaneous tholeiitic flood basalts of the Columbia River Basalt Group (CRBG) 

and 3) the context of largely unknown rhyolites of the Strawberry Volcanics to other mid-

Miocene silicic centers associated with the inception of the Yellowstone-Snake River 

Plain hotspot (Fig 2.3). 
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The goals of this paper are the following: 1) to establish units of the Strawberry 

Volcanics based on physical characteristics, mineralogy, geochemistry and geologic 

mapping; 2) to reconcile the timing and stratigraphy of the Strawberry Volcanics with 

40Ar/39Ar age dates with particular emphasis on time and space relationships to CRBG 

magmas; 3) to investigate the relationships of mafic magmas of the Strawberry Volcanics 

to surrounding CRBG units, and 4) to describe the rhyolites of the Strawberry Volcanics 

and explore their association with other mid-Miocene rhyolites and the Yellowstone-

Snake River Plain hotspot. 
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Geologic setting 

 

Accreted Terranes (~320-220 Ma)  

The lavas of the Strawberry Volcanics are underlain by the pre-Tertiary accreted 

terrane rocks of the Blue Mountain Province and Mesozoic sediments of the Izee terrane 

(Fig. 2.4, Robyn, 1977; Schwartz el al., 2010; LaMaskin et al,. 2011). A section of the 

Baker terrane, locally known as Canyon Mountain ophiolite, crops out immediately 

adjacent to Strawberry Mountain. The Canyon Mountain ophiolite represents part of an 

oceanic sea floor which was thrust onto the continent (Figs. 2.1, 2.4, Thayer, 1977). This 

terrane extends approximately 18 km southeast of John Day and dips to the south below a 

portion of the Strawberry Volcanics (Fig. 2.1, Thayer, 1977). Other portions of the Baker 

terrane are sections of dunites and pyroxenites, which crop out near Miners Ridge located 

north of Bull Run Mtn. and east of Strawberry Mountain which has not traditionally been 

part of the Canyon Mountain ophiolite (Fig. 2.1). Fine grained mudstone/siltstone, 

argillite and limestone of the Izee terrane crop out in areas southwest of Strawberry 

Mountain near the town of Seneca (Figs. 2.1, 2.4, Brown and Thayer, 1966). Southwest 

of Strawberry Mountain, these sedimentary rocks form discontinuous units. East of 

Strawberry Mountain, Jurassic argillite and limestone and Cretaceous intermediate to 

silicic dikes and sills are exposed near Bull Run Mountain and Ironside Mountain (Fig. 

2.1, Thayer and Brown, 1967).  
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Clarno/John Day (~54-22 Ma)  

Rocks of the Clarno formation are exposed north and northeast of Strawberry 

Mountain near highway 26 and northeast of Prairie City (Fig. 2.1, 2.4). The Clarno 

Formation is composed of non-marine volcanic and volcaniclastic units ranging from 54 

– 39 Ma (Swanson and Robinson, 1968). These volcanic products are thought to be 

derived from subduction zone magmatism and are strongly calc-alkaline with hydrous 

minerals phases (amphibole and biotite) yet, some transitional tholeiitic compositions do 

occur (Rogers et al., 1977). Within the vicinity of the Strawberry Volcanics these units 

are mostly breccias and conglomerates from lahars and debris flows composed of 

andesite fragments (Rogers et al., 1977). Within the Strawberry Mountain range, previous 

geologic mapping by Robyn (1977) and Thayer (1977) identified andesite and dacite 

flows within the cirque walls at Strawberry Mountain underlying the Strawberry 

Volcanics to belong to the Clarno formation. Evidence for this should include textural 

features, erosional/age breaks, geochemical evidence, or ages determined by 40Ar/39Ar. 

Our recent field work coupled with updated geochemical and geochronological data 

reveals that these lavas belong to the Strawberry Volcanics.  

The John Day Formation is composed of volcanic units ranging from silicic to 

intermediate tuffs, lava flows, and domes and intermediate lava flows all ranging in age 

from 39 – 22 Ma (Rogers et al., 1977). Within the Strawberry Volcanics, exposures of the 

John Day Formation are minimal (Brown and Thayer, 1966). Such exposures are located 

in the cliffs west of Strawberry Mountain near Canyon Mountain, and volcanic plugs are 
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exposed at Bull Run Mountain (Figs. 2.1, 2.4). These exposed units are identified by 

large (>1cm) and abundant (>30%) phenocrysts, and geochemical data. 

 

The Columbia River Basalt Group (~16.9 – 6.0 Ma)  

The main outcrop area of the Strawberry Volcanics is bordered by units from the 

Columbia River Basalt Group (CRBG) – lavas of Picture Gorge Basalt to the west and 

northwest, lavas of the Grande Ronde to the north, lavas of the Imnaha Basalt to the east 

to southeast, and Steens Basalt lavas to the south (Fig. 2.1).The main pulse of the CRBG 

erupted tholeiitic mafic lava flows during the middle Miocene (~17 to 15 Ma), and the 

most widespread and voluminous Cenozoic geologic unit within the Pacific Northwest 

(230,000 km3) (Camp and Hooper, 1981; Baksi, 1989; Camp and Ross, 2004; Barry et 

al., 2013; Camp et al., 2013; Reidel et al., 2013a). Specifically, the ages of the CRBG 

eruptions and duration are: Steens Basalt 16.9 to 16.6 Ma; Imnaha Basalt 16.7 to 16.0; 

Grand Ronde Basalt 16.0 to 15.6 Ma (or 16.54-15.95, Jarboe et al, 2010); Wanapum 

Basalt 15.6 to 15.0; and Saddle Mountains Basalt 15.0 to 6.0 Ma (Barry et al., 2013). 

These magmas erupted from fissures that are now preserved as dike swarms (Wilcox and 

Fisher, 1966; Swanson et al., 1975; Brown et al., 2014). Eruption sites include: northwest 

of the Strawberry Volcanics, the Monument dike swarm produced Picture Gorge lavas, 

the Chief Joseph dike swarm producing Imnaha and Grande Ronde to the northeast, and 

the Steens dike swarm to the south (Fig. 2.1). The main difference between the CRBG 

and the Strawberry Volcanics is the CRBG are dominated by tholeiitic basalt and basaltic 

andesite (Hooper and Hawkesworth, 1993; Hooper, 2002) while the Strawberry 
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Volcanics are mainly calc-alkaline basaltic andesites to andesites (Fig. 2.2) (Robyn, 

1977, and this study). 

 

Regional ignimbrites and younger units  

Several regional ignimbrites reach into the area of the Strawberry Volcanics and 

are found either intercalated among intermediate or silicic units or overlie the Strawberry 

Volcanics. The Dinner Creek Tuff is found in a number of places (Fig. 2.4) and was co-

eruptive with the rhyolitic and mafic/intermediate lavas of the Strawberry Volcanics. 

New ages of the Dinner Creek Tuff indicate that several flow units of the Dinner Creek 

Tuff range from ~16.2 to 14.9 Ma (Streck et al., 2015). The redefined distribution of the 

Dinner Creek Tuff covers an area of ~ 25,000 km2 (Streck et al., 2015)  The proposed 

eruption center is located along the eastern edge of the Strawberry Volcanics between 

Ironside Mountain in the north and Castle Rock in the south (Fig. 2.1) (Streck et al., 2015 

and references therein). Dinner Creek Tuff outcrops found between lava flows of the 

Strawberry Volcanics are 5 - 10 m thick and can be identified in the field by its low 

phenocryst abundance (<1 – 5 %) and pumice ranging from 1 to 30 % (Streck et al., 

2015). A further geochemical comparison is provided in the discussion herein. 

Younger ignimbrites that reach into the area include the Devine Canyon Tuff and 

the Rattlesnake Tuff. The Devine Canyon Tuff is an alkali feldspar and quartz bearing, 

crystal rich (10-30 %) tuff. The areal extent is estimated at 18,600 km 2 stretching across  

eastern Oregon centered near Burns (Greene, 1973). Significant outcrops within the 

margins of the Strawberry Volcanics include the southwestern margin near Poison Creek 
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where a 30 m section of Devine Canyon Tuff is located (Greene, 1973). This tuff has an 

40Ar/39Ar age of ~ 9.7 Ma (Jordan et al., 2004). The Rattlesnake Tuff erupted ~ 7 Ma and 

covered an area of ~ 30,000 to 40,000 km2 of eastern Oregon (Streck and Grunder, 1995), 

again centered near Burns. This tuff is crystal poor and overlies the Strawberry 

Volcanics.   
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Methods 

 

Field Methods and Sample Collection 

Field observations and geologic mapping were conducted in the summers of 2010 

to 2014. Numerous outcrops exist throughout the area of the Strawberry Volcanics yet 

exposures to establish stratigraphic relationships are limited to the Strawberry Mountain 

range. Access to the mountain range itself is limited to two main roads: from the north, 

Strawberry road (NF-6001) which ends at the 1750 m evaluation point near the base of 

the mountain and bottom of the cirque walls. Access in the range itself from that point is 

limited to hiking trails. From the South, road NF-1640 ends at the overview of High 

Mountain and Strawberry Mountain at 2400 m. From this elevation access to the 

mountain range follows hiking trails along the glacially carved walls cut into the 

Strawberry Volcanics. Outside of this range, forest and regolith cover a significant 

portion of the lavas. Geologic maps provided in this chapter are mainly focused on the 

rhyolitic sections of the Strawberry Volcanics and were created using field observations 

and analysis of aerial photography. 
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Whole Rock Geochemistry  

Major and Trace Elements  

All mafic, intermediate and silicic units of the Strawberry Volcanics are defined 

based on field relationships, major and trace element composition, and age 

determinations. 206 whole rock major, trace and REE analyses of the Strawberry 

Volcanics were conducted to produce a robust data set to answer research questions. Only 

fresh samples were collected and analyzed. Once the samples were selected for analysis 

they were chipped to < 1 cm and inspected for mineralization or alteration. A sample 

location map is provided in Figure 2.5. 

Major and select trace elements were analyzed using a Wave Dispersive - X-ray 

fluorescence spectrometer (WD-XRF) at Washington State University (WSU). Sample 

preparation followed the analytical procedures of the WSU geochemical lab and can be 

found here: http://cahnrs.wsu.edu/soe/facilities/geolab/technotes/xrf_method/. Selected 

trace elements and rare earth elements (REEs) were analyzed using inductively-coupled 

plasma mass spectrometry (ICP-MS) at WSU. Samples were analyzed following standard 

analytical procedures at the geochemical lab at WSU: samples are ground into fine 

powder and mixed with an equal amount of dilithium tetraborate (Li2B4O7) flux and 

fused at 1000°C.  The beads are then re-ground to a fine-grained powder and dissolved 

for final analysis. A full detailed procedure of sample preparation and methodology can 

be found here: http://cahnrs.wsu.edu/soe/facilities/geolab/technotes/icp-ms_method/.  

  

http://cahnrs.wsu.edu/soe/facilities/geolab/technotes/xrf_method/
http://cahnrs.wsu.edu/soe/facilities/geolab/technotes/icp-ms_method/
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Radiogenic Isotopes  

Sr, Nd, and Pb isotopic compositions were measured on 13 samples representing 

mafic, intermediate, and rhyolitic compositions. Sample dissolution and chemistry were 

performed at the radiogenic isotope clean lab and analyzed using thermal ionization mass 

spectrometry (TIMS) at New Mexico State University. Sample preparation methods for 

whole rock isotopic analysis can be found at: 

http://geology.nmsu.edu/framos/TIMS.html. Age corrections for Sr and Nd isotopic ratios 

were applied using the ratio of Rb and Sr whole rock element concentrations.  

 

40Ar/39Ar geochronology  

40Ar/39Ar geochronology was conducted at Oregon State University’s Argon 

Geochronology Research Laboratory on a total of fifteen samples: ten groundmass 

concentrates, three plagioclase separates, one biotite, and one glass sample. Six rhyolitic 

samples (one of which was a repeat run of plagioclase separates) were collected from two 

main rhyolitic sections, one adjacent to Strawberry Mountain and the other south of 

Strawberry Mountain (Table 2.1). The remaining nine samples are from lava flows of 

calc-alkaline and tholeiitic composition, which were collected from various stratigraphic 

sections and locations (Table 2.1). All samples were loaded in quartz vials with small 

quantities of mineral monitor FCT-3 (28.030 ± 0.003 Ma, Renne et al., 1998) and 

irradiated at the OSU TRIGA research reactor. Obtained ages were later on recalculated 

using a Fish Canyon Tuff (FCT) age of 28.201 (Kuiper et al., 2008). All samples were 

analyzed by the furnace incremental heating age spectrum method using a Mass Analyzer 

http://geology.nmsu.edu/framos/TIMS.html
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Products (MAP) Model 215-50 mass spectrometer and analyzing between eight and 

twelve heating steps (Table 2.1). Starting temperature of 400°C was followed by 100°C 

incremental increases until significant 39Ar was released. Acquired isotopic data were 

reduced using the ArArCALC software provided by Koppers (2002) and age calculations 

were made using the currently accepted 40K decay constant (Steiger and Jäger 1977). 

Further details of the analytical procedures are described in Duncan and Keller (2004) 

and on the laboratory website: 

http://www.coas.oregonstate.edu/research/mgg/chronology.html. All new age data cited 

in the text are quoted at 2σ (Table 2.1). This study produced age spectra that yield at least 

6 consecutive heating steps, containing no less than 70% of the total 39Ar released with 

the exception of two, which only 4 and 5 consecutive heating steps were produced and 

are in the processes of being re- analyzed (Table 2.1). These groundmass and mineral 

separate samples can be considered as “well behaved”, despite having some discordance 

for early and late heating steps. It is possible that the discordance could be related to 

geological effects (argon loss) or irradiation-induced artifacts (39Ar recoil). 

  

http://www.coas.oregonstate.edu/research/mgg/chronology.html
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Radiometric ages 

 

Previous ages of Strawberry Volcanics  

Robyn (1977) determined a 7 million year long activity period for the Strawberry 

Volcanics  from 19.8 ± 0.38 Ma (2σ) to 12.4 ± 0.41 Ma (2σ) based on 6 K/Ar age dates. 

Of the ages reported by Robyn (1977), a single basalt lava at 14.9 ± 0.85 Ma (2σ) and a 

basaltic andesite at 12.4 ± 0.41 (2σ) Ma. conform best with our geochronological study of 

the Strawberry Volcanics. On the other hand, the oldest ages of 19.8 ± 0.38, 19.1 ± 0.65, 

and 18.1 ± 0.50 Ma (2σ) that Robyn (1977) reports for lava flows are significantly older 

than any of our ages. Using latitude and longitude data, and descriptions of these dacite 

samples provided by Robyn (1977), we were able to locate units yielding these old ages. 

Field and lithological characteristics indicate that any of these old lavas are unlikely units 

of the Strawberry Volcanics. They are dacitic in composition and contain large 

phenocrysts of plagioclase and amphibole (~1-3cm) different than typical mineral 

assemblage of the Strawberry Volcanics. . Robyn (1977) also reported an age of 17.3 ± 

0.36 Ma for a rhyolite within the Strawberry Mountain Range. This rhyolite is similar to 

other rhyolites found within the Strawberry Volcanics. We have not yet confirmed this 

age yet but, if correct, then this would be the oldest recorded Yellowstone-Snake River 

hotspot related rhyolite volcanism. 
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Summary of new 40Ar/39Ar results  

New 40Ar/39Ar ages from this investigation indicate that basaltic andesite to 

rhyolite lavas of the Strawberry Volcanics erupted from 16.16 ± 0.17 Ma (2σ) to 12.52 ± 

0.12 Ma (2σ, Fig. 2.6; Table 2.1). Rhyolites yielded the oldest ages ranging from 16.16 ± 

0.17 Ma (2σ) to 14.70 ± 0.13 Ma (2σ), which is consistent with stratigraphic field 

observations described below (Fig. 2.6; Table 2.1). Among intermediate lavas, those of 

calc-alkaline affinity erupted over the longest duration as indicated by ages ranging from 

15.59 ± 0.36 Ma (2σ) to 12.52 ± 0.12 Ma (2σ) (Fig. 2.6; Table 2.1). The tholeiitic lavas 

produced a slightly narrower range of ages of 15.57 ± 0.16 Ma (2σ) to 13.53 ± 0.24 Ma 

(2σ). This may not be significant but what is clear is that tholeiitic and calc-alkaline 

volcanism was coeval (Fig. 2.6; Table 2.1). One basalt sample yielded an age of 12.61 ± 

0.08 Ma (Fig. 6; Table 1). Other basalts are intercalated near the middle of a stratigraphic 

sequence of lava flows at Strawberry Mountain and thus have ages within the range of 

intermediate lavas.  
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Stratigraphy and eruptive units 

 

Rocks of the Strawberry Volcanics are dispersed over 3,600 km2 from 44° 00” N 

to 44° 40’’ N and 119° 00” W to 118° 00” W. (Fig. 2.1). Due to the size of the area of the 

Strawberry Volcanic field and ability to finish in a timely manner, the southern boundary 

of the field area was placed along Forest Road 17 representing therefore an artificial cut-

off rather than a natural boundary. Of the 3,600 km2 approximately 200 km2 (~ 6 %) is 

rhyolite and roughly 100 km2 (~3 %) is basalt lavas. The rest of the volcanic field is 

basaltic andesite to andesite calc-alkaline and tholeiitic lavas. In this paper, we have 

divided the eruption history of the Strawberry Volcanics into 3 different eruption units 

based on field evidence and major-element geochemistry and include: 1) rhyolite lava 

flows and tuffs, 2) intermediate calc-alkaline lavas, and 3) tholeiitic basalt and 

intermediate tholeiitic lavas. 

 

Rhyolite Volcanism  

Rhyolite lavas of the Strawberry Volcanics erupted as lava domes and coulees, 

and fallout and ash-flow tuffs. In addition, far travelled ash-flow tuffs that erupted from 

centers ~80 km to the south and ~20 km to the southeast reach into the area. These 

include the late Miocene Devine Canyon and Rattlesnake Tuff (Greene, 1972; Streck and 

Grunder, 1995) and tuffs erupted from the mid-Miocene Dinner Creek Tuff Eruptive 

Center (Streck et al., 2015). Rhyolites are typically situated in the lower part of the 

stratigraphy and sit atop Izee terrane sediments or co-erupted with both calc-alkaline and 
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tholeiitic intermediate lavas. Where the rhyolites are in direct contact with the 

intermediate lavas, there is no evidence of a significant time gap (e.g. paleosol or 

unconformities). Dikes of mafic to intermediate composition  crosscut these rhyolite 

lavas and tuffs. The volume is difficult to estimate because of outcrop exposure, erosion 

and the expected variability in thicknesses of domes and rhyolite flows at emplacement. 

Nevertheless, we estimate a total erupted rhyolite volume of between 40 and 100 km3.  

Locally erupted lava domes and flows can be separated into different rhyolite 

units based on location, petrography, and composition. The following is a description of 

these rhyolites that we discuss according to exposure area as “northern” and “southern” 

rhyolites. Detailed geologic field maps of these rhyolites and the surrounding units are 

located in figure 2.7, 2.8, and 2.9. 

The northern rhyolites are located west of Strawberry Mountain and are 

phenocryst-poor lavas (<1% phenocrysts) of high-silica rhyolite composition (~76-78 

wt% SiO2) that often display flow banding textures. Northern rhyolites cover an area of 

approximately 55 km2 and have a volume between 10 and 30 km3 (Fig. 2.7). Phenocrysts 

are limited to plagioclase and quartz. Microphenocrysts are rare (<1%) but are seen on 

occasion and include plagioclase, quartz, and minor pyroxene. These lavas are often 

devitrified or include obsidian bands between devitrified sections. Ash-flow tuffs and fall 

out deposits, associated with vents proximal to this location, are dispersed throughout the 

area and intercalated among rhyolitic lavas or are stratigraphically younger.  

The northern rhyolites are both peralkaline and peraluminous, high silica rhyolites 

and tend to be lowest in major elements oxides such as Al2O3, CaO, FeO* as are high-
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silica rhyolites of the other area (Fig. 2.10). The peraluminous characteristic is likely due 

to minor loss of alkalies. Some of these rhyolites have increased REE and HFSE 

compared to other rhyolites (Fig. 2.11; Table 2.2). Another major difference between the 

northern Strawberry rhyolites (purple symbols in Figs 2.10 to 2.13) and the other 

rhyolites of the Strawberry Volcanics (red and blue symbols) is their wide range in Zr 

concentrations from 175 ppm to 450 ppm whereas the southern section ranges from 70 

ppm to 240 ppm (Fig. 2.12; Table 2.2). The enriched northern rhyolites have Zr + Nb + 

Ce + Y (>600 ppm) and 10,000 x Ga/Al (>3) (Fig. 2.12; Table 2.2). These high values 

make them distinct among the rhyolites of the Strawberry Volcanics (Fig. 2.12; Table 

2.2) and confirm as A-type magmas (cf. Whalen et al., 1987).  

The second semi-continuous rhyolitic section is located south and southwest of 

Strawberry Mountain (Figs. 2.5, 2.8 and 2.9). This rhyolitic section covers an area of 

approximately 145 km2 with a volume between 30 and 70 km3 (Figs.2.8, 2.9). 

Structurally these lavas appear as large (up to 3 km long) coulees and are composed of 

generally two different geochemical and mineralogical types. The first type (red symbols 

in Figs. 2.8, 2.9, 2.10) are low-silica rhyolites ranging from ~70-74 wt. % SiO2 and are 

dominated by a single mineral phase of plagioclase (~20 %) and minor amounts of 

amphibole (<1 %). They range considerably in texture with regards to flow banding, 

presence of mafic inclusions, vesicularity, and of being glassy or devitrified lavas. The 

second rhyolite type (light blue symbols) is a high-silica rhyolitic composition ~77-78 

SiO2 wt% (Fig. 2.8, 2.9, 2.10) and contains lesser amounts of plagioclase (~10 %) and 

occasional amphibole and biotite (≤ 2 %).  
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The southern low silica rhyolites are metaluminous to peraluminous with the 

highest Al2O3 and CaO wt. % of 13.0 - 15.2 and 1.18 - 2.70 respectively (Fig. 2.10). 

FeO* (2.0-3.5), TiO2 (0.26-0.60) wt. % and Cr (5-9) ppm are also elevated with respect 

to the other Strawberry rhyolites (Fig. 2.10; Table 2.2). Notable trace element 

concentration differences are the lowest Nb (8-12 ppm) and highest Sr (100-250 ppm) 

concentrations (Figs. 2.11, 2.12; Table 2.2). Overall, normalized to chondrite, REE 

multivariable diagrams show that the LREE (La through Sm) concentrations overlap the 

range of the other groups of rhyolites but the HREEs (Gd through Lu) generally have 

slight lower values and at higher concentrations overlap only with the other southern 

section (blue) (Fig. 2.11; Table 2.2).  

The southern high-silica rhyolites have similar major element compositions as the 

high silica group in the north with comparable Al2O3, CaO, FeO*, and TiO2 wt. % (Fig. 

2.10; Table 2.2). Trace element concentrations are also comparable to northern rhyolites 

with the exception of lower Zr and Hf concentrations that range from 70 to 113 ppm 

(Figs. 2.11, 2.12; Table 2.2). In variation diagrams of Nb and 10,000 Ga/Al vs Zr, the 

trend of the northern and southern high silica rhyolites diverge with a positive correlation 

seen in the northern rhyolites and a negative correlation in the southern rhyolites (Fig. 

2.12; Table 2.2). REE patterns of southern high silica rhyolites overlap with the southern 

low silica rhyolites and are generally less enriched in all REE relative to the northern 

high silica rhyolites (Fig. 2.11; Table 2.2).  

In general, most rhyolites of the Strawberry Volcanics were likely metaluminous 

prior to alkali loss but some are mildly peralkaline (Fig. 2.10; Table 2.2). Trace elements 
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concentrations vary most in elements like Sr (9 - 250 ppm), Zr (66 - 450 ppm), Ti (300 - 

3500 ppm), and Ba (350 - 1630 ppm) (Figs. 2.11, 2.12; Table 2.2). When normalized to 

upper crust values, rhyolites plot around 1 with significant troughs at Sr, P, and Ti, and 

minor troughs in Nb, Ta, and some samples with troughs and spikes in Zr (Fig. 2.11; 

Table 2.2). REE patterns indicate slight LREE enrichment with (La/Yb)N ranging from 

2.5 to 8.9. (La/Yb)N values with weak positive correlations with elements that are 

sensitive to feldspar fractionation (i.e. Ba, Sr, Eu/Eu*) (Fig. 2.13; Table 2.2). This 

suggests that fractional crystallization may have played a minor role in the generation of 

these rhyolites. It does not appear that they were generated by a parental mafic or 

intermediate magma. Rather, it seems more likely that these magmas were formed by 

partial melting of country rocks. Figure 2.14 shows the path of fractionation from an 

intermediate magma composition. It is clear that fractional crystallization of an 

intermediate or mafic magma of the Strawberry Volcanics cannot result in the generation 

of these rhyolitic lavas (Fig. 2.14). Rhyolites of the Strawberry Volcanics all have low 

Nb concentrations (<25 ppm) comparable in concentrations to the intermediate lavas 

which may be the result of mixing between the mafic and silicic magmas.  
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Basaltic to intermediate lava flows 

The Strawberry Volcanics primarily consist of lava flows of basaltic andesitic and 

andesitic composition (Fig. 2.2) that cover 3,600 km2 of the Malheur National Forest and 

Strawberry Mountain Wilderness (Fig. 2.1). The best exposures of these lava flows are 

found in the vicinity of Strawberry Mountain, a glacially carved mountain with a 

maximum elevation of ~3,000 m, which the Strawberry Volcanics were named for (Fig. 

2.1). Strawberry Mountain with its southern extension, High Mountain, and its eastern 

extension, Slide Mountain, make up the east/northeast-trending Strawberry Mountain 

range, extending approximately 15 km parallel to the John Day valley. Within this 

mountain range, the total thickness of numerous basaltic andesite and andesite lava flows 

is consistently about 1000 m. Across this range, individual lava flows show constant 

thicknesses of ~5-10 m with little columnar jointing but instead display a thin (~10s of 

cm), platy appearance. In contrast, the lavas of the CRGB are often the result of 

inflationary flows (Thordarson and Self, 1998) displaying columnar jointing. Volume 

estimates can be conservatively calculated by using the volume of a cone (𝑉𝑉 =  𝜋𝜋𝑟𝑟2 ℎ
3
; 

where r is the radius and h is the height of thickness) assuming that the lava thicknesses 

decrease from Strawberry Mountain towards the outer edges of the volcanic field. The 

result is approximately 1,100 km3 if we use a radius of 32 km and a thickness of 1km. We 

are confident that this calculated volume is an underestimate as the thickness of lava 

flows do not decrease to the outer edges as a cone. Alternatively, we use a series of 

rectangles as a volume calculation with the Strawberry Mountain range being the thickest 

unit with 1 km and extending 75 km 2. To the east a safe estimate of 500 m thick units 
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covering 1875 km2 and to the south of the Strawberry Mountain range is a thinner 

approximately 200m section extending 500 km2. The total volume estimated this way is 

approximately 1,100 km3 of erupted lava same as the cone. 

 

Calc-Alkaline Intermediate Volcanism (15.60 to 12.5 Ma)  

The oldest (15.59 ± 0.36 Ma (2σ)) intermediate lava of the Strawberry Volcanics 

is a calc-alkaline basaltic andesite and the youngest 12.52 ± 0.12 Ma (2σ) is a andesite 

vent plug located at High Mountain (based on discrimination schemes by Miyashiro 

(1974) and Arculus (2003)).  

Calc-alkaline lavas range in SiO2 (wt. %) from 52.7 % to 64.5 % and 

incompatible elements behave variably within the calc-alkaline suite of the Strawberry 

Volcanics from basaltic andesite to andesite to dacite (Fig 2.2, 2.15; Table 2.3). Trace 

elements that do increase include Rb, Ba, Pb, and U but all other trace elements including 

REEs are nearly constant or slightly decrease with increasing SiO2 wt. % (Figs. 2.15, 

2.16; Table 2.3). 

Calc-alkaline lava flows and breccias vary from aphyric, to phenocryst-poor to 

containing 30 % phenocrysts. The dominate lava type are aphyric and contain < 5 % 

phenocryst. The aphyric type flows are best exposed along the lower section below 2000 

m in the cirque walls of Strawberry Mountains near Strawberry Lake. The calc-alkaline 

lavas which show greater amounts of phenocrysts have glomerocrysts consisting of small 

(1-2 mm) plagioclase, pyroxene and minor olivine and oxides. The more phenocrystic 

rich calc-alkaline lavas are dispersed throughout the Strawberry Mountain vicinity.  
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Numerous dikes are exposed throughout the Strawberry Volcanic field and appear 

to be the main conduit system for magma extrusion at the surface through fissures or 

small scale central vent volcanoes (Figs. 2.1, 2.17) (cf. Chapter 1 –Steiner and Streck, 

2013). These dikes are often represented by topographic highs and cross-cut lava flows of 

the Strawberry Volcanics and associated terranes (Fig. 2.1). Strawberry dikes mostly 

strike NNW-SSE similar to dikes of the nearby (~40 km) Monument Dike Swarm that 

gave rise to the Picture Gorge Basalt unit of the CRBG (Fruchter and Baldwin, 1975; 

Thayer, 1957). We identify these dikes as part of the Strawberry Volcanic field and not 

the Monument Dike Swarm based on geochemical and petrographic similarities to the 

lavas of the Strawberry Volcanics. Some vent site lavas have micro-plutonic textures 

(e.g. the micro-norite dikes and plugs of Strawberry Mountain and High Mountain) and 

were previously thought to be a feature related to a long-lived, strato-volcanic edifice, 

which supplied the lavas for the Strawberry Volcanics (Robyn, 1977). There is no 

evidence for large single composite volcanoes such as thickening of lava flows away 

from the vent locations throughout the Strawberry Volcanics. Rather, we see the lava 

flows extend in uniform thicknesses for 10s of km away from the vent. 
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Tholeiitic Basalt and Intermediate Volcanism (15.60 to 13.50 Ma)  

The tholeiitic lavas of the Strawberry Volcanics are subalkaline and comprise 

compositions ranging from basalt to andesite with SiO2 ranging from 47.5-60.4 wt. %. 

These lavas are relatively high in Al2O3 (15.4-18.2 wt. %), and vary in MgO (2.6-7.2 wt. 

%) (Fig 2.2; Table 2.3). Incompatible element ranges are comparable to calc-alkaline 

lavas although HFSE and REE tend to be higher in more evolved tholeiitic compositions 

(e.g. Figs. 2.15, 2.16; Table 2.3). Normalized incompatible trace element patterns 

indicate distinct spikes at Ba and Pb, and occasionally Ta and Nb have small troughs 

relative to neighboring elements (Fig. 2.16). 

Tholeiitic lavas of both basaltic and andesitic composition are dispersed 

throughout the Strawberry Volcanic stratigraphy (Figs.2.4, 2.5). Lavas with tholeiitic 

affinity are minor in volume relative to calc-alkaline lavas. Tholeiitic intermediate lavas 

are phenocryst poor (<10%) similar to the phenocrystic poor calc-alkaline lavas making 

them indistinguishable in the field. We advise caution in identifying tholeiitic vs calc-

alkaline lavas in the field based on field characteristics alone due to similar textures and 

modal mineral abundances. The eruption vents for tholeiitic lavas are assumed to have 

been similar to those for calc-alkaline lavas. Tholeiitic basalt lavas tend to be more 

massive and cohesive in texture and lack the platy texture of the calc-alkaline lava flows. 

These tholeiitic basalts have vesicles and display dixtytaxitic texture. Several tholeiitic 

basalts are located in the Strawberry/High Mountain cirque walls and can be 

distinguished from the calc-alkaline and tholeiitic intermediate lavas by a ophitic texture 

(i.e. AS-SV-287, 109 and 11). Tholeiitic, basalt to andesitic lavas are distributed 
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throughout the Strawberry Volcanic range and are associated with vent structures (e.g. 

dikes) nearby which were identified at the Strawberry Mountain Range and south to 

southwest of this range and east, near the town of Unity.  

Mafic surge deposits are deposited on the top of lava flows near the glacier-

carved walls of High Mountain and other similar peaks within the Strawberry Mountain 

range. These deposits contain scorriacous material set in a fine grained matrix of 

palagonite. Deposits are up to ~20 m thick and often contain pyroclasts ranging in size 

from ash and lapilli to ~0.5 m-diameter blocks or spherical and spindle bombs (Samples 

AS-SV-195 and 198). At the peak of High Mountain, ~ 20 m high pinnacles tower above 

the rest of the lavas and have been nicknamed the Rabbit Ears of Strawberry Mountain.  
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Discussion 

 

Synopsis of emplacement history of the Strawberry Volcanics  

The Strawberry Volcanics, spanning the compositional range from basalt to 

rhyolite (Fig. 2.2), have an eruption history that lasted ~4 m.y. (Fig. 2.6; Table 2.1). The 

first eruption of the Strawberry Volcanics began with the rhyolites of the southern section 

erupting at ~16.2 Ma (Fig.2. 6; Table 2.1). Succeeding eruptions of calc-alkaline and 

tholeiitic intermediate lavas started at approximately ~15.6 Ma (Fig. 2.5; Table 2.1). 

Activity continued with eruptions of dominantly intermediate calc-alkaline lavas, 

accompanied by tholeiitic basalt and intermediate tholeiitic lavas. Rhyolite volcanism of 

the northern rhyolites near the western margin of Strawberry Mountain began at ~15.3 

Ma and continued up to ~14.8 Ma with eruptions of phenocrystic-poor lavas forming 

separate but overlapping domes, and emplaced as minor pyroclastic events (Fig. 2.6; 

Table 2.1). During this time, the eruption of the early southern rhyolites continued and 

appears to have stopped at ~14.7 Ma (Fig. 2.6; Table 2.1). Low-volume (<36 km3), mafic 

tholeiitic eruptions appear sporadically in stratigraphic sections primarily consisting of 

calc-alkaline intermediate lavas. The youngest intermediate lava flow with tholeiitic 

affinity is 13.5 Ma and we take this as the time when tholeiitic volcanism ceased (Fig. 

2.6; Table 2.1). Tholeiitic volcanism likely superseded eruptions of calc-alkaline lavas 

that possibly erupted last at ~13.8 Ma as suggested by our current age data (Fig. 2.6; 

Table 2.1). However, an intrusive calc-alkaline micro-norite dike at Strawberry Mountain 
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was dated at ~12.5 Ma, but it is unclear if any lava flows were produced at the surface 

(Fig. 2.6; Table 2.1).  

 

Relationships of mafic Strawberry Volcanics to flood basalt magmatism of the CRBG  

The close temporal and spatial relationships between the Strawberry Volcanics 

and units of the CRBG (Fig. 2.1) invite the question to what extent there is a petrogenetic 

relationship, despite the predominantly calc-alkaline nature of the Strawberry Volcanics. 

New ages presented herein demonstrate that silicic magmatism of the Strawberry 

Volcanics was ongoing during the eruptions of the Imnaha (16.7 – 16 Ma) and the mafic 

and intermediate Strawberry Volcanics erupted during the waning state of the Grand 

Ronde Basalt (16-15.6 Ma or 16.54-15.95) and during eruption of Wanapum Basalt 

(15.6-15 Ma), (Jarboe et al., 2008; Barry et al., 2013; Camp et al., 2013) (Fig. 2.6; Table 

2.1). Field evidence has shown that the eruption style of the mafic to intermediate lavas 

of the Strawberry Volcanics is akin to the eruptions of the CRBs. Despite our noted 

compositional differences to CRB magmas, eruptions of Strawberry Volcanics were fed 

from dikes leading to fissure eruptions at the surface. In fact several authors (e.g. Camp 

and Ross, 2004; Brueseke et al., 2008; Wolff, 2008) have shown on maps that the 

Monument Dike Swarm of the CRBG reach into the area of the Strawberry Volcanics 

(Fig. 2.1). It is our conclusion based on geochemical data and geographical location that 

these shown dikes are dikes of the Strawberry Volcanics. As described herein, the 

tholeiitic and calc-alkaline intermediate lavas of the Strawberry Volcanics can easily be 

misinterpreted as lavas of the CRB in the field. Below we will discuss the geochemistry 
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of mafic lavas (≤56 SiO2 wt. %) of the Strawberry Volcanics in regards to differences and 

similarities to the various units of the CRBG 

We base our comparison of Strawberry Volcanics to the CRBG on select mafic 

(≤56 SiO2 wt %) lavas that are the least modified by processes in the crust and thus are 

closest to what a mantle input looked like that gave rise to mafic to intermediate 

Strawberry Volcanic magmas. We use the data of Wolff et al. (2008) as representative of 

the CRBG magmas. Comparison of major element compositions shows overlap of 

basaltic lavas of the Strawberry Volcanics with CRBG lavas specifically with Steens and 

Imnaha Basalt (Fig. 2.18). The higher SiO2 wt. % (52 to 56) lavas of the Strawberry 

Volcanics lie within the general trend of the CRB lavas in some elements but also trend 

away towards increased silica in other elements. They overlap with Grand Ronde Basalt 

in MgO, CaO, and TiO2 wt. % but diverge in Al2O3, FeO* and P2O5 wt. % with showing 

notable higher Al and P and lower Fe concentrations (Fig. 2.18). This suggests that 

crustal evolution does have a significant impact on magmas within the basaltic andesites 

already, although incompatible trace element may be less affected than major elements 

and compatible trace elements. 

On normalized incompatible trace element diagrams (spider diagrams) and REE 

diagrams the greatest overlap of lavas of the Strawberry Volcanics is observed with 

samples of Steens and Imnaha Basalt as all samples of the Strawberry Volcanics are 

within their ranges and have similar patterns to these groups (Fig.2.19). Comparing 

however the average Steens Basalt pattern (or Imnaha Basalt), a subtle difference appears 

in the range from Nd to Dy. Samples of the Strawberry Volcanics have distinct Zr-Hf and 
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Ti troughs whereas average Steens has only a minor trough in Zr-Hf but none in Ti and 

Imnaha does not have any of these troughs. Another difference is that some samples of 

the Strawberry Volcanics are enriched in P which could be due to select enrichment 

during crustal assimilation (cf. Streck and Grunder, 2012). Significant overlap of 

elemental ranges of samples of the Strawberry Volcanics occurs with the Imnaha and 

Grand Ronde lavas, yet more elements fall out of the range compared to Steens Basalt 

(Fig. 2.19). For example the Strawberry Volcanics are enriched in Ba, Nb, Sr, and P ppm 

and enriched in the LREE (La through Nd ppm) relative to the Imnaha (Fig. 2.19). 

Compared to the Grand Ronde Basalt, the Strawberry Volcanics are enriched in Nb, Sr 

and P ppm but significantly lower in Rb, Th, and U ppm (Fig. 2.19). Samples of the 

Strawberry Volcanics are distinctly different to Picture Gorge Basalt in most elements 

from Rb to Eu but Picture Gorge Basalt interestingly shows the same Ti troughs as 

samples of the Strawberry Volcanics (Fig. 2.19).  

Diagrams with element ratios using incompatible trace elements (e.g. Ba/Zr, 

La/Y, U/Nb) show that the overlap of Strawberry Volcanics samples with Steens Basalt is 

again greater than with other groups (Fig. 2.20) and that magmas of the Strawberry 

Volcanics are clearly offset from magmas of Grande Ronde and Picture Gorge Basalt in 

plots with U/Nb or U/La (Fig. 2.20).  

Whole rock radiogenic isotopic data for samples of the Strawberry Volcanics 

provide further evidence for similarity among the Strawberry Volcanics and CRBG units 

(Fig. 2.21). Isotopic data for the two basalt samples analyzed show that one sample 

overlaps with Imnaha and Grande Ronde while the other has much lower initial Nd and 
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higher initial Sr. Also, 206Pb/204Pb and 208Pb/204Pb are lower causing the sample to plot 

outside of the range of the CRBG but to overlap with or trend towards local crustal values 

suggesting that crustal contamination may be responsible for these isotopic values (Fig. 

2.21). The uncontaminated basalt sample plots within the CRBG range overlapping in 

initial Sr vs initial Nd with Imnaha and Grande Ronde and have similar radiogenic Pb 

within the range of Grande Ronde (Fig. 2.21). If we include the intermediate lavas of the 

Strawberry Volcanics, the initial Sr and Nd values of Strawberry Volcanics are very 

similar to the Steens, Imnaha and Grand Ronde while the 206Pb/204Pb is similar to Steens, 

Grande Ronde, and Picture Gorge (Fig. 2.21). Furthermore, this basalt sample and the 

intermediate lavas of the Strawberry Volcanics, overlap with the Grande Ronde lavas in 

Pb isotopic ratios (Fig. 2.21) and plot between the three components mixture of the CRB 

plume described by Carlson (1984).  

Based on the discussion above, we are proposing that mafic and intermediate 

lavas of the Strawberry Volcanics should also be considered part of CRBG volcanism as 

discrete unit – the Strawberry Volcanics. Differences that exist among formal members 

for the CRBG are greater than differences to the Strawberry Volcanics. The Strawberry 

Volcanics are not more silicic than Grande Ronde Basalt lavas and are at least 

contemporaneous to eruptions of Wanapum Basalt units but may even overlap in age 

with upper Grand Ronde Basalt lavas – as this is a matter of ongoing controversy and is 

currently unresolved. Strawberry Volcanics have the greatest similarity to Steens Basalt 

lavas but have retained some unique geochemical features that still set them apart. Some 

of these differences may be controlled by open system processes as silica increases and 
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may in turn be partly due to what ultimately causes most Strawberry Volcanics to 

develop calc-alkaline affinity such as melting of local basement lithologies and 

differentiation during AFC processes. Isotopic data argue for melting of a mantle similar 

to Steens and Imnaha Basalt in some respect and Picture Gorge Basalt in others (Fig. 

2.21). It is surprising, however, that the Strawberry Volcanics have more geochemical 

commonalities with Steens Basalt than with the immediately neighboring (~40 km) 

Picture Gorge Basalt.  

 

Context of the Strawberry Mountain rhyolites to the Mid-Miocene rhyolite flare-up  

McDermitt caldera and other rhyolitic centers such as the Santa Rosa-Calico 

volcanic field and the High Rock caldera complex located near the Oregon-Nevada 

border have been viewed as the first centers of rhyolitic volcanism associated with the 

Columbia River-Steens flood basalts of the Pacific Northwest starting at 16.5 Ma (Pierce 

and Morgan, 1992; Brueseke et al., 2009 and 2014; Coble and Mahood, 2012). Recent 

age determinations of long known mid Miocene rhyolitic centers throughout eastern 

Oregon have yielded ages that are about as old as those along the Oregon-Nevada state 

boundary and that range from 16.5 to 15.9 Ma  (Streck et al., 2015). These ages are from 

rhyolites of the Lake Owyhee volcanic field and periphery, the Dinner Creek Tuff, and 

also come from as far north as near Baker City (Streck et al., 2015). The Strawberry 

Mountain rhyolites until recently were largely unknown and thus were neither included as 

area of significant rhyolite volcanism nor as one of the  “earliest” mid-Miocene rhyolite 

center related to Columbia River Basalt volcanism despite that there was a K-Ar age of 
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17.3 ± 0.36 Ma reported by Robyn (1977). Our currently oldest age of the Strawberry 

Mountain rhyolites is 16.2 Ma (Fig. 2.6, Table 2.1) and indicates that rhyolite activity at 

Strawberry Mountain indeed started at a time when CRBG volcanism was ongoing 

(Jarboe et al., 2010; Barry et al., 2013). For this reason, rhyolites of the Strawberry 

Volcanics also need to be counted among the earliest mid-Miocene rhyolite centers that 

could be viewed as “plume-head” related rhyolites. Thus the emerging picture is that mid 

Miocene rhyolitic activity in eastern Oregon (east of ~119o West) started up between 16.5 

and 16 Ma across a wide area. The area is bound by the following towns: Baker City, in 

the north, Ontario in the east, McDermitt in the south, Buchanan, in the east and John 

Day in the northeast.  

The revised area of “early” rhyolite volcanism makes the plume impingement 

area focused on just the general McDermitt area unlikely (Fig. 2.3) as the center of 

rhyolite volcanism shifts northward away from McDermitt. This implies that the center of 

the mantle upwelling, assuming no deflection at the accreted terrane- craton lithospheric 

boundary occurred (e.g. Jordan et al., 2004), that produced the flood basalts of the CRBG 

was located further north than previously thought as has been discussed by various 

workers (Shervais et al., 2008; Camp et al., 2013).  

All age data suggest a rhyolite activity period of ~1.5 million year from 16.2 to 

14.7 Ma agreeing with similar activity periods for the Dinner Creek Tuff eruptive center 

(Streck et al., 2015) and other larger rhyolite centers such as Dooley Mountain (Large et 

al., 2015) in eastern Oregon. 
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Compositions of rhyolites of the Strawberry Volcanics are comparable to other 

mid-Miocene rhyolite centers in eastern Oregon including rhyolites of the Dinner Creek 

Tuff (Figs. 20-22). We highlight Dinner Creek Tuff in our comparison because: 1) this 

ash-flow tuff is a prominent unit in the area, 2) is coeval with Strawberry Mountain 

rhyolites and, 3) erupted from a nearby center located along the southeastern extent of the 

distribution area of the Strawberry Volcanics (Streck et al., 2015). Strawberry Mountain 

rhyolites range from compositions akin to I-type rhyolites to those with A-type affinities 

and this range is typical for rhyolites from eastern Oregon, particular mid-Miocene 

rhyolites (Streck, 2014). Specifically, the rhyolites of the Strawberry Volcanics are 

slightly higher in both Al2O3 and CaO wt. % and tend to be lower in FeO* wt. % than the 

Dinner Creek Tuff rhyolites and some other eastern Oregon A-type rhyolites (Fig. 2.22). 

Strawberry Mountain rhyolites mostly overlap with other mid-Miocene rhyolites and 

indicate overall very low concentrations of HFSE (Figs, 2.11, 2.12). For example, in 

diagrams with parameters used to distinguish A from I type silicic magmas such as, Zr + 

Nb + Ce + Y and 10,000 x Ga/Al (Whalen et al., 1987) Strawberry Mountain rhyolites 

are often among those that have the lowest concentrations (Fig. 2.22). There are however 

a limited number of Strawberry Mountain rhyolites that do fall into the A-type field. 

Generation models for rhyolites are dominated by two different scenarios. In one, 

rhyolites are generated by partial melting of the crust (Clemens and Wall, 1984; 

Munksgaard, 1984; Pichavant et al., 1988a, 1988b, Gunnarsson et al., 1998; Smith et al., 

2003); the second is an origin through fractional crystallization from mafic magmas 

(Michael, 1984; Bacon & Druitt, 1988; Mahood & Halliday, 1988; Hildreth et al., 1981; 
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DePaolo et al., 1992; Hildreth and Fierstein, 2000; Lindsay, et al., 2001; Clemens, 2003). 

Variants of the partial melting model include degrees of differentiation and/or mixing 

following melting of the crust. In contrast, variants of the fractional crystallization model 

involve variations in the initial composition of the parental magma (i.e. how mafic it is), 

which undergoes differentiation to yield rhyolites. In the case of the Strawberry Mountain 

rhyolites, low HFSE concentrations are key to narrow down possible generation 

scenarios. All rhyolites that have lower or equal low concentrations of Nb and Ta than 

intermediate or basaltic Strawberry magmas could not be generated via fractional 

crystallization from them (Fig. 2.14). Nb and Ta behave incompatibly throughout the 

compositional range from basalt to rhyolite. Therefore, differentiation dominated 

scenarios would inevitably raise Nb and Ta contents and would lead to concentration 

levels higher than observed in the low HFSE rhyolites. The only mineral that could 

fractionate Nb and Ta is titanite but titanite has not been observed either in andesites nor 

in rhyolites. Furthermore, titanite is only stable in high-fo2 rhyolites and would produce 

high Nb/Ta given the partition coefficients are slightly higher in Ta which is not seen in 

our data. The same constraint could be formulated for the trace elements Zr and Hf but 

since zircon is a stable phase in more silicic magmas, it could have lowered Zr and Hf 

contents during a very late stage. Although a plausible scenario, it is not very likely 

because other trace elemental parameters that are typically affected by differentiation 

processes within the rhyolitic field do not carry a strong late fractionation signal. These 

parameters include Ba contents and Eu/Eu*; both are still high in most rhyolites, in other 
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words ≥1200 ppm Ba and ≥ 0.4 Eu/Eu* (Fig. 2.13). This makes a partial melting model 

to generate many of the Strawberry Mountain rhyolites compelling.  
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Conclusion  

 

In this paper we have reconciled the various units of the Strawberry Volcanics 

along with establishing the timing and duration of eruptions. The following is a summary 

of volcanic events: 1) the southernmost silicic centers start erupting at 16.16 ± 0.17 Ma 

(2σ) producing plagioclase-rich, mostly metaluminous, low silica rhyolite lavas flows and 

lava domes, and ash-flow tuffs. High- and low-silica rhyolitic volcanism continues in this 

area until 14.62 ± 0.06 Ma (2σ) and is co-eruptive with other phases of the Strawberry 

Volcanics. At 15.30 ± 0.10 Ma (2σ) the northern rhyolites erupt aphyric, 

peralkaline/aluminous, A-type, high silica rhyolites co-eruptive with the southern 

rhyolites. Activity continues here until 14.79 ± 0.12 Ma (2σ). 2) Intermediate volcanism 

of calc-alkaline composition begins erupting through dikes starting at 15.59± 0.36 Ma 

(2σ). This activity continues through the duration of eruptions of the Strawberry 

Volcanics to 12.52± 0.12 Ma (2σ). 3) Intermediate and mafic tholeiitic eruptions start at 

15.57± 0.16 Ma (2σ). The intermediate compositions erupt first, co-erupting with other 

intermediate and silicic eruptions, and is followed by eruptions of more mafic 

composition. These eruptions continue in the same style as the calc-alkaline eruptions 

until 12.61± 0.06 Ma (2σ).  

Herein, we show that the intermediate and mafic eruptions of the Strawberry 

Volcanics co-erupted in part with the main-phase of the CRBG from an area surrounded 

by dikes swarms producing CRBG lavas. The most mafic magmas of the Strawberry 

Volcanics (≤54 SiO2 wt. %) share geochemical signatures with lavas of the CRBGs 
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therefore strongly suggesting CRBG lavas and Strawberry Volcanics have a similar 

petrogenetic origin. Specifically, such mafic lavas of the Strawberry Volcanics are most 

similar to the Steens Basalt. At higher silica, magmas of the Strawberry Volcanic appear 

to be largely a product of open-system differentiation (AFC and magma mixing) 

processes. These processes will be addressed in the following chapter (Chapter 3).   

A hallmark of continental large igneous provinces is that flood basalts are associated with 

voluminous rhyolite volcanism. Numerous mid-Miocene silicic centers have been 

documented throughout northwestern Nevada and eastern Oregon that nearly coincide 

with the inception of the Yellowstone-Snake River Plain Hotspot as marked by flood 

basalt volcanism. The Strawberry Volcanics also includes rhyolitic volcanism during the 

height of silicic flair up. These rhyolites are not fractionates of the mafic or intermediate 

lavas of the Strawberry Volcanics or CRB magmas but instead appear to be generated by 

partial melting of the crust. We have compared the rhyolites of the Strawberry Volcanics 

to other mid-Miocene rhyolites of Oregon that are associated with flood basalt volcanism. 

The rhyolites of the Strawberry Volcanics appear geochemically similar in composition 

and have significant overlap in major and trace element concentrations with these other 

rhyolites. Furthermore, some of the Strawberry Mountain rhyolites are considered to have 

A-type characteristic which typifies almost near all rhyolitic products of the Yellowstone 

hotspot track.  
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CHAPTER 3 

THE MAKING OF INTRA-CONTINENTAL ANDESITES WITH ARC AFFINITIES: 
THE STRAWBERRY VOLCANICS OF NORTHEAST OREGON 

 

Abstract 

 

The Strawberry Volcanics provide a unique opportunity to study andesitic magma 

generation in an intra-continental setting located in the center of and co-erupting with 

units of the Columbia River flood Basalt Group (CRBG). The Strawberry Volcanics are 

an ideal setting to investigate how magmas may differentiate from parental basalt 

magmas to tholeiitic and calc-alkaline intermediate lavas. Within the Strawberry 

Volcanic area tholeiitic basalt, tholeiitic intermediate, calc-alkaline intermediate, and 

rhyolite lavas erupted, and ample crustal lithologies are exposed throughout the area to 

test closed and open system models. This provides the opportunity to investigate the 

petrogenesis of calc-alkaline andesites that have arc affinities but erupted in an intra-plate 

setting. Our results indicate that the magmas that generated both calc-alkaline and 

tholeiitic intermediate magma compositions were initially basaltic tholeiites similar to 

Imnaha or Steens basalts of the CRGB. The tholeiitic intermediate magmas were 

produced primarily by fractional crystallization of these mafic magmas while the calc-

alkaline magmas are a result of mixtures of tholeiitic basalt, rhyolite, and crust. The arc-

like signature of the calc-alkaline lavas (elevated LILs) is a result of both the melting 

source region and the end-members with which the mafic magmas mixed/contaminated. 

This research agrees with similar findings from others within the Basin and 
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Range/Oregon-Idaho graben and CRB province. The main difference between this 

research and others is that there is no need for a primitive calc-alkaline magma or 

extensive fractional crystallization to generate the calc-alkaline andesites. 
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Introduction 

 

Melt generation in the mantle and its subsequent rise to and through the crust is a 

fundamental process to which igneous petrologists account the chemical variation in the 

volcanic products expressed at the surface. As magma ascends from the mantle to the 

crust, it may undergo dynamic changes, altering the melt composition by one or any 

combination of the following processes: 1) fractional crystallization (FC) of mantle 

derived melts (e.g. Grove and Baker, 1984, and Sisson and Grove, 1993); 2) partial 

melting of lower crust by mantle derived melts (e.g. Smith and Leeman, 1987; Tatsumi et 

al., 2008); and 3) open-system processes that differentiate the melt by assimilation and 

fractional crystallization (AFC) or magma mixing (Eichelberger, 1975; DePaolo, 1981; 

Hildreth and Moorbath, 1988; Clynne, 1999). These processes can ultimately lead to the 

generation of intermediate magmas that retain the petrogenetic history of both the mafic 

and silicic components and the processes that acted upon the original mantle melt (i.e. 

FC, AFC, mixing or a combination of all). These differentiation processes must occur 

very commonly as the Earth’s crust is overall andesitic in composition (e.g. Rudnick, 

1995; Taylor, 1995; Rudnick and Gao, 2003), and in turn, these intermediate magmas, 

when expressed as andesitic lavas at the Earth’s surface, provide igneous petrologists 

with evidence of the specific differentiation processes that acted upon the volcanic 

system. It is this geochemical evidence with which the petrogenetic history of the 

volcanic system can be pieced together.  
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Andesitic lava is the dominant product in 80% of all volcanic arc systems (Gill, 

1981; Tatsumi et al., 2008), but in intra-continental settings where hot-spot volcanism 

drives melt generation, intermediate lavas are minor in terms of volume (e.g. the strongly 

bimodal Yellowstone-Snake River Plain Hotspot province of the Pacific Northwest) 

(Hooper and Hawkesworth, 1993; Hooper et al., 2002). The proportion of andesitic lavas 

expressed at the surface in intra-continental settings, which are typically dominated 

volumetrically by bimodal (basalt and rhyolite) compositions (Hooper and Hawkesworth, 

1993; Hooper, 2002), may be misleading and grossly underestimate the volume of un-

erupted material that stalled during ascent and crystallized within the crust. The 

voluminous (~1000 km3) intermediate lavas of the Strawberry Volcanics (Chapter 2) 

provide a rare and valuable opportunity to study such magmas in an intra-continental 

setting unaffected by subduction zone processes, and to thereby evaluate what crustal 

modifications have occurred as the mafic component transitions to intermediate. 

 

Tholeiitic and calc-alkaline andesites 

Andesites compositionally fall into two different groups based on the evolution of 

Fe concentration with silica enrichment during the development of the melt to its final 

composition (Bowen, 1928; Fenner, 1929). A magma series can lose Fe (i.e. calc-alkaline 

series; Bowen, 1928) or gain Fe (i.e. tholeiite series; Fenner, 1929) with increasing 

differentiation (Wager and Deer, 1939). In the past, the total alkali (Na2O + K2O), FeO*, 

and MgO wt % (AFM) (Irvine and Baragar, 1971) and FeO*/MgO wt % vs SiO2 wt % 

(Miyashiro, 1974) diagrams were used to define the compositional ranges of each 
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andesite series. The AFM diagram indicates a tholeiitic series as the suite evolves 

towards the FeO* corner before trending to the alkali corner of the ternary while the calc-

alkaline series plots in the middle of the diagram and trends straight to the alkali corner. 

The inclusion of the alkalis can produce a trend which can be misleading when defining 

calc-alkaline vs tholeiite lavas (Zimmer et al., 2010). The FeO*/MgO vs SiO2 diagram of 

Miyashiro (1974) (e.g. chapter 1 Fig. 1.2b and chapter 2 Fig 2.2b) is a more effective way 

to evaluate these series because it provides quantitative measurements and ignores the 

alkalis (Tatsumi et al., 2008; Zimmer et al., 2010). Therefore, herein we use the 

Miyashiro (1974) definition to define tholeiite and calc-alkaline series. Further, a baseline 

requirement for the classification of tholeiites is that the samples have normative 

hypersthene to which the samples labeled tholeiite or tholeiitic herein are hypersthene 

normative (see electronic appendix).  

Petrographic characteristics can often be supplementary to geochemical data of 

volcanic suites when defining a series as either calc-alkaline or tholeiitic. The presence of 

orthopyroxene in the groundmass of sub-alkaline volcanic rock can indicate calc-alkaline 

character, and its absence, tholeiitic character (Kuno, 1950; 1959; 1968), yet in the light 

of recent understandings of the evolution of magma (i.e. magma mixing and assimilation 

processes) series this can be an unsafe determination of either series Other mineral phases 

which are common in calc-alkaline lavas are hornblende and biotite (Kuno, 1950).  

 Arc volcanic settings have been well studied and are known for producing both 

calc-alkaline and tholeiitic magma types (Jakes and Gill, 1970; Plank and Langmuir, 

1988; Grove and Baker, 1984; Sisson and Grove, 1993) with calc-alkaline lavas as the 
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prevailing magma type (Ewart, 1982). Experiments have shown that a water-rich basalt 

undergoing fractional crystallization processes can generate calc-alkaline magmas at arc 

settings (Grove and Baker, 1984; Sisson and Grove, 1993). Calc-alkaline magmatism 

generated at non-arc settings are typically less abundant but have been documented (e.g. 

Ewart, 1982; Hawkesworth et al., 1995; Hooper et al., 1995). Herein, we will be 

evaluating the development of the calc-alkaline trend in a non-arc setting using the 

Strawberry Volcanics (Fig.3.1).  
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Regional Geologic Setting 

 

 The basement rocks of eastern Oregon consist of pre-Tertiary accreted terranes. 

They crop out in the periphery of the Strawberry Volcanic exposures (Fig. 3.3) and also 

make up the basement to the Strawberry Volcanics. They consist of the following units: 

a) the Baker Terrane (ophiolitic, mafic to ultramafic sequences and associated 

sedimentary units); b) the Izee Terrane (Mesozoic clastic sediments (siltstones to 

greywackes) with a minor component of carbonate horizons); and c) the Olds Ferry 

Terrane (volcanic arc sequences) (Fig. 3.3. 3.2). Other components of the broader 

surroundings include granodioritic plutons of early Cretaceous age (LaMaskin et al., 

2009a, b) and intrusive equivalents to mostly compositional intermediate magmas of 

precursory volcanism of Eocene (Clarno), Oligocene (John Day) and early Miocene age. 

Late Oligocene to Early Miocene age (19 Ma) volcanism is locally represented by 

phenocryst-rich dacitic and rare tholeiitic lavas found within the investigated area 

(Chapter 2). Magma conduits and reservoirs that gave rise to the Strawberry Volcanics 

passed through and developed within the crust that is made up by these rocks.  

The main pulse of the CRBG (>200,000 km3 of cumulative lavas) erupted from 

16.8 to 15.9 Ma and thus slightly predated or erupted concurrently to the Strawberry 

Volcanics (Camp and Hooper, 1981; Baksi 1989; Camp and Ross, 2004, Jarboe et al., 

2008, Barry et al., 2013). The Strawberry Volcanics are geographically located in the 

heart of flood basalts and are surrounded by CRBG dike swarms (Chapter 2). 

Simultaneously (~16.5 to 14.5 Ma), widespread silicic volcanism occurred across the 
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region stretching from northwest/northeast Nevada to the silicic lava flows and domes of 

north-central eastern OR, including those of the Strawberry Volcanics (Chapter 2) (Pierce 

and Morgan, 1992; Brueseke et al., 2009 and 2014; Coble and Mahood 2012). 
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Methods 

 

Bulk rock analyses 

Radiogenic isotope analyses 

Sr, Nd, and Pb isotopic compositions were measured on 13 samples representing 

mafic, intermediate, and rhyolitic compositions. Additional 5 samples of the regional 

accreted terranes (Fig 3.3) within the vicinity and underlying the Strawberry Volcanics 

were analyzed using the same method described below. Sample dissolution and chemistry 

were performed at the radiogenic isotope clean lab and analyzed using thermal ionization 

mass spectrometry (TIMS) at New Mexico State University. Standard sample preparation 

procedures for whole rock isotopic analysis were performed, the details of which can be 

found at: http://geology.nmsu.edu/framos/TIMS.html. Age corrections for Sr and Nd 

isotopic ratios were applied using the ratio of Rb and Sr whole rock element 

concentrations.  

 

Electron Microprobe Analysis  

In situ major and minor element concentrations were determined via electron 

microprobe analysis (EMP) on select samples of lavas of the Strawberry Volcanics using 

a Cameca SX100 electron microprobe at Oregon State University (OSU) with five 

wavelength dispersive spectrometers, including two spectrometers outfitted with large 

format diffracting crystals for trace element measurements. A 15 keV accelerating 

voltage and 30 nA beam current (focused beam diameter 1 μm) was used on 

http://geology.nmsu.edu/framos/TIMS.html
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clinopyroxene (cpx), orthopyroxene (opx), and olivine. Typical counting times were from 

10 - 30 seconds. Instrument calibration was checked by running the NMNH 117733 

natural diopside standard as an unknown. 
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Results 

 

Petrography 

 The petrographic characteristics of the Strawberry Volcanic units will be 

addressed in this section.  

 

Basalt Lavas 

 Basalt lava flows of the Strawberry Volcanics are characterized by the presence of 

plagioclase, cpx, olivine, and Fe-Ti oxide (Fig. 3.4a, b). The most prevalent petrographic 

texture of the basalt lavas is the ophitic texture. Plagioclase chadacrysts are the main 

mineral phase with a modal abundance of ~60%. These chadacrysts range in size from <1 

mm to 2 mm and are often tabular and euhedral (Fig. 3.4a, b). Oikocrysts of 

clinopyroxene (augite) are the sole pyroxene phase present and have a modal abundance 

of ~30%, ranging in size from 1 mm to 3 mm (Figs. 3.4a, b). Small olivine crystals (~1 

mm in size) account for up to 7%. Acicular Fe-Ti oxides (ilmenite) are approximately 1 

mm in length and account for ~3% of the total visible crystals. Minor amounts of glass 

fill the intersertal zones between crystal laths. No major disequilibria, xenoliths, or 

glomerocrysts are present in basaltic thin-sections.  
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Intermediate lavas 

Tholeiitic lavas 

Intermediate lavas of tholeiitic composition are largely phenocryst-poor, 

containing groundmass plagioclase (65% modal abundance) + cpx (30% modal 

abundance) + oxides (≤3% modal abundance) and ± olivine (≤ 2% modal abundance) 

(Figs. 3.4c, d, g). The groundmass minerals are typically <1 mm in size and are euhedral 

(Fig. 3.4g). Groundmass textures can vary and can include ophitic groundmass much like 

the basalts, but minerals are smaller in size (<1 mm) (Fig. 3.4h). Although most of the 

intermediate lavas are phenocryst-poor, some contain plagioclase, cpx, olivine, or display 

a combination of all three, never exceeding >10% by volume (Figs. 3.4h, i). Plagioclase 

phenocrysts can be >3 mm in length and often anhedral to subhedral, zoned and display 

sieved and resorbed textures (Figs. 3.4h, i). When present, cpx and olivine phenocrysts 

range in sizes from 1 to 2 mm. No xenoliths or glomerocrysts have been observed in thin-

sections (Fig. 3.4).  

 

Calc-alkaline Lavas  

 Intermediate calc-alkaline lavas have a plagioclase + cpx ± opx + oxides ± olivine 

mineral assemblage and display two common petrographic textural features: 1) 

phenocryst-poor (<5%) lavas with groundmass minerals of plagioclase (80% modal 

abundance) + cpx (10% modal abundance) ± opx (5% modal abundance) + oxides (1-5% 

modal abundance) and ± olivine (≤2% modal abundance); and 2) porphyritic lavas with 

up to 35% phenocrysts and a groundmass mineral assemblage identical to the 
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phenocryst–poor lavas (Figs. 3.4e, f). The phenocryst-poor lavas are the predominant 

type. Plagioclase is the major phenocrystic phase accounting for up to 80 % of total 

phenocrysts. These plagioclase phenocrysts are often subhedral to anhedral and can be as 

large as 5 mm in length (Figs. 3.4e, f, j, k, l). These phenocrysts are often zoned and 

display sieved and resorbed textures (Figs. 3.4j, k, l). Olivine phenocrysts are typically ~1 

mm in size and display embayments or otherwise resorbed textures (Fig. 3.4j). 

Porphyritic lavas often have glomerocrysts of plagioclase + pyroxenes ± olivine (Figs. 

3.4e, f), which is supported by the presence of xenolithic inclusions in hand sample that 

can range in sizes from 1 to 10 cm. Flow banding is not uncommon within the 

intermediate lavas. No hornblende or biotite minerals are observed as phenocryst or 

groundmass phases, which are commonly present in most calc-alkaline magma series 

(Kuno, 1950).  

 

Rhyolite Lavas 

 The rhyolites of the Strawberry Volcanics can be broken into two different types 

based on geographic location, physical characteristics, and major and trace element 

geochemistry: 1) the northern high-silica rhyolites; and 2) the southern rhyolites, which 

are further subdivided into high-silica and low-silica groups (Chapter 2). All northern 

high-silica rhyolites are phenocryst-poor (<1%) and are either glassy or devitrified. When 

present, phenocrysts include small, ~1 mm in size plagioclase and/or quartz. The 

southern high-silica rhyolites are porphyritic, glassy or devitrified with 

~10%.phenocrysts of plagioclase (~60 % modal abundance), quartz (35 % modal 
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abundance) and amphibole and biotite (≤ 5 % modal abundance). At 25-30% phenocrysts 

dominated by plagioclase (~80% modal abundance) and quartz (~20% modal abundance) 

and minor amounts of amphibole and biotite (<1%), the southern low-silica rhyolites are 

significantly different. Dark flow bands and/or mingling textures with inclusions of less 

silicic melts or xenoliths appear in the low-silica rhyolites. Disequilibria textures are 

observed in the phenocrysts, including sieving and resorption of plagioclase phenocrysts. 

 

Mineral Chemistry 

Basalts 

EMP analyses of basalt olivine crystals indicate intra- and inter-compositional 

variability. The forsterite content range from Fo44 to Fo72 with an average of Fo60 

(Figs.3.5, 3.6a; Table 3.1). Two populations of olivine exist: one population has higher 

Mg in the cores, averaging Fo70, and the second has cores with an average Fo56. Olivine 

crystals with Fo70 cores substantially decrease in forsterite content towards the rim, with 

an average of Fo48. Olivine crystals with cores of Fo56 show no zonation towards the rim. 

Furthermore, in many instances olivine crystals with ~Fo70 cores have cpx rims. EMP 

analyses of pyroxene crystals indicate that the sole pyroxene phase is augite with an 

average mineral composition of 44% En, 17% Fs, and 39% Wo (Fig. 3.8 and Table 3.1). 

Cpx crystals have magnesium numbers that range between Mg65 to Mg77, have an average 

of Mg72 and are typically uniform in composition from core to rim with minor normal 

zonation (Fig. 3.7b). The maximum variation measured in one cpx showed a range of 
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Mg76 to Mg67 while the rest have little (~±2 Mg content) to no variation (Figs.3.5, 3.6b, 

3.7b).  

 

Intermediate lavas 

Tholeiitic lavas 

EMP analyses of tholeiite olivine crystals indicate a single common olivine type 

that typically displays normal zonation from core to rim (Fig. 3.9). Cores of olivine 

crystals range from Fo67 to Fo74 with an average of Fo71, and the rims range from Fo59 to 

Fo64 with an average of Fo62 (Figs. 3.6a, 3.7a, 3.9; Table 3.1). Similar to the basalt olivine 

phenocrysts, cpx growths are present around the rims of tholeiitic olivine crystals. 

Pyroxene analyses indicate that the sole pyroxene phase is augite with an average mineral 

composition of 45% En, 15% Fs, and 40% Wo (Fig.3.8; Table 3.1). Magnesium numbers 

of the cpx crystals range from Mg68 to Mg78 with an average of Mg75 (Figs. 3.6b, 3.7b). 

Most cpx crystals appear uniformed from core to rim but can also display oscillatory 

zonation ranging from Mg71 to Mg76 (Fig. 3.7b).  
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Calc-alkaline lavas 

EMP analyses of calc-alkaline olivine crystals indicate one common olivine type 

that shows minor compositional variability within single crystals from core to rim (Fig. 

3.10). Forsterite content of olivine crystals vary between Fo78  and Fo84 with an average 

Fo 82 (Fig. 3.6a; Table 3.1). Cores of olivine crystals average Fo83, and rims average Fo78 

(Fig. 3.7a). These analyses are from a single calc-alkaline andesitic lava (59 SiO2 wt. %), 

which is representative of typical intermediate, calc-alkaline Strawberry Volcanics lavas. 

Interestingly, this andesite contains pyroxene with the highest Magnesium number and 

olivine with the highest forsterite content among all tholeiitic basalts to andesites) (Figs. 

3.6, 3.7; Table 3.1). It is also noteworthy that olivine crystals observed in this thin section 

often have resorbed cores (Fig. 3.4). Unlike the basalts and the intermediate tholeiites, 

pyroxene analyses indicated that calc-alkaline lavas contain two phases of pyroxene: 

augite and orthopyroxene (Fig. 3.8 and Table 3.1). The average cpx mineral composition 

is 45% En, 13% Fs, and 42% Wo and the opx 75% En, 22% Fs, and 3% Wo (Fig. 3.8; 

Table 3.1). magnesium numbers of the cpx range between Mg72 and Mg83 with an average 

of Mg77. Cores of cpx phenocrysts range from Mg78 to Mg83 while groundmass cpx range 

from Mg72 to Mg79 (Figs. 3.6b, 3.7b, 3.10; Table 3.1). Magnesium numbers of the opx 

range between Mg66 and Mg84 with an average of Mg 78 (Figs. 3.6c, 3.10; Table 3.1). Opx 

phenocrysts have cores that range from Mg77 to Mg84 and rims can be as low as Mg66, and 

groundmass opx range from Mg70 to Mg82 (Fig. 3.6c and 3.10; Table 3.1).  
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Summary of EMP Results 

Overall, the olivine crystals in the basalts have the lowest forsterite content, but 

the upper range does overlap the range of the intermediate tholeiitic group (Fig. 3.6a). 

The olivine crystals in the calc-alkaline lava analyzed recorded the highest forsterite 

content (Fig. 3.6a). These crystals also appear to have higher NiO wt % concentrations 

than the other lavas analyzed (Fig. 3.6a). Core to rim analyses within olivine crystals 

show that both the basalts and the tholeiitic intermediate lavas are normally zoned while 

the calc-alkaline lavas have little to no zonation (Fig. 3.7a). Cpx analyses indicate that the 

basalts have the lowest magnesium numbers, yet the upper range overlaps with the 

intermediate tholeiites and calc-alkaline groups (Figs. 3.6b, c). The calc-alkaline lavas 

have the highest cpx magnesium numbers (Fig. 3.6b, c), and overall, the more tholeiitic 

lavas have lower magnesium numbers, and the more calc-alkaline lavas have higher 

magnesium numbers (Fig 3.6c). Cpx core to rim analyses indicate that the basalts have 

little to no zonation or are normally zoned, while the intermediate tholeiites display both 

normal and minor reverse zonation (Fig. 3.7b). Calc-alkaline varies from no zonation to 

reverse zonation (Fig. 3.7b). Lastly, opx is present only in the calc-alkaline and has high 

magnesium number as in the cpx phase (Fig. 3.7c). Opx core to rim analyses show that 

both normal and reverse zoning occurs within these pyroxenes (Fig. 3.7c).  

 

 

 

 



80 
 

 

Whole Rock Geochemistry  

Whole rock major and trace element geochemistry  

Major elements of the Strawberry Volcanic lavas when plotted against silica 

generally form linear or co-linear trends with typical increases or decreases as silica 

increases from basalt to rhyolite (Fig. 3.11). The exceptions are Al2O3, Na2O and P2O5 

(Fig 3.12). Little to no change in Al2O3 occurs during the transition from basalt to 

andesite, and the concentration is lowest in rhyolites. Na2O values increase rapidly from 

basalt to basaltic andesite, but then remains between 3 to 4 wt.% (Fig. 3.12). The 

compositional data of the tholeiitic and calc-alkaline intermediate lavas strongly overlap 

in major elemental concentrations with some minor but important exceptions. Tholeiitic 

lavas are slightly lower in MgO and higher in P2O5 relative to the calc-alkaline magmas 

(Figs. 3.11, 3.12). Among tholeiitic intermediate compositions, Nb-rich (>14ppm) lavas 

have slightly higher Na2O and distinctly higher P2O5 concentrations than the Nb-poor 

(<14ppm) lavas (Fig. 3.12). 

 Trace element concentrations of the Strawberry Volcanics show great variability 

within the suite. Decreasing or constant concentrations are observed among incompatible 

elements from basaltic to rhyolite (Fig. 3.13). Incompatible trace elements that do 

increase with increased silica content of the sample include Cs, Rb, Ba, and Pb, i.e. most 

of the large ion lithophile elements (LILEs). On the other hand, incompatible elements of 

the high field strength elements (HFSE) including Nb, Zr, Hf, Ta, and Y show different 

trends than the LILEs, and concentrations decrease or stay constant with silica 

enrichment. Th and U that have affinities with both element groups moderately increase. 
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All REEs, excluding Eu, either remain constant (La, Ce, Er, Tm, Yb, and Lu) or decrease 

(Pr, Nd, Sm Gd, Tb, Dy, and Ho) with increasing silica (Chapter2). Typically, compatible 

trace elements (Ni, Cr, Sc, Sr, and Eu) decrease, but the highest concentrations are 

observed in intermediate compositions (e.g. Sr). 

 Mafic to intermediate compositional groups (i.e. basalts, tholeiitic and calc-

alkaline basaltic andesites and andesites) of the Strawberry Volcanics have strongly 

overlapping but sometimes gradational incompatible trace concentrations (Fig. 3.13). 

Differences among intermediate magmas are strongest between the high-Nb group 

relative to others, i.e. the low-Nb tholeiitic and calc-alkaline group (Fig. 3.13). The high-

Nb tholeiitic group is more enriched in incompatible elements including Nb, Ta, P, and 

all LREE (La, Ce, Pr, Nd, Sm, Eu, and Gd) relative to the other groups. In general, the 

tholeiitic intermediate compositions are more enriched in the HREEs than the calc-

alkaline ones (Fig. 3.14, Chapter 1). The intermediate groups have similar trace element 

concentrations to the basalts with the exception of higher concentrations in Th, U, K, and 

Pb. Lower concentrations of La and Ce are observed in the low-Nb tholeiites and calc-

alkaline lavas have lower Ti and P than the other lava types (Fig. 3.14)  

 When these data are plotted on normalized incompatible trace and REE diagrams, 

some general observations can be made. When normalized to primitive mantle (Sun and 

McDonough, 1989) (Fig. 3.14) and C1 chondrite (Boynton, 1984) (Fig. 3.14), all of the 

intermediate lavas of the Strawberry Volcanics have a pattern similar to that of the Steens 

and Imnaha Basalts. The intermediate lavas have prominent spikes of Ba, U, K, and Pb, 

indicating significant enrichment of these elements relative to neighboring elements. A 
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minor spike of P is present in both tholeiitic groups but is more pronounced in the high-

Nb group (Fig. 3.14). Significant troughs are present at Nb, Ta, and Ti (Fig. 3.14). A 

trough in P is observed in some of the calc-alkaline andesites. The chondrite normalized 

REE diagrams show overlap within groups and with Steens Basalt (Fig.3.14). Between 

groups, the most notable trend is that the high-Nb tholeiitic group is the most enriched in 

all REEs and the calc-alkaline group is the most depleted (Fig. 3.14).  

 

Sr, Nd, and Pb radiogenic isotope composition  

Figure 3.15 shows radiogenic isotopes of the various groups of lavas of the 

Strawberry Volcanics along with CRBG lavas and various basement lithologies 

surrounding and underlying the Strawberry Volcanics. The basalts have two different 

isotopic compositions (Fig. 3.15): one basalt sample is fairly radiogenic with initial 

87Sr/86Sr (Sri) >0.7050 and 143Nd/144Nd (Ndi) <0.5125; this basalt may have already 

experienced contamination from assimilation and or magma mixing processes during 

assent through the crust. This sample may have been affected by weathering as well 

given the low K, U, Th concentrations. Its isotopic concentration is similar to values of 

crustal materials surrounding the Strawberry Volcanics (Fig. 3.15). The other basalt type 

is similar in its isotopic ratios to the intermediate lava compositions. As silica increases, 

isotopic ratios undergo no to minor changes. Sri appears to decrease slightly and initial 

Ndi slightly increases from basalt to andesite (Fig. 3.15). Isotopic ratios of Sri and Ndi for 

the compositional intermediate groups (calc-alkaline and tholeiitic) largely overlap (Fig. 

3.15). Lead isotopic ratios remain the same within analytical uncertainty for all mafic to 
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intermediate composition with the exception of the basalt mentioned above. Rhyolites of 

the Strawberry Volcanics are slightly more variable in their isotopic composition but 

there are rhyolites that are remarkably similar in all isotopic ratios to mafic to 

intermediate compositions (Fig. 3.15). The greatest isotopic variability is observed 

among samples of the surrounding basement, which is not surprising given the large 

range of compositions from ultramafic to silicic, argillitic lithologies (Chapter 2; Table 

3.3; Fig. 3.15). What is noteworthy, however, is that there are mafic igneous to silicic 

sedimentary basement samples that have comparable ratios with Sri values lower and 

higher than Strawberry Volcanics, and Ndi values overlapping on the lower end of 

volcanic rocks (Table 3.3). 
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Discussion  

 

Common basalt for calc-alkaline and tholeiitic suites 

The lavas of the Strawberry Volcanics are mostly, by volume, intermediate 

composition lavas (Fig. 3.2), yet this research has shown that basaltic lavas are dispersed 

throughout the geographic area and stratigraphy of the Strawberry Volcanics (Chapter 2). 

These basaltic lavas provide the opportunity to evaluate what mantle magmas were prior 

to the path of evolution to intermediate composition. In previous research (Chapters 1 and 

2), we showed that the basalts of the Strawberry Volcanics are dispersed throughout the 

sequences of the volcanic stratigraphy and co-erupted during the period of intermediate 

lava production. We have also shown that the volcanic suite of the Strawberry Volcanics, 

as well as the tholeiites of the CRBG, all converge at high-Mg concentrations of 

approximately 8.0 MgO wt.%, pointing to a tholeiitic basalt as the parental magma from 

which different Fe/Mg trends develop (Chapter 1).  

 All basalts of the Strawberry Volcanics are tholeiitic and are compositionally 

similar to the least evolved, intermediate calc-alkaline and tholeiitic lavas of the 

Strawberry Volcanics (Figs. 3.12, 3.13, 3.14, Chapter 1). Normalized incompatible trace 

element diagrams show similar patterns that illustrate this similarity between the basalt 

and the intermediate lavas (Fig. 3.16). These diagrams show that basalts and intermediate 

magmas have overlapping ranges (Fig. 3.16). Based on these data, we argued in Chapter 

1 for a common tholeiitic basalt parent that gave rise to all intermediate magmas and that 
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differences in evolved intermediate magmas are due to distinct differences in processes 

during magma evolution (Fig. 3.16). 

 Here we add whole rock radiogenic isotopes of the basalts and intermediate lavas 

of the Strawberry Volcanics as additional evidence for this common basalt leading to the 

intermediate lavas. Analyzed basalts vary in their isotopic characteristics and the more 

enriched values of sample AS-SV-287 are likely due to crustal assimilation or slight post-

emplacement isotopic shifts due to alteration processes (Fig. 3.15). On the other hand, 

basalt sample AS-SV-11 falls among the least evolved intermediate magmas of tholeiitic 

and calc-alkaline character (Fig. 3.15). Specifically, these are samples AS-SV-39b and 

AS-SV-56 (Chapter 2). Using this basalt and these intermediate samples, a common 

basalt magma would have the following isotopic values; Sri 0.70441 ±0.0002, Ndi 

0.51279 ±0.0001, 208Pb/204Pb 38.512 ±0.0709, 207Pb/204Pb 15.598 ±0.0173, 206Pb/204Pb 

18.856 ±0.0620 (error calculated is 2σ). These values are nearly indistinguishable from 

isotopic ratios of the lava flows of the Imnaha Basalt except for lead isotopes (Fig.3.15; 

Chapter 2). Lead isotopic values of the common mantle input for the Strawberry 

Volcanics are like the ones for the nearby Picture Gorge Basalt (Fig. 3.15; Chapter 2).  

 Further comparisons of the basalts and the intermediate lavas can be assessed by 

looking at the mineral chemistry between the basalts and intermediate magmas. The 

basalt cpx crystals have an average Mg72, tholeiitic intermediate lavas average Mg75, and 

calc-alkaline intermediate lavas average Mg77 (Fig 3.6, 3.7; Table 3.1). The olivine 

analyses indicate that the core average in the basalts Fo70, the tholeiites Fo71, and the 

calc-alkaline Fo83. This shows that pyroxene mineral chemistry between the basalts and 
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the intermediate tholeiites and the calc-alkaline lavas are nearly identical in their 

magnesium content despite the calc-alkaline lavas being the most silicic (~62 SiO2 wt %). 

The olivine data suggest that the basalt and the tholeiitic intermediate lavas share a 

common olivine type but the calc-alkaline lavas may be inheriting olivine from an 

outside source. The latter is consistent with disequilibrium textures of olivine crystals 

seen in thin section.  

 

Enrichment and fractionation during tholeiitic evolution  

From the previous section, we determined that the basalts are related to the 

intermediate lavas yet evolution from basalt can lead to different compositional trends 

(calc-alkaline or tholeiitic). Using this basalt composition, we can evaluate how magmas 

would evolve given this starting composition and using fractional crystallization (FC) and 

assimilation fractional crystallization (AFC) (DePaolo, 1981) models. Some intermediate 

tholeiitic lavas show distinct enrichments in the concentration of incompatible trace 

elements, particularly HFSE and REE, and we have referred to these as the high-Nb 

group, although other trace elements are comparably enriched as well (e.g. Ta, Zr, Hf, Ti, 

Y and nearly all REEs (Figs. 3.14a, b). There are several processes that could account for 

these high-Nb group signatures. Higher silica and lower Mg contents, low compatible 

trace elements (Ni, Cr), and especially normalized incompatible trace element patterns 

that resemble basalt samples argues that enrichments are not due to variations in the 

mantle input, but rather due to fractionation dominated processes (Fig. 3.17). FC and 

AFC models with a starting composition using the least contaminated basalt (AS-SV-11) 
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have been calculated to determine the projected incompatible trace element enrichment 

trends (Fig. 3.17, 3.18). A fractionating mineral assemblage based on abundances 

determined by CIPW normative calculations (similar to the observed thin-section) of 

54% plagioclase, 29% cpx, 6% olivine, 6% magnetite, 5% K-feldspar, and 2% apatite 

were used to calculate bulk partition coefficients. Partition coefficients for the following 

elements in the specific mineral are listed in Table 3.2 and results in Table 3.4.  

 The FC models reproduce element trends which fit the data for the tholeiitic 

intermediate lavas (Fig. 3.18; Table 3.4). The spread of the observed data can be 

explained by fractionation amounts of up to 54% crystallization (Table 3.4). An AFC 

model, using an assimilation of a local lithology (Oligocene age / John Day dacite lava), 

and using the same parameters described above with an r value = 10% (ratio of assailant) 

produces a similar fit of the observed data but not required (Fig. 3.18; Table 3.4). 

Therefore, it appears that to generate the tholeiitic intermediate lavas, which are 

described as having higher overall incompatible trace element content than samples that 

straddle the tholeiitic/calc-alkaline divide or are calc-alkaline, an FC model is sufficient 

to explain observed data (Fig. 3.18; Table 3.4).  

 Further evidence which supports a component of FC involved in these lavas is 

provided by the aphanitic nature of these lavas and lack of disequilibrium features 

associated with them, such as mixing textures, xenoliths, or glomerocrysts present in 

thin-sections (Fig. 3.4). Furthermore, the similarity in the mineral chemistry between the 

parental basalt and these tholeiitic lavas with olivine Fo70 and cpx Mg72 and olivine Fo71 

and cpx Mg75, respectively (Table 3.1). The low Mg content and normal zonation in both 
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olivine and pyroxenes in the basalts and the tholeiitic intermediate magmas suggest that 

FC processes have been a dominant process in these lavas (Fig. 3.7; Table 3.1). In the 

case of the basalts, it appears that FC processes have occurred and suggests that these 

lavas may not represent the most primitive magmas of the Strawberry Volcanics. On the 

other hand, the calc-alkaline lavas do contain magnesium and forsterite content of >80. 

These high-Mg olivine and pyroxene crystals may represent residual material of more 

primitive basaltic magmas than erupted. 

 

Generation of intra-continental calc-alkaline andesites  

Evidence for open system processes 

 The clearest textural evidence for open system processes of the intermediate calc-

alkaline and transitional tholeiites lavas is the presence of xenoliths of country rock and 

mingling textures of the rhyolite and intermediate magmas. The xenoliths in the 

intermediates lavas appear as gabbro, shale/argillite, sandstones and rhyolitic lava. 

Mixing textures appear in the low-silica rhyolites, which have elongated bands which 

appear more mafic composition. These bands hosting inclusion of a dark, oxidized, micro 

phenocryst rich mafic inclusions. Furthermore, plagioclase and pyroxene glomerocrysts 

of the calc-alkaline lavas commonly display disequilibrium textures (Fig. 3.4).  

 One key geochemical feature of intermediate calc-alkaline lavas is that as silica 

content of the sample goes up, highly incompatible trace elements do not increase in 

concentration, but instead remain consistent at concentration levels seen in more mafic 
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compositions or even slightly decline; both trends are inconsistent with FC scenarios 

(Fig. 3.13).  

 The variability observed in whole rock radiogenic isotopes (i.e. Sri, Ndi, and Pb) 

of the Strawberry Volcanic lavas (Fig. 3.15; Chapter 2) could also be interpreted as 

evidence of open system processes. There is a slight decrease in Sri with little to no 

change in Ndi and Pb as silica increases from basalt to andesite. These data trend towards 

the analyzed basement lithologies with low Sri (Fig. 3.15). It is therefore possible that 

contamination with these basement lithologies via open system processes is the cause of 

the observed isotopic shift. A mixing line between the basaltic and crustal composition 

end-member were calculated for the Sri vs Ndi plot of Figure 3.15. Although the data of 

the intermediate lavas don’t exactly fall on the line, the data do fall along the similar 

trend suggesting a slightly different but similar end-member might be responsible. 

 

Mixing with silicic magmas vs contamination by crustal rocks 

 Our data here and in Chapters 1 and 2 have established that the calc-alkaline lavas 

are genetically related to the tholeiitic basalt and intermediates lavas. Two fundamental 

questions remain regarding the Strawberry Volcanics: 1) what causes the variability in 

the intermediate lavas; and 2) how/why do lavas transition from tholeiitic basaltic to 

intermediate calc-alkaline lavas?  

The results of the EMP analyses of olivine and pyroxene show that the calc-

alkaline lavas have higher forsterite and magnesium content than that of the intermediate 

tholeiites or basalts (Figs. 3.5-3.10; Table 3.1), which is an important result in 
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determining which end-member may be responsible for the formation of the calc-alkaline 

trend. As suggested above, the tholeiitic lavas, including the basalts, have been modified 

by FC processes, and therefore do not represent the true primitive magmas. The calc-

alkaline lavas, however, contain minerals with high magnesium content(Mg and Fo>80) 

at high silica concentrations (>60 SiO2 wt %), which can be the result of either: 1) 

residual olivine and pyroxenes from a more primitive magma that heated, melted and 

mixed with silicic crustal lithologies, in turn increasing the silica concentrations of the 

magmas and generating the calc-alkaline signature; or 2) mafic lavas of the Strawberry 

Volcanics incorporated some mafic/ultra-mafic country rock from the Canyon Mountain 

Ophiolite prior to mixing with silicic lithologies, forming the increased silica and calc-

alkaline composition.  

Both of the above situations are plausible but can be further evaluated to 

determine which event is the more likely scenario. If the high-Mg olivine and pyroxene 

crystals within the calc-alkaline lavas are a result from scenario 1), then a primitive 

basaltic magma not seen at the surface is required as the source for such minerals. All of 

the observed basaltic lavas and tholeiitic intermediate lavas have mafic silicates with 

much lower magnesium content (Mg and Fo <80) than observed in the calc-alkaline lava. 

These lavas also display normal zoning within the crystals, which would further suggest 

that they have undergone FC processes and that a more primitive magma generated these 

lavas but is unseen at the surface. Alternatively, situation 2) would not increase the silica 

concentration of the overall magma but produce a basaltic magma containing minerals 

with high magnesium number miner and thus would require further interaction with more  
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silicic country rocks/magmas to drive the silica content to the observed concentrations in 

the calc-alkaline lavas.  

The second scenario is problematic given the trace element compositions 

observed in the calc-alkaline lavas. Melting and/or incorporating material from the 

Canyon Mountain Ophiolite (the only basement lithology that could contain high-Mg 

minerals) even at small degrees would increase the Cr and Ni concentrations of the bulk 

magma to levels unobserved with the calc-alkaline lavas. It is possible to reach these 

levels if the ophiolite-contaminated basaltic magma then mixed with a silicic magma with 

very low Cr and Ni concentrations (Table 3.5). The problem with this is that it would 

require a significant contribution of rhyolite  ~80:20 rhyolite to basalt to generate the 

suitable Cr and Ni concentrations (58, 40 ppm respectively) yet the SiO2 content would 

be much higher (~72%) than observed in the calc-alkaline lavas (~53-62 %) (Table 3.5). 

In addition, there is a problem with the potential volume of rhyolite with which to mix. In 

Chapter 2, we determined that the potential volume of the calc-alkaline lavas could total 

roughly 1,000 km3. To create this volume it would require a minimum of~800 km3 of 

rhyolite below the surface yet at the surface there is only ~100 km3 (Chapter 2). These 

problems make the scenario for which the high-Mg mafic minerals are derived from the 

ophiolite an unlikely situation. 

Alternatively, if the high-Mg mafic minerals within the calc-alkaline lavas are 

derived from a more primitive magma than observed at the surface, then it suggests that 

in order to form the calc-alkaline lavas, these primitive basalts must have an important 

role. From the geochemistry, it is already shown that these lavas have similar trace 
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element patterns to the basalts, yet the incompatible trace elements diverge away from FC 

models at higher silica and converge to basement and rhyolite compositions. In order for 

this to occur, there must be an open system process where hot basaltic primitive magmas 

(capable of producing olivine and pyroxene crystals with high magnesium contents ) 

melts the silicic crust and mixes with the rhyolite. Greater melting can occur if the 

magma responsible for the melting is a high-temperature primitive basalt. The high-Mg 

olivine and pyroxenes contained within the calc-alkaline lavas are the residual minerals 

produced by high-temperature primitive magmas but the primitive magmas alone cannot 

generate the calc-alkaline lavas. It is this hot magma, which rose and effectively melted 

the crust, and in turn differentiated the magmas and drove the chemical signature of the 

calc-alkaline lavas.  

 In addition to FC and AFC model calculations illustrated in Figure 3.18, 

calculated mixing lines are plotted with select end-members along with probability 

density contours of the observed calc-alkaline data in Figure 3.19. These mixing lines 

represent a three-component mixture between the basalt (AS-SV-11), rhyolite (AS-SV-

151), and a local crustal rock (12-46) as end-members and best explain the observed 

spread of Strawberry Volcanics data (Fig. 3.19; Table 3.6). Using these end-members in 

some proportion can explain the incompatible trace element concentrations, which FC 

and AFC modeled results cannot. A mixing line has been generated using a basalt end-

member mixed with a rhyolite and shows that a ratio of ~55:45 rhyolite to basalt is 

required to reach the concentrations observed away from the FC line (Fig. 3.19; Table 

3.6). At this mixing ratio, the bulk rock SiO2 concentration is andesitic (~63 SiO2 wt. %), 
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matching the observed data (Fig. 3.19; Table 3.6). This mixing line alone cannot account 

for all of the observed data, but if we assume that FC processes occur with/after mixing, 

then the observed data to the right of the mixing line can be explained. The data to the 

left, however must involve a third component. Two mixing lines have been calculated to 

explain the data, which have incompatible trace element concentrations less than the 

calculated values from the mixing between basalt and rhyolite (Fig. 3.19; Table 3.6). One 

line is generated from the mixture described (55:45 ratio) mixing with a selected local 

crustal rock (12-46) and the other is a mixture of basalt and that same crustal sample (Fig. 

19; Table 3.6). These mixing lines show that some proportion of crustal composition is 

required. The maximum mixing ratio varies with trace element selection but is near a ~ 

60:40 ratio of crustal component to either basalt or a hybrid between basalt and rhyolite 

(Fig. 3.19; Table 3.6). A small component of fractional crystallization for transitional 

tholeiites and calc-alkaline lavas is permissive (Fig. 3.18, 3.19; Table 3.4, 3.6). It appears 

that, when mixed with a basalt, both rhyolite and local crustal rocks are required to 

generate the diverse volcanic suite of the Strawberry Volcanics. This mixing further 

facilitates the transition from tholeiitic to calc-alkaline composition (Fig. 3.19; Table 

3.6). To bring this point further, Table 3.6 lists mixing results using specific observed 

end-member compositions discussed above to generate the intermediate calc-alkaline 

composition. We propose that the suite of data observed at the Strawberry Volcanics, 

including tholeiitic, transitional and calc-alkaline intermediate lavas are a result of mixing 

mafic magmas with rhyolites and local crusts and FC processes.  
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 Our results show that the variability in the intermediate lavas leading to a 

tholeiitic or calc-alkaline intermediate composition magma is ultimately the result of 

either closed system FC or open system mixing processes (Figs. 3.5, 3.6, 3.13-15, 

3.18,3.19). Both magma series were generated by ascending mafic magmas coeval with 

the Columbia River flood basalt event (Chapter 2). The generation of the tholeiitic 

magmas must have developed by FC of a primitive tholeiitic parental basalt perhaps 

while being stored within magma chambers within the crust (Figs. 3.5, 3.6). However, the 

calc-alkaline magmas required a hot, primitive, tholeiitic magma capable of producing 

high- magnesium numbers in the mafic minerals (Figs. 3.5, 3.6), which interacted with 

the basement rock and rhyolite (Figs. 3.13-15, 3.18, 3.19). We believe that the transition 

from tholeiitic to calc-alkaline intermediate magmas is a result of different differentiation 

paths of the basaltic magmas within the crust (Figs. 3.13-15, 3.18, 3.19). These 

differences are ultimately a response to closed-system FC and open-system mixing 

processes (Fig. 3.18). It is likely that initially the magmas rising from depth were minor 

in volume and FC dominated these magmas, forming the tholeiitic intermediate lavas. 

After some time, the mafic magmas continued to rise through and heat the crust enough 

to melt and mix this crust and mix with the rhyolite, while diluting the Fe-enrichment 

trend and forming the calc-alkaline magmas (Fig. 3.19).  

 Other calc-alkaline intermediate magma eruptions associated with the Mid-

Miocene CRBG of the Pacific Northwest and Basin and Range area (Nevada –Oregon – 

Idaho graben) and have been documented (i.e. Venator Ranch, Tims Peak, Drinkwater, 

Voltage and Keeney sequence) and are attributed to various processes (Robyn, 1979; 
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Brandon and Goles, 1995; Hooper et al., 2002, Camp et al., 2003). These processes 

include: 1) decompression melting of a previously metasomatized mantle wedge, 

generating a calc-alkaline primitive basalt; 2) a tholeiite mafic magma assimilating 

(AFC) crustal rocks with low-Fe composition; 3) FC of hydrous mafic magmas; and 4) 

magma mixing between a mafic magma and a more silicic/evolved magma (Robyn, 

1979; Grove and Baker, 1984; Hildreth and Moorbath, 1988; Sisson and Grove, 1993; 

Brandon and Goles, 1995; Hooper et al., 2002, Camp et al., 2003; Dungan and Davidson, 

2004). The calc-alkaline lavas of Strawberry Volcanic require a situation where a 

tholeiitic primitive mafic magma mixes with rhyolite and Fe-poor crustal rocks in a 

tectonic environment unrelated to subduction processes. These calc-alkaline lavas, as 

well as the tholeiites and basalts, do have elevated concentrations of LILs (Chapter 1, 2; 

Figs. 3.12, 3.13), but don’t require the generation of a calc-alkaline basaltic magma to 

form the calc-alkaline intermediate magmas as other have suggested within the area 

(Robyn, 1977; Robyn, 1979; Hooper et al., 1995; Hooper et al., 2002). These elevated 

LILs are already a feature of tholeiitic basalts that likely resulted from melting of a 

metasomatized mantle that were further enhanced by fractionation and incorporated 

crustal components. Instead, our results agree with Brueseke and Hart (2008), Brandon 

and Goles (1995), and Camp et al., (2003) who attribute the transition from tholeiitic to 

calc-alkaline to the incorporation/assimilation of Fe-poor crust/melts. 
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Conclusions 

 

 This research sheds light on the diversity of lavas of the Strawberry Volcanics 

that were derived from a parental magma of tholeiitic composition, that in turn generates 

different suite of lavas of both calc-alkaline and tholeiitic composition. Given this, we are 

able to describe the relationship of these magmas to each other and the processes that led 

to observed differences. Furthermore, this research has implications for our current 

understanding processes leading to intermediate calc-alkaline magmas in an intra-plate 

setting and thus serves as a model for other similar intraplate occurrences of arc-like 

andesites. 

 The series of events which lead to the diverse suite of lavas mentioned above can 

be summarized in the following three main events:  

• The large Yellowstone-Snake River mantle plume and rising mafic magmas 

supplies enough heat to partially melt the crust, forming the rhyolites of 

Eastern Oregon and the rhyolites of the Strawberry Mountain Volcanics. 

• Primitive melts to rise through the crust, forming discreet pods of magmas 

that undergo fractionation, generating the tholeiitic composition seen at the 

Strawberry Volcanics. 

• Prolonged heat input from the underlying mantle plume head thermally 

matured the crust, allowing primitive melts to rise and mix with both the crust 

and the partial melts, generating the calc-alkaline magmas.  
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 It appears that in a setting where a mantle plume is a source of heat and melt 

production, the thermal input into the crust can alter the composition of the magmas to 

form tholeiitic or calc-alkaline magmas. In most cases, an intra-plate volcanism setting is 

thought to produce mainly tholeiitic lavas. This research may add to the already known 

volumes of lava produced during flood volcanism by the addition of calc-alkaline 

volcanism. Furthermore, the understanding of the precise location and timing of the onset 

of the mantle plume that generated these lavas and the CRBG is not entirely known, and 

it is worth looking at the bimodal calc-alkaline and tholeiite lavas of the John-Day/Clarno 

as a similar scenario prior to the onset of tholeiitic flooding of the CRBG.  
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Table 1.1: 40Ar/39Ar geochronology 
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Sample Location 
Rock 
Typea 

Material 
Datedb 

Age 
(Ma) 

± 
(2σ) 

Steps 
Plateau 

39Ar, 
% 

Plateau 
MSWD 

Age 
(Ma) 

± 
(2σ) 

40Ar/39Ar 
Intercept 

± 
(2σ) 

Isochron 
MSWD 

AS-SV-
156 

44° 2'38.60"N, 
118°45'49.50"W A GM 14.87 0.13 6 87.43 0.63 14.74 0.25 296.24 4.45 0.76 

AS-SV-
230 

44°18'50.39"N, 
118°17'16.61"W BA GM 13.53 0.24 5 70.78 2.25 14.01 0.48 288.61 5.50 0.99 

AS-SV-
82 

44°15'55.50"N, 
118°22'57.40"W A GM 14.21 0.26 - 88.91 4.34 13.94 0.29 301.10 41.01 2.76 

AS-SV-
14 

44°37'13.70"N, 
118°28'13.20"W BA GM 13.76 0.16 9 85.41 1.04 13.84 0.35 293.20 4.26 1.03 

AS-SV-
192 

44°17'05.30"N, 
118°41'6.60"W A GM 12.52 0.12 9 98.84 0.19 12.40 0.13 295.60 53.64 0.26 

a A, andesite; BA, basaltic andesite 
            b GM, groundmass 
              J  =  0.0014610 ± 0.0000056 

             FCT-3  =  28.030 ± 0.003 Ma 
           



99 
 

 

 
Table 1.2: Whole rock major and trace element analysis of mafic and intermediate lavas 

AS-SV- 171 11 217 14 230 82 192 159c 156 
*CA/TH 0.94 0.75 0.88 1.03 0.87 1.1 1.18 0.72 0.73 

Wt.% normalized 
         SiO2   49.48 50.47 52.06 53.13 53.43 56.23 57.66 57.59 58.08 

 TiO2   1.85 1.86 1.60 1.57 1.81 1.42 1.20 1.77 1.68 
 Al2O3  16.10 16.17 17.09 16.45 16.82 16.59 16.98 16.77 16.31 
 FeO* 9.91 10.65 9.61 9.11 9.59 8.19 7.66 8.53 8.76 
 MnO    0.16 0.19 0.167 0.16 0.16 0.16 0.14 0.133 0.12 
 MgO    8.91 6.69 5.82 5.83 5.00 4.29 3.90 2.65 2.67 
 CaO    8.74 9.52 8.41 8.51 8.26 7.28 6.92 6.42 6.47 

 Na2O   3.34 3.09 3.27 3.44 3.27 3.75 3.72 4.15 3.51 
 K2O    1.09 0.76 1.394 1.22 1.08 1.58 1.34 1.541 1.75 
 P2O5   0.42 0.59 0.581 0.56 0.60 0.51 0.48 0.464 0.64 
ppm 

          Ni 188 69 91.2 96 53 66 37 6.4 14 
 Cr 270 167 101.8 214 82 90 62 19.4 29 
Sc 24 29 23.26 24 24 21 19 23.26 22 
V 222 265 232.5 207 217 183 153 195.4 209 

Ba 408 431 576.77 550 578 746 671 808.70 875 
Rb 18 9 12.83 15 13 21 17 25.39 31 
Sr 799 527 564.36 560 498 522 520 435.22 483 
Zr 126 119 143.46 154 172 185 169 194.67 165 
Y  21 26 24.58 26 30 27 26 32.53 30 

Nb 16 12 10.64 16 15 15 13 14.45 11 
Ga 19 18 19.3 19 20 20 19 21.1 19 
Cu 64 50 71.6 56 33 52 39 24 22 
Zn 96 102 101.5 96 107 102 94 108.4 102 
Pb  3.1 3.5 5.15 4.8 5.4 6.7 6.1 8.03 7.0 
U  0.6 0.4 0.43 0.6 0.6 0.7 0.7 1.13 1.0 

Th  1.7 1.2 1.22 1.6 2.0 2.1 1.8 3.46 2.8 
Cs  0.44 0.18 0.19 0.31 0.33 0.37 0.25 1.40 1.68 
Hf 3.15 2.85 3.41 3.62 4.01 4.44 4.09 4.91 4.18 
Ta  1.00 0.68 0.60 0.94 0.89 0.87 0.77 0.94 0.70 
La  18.8 19.6 22.22 23.1 27.1 27.9 24.6 24.21 23.7 
Ce  41.2 42.6 45.59 49.0 55.4 56.5 51.1 48.55 48.1 
Pr 5.44 5.67 5.94 6.4 7.4 7.13 6.51 6.72 6.69 

Nd  23.1 24.5 24.90 26.6 30.7 28.8 26.8 28.51 28.1 
Sm  5.22 5.61 5.46 5.94 6.83 6.29 5.67 6.58 6.47 
Eu 1.72 1.9 1.75 1.84 2.12 1.87 1.77 2.04 1.9 
Gd 4.82 5.46 5.08 5.56 6.39 5.78 5.20 6.62 6.23 
Tb 0.74 0.84 0.82 0.86 1.02 0.89 0.83 1.04 0.99 
Dy  4.37 5.06 4.69 5.07 5.87 5.24 5.01 6.36 5.89 
Ho  0.85 1.01 0.95 1 1.19 1.05 1.01 1.26 1.17 
Er  2.2 2.68 2.53 2.6 3.09 2.76 2.66 3.36 3.09 

Tm 0.3 0.38 0.36 0.37 0.43 0.4 0.38 0.47 0.44 
Yb 1.82 2.29 2.22 2.31 2.68 2.46 2.4 2.92 2.72 
Lu  0.27 0.35 0.35 0.37 0.42 0.41 0.38 0.46 0.42 

*CA/TH<1 = tholeiitic, CA/TH>1 = calc-alkaline (cf. Hora et al., 2009) 
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Table 1.3a: Whole rock major and trace element analysis of rhyolite lavas 
  Strawberry Mountain Rhyolites 
 AS-SV- 173 15 60 85 110a 144 
Wt.% normalized 

      SiO2   73.33 73.19 77.71 77.36 77.95 72.99 
 TiO2   0.27 0.35 0.10 0.13 0.10 0.35 
 Al2O3  14.24 14.57 12.40 12.76 12.54 15.00 
 FeO* 2.02 2.23 0.85 1.39 0.74 2.29 
 MnO    0.05 0.05 0.03 0.02 0.01 0.04 
 MgO    0.57 0.23 0.08 0.06 0.03 0.25 
 CaO    2.21 1.99 0.68 0.63 0.63 2.03 
 Na2O   3.28 3.86 3.76 3.29 3.50 3.53 
 K2O    3.96 3.42 4.37 4.34 4.49 3.47 
 P2O5   0.08 0.10 0.02 0.02 0.02 0.05 
ppm 

       Ni 5 3 1 3 2 3 
 Cr 7 5 4 2 3 5 
Sc 6 6 4 4 4 7 
 V 27 30 2 8 3 25 
Ba 1192 1485 1445 1587 1417 1450 
Rb 92 87 117 114 116 84 
Sr 198 231 58 65 58 258 
Zr 139 171 102 113 99 172 
Y  25 18 23 20 18 19 
Nb 8 9 9 9 9 9 
 Ga 16 16 14 13 15 15 
 Cu 6 7 1 2 2 3 
 Zn 42 49 25 19 20 43 
Pb  13.3 13.9 16.1 17.7 17.6 13.7 
U  4.7 3.7 4.6 4.1 4.2 3.4 
Th  8.7 7.7 10.5 9.4 10.2 7.3 
Cs  4.42 4.20 5.53 - - 4.32 
Hf 3.99 4.59 3.66 - - 4.59 
Ta  0.83 0.74 0.86 - - 0.74 
La  22.3 25.4 28.8 21.8 29.3 24.9 
Ce  43.6 46.2 54.5 41.3 43.0 43.5 
Pr 5.16 5.36 6.04 - - 5.14 
Nd  19.2 19.6 21.2 17.2 19.9 18.8 
Sm  4.32 3.82 4.10 - - 3.69 
Eu 0.77 0.88 0.46 - - 0.77 
Gd 3.98 3.35 3.64 - - 3.24 
Tb 0.68 0.54 0.64 - - 0.54 
Dy  4.28 3.26 3.98 - - 3.33 
Ho  0.89 0.67 0.84 - - 0.68 
Er  2.55 1.88 2.42 - - 1.95 
Tm 0.39 0.29 0.37 - - 0.30 
Yb 2.61 1.93 2.49 - - 2.02 
Lu  0.42 0.32 0.41 - - 0.33 
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Table 1.3b: Whole rock major and trace element analysis of crustal rock surrounding the Strawberry 
Volcanics.  

Strawberry Mountain Basement Rocks 
AS-BASRX- 1 2 3 7 9 

 Wt.% normalized 
      SiO2   67.85 67.24 66.48 74.97 69.49 

  TiO2   0.65 0.56 0.55 0.04 0.60 
  Al2O3  15.44 16.25 16.22 15.68 13.66 
  FeO* 3.67 3.61 3.48 0.97 5.58 
  MnO    0.07 0.07 0.08 0.05 0.05 
  MgO    2.46 1.90 2.18 0.14 3.12 
  CaO    3.86 3.95 4.48 1.61 3.37 
  Na2O   4.66 4.73 5.30 5.08 2.64 
  K2O    1.16 1.50 1.08 1.40 1.36 
  P2O5   0.17 0.19 0.15 0.07 0.14 
 ppm 

       Ni 30 15 19 7 31 
  Cr 46 24 25 4 52 
 Sc 9 9 9 1 15 
  V 78 74 77 5 156 
 Ba 662 721 538 577 843 
 Rb 22 29 16 29 40 
 Sr 536 526 537 389 403 
 Zr 145 116 104 39 95 
 Y  16 13 16 16 21 
 Nb 9 5 4 9 5 
  Ga 17 19 18 20 15 
  Cu 5 10 31 5 81 
  Zn 41 57 172 49 71 
 Pb  8.9 8.2 12.2 10.8 4.8 
 U  0 0.3 0.0 1.0 1.8 
 Th  3.5 3.6 4.5 2.1 4.6 
 Cs  - - - - - 
 Hf - - - - - 
 Ta  - - - - - 
 La  16.1 13.5 11.2 10.5 15.3 
 Ce  32.7 27.3 25.8 23.9 25.3 
 Pr - - - - - 
 Nd  14.7 13.7 12.9 14.2 14.4 
 Sm  - - - - - 
 Eu - - - - - 
 Gd - - - - - 
 Tb - - - - - 
 Dy  - - - - - 
 Ho  - - - - - 
 Er  - - - - - 
 Tm - - - - - 
 Yb - - - - - 
 Lu  - - - - - 
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Table 2.1: 40Ar/39Ar age analysis of the Strawberry Volcanics 

 
                  

   
Plateau 

 
Isochron 

 
   

        
 

        
 

Sample 
Rock 
Typea 

Material 
Datedb 

Age 
(Ma) 

± 
(2σ) 

Steps 
Plateau 

39Ar, 
% 

Plateau 
MSWD 

Age 
(Ma) 

± 
(2σ) 

40Ar/39Ar 
Intercept 

± 
(2σ) 

Isochron 
MSWD 

AS-SV-151 R GM 16.16 0.17 7 84.00 8.38 16.27 0.37 5.21 0.12 32.08 
AS-SV-291 A GM 15.59 0.36 4 72.07 4.56 16.18 0.98 5.46 0.33 4.00 

*AS-SV-291 A GM - - - - - 15.29 0.06 5.43 
0.00

5 - 
AS-SV-159c BA GM 15.57 0.16 8 94.37 0.95 15.75 0.30 5.00 0.09 0.79 
AS-SV-144 R Plag 15.34 0.52 8 98.38 0.36 15.50 0.92 4.86 0.29 0.31 
*AS-SV-144 R GM 14.62 0.06 11 14.41 1.48 14.61 0.08 5.11 0.02 1.63 
AS-SV-179 R GM 15.30 0.1 7 89.20 1.85 15.27 0.16 5.23 0.05 2.17 
AS-SV-156 A GM 14.87 0.13 6 87.43 0.63 14.83 0.25 5.61 0.09 0.76 

AS-SV-190 R Glass 14.79 0.12 10 
100.0

0 0.62 14.98 0.19 4.93 0.06 16.05 
AS-SV-173 R Biotite 14.70 0.13 8 89.22 2.16 14.78 0.18 4.81 0.04 1.89 
AS-SV-188 A GM 14.59 0.26 8 99.20 0.61 14.97 0.40 5.21 0.14 20.96 
AS-SV-82 A GM 14.21 0.26 - 88.91 4.34 14.03 0.29 5.23 0.10 2.76 
AS-SV-14 BA GM 13.76 0.16 9 85.41 1.04 13.92 0.35 5.13 0.12 1.03 
AS-SV-230 BA GM 13.53 0.24 5 70.78 2.25 14.10 0.48 5.50 0.18 0.99 
AS-SV-109 B GM 12.61 0.08 13 47.27 2.56 12.65 0.24 4.46 0.08 2.75 
AS-SV-192 A GM 12.52 0.12 9 98.84 0.19 12.48 0.13 4.79 0.03 0.26 
* repeat  

            a A, andesite; BA, basaltic andesite, R, rhyolite 
         b GM, groundmass, Plag, Plagioclase 

            FCT-NM (R98) (4E36-14)  =  28.201 ± 0.023 
Ma 
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Table 2.2a: Whole rock XRF data of rhyolite lavas from the Strawberry Volcanics. 

             Strawberry Mountain Rhyolites               
 AS-
SV- 66 144 151 173 263 175 63 133 190 98 60 179 37 
XRF 

             Wt.% normalized 
             SiO2   69.85 72.99 73.19 73.33 74.62 75.44 76.80 76.88 76.93 76.97 77.71 78.45 78.72 

 TiO2   0.59 0.35 0.35 0.27 0.26 0.21 0.06 0.05 0.19 0.09 0.10 0.15 0.14 
 Al2O3  15.17 15.00 14.57 14.24 12.98 12.96 13.20 13.35 12.66 13.16 12.40 12.36 11.64 
 FeO* 3.46 2.29 2.23 2.02 1.97 1.89 0.80 0.78 1.19 0.93 0.85 0.30 0.84 
 MnO    0.04 0.04 0.05 0.05 0.05 0.02 0.04 0.04 0.04 0.04 0.03 0.00 0.00 
 MgO    0.53 0.25 0.23 0.57 0.72 0.00 0.03 0.02 0.13 0.08 0.08 0.00 0.04 
 CaO    2.70 2.03 1.99 2.21 1.77 0.06 0.53 0.52 0.81 0.69 0.68 0.45 0.06 
 Na2O   4.45 3.53 3.86 3.28 3.27 5.20 3.93 3.52 4.12 3.33 3.76 3.99 4.28 
 K2O    3.07 3.47 3.42 3.96 4.30 4.20 4.59 4.83 3.91 4.69 4.37 4.28 4.25 
 P2O5   0.15 0.05 0.10 0.08 0.05 0.03 0.01 0.01 0.02 0.02 0.02 0.02 0.03 

              ppm 
              Ni 3.4 3 2.5 4.5 0.40 3.4 1.9 1.5 3 2.3 0.8 3.4 1.3 

 Cr 4.7 4.6 5.4 6.7 9.18 3.5 2.9 3.3 3.2 3.4 3.6 3.4 3.6 
 V 43.1 25 29.8 27.1 35.91 4.2 1.2 2.7 5.2 2.1 1.9 2.7 3.6 
 Ga 17.4 14.6 15.7 15.5 14.86 24.7 17.9 17 14.4 16.7 13.7 16 21.2 
 Cu 5.3 2.8 7.2 6.4 9.18 1.8 0.4 0 2.7 0.4 1.1 0.5 0.0 
 Zn 63.4 43.4 48.5 42.1 35.11 132.7 34.0 38.7 35.2 34.2 25.4 21.2 41.3 
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Table 2.2b: Whole rock ICP-MS data of rhyolite lavas from the Strawberry Volcanics. 

             Strawberry Mountain Rhyolites               
 AS-SV- 66 144 151 173 263 175 63 133 190 98 60 179 37 
ICP-MS 

             Sc 10.1 6.6 5.8 6.2 7.3 1.7 4.4 5.3 4.7 4.4 3.6 5.3 2.8 
Ba 1283 1450 1485 1192 1342 1626 969 349 1255 1288 1445 1195 493 
Rb 65.4 84.2 86.7 91.7 98.3 78.2 111.9 119.6 90.5 105.9 117.1 100.4 89.1 
Sr 252 258 231 198 101 32 33 18 77 56 58 45 9 
Zr 236 172 171 139 109 448 81 71 176 97 102 220 451 
Y  28.75 19.14 17.93 24.79 23.31 61.17 36.42 45.95 35.96 33.14 22.89 43.88 52.60 
Nb 11.89 9.16 8.78 8.28 8.32 25.23 19.27 23.39 12.29 15.57 8.88 13.62 23.99 
Pb  11.75 13.68 13.91 13.30 13.62 14.02 15.50 15.42 13.10 14.49 16.11 14.31 7.11 
U  2.43 3.42 3.67 4.70 3.72 3.49 4.42 4.79 3.42 4.43 4.58 4.04 1.85 
Th  5.91 7.35 7.70 8.74 8.61 7.82 10.80 10.44 8.46 10.88 10.50 8.89 9.41 
Cs  1.59 4.32 4.20 4.42 4.50 1.54 3.96 4.82 3.32 4.30 5.53 4.27 1.34 
Hf 5.93 4.59 4.59 3.99 3.57 10.87 3.57 3.60 5.38 3.77 3.66 6.37 11.14 
Ta  0.82 0.74 0.74 0.83 0.78 1.57 1.79 2.15 1.01 1.46 0.86 1.02 1.68 

              La  29.40 24.86 25.41 22.27 25.11 49.89 27.72 17.84 29.51 37.87 28.82 36.91 42.57 
Ce  55.22 43.51 46.23 43.55 47.22 87.43 55.33 38.55 59.07 69.36 54.48 70.96 79.27 
Pr 6.88 5.14 5.36 5.16 5.43 12.49 6.81 5.02 7.04 8.73 6.04 8.95 11.51 
Nd  26.16 18.81 19.62 19.21 19.38 48.20 25.38 19.95 26.15 31.35 21.18 33.40 43.85 
Sm  5.39 3.69 3.82 4.32 4.03 10.60 5.62 5.62 5.67 6.25 4.10 7.12 9.78 
Eu 1.30 0.77 0.88 0.77 0.61 1.82 0.66 0.42 0.80 0.89 0.46 0.66 1.12 
Gd 5.11 3.24 3.35 3.98 3.72 10.01 5.60 6.14 5.36 5.56 3.64 6.82 8.96 
Tb 0.84 0.54 0.54 0.68 0.65 1.76 1.02 1.20 0.97 0.97 0.64 1.20 1.63 
Dy  5.23 3.33 3.26 4.28 4.02 11.07 6.47 7.94 6.22 5.92 3.98 7.73 10.57 
Ho  1.11 0.68 0.67 0.89 0.85 2.33 1.35 1.66 1.31 1.23 0.84 1.62 2.17 
Er  3.08 1.95 1.88 2.55 2.42 6.52 3.84 4.74 3.88 3.49 2.42 4.57 6.03 
Tm 0.46 0.30 0.29 0.39 0.38 0.97 0.58 0.73 0.60 0.53 0.37 0.69 0.91 
Yb 3.03 2.02 1.93 2.61 2.49 6.07 3.70 4.74 3.96 3.53 2.49 4.34 5.85 
Lu  0.49 0.33 0.32 0.42 0.39 0.91 0.60 0.74 0.63 0.56 0.41 0.69 0.87 
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Table 2.3a: Whole rock XRF data of tholeiitic basalts and basaltic andesites from the Strawberry Volcanics 

Strawberry Volcanic Tholeiitic Basalt/Basaltic Andesite 
AS-SV-   287 109 11 217 47 203b 215 230 285c 285a 51 285d 253 195 198 
XRF 

                Wt.% normalized 
               SiO2   

 
47.48 49.43 50.47 52.06 53.23 53.30 53.35 53.43 53.44 53.76 53.84 53.91 54.09 54.38 54.39 

 TiO2   
 

2.87 2.12 1.86 1.60 1.56 1.85 1.34 1.81 1.63 1.66 1.93 1.68 1.73 1.33 1.59 
 Al2O3  

 
15.36 17.16 16.17 17.09 16.44 16.83 16.54 16.82 17.23 17.23 16.33 17.73 16.81 18.19 17.25 

 FeO* 
 

13.74 11.78 10.65 9.61 9.20 9.78 10.40 9.59 9.37 9.29 9.83 9.72 9.41 8.62 8.98 
 MgO    

 
7.22 5.93 6.69 5.82 5.23 4.53 5.01 5.00 4.41 4.22 4.72 2.99 4.26 4.11 4.12 

 CaO    
 

9.77 9.28 9.52 8.41 9.15 8.09 8.66 8.26 7.60 7.45 8.01 7.74 7.91 7.32 7.22 
 Na2O   

 
2.39 3.09 3.09 3.27 3.49 3.52 3.40 3.27 3.55 3.85 3.41 3.76 3.70 3.72 3.92 

 K2O    
 

0.34 0.455 0.763 1.394 0.886 1.313 0.746 1.076 1.76 1.57 1.133 1.46 1.32 1.381 1.544 
 P2O5   

 
0.622 0.569 0.592 0.581 0.559 0.605 0.333 0.597 0.830 0.794 0.634 0.824 0.597 0.780 0.813 

 MnO    
 

0.209 0.193 0.194 0.167 0.260 0.170 0.211 0.158 0.177 0.177 0.164 0.184 0.157 0.173 0.172 
                 ppm 

                Ni 
 

78.90 73.4 69.4 91.2 79.8 60 30.6 53.1 40.60 37.21 44.6 32.22 61.65 34.5 32.9 
Cr 

 
211.27 178.6 166.8 101.8 135.6 83.6 8.4 81.6 56.76 51.17 84.4 55.86 83.29 58.8 44.1 

V 
 

284.99 278.1 264.6 232.5 235.2 209.8 250.4 216.9 192.72 185.54 212.9 206.58 195.11 171 175.4 
Ga 

 
17.76 20.6 18.4 19.3 19.7 19.4 19.8 19.7 19.65 20.75 19 19.65 18.85 19.5 20.8 

Cu 
 

38.10 45.8 49.5 71.6 45.6 49.7 18.3 32.6 45.59 48.68 38.4 27.53 55.56 29.4 51.2 
Zn   134.36 126 102.2 101.5 98.8 107.8 112 107 107.83 103.54 119.6 110.12 107.03 103.9 105.2 
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Table 2.3b: Whole rock ICP-MS data of tholeiitic basalts and basaltic andesites from the Strawberry Volcanics. 

AS-
SV-   287 109 11 217 47 203b 215 230 285c 285a 51 285d 253 195 198 

ICP-MS 
               Sc 

 
31.8 29.96 29.09 23.26 23.72 22.78 28.10 24.11 21.0 21.3 22.19 21.7 21.8 20.54 19.89 

Ba 
 

415 484.95 431.03 576.77 511.22 636.40 336.68 578.22 757 694 701.91 841 646 615.57 676.00 
Rb 

 
2.5 4.07 8.67 12.83 9.80 14.09 14.37 13.19 21.1 19.0 13.06 19.4 12.6 18.67 20.22 

Sr 
 

343 522.99 527.15 564.36 512.17 575.28 384.23 498.13 611 609 477.36 628 586 712.35 603.26 
Zr 

 
166 163.91 118.99 143.46 125.80 205.43 116.29 171.93 196 182 197.56 195 201 138.07 182.18 

Y  
 

38.59 34.97 25.92 24.58 26.88 30.30 31.88 30.03 30.70 28.29 34.69 31.01 30.03 27.84 28.78 
Nb 

 
14.34 13.56 11.79 10.64 9.55 19.58 6.81 15.38 23.65 23.72 16.95 24.47 18.95 14.68 23.10 

Pb  
 

3.87 4.98 3.50 5.15 3.90 5.41 2.96 5.41 6.26 5.92 6.17 6.33 5.57 5.43 7.13 
U  

 
0.23 0.33 0.41 0.43 0.50 0.61 0.43 0.61 0.69 0.69 0.53 0.78 0.65 0.69 0.72 

Th  
 

0.89 1.37 1.23 1.22 1.42 2.04 1.18 2.00 2.00 2.13 1.62 2.14 2.06 1.99 2.10 
Cs  

 
0.12 0.13 0.18 0.19 0.23 0.31 0.63 0.33 0.56 0.37 0.40 0.37 0.22 0.29 0.32 

Hf 
 

4.17 4.02 2.85 3.41 3.15 4.75 3.03 4.01 4.47 4.19 4.89 4.53 4.70 3.46 4.26 
Ta  

 
0.88 0.80 0.68 0.60 0.58 1.19 0.40 0.89 1.36 1.41 0.99 1.43 1.13 0.81 1.37 

                 La  
 

22.53 26.97 19.63 22.22 18.01 28.20 13.89 27.07 32.88 29.43 31.00 32.94 28.15 27.58 29.90 
Ce  

 
53.82 56.13 42.55 45.59 40.13 58.57 31.52 55.37 68.23 61.54 65.26 67.64 58.04 57.23 62.73 

Pr 
 

7.40 7.78 5.67 5.94 5.46 7.77 4.40 7.40 8.71 7.92 8.75 8.69 7.57 7.75 8.16 
Nd  

 
33.29 32.99 24.50 24.90 23.51 31.78 18.77 30.67 35.76 32.32 36.79 35.56 31.38 31.43 32.89 

Sm  
 

8.16 7.62 5.61 5.46 5.44 7.04 4.62 6.83 7.43 6.80 8.01 7.53 7.00 6.48 7.03 
Eu 

 
2.66 2.47 1.90 1.75 1.76 2.19 1.55 2.12 2.35 2.13 2.47 2.30 2.12 1.93 2.16 

Gd 
 

8.21 7.50 5.46 5.08 5.59 6.59 5.08 6.39 6.72 6.16 7.77 6.72 6.47 5.82 6.35 
Tb 

 
1.32 1.18 0.84 0.82 0.90 1.03 0.90 1.02 1.04 0.93 1.20 1.03 1.02 0.91 0.97 

Dy  
 

7.96 7.05 5.06 4.69 5.35 6.01 5.78 5.87 6.02 5.61 7.19 6.03 5.91 5.27 5.70 
Ho  

 
1.57 1.42 1.01 0.95 1.09 1.19 1.22 1.19 1.19 1.11 1.42 1.19 1.17 1.06 1.12 

Er  
 

4.13 3.72 2.68 2.53 2.92 3.07 3.40 3.09 3.13 2.88 3.71 3.16 3.08 2.81 2.97 
Tm 

 
0.57 0.51 0.38 0.36 0.41 0.43 0.49 0.43 0.45 0.41 0.52 0.45 0.43 0.41 0.42 

Yb 
 

3.46 3.15 2.29 2.22 2.50 2.65 3.16 2.68 2.81 2.57 3.23 2.82 2.66 2.60 2.63 
Lu    0.54 0.49 0.35 0.35 0.39 0.41 0.51 0.42 0.46 0.40 0.51 0.45 0.43 0.41 0.42 
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Table 2.3c: Whole rock XRF data of calc-alkaline basaltic andesites from the Strawberry Volcanics 

Strawberry Volcanic Calc-Alkaline Basaltic Andesite 
AS-SV-   15 16 14 289 291 81 55 17 39d 110b 43 283 

XRF 
             Wt.% normalized 

            SiO2   
 

52.71 52.78 53.13 53.52 54.68 54.87 55.10 55.14 55.24 55.47 55.61 55.88 
 TiO2   

 
1.64 1.57 1.57 1.19 1.40 1.45 1.48 1.48 1.42 1.20 1.44 1.24 

 Al2O3  
 

16.26 16.45 16.45 17.16 16.46 17.64 16.71 16.78 17.29 17.67 16.01 17.62 
 FeO* 

 
9.44 9.18 9.11 8.44 8.39 8.31 8.39 8.18 8.10 8.24 8.75 7.83 

 MgO    
 

6.15 6.24 5.83 5.89 4.77 4.55 4.98 4.87 4.58 4.69 5.32 4.30 
 CaO    

 
8.24 8.38 8.51 9.41 8.70 7.64 7.63 7.75 7.97 7.36 7.42 7.71 

 Na2O   
 

3.55 3.33 3.44 3.09 3.72 3.68 3.71 3.44 3.83 3.61 3.15 3.63 
 K2O    

 
1.240 1.313 1.221 0.78 1.20 1.206 1.332 1.656 0.853 1.120 1.683 1.17 

 P2O5   
 

0.597 0.592 0.562 0.355 0.494 0.493 0.516 0.553 0.552 0.480 0.455 0.486 
 MnO    

 
0.162 0.159 0.160 0.168 0.188 0.153 0.148 0.147 0.159 0.158 0.164 0.134 

              ppm 
             Ni 
 

95.5 99.3 95.8 66.63 32.52 53.8 67.7 63.9 38.8 74 77.3 50.37 
Cr 

 
192.6 203.9 213.7 144.24 82.99 81 114.3 105.8 62 107.4 116.2 77.51 

V 
 

213.4 203.8 207.3 220.75 230.72 190.8 197.9 183.2 223.4 181.8 225.4 176.76 
Ga 

 
17.6 18.1 18.5 16.26 18.45 19.5 18.3 17.7 19.5 19.2 17.6 19.45 

Cu 
 

63 55.4 56 65.74 59.15 43.7 50.5 57.5 24.7 52.4 45.7 48.68 
Zn   99.5 99 95.8 80.20 89.48 101.5 101.8 91.7 104.7 99.3 84.7 91.37 
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Table 2.3d: Whole rock ICP-MS of calc-alkaline basaltic andesites from the Strawberry Volcanics 
AS-SV-   15 16 14 289 291 81 55 17 39d 110b 43 283 
ICP-MS 

            Sc 
 

24.59 23.54 24.01 29.4 28.3 21.17 21.80 21.24 24.40 23.20 22.60 20.4 
Ba 

 
565.15 570.76 549.96 417 471 891.62 657.30 611.83 882.90 779.40 843.40 676 

Rb 
 

16.33 15.48 14.52 9.5 18.0 12.21 14.90 18.24 11.40 10.80 31.10 14.1 
Sr 

 
525.03 544.07 560.27 414 528 563.79 520.30 571.62 533.30 510.30 482.10 546 

Zr 
 

156.30 154.21 153.50 117 132 195.46 178.70 169.89 154.80 171.70 128.30 160 
Y  

 
27.03 26.31 26.21 23.61 24.41 27.58 27.80 25.13 31.10 28.10 26.10 23.72 

Nb 
 

16.47 16.23 16.21 8.60 9.99 15.02 16.00 15.89 11.10 12.50 11.10 12.48 
Pb  

 
5.35 4.77 4.78 3.88 4.47 7.12 5.90 5.51 6.00 7.30 6.50 5.95 

U  
 

0.52 0.55 0.55 0.48 0.52 0.65 0.90 0.62 
 

1.00 2.20 0.65 
Th  

 
1.57 1.61 1.62 1.45 1.45 2.35 2.20 1.80 2.40 2.20 3.50 1.91 

Cs  
 

0.18 0.29 0.31 0.26 0.62 0.27 
 

0.37 
   

0.36 
Hf 

 
3.74 3.70 3.62 2.90 3.19 4.69 

 
4.10 

   
3.78 

Ta  
 

0.95 0.94 0.94 0.51 0.58 0.89 
 

0.92 
   

0.75 

              La  
 

23.47 23.48 23.09 15.88 18.79 28.84 24.80 24.37 25.50 26.80 19.60 23.69 
Ce  

 
50.17 49.67 48.97 33.41 40.50 57.92 49.20 51.55 48.30 48.50 40.90 48.75 

Pr 
 

6.57 6.54 6.40 4.37 5.34 7.46 
 

6.66 
   

6.26 
Nd  

 
27.52 27.29 26.62 18.35 22.50 30.19 25.40 27.23 29.00 27.60 22.70 25.43 

Sm  
 

6.14 6.01 5.94 4.28 5.18 6.51 
 

5.99 
   

5.49 
Eu 

 
1.99 1.91 1.84 1.35 1.61 1.94 

 
1.89 

   
1.71 

Gd 
 

5.74 5.71 5.56 4.19 4.87 6.01 
 

5.51 
   

5.05 
Tb 

 
0.89 0.88 0.86 0.71 0.78 0.94 

 
0.86 

   
0.79 

Dy  
 

5.28 5.19 5.07 4.49 4.61 5.49 
 

4.99 
   

4.68 
Ho  

 
1.05 1.01 1.00 0.94 0.95 1.09 

 
0.99 

   
0.91 

Er  
 

2.76 2.67 2.60 2.58 2.46 2.94 
 

2.57 
   

2.45 
Tm 

 
0.38 0.38 0.37 0.38 0.35 0.41 

 
0.36 

   
0.35 

Yb 
 

2.36 2.36 2.31 2.36 2.21 2.60 
 

2.28 
   

2.14 
Lu    0.39 0.37 0.37 0.39 0.35 0.41   0.37       0.35 
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Table 2.4a: Whole rock radiogenic Sr isotopes for mafic, intermediate, rhyolite lavas and crustal rocks. 
Sample  Rb Sr 87Rb/86Sr 87Sr/86Sr  Age 87Sr/86Sr 
  (ppm) (ppm)   Present  (Ma)  Initial 
Mafic to intermediate lavas of 
the SV  

 
   

AS SV287* 2.49 343.46 0.0210 0.70527 14.5 0.70526 
AS SV-11* 8.67 527.15 0.0476 0.70452 14.5 0.70451 
AS SV203b* 14.09 575.28 0.0709 0.70409 14.5 0.70408 
AS SV289 9.54 413.84 0.0667 0.70376 14.5 0.70375 
AS SV39b* 4.23 509.56 0.0240 0.70435 14.5 0.70435 
AS SV 56 22.02 510.95 0.1248 0.70441 14.5 0.70439 
AS SV159c* 25.39 435.22 0.1688 0.70392 15.48 0.70388 
AS SV231 32.21 435.63 0.2140 0.70397 14.5 0.70393 
AS SV 188 37.47 410.48 0.2642 0.70404 14.5 0.70399 
Rhyolite lavas of the SV 

     AS-SV-151 86.65 231.02 1.0857 0.70429 16.06 0.70405 
AS SV173 91.66 197.66 1.3422 0.70444 14.61 0.70416 
AS-SV-190 90.49 76.82 3.4096 0.70499 14.7 0.70428 
AS SV179 100.42 45.10 6.4450 0.70576 15.21 0.70437 
AS SV179extra 100.42 45.10 6.4450 0.70583 15.21 0.70444 
Crustal rocks surrounding the SV 

    AS SV BAS RX01 21.70 539.00 0.1165 0.70384 200 0.70350 
AS SV BAS RX-
08 40.60 372.00 0.3159 0.70747 200 0.70658 
MS-12-45 34.28 445.08 0.2229 0.70818 200 0.70755 
MS-12-46 41.07 199.66 0.5953 0.70695 200 0.70526 
AS-SV-288 47.14 425.64 0.3205 0.70384 19 0.70375 
* tholeiitic lavas 

     Sr λ = 1.42E-11 
     Nd λ = 6.54E-12 
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Table 2.4b: Whole rock radiogenic Nd and Pb isotopes for mafic, intermediate, rhyolite lavas and crustal rocks. 
Sample  Sm Nd 147Sm/144Nd 143Nd/144Nd  143Nd/144Nd ƐNd 208Pb/204Pb 207Pb/204Pb 206Pb/204Pb 
  (ppm) (ppm)   Present  Initial Initial       
Mafic to intermediate lavas of the 
SV      

    AS SV287* 8.16 33.29 0.1483 0.512494 0.512480 -2.4 38.889 15.598 18.549 
AS SV-11* 5.61 24.50 0.1386 0.512773 0.512760 3.0 38.544 15.593 18.826 
AS SV203b* 7.04 31.78 0.1338 0.512787 0.512774 3.3 38.549 15.494 18.844 
AS SV289 4.28 18.35 0.1410 0.512838 0.512825 4.3 38.512 15.604 18.873 
AS SV39b* 6.67 29.60 0.1361 0.512822 0.512809 4.0 38.519 15.608 18.888 
AS SV 56 5.44 25.03 0.1313 0.512826 0.512814 4.0 38.474 15.593 18.855 
AS SV159c* 6.58 28.51 0.1395 0.512875 0.512861 5.0 38.466 15.600 18.856 
AS SV231 3.90 18.18 0.1296 0.512839 0.512827 4.3 38.475 15.602 18.846 
AS SV 188 4.59 20.86 0.1331 0.512796 0.512783 3.4 38.501 15.606 18.875 
Rhyolite lavas of the SV 

       AS-SV-151 3.82 19.62 0.1176 0.513046 0.513034 8.4 38.484 15.596 18.868 
AS SV173 4.32 19.21 0.1360 0.512819 0.512806 3.9 38.801 15.715 19.046 
AS-SV-190 5.67 26.15 0.1311 0.512892 0.512879 5.3 38.506 15.595 18.900 
AS SV179 7.12 33.40 0.1290 0.512833 0.512820 4.2 38.558 15.620 18.994 
AS SV179 extra 7.12 33.40 0.1290 

      Crustal rocks surrounding the SV 
      AS SV BAS RX01 2.96 14.11 0.1268 0.512911 0.512728 10.8 38.540 15.625 18.916 

AS SV BAS RX-08 3.88 16.49 0.1423 0.51258 0.512375 4.4 38.617 15.639 19.048 
MS-12-45 3.15 12.95 0.1468 

   
38.656 15.644 19.036 

MS-12-46 3.03 11.29 0.1625 0.51267 0.512457 5.6 38.698 15.654 19.116 
AS-SV-288 4.65 24.68 0.1139       38.534 15.619 18.869 
* tholeiitic lavas 

        Nd λ = 6.54E-12 
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Table 3.1a: EMP data of cpx crystals from tholeiitic (Th) basalt and intermediate lavas  

  AS-SV-203b 
  1.6 1.7 2.4 2.7 3.1 4.1 4.3 5.1 5.2 6.3 6.4 

wt. % Th  
          SiO2 49.27 50.34 47.62 49.45 51.16 50.71 48.77 50.87 49.09 51.41 50.99 

MgO 14.62 15.54 14.16 15.04 15.87 15.62 14.75 15.81 14.89 15.82 15.95 
FeO 8.96 8.07 10.02 8.44 8.07 8.31 9.11 8.11 8.57 10.96 11.37 
CaO 19.93 20.32 18.68 19.72 20.03 19.67 18.49 19.90 19.49 17.68 16.85 

Al2O3 4.24 3.51 5.36 3.90 2.83 2.87 4.90 2.74 4.58 1.74 2.10 
TiO2 1.39 0.98 1.84 1.19 0.83 0.86 1.37 0.85 1.21 1.01 1.11 

Na2O 0.34 0.33 0.43 0.38 0.30 0.35 0.37 0.34 0.43 0.31 0.30 
MnO 0.24 0.21 0.26 0.20 0.22 0.20 0.19 0.18 0.19 0.36 0.39 

Cr2O3 0.07 0.15 0.02 0.07 0.06 0.10 0.20 0.15 0.22 0.08 0.12 

            En 43 45 43 44 46 45 44 46 44 46 46 
Fs 15 13 17 14 13 14 15 13 14 18 19 

Wo 42 42 40 42 41 41 40 41 42 37 35 
Mg# 74 77 72 76 78 77 74 78 76 72 71 

 
  AS-SV-287 

 
AS-SV-11 

  1.3 1.4 1.5 3.1 
 

1.2 1.3 1.6 1.7 1.8 2.1 2.3 
wt. % Th 

    
Th 

      SiO2 50.38 48.78 48.55 48.96 
 

50.79 50.68 50.51 51.06 50.57 50.64 52.23 
MgO 15.16 14.05 14.38 13.93 

 
15.34 15.26 15.82 15.63 15.70 15.53 16.89 

FeO 14.39 10.95 11.66 11.70 
 

8.24 8.80 8.92 8.51 10.54 8.91 9.36 
CaO 14.83 19.24 18.27 18.17 

 
20.17 19.54 18.59 19.87 17.99 19.37 17.64 

Al2O3 2.10 3.41 3.30 3.42 
 

2.79 2.85 3.21 2.72 2.47 2.72 1.45 
TiO2 1.32 2.07 1.88 2.02 

 
1.23 1.23 1.28 1.23 1.35 1.21 0.74 

Na2O 0.24 0.32 0.31 0.34 
 

0.31 0.29 0.32 0.26 0.33 0.31 0.26 
MnO 0.34 0.29 0.28 0.31 

 
0.22 0.24 0.20 0.23 0.24 0.23 0.28 

Cr2O3 0.06 0.14 0.04 0.10 
 

0.45 0.41 0.54 0.34 0.16 0.40 0.29 

             En 45 41 42 42 
 

45 45 46 45 45 45 49 
Fs 24 18 19 20 

 
13 14 15 14 17 15 15 

Wo 31 41 39 39 
 

42 41 39 41 37 40 36 
Mg# 65 70 69 68 

 
77 76 76 77 73 76 76 

 



112 
 

  

Table 3.1b: EMP data of cpx crystals from calc-alkaline (Ca) intermediate lavas  
  AS-SV-155 

 
AS-SV-281 

  1.2 1.1 2.1 2.5 3.5 
 

1.1 1.4 
wt. % Ca 

     
Ca 

 SiO2 50.89 52.14 53.16 51.69 50.98 
 

52.01 52.02 
MgO 16.69 16.90 17.93 16.13 15.04 

 
15.61 16.30 

FeO 6.59 6.96 6.77 8.54 9.15 
 

8.10 7.75 
CaO 19.96 20.33 19.95 20.00 20.36 

 
20.33 20.46 

Al2O3 3.23 2.61 1.65 2.58 2.74 
 

2.90 2.28 
TiO2 0.53 0.48 0.34 0.53 0.68 

 
0.56 0.45 

Na2O 0.27 0.24 0.17 0.30 0.33 
 

0.35 0.27 
MnO 0.17 0.23 0.22 0.26 0.25 

 
0.24 0.25 

Cr2O3 0.45 0.12 0.09 0.12 0.02 
 

0.17 0.15 

 
        En 48 48 50 46 43 

 
45 46 

Fs 11 11 11 14 15 
 

13 12 
Wo 41 41 40 41 42 

 
42 42 

Mg# 82 81 83 77 75 
 

77 79 
 

  AS-SV-21 
  1.3 1.5 2.5 3.2 3.4 3.6 

wt. % Ca 
     SiO2 52.64 51.86 52.57 52.80 52.26 52.18 

MgO 14.43 14.10 16.52 14.16 15.24 13.65 
FeO 9.48 9.97 6.77 10.47 9.49 11.53 
CaO 21.22 20.73 20.44 20.70 20.22 20.01 

Al2O3 1.25 1.65 2.43 1.46 1.97 1.44 
TiO2 0.25 0.36 0.38 0.28 0.59 0.31 

Na2O 0.34 0.34 0.26 0.32 0.30 0.36 
MnO 0.30 0.39 0.21 0.46 0.33 0.52 

Cr2O3 0.00 0.00 0.20 0.00 0.02 0.02 

 
      En 48 41 47 41 43 40 

Fs 11 16 11 17 15 19 
Wo 41 43 42 43 41 42 

Mg# 73 72 81 71 74 68 
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Table 3.1c: EMP data of opx crystals from calc-alkaline (Ca) intermediate lavas 
  AS-SV-155 
 Ca 1.5 1.6 2.3 2.4 3.3 3.4 3.7 4.2 4.3 4.4 
Wt. % Ca 

         SiO2 54.21 54.98 54.44 54.66 54.71 53.13 53.74 53.60 55.23 54.76 
MgO 29.47 27.85 28.85 27.72 29.18 22.56 25.68 25.81 30.06 29.79 
FeO 11.17 14.21 12.23 14.36 11.55 20.75 16.71 15.75 10.29 10.43 
CaO 1.83 1.56 1.83 1.65 1.88 1.59 1.28 1.58 1.68 1.68 

Al2O3 2.11 1.36 2.14 1.50 2.18 0.82 1.19 1.44 1.84 2.33 
TiO2 0.20 0.24 0.23 0.22 0.22 0.18 0.29 0.16 0.13 0.20 

Na2O 0.03 0.02 0.03 0.02 0.01 0.04 0.01 0.00 0.03 0.01 
MnO 0.26 0.35 0.29 0.33 0.26 0.45 0.58 0.35 0.25 0.25 

Cr2O3 0.43 0.06 0.14 0.05 0.25 0.08 0.02 0.32 0.38 0.49 

           En 80 75 78 75 79 75 71 72 81 81 
Fs 17 22 19 22 18 22 26 25 16 16 

Wo 4 3 4 3 4 3 3 3 3 3 
Mg# 82 78 81 77 82 66 73 75 84 84 

 
 
  AS-SV-281  AS-SV-21 
  Ca 1.2 1.3 2.3 2.4 2.6 2.8 

 
1.1 1.4 2.2 2.3 2.4 

Wt. % Ca 
      

Ca 
    SiO2 55.04 55.12 54.30 54.51 54.05 54.00 

 
52.87 51.38 54.99 53.56 55.86 

MgO 28.17 27.53 27.19 26.43 27.00 27.70 
 

23.22 17.46 28.58 24.19 29.32 
FeO 13.44 14.63 14.88 15.30 14.82 13.94 

 
20.15 28.70 13.05 18.84 12.14 

CaO 1.52 1.53 1.54 1.86 1.88 1.62 
 

1.34 1.14 1.66 1.43 1.67 
Al2O3 1.23 1.03 1.58 1.27 1.44 1.74 

 
1.64 0.41 1.48 1.43 1.67 

TiO2 0.19 0.18 0.26 0.28 0.28 0.25 
 

0.28 0.12 0.17 0.27 0.20 
Na2O 0.02 0.04 0.04 0.03 0.02 0.04 

 
0.03 0.02 0.01 0.01 0.02 

MnO 0.35 0.47 0.38 0.39 0.34 0.38 
 

0.59 0.70 0.31 0.53 0.28 
Cr2O3 0.17 0.08 0.12 0.09 0.10 0.32 

 
0.02 0.00 0.11 0.01 0.18 

             En 77 75 74 73 74 76 
 

65 51 77 68 79 
Fs 20 22 23 24 23 21 

 
32 47 20 30 18 

Wo 3 3 3 4 4 3 
 

3 2 3 3 3 
Mg# 79 77 77 75 76 78 

 
67 52 80 70 81 
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Table 3.1d: EMP data of olivine crystals from tholeiitic (Th) basalt and intermediate lavas 
AS-SV-203b 

  Th 1.1 2.3 3.1 3.4 4.3 5.1 5.2 5.4 7.5 8.2 8.3 9.1 
Wt. % Th 

           SiO2 36.94 36.32 36.74 36.17 35.97 37.73 37.44 37.48 36.00 35.87 35.57 37.48 
MgO 37.21 32.14 33.13 30.46 31.29 37.79 37.44 36.82 30.94 30.32 29.24 35.91 
FeO 24.17 30.43 28.98 31.82 31.40 23.51 23.72 24.31 31.27 32.33 33.23 25.40 
CaO 0.18 0.18 0.22 0.23 0.22 0.17 0.19 0.17 0.24 0.18 0.24 0.19 

Al2O3 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 
TiO2 0.04 0.02 0.02 0.03 0.02 0.02 0.01 0.01 0.03 0.03 0.01 0.04 

Na2O 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.03 0.00 
MnO 0.38 0.48 0.52 0.51 0.53 0.39 0.33 0.39 0.52 0.52 0.54 0.39 

Cr2O3 0.01 0.03 0.00 0.00 0.00 0.02 0.01 0.02 0.02 0.00 0.00 0.01 
NiO 0.13 0.11 0.12 0.09 0.08 0.07 0.13 0.07 0.03 0.09 0.05 0.08 

             Fo# 73 65 67 63 64 74 74 73 64 63 61 72 
 

AS-SV-287 
 Th 19.1 20.1 20.2 20.3 20.4 21.1 21.3 21.4 22.1 22.2 22.3 22.4 
Wt. % Th 

           SiO2 37.11 37.40 36.79 36.64 33.96 34.09 37.14 37.20 34.55 37.53 37.08 34.88 
MgO 35.05 36.09 35.14 32.49 21.01 21.87 35.11 34.54 23.43 35.49 35.10 26.28 
FeO 26.71 24.95 26.35 29.40 42.98 40.99 26.09 26.80 40.09 25.94 26.69 36.54 
CaO 0.28 0.27 0.26 0.27 0.31 0.34 0.25 0.26 0.28 0.25 0.26 0.28 

Al2O3 0.03 0.03 0.02 0.02 0.02 0.08 0.03 0.03 0.02 0.02 0.02 0.03 
TiO2 0.02 0.03 0.03 0.04 0.06 0.06 0.03 0.04 0.05 0.02 0.00 0.02 

Na2O 0.02 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 
MnO 0.43 0.35 0.39 0.48 0.64 0.68 0.39 0.37 0.61 0.36 0.38 0.61 

Cr2O3 0.04 0.04 0.04 0.02 0.00 0.02 0.02 0.02 0.00 0.02 0.02 0.00 
NiO 0.08 0.08 0.07 0.03 0.05 0.00 0.09 0.06 0.05 0.15 0.08 0.05 

             Fo# 70 72 70 66 47 49 71 70 51 71 70 56 
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Table 3.1e: EMP data of olivine crystals from calc-alkaline (Ca) intermediate lavas 
AS-SV-167 

  10.2 10.3 10.4 11.1 11.3 11.4 11.5 11.6 
Wt. % Ca 

       SiO2 40.07 39.80 40.49 40.28 40.39 40.08 39.99 39.18 
MgO 43.29 42.35 44.13 43.91 44.76 43.70 43.38 39.92 
FeO 16.32 17.64 15.73 16.02 15.22 15.39 15.40 20.39 
CaO 0.17 0.15 0.17 0.16 0.17 0.16 0.17 0.20 

Al2O3 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 
TiO2 0.01 0.02 0.01 0.00 0.01 0.02 0.00 0.01 

Na2O 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 
MnO 0.24 0.27 0.24 0.24 0.23 0.22 0.24 0.35 

Cr2O3 0.01 0.04 0.00 0.01 0.01 0.01 0.02 0.01 
NiO 0.29 0.26 0.30 0.26 0.30 0.30 0.30 0.25 

         Fo# 83 81 83 83 84 84 83 78 
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Table 3.2: Partition coefficient used in calculations for FC and AFC models. Ree (Nd, La Sm and Ce), Pb 
and Rb partition coefficients in plagioclase are from McKenzie and O'Nions (1991). Th and Nb are from 
Rollinson (1993), Cs from Villemant, B. (1988), Ba from Matsui et al (1977) and K from Philpotts & 
Schnetzler (1970). Ree (Nd, La Sm and Ce), and Pb partition coefficients in olivine are from McKenzie and 
O'Nions (1991). Rb, Cs, Ba, and Th are from Fujimaki et al. (1984) and Nb and K are from Zanetti et al 
(2004). Ree (Nd, La Sm and Ce), Pb, Rb, Ba and Nb partition coefficients in cpx are from Foley et al 
(1996)). Th from Rollinson (1993) and K from Philpotts & Schnetzler (1970). All reported partition 
coefficients for magnetite are from Rollinson (1993) and K-spar Cs and Pb partition coefficients are from 
Larsen (1979) and K from Philpotts & Schnetzler (1970). 
 

 
plag cpx ol mag k-feldspar ap 

Th 0.0100 0.0300 0.0400 NA NA NA 
Nd 0.1400 0.1730 0.0010 1.0000 NA NA 
Rb 0.1000 0.0047 0.0020 NA NA NA 
Nb 0.0100 0.0027 0.0017 0.4000 NA NA 
Pb 0.3600 0.0056 0.0001 NA 0.2080 NA 
La 0.2700 0.0435 0.0006 1.5000 NA NA 
K 0.1560 0.0072 0.0130 0.0450 1.4900 NA 

Sm 0.1100 0.2830 0.0013 1.1000 NA NA 
Cs 0.1300 0.1300 0.0004 NA 0.0440 NA 
Ba 0.3000 0.0006 0.0020 NA NA NA 
Ce 0.2000 0.0843 0.0005 1.3000 NA NA 
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Table 3.3a: Whole rock XRF analysis of crustal rock which crop out within the Strawberry Volcanics  

Local Crust  
AS-
SV-   BASE-01 BASE-02 BASE-03 BASE-04 BASE-05 BASE-06 BASE-07 BASE-08 BASE-09 

12-
45 

12-
46 228 

XRF 
             Wt.% normalized 

            SiO2   
 

67.85  67.24  66.48  41.02  54.20  55.93  74.97  56.70  69.49  60.90  70.98  67.05 
 TiO2   

 
0.645 0.559 0.553 0.000  0.143  0.278  0.043 0.685 0.600 0.599 0.596 0.59 

 Al2O3  
 

15.44  16.25  16.22  0.12  2.58  19.63  15.68  13.23  13.66  14.09  13.66  15.38 
 FeO* 

 
3.67  3.61  3.48  7.54  5.40  4.24  0.97  6.06  5.58  5.13  4.36  4.05 

 MgO    
 

2.46  1.90  2.18  51.13  19.15  4.69  0.14  2.39  3.12  1.95  2.36  2.08 
 CaO    

 
3.86  3.95  4.48  0.05  17.88  8.93  1.61  16.39  3.37  11.82  2.97  4.20 

 Na2O   
 

4.66  4.73  5.30  0.01  0.46  5.81  5.08  2.41  2.64  3.72  3.38  3.82 
 K2O    

 
1.16  1.50  1.08  0.01  0.05  0.22  1.40  1.73  1.36  1.44  1.52  2.564 

 P2O5   
 

0.169 0.192 0.150 0.004  0.008  0.186  0.070 0.174 0.139 0.171 0.131 0.208 
 MnO    

 
0.070 0.068 0.076 0.119  0.124  0.084  0.048 0.216 0.054 0.178 0.047 0.062 

              ppm 
             Ni 
 

30   15   19   2605  390  41  7   38   31   22   16   32.9 
Cr 

 
46   24   25   2297  2536  16  4   52   52   43   37   49.1 

V 
 

78   74   77   11  137  82  5   153   156   123   126   81.1 
Ga 

 
17   19   18   1  4  12  20   11   15   12   13   16.8 

Cu 
 

5   10   31   7  4  6  5   67   81   52   64   34.4 
Zn   41   57   172   83  41  33  49   138   71   96   74   60.7 
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Table 3.3b: Whole rock ICP-MS analysis of crustal rock which crop out within the Strawberry Volcanics 

Local Crust  
AS-
SV-   BASE-01 BASE-02 BASE-03 BASE-04 BASE-05 BASE-06 BASE-07 BASE-08 BASE-09 

12-
45 

12-
46 228 

ICP-
MS 

             Sc 
 

8.7 8.3 9.1 2.8 58.1 17.8 1.1 16.9 15.3 16.5 15.8 10.31 
Ba 

 
664 728 534 4 12 15 593 426 846 1909 1004 1069.11 

Rb 
 

21.7 29.4 16.3 0.4 0.3 1.6 30.1 40.6 39.0 34.3 41.1 47.14 
Sr 

 
539 545 544 2 24 130 403 372 413 445 200 425.64 

Zr 
 

142 116 103 1 6 25 42 75 96 67 69 140.01 
Y  

 
13.85 12.46 14.92 0.10 5.02 8.69 13.44 25.76 21.17 20.01 18.64 17.18 

Nb 
 

8.77 5.24 4.23 0.03 0.08 0.13 8.51 3.05 4.67 2.48 2.44 9.83 
Pb  

 
8.04 5.62 13.53 0.68 0.71 0.16 9.28 8.45 4.03 7.13 4.83 9.43 

U  
 

0.89 1.12 1.07 0.02 0.03 0.10 0.81 1.93 1.90 1.11 1.30 1.76 
Th  

 
2.63 2.58 2.30 0.03 0.08 0.26 2.18 2.92 4.05 2.24 2.72 5.38 

Cs  
 

3.03 2.61 0.75 0.07 0.05 0.03 1.10 3.20 2.65 3.57 4.22 1.14 
Hf 

 
3.68 3.04 2.76 0.02 0.25 0.78 1.93 2.14 2.69 1.93 2.05 3.61 

Ta  
 

0.72 0.38 0.33 0.01 0.02 0.02 0.62 0.23 0.35 0.18 0.18 0.78 

              La  
 

15.67 14.34 12.31 0.126 1.77 1.59 13.25 16.98 15.52 11.94 7.55 30.32 
Ce  

 
29.98 27.90 24.01 0.235 2.80 3.48 26.36 26.12 28.59 20.90 16.08 48.72 

Pr 
 

3.64 3.44 2.96 0.027 0.59 0.52 3.53 3.98 4.04 3.06 2.53 6.68 
Nd  

 
14.11 13.25 11.95 0.093 2.68 2.77 14.07 16.49 16.34 12.95 11.29 24.68 

Sm  
 

2.96 2.74 2.70 0.021 0.78 0.98 2.90 3.88 3.85 3.15 3.03 4.65 
Eu 

 
0.92 0.84 0.90 0.003 0.27 0.58 0.78 1.04 0.87 0.90 0.86 1.11 

Gd 
 

2.79 2.47 2.64 0.019 0.94 1.37 2.51 4.02 3.65 3.30 3.29 3.95 
Tb 

 
0.45 0.39 0.44 0.003 0.16 0.25 0.40 0.67 0.61 0.56 0.56 0.60 

Dy  
 

2.66 2.37 2.72 0.019 0.98 1.66 2.36 4.33 3.85 3.56 3.47 3.45 
Ho  

 
0.53 0.47 0.55 0.004 0.19 0.36 0.46 0.90 0.79 0.74 0.71 0.65 

Er  
 

1.42 1.28 1.48 0.011 0.54 0.99 1.21 2.53 2.20 1.98 1.96 1.72 
Tm 

 
0.21 0.19 0.22 0.002 0.07 0.15 0.18 0.38 0.33 0.28 0.28 0.25 

Yb 
 

1.33 1.19 1.35 0.015 0.44 0.89 1.16 2.44 2.06 1.71 1.73 1.52 
Lu    0.21 0.19 0.21 0.003 0.07 0.15 0.19 0.40 0.33 0.28 0.27 0.23 
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Table 3.4a: Results of trace element FC models of the Strawberry Volcanics. 
Fractional Crystallization   

 F 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 
ppm 

          Cs 0.18 0.19 0.21 0.24 0.28 0.33 0.4 0.51 0.74 1.37 
Rb 8.67 9.57 10.7 12.14 14.04 16.68 20.6 27.03 39.64 76.28 
Ba 431 471 520 581 661 770 929 1182 1660 2966 
Sr 527 521 515 507 499 489 477 463 443 411 
Pb 3.5 3.8 4.18 4.64 5.25 6.07 7.24 9.1 12.55 21.75 
Th 1.23 1.36 1.53 1.74 2.03 2.43 3.02 4.01 5.97 11.81 
U 0.41 0.45 0.51 0.58 0.67 0.8 1 1.33 1.98 3.9 
Zr 119 131 147 166 192 227 280 366 534 1019 
Hf 2.85 3.08 3.35 3.68 4.11 4.69 5.5 6.76 9.03 14.84 
Ta 0.68 0.73 0.79 0.87 0.96 1.09 1.26 1.53 2.02 3.22 
Y 25.92 28.33 31.29 35.02 39.89 46.52 56.15 71.58 100.78 180.86 

Nb 11.79 13.05 14.63 16.66 19.34 23.08 28.66 37.88 56.13 109.92 
La 19.63 21.25 23.21 25.66 28.81 33.05 39.08 48.51 65.8 110.77 
Ce 42.55 46.24 50.75 56.39 63.69 73.55 87.72 110.09 151.62 262.08 
Pr 5.67 6.22 6.89 7.74 8.86 10.39 12.62 16.22 23.1 42.28 

Nd 24.5 26.69 29.38 32.75 37.13 43.07 51.65 65.28 90.82 159.68 
Sm 5.61 6.1 6.7 7.45 8.42 9.72 11.61 14.58 20.1 34.81 
Eu 1.9 2 2.12 2.26 2.43 2.66 2.95 3.39 4.12 5.74 
Gd 5.46 5.98 6.63 7.44 8.5 9.96 12.09 15.51 22.04 40.2 
Tb 0.84 0.92 1.01 1.12 1.27 1.47 1.76 2.21 3.06 5.34 
Dy 5.06 5.54 6.14 6.89 7.87 9.21 11.17 14.33 20.35 37.07 
Ho 1.01 1.1 1.22 1.37 1.57 1.83 2.22 2.85 4.05 7.37 
Er 2.68 2.94 3.25 3.66 4.19 4.91 5.97 7.68 10.96 20.12 

Tm 0.38 0.41 0.45 0.51 0.58 0.67 0.81 1.03 1.44 2.58 
Yb 2.29 2.51 2.77 3.09 3.52 4.1 4.95 6.29 8.84 15.81 
Lu 0.35 0.39 0.43 0.49 0.56 0.67 0.82 1.06 1.53 2.88 

F = fraction of melt remaining 
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Table 3.4b: Results of trace element AFC models of the Strawberry Volcanics. 
Assimilation Fractional Crystallization 

 F 1 0.94 0.88 0.82 0.76 0.7 0.64 0.58 0.52 0.46 
ppm 

          Cs 0.18 0.19 0.21 0.24 0.26 0.29 0.33 0.37 0.43 0.49 
Rb 8.67 9.52 10.48 11.58 12.85 14.33 16.08 18.18 20.74 23.95 
Ba 431 461 495 533 576 627 685 755 839 944 
Sr 527 523 518 513 507 502 496 489 482 474 
Pb 3.5 3.74 4 4.3 4.64 5.04 5.49 6.03 6.68 7.48 
Th 1.23 1.34 1.47 1.62 1.79 2 2.24 2.52 2.88 3.33 
U 0.41 0.45 0.49 0.54 0.6 0.66 0.74 0.84 0.95 1.1 
Zr 119 127 136 146 158 172 188 208 232 262 
Hf 2.85 3 3.17 3.35 3.56 3.81 4.08 4.41 4.8 5.27 
Ta 0.68 0.71 0.75 0.79 0.84 0.89 0.95 1.02 1.1 1.2 
Y 25.92 27.4 29.07 30.95 33.11 35.6 38.51 41.97 46.15 51.32 

Nb 11.79 12.58 13.48 14.52 15.71 17.1 18.75 20.73 23.17 26.22 
La 19.63 20.74 21.98 23.38 24.97 26.78 28.89 31.37 34.33 37.95 
Ce 42.55 44.96 47.66 50.7 54.16 58.14 62.78 68.25 74.82 82.89 
Pr 5.67 6.03 6.43 6.89 7.41 8.02 8.73 9.57 10.6 11.87 

Nd 24.5 25.9 27.48 29.26 31.3 33.64 36.37 39.61 43.51 48.31 
Sm 5.61 5.92 6.26 6.65 7.09 7.6 8.19 8.89 9.72 10.75 
Eu 1.9 1.96 2.03 2.1 2.17 2.26 2.36 2.47 2.6 2.76 
Gd 5.46 5.79 6.15 6.56 7.04 7.59 8.23 8.99 9.92 11.07 
Tb 0.84 0.89 0.94 1 1.06 1.14 1.23 1.33 1.46 1.61 
Dy 5.06 5.36 5.69 6.07 6.51 7.01 7.6 8.3 9.15 10.21 
Ho 1.01 1.07 1.13 1.21 1.29 1.39 1.51 1.65 1.82 2.03 
Er 2.68 2.84 3.01 3.22 3.45 3.72 4.04 4.41 4.87 5.44 

Tm 0.38 0.4 0.42 0.45 0.48 0.52 0.56 0.61 0.67 0.74 
Yb 2.29 2.42 2.57 2.74 2.93 3.14 3.4 3.7 4.07 4.52 
Lu 0.35 0.38 0.4 0.43 0.46 0.5 0.54 0.6 0.66 0.74 

F = fraction of melt remaining 
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Table 3.5a: Results of XRF generated data mixing models between calc-alkaline andesite (AS-SV-33) and 
Canyon Mountain crust (AS-BASE-04).  

Intermediate calc-alkaline mixed with Canyon Mountain Dunite 
 wt.% 0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

 SiO2   63.87 62.73 61.58 59.30 57.01 54.73 52.44 50.16 47.87 45.59 43.30 41.02 
 TiO2   0.68 0.65 0.61 0.55 0.48 0.41 0.34 0.27 0.20 0.14 0.07 0.00 
 Al2O3  16.81 15.98 15.15 13.48 11.81 10.14 8.47 6.80 5.13 3.46 1.79 0.12 
 FeO* 5.04 5.16 5.29 5.54 5.79 6.04 6.29 6.54 6.79 7.04 7.29 7.54 
 MgO    1.96 4.42 6.87 11.79 16.71 21.63 26.54 31.46 36.38 41.29 46.21 51.13 
 CaO    5.58 5.31 5.03 4.48 3.92 3.37 2.82 2.26 1.71 1.16 0.60 0.05 
 Na2O   3.83 3.64 3.45 3.06 2.68 2.30 1.92 1.54 1.15 0.77 0.39 0.01 
 K2O    1.90 1.81 1.71 1.52 1.34 1.15 0.96 0.77 0.58 0.39 0.20 0.01 
 P2O5   0.24 0.23 0.22 0.19 0.17 0.14 0.12 0.10 0.07 0.05 0.03 0.00 
 MnO    0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.12 0.12 

             ppm 
            Ni 19 148 277 536 795 1053 1312 1571 1829 2088 2347 2605 

Cr 25 138 252 479 706 934 1161 1388 1615 1843 2070 2297 
V 112 107 102 92 82 72 62 51 41 31 21 11 
Ga 18 17 16 14 13 11 9 8 6 4 3 1 
Cu 36 35 33 31 28 25 22 19 16 13 10 7 
Zn 68 68 69 71 72 74 75 77 78 80 81 83 
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Table 3.5b: Results of ICP-MS generated data mixing models between calc-alkaline andesite (AS-SV-33) 
and Canyon Mountain crust (AS-BASE-04).   
 

Intermediate calc-alkaline mixed with Canyon Mountain Dunite 
ppm  0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 
ICP-MS 

           Sc 14.4 13.8 13.2 12.1 10.9 9.7 8.6 7.4 6.3 5.1 3.9 2.8 
Ba 904 859 814 724 634 544 454 364 274 184 94 4 
Rb 34 32 31 27 24 20 17 14 10 7 4 0 
Sr 394 374 355 315 276 237 198 159 120 80 41 2 
Zr 170 162 153 136 119 102 85 68 51 35 18 1 
Y  20.97 19.92 18.88 16.79 14.71 12.62 10.53 8.45 6.36 4.27 2.19 0.10 
Nb 8.31 7.89 7.48 6.65 5.82 5.00 4.17 3.34 2.51 1.69 0.86 0.03 
Pb  8.15 7.78 7.40 6.66 5.91 5.16 4.41 3.67 2.92 2.17 1.43 0.68 
U  1.14 1.09 1.03 0.92 0.81 0.69 0.58 0.47 0.36 0.25 0.13 0.02 
Th  3.09 2.94 2.79 2.48 2.17 1.87 1.56 1.25 0.95 0.64 0.33 0.03 
Cs  1.59 1.51 1.44 1.28 1.13 0.98 0.83 0.68 0.53 0.37 0.22 0.07 
Hf 4.17 3.96 3.76 3.34 2.92 2.51 2.09 1.68 1.26 0.85 0.43 0.02 
Ta  0.55 0.52 0.49 0.44 0.38 0.33 0.28 0.22 0.17 0.11 0.06 0.01 

             La  22.96 21.82 20.68 18.39 16.11 13.83 11.54 9.26 6.98 4.69 2.41 0.13 
Ce  43.10 40.96 38.82 34.53 30.24 25.96 21.67 17.38 13.10 8.81 4.52 0.24 
Pr 5.42 5.15 4.88 4.34 3.80 3.26 2.72 2.18 1.65 1.11 0.57 0.03 
Nd  21.04 19.99 18.95 16.85 14.76 12.66 10.57 8.47 6.38 4.28 2.19 0.09 
Sm  4.46 4.24 4.01 3.57 3.13 2.68 2.24 1.80 1.35 0.91 0.47 0.02 
Eu 1.24 1.18 1.12 1.00 0.87 0.75 0.62 0.50 0.38 0.25 0.13 0.00 
Gd 4.10 3.89 3.69 3.28 2.87 2.47 2.06 1.65 1.24 0.83 0.43 0.02 
Tb 0.66 0.63 0.60 0.53 0.47 0.40 0.33 0.27 0.20 0.14 0.07 0.00 
Dy  3.89 3.70 3.51 3.12 2.73 2.34 1.96 1.57 1.18 0.79 0.41 0.02 
Ho  0.81 0.77 0.73 0.65 0.57 0.49 0.41 0.33 0.25 0.17 0.08 0.00 
Er  2.19 2.09 1.98 1.76 1.54 1.32 1.10 0.88 0.67 0.45 0.23 0.01 
Tm 0.33 0.31 0.29 0.26 0.23 0.20 0.16 0.13 0.10 0.07 0.03 0.00 
Yb 2.07 1.97 1.86 1.66 1.45 1.25 1.04 0.84 0.63 0.43 0.22 0.01 
Lu  0.32 0.31 0.29 0.26 0.23 0.20 0.16 0.13 0.10 0.07 0.03 0.00 

 



123 
 

  

Table 3.6a: Result of XRF generated data mixing model between basalt and rhyolite. 
Mixing between basalt and rhyolite 

wt.%  0% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 100% 
 SiO2   50.47 51.61 53.88 56.15 58.42 60.69 62.97 65.24 67.51 69.78 72.05 73.19 
 TiO2   1.86 1.79 1.64 1.49 1.33 1.18 1.03 0.88 0.73 0.58 0.43 0.35 
 Al2O3  16.17 16.09 15.93 15.77 15.61 15.45 15.29 15.13 14.97 14.81 14.65 14.57 
 FeO* 10.65 10.23 9.39 8.55 7.70 6.86 6.02 5.18 4.34 3.50 2.66 2.23 
 MgO    6.69 6.37 5.72 5.08 4.43 3.78 3.14 2.49 1.85 1.20 0.55 0.23 
 CaO    9.52 9.14 8.39 7.64 6.88 6.13 5.38 4.63 3.87 3.12 2.37 1.99 
 Na2O   3.09 3.13 3.21 3.28 3.36 3.44 3.51 3.59 3.67 3.75 3.82 3.86 
 K2O    0.76 0.90 1.16 1.43 1.69 1.96 2.23 2.49 2.76 3.02 3.29 3.42 
 P2O5   0.59 0.57 0.52 0.47 0.42 0.37 0.32 0.27 0.22 0.17 0.12 0.10 
 MnO    0.19 0.19 0.17 0.16 0.14 0.13 0.12 0.10 0.09 0.07 0.06 0.05 

             ppm 
            Ni 69 66 59 53 46 39 33 26 19 13 6 3 

Cr 167 159 143 126 110 94 78 62 46 30 13 5 
V 265 253 229 206 182 159 135 112 89 65 42 30 
Ga 18 18 18 18 17 17 17 17 16 16 16 16 
Cu 50 47 43 39 35 30 26 22 18 14 9 7 
Zn 102 100 94 89 83 78 73 67 62 57 51 49 
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Table 3.6b: Result of ICP-MS generated data mixing model between basalt and rhyolite. 
Mixing between basalt and rhyolite 

 ppm 0% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 100% 
Sc 29.1 27.9 25.6 23.3 21.0 18.6 16.3 14.0 11.6 9.3 7.0 5.8 
Ba 431 483.7 589.1 694.5 800 905.4 1011 1116 1222 1327 1432 1485 
Rb 9 13 20 28 36 44 52 59 67 75 83 87 
Sr 527.2 512.3 482.7 453.1 423.5 393.9 364.3 334.7 305.1 275.4 245.8 231 
Zr 119 121.6 126.8 132 137.2 142.4 147.6 152.8 158 163.2 168.4 171 
Y  25.92 25.52 24.72 23.92 23.12 22.32 21.52 20.72 19.93 19.13 18.33 17.93 
Nb 11.79 11.64 11.33 11.03 10.73 10.43 10.13 9.83 9.53 9.23 8.93 8.78 
Pb  3.50 4.02 5.06 6.10 7.14 8.18 9.22 10.27 11.31 12.35 13.39 13.91 
U  0.41 0.57 0.90 1.22 1.55 1.88 2.20 2.53 2.86 3.18 3.51 3.67 
Th  1.23 1.55 2.20 2.85 3.49 4.14 4.79 5.43 6.08 6.73 7.38 7.70 
Cs  0.18 0.38 0.78 1.18 1.59 1.99 2.39 2.79 3.20 3.60 4.00 4.20 
Hf 2.85 2.94 3.11 3.29 3.46 3.64 3.81 3.98 4.16 4.33 4.50 4.59 
Ta  0.68 0.68 0.69 0.70 0.70 0.71 0.71 0.72 0.72 0.73 0.74 0.74 

             La  19.63 19.92 20.50 21.07 21.65 22.23 22.81 23.39 23.96 24.54 25.12 25.41 
Ce  42.55 42.74 43.10 43.47 43.84 44.21 44.57 44.94 45.31 45.68 46.05 46.23 
Pr 5.67 5.66 5.63 5.60 5.56 5.53 5.50 5.47 5.44 5.41 5.37 5.36 
Nd  24.50 24.25 23.76 23.28 22.79 22.30 21.82 21.33 20.84 20.35 19.87 19.62 
Sm  5.61 5.52 5.34 5.16 4.99 4.81 4.63 4.45 4.27 4.09 3.91 3.82 
Eu 1.90 1.85 1.75 1.65 1.55 1.44 1.34 1.24 1.13 1.03 0.93 0.88 
Gd 5.46 5.36 5.14 4.93 4.72 4.51 4.30 4.09 3.87 3.66 3.45 3.35 
Tb 0.84 0.83 0.80 0.77 0.74 0.71 0.68 0.64 0.61 0.58 0.55 0.54 
Dy  5.06 4.97 4.79 4.61 4.43 4.25 4.07 3.89 3.71 3.53 3.35 3.26 
Ho  1.01 0.99 0.96 0.92 0.89 0.86 0.82 0.79 0.75 0.72 0.69 0.67 
Er  2.68 2.64 2.56 2.48 2.40 2.32 2.24 2.16 2.08 2.00 1.92 1.88 
Tm 0.38 0.37 0.36 0.36 0.35 0.34 0.33 0.32 0.31 0.30 0.30 0.29 
Yb 2.29 2.28 2.24 2.20 2.17 2.13 2.10 2.06 2.02 1.99 1.95 1.93 
Lu  0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.33 0.33 0.33 0.32 0.32 
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Table 3.6c: Result of XRF generated data mixing model between basalt and crust. 
Mixing between basalt and crust 

wt.%   0% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 100% 
 SiO2   50.47 51.50 53.55 55.60 57.65 59.70 61.75 63.80 65.85 67.90 69.95 70.98 
 TiO2   1.86 1.80 1.67 1.55 1.42 1.29 1.17 1.04 0.91 0.79 0.66 0.60 
 Al2O3  16.17 16.04 15.79 15.54 15.29 15.04 14.79 14.54 14.29 14.04 13.79 13.66 
 FeO* 10.65 10.33 9.71 9.08 8.45 7.82 7.19 6.56 5.93 5.30 4.68 4.36 
 MgO    6.69 6.48 6.04 5.61 5.18 4.74 4.31 3.88 3.44 3.01 2.58 2.36 
 CaO    9.52 9.19 8.54 7.88 7.23 6.57 5.92 5.26 4.61 3.95 3.30 2.97 
 Na2O   3.09 3.10 3.13 3.16 3.19 3.22 3.25 3.28 3.30 3.33 3.36 3.38 
 K2O    0.76 0.80 0.88 0.95 1.03 1.10 1.18 1.26 1.33 1.41 1.48 1.52 
 P2O5   0.59 0.57 0.52 0.48 0.43 0.38 0.34 0.29 0.25 0.20 0.15 0.13 
 MnO    0.19 0.19 0.17 0.16 0.14 0.13 0.11 0.10 0.08 0.07 0.05 0.05 

             ppm 
            Ni 69 67 61 56 51 45 40 35 29 24 19 16 

Cr 167 160 147 134 121 108 95 82 69 56 43 37 
V 265 258 244 230 216 202 189 175 161 147 133 126 
Ga 18 18 18 17 17 16 15 15 14 14 13 13 
Cu 50 50 52 53 55 56 57 59 60 62 63 64 
Zn 102 101 98 95 92 90 87 84 81 78 75 74 
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Table 3.6d: Result of ICP-MS generated data mixing model between basalt and crust. 
Mixing between basalt and crust 

ppm  0% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 100% 
Sc 29.09 28.43 27.1 25.77 24.44 23.11 21.78 20.44 19.11 17.78 16.45 15.79 
Ba 431 459.7 517 574.3 631.6 689 746.3 803.6 860.9 918.2 975.6 1004 
Rb 8.668 10.29 13.53 16.77 20.01 23.25 26.49 29.73 32.97 36.21 39.45 41.07 
Sr 527.2 510.8 478 445.3 412.5 379.8 347 314.3 281.5 248.8 216 199.7 
Zr 119 116.5 111.6 106.6 101.7 96.7 91.75 86.79 81.84 76.89 71.94 69.46 
Y  25.92 25.56 24.83 24.1 23.37 22.64 21.91 21.19 20.46 19.73 19 18.64 
Nb 11.79 11.32 10.38 9.45 8.515 7.581 6.646 5.712 4.777 3.843 2.908 2.441 
Pb  3.499 3.566 3.699 3.833 3.966 4.1 4.233 4.367 4.5 4.634 4.767 4.834 
U  0.408 0.452 0.541 0.631 0.72 0.809 0.898 0.987 1.076 1.165 1.254 1.299 
Th  1.227 1.302 1.451 1.6 1.75 1.899 2.048 2.198 2.347 2.496 2.646 2.72 
Cs  0.176 0.378 0.783 1.187 1.592 1.996 2.4 2.805 3.209 3.614 4.018 4.22 
Hf 2.854 2.814 2.733 2.652 2.571 2.49 2.409 2.328 2.247 2.166 2.086 2.045 
Ta  0.681 0.656 0.606 0.556 0.506 0.456 0.406 0.357 0.307 0.257 0.207 0.182 

             La  19.63 19.02 17.82 16.61 15.4 14.19 12.99 11.78 10.57 9.363 8.155 7.551 
Ce  42.55 41.23 38.58 35.93 33.29 30.64 27.99 25.35 22.7 20.05 17.41 16.08 
Pr 5.674 5.517 5.203 4.889 4.574 4.26 3.946 3.632 3.317 3.003 2.689 2.532 
Nd  24.5 23.84 22.51 21.19 19.87 18.55 17.23 15.91 14.59 13.27 11.95 11.29 
Sm  5.614 5.485 5.227 4.969 4.711 4.453 4.195 3.937 3.679 3.421 3.163 3.034 
Eu 1.905 1.853 1.748 1.644 1.54 1.436 1.331 1.227 1.123 1.019 0.914 0.862 
Gd 5.462 5.353 5.136 4.918 4.701 4.483 4.266 4.048 3.83 3.613 3.395 3.287 
Tb 0.843 0.829 0.8 0.772 0.744 0.716 0.688 0.66 0.631 0.603 0.575 0.561 
Dy  5.059 4.979 4.82 4.661 4.502 4.343 4.184 4.025 3.866 3.707 3.548 3.468 
Ho  1.007 0.993 0.963 0.934 0.904 0.875 0.845 0.816 0.786 0.757 0.727 0.712 
Er  2.676 2.64 2.568 2.496 2.424 2.352 2.28 2.208 2.135 2.063 1.991 1.955 
Tm 0.377 0.373 0.363 0.354 0.344 0.335 0.325 0.316 0.306 0.297 0.288 0.283 
Yb 2.294 2.266 2.21 2.154 2.098 2.042 1.986 1.931 1.875 1.819 1.763 1.735 
Lu  0.354 0.35 0.342 0.333 0.325 0.316 0.308 0.3 0.291 0.283 0.274 0.27 
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Table 3.6e: XRF data of 55 % mixture of basalt and rhyolite mixed with crust.  

55% mixture of basalt and rhyolite mixed with crust 
wt.%  0% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 100% 

 SiO2   62.97 63.37 64.17 64.97 65.77 66.57 67.37 68.17 68.97 69.77 70.57 70.98 
 TiO2   1.03 1.01 0.97 0.92 0.88 0.84 0.79 0.75 0.70 0.66 0.62 0.60 
 Al2O3  15.29 15.21 15.04 14.88 14.72 14.56 14.39 14.23 14.07 13.91 13.74 13.66 
 FeO* 6.02 5.94 5.77 5.61 5.44 5.27 5.11 4.94 4.78 4.61 4.44 4.36 
 MgO    3.14 3.10 3.02 2.94 2.87 2.79 2.71 2.63 2.55 2.48 2.40 2.36 
 CaO    5.38 5.26 5.02 4.78 4.54 4.30 4.06 3.81 3.57 3.33 3.09 2.97 
 Na2O   3.51 3.51 3.49 3.48 3.47 3.45 3.44 3.42 3.41 3.40 3.38 3.38 
 K2O    2.23 2.19 2.12 2.05 1.98 1.91 1.84 1.77 1.70 1.63 1.56 1.52 
 P2O5   0.32 0.31 0.29 0.27 0.25 0.23 0.22 0.20 0.18 0.16 0.14 0.13 
 MnO    0.12 0.11 0.11 0.10 0.09 0.09 0.08 0.07 0.06 0.06 0.05 0.05 

             ppm 
            Ni 33 32 30 28 27 25 24 22 20 19 17 16 

Cr 78 76 72 68 64 60 55 51 47 43 39 37 
V 135 135 134 133 132 131 130 129 129 128 127 126 
Ga 17 17 16 16 16 15 15 14 14 14 13 13 
Cu 26 28 32 36 39 43 47 51 54 58 62 64 
Zn 73 73 73 73 73 73 73 74 74 74 74 74 
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Table 3.6f: ICP-MS data of 55 % mixture of basalt and rhyolite mixed with crust. 
55% mixture of basalt and rhyolite mixed with crust 

ppm  0% 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% 100% 
Sc 16.30 16.27 16.22 16.17 16.12 16.07 16.02 15.97 15.92 15.86 15.81 15.79 
Ba 1011 1010 1010 1009 1008 1008 1007 1007 1006 1005 1005 1004 
Rb 52 51 50 49 48 47 46 45 44 43 42 41 
Sr 364 356 340 323 307 290 274 257 241 224 208 200 
Zr 148 144 136 128 120 112 105 97 89 81 73 69 
Y  21.52 21.38 21.09 20.80 20.51 20.22 19.94 19.65 19.36 19.07 18.78 18.64 
Nb 10.13 9.75 8.98 8.21 7.44 6.67 5.90 5.13 4.36 3.59 2.83 2.44 
Pb  9.22 9.01 8.57 8.13 7.69 7.25 6.81 6.37 5.93 5.49 5.05 4.83 
U  2.20 2.16 2.07 1.98 1.89 1.80 1.71 1.62 1.52 1.43 1.34 1.30 
Th  4.79 4.68 4.48 4.27 4.06 3.86 3.65 3.44 3.24 3.03 2.82 2.72 
Cs  2.39 2.48 2.67 2.85 3.03 3.21 3.40 3.58 3.76 3.95 4.13 4.22 
Hf 3.81 3.72 3.54 3.37 3.19 3.02 2.84 2.66 2.49 2.31 2.13 2.05 
Ta  0.71 0.69 0.63 0.58 0.53 0.47 0.42 0.37 0.31 0.26 0.21 0.18 

             La  22.81 22.05 20.52 18.99 17.47 15.94 14.42 12.89 11.37 9.84 8.31 7.55 
Ce  44.57 43.15 40.30 37.45 34.60 31.75 28.90 26.06 23.21 20.36 17.51 16.08 
Pr 5.50 5.35 5.06 4.76 4.46 4.16 3.87 3.57 3.27 2.98 2.68 2.53 
Nd  21.82 21.29 20.24 19.18 18.13 17.08 16.03 14.97 13.92 12.87 11.82 11.29 
Sm  4.63 4.55 4.39 4.23 4.07 3.91 3.75 3.59 3.43 3.27 3.11 3.03 
Eu 1.34 1.32 1.27 1.22 1.17 1.12 1.08 1.03 0.98 0.93 0.89 0.86 
Gd 4.30 4.25 4.15 4.05 3.94 3.84 3.74 3.64 3.54 3.44 3.34 3.29 
Tb 0.68 0.67 0.66 0.65 0.64 0.62 0.61 0.60 0.59 0.58 0.57 0.56 
Dy  4.07 4.04 3.98 3.92 3.86 3.80 3.74 3.68 3.62 3.56 3.50 3.47 
Ho  0.82 0.82 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.71 
Er  2.24 2.22 2.20 2.17 2.14 2.11 2.08 2.05 2.03 2.00 1.97 1.96 
Tm 0.33 0.33 0.32 0.32 0.31 0.31 0.30 0.30 0.29 0.29 0.29 0.28 
Yb 2.10 2.08 2.04 2.01 1.97 1.93 1.90 1.86 1.83 1.79 1.75 1.73 
Lu  0.34 0.33 0.33 0.32 0.31 0.31 0.30 0.29 0.29 0.28 0.27 0.27 
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Figure 1.1: Regional map and simplified geologic map. a) Regional map showing the location of Columbia River Basalt Group (CRBG) lavas including Steens 
Basalt in relation to study area (red square) with the Strawberry Volcanics. The solid circles are presumed rhyolitic centers associated with the Yellowstone 
hotspot, (modified after Camp and Ross, 2004. b) Simplified geologic map from 44° to 44° 30´ latitude and 118° to 119° longitude of the Strawberry Volcanics 
and surrounding units. The geologic units surrounding the Strawberry Volcanics are based on: Brooks and Ferns, 1979; Brown and Thayer, 1966; Brown and 
Thayer, 1977; Crowley, 1960; Ferns et al., 1983; Green et al., 1972; Mullen, 1983; Robyn, 1977; Thayer, 1956; Thayer et al., 1967. 
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Figure 1.2: TSA, FeO* vs SiO2 wt % and FeO* vs MgO wt % with calculated THI of the Strawberry 
Volcanics and the CRBG. Compositional spread of lavas of the Strawberry Volcanics (this study) and of 
the Columbia River Basalt Group (CRBG) (Wolff et al. (2008). a) Total alkali-silica diagram (Le Bas et al., 
1986). Yellow circles indicate tholeiitic compositions while blue circles are calc-alkaline compositions 
according to scheme of Miyashiro (1974). Red circles are for rhyolites of the Strawberry Volcanics; b) 
FeO*/MgO versus SiO2 diagram with tholeiitic/calc-alkaline fields as based on Miyashiro (1974). c) FeO* 
vs. MgO wt.% diagram. Overall, FeO* wt.% decreases with decreasing MgO wt.% in the tholeiitic and 
calc-alkaline lavas of the Strawberry Volcanics, yet the tholeiitic lavas decrease less than the calc-alkaline. 
The most mafic tholeiitic lavas of the Strawberry Volcanics overlap considerably with the CRBG and 
transition towards calc-alkaline compositions as MgO wt.% decreases. Calc-alkaline lavas of the 
Strawberry Volcanics have a Tholeiitic Index (THI) of 0.73 while tholeiitic basalt and intermediate lavas 
have a THI of 0.94. The tholeiitic index (THI) was developed by Zimmer et al. (2010) and is defined in the 
following way: THI = Fe4.0 / Fe8.0 where Fe4.0 is the average FeO* wt.% concentration of samples with 4 ± 1 
wt.% MgO, and Fe8.0 is the average FeO* wt.% concentration at 8 ± 1 wt.% MgO thus, samples with 
THI>1 are tholeiitic and samples with THI<1 are calc-alkaline. The three solid lines correspond with 
calculated THI values for the various suites, i.e. calc-alkaline and tholeiitic suites of the Strawberry 
Volcanic and the tholeiitic lavas of the CRBG if we use the composition of a primitive basalt of the 
Strawberry Volcanics for Fe8.0. Alternatively, if we use an initially higher FeO* at 8 wt.% MgO, this will 
lead to a reduced THI value for the Strawberry lavas (dashed gray line) and consequently to a stronger calc-
alkaline signature. 
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Figure 1.3: Field photographs of lavas and dikes of the Strawberry Volcanics. a) Section of >1000 m in 
thickness of lava flows of the Strawberry Volcanics exposed in the glaciated wall of Strawberry Mountain 
(44°17’44’’N, 118°40’41’’W); b) NNW-SSE trending dike of the Strawberry Volcanics (44°16’54’’N, 
118°31’18’’W) that follows a regional dike trend; c) close up of a Strawberry Volcanics dike cross-cutting 
other volcanic rocks (44°22’04’’N, 118°26’30’’W). 
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Figure 1.4: Field photograph of lavas with rhyolite tuff between lavas. Two ~8 m thick rhyolitic ash-flow 
tuffs intercalated with lava flows of the Strawberry Volcanics (44°18’52’’N, 118°41’32’’W). These tuffs 
are correlated with the Dinner Creek Tuff which erupted between 15.9-15.4 Ma (Streck et al., 2011). This 
stratigraphic evidence indicates that activity of the Strawberry Volcanics likely started at ≥ 16 Ma. 
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Figure 1.5: 40Ar/39Ar analysis of lavas of the Strawberry Volcanics. Results of 40Ar/39Ar dating experiments 
indicating that the Strawberry Volcanics were at least active between 14.87±0.13 Ma to 12.52±0.12 Ma, see 
text for discussion. SiO2 content of dated sample is given in right hand corner. 
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Figure 1.6: Harker diagrams for selected trace elements vs SiO2 wt % and calculated fractional 
crystallization models for selected trace elements. Variation diagrams of Nb (a), Zr (b), La (c), and Rb vs. 
SiO2 (d). Observed trends among incompatible elements towards increased silica rule out fractional 
crystallization as main process to generate calc-alkaline andesites. Diagrams e and f include mixing and 
fractionation models. Fractionation models are based on partition coefficients for Rb of 0.071, 0.031, 0.02, 
for Zr of 0.048, 0.10, 0.18 and for Nb of 0.01, 0.15, and 0.005 for plagioclase, clinopyroxene and 
othropyroxene, respectively. The modal proportions used are based on observed mineral assemblages and 
are as follows; 68 % plagioclase, 17% clinopyroxene and 15% orthopyroxene.  The composition of the 
liquid has been calculated in intervals of 5% as illustrated by + marks. 
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Figure 1.7: Selected trace element ratios and trace elements vs tholeiitic index. Ratios of (La/Sm)N and 
(Gd/Yb)N, and concentrations of Nb plotted versus calc-alkaline/tholeiite (CA/TH) index of Hora et al. 
(2009) determined for each sample. CA/TH index = (wt.% SiO2 -42.8)/(6.4 x FeO*/MgO). A CA/TH index 
of <1 indicates tholeiitic character and of >1 calc-alkaline character. We are using the CA/TH index here 
because it allows to assign a value of calc-alkaline/tholeiitic character to individual samples as opposed to 
the THI index that describes the trend within a suite of samples.  On average, tholeiitic lavas of the 
Strawberry Volcanics have a flatter LREE (La/Sm)N slope but a steeper HREE (Gd/Yb)N slope than calc-
alkaline lavas. Nb concentrations are higher in the tholeiitic lavas and decrease with increasing calc-
alkalinity. 
 

  



136 
 

 

 

 

Figure 1.8: Primitive mantle and C1 normalized multi-variable diagrams. Primitive mantle normalized 
incompatible element diagram (a) and chondrite normalized REE diagram (b) of select andesites (<62 SiO2 
wt.%) of Strawberry Volcanics showing similarities as well as difference towards more evolved 
compositions. Normalization values are taken from Sun and McDonough (1989) for (a) and McDonough 
and Sun (1995) for (b). Diagram c) is a primitive mantle normalized incompatible element diagram of 
selected basalts and basaltic andesites with compositions of ≤53 wt.% SiO2 wt.%  showing similarity of 
both tholeiitic (yellow) and calc-alkaline (blue) basaltic andesites and tholeiitic basalts. 
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Figure 1.9: Primitive mantle multi-variable diagrams comparing basalts to increasing THI of various 
tholeiites and calc-alkaline lavas. Primitive mantle normalized (Sun and McDonough, 1989) incompatible 
element diagrams of select samples of Strawberry Volcanics comparing primitive tholeiite (AS-SV-171) to 
single intermediate composition members of the tholeiitic (a and d) and calc-alkaline (b and e) suites within 
a narrow silica range (57-61 wt.%). Figures a) and b) compare samples that are most tholeiitic and most 
calc-alkaline and figures d) and e) compare samples that are tholeiitic and calc-alkaline but are closer in 
their Fe*O/MgO ratios and straddle the tholeiitic/calc-alkaline divide.  Figure c) and f) show normalization 
diagrams using elemental concentrations of basalt (AS-SV-171) of the Strawberry Volcanics;  c) displays 
differences between andesites of panel a) and b) and f ) shows differences between andesites of panel d) 
and e). Insets show position of samples relative to tholeiitic/calc-alkaline divide of Miyashiro (1974). 
Differences in incompatible element compositions between tholeiitic and calc-alkaline samples are notable 
the more different samples are in terms of their FeO*/MgO ratio (or CA/TH index) but are less notable as 
samples converge in their FeO*/MgO ratio (see text for discussion). 
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Figure 1.10: Comparison of selected trace element ratios of the Strawberry Volcanics with lavas of the 
CRBG and typical ‘orogenic’ andesites. Lavas of the Strawberry Volcanics relative to lavas of CRBG and 
typical continental arcs represented by Mt. Hood and Mt. Augustine: a) Th/Yb vs. Ta/Yb diagram; dashed 
arrows indicate typical volcanic arcs and a “mantle array” (OIB) trajectories taken from Leeman et al. 
(1990); b) Pb/Ce vs. Ba/Zr diagram. Significant overlap between lavas of the Strawberry Volcanics and the 
CRBG and their compositional spread indicate derivation from a similar mantle source that has been 
previously metasomatized. Data for Mt. Hood taken from Wood (2004) and for Mt. Augustine from Steiner 
et al. (2012). 
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Figure 1.11: Comparison of primitive mantle normalized multi-variable diagram and the average analysis 
of lavas of the CRBG. Primitive mantle normalized (Sun and McDonough, 1989) incompatible element 
diagram comparing one basalt of the Strawberry Volcanics (black) with select lavas of the CRBG (Wolff et 
al. (2008) representing following members: Imnaha Basalt (red), Grande Ronde Basalt (green), Steens 
Basalt (gray), and Picture Gorge Basalt (blue). The tholeiite of the Strawberry Volcanics is lightly depleted 
in HREE relative to CRBG lavas but otherwise indicate a very similar pattern. Best match is found with 
Steens type basalt. 
  



140 
 

 

 

 
 
Figure 2.1: Regional map and simplified geologic map. a) Location of the Strawberry Volcanics and 
regional lavas of the CRB. b) The larger map shows the geology surrounding the Strawberry Volcanics and 
the boundary of the volcanic field (yellow). Field observations identified volcanic centers (red stars) and 
dikes (dashed lines) are included on map. BRM (Bull Run Mtn.), BV (Bear Valley), CA (California), CJ 
(Chief Joseph Dikes), CM (Canyon Mtn.), HM (High Mtn.), ID (Idaho), ISM (Ironside Mtn.), LV (Logan 
Valley), MD (Monument Dikes), MT (Montana), NV (Nevada), OR (Oregon), SD (Steens Dikes), SM 
(Strawberry Mtn.), SRP (Snake River Plains – Yellowstone Hotspot), SV (Strawberry Volcanics)UT 
(Utah), WA (Washington), WY (Wyoming). Black stars represent towns JD (John Day), Sen (Seneca), Un 
(Unity). Figure of the CRBG lavas is molded after Camp and Ross, (2004). The geological units 
surrounding the Strawberry Volcanics are based on Thayer (1956), Crowley (1960), Brown and Thayer 
(1966a, b, 1977), Thayer et al. (1967), Greene et al. (1972), Robyn (1977), Brooks and Ferns (1979), Ferns 
et al. (1983) and Mullen (1983). 
 
  

b) 
a) 
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Figure 2.2: TSA and FeO*/MgO vs SiO2 wt % diagram. a) Total alkali– silica diagram (Le Bas et al. 1986) 
with all SV data showing diversity of the volcanic suite and b) Miyashiro (1974) tholeiitic and calc-alkaline 
diagram showing that mafic to intermediate compositions of Strawberry Volcanics display both tholeiites 
and calc-alkaline affinities.  
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Figure 2.3: Regional map of the distribution of mid-Miocene rhyolitic centers. a) Location map of mid-
Miocene rhyolites of eastern OR related to the onset of the Yellowstone-Snake River Plains Hotspot. b) 
Location of the area in a).   
  

b) a) 
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Figure 2.4: Fence diagram of the Strawberry Volcanics. Sections through the Strawberry Volcanics and 
other important geologic units in the surrounding area. Sections are labeled a-h and can be correlated to 
locations on Figure 5. Ages of specific units are labeled to the right of the diagram. All ages in black are 
determined by this study. In red are ages associated with specific units determined outside of this study 
(Streck et. al., 2011 and Robyn, 1977). Numbers on left of diagram are in meters. 
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Figure 2.5: Sample location map of lavas analyzed by whole rock XRF and ICP-MS analysis. a to h are 
locations of schematic sections of Figure 4. Black frames indicate arial coverage of geology maps in figures 
7, 8, and 9.  
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Figure 2.6a: 40Ar/39Ar plateau ages of samples of the Strawberry Volcanics. 
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Figure 2.6b: 40Ar/39Ar plateau ages of samples of the Strawberry Volcanics (continued). 
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Figure 2.7: Geologic map of the northern rhyolites section and surrounding units. 
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Figure 2.8: Geologic map of the north section of the southern rhyolites section and surrounding units. 
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Figure 2.9: Geologic map of the south section of the southern rhyolites section and surrounding units. 
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Figure 2.10: Major element Harker diagrams of rhyolites of the Strawberry Volcanics.  
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Figure 2.11: Normalized upper continental crust and normalized chondrite multi-variable diagrams of 
rhyolite units of the Strawberry Volcanics. Samples used in this diagram are the upper and lower 
concentration limits for each group. Normalized values for upper continental crust are from Taylor and 
McLennan (1995) and REE chondrite is from Boynton (1984). 
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Figure 2.12: Selected trace elements including A-Type rhyolite discrimination diagram vs SiO2 wt % and 
Zr (ppm) for rhyolites.  La and Nb vs SiO2 wt % (a and b), Nb, 10,000 x Ga/Al vs Zr (ppm) (c and d) and 
Zr+Nb+Ce+Y and 10,000 x Ga/Al vs SiO2 wt % (e and f). Solid line represents the dividing line for A-Type 
rhyolites from Whalen et al., 1987. 
  

f) e) 

d) c) 

b) a) 
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Figure 2.13: Ba, Sr, and Eu/Eu* vs (La/Yb)N plots for rhyolites. Slope of REE (La/Yb)N  of rhyolites 
showing weak positive correlation with Ba (ppm), Sr (ppm), and Eu/Eu*. 
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Figure 2.14: Selected trace element Harker diagrams with model fractional crystallization trend. Model 
diagrams show the path of fractionation crystallization from a mafic lava to 65% crystallization with 5% 
increments. These diagrams show the trend among incompatible elements towards increased silica of the 
Strawberry Volcanics and rules out fractional crystallization as the main process of generating the silicic 
lavas. These rhyolites are likely products of partial melting of the basement lithology during input of mafic 
magmas from the mantle. Fractionation models are based on partition coefficients for Rb of 0.071, 0.031, 
0.02, for Zr of 0.048, 0.10, 0.18 and for Nb of 0.01, 0.15 and 0.005 for plagioclase, clinopyroxene and 
othropyroxene, respectively. The modal proportions used are based on observed mineral assemblages and 
are as follows; 68% plagioclase, 17% clinopyroxene and 15% orthopyroxene.  
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Figure 2.15: Selected trace and Rare earth element diagrams for basalt to intermediate lavas vs SiO2 wt%. 
Enrichment trends occur with Rb, Ba, and Pb and depletion trends in Sc, Sm, and Tb with increased SiO2. 
Elements which little to no enrichment or flat trends with silica enrichment include Zr, Nb, and La. This 
pattern cannot be explained by fractional crystallization and is likely produced through mixing of magmas 
and/or AFC processes.  
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Figure 2.16: Normalized trace element and REE multi-variable diagrams using the maximum and minimum 
values for the calc-alkaline and tholeiitic suite of lavas analyzed. Normalized values are from Sun and 
McDonough, 1989 and Boynton, 1984.  
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Figure 2.17: Field photographs of mafic dikes. The dash lines are indication of where the dike is located or 
outline the dike as it crosscuts other lavas. 
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Figure 2.18: Major element geochemistry of selected lavas of ≤ 56 SiO2 wt. % of the Strawberry Volcanics 
and the CRBG for comparison. The Strawberry Volcanics appear to overlap mostly with the Steens lavas 
and some with Picture Gorge lavas. Geochemical data of the CRBGs is from Wolff et. al. (2008).  
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Figure 2.19a: A comparison of normalized to primitive mantle trace and REE multi-variable diagrams of 
the mafic Strawberry Volcanic tholeiites and calc-alkaline lavas (≤ 54 SiO2 wt. %) (black lines) and lavas 
of the CRBG. 
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Figure 2.19b: A comparison of normalized to chondrite trace and REE multi-variable diagrams of the mafic 
Strawberry Volcanic tholeiites and calc-alkaline lavas (≤ 54 SiO2 wt. %) (black lines) and lavas of the 
CRBG. The transparent color indicates the groups range and the solid colored line is the groups average. 
The Strawberry Volcanics mostly overlap with the Steens lava (light blue) and Imnaha (red). Normalized 
values are from Sun and McDonough, (1989) and Boynton, (1984).  
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Figure 2.20: A comparison of selected trace element ratios of the Strawberry Volcanic lavas (≤ 54 SiO2 wt. 
%) and lavas of the CRBG. Significant overlap is apparent with the Strawberry Volcanics and Steens lavas 
(light blue). Legend is the same as in 2.18. 
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Figure 2.21: Radiogenic isotopes of the Strawberry Volcanics and fields for the CRBG (Wolff et. al., 
2008). The isotopes of the Strawberry Volcanics overlap with lavas of the CRBGs specifically with lavas of 
Steens and Imnaha. C1, C2, and C3 are end-member composition of the plume hotspot of the CRBG from 
Carlson (1984). 207 Pb/204Pb vs 206Pb/204Pb figure molded after Wilson (1989). NHRL (Northern 
Hemisphere Reference Line) for reference, DM (depleted mantle), EMII (enriched mantle II), BSE (bulk 
silica Earth), PREMA (prevalent mantle). Fields are after Zindler and Hart (1986), Staudigel et al. (1984), 
Hamelin et al. (1986) and Wilson (1989).   
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Figure 2.22: Selected major and trace element (ppm) vs. SiO2 wt. % diagrams of the Mid-Miocene eastern 
OR, rhyolitic volcanic centers (gray) including Dinner Creek Tuff (blue) and the Strawberry Volcanic 
rhyolites (red). 
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Figure 2.23: Normalized multi-variable diagrams of the Strawberry Mountain rhyolites and Dinner Creek 
Tuff for comparison.  
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Figure 2.24: I-S-A-type rhyolite discrimination diagram (Whalen et al., 1987) for the strawberry volcanic 
rhyolites and Dinner Creek Tuff. Dinner Creek Tuff is predominately considered an A- Type rhyolite while 
the rhyolites of the Strawberry Volcanics are mostly I/S-Type.  
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Figure 3.1: Location of the Strawberry Volcanics and regional lavas of the CRB and simplified geologic 
map. The larger inset shows the area defined as the Strawberry Volcanics including a general geologic map 
showing the location of mafic and intermediate lavas (yellow) and rhyolitic lavas (red). Field observations 
identified volcanic centers and are included on map. BV (Bear Valley), CA (California), CJ (Chief Joseph 
Dikes), CM (Canyon Meadows), ID (Idaho), MD (Monument Dikes), MT (Montana), NV (Nevada), OR 
(Oregon), SD (Steens Dikes), SM (Strawberry Mountain), SRP (Snake River Plains – Yellowstone 
Hotspot), SV (Strawberry Volcanics), UT (Utah), WA (Washington), WM (Wolf Mountain), WY 
(Wyoming)
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Figure 3.2: The frequency of various lavas and SiO2 wt. % analyzed by XRF of the Strawberry Volcanics. 
These data show that the majority of the Strawberry Volcanics are calc-alkaline andesite composition.
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Figure 3.3: Location of the Strawberry Volcanics (yellow) and the terrane rocks of the surrounding area. 
Dashed line represent state boarder. Other dashed line under the area outlined as the Strawberry Volcanics 
is the 44° latitude and the furthest south of this research. Modified map from Schwartz et al, 2010.



169 
 

 

 

 

Figure 3.4: Photomicrographs of thin-sections from lavas of the Strawberry Volcanics including 
composition type. a) and b) basalt; c) and d) tholeiite and e) and f) calc-alkaline and photomicrographs of 
groundmass  and phenocryst textures including: g – i) tholeiites and j-l) calc-alkaline type lavas. Basalts 
have and ophitic groundmass and lack phenocrysts (a and b) while tholeiites have a similar groundmass to 
the basalts but can contain phenocrysts of plagioclase + cpx + oxides ± olivine (g-i) and the calc-alkaline 
lavas are display both phenocryst poor lavas and phenocryst rich lavas (j-l). Phenocrysts can include 
plagioclase + cpx +opx + oxides ± olivine. 
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Figure 3.5: Backscatter image of basalt lavas analyzed with Fo and Mg numbers for olivines (yellow) and 
cpx (red) respectively analyzed by EMP. 
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Figure 3.6:EMP mineral data of olivines, and clinopyroxene of various lava types from the Strawberry 
Volcanics. 
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Figure 3.7: Core to rim analysis of EMP mineral data of olivine, clinopyroxene and orthopyroxene in 
various lava types from the Strawberry Volcanics. Symbols are same as in Figure 3.6. 
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Figure 3.8: Pyroxene ternary diagram. Pyroxene composition of crystals in both tholeiitic (red circles) and 
calc-alkaline (blue triangles) lavas collected by EMP. Data shows that tholeiites contain a single cpx crystal 
phase while the calc-alkaline contain both cpx and opx. Symbols are same as in Figure 3.6.
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Figure 3.9: Backscatter image and EMP results of intermediate tholeiitic lavas. Olivines (yellow),cpx (red).  
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Figure 3.10: Backscatter image and EMP results of intermediate calc-alkaline lavas. Fo and Mg numbers 
for olivines (yellow), cpx (red) and opx (blue) respectively. 
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Figure 3.11: TSA and FeO*/MgO vs SiO2 wt % diagram. Whole rock major element analysis of the 
Strawberry Volcanic lavas including Steens basalt (Wolff et al., 2008) and local crustal rocks (this study 
and Schwartz et al., 2010) 
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Figure 3.12: Whole rock major element chemistry. Diagram includes Strawberry Volcanic lavas, Steens 
and basement lithologies for reference. 
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Figure 3.13: Whole rock trace element chemistry. Strawberry Volcanics, Steens and local basement rocks 
for comparison.   
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Figure 3.14: Primitive mantle (Sun McDonough, 1989) and chondrite (Boynton, 1984) normalized 
multivariable trace and REE diagrams of various lava groups of the Strawberry Volcanics and Steens lava 
(Wolff et al., 2008). Shaded area is the maximum and minimum concentrations for Steens lavas and solid 
line represents the average. 
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Figure 3.15a: Whole rock radiogenic isotopes of the various groups of lavas of the Strawberry Volcanics 
and lavas of theCRBG (Wolff et al., 2008).
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Figure 3.15b: Whole rock radiogenic isotopes of the various groups of lavas of the Strawberry Volcanics 
and lavas of the CRBG (Wolff et al., 2008) (continued). Tick marks represent calculated mixing line with 
the Strawberry Volcanic basalt (AS-SV-11) and crustal rock (AS-BASRX-01) and rhyolite (AS-SV-151). 
NHRL (Northern Hemisphere Reference Line) for reference, DM (depleted mantle), EMII (enriched mantle 
II), BSE (bulk silica Earth), PREMA (prevalent mantle). Fields are after Zindler and Hart (1986), Staudigel 
et al. (1984), Hamelin et al. (1986) and Wilson (1989).
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Figure 3.16: Multi-variable diagram of average samples of < 54.0 SiO2 wt % normalized to the average 
basalt for a comparison. 
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Figure 3.17: Normalized to primitive mantle multi-variable diagram with highest Nb concentrations (>23 
Nb ppm) of tholeiitic intermediate lavas and average basalt for comparison.
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Figure 3.18: Whole rock trace and REE diagrams of the various groups of lavas of the Strawberry 
Volcanics. Included are FC (yellow arrow) and AFC (light gray arrow) lines. The AFC line ends at 54% 
crystallization and the FC line has hash marks every 5% increase. Also included is a color scale of various 
SiO2 wt. % of the calc-alkaline lavas (triangles). Dark blue triangles are lavas between 52 and 56 SiO2 wt. 
%, light blue triangle are 56 and 60 SiO2 wt. %, and pink triangles are 60 and 63 SiO2 wt. %. See text for 
further information. 
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Figure 3.19: Selected incompatible trace element Harker diagrams with calculated paths of three 
component mixing. Selected trace element diagrams include probability density contours of the calc-
alkaline lavas shown in Figure 3.18. Along with the observed data are mixing lines between three different 
end-members including: 1) a basalt, 2) a rhyolite, and 3) local crust. Also plotted is the same FC path in 
Figure 3.18 for reference. Mixing lines are also plotted for FeO*/MgO vs SiO2 wt. % the mixing line 
which curves upwards is mixing with the rhyolite end-member and the straight path is mixing with the 
basement end-member
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APPENDIX A 

XRF 

XRF analysis attached as supplementary file. File name: Appendix_A_XRF.csv, File 

Type: .csv, File Size: 116 KB, Special Hardware: None 
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APPENDIX B 

ICP-MS 

ICP-MS analysis attached as supplementary file. File name: Appendix_B_ICP-MS.csv, 

File Type: .csv, File Size: 27 KB, Special Hardware: None 
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APPENDIX C 

NORMS 

Calculated NORMS attached as supplementary file. File name: 

Appendix_C_NORMS.csv, File Type: .csv, File Size: 18 KB, Special Hardware: None 
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APPENDIX D 

ISOTOPES 

Isotope analysis attached as supplementary file. File name: Appendix_D_ISOTOPES.csv, 

File Type: .csv, File Size: 8 KB, Special Hardware: None 
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APPENDIX E 

EMP-CPX 

EMP analysis on CPX attached as supplementary file. File name: Appendix_E_EMP-

CPX.csv, File Type: .csv, File Size: 8 KB, Special Hardware: None 
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APPENDIX F 

EMP-OPX 

EMP analysis of OPX attached as supplementary file. File name: Appendix_F_EMP-

OPX.csv, File Type: .csv, File Size: 4 KB, Special Hardware: None 
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APPENDIX G 

EMP-OLV 

EMP analysis of Olivines attached as supplementary file. File name: Appendix_G_EMP-

OLV.csv, File Type: .csv, File Size: 7 KB, Special Hardware: None 
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APPENDIX H 

40Ar/39Ar AGE ANALYSIS 

40Ar/39Ar age analysis attached as supplementary file. File name: Appendix_H_Age 

Analysis.pdf, File Type: .pdf, File Size: 1,614 KB, Special Hardware: None 
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