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CHAPTER I 

INTRODUCTION AND OVERVIEW 

Many man-made systems are characterized by three prop-

erties: they are goal oriented; they use resources in the 

process of achieving their goals; and there are different 

choices available as to how and what resources are used. In 

such systems, it is often the case that how the resources 

are used determines the productivity of the system, the ex-

tent to which it is successful in achieving its goals, and 

in the long run, whether or not the system survives. 

How resources are used is often a question of sched-

uling. For example, consider a manufacturing company whose 

goal is to make ·a profit by the production and sale of cer-

tain products. In such a company, the resources include work-

ers, machines, and materials. Poor scheduling of manpower, 

machines and/or material could produce delays i~ production. 

Such delays would occur, for example, if the right materials 

are not at the right machines at the right time for .assembly. 

· Extensiye _ongoing delays may result in large order backlogs, 

long order lead times, and high production costs. This in 

turn may put _the company at a competitive disadvantage and 

decrease the company's survival chances. 

Another example is the processing of computer programs 

in a multiprogramming environment. Here, programs residing 
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in the computer's main memory take turns using the system's 

processor to do calculations. At each processing time, the 

scheduling function decide~, according to some predetermined 

algorithm, which program gets the processor. Because of the 

high cost of large computer systems, it is often desirable 

to have a scheduling function producing schedules that re-

sult in high levels of throughput, i.e. the number of pro-

cessed programs per unit of time. 

Both of the above systems, although different in na­

ture, rely on good scheduling to operate efficiently. The 

schedules are determined by a scheduling function. But the 

procedure the scheduling function uses may not be well de-

fined. In the case of the manufacturing company, the shop 

foreman might schedule all of the machines ·using intuitive 

methods based on years of experience. I~ the computer system 

a program based on a well defined algorithm might be us.ed to 

· schedule the processor. In either case, relative to some pre­

determined performance criterion (like shortest possible 

schedule), the schedule~ being produced might not be the best 

possible.' On the other.hand, how is one to know whethe~ or 
• •• I 

not the schedules are optimal without actually constructing 

~~tter ones or· showing that better ones cannot be constructed? 

Are there conditions under which scheduling function perf or-

mance is optimal no matter which scheduling function is used? 

Can knowing the performance of a s.cheduling function give in-

formation about the schedules it produces? Under what condi-

tions can scheduling performance be easily calculated? 
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The types of situations and questions alluded to in 

the preceding paragraph have various practical consequenc~s. 

Before answering such questions, however, certain basic prop-

erties of scheduling functions and the underlying algorithms 

·for generating their schedules must be investigated. 

Historically, the general emphasis in the study of 

scheduling algorithms has been on individual algorithms rath­

er than on classes of algorithms, but more recently this 

state of affairs has begun to change, as Reingold, Nievergelt, 

and Deo point out.in [3]~ 

••• one of the trenas responsible for the rapid prog­
ress in combinatorial computing is a stronger emphasis 
on the study of classes of algorithms as opposed to 
ind~vidual algorithms. 

Another line of resea~ch has been that of developing 
I 

scheduling ~lgorithms which are efficient in their operation 

(in the sense of computer run time) and which produce "reason­

ably good" sched~les. Garey, Graham, and Johnson (2] comment: 

·Unf~rtunately, although it is not difficult to de­
sign optimization algorithms (e.g., exhaustive s~arch 
is usually applicable), the goal of designing effi­
cient optimization algorithms has proved much more 
difficult to attain •••• This pessimistic outlook 
has been bolstered.by recent results ••• 

The "goodness" of thes.e schedules is determined by comparing 

the length of the ~chedules generated by the algorithm to the 

length. of some a priori d~termined optimal schedule. Further­

more, in [2], the "goodness" of an algorithm .ls determined by 

constructing a performance guarantee theorem which gives a 

least upper bound to the algorithm's worst case performance. 

This·approach is applied on an individual algorithm basis, 



and as pointed out in [2], works well on many algorithms. 

However, since the structure of the algorithm being studied 

is used to direct the construction of the performance theo-

rem, the more complex the algorithm, the less likely it is 

for this approach to work. In any case, when this approach 

is successful, valuable information about individual algo-

rithms is gained. 

The approach taken in this.dissertation is a combina­

tion and extension of the above two approaches. Classes of 

r .algorithms are the primary focus, and performance theorems 

are utilized in their analysis. A novel_ approach to consid-

4 

ering the classes of algorithm is developed. This includes 

studying the general properties of the scheduling function,· 

developing certain methods based on these, and then, by 

making a .natural assumption of correspondence, applying 

these .~ethSfaYs directly to the class of algorithms which com­

pute ~~he scheduling functions. 

The underlying questions of concern in this disse~ta­

tion are: What can be said in general concerning the perform­

ance of algorithms ~Bsociated w~th a particular scheduling 

system? If general performance theorems exist for a given . 

sys~em, then wh~t techniques are involved in the construction 

.and proof of the theorems, of what value are the theorems in 

analysis of individual alg,orithms, and to what extent can the 

theorems and techniques be applied to different scheduling 

systems? 

The contributions of this dissertation may be divided 
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into roughly three groups: (1) the development of a new math-

ematical model for simulating resource scheduling in multi-

processing systems, (2) the creation of a set of performance 

theorems for the class of scheduling functions belonging to 

the model, and (3) the transfer of the mathematical tech-

nique~ and theorems from the model to another scheduling 

model • 

The model developed here can be used to study the sched-

uling of reusable resources in a manufacturing environment. 

It can also be used to study the scheduling of a processor 

in a multiprogramming comput~r system. In chapter 2 it is 

shown that the model has a submodel which is mathematically 

equivalent to the model given in (1] which is used to study 

computer processor scheduling. In general, M, the model de-

velbped here, can be used to simulate any system having the 

following properties: (1) the system accomplishes its tasks 

by using resources from a finite set of reusable resources, 

(2) th.e system has a £inite set of processes each of which 

provides a description of what resources it ·needs through 

time to accomplish its task, and (3) for each process set, 

selection of a·schedule can be made from a variety of possi-

ble.schedules. Each _schedule gives a listing of what re­

sources are used by which processes so that there are no 

resource conflicts (no two processes are assigned the same 

resource at the same time). 

Each of the performance theorems created in this dis-

sertation for M describes the conditions under which a 
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scheduling function exhibits a particular type of perform-

ance. For example, one of the theorems states that for each 

scheduling function there exist a significant number of cases 

where the sche~uling function exhibits best case performance. 

Here, performance of a scheduling function f refers to the 

comparison between the length of f's schedules and the length 

of the optimal schedules. One of the key insights underlying 

the work reported in this dissertation is that the perform-

ance theorems are important not only because they describe 

how scheduling functions behave but also because they des­

crj be how any algorithm used to compute the schedules of a 

scheduling function behaves. That is, if there is an algo-

rithm for pomputing the schedules of a given scheduling 

function f, then this algorithm has the same performance 

properties as f. Thus -in the example theorem given above, 

an algorithm which computes f's schedules exhibits best case 

performance for those cases where f exhibits best case per-

formance. 

. The third group of contributions, mentioned above, in-

valves the transfer of the spectral theory techniques devel-

oped in chapter 3. It is demonstrated that these techniques 

are transferable to the Independent Task Scheduling model, 

ITS, given in [2J. This is done by redefining the ITS model 

using methods similar to those used to define M. The rede-

fined ITS model is mathematically equivalent to the defini­

tion of ITS given in [2], but now it has the interesting 

property that all of the performance theorems and associated 
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le~mas and corollaries developed for M hold for ITS as well. 

This leads ·One to speculate on the po$sible existence of a 

general scheduling model, similar to M, that encompasses 

many of the standard scheduling models. This may be achieved 

in part by dropping and/or modifying the defining axioms of 

the model M. 

7 
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CHAPTER II 

THE MULTIPROCESS SCHEDULING SYSTEM 

In this chapter, the multiprocess scheduling system; M, 

is ·developed. M = (R,F,D,S). That is, Mis a 4-tuple of sets 

where R, F, D, and S are, respectively, the set of resources," 

the set of ·scheduling functions, the set of descripti~ns, and 

the set of schedules. The motivation for M is given as the 

definitions are developed. 
I 

The following notation is presente~ first since it is 

used throughout this wo~k. Other special notation is pre­

sented as needed in the remainder of this paper. Also, in a 

·definition or notation, a word or phrase being defined is 

underlined. 

Notation. Let N = {1,2,3, .•. J. For each min N, let 

Nm= {:,2,3, ... ,m}. If dis an n-tuple, then 'the width of d, 

denoted w(d), is the number n where n is from N. If Sis a 
c -set, then S denotes the complement of S, S denotes the car-

dinality of S, and P(S) denotes the finite power set of S, 

that is, P(S) is the set of all finite· subsets of s. If p is 

a sequence in P(S), that is, p is a function from N into P(S), 

then the kernel of p, denoted ker(p), is the set {t in N: 

p(t) = ¢]. 
Let Sk and Qk be sequences in N: Sk is eventually 

greater than Qk' denoted sk·~ Qk' if there is an min N so 
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similarly. 
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~' ~, 4, and ~ are defined 

9 

Let r 1 and L j denote the greatest and smallest inte-

ger function respectively. t ] means that either r , or l J 

may be used with the restriction that once one is selected 

for a result then it is used exclusively throughout that 

result. 

d-Processes and Descriptions 

A d-process may be thought of as a technological de-

scription of, say, a manufacturing process. It describes the 

resources needed by the process at each time increment to 

produce some item or accomplish some task. A description de-

notes a set of processes which will be processed concurrently 

in the system. A description may be also thought of as a set 

'of program's to be processed in a multiprogramming computer 

sys~em with the individual programs representing the d-proc-

esses. Here, each· program requires the computer processor at 

various time increments to do calulations. 

Definition,2.1. Let_ k f N. A k-resource set, Rk' is the 

nonempty fi~te set {r1 ,r2 ,r3 , ••• ,rk}· The resource set, R, 

is the ~et ~1 Rk. Elements of R are called resources. A 

sequence p( t) in P(R) is called a d-process if there. is an s 

in N such that p(t) f. ¢ if t ~ s and p(t) = ¢ if t ·'> s. Such 

an s is called the stop-time for p. The set of all d-proc­

esses, denoted P, is called the process set. An n-tuple of 

d-processes is called a description if n ~ 2. The set of all 
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descriptions, denoted D, is called the description set. That 
u 

is , D = .}! 2 Pn • 

Definition 2.2. Let d be a description. Say that d = 

. ~ d1 , d2 , ••• , dn) • The description length of d, denoted lldll, is 

the number max{s.: i in N } where s. denotes the stop-time 
i n i 

for the d-process d .• Note that lldU = max{kerc(d.):i in N }. 
l l n 

As the following example shows, a description d is 

thought of as a matrix with a total number of rows equal to 

Example 2.3. Let d = (d1 ,d2 ) be the description given 

in the following diagram. The stop-times for d1 and d2 are 4 

and 3 respectively. HdH = 4. 

time d -1- d -2-
1 r1 r1 

2 r2r4 r3 

3 r1r3 r2r4 

4 r2 ¢ 

In this example, the two d-processes which makeup d 

are d1 and d2 • They will be processed concurrently in the 

m~ltiprocessing system. Each requires a subset of the syst~m's 

resources from the resource set R4 = {r1 ,r2 ,r3;r4}. at. ·each. 

time increment. At time 1, d1 and d2 each need resource ~ 1 • 

At time 2, d1 needs r 2 and r 4 while d2 requires r 3 •. For sim­

plici ~y, subsets of resources are written in abbreviated 

form; d1 . at time 2 requires the subset { r 2 ,r 
4

} whi.ch in the 

above diagram is written as r 2r
4

• 
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S-PROOESSES AND SCHEDULES 

An s-process is the schedule of resources for some 

corresponding d-process. A set of s-processes is the 

schedule of resources for some description. A~ will be 

apparent from the following definitions, there may be- many 

different schedules for a given description. The.scheduling 

problem becomes -the problem of selecting the 'best'_ sched-

ule for a given description. The explicit definitions for 

s-processes and schedules are developed next. 

Definition 2.4. A sequence p(t)_ in P(R) is called an 

s-process if there is an s in N such that p(s) ~ ¢ and p(t) 

= ¢ if t > s. Such an s is _called the stop-time for p. The 

set of all s-processes, denoted Q, is called the s-pTocess 

set. 

Definition 2.5. An n-tuple of s-processes, say, 

1 1 

(s 1 ,~ 2 , ••• ,sn) is a schedule if the following conditions hold: 

(1) n ~ 2 

(2) For t in N, if r f sj(t) for some j in Nn' .then 

r l:_ si (t) for each i in Nn- { j} 
'· 
· (3) tf there is an xi~ N so that sj(x) = ¢ for·each i 

in N ~ then s:(t) =¢for each t > x and i in Nn n J 
I The set of all schedules, denoted S, is called the 

c CX) 

scheaule set. Evidently, s ~ n~2 Qn. 

Definition 2.6. Lets be in S, say, s = (s 1 ,s2 , ••• ,sn). 

The schedU.le length of s, denoted llsll , is the number. max{ti: -

i in Nn} where ti denotes the stop-time for the s-process si. 
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Note t.hat, in general, Ksll I= max{ kerc ( s i): i in Nn} • llsll is 

the number of rows· in the schedule matrix of s. 

Example 2.7. The following diagram is .a schedule ma­

trix for· the schedules= (s 1 ,s2 ). sis one way in which the 

resources of description d in example 2.3 may be scheduled. 

Here, llsll = 5. Notice that there are no resource conflicts, 

i.e., two processes using the same resource at the same time. 

This is guaranteed.by (2) of definition 2.5. Also, (3) guar-

antees that if a row in a schedule contains all empty sets, 

then the schedule is empty for all future times. 

Time - s 
-1- __ s2-

1 r1 r:/J 

2 r2r4 r1 

3 .r1r3 r:/J 

4 r2 r3 

5 ·¢ r2r4 

SCHEDULING FUNCTIONS 

The c~ncept of a scheduling function is developed next. 

This cortce'pt provides the mechanism by which schedules are 

assig~ed to .. descriptions. The class of all scheduling func-· 

tions ·is, central in this paper. It is this class for which 

12 

_the per£ormance theorems are developed. As it turns out~ if s 

is a schedule for d, then there is a scheduling function f so· 

that f(d) =·s. 

Definition 2.8. Let d be in D, say, d = (d1 ,d2 , •• ~,dn). 

A function f from D into Sis a scheduling function if-the 
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following conditions hold: 

(1) w(d) = w(fd), i.e., f· operating on d may be thought 

of as f operating on each individual coordinate of d; thus, 

f(d) = f(d 1 ,d2 , ••• ,dn) = (fd1 ,fd2 , ••• ,fdn) 

(2) kerc(dj) = kerc(fdj) for each. j in Nn 

(3) For each j in Nn' dj(t) = fdj(t') for each tin 

kerc(d.) where ' is the natural order preserving bijection 
J . 

from ~erc(dj) into kerc(fdj) 

Property (1) states that the number of processes in the 

description equals the number of processes in the schedule. 

Property (2) states that the number of nonvoid steps in a 

proce~s equals the number ?f nonvoid steps in the. schedule of 

that process. Properiy (3) states that resource splitting is 
.. 

not allowed as the following example demonstrates. 

Example 2·~9. Let a, b, c,' and x be in R. Let f be a 

scheduling function. Define d, s, and s' as follows: 

ab a 
d ·= c b, 

x c 

ab ¢ 
s - c a, 

x b 
r/J c 

a ¢ . 
and s' = be a; then, s is an allow­

x b 
¢ c . 

able image for d under .. .f •. Also, s'. is not an allowable image 

fbr d under f altho~gh·s' is a schedule. 

Definition· 2. 10. Let F denote the set of a11 scheduling 
-

functions. The multiprocess scheduling system, M, is the 4.-

tuple (R,.F,D,s). 

Definitio~ 2.11. Let d be in D. The max-length of d, 

denoted llldlU, is the number max{Uf(d)U·:f is in F}. ffldUI is the 

longest possible schedule length derivable from d. Also, mdrn 
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= 1~1 kerc(d1 ) where w(d) = n. 

There are three subsets of F which partition F into 

three.pairwise disjoint sets. The sets are the severe sched­

uling fu~ctlons, the optimal scheduling functions, and the 

intermediate scheduling functions, denoted respectively, SF, 

OF, and IF. These sets are defined next. 

Definition 2.12. f in F is a severe scheduling function 

if l\f(d)\I = llldl\\ for each d in D. SF is used to denote the set 

of all severe scheduling functions. Unless noted otherwise 

SEV is used to denote an arbitrary but fixed element of SF. 

Exa~ple 2.13. Let f be in F. Let d be in D, say, d = 

( d
1

, d2 ·~ ••• , dn) where si is the stop-time of di. Let j 1 , j 2; ... , 

jn be in Nn and let them be- n distinct indicies. Then f is a. 

string scheduling function if 

fd1(t) = dj1(t) 

{¢ if 1 "' t ~ sj1 
fd2(t) = 

dj 2 (t-sj 1 ) otherwise 

f'd3(t) 
{¢ if 1 ~ t "' sj 1 + sj2 

= 
dj 3 (t-_(sj 1+sj 2 )) otherwise 

· {¢if 1 ~ t ~ sj 1+ ••• +sjn_ 1 
fdn(t) = 

djn(t-(sj 1+sj 2+ ••• +sjn_1 )) otherwise 

· For example- ,· let a, b, and c be in R. Let f be in F. and· let 

a a c 
d = b c c , then if f is a string scheduling function, f(d) 

c ¢.ab 

.. might be either of the following where lldll = 3 and llf(d)ll -

8 = Uldlll: 
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f( d) = 

a 
b 
c 

a 
c 

c 
c 

ab 

or f(d) = 
a 
b 
c 

a 
c 

c 
c 

ab 

15 

Evidently, every string function is a severe function. 

In terms of the longest possible schedule length, the severe 

scheduling functions produce the worst schedules. 

Definition 2.14. f in F is an optimal scheduling func­

tion if /lf( d)\l = min {Ilg( d)ll : g in F} for each d in D. OS is 

used to denote the set of all optimal scheduling functions. 

Unless noted otherwise OPT is used to denote an arbitrary but 

fixed element of OS. If f and g are in OS, then llf(d)l\ = Ug(d)I 

for each d in D. 

As the name implies, in terms of shortest schedule 

length, the optimal scheduling functions produce the best 

schedules. Evidently, for each d in D and each f in F, UdH ~ 

llOPT(d)U ~ llf(d)ll ~ HSEV(d)ll ~ llidlU ~ w(d) lldll and Udll < tudU\. 

Definition 2.15. Let f be in F. If f is not in SF U 

OF, then f is an intermediate scheduling function. IF denotes 

the set of all intermediate scheduling functions. 

It can be the case that for f in IF, UOPT(d)ll = llSEV(d)ll· 

= Uf(d)\I for some d in D. 
. k co' 

Example 2.16. Consider the sequence Q = (d )k=i in ·n 

defined by the following description d.iagram where dk. ~ ('q.~, 
·k 
d2 ). Here, rij = rii for i = 1,2,3 9 ••• ,k+1 and for'j = 1,2,3, 

••• ,v. Also, the ri 1 's are k+1 distinct resources. 
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k is given Q = ( d )k=1 as: 

Time dk 
--1-

dk 
--2-

1 r1 1 r1 1 
( 

l 
2 r1 2 r1 2 

3 r1 3 r1 3 

I v r1 r1 

I 
v v 

v+1 r2 1 r2 1 c 

v+2 r2 2 r2 2 

v+3 r2 3 r2 3 

2v r2 v r2 v 

(k-1)v r k-1 v r k-1 v 

i (k-1)v+1 rk 1 rk 1 

I (k-1)v+2 rk 2 rk 2 

I (k-1)v+3 rk 3 rk 3 

I 
I 

kv rk v rk v 

I 
kv+1 rk+1 1 

kv+2 rk+1 2 

kv+3 rk+1 3 
! 

(k+1)v r 
. 

k+1 v 

Throughout this example, v is some arbitrary but fixed ele-

ment of N. For each choice of v, there is a different sequence 

Q. 
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~ . OPT(~) maybe given as follows: 

Time OPT(d~l OPT(d~l 

1 r1 1 

2 r1 2 

3 r1 3 

v r1 v 

v+1 r2 1 r1 1 

v+2 r2 2 r1 2 

v+3 r2 3 r1 3 

2v r2 v r1 v 

I 2v+1 r3 1 r2 1 

I 2v+2 r3 2 r2 2 

I 2v+3 r3 3 r2 3 

I 
I 

3v r3 v r-2 v 

I rk 1 rk-1 1 

I rk 2 rk-1 2 

I rk 3 rk-1 3 

I 
rk r 

kv v k-1 v 

rk+1 1 rk 1 

rk+1 2 rk 2 

rk+1 3 rk 3 

(k+1)v rk+1 v rk v 
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Finally, let f be in F so that f (Q) is given as: 

Time ~~.L f(d~l_ 
1 r1 1 

2 r1 1 

I 
3 r1 2 

4 r1 

I 
2 

r1 v 

I 
2v r2 1 r1 v 

I 
2v+1 r2 1 

2v+2 r2 2 

r2 2 

r2 3 

I 
r2 3 

! 2v+(2v-1) r3 1 r2. v 

I r3 1 
l 

I r3 ·2 

I r3 2 

I 2v+(k-2)(2v-1) rk r 

I 1 k-1 v 

rk I 1 

I rk 2 

rk 2 

2v+(k-1)(2v-1) rk+1 1 rk v 

rk+1 2 

rk+1 3 

2v+(k-1)(2v-1)+v-1 rk+1 v 
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In the previous example, the following inequalities 

ho 1 d : fl d k II = 11 OPT ( d k )II = ( k + 1 ) v = kv + v ~ k ( 2 v-1 ) + v = 2 v + 

(k-1) (2v-1 )+v-1 = llf(dk)u = 2(k+1 )v-(k+1 )-v+1 = 2tldkll-(k+1 )­

v+ 1 ~ fldklfl = llSEV( dk)ll = (k+ 1 )v+kv = 2(k+1 )v-v = 2 ndku -v ~ 

2 lldkll = w( dk) tldkll. 

In the next example, it is shown that M has a subsys­

tem, M', which is equivalent to the model given in (1] for 

studying the scheduling of a processor in a multiprogramming 

computer system. 

Example 2.17. In [1]~ a program Pi is defined ~o be a 

finite sequence of integers T. 1 ,t. 1 ,T. 2 ,t. 2 , ••• ,t. ,T. 
i i i i in. 1 in. 

l- l 

where t . . > 0 for j ~ n . 1 ; T . . > 0 for 1 ~ j '- n . ; and T . . 
lJ l- lJ l lJ 

~ 0 for j = 1 or j = n .. The T .. 's are called compute times 
l lJ 

and the t .. 's are the wait times, the times when the program 
lJ 

is in an I/O state or simply waiting for the processor. A 

program is a fixed sequence of compute and wait times._ . 

A multiprogramming description consists of k p·rograms 

being processed by one processor where the processor is as-

signed to one program at a time in increments of one unit of 

time. After program Pi has been assigned the processor for Ti 1 

units of time Pi must wait ti 1 units of time regardless of 

whether or not the processor is free. After ti1 units of t~mef 

Pi may again compete with the dther programs for the processor~ 

After being assigned Ti 2 units of processor time, it goes into 

waiting again. While Pi has the processor for a compute period 

no other program may use it, although, Pi's compute period may 

be pre-empted. But when Pi again gets the processor, it picks 
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up where processing left off. For example, consider the 

following description: let P 1 be given by T11 = 3, t 11 = 1, 

T12 = 1; and P2 be given by T21 = 1, t 21 = 2, and T23 = 2, 

The description d = (P 1 ,P2 ) may be represented graphically 

as follows: 

where the dashes and dotes represent, respectively, compute 

and wait times. 

Let M' be the subsystem of M defined as follows: first, 

associate R' = {p,w1 ,w2 ,w3 , ••• } with R; let D' be the restric­

tion of D to all those descriptions d so that wi in dj(t) im­

plies that i = j, and dj(t) ~¢implies dj(t) is a singleton 

set; do the same to S to get S'; and, finally, restrict each 

fin F to D' to get F'. Let M' = (R',F',D',S'), then M' is a 

multiprocess scheduling subsystem of M. By associating the 

p's and w's of M' with the dashes (_) and dotes (.) of the 

other system, the equivalence of the two systems follows. As 

an example, d given above may be represented in M' as follows: 

Time P1 P2 

1 p p 

2 p w2 

3 p w2 

4 w1 p 

5 p p 

Here, w1 and w2 are the wait symbols for P 1 ·and P
2 

respectively. 
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p represents the computer processor. 

One possible schedule for d is as follows: 

sP 1 : 

sP2 : 

equivalent schedule in terms of M' is as follows: 

Time sP 1 sP2 

1 p r/J 

2 r/J p 

3 p w2 

4 p w2 

5 w1 P· 

6 p r/J 

7 r/J p 
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CHAPTER III 

SPECTRAL THEORY 

The theory developed here deals with special structures 

of the scheduling function domain set, the test sequences, 

and. the range of possible lengths the schedules of the des-

criptions may have. The concepts of test sequences, spectral 

sequences, and the sequential spectrum of a scheduling func-

tion a~~ fundamental to the construction of the performance 

theorems given in chapter 4. 

The test sequences are dev~loped first since the spec~ 

tral theory is built from them. Test sequences are also cen­

tral in construct~ng the perfo~mance theorems since they can 

bring out the best or worst performance of a scheduling func-

ti on. 

The spectrum of a test sequence is developed next. From · 

this concept, the spectral seque~ces are constructed. 'The 

structure and properties of these sequences are then studied. 

for they also play an important role in the construction of 

the performance theorems. 

Finally, ~he sequential spectrum of a scheduling func-

tion is defined and certain properties concerning it are giv-

en. This concept allows one to consider a.scheduling function· 

in terms of spectral sequences. This permits the use of cer-· 

tain spectral sequence results in the analysis of the sched­

uling functions. 



i 
I 

' I 
I 
I 
I 
I 
I 

' 

I 

I 

I 
I 

TEST SEQUENCES 

k 00 
Throughout this section, let Q = (d )k= 1 be a sequence 

in D, the set of all descriptions. 

Definition 3.1. Q is of constant width if, for some 

fixed i·in N with i > 1, w(dk) = i for each kin N. In this 

case, the width of Q, denoted w(Q),· is i. 

Definition 3.2. Q is a test sequence if the following 

conditions hold: 

(1) Q is of constant width 

( 2) lldk+ 111 > lldkll for ~ach k in N 

( 3) llldklU . .;. lldkll __... w(Q) as k -+ 00 

23 . 

Notation. Let T denote the set of all test sequences in 

D. 

In the next example, a sequence Q of D iS'.given which 

.is also a . test sequence. 

Example 3~3. Define·Q as follows: for each kin N, let 

dk be given as 

~k+100 

.Here, w(Q) = 2, lldk+ 1
11 = k+101 > k+100 = Udkll for each kin 

N, and llldklll + lldkl\ = 2k+100 t k+100 = 1+(1/(1+(100.;.k))) --.. 2. 

That is, Q is in T. 
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In the next example, a sequence Q in D is given which· 

is not a test sequence. 

Example 3.4. pefine Q as follows: for each k in N, 

let dk be given as 

a1 b1 

a2 b2 

a3 b3 . . 
ak bk 

Here, w(Q) = 2, lldk+ 1
11 = 2(k+1) > 2k = lldkll for each kin N, 

but Uldklll + lldkll = 3k+2k = 3/2 ~ 2. Therefore," Q is not in T. 

Exam:12le 3.5. The sequence Q in example 2.16 is in T. 

since w(Q) = 2, 11dk+111 = (k+2)v ) (k+1 )v = lldkll for each k in 

N, and (UldkUI . lfdkH) = (k+1)v+kv • (k+1)v = 1+(k-(k+1)) --+ 2. .. 
That is, Q is in T. 

No ta ti on. Let ldl denote llJdlll - lldll • 

Th~ next result shows that if Q is a test ~equ~nce, 

then the difference between the lengths of th~ longest· and. 

the shortest possible des~ription schedul~s gets arbitrarily 

large as the sequence of descriptions progresses. 

Proposition 3.6. If Q is in T, then ldkl ~oo. 
Proof. Since Q is in T, w(Q) ) 1. Thus, w(Q)-1 > 0 and 

w( Q )-1-e > 0 for some small e > 0. Since llldkUI + fldkll ,.....+ w( Q), 

pick q in N so that if k > q, then f (mdklll+ Odklf )-w(Q)I l.. e. 

So, if k > q, then -e <: llldklll+ lldkll - w(Q), (w(Q)-e) lldkll < llldklll, 
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and 0 < ( w ( Q ) - e-1 ) U d k ll < llld k Ill - II d k II • Since w ( Q ) - e-1 is 

fixed and lldk\\ ~ ao , then ldkl = llldklU - lldkll > lldkll ( w(Q )-e-1) 

--+ 00. . 

Examp.le 3. 7. In example 3. 3, ldk\ = 2k+ 100-(k+ 100) - · 

· k __.;... oo. In example 3. 4, I dkl = 3k-2k = k --+ oo. In example 

2.16, \dkl = (k+1)v+kv-(k+1)v =·kv _..oo. 

In the next result, properties regarding the limits of 

test sequence schedule lengths are given. 

Pro:eositi'on 3.8. Let Q be in T, then ( 1 ) lldkH __..,.. 00 ' 

(2) 
'k 

(3) Uf(dk)n HI d lU -.... oo , ~ oo for each f in F, and (4) 

.\dkl lldkll __.. w(Q)-1. 

Proof. (1) Since lldkfl is in N for each kin N and since 

Jldk+ 1u > lldkll for each k. in N, then lldkll ___.,. oo. (2) Since llldkllt 

> lldkl\, lUdkttl--+ oo. (3) llf(dk)ll ~ UOPT(dk)ll ~ \fdkll __.. oo. (4) 

ldk( + (ldk\l ::: (UI dkUl - II dktl ) f 11dkll = ( (lldklK 7- lldkU )-1 --+ w ( Q )-1 • 

THE SPECTRAL MAP AND SPECTRUM 

Definition 3.9. The spectral ma:e is the function m .. 
from D into n~1 Nn such that 

m(d) = ( Udll, lldU+1, lldK +2, ••• , lldll-2, Udll-1, lldll) 

m(d) is the spectrum of d. 

k C)O 

Definition 3.10. Let Q = (d )k= 1 be a sequence in D. 

The spectrum of Q, denoted m(Q) or m(dk), is the sequence 

(m(dk))ic°:1 • 

Exam:ele 3.11. Consider the sequence Q of 2.16 where v = 

3. The spectrum of Q, m(Q) is given in the following diagram: 
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m(d1 ). = ( 6, 7, 8, 9) 

m(d2 ) = ( 9,10,11,12,13,14,15) 

m(d3) = .(12-,13,14,15,16,17,18,19,20,21) 

m(d4 ) = (15,16,17,18,19,20,21,22,23,24,25,26,27) 

m(d5) = (18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33) 

-· . 
m(dk) = (3k+3,3k+4,3k+5,3k+6,3k+7,-3k+8, ••• ,6k,6k+1,6k+2,6k+3) 

The above array is called the spectral diagram of Q. 

SPECTRAL SEQUENCES 

Throughout this section, let Q = 
k 00 

( d )k=1 be a test sequ-

ence in D, n an element of N, and r an element of (0,1). 

Definition 3.12. A sequence s(k) is a sEectral sequence 

of Q is s(k) is in m(dk) for each k in N. 

Definition 3.13 •. A spectral sequence s(k) of Q is: 

(1) nth_left if ~(k) ~ HdkU+n-1 

(2) nth_right if s(k) ~ mdklll-n+1 

(3) rth_left intermediate if s(k) ~ UdkU+[rldkl] 

( 4')" r th_~ight i~termediate if s Ck) ~ tudklll- {r ldkl] 

Notation. Let S(Q) ,s1 (Q), SR(Q), s11 (Q), SRI(Q)°, and 

s1 (Q) denote, respectively, the set of all, left, right, 

left-intermediate, right-intermediate, and intermediate spec­

tral sequences of Q. s 1 (Q) is defined to be sL1 (Q) U sR1 (Q). 

Example 3.14. In example 3.11, the sequence s(k) = 

fldkU +2-1 = 3k+4 is a 2nd_left spectral sequence. s (k) = llldkll1-
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2+1 = 6k+2 is a 2nd_right spectral sequence. The sequence 

s(k) = lldkll+f!ldkl\ = 3k+3+f!(6k+3-(3k+3))1 = 3k+3+r3k/2l = 

5k+3 is a !-left intermediate spectral sequence. 
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Definition 3.15. Let X and V be se~s of sequences in N. 
e 

X is eventually contained in V, denoted X C-V, if for each x 

in s there is a Y in v so 
. e 

that x = y. x is eventuall;y equal 
e e 

to v, denoted x e v, if x c v and ·v :::> x. 
Example 3. 16. For each k in N, let xk be the sequence 

1'1'1' ••• '1'1 ' ••• ,o,o,o, ... where 1 appears k times and the 

O's continue forever. Let y be the zero sequence. Let X be 

the set {xk: k is in N}. Let V be the singleton set {y}. 
e Then, X V. 

The next proposition shows that SLI(Q) is eventually 

equal to SRI (Q) •. Thus, as far as the performance theorems are 

concerned, it will necessary in the future to consider only, 

. say; the·· 1eft-in termedia te spectral sequences. 

Proposition 3.17. sL1 (Q) ~ sR1 (Q) for each Q in T. 

Proof. Let s be in sR1 (Q), say, s(k) ~ llJ.dkll\-[r ldkl]. 

choose.~= 1-r. So lldkll+[sldklJ is in sL1 (Q). Therefore, s(k) 

~_llldklll-[rldkl) .= lldkl\+llldklll-lldkfl~[rldkl] = fldkl\+ldkl-(rldkf] =· 

. lldk\I+ [ldkl -r ldkl] = .lldkll+ [s !dkl] is in SLI(Q). That is, SRI(Q) 
e 
c·sL1 (Q). The proof that containment holds in reverse is just. 

as straightforward. 

One of the main features of the system M - (R,F,D,S) 

is the set F of scheduling functions. The next two results 

give the size of F and the size of the spectral sequence sets~ 
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Proposition 3.18. Every test sequence has denumerably 

many left spectral sequences, denumerably many right spectral 

sequences, and a continuum of intermediate spectral sequences. 

Proof. By considering the spectral diagram for a given 

test sequence, it is clear that every test sequence left and 

right spectral sequences since \dk\ __.,. ~. 

Let s be in (0,1) so that r < s. Since ldkl _... ~, r ~ 

s-2 / I d kl . ' r I d k I ~ s I d k I - 2 ' and [ r I d kl J f: r I d k \ + 1 ~ s \ d k \ -1 ~ 

[ s I d k I ] • Let x ( k) = 11dk11 + [ r I d k I J and y ( k) = ll d k \\ + [s I d k l J , 
then x and y are in s1 (Q) and x ~ y, i.e., x ~ y. Therefore, 

for each r in (0,1), there is an xr in s1 (Q) so that xr ~ Ys 

for each Ys in s1 (~) such that r < s. That is, there is a con­

tinuum of intermediate sequences. 

Corollary 3.19. There is a continuum of scheduling 

functions, i.e., F ~ c. 

Proof. For each i in Nk where k is in N, let ai =a~ 

b =bi. Let dk be given as 

ak bk 
, .. 

Then dk is a test sequence. Clearly, llOPT ( dk)I\ = lldkll. Let 

f be in F so that llf(dk)ll = lldku+[rldkl] • Since there is a 
-

continuum of choices for r, F ~ c. 
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The next proposition shows that forming new spectral 

sequences by combining a left and right spectral sequence 

does not c~eate a new spectral sequence type. The following 

notation details how the combining takes place. It is similar 

to the method used in constructing left and right spectral 

sequences. 

Notation. Let Si(Q) be the subset of S(Q) formed as 

e k [ k · ] follows: I is in Si(Q) if I(k) = lld ll+n-1+ s( ld l-m-n+2) 

where, for some sin (0,1), Lin s1 (Q), and R in SR(Q), L(k) 

e lldkll +n-1 and R(k) ~ llldkltl-m+ 1. 

Proposition 3.20. For each I in Si(Q) there is an H and 

J in s1 (Q) such that H ~I ~ J. 

Proof. Pick r in (0,1) so that r < s. Since \dkl _.. oo, 

r ~ s+(~-sm-sri+2s-3)/fdkl. ~hus, [rldkl] ~ rldk\~1 ~ sldk\+n­

sm-sn+2s-2 ~ n-1+~1dkl-sm-sn+2s]. Choose H(k) to be Udktt+ 

[r ldklJ • Thus, H is in s
1

(Q). So H(k) = lldkl\+ [r ldk\] ~ Udkll+ 

n-1+[sCldk\-m-n+2)] = I(k), i.e., H ~I. 

Pick tin (0,1) so that s < t. As above, s+(n-sn-sm+ 

2s+1)/ldkl ~ t. So, n-1T[s( ldkl-m-n+2)] = n+s(ldkl-m-n+2) ~ 

t I ~kl ...;1 = [ t l~kl] • Choose J(k) to be .lldkll + [t l dkl) • So, .J is 

in SI ( Q ) • Thus , J ( k ). = II d kll + [ t I d k I] 5 11 d k ll + n-1 + ( s ( I .d k I -m-n + 

)] ( ) 
· e e 2 = I k • Therefore, H < I ~ J. 

In the next proposition, it is shown that if H and J are 

two intermediate spectral sequences such that H is eventually 

less than J, then H+m is eventually between Hand J for each 

natural number m. 
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Proposition 3.21. Let Hand J be in SI(Q). If H ~ J, 

then H ~ H+m ~ J for each m in N • 

. Proof. Suppose H(k) e lldkll+[rldkl) and.J(k) ~ lldkll+ 

[sldkf]. Suppose H ~ J. Then r < s. So r+(m+2)/ldkl ~sand 

r I dkl +m+2 ~ s I dk l • Therefore, H(k) ~ t1cikl\ + [r ldk\) ~. lldkll + 

r r ldkl +m] e H(k)+m ~ lldkll +rt dkl +m+1 ~ \\dkll+s \ dk\ -.1 6 11 dkll + 

[sldkl] ~ J(k). 
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The next result shows that each intermediate spectral 

sequence is eventually greater than each left spectral sequ­

ence and eventually less than each right sp~ctral sequence. 

Proposition 3.22. If Lis in SL(Q), R is in SR(Q), and 

I is in SI(Q), ~hen L ~I ~ R. 

Proof~ Suppose that L(k) e ndkll+n-1, I.(k) e lldkll+ 

[r l'dkl] , and R(k) ~ llldklll-m+1. Since I dkl ___. oo, n/ I dk\ ~ r and 

m/ld.k\ ~ 1-r. So, n-1 ~ r\dkl-1. = [r\dkl) and Udkll+n-1 ~ (ldkl\ 

+ [r I dkl] • Also, m · ~ l dk\ - r \dk\ = \Udk\ll- \ldkll-r I dk\ • Ther·efore, 

lldkll+ Lr.ldkt] - \ldk.ll+r ldkl +1 ~ t11dk111-m+1. Thus, L ~ I ~ R. 

.THE SEQUENTIAL SPECTRUM 

Definition J.23. Let f be in F. ·Let Q = (dk) Oe> be a 
k=1 

sequence in D. The sequential spectrum of f over Q, denoted 

·llf(Q)ll, is the sequence ( llf(dk)ll )k:1 • Evidently, llf(dk)H is 

in m(dk) for each k in N. 

Definition 3.24. Let Q be in T. Q is a left (intermedi­

ate,right) test sequence if .flOPT(Q)ll is in SL(Q) (s1 (Q),SR(Q)). 
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Notation. Let TL' TI, and TR denote, respectively, the 

sets of left, intermediate, and right test sequences of D. 

The next result states that the s.equential spectrum of 

a scheduling function over a right test sequence cannot be a 

left ·or an intermediate spectral sequence. 

Proposition 3.25. Let f be in F .and Q = (dk) 00 
k=1 be in 

TR. Then /lf(Q)I\ is not in SL(Q) U SI(Q). 

Proof. llOPT ( dk)ff ~ \lf ( dk)ll for each k in N. Therefore, 

·the ~esult follows from proposition 3.22. 

The next result states that the sequential spectrum of 

a ~cheduling function over an intermediate test sequence can-

not be a left spectral sequence. 

Proposition 3.26. Let f be in F and Q 
k ()0 

= (d )k= 1 be in 

TI. The~· Uf(Q)U is not in SL(Q). 

Proof. This result also follows from proposition 3.22. 

·Example 3.27. The test sequence Qin example 2.16 is a 

lef·t test sequence since llOPT ( dk)ll = (k+1 )v = Udkll. 



CHAPTER IV 

SCHEDULING FUNCTION PERFORMANCE 

In this chapter, the notion of scheduling function per-

formance is defined and a set of performance theorems is con-

structed for the set F of scheduling functions. Each of the 

I. performance theorems describe the conditions under which a 

I scheduling function exhibits a particular type of performance. 
j 
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Also, results are given to demonstrate that under certain con-

ditions scheduling function performance is easy to calculate. 

THE PERFORMANCE MEASURE 

In this section, let f be in F, d in D, Q = (dk)k:1 in 

T, and Y/(Q) = i. 

Definition 4.1. The performance off at d, denoted 

pf ( d) , is the . numb er II f ( d) II / w ( d) 110 PT ( d) 11 • 

Proposition 4.2. 1/w(d) ~ pf(d) ~ 1. 

I 
Proof. Since 1 ~ lldll ~ llOPT(d)ll 6 llf(d)ll ~ w(d)lldll ~ 

w(d) llOPT(d)ll ,- pf(d) = Uf(d)ll /w(d)llOPT(d)ll ~ 1 and 1 ~ llf(d)JI f 

UOPT(d)ll. Since 1 < w(d), 0 t:. 1/w(d) ~ 1. Therefore, 1/w(d) I 
~ llf(d)ll /w(d) llOPT(d)ll = pf(d). 

Proposition 4.3 •. pf(d) = 1/w(d) iff Uf(d)ll = {IOPT(d)ll. 

Proof. pf(d) = 1/w(d) iff llf(d)((/w(d)llOPT(d)ll = 1/w(d) 

iff (lf(d)ll = JIOPT(d)ll. 
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Proposition 4.4 .. pf(d) = 1 iff \Id\\= llOPT(d)ll and 

1\£ ( d )ll = w ( d ) If d II • 

Proof. pf(d) = 1 implies Uf(d)ll/w(d)llOPT(d)ll = 1. So, 

11 f ( d )ll = w ( d) ll OPT ( d) U- and \If ( d ) II =w ( d ) II d ll = w ( d ) 110 PT ( d) II since 

llf(d)ll ~ w(d) lldll ~ w(d) llOPT(d)ll. Thus, lldll = llOPT(d)U -. The 

reverse dire~tion is trivial. 
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Next the definition of performance over a test sequence 

is given and the basic types of performanc_e are defined. 

Definition 4.5. The performance off~ Q,_ denoted_ 

pf(Q), is the limit, if it exists, lim pf(dk) fork in N. 

Definition 4.6. The three basic performance types are 
,/ 

defined as follows: 

(1) f exhibits best~ performance (e.b.c.p.) over Q 

if pf(Q) = 1/w(Q) 

(2) f exhibits intermediate case performance (e.i.c.p.) 

over Q if 1/w(Q) < pf(Q) z 1 

(3) f exhibits worst case performance (e.w.c.p.) over 

Q if pf (Q) = 1 

Exam p 1 e 4 • 7 • From exam p 1 e 2 • 1 6 , It f ( d k) I\ / w ( Q ) 110 PT ( d k) I\ = 

(2v+(k-1)(~v-1)+v-1)/2(k+1)v = (1+1/2k)/(1+1/k) - 1/(2v~2v/k) 

__.. 1 - 1/2v ask..__..~. Thus, pf(Q) = 1 - 1/2v is in (~,1) 

for each v in N such that v > 1. Therefore, f e.b.c.p. over 

Q for v = 1 and f e.i.c.p. over Q for v = 2,3,4, •••• 

Relative to the three basic kinds of test seq~ences, 

namely, ·left, intermediate, and right, under what conditions 

will a scheduling function exhibit each of the basic types of 

performance1 This is the fundamental performance problem.-· 
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THE PERFORMANCE THEOREMS 

In this section, the fundamental performance problem is 

solved; that is, for each test sequence type, the conditions 

that a scheduling function must satisfy in order to exhibit 

each type of performance are stated in the six performance 

theorems given in this section. 

Notation. In this section, let f be a scheduling func­

tion, Q = (dk)i:: 1 be a test sequence, ~nd w(Q) = i. Let Q' 

denote the quotient 1/i\IOPT(dk)I\. Thus Q'I(k) is a shorthand 

way to -write I(k)/iUOPT(dk)\\. Let Q" denote llOPT(dk)\I. _ 

The following lemma gives the performance of f over a 

left test sequence if the sequential spectrum of f is an in-

tBrmediate spectral sequence. Thus, in this case, if the se-

quential spectrum of f is known, then the performance of f is 

.easy to calculate. 

Lemma 4.8. Let Q be in TL and I be in SI ( Q) ' say,. I(k) 

e lldkll + [r I dkl] (0,1), Q'I(k) 
-for some r in then lim = lim 

Q '. (II dkll + (r ldkt) ) (i+r(i-1))/i. 
kf N kf N 

= 

·Proof. Since Q is in TL' for some min N, Q" e lldkll+m-1. 

Clearly, 

1 
1 + 

= 

i + 

Therefore, since I dkl I lldkll.......,. i-1 and udkll __.,.. oo, it follows 



1 . 

J 

I· 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 

35 

that 1 i m Q ' ( ll d k!I + r I d k \ -1 ) = 1 im Q ' ( II d k ll + r I d k I + 1 ) = ( 1 + r ( i-
k f N kf N 

1))/i •. Therefore, since \ldkll+rldkl-1 ~ I(k) ~ lldkll+.[r\dkl] 

~ lldkll+rld4+1, lim Q'I(k) = lim Q'(lldkll+[rldkl)) = (1+r(i-
kfN kf N 

1)/i. 

The first performance theorem, theorem 1, states that 

a scheduling function f exhibits best case performance over 

a left test sequence Q if and only if the sequential spectrum 

of f over Q is eventually less than every intermediate spec-

tral sequence of Q. 

Theorem 1. ·Let f be in F and Q be in TL. Then f e. b.c~p. 

over Q iff II f (Q )H ~ I for each I in s1 (Q). 

Proof. Suppose that Q" ~ udklt+m-1 for some min N. 

~ Assume t~at f e.b.c.p. over Q; that ~s, pf(Q) = i/i. 

The proof is by contradiction; suppose it is not the case that 

llf(Q)l\ ~ I for each I in s1 (Q) ._ T?en there is an I in s1 (Q) 

so that Uf(Q)ll ~ I; that is, there does not exist an n in N 
k . 

so that Uf(d )U < I(k) if k > n, Therefore, there is a denu-

merable subset of N, say N', so that llf(dk)lf ~ I(k) for each 

k in N'. Say that I(k) ~. lrdkfl +tr \dk1J for some r in (0, 1). 

So, from iemma 4.8, 1/i = pf(Q) = lim Q'llf(dk)U = lim Q'uf(dk)ll 
kfN kfN' 

= lim Q'I(k) = _lim Q'I(k) 
kfN' kfN 

= (1+r(i-1))/i. This is a contra-

d{ction since r ~ 0 and i > 1. 

¢: Assume now that Hf(Q)U ~ I for each I in s
1

(Q). By 

defini~ion, to show that f e.b.c.p. over Q, it must be shown 

that the following limit holds: lim Q' l/f(dk)lf·= 1/i. 
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Given e ) O. Since (1+r(i-1))/i ___,. 1/i as r _.. O, 

pick s in ( 0, 1) small enough so .that if r is in ( 0, s )., then 

(1+r(i-1))/i < 1/i + e/2. 
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Let r be irt (O,s). Pick I in s1 (Q) so that I(k) ~ lldk\\+ 

[r ldil]. Al~o, from the above hypothesis, llf(Q)ll ~ I. Thus, 

there is a q in N so that i~ k > q, then~(dk)u < I(k) = 

tt d k,, + [r I dk I] . 

Since 1/1\dkll --+ 0 as k --+ O, pick p in N so that if 

k > p, then 1/lldkll < e/2. 

Let k > max p,q , then 1/i Q' Uf(dk)ll < Q'I(k) = 

= = 
i(u dkri+m-1) i( udku+m-1) 

ldkl 1 
1+r-+-

. lldkll lldk(( 

m-1 
i(1 + -) 

Udkll 

(1+r(i-1))/i + 1/Ud~lt < 1/i + .e. 

= 

1 
1+r(i-1)+-

l/ dkll 
= 

.. The next result states that a scheduling function ex-

hi bi ts best case performance ·over a left test sequence when-

· ever the sequent~al spectrum of the scheduling function is 

a left spectral sequence. 

Corollary 4.9. Let f be in F and Q in TL. If llf(Q)\l is 

in SL ( Q·),. then f · e. b. c-. p. over Q. 

Proof. From proposition 3. 22, Jlf ( Q )II ~ I for each I in 

s1 (Q). Therefore, from theorem 1, f e.b.c.p. over Q. 

The following lemma gives the performance of a schedul­

ing function f over an intermediate. test sequence if the 
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sequential spe.ctrum of f is an intermediate spectral sequence. 

As in lemma 4.8, if the sequential spectrum of f, in this 

case, is known, then the performance off is easy to calcu-

late. 

Lemma 4.10. Let Q be in T
1 

and Jin s1 (Q), say, Q" ~ 

lldkll+ [s l·dkl] and J(k) ~ Udkll+ (;- ldkl] for r and s in (0, 1). 

Then lim Q'J(k) = lim (11dkll+ [r ldkt] )/i(lldkll+ [s ldkl]) = (1+ 

r(i-1))/i(1+s(i-1)). 

Proof. Clearly, 
Jdkl 

1+r-- + 

- lldkU +r l dkl ± 1 lldkU 
= 

i(udku+sldk/+ 1) k 
i(1+sfil -+ 

lldkU 

Hdkll +r I dkl + 1 ll dkH +r I dkl -1 
lim = lim 
kfN i(Hdk[(+sldkl-1) kfN i(l(dk((+s(dk/+1) 

Since 
tldkll+rldkl+1 

i ( ll dkn +s I dkl -1 ) 

e 
~ 

II dkll + [r tdk/] 

i(lldkll+ Sldk( ) 

Udkl( +r l dkl -1 

i(lldk11+s{dk(·+1)' 
lim Q'J(k) 
kf N 

(1+r(i-1))/i(1+s(i-1)). 

1 

lldkH 

_1_) 

lldkll 

= 

e 

1+r(i-1) 

i(1+s(i-1)) 

e 
Q'J(k) . ~ 

• 

The next performance theorem, theorem 2, states that a 

scheduling function f exhibits best case performance over an 

intermediate test sequence Q if and only if the sequential 
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spectrum of f over Q is eventually less than each intermedi­

ate spectral sequence over Q that is eventually greater than 

the sequential spectrum of OPT over Q. 

Theorem 2. Let f be in F and Q in T1 • Then f e.b.c.p. 

over Q iff llf(Q)ll ~ J for each J in s1 (Q) such that J ~ 

llOPT(Q)ll • 

Proof. Suppose that Q" e udkll + [s ldkl} for some s in 

(0,1) • 

~ Assume that f e.b.c.p. over Q, i.e., pf(Q) = 1/i. 

The proof is by contradiction; suppose there is a J in s1 (Q) 

such that J 5 Q" and llf(Q)ll 1 J. Therefore, there is a denu­

merable subset of N, say N', such that llf(dk)ll ~ J for each k 

in N'. Say that J(k) ~ 1rdk11 +[r1dk1J where r is in (s, 1 ). So, 

from the,previous lemma, 1/i = pf(Q) = lim Q'Hf(dk)ll = lim 
ktN ktN' 

Q -' ll f ( d k ) II = 1 i m Q ' J ( k) = 1 im Q ' J ( k ) = ( 1 + r ( i - 1 ) ) / i ( 1 + s ( i -1 ) ) • 
ktN' ktN 

This is a contradiction since 0 < s < r < 1 and i > 1. 

<= Assume that Uf (Q )lf ~ J for each J in s1 (Q) such that 

~ ~ Q'. By definition, to show that f e.b.c.p. over Q, it must 

be shown that lim Q'llf(dk)I( = 1/i. 

Given e ) O._ Since lim (1+r(i-1) )/i(1+s(i-1)) = 1/i, 
r--+s 

pick u in (s,1) small enough so that if r is in (s,u), then 

(1+r(i~1))/i(1+s(i-1)) ~ 1/i + e/3. 

Let r be in (s,u). Pick~ in s1 (Q) so that I(k) ~ Udkll+ 

j lrld~l]. Since llf(Q)ll ~I, there is a q in N so that if·k > q 

I· then Uf(dk)\l < I(k) = ltdkll+ [r ldkt] • 

I 
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Since ldk\__. ~, pick m large enough so that if k > m, 

thens ldkl '> 1. So if k > m, sldk\/ttdktl - 1/1tdk11,. O; that is, 

ldkl 1 
i ( 1 + s-- - -) '> i 

11ciku 11dk11 

k Since II d ll-+- oo, pick p large enough so that if k > p, 

then 1 / ttdkll < e/3. 

Choose 1 large enough so that if k > 1, then 

1+r(i-1) e 1+r(i-1) 

i(1+s(i-1)) 
<-

3 

Let k > max { 1 , m , p , q} , th en 1 / i ~ Q ' II f ( d k) II < Q ' I ( k) . = 

1 
. 1 +r( i-1) + 

lldkt1 

-ldkl 1 
i(1+s---) 
. lldku Udkll 

udku+rldkf +1 

i(«dk~+s1dk1-1) = 

1+r(i-1) 
+ 

ldkJ 1 
1+r- + -

Udku Udkll 

1 e 
< - + 

3 

+ 1/11dk11 < e/3 + 1/i + e/3 + e/3 = 1/i + e. 

1+r(i-1) 

i(1+s(i-1-)) 

Corollary 4.11. Let f be in F and Qin TI. If Uf(Q)tt ~ 
Q" + m for some m in N, then f e.b.c.p. over Q. 

Proof. Suppose J is in SI(Q) and Q" ~ J. Then, from 

proposition 3.21, Q"+m ~ J. Therefore, llf(Q)ll ~ J. Thus, from 

theorem 2, f e.b.c.p. over Q. 
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The next performance theorem, theorem 3, states that 

every scheduling function exhibits best case performance over 

any right test sequence. 

Theorem 3 •. Let f be in F and Q in TR. Then f e.b.c.p. 

.over Q. 

e k Proof. Suppose that Q" = Uld lll-m+1 for some m in N. Let 

e > 0 be given. For each min N, where m' = (1-m)/111dklll, 1/(1+ 

m') = 111dklll/(111dklll-m+1) = 1. Furthermore, 1/(1+m') --+ 1 since 

llldklll--+ co. 

Pick n large enough so that if k > n, then 1/(1+m') < 

1 +ei and Q" = llldkfll-m+ 1 • 

For each k in·N, Uf(dk)ll ~ lfldkfll. Let k > n, then 1/i ~ 

Q' llf(dk)u ~ llldklll/i(111dkur-m+1) = 1/i(1+m') < (1+ie)/i = 1/i + e. 

In the next three lemmas, i is in N and i > 1. These 

lemmas are technical results used in the proofs of the 

following performance theorems. 

Lemma 4.12. 1/i < (1+r(i-1))/i iff 0 <riff 1/(1+ 

r(i-1)) < 1. 

Proof. 1/i < (1+r(i-1))/i iff 1<1+r(i-1) iff O.< 

r(i-1) iff .O <riff 1 < 1+r(i-1) iff 1/(1+r(i-1)) < 1. 

Lemma 4. 1 3. 1 / i < 1 / ( 1 +r ( i-1)) iff r < 1 iff ( 1 +r ( i-1)) / 

i < 1. 

Proof. 1/i < 1/(1+r(i-1)) iff 1+r(i-1) < i iff r(i-1) < 

i-1 iff r < 1 iff 1+r(i-1) < i iff (1+r(i-1))/i < 1. 
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Lemma 4.14.· t <riff 1/i <: (1+r(i-1))/i(1+t(i-1)). 

Proof. t <riff 1+t(i-1) < 1+r(i-1) iff (1+,t(i-1))/i 

< (1+r(i-1))/i iff 1/i < (1+r(i-1))/i(1+t(i-1)). 
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Notation. Let Q be in T and r in (0,1). Let Ir denote 

the rth left intermediate spectral sequence of Q, i.e., Ir(k) 

e 11dk11 + [r ldkl] • 

The next performance theorem, theorem 4, describes the 

conditions under which a scheduling function exhibits inter-

mediate case performance over a left test sequenc. 

Theorem 4. Let f be in F and Q in TL. Then f e.i.c.p. 

over Q i:ff there is a p in (1/i, 1) so that Ir e llf(Q)l\ ~ J < s 
for each Ir and Js in Sj(Q) such that * 1/i < (1+r(i-1) )/i < 

p <. (1+s(i-1))/i < 1 • 

Proof. ~ Assume that f e.i.c.p. over Q, say that pf(Q) 

· = p which is in (1/i,1). Let Ir and Js be in SI(Q) so that* 

.above holds. let d = min{(1+s(i-1))/i - p, p - (1+r(i-1))/i}. 

d d/2 

------~ 

1/i (1+r(i-1))/i p (1+s(i-1))/i 1 

Since lim Q' lli(dk)ll = p, lim Q'I (k) = (1+r(i-1))/i, 
kfN kfN r 

·and lim Q'Js(k) = (1+s(i-1))/i, pick u large enough SQ that 
kf N . 

if k > .u, then IQ' tlf(dk)H - Pt < d/2, l Q'Ir(k) - (1+r(i-1 )/ii 

< d/2, and )Q'Js(k) - (1+s(i-1))/il < d/2. Therefore, if k 

'> u , th en Q ' Ir ( k) < Q ' U f ( d k) II < Q ' J s ( k) • Therefore , if k > u , 

then ·:Ir(k) < ·nf(dk)ll < J
8

(k). That is, Ir ~ llf(Q)ll ~ Js. 
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~ Assume now that there is a_p in (1/i,1) so that 

Ir ~.nf(Q)ll ~ Js for each Ir.and Js in SI(Q) so that~ above 

holds. By definition, it must be shown that pf(Q) = lim Q'( 
. . 

11.f(dk)ll) is in (1/i,1). 

Given e > O. Without loss of generality, say that 1/i 

< p - e/2 and p + e/2 < 1. Pick r = (i(p-e/4)-1)/(i-1) and 

s = (i(p+e/4)-1)/(i-1). Thus: (1+r(i-1))/i = p - e/4 and (1+ 
: ' 

s(i-1))/i = p + e/4. Sor ands are in (0,1) from lemmas 

4.12 and 4.13 since p - e/4 and p + e/4 are in (1/i,1). 

e 

1 / i p - e/2 p - e/ 4 p p + e/ 4 p + e/2 ·1 

By lemma 4.8, Q'Ir( k) __. (1+~(i-1))/i and Q'Js(k) 

-+ (1+s(i-1))/i. Pick u in N large enough so that if k >·u, 

lQ'Ir(k) - (1+r(i-1))/il < e/4, lQ'Js(k) - (1+s(i-1))/il<e/4, 

and"Ir(k) < llf{dk)ll < Js(k). Let k > u. Then Q'Ir(k) < p < 

· Q'Js(k). So, )Q'Uf(dk)ll- Pl·< (Q'Ir(k) - Q.'Js(k)\ ~I Q'Ir(k) '. 

- ( p · - .e / 4) .f + l ( p + e / 4) - Q ' J s ( k) \ + \ ( p - e / 4) - ( p + e I 4) \ 

·<. e/4 + e/4 + 2e/4 = e. 

"The n~xt lemma states that a scheduling function ex­

qibi ts intermediate case performance over an intermediate test 
. . 

''sequence.whenever the seq~ential spectrum of the schedullng 

function is a right spectral sequence. 

Lemma 4.15.·Let Q be in TI and llf(Q)ll in SR(Q), say 

Q' e lldkll + [t I dkl] where t is in ( O, 1). Then pf(Q) = lim Q' {/f( 

d k ) U = 1 i m Q ' ( flld kUI - m + 1 ) = 1 / ( 1 ~ t ( i -1 ) ) • 
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Proof. Consider the limit of the following inequal~ties 

as k gets large: 

+-

= 
k 

. ( 1 t Id \ 1 ) l + --+-
1\dktl udkft 

~. ----------------

Ill d kill 1 -Q1 

-- + 

= 

_1_) 
11ctk11 

The limit of both the first and last term as k gets large, in 

the above string of equations, is equal to 1/(1+t(i-1)). So, 

the result is p~oved. 

The next lemma gives a bound on the performance of a 

scheduling function over an intermediate test sequence •. 

· L·emma 4.16. Let Q be in TI' say, Q" ~ lldkll+ ~ \dkl] •. Then 

pf(Q), if it exist, i~ in [1/i, 1/(1+t(i-1))]. 

Proof. For each kin N, Q·" ~ llf(dk)ll ~ llldklll. Therefore, 

for each kin N, 1/i = Q"Q' = Q'lff(dk)ll ~ Q'rudklU. By lemma 

4.15, Q'111dk111-+ 1/(1+t(i-1)). Thus, if pf(Q) exists, then· 1/i 

= pf(Q) ·= lim Q·.'Uf(dk)ll = lim Q'mdktll' = 1/(1+t(i-1)). 
kf N kf N 

Notation. In what follows, t' is used to denote the 

expression 1+t(i-1). The same notation is used for the letters 

r and s. 
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The following definition and five lemmas are used in 

the statement and proof of the next performance theorem, 

the or.em 5. 

Definition 4.17. Let Q be in TI' say., Q" ~ It. Let 1/i 

~ p ~ 1/t' and let s±(Q) denote the set Jin SI(Q): It ~ J •. 

Then the lower set for Q at p, denoted LP ( Q), is the ·set 

. {Ir in s± ( Q) : r'/t' < p}. The upper set for Q at p, denoted 

up ( Q)' is the set {Js in s± (Q): s'/t' > P}· 

Lemma 4.18. 1/i < p < 1/t' iff Lp(Q) ~ ¢ ~ Up(Q). 

Proof.~ Suppose that 1/i < p·< 1/t'. Let 2d =min 

{ 1 It ' - p·' p - 1 Ii L r = ( it ' ( p-d) - t) I ( i-1 ) ' and s = ( it ' ( p+ 

d)-1)/(i-1). Then r'/it' = p-d, s'/it' = p+d, ·and 1/i < p-d 

< p < p+d < 1/t'. From lemmas 4.13 and 4.14, rands are in 

(0~1). Therefore, Ir is in Lp(Q) and Is is in Up(Q). 

• Suppose L~(Q) ~ ¢ ~ Up(Q). Then there is an:Ir in 

LP(~) and an Is in Up(Q) so that r'/it' < p < s'/it'. By the 

definition of p, 1/i ~ p ~ 1/t'. If p = 1/i, then r'/it' < 1/i 

and r' < t', a contradiction since 0 < t < r ~ 1. If p = 1/t*, 

th en 1 / t.' "' s ' /it ' and i < 

The~efore, 1/i < p < 1/t'. 

s' 
' 

a contradiction ~ince 0 < s <1. 

Lemma 4.19. If p = 1/t', then Lp(Q) ~ ¢. 
Proof. Given 0 < t < 1. From lemmas 4.12 and 4.13, 1/i < 

1 / t ' < · 1 • Let p = 1 / t ' , . 2 d = min { 1 -p , p- 1 / i J , and r · = ( it ' ( p · 

·-d)-1)/(i-1). Then 1/i < r'/it' = p-d < p = 1/t' < 1. Thus, 

r'/i < 1. From lemma 4.13, r < 1. From lemma 4.14, t < r. 

Since 0 < t < r < 1, Ir is in Lp(Q). 
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Lemma 4.20. 1/i < p ~ 1/t' iff Lp(Q) ~ ¢. 
Proof. This result follows directly from lemmas 4.18 and 

4.19. 

Lemma 4.21. If·p = 1/i, then Up(Q) ~ ¢. 
Proof. Let p = 1/i, 2d = 1/t' - p, and$ =.(it'(p+d)-

1)/(i-1). T~en 1/i = p < (1+s(i-1))/it' = p+d < 1/t' < 1 • 

Therefore, s'/i < 1. From lemma 4.13, s < 1. From lemma 4.14, 

t < s. Since 0 <. t < s < 1, Is is in Up(Q). 

Lemma 4.22. 1/i ~ p < 1/t' iff Up(Q} ~ ¢. 
Proof. This result follows directly from lemmas 4.18 and 

4. 21 • 

Tbe next resu1t describes the conditions under which a 

scbeduling function exhibits intermediate case performance 

.over an intermediate test sequence. 

e Theorem 5. Let f be in F and Q in TI' say, Q" = It. Then 

f e.i.c.p~ over Q iff there is a p i~ (1/i,1/t'] so that Ir ~ 

tlf(Q)ll for each r; in L (Q) and llf(Q)ll e for each JS in < JS 
" p 

. up (Q). 

Proof. ~ Assume that f e.i.c.p. over Q, say, pf(Q) = 

p. By lemma 4.16, 1/i < p ~ 1/t'. 

Case 1. Suppose 1/i ~ p < 1/t'. From lemma 4.18, Lp(Q) 

~ ¢ ~ Up(Q). Let Ir be in Lp(Q) and Js in Up(Q). Then r'/it' 

< p < s ' /it ' and 0 < t < r <. s .c:. 0. From 1 em~a 4. 1 2 , 1 / t' < 1 ·• 

From lemma 4.13, s'/it' < 1/t'. From lemma 4.14, 1/~ < r'/it'. 

Thus, 1/i < r'/it' < p < s'/it' < 1/t' ~ 1. Let d = min{p-(1+ 
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r(i-1))/it', (1+s(i-1))/it' - p. For example, say, 

d d/2 
--- ,__..,.,_ 

1/i r'/it' p s'/it' 1/t' 1 

Since.lim Q'/lf(dk)ll = p, lim Q'I (k) = r'/it', and lim r 

Q'J (k) = s'/it', pick u large enough so that if k) u, then s 

IQ' llf(dk)ll - p\ " d/2, /Q'Ir(k) - r'/it 1
) < d/2, and \Q'Js(k) 

- s'/it'\ ~ d/2. Thus, if k > u, then Q'Ir(k) < Q'llf(dk)\I < 

Q'Js(k). Therefore, if k > u, then Ir(k) < llf(dk)ll· <: Js(k). 

That is, Ir ~ llf(Q)ll ~ Js. 

Case 2. Suppose that p = 1/t'. Then Up(Q) =¢.Let 

~r be in Lp(Q). Therefore, 1/i < r'/it' .t:: p = 1/t' < 1. Let 

d = p - r '/it'. As above, pick u large enough so that if k > u, 

then f Q' lff(dk)lf - p/ <- d/2 and lQ'Ir(k) - r'/it 1I < d/2. Thus 

if k > u, then Q'Ir(k) < llf(dk)ll Q'. Therefore, Ir ~ }lf(~)I\. 

Suppose there is a pin (1/i,1/t'] so that.I ~ 
r 

llf(Q)ll for each I in L (Q) and !lf(Q)ll r p 
e 
< Js for each Js in 

Up(Q). By definition, it must be shown that pf(Q) = lim Q'( 

llf(dk)\l) is in (1/i,1). 

Case 1. Suppose that pis in (1/i,1/t'). Given e > o. 
Without loss of generality, assume that 1/i < p - e/2 an~ p + 

e/2 < 1/t'. Pick r = (it'(p - e/4)-1)/(i-1) ands= (it'(p+ 

e/4)-1)/(i-1). Then p - e/4 = r'/it' and p + e/4 = s'/it'. 

By lemma 4.12, 0 < r < s < 1 since p - e/4 and p + ~/4 are in 

(1/i,1). For example, 
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1/i p- e/2 p- e/4 p p+ e/4 p+ e/2 1/t' 1 

Therefore, Ir is in LP (Q) and J s is in Up (Q). From lemma· 4. 10, 

lim Q'Ir(k) = r'/it' and lim Q'Js(k) = s'/it'. Since Ir(k) is 

in L p ( Q ) and J s ( k) is in Up ( Q ) , Ir ( k) ~ ll f ( Q ) II ~ ~ s ( k ) • Pi ck 

u in N large· enough so that if k > u, then 'Q'Ir(k) - r'/it' l 
< e / 4 , / Q ' J s ( ~) - s ' /it ' ) < e I 4 , and Ir ( k) < l\ f ( d k) If .('. J s ( k) • 

Let k > u, then Q'I (k) < p < Q'J (k) and Q'.I (k) < Q'l\f(dk)I\ < r s r 

Q'Js(k). So, if k > u, then lQ'llf(dk)u - p\_ ~ jQ'Ir(k) -

Q'Js(k)I = \Q'Ir(k) - (p- e/4)j + \(p+ e/4) - Q'Js(k_)l + 

\ (p- e/4) - (p+ e/4)\ -' e/4 + e/4 + 2e/4 = e. 

Cas~ 2. Given e » O. Without loss of generality, assume 

that 1/i ~ p- e/2 and p+ e/2 < 1 • Suppose that p = 1 /t'. Pick. 

r = (it'(p- e/4)-1)/(i-1). So r'/it' = p- e/4. By lemmas 4.13 

and 4 .14' 0 -<r<-1 since p- e/4 is in (1/i,1/t'). for example, 

e 
(~--~------~~-__.,/'------~~--~------, 

1/i p- e/2 ·p- e/ 4 p = 1/t' p+ e/4 p+ e/2 1 

Therefore, Ir(k) ~ lldkll+ [r ldkl] is in Lp(Q), Since Um Q'Ir(k) 

·= r'/it',·lim Q'lll~klll = 1/t' =· p, and Ir(k) i~ iri Lp(Q),. pick 

u in N large enough so that lQ'Ir(k) - r'/it'l < e/4, l Q'mdkll\_ 

- P \ <. e/4, and Ir(k) < llf(dk)I\. Since \\f(dk)U ~ llldkllt for each 

kin N, then Q'llf(dk)ll ~ Q'tlldklll for each kin N •. Thus, if k-,u; 

Ir(k)Q' < Q'tlf(dk)U ~ Q'111dk111. Let k > u, then (Q'llf(dk)ll- p\ 

6: JQ' llf(dk)ll - Q'nt9.klll} + {Q'llldklll - pf ~ IQ'Ir(k) Q'll\dknij + 

e/4 ~ /Q'Ir(k) - (p- e/4)\ + {(p- e/4) - Q'111dk111I + e/4 ~ e/4 
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·+IP .... Q'tudk111\ + \-e/4j +· e/4 <: e/4 +.e/4 +· e/4 + e/4 = e. 

The next corollary states that information concerning 

-tne sequential spectrum of a scheduling function over an in-

termediate test s~quence can be obtained by knowing that the 

function exhibits intermediate case performance. 

Corollary 4.23. Let f be in F and Q in TI. If f e.i.c.p. 
. e 

over Q, then Q' + m <. llf ( Q )ll for each m in N. 

Proof. Suppose f e.i.c.p. over Q. By theorem 5, there 

is a p in (1/i, 1/t'] so that Ir ~ l\f(Q)I\ for each I.r in Lp(Q). 

By lemma 4.20, Lp(Q) ~ ¢. So, there is an Ir in Lp(Q) so that 

Q' -~ Ir ~ llf(Q)ll. By proposition 3.21, Q' + m ~ Ir for each m 

.in N. 

T~e last performance theorem describes the conditions 

under which a scheduling function exhibits worst case perfor-

mahce over a left test sequence. 

Theorem 6 •. L~t f be in F and Q in TL. Then f e.w.c.p. 

over Q iff llf (Q)I\ . 5 I for each I in SI (Q). 

Proof. ~ Assume that f e.w.c.p. over Q~ i.e.~ pf(Q) = 

1. The proof· is by contradiction; suppose that llf(Q)I.\ ~ Ir is· . 

. in S~(Q) for some r in (0,1). Then there is a denumerable sub­

set .of N, say, N' such that llf(dk)I\ ~ Ir(k) for each k in N'. 

From'lemmas 4.8 and 4.13, Q'Ir(k) __. r'/i < 1. Therefore,. 

1 = pf(Q) = lim Q'llf(dk)ll = lim Q'llf(dk)\\ ~ lim Q'I,...(k) = 
kfN· kfN' kfN' ~ 

lim. Q '· I (k) = r' /i ~ 1, a contradiction. 
kf N r 
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~ Assume that llf(Q)\I ~ I for each I in SI(Q). By def­

inition, it must be shown that pf(Q) = lim Q'llf(dk)ll = 1. 

Given e > 0. Without loss of generality, assume that e 

~ 2(1- 1/i). So 1/i < 1- e/2 < 1. Pick r = (i(1- e/2)-1)/(i-

1). Then r' = 1- e/2. From lemmas 4.12 and 4.13, 1/i < r < 1. 

So, Ir is in SI(Q) and Ir~ \\f(Q)ll. From lemma 4.8, Q'Ir(k) 

__.... r'/i. Pick u in N large enough so that if k > u, then 

I Q'Ir(k) - r' /i I < e/2 and Ir(k) < llf(dk)I!. Let k > u, then 

Q'I (k) < Q'Hf(dk)U -~ 1 and lQ'llf(dk)ll - 1\ ~ jQ'I (k) - 1l r r 

~ lQ'Ir(k) - r'/i\ + \r'/i - 1\ < e/2 + \ 1 - e/2 - 1l = e/2 + 

e/2 = e. 

Corol--lary 4.24. Let f be in F and Q in TL. If l\f(Q)ll is 

in SR(~), then f e.w.c.p. over Q. 

· Proof. From proposition 3. 22, I\ f ( Q )I\ ~ I for each I in 

SI(Q). Therefore, from theorem 6, f e.w.c.p. over Q. 
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CHAPTER V 

INDEPENDENT TASK SCHEDULING 
PERFORMANCE THEOREMS 

In this chapter, the m-process independent task sched­

uling model ITS, as given in [2), is redefined so that the 

performance theorems as given in chapter four can be applied 

to the redefined but equivalent model. 

DESCRIPTIONS, SCHEDULES, AND SCHEDULING FUNCTIONS 

In the following definitions, let T denote the task set 

{T 1 ,T2 ,T3 , ••• J. Tis essentially the resource set R, given 

earlier, relabeled. Although the relabeling is a minor point, 

it is mentioned since the notion of task, not resource, is 

central to the independent task scheduling model. 

oe 

Definition 5.1. Let D denote the set k~2 Nk. Dis the 

description set and ~lements of D are descriptions. Let d be 

in D, say, d = (d1 ,d2 , ••• ,dn). Then Udl\ = max{di: i in NnJ 

and 11\dl\\ = d1+d2+ ••• +dn. Think of di as the time needed· by 

any processor to complete or process task T .• So if d = (3,1, 
l 

345,1,4), then dis process time description of the task set· 

'fT 1 ,T2 ,T3 ,T4 ,T5} where 1 is the process time for task T2 and 

T4' 345 is the process time for task T3 , and 3 and 4 are re-

spectively the process times for T1 and T5 • Thus when ref er-

ring to a task set, ref er to its description. 
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Definition 5.2. A sequence p(t) in P(T) is called an 

s-process if the following conditions hold: 

(1) p(t) =¢or p(t) is a singleton for each t in N 

(2) There is an s in N so that p(s) ~ ¢ and p(t) = 

¢ if t > s 

(3) If p(t) = p(t+k) ~ ¢ for some k in N, then p(t) = 

p(i) for each i in [t+1,t+2, ••• ,t+k} 
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Definition 5.3. An m-tuple of s-processes, say, (s 1 ,s2 , 

S 3' • • • 'Sm) is a schedule if the following conditions hold: 

( 1) m ~ 2 

(2) For (j,t) f Nm X N, if sj(t) ~ ¢, then sj(t) ~ 

si(u) for each (i,u) in (Nm - (j}) X N 

(3) If there is a v in N so that s. (v) = ¢ for each 
l 

i in Nm, then si(t) = ¢ for each t ) v and i in Nm 

Let s denote the set of all schedules. Let Sm denote 

the set {s in s; w( s) = m}. 

Definition 5.4. Let Fm denote the set of all functions 

from D into Sm such that if f is in Fm' d is in D, s is in 

Sm, f ( d) = s, d = ( d 1 , d2 , ••• , dn) , and s = .. ( s 1 , s 2 , ••• , sm) , 

then the following conditions hold: 

(1) i is in Nn iff there is a (j,t) in Nm X N such 

that T. =. SJ. ( t) 
·l 

I (2) r; for some (j,t) in Nm X N, Ti= sj(t), then 

I 
:EtT.J n s.(t) = d .• 

t=1 l J l 

I (1) guarantees that only the tasks to be scheduled are sched-

! ed. (2) guarantees that a task to be scheduled is scheduled 

I 
I 
I 
J 
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just long enough to be processes. 

Definition 5.5. The m-pro~ess, jndependent task sched­

uling system Tm is the 4-tuple (T,Fm,D,Sm) where T is the set 

of tasks, F is the set of scheduling functions, D is the set 
m 

of descriptions, and Sm is the set of schedules. 

Example ·5 .6. Let f Ti: i in N5} be a set of tasks to be 

scheduled on 3 identical processors where d = (1,3,4,1,2) is 

the process time description. Then the system T3 is used • 

Let f be in F
3

• Then f(d) may have any of the following sched­

ules: 

Time 

1 

2 

3 

4 

5 

T2 T3 

T2 ·T3 

T2 T3 

T5 T3 

T5 T1 

The first schedule above has length 4. The second and third 

schedules both have schedule lengths of 5. The first is an 

example of an optimal schedule. 

Notice that the definition of ITS given in 5.5 above is 

equivalent to the definition of ITS given in [2). Also at this 

point the definitions in chapter 3 can now be applied to ITS. 

Thus the performance theorems given in chapter 4 hold for ITS. 
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CHAPTER VI 

SOME SPECULATION 

Though the basic work reported in this dissertation 

is theoretical in nature, it was felt appropriate to offer 

some speculative extensions based on the insights gained 

during the development of the theory •. 

The extension being suggested is toward a general re­

source flow network model (RFN). The motivation is to use 

the RFN model to analyze large complex social systems, such 

as industrial, corporate, governmental and combinations of 

thes~ systems, in search of new insights into their struc-

ture and behavior. 

To begin, two heuristic equations derivable from the 

mathematics of this dissertation are developed; 

I. One involves the relation between resource 

availability and the degree of resource conflict 

experienced in constructing schedules. Roughly · 

speaking, the level of resource conflict is in-

versely proportional to th~ availability of re-

sources. This may be represented by the expres-

. kR- 1 sion C = where C represents the resource con-

flict level, R represents the availability of re-

sources, and k is a constant of proportion depend-

on the particular system under investigation. 
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This expression says that for a specif~ed de-

scription, as the quantity of "needed" resources 

is increased, the level of scheduling conflict, 

in general, decreases. Likewise, as the resource 

availability level decreases, the conflict level 

increases. 

II. The second equation states that the length 

of the schedules produced is proportional to the 

level of resource conflict. This is represented 

by the expression L = hC + m where L represents 

the length of the schedule, h the conflict, and 

m represents the length of the longest process 

description. This expression says that as con-

flict increases, so does the schedule length. 

But the schedule length can never get smaller 

than the longest process description in the 

mix of processes being scheduled. 

-1 From these two equations, the equation L = kR + m is 
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derivable. It says that schedule length is inversely propor-

tional to the availability of resources. 

The next step in this speculative exercise is to devel-

op the RFN model in outline form. The explicit mathematical 

devel0pment is left as a future research project. 

A system Xj is an s-type system if it can be conceptu­

alized as given in the following diagram: 
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S-system Description. The s-system Xj is made of the 

constructs inside the large rectangle given above. Mj is the 

management or control mechanism for Xj. It decides what the 

system does by providing the scheduling device s. with in-
J 

structions or descriptions, denoted d, of the goals it wants 

to attain. Using the projecit descriptions and knowledge about 

the resources in the resource or inventory set Rj' the sched­

uling device s. produces resource schedules, denoted s, which 
, J 

are processed by the production or processing device Pj which 

in turn produces new resources that are sent to the resource 

set along with unused resources for possible distribution to 

a central resource set R. The resource set Rj sends, trades 

or otherwise dispenses with x.'s resources through Rand 
J 

under control of Mj. Xj also receives new resources via R. 

The dotted lines indicate communications flow. For ex-

ample, the dotted line from M. to R. indicates that MJ. can 
J J 

communicate orders or instructions to Rj but since the arrow· 

is one way, Rj does not communicate orders to Mj. Notice that 

M. also can give orders to s. or P .• The dotted line from E 
J J J 
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to Mj indicates that there may be an outside.entity that 

gives orders or sets policy for M. to follow. The solid lines 
J 

indicate resource flow. 

Intuitively, Mj does high level planning and has overall 

control over Xj (although E, if it exists for Xj' has control 

over Mj)' sj sees to the detail of carrying out plans and 

scheduling resources, P. uses the resources and does the pro-
J 

cessing, and Rj takes care of the inventory. 

A process here, intuitively, is a finite step-by-step 

procedure for doing something. Resources are used up in the 

execution of e~ch step. The things_ that an s-system does are 

accomplished via the processes. A set of processes to be ex­

ecuted by a system during the same processing period is called 

a description. For instance, if a company decides to build a 

new product, there are specific steps ~hat must be done that 

require using company resources, i.e., designing, testing, 

producing, and marketing the product~ Each of these steps 

describes a prqcess that must be completed and many steps or 

processes can.be done simultaneously since they do not in gen-

eral require the same resources. 

- Properties of ·s-systems. Each s-system has a set of 

critical p~ocesses, things that must be done on a regular 

basis for the· survival of the system. For example, in most 

companies management and accounting functions must be done 

regularly. 

Changes in the environment may require the system to 

initiate a new process to respond to these changes. A co~pany 
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may have to change a product in order to meet new air pollu­

tion standards. So a new product design and development pro-

cess would have to be started. These types of changes re-

quire an additional and sometimes unplanned for expenditure 

of resources. 

Thus, if not periodically restored, the system's re-

source set is eventually depleted by critical and unplanned 

processes, and the system eventually terminates. 

s-~ystems usually replenish their resource sets by pro­

ducing resources for sale or trade. The sale or trade of a 

resource is represented by the exchange of resources with the 

critical resource set R. For instance, if x is sold or traded 

for y, then x goes to R and y goes to the systems resource set· 

from R. 

Thus for each s-system there may be a continuous flow 

of resources to and from its resource set and R. If a system 

is to survive for very long, the resource flow must be such 

that there are always enough resources for the operation of 

its critical processes, i.e., survivability is a function of 

reso~rce availability. 

New Systems·From Old. It is permissible for a:q. s-system 

to be a resource of another s-system. Th_is happens when the 

management of the first system is controlled by the manage-

ment of the second. For example, company A may own companies 

B and C both of which build components for A's use. That is., 

A uses B and C as resources to build the components it needs. 

Let W denote the set of all s-systems, so for some finite 

I------~----~------~-
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indexing set I, W = {xj: j is in r}. Wis called the world 

system. Let K denote a resource sink. That is, when a re­

source is destroyed or in some other way deemed totally 

useless or valueless, it goes into K. The set R = {KJ V {R.: 
J 

i is in IJ .is called the world resource set. 

Let J = f i,j,k} = I. The coupling product of X. and X., 
l . J 

denoted x./x., is the set {x.,x.] together with the property 
l J l J 

that at least one of the systems has some control of the be-

havior of the other s-system. This is referred to as the cou-

pling control property. So the coupling product is commutative 

and associative. Xi/Xj/Xk may also be denoted as ifI' Xi. So 

IT 
W = ifI Xi. 

Example of an RFN Model. For example, USA IT 
= ifI' Xi 

where Xi is in USA if Xi is an s-system and the coupling pro­

perties consist of the laws by which the US government governs. 

One of the Xi's here is the US government since the government 

can be conceptualized as an s-system. In this manner, the 

world system W can be partitioned into a set of governments 

(a set of coupling products) that correspond to the governments 

of the real world. Using this technique, a network of resource 

and communication flows can be considered. Such a concept, 

that is, a set of coupling products together with the resource 

and communications network is an example of a resource flow 

network (RFN) model. 

Conflict.Analysis Using RFN Models. Using this model 

and the heuristic equations given earlier, an investigation 

into the properties and behavior of and conflict between.large 
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complex social systems such as world governments and their 

interactions can be made. 

For example the analysis of world wars can be simulated 

using this model. In such a model, the allies of WWII could 

be represented as one coupling product; the enemy, Germany 

and Japan, as another and the neutral countries as a third. 

The RFN model focuses on resources; it provides a re-

source-based explanation as to why the Germans lost the war. 

According to this model, it was basically a question of re-

flow and scheduling. From the work developed in chapter three, 

Spectral Theory, it can be seen that for a fixed test sequence 

and a decreasing resource set, the spectral sequence for each 

scheduling function shifts to the right in the spectral diagram 

of the test sequence. This in turn means that the schedule 

lengths get longer; that is, for a fixed set of processes, as 

the resource set decreases, the schedule lengths increase. 

In light of the spectral shift, consider the efforts 
,• 

the Germans made to hold fronts, expand the war, and build 

weapo~s as examples of critical processes being carried out 

in parallel. ·As the Germana began losing resources at a rate 

faster than the replacement rate, the schedule 'lengths or 

processing times of the critical processes began getting 

longer and longer because 0£ the increasing resource conflict 

generated by the co·n~inual destruction of their resource set. 
-

The difference of these rates was such that these critical 

processes could not be maintained. As a result the system did 

not survive. 
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One area where research and development of this model 

is clearly needed is in the mathematical development of the 
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resource and communication flow networks. Once this is devel-

oped, a mathematical explanation of the above may be explic-

itly stated. 

. Clearly the above speculative extensions of the theoret-

ical results of this dissertation are at an early stage of 

conception. However, it is hoped that they suggest some 

possible extension of the scheduling system notions both in 

theory and in application. 
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