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Abstract

The design of fluid management systems requires accurate models for fluid trans-

port. In the low gravity environment of space, gravity no longer dominates fluid

displacement; instead capillary forces often govern flow. This thesis considers the

redistribution of fluid along an interior corner. Following a rapid reduction of gravity,

fluid advances along the corner measured by the column length z = L(t), which is

governed by a nonlinear partial differential equation with dynamical boundary con-

ditions. Three flow types are examined: capillary rise, spreading drop, and tapered

corner. The spreading drop regime is shown to exhibit column length growth L ∼ t2/5,

where a closed form analytic solution exists. No analytic solution is available for the

capillary rise problem. However, a perturbed power law similarity solution is pursued

to approximate an analytic solution in the near neighborhood of the exact solution for

the spreading drop. It is recovered that L ∼ t1/2 for the capillary rise problem. The

tapered corner problem is not analytically understood and hence its corresponding L

is undocumented. Based on the slender corner geometry, it is natural to hypothesize

the tapered corner column length initially behaves like the capillary rise regime, but

after sufficient time has elapsed, it transitions into the spreading drop regime. This

leads to a conjecture that its column length growth L is restricted to t2/5 . L . t1/2.

To verify this conjecture an explicit finite difference numerical solution is developed

for all three regimes. As will be shown, the finite difference scheme converges towards

the analytic solutions for the spreading drop and capillary rise regimes. From this we

assume the finite difference scheme is accurate for corner flows of similar geometries,

i



and thus apply this scheme the more onerous criteria of the tapered corner. Numeri-

cal results support the conjectured L behavior for the tapered corner. Understanding

the dynamics of such flows and responses to various geometries offers design advan-

tages for spacecraft waste-management systems, fuel control, hydration containment,

cryogenic flows, and a myriad of other fluid applications.
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Chapter 1

1 Introduction and Motivation

Capillarity describes a fluid’s tendency to flow through (confined) spaces despite the

assistance/resistance of external forces. This tendency develops by surface tension

wetting and spatial geometry at the molecular level, where an imbalance of adhesive

and cohesive forces overpowers other external forces at fluid interfaces. On Earth

the capillary magnitude is often measured by the ratio of gravity to surface tension

forces, the Bond number Bo ≡ ∆ρgH2/σ. Here ∆ρ is the density change across

the fluid interface, H is the characteristic surface length scale, g is the acceleration

of gravity (9.81 m/s2), and σ is surface tension. For Bo � 1 gravitational forces

dominate flow; for Bo � 1 surface tension dominates flow. If g is sufficiently large,

capillary action occurs predominantly at small-scales. In the absence of gravity, such

as the environment of space, the Bond number is often small (Bo � 1), and hence

capillary action can dictate large-scale flows. In fact, Concus and Finn [3] show that

capillary action along an infinitely long interior corner can proceed indefinitely when

the critical corner wetting condition θ < π/2 − α is satisfied, where θ is the fluid

contact angle and α is half the corner angle.

1.1 Background Research

Significant research has been devoted to further understanding capillary-driven flow

and its reaction to various geometries. Weislogel [12] investigates such flows subject

to irregular polygonal geometries. Weislogel and Lichter [13] demonstrate asymptotic

techniques solving capillary flows in interior corners and consider flow throughout a

1



Chapter 1

container in the limit of long times. Asymptotic solutions present closed form solu-

tions, which are valuable when exploiting optimal flow management designs. Weislo-

gel et al. [11] demonstrate solutions for weakly and passive forced flows of an interior

corner and compare critical design criteria. Chen et al. [14] extrapolate sharp cor-

ners to rounded interior corners, where analytic and numerical solutions are presented.

Convex and concave corner walls are analyzed by Weislogel [9], where negative wall

curvature is shown to increase the volumetric flow rate. Asymmetric geometric con-

figurations are documented by Bolleddula et al. [2], where it is found that corner

asymmetries can cause chaotic flow migration. Dong and Chatzis [4] analyze flow

through a square cross section with both rounded and sharp edges, reporting sharp

corners catalyze imbibition and rounded corners buffer imbibition.

1.2 Present Scope

The aforementioned publications review corner flows in polygonal cylinders. Solely

focusing on constant cross-sections excludes a large class of geometries and leaves

open questions regarding the bulk meniscus behavior as it approaches the bottom

of a container. To better understand fluid behavior and optimize containment we

shift focus from cylinders to tapered containers, as illustrated in Figure 1.2. When

analyzing fluid behavior in such geometries it is critical to understand the tip location

L as a function of time. We hypothesize that the tapered corner column length is

confined to t2/5 . L . t1/2, and in fact that initially the tapered corner regime tip

grows as L ∼ t1/2 and after sufficient time has elapsed its growth transitions to L ∼

t2/5, as depicted in Figure 1.1. The reason for this hypothesis is explained in Chapter

2



Chapter 1

4. Validation of this hypothesis begins by deriving the governing tip-displacement

equation and its associated boundary conditions, as presented in Chapter 2. Chapter

3 then provides analytical treatment to the capillary rise and spreading drop regimes.

These regimes are not arbitrarily chosen, as the tip behavior for the capillary rise

L ∼ t1/2 and spreading drop L ∼ t2/5 serve as upper and lower bounds respectively

for the tapered corner. Since the tapered corner is not well-posed via the employed

analytical schemes, a numerical method is presented in Chapter 4. The method

is first applied for the capillary rise and spreading drop regimes, where analytical

benchmarks are available. The numerical results are shown to converge onto the

analytic equations, and we thus employ the method to the tapered corner regime.

The results are tabulated, and ultimately we find the tapered corner tip adheres to

t2/5 . L . t1/2 and the regime in Figure 1.1 is followed for certain geometries, as was

expected.

2
1

5
2

log(L)

log(t)

Figure 1.1: A sketch of the hypothesized behavior for the tapered corner L growth.
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Tip

Bulk

Advancing
Columns

Receding
Bulk Meniscus

Figure 1.2: Illustration of the tapered corner regime.
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2 Derivation of Governing Equation

Since the corner flow dictates most of the flow throughout the container we begin by

analyzing this region. Referencing Figure 2.1, L is the characteristic length of the

column of fluid along the z-axis and H is the characteristic height of the meniscus in

the corner along the x-axis. The ratio of these length scales (ε ≡ H/L) is crucial in

the analysis to follow. Table 2.1 provides other essential, nondimensional quantities.

Table 2.1: Non-dimensional independent and dependent variables and parameters.

Lengths Velocities Other

x = x′/H u = u′/εw P = Hf P ′/σ

y = y′/H tanα v = v′/εW tanα t = Wt′/L

z = z′/L w = w′/W A = A′/H2 tanα

L = L′/L 〈w〉 = 〈w〉′/W Q̇ = Q̇′/WH2 tanα

h = h′/H W = εσ sin2 α/µf ε = H/L

The majority of the dimensionless quantities listed in Table 2.1 are derived through

simple geometry. However, a few should be justified. The characteristic z-component

of velocity W is determined through a balance of pressure and viscous forces. The

pressure is scaled via σ/Hf : f = f(α, θ), a geometric curvature function of the

meniscus in the x-y plane. For f to be a valid scaling measure as outlined by Weislogel

[10], the meniscus curvature in the x′-z′ plane must be small, ε2f � 1. The angle

α is half the corner angle and θ is the contact angle as illustrated in Figure 2.1. It

should be noted that the prime ′ notation denotes a dimensional quantity throughout

the text unless otherwise stated.

5
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h(z, t) L

x

y

h(z, t)

θ

α
x

y

z

Figure 2.1: Sketch of capillary rise and cross-section in an interior corner.

Ignoring body forces, the dimensionless Navier-Stokes equations governing the tip

flow are
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ε2RDu
Dt

= −Px + ε2∇2u (2.1)

ε2R2 tan2 α
Dv

Dt
= −Py + ε2 tan2 α∇2v (2.2)

RDw
Dt

= −Pz +∇2w : (2.3)

∇2 ≡ sin2 α
∂2

∂x2
+ cos2 α

∂2

∂y2
+ ε2 sin2 α

∂2

∂z2
(2.4)

R ≡ ε2

f Oh2
sin4 α. (2.5)

where D/Dt is the substantial derivative operator and Oh ≡ µ/(σρH)1/2 is the Ohne-

sorge number. Boundary conditions for the above equations include a no slip condi-

tion along the container wall, zero shear stress along the surface, and a contact angle

criterion. These boundary conditions and the Navier-Stokes equations are onerous

as posed. However, expanding the dependent variables as f = f0 + O(ε2) where f0

includes O(ε) terms and assuming R = O(ε2) reduces (2.3) to first order as

∂P0

∂z
= sin2 α

∂2w0

∂x2
+ cos2 α

∂2w0

∂y2
. (2.6)

Solving (2.6) yields an expression for 〈w0〉 as

〈w0〉 = −Fih2∂P0

∂z
= −Fi

∂h

∂z
(2.7)

where Fi is a geometric parameter governing the curvature of the meniscus. A mass

7
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balance in the z direction yields

∂A

∂t
= −∂Q̇

∂z
= − ∂

∂z
A〈w〉. (2.8)

Introducing the cross-sectional area function FA ≡ A′/h′2, where FA = f(α, θ), and

substituting FA and (2.7) into (2.8) yields the leading order governing corner flow

equation

2
∂h

∂t
= Fi

(
2

(
∂h

∂z

)2

+ h
∂2h

∂z2

)
. (2.9)

Defining τ ≡ Fit/2 reduces (2.9) to

∂h

∂τ
= h

∂2h

∂z2
+ 2

(
∂h

∂z

)2

. (2.10)

The first associated boundary condition is zero height at the tip location z = L,

h(L(τ), τ) = 0. (2.11)

The second boundary condition is prescribed by flow conditions. In almost all

cases the second boundary condition requires information about the bulk meniscus

location, introducing a closure issue. A conservation of mass integral closes (2.10)

when the bulk meniscus location appears as a boundary condition, as outlined in

Appendix B and to be shown in Section 4.1.3. Once defining the second boundary

condition, all that remains is determining an initial condition. It should be noted

8



Chapter 2

while volume is conserved over the tip and bulk regions, (2.10) only governs the

displacement for the tip region, as depicted in Figure 1.2. Then (2.10) does not imply

volume is conserved for an arbitrary control volume. Equation (2.10) governs tip

displacement and bulk meniscus location, and is the fundamental equation hereafter

analyzed. Note (2.10) is only valid along the advancing column and does not hold for

the bulk meniscus. Three different flow regimes are studied herein, where each arises

from different boundary conditions1.

1To this point only one boundary condition, (2.11), for (2.10) is presented. However, (2.10)
requires two. The second boundary condition is a property of a particular flow problem. Since three
problems are studied, three boundary conditions are considered.

9



Chapter 3

3 Analytics

This chapter is devoted to analytically solving (or at least approximating) solutions

to equation (2.10). In its current form, (2.10) is difficult to solve and many solution

methods fail. Weislogel [10] and Ramé and Weislogel [6] apply similarity transforms to

(2.10), transforming it into a tractable ODE, where at least one exact solution exists

for the appropriate boundary and initial conditions. The beginning of this chapter

summarizes and applies that transform. Since both the capillary rise and spreading

drop regimes are well-posed in the sense that non-conflicting boundary conditions

are established after transformation, it is possible to attain analytical expressions

for each. As will be shown, an exact analytic solution for the capillary rise regime

is unknown, and must then be approximated. Two approximation techniques are

presented: perturbations in the exponent of a power-law similarity transform and

a least squares variational calculus method. The variational calculus method was

introduced by Becker [1]; the power law perturbational technique is original work.

3.1 Similarity Transform

Due to the nonlinearity of equation (2.10) typical solution methods (separation of

variables, etc.) fail. Rather than separating h into products of functions of τ and

z, a similarity transform consolidates variables, reducing the PDE to an ODE. We

introduce

h = C1τ
aF (η) η = C2zτ

b L = ηtipC
−1
2 τ−b (3.1)

10



Chapter 3

where C1, C2 and ηtip are constants. Equation (3.1) recasts (2.10) as

FFηη + 2F 2
η −

τ−1−a−2b

C1C2
2

[aF + bηFη] = 0. (3.2)

Similarity is achieved when (3.2) is τ independent, which implies

−1− a− 2b = 0. Before proceeding, it is helpful to notice (3.2) is invariant under the

following transformations

F = λ2F+ η = λη+. (3.3)

Applying the similarity transform (3.1) to (2.11) yields F (ηtip) = 0, where (3.3)

implies F+(λη+
tip) = 0. Since λ is arbitrary let λ = ηtip, which implies η+

tip = 1. Then

one boundary condition for (3.2) (once transformed from F 7→ F+) is

F+(1) = 0. (3.4)

Letting η = ηtip in (3.2) and then applying (3.3) yields a second boundary condi-

tion

F+
η+(1) =

b

2C1C2
2

. (3.5)

Two boundary conditions at the tip have been derived, and a backward (η → −∞)

shooting Runge Kutta method can now solve the system if the constants a, b, C1, and

C2 are known. Determining these constants requires physical assumptions, which are

11
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discussed below.

3.1.1 Capillary Rise (Constant Height)

The capillary rise flow regime develops from a volume of fluid in static equilibrium.

During, say, a typical drop tower test, gravity (which operates in the −z direction)

is suddenly absent, causing a force imbalance. The under pressure in the liquid

caused by local wetting (Concus and Finn [3]) causes the fluid to wick in the z

direction into and along the corner. Experiments show this regime quickly establishes

a constant height at some defined z = 0, and while not obvious, h(0, τ) = 1 [10].

Notice h(0, τ) = 1 implies F (0) = C−1
1 τ−a, and thus a = 0 to maintain self-similarity.

Then b = −1/2 and we choose constants C1 = 1 and C2 = 2−1/2, which implies

F (0) = 1. Equation (3.1) becomes h = F , η = z(2τ)−1/2, and L = ηtip(2τ)1/2. Then

(3.2) becomes (after transforming F 7→ F+)

F+F+
η+η+ + 2F+

η+
2

+ η+F+
η+ = 0. (3.6)

subject to

F+(1) = 0 F+
η+(1) = −1

2
. (3.7)

Equation (3.6) is now well-posed and can be numerically solved for F+(η+). The

invariant parameter λ may be solved for by transforming F (0) = 1 7→ F+(0) = λ−2.

12
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Then L can be expressed as

L = Chτ
1/2 : Ch ≡ 2.407... (3.8)

With λ known it is possible to transform F+(η+) 7→ F (η) via (3.3). Table 3.1

tabulates significant values for F (η) where calculations have been computed in Math-

ematica 10.1.

Table 3.1: Summarized values from the similarity solutions. Results were initially
calculated by Weislogel [10] and are here verified in Mathematica 10.1.

Case ηtip = λ F (0) Fη(0) Fη(ηtip)

Capillary Rise (a = 0) 1.702... 1 −0.349... −0.851...

Spreading Drop (a = −1/5) 1.496... 1.119... 0 −1.496...

3.1.2 Spreading Drop (Constant Volume)

The spreading drop regime develops from a drop of fluid of fixed volume H3 instantly

appearing on an interior corner at some location defined as z = 0. The drop is

symmetric in the x-z plane about the x axis and disperses evenly. A conservation

of mass integral2 gives a = −1/5, b = −2/5, C1 = (κ2/5)1/5, C2 = (52κ)−1/5 where

κ ≡ ε/2FA. Then (3.2) reduces to (after transforming F 7→ F+)

F+F+
η+η+ + 2 F+

η+
2

+ η+F+
η+ +

1

2
F+ = 0 (3.9)

2See Appendix A for details.
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subject to

F+(1) = 0 F+
η+(1) = −1. (3.10)

Before turning to a numerical solution, the following ansatz is advanced.

Ansatz 1. Equation (3.9) may be solved exactly via a quadratic in η+. When sub-

jecting said quadratic to (3.10) the exact solution is

F+(η+) =
1

2

(
1− η+ 2

)
. (3.11)

Notice (3.1) can be expressed as h = κ2/5(5τ)−1/5F , η = κ−1/5z(5τ)−2/5. It can be

shown3 λ =
(∫ 1

0
F+(η+)2 dη+

)−1/5

= (15/2)1/5 + 1.496.... Now L may be expressed

as

L = Cvτ
2/5 : Cv ≡

31/553/5

22/5

ε

FA
+ 0.9872... (3.12)

where we let ε/FA = 1/100. With λ known, (3.3) can transform F+ back to F . Using

(3.1) to back-transform F 7→ h yields the following exact integral solution for (2.10)

subject to both (2.11) and a constant volume boundary condition4:

h =
1

2
λ2κ2/5(5τ)−1/5

(
1− η2

λ2

)
(3.13)

3See Appendix A for details.
4The constant volume boundary condition mentioned is hz(0, τ) = 0, which is explained in detail

in Section 4.1.2.
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where 0 ≤ η ≤ λ. Table 3.1 tabulates significant values for F (η), where calculations

have been computed in Mathematica 10.1.

3.1.3 Universal Similarity

Before continuing, it will be useful to rewrite (3.2) as a self-similar equation general-

ized for all a values. Thus let b = −(1 + a)/2, C1 = 1 and C2 = |b|1/2. Then (3.2) is

rewritten as

F(η+; a) ≡ F+F+
η+η+ + 2F+

η+
2

+ η+F+
η+ −

2a

1 + a
F+ = 0. (3.14)

Applying the invariant transformation (3.3) to the boundary conditions, (3.5) and

(3.4) are respectively written as

F+
η+(1) = −1/2 F+(1) = 0. (3.15)

Then it is clear the only undetermined similarity variable is a. In fact, a dictates

the physical flow regime that equation (3.2) describes and also impacts existence of

solutions. Notice the similarity constants defined in this section, while consistent for

Section 3.1.1, differ from those suggested in Section 3.1.2. F(η+, 0) yields a similar

exact solution as (3.11), which is

F+(η+) =
1

4

(
1− η+ 2

)
. (3.16)

Distinguishing (3.16) and (3.11) is necessary for employing the perturbational

15
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technique, as both the spreading drop and the capillary rise regimes must be cast

identically.

3.2 Analytical Solutions and Approximations

In Section 3.1 an exact solution for the spreading drop regime was recovered. How-

ever, no analytical solution was found for the capillary rise regime. Without an

analytical expression, it is not possible to back-transform F 7→ h for all η ∈ [0,L].

In this section we attempt to analytically approximate solutions to (3.14) via per-

turbing the power law exponent a. The perturbational approximation is similar to a

Taylor series: as a Taylor series sums polynomial terms to approximate functions, this

technique sums truncated analytic solutions to approximate non-analytic solutions.

Similar to a Taylor series’ validity on a radius of convergence, the perturbational

technique is valid when approximated from a sufficiently close neighboring analytic

solution. Succinctly stated, this technique perturbs exact solutions so as to analyti-

cally approximate nearby numerical solutions wherein no analytic solution exists.

3.2.1 The Perturbational Technique

Equation (3.13) confirms the existence of at least one exact analytic solution for

(2.10). In fact, exact solutions exist not only for the spreading drop a = −1/5

regime, but also for other flow regimes where a = −1/3 and a = 1 [10]. However, no

exact solution has been found for the capillary rise a = 0 regime. Despite not having

an exact solution, the capillary rise regime, along with numerous other a values, can
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be analytically approximated by perturbing a well-understood5 similarity transform

exponent a in (3.1) by some ε ∈ R+ : ε� 1. Denote this well-understood a value a∗,

and denote the solution’s a value we seek to analytically approximate a†. The per-

turbation is then a† = a∗+ε, which implies the similarity transform (3.1) is redefined

as h = C1τ
aF (η) 7→ h = C1τ

a+εF (η). The method follows.

Define a∗ ∈ R as an a value such that F+(η+, a∗) implies F+
∗ (η+) exists and is

analytic. Define a† ∈ R as an a value such that F+(η+, a†) implies F+
† (η+) exists

(although not necessarily known nor analytic). To approximate F+
† (η+) via F+

∗ (η+),

first select an a∗ such that |a† − a∗| is minimized. Define F+
0 as F+

∗ (η+) solving the

differential equation corresponding to a∗. Now make a naive expansion in (3.14),

letting

F+(η+) =
∑
N

εnF+
n (η+). (3.17)

Perturbing a∗ = a† + ε implies from equation (3.14) the term −2a/(1 + a) = f(ε).

Since (3.14) will be weighted in ε make a McLaurin expansion in ε for −2(a∗+ε)/(1+

a∗ + ε) = −2a∗
∑

N ε
n/(1 + a∗)

n+1. Substituting the naive and McLaurin expansions

5Well understood implies all a values whose corresponding solutions that exactly solve (3.14),
which is currently values −1/3, −1/5, and 1, the similarity flow regimes with exact solutions.
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into (3.14) yields

∑
N

εn F+
n
′′∑

N

εnF+
n + 2

(∑
N

εn F+
n
′

)2

+ η+
∑
N

εn F+
n
′
+

− 2a∗
∑
N

εn(1 + a∗)
−(n+1)

∑
N

εnF+
n = 0 (3.18)

where prime ′ notation here denotes an ordinary derivative with respect to η+. Weight-

ing (3.18) in order ε gives rise to a system of ordinary differential equations, where

each successive equation to O(εn) is denoted ψn and is predicated on the solution to

the previous system [ψ0, ..., ψn−1]. By construction it will always be the case that ψ0

is solved by F+
0 , and in general ψn is solved by the inclusive set of n + 1 solutions

{F+
0 , ..., F

+
n }. Then it is clear if F+

0 is known, F+
1 may be solved and inductively F+

n

may also be solved. With F+
n known, F+(η+) is known from (3.17) through accuracy

of O(εn). It remains to determine ε, which we define as ε ≡ a† − a∗. It is interesting

that given F+
n , ψn+1 is linear despite the nonlinear nature of (3.18).

The component ψn is a second order ODE, and thus requires 2 boundary con-

ditions. The above analysis suggests boundary conditions for F+
0 are valid for ψ0.

Solving successive equations requires more boundary conditions, and in general the

system [ψ0, ..., ψn] requires 2(n+ 1) boundary conditions. Each set of boundary con-

ditions is found by applying the naive expansion F+(η+) =
∑

N F
+
n (η+)εn to (3.15)

and weighting to O(εn).

Example 1. Using the method described above, approximate the solution for any a

18



Chapter 3

in an ε neighborhood of a = −1/5 through O(ε) accuracy.

Proof. Substitute a∗ = −1/5 into (3.18) and expand to O(ε0), which yields

ψ0 ≡ F+
0
′′
F+

0 + 2
(
F+

0
′
)2

+ η+ F+
0
′
+

1

2
F+

0 = 0. (3.19)

Recall (3.16) solves (3.19); thus ψ0 is solved. To solve for F+
1 , rewrite (3.18) at

O(ε):

ψ1 ≡ −
25F+

0

8
+
F+

1

2
+
(
η+ + 4 F+

0
′
)
F+

1
′
+ F+

1 F+
0
′′

+ F+
0 F+

1
′′

= 0 (3.20)

which is linear in F+
1 . Associated boundary conditions at O(ε) are then

∑
N

F+
n (1)εn = 0 =⇒ F+

1 (1) = 0 (3.21)

∑
N

F+
n
′
(1)εn = −1

2
=⇒ F+

1
′
(1) = 0. (3.22)

Solving (3.20) via Mathematica 10.1 analytically yields

F+
1 (η+) =

5
(

1 + 3 η+ 2
+ 3 η+ 3

+ η+(log 256− 7) + log 256− 8(1 + η+) log(1 + η+)
)

48(1 + η+)
. (3.23)

To better understand (3.23) and easily operate over it, make a Taylor series ex-

pansion centered around η+ = 1, which solves the boundary conditions identically.
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Then (3.23) is expressed as

F+
1 (η+) =

25

48
(η+ − 1)2 − 25

288
(η+ − 1)3 +O

(
(η+ − 1)4

)
(3.24)

where the Lagrange Remainder Theorem6 may be used to approximate the error of

(3.24). F+(η+) is then approximated as

F+(η+) ≈ 1

4
(1− η+ 2

) + ε

[
25

48
(η+ − 1)2 − 25

288
(η+ − 1)3

]
+O(ε2) (3.25)

where ε = a† + 1/5. To approximate an analytical solution simply choose an a†.

The spreading drop solution can be perturbed to approximate the capillary rise

similarity solution, thus a† = 0. Figure 3.1 plots this perturbation through O(ε7).

Table 3.2 tabulates relevant numerical data from the perturbational technique already

described. As n increases, the maximum error diminishes with successive sums in

a decaying exponential manner, as Figure 3.2 illustrates. Evidently perturbing the

similarity transform by some constant ε = 1/5 does remarkably well at approximating

the numerical solution to (3.6), which was solved in Mathematica 10.1.
6Consult Spivak [8] for details.
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Figure 3.1: The naive expansion (3.17) is plotted through various orders of ε against
a numerical solution denoted F+

ℵ solved in Mathematica 10.1. εn denotes
∑
Fnε

n.
F+
0 is (3.16), the exact solution for the spreading drop regime subject to generalized

similarity constants, as outlined in Section 3.1.3.
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Figure 3.2: Maximum error for η+ ∈ [0, 1] for Fa =
∑
Fnε

n plotted against n. Error
is calculated as 100 [Fa(0)− Fℵ(0)] /Fa(0), where Fℵ is the corresponding numerical
solution for the capillary rise regime, which is calculated in Mathematica 10.1. An
exponential plot is overlaid.
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Table 3.2: Capillary rise analytically approximated data, where Fa =
∑
Fnε

n

and Fℵ is a numerical solution to for the capillary rise regime via Mathematica
10.1. χ is defined in Appendix D as a measure of fit. Max % Error is defined as
100 [Fa(0)− Fℵ(0)] /Fa(0) : η+ ∈ [0, 1].∑

n Fnε
n χ Max % Error

n = 0 0.0305931 −27.5705

n = 1 0.0110736 11.9348

n = 2 0.00394172 −4.68234

n = 3 0.00139808 1.99493

n = 4 0.00064304 −0.787077

n = 5 0.000119009 0.323315

n = 6 0.000146429 −0.0794701

n = 7 0.0000568437 0.0605253

n→∞ → 0 → 0

The perturbational technique has far reaching, unusual implications with respect

to the family of differential equations (2.10) describes. We demonstrated the method’s

utility in approximating a similarity solution for a = 0. The parameter a = 0 was

derived from the physical capillary rise regime, which was well-posed in the similarity

transform. However, other physical regimes may not be well-posed and hence leave

corresponding a values undetermined, if they exist at all. If such a regime (i.e.

the tapered corner) is believed to be constrained by a regime whose known a value

exists (capillary rise and spreading drop), then it is possible to approximate such a

regime’s analytical solution by perturbing the known a value and checking the results

numerically. Should this method work, other regimes that are known to be bounded
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by the newly approximated a value could also be found, and inductively many flow

regimes could potentially be analytically described.

3.3 Variational Methods

The technique discussed in Section 3.2.1 approximates solutions to (3.14) but requires

a nearby exact solution. Exact solutions are rarely available; then it is instructive

to ascertain an approximate analytic solution without knowing any exact solutions.

When seeking a non-exact solution, an ideal requirement is to minimize the error of

the sought after solution with respect to the exact solution. It is then natural to con-

sider methods from the calculus of variations, specifically a least squares variational

technique.7 The method follows.

Choose a trial quadratic function to solve (3.14) defined as

φ(η+) ≡ A η+ 2
+Bη+ + C. (3.26)

Equation (3.26) is not chosen arbitrarily, as a quadratic analytically solves the

spreading drop regime. Equation (3.26) must satisfy (3.15), thus B and C are known

unique functions of A. Then (3.26) can be expressed as

φ(η+) ≡ 1

2
+ A−

(
1

2
+ 2A

)
η+ + A η+ 2

: A = f(a). (3.27)

7For a theoretical description consult Becker [1]. For employment of said theory, consult Mayer
[5], where the non-linear diffusion equation is approximated.
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A measurement of validity for (3.27) when approximating (3.14) is given by the

residual

Q ≡ φφ′′ + 2φ2 + η+φ′ − 2a

1 + a
φ (3.28)

where prime ′ notation denotes an ordinary derivative. Notice Q = f(η+; a,A).

However, solving for a particular flow regime implies a is known. Then the resulting

functional is

J(A) =

∫ 1

0

Q2 dη+. (3.29)

where we wish to minimize J = f(A); thus take J ′(A) = 0. An optimal A is now

known, and an approximate solution φ(η+) to (3.14), given a flow parameter a, is

found.

Applying the aforementioned variational technique to approximate F(η+, 0) yields

φ(η+) = 0.352223− 0.204446η+ − 0.147777 η+ 2
. (3.30)

Figure 3.3 plots both (3.30) and a numerical solution to F(η+, 0). Note φ(η+) from

(3.30) equals (3.16) for a = −1/5.
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Figure 3.3: φ(η+) is plotted plotted against a numerical solution denoted F+
ℵ solved

in Mathematica 10.1. The maximum error is 2.0% for η+ = 0 and is defined as
100 [φ(0)− Fℵ(0)] /φ(0).
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3.4 Summary

To summarize, Chapter 2 concluded with the development of a second order, non-

linear partial differential equation with one dynamic boundary condition. Chapter

3 began by transforming this PDE into an ODE via a similarity transform. Two

regimes were considered: the spreading drop and the capillary rise regime. An exact

solution was found for the spreading drop regime. Since no exact solution was found

for the capillary rise regime, the second half of Chapter 3 developed a perturbational

technique to analytically approximate an exact solution. A well-understood varia-

tional calculus technique was then employed to approximate an analytical solution

for the capillary rise regime. These approximations were developed for benchmarking

numerical work to be introduced next.
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4 Numerical Analysis and Results

Due to the non-linearity and dynamic boundary condition of (2.10), an analytical

solution has not generally been found8. In fact, as was shown in the constant height

regime, even if boundary conditions are well defined, analytical solutions remain un-

known. For this reason attention is given to numerical methods for solutions. This

chapter begins by discretizing (2.10) via a forward time, centered space, finite differ-

ence scheme. Three cases will be analyzed: the spreading drop, capillary rise, and

tapered corner. Numerical results for the former two schemes are benchmarked with

analytical solutions/approximations as found in Chapter 3. Since the tapered corner

is not well-posed in the similarity transform, no benchmark is available.

4.1 Generalized Finite Difference Scheme

Notice (2.10) can be rewritten as

h
∂h

∂τ
= h2∂

2h

∂z2
+ 2h

(
∂h

∂z

)2

=
∂

∂z

(
h2∂h

∂z

)
=⇒ ∂(h2)

∂τ
=

2

3

∂2(h3)

∂z2
. (4.1)

To normalize (2.11), apply the transformation

Z =
z

L(τ)
(4.2)

8Having only one boundary condition implies (2.10) is underspecified. The term “generally” is
used to account for all possible boundary conditions.
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which yields a transformed boundary condition

h(1, τ) = 0. (4.3)

Note h(z, τ) 7→ h(Z, τ). The total differential of h is then expressed as

dh =

(
∂h
∂τ

)
Z

dτ +

(
∂h
∂Z

)
τ

dZ. (4.4)

Applying (4.4) to the left side of (4.1) yields

(
∂h2

∂τ

)
z

=

(
∂h2

∂τ

)
Z

+

(
∂h2

∂Z

)
τ

(
∂Z

∂τ

)
z

: (4.5)(
∂Z

∂τ

)
z

= − z

L2

dL

dτ
= −Z
L

dL
dτ

=⇒ (4.6)(
∂h2

∂τ

)
z

=

(
∂h2

∂τ

)
Z

− Z
(
∂h2

∂Z

)
τ

1

L
dL
dτ
. (4.7)

Similarly, applying (4.4) to the right side of (4.1) yields

(
∂2 (h3)

∂z2

)
τ

=
∂

∂Z

(
∂(h3)

∂Z

∂Z

∂z

)
τ

: (4.8)(
∂Z

∂z

)
τ

=
1

L
=⇒ (4.9)(

∂2(h3)

∂z2

)
τ

=

(
∂2(h3)

∂Z2

1

L2

)
τ

. (4.10)
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Substituting (4.7) and (4.10) into (4.1) yields the following governing equation:

∂(h2)

∂τ
= Z

∂(h2)

∂Z

1

L
dL
dτ

+
2

3L2

∂2(h3)

∂Z2
. (4.11)

Before a difference equation for (4.11) can be obtained, L(τ) must be expressed in

known terms; the method follows.

The following argument is valid in the limit as Z → 1−. Expand h in a Taylor

series about Z = 1, where the centering is predicated on satisfying the boundary

condition h = 0 at Z = 1. Doing so yields

h =
∑
N

cn(Z − 1)n : cn ≡
∂nh
∂Zn

∣∣∣∣
Z=1

. (4.12)

Substituting (4.12) into (4.11) yields the following weighted expression:9

O(Z − 1) : LdL
dτ

= −2

3
c1. (4.13)

Notice

c1(τ) ≡ ∂h
∂Z

∣∣∣∣
Z=1

≈ h(1, τ)− h(1−∆Z, τ)

∆Z
(4.14)

9The Z domain considered is (ε, 1) for all ε ∈ R+ : ε� 1, as the following is valid in the limit as
Z → 1−.
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yet h(Z = 1, τ) = 0; thus write (4.14) as

c1(τ) ≈ −h(1−∆Z, τ)

∆Z
. (4.15)

Substituting (4.15) into (4.13) and integrating over [τ, τ + ∆τ ] yields

∫ L(τ+∆τ)

L(τ)

L′ dL′ ≈ 2

3

∫ τ+∆τ

τ

h(1−∆Z, τ ′)

∆Z
dτ ′ =⇒ (4.16)

L2(τ + ∆τ) ≈ L2(τ) +
4

3

h(1−∆Z, τ)

∆Z
∆τ. (4.17)

Thus an expression for L2(τ +∆τ) is known. The time integral was approximated

using a left point rule in time. Before continuing observe that the nonlinear L term

in (4.11) can be expressed as

1

L
dL
dτ

=
L
L2

dL
dτ

=
1

2L2

dL2

dτ
. (4.18)

It remains to express dL2/dτ in known terms. Notice (4.17) can be rewritten as

L2(τ + ∆τ)− L2(τ)

∆τ
=

4

3

h(1−∆Z, τ)

∆Z
(4.19)

where the left side term is approximately dL2/dτ . The L terms from (4.11) are now

expressed in terms of known quantities; the next step is to create a numerical scheme

to solve for h . A finite difference scheme for (4.11) is onerous and computationally

draining. In order to alleviate numerical stress, introduce a transform that rids the
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nonlinearity of the time derivative in (4.11) as

g ≡ h2. (4.20)

The transform (4.20) expedites run time and simplifies the difference equation.

Applying (4.20) and (4.18) to (4.11) yields

∂g
∂τ

= Z
∂g
∂Z

1

2L2

dL2

dτ
+

2

3L2

∂2g 3/2

∂Z2
. (4.21)

Transforming (4.17) and (4.19) with (4.20) respectively yields

L2(τ + ∆τ) = L2(τ) +
4

3

√
g(1−∆Z, τ)

∆Z
∆τ (4.22)

dL2

dτ

∣∣∣∣
τ

=
4

3

√
g(1−∆Z, τ)

∆Z
. (4.23)

Before continuing to a finite difference technique for (4.21), a useful claim is stated

and proved.

Claim 1. The partial derivative of a function f lifted to the m ∈ R power can be

finitely differenced lucidly as

∂fm

∂x
=
fm|x+∆x − fm|x

∆x
+O(∆x)2. (4.24)
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Proof. Consider a typical method for taking a finite difference of fm:

∂fm

∂x
= m fm−1

∣∣
x

f |x+∆x − f |x
∆x

+O(∆x)2. (4.25)

Expand f |x+∆x in a Taylor series about x:

f |x+∆x =
∑
N

∂nf |x∆xn

n!
= f |x + ∂xf |x∆x+O(∆x)2. (4.26)

Substitute (4.26) through O(∆x) into (4.25) for f |x+∆x, which yields

∂fm

∂x
= m fm−1

∣∣
x

f |x + ∂xf |x∆x− f |x
∆x

+O(∆x) (4.27)

= m fm−1
∣∣
x
∂xf |x +O(∆x). (4.28)

Substitute (4.26) through O(∆x) into (4.24) for f |x+∆x, which yields

∂fm

∂x
=

(f |x + ∂xf |x∆x)m − fm|x
∆x

+O(∆x) (4.29)

=
fm|x +mfm−1|x∂xf |x∆x− fm|x

∆x
+O(∆x) (4.30)

= mfm−1|x∂xf |x +O(∆x). (4.31)

The equality of (4.28) and (4.31) demonstrates equality in both methods toO(∆x)

and thus proves Claim 1. An inductive argument shows this technique holds for the

nth partial derivative.

The validity of Claim 1 implies the forward time, centered space finite difference
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equation for (4.21) is expressed as

g j+1
i = g ji +[
i(g ji+1 − g ji−1)

1

4 Lj 2

(
dL2

dτ

)j
+

2

3 Lj 2

g ji−1

3/2 − 2 g ji
3/2

+ g ji+1

3/2

∆Z2

]
∆τ. (4.32)

where the subscript i is the ith spatial node and the superscript j is the jth time node.

A finite difference scheme for (4.23) and (4.22) follow:

Lj+1 2
= Lj 2

+
4

3

√
g jn−1

∆Z
∆τ (4.33)

and

(
d(L2)

dτ

)j
=

4

3

√
g jn−1

∆Z
(4.34)

where n is the number of spatial nodes predefined by the user. Transforming h 7→ g

from (4.3) yields the following boundary condition:

g(1, 0) = 0. (4.35)

Then it is clear if some initial condition h1 and one more boundary condition,

assuming the boundary condition does not not ill-pose (2.10), are applied all subse-

quent h profiles can be found. Three physical situations are discussed.
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4.1.1 Capillary Rise (Constant Height)

As mentioned in Section 3.1.1, the associated boundary condition for the capillary

rise regime is h(0, t) = 1. Notice this boundary condition is invariant under (4.2).

Transforming h 7→ g via (4.20) implies g(0, τ) = 1. To satisfy this condition do not

finite difference g1 since the initial condition (discussed below) implies g1 = 1.

It remains to determine an initial condition. Since no exact solution was found,

use either the perturbation technique discussed in Section 3.2.1 or use the variational

calculus approach as described in Section 3.3. Since back-transforming a quadratic

from F+ 7→ h is straightforward and both approaches show negligible difference in

tip behavior, (3.25) through O(ε7) is selected as a proxy for the exact solution. Back-

transforming implies (3.25) is equivalently expressed as

ha ≡ h(z, τ) = 0.965616− 0.200595z√
t

− 0.0833308z2

t
+ S7

2 (4.36)

where S7
2 denotes the sum of terms from 2 through 7 of the η expansion, as illustrated

in Figure 3.1. Since τ ∈ R+, an initial condition is impossible to obtain. However,

letting τ = τ0 > 0 implies h(z, τ0) is a pseudo initial condition. Then h(z, τ∗) : τ ∗ ≥ τ0

can be found by implementing (4.21). Note the domain for z in (4.36) satisfies both

z ∈ R+ and h(z) ∈ R+. As an addendum, the capillary rise regime conserves volume

throughout the entire corner domain (bulk volume plus tip volume). Since ∂zh 6= 0

at z = 0, volume will intrinsically not be constant in the tip, as implied by Appendix

B. Then volume is not conserved for this scheme since the control volume is the tip

35



Chapter 4

only.

To reiterate the code structure, first define the initial condition to be (4.36). Then

transform h 7→ g and run the finite difference scheme (4.32) on all interior space

nodes. Reiterate the finite differencing until a user-defined time is reached. Then

back-transform g 7→ h. Note the last spatial node is never finitely differenced, as this

satisfies (2.11). A MATLAB code for this numerical regime is in Appendix E.

Table 4.1 tabulates numerical results from (4.21) subject to the boundary and

initial conditions already described. It is clear the numerical scheme is reliable, as

the analytic Ch defined in (3.8) and the numerically calculated Ch converge to the

same value (hence %C → 0) as the number of space nodes n increases. Additionally,

the measure of fit10 χ tends to zero as n → ∞, which implies the numeric solution

hℵ converges to the analytic solution ha. While oscillating slightly, χ remains rela-

tively small. Figure 4.2 plots time traces in the h-z plane, demonstrating accurate

fits at various times. While the multiple time plots undershoot their analytical coun-

terparts, specifically at z = L, Figure 4.1 demonstrates the accuracy achieved when

n is relatively large, yielding a 0.4308% tip maximal error for n = 700. Figure 4.3

plots the tip length L through time, which is plotted alongside a function f = τ 1/2

to demonstrate L ∼ τ 1/2, which agrees with (3.8). Note Figure 4.3 only begins to

follow τ 1/2 after sufficient time has elapsed. The numerical C calculated is predicated

on L > 7, which implies the first 4% of τ is ignored.
10A description of the measure χ is supplied in Appendix D.
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Figure 4.1: Numerical results plotted from the capillary rise regime. The numerically
calculated height hℵ is plotted against ha as defined in (4.36), at time τ = 100. The
spatial node number is n = 700.

Figure 4.2: Numerical results plotted from the capillary rise regime. The numerically
calculated height hℵ is plotted against ha as defined in (4.36). The spatial node number
is n = 150 and is plotted at times τ = 100, 300 and 500, where less time corresponds
to the left most plot.

37



Chapter 4

Figure 4.3: Numerical results plotted from the capillary rise regime. The numerically
calculated tip L is plotted against f = τ1/2. The spatial node number is n = 700 and
is plotted through times τ ∈ [1, 100].
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Table 4.1: Capillary rise numerical data collected at τ = 100, where ha is defined in
(4.36) and hℵ is the finite differenced numerical solution. n denotes the spatial node
number. χ is defined in (D.1) as a measure of fit. % C denotes the percent difference
between Ch as defined in (3.8) and Cℵ, where Cℵ is measured numerically from hℵ as
Lℵ = Cℵτ2/5.

n χ % C

60 0.0508 6.1294

70 0.0436 5.3886

80 0.0388 4.8165

90 0.0344 4.3612

150 0.0208 2.8370

300 0.0102 1.6182

500 0.0016 1.1094

700 0.0017 0.8869

1000 0.0018 0.7177

→∞ → 0 → 0

4.1.2 Spreading Drop (Constant Volume)

The spreading drop regime is a symmetric flow about some z = z0 ≡ 0; then volume

is constant for all z ∈ R. The following boundary condition (to be derived in the

upcoming work) ∂zh = 0 when z = 0 coupled with Appendix B imply zero fluid

flux occurs at z = 0, and thus volume is constant for z ∈ R+. We take this fluid

as the control volume. Constant volume yields a boundary condition for (4.11); the
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derivation for this boundary condition follows. First rewrite (4.11) as

L∂h2

∂τ
=

[
∂(Zh2)

∂Z
− h2

]
dL
dτ

+
2

3L
∂2h3

∂Z2
. (4.37)

Next move the second term in brackets to the left hand side of the equation,

yielding:

∂(Lh2)

∂τ
=
∂(Zh2)

∂Z

dL
dτ

+
2

3L
∂2h3

∂Z2
. (4.38)

The total fluid volume over [0,L] is expressed as
∫ L

0
h2(z, τ) dz. Transforming

z 7→ Z implies the volume is expressed in the Z system as∫ 1

0
Lh2(Z, τ) dZ. Notice now the first term in (4.38) is the time derivative of some

infinitesimal volume. Thus integrate (4.38) over Z ∈ [0, 1] to obtain the volumetric

time rate of change:

∫ 1

0

∂(Lh2)

∂τ
dZ =

∫ 1

0

∂(Zh2)

∂Z

dL
dτ

dZ +

∫ 1

0

2

3L
∂2h3

∂Z2
dZ =⇒ (4.39)

d

dτ

∫ 1

0

Lh2 dZ =
dL
dτ
Zh2

∣∣∣∣1
0

+
2

3L
∂(h3)

∂Z

∣∣∣∣1
0

. (4.40)

The commutation of the time derivative under the integral in the left hand side

from (4.39) to (4.40) requires L and h be sufficiently well behaved11, which is assumed

true by the continuum hypothesis. The right hand side of (4.40) is evaluated via the

fundamental theorem of calculus. Conservation of volume requires the left hand side
11Sufficient behavior assumes Lh2 is a compact, finite set and that both Lh2 and ∂iLh2 exist

continuously [8].
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of (4.40) equal zero. It remains to show each term on the right hand side vanishes

identically.

The first term on the right hand side of (4.40) is obviously zero at Z = 0. The

first term at Z = 1 is zero since h(1, τ) = 0 (height is zero at the tip). The second

term on the right hand side of (4.40) may be evaluated via the chain rule as

2

3L
∂h3

∂Z

∣∣∣∣1
0

=
2

L
h2 ∂h
∂Z

∣∣∣∣1
0

. (4.41)

The boundary condition h(1, τ) = 0 implies (4.41) evaluated at Z = 1 is zero.

Then all that remains on the right hand side of (4.40) is 2L−1h2∂Zh |Z=0, which must

equal zero to conserve volume. Since L never equals zero (tip location never retracts)

and h(0, τ) is never zero (conservation of mass), ∂Zh |Z=0 = 0 =⇒ ∂Zg |Z=0 = 0.

Thus a second boundary condition for the constant volume regime is

∂h

∂z

∣∣∣∣
z=0

= 0 =⇒
∂g
∂Z

∣∣∣∣
Z=0

= 0. (4.42)

A finite difference method for obtaining g j+1
1 follows.

Equation (4.42) implies g 3/2(−∆Z, τ) = g 3/2(∆Z, τ). This suggests

g 3/2(−∆Z, τ)− 2g 3/2(0, τ) + g 3/2(∆z, τ) = 2
[
g 3/2(∆z, τ)− g 3/2(0, τ)

]
. (4.43)
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So at Z = 0,

g(0, τ + ∆τ)− g(0, τ)

∆τ
=

4

3L2

[g 3/2(t,+∆z)− g 3/2(0, τ)]

(∆Z)2
. (4.44)

Equation (4.44) then implies a finite difference equation for the boundary Z = 0

is

g j+1
1 =

4

3L2

[g j2
3/2 − g j1

3/2
]

∆Z2
∆τ + g j1 . (4.45)

It remains to determine an initial condition. Recognize (3.11) can be transformed

from F+ 7→ h as

ha ≡ h(z, τ) =
32/551/5

29/5

(
ε

FA

)2/5

τ−1/5 − 1

10
z2τ. (4.46)

Since τ ∈ R+ an initial condition is impossible to obtain. However, letting

τ = τ0 > 0 implies h(z, τ0) is a pseudo initial condition. Then h(z, τ∗) : τ ∗ ≥ τ0

can be found by implementing (4.21). Appendix C justifies that any nonzero value

for ε/FA does not violate the conservation of volume constraint. However, physically

ε/FA is restricted to a “small” positive parameter, as advanced by Weislogel [10]. Note

the domain for z in (4.46) satisfies both z ∈ R+ and h(z) ∈ R+.

To reiterate the code structure, define the initial condition to be (4.46). Then

transform h 7→ g and run the finite difference scheme (4.32) on all interior space

nodes. Then run (4.45) on the first space node. Reiterate the finite differencing until
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a user-defined time is reached. Then back-transform g 7→ h. Note the last spatial

node is never finitely differenced, as this satisfies (2.11). A MATLAB code for this

numerical regime is in Appendix F.

Table 4.2 tabulates numerical results from (4.21) subject to the boundary and

initial conditions already described. It is clear the numerical scheme is reliable, as

the theoretical Cv defined in (3.11) and the numerically calculated Cv converge to the

same value (hence %C → 0) as the number of space nodes n increases. Additionally,

the measure of fit12 χ tends to zero as n → ∞, which implies the numeric solution

hℵ converges to the analytic solution ha. The spreading drop regime should conserve

volume; Table 4.2 demonstrates this, as the percent change in volume %V → 0 as

n → ∞. Figure 4.5 plots time traces in the h-z plane, demonstrating accurate fits

at various times. While the multiple time plots undershoot their analytical counter-

parts, specifically at z = L, Figure 4.4 demonstrates the accuracy achieved when n is

relatively large (n = 700). Figure 4.6 plots the tip length L through time, which is

plotted alongside a function f = τ 2/5 to demonstrate numerical agreement with (3.8).

The numerical C calculated is predicated on L > 2, which implies the first 3% of τ is

ignored.
12A description of the measure χ is supplied in Appendix D.
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Figure 4.4: Numerical results plotted from the spreading drop regime. The numeri-
cally calculated height hℵ is plotted against (4.36) at time τ = 100. The spatial node
number is n = 700 and is plotted at times τ = 1 and 100.

Figure 4.5: Numerical results plotted from the spreading drop regime. The nu-
merically calculated height hℵ is plotted against ha as defined in (4.46). The spa-
tial node number is n = 100 and is plotted at times τ = 100, 300, and 500, where
h(0, τ1) < h(0, τ2) : τ1 < τ2.
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Figure 4.6: Numerical results plotted from the spreading drop regime. The numeri-
cally calculated tip L is plotted against f = τ2/5. The spatial node number is n = 700
and is plotted through times τ ∈ [1, 100].
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Table 4.2: Spreading drop numerical data collected at τ = 100, where ha defined in
(4.46) is plotted alongside hℵ, the finite differenced numerical solution. n denotes the
spatial node number. χ is defined in (D.1) as a measure of fit. % V denotes the percent
volume change between ha and hℵ. % C denotes the percent difference between Cv as
defined in (3.12) and Cℵ, where Cℵ is measured numerically from hℵ as Lℵ = Cℵτ2/5.
Cv was calculated with ε/FA = 1/100.

n χ % V % C

60 0.0036 6.3065 8.7208

70 0.0031 5.3746 7.8263

80 0.0027 4.6772 7.1386

90 0.0024 4.1368 6.5935

150 0.0015 2.4294 4.7880

300 0.0007 1.1872 3.3725

500 0.0004 0.7044 2.7923

700 0.0002656 0.5005 2.5413

1000 0.0002003 0.3489 2.3523

→∞ → 0 → 0 → 0

4.1.3 Tapered Corner

The following analysis attempts to numerically predict the behavior of capillary-driven

flow in a tapered corner. This regime emulates the constant height regime but with

one caveat: the constant height boundary condition is changed to a bulk meniscus

receding linearly in z. Figure 1.2 illustrates this flow regime. Due to the complicated

nature of this flow, the analysis is divided into two sections. First a physical descrip-

tion of the regime is investigated. Following is a description of the numerical scheme
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used to solve for the height profile. The control volume is defined as the entire fluid

in the container, as opposed to simply the wicking tip, as was done in Sections 4.1.1

and 4.1.2.

Physically, fluid in static equilibrium rests in a container with a tapered bottom

corner. Gravity is instantaneously “turned off” and fluid begins to wick along the

interior edge, as shown in Figure 2.1. The bulk meniscus slowly recedes toward the

container corner to balance the mass exchange. As the bulk recedes, its height along

each corner decreases in space, denoted Hc in Figures (4.7) and (4.8). The following

analysis uses a finite differencing technique to determine the height of the advancing

front as a function of time and space. Figures 4.7 and 4.8 illustrate two dimensional

analogs of the regime. In fact, since the volume was shown to be a function of h2,

a two dimensional model is sufficient for illustrative and numerical purposes. Then

(2.10) remains the governing PDE for the tip height. Since a finite difference scheme

is used, we begin by discretizing a mesh.

Uniformly space the domain elements over the interval [0,Lj] such that zji =

(i− 1)∆zj : i = 1, 2, ..., n where n is the total number of space nodes. The subscript

i denotes the ith spatial node and the superscript j denotes the jth time node. A uni-

tary based indexing is employed; thus zj1 = 0 and zjn = Lj. Define the bulk meniscus

location zjbulk ≡ zj1 = 0; thus from an absolute frame of reference the z and h axes

move in time. Similarly, define hjbulk ≡ hj(zjbulk). The spacing of each node is defined

as ∆zj ≡ Lj/(n − 1). Time nodes are identically defined. Next prescribe an initial
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height, where hji is bijective to zji . To solve for the new height profile, one complete

time step is analyzed, where the employed differencing technique is partitioned into

three components.

First define hj as the fluid profile height at some jth time step. Given hj, calculate

Vjtip, the tip volume at time j. Then transform hj 7→ g j. Finite difference all interior

nodes g j2 , ..., g
j
n−1 according to (4.32). Note g jn is not finitely differenced to satisfy

g(L, 0) = 0. Since g j0 is not in the domain, approximate (4.21) via a forward space,

forward time scheme and apply this to g j1 (for details on forward space differencing,

consult Recktenwald [7]). Then g j 7→ g j+1 for all nodes except g j1 , which is soon

discussed. Next back-transform g j+1 7→ hj+1. Note h is transformed from hji 7→ hj+1
i

everywhere except for hjbulk, which has decreased in height but not yet receded in

space. Call this temporary bulk height hj+1/2
bulk .

Secondly, recalculate the temporary new tip volume, Vj+1/2
tip , which is defined as

hj+1 for all nodes except the first node, which is hj+1/2
bulk . It will always be the case

that Vj+1/2
tip > Vjtip since volume flows in the +z direction. To conserve mass13, the

bulk meniscus must lose fluid volume equal to fluid volume the tip gained. Thus

∆Vjtip ≡ V
j+1/2
tip − Vjtip, the change in tip volume from j to j + 1/2, must equal Vjbulk,

the amount of bulk volume to be transferred into the tip region. The following analysis
13A detailed explanation for the conservation of mass applied to general capillary flow problems

is described in Appendix B
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demonstrates this volume transfer14:

∆Vjtip ≡ V
j+1/2
tip − Vjtip : Vjtip =

∫ Lj
0

hj
2

dz. (4.47)

Referencing Figure 4.7, ∆Vjtip = V2 − V1. As shown in (4.47), a single integral cal-

culates ∆Vjtip and is always positive since fluid flows in the +z direction. Since

∆Vjtip = Vjbulk, all that remains is to determine zj+1
bulk, which is found through Vjbulk.

Notice

Vjbulk ≈
∫ 0

−zj+1
bulk

Hw(z)2 −Hc(z)2 dz : (4.48)

Hw(z) =
Hw

zd

(
z + zd −

j∑
i=1

zibulk

)
(4.49)

Hc(z) =
Hl

zd

(
z + zd −

j∑
i=1

zibulk

)
(4.50)

where Hw is the container height at z1
bulk and Hl is the linear height recession line

at z1
bulk. The container depth zd is the distance from the container’s corner tip to

z1
bulk. The container wall is denoted Hw and the linear bulk regression line is de-

noted Hc; both are time-independent, and thus are fixed with respect to the moving

coordinate system. The new bulk position zj+1
bulk is now defined by (4.48), and thus

(4.50) defines Hc(z
j+1
bulk) ≡ hj+1

bulk. Since (4.21) requires zjbulk = 0, the h axis must

shift from zjbulk 7→ zj+1
bulk. To shift the h axis from Hj 7→ Hj+1 add zj+1

bulk to each zi.
14The differential dz in (4.47) and (4.48) is a slight abuse in notation, as dz ≈ ∆z = f(j).

However, since each integral must be discretized to accommodate the discontinuity of hj , notation
has been relaxed.
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Then concatenate the z profile by introducing a new z1 ≡ 0, thus each zji 7→ zji+1.

Similarly, concatenate the h profile with hj+1
bulk. Notice this expression is the up-

dated height along the constant height boundary. Now there are n + 1 space nodes,

where the spacing is not necessarily uniform due to the additional node. To maintain

uniform spacing, define a new set of elements z∗i ∈ [0,Lj+1] : Lj+1 ≡ Lj + zj+1
bulk.

Define z∗i ≡ (i − 1)∆z∗ : i = 1, 2, ..., n. The new spacing of each node is defined as

∆z∗ ≡ Lj+1/(n − 1). It remains to determine each new height h∗i corresponding to

each z∗i . This is done by a linear interpolation.

Linearly interpolate each hj+1
i . Call this interpolation function I and recognize

I = f(z) is a continuous (although not everywhere differentiable) function of z over

the domain [0,Lj+1]. Simply define h∗i ≡ I(z∗i ). To find the next height at j + 2

simply reiterate the above procedure, starting by calculating the new volume.
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Hw

Hj

zd

Hl

z

Hw

Hc

hjbulk

Lj Lj+1

h
j+1/2
bulk

V1

V2

hj hj+1

Figure 4.7: The first step in the finite difference scheme of capillary rise in a ta-
pered corner flow. The finite difference approximations (4.32) is conducted on nodes
h2, ..., hn−1, where h1 is operated on via a forward space, forward time difference
equation analogous to (4.32).

Hw

HjHj+1

zd

Hl

z

Hw

Hc

Lj+1

h
j+1/2
bulk

<
hj+1
bulk

Vjbulk

hj+1

Figure 4.8: The second step in the finite difference scheme of capillary rise in a
tapered corner flow. The volume balance described in (4.10) is conducted to find
hj+1
bulk.

51



Chapter 4

Before continuing, a brief commentary is needed. Notice (4.10) is not an equality,

but an approximation. Equality requires < from Figure 4.8 be accounted for. As is,

(4.10) omits < from the volume balance. Weislogel [12] argues < � 1, and may be ig-

nored when computing a total volume balance. Table 4.3 corroborates this argument,

as shown by the percent volume change, which is much less than one. Additionally,

hz(z, τ) should always be negative since fluid always exits the bulk and enters the

tip. However, if the time step is sufficiently large with respect to the space step,

it is possible zj+1
bulk could recede sufficiently far along Hc such that hj+1

bulk < hj+1
2 . To

circumvent this stability issue, the code is terminated if such an event occurs and a

smaller ∆τ should be defined.

It remains to determine an initial condition. Since we postulate the tapered corner

regime initially emulates the capillary rise regime, define the initial height to be (4.36)

with τ = 1. To reiterate the procedure, define an initial height. Calculate tip volume.

Finite difference all space nodes except the nth. Re-calculate tip volume. Perform a

volume balance by subtracting bulk volume equal to the change in tip volume; this

uniquely defines an updated zbulk. A space node is added to account for the new bulk

position. Re-mesh the grid and re-iterate until a desired time is met. A MATLAB

code for this regime is in Appendix G.

Table 4.2 tabulates numerical results from (4.21) subject to the boundary and ini-

tial conditions already described. Since both of the difference schemes employed for

the spreading drop and capillary rise were shown to be accurate, the tapered corner
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difference technique is believed to be accurate, as all three techniques are predicated

on (4.21). Table 4.3 demonstrates the difference technique conserves volume; as the

number of space nodes n increases, the change in total volume % V tends to zero.

Figure 4.9 plots time traces in the h-z plane. Figure 4.10 plots the tip position L

through time, where a log-log scaling is used to compare L with τ 2/5 and τ 1/2.

The conjecture advanced in the abstract hypothesizes the tapered corner’s L ini-

tially behaves as the capillary rise regime and then transitions into the spreading

drop. This advancement is predicated on the volume per unit area of the corner’s

cross section. Referencing Figure 2.1, ∂xV > 0 where V is the cross sectional area

per unit depth in the z direction; said differently, when moving in the x direction

the volume per unit area increases. In fact, the Jacobian of transformation accounts

for this when changing from Cartesian to cylindrical (polar) coordinates. This fact

suggests the bulk will recede slowly at first to accommodate a large amount of vol-

ume, but should increase in time, as there is less volume per unit surface area. The

initial behavior then mimics a constant height condition, which corresponds to the

capillary rise flow regime, characterized by L = O(τ 1/2). As time increases, hbulk, and

hence V , decrease. This causes ∂zh(0, τ) → 0, which corresponds to the spreading

drop boundary condition, characterized by L → O(τ 2/5). Additionally, increasing zd

implies ∂tV is small, which is to say as time elapses V will slowly change. A slow

change in V implies height is relatively constant and hbulk recedes slower than if the

change in V were large. Then for increasing zd we expect L → O(τ 1/2). Table 4.4

generally corroborates these two conjectures, where m from L = Cτm is tabulated for
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various Hw and zd values. Notice as zd and Hw increase, m → 1/2. Similarly, as zd

and Hw decrease, m → 2/5. It is interesting that sufficiently large zd values actually

induce m → 0.48 6= 1/2. Over 99% of the time is used for the associated m value.

Evidently the behavior for L initially grows as L ∼ t1/2 and then transitioning

to L ∼ t2/5 is not justified for all geometries, as Table 4.4 supports early values of

L ∼ t2/5, and thus never behaving as t1/2. However, regimes which initially adhere

to t1/2 are shown to transition to t2/5. Figure 4.10 illustrates this, where L ∼ t1/2 for

t ∈ [1, 3, 000]. Around t = 3, 000 L exhibits a growth transition to t2/5.

Figure 4.9: Numerical results for the tapered corner regime. The height h is plotted
for n = 100 and is plotted at times τ = 1 and 500, where later times exhibit a smaller
maximum height. The constant height line Hc is plotted as well as the corner wall
Hw, which has a maximum height of Hw = 1.3 and zd = 10.

54



Chapter 4

Figure 4.10: Numerical results plotted from the tapered corner regime. The numer-
ically calculated tip L is plotted against both τ1/2 and τ2/5 in a log-log plot. The
spatial node number is n = 100 and is plotted for times 1 ≤ τ ≤ 500, 000. Hw = 10
and zd = 1.

Table 4.3: Tapered corner numerical data collected at τ = 100. The parameter n
denotes the spatial node number. The slope of the log-log plot is denoted Ct. The
percent change in volume from time τ = 1 through τ = 100 is denoted % V. Note %
V is a total volume calculation, including the bulk volume.

n % V

60 0.0971

70 0.0832

80 0.0726

90 0.0649

150 0.0649

300 0.0391

→∞ → 0
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Table 4.4: Tapered corner numerical data evaluated at τ = 100. The spatial node
number denoted n is 50. The slope of the log-log plot m is tabulated for various initial
depth lengths zd and various container heights Hw.

Hw = 1.5 Hw = 3 Hw = 5 Hw = 25 Hw = 100

zd = 0.1 0.3923 0.3984 0.4112 0.4719 0.4801

zd = 1 0.3997 0.4365 0.4604 0.4798 0.4807

zd = 5 0.4277 0.4679 0.4762 0.4806 0.4807

zd = 10 0.4463 0.4744 0.4786 0.4807 0.4807

zd = 30 0.4687 0.4792 0.4802 0.4807 0.4807

zd = 100 0.4796 0.4809 0.4808 0.4807 0.4807

zd = 1000 0.4843 0.4816 0.4811 0.4807 0.4807

4.2 Stability

Stability for (4.32) is measured through the parameter ∆τ/∆z2, the standard stability

parameter for a parabolic equation like (2.10). Numerical trials with the aforemen-

tioned MATLAB codes show (4.32) is stable when ∆τ/∆z2 . 0.6 for the constant

height regime, where as for the spreading drop regime ∆τ/∆z2 . 6.0. Maintaining

stability and increasing the final run time without decreasing the number of spatial

nodes requires increasing the number of time nodes by some constant multiplier k.

Doing so reduces ∆τ/∆z2 proportional to k. However, a stability criterion is un-

known for the tapered corner regime. Changes in Hw and zd affect stability, as does

decreasing ∆z so as to avoid hz ≥ 0.
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Analyzing the stability of time-dependent schemes in non-linear problems is theo-

retically difficult. Eminent techniques, such as the von Neumann stability procedure,

assume the solution to a PDE is separable, which is not qualified for nonlinear equa-

tions. Experience has shown that stability is guaranteed for fully implicit schemes

(e.g., Backward Euler). Solving the problem implicitly means solving a set of non-

linear equations at each time step. Perhaps the simplest method of solving (4.21)

implicitly is to use the method of lines in conjunction with a stiff ODE software pack-

age. Such a package transparently solves the set of nonlinear equations at each time

step. The method of lines changes the nonlinear PDE into a nonlinear set of coupled

ODEs by finite differencing the spatial derivatives, but not the time derivative. So

there is an ODE for each grid point. The stiff package automatically integrates these

ODEs.

A partially implicit method can be developed for (4.21) that requires a tri-diagonal

set of linear equations to be solved at each time step. This can be done using a tri-

diagonal matrix inversion routine. However, there will be some quantities in the

difference equations that would have to be handled explicitly in this approach.

In general, while the above schemes solve (4.21), the primary benefit is decreasing

run-time. Since the explicit finite-differenced codes run acceptably fast, an implicit

scheme was not applied. However, if several flow regimes were analyzed it would be

worthwhile to employ one of the above methods.
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5 Conclusion

This body of work describes the governing equations for capillary-driven flows in

slender interior corner geometries in zero-gravity environments. The streamwise flow

velocity was considered, and after employing a local mass balance a nonlinear partial

differential equation governing tip displacement was derived. Three flow regimes were

considered: the capillary rise L ∼ t1/2, spreading drop L ∼ t2/5, and tapered corner

regime, which was conjectured to exhibit L ∼ t1/2 for small times and then transition

to L ∼ t2/5 for greater times. The former two regimes were well understood by Weis-

logel [10]. Since no exact solution was known for the capillary rise regime, an original

mathematical technique was developed, which perturbed the power of a similarity

transform, giving rise to a weighted system of linear ordinary differential equations.

The method agreed with both numerical and exact values, exhibiting small errors

which exponentially decayed with successive corrective terms.

Once obtaining analytic expressions for the capillary rise and spreading drop

regimes, a forward time, centered space, explicit numerical scheme was derived for

approximating the governing PDE. A spatial domain transform was introduced to col-

lapse the domain onto time-invariant boundaries. The numerical scheme was shown

to converge to analytic values as the number of spatial nodes increased. Since conver-

gence was met and benchmarks set out by Weislogel [10] were satisfied, this scheme

was subjected to the third and final regime, the tapered corner.
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A unique code was created for the tapered corner, which applied the domain

transformation, included a time-dependent (moving) coordinate system, conserved

volume, and satisfied the governing nonlinear partial differential equation with dy-

namic boundaries. The numerical results for the tapered corner confirm the initial

hypothesis this thesis sought to answer; namely that L initially exhibits tip growth

as the capillary rise regime, and after sufficient time elapses, transitions to tip growth

of the spreading drop.

5.1 Recommendations for Future Work

The development of the perturbational mathematical technique was employed know-

ing an associated power law parameter a. However, it is likely other a values cor-

respond to geometries not here analyzed. An ansatz could be advanced for corre-

sponding a values in such geometries, where analytic solutions could be found for a

variety of corner flow conditions. Additionally this technique could be applied to the

other physically significant a value regimes, such as a = 1/5, the constant flow regime.

The numerical work can be used to analyze other flow regimes. Since no ex-

periments were conducted, there is much work to be done experimentally. Different

tapered geometries can be analyzed and compared to the numerical work herein found.

Guesses for a values can be made to try and analytically approximate the tapered

corner regime, where likely a ∈ (−1/5, 0) if such an parameter is associated with the

tapered corner.
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Appendix A Determination of a for Spreading Drop

Assume a mass of fluid volume H ′3 distributes symmetrically in z′ = 0. A volume

integral balance shows

H ′3 = 2

∫ z′tip

0

F ′Ah
′2 dz′ (A.1)

where F ′Ah′2 is the dimensional cross sectional flow area function [10]. Nondimension-

alizing (A.1) yields

H3 = 2H2L

∫ ztip

0

FAh
2 dz =⇒

ε = 2

∫ ztip

0

FAh
2 dz. (A.2)

Applying the change of variables to (A.2) yields

ε =
2C2

1τ
2a

C2τ b

∫ ηtip/C2τb

0

FAF (η)2 dη. (A.3)

From the definition of L in (3.1) the upper bound of the integral in (A.3) may be

re-wrote as

ε =
2C2

1τ
2a

C2τ b

∫ L
0

FAF (η)2 dη. (A.4)

Equality in (A.4) must be independent of τ , implying 2a = b, which, when coupled
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with b = −(1 + a)/2 from above yields a = −1/5 and b = −2/5. Then (A.4) becomes

1 =
2FAC

2
1

εC2

∫ L
0

F (η)2 dη. (A.5)

Since C1 and C2 are arbitrary constants15, let C1 = (κ2/5)1/5 and (C2 = 52κ)−1/5

and recall κ ≡ ε/2FA. Thus (A.5) reduces to

1 =

∫ L
0

F (η)2 dη. (A.6)

Additionally, transforming (A.6) with (3.3) yields a solution for λ:

λ =

(∫ 1

0

F+(η+)2 dη+

)−1/5

. (A.7)

15C1 and C2 were generally defined in Chapter 3. However, for the exotic spreading drop case
both constants take different values.
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Appendix B Volume Integral

While all three regimes physically require the following mass-integral balance, the

finite difference schemes were constructed so as to subvert this requirement (although

the spreading drop regime identically satisfies it). The mass balance constraint implies

the volumetric flow rate Q̇ summed through some time window [t′i, t
′
f ] ≡ Υ′ at some

downstream location z′ = z′0 must equal the total volume V ′ over [z′0,L′(t′f )] ≡ Ω′ at

time t′f less the initial volume (if any) prior to t′i, denoted V ′0 over Ω′. Note the prime

indicates a dimensional quantity. The mathematical expression takes a generalized

dimensional form as

∫
Υ′
Q̇′
∣∣∣
z′0

dt′ =
(
V ′Ω′ − V ′0Ω′

) ∣∣∣
tf
. (B.1)

If A′ is the dimensional cross sectional surface area orthogonal to the z-axis, taking

t′i = z′0 = 0, (B.1) may be expressed via the Reimann integral as

∫ t′f

0

Q̇′
∣∣∣
z=0

dt′ =

∫ L
0

A′|t=tf dz′ −
∫ L

0

A′|t=0 dz′. (B.2)

Recognize A′ = FAh
′2 [10]. Substituting this into the right hand side of (B.2) yields

∫ L
0

A′|t=tf dz′ =

∫ L
0

FAh
′2 dz′. (B.3)

Recognize Q̇′ = A′〈w′〉 ≈ A′〈w′o〉 where wo is an O(1) term in the naive expansion of w

in ε. Weislogel [10] shows that non-dimensionalizing 〈w′o〉 and h′z implies 〈wo〉 = −Fihz
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where Fi is a positive geometric function. Then

∫ tf

0

Q̇′
∣∣∣
z=0

dt′ = −
∫ tf

0

A′Fih
′
z|z=0 dt′ (B.4)

= −
∫ tf

0

FAFih
′2h′z
∣∣
z=0

dt′. (B.5)

Substituting (B.3) and (B.5) into (B.2) and nondimensionalizing according to Table

2.1 yields

−Fi
∫ tf

0

h2hz
∣∣
z=0

dt =

∫ L
0

h2
∣∣
t=tf

dz −
∫ L

0

h2
∣∣
t=0

dz. (B.6)

Substitute t = 2τ/Fi into (B.6), which yields

−2

∫ τf

0

h2hz
∣∣
z=0

dτ =

∫ L
0

h2
∣∣
τ=τf

dz −
∫ L

0

h2
∣∣
τ=0

dz. (B.7)
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Appendix C Volume Conservation and ε/FA

Consider (2.10) and its exact solution in the spreading drop regime, (3.13), which is

restated

h =
1

2
λ2κ2/5(5τ)−1/5

(
1− η2

λ2

)
(C.1)

where η = κ−1/5z(5τ)−2/5. Substituting this into (C.1) yields

h =
1

2
λ2κ2/5(5τ)−1/5

(
1−

(
κ−1/5z(5τ)−2/5

)2
/λ2
)

=⇒ (C.2)

=
1

2
λ2κ2/5(5τ)−1/5 −

(
1

2
(5τ)−1/5

)(
z(5τ)−2/5

)2
. (C.3)

As an initial condition let τ = 1 which implies (C.3) becomes

h =
λ2κ2/5

2 · 51/5
− z2

10
(C.4)

where κ ≡ ε/2FA. Substituting this into (C.4) yields

h =
λ2ε2/5

27/5 · 51/5F
2/5
A

− z2

10
. (C.5)

Recall ε ≡ H/L. Substituting this into (C.5) yields

h = Φ− z2

10
: Φ ≡ λ2H2/5

27/5 · 51/5F
2/5
A L2/5

. (C.6)
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A conservation of mass argument in Appendix A implies

ε = 2

∫ ztip

0

FAh
2 dz. (C.7)

Notice h(ztip) = 0 =⇒ ztip =
√

10Φ, which substitutes into (C.7) as

ε = 2FA

∫ √10Φ

0

h2 dz. (C.8)

Substituting (C.6) into (C.8) yields

ε = 2FA

∫ √10Φ

0

(
Φ− z2

10

)2

dz =⇒ (C.9)

ε = FA
16

3

√
2

5
Φ5/2. (C.10)

Substituting the definition of Φ into (C.10) and λ = (15/2)1/5yields

ε = FA
16

3

√
2

5

(
λ2H2/5

27/5 · 51/5F
2/5
A L2/5

)5/2

=⇒ (C.11)

1 = 1. (C.12)

Equation (C.12) implies (C.1) conserves volume independent of FA and ε at time

τ = 1, so FA and ε can be arbitrarily chosen as an initial condition. Thus (C.5),

which is one valid initial condition and agrees with (4.46), becomes

h =
32/551/5

29/5

(
ε

FA

)2/5

− z2

10
. (C.13)
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Appendix D Error Measure

While the tapered corner has no analytic benchmark, the capillary rise and spreading

drop regimes do. It is then beneficial to compare the numerical solutions of both to

their corresponding analytic solutions. Figures 4.1 and 4.4 plot this comparison for

the capillary rise and spreading drop regimes respectively. To determine how well hℵ

approximates ha, the following measure χ is introduced

χ ≡ 1

‖Ω‖

∫
Ω

|hℵ − ha| dz (D.1)

where Ω is the domain of ha ∈ [0,R+]× [0,R+]. Then (D.1) implies ha and hℵ share

the same positive domain. This is not necessarily true. To extend the domain of hℵ,

make the following functional extension

hℵ ≡


hℵ for z ∈ [0,L]

0 for z > L.
(D.2)

The error χ now accurately measures a magnitude of fit for two continuous func-

tions of a single variable. Note if E(z) ≡ |hℵ − ha| then χ is simply the average value

of E along Ω. As an addendum, no measure exists definitively stating how “close” any

two continuous functions compare over an arbitrary domain. This is in part due to

the difficulty of rigorously defining the term “close”.
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Appendix E MATLAB Code Capillary Rise

1 %% Constants
2 L = 2 .40699 ;% i n i t i a l L t i p from perturb
3 t f = 99 ;% run time−1
4 % In t e r v a l s
5 M = 10 ;% s p a t i a l node number
6 N = t f ∗M^2;% amount o f time nodes ∗k
7 dz = L/(M−1) ;
8 dt = t f /(N−1) ;
9 zvec = 0 : dz :L ;% z vec to r

10 ndt = t f /dt ;% amount o f time i t e r a t i o n s
11

12 %% I n i t i a l c ond i t i on s
13 h = 0.999967 − 0.249889∗ zvec − 0.0559415∗ zvec .^2 −

0.00795244∗ zvec .^3 + . . .
14 0.00156004∗ zvec .^4 − 0.000249466∗ zvec .^5 +

0.0000248799∗ zvec .^6 − . . .
15 1.13912∗10^−6∗ zvec . ^7 ;% i c from perturb
16 Hi = h (1) ;% i n i t i a l maximum he ight
17

18 %% Transform z−−>Z and h−−>y
19 y = h .^2 ;% trans form h−−>y
20 ZVEC = zvec . /L ;% trans form z−−>Z
21 dz = ZVEC(2)−ZVEC(1) ;% r e d e f i n e dz from Z trans form
22 L2 = L^2;% i n i t i a l L^2 value
23

24 %% Time loop and s p a c i a l loop f o r f i n i t e d i f f e r e n c i n g
25 ynew = y ;% new y s to rage vec to r f o r f i n i t e d i f f e r e n c e
26 f o r j j = 2 : ndt ; % Solve h p r o f i l e dur ing next dt
27 y3 = y .^(3/2) ;% y^1.5
28 ysq = sq r t ( y ) ;% square root o f y
29 L2 = L2+4/3∗ysq ( end−1)/( dz )∗dt ;% new L^2
30 DL2 = 4/3∗ ysq ( end−1)/dz ;% de r i v a t i v e o f L^2
31

32 %% Fin i t e d i f f e r e n c e in space
33 f o r i i = 2 : l ength (ZVEC)−1; % move along z and
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s o l v e
34 ynew( i i ) = y ( i i )+( i i ∗(y ( i i +1)−y ( i i −1) ) /(4∗L2)∗

DL2 . . .
35 +2/(3∗L2) ∗( y3 ( i i −1)−2∗y3 ( i i )+y3 ( i i +1) ) /( dz

^2) )∗dt ;% forward time , cente red space
36 end% f o r i i
37 y = ynew ;% ove r r i gh t prev ious y with new p r o f i l e
38 end % f o r j j
39

40 %% Transform back y−−>h
41 h = ynew .^(1/2) ;% trans form y−−>h
42 zvec = ZVEC.∗L2^(1/2) ;% trans form Z−−>z
43 dz = zvec (2 )−zvec (1 ) ;% new dz from y−−>h trans form

70



Appendix

Appendix F MATLAB Code Spreading Drop

1 %% Constants
2 e f = 1/100 ;% ep s i l o n / F_A
3 Hi = (3^(2/5) ∗5^(1/5) ) /2^(9/5) ∗( e f ) ^(2/5) ;% i n i t i a l maximum

he ight
4 L = (Hi ∗10) ^(1/2) ;% i n i t i a l max length o f t i p
5

6 % In t e r v a l s
7 M = 10 ;% space nodes
8 N = 10∗M^2;% amount o f time nodes ∗10 f o r s t a b i l i t y
9 dz = L/(M−1) ;

10 t f = 99 ;% one l e s s than de s i r ed time
11 dt = t f /(N−1) ;
12 zvec = 0 : dz :L ;% z vec to r
13 ndt = t f /dt ;% amount o f time i t e r a t i o n s
14

15 %% I n i t i a l c ond i t i on
16 h = Hi − zvec .^2/10 ;
17

18 %% y and Z trans form
19 y = h .^2 ;% trans form h−−>y
20 ZVEC = zvec . /L ;% trans form z−−>Z
21 dz = ZVEC(2)−ZVEC(1) ;% r e d e f i n e dz from Z trans form
22 L2 = L^2;% i n i t i a l L^2 value
23 ynew = y ;% new y s to rage vec to r f o r f i n i t e d i f f e r e n c e
24

25 %% Time loop and s p a c i a l loop f o r f i n i t e d i f f e r e n c i n g
26 f o r j j = 2 : ndt ; % Solve h p r o f i l e dur ing next dt
27 y3 = y .^(3/2) ;% y^1.5
28 ysq = sq r t ( y ) ;% square root o f y
29 L2 = L2+4/3∗ysq ( end−1)/( dz )∗dt ;% new L^2
30 DL2 = 4/3∗ ysq ( end−1)/dz ;% de r i v a t i v e o f L^2
31

32 %% Fin i t e d i f f e r e n c e in space
33 ynew (1) = 4/(3∗L2) ∗( y3 (2 )−y3 (1 ) ) /dz^2∗dt+y (1) ;%

r e f l e c t i v e boundary cond i t i on f o r eva lua t ing y
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(1 )
34 f o r i i = 2 : l ength (ZVEC)−1; % move along z and

so l v e
35 ynew( i i ) = y ( i i )+( i i ∗(y ( i i +1)−y ( i i −1) ) /(4∗L2)∗

DL2 . . .
36 +2/(3∗L2) ∗( y3 ( i i −1)−2∗y3 ( i i )+y3 ( i i +1) ) /( dz

^2) )∗dt ;% forward time , cente red space
37 end% f o r i i
38 y = ynew ;% ove r r i gh t prev ious y with new p r o f i l e
39 LL( j j ) = L2^(1/2) ;% LL i s a vec to r f o r L through

time
40

41 end % f o r j j
42 h = ynew .^(1/2) ;% trans form y−−>h
43 zvec = ZVEC.∗L2^(1/2) ;% trans form Z−−>z
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Appendix G MATLAB Code Tapered Corner

1 %% Constants
2 L1 = (0.2460499909836664 − (0.2460499909836664^2 + . . .
3 4∗1.0203211163∗0.0738884791023973) ^ ( 1 / . . .
4 2) ) /(2∗−0.0738884791023973) ;% i n i t i a l l ength o f t i p
5 HI = 10 ;% i n i t i a l he ight o f conta ine r
6 depth = 1 ;% d i s t anc e from i n i t i a l zbulk to corner
7

8 % In t e r v a l s
9 t f = 499 ;% f i n a l run time

10 M=25;% amount o f space nodes
11 N =150∗M^2;% amount o f time nodes
12 dz = L1/(M−1) ;
13 dt = t f /(N−1) ;
14 zvec = 0 : dz : L1 ;% z vec to r
15 ndt = t f /dt ;% amount o f time i t e r a t i o n s
16 zbulk = ze ro s (1 , ndt ) ;% p r e a l l o c a t e f o r zbulk
17 sumz = 0 ;% p r e a l l o c a t e f o r sumz
18 L = ze ro s (1 , ndt ) ;% p r e a l l o c a t e L
19 L(1)=L1 ;% f i r s t L component i s L1
20

21 %% I n i t i a l he ight cond i t i on s
22 h = 0.999967 − 0.249889∗ zvec − 0.0559415∗ zvec .^2 −

0.00795244∗ zvec .^3 + . . .
23 0.00156004∗ zvec .^4 − 0.000249466∗ zvec .^5 +

0.0000248799∗ zvec .^6 − . . .
24 1.13912∗10^−6∗ zvec . ^7 ;% i c from perturb
25 hi = h (1) ;% i n i t i a l maximum he ight
26

27 %% Time loop and s p a c i a l loop f o r f i n i t e d i f f e r e n c i n g
28 f o r j j = 2 : ndt ; % Solve h p r o f i l e dur ing next dt
29 %% Beginning Volume
30 n = length (h) ;
31 bv = .5∗ sum(h ( 1 : n−1) .^2 + h ( 2 : n) .^2) ∗dz ;% beginning

volume
32
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33 %% Transform z−−>Z and h−−>y
34 y = h .^2 ;% trans form h−−>y
35 ZVEC = zvec /L( j j −1) ;% trans form z−−>Z , L i s one

s tep behind in time
36 dz = ZVEC(2)−ZVEC(1) ;% r e d e f i n e dz from Z trans form
37 L2 = L( j j −1)^2;% i n i t i a l L^2 value
38

39 %% Calcu la te L^2 and y^3
40 y3 = y .^(3/2) ;% y^1.5
41 ysq = sq r t ( y ) ;% square root o f y
42 L2 = L2+4/3∗ysq ( end−1)/( dz )∗dt ;% new L^2
43 DL2 = 4/3∗ ysq ( end−1)/dz ;% time d e r i v a t i v e o f L^2
44

45 ynew = y ;% new y s to rage vec to r f o r f i n i t e
d i f f e r e n c e

46

47 %% Fin i t e d i f f e r e n c e in space
48 f o r i i = 2 : l ength (ZVEC)−1;% move along z and so l v e
49 ynew( i i ) = y ( i i )+( i i ∗(y ( i i +1)−y ( i i −1) ) /(4∗L2)∗

DL2 . . .
50 +2/(3∗L2) ∗( y3 ( i i −1)−2∗y3 ( i i )+y3 ( i i +1) ) /( dz

^2) )∗dt ;% forward time , cente red space
51 end% f o r i i
52

53 % forward f i n i t e d i f f e r e n c e on the f i r s t component
54 ynew (1) = ( ( y (2 )−y (1 ) ) /2∗1/L2∗DL2+ . . .
55 2/(3∗L2) ∗( y3 (1 )−2∗y3 (2 )+y3 (3) ) /( dz^2) )∗dt+y (1) ;
56

57 y = ynew ;% ove r r i gh t prev ious y with new p r o f i l e
58

59 i f y (1 ) < y (2) %% ensure he ight s l ope i s nowhere
p o s i t i v e

60 e r r o r ( ’ y (1 )<y (2) . Aborting . ’ )
61 end
62

63 %% Transform back y−−>h
64 h = sq r t (ynew) ;% trans form y−−>h
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65 zvec = ZVEC.∗ s q r t (L2) ;% trans form Z−−>z
66 dz = zvec (2 )−zvec (1 ) ;% new dz from y−−>h trans form
67 L( j j ) = sq r t (L2) ;% de f i n e new L s i n c e prev ious L

changed
68

69 %% New Volume
70 nv = .5∗ sum(h ( 1 : n−1) .^2 + h ( 2 : n) .^2) ∗dz ;
71

72 % Volume change
73 dv = nv − bv ;
74 %% zbulk , which i s cub ic so 3 roo t s e x i s t
75 sumz = sumz + zbulk ( j j −1) ;% sum zbulk
76 I=complex (0 , 1 ) ;
77

78 zbulkc = 1/(2∗( h i − HI) ∗( h i + . . .
79 HI) ) ∗ (2∗ ( h i − HI) ∗( h i + HI ) ∗( depth − sumz) + (1

− . . .
80 I ∗ s q r t (3 ) ) ∗ ( ( h i − HI) ^2∗( h i + . . .
81 HI) ^2∗( depth^3∗( h i − HI) ∗( h i + HI ) + . . .
82 3∗depth ∗( h i − HI) ∗( h i + HI )∗sumz^2 + (−hi^2 + HI^2)

∗sumz^3 + . . .
83 3∗depth^2∗(dv + (−hi^2 + HI^2)∗sumz) ) ) ^(1/3) ) ;
84 zbulk ( j j ) = r e a l ( zbulkc ) ;%zbulk from i n t e g r a l

equat ion . Im( zbulk )<<1
85

86 %% Concatenate he ight and space vec to r
87 zvec = zvec + zbulk ( j j ) ;% s h i f t domain by zbulk
88 pzvec = [0 zvec ] ;% f i r s t s p a c i a l po int in zvec i s z

=0
89 ph = [ h i /depth ∗( depth−sumz) h ] ;% add new f i r s t

he ight to h
90 L( j j ) = L( j j )+zbulk ( j j ) ;% update L with zbulk
91

92 %% Linea r ly i n t e r p o l a t e and re−mesh the g r id
93 zvec = l i n s p a c e (0 ,L( j j ) ,M) ;% new length vec to r with

M elements s i n c e L has grown
94 dz = zvec (2 )−zvec (1 ) ;% new dz
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Appendix

95 h (1) = ph (1) ;
96 h( end ) = ph( end ) ;
97 f o r i =2:n−2% remesh g r id
98 h( i ) = −(ph ( i )−ph( i +1) ) /( pzvec ( i )−pzvec ( i +1) ) ∗(

pzvec ( i )−zvec ( i ) )+ph( i ) ;
99 end% f o r i

100 end % f o r j j
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