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Abstract

Real-time processing of space-and-time-variant signals is imperative for per-

ception and real-world problem-solving. In the brain, spatio-temporal stimuli are

converted into spike trains by sensory neurons and projected to the neurons in

subcortial and cortical layers for further processing.

Reservoir Computing (RC) is a neural computation paradigm that is inspired

by cortical Neural Networks (NN). It is promising for real-time, on-line computa-

tion of spatio-temporal signals. An RC system incorporates a Recurrent Neural

Network (RNN) called reservoir, the state of which is changed by a trajectory

of perturbations caused by a spatio-temporal input sequence. A trained, non-

recurrent, linear readout-layer interprets the dynamics of the reservoir over time.

Echo-State Network (ESN) [1] and Liquid-State Machine (LSM) [2] are two popular

and canonical types of RC system. The former uses non-spiking analog sigmoidal

neurons – and, more recently, Leaky Integrator (LI) neurons – and a normalized

random connectivity matrix in the reservoir. Whereas, the reservoir in the latter

is composed of Leaky Integrate-and-Fire (LIF) neurons, distributed in a 3-D space,

which are connected with dynamic synapses through a probability function.

The major difference between analog neurons and spiking neurons is in their

neuron model dynamics and their inter-neuron communication mechanism. How-

ever, RC systems share a mysterious common property: they exhibit the best

performance when reservoir dynamics undergo a criticality [1–6] – governed by the

reservoirs’ connectivity parameters, |λmax| ≈ 1 in ESN, λ ≈ 2 and w in LSM –

which is referred to as the edge of chaos in [3–5]. In this study, we are interested in

exploring the possible reasons for this commonality, despite the differences imposed

by different neuron types in the reservoir dynamics.
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We address this concern from the perspective of the information representation

in both spiking and non-spiking reservoirs. We measure the Mutual Information

(MI) between the state of the reservoir and a spatio-temporal spike-trains input, as

well as that, between the reservoir and a linearly inseparable function of the input,

temporal parity. In addition, we derive Mean Cumulative Mutual Information

(MCMI) quantity from MI to measure the amount of stable memory in the reservoir

and its correlation with the temporal parity task performance. We complement

our investigation by conducting isolated spoken-digit recognition and spoken-digit

sequence-recognition tasks. We hypothesize that a performance analysis of these

two tasks will agree with our MI and MCMI results with regard to the impact of

stable memory in task performance.

It turns out that, in all reservoir types and in all the tasks conducted, reservoir

performance peaks when the amount of stable memory in the reservoir is maxi-

mized. Likewise, in the chaotic regime (when the network connectivity parameter

is greater than a critical value), the absence of stable memory in the reservoir

seems to be an evident cause for performance decrease in all conducted tasks.

Our results also show that the reservoir with LIF neurons possess a higher stable

memory of the input (quantified by input-reservoir MCMI) and outperforms the

reservoirs with analog sigmoidal and LI neurons in processing the temporal parity

and spoken-digit recognition tasks. From an efficiency stand point, the reservoir

with 100 LIF neurons outperforms the reservoir with 500 LI neurons in spoken-

digit recognition tasks. The sigmoidal reservoir falls short of solving this task.

The optimum input-reservoir MCMI’s and output-reservoir MCMI’s we obtained

for the reservoirs with LIF, LI, and sigmoidal neurons are 4.21, 3.79, 3.71, and 2.92,

2.51, and 2.47 respectively. In our isolated spoken-digits recognition experiments,
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the maximum achieved mean-performance by the reservoirs with N = 500 LIF,

LI, and sigmoidal neurons are 97%, 79% and 2% respectively. The reservoirs with

N = 100 neurons could solve the task with 80%, 68%, and 0.9% respectively.

Our study sheds light on the impact of the information representation and

memory of the reservoir on the performance of RC systems. The results of our

experiments reveal the advantage of using LIF neurons in RC systems for comput-

ing spike-trains to solve memory demanding, real-world, spatio-temporal problems.

Our findings have applications in engineering nano-electronic RC systems that can

be used to solve real-world spatio-temporal problems.

.
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for N = 500 but not N = 100 for n = 1. . . . . . . . . . . . . . . . 99

5.19 Performance of the reservoir with LIF neurons (N = 100, 200, ..., 500)

in recognizing the sequence of n = 1, 2, ..., 7 spoken-digits. The time

constant parameter of the LIF neurons is fixed at τm = 20ms. The

y axis represents the mean value of the performance over 30 trials

for each experiment and the error bars show the standard deviation

of the performance. The maximum performance of the reservoir

is achieved at the critical w ≈ 3. The LIF reservoir outperforms

the analog non-spiking reservoirs in a rather memory demanding

spatio-temporal tasks. Recall that the LIF reservoir has the highest

amount of stable memory of all the reservoirs in our experiments. . 100
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1

Introduction

The objective of this thesis is to analyze and compare the impact of information

representation and memory of the reservoir on critical dynamics – referred to as

the edge-of-chaos [4,5] – in reservoirs with spiking neurons and none-spiking analog

neurons. We also investigate the contribution of neuron types in this phenomenon.

In all the reservoir types introduced, the optimum computational performance has

been observed near to the edge-of-chaos, i.e., when the reservoir dynamics are

under a critical regime [1–6]. Our results show that the amount of stable memory

is maximized at critical dynamics and that it brings about the best performance

in the vicinity of the edge of chaos.

We consider sigmoidal and LI neurons for the analog non-spiking reservoir con-

nected by the ESN connectivity model. As for the spiking reservoir, we construct

a simple reservoir with LIF neurons based on the ESN connectivity model. LIF

neurons have conventionally been used in LSM [2]. One advantage of taking this

approach is that the network connectivity differences between the ESN and LSM

are eliminated so that it is possible to focus on the differences between the neurons.

The other advantage of this LIF reservoir model over LSM is its simplification of

the LIF reservoir construction. The approach may also be leveraged to simplify the

construction of the nano-wired hardware RC systems with LIF neurons. Our re-

sults are useful for applications that focus on computing real-world spatio-temporal

inputs like speech, vision.
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1.1 Goals and Motivations

We pursued the following goals in this thesis.

• Representation and processing of spatio-temporal stimuli are crucial to living

systems for perceiving and responding to the stimuli. Vision, auditory, and

somatosensory systems exemplify the systems that receive and process such

stimuli. The stimuli received by the neuro-receptors are transduced to trains

of action potentials (a.k.a., spikes), which are carried along other neurons

toward specific areas of the brain for perception and further processing [7,8].

• The amount of memory required to process such spatio-temporal stimuli –

namely the input to the processing system – depends on the task and the

expected output from the input. The memory of an RC system appears not

to be enough for on-line processing of real-world problems, such as longtime

vision or auditory tasks. Here we consider whether using spiking neurons

in the reservoir can increase the overall memory of the RC system thereby

solving real-world, long-time, spatio-temporal tasks consistently over time.

• Bertschinger et al. [4] and Natchaläger et al. [5] have shown that the com-

putation power of the LSM is maximum in a critical regime just before it

becomes chaotic (at the edge of chaos) and the reservoir then performs poorly

in solving tasks when its dynamics becomes chaotic. We investigate this phe-

nomenon from an information-representation perspective. We would like to

know what changes the spiking and non-spiking RC systems undergo at the

so-called edge of chaos in terms of information representation in the reservoir.

• It is not known how RC systems with spiking neurons represent and process

spatio-temporal spike trains compared to analog non-spiking RC systems.
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The major difference between analog non-spiking neurons and spiking neu-

rons is in their neuron-model dynamics and their inter-neuron communication

mechanism. Spiking neurons mainly transmit their states to their efferent

neurons when they spike. Whereas, analog non-spiking neurons consistently

communicate their states to their efferent neurons over time.

1.2 Contributions

The following list itemizes the contributions made by this thesis.

1. We show that the stable memory of the reservoir is maximized at the critical

network dynamics (the edge of chaos) and driven by network connectivity

weight coefficient w in our experiments. We also show that, by increasing the

w, the reservoir cannot represent the input information consistently over time

such that the amount of stable memory in the system drops dramatically.

At this point the linear readout layer lacks the input information required to

compute the temporal task.

2. With respect to memory and representing the information of the inputs,

we compare analog non-spiking reservoirs built of sigmoidal and LI neurons,

with spiking reservoirs built of LIF neurons by measuring the MI between the

reservoir dynamics and the input. We accomplished the latter by measuring

the MI between the reservoir dynamics and the input.

3. We expand the MI measurements, made in [9], from 800 ms to 3200 ms

to unveil the implication of the edge-of-chaos phenomenon in information

representation that have emerged from the reservoir dynamics.
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4. We measure and compare the MI between the reservoirs’ dynamics and the

3 digits temporal parity of the input to investigate the correlation with the

MI obtained between the reservoir’s dynamics and the input and to compare

the reservoirs’ ability to compute a linearly unsolvable task.

5. We propose and compute the Mean Cumulative Mutual Information (MCMI)

of the above reservoirs to quantitatively show the memory and consistency

of the reservoir in representing and computing the input over time.

6. We show how the input is consistently represented in the reservoir when

the reservoir connectivity-weight-coefficient, w, is smaller than its critical

value. When w is close to the critical value, the amount of stable memory,

measured by MCMI, is maximized. At the same time, the performance of

the reservoir peaks with respect to solving both temporal parity and isolated

spoken-digit recognition tasks. Upon increasing w farther, the MCMI drops

dramatically and so dose task performance. In this situation, the reservoir

dynamics become too random and lose their relevance to the given input,

i.e., become chaotic [4, 5].

7. We compare the sigmoidal and LI reservoirs with the LIF reservoir with

respect to the isolated spoken-digit recognition task discussed in [10]. It

turns out that the LIF reservoir outperforms the other two reservoir types

in this task. Our results showed that the LIF reservoir can perform the task

with 97% mean-performance (with 100% performance in some trials). The

reservoir with the optimized LI neurons could perform the same task with

up to 79% mean-performance (with a maximum of 88% performance in some

trials). The reservoir with sigmoidal neuron could not solve this task at all
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(it yielded a 1% mean-performance).

8. We show that the reservoir with LIF neurons outperforms the non-spiking

reservoir in recognizing a sequence of spoken-digits that demands up to 7

times more memory compared to the isolated spoken-digits recognition task.

For sequence length n = 7, the reservoir with LIF neurons could perform this

task with 68% mean-performance (with a maximum of 80% performance in

some trials). The reservoir with LI neurons could perform this task with 33%

mean-performance (with a maximum of 43% performance in some trials).

The reservoir with sigmoidal neuron could not solve this task at all (it yielded

a 1% mean-performance).

9. On the one hand, constructing a stable spiking reservoir has been a challenge.

LSM has many complexities, such as dynamic synapses, that are hard to

construct in both software and hardware. On the other hand, one is very

likely to end up with an unstable and poorly functional reservoir who builds

an LIF reservoir without considering LSM complexities or without making

careful parameter adjustments to the reservoir connectivity, neurons, and

synapses. We here argue that unstable reservoirs are severely lacking in stable

memory: i.e. they loose their memory consistency over time and are not

able to consistently compute the temporal tasks. We show that it is possible

to achieve an LIF reservoir with stable dynamics and high performance by

using an ESN connectivity matrix and adjusting the neurons and synaptic

parameters.

The article is organized as follows. In chapter 2 we review the background

and history of the RC systems and explain why we have considered them for
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processing of spatio-temporal inputs. We also provide a brief overview of biological

aspects that underlie spiking-neuron models and synapses. In chapter 3, we provide

more detail on the formalisms for the neuron models and RC systems used in this

study. Next, we walk through our methodology and measurements in chapter 4.

Chapter 5 presents our results, discussions, and comparisons of MI measurements,

and a performance analysis of isolated spoken-digits, and spoken-digits sequence-

recognition tasks. We finally conclude our work in chapter 6.
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2

Background and Related Works

Our brain is able to deal with the temporal tasks in real-time and on-line. In other

words, the throughput of the brain in responding to the stimuli is so high that

we cannot realize any delay between receiving and responding to temporal stimuli

such as speech, vision, etc. To come up with a real-time and on-line system to

solve temporal, real-word problems is one of the biggest challenges in the realm

of Artificial Intelligence and Computational Neuroscience [1, 2, 11–17]. Here we

present a brief history of attempts that have been made to achieve such a systems

and provide an overview of the RC systems. We follow by considering the specifics

of the ESN and LSM. Then, explain the biological aspects of the reservoir elements

such as neurons and synapses.

2.1 Reservoir Computing

2.1.1 Prior Attempts

Some attempts have been made by using the feed-forward structures for solving

temporal tasks. For example, Time-Delayed Neural Network (TD-FFNN) and

Nonlinear Autoregressive with eXternal input (NARX) [18]. The main problem

of these approaches is that the memory depth is fixed and they may not be suit-

able for solving many temporal problems, whereas in Recurrent Neural Networks

(RNN) the memory depth is variable. Hopfield [13] took advantage of RNN by

constructing network topologies with symmetric weights. In RNNs, connections

between neurons form directed cycles, which allow the network internal state to
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exhibit temporal dynamics. The disadvantage of the Hopfield network is the pres-

ence of point attractors. This is a disadvantage because it takes time for the system

to reach point attractors and a system with this property cannot solve a task in

real time. Werbos [19] used a back-propagation-through-time learning rule for a

sparsely connected RNN. In his approach, all the weights were trained. Bengio et

al. argued that training an RNN [20] for long-term dependencies is difficult.

RNNs with sigmoid activation function σ(x) = [2/(1 + e−x)] − 1 (and sim-

ilar activation functions) have been shown to be Turing equivalent [21]. They

are universal approximators [22] and can approximate an arbitrary finite-state au-

tomata [23]. Nevertheless, slow convergence and high computational training costs

in the mentioned RNNs make them impractical for solving the real-world temporal

tasks [11] that requires real-time and on-line computations.

2.1.2 Reservoir Computing Systems

Buonomano [17] proposed a recurrent network of spiking neurons (Integrate-and-

Fire neurons) inspired by neocortical connectivity with short-term plasticity (paired-

pulse facilitation and slow-inhibitory, post-synaptic potentials). He showed that

this model can transforms temporal information into spatial information. He

trained a separate output layer by using a supervised correlation-based learning

rule for solving temporal tasks. Steil [24] put forward a model of RNN called

Back-Propagation Decorrelation (BPDC). In this model, the internal weights in

the network are globally scaled up or down slightly and only the output weights

are trained. The output nodes are nonlinear and the training is done in an on-line

manner. Jaeger [1] introduced the Echo State Network (ESN), which consists of a

random recurrent network of analog nodes with sigmoid activation function. The
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RNN remains untrained, and its state is projected to a separate readout layer.

The readout layer uses a simple linear regression and is trained to approximate

the target output. Independent of this work, Maass et al. [2] introduced another

model that was inspired by network models in neocortical columns, and coined

the term Liquid State machine (LSM). In this model, a spatially distributed and

locally connected RNN of LIF neurons is created in a 3-D space. In their model,

the LIF neurons are connected by dynamic synapses, through a connectivity prob-

ability function. Like ESN, LSM also uses a simple linear readout layer to interpret

the state of the RNN. Steil [24] showed that, in BPDC, global weight scaling can

be ignored if the weights are initially well scaled and BPDC has the same weight

dynamics as proposed by Jaeger and Maass, the major difference being that the

output nodes are nonlinear and the training is done in an on-line manner.

Schrauwen et al. [11] in their review paper refer to Verstraeten et al. [25] as

the proposers of the term Reservoir Computing (RC). This term was proposed to

unify the last three ideas mentioned into a common research stream [11] and it has

been used extensively in the literature. Figure 2.1 depicts a schematic view of a

particular RC system.

RC systems are also comparable with kernel methods. In these methods, a

function that transform an input into a higher-dimensional vector is referred to

as kernel. Examples of methods that use kernel functions include Support Vector

Machines, FFNN, Radial-Basis Function approximators, Slow Feature Analysis,

and various Probability Mixture models [26]. RC systems transform the input into

a higher-dimensional feature space as kernel methods do. Nonetheless, the kernel

methods are unable to deal with temporal tasks on their own. In RNNs, such

as reservoirs in RC systems, the history of the input is also transformed into a
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higher-dimensional feature space automatically.

Figure 2.1: A schematic view of a generic RC system. Reservoir is the main
component of the RC system and is comprised of recurrently connected computing
units such as spiking neurons or non-spiking analog nodes. In this specific example,
an input signal is injected into three reservoir nodes to perturb the reservoir. The
temporal input causes a trajectory in the reservoir’s network dynamics. The three
white nodes compose a readout layer. Each trained readout node receives inputs
from all or a subset of the reservoir nodes and interprets the perturbations in
the reservoir in a distinct way. To solve a particular task, one or more readout
nodes may be required, depending on the task. For instance, the readouts for
tasks 1 and 2 have analog outputs. These readout nodes are trained by a linear-
regression algorithm over the reservoir node states. The readout for task 3 is
a binary classifier. This readout is trained by a linear classification algorithm,
yielding two classes of 0 and 1.

RC systems have been targeted by scientists from different disciplines and back-

grounds; therefore a spectrum of RC systems of different types and flavors has

been proposed in the past decade. Other computational units have been used in

the reservoir in different studies: e.g., threshold gates [27], memristors [28], and

random automata [29].
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2.2 Echo State Network and the Critical Connectivity

Echo State Network (ESN) is a well-known RC system that was introduced by

Jaeger [1]. The reservoir in ESN is composed of sigmoidal neurons that are con-

nected through a random weight matrix. The reservoir connectivity is defined by

a random weight matrix that is normalized by the spectral-radius of the matrix,

by which the network’s connectivity weights are controlled. The readout layer is

a standard linear regression. ESN was originally introduced with standard sig-

moidal neurons in the reservoir; later LI neurons were considered for the reservoir

in ESN. Compared to the sigmoidal neurons (described in section 2.5), LI neurons

showed better performance at continuous-time tasks such as Mackey-Glass system

prediction [1]. LI neurons have continuous-time dynamics and more memory than

the sigmoidal neurons due to the leak parameter that is incorporated into them.

Echo-state property is an essential property in the reservoir of the ESN for solving

temporal tasks and it has a direct relation to the performance of the ESN in solv-

ing the tasks [1]. Interestingly, the echo-state property is guaranteed to exist when

spectral-radius, |λmax|, of the reservoir’s network connectivity matrix is smaller

than 1 and it is maximized when the spectral-radius is close to 1. The echo-state

is not guaranteed to hold when the reservoir Spectral Radius is higher than 1 [1].

In all the tasks tested in [1], the optimum performance of the reservoir is achieved

when |λmax| ≈ 1.

2.3 Liquid State Machine and the Critical Connectivity

Liquid State Machine (LSM) is another well-known RC system that was intro-

duced independently by Maass et al. [2]. The reservoir in LSM is composed of

a recurrent neural network of LIF neurons that are spatially distributed over a
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three dimensional x, y, z space. The spatial distribution of the neurons is used to

provide a control over the connectivity in the network and the properties of synap-

tic connections. The distance between any node along each spatial axis is set to

unity. The probability of the connectivity between two neurons is defined accord-

ing to the Euclidean distance between them. The probability that neuron i forms

a synaptic connection to neuron b is defined as Pconn(a, b) = Ce−(D(a,b)/λ)2 , where

D is the Euclidean distance between neuron a and b, and where λ controls the

average number of connections as well as the average distance between connected

neurons. C is the probability of a synaptic connection. The probabilities that a

synaptic connection will be excitatory-excitatory (EE), excitatory-inhibitory (EI),

inhibitory-excitatory (IE), or inhibitory-inhibitory (II) are 0.3, 0.2, 0.4, 0.1 respec-

tively [2]. Synaptic connection from a to b, is modeled according to a dynamic

synapse model proposed by Markam et al. [30]. Reservoir’s separation and fad-

ing memory properties have a direct relationship with the computational power of

the LSM. It has been shown that the reservoir holds the optimum separation and

fading-Memory properties, when λ = 2. In addition, the computation power of

the LSM in classification of a spoken-words tested in [2] is maximized when λ = 2.

By increasing λ, the performance of the reservoir is decreased and the network

dynamics become chaotic [2]. Later, Bertschinger et al. [4], Natschläger et al. [5]

looked at this phenomena from the perspective of complexity theory and referred

to the critical value λ = 2 as the edge of chaos.

2.4 Relation of the Work with the Edge of Chaos

An input driven neural network is a dynamic system [3]. Derrida et al. [31] de-

fined the chaotic and ordered phases of an input driven network as follows. For
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autonomous systems, consider two (initial) network states with a certain (normal-

ized) Hamming distance. These states are mapped to their corresponding successor

states (using the same weight matrix) with the same input in each case and the

change in the Hamming distance is observed. If small distances tend to grow this

is a sign of chaos; if the distance tends to decrease this is a signature of order.

Bertschinger et al. [4] and Natschläger et al. [5] followed the same approach to

defining order and chaos dynamics. A neural network can be seen as a dynamical

system, and the dynamics of the system can be changed from ordered to chaotic

by changing some global parameters of the system: e.g., connectivity structure or

strength of the connectivities.

Related dynamical systems have been studied extensively in various contexts.

For instance, Derrida [32] studied Ising-spin models (networks of threshold el-

ements), Langton [33], Packard [34] and Michel et al. [35] considered Cellular

Automata (CA), Kauffman [36] studied random Boolean networks. Langton [33]

claimed that CA are capable of performing non trivial computation most likely

when their dynamics are in the vicinity of ”phase transitions” between order and

chaos. He termed this phase transition the ”edge of chaos”. Bertschinger et al. [4]

showed that networks of threshold elements with online inputs expose the opti-

mum computational performance at the edge of chaos: i.e., at the transition from

ordered to chaotic dynamics. Mitchell et al. [35] argued that the region of best

computational performance should depend on the task at hand. Therefore, the

best computational power does not necessarily correspond to the edge of chaos.

In this study we do not provide rigorous measures for order and chaotic dynam-

ics. Hence, we have neither enough evidence to address the debate about whether

or not the optimum computation performance happens exactly at the edge of chaos
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nor enough to consider the consequences of the input and task variations on this

proposition. In most of the works cited above, the optimum computational per-

formance of the dynamic systems under consideration is reported to be near the

edge of chaos. We leave exhaustive study of the exact correlation between the in-

formation representation and the dynamics phases of the system for future works.

In this thesis, one may think of chaotic dynamics as reservoir dynamics in which

the desired input information is not represented in the reservoir due to the very

high entropy of the reservoir state.

2.5 Neurons

Neurons are electrically excitable cells which can be found in many simple and

complex cellular organisms in nature. Neuron are known to be responsible for

information processing and transmission. Many models have been inspired by

pyramidal neurons, which are mostly found in areas of the mammalian brain.

Anatomically, pyramidal neurons are comprised of a triangular soma (cell body),

a single axon, and a large apical dendrite. Dendrites receive inputs from other neu-

rons and propagate them to the soma. The axon then carries the neuronal output

to other cells by means of an action potential, (a.k.a., spike). An action potential

is a short-lasting rise and fall in the electrical membrane potential of a cell which

propagates along the membrane. Membrane potential is defined as the difference

in electrical potential between the interior of a neuron and the surrounding extra-

cellular fluid. Under resting conditions, the potential inside the cell membrane of

a neuron is about -70 mV relative to that of the surrounding fluid. Typically, the

membrane potential rapidly rises to a peak potential of +40 mV when a spike hap-

pens. Figure 2.2 shows a cartoon model of two connected neurons. Neurons have
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enormous morphological and functional variations, and their properties have been

studied from different perspectives. Although we now have a fair amount of under-

standing about the dynamics and behaviors of the neurons, researchers generally

are managed to focus on specific aspects of them judicious simplification of the

neurons. A broad range of models of neurons including detailed bio-physiological,

compartmental, kinetics, and simplified mathematical models have been proposed

in literature e.g. [37–39].

Simple artificial neuron models are mathematical models that are designed only

to simulate the integration of inputs and firing spikes in neuron’s axons. They are

still extensively used in studies that are more focused on the general properties

of neural networks. The first artificial neuron was introduced by McCulloch et

al. [40]. It basically produces an output of 1 if the integration of weighted inputs

passes a threshold and of −1 otherwise as shown in equation 2.1.

y = ϕ(
n∑
i=1

wixi), (2.1)

where y is the output of the neuron and wi is the weight of input xi. The

variable n denotes the number of inputs to the neuron. ϕ here is a signum function

called the transfer (activation) function of the neuron. In this article, we consider

the same model but with a continuous sigmoid activation function as defined in

equation 2.2. We refer to this model as sigmoidal neuron.

y = tanh(
n∑
i=1

wixi) (2.2)
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Figure 2.2: Neurons and synaptic transmission: an action potential is generated
and travels down the axon to the axon terminal, where it provokes a neurotrans-
mitter release that acts on the post-synaptic end. Reproduced with permission
from the National Institute on Aging - US National Institutes of Health.
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2.6 Synapses

Synapses are the main point of communication between neurons. They allow

neurons to pass an electrical or chemical signal to another cell. Chemical synapses

are known to be the main mechanisms of neural communication [41]. Figure 2.2

shows a schematic view of the synaptic transmission process. The voltage transient

of an action potential in the pre-synaptic neuron propagates along the membrane

of the cell and reaches the axonal terminals. Then neurotransmitter molecules

are released into a small space between the axonal terminal of the pre-synaptic

neuron and the cell body (mostly dendrites) of the post-synaptic neuron, which is

called synaptic cleft. These molecules then bind to receptors on the post-synaptic

cell’s side of the synaptic cleft. Finally, the neurotransmitters are cleared from

the synapse through several potential mechanisms to terminate the transmitter

action. This process creates an electrical response that is generated in the post-

synaptic cell, which may excite (increase the membrane potential) or inhibit (avoid

membrane potential to increase toward the threshold) the post-synaptic neuron.

We have used a simplified mathematical model of this mechanisms in our model,

which is presented in chapter 3.
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3

Model

In this chapter we describe our RC system model including the reservoir and

the neuron types that we have considered in this study. We base our reservoir

connectivity for sigmoidal, LI, and LIF neurons on ESN. LIF neurons however are

conventionally used in LSM reservoir. Nevertheless, we used ESN weight matrix

for connecting the LIF neurons in our spiking reservoir. This involves readjustment

of the neuron and synaptic parameters to obtain stability in the overall reservoir

dynamics.

3.1 The Reservoir with Non-Spiking Analog Neurons

We use an ESN model to build our non-spiking reservoirs. The reservoir is com-

posed of a neural network of N ∈ N neurons. They receive input from K ∈ N input

channels, the state of which is defined as U(t) = u0(t), u1(t), ..., uN(t), ui ∈ R. The

state of the reservoir at time t is defined as X(t) = x0(t), x1(t), ..., xN(t), xi ∈ R.

xi is the state of each neuron at time t. The state update formalism for each

type of neuron is provided later in this chapter. The state of the reservoir (X(t))

is projected into L output units. L is assumed to be 1, since we have only one

readout in this study. Real-valued connection weights are collected in an N ×K

weight matrix Win for the input weights. An N × N weight matrix W ia used

for the reservoir internal connections, and an N × L matrix Wout is used for the

connections to the output units in the readout layer. We consider a connection

weight coefficient w and multiply the W matrix by a variable w. No feed-back
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from the readout layer is considered in our RC system.

We consider sigmoidal neurons and Leaky-Integrator (LI) neurons for the reser-

voirs with analog non-spiking neurons.

3.1.1 sigmoidal Neuron

Sigmoidal neuron is derived from the artificial neuron model introduced by McCul-

loch et al. [40]. It has a tanh activation function. The update state of sigmoidal

neuron i receiving connection from neurons j in discrete time is as follows.

xi(n+ 1) = tanh(u(n+ 1) +
∑
i∈N

wjxj(n)), (3.1)

where xi is the state of the neuron i, wj is the connection weight between neuron

j and i, and u is the input to the neuron i.

ESN with sigmoidal neuron is a discrete-time system. The vectorized state

update for the reservoir with sigmoidal neurons at time-step n is defined as

X(n+ 1) = tanh(WinU(n+ 1) +WX(n)), (3.2)

where X is the state of the reservoir, Win is the input weight matrix, U is the

input vector, and W is the reservoir connectivity weight matrix.

3.1.2 Leaky Integrator Neuron

The standard sigmoidal neurons are better suited for modeling discrete-time sys-

tems and they are not adequate for the tasks with continuous-time dynamics as

they cannot capture slow dynamics in continuous tasks [1]. LI neurons are better

fits for continuous-time tasks and RC systems with LI neurons have more memory
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than those with sigmoidal neurons [1]. The state update of the LI neurons is as

follows.

Ẋ = C(−aX + tanh(WinU +WX)), (3.3)

where C is a time constant and a is the leak rate. Other variables are the same as

those of the sigmoidal neuron, mentioned above.

3.2 The Reservoir with Spiking Neurons

LSM [2] is a well-known spiking reservoir. The reservoir in LSM is comprised

of LIF neurons. Not only does LSM differ from ESN in terms of neuron type,

it also differs in terms of reservoir-network connectivity and in having dynamic

synapses. The reservoir in LSM is composed of LIF neurons that are distributed

in a 3-D space and are connected with dynamic synapses through a distribution

probability function. Hence, direct comparison of ESN and LSM appears not to

be a fair neuron-wise comparison. Moreover, constructing a stable LIF reservoir

per-se is a challenge. One is very likely to end up with an unstable and useless

reservoir who builds an LIF reservoir without considering LSM complexities or

without making careful parameter adjustments in the reservoir connectivity, neu-

rons, and synapses. We here show that unstable reservoirs severely lack stable

memory and perform poorly over time in chapter in 5. ESN has proven success-

ful to yield a stable reservoir with analog non-spiking neurons by adjusting the

spectral radius of its connectivity matrix [1]. This simplicity extremely favors

the construction of an LIF reservoir that is comparable neuron-wise with analog

non-spiking reservoirs. Hence, we leverage the ESN connectivity matrix W , as ex-

plained in section 3.1, and performed an MI analysis, as explained in section 4.1,

to adjust the neuron and synaptic parameters, thereby achieving a reservoir that
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exposed all the stable, critical, and chaotic dynamics. To construct the reservoir,

we used connectivity matrix W in ESN and adjusted the spectral-radius of the

connectivity matrix |λmax|. The spectral-radius of the reservoir weight matrix, W ,

is an eigenvalue of W with the largest absolute value (more on this later in section

4.2). We constructed the connectivity matrix with |λmax| = 1 and adjusted the

synaptic efficacy q, as described in subsection 3.2.2, which eventually becomes a

coefficient for |λmax| when the weight matrix is applied to the network. For the

sake of terminological consistency between the spiking and non-spiking reservoirs

we refer to w as the reservoir’s network weight coefficient throughout the text.

One can consider w = |λmax| in the article. Description of the LIF neuron and

synaptic models in the reservoir follows in the next two subsections. We tested

our neuron and synaptic parameters so that the overall reservoir dynamics expose

stable, critical, and chaotic dynamics (see our MI and MCMI results for the LIF

reservoir in chapter 5.

3.2.1 The Leaky Integrate-and-Fire Neuron Model

We regard the LIF neuron as our spiking neuron model for this study. The dy-

namics of the membrane potential (vt) of the LIF neuron are defined by

τmv̇ = −vt + ItR, (3.4)

where R is the resistance, τm = RC is the membrane time constant (C is the

capacitance), and It is the input current induced to the neuron over time. When

the voltage of the neuron exceeds the threshold vth, a spike is said to have occurred

and the voltage is reset to the resting potential vr after a specific absolute refractory

period τref (5ms in our study). We set R and τm to 1 and 20ms, respectively. We
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assume that our model is dimensionless. We set the threshold vth = 1 and the

resting potential vr = 0 to achieve the same range of state values as in sigmoidal

and LI neurons for a more robust comparison.

3.2.2 The Synaptic Connection

We use a static synaptic connection model with an exponential decay [2], g(t) =

qe(−s/τsyn), with decay constant τsyn, and maximum conductance q = 1 (the latter

is multiplied by network connectivity weight coefficient w) for the reservoir with

LIF neurons, where g is the synaptic conductance , s = t−t(f) is the time deference

from the post-synaptic spike time t(f) and the current time t. We do not consider

depression and facilitation dynamics in the dynamic synapses used in [2] to make

the reservoir model as close as possible to the analog non-spiking reservoirs. In

more biologically realistic synapse models, the input current for each neuron is

obtained by Isyn(t) = g(t)(v(t) − Esyn), in which Isyn is the pre-synaptic current

contributing to the input of the post-synaptic neuron and Esyn is the reversal

potential of the synapse used for excitatory and inhibitory synapses. However,

in our model the positive and negative values of the connectivity weight matrix

account for inhibition and excitation of the neurons. For simplicity, we omit the

voltage factor in input current and assume that the input current is applied directly

to the membrane voltage for simplicity of the model by assuming v(t)−Esyn = 1.

The total input current to neuron i is then achieved by the sum over all current

pulses that result from the spikes of all pre-synaptic neurons j as Isyni
(t) =

∑
j

gj(t).
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4

Methodology

The measuring of the computational power of the reservoir has been addressed

from different perspectives. Maass et al. [2] looked first at computational power

as a function of separation, fading memory in the reservoir, and approximation of

the readout layer [2]. Separation is defined as the Hamming distance between two

different internal states of the reservoir over time caused by two different extrane-

ous inputs. The amount of separation between the dynamics of the reservoir which

results from two different input signals should be well above the separation caused

by any internal noise or any imposed extraneous noise. Also, the reservoir must

possess a fading memory property to avoid the history of input data from lasting

so long that it impairs the separation property of the recent inputs. The approx-

imation property is the capability of the readout(s) to distinguish and transform

different internal states of the liquid into the target outputs. In this study, we

do not examine the approximation property, as our main focus is on the effect of

different types of nodes on the reservoir’s dynamic and performance. We use a

linear learning algorithm for our readout layer; this remains the same in all of our

experiments.

Natschläger et al. [5] introduced a predictor for the computational capabilities

of a typical recurrent network of binary nodes that is based on the separation

capability, which was numerically evaluated by a mean field approximation of the

Hamming distance between different network states evolving from distinct input

sequences. Mean field theory studies the behavior of large and complex stochastic
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models by studying a simpler model: i.e., by reducing a many-body problem to

a one-body problem. Büsing et al. [6] extended this method to investigate the

dynamics of the reservoir composed of non-spiking analog nodes with sigmoid

functions by quantizing the states of the nodes and mapping that to a smaller

state space with a few bins. In both approaches the mean field approximation is

possible when we are aware of the distribution and connectivity of the network.

This measurement becomes impractical when the complexity of the network (in

terms of both connectivity distribution and nodes’ dynamics) is considerably high.

Computation is, in essence, a form of information reduction. In fact, the max-

imum amount of information we can extract from an input is less than or equal

to the amount of the input information [42]. The capability of representing the

input information is an essential condition for computing an output from a given

input. Moreover, many real-world temporal stimuli are in the form of a sequence

of spatio-temporal patterns. For instance, in an auditory system, words are com-

posed of letters, or sentences are composed of words. The visual cortex is able over

time to process the temporal movements of objects. Therefore, it is important for

a computing system, such as RC system, to be able to represent and process this

type of information.

In the following sections, we present our methodology for measuring the capabil-

ity of the RC systems in representing such spatio-temporal inputs and processing

them to solve a temporal parity task. We also describe two speech-recognition

tasks for benchmarking the performance of the reservoirs in solving more realistic

spatio-temporal tasks.
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4.1 Measuring the Mutual Information between the Reservoir and

Spatio-Temporal Inputs

According to data-processing inequality, the information content of a signal cannot

be increased via a local physical operation. Hence, the computational capability

of a system has a close relationship with the amount of input information that

can be represented in the system [42–44]. We measure the mutual information to

quantify this characteristic of the reservoir. Mutual information (MI) quantifies a

relationship between two random variables. In particular, it measures how much

information is communicated, on average, in one random variable about another.

Informally stated, it measures how much one random variable tells us about an-

other. For example, suppose X represents the roll of a fair 6-sided die, and R

represents whether the roll is even (0 if even, 1 if odd). The value of R tells us

something about the value of X and vice versa. In this example, X and R variables

share mutual information. In contrast, if R does not tell us anything about the

roll of the die, X and R do not share any mutual information. In our case, in

the analogy mentioned, X represents the input value at time t, and R represents

the reservoir dynamics at time t′. Later, we consider X to represent the output

from the reservoir so as to measure the amount of information shared between the

reservoir state and the output.

The mutual information between two random variables X and R has been

defined by Shannon [45] as

I(X;R) = H(X)−H(X|R) = H(R)−H(R|X), (4.1)

H(X) = −
∑
x∈χ

p(x)log2p(x), (4.2)
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H(X|R) =
∑
x∈χ

p(x)H(R|X = x) = −
∑
x∈χ

∑
r∈Ψ

p(x, r)log2p(r|x), (4.3)

where H(X) is the entropy of the random variable X and H(X|R) is the condi-

tional entropy of the random variable X given R (see Cover and Thomas [42]). In

our case, X corresponds to the input and R corresponds to the state of all or a

subset of reservoir components at time t0. The classical empirical measurement of

the mutual information is subject to under-sampling effect, which results in over

estimation of the overall mutual information [9]. Natschläger et al. [9] exploited

the data processing inequality and derived a useful method to calculate a close

lower bound for mutual information. According to data-processing inequality we

have the following:

I(X;R) ≥ I(X; g(R)), ∃ g(.) independent from X. (4.4)

g(R) can be a linear function, which maps the reservoir state to an output.

4.1.1 Measuring MI between the Reservoir and Input

We will now explain in more detail the empirical measurement of the mutual

information proposed by Natschläger et al. [9]. Let S be a sample space for all

examples X = x. There are two steps to generate the input for each example in the

sample space of the random variable X: 1) generate two input templates, and then,

2) generate the actual inputs from the templates. Recall that the input corresponds

to the input random variable X when we measure the mutual information between

the input and the reservoir state. Therefore, each instance of the input is considered

a possible value x for random variable X among all inputs in the sample set
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S. First, we need two templates of spatio-temporal spike patterns consisting of

5 spike trains (i.e. 5 channels of binary series) with length n × L time-steps,

from which we will generate the actual input examples. n is the number of input

sections and L, here, is the constant length of each sections. L = 200 time steps

in the entire study. Each template is obtained by combining 5 binary time series

generated from a Poisson distribution with frequency of 20Hz. The patterns are to

simulate the spatio-temporal firing patterns from arrays of sensory neurons or from

other brain areas caused by, e.g., visual or audio stimulation [9]. Figure 4.1 (A)

shows two instances of the templates mentioned. Second, we generate the input

examples randomly from the two input templates. For instance, the following

binary sequences are 3 arrays of input sections generated randomly from the input

templates with n sections.

s1, s2, s3, s4, s5, s6, ... sn

1, 0, 1, 1, 0, 0, ... 1

1, 0, 1, 1, 1, 0, ... 0

0, 0, 1, 0, 1, 1, ... 0

(4.5)

A generated input consists of n randomly selected sections si, i = 1, 2, 3, ..., n,

200ms long each, and we define the value of si to be equal to the label of the

template, from which the section si has been chosen. In other words, for any i in

template zero, we say si = 0; and for any i in template one, we say si = 1. In order

to generate an input instance, we pick n sections from the corresponding template

section, each of which is randomly and independently selected from section si of

template zero or one.

MI measurement with this approach was shown to be more practical, since it
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yields a close lower-bound for Ml with a reasonably small sample size |S|. Empirical

MI obtained with this approach can fit well to the expected theoretical lower-bound

with |S| as small as 100 [9]. In our experiments, we set |S| = 250 to be on the safe

side in terms of accuracy. We set the same sample size (different sample set) for

training the readout to obtain g.

A

B

Figure 4.1: A) Template 0 (in red) and template 1 (in blue) consist of 4 sections
si of spike patterns. Each section si is comprised of 5 randomly generated 200ms
spike trains: i.e., 5 channels over 200ms, from a Poisson distribution with the
frequency of 20Hz. B) An input instance, comprised of a random selection of the
sections si, chosen from template 0 (si = 0) or from template 1 (si = 1). In this
particular example, s1 = 0, s2 = 1, s3 = 0, s4 = 1.

Next, we need to obtain the function g(R), described in equation 4.4. We divide

our sample space S into two training and testing samples. The training sample
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is used to obtain g(R) and the testing sample for measuring the MI. We apply

the inputs in the training sample to the reservoir and train our linear readout by

a linear regression and then classification, as we will explain shortly. Note that

the inputs in the training set are not used for mutual information measurement

so that g remains independent from the inputs used in the measurement phase.

Otherwise, the data processing inequality would not hold [9, 42].

In order to measure the MI, we perturb the reservoir with a generated input

of length n × L (L = 200ms). For every t0 = 20, 40, ..., n × L we measure the

MI between each section of the input and the state of a subset of nodes in the

reservoir, according to the equations 4.1 and 4.4. We consider the MI between the

state of the reservoir at time t and all si.

To obtain the optimized classification result for g, we classify the reservoir

state X(t) to two classes of 0 and 1 at time t0 after regression in the training

phase. We define the regression output of our linear readout layer as h(t) =
N∑
j=1

wjxj(t) + b, where wj is the adjusted weight by the linear regression and b is

the bias. xj(t) refers to the state of neuron j at time t. In order to find the best

possible classification, we use the Receiver Operating Characteristic (ROC) curve

analysis [46] for classification hypothesis testing and to find the best threshold for

the classifier g(u(t)). The accuracy of our binary classification is achieved from,

ACC =
TP + TN

P +N
, (4.6)

where TP denotes the number of truly classified 1s, and TN denotes the number

of truly classified 0s. P + N is the sum of the number of all miss-classified and

truly-classified 1/0s respectively. ACC gives us a good indicator for quality of the

classifier g, though we do not use ACC, as the MI is informative enough for our
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analysis and comparisons. Figure 4.2 shows a schematic view of reading out the

state of the nodes or a subset of the nodes in a reservoir at time t0 = 720ms and

their mapping into two classes of 0 and 1 when measuring the mutual information.

Figure 4.3 shows a schematic view of training the readout layer over trials in a

reservoir at time t0 = 720ms to obtain the g function.
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A

B

Figure 4.2: A schematic view of reading out the state of a reservoir of size N = 8

at time 720ms when measuring the mutual information. A) The readout node is

receiving inputs from all nodes in the reservoir. B) A randomly selected subset of

reservoir components is selected.
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Figure 4.3: A schematic view of training the readout layer over trials with a reser-

voir of size N = 8 at time 720ms and input with n = 4 sections to obtain the g

function. Later at the MI measurement phase, the mutual information I(u, g(R))

is measured between the input u in sections si = 1, 2, 3, 4 and the state of the

reservoir at time t = 720ms.

4.1.2 Measuring the MI between the Reservoir and PARn of the Input

In order to measure the performance of the RC system in solving a linearly un-

solvable temporal task, we consider a linearly inseparable temporal task denoted

by PARn: the temporal parity of n sequential binary digits. The MI measurement
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steps here are identical to those of the MI between the reservoir and the input; the

only difference is that PAR3(u) supersedes the input u in representing the random

variable X. The PARn function is defined as follows:

PARn(u, t) =

 1 ,
∑n

k=0 u(t− (kτ)) is even,

0 ,
∑n

k=0 u(t− (kτ)) is odd ,

(4.7)

where u(t) ∈ {0, 1} is a binary digit at time t, τ ∈ R here is the time distance

between the digits, and k = 0, 1, 2, ..., n. Below is an example of the temporal parity

3. u is the input and the resulting PAR3(u) is the output of the temporal parity

3 function over time. The si variables here are used to show the correspondence

of the input sections in MI measurement to the binary labels and their PAR3.

s1, s2, s3, s4, s5, s6, s7, ...

u : 1, 0, 1, 0, 0, 1, 1, ...

PAR3(u) : −, −, 0, 1, 1, 1, 0, ...

After measuring I(u; g(R)), we measure I(PAR3(u); g(R)) to observe the ca-

pability of the reservoir in solving PAR3 and compare it to I(u; g(R)) side-by-side,

thereby visualizing the contribution of the amount of input information represented

in the system in solving a linear unsolvable temporal task: i.e. PAR3.
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4.2 Measuring Memory and the Stability of the Reservoir

The stability of the network dynamics is an important property for the reservoir.

The readout layer can interpret the reservoir dynamics consistently over time only

if the reservoir dynamics are stable. Note that the notion of stability here should

not be confused with convergence to pint attractors as in the Hopfield network [13].

Maass et al. [2] refer to a similar property as fading memory. In a reservoir with

fading memory property, when a finite time input u(.) is injected to the reservoir

over the time course of t ∈ [t0, tn], the memory of the input should not remain in

the reservoir after a finite time τ = t− tn, t > tn.

Jaeger [1] put forward the network state forgetting property as an essential

condition for the RC system. The reservoir is said to have a forgetting property if

the distance between the states (X and X ′) of two identical networks with identical

inputs goes to zero at some time t→∞.

Here, we refer to the similar quality as stability in the reservoir dynamics. Our

MI results taken from different RC systems show this property from an information

representation perspective. Figure 4.4 shows the effect of the reservoir stability on

the information representation of the reservoir by using MI between the state of

the reservoir and the input taken from ESN when λmax = 1 (A) and when λmax = 2

(B), where λmax is the spectral-radius of the weight matrix. Spectral-radius of the

reservoir weight matrix W is an eigenvalue of W with the largest absolute value.

Jaeger [1] showed that the ESN with λmax <≈ 1 has state forgetting property. As

λmax increases, this property is no longer guaranteed. We present the full extent

of our MI results in chapter 5.
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Figure 4.4: Three examples of I(u; g(R)) taken from ESN with size N = 100 and

input with 16 sections using the method described in section 4.1. The figures

follow in the next pages. Each line represents the MI between the reservoir state

and section si over time. A) When λmax = 0.9. Notice that at any time ti, the

information about the past 2 sections of the input is present in the state of of

the reservoir, denoted by random variable R. B) When λmax = 1. Notice that

at any time ti, the information about the past 4 sections of the input is present

in the reservoir state, denoted by random variable R, which is much more than

when λmax = 0.9 (shown in A). C) When λmax = 1.5, the reservoir is only able

to represent the past sections at time t in the beginning of the input; then the

reservoir no longer has any memory of the past input sections. (A) and (B) show

the stable reservoir dynamics, as the MI consistently remains at a certain level.

(C), however, shows the information dynamics of an unstable (chaotic) reservoir.
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In order to define a comparative indicator of the capability of the reservoir in

consistently representing the input and solving PAR3, we define Mean Cumulative

Mutual-Information (MCMI) Iµ as in equation 4.8.

Iµ(Xs; g(R)) =
1

N − k0

N∑
k=k0

n∑
i=1

I(Xsi ; g(R(kτ))),

N =
T

τ
,

(4.8)

where Xs is either the section label (si) of the input u and is denoted by

Iµ(u; g(R)) or is the result of PAR3(u) for (si) of the input u, which is denoted by

Iµ(PAR3(u); g(R)). I is the MI described in equation 4.1. n is the total number

of input sections. T is the total simulation time. τ , here, is the constant time-bin

of measuring MI over time (τ = 20 time-steps in our study), N is the number of MI

measures taken over time for each section si of either u or PAR3(u), and k0 is the

number of starting time-bin to ignore the MI results before t = k0τ . We fix k0 so

that all si (i <= 7) sections are ignored from Iµ value – that is, k0 = 36 throughout

the study. Informally stated, Iµ is the average of accumulated I’s for all sections of

the input. Since the MI for the future input sections is 0, Iµ is actually the average

of accumulated I’s about the past sections of the input. Figure 4.5 shows the Iµ’s

for reservoir with analog sigmoidal neurons (ESN) obtained from I(u; g(R))’s, as

shown in figure 4.4, which are computed for 3 different λmax values 0.9, 1, and 1.5.
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Figure 4.5: Iµ of the reservoir with analog sigmoidal neurons (ESN) obtained from

I(u; g(R)) shown in figure 4.4. Notice that Iµ at |λmax| = 1.5 is less than Iµ at

|λmax| = 0.9 because we ignore the memory of the reservoir before section 7. The

memory about past input sections is decreased after section 7 as |λmax| is increased

(and |λmax| > 1) in ESN.

4.3 Benchmarking the Reservoirs’ Performance in Recognizing the Iso-

lated Spoken-Digits

In order to test the performance of the in-question reservoir types in solving a real-

world spatio-temporal task, we consider an isolated spoken-digits recognition task.

The task is to recognize ten isolated digits spoken by five different female speakers

available in the TI46 corpus. We use a subset of this corpus, consisting of 500

samples for ten different utterances of the isolated digits ‘zero’ to ‘nine’, spoken by

five different speakers. The preprocessed speech data has a spatio-temporal form

of 40 spike trains, with an average ≈ 300ms long each. We inject the input after
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t = 7× 200ms to ignore the initial unstable memory of the reservoirs in case of a

chaotic reservoirs. We are particularly interested in understanding whether higher

MCMI brings about a higher performance among the reservoir types in-question.

The corpus was first used in [47] to perform speech recognition by a simple

Spiking Neural Network. It was later exploited by Verstraeten et al. [10] to analyze

the LSM performance in this task with different preprocessing methods. The

speech was preprocessed using a biological model of the human cochlea by Lyon

[48] resulting in a cochleagram. This cochleagram was converted into 40-channel

spike trains using a filter-coding method called BSA, as proposed by Schrauwen et

al. [49]. The preprocessing method was shown to yield a high performance (95%)

with LSM in [10].

We follow the same readout and classification method as in [10]. The read out

is a simple linear projection that linearly maps the reservoir state X(t) onto the

output Y (t) using a weight matrix W obtained by pseudo matrix inversion [10].

I.e., Y (t) = WX(t)+W0. Every 20ms, and when the entire input is injected to the

reservoir, the Y (t) is obtained and the maximum value of the output vector Y (t)

is taken as the actual class selection (winner-take-all selection). Then the best

performance among all the max values is determined as the final classification.

This method has been shown to perform better in [10] than some other readout

functions, such as a Fisher discriminant or a pool of parallel perceptrons [50].

The performance of the task is expressed as the proportion of incorrectly classified

words (False Positives + False Negatives) to the total number of word samples and

it is referred to as the Word Error Rate (WER) in [10]. Here, we use (1 - WER)

to indicate the performance. The performance thus ranges from 0 to 1, and we

express that as performance% in the text. From 500 samples, we use 450 samples
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for training and 50 samples for testing. We validate our classification results with

10-fold cross validation.

4.4 Testing the Impact of Memory and Stability of the Reservoirs in

Recognizing Spoken-Digit Sequences

In section 4.3, we discussed our method for measuring the performance of the

reservoir in recognizing an isolated spoken-digit, which requires at most about

350 time-steps (ms for continuous-time neurons) memory. Nevertheless, shorter

memory could be enough for this task. On the other hand, we observed a maximum

of 4.5 sections of memory in our MI and MCMI results from the reservoir with LIF

neurons and a maximum 3.7 sections of memory in the reservoir with LI neurons.

That is to say, a 350 time-steps-long input does not stress a reservoir capable of

even 3.7 × 200 time-steps memory. Thus, we construct a much more memory-

demanding task based on the same task to compare the ability of in-question

reservoirs to solve a memory-demanding and linearly non-separable task with a

spatio-temporal spike train input. Each spoken-digit is comprised of 40 channels

of 250 to 350 time-step spike trains. We concatenate the digits together randomly

to obtain 10 different sequences of length n = 1, 2, ..., 7 inputs. A 7-digit sequence

would be as long as approximately 7× 300 time-steps. For instance,

− 1033456 −→ 0,

− 6348134 −→ 1,

− 9795020 −→ 2,

...,

− 3382975 −→ 9

(4.9)
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are 10 sequences of length n = 7 that are mapped to 0 to 9 digits. The RC system is

supposed to distinguish between these digit-sequences. The generated inputs here

have a complexity similar to our MI measurements inputs in terms of memory

requirement and exhibit different spatio-temporal patterns over time. In other

words, each digit is analogous to a spatio-temporal pattern and the system is to

compute on a sequence of them, as we did in the PAR3 task. This task challenges

the reservoirs for long-term and stable memory. We perform this task with the

sigmoidal, LI, and LIF reservoirs. The objective of this task is to reveal the impact

of the memory and stability of the reservoir (i.e. MCMI) in the performance of the

reservoirs and to find the best reservoir for solving a memory-demanding spatio-

temporal and real-world task.
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5

Results

We begin this chapter by presenting our MI and MCMI results measured for the

reservoirs with sigmoidal, LI, and LIF neurons by the approach discussed in sec-

tion 4.1. We then compare the ability of these reservoirs to recognize the isolated

spoken-digits. We further challenge the mentioned reservoirs and test their abil-

ity to solve problems that require more memory by having them recognize the

sequences of up to 7 spoken-digits.

We start by presenting the MI results for reservoirs with non-spiking ana-

log neurons i.e., sigmoidal neurons and LI neurons and follow by presenting MI

results for the reservoir with LIF neuron. For each reservoir type, we measure

I(u(ti);R(tr)), which is the MI between the state of the reservoir R at time tr and

the input u(ti) = s1, s2, ..., s16 at time ti, where tr, ti ∈ {0, 20ms, 2 × 20ms, ...},

to measure the amount of input information represented in the reservoir over time.

I(u(ti);R(tr)) also yields the memory of the reservoir about the input for all tr > ti.

Then, we measure I(PAR3(u(ti));R(tr)), I is the MI between the state of the reser-

voir, R, at time tr and PAR3(u) at time ti. This implies that the RC system no

only represents the input but also computes a linearly non-separable function of

the input. The input is comprised of 16 spike patterns. Each pattern consists of

5 channels of 200ms spike-trains in all of the MI measurements presented in what

follows.
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5.1 Mutual Information Results for Analog Non-Spiking and Spiking

Reservoirs

5.1.1 MI Results for the Reservoir with Sigmoidal Neurons

The MI between the reservoir state and the input is shown in figure 5.1. When

w = 0 very little of the input is represented in the reservoir (A) As w increases the

amount of information about the input is increased and it reaches its maximum

level when w = 1 (B and C). With further increase in w, the reservoir becomes

incapable of consistently representing the input. Even though the memory is highly

increased for the beginning sections of the input, after section si, i >= 7 the

memory about the input is considerably decreased (D) until it finally reaches 0 (E).

Figure 5.2 shows the MI between the reservoir state and the PAR3 of the input for

reservoir with sigmoidal neurons. With w = 0, though multiple sections enough

for computing PAR3(u) are injected to the reservoir, the information represented

about the input by the reservoir is not enough to compute PAR3(u) (A). Recall

that information for at least 3 sections of the input has to be available in order

to compute PAR3. Information about the PAR3 of the input is only represented

as soon as enough information about at least 3 sections becomes available in the

reservoir (B) and it maximizes with w = 1 (C). By further increasing w, the

consistency of the reservoir in representing the input is decreased. Information

about the past sections again drops to less than 3 sections after section 7, and

PAR3 cannot be computed anymore from section 7 onward (D, E).

Figure 5.3 shows Iµ calculated by equation 4.8 over the MI results shown in

figures 5.1. Figure 5.4 shows Iµ calculated by equation 4.8 over the MI results

shown in figures 5.1 and 5.2 respectively.
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Figure 5.1: Mutual information of the reservoir state and the input with 16 sec-

tions. Reservoir with analog sigmoidal neurons, N = 100. The figures follow in the

next pages. Each line represents the MI between the reservoir state and section

si over time. A) w = 0, B) w = 0.95, C) w = 1.0, D) w = 1.5, E) w = 2.0.

By increasing w up to w = 1.0, MI is increased. By further increase in w, the

MI starts dropping from t = 1200ms on. This means that the system does not

represent the input anymore after the critical w = 1.
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Figure 5.2: Mutual information of the reservoir state and PAR3 of the input with

16 sections. Reservoir with analog sigmoidal neurons, N = 100. The figures follow

in the next pages. Each line represents the MI between the reservoir state and

PAR3 of section si over time. A) w = 0, B) w = 0.95, C) w = 1.0, D) w = 1.5, E)

w = 2.0. By increasing w up to w = 1.0, MI is increased. By further increase in w,

the MI starts dropping from t = 1200ms on. The system does not represent the

input anymore; therefore PAR3 cannot be extracted from the state of the reservoir

after the critical w = 1.
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Figure 5.3: A) Iµ of the reservoir with analog sigmoidal neurons, obtained from

I(u; g(R)) results, as shown in figure 5.1. The reservoir size is N = 100, and input

has 16 sections. Iµ for MI is increased by increasing the w up to critical w = 1.

With further increase in w, the Iµ starts to drop. Meaning, the consistency of the

system in representing the input and output is decreased.
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Figure 5.4: Iµ of the reservoir with analog sigmoidal neurons, obtained from

I(PAR3(u); g(R)) results, as shown in figure 5.2. The reservoir size is N = 100,

and input has 16 sections. Iµ(PAR3(u); g(R)) also indicates the performance of the

reservoir in solving PAR3 over time. The rise and fall of Iµ(PAR3(u); g(R)) fol-

lows that of Iµ(u; g(R)). That is to say, the performance of the reservoir in solving

PAR3 is highly dependent on the amount of stable memory in the reservoir.
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5.1.2 MI Results for the Reservoir with Leaky Integrator Neurons

Figure 5.5 shows the MI between the reservoir state and the input. Figure 5.6 shows

the MI between the reservoir state and the PAR3 of the input for a reservoir with

LI neurons. Our MI results for the reservoir with LI neurons are very similar to

that of the reservoir with sigmoidal neurons (shown in figures 5.1 and 5.2) in the

sense that the memory measured by MI is maximized when w is close to a critical

value of 1 and decreased as w is increased and w > 1. The MI between the reservoir

state and PAR3 also follows this rule. Figure 5.7 and 5.8 help us visualize of the

behavior by showing the Iµ calculated by equation 4.8 over the same MI results,

as presented in figures 5.5 and 5.6.
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Figure 5.5: Mutual information of the reservoir state and the input with 16 sec-

tions. Reservoir with analog LI neurons, N = 100. The figures follow in the next

pages. Each line represents the MI between the reservoir state and section si over

time. A) w = 0, B) w = 0.95, C) w = 1.0, D) w = 1.3, E) w = 2.0. By increasing

w, up to critical w = 1.0, MI is increased. By further increase in w, the MI starts

dropping from t = 1200ms on. This means that, the system no longer represents

the input after the critical w = 1.
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Figure 5.6: Mutual information of the reservoir state and PAR3 of the input with

16 sections. Reservoir with analog LI neurons, N = 100. The figures follow in the

next pages. Each line represents the MI between the reservoir state and PAR3 of

section si over time. A) w = 0, B) w = 0.95, C) w = 1.0, D) w = 1.3, E) w = 2.0.

By increasing w up to critical w = 1.0, MI is increased. With further increase in

w, the MI starts to drop from t = 1200ms on. The system does not represent the

input anymore; therefore PAR3 cannot be extracted from the state of the reservoir

after section 7 when w is greater than the critical w = 1.
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Figure 5.7: A) Iµ of the reservoir with LI neurons, obtained from I(u; g(R)) results,

shown in figure 5.1. The reservoir size is N = 100 and the input has 16 sections. Iµ

for MI is increased by increasing w up to the critical w = 1. With further increase

in w, the Iµ starts to drop. This means that, the consistency of the system in

representing the input and output is decreased. The leak rate of the LI neuron is

fixed at a = 0.25
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Figure 5.8: Iµ of the reservoir with LI neurons, obtained from I(PAR3(u); g(R))

results, shown in figure 5.6. The reservoir size is N = 100 and the input has

16 sections. I(PAR3(u); g(R)) also indicates the performance of the reservoir in

solving PAR3 over time. The rise and fall of I(PAR3(u); g(R)) follows that of

I(u; g(R)). That is to say, the performance of the reservoir in solving PAR3 is

highly dependent on the amount of stable memory in the reservoir.
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5.1.3 MI Results for the Reservoir with Leaky Integrate-and-Fire Neu-

rons

MI results between the reservoir state and the input for reservoir with LIF neurons

when τsyn = 10 are presented in figure 5.9. When w = 0 (A), the memory of

the reservoir about the past input sections is considerably higher than it is for

analog reservoirs i.e., sigmoidal and LI reservoirs and as w increases, the amount

of information about the input is increased (B) until it reaches its maximum level

when w = 3 (C). The maximum I is no longer at w = 1, since LIF dynamics

differ from the preceding analog neurons. With further increase in w, the reservoir

becomes unable to consistently represent the input, and, like analog non-spiking

reservoirs, after section si, i >= 7, the memory about the past input sections is

decreased (D and E). Figure 5.10 shows the MI between the reservoir state and the

PAR3 of the input for a reservoir with LIF neurons. The system able to compute

the PAR3(u) when w = 0 (A). Increasing w results in an increase in the memory in

the reservoir (B). It maximizes when w = 3 (C). By further increasing the w, the

consistency of the reservoir in representing the input is decreased and information

about the past sections is again decreased after section 7 compared to the earlier

sections of the input (D). Finally the PAR3 of the input cannot be computed

anymore from section 7 onward with larger w values (E). Figure 5.11 shows Iµ,

calculated by equation 4.8, over the MI results shown in figures 5.9. Figure 5.12

shows Iµ calculated by equation 4.8 over the MI results shown in figures 5.10. The

maximum achieved Iµ(u; g(R)) and Iµ(PAR3(u); g(R)) for LIF reservoir turns out

to be higher than the measured Iµ for LI and sigmoidal reservoirs. That is, the

critical w for LIF reservoir with τsyn = 10 is 3.
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Figure 5.9: Mutual information of the spiking reservoir state and the input with

16 sections. Reservoir with LIF neurons, N = 100. The figures follow in the next

pages. Each line represents the MI between the reservoir state and section si over

time. A) w = 0, B) w = 1.5, C) w = 3, D) w = 5, E) w = 7. By increasing w,

up to critical w = 3, MI is increased and by further increase in w, the MI starts

dropping from t = 1200ms on. Meaning, the system does not represent the input

anymore.
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Figure 5.10: Mutual information of the spiking reservoir state and PAR3 of the

input with 16 sections. Reservoir with analog LIF neurons, N = 100. The figures

follow in the next pages. Each line represents the MI between the reservoir state

and PAR3 of section si over time. A) w = 0, B) w = 1.5, C) w = 3, D) w = 5,

E) w = 7. By increasing w up to critical w = 3, MI is increased With further

increase in w, the MI starts to drop from t = 1200ms on. The system does not

represent the input anymore; therefore PAR3 cannot be extracted from the state

of the reservoir after section 7.
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Figure 5.11: Iµ(u; g(R)) of the reservoir with LIF neurons with two different time

constants τm = 7, and τm = 10. Only the Iµ for τm = 10 shown her by the

green line with square marks corresponds to the I(PAR3(u); g(R)) results shown

in figure 5.9. Reservoir size is N = 100 and input has 16 sections. Iµ for MI is

increased by increasing w up to critical w = 3 for τ = 10 and critical w = 9 for

τ = 7. With further increase in w, the Iµ starts dropping. This means that, the

consistency of the system in representing the input and output is decreased.
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Figure 5.12: Iµ(PAR3(u); g(R)) of the reservoir with LIF neurons and two dif-

ferent time constants τm = 7, and τm = 10. Only the Iµ for τm = 10 shown

here by the green line with square marks corresponds to the I(PAR3(u); g(R))

results shown in figure 5.9. Reservoir size is N = 100 and input has 16 sections.

I(PAR3(u); g(R)) also indicates the performance of the reservoir in solving PAR3

over time. I(PAR3(u); g(R)) rise and fall follows those of I(u; g(R)). That is to

say, the performance of the reservoir in solving PAR3 is highly dependent on the

amount of stable memory in the reservoir.

5.1.4 Discussion

We compared the reservoirs with sigmoidal, LI, and LIF neurons in terms of in-

formation representation and memory by measuring I(u; g(R)), I(PAR3(u); g(R)),
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Iµ(u; g(R)), and Iµ(PAR3(u); g(R)). Iµ yields a more convenient handle on finding

the critical w and comparing the reservoirs with respect to memory, and stability.

We first considered whether our MI results can elucidate the distinction between

the information representation of the reservoir before and after the critical w in

ESN. In both reservoirs with sigmoidal and LI neurons, the distinction was appar-

ent and the measured Iµ’s were maximized at the critical w ≈ 1. This relationship

conforms with the ESN’s maximum performance when w ≈ 1 in [1]. We pursued

the same MI and MCMI measurement methods for the LIF reservoir and found the

critical w to be ≈ 3 for τsyn = 10 and ≈ 9 for τsyn = 7. We outlined the comparison

of the MI and MCMI results for all three reservoir types in table 5.1. The reservoir

with LIF neurons (shown in bold face in the table) achieved the highest maximum

Iµ(u; g(R)) and Iµ(PAR3(u); g(R)), 4.21 and 2.92 respectively. The reservoir with

LI has a slightly higher Iµ(u; g(R)) and Iµ(PAR3(u); g(R)) than the reservoir with

sigmoidal neurons.

Neuron Type Connectivity. N Max. Iµ Max. Iµ

Model neurons input PAR3

1 sigmoidal ESN 100 3.71 2.47

2 LI ESN 100 3.79 2.51

3 LIF ESN 100 4.21 2.92

Table 5.1: Comparison of the reservoir types in terms of the maximum obtained

MCMI for the input and PAR3 of the input. Max. Iµ input and Max. Iµ PAR3

refer to the maximum achieved Iµ(u; g(R)) and Iµ(PAR3(u); g(R)) respectively.

The reservoir with LIF neurons (shown in bold face) has the highest input and

PAR3 MCMI’s (4.21 and 2.92).
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5.2 Recognizing the Isolated Spoken-Digits with Analog Non-Spiking

and Spiking Reservoirs

We first feed in 7 irrelevant random digits to the reservoir, each of which requires

250ms on average, to make sure that the reservoir is not in the early stages of

perturbations with higher, but inconsistent, memory. Then, we feed in the actual

digit and measure the performance of the task to determine whether the reservoir

is reliably able to recognize the digit at any time. This insures that an unstable

reservoir would not solve the task with high performance. In our experiments, we

consider each discrete time step to be equivalent to one millisecond in continuous

time. We tested the task for 5 different reservoir sizes: N = 100, 200, ..., 500. We

ran each experiment 30 times and obtained the mean performance to reduce vari-

ance in the performance due to stochasticity in the reservoir connectivity weight

matrix. Our performance plots are the mean value of 30 trials of the spoken-digit

recognition task with the error-bars showing the standard deviation of the perfor-

mance over 30 trials. For each trial, a new reservoir is generated. Figure 5.13 shows

the performance of the reservoir with sigmoidal neurons in recognizing a spoken-

digit. This reservoir is completely unable to perform the task. Figure 5.14 and 5.16

show the performance of the reservoirs with LI and LIF neurons, respectively. The

reservoir with LIF neurons recognizes the digit with 0.81 mean performance with

only 100 neurons and 0.97 mean performance with 500 neurons. The LI reservoir

can recognize the digits with up to 0.70 mean performance, yet with 500 neurons.

The LIF reservoir could recognize all the digits i.e., with performance = 1 in some

trials.

We also probed the reservoir with LI neurons in recognizing the spoken-digits

with different leak rates (a) to find the optimum performance of the LI reservoir by
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varying a and w. We considered τm as a decay parameter and define it as a = 1
τm

.

Then we measured the performance against w when τm varies between 4 and 40

(see figure 5.15). As shown in figure 5.15, the LI reservoir with size N = 500 can

recognize the digits at the best with 0.80 mean-performance when τm = 20 and

w = 1.9. Yet, it falls short of the LIF reservoir mean-performance (0.81) with size

N = 100.
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Figure 5.13: Performance of the reservoir with sigmoidal neurons (N =

100, 200, ..., 500) in recognizing the isolated spoken-digit. The y axis represents

the mean value of the performance over 30 trials for each experiment and the error

bars show the standard deviation of the performance. We have run the experiment

with the same w range shown on the x axis, covering the same range of w in the

MI results.
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Figure 5.14: Performance of the reservoir with LI neurons (N = 100, 200, ..., 500) in

recognizing one spoken-digit. The LI neurons’ leak parameter is fixed to a = 0.25.

The y axis represents the mean value of the performance over 30 trials for each

experiment, and the error bars show the standard deviation of the performance.

We have run the experiment with same w range shown on the x axis, covering the

same range of w in the MI results.
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Figure 5.15: The influence of the LI neuron’s leak (a) parameter in the perfor-

mance of the reservoir with LI neurons (N = 500) in recognizing one spoken-digit.

We consider τm, a = 1
τm

as decay parameter and measure the performance against

w when τm varies between 4 and 40. By increasing τm, the memory of the LI

neuron is increased. The y axis represents the mean value of the performance over

30 trials for each experiment, and the error bars show the standard deviation of

the performance. We have run the experiment with the higher w range shown on

the x axis (as compared to the range of w in the MI results) to ensure that the per-

formance is not increased with further increase of w. Notice that the performance

does not reach that of LIF reservoir shown in figure 5.16. It is worth recalling that

in our MI result shown in figures 5.7 and 5.8, τm = 4 (a = 0.05).
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Figure 5.16: Performance of the reservoir with LIF neurons (N = 100, 200, ..., 500)

in recognizing one spoken-digit. The LIF membrane time-constant parameter is

fixed to τm = 20ms. The y axis represents the mean value of the performance over

30 trials for each experiment, and the error bars show the standard deviation of

the performance. We have run the experiment with w = [0.0, 7.0] (shown on the

x axis) so that the complete spectrum of MI for τsyn = 10ms (shown in figures

5.11 and 5.12) is covered. The relevance of the MCMI results (shown in figures

5.9 and 5.10) in the performance of the reservoir at another spatio-temporal task

is evident: the performance is maximized when the amount of stable memory is

maximized. The LIF reservoir outperforms the analog non-spiking reservoirs in

this spatio-temporal tasks.
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5.2.1 Discussion

The objective of performing this task was to benchmark the in-question reservoirs

in solving a real-world, spatio-temporal task. The proposed reservoir with LIF

neurons outperformed its rivals in solving this task. We achieved 100% performance

in some of the trials in our experiments. The mean performance of our proposed

LIF reservoir showed a slight improvement compared to the LSM tested in [10]

(97% as opposed to 95% mean performance). The rise and fall of the performance

achieved by varying the w was compatible with our observations preceded earlier in

the MI results sections. This compatibility implies that the memory and stability

of the reservoir have an explicit impact on the performance of this task. The

performances were maximized after, but very close to, the critical w in all cases.

This relationship is in agreement with the postulation that the performance of the

reservoir is maximized at the edge of chaos [5]. Upon looking at figures 5.9 and

5.10, one can see the impact of the amount of stable memory in the reservoir, as

measured by MCIMI, in th performance of this task is evident.

Another observation is that in most of the experiments, as the reservoir size

grows the performance improvement becomes less obvious. For instance, the per-

formance of the reservoir with 400 neurons is very close to the reservoir with 500

neurons, but they both have at least a 10% higher mean-performance than the

reservoir with 100 neurons. The maximum mean performances obtained from all

the reservoir types with sizes 100 and 500 in recognizing the isolated spoken-digits

are compared in table 5.2 in ‘I. S-D’ columns.

The rather poor performance of the sigmoidal reservoir in solving this task

came as quite a surprise. It is not clear to us why the reservoir with sigmoidal

neurons cannot solve this task despite the fact that its MCMI measures were
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not severely lower than those of the LI reservoir. In other words, MCMI of the

sigmoidal reservoir does not seem to be so small that the performance of the spoken-

digit recognition task would become ≈ 1%. This observation also highlights the

proposition that a high enough stable memory is essential but not sufficient to

solve any spatio-temporal task with high performance, but it is not sufficient.

It may be that might that the sigmoidal neuron lacks sufficient separation. ON

the other hand, we showed that the sigmoidal reservoir could solve PAR3 for an

approximately 2.4× 200ms long input.

5.3 Recognizing the Spoken-Digits Sequences with Analog Non-Spiking

and Spiking Reservoirs

We present our results for the reservoir types in recognizing a sequence of spoken-

digits. Figures 5.17 to 5.19 show the performance of the reservoirs with sigmoidal,

LI, and LIF neurons respectively. It is obvious that by increasing the length of the

sequences the performance of all reservoir types decreases because longer sequences

demand higher memory to be recognized by the system. Sigmoidal neurons are

obviously unable to perform this task, as they could not perform the single digit

task at all. Our result show that the LIF reservoir is the best reservoir of the

three for solving this task. Compare the performance of the LI reservoir in figures

5.18 and 5.19. This task also reveals the memory limits of the reservoir with LIF

neurons in solving a temporal task such as spoken-digits recognition when more

memory is required in 7-digit long sequences.
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Figure 5.17: Performance of the reservoir with sigmoidal neurons (N =

100, 200, ..., 500) in recognizing the sequence of n = 1, 2, ..., 7 spoken-digits. The y

axis represents the mean value of the performance over 30 trials for each experi-

ment, and the error bars show the standard deviation of the performance.
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Figure 5.18: Performance of the reservoir with LI neurons (N = 100, 200, ..., 500)

in recognizing the sequence of n = 1, 2, ..., 7 spoken-digits. To achieve the highest

possible performance, the leak parameter and weight coefficient w of the LI neurons

are fixed at a = 0.05 (τm = 20) and w = 2. The y axis represents the mean value

of the performance over 30 trials for each experiment, and the error bars show the

standard deviation of the performance. The mean-performance when N = 100

and n = 1 did not reach the maximum mean-performance shown in figure 5.15 of

N = 100 because w = 2 is an optimum value for N = 500 but not N = 100 for

n = 1.
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Figure 5.19: Performance of the reservoir with LIF neurons (N = 100, 200, ..., 500)

in recognizing the sequence of n = 1, 2, ..., 7 spoken-digits. The time constant

parameter of the LIF neurons is fixed at τm = 20ms. The y axis represents the

mean value of the performance over 30 trials for each experiment and the error

bars show the standard deviation of the performance. The maximum performance

of the reservoir is achieved at the critical w ≈ 3. The LIF reservoir outperforms

the analog non-spiking reservoirs in a rather memory demanding spatio-temporal

tasks. Recall that the LIF reservoir has the highest amount of stable memory of

all the reservoirs in our experiments.
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5.3.1 Discussion

The main goal of proposing and performing this task was to conduct a stress test

over all three types of reservoirs to determine the memory and stability of the

reservoirs in representing the input information and eventually to compute the

desired output. It turns out that the memory and stability of the LIF reservoir is

highly suited for solving the memory demanding spoken-digit sequence recognition

task. The LIF reservoir could solve the task much better than then other two

reservoirs. The maximum mean performances obtained from all the reservoir types,

with sizes 100 and 500, in recognizing the spoken-digit sequences, are compared in

table 5.2 in ‘Seq. S-D 7’ columns. The LIF reservoir maintains the highest record in

recognizing the spoken-digit sequences. It shows more promise in solving memory-

demanding, spatio-temporal, real-world tasks. Another considerable result is that,

the LIF reservoir with 100 neurons beats the reservoir with 500 optimum LI neurons

(80% vs. 79%). This result shows that, the LIF reservoir works remarkably more

efficient than the LI reservoir. It is very interesting with respect to the feasibility

of hardware implementation and energy efficiency.

101



Neuron Connectivity. I. S-D I. S-D Seq. S-D 7 Seq. S-D 7

Type Model maximum maximum maximum maximum

mean perf. mean perf. mean perf. mean perf.

(N = 100) (N = 500) (N = 100) (N = 500)

sigmoidal ESN 0.9% (±1.3%) 1% (±1.8%) 0.9% (±0%) 1% (±0.6%)

LI ESN 68% (±7.5%) 79% (±3%) 27% (±12%) 32% (±5.8%)

LIF ESN 80% (±4.1%) 97% (±2.1%) 32% (±7%) 67% (±6.5%)

LIF LSM N/A 95% N/A N/A

Table 5.2: Comparison of the reservoir types with respect to the maximum ob-

tained mean-performance in recognizing isolated-spoken-digit recognition (I. S-D)

and a sequence of 7 spoken-digits (Seq. S-D 7) when N = 100 and N = 500

neurons are used in the reservoir. The standard deviations of the performances

are shown in parentheses. The LIF reservoir is shown in boldface. Our reservoir

with N = 500 LIF neurons could recognize the isolated spoken-digits with 97%

mean-performance. Compared to a 95% mean-performance obtained from LSM

in [10], it showed a slight improvement. Comparing that to the mean-performance

of 79% obtained from the reservoir with LI neurons, it has a considerable per-

formance increase. The proposed LIF reservoir also showed higher performance

than the LI reservoir even with N = 100 neurons. Performance results for isolated

spoken-digits with N = 100 is not available in [10], and the sequence-recognition

tasks have not been performed in [10]. The sigmoidal reservoir failed to solve the

problem. All the numbers are rounded values.
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6

Conclusion

We investigated the impact of information representation and memory in process-

ing spatio-temporal spike-train inputs in RC systems. From this perspective, we

compared RC systems with LIF neurons and analog non-spiking RC systems with

sigmoidal and LI neurons. Our study has been deeply under the influence of sta-

ble, transition phase (edge of chaos), and chaotic reservoir dynamics imposed by

network weight coefficient w. In other words, we questioned what happens to the

information representation of the reservoir when w is smaller than a critical value

w0, when w ≈ w0, and when w > w0. To answer this question, we expanded

the MI measurement method outlined in [9] and measured for all three types of

reservoirs. Then, we investigated the impact of that on the performance of the

reservoir in solving memory-demanding spatio-temporal tasks. Below, we outline

the findings we obtained in four major steps and then draw an overall conclusion

by connecting those findings.

First, we measured the MI and MCMI between the reservoir dynamics and the

input to show the capability of the reservoir for input information representation,

memory capacity, and memory stability. Our observation on MI measures obtained

from the reservoir with sigmoidal and LI neurons conforms to the fact that ESN’s

performance in solving tasks reaches its apex at the critical w close to 1 [1]. These

reservoirs also maintain their stability when w <≈ 1. By further increasing w,

both the stability and the performance are decreased. MI results obtained from

the reservoir with LIF neurons shows a similar behavior. However, the critical w for
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this type of reservoir varies with the neuron and synaptic parameters. Based on our

experiments in this study, the critical values in the reservoir with LIF neurons for w

turns out to be w ≈ 3, when τsyn = 10ms, and w ≈ 9, when τsyn = 7ms. According

to our results, the reservoir with LIF neurons has higher memory capacity at

the critical w than the reservoirs with LI and sigmoidal neurons. We achieved a

maximum input MCMI of 4.5 for the reservoir with LIF neurons. The maximum

input MCMI’s for the reservoir with sigmoidal and LI neurons were 3.71 and 3.79

respectively.

Second, for all the three reservoir types, we measured the MI and MCMI be-

tween the reservoir dynamics and temporal parity of the input to show the corre-

lation between the performance of the reservoir and the capability of the reservoir

in input information representation, memory capacity, and memory stability. We

achieved a maximum PAR3 MCMI of 2.92 for the reservoir with LIF neurons. The

maximum PAR3 MCMI’s for the reservoir with sigmoidal and LI neurons were 2.47

and 2.51, respectively. Comparison of PAR3 MCMIs with the input MCMI results

shows that the data-processing inequality holds in computing the PAR3 task for

reservoirs with all three neuron types. In other words, the reservoir can only com-

pute over an input data if the amount of represented input information is enough

to solve PAR3. In fact, the amount of memory and the memory stability in the

reservoir have a direct impact on the performance of the reservoir.

Third, we compared the RC systems with all three types of neurons in recog-

nizing spoken digits represented by 40 channels of spike trains. An RC system

with sigmoidal neurons fell short of solving this task with the maximum mean-

performance of 1%. The RC system with LIF neurons outperformed the RC sys-

tem with LI neurons. We witnessed 97% and 76% maximum mean-performance
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for reservoir with LIF and LI neurons in our experiments, respectively. We further

tested the reservoir with LI neuron but with other leak (a = 1
τm

) values. The per-

formance of the reservoir with optimized LI neurons did not yet approach that of

the reservoir with LIF neurons. Compare 78% in the LI reservoir to 97% maximum

mean-performance in the LIF reservoir.

Forth, we further investigated the ability of the mentioned reservoirs to solve

a similar but rather more memory-demanding task. We concatenated the spike

trains of the digits to form sequences of digits, and we compared the reservoirs

in recognizing the constructed spoken-digit sequences. The reservoir with LIF

neurons outperformed the reservoir with non-spiking analog neurons in recognizing

spoken-digit sequences up to 7 digits long. The LIF and LI reservoirs solved the

task with 76% and 32% maximum mean-performance, respectively, for a sequence

of 7 spoken-digits. Obviously, sigmoidal neurons failed to solve this task, yielding

1% maximum mean-performance. It is evident that the LIF reservoir possesses

a higher memory compared to its rivals. With this task, we also explored and

revealed the memory limits of the reservoir with LIF neurons in computing the

spoken-digit sequence-recognition task. The performance dropped from 97% mean-

performance for one digit to 76% mean-performance for the sequence of seven

digits.

In all the three reservoir instances in our study, MI measures showed stable

information representation in the reservoir, when connectivity weight coefficient w

is less than or close to a critical value w0 (at the edge of chaos [4,5]). The memory

and consistency of the reservoir in representing the input (measured by MCMI)

was maximized when w ≈ w0. After the w was increased to a value higher than

w0, both the MCMI and the performance of the reservoir in solving PAR3 were
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decreased dramatically. This stage of the reservoir dynamics is referred to as a

chaotic regime in [5].

The bottom-line of our observations is that the network dynamics have a direct

impact on input representation, memory, and memory stability in the reservoir.

As a consequence, an increase or decrease in these factors gives rise in turn to the

increase or decrease of the task performance. The reservoir can perform the best

when MCMI is high enough for a given task. Lack of enough linearly separable

memory in the reservoir results in decreasing the performance of the RC system as

is shown in the MCMI results measured for both input and PAR3 of the input in

the so-called chaotic regime. Our performance analysis in spoken-digit recognition

tasks confirm that this MCMI difference (maximum input MCMIs of 4.5 and 3.7)

causes a large difference in the performance of the reservoirs in solving this complex

spatio-temporal task. We witnessed a 97% and 76% maximum mean-performance

for reservoir with LIF and LI neurons, respectively, in our experiments. With

respect to the performance peak and the critical w in spoken-digit recognition

task, we observed that the performance peak varies with w, neuron parameters,

reservoir size. The exact critical w in PAR3 and isolated spoken-digit recognition

tasks obtained from the LI reservoir were not exactly the same; and that Implies

that the exact critical w also depends on the input characteristics.

Our reservoir with LIF neurons yielded slightly higher performance (97% mean-

performance) in isolated spoken digit-recognition tasks than the LSM used in [10]

with 95% mean-performance. Yet the detailed in-depth comparison of this reservoir

with LSM will be left to the future work. The reservoir with LIF neurons appears

to be more promising for building nano-electronic RC systems. It outperformed

the sigmoidal and LI reservoirs in all the tasks and solved the isolated spoken-digit
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recognition more efficiently. From an engineering stand-point, our findings have

applications in building nano-electronic RC systems with LIF neurons for solving

real-world, memory-demanding, spatio-temporal problems. The study paves the

road toward solving real-world, spatio-temporal problems by shedding light on the

impact of information representation on the performance of RC systems.
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