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ABSTRACT 

 

Contaminants such as pharmaceuticals are of increasing concern due to their 

ubiquitous use and persistence in surface waters worldwide. Limited attention has been 

paid to the effects of pharmaceuticals on marine life, despite widespread detection of 

these contaminants in the marine environment. Of the existing studies, the majority assess 

the negative effects of pharmaceuticals over an exposure period of 30 days or less and 

focus on cellular and subcellular biomarkers. Longer studies are required to determine if 

chronic contaminant exposure poses risks to marine life at environmentally relevant 

concentrations. Also scarce in the literature is examination of whole organism effects to 

identify potential community-level consequences. Two long-term studies with the 

antidepressant pharmaceutical, fluoxetine (the active constituent in Prozac®) were 

conducted to determine whether nominal concentrations detected in estuarine and coastal 

environments affect organism health and interactions.  

First, we measured whole organism metrics in the California mussel, Mytilus 

californianus over a period of 107 days. Specifically, we measured algal clearance rates, 

growth, and condition indices for both reproductive and overall health. We found that 

fluoxetine negatively affects all measured characteristics, however many effects are 

mediated by length of exposure. Perhaps the most notable result was that mussels spiked 

with fluoxetine cleared less algae after 30 days of exposure. Reduced growth and 
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condition indices likely are a consequence of improper nutrition among fluoxetine-treated 

mussels. Any level of fluoxetine significantly affected the gonadosomatic index after 47 

days. The results from this study on mussels fill an important data gap, highlighting 

organism-level effects of chronic exposure periods; such data more explicitly identify the 

impacts of pharmaceuticals and other contaminants on marine communities and 

ecosystems. 

Fluoxetine has also been documented to affect the behavior of fish and 

invertebrates, including freshwater and marine bivalves, crustaceans, and fish. Given that 

other crustaceans exhibited increased activity levels under fluoxetine exposure, we 

hypothesized that this would subject them to greater predation risk. In our second 

exposure study, we assessed whether a similar range of fluoxetine concentrations used in 

the mussel study altered the risk behavior of the Oregon mud crab, Hemigrapsus 

oregonensis, in response to a common predator, the red rock crab, Cancer productus. We 

conducted this study for 60 days, conducting day and night behavioral trials (with and 

without predators) four times a week. We found that crabs exposed to any amount of 

fluoxetine (3 or 30 ng/L) had increased activity levels relative to controls; however 

behaviors of 3 ng/L-spiked crabs were not always significantly different from controls. 

Among control crabs, day and night trials yielded similar results, where a clear response 

to the addition of the predator was observed. Crabs dosed with fluoxetine exhibited more 

foraging and active behaviors in the presence of the predator. Additionally, crabs spiked 

with fluoxetine at 30 ng/L had the greatest risk of mortality either by predation by red 
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rock crabs or due to more aggressive behaviors among conspecifics. The results of this 

study shed light on a particularly unexplored area of contaminants research: how do 

psychoactive pharmaceuticals affect animal behavior when exposed to the low 

concentrations persisting in the aquatic environment for a prolonged period of time? 
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Chapter 1: Introduction 

 

Whole suites of pharmaceuticals and their derivatives routinely enter the aquatic 

realm through human wastewater effluent, septic systems, and animal waste runoff from 

agricultural lands (Kolpin et al. 2002; Kinney et al. 2006; Ramirez et al. 2009). While 

these drugs are often detected at very low concentrations (e.g., ng/L; Fent et al. 2006),  

these compounds are designed to illicit cellular responses (e.g., enzymes, receptors) and 

should not be regarded as trivial threats to aquatic organisms (Meredith-Williams et al. 

2012; Franzellitti et al. 2014).  Additionally, many pharmaceuticals are persistent in 

aquatic environments, putting aquatic organisms at risk of chronic exposure and 

bioaccumulation (Ramirez et al. 2009; Meredith-Williams et al. 2012). Numerous studies 

have documented acute and chronic toxicities of countless pharmaceuticals on aquatic 

organisms (Trudeau et al. 2005; Corcoran et al. 2010; Brausch et al. 2012); however 

studies on coastal and marine organisms are lacking (Brooks et al. 2009; Brodin et al. 

2014; Gaw et al. 2014). With large and growing human populations along coastlines, 

much remains to be learned about the effects of pharmaceuticals on marine organisms to 

better inform best management practices (Seiler et al. 2002; Valbonesi et al. 2003; Regoli 

and Giuliani 2013).  

Despite shared interests in pharmaceuticals as stressors to organisms and use of 

the same species and similar endpoints, limited cross-citation suggests that the disciplines 

of ecology and ecotoxicology are growing independently (Brodin et al. 2014).  Most 
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ecotoxicological data are based on acute exposure periods of less than 24 hours with 

recent studies running up to 30 days (Daugton and Ternes 1999; Brooks et al 2009; Gaw 

et al. 2014). While useful for assessing how pharmaceuticals may alter cellular activities, 

this approach is insufficient in length and scope to determine organism- or ecosystem-

level chronic effects. Ecologists are interested in how the presence of pharmaceuticals 

may alter organism behavior (Hazleton et al. 2013; Chen et al. 2015), physiological 

functioning (Fong 1998; Di et al. 2014), and ultimately how this may shift community 

and ecosystem dynamics (Brodin et al. 2014; Hazleton et al. 2014). Short term (30 days 

or less) chronic exposure studies allow for only limited inferences by ecologists about the 

effects of pharmaceuticals on ecosystem processes. Long-term exposure studies with 

concentrations that reflect those detected in the environment are required to answer most 

ecological questions (Gaw et al. 2014, Brodin et al. 2014).  

Estuarine and rocky intertidal organisms are particularly at risk from 

pharmaceuticals as environmental stressors (Fong & Ford 2014), however data from 

prolonged studies are lacking (Berninger & Brooks 2010; Gaw et al. 2014).  Exposure to 

heavy metals, pesticides, petroleum and other legacy contaminants have also been shown 

to affect marine organisms by altering habitat preference, shifting migration patterns, or 

increasing negative species interactions (Fleeger et al. 2003; Khoury et al. 2009; Eades & 

Waring 2010; Fukunaga et al. 2010). Such alterations to normal behaviors have been 

linked to reduced fitness, and changes to population structure and ecosystem function 

(Frid & Dill 2002; Fahrig 2007; Ings et al. 2009). Experiments with pharmaceuticals can 
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be designed in a similar fashion by substituting the nominal concentrations of the drug or 

its constituents as the stressor(s), and determining organism- or community-level 

responses.  

Selective serotonin reuptake inhibitor (SSRI) anti-depressants such as fluoxetine 

hydrochloride (Prozac®) are among the more prevalent categories of pharmaceuticals 

detected in the marine environment (Kreke and Dietrich 2008; Vasskog et al. 2008; 

Brodin et al. 2014; Gaw et al. 2014). SSRIs have been developed to delay the reuptake of 

serotonin, moderating neurotransmission in the human brain. However, serotonin, 

serotonin analogs, and serotonin-altering drugs have been shown to dramatically affect 

several marine species (see Fong & Ford 2014 for a recent review). Serotonin is an 

important neuromodulater in bivalves, regulating gill cilliary activity, oocyte maturation, 

and the induction of spawning (Gibbons and Castanga 1984). In crustaceans, serotonin is 

well known to affect behaviors though stimulating the release of hyperglycaemic, 

neurodepressing, moult-inhibiting, and gonad-stimulating hormones (Fong and Ford 

2014).)  Several other studies have demonstrated that fluoxetine leads to adverse 

physiological and behavioral outcomes in aquatic organisms that could alter their 

functional roles within the community (Perreault et al. 2003; Lynn et al. 2007; Stanley et 

al. 2007; Mennigen et al. 2010; Schultz et al. 2011; Dzieweczynski & Herbert 2012; 

Kohlert et al. 2012; Bossus et al. 2013; Barry 2013; Munari et al. 2014; Chen et al. 2015).   

The objectives of the fluoxetine case study were to 1) assess whole-organism 

metrics on the California mussel, Mytilus californianus during a long-term exposure 
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experiment with environmentally relevant concentrations of fluoxetine detected in 

nearshore marine environments (Chapter 2); and 2) determine if prolonged exposure to 

similar fluoxetine concentrations affected activity levels, predation risk behavior, and 

mortality in the Oregon shore crab, Hemigrapsus oregonensis with exposure to red rock 

crabs, Cancer productus (Chapter 2). These two studies are critical steps towards 

addressing how fluoxetine and other pharmaceutical contaminants may affect marine and 

estuarine species in two very different ways. This work will help fill existing data gaps to 

better inform best management practices and cradle-to-grave stewardship of 

pharmaceutical drugs so they can be reduced or eliminated before entering the marine 

environment.  
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Chapter 2: Long-term exposure to fluoxetine reduces growth and reproductive potential 

in the mussel, Mytilus californianus 

Introduction 

  Pharmaceuticals are commonly detected in the aquatic environment (Daughton 

and Ternes 1999; Ankley et al. 2007; Brausch and Rand 2011; Boxall et al. 2012). Due to 

dilution, absorption, and physical breakdown, most pharmaceuticals are detected at very 

low concentrations (e.g., ng/L; Fent et al. 2006). However as drugs, these compounds are 

designed to illicit cellular responses (e.g., enzymes, receptors) and therefore their 

nominal concentrations should not be regarded as trivial threats to aquatic organisms 

(Meredith-Williams et al. 2012; Franzellitti et al. 2014).  Because of their ubiquitous use, 

many pharmaceuticals are persistent in aquatic environments, putting aquatic organisms 

at risk of chronic exposure and bioaccumulation (Ramirez et al. 2009; Meredith-Williams 

et al. 2012). Numerous studies have documented acute and chronic toxicities of countless 

pharmaceuticals on aquatic organisms (Trudeau et al. 2005; Corcoran et al. 2010; 

Brausch et al. 2012); however studies on coastal and marine organisms are fewer (Brooks 

et al. 2009). With large human populations along coastlines much remains to be learned 

about the effects of pharmaceuticals on marine organisms to better inform best 

management practices (Seiler et al. 2002; Valbonesi et al. 2003; Regoli and Giuliani 

2013). 

There is debate over whether standard ecotoxicological methods are sufficient for 

determining chronic exposure effects on organisms at environmentally relevant 
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concentrations (Corcoran et al. 2010; Franzellitti et al. 2014). Most ecotoxicological data 

are based on acute exposure periods of less than 24 hours with recent studies running up 

to 30 days (Daugton and Ternes 1999; Brooks et al 2009; Gaw et al. 2014). While useful 

for assessing how pharmaceuticals may alter cellular activities, this approach is 

insufficient in length and scope to determine organism- or ecosystem-level chronic 

effects. Ecologists are interested in how the presence of pharmaceuticals may alter 

organism behavior (Hazleton et al. 2013; Chen et al. 2015), physiological functioning 

(Fong 1998; Di et al. 2014), and ultimately how this may shift community and ecosystem 

dynamics (Hazleton et al. 2014). Depending on the life history of the organism (e.g., long 

vs. short life span), short term (30 days or less) chronic exposure studies allow for only 

limited inferences by ecologists about the effects of pharmaceuticals on ecosystem 

processes. Long-term exposure studies with concentrations that reflect those detected in 

the environment are required to answer most ecological questions for long-lived species.  

Among the more prevalent categories of pharmaceuticals detected in the marine 

environment are selective serotonin reuptake inhibitor (SSRI) anti-depressants such as 

fluoxetine hydrochloride (Prozac®) (Kreke and Dietrich 2008; Vasskog et al. 2008). 

These drugs have been developed to delay the reuptake of serotonin, moderating 

neurotransmission in the human brain. However, serotonin is also an important 

neuromodulater in bivalves, regulating gill cilliary activity, oocyte maturation, and the 

induction of spawning (Gibbons and Castanga 1984; Fong and Ford 2014).  Increased 

serotonin levels in mussels via fluoxetine exposure have been shown to alter several 
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important cellular activities that lead to reduced health status (Franzellitti et al. 2014; 

Munari et al. 2014). Fong and Molnar (2008) found that norfluoxetine, the active 

metabolite of fluoxetine, induced spawning and parturition in both estuarine and 

freshwater bivalves at high concentrations (e.g. 29.5 mg/L). Several other studies have 

demonstrated that fluoxetine leads to adverse physiological and behavioral outcomes in 

marine invertebrates that could alter their functional roles within the community (Stanley 

et al. 2007; Oakes et al. 2010; Bossus et al. 2013; Munari et al. 2014; Chen et al. 2015). 

Bivalves such as mussels and oysters are at risk of chronic exposure to fluoxetine 

particularly downstream from effluent-dominated coastal waterways (Brooks et al. 2005; 

Brooks et al. 2006; Kwon and Armburst 2006; Kreke and Dietrich 2008). Oxidative 

stress was observed in the marine mussel Mytilus galloprovincialis after 15 days of 

exposure to fluoxetine at a concentration of only 75ng/L, a concentration detected in 

surface waters (Gros et al. 2006; Metcalfe et al. 2003; Gonzalez-Rey and Bebianno 

2013). Franzellitti et al. (2014) found that fluoxetine had adverse outcomes on cell 

signaling and reduced the health status of the marine mussel M. galloprovincialis 

following 7-day exposure to a range of concentrations detected in the marine 

environment (e.g., 0.03-300 ng/L). But how do marine mussels react to this range of 

fluoxetine concentrations over a longer exposure period (i.e., over 30 days) and in terms 

of whole body metrics?  

I designed a laboratory experiment to build on the findings of other marine 

mussel- fluoxetine exposure studies where adverse effects among cellular biomarkers 
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were identified at high concentrations for short time periods. I hypothesized that whole- 

mussel metrics would be affected by four low, but environmentally-relevant, fluoxetine 

concentrations over longer exposure periods. Specifically, I tested whether growth, body 

and reproductive condition indices, and the rates of algae cleared by Mytilus 

californianus mussels were affected by fluoxetine exposure over time. We measured 

these variables at 47, 67, and 107 days of exposure. This study addresses two critical gaps 

in emerging pharmaceutical contaminants research: 1) the impacts to whole organism 

physiology and function; and 2) the effects of prolonged exposure periods. 

 

Materials and methods  

 Experimental organisms and holding conditions  

M. californianus mussels were collected from a single location on the jetty north 

of Rockaway Beach, Oregon (45°39’18.4”N, 123°56’31.2”W) on August 1, 2014 and 

transported in chilled seawater to the laboratory at Portland State University.  Upon 

arrival, mussels were measured and sorted into size classes. From these, 21 mussels were 

randomly distributed into 25 housing tanks (~ 64 L each) with a mean total biomass of 

87.13 ± 1.17 g per tank. Mean length and mass of individual mussels did not differ 

among treatments (mean length = 32.22 ± SE (0.35) mm; one-way ANOVA, P = 0.1; 

mean mass = 4.19 ± 0.13 g; P = 0.2) or tanks (one-way ANOVA, P > 0.7 in both cases; 

See Appendix A for full summary of mussel metrics by treatment group).  

Mussels were allowed to acclimate to laboratory conditions for one month before 

the exposure study began.  Each housing tank had an independent water chilling and 
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filtration system (Aquatic Enterprises). Seawater was prepared using Instant Ocean and 

deionized water with salinity and temperature maintained at 35 PSU and 15 °C 

respectively, to replicate conditions at the collection site.  We monitored water chemistry 

(i.e. ammonia, pH, nitrate, and nitrite) every two weeks to ensure levels were appropriate 

for mussels. To reduce buildup of animal waste products, 20% of the seawater was 

replaced with fresh seawater every 20 days. Tanks were dosed with fluoxetine following 

water changes. Light cycle conditions were maintained at 10 h of dark and 14 h of 

daylight. During the acclimation period, mussel health and condition were monitored. A 

total of 4 mussels died during acclimation and were immediately replaced with one of the 

extra mussels from the original collection. During the exposure study, there was no 

mussel mortality.  

Twice weekly, mussels were batch fed Shellfish Diet 1800® (Reed Mariculture) 

diluted tenfold with seawater. The algae in the Shellfish Diet 1800® is a combination of 

six marine microalgae Isochrysis, Pavlova, Tetraselmis, Chaetocerous calcitrans, 

Thalassiosira weissflogii and Thalassiosira pseudonana with cell diameter sizes ranging 

from 5 to 16 µm. Mussels were fed algae according to the total biomass in each tank. As 

mussels were removed from the tanks for subsampling, algae diet was adjusted to the 

total biomass in each tank (see Appendix A for total biomass of mussels per treatment 

over the course of the study). 
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Experimental design  

We assigned 21 mussels to each tank representing one of five treatments of 

fluoxetine ranging from 0 to 300 ng/L, which covers the range detected in the marine 

environment (Franzellitti et al. 2014). Treatment groups were 0.3, 3, 30, and 300 ng/L of 

fluoxetine and a control with no fluoxetine (Figure 2.1). Our experimental units were the 

individual tanks (n=25) with 5 replicate tanks nested within each treatment group.  Each 

tank was subsampled on days 47, 67, and 107 with 6, 6, and 9 mussels sacrificed 

respectively. With three sample periods the total number of observations was 75.  A set 

of 5 tanks with no mussels was used to determine a baseline for algae removed by the 

tank filtration system during algal clearance trials. We note that one of the no-mussel 

tanks malfunctioned after 20 days into the experiment and was excluded from further 

analyses, reducing no-mussel tank replicates to 4. 

Before each dosing period, fluoxetine solutions were prepared using a stock 

solution of 1.0 mg/mL fluoxetine hydrochloride (Sigma-Aldrich) dissolved in nanopure 

water.  Each treatment concentration (0.3, 3.0, 30.0, and 300.0ng/L) was prepared using 

separate dosing solutions, which were prepared through serial dilution of the original 

stock solution.  Every 10 days, the tanks were dosed by adding 193µL of the appropriate 

fluoxetine dosing solution into each tank. Controls without fluoxetine received 193µL of 

nanopure water on dosing days.   
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Figure 2.1 Schematic of aquarium set up, with the order of treatment tanks randomized. 
Treatment groups included: Control, 0.3 ng L -1, 3.0 ng L -1, 3.0 ng L -1, 30 ng L -1, 300 
ng L -1, No Mussel (NM) 3.0 ng L -1. 
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Fluoxetine exposure study  

1. Algal clearance  

 On feeding days, a 10 mL seawater sample was obtained within 5 minute after the 

algae mixture was added to each of the tanks to allow for thorough mixing.  Mussels 

were allowed to feed for 3 hours before an additional 10mL sample was extracted. These 

samples served as initial and final concentrations, respectively.  From each sample, we 

counted algal cells in three 0.5 mL aliquots using a Beckman Coulter Counter (model Z1, 

100 µm aperture) and determined the mean initial and final concentrations within each 

tank.  We collected a total of 11 samples over the course of the 107-day study.  

Filtering rates were estimated from the rate of change in suspended particle 

concentrations. Following Coughlan (1969), we based filtering rates on four assumptions: 

a) the reduction in the concentration of particles is due to filtration by the animal, and to 

settling, b) mussel pumping rate is constant, c) particle retention is 100% efficient and d) 

there is homogenous suspension of particles. A set of identical tanks without mussels 

(n=4) served as blanks for feeding trials.  For each of the 11 sample dates, clearance rates 

for each mussel were calculated using the following formula (Coughlin 1969): 

CR= (M/n) [ln (C0/Ct)/t] – [ln (C0blank/Ctblank)/t] 

where CR = clearance rate (cells-1mL-1min-1); M = volume of seawater in each tank (mL); 

n = number of mussels in tank; t = feeding time (min); C0 = initial concentration of 

particles in tank; Ct  = final concentration of particles in tank. C0blank = initial 
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concentration of particles in tank without mussels; Ctblank = final concentration of 

particles in tank without mussels 

2. Mussel growth  

Shell length was measured from the umbo to the ventral margin using digital 

calipers (Mitutoyo 500 196-30) with an accuracy of ±0.01mm. Biomass measurements 

were made by weighing towel-dried mussels on an analytical balance (Southern 

Laboratories) with an accuracy of ±0.001g. Two mussel growth estimates (increase in 

shell length and biomass) were determined as the change between final and initial 

measurements.  

3. Body condition 

 Three mussels from each subsample period (n=225) were dissected to assess 

condition and gonadosomatic indices. We separated the somatic and gonadal tissues, 

desiccated each in a drying oven set at 60°C for 48 hours (Quincy Labs), and recorded 

their respective dry weights (dw). We calculated the gonadosomatic index (GSI) for each 

mussel using the following equation:  

GSI= [gonads dw (mg)/total soft tissue dw (mg)] x 100 

Additionally, the condition index (CI) was calculated for each mussel using the equation:  

CI= [total tissue dw (mg)/shell length (mm)] x 100   
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4. Statistical analysis  

For each sampling period, we averaged within-tank means for mussel growth, 

GSI, CI, and algal clearance parameters. Normality and homogeneity of variances were 

assessed through graphical inspection of the model residuals and respective Shapiro-

Wilk’s and Levene’s tests, which indicated a need for data transformation. Algal 

clearance data underwent a Box-Cox transformation (Box and Cox 1964) and mussel 

growth and body condition data were log-transformed. The assumption of sphericity was 

determined for each parameter using the Mauchly test and adjusted using the 

Greenhouse-Geisser correction. In order to determine the effects of fluoxetine treatments 

on measured response variables we ran repeated-measures ANOVAs with fluoxetine 

treatment and sample date as factors with tanks included as an error term to account for 

the non-independence between samples. Main effects were considered significant at 

α=0.05. Mixed-effects models were generated using the lme4 package in R (Bates et al. 

2015). Fluoxetine treatment and sample date were treated as fixed factors while the tanks 

were treated as a random factor. Using the multcomp package in R, I generated post-hoc 

multiple pairwise comparisons (with a Bonferroni correction) between treatment groups 

and sample dates for each measured parameter (See Appendices B-E for pairwise 

comparisons of treatment by sample date). All statistical analyses were performed using 

R statistical platform (RStudio Version 3.2.2 (2015)).  
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Results 

1. Algal Clearance   

Mean clearance rates differed among treatment groups (ANOVA: F4, 20 = 34.4, P < 

0.001, Figure 2.2), being higher in the controls [mean = 63.0 (SE 3.7) cells mL-1min-1] 

than in the treatment groups [36.3 (SE 4.2) cells mL-1min-1; Table 1, Figure 2.2]. Mean 

clearance rates also differed between sample dates (F10, 20 = 46.0, P < 0.001; Table 2) 

being higher towards the end of the study [76.7 (SE 4.7) cells mL-1min-1] than at 30 

days since the start [38.2 (SE 3.1) cells mL-1min-1], suggesting that clearance rates were 

variable with time. There was an interaction between treatment and sample date (F40, 20 

= 3.0, P < 0.001), indicating that the effect of treatment was mediated by sample date.  

In general, clearance rates were inversely proportional to fluoxetine concentrations, 

where mussels treated with 30 and 300 ng/L cleared algae at a slower rate than the 

lower treatment groups (0.3 and 3 ng/L) and controls (see Table 2.1 for full list of 

summary statistics). 

Table 2.1. Summary statistics from algal clearance trials: mean, minimum, and 
maximum values ± SE. Clearance rates were calculated as cleared algal cells mL-1min-1. 

 

 

Treatment Mean  Min Max 

Control 63.0 ± 3.7 38.8 ± 1.8 119.2 ± 4.3 

0.3 ng/L 45.2 ± 3.7 19.8 ± 2.6 93.3 ± 2.7 

3 ng/L 41.8 ± 4.2 18.7 ± 3.8 75.1 ± 4.9 

30 ng/L 31.9 ± 4.2 18.6 ± 3.4 57.9 ± 8.3 

300 ng/L 26.3 ± 4.6 13.2 ± 1.2 47.0 ± 7.8 
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2. Mussel growth 

Growth in shell length varied by treatment level (ANOVA: F4, 20 = 22.6, P < 0.001, 

Table 2, Figure 2.3 A), with faster growth in controls [0.22 (SE 0.04) mm] than in 

treatment [0.12 (SE 0.02) mm; Figure 2.3 A] groups. While there was also an effect of 

the sample date (F2, 20 = 18.7, P < 0.001) there was no interaction between treatment 

and sample date (F8, 20 = 0.7, P = 0.3) indicating that treatment effects are not 

dependent on sample date. Overall growth in shell length followed a similar pattern 

over time: lower treatment groups (0.3 and 3 ng/L) grew at a similar rate to controls and 

were much greater than the 30 and 300 ng/L treatment groups. Post-hoc Tukey tests 

indicated that controls were significantly different from 3.0 ng/L (P = 0.04) but not 0.3 

ng/L (P = 0.08) treatment groups, while 30 and 300 ng/L were not different from each 

other (P = 0.81).  
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Figure 2.2. Clearance rates of mussels; samples collected during 11 feedings over study 
duration. Clearance rates were defined as the amount of cells removed per mL per min 
per individual mussel. Note mussels were removed over the study:  21 mussels (day 0-
47), 15 mussels (day 47-67, and 9 mussels (67-107). Error bars reflect the standard error 
(SE) of the mean. 
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Growth in biomass also differed among treatment groups (ANOVA: F4, 20 = 5.2, P 

= 0.005; Table 2), with greater increases in biomass in controls [166.41 (SE 33.32) mg] 

than treatment [108.81 (SE 14.06) mg; Figure 2.3 B] groups. However, post-hoc Tukey 

test revealed there was no significant difference between controls and 0.3 ng/L treatment 

groups (P = 0.17). There was an effect of sample date (F2, 20 = 24.5, P < 0.001) and an 

interaction between sample date and treatment (F8, 20 = 2.4, P = 0.04), indicating the 

effect of fluoxetine on mussel biomass is dependent on exposure period, specifically with 

stronger effects after sample date 47 where the group means diverge. There was no 

difference in biomass change among mussels treated with 3 ng/L fluoxetine and those 

treated with 30 ng/L (P = 0.29) or 300 ng/L (P = 0.35).  

3. Body condition  

The gonadosomatic index (GSI) of mussels in control groups was much higher 

[28.3 (SE 3.6) GSI] than those treated with any concentration of fluoxetine [8.8 (SE 2.0) 

GSI; ANOVA: F4, 20 = 24.9, P<0.001, Figure 2.4 A].  There was only a marginal effect of 

sample date on mussel GSI (F2, 20 = 3.5, P= 0.05) and no 2nd order interactions (F8, 20 = 

1.2, P= 0.37). There were no differences in mean GSI among fluoxetine treatment 

groups. The condition index (CI) was also higher in controls than in treatment groups 

(ANOVA: F4, 20 = 5.6, P=0.001, Figure 2.4 B) and there was no difference among 

fluoxetine treatment groups. 

 



  

19 

 

 

Figure 2.3. Mussel growth as the increase in A) shell length (mm), and B) biomass (mg) 
across treatment groups over study period. Error bars reflect the standard error (SE) of 
the mean. 
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Figure 2.4. A) Gonadosomatic and B) condition indices for mussels on day 47, 67, and 
107 of the study. Error bars reflect the standard error (SE) of the mean. 
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Table 2.2. Results from Repeated measures ANOVAs, including all factors and 2nd order 
interactions. Clearance rate data underwent a Box-Cox transformation; other response 
variables were log-transformed. Treatment refers to fluoxetine concentration; sample date 
refers to subsample group; P-values <0.05 are shown in bold. 
 

Dependent Variable Factor  SS MS df F p 

Clearance rate Treatment 72.43 18.11 4 34.35 <0.001 

 Sample date 81.85 8.19 10 45.95 <0.001 

 Treatment*Sample date 21.20 0.53 40 2.96 <0.001 

 Error among groups 10.54 0.53 20   

 Error within groups 35.63 0.18 200   

       

Growth (length) Treatment 18.84 4.71 4 22.64 <0.001 

 Sample date 4.98 2.49 2 18.70 <0.001 

 Treatment*Sample date 0.70 0.09 8 0.65 0.73 

 Error among groups 4.16 0.21 20   

 Error within groups 5.33 0.13 40   

       

Growth (mass) Treatment 3.06 0.76 4 5.19 0.005 

 Sample date 4.61 2.31 2 24.53 <0.001 

 Treatment*Sample date 1.77 0.22 8 2.36 0.04 

 Error among groups 2.94 0.14 20   

 Error within groups 3.76 0.09 40   

       

Gondosomatic index (GSI) Treatment 21.22 5.31 4 24.93 <0.001 

 Sample date 1.49 0.74 2 3.51 0.05 

 Treatment*Sample date 2.09 0.26 8 1.23 0.37 

 Error among groups 3.45 0.17 20   

 Error within groups 9.32 0.23 40   

       

Condition index (CI) Treatment 4.97 1.24 4 5.6 0.001 

 Sample date 1.35 0.51 2 1.0 0.05 

 Treatment*Sample date 4.12 0.14 8 0.7 0.51 

 Error among groups 3.56 0.18 20   

 Error within groups 6.23 0.16 40   
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Discussion 

Our study demonstrates that prolonged exposure to nominal concentrations of 

fluoxetine impairs mussel physiology and function. We sampled mussels regularly over 

the exposure study to better understand how they respond to fluoxetine over time. Whole 

body metrics of fitness like growth in biomass and shell length were only affected over 

longer time periods. However, for parameters like the GSI and CI, fluoxetine exposure 

concentrations affected organisms by 47 days, without increasing differentiation over 

time. Our study builds on previous studies documenting fluoxetine’s effects on aquatic 

organisms by identifying organism-level and chronic exposure effects over several 

months (e.g., >100 days). By simulating chronic fluoxetine exposure in the laboratory, 

we offer a snapshot of how this single contaminant may impair mussels along rocky 

intertidal shorelines in the wild.  

Mussels like M. californianus regularly clear the water column of algae, suspended 

particles, and pollutants, improving water quality and providing a critical ecosystem 

function along coastal zones.  At locations where fluoxetine impairs mussel filter feeding, 

this important ecosystem function may be reduced.  Hazleton et al. (2014) conducted a 

67-day study with adult freshwater mussels, Lampsilis fasciola, exposed to four 

fluoxetine concentrations (0, 0.5, 2.5, and 22.3 µg/L), and assessed impacts on 

metabolism, movement, and filtering behavior. They found that mussels dosed with 2.5 

or 22.3 µg/L fluoxetine had increased activity levels when compared with controls, 

suggesting contaminated animals may be more susceptible to predators and reduced 
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energy storage, at least at higher fluoxetine concentrations. Increased activity levels (such 

as movement) in M. californianus may explain the reduced filtering function and slower 

growth rates. While we did not quantify movement patterns following Hazleton et al. 

(2014), we did observe that individual mussels exposed to 30 and 300 ng/L fluoxetine 

were more dispersed within the tanks and did not cluster as the controls and 0.3-3 ng/L 

treatment groups did. Hazelton and colleagues (2014) did not find clear differences 

between algal clearance rates but suggested observing clearance rates over shorter time 

periods (< 24 h). Our clearance trials were 3 h and we did see clear differences between 

control and treated groups. Further, after day 67 we observed that water clarity was 

qualitatively reduced in all 5 of the 300ng/L tanks suggesting that clearance was 

impaired.   

Because fluoxetine exposure impairs mussel clearance rates, it follows that energy 

storage and mussel growth would also be reduced (Bringolf et al. 2010; Hazelton et al. 

2014). Munari et al. (2014) exposed the clam Ruditapes phillippinarum to fluoxetine at 

six concentrations (0, 1, 5, 25, 125, 625 µg/L) for 7 days and found that haemocyte 

proliferation increased significantly in clams exposed to 25, 125, 625 µg/L, while gill 

acetylcholinesterase (AChE) activity decreased significantly in clams exposed to 1 or 5 

µg/L.  Their findings suggest that fluoxetine, at least at higher concentrations, strongly 

affects immune parameters and neurotransmission in clams. Franzellitti et al. (2014) 

reported similar effects with even lower concentrations of fluoxetine (e.g., 0.03-300 

ng/L), where fluoxetine reduced the health status of mussels in numerous cellular 
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biomarkers. Specifically, fluoxetine reduced the lysosomal membrane stability in 

haemocytes and caused accumulation of neutral lipids in the lysosomes of the digestive 

glands. We believe that the low condition index values of mussels treated with fluoxetine 

in our study are linked to similar cellular responses, although we quantified only 

organism-level metrics.  Similarly, we observed reduced growth in shell length and 

biomass in mussels exposed to fluoxetine above 3ng/L. After sample date 67, growth 

rates decreased for mussels exposed to 30 and 300 ng/L of fluoxetine (see slopes in 

Figure 2), suggesting that these concentrations have a stronger effect on growth. However 

these patterns would not be apparent from the typical short-term exposure studies of 30 

days or less. The findings demonstrate that responses measured over short time periods 

may miss the extent to which fluoxetine and other pharmaceutical compounds can affect 

marine organisms.  

In mussels, serotonin is involved in physiological and behavioral functions such as 

gill ciliary activity, oocyte maturation, and the induction of spawning (Stanley et al. 

2007; Bringolf et al. 2010; Fong & Ford 2014). Because fluoxetine regulates the reuptake 

of serotonin, it is likely the drug increases serotonin levels in mussels (Gibbons & 

Castagna 1984). Bringolf et al. (2010) found that fluoxetine accumulates in mussel 

tissues and has the potential to disrupt several aspects of reproduction in freshwater 

mussels. Despite their strong results, they recommended additional testing to evaluate the 

effects of long-term exposure to environmentally relevant concentrations. With our long-

term testing, the proportion of reproductive tissue to total tissue (GSI) was markedly 
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affected by fluoxetine after 47 days of exposure, a long time period among chronic 

exposure studies assessing reproduction. We hypothesize that fluoxetine is concentrated 

in mussel tissues over time resulting in a reduction of reproductive potential. A similar 

statement can be made about the CI, an assessment of the mussel’s overall health status. 

Overall, the energy invested into the gonad and somatic tissues was lower in mussels 

treated with fluoxetine than in controls.  

Fluoxetine is one of the most widely used antidepressants in the world (Metcalfe et al. 

2010). A robust amount of research has documented its occurrence in freshwater (Kwon 

and Armburst 2006; Ramirez et al. 2009; Bringolf et al. 2010; Corcoran et al. 2010) and 

marine (Kreke and Dietrich 2008; Vasskog et al. 2008) environments. Our study 

conditions mimic fluoxetine entering the environment in pulses, such as flushing from 

rain events, and organism exposure over time. The findings by Franzellitti et al. (2014) of 

the numerous adverse outcomes and fluoxetine bioconcentration at 30 and 300 ng/L 

exposure concentrations corroborate our results. Further, with growing human 

populations in coastal zones, increasing use of antidepressants like fluoxetine is expected, 

suggesting higher future concentrations in the marine environment.  

The results of this study serve as a foundation to understand how pharmaceuticals and 

other emerging contaminants are affecting marine species and community interactions. 

While we found fluoxetine to be a considerable stressor to marine mussels, it is only one 

of many stressors on marine organisms (Ankley et al. 2007; Boxall et al. 2009). 

Nearshore flora and fauna are exposed to a cocktail of contaminants, many of which (e.g., 
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sertraline (Effexor®; Bossus et al. 2013), carbamazepine (Tegretol®; Martin-Diaz et al. 

2009)) have negative effects on freshwater and marine organisms (e.g., Metcalfe et al. 

2010; Meredith-Williams 2012). Some studies have assessed pharmaceutical effects on 

animal behavior and their potential to alter species interactions (Gaworecki and Klaine 

2008; Bossus 2013; Hazelton et al. 2013). Yet, long-term studies examining effects of 

multiple compounds are warranted to understand interactive and cumulative organismal 

and potential ecosystem level effects (Brausch et al. 2012).  To our knowledge no studies 

have assessed community or ecosystem responses to pharmaceuticals or other emerging 

contaminants, an important step in understanding how these compounds may influence 

important inter- and intra-specific interactions. Finally, ecological studies are needed to 

assess how these compounds affect ecosystems in a changing world, considering 

interactive effects with ocean acidification and other impacts from climate change.  
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Chapter 3: Exposure to nominal concentrations of the pharmaceutical fluoxetine increases 
predation risk in the mud crab, Hemigrapsus oregonensis 

 

1. Introduction 

 

Predator-prey behavior dynamics are often regulated by a combination of abiotic 

and biotic factors (Holt and Lawton 1994; Abrams 2000; Grabowski 2004). Physical 

factors such as temperature, salinity, and photoperiod often limit where organisms can 

survive (e.g., fundamental niche), while species interactions such as competition, 

predation, or facilitation further restrict the spatial and temporal extent of an organism 

(e.g., realized niche; Hutchinson 1957; Lima & Dill 1990; De Roos et al. 2003; Chase et 

al. 2009). Animal behaviors are rooted within this realized niche wherein individuals 

modify their behaviors to balance risks (e.g., predation) with rewards (e.g., access to 

resources; De Roos et al. 2003, Brown and Kolter 2004). Often these risk-taking 

behaviors are plastic and change depending on the spatial (Morgan et al. 2006) or 

temporal (Miller & Morgan 2015) conditions (Snell-Rood 2013). Ecologists are eager to 

understand animal behaviors to more accurately predict population-, community-, or 

landscape-level processes (Abrams 2000; Shochat et al. 2006; Sih et al. 2012; Balke et al. 

2014).  

Yet, there is a growing list of human-driven impacts that alter animal behavior, 

setting additional boundaries on an animal’s realized niche (Barros 2001; Frid & Dill 

2002; Fahrig 2007; Dodd et al. 2015). Fisheries have historically removed large 
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predators, modifying community behaviors through release from predation pressure 

(Myers & Worm 2003; Catano et al. 2015). Anthropogenic noise pollution in the ocean 

has been shown to alter the behaviors of numerous marine mammals (Nowacek et al. 

2007). Ocean acidification alters development of larval fishes, disrupting their ability to 

detect predator cues and leading to increased mortality (Munday et al. 2010). Exposure to 

heavy metals, pesticides, petroleum and other legacy contaminants affect animal 

behaviors by altering habitat preference, shifting migration patterns, or increasing 

negative species interactions (Fleeger et al. 2003; Khoury et al. 2009; Eades & Waring 

2010; Fukunaga et al. 2010). Such alterations to normal behaviors have been linked to 

reduced fitness, and changes to population structure and ecosystem function (Frid & Dill 

2002; Fahrig 2007; Ings et al. 2009).  

Much less studied are the effects of pharmaceuticals and other emerging 

contaminants on animal behavior, despite frequent detections of these compounds in the 

marine environment (Boxall et al. 2012; Brausch et al. 2012; Gaw et al. 2014). 

Pharmaceutical compounds and their derivatives regularly enter estuaries and nearshore 

coastal ecosystems via transport of contaminated surface and groundwater runoff, 

suspended river sediments, and untreated sewage effluent (Metcalfe et al. 2010; Bringolf 

et al. 2010; Khairy et al. 2014). As medical drugs, these compounds are designed to illicit 

biological responses and could have considerable effects on organism health, despite 

detections at low concentrations (Seiler 2002; Ankley et al. 2007). Prolonged studies on 

marine organisms at environmentally relevant concentrations are lacking (Berninger & 
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Brooks 2010; Gaw et al. 2014).  Most pharmaceutical exposure studies are rooted in 

ecotoxicological methodology focused on adverse outcomes at the cellular or subcellular-

level (Boxall et al. 2012). Exposure studies that assess the effects of pharmaceuticals on 

whole-organism effects, and multi-organism or community-level interactions are needed 

to improve ecological inferences and predictions (Fleeger et al. 2003; Brooks et al. 2009; 

Corcoran et al. 2010; Gaw et al. 2015).  

Mesocosm and tank experiments are often used to assess animal behavior 

responses to stressors, particularly when the stressor cannot be controlled in the field. 

These include studies where different combinations of stressors such as chemical cues, 

temperature, or pH are manipulated in order to measure the behavioral response (Munday 

et al. 2009; Dodd et al. 2015). Pharmaceutical contaminants as stressors require a similar 

approach to determine if detected or projected concentrations affect organism behaviors 

(Hellou 2011; Mesquita et al. 2011; Lazzara et al. 2012; Maranho et al. 2015). Relatively 

few studies have assessed how pharmaceuticals affect interspecific behaviors such as 

predator-prey interactions (Brodin et al. 2014; Gaw et al. 2014).  Yet several studies have 

demonstrated alterations in behavior that could lead to increased predation and mortality 

(Corcoran 2010; Schultz et al. 2011; Hazelton et al. 2013; Brodin et al. 2014).   

Selective serotonin reuptake inhibitor (SSRI) anti-depressants such as fluoxetine 

hydrochloride (Prozac®) are among the more prevalent categories of pharmaceuticals 

detected in the marine environment (Kreke and Dietrich 2008; Vasskog et al. 2008; 

Brodin et al. 2014; Gaw et al. 2014). SSRIs have been developed to delay the reuptake of 
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serotonin, moderating neurotransmission in the human brain. In crustaceans, serotonin is 

well known to affect behaviors through stimulating the release of hyperglycaemic, 

neurodepressing, moult-inhibiting, and gonad-stimulating hormones (Fong and Ford 

2014). McPhee and Wilkens (1989) found that Carcinus maenas injected with serotonin 

displayed increased activity levels during the day, whereas normally they are 

photonegative with increased activity at night. In the same crab species, fluoxetine 

significantly altered locomotor behaviors at 120 μg/L (Mesquita et al. 2011).  Several 

other studies have demonstrated that fluoxetine leads to adverse physiological and 

behavioral outcomes in aquatic organisms that could alter their functional roles within the 

community (Perreault et al. 2003; Lynn et al. 2007; Stanley et al. 2007; Mennigen et al. 

2010; Schultz et al. 2011; Dzieweczynski & Herbert 2012; Kohlert et al. 2012; Bossus et 

al. 2013; Barry 2013; Munari et al. 2014; Chen et al. 2015).   

Using a controlled laboratory set up, we designed a study to assess the behavior of 

the mud crab, Hemigrapsus oregonensis, following exposure to the pharmaceutical 

contaminant, fluoxetine. Fluoxetine has been frequently detected in coastal areas at low 

concentrations (0.03ng/L -300 ng/L) and is considered toxic to fish and marine 

invertebrates (Brooks et al. 2003). In our study, aquarium habitats were designed to 

emulate estuarine conditions to assess alterations of H. oregonensis behaviors under the 

influence of fluoxetine at controlled concentrations (3 and 30ng/L). We conducted 

diurnal and nocturnal behavior trials to assess whether fluoxetine altered the risk-taking 

behaviors of H. oregonensis in response to a predator, the red rock crab Cancer 
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productus. Our study is one of the few studies to assess how pharmaceutical 

contaminants may affect risk-taking behavior in marine animals. 

  

2. Material and methods 

2.1. Study Animals 

The Oregon mud crab, Hemigrapsus oregonensis (Dana, 1851; Figure. 1A), is a 

small intertidal shore crab belonging to the family Grapsidae, and is one of the most 

common species inhabiting estuarine shorelines between Resurrection Bay, Alaska and 

Bahia de Todos Santos, Baja California.  They forage mostly at night, with a diet 

consisting primarily of diatoms and green algae, but they will eat carrion and other meat, 

if available (Lindberg 1980). H. oregonensis spend most of their time on, beneath, or near 

rocks in gravel and fine sediment substrate. To escape predators, H. oregonensis often 

quickly burrow in mud or hide beneath rocks; they also rely on camouflage while 

remaining motionless (Lindberg 1980). Because H. oregonensis inhabit the soft 

sediments of estuaries, they are likely exposed to contaminants, including fluoxetine; in 

estuaries, fluoxetine concentrations have been detected as high as 30ng/L (Franzellitti et 

al. 2014). For this reason, I chose these crabs as a model organism for fluoxetine 

exposure during behavioral trials.   

Red rock crabs, Cancer productus (Randall, 1839; Figure 3.1 C), are one of 

several Cancer species that inhabit the Pacific Coast of North America, occupying a 

similar range as H. oregonensis.  They range from sub- to intertidal habitats, but will 

regularly occur in estuarine habitats during high tide (McGraw 2005). They regularly 
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prey on barnacles, amphipods, intertidal invertebrates, and smaller crabs, including 

Hemigrapsus spp. I chose C. productus as my model predator because of its overlapping 

range at high tide, whereby the predator may enter an estuary contaminated with 

fluoxetine and encounter prey species such as H. oregonensis.  

 

2.2. Experimental holding conditions  

H. oregonensis and C. productus crabs were collected from a single location 

along an estuarine shoreline in Netarts Bay, Oregon (45°24’51.21”N, 123°56’4.38”W) on 

June 15, 2015. C. productus were caught using crab traps deployed at high tide while H. 

oregonensis were hand captured along the edge of the shoreline.  Both species were 

transported in chilled seawater to the laboratory at Portland State University.  Upon 

arrival, H. oregonensis (n= 90) were sorted, measured, and randomly distributed into 30 

housing tanks (~64 L, 3 crabs in each). C. productus (n= 15) were sorted into three 

designated housing tanks (~120 L, 5 in each) to prevent cross contamination following 

exposure to fluoxetine during behavioral trials.  Each housing tank had an independent 

water chilling and filtration system (Aquatic Enterprises). Seawater was prepared using 

Instant Ocean® and deionized water; salinity and temperature were maintained at 35 PSU 

and 16.0 °C to replicate conditions at the collection site.  To reduce buildup of animal 

waste products, 20% of the seawater was replaced with fresh seawater every 20 days. I 

monitored water chemistry (i.e., ammonia, pH, nitrate, and nitrite) every two weeks to 

ensure levels were appropriate for crabs. Water criterion was adequate each time.  Light 

cycle conditions were maintained at 10 h of dark and 14 h of daylight. Animals were 
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allowed to acclimate to aquarium habitats (Figure 3.1 A and B) and laboratory conditions 

for 2 weeks before the exposure study began. During the acclimation period, crab health 

and condition were monitored. A total of 8 H. oregonensis died during acclimation and 

were immediately replaced with one of the extra crabs of the same gender and size class 

from the original collection. During the exposure study (60 days), 31 crabs perished 

either through predation by C. productus during trials (n=18) or through conflicts 

between conspecifics (n=13), in which case each was immediately replaced by an 

individual of the same size class and gender.   

Every two days, H. oregonensis were fed a diet of either squid or shrimp pieces. 

In addition, H. oregonensis regularly grazed algae from rocks and sediment and filter fed 

by rapidly beating their third maxillipeds near their mouth. C. productus were fed squid 

every 2 days. At the end of the study I sacrificed all H. oregonensis, and quantified the 

number of appendages lost as a proxy for aggression among conspecifics.  

2.3. Experimental design  

The experiment followed a repeated measures design in which the tank was the 

subject measured at each time point (day vs. night periods, with vs. without predators, 

and multiple times for each period and trial type) and was nested within the between-

measures factor, fluoxetine treatment. The fluoxetine treatments consisted of 3 

concentrations: 0, 3, and 30 ng/L which are the range detected in estuarine and harbor 

waters (Kreke and Dietrich 2008; Vasskog et al. 2008). Each treatment group was 

comprised of 10 replicates. Each fluoxetine treatment concentration (3.0 and 30.0 ng/L) 
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was reached using separate dosing solutions prepared through serial dilution of the 

original stock solution of 1.0 mg/mL fluoxetine hydrochloride (Sigma-Aldrich) dissolved 

in nanopure water.  Every 10 days, tanks were dosed by spilling 193µL of the appropriate 

fluoxetine dosing solution into each tank. Controls without fluoxetine received 193µL of 

nanopure water on dosing days.  

Three H. oregonensis were assigned to each tank, with 1 dominant male, 1 

subordinate female, and 1 subordinate male. While we recorded the behavior of each 

animal, our experimental units were the individual tanks (n=30) with 10 replicate tanks 

nested within each treatment group.  Weekly behavioral trials were our observational 

units, where all animals in each tank were observed for one-hour periods at day and night 

times, both with and without predators present (4 trial types over 9 weeks, n=36). No-

predator trials were used as a reference for assessing behaviors without any perceived 

threats.  

2.4. Behavioral Trials  

 Housing tanks were designed to simulate the estuarine conditions from which H. 

oregonensis were collected. Each tank was filled with sand (500g) and small pebbles 

(500) for burrowing substrate and one large rock (600-750g) to hide under (Fig. 1c). 

Tanks were assembled on 3 racks (10 tanks per rack) with sides between tanks blacked 

out with plastic lining to maintain behavioral isolation. Each tank contained 3 H. 

oregonensis: 1 large dominant male (mean carapace width (CW) ± SE = 25.54 ± 0.42 
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mm; mean biomass ± SE = 9.3 ± 1.4 g), 1 small female (CW = 19.25 ± 0.74 mm; 3.6 ± 

1.5 g), and 1 small male (21.29 ± 0.65; 4.97 ± 0.97 g). Mean size of crabs did not differ 

among treatments or tanks (one-way ANOVA, P > 0.4 in both cases). This density of 

crabs (3.0 / 30 cm2) is within the natural range of H. oregonensis densities at the 

collection site (densities as high as 20 crabs/50 cm2 were observed). We kept crab 

densities low to allow enough space for escape from the much larger C. productus (range: 

100 to 150 mm CW) during predator addition trials.  

Hour-long trials were recorded using ethograms with common crab behaviors 

outlined for each animal. These behaviors were organized by category: Still, active, 

foraging, aggression, non-aggression, avoidance, and predator avoidance behaviors. Still 

behaviors included: buried, unmoving, moving mandibles only. Active behaviors 

included: walking, digging, swimming and moving in place. Foraging behaviors were 

those where crabs were probing, handling, or eating food. Aggression, non-aggression, 

and avoidance behaviors were defined as interactions between conspecifics such as 

fighting, charging, mating, or avoiding one another.  Predator avoidance behaviors were 

interspecific, where H. oregonensis displayed escape or non-escape behaviors in the 

presence of C. productus. We also noted the number of H. oregonensis captured or killed 

by C. productus.  
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Figure 3.1. Pictures of A) an Hemigrapsus oregonensis in the aquarium habitat, B) 
example of the tank set up with sides blacked out, C) addition of Cancer productus 
during predator trials, and D) an observer recording crab behavior during a night trial. 

 

Following procedures outlined by Altmann (1974) observers recorded the 

behavioral acts of all individuals in each tank via instantaneous scan sampling at 5 min 

intervals for 1 hour. Scans lasted 30 seconds, allowing the observer to record acts of 

individuals in 10 tanks before returning to the first tank for the next interval. A total of 12 

acts were recorded for each animal during the hour period.  Day trials were conducted 

from 10:00-11:00 am and night trials were conducted from 7:00-8:00pm. During night 
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trials, we used red LED lights to record observations while avoiding the effects of visible 

light wavelengths on nocturnal behaviors (Figure 3.1.D). No-predator trials for both day 

and night trials preceded predator trials by 24 hours with 80 hours in between each 

week’s two predator trials to allow crabs to recuperate.  All trials were conducted from 

June 29 to August 27, 2015. 

 

2.5. Statistical Analysis  

Ethograms from the trials were analyzed for crab behavior and predation risk. I 

assessed the effect of fluoxetine treatment on H. oregonensis diurnal and nocturnal 

behaviors by examining the differences in the proportions of active, foraging, agonistic, 

and predator avoidance behaviors in trials with and without predators. To determine these 

proportions, I a priori divided active behaviors (i.e., walking, digging, and interactions 

between conspecifics) and non-active behaviors (i.e., remaining still, buried, or just 

moving mandibles); foraging and non-foraging behaviors; as well as agonistic and non-

agonistic behaviors. Predator avoidance behaviors were also a priori determined as 

remaining buried, still, or retreat under rock/elsewhere in tank and non-avoidance 

behaviors as remaining active, foraging, or interacting without response to the predator. 

Within each trial type (no predator/predator) and time of day (day/night) I tested 

whether the effect of fluoxetine treatment on behavioral proportions varied across crab 

sex and gender. Specifically, I tested the probability of successfully exhibiting behavioral 

acts using mixed-effect generalized linear models (GLMM) fitted with a binomial error 

distribution using the glmer function in the lme4 package (Bates et al., 2015) in R Studio 
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(R Core Team, 2015).  Behavioral proportional data was over-dispersed, indicating a 

need to fit the logistic regression with a random intercept (the 30 individual housing 

tanks). The random effect of the tanks accounts for variance structure between 

observations made on the same animals overtime. A separate GLMM was fitted to each 

behavior in question (i.e. active, foraging, agonistic, and predator avoidance) to 

determine if the effect of fluoxetine treatment varied among crab gender and status. In all 

GLMMs the proportional data underwent logit transformation to ensure normality and 

homoscedasticity of the residuals. 

For behavioral GLMMs, I added components to the null model (i.e., random 

intercept) stepwise to determine if they improved the model fit based on Akaike 

information criterion (AIC). Components that significantly benefitted the full model fit 

included: fluoxetine treatment groups and crab gender and status. In all models, the 

length of fluoxetine exposure (in weeks) was not significant (likelihood ratio test, LRT, P 

> 0.3 in both cases) so exposure time was not included.  Post hoc multiple comparisons 

of the models were generated using the multcomp package in R (Hothorn et al. 2008). 

 

3. Results 

Active behaviors 

The effect of fluoxetine on H. oregonensis active behaviors varied across trial 

types and time of day (glmer, likelihood ratio test (LRT), χ2 (2) = 292.31, P < 0.0001, 

Figure 3.2). A crab exposed to 30 ng/L of fluoxetine had the highest probability of 
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exhibiting active behaviors when predators were absent at night (predicted probability of 

active behavior =0.79) and during the day (0.68). When predators were present the 

probabilities declined for both time periods (0.62, 0.60, respectfully).  

During the day when predators were not present, fluoxetine affected H. 

oregonensis (χ2 (2) = 23.78, P < 0.001, Figure 3.2), increasing the proportion of active 

behaviors when exposed to 30 ng/L of fluoxetine (estimate ± SE; 1.23 ± 0.27, P <0.001). 

The effect of 3ng/L and control groups on active behaviors were negative (-1.37 ± 0.19 

and -0.29 ± 0.27, respectively), indicating that crabs in these treatments spent a greater 

proportion of their time being still relative to the 30ng/L group.).  Crab gender and status 

did not significantly explain the variation of active behaviors alone (χ2 (2) = 4.73, P 

=0.09), however the interaction between fluoxetine treatment and crab gender and status 

significantly improved the model fit (χ2 (6) = 72.95, P <0.001).  Dominant males were 

more active than females and subordinate males (estimate 0.44 ± 0.11 vs. -0.09 ± 0.11 

and -1.50 ± 0.20, P <0.001 in both cases). However subordinate males were more active 

when exposed to 30 ng/L of fluoxetine compared with controls (P=0.02).  
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Figure. 3.2. Proportions of H.oregonensis day and night behaviors by gender, status, and 
fluoxetine treatment when no predators are present.  Circles indicate proportions (yellow 
= active, red = agonistic, blue = foraging); genders (M/F); status (Dom=dominant, 
Sub=subordinate).  
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Foraging behaviors 

Fluoxetine exposure affected foraging behaviors as well (χ2 (2) = 13.77, P 

=0.001), although this effect was mediated by the gender and status of the crab (χ2 (6) = 

82.68, P <0.001). Dominant males and subordinate females in 30ng/L spent a greater 

proportion of time foraging during the day than their counterparts in control groups 

(P<0.01, in both cases), however subordinate males did not differ significantly (P=0.22).  

Fluoxetine had a strong effect on nocturnal foraging behaviors (χ2 (2) = 8.21, P = 0.02). 

Both dominant and subordinate males exposed to 30 ng/L of fluoxetine significantly 

increased their foraging behaviors at night (P<0.001, P=0.001, respectively), however in 

females there was no treatment effect (P>0.5, in all cases). 

Agonistic behaviors 

Crab aggression varied across treatment combinations and time of day (χ2 (8) = 

18.63, P = 0.002). The proportion of aggressive acts among H. oregonensis was low 

across all treatments (range: 0.008-0.03), but crabs exposed to 30 ng/L fluoxetine were 

predicted to have the highest probability of aggressive behavior (0.03) compared to 

0.3ng/L (0.01) and control crabs (0.008). Post-hoc Tukey contrasts indicated significant 

differences between controls and 30ng/L treatment groups (P < 0.001 in all cases). 

Controls and 0.3ng/L groups only differed when the predator was added (P= 0.007), 

where 0.3ng/L crabs exhibited slightly more aggressive behaviors (0.005) than the 

controls (0.0002, Figure 3.3). Nocturnal agonistic behaviors were higher than diurnal 

agonistic behaviors yet were also affected by fluoxetine (χ2 (2) = 20.27, P <0.001).  
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Figure. 3.3. Proportions of H.oregonensis day and night behaviors by gender, status, and 
fluoxetine treatment when predators are present.  Circles indicate proportions (yellow = 
active, red = agonistic, blue = foraging); genders (M/F); status (Dom=dominant, 
Sub=subordinate).  
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Predator avoidance behaviors 

Predator avoidance behavior also varied across treatments and time of day (χ2 (8) 

= 220.17, P < 0.0001, Figure 3.3).  Control crabs were most likely to avoid predators 

during the day (predicted probability of predator avoidance = 0.92) and at night (0.75) 

compared to crabs exposed to 3 ng/L (0.61 during the day; 0.57 at night), or 30 ng/L of 

fluoxetine (0.37 during the day; 0.40 at night). When predators were added during the 

day, crabs generally decreased active, foraging, and agonistic behaviors. However, crabs 

treated with 30 ng/L did not show a significant decrease in these behaviors when 

compared with 3 ng/L and control groups (χ2 (2) = 43.78, P < 0.001, Figure 3.2). 

Fluoxetine exposure had a strong negative effect on predator avoidance behaviors despite 

crab gender or status (LRT, d.f. = 7, 9, χ2 = 51.11, P < 0.0001). However the predator 

avoidance behaviors of males were more affected by fluoxetine exposure than for females 

(See Figure 3.2. for a list of proportions of predator avoidance behaviors by gender and 

status).  More crabs were captured and predated upon by C. productus in the 30 ng/L 

treatment group (n=8) than in the control and 3 ng/L groups (n=5 in each). Neither 

predator avoidance nor active behaviors varied over time (lm, F1,21=2.5, P = 0.23; 

F1,21=1.5, P=0.23, respectively).  
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Table. 3.1. Mean proportions of H. oregonensis predator avoidance behaviors (± SE) by 
fluoxetine treatment and time of day. Arranged by crab gender (♂/♀) and status 
(dominant = Dom/subordinate = Sub).  

 

Day Night 

Control 

Dom ♂ 0.91 ± 0.01 0.69 ± 0.04 

Sub ♂ 0.89 ± 0.02 0.76 ± 0.02 

Sub ♀ 0.81 ± 0.02 0.61 ± 0.04 

3.0 ng/L 

Dom ♂ 0.57 ± 0.02 0.57 ± 0.04 

Sub ♂ 0.64 ± 0.03 0.67 ± 0.02 

Sub ♀ 0.57 ± 0.03 0.45 ± 0.04 

30.0 ng/L 

Dom ♂ 0.41 ± 0.03 0.41 ± 0.03 

Sub ♂ 0.42 ± 0.02 0.36 ± 0.03 

Sub ♀ 0.41 ± 0.02 0.37 ± 0.03 
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Figure. 3.4. Proportions of H. oregonensis day and night behaviors by gender, status, and 
fluoxetine treatment representing the difference between no predator and predator trials 
(i.e., the predator effect).  Circles indicate proportions (yellow = active, red = agonistic, 
blue = foraging); genders (M/F); status (Dom=dominant, Sub=subordinate). Points above 
the line indicate scenarios in which a behavior was greater in the presence of a predator. 
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4. Discussion 

 

In the presence of predators, prey will often modify their behaviors to balance the 

risk of mortality with the reward of accessing food, mates, or other resources (Weis 2010; 

Sih et al. 2012; Snell-Rood 2013; Catano et al. 2015). Prey may reduce their activity 

levels, utilize defenses, or seek refuge when they perceive the risk to be high (Lindberg 

1980, Lima & Dill 1990; Preisser et al., 2007). We assessed whether the risk-taking 

behaviors of H. oregonensis would be altered under the influence of fluoxetine, a 

pharmaceutical contaminant commonly detected in estuaries and harbor waters (Kwon 

and Armburst 2006; Kreke and Dietrich 2008). Crabs exposed to the highest level of 

fluoxetine were more likely to be active and exhibit risk-taking behaviors in the presence 

of C. productus, resulting in a greater probability of predator capture and mortality. In 

fact, more crabs were captured by C. productus in the higher fluoxetine treatment than in 

the 3 ng/L or control treatments. Crabs in control groups exhibited a greater probability 

of predator avoidance behaviors because they reduced their activity levels and/or actively 

sought refuge when the predator was an immediate threat. Our results suggest that 

fluoxetine stimulates crab activity levels and reduces their inhibition to predator threats. 

For crabs inhabiting harbors or estuaries contaminated with fluoxetine, the changes to 

their normal behaviors may place them at greater risk of injury and mortality, with 

potential community-level effects.  
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I designed this experiment to simulate estuarine conditions in the laboratory, 

whereby H. oregonensis could reside in a similar habitat while exhibiting somewhat 

natural behaviors. I controlled between tank variation by maintaining identical abiotic 

conditions (e.g., light, temperature, salinity) and habitat substrate (e.g., rocks, gravel, and 

sand) across treatments. Therefore I propose that the differences in crab behavior 

reported here were attributable to fluoxetine rather than experimental artifacts. The 59 

crabs that survived until the end of the trials (60 days) were likely overexposed to crab 

predators although we did not see a pattern of learned tolerance of predator presence. We 

believe any learned tolerance was minimal because 1) we allowed for sufficient time 

between predator trials (i.e., 80 hours); 2) we did not preclude C. productus from 

predating on H. oregonensis during the trials; and 3) predator induced mortality did not 

decline over time. Further, our observed proportions of crab active and predator 

avoidance behaviors did not change significantly over the length of the study, which we 

would expect if H. oregonensis learned to not perceive C. productus as a threat. Rather, 

the variability in H. oregonensis risk-taking behaviors remained fairly low across 

treatments during predator trials (see mean proportions by week in Figure 3.3).   

Our predictive models were best fit by the interactions between treatment 

combinations and time of day, which suggests that crab behavior was mediated by 

photoperiod.  Like other crabs, H. oregonensis are photonegative, increasing activity 

levels and foraging primarily at night. Assuming crabs in control groups serve as a 

reference, exhibiting the most ‘typical’ behaviors, we would expect higher activity 
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amongst all crabs during night trials. However, crabs exposed to 30 ng/L-spiked water 

exhibited twice as much active behavior at night as control groups, suggesting a strong 

effect of fluoxetine.  Interestingly, there was little difference between diurnal and 

nocturnal activity levels in crabs exposed to 3ng/L of fluoxetine. Perhaps photoperiod 

was not as important for regulating activity in this treatment group, since predator 

avoidance behaviors were also low. From our observations, crabs in this group appeared 

to be the least affected by the addition of the crab predator, as evidenced by the lack of 

behavioral alterations between trial type (Figures 3.2. and 3.3).   

Serotonin and serotonin analogs have been shown to alter agonistic behaviors 

(McPhee & Wilkens 1989; Tierney & Mangiamele 2001) and activity levels (Perez-

Campos et al. 2012; Fong & Ford 2014) in crustaceans. Fluoxetine in concentrations 

equal or greater than 120µg L-1 caused a stimulation of locomotor behavior in the crab 

Carcinus maenas (Mesquita et al. 2011). We found similar increases in agonistic 

behaviors of crabs exposed to 30ng/L of fluoxetine, but with much lower exposure 

concentrations than in Mesquita et al. (2011). In Chasmagnathus crabs, Pedetta et al. 

(2008) modulated the individual aggressiveness via manipulation of serotonin and 

octopamine levels, where aggressiveness increased and decreased with the addition of the 

respective hormone.  Perhaps fluoxetine, through modulation of serotonin levels, 

stimulates crab activity levels and drives the observed aggressive behaviors. Further, our 

results demonstrate that fluoxetine may inhibit predator avoidance behaviors. The drug’s 

effect on serotonin levels appears to increase boldness and potentially other risk taking 
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behavior as studies on other species have suggested (Tierney & Mangiamele 2001; 

Pedetta et al. 2010; Mesquita et al. 2011; Dzieweczynski & Herbert 2012; Fong & Ford 

2014).  

Fluoxetine is one of the most widely used antidepressants in the world (Metcalfe 

et al. 2010). A robust amount of research has documented its occurrence in aquatic 

(Kwon and Armburst 2006; Ramirez et al. 2009; Bringolf et al. 2010; Corcoran et al. 

2010) and marine (Kreke and Dietrich 2008; Vasskog et al. 2008) environments. With 

growing human populations in coastal zones, increasing use of antidepressants like 

fluoxetine is expected, suggesting higher future concentrations in the marine 

environment. Our results demonstrate how pharmaceuticals and other emerging 

contaminants may affect species behaviors and their interactions. Brodin et al. (2014) 

summarized several ecologically important behavioral traits for assessing sublethal 

effects of pharmaceutical exposure, and potential direct or indirect ecological effects. 

These behavioral traits include: activity, aggression, boldness, exploration, and sociality. 

Each of these behavioral traits lead to direct ecological effects such as cooperation, 

dispersal/migration, feeding rates, mating success, parental care, and predator avoidance. 

These direct effects can be linked to differences in community structure, cross-boundary 

effects, ecosystem function, feedback loops, population dynamics, and trophic cascades. 

Anthropogenic impacts to coastal systems such as ocean acidification, warming surface 

water temperatures, and pollution have all been identified as significant environmental 

stressors, altering much of the aforementioned ecosystem processes (Munday et al. 2009; 
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Fukunaga et al. 2010; Dodd et al. 2015). Since pharmaceuticals have been shown to 

affect many of the same processes through similar mechanisms, they warrant 

consideration as an important environmental stressor in need of further research.  

Estuarine and coastal organisms are exposed to whole suites of contaminants, 

many of which (e.g., sertraline (Effexor®; Bossus et al. 2013), carbamazepine 

(Tegretol®; Martin-Diaz et al. 2009)) have negative effects on aquatic and marine 

organisms (e.g., Metcalfe et al. 2010; Meredith-Williams 2012; Gaw et al. 2014; Fong & 

Ford 2014). Our study and others have assessed the effects of single pharmaceuticals on 

animal behavior and their potential to alter species interactions (Gaworecki and Klaine 

2008; Bossus 2013; Hazelton et al. 2013). Yet, additional studies examining the effects of 

multiple compounds are warranted to understand interactive and cumulative effects on 

organisms and ecosystems (Brausch et al. 2012; Brodin et al. 2014).  Further, studies that 

assess how pharmaceuticals interact with lower pH (i.e., ocean acidification conditions) 

would add to the growing field of multiple stressor research. To our knowledge no 

studies have assessed community or ecosystem responses to pharmaceuticals or other 

emerging contaminants, an important step in understanding how these compounds may 

influence important inter- and intra-specific interactions. Finally, it would be 

advantageous for both ecology and ecotoxociology to merge components of 

pharmaceutical contaminants research, as both disciplines use similar species and 

examine similar endpoints while addressing separate questions. If we are to truly 
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understand how pharmaceuticals may act as stressors to marine ecosystems, we need to 

learn from the collective work in this emerging field.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

52 

 

Chapter 4: Conclusions 

 

This case study of fluoxetine builds on previous studies documenting fluoxetine’s 

effects on aquatic organisms by identifying the chronic exposure effects (47-107 days) on 

organism health, behavior, and functioning. The results from the two different 

experiments indicate that fluoxetine is a considerable environmental stressor, even at the 

low concentrations detected in the marine environment. Specifically, nominal 

concentrations of fluoxetine significantly affect both mussel and crab physiology and 

behavior, which may negatively affect individual fitness and species interactions. While 

both studies involve only one or two species, the implications of the results suggest that 

fluoxetine exposure could affect community- or ecosystem-level processes. By 

simulating chronic fluoxetine exposure in the laboratory we offer a snapshot of how this 

single contaminant may serve as an environmental stressor to invertebrates along rocky 

intertidal and estuarine shorelines in the wild.  

Fluoxetine is one of the most widely prescribed antidepressants in the world and a 

significant amount of research has documented its occurrence and negative effects on 

organisms in aquatic and marine environments. With growing human populations in 

coastal zones, increasing use of antidepressants, like fluoxetine, is expected, suggesting 

higher future concentrations in the marine environment. We have demonstrated that 

fluoxetine reduces M. californianus algal clearance rates, growth, and reproductive 

potential at very low concentrations. We also found that similar low concentrations 
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increased predation susceptibility by stimulating activity levels and risk-taking behaviors 

in H. oregonensis. For mussels and crabs inhabiting harbors or estuaries contaminated 

with fluoxetine, the changes to their normal behaviors and functioning may yield 

community-level consequences.   

The results of this study serve as a foundation to understand how pharmaceuticals 

may act as emerging environmental stressors, affecting marine species and their 

interactions. While we found fluoxetine to be a considerable stressor to marine mussels 

and crabs, it is only one of many stressors on marine organisms. Other studies have 

assessed how individual pharmaceuticals may affect animal behavior and health, and 

their potential to alter species interactions. These collectively fill important data gaps 

with respect to emerging contaminant research. However, long-term studies examining 

the effects of multiple stressors, such as multiple pharmaceuticals or the combination of 

pharmaceuticals with ocean acidification or other pollutants, are warranted to understand 

interactive and cumulative organism and potential ecosystem level effects.  

Finally, ecology and ecotoxicology, the two primary disciplines that assess impacts 

from pharmaceutical as environmental stressors, need to integrate their research.  The 

advantage of combining the findings from these two research fields is evident, as 

pharmaceuticals in the environment often modify important ecosystem processes. This 

project attempts to bridge the two fields by providing data from a hybridized 

methodology that combined standardized ecotoxicology testing with ecological 

questioning.  
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Appendix A.  Table of mussel metrics organized by mean ± SE and fluoxetine treatment 

group. Total biomass was the aggregate wet biomass of mussels per tank (n = number of 

mussels). 

Fluoxetine 
Treatment 

Initial Length 
(mm) 

Initial Mass 
(g) 

Total Biomass (g)        
n =21 

Total 
Biomass (g)         

n = 15 

Total 
Biomass (g)  

n = 9 

Control 32.67 ± 0.31 4.39 ± 0.14 90.33 ± 1.26 63.11 ± 1.33 34.02 ± 1.30 

0.3 ng/L 32.55 ± 0.44 4.18 ± 0.11 86.95 ± 0.71 59.61 ± 1.29 35.36 ± 0.63 

3 ng/L 31.78 ± 0.32 4.02 ± 0.14 84.15 ± 1.14 59.95 ± 1.30 35.28 ± 1.64 

30 ng/L 31.58 ± 0.36 4.03 ± 0.12 84.12 ± 1.66 56.38 ± 0.51 33.24 ± 0.98 

300 ng/L 32.53 ± 0.32 4.33 ± 0.14 90.15 ± 1.06 63.32 ± 1.00 36.46 ± 1.30 
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Appendix B. Mussel growth (length) multiple comparison tests by treatment group and 

sample date. P-values adjusted by Bonferroni correction.   

Pairwise comparisons Estimate Standard Errror  Z - value P ( > | Z | ) 

G
ro

w
th

 (
le

n
g

th
) 

Control_67 - 300_67 == 0 1.181 0.252 4.697 <0.01 

Control_67 - 30_67 == 0 0.684 0.252 2.720 0.290 

Control_67 - 3_67 == 0 0.257 0.252 1.022 1.000 

Control_67 - 0.3_67 == 0 0.166 0.252 0.660 1.000 

Control_47 - 300_47 == 0 1.303 0.252 5.181 <0.01 

Control_47 - 30_47 == 0 1.181 0.252 4.695 <0.01 

Control_47 - 3_47 == 0 0.299 0.252 1.190 0.997 

Control_47 - 0.3_47 == 0 0.442 0.252 1.757 0.913 

Control_107 - 300_107 == 0 1.493 0.252 5.938 <0.01 

Control_107 - 30_107 == 0 1.166 0.252 4.635 <0.01 

Control_107 - 3_107 == 0 0.289 0.252 1.149 0.998 

Control_107 - 0.3_107 == 0 0.234 0.252 0.932 1.000 

300_67 - 30_67 == 0 -0.497 0.252 -1.977 0.810 

300_67 - 3_67 == 0 -0.924 0.252 -3.674 0.019 

300_67 - 0.3_67 == 0 -1.015 0.252 -4.037 <0.01 

300_47 - 30_47 == 0 -0.122 0.252 -0.486 1 

300_47 - 3_47 == 0 -1.004 0.252 -3.991 <0.01 

300_47 - 0.3_47 == 0 -0.861 0.252 -3.424 0.045 

300_107 - 30_107 == 0 -0.328 0.252 -1.303 0.994 

300_107 - 3_107 == 0 -1.204 0.252 -4.788 <0.01 

300_107 - 0.3_107 == 0 -1.259 0.252 -5.006 <0.01 

30_67 - 3_67 == 0 -0.427 0.252 -1.698 0.933 

30_67 - 0.3_67 == 0 -0.518 0.252 -2.060 0.759 

30_47 - 3_47 == 0 -0.881 0.252 -3.504 0.034 

30_47 - 0.3_47 == 0 -0.739 0.252 -2.938 0.176 

30_107 - 3_107 == 0 -0.877 0.252 -3.486 0.037 

30_107 - 0.3_107 == 0 -0.931 0.252 -3.703 0.017 

3_67 - 0.3_67 == 0 -0.091 0.252 -0.362 1.000 

3_47 - 0.3_47 == 0 0.142 0.252 0.566 1.000 

3_107 - 0.3_107 == 0 -0.055 0.252 -0.218 1.000 
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Appendix C. Mussel growth (mass) multiple comparison tests by treatment group and 

sample date. P-values adjusted by Bonferroni correction.   

Pairwise comparisons Estimate Standard Errror  Z - value P ( > | Z | ) 
G

ro
w

th
 (

m
as

s)
 

Control_67 - 300_67 == 0 1.432 0.292 4.908 <0.01 

Control_67 - 30_67 == 0 1.340 0.292 4.591 <0.01 

Control_67 - 3_67 == 0 0.870 0.292 2.983 0.160 

Control_67 - 0.3_67 == 0 0.957 0.292 3.279 0.071 

Control_47 - 300_47 == 0 1.428 0.292 4.893 <0.01 

Control_47 - 30_47 == 0 1.035 0.292 3.547 0.031 

Control_47 - 3_47 == 0 1.442 0.292 4.941 <0.01 

Control_47 - 0.3_47 == 0 1.299 0.292 4.452 <0.01 

Control_107 - 300_107 == 0 1.741 0.292 5.968 <0.01 

Control_107 - 30_107 == 0 1.589 0.292 5.444 <0.01 

Control_107 - 3_107 == 0 0.891 0.292 3.054 0.133 

Control_107 - 0.3_107 == 0 1.202 0.292 4.119 <0.01 

300_67 - 30_67 == 0 -0.092 0.292 -0.317 1.000 

300_67 - 3_67 == 0 -0.562 0.292 -1.925 0.841 

300_67 - 0.3_67 == 0 -0.475 0.292 -1.629 0.953 

300_47 - 30_47 == 0 -0.393 0.292 -1.346 0.992 

300_47 - 3_47 == 0 0.014 0.292 0.047 1.000 

300_47 - 0.3_47 == 0 -0.129 0.292 -0.441 1.000 

300_107 - 30_107 == 0 -0.153 0.292 -0.524 1.000 

300_107 - 3_107 == 0 -0.850 0.292 -2.914 0.191 

300_107 - 0.3_107 == 0 -0.539 0.292 -1.849 0.878 

30_67 - 3_67 == 0 -0.469 0.292 -1.609 0.957 

30_67 - 0.3_67 == 0 -0.383 0.292 -1.313 0.993 

30_47 - 3_47 == 0 0.407 0.292 1.394 0.988 

30_47 - 0.3_47 == 0 0.264 0.292 0.905 1.000 

30_107 - 3_107 == 0 -0.698 0.292 -2.391 0.522 

30_107 - 0.3_107 == 0 -0.387 0.292 -1.325 0.993 

3_67 - 0.3_67 == 0 0.086 0.292 0.296 1.000 

3_47 - 0.3_47 == 0 -0.143 0.292 -0.489 1.000 

3_107 - 0.3_107 == 0 0.311 0.292 1.066 0.999 
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Appendix D. Mussel gonadosomatic index (GSI) multiple comparison tests by treatment 

group and sample date. P-values adjusted by Bonferroni correction.   

Pairwise comparisons Estimate Standard Errror  Z - value P ( > | Z | ) 

G
on

ad
os

om
at

ic
 I

nd
ex

 (
G

S
I)

 
Control_67 - 300_67 == 0 1.432 0.292 4.908 <0.01 

Control_67 - 30_67 == 0 1.340 0.292 4.591 <0.01 

Control_67 - 3_67 == 0 0.870 0.292 2.983 0.160 

Control_67 - 0.3_67 == 0 0.957 0.292 3.279 0.071 

Control_47 - 300_47 == 0 1.428 0.292 4.893 <0.01 

Control_47 - 30_47 == 0 1.035 0.292 3.547 0.031 

Control_47 - 3_47 == 0 1.442 0.292 4.941 <0.01 

Control_47 - 0.3_47 == 0 1.299 0.292 4.452 <0.01 

Control_107 - 300_107 == 0 1.741 0.292 5.968 <0.01 

Control_107 - 30_107 == 0 1.589 0.292 5.444 <0.01 

Control_107 - 3_107 == 0 0.891 0.292 3.054 0.133 

Control_107 - 0.3_107 == 0 1.202 0.292 4.119 <0.01 

300_67 - 30_67 == 0 -0.092 0.292 -0.317 1.000 

300_67 - 3_67 == 0 -0.562 0.292 -1.925 0.841 

300_67 - 0.3_67 == 0 -0.475 0.292 -1.629 0.953 

300_47 - 30_47 == 0 -0.393 0.292 -1.346 0.992 

300_47 - 3_47 == 0 0.014 0.292 0.047 1.000 

300_47 - 0.3_47 == 0 -0.129 0.292 -0.441 1.000 

300_107 - 30_107 == 0 -0.153 0.292 -0.524 1.000 

300_107 - 3_107 == 0 -0.850 0.292 -2.914 0.191 

300_107 - 0.3_107 == 0 -0.539 0.292 -1.849 0.878 

30_67 - 3_67 == 0 -0.469 0.292 -1.609 0.957 

30_67 - 0.3_67 == 0 -0.383 0.292 -1.313 0.993 

30_47 - 3_47 == 0 0.407 0.292 1.394 0.988 

30_47 - 0.3_47 == 0 0.264 0.292 0.905 1.000 

30_107 - 3_107 == 0 -0.698 0.292 -2.391 0.522 

30_107 - 0.3_107 == 0 -0.387 0.292 -1.325 0.993 

3_67 - 0.3_67 == 0 0.086 0.292 0.296 1.000 

3_47 - 0.3_47 == 0 -0.143 0.292 -0.489 1.000 

3_107 - 0.3_107 == 0 0.311 0.292 1.066 0.999 
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Appendix E. Mussel condition index (CI) multiple comparison tests by treatment group 

and sample date. P-values adjusted by Bonferroni correction.   

 

Pairwise comparisons Estimate Standard Errror  Z - value P ( > | Z | ) 

C
on

di
ti

on
 I

nd
ex

 
Control_67 - 300_67 == 0 0.723 0.256 2.821 0.236 

Control_67 - 30_67 == 0 0.473 0.256 1.844 0.880 

Control_67 - 3_67 == 0 0.544 0.256 2.125 0.718 

Control_67 - 0.3_67 == 0 0.633 0.256 2.471 0.460 

Control_47 - 300_47 == 0 0.396 0.256 1.546 0.969 

Control_47 - 30_47 == 0 0.497 0.256 1.941 0.832 

Control_47 - 3_47 == 0 0.556 0.256 2.169 0.686 

Control_47 - 0.3_47 == 0 0.438 0.256 1.708 0.931 

Control_107 - 300_107 == 0 0.782 0.256 3.054 0.133 

Control_107 - 30_107 == 0 0.824 0.256 3.217 0.084 

Control_107 - 3_107 == 0 0.491 0.256 1.917 0.844 

Control_107 - 0.3_107 == 0 1.118 0.256 4.364 <0.01 

300_67 - 30_67 == 0 -0.250 0.256 -0.977 1.000 

300_67 - 3_67 == 0 -0.178 0.256 -0.696 1.000 

300_67 - 0.3_67 == 0 -0.090 0.256 -0.349 1.000 

300_47 - 30_47 == 0 0.101 0.256 0.395 1.000 

300_47 - 3_47 == 0 0.160 0.256 0.623 1.000 

300_47 - 0.3_47 == 0 0.042 0.256 0.162 1.000 

300_107 - 30_107 == 0 0.042 0.256 0.163 1.000 

300_107 - 3_107 == 0 -0.291 0.256 -1.137 0.999 

300_107 - 0.3_107 == 0 0.336 0.256 1.31 0.994 

30_67 - 3_67 == 0 0.072 0.256 0.28 1.000 

30_67 - 0.3_67 == 0 0.161 0.256 0.627 1.000 

30_47 - 3_47 == 0 0.059 0.256 0.229 1.000 

30_47 - 0.3_47 == 0 -0.060 0.256 -0.232 1.000 

30_107 - 3_107 == 0 -0.333 0.256 -1.3 0.994 

30_107 - 0.3_107 == 0 0.294 0.256 1.147 0.998 

3_67 - 0.3_67 == 0 0.089 0.256 0.347 1.000 

3_47 - 0.3_47 == 0 -0.118 0.256 -0.461 1.000 

3_107 - 0.3_107 == 0 0.627 0.256 2.447 0.479 
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Appendix F. Plots of residuals from clearance rates model (e.g. mussel experiments). 

Model fit a normal distribution after data underwent Box-Cox transformation. 
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Appendix G. Plots of residuals from mussel growth (length) model. Model fit a normal 

distribution after data was log-transformed. 
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Appendix H. Plots of residuals from mussel growth (mass) model. Model fit a normal 

distribution after data was log-transformed. 
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Appendix I. Plots of residuals from mussel gonadosomatic index model. Model fit a 

normal distribution after data was log-transformed. 
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Appendix J. Plots of residuals from mussel condition index model. Model fit a normal 

distribution after data was log-transformed. 
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Appendix K. Plots of residuals from crab active behaviors model. Model fit a binomial 

error distribution.  

 



  

76 

 

Appendix L. Plots of residuals from crab predator avoidance behaviors model. Model fit 

a binomial error distribution. 
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Appendix M.  A record of modification to the initial study proposal   

 This section provides a detailed record of all modifications made to the study 

design and methodology in the initial study proposal. A copy of the proposal is provided 

here for reference. Wherever a modification was made to the study design an endnote 

was added to provide explanation of the reason for the modification and any other 

relevant details.  

 

Project Title: Multiple stressor effects of pharmaceuticals on Oregon’s rocky intertidal 

communities: A case study of fluoxetine and carbamazepine 

 

Methods   

-Laboratory Experiments- 

1.Animal Collection, Housing and Husbandry 

1.1. Collection and Aquaria conditions 

I will collect 525, 2-3 cm, Mytilus californianus mussels from the mussel bed at 

Boiler Bay, Oregon1. Collected animals will be housed in 60-liter tanks in Portland State 

University. Each tank is attached to its own filtration, a biobag filter will be used to filter 

mussel waste products from the aquaria. Aquarium conditions (e.g., salinity, temperature, 

light cycle) will reflect in situ conditions at time of mussel collection. Specifically, water 

salinity will be kept between 32 and 35 ppt, using artificial seawater from Instant Ocean 

salts. The light cycle will reflect summer daylight hours (14 hours light, 10 hours dark). 
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Water temperature will be kept between 12-15 °C (55-60°F) and will be regulated using 

non-toxic glycol-based chillers. 

Upon arrival at PSU, mussels will be weighed and measured and will then be 

divided into three weight classes. From each weight class, 7 mussels will be selected at 

random and placed into housing tanks for a total of 21 mussels per tank (21mussels/tank 

X 25 treatment tanks with mussels = 525 mussels total). Mussels will be labeled using 

different colored acrylic nail polish2. To reduce stress on the animals from handling, 

mussels will be placed onto watch glasses for a total of 7 mussels per watch glass. 

Mussels will be allowed an acclimation period of 7 days to reattach byssal threads to the 

watch glass3. After 7 days, the mass of each watch glass group will then be measured 

collectively, and then repeatedly throughout the study, however individual lengths and 

widths will be measured separately using a small ruler4.  

1.2. Feeding 

Mussels will be fed using Shellfish Diet 1800 from Reed Mariculture at amounts 

per mussel following Rodriguez del Rey et al. (2011). Each mussel will be fed 0.41 mL 

of shellfish diet at each feeding event, every 5 days. 8.61 mL of shellfish diet (0.41mL X 

21 mussels/tank)5 will be added to each housing tank using a calibrated syringe. To 

measure feeding rates, water samples will be taken 1 minute after adding the shellfish 

diet and approximately one hour after, and samples will be collected again. To measure 
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differences in chlorophyll a concentration, samples will be analyzed using 

spectrophotometry6.  

 

1.3. Water changes 

Every 30 days a 75% partial water change will be performed. The biofilter bags 

will filter the nitrogenous wastes from mussels, however it is important to replace the 

majority of the water each month. This will be done along the same timeline as the 10-

day dosing for each treatment, including adding 0.01% ethanol (EtOH)7 to the controls 

tanks with and without mussels. The 0.01% EtOH will be added to account for the 

fluoxetine treatment reagents, which use the ethanol. Tanks will not be allowed to 

completely dry because of the risk of damaging bacteria colonies on the biobag filters.  

2. Exposure to fluoxetine  

2.1. 90-day8 exposure study design 

Mussels will be exposed to one of four fluoxetine levels (0.5, 2.0, 5.0, 10.0µg/l)9 

following environmentally relevant concentrations determined by Choong et al. (2006).  

Two control treatments, with and without mussels, with no fluoxetine (0µg/l) but with 

0.01% EtOH will be used to determine if there is an effect of fluoxetine treatment. Using 

a block design, there will be 30 tanks with a random assortment of four treatment and two 

control types with a total n=5 per treatment (Figure 1). Fluoxetine will be added to 
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treatment tanks on day 1, and then added every 10 days to mimic pulse events of 

contaminant delivery. 

 

2.1.1 Measurements 

a. Growth rates 

Each mussel will be identified using rack, tank, watch glass number, and nail 

polish color (blue, red, green, purple, yellow, orange, pink) (e.g., 321B = rack 3, tank 2, 

watch glass 1, blue). Every 10 days mussels10 will be measured for group wet-weight (per 
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watchglass) and individual length and width. Shell thickness of individuals will be 

measured by notching their shells at the beginning of the study. Accretion rate11 will be 

based on the amount of measured growth over the time interval between measurements 

(10 days). 

 

b. Feeding rates 

 Feeding behavior/rate will be monitored every 10 days12 while the animals are 

fed. As outlined above, feeding rates will be measured per tank as a function of the 

difference in chlorophyll a concentrations at the time of feeding and 60 minutes after. To 

estimate individual feeding rates, the tank measurement will then be divided by the total 

number of mussels (n=21).  

c. Reproductive function/other physiological responses 

 Every 30 days13, 6 random individuals from each group will be sacrificed from 

each tank to measure gametogenic activity. Here, gametogenic activity is characterized 

by measuring the gonadosomatic index (weight of gonad/soft tissue weight; GSI), 

following Gagne et al. 2009).  

d. Water samples14 

To keep a running background of concentrations of fluoxetine for each treatment 

tank, water samples will be taken on day one, then every 10 days prior to fluoxetine 
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addition, and frozen until analyzed using protocols adapted from Rodriguez del Rey et al. 

(2011). Water samples will be collected from the respective tanks in the following order: 

control without mussels > control with mussels > 0.5µg/L> 2.5µg/L> 5.0µg/L>10µg/L. 

50mL of water from each tank will be extracted using a calibrated syringe and then 

filtered through a centrifuge tube with Whatman glass fiber filters into a 50mL centrifuge 

tube. These samples will then be frozen until they are ready for preparation and analysis. 

Samples will be analyzed using a Fluoxetine enzyme-linked immunosorbent assay 

(ELISA) test kit to detect for the presence of fluoxetine.  

-Field Experiments-15 

1. Study Sites 

A 16-week long field experiments will be conducted at the same location as 

mussels collected for laboratory experiments, Boiler Bay, OR (44°83’N, 124°06’W).  

2. Exposure to Fluoxetine and Carbamazepine  

The pharmaceutical drugs carbamazepine and fluoxetine will be used to test H2 

and H3, whether there is a cumulative effect of multiple stressors from these 

contaminants on mussel growth, byssal thread integrity, and resistance to predation. Six 

treatments (fluoxetine (2 levels), carbamazepine (2 levels), fluoxetine + carbamazepine 

(lowest and highest level combinations)) and a control (agar) will be administered using 

diffusing devices at 4 sites at Yachats (Figure 2).  To test for caging effects, cage controls 
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(no cages) will be used for each treatment. At these cage control sites, Pisaster will be 

removed manually every two weeks. 

Because exposure experiments will be used in conjunction with predator 

manipulation, predator exclusion cages will be outfitted with contaminant diffusing 

systems (CDS). This will consist of wire cages mounted to the rock wall with bolts and a 

layer of neoprene to ensure no entry from seastars beneath the wire. The contaminant 

diffusion system will be secured to this cage by using a previously assembled PVC 

square with 4, one-inch diameter holes drilled into each arm (see Figure 2 for schematic). 

Film canisters filled with a set agar gel containing the contaminant (e.g., fluoxetine, 

carbamazepine, or both) will be secured into these holes for contaminant diffusion. These 

will then be replaced every 4 weeks with a new canister to ensure chronic, near-constant 

exposure to mussels within the cages and neighboring mussels. Every 2 weeks, mussel 

and seawater samples at 0m (within cage), 0.5m, 1m, 2m, and 5m outside of the CDS 

cages will be collected and analyzed using ELISA kits for presence of contaminants. 
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a. Mussel Growth 

At each exposure level (e.g., distance interval from CDS cage), 10 mussels will be 

identified using colored nail polish. Every 2 weeks, total length will be measured.  

b. Byssal thread integrity  
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The attachment strength of Mytilus californianus will be measured following 

methods of Harger (1970). Mussels will be hooked onto a spring dynamometer 

(constructed to record maximum force) with a wire loop. A pulling force will be applied 

perpendicular to the mussel bed until the hooked mussel is dislodged. This will be done 

for 5 mussels at each exposure level every two weeks. 

c. Predation intensity experiment 

I will measure predation intensity following a design similar to Navaratte and 

Menge  (1996).  In this case the stressors will the individual contaminants or the 

combination of the two contaminants and the primary effect will be mussel resistance to 

predation. As mentioned earlier CDS cages will be placed within either a control or 

treatment plot. In the cages where seastars are removed (P-) cages will have a roof and 

four sides. In predator control plots  (P+), seastars will have access through cages that 

have two open sides, to account for potential caging effects. In control areas without 

contamination, CDS cages (two open sides) will be filled with canisters of agar gel. 

Every two weeks cages will be monitored and maintained to ensure predator 

removal. Small and medium sized seastars, as well as other benthic predators such as 

crabs are capable of entering cages. Upon each visit, the number of live and dead mussels 

remaining in cages and controls will be counted.  

3. Statisical analyses16 
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Analysis of variance (ANOVA) will be used to determine if there are differences 

between each treatment and the controls. ANOVA assumptions of independence, 

normality, and homogeneity of the variances of the residuals will be met by using their 

appropriate tests. Tank samples will maintain independence by being isolated from one 

another, including water and filtration. Field samples will maintain independence by 

having an appropriate amount of space from one another (e.g. >50m). Both field and tank 

samples will be tested for normality and equal variance by using the Shapiro-Wilk test 

and F-test respectively. All statistical analyses will be performed using R studio version 

2.11.1.  

1.  M. californianus mussels were collected from a single location on the jetty north of 

Rockaway Beach, Oregon (45°39’18.4”N, 123°56’31.2”W)  

2. Mussels were enumerated using super glue and water proof paper labels. Nail polish 

flaked off after 2 weeks, during the acclimation period.   

3. Mussels were acclimated for one month, not 7 days.  

4. Mussels were weighed individually on 3 sample dates: 47, 67, 107. On days 47 and 67 

mussels were weighed and measured and individuals not sacrificed were placed back in 

tanks.  

5. We modified feeding based on feedback from Reed Mariculture: Twice weekly, 

mussels were batch fed Shellfish Diet 1800® (Reed Mariculture) diluted tenfold with 

seawater. The algae in the Shellfish Diet 1800® is a combination of six marine 



  

87 

 

microalgae Isochrysis, Pavlova, Tetraselmis, Chaetocerous calcitrans, Thalassiosira 

weissflogii and Thalassiosira pseudonana with cell diameter sizes ranging from 5 to 16 

µm. Per mussel volume of algae fed was constant throughout the study. 

6. Clearance rates were determined using the following modified methods: On feeding 

days, a 10 mL seawater sample was obtained ~1 minute after the algae mixture was 

added to each of the tanks.  Mussels were allowed to feed for 3 hours before an additional 

10mL sample was extracted. These samples served as initial and final concentrations, 

respectively.  From each sample, we counted algal cells in three 0.5 mL aliquots using a 

Beckman Coulter Counter (model Z1, 100 µm aperture) and determined the mean initial 

and final concentrations within each tank.  We collected a total of 11 samples over the 

course of the 107 day study.  

Filtering rates were estimated from the rate of change in suspended particle 

concentrations. Following Coughlan (1969), we based filtering rates on four assumptions: 

a) the reduction in the concentration of particles is due to filtration by the animal, and to 

settling, b) mussel pumping rate is constant, c) particle retention is 100% efficient and d) 

there is homogenous suspension of particles. A set of identical tanks without mussels 

(n=4) served as blanks for feeding trials.  Clearance rates for each mussel were calculated 

using the following formula (Coughlin 1969): 

CR= (M/n) [ln (C0/Ct)/t] – [ln (C0blank/Ctblank)/t] 
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where CR = clearance rate (cells-1mL-1min-1); M = volume of seawater in each tank (mL); 

n = number of mussels in tank; t = feeding time (min); C0 = initial concentration of 

particles in tank; Ct  = final concentration of particles in tank. C0blank = initial 

concentration of particles in tank without mussels; Ctblank = final concentration of 

particles in tank without mussels 

7. Because fluoxetine is water soluble, we did not use 0.1% EtOH to increase the 

solubility of the solid. Fluoxetine hydrochloride was dissolved only in nanopure water.  

8.Study period was 107 days for mussel experiment 

9.Fluxoetine treatments were 0.3, 3, 30, and 300 ng/L of fluoxetine and a control with no 

fluoxetine (Figure 2.1). A set of 5 tanks with no mussels were used to determine a 

baseline for algae removed by the tank filtration systems during algal clearance trials. We 

note that one of the no-mussel tanks malfunctioned after 20 days into the experiment and 

was excluded from further analyses, reducing no-mussel tank replicates to 4. 
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10. Made measurements on day 47, 67, and 107 

11. Did not measure shell accretion rates 

12.Algal clearance rates were measured twice weekly, except in the event where the 

Coulter counter machine was not working.  

13. Made measurments on day 47,67, and 107. 

14. Bioconcentraion of fluoxetine was transerferred to Dylan Dayrit as an undergraduate 

thesis project under the direction of Dr. Elise Granek. Samples were preserved in the -80 

freezer in the Granek/de Rivera Lab.  

15. Did not do a field component or use the pharmaceutical carbamazepine. Designed a 

predator avoidance experiment using Fluoxetine instead.  

16. Statistical analyses were modified to the following procedures:  

Fluoxetine exposure study: M. californianus:  

For each sampling period, we averaged within-tank means for mussel growth, 

GSI, CI, and algal clearance parameters. Normality and homogeneity of variances were 

assessed through graphical inspection of the model residuals and respective Shapiro-

Wilk’s and Levene’s tests, which indicated a need for data transformation. Algal 

clearance data underwent a Box-Cox transformation (Box and Cox 1964) and mussel 

growth and body condition data were log-transformed. Separate two-way ANOVAs were 

run with treatment and sample date as fixed factors and tanks as an error term to account 
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for non-independence between subsamples. Main effects were considered significant at 

α=0.5. Post-hoc Tukey HSD tests were used for pairwise comparisons among treatment 

and sample date means. All statistical analyses were performed using R statistical 

platform (RStudio Version 3.2.2 (2015)).  

Fluoxetine exposure study: H. oregonensis: 

Ethograms from the trials were analyzed for crab behavior and predation risk. We 

assessed differences in the proportion of active behaviors among H. oregonensis across 

fluoxetine treatments, time period type (day and night), and trial type (predator/no 

predator). To determine this proportion, we a priori divided active behaviors (i.e., 

walking, digging, foraging, and interactions between conspecifics) and non-active 

behaviors (i.e., remaining still, buried, or just moving mandibles). We then tested whether 

the probability that crabs would exhibit active behaviors varied among the three 

fluoxetine treatment groups, time periods, and trial type, or a combination of these 

variables, with a mixed-effect generalized linear model with a binomial error distribution 

using the glmer function from lme4 package (Bates et al., 2015) in R Studio (R Core 

Team, 2015). Our mixed-effect model included the crabs, trials, and tanks as random 

effects to account for non-independence between samples, due to repeatedly observing 

the same crabs over several trials and because of influences of behavior by individuals 

within the same tank. 

We used a similar modeling approach to assess whether the proportion of predator 

avoidance behaviors varied by fluoxetine treatment and over time. Using data from 
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predator trials only, we a priori determined predator avoidance behaviors as remaining 

buried, still, or retreat under rock/elsewhere in tank and non-avoidance behaviors as 

remaining active, foraging, or interacting without response to the predator. We used a 

separate mixed-effects generalized linear model with a binomial error distribution to test 

the probability that crabs would exhibit predator avoidance behaviors differently among 

the three fluoxetine treatment groups and day/night time periods.  

We were also interested in whether aggression among conspecifics varied across 

fluoxetine treatments.  We developed a third generalized mixed effects model with a 

binomial error distribution that tested whether the proportion of aggressive acts between 

H. oregonensis varied across the fluoxetine treatments, time of day, and trial type. 
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