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CHAPTER 1
INTRODUCTION AND OVERVIEW

Many man-made systems are characterized by three prop-
erties: they are goal oriented; they use resources in the
process of achieving fheir goals; and there are different
choices available as to how and what resources are used. In
such systems, it is often the case that how the resources
are used determines the productivity of the system, the ex-
tent to which it is successful in aohiéving ites goals, and
in the long run, whether or not the system survives.

How resources are used is often a question of sched-
uling. For example, consider a manufacturing company whose
goal is to make a profit by the production and sale of cer-
tain products. In such a company, the resources include work-
>ers, maohines; and materials. Poor scheduling of manpower,
macﬁines and/or material could produce delays in produétion.
Sucﬁ delays would occur, for example, if the right materials
are not at the right machines at the right time for assembly.
‘Extensive4pngoing delays may result in large order backlogs,
long order lead times, and high production costs., This in
turn may put the company at a competitive disadvantage and
decrease the company's survival chances.

Another example is the processing of computer programs

in a multiprogramming environment. Here, programs residing



in the computer's main memory take turns using the system's
processor to do calculations. At each processing time, the
scheduling function decides, according to some predetermined
algorithm, which program gets the processor. Because.of the
high cost of large computer systems, it is often desirable
to have a scheduling function producing schedules that re-~
sult in high levels of throughput, i.e. the number of pro-
cessed programs per unit of time.

Both of the above systems, although different in na-
'ture, rely on good scheduling to operate efficiently. The
schedules are determined by a scheduling function. Buf the
procedure the scheduling function uses may not be well de-
‘fined. In the case of the manufacturing company, the shop
foreman might schedule all of the machines using intuitive
methods based on years of experience. In the computef system
a program based on a well defined algorithmvmigﬁt be used to
schedulé the processor. In either case, relative to some pre-
determined performance criterion (like shortest possible
schedule), the schedules being produced might not be the best
péssible.'On the ofher.hand, how is one to know Whether or
‘not the ééheduieé are optimal without éctually.constructing
bettef ones or showing that better ones cannot be constructed?
AAre there conditions under which scﬁeduling function perfor-
ménce is optimal no matter which scheduling function is used?
Can knowing the perférmance of a scheduling function give in-

formation about the schedules it produces? Under what condi-

tions can scheduling performance be easily calculated?



The types of situations and questions alluded to in
the preceding paragraph have various practical consequences.
Before answering such questions, however, certain basic prop-
erties of scheduling functions and the underlying algorithms
" for generating their schedules must be investigated.
Historically, the general emphasis in the study of
scheduling algorithms has been on individual algorithms rath-
er than on classes of algorithms, but more recently this
state of affairs has begun to change, as Reingold, Nievergelt,
and Deo point out in [3]}
« « » One of the trends responsible for the rapid prog-
ress in combinatorial computing is a stronger emphasis
on the study of classes of algorithms as opposed to
individual algorithms.
Another line of research has been that of developing
' |
scheduling algorithms which are efficient in their operation
(in the sense of computer run time) and which produce "reason-
ably good" schedﬁles. Garey, Graham, and Johnson [2] comment:
‘Unfortunately, although it is not difficult to de-
- sign optimization algorithms (e.g., exhaustive search
is usually applicable), the goal of designing effi-
cient optimization algorithms has proved much more
difficult to attain. . . . This pessimistic outlook
has been bolstered by recent results . . . ‘ '
The "goodness" of these schedules is determined by comparing
the length of the schedules generated by the algorithm to the
length of some a priori determined optimal schedule. Further-
more, in [2], the "goodness" of an algorithm is determined by
constructing a performance guarantee theorem which gives a

least upper bound to the algorithm's worst case performance.

This approach is applied on an individual algorithm basis,



and as pbinted out in [2], works well on many algorithms.
However, since the structure of the algorithm being studied
is used tb direct the construction of the performance theo-
rem, the more complex the algorithm, the less likely it is
for this approach to work. In any case, when this approach
is successful, valuable information about individual algo-
rithms is gained{

The approach taken in this. dissertation is a combina-
tion and extension of the above two approaches. Classes of
-algorithms are the primary focus, and performance theorems
are utilized in their analysis. A novel approach to consid-
ering the classes of algorithm is developed. This includes
studying the general properties of the scheduling function,
dévelobing certain methods based on these, and then, by
making a natural assumption of correspondence, applying'
these methgd% directly to the class of algorlthms which com-
pute-the scheduling functions.

The underlying questions of concern in this disserta-
tion ére: What can be said in general concerniﬂg the perform-
ance of algorithms associated with a particular scheduling
syétem? If géﬂéral performance theorems exis% for a given
system, then what technlques are involved in the construction
‘and proof of the theorems, of what value are the theorems in
analysis of individual algorithms, and to what extent can the
“fheorems and techniques be applied to different scheduling
syspems?

The contributions of this dissertation may be divided
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into roughly three groups: (1) the development of a new math-
ematical model for simulating resource scheduling in multi-
processing systems, (2) the creation of a set of performance
theorems for the class of scheduling functions belonging to
the model, and (3) the transfer of the mathematical tech-
niques and theorems from the model to another scheduling
model.

The model developed here can be used to study the sched-
uling of reusable resources in a manufacturing environment.

It can also be used to study the scheduling of a processor

in a multiprogramming computer system. In chapter 2 it is

shown that the mbdel has a submodel which is mathematically
equivalent to the model given in [1] which is used to stud&
éomputer processor soheduling. In general, M, the model de-
veloped here, can be used to simulate any system héving the
following properties: (1) the system accomplishes its tasks
by using resources from a finite set of reusable resources,
(2) the system has a finite set of processes each of which
provides a descripfion of what resources it needs through

time to accomplish its task, and (3) for each process'set;

- selection of a schedule can be made from a variety of possi-

ble schedules. Eéchlschedule gives a listing of what re-
soufces are used by which processes so that there aré no
resource conflicts (no two processes are aésigned the same
resource at the same time). |

Each of the performance theorems created in this dis-

sertation for M describes the conditions under which a



scheduling function exhibits a particular type of perform-
ance., For example, one of the theorems states that for each
scheduling function there exist a significant number of cases
where the scheduling function exhibits best case performance.
Here, performance of a scheduling function f refers to the
comparison between the length of f's schedules and the length
of the optimal schedules. One of the key insights underlying
the work reported in this dissertation is that the perform-
ance theorems are important not only because they describe
ﬁow scheduling functions behave but also because they des-
cribe how any algorithm used to compute the schedules of a
scheduling function behaves. That is, if there is an algo;
rithm for computing the schedules of a given sche@uling
fupction f, then this algorithm has the same performance
propeftiés as f. Thus  in the example theorem given above,

an algorithm which computes f's schedules exhibits best case
performance for those cases where f exhibits best case per-
formance.

. The third group of contributions, mentioned above, in-
volves the transfer of the spectral theory techniques devel-
oped in chapter 3, It is demonstrated that these techniques
are transferable to the Independent Task Scheduling model,
ITS, given in_[ZJ. This 1s done by redefining the ITS model
using methods similar to those used to define M. The rede-
fined ITS model is mathematically equivalent to the defini-
tion of ITS given in [2], but now it has the interesting

property that all of the performance theorems and associated
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lemmas and corollaries developed for M hold for ITS as well.
This leads one to speculate on the possible existence of a
general scheduling model, similar to M, that encompasses
many of the standard scheduling models. This may be achieved
in part by dropping and/or modifying the defining axioms of

the model M.



CHAPTER 11
THE MULTIPROCESS SCHEDULING SYSTEM

In this chapter, the multiprocess scheduling system, M,
is developed. M = (R,F,D,S). That is, M is a 4-tuple of sets
where R, F, D, and S are, respectivély, the set of resources,
the set of scheduling functions, the set of descriptions, and
the set of schedules. The motivation for M is-given as the
definﬁtions are developed.

The following notation is.presented first since it is
used throughout this work. Other sbecial notatién is pre-
sented as needed in the remainder of this paper. Also, in a
'definition or notation, a word or phrase being défined is
underlined. | .

Notatién. Let N = {1,2,3,...}. For each m in N, let
N = {1,2,3,...,m}. If d is an n-tuple, then the width of 4,
denoted w(d), is the number n where n is from N. If S is a
set, then s® denotes the complement of S, 5§ denotes the éar- ‘
dinality of S, and P(S) denétes the finite power set of S,“
that is, P(S) is the set of all finite subsets of S. If ﬁ is
a sequence in P(S), that is, p is a function from N into P(S),
then the kernel of p, denoted ker(p), is the set {t in N
p(t) = ).

Let Sk and Qk be sequences in N, Sy is eventually

greater than Qk’ denoted Sk'g Qk’ if there is an m in N so




e

e e
that Sk > Qk whenever k » m, >, £ and % are defined

’
similarly.

Let T 1 and L J denote the greatest and smallest inte-
ger function respectively. L ) means that either [ Torl
may be used with the restriction that once one is selected

for a result then it is used exclusively throughout that

result.
d-Processes and Descriptions

A d-process may be thought of as a technological de-
scription of, say, a manufacturing process. It describes the
resources needed by the process at each time increment to
produce some item or accomplish some task. A description de-
notes a set of processes which will be processed concurrently
in the system. A description may be also thought of as a set
of programs to be processed in a multiprogramming computer
system with the individual programs representing the d-proc-
esses., Here, each program requires the computer processor at
various time increments to do calulations.

Definition.2.1. Let k € N, A k-resource set, Ry, is the

nonempty fiqite set {r1,r2,r3,...,rk]. The resource set, R,
is the get éﬁ1 Rk' Elements of R are called resources, A
sequence p(t) in P(R) is called a d-process if there is an s
in N such that p(t) # § if t ¢ s and p(t) = ¢# if t-> s. Such

an s is called the stop-time for p. The set of all d-proc-

esses, denoted P, is called the process set. An n-tuple of

d-processes is called a description if n ® 2, The set of all
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descriptions, denoted D, is called the description set. That

[ J
is, D*"—'rgz Pn-

Definition 2.2. Let d be a description. Say that d =

‘(d1,d2,...,dn). The description length of d, denoted fldll, is

the number max{si: i in Nn} where S3 denotes the stop-time
for the d-process d;. Note that Hdll = max{kerc(di):i in Nn}.

As the following example shows, a description d is
thought of as a matrix with a total number of rows equal to
Ball.

Example 2.%. Let d = (d1,d2) be the description given

in the following diagram. The stop-times for d1 and d2 are 4

and 3 respectively. Hdll = 4.

time d1__ —-QZ—-
1 T, Ty

2 ToTy T

% r1r5 r2r4
4 T, ¢

In this example, the two d-processes which makeup d
are dﬂ and d2. They will be processed concurrently in the
multiprocessing system., Each requires a subset of the system's :
resources from the resource set'R4 = {r1,r2,f3,r4},at'each.
time increment. At time 1, d, and d, each need reSourcelr1.
At time 2, d1 needs rzland r4 while d2 requires rB.,For sim-
plicity, subsets of resources are written in abbreviated
form; d1.at time 2 requires the subset {rz,r4} whicﬂ in the

above diagram is written as r2r4.
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S-PROCESSES AND SCHEDULES

An s-process is the schedule of resources for some
corresponding d-process. A set of s-processes is the
schedule of resources for some description. As will be
apparent from the following definitions, there maj be many
different schedules for a given descriptioh. The scheduling
problem becomes -the problem of selecting the 'best' sched-
ule for a given description. The explicit definitions for
s-processes and schedules are developed next.

Definition 2.4. A sequence p(t) in P(R) is called an

s-process if there is an s in N such that p(s) # @ and p(t)
=@ if t > s. Such an s isAcalled the stop-time for p. The -
set of all s-processes, denoted Q, is called the s-process

Definition 2.,5. An n-tuple of s-processes, say,

(s1,52,...,sn) is a schedule if the following conditions hold:
(1) n=22
(2) For t in N, if r £ sj(t) for some j in N, then
r{ s;(t) for each i in N _- {J}
\ (3) If there is an x in N so that sj(x) = ¢ for -each i
in N, then sj(t) = @ for each t > x and iin N,
The set of all schedules, denoted 'S, is called the

schedule set. Evidently, S # .Y, Q™.

Definition 2.6. Let s be in S, say, s = (81’82"°"Sn)'

The schedule length of s, denoted (Isll, is the number,max{ti:'

i in Nn} where ti denotes the stop-time for the s-process Si.\



Note that, in general, Ksh # max{kerc(si):i in Nn}. sl is
the number of rows in the schedule matrix of s.

Example 2,7. The following diagram is a schedule ma-

-trix for‘the schedule s = (81,825. s is one way in which the
resources of description d in example 2.% may be scheduled.
lHere, st = 5., Nétice that there are no resourée conflicts,
i.e., two processes using the same resource at the same time.
This is guaranteed.by (2) of definition 2.5. Also, (3) guar-
énfees that if a row in a schedule contains all empty sets,

theh the schedule is empty for all future times.

_Time —Sq —So
1 T, @
2 ToTy r,
3 T Ty @
4 . r, r3
5 ] 1) roT,

SCHEDULING FUNCTIONS

' Theigoncept of a scheduling function is developed next.
'Thié concept provides the mechanism by which schedules are
aSSiéﬁed‘ta.desériptions. The class bf all scheduling fﬁnc—‘v
tioﬁg-i8wcenfral in this paper. It is this class for which |

mfhe performance theorems are developed. As it turns out, if s

12

is a schedule for d, then there is a scheduling function f so

that f(d) ='s.

Definition 2.8, Let d be in D, say, d = (d1,d2,..;,dn).

A function f from D into S is a scheduling function if “the
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following conditions hold:
(1) w(d) = w(fd), i.e., f operating on d may be thought
of as T dperating on each individuwal coordinate of d; thus,

f(d)'= £(dqsdp,enerdy) = (£fd,fdy, a0, fd )

(2) kerc(dj) = kerc(fdj) for eachvj in N '

(3) For each j in N, » dj(t) = fdj(t') for each t inA
kerc(dj) where ' is the natural order preserving bijection
from kerc(dj) into kerc(fdj)

Property (1) states that the number of procésses in the
description equals the nﬁmber of processes in the schedule.
Property (2) states that the number of nonvoid steps in a
process equals the number of nonvoid steps in the schedule of
that process. Property (3) stétes that resource splitting is
not allowed as the following example demonstrates.

Example 2.9. Let a, b, ¢, and x be in R. Let f be a

schedﬁling function. Define d, s, and s' as follows:

ab a ab ¢ . a ¢

d= ¢ b, s= ¢ a, and s' = bc a; then, s is an allow=-
‘ X C X b X_ Db
' g c @ c

able image for d under.f..Also, s' is not an allowable image

for d under f although s' is a schedule.

Definition 2.10. Let F denote the set of all scheduling

functions. The multiprocess scheduling system, M, is the 4~ |

tuple (R,F,D,S).

Definition 2.11., Let d be in D. The max-length of d,
denoted liidil, is the number max{ﬂf(d)“:f is in F}; fldw is the

longest possible'schedule length derivable from d. Aléo, fidw



14
n__—_—_——-—-—
Z; ker® (d ) where w(d) =
There are three subsets of F which partition F into

three. pairwise disjoint sets. The sets are the severe sched-
uling functions, the optimal scheduling functions, and the
“intermediate scheduling functions, denoted respectively, SF,
OF, and IF. These sets are defined next.

PDefinition 2.12. f in F is a severe scheduling’function

if Mf(dM = maw for each d in D. SF is used to denote the set
of all severe scheduling functions. Unless noted otherwise
SEV is used to denote an arbitrary but fixed element of SF.

Example 2.13. Let f be in F. Let d be in D, say, d =

(d1,d2;...,dn) where s, is the stop-time of d;. Let Jyrdsseees

j, be in N and let them be n distinct indicies. Then f is a.

string scheduling function if

£d,(4) = dj, (%)

§if 1 ¢t £ 8y,
£d,(t) = {
: djz(t—sj1) otherwise
$if 1 £ t.£ sj, + 8
fds(t) = { 1 2
ij(t—Ksj1+sj2)) otherwise
) (P if 1 £t £ Sjite.ets]
: fdn(t) _ { . 1 n-1

djn(t-(sj1+sj2+...+sjn_1)) otherwise

For example , let a, b, and c be in R. TLet £ be in F.and let

a a c : . .
d="> % ¢ , then if f is a string scheduling function, f(d)
c - ab ' '

- might be either of the following where Idil = 3 and he(am =
= llams |
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a a
b C ,
c c
. a C
f(a) = c or f(d) = ab
c a :
c b
ab c

Evidently, every string function is a severe function.
In terms of the longest possible schedule length, the severe
scheduling functions produce the worst schedules.

Definition 2.14. f in F is an optimal scheduling func-

tion if Af(dN = min{lg(d)ll : g in F} for each d in D. 0S is
used to denote the set of all optimal scheduling functiéns.
Unless noted otherwise OPT is used to denote an arbitrary but
fixed element of 0S. If f and g are in 0S, then If(A = lUg(dN
for each d in D. |

As the name implies, in terms of shortest schedule
length, the optimal scheduling functions producé the best
schédules. Evidently, for each d in D and each f in F, fndn =
NOPT(AM < uf(ay £ USEV(A) £ mdm £ w(d)iudl and Udﬂ.< [di,

Definition 2,15, Let f be in F, If £ is not in SF U

'OF then f is an 1ntermed1ate scheduling functlon. IF denotes

the set of all intermediate schedullng functlons. .
It can be the case that for f in IF, WOPT(A} = USEV(d
= Uf(d) for some d in D. | |

Example 2,16, Consider the sequence Q = (dk)k‘”1 in D

defined by the following description diagram where ak = (d1,
dg). Here, rij = T, for i = 1,2,35440,k+1 and for'j = 1,2,3,

eeeyVe Also, the r..,'s are k+1 distinct resources.

i1
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Q = (dk)k=1 is given as:

. k k
Time d1__ d2——
1 Ty T
2 Ty oo Ty oo
> Ty 3 Ty 3
v Ty v T v
v+ o 4 s 4
V+2 Ts 5 rs o
V+3 r2 3 Ty 3
2v T2 v T2 v
(=1)v Tk-1 v Tkt v
(k=1)v+1 Ty Ty g
(k=1)v+2 Ty o Ty o
(k=-1)v+3 Ty = Ty 3
kv Ty v I‘k v
kv+1 Ty A
kv+?2 rk+1 o
‘_vaB Tkal 3
(k+1)v Ty v

Throughout this example, v is some arbitrary but fixed ele-
ment of N. For each choice of v, there is a different sequence

Q.



OPT(Q) maybe given as follows:

Time OPT(d%Q OPT(d5)
1 r1 y
2 1 2
% r, 3
v r1 v
v+ Ty Ty
V42 To 2 Ty 2
VTB Ty 3 Ty s
ev To v r1 v
2v+1 r3 y r2 y
2V+2 I'B 2 r2 >
2VT3 r3 3 T, 3
v r3 v s v
ko1 Ty 1
Tk 2 Tk-1 2
x 3 Tk-1 3
kv‘ Tk v Tyx-1 v
rk+1 1 rk 1
Tre1 2 Ty o
I‘k+1 3' rk 3
(k+1)v TLl v Ty o



Finally, let f be in F so that f(Q) is given as:

Time
1

2

2V
2v+1

2V+2

2v+(2v=-1)

2v+(k=2)(2v=-1)

2v+(k=1)(2v=1)

2v+ (k=1) (2v=1)+v=1

k
£(df)
T
Ty 2
’r1 v
To 1
)
T 3
I‘3 2
T 1
Ty 2
Tre1 1
Trs1 2

3

Tyt

Tyt

k
_f£(d5)
99
Ty 2
r1 v
To
To 2
T, 3
I'2' v
I‘3 1
I'3 2
k-1 v
T 1
Ty 2
I'k v

18
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In the previous example, the following inequalities

hold: na¥u = poPT(dM = (k+1)v = kvev = k(2v-1)+v = 2v+
(k=1)(2v=1)4v=1 = 0£(AW = 2(k+1)v=(k+1)=v+1 = 2ud¥u-(k+1)-
vl = wd¥m = pSEV(ANM = (k+1)vakv = 2(k+1)v-v = 2nd5u-v £
onakn = w(dk)ndku.

In the next example, it is shown that M has a subsys-
tem, M', which is equivalent to the model given in [1] for
studying the scheduling of a processor in a multiprogramming
computer system,

Example 2.17. In {1}, a program P, is defined to be a

finite sequence of integers Ti1’ti1’TiZ’tiZ""’tini_1’Tini
where tij > 0 for j ¢ n;_q3 Tij > 0 for 1 ¢ j < n; ; and Tij
>0 for j=1o0r j = n,. The Tij's are called compute times

and the tij's are the wait times, the times when the program
is in an I/0 state or simply waiting for the processor., A
program is a fixed sequence of compute and wait times. .

A multiprogramming description consists of k programs
being processed by one processor where the processor is as-
signed to one program at a time in increments of one unit of
time. After program Pi has been assigned the processor for Ti1’
units of time Pi must wait tiT units of time regardléss of |
whether or not the proceséor is free, After ti1 units of time,
Pi may again compete with the other programs for the pfocessor.
After being assigned TiZ units of processor time, it goes into
waiting again. While Pi has the processor for a compute period
no other program may use it, although, Pi's compute period may

be pre~empted. But when Pi again gets the processor, it picks
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up where processing left off. For example, consider the
following description: let Py be given by T11 = 3, t11 =1,
T12 = 13 and P2 be given by Toq = 1, t21 = 2, and T23 = 2,
The description d = (P1,P2) may be represented graphically

. as follows:

where the dashes and dotes represent, respectively, compute
and wait times.

Let M' be the subsystem of M defined as follows: first,
associate R' = {p,w1,w2,w3,...} with R; let D' be the restric-
tion of D to all those descriptions d so that W in dj(t) im-
plies that i = j, and dj(t) £ @ implies dj(t) is a singleton
set; do the same to S to get S'; and, finally, restrict each
f in F to D' to get F'. Let M' = (R',F',D',S'), then M' is a
multiprocess scheduling subsystem of M., By associating the
p's and w's of M' with the dashes (_) and dotes (.) of the
other system, the equivalence of the two systems follows. As

an example, d given above may be represented in M' as follows:

Time P1 P2
1 P P
2 P Wo
3 P Wo
4 W p
5 D D

Here, w, and w, are the wait symbols for P, and P2 respectively.
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and p represents the computer processor.

One possible schedule for d is as follows:

sP1:

sPZ: .« e

The equivalent schedule in terms of M' is as follows:

Time SP1 sP2
1 P ?
2 7 P
3 p Wo
4 P Wo
5 Wy P
6 P ?
7 ? D



CHAPTER IIT

SPECTRATL THEORY

The theory developed here deals with special structures
of the scheduling function domain set, the test sequences,
and the range of possible lengths the schedules of the des-
criptions may have. The concepts of test sequences, spectral
sequences, and the sequential spectrum of a scheduling func-
tion are fundamental to the construction of the performance
theorems given in chapter 4.

The test sequences are developed first since the spec-
tral theory is built from theﬁ. Test sequences are also cen-
tral in constructing the performance theorems since they can
bring out the best or worst performance of a scheduling func-
tion. | “

The spectrum of a test sequence is developed next. From -
this concept, the spectral sequences are constructed. The
ﬂstructure and properties of these sequences are then studied.
for they also play an important role in tﬁe construction of
the pefformance theorems.

Finally,‘thé sequential spectrum of é séheduling fﬁnc-
tion is defined and certain properties concerning it are giv-
en. This concept allows one to consider a .scheduling function
in terms of spectral sequeﬁces. This permits the use of cer-
tain spectral sequence results in the analysis of the sched-

uling functions.
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TEST SEQUENCES

Throughout this section, let Q = (dk)kf1 be a sequence
in D, the set of all descriptions.

Definition %.1. Q is of constant width if, for some

fixed i in N with 1 > 1, w(dk) = 1 for each k in N. In this

case, the width of Q, denoted w(Q), is i.

Definition 3.2. Q 1is a test sequence if the following

conditions hold:
(1)” Q is of constant width
(2) 1d M > 1a¥u for each k in ¥
(3)  ma¥u 3 4a¥n —= w(Q) as k —» o

Notation. Let T denote the set of all test sequences in

~In the next example, a sequence Q of D is ‘given which

is also a .test sequence.

Example 3.%, Define Q as follows: for each k in N, let

' dk be given as
a1 b1
a5 Py
5 °3
By by
2k4+100

k+1 k

.Here, w(Q) = 2, N7 Il = k+101 > k+100 = {d™ for each k in
N, and Ma¥m # 1d¥n = 2k+100 £ k4100 = 1+(1/(14(100+k))) —s 2.

That is, Q is in T.
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In the next example, a sequence Q in D is given which
is not a test sequence.
Example 3.4. Define Q as follows: for each k in N,

let dk be given as

ay b1

a, b

°5 D3

;? 1;1«:

%ok
Here, w(Q) = 2, N¥* MW = 2(k+1) > 2k = 18" for each k in N,
but makm ¢ na¥n = 3k+2k = 3/2 £ 2. Therefore, Q is not in T.

Example 3.5. The sequence Q in examplé 2.16 is in T.

since w(Q) = 2, nak+ly - (k+2)v > (k+1)v - 1% for each k in

N, and (mdkm + ﬂdku)'zl(k+1)v+kv £ (k+1)v = 1+(k=(k+1)) —= 2.
That is, Q is in T. ' |
Notation. Let 1dl denote HidMl - udi.
The next result shows that if Q is a test Sequence,
then the difference between the lengths of the longest‘andi .
the shortest pdssible description schedules gets arbitrarily

large as the sequence of descriptions progresses.

Propositibn 3,6, If Q is in T, then ldkl —» c0,

Proof. Since Q is in T, w(Q) > 1. Thﬁs, w(Q)=1 > O and

Ko+ 0dn — w(Q),

w(Q)—ﬁ—e > 0 for some small e > O. Since iid
pick q in N so that if k > q, then |[(ma¥m+1d%n)-w(Q)| ¢ e.

So, if k > q, then -e < Ma¥Wz 1 - w(Q), (w(Q)-e)na¥n ¢ maku,
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and O < (w(Q)—e—1)Hdku 4 ma¥um - udkﬂ. Since w(Q)-e-1 is

fixed and 1a%—» @, then 1351 = wa¥m - wa¥n 3y wa¥u (w(Q)-e-1)
—_— 0,

Example 3.7. In example 3.3, 1d¥| = 2k+100-(k+100) = .

'K —» . In example 3.4, Idkl 3k=-2k = k — 0, In example

"kv —» o0,

2.16, 1a%1 = (k+1)vkv-(k+1)v
In the next result, properties regarding the limits of

test sequence schedule lengths are given.

Proposition 3.8. Let Q be in T, then (1) §d~

k

I — o,

W — o, (3) I£(aX)] —> © for each f in F, and (4)
X

(2) nd

185 5 1d5 — w(Q)-1.

Proof. (1) Since #d¥Nl is in N for each k in N and since

1 > 4a"i for each k in N, then 1@ —- . (2) Since mwa¥u

>udfu, wa¥u—s . (3) £ = wopr(a¥y > a¥
k| + udku = (mdkm - |rdku)+||dk|| = (mdku(+ udku)-1 —= w(Q)-1.

h—= o0, (4)

id
THE SPECTRAL MAP AND SPECTRUM

Definition 3.9. The spectral map is the function m

]

from D into Aﬁ1 N% such that

m(d) = (udn, udu+1, 1dh+2,...,0d0-2, 4dit -1, ndn )

m(d) is the spectrum of d,

Definition 3,10, Let Q = (dk)k:1 be a sequence in D.

The spectrum of Q, denoted m(Q) or m(dk), is the sequence
k 00
(m(d ))k=1°

Example 3,11, Consider the sequence Q of 2.16 where v =

3. The spectrum of Q, m(Q) is given in the following diagram:
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m(a') = (6, 7, 8, 9)

m(d?) = ( 9,10,11,12,1%3,14,15)

n(d”) - (12,13,14,15,16,17,18,19,20,21)

n(at) = (15,16,17,18,19,20,21,22,23,24,25,26;27)

m(a%) = (18,19,20,21,22,2%,24,25,26,27,28,29,30,31,32,33)
m(dk) = (3k+3,3k+4,3k+5,3k+6,%k+7;3k+8,...,6k,6k+1,6k+2,6k+3)

The above array is called the spectral diagram of Q.

SPECTRAL SEQUENCES

Throughout this section, let Q = (dk)k‘:1 be a test sequ-
ence in D, n an element of N, and r‘an element of (0,1).

Definition 3.12. A sequence s(k) is a spectral sequence

of Q is s(k) is in m(dk) for each k in N.

Definition %.13. A spectral sequence s(k) of Q is:

(1) n B_jert if s(k) £ ja* +n-1

(2) n® -right if s(x) € ma¥m-n+1

(3) rth—left intermediate if s(k) & ndkn+[r|dkd

(45‘r -right intermediate if s(k) md - [rldkﬂ
Notation. Let §(Q),5.(Q), S3(Q), S;7(Q), S7(Q), and
SI(Q) denote, respectively, the set of all, left, right,
left-intermediate, right-intermediate, and intermediate spec-
tral sequences of Q. SI(Q) is defined to be SLI(Q)lJ SRI(Q)'
Example 3.14. In example 3.11, the sequence s(k) =

iakn+2-1 = 3k+d is a 229 1eft spectral sequence. s(k) = mdkm-
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'2+1 = 6k+2 is a an-right spectral sequence. The sequence
s(i) = 180+ [2 105 = 3Ke34]2(6%43-(3K43))] = BKe3+[76/2] =
5k+3% is a %#-left intermediate spectral sequence.
Definition‘3.15. Let X and V be sets of sequences in N.

e
X is eventually contained in V, denoted X C.V, if for each x

in S there is a y in V so that x £ y. X is eventually equal
e e 4
to V, denoted X £ V, if X € V and V D X.

Example 3.16. For each k in N, let Xy be the sequence

Tol3lyeeeslylyees,0,0,0,... where 1 appears k times and the
O's continue forever. Let y be the zero sequence. Let X be
the set {x,: k is in N}. Let V be the singleton set {y};
Then, X g V.

The next proposition shows that SLI(Q) is eveﬁtually
equal to SRI(Q); Thus, as far as the performance theorems are
concerned, it will necessary in the future to consider only,

. say, the left-intermediate spectral sequences.

Proposition 3.17. SLI(Q) 2 SRI(Q) for each Q in T.

Proof. Let s be in S, (Q), say, s(k) & makm-[r1a%1].
choose S = 1-r, SO Hdku+[s|dku is in SLI(Q). Therefore, s(k)
g maku-[r1a®] = waFnruau-van 2 [r1a¥1] = pa¥us 10X -[r1a¥]) =

K X K ok Kk . . .
afis [1a5 -z 1a®1] = na¥us [s(a®1) is in s;(Q). That is, 5,7(Q)
C;SLI(Q). The proof that containment holds in reverse is just

as straightforward.,

One of the main features of the system M = (R,F,D,S)
is the set F of scheduling functions. The next two résults

give the size of F and the size of the spectral sequence sets.
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Proposition 3.18., Every test sequence has denumerably

many left spectral sequences, denumerably many right spectral
sequences, and a continuum of intermediate spectral sequences.
Proof. By considering the spectral diagram for algiven
test sequence, it is clear that every test sequence left and
right spectral sequences since ldk\ —— 00, ’
Let s be in (0,1) so that r < s. Since |d¥| —» o, r &
s-2/1a%1, rla®l % slda®l-2, and [r[dk|] £ rlafl+1 € slafi-1 ¢
[s)dkl]. Let x(k) = HdkH+[rldku and y(k) = udkﬂ+[s\dkl},
then x and y are in SI(Q) and x ¢y, i.6., X % 7. Thefefore,
for each r in (0,1), there is an x, in SI(Q) so that x 2 g

for each Vg in SI(Q) such that r < s, That is, there is a con-

tinuum of intermediate sequences.

Corollary 3.19. There is a continuum of scheduling

functions, i.e., F 2 c.

Proof. For each i in N; where k is in N, let a. = a £

b = bi‘ Let dk be given as

&y by

2 by

@5 D3

21 P4

Ej;k 1t;k
Then dk is a test sequeﬁce. Clearly, HOPT(dle = HdkH. Let
f be in F so that Hf(dkﬂl = Hdku+[rlqu . Since there is a

continuum of choices for r, F 2 c.
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The next proposition shows that forming new spectral
sequences by combining a left and right spectral sequence
does not create a new spectral sequence type. The following
notation details how the combining takés place. It is similar
to the method used in constructing left and fight spectral
sequences. ‘

Notation. Let Si(Q) be the subset of S(Q) formed as
follows: T is in 81(Q) if I(k) £ 14 +n-1+[s(1a*|-m-n+2)]

whére, for some s in (0,1), L in SI(Q), and R in SR(Q), L(k)
k

o

e

a4 +n-1 and R(k) = mdkm—m+1.

Prdposition %2.20., For each I in Si(Q) there is an H and

1 ¢ 7.

oy

in'SI(Q) such that H
Proof. Pick r in (0,1) so that r < s. Since |d*| —= e,

r % se(n-smesns2s-3)/1a51 . Thus, [r1a¥1] < rl1d¥1e1 & s1a¥(en-

sm—én+28—2 < n—1+[sldkl—sm—sn+2s]. Choose H(k) to be udku+

[z1a¥1] . Thus, T is in 5(Q). so H(k) = 1d®u+[r1a®] § wa¥us

n-1+[s(1d¥1 -m-n+2)] = 1(x), i.e., H ¢ I.

Pick t in (0,1) so that s ¢ t. As above, s+(n-sn-sm+
‘28+1)/ldk[ $ t. So, n-1+[s(ldkl-m—n+2)] = n+s(ldkl—m—n+2) 3
£1a5 =1 = [£1a%1] . choose T(k) to e ndu+ [t1a¥1] . s0, .7 is
in SI(Q)' Thus, J(k). = udkn+[tldkﬂ S Udku+n—1+[s(ldkl-m—n+

2)] = I(k). Therefore, H ¢ I 2 J.

In the next proposition, it is shown that if H and J are
two intermediate spectral sequences such that H is eventually
less than J, then H+m is eventually betweeﬁ H and J for each

natural number m,
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Proposition 3.21. Let H and J be in 5;(Q). If H ¢ J,

then H Z Hem 2 J for each

m in N,
_Proof. suppose H(k) £ na¥u+[r1a¥(] ana s(x) & nafus
[sldku . Suppose H ¢ J. Then r < s. S0 r+(m+2)/]dkl < s and

rldkl+m+2 S sldkl. Therefore, H(k) g udku+[r|qu E,udkn+
[r]a +m] € HQ)+m & pa¥i+ria® +met € 0afies1a®i-1 2 wakus
[s1a¥1]) € 5(x).

The next result shows that each intermediate spectral
sequence is eventually greater than each left spectral sequ-

ence and eventually less than each right spectral sequence.

Proposition 3.22. If L is in 8.(Q), R is in S,(Q), and

I is in 5;(Q), then T & T ZR.

Proof. Suﬁpose that TL(k) 2 ndku+n—1, I(k) £ wa¥ +
[rldkl] and R(k) 2 mdkm—m+1. Since ldkl——boo, n/ldk\ % r and

b
m/\dk\ 2 1-r. So, n-1 % ridkl-1A= [r\qu and udku+n-1 3 ndkn

+[r1a®1] . a1so, m € 1a¥1- r1a¥l = wafu-ya¥u-r1a¥i. Therefore,
udku+{pldk‘] = Hdkh+rldk|+1 < mdkm-m+1. Thus, L 1 % R.

‘THE SEQUENTIAL SPECTRUM

Definition 3.23. Let f be in F: Tet Q = (d¥), =, be a

sequence in D. The sequential spectrum of f over Q, denoted

IE(QI, is the sequence (N£(d)N), . Bvidently, I£(a)l is
in m(dk) for each k in N.
Definition 3.24. Let Q be in T, Q is a left (intermedi-

ate,right) test sequence if [IOPT(Q)I is in SL(Q) (SI(Q),SR(Q)).
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Notation., Let T and TR denote, respectively, the

L’ TI’
sets of left, intermediate, and right test sequences of D.
The next result states that the sequential spectrum of

a scheduling function over a right test sequence cannot be a

left or an intermediate spectral sequence.

Proposition 3.25. Let £ be in F and Q = (d*), 7, be in

TR. Then [f(Q)F is not in SL(Q) LISI(Q).
Proof. HOPT(del < Hf(dk)u for each k in N. Therefore,

"the result follows from proposition 3.22.

The next result states that the sequential spectrum of
a scheduling function over an intermediate test sequence can-

not be a left spectral sequence.

" Proposition 3.26. Let f be in F and Q = (dk)k:1 be in

Tr. Then I£(Q)Il is not in s (Q).

Proof. This result also follows from proposition 3%.22,

"Example 3.27. The test sequence Q in example 2.16 is a

left test sequence since HOPT(dk)R = (k+1)v = ta¥u.




CHAPTER IV
SCHEDULING FUNCTION PERFORMANCE

In tﬁis chapter, the notion of scheduling function per-
formance is defined and a set of performance theorems 1s con-
structed for the set F of scheduling functions. Each of the
‘ performance theorems describe the conditions under which a
scheduling function exhibits a particular type of performance.
Also, results are given to demonstrate that under certain con-

ditions scheduling function performance 1is easy to calculate.
THE PERFORMANCE MEASURE

In this section, let £ be in F, d in D, @ = (a5),°, in
T, and W(Q) = 1i.

Definition 4.1. The performance of f at d, denoted

pf(d), is the.number WE (i /w(a) noPT ()l .

IN

Proposition 4.2. 1/w(d) £ pf(d) 1.

IN

I ()l £ w(a)an <
w(a)IoPT ()i, pf(a) = U£(a /w(a)IioPT(d)i £ 1 and 1 = L
foPT(A) . Since 1 < w(d), 0 < 1/w(d) < 1. Therefore, 1/w(d)

Proof. Since 1 £ du £ [OPT(A)I

e (£(a)l /w(a)nopr(d)l = pf(d).

Proposition 4.3. pf(d) = 1/w(d) iff {f(a)l = HOPT(A) .
Proof. pf(d) = 1/w(d) iff p£(a)l/w(a)horPT(d)ll = 1/w(d)
iff pf(ai = noPT(d)il.
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Proposition 4.4. pf(d) = 1 iff HdW = HOPT(A)l and

hECaM = w(d)idl. |
Proof. pf(d) = 1 implies (f(d)f /w(d)HOPT(dM = 1. So,

Il

NE(al = w(d)noPT(d)l and H£(d) =w(a)lidh = w(d)NOPT(d)l since
BE(AM £ w(d) tdll € w(d)noPT(d)lf . Thus, Hdll = HOPT(A)} - The

reverse direction is trivial.

Next the definition of performance over a test sequence

is given and the basic types of performance are defined.

Definition 4.5. The performance of f over Q, denoted

pf(Q), is the 1limit, if it exists, 1lim pf(dk) for k in N.

Definition 4.6. The three basic performance types are
defined as follows: 8

(1) f exhibits best case performance (e.b.c.p.) over Q
if pf(Q) = 1/w(Q)

(2) f exhibits intermediate case performance (e.i.c.p.)

over Q if 1/w(Q) ¢ pf(Q) < 1

| (3) f exhibits worst case performance (e.w.c.p.) over

Q if pf(Q) = 1 _
Example 4.7. From example 2.16, Hf(dk)M/w(Q)HOPT(dk)H =
(2v+(k=1) (2v=-1)4v=1)/2(k+1)v = (1+1/2k)/(1+1/k) = 1/(2v+2v/k)

—» 1 - 1/2v as k —» e, Thus, pf(Q) = 1 - 1/2v is in (%;1)

for each v in N such that v > 1. Therefore, f e.b.c.p. over

Q for v = 1 and f e.i.c.p. Over Q for v = 2,3,4,40.
Relative to the three basic kinds of test sequences,

ﬁamely,~left, intermediate, and right, under what conditions

will a scheduling function exhibit each of the basic types of

performance? This is the fundamental performance problem.
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THE PERFORMANCE THEOREMS

In this section, the fundamental performance problem is
solved; that is, for each test sequence type, the conditions
that a scheduling function must satisfy in order to exhibit
each type of performance are stated in the six performance
theorems given in this section.

Notation. In this section, let f be a scheduling func-
tion, Q = (dk)£21 be a test sequence, and w(Q) = i. Let Q'
deno%e the quotient 1/inPT(dk)H. Tﬁus Q'I(k) is a shorthand
way to write I(k)/illoPT(d¥)Il. Tet Q" denote HOPT(a¥)I.

The folléwing lemma gives the performance of f over a
left test sequence if the sequential spedtrum‘of f is an in-
termediate spectral sequence. Thus, in this case, if the se-
gquential spectrum of“f is known, then the performance of f is

}eaéy to calculate. - -

Temma 4.8. Let Q be in Ty, and I be in SI(Q)’ say, I(k)

€ ua¥n+ [r1a¥) for some r in (0,1), then 12m Q'T(k) = 1lim
- k€N

Qf(udku+Erl&kd ) = (i+r(i-1))/1i. k€N

"Proof. Since Q is in TL’ for some m in N, Q" g Mdku+m—1.
Clearly,
) ] o,
1T+ -
. lia X naky
|

Qr(ud¥e o+ 1 1) =

i(m - 1)
fta¥y

Therefore, since 1d¥I/1a%—= i-1 and 1dXi—m «, it follows



that 1im Q' (1d¥u+r1d¥1-1) = 1im Q' (0d¥u+r(a®+1) = (1+r(i-
k€N k&N
na¥us [x1a*1)]

1))/i. Therefore, since Nd¥N+rid®l-1 & 1(k)
teride1, 1im Q'I(x) = 1im Q' (na¥u+[r1d¥1)) = (1+r(i-
kLN KdN

o

g g%

1)/1.

The first performance theorem, theorem 1, states that
a scheduling function f exhibits best case performance over
a left test sequence Q if and only if the sequential spectrum
of £ over Q is eventually less than every intermediate spec-

tral sequence of Q.

Theorem 1. Let £ be in F and Q be in TL. Then f e.b.c.p.

over Q iff WE(QM £ I for each I in 5.(Q).
Proof. Suppose that Q" £ udkn+m-1 for some m in N.

= Assume that £ e.b.c.p. over Q; that is, pf(Q) = 1/i.
The proof is by contradiction; suppose it is not the case that
0nf(Q)y 2 I for each T in SI(Q).VThen there is an I in SI(Q)
so that (f(QM £ I; that is, there does not exist an n in N
S0 that Mf(dk)u < I(x) if k¥ > n, Therefore, there is a denu-
" merable subset of N, say N', so that 0£(d¥)y = I(k) for each
| k in N'. Say that I(k) £ deu+$p\dkd for some r in (0,1). ‘
'S0, from lemma 4.8, 1/i = pf(Q) = 1im Q'U£(aX) = 1im q'uf(a¥)u

k4N k{N?

= 1lim Q'I(k) = 1im Q'I(kx) = (1+r(i-1))/i. This is a contra-
kN k4N '
diction eiﬁce r # O‘and i 1.
&  Assume now that W£(QW £ I for each I in SI(Q). By
definition, to show that f e.b.c.p. over Q, it must be shown

that the following limit holds: 1im Q'Uf(d¥)= 1/i.
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Given e » O. Since (1+r(i-1))/i —» 1/i as r —» O,
pick s in (0,1) small enough so that if r is in (O,s), then
(1+0(i-1))/4 < 1/1i + e/2. |
Let T be in (0,s). Pick I in 5.(Q) so that I(k) & ndu+
[rldid . Also, from the above hypothesis, I£(QM £ 1. Thus,
there is a q in N so that if k > q, thenuf(dk)u < 1I(k) -
i+ [r1a*1].
| Since 1/udkn —» 0 as k —» 0, pick p in N so that if

k > p, then 1/udkn < e/2.

Let k¥ > max p,q , then 1/i = Q'Hf(dk)n < Q'I(k) =

a5 1 1
‘ 1+r + T+r(i-1)+
0d¥u+[r1a®]  edfuer a4 s opae ua¥
i(udkn+m-1) i(udkg+m=-1) m-1 . 1
. i(1 o+ ) i(1+ ——)
wakn waky

(1+r(i=1))/i + 1/ud¥u < 1/1i + e.

The next result states that a scheduling function ex-
hibifs bést case performance’over a left test sequence when-

‘ever the sequential spectrum of the scheduling function is

a left spectral sequence,

Corollary 4.9. Let f be in F and Q in T

1 If uf(Q))N is
in si(Q),,then f e.b.c.p. over Q.

Proof. From proposition 3.22, If(QM % I for each I in

51(Q). Therefore, from theorem 1, f e.b.c.p. over Q.

The following lemma gives the performance of a schedul-

ing function f over an intermediate test sequence if the
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sequential spectrum of f is an intermediate spectral sequence.
As in lemma 4.8, if the sequential spectrum of f, in this
case,ié known, then the performance of f is easy to calcu-

late,

I
ﬂdkﬂ+i?|dkﬂ for r and s in (0,1).

Then 1im Q'J(k) = lim (nd¥us+ [eia¥] )/i(ua¥es [s1a¥]) = (14
r(i-1))/i(1+s(i-1)).
Proof. Clearly,

Lemma 4.10. TLet Q be in T- and J in SI(Q), say, Q" 2
na¥u+ [s 1a®1] ana J(x) &

|a¥| 1
T+r -
“ndfusr1d¥l 1 Wa¥p  na®u
i(naku+stakl® 1) B k
1(1+sld | + 1 )
nae na¥u
since |a¥l/ua®t —» i-1 and Hdk) —» o,
(d¥u+r 1 a¥l +1 wa¥irt a¥f -1 141 (i-1)
lim = 1lim = .
kN i(nd¥+sdkl-1) k&N i(udXq+sid¥l +1) i(1+s(i-1))
nafusr1a¥r41 e i a%i+ [ 1a¥] . e
Since ' 2 = Q'J(k) 2
i(wdku+s 1aki -1) iCad¥n+ sid¥ )
udku+r(dk1-1 udku+(rlqu
, 1lim Q'J(k) = 1lim =
i(udKi+s (a¥i+1) k€N k4N i(naKu+[staki])

(1+r(i=1))/i(1+s(i=1)).

The next performance theorem, theorem 2, states that a
scheduling function f exhibits best case performance over an

intermediate test sequence Q if and only if the sequential
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spectrum of f over Q is eventually less than each intermedi-
ate spectral sequence over Q that is eventually greater than

the sequential spectrum of OPT over Q.

Theorem 2., Let f be in F and Q in T Then f e.b.c.p.

T
over Q iff WF(Q)l £ J for each J in SI(Q) such that J S
HOPT(Q )

Proof. Suppose that Q" g udku+[§)dkl] for some s in
(0,1).

= Assume that f e.b.c.p. over Q, i.e., pf(Q) = 1/i.
The proof is by contradiction; suppose there is a J in SI(Q)
such that J $ Q" and uf(Q)Hu 2 J. Therefore, there is a denu-
merable subset of N, say N', such that uf(dk)u > J for each k
in N'. Say that J(kx) & Mdku+[rlqu where r is in (s?1). So,

from the.previous lemma, 1/i = pf(Q) = lim Q'UF (AN = lim
k€N k€N

QUUE(AEN = 1im Q'I(k) = lim Q'I(k) = (1+r(i-1))/i(1+s(i-1)).
k€N k4N

This is a contradiction since 0 < s < r <1 and i > 1,

& Assume that Wf(QM % J for each J in St (Q) such that
J S Q'. By definition, to show that f e.b. c. p. over Q, it must
be shown that 1lim Q! uf(d W= 1/1.

Given e » 0. Since 1lim (1+r(i-1))/i(1+s(i-1)) = 1/1,
. r—%»s

pick u in (s,1) small enough so that if r is in (s,ﬁ), then
(1+r(i41))/i(1+s(if1)) L /i o+ e/3.

Let r be in (s,u). Pick I in SI(Q) so that I(k) 0¥
Erldk\]. Since uf(Q)u % I, there is a g in N so that if 'k 5 q
then U£(AM < T(k) = na¥u+[r1a¥] .
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Since ]dkl——»tw, pick m large enough so that if k > m,

then s1d¥ > 1. so if k > m, sia¥i/wd®u - 1/0d¥0 > 0; that is,

1aX ]

i(1 + s - ) > i
naku naku

Since Hdkﬂ——b-w, pick p large encugh so that if k > p,
then 1/udn < e/3.

Choose 1 large enough so that if k > 1, then

1+r(i-1) 1+r(i=-1) e
- <
k i(1+s(i=1)) 3
i(1+s‘d I
id¥e  udku

Let k > max{l,m,p,a}, then 1/i = @rur(d¥) < Q'1(k) =

1a¥| 1
T+r +
-udku+[r|dkl] udku+rldkl+1 nak taxu
£ = pa
i(uati+[s1a5])  i(ndSursiaki-1) WK g
: i(1+s —
taku pakn
1
A+r(i=-1) +
ki 1+r(i~1) 1 e 1+r(i=1)
= + < + -
( 1a5 1 . a1 inaky 3 1(0s(3-1))
i(1+s _— i(1+s -—)
' naku naku nakn uaku

+ 1/Hdkﬂ <e/?3 +1/i + e/3 + e/3 =1/i + e.

Corollafy 4.11., Let £ be in F and Q in Tre If e 2

Q" + m for some m in N, then f e.b.c.p. over Q.

Proof. Suppose J is in SI(Q) and Q" % J. Then, from
proposition 3,21, Q"+m % J. Therefore, Wf(Q) % J. Thus, from

theorem 2, f e.,b.c.p. Oover Q.
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The next performance theorem, theorem 3, states that '

every scheduling function exhibits best case performance over

any right test sequence.

Theorem 3. Let f be in P and Q in TR. Then f e.b.c.p.

over Q.

Proof. Suppose that Q" £ mdkm-m+1 for some m in N. Let
e >0 be given. For each m in N, where m' = (1-m)/mdkm, 1/(1+
m') =lHdkM/(mdkm—m+1) = 1. Furthermore, 1/(1+m') — 1 since

Mdkm-—ﬁ-w.

Pick n large enough so that if k > n, then 1/(1+m') <
1+ei and Q" = mdkm—m+1.
For each k in N, Bf(a¥) < wa¥m. Tet k > n, then 1/i <

Q'Hf(dk)u < mdkM/i(mdkm—m+1) = 1/i(1+m') < (1+ie)/i = 1/i + e.

In the next three lemmas, i is in N and i > 1, These
lemmas are technical results used in the proofs of the

following performance theorems.

TLemma 4.12., 1/i < (1+r(i=1))/i iff O < r iff 1/(1+
r(i-1)) < 1.

Proof. 1/i < (1+r(i-1))/i iff 1 < 1+r(i-1) iff O <

r(i-1) iff 0 < r iff 1 < 1+r(i-1) iff 1/(1+r(i-1)) < 1.

Temma 4.1%. 1/i < 1/(1+r(i-1)) iff r <1 iff (1+r(i-1))/
i<, | |

Proof. 1/i < 1/(1+r(i-1)) iff 1+r(i-1) < i iff r(i-1) <
i-1 iff v < 1 iff 14r(i-1) < 1 iff (1+r(i-1))/i <1,
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Lemma 4.14. t < v iff 1/i < (1+r(i-1))/i(1+t(i-1)).

Proof. t < r iff 1+t(i-1) < 1+r(i-1) iff (1+t(i-1))/4i
¢ (+r(i-1))/1 iff 1/i < (1+2(i-1))/i(1+t(i-1)).

Notation. Let Q be in T and r in (0,1). Let I. denote

the vl

g udku+trldkt].

TheAnext performance theorem, theorem 4, describes the

~left intermediate spectral sequence of Q, i.e., Ir(k)

conditions under which a scheduling function exhibits inter-

mediate case performance over a left test sequenc.

Theorem 4. Let f be in P and Q in TL‘ Then f e.i.c.p.

over Q iff there is a p in (1/i,1) so that A 2 i@ 2 Jq
for each I, and Jg in Si(Q) such that * 1/i < (1+r(i-1))/1i <
p < (1+s(i=1))/1i < 1.

‘ Proof. = Assume that f e.i.c.p. over Q, say that pf(Q)
"= p which is in (1/i,1). Let I_ and J_ be in 5.(Q) so that *
‘above holds. let d = min{(14s(i-1))/i -~ p, p - (1+r(i-1))/i}.

d a/2

s P et msee, (e el

1}1 (1+r(ii1))/i ; =(1+s(i-1))/i 1
Since lim Q'Uf(dkﬁl = p, lim Q'Ir(k) = (1+r(i-1))/1,
KN K£N o

‘and 1%m Q'Js(k) = (1+8(i=1))/i, pick u large enough so that
k&N . ‘

if k> w, then [QUIL(a) - p) < a/2, |Q'I (k) - (1+x(i-1)/il
¢ d/2, and |Q'J (k) - (1+8(i-1))/i| < d/2. Therefore, if k
> u, then Q'I_(k) < Q'Uf(dM < Q"7 (k). Therefore, if k'>u,

\ ey K .
then 'T.(k) < WE(AN < J (k). That is, I, & NE(QN Z J,.
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& Assume now that there is a p in (1/i,1) so that

T. g ar(Qm 2 Jg for each I, and Jg in §; (Q) so that * above

>holds. By deflnltlon, it must be shown that pf(Q) = 1im Q' (
Hf(d W) is in (1/i,1).
Given e > O. Without loss of generallty, say that 1/1
< p~-¢e/2 and p +_e/2 <1, Pick r = (i(p-e/4)=-1)/(i-1) and
= (i(p+e/4)=-1)/(i-1). Thus§(1+r(i—1))/i =7p - e/4 and (1+
s(i-=1))/i = p + e/4. So r ana s are in (0,1) from lemmas
4,12 and 4.1% since p - e/4 and p + e/4 are in (1/i,1).

e

A

~ B

17i D : e/2 p:- e/4 ; D + g74 p +:e/2 1
By lemma 4.8, Q'Ir(k) —» (1+r(i=1))/i and Q'Js(k)
C— (1+s(i-1))/i. Pick u in N large enough so that if k »'u,
QUL - (er(i-1))/i] < /4, [Qra () = (1es(i=1))/i]<e/4,
and I (k) < £(a®)l < g (k). Tet k > u. Then Q'I(k) < p <
Q'3 (k). so, [Qrur(a - pl < [Q'1 () - @I (0] = [Q'T ()
- (- e/D)] + (o + /) - QI () + (o - e/4) - (p + e/4)|
<A'e/4 + e/4 + 26/4 = |

The next léemma states that a scheduling function ex-

hibits intermediate case performance over an 1ntermed1ate test

"'sequence whenever the sequential spectrum of the schedullng

functlon is a right spectral sequence.

Lemma 4.15. Let Q be in T, and f(QM in SR(Q), say'

Q' £ na*u + &ldkd where t is in (0,1). Then pf(Q) = lim QHIf(

A = 1im Q' (mdFu-ms1) = 1/(14t(i-1)).
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Proof. Consider the limit of the following inequalities

as k gets large:

waky A-m
+
na¥y na¥u wdw - m o+ A . naXn-m+1
= < Q'(md H(—m+1) =
L (rap el i(ua®nst1a¥i41) i (ua ¥ {51a%1])
naky  waku
wakm  1-m
+
mdkm - m + 1 udkn lldkll
£, = R
e D NP PN : L
nakn - naku

The 1imit of both the first and last term as k gets large, in
the above sfring of equations, is equal to 1/(1+t(i-1)). So,

the result is proved.

The next lemma gives a bound on the performance of a

scheduling function over an intermediate test sequence.,

Lemma 4,16, Let Q be in TI, say, Q" =

na¥+ 1 1a¥t]. Then

pf(Q), if it exist, is in [1/i, 1/(1+t(i-1))].

mdkm. Therefore,

km. By lemma

Proof. For each k in N, Q" ¢ uf(d¥u <
for each k in N, 1/i = Q"Q' = Q'uf(a™ )N = Q'ud

4.15, Q'llldklll—-—>

ﬁApf(Q)‘

if pf(Q) exists, then 1/i
1/ (1+8(1=1)) o

1/(ﬁ+t(i-1)). Thus,

Il
I

lim QUue(a™ M = 1im Q'makm
k€N k€N

Notation. In what follows, t' is
expression 1+t(i-1). The same notation

r and s.

used to denote the

is used for the letters
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The following definition and five lemmas are used in
the statement and proof of the next performance theorem,

theorem 5.

Definition 4.17. Let Q be in T;, say, Q" = I,. Let 1/i

= p = 1/t' and let 5}(Q) denote the set J in 5;(Q): I, T .
Then the lower set for Q at p, denoted LP(Q), is the set

'{Ir in 51(Q): T'/t' « p}. The upper set for Q at p, denoted
Up(Q), is the set {JS in Si(Q): st/t' > p}.

Lemma 4.18. 1/i < p < 1/t' iff Lp(Q) £ 0 # Up(Q).

Proof. = Suppose that 1/i < p-< 1/t'. Let 2d = min
{1/t' -p, p - 1/i}, r = (it'(p-d)-1)/(i-1), and s = (it'(p+
d)-1)/(i=1). Then r'/it' = p-d, s'/it' = p+d, and 1/i < p-d
< p < p+d < 1/%'. From lemmas 4.13 and 4.14, r and s are in
(0,1). Therefore, I, is in T (Q) and I, is in Up(Q). |

¢ Suppose L Q) £ 0 # U (Q). Then there is an I, in
L, (Q) and an I  in Up(Q) S0 that r'/it' < p < s'/it'; By the
deflnltlon of p, 1/i = p £ 1/t'. If p = 1/i, then r'/it' <1/1i
1/,

then 1/t' < s'/it' and i < s', a contradiction since O < s <1.

Il

and r' < t', a contradiction since 0 < t < r <1, If p

Therefore, 1/i < p < 1/t'.,

Lemma 4.19. If p = 1/t', then L (Q) £ D,

Egégi. Given 0 <t < 1, From lemmas 4,12 and 4.13, 1/1 <
1/¢" <1, Let p = 1/t',. 2d = m1n{1-p, p- 1/1}, and r = (it! (p‘
=d)=1)/(i-1). Then 1/i < r'/it' = p-d < p = 1/t' < 1, Thus,
r'/i < 1, From lemma 4,13, r < 1, From lemma 4.14, t < r,

Since 0 < t < r < 1, I, is in Lp(Q).
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Temma 4.20. 1/i < p £ 1/t' iff L,(Q) £ 0.
Proof. This result follows directly from lemmas 4.18 and

4‘019. ‘

Temma 4.21. If p = 1/i, then Up(Q) £ .

Proof. Let p = 1/i, 2d = 1/t' - p, and s = (it'(p+d)-

- 1)/(i=1). Then 1/1i = p < (1+s(i-1))/it"' = p+d < 1/t' < 1.

Therefore, s'/i < 1, From lemma 4.13, s < 1. From lemma 4.14,

t ¢ s. Since 0 < £t < s < 1, I, is in Up(Q).

Temma 4,22, 1/i € p < 1/t' iff Up(Q) £ 0.
Proof. This result follows directly from lemmas 4.18 and

4'21 L

The next result describes the conditions under which a
scheduling function exhibits intermediate case performance

oover an intermediate test sequence.

Theorem 5., Let f be in F and Q in TI, say, Qv £ It‘ Then

f e.i.c.p. over Q iff there is a p in (1/i,1/%'] so that I, £
t£(Q)} for each If in Lp(Q) and If(QM £ Jg for each J  in
u@). |
- Proof. = Assume that f e.i.c.p. over Q, say, pf(Q) =
p. By lemma 4.16, 1/i < p = 1/t". |

case 1. Suppose 1/i < p < 1/t'. From lemma 4.18, Lp(Q)

. ) ¢ Jiat

£ @ £ Up(Q). Let I, be in LP(Q) gnd Jg in Up(Q). Then r'/it
< p<s'/it' and 0 <t < < s < O. From lemma 4.12, 1/t'< 1.
From lemma 4.13, s'/it' < 1/t'. From lemma 4,14, 1/i < r'/it'.

Thus, 1/1 < r'/it' < p < s'/it' < 1/t' < 1. Let d = min{P'(1+
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r(i-1))/it', (1+s(i-1))/it' - p . For example, say,

A
v

1/1 BT PR s';it' 1/ 1

since 1im Q'I£(a®)l = p, 1im Q'I_(k) = r'/it', and lim
Q'Js(k) = g'/it', pick u large enough so that if k > u, then
lQrus(a® M - pl < a/2, [Q'I(k) - r'/it'] < d4/2, and lQ'a, (k)
- s'/it'] < a/2. Taus, if k > u, then Q'I_(k) < QUIE(d)N <
Q'J (k). Therefore, if k > u, then I_(k) < n£(adM < J (k).

That is, I, < UF(QM 2 J,.

Case 2, Suppose that p = 1/t'. Then Up(Q) = @. Let
I, be in LP(Q). Therefore, 1/i < r'/it' < p = 1/t' < 1. Let
d =p - r'/it'. As above, pick u large enough so that if k >u,
then [Q'Mf(dk)ﬂ - p} < d/2 and lQ'Ir(k) - /il < a/e. Thus
if k > u, then Q'I_(k) < Wf(ad“NQ'. Therefore, I_ % U£(Q)N.

&  Suppose there is a p in (1/i,1/t'] so that I p
If(Q for each I. in Lp(Q) and If(QM Jq for each Jg in
Up(Q). By definition, it must be shown that pf(Q) = 1im Q" (
()Y is in (1/1,1).

Case 1, Suppose that p is in (1/i,1/t'). Given e > O,
Without loss of generality, assume that 1/i < p - e¢/2 and D +
e/2 < 1/t', Pick r = (it'(p - e/4)~1)/(i-1) and s = (it'(p+
e/4)-1)/(i-1). Then p - ¢/4 = r'/it' and p + e/4 = s'/it",

By lemma 4.12, O < r < 8 < 1 since p - e¢/4 and p + e/4 are in

(1/i,1). For example,
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o e
L J{j ‘ " n e A N N
1/i p- e/2 p- e/4 D p+ e/4 p+ ef2 1/t 1

Therefore, I is in Lp(Q) and J  is in Up(Q). From lemma 4.10,

r
1im Q'I(k) = r'/it' and 1lim Q'J_ (k) = s'/it'. Since Ir(k) is
in L (Q) and J (k) is in U (Q), T.(k) z2ue@n % I k). Pick
u in N large enough so that if k > u, then |Q'I_(k) - rt/it')

< e/, [QUI (k) - s'/1it'] < /4, and I_(k) < WE(AN < I (k).
Let k > u, theﬁ Q'Ir(k) < p < Q'Js(k) and QfIr(k) < Q'nf(dk)u<
Q74 (k). So, if k > u, then |Quf(a) - p| < |Q I, (k) -
Q' IgB)| = |Q'I(k) - (p- e/4)] + [(p+ e/4) - Qu (k)| +

| (p- e/4) - (p+ e/4)| < e/4 + e/4 + 2e/4 = e.

Case 2. Given e > 0. Without loss of generality, assume

that 1/i < p- e/2 and p+ e/2 < 1. Suppose that p = 1/t'. Pick .
r = (it'(p- e/4)-1)/(i-1). So r'/it' = p~ e/4. ﬁy lemmas 4.13%
and 4.14, O < r < 1 since p- e/4 is in (1/i,1/t'). for example,
e

— <

3. 3 r'y -
AJ

{71 p—'e/2 ~p-'e/4 P - 1/%' p+ é/4 P+ é/Z 1

Therefore, Ir(k) & na¥u+ [rlqu is in Lp(Q). since 1im Q'I_(k)

‘= r'/it', lim Q'wa*w = 1/t' = p, and I_(k) is in 1,(Q), pick

u in N large enough so that lQ'Ir(k) - r'/it'| < e/4, ]Q'mdkuL

- p\ < e/4, and Ir(k) < Hf(dk)H. Since “f(dkﬂl éludkﬂlfor each
k in N, then Q'INf(a*M < Q'wd¥m for each k in N. Thus, if k yu,
I, (K)Q' < QuE(a*M 2 Q'wd¥m. Let k > u, then |Q'us(a¥)- p]

£ ]Q'kf(dk)u - Q'mdkm} + {Q'mdkm - p] £ lQ'Ir(k) - Q'mdkml +

e/4 = ‘Q'Ir(k) - (p- e/4)l + ‘(P’ e/4) - Q'mdkml + e/4 = e/4
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+ |p = Q'mdkm‘ + ‘—e/4| + ef4 <efd +. el/d + e/4 + e/4 = e.

The next corollary states that information concerning
-the sequential spectrum of a scheduling function over an in-
termediate test sequence can be obtained by knowing that the

function exhibits intermediate case performance.

Corollary 4.23. TLet £ be in F and Q in TI. If f e.i.c.p.
over Q, then Q' + m 2 Uf(Q) for each m in N.

Proof. Suppose f e.i.c.p. over Q. By theorem 5, there
is a p in (1/i,1/%'] so that I, £ NE(Q)N for each I in L,(Q).
By lemma 4.20, LP(Q) £ ¢. So, there is an I, in LP(Q) so that
e

Qf,g I, < I£(Q)i . By proposition 3.21, Q' + m p 1. for each m

.in N.

The last performance theorem describes the conditions
under which a scheduling function exhibits worst case perfor-

mance over a left test sequence.

" Theorem 6. Let £ be in F and Q in Ty Then f €.W.C.D.
over Q iff I£(Q)l .5 I for each I in 5;(Q).
Proof. 3 Assume that f e.w.c.p. over Q, i.e., pf(Q) = |
1. The proof is by contradiction; suppose that If(Q) £ I, is'.
- in S%(Q) for some r in (0,1). Then there is a denumerable sub-
set of N, say, N' such that uf(a®) £ 1_(x) for each k in N'.
 From lemmas 4.8 and 4.13, Q'Ir(k) —» r'/i < 1, Therefore,

1 = pf(Q)

Lim QUE(AN = Lim QUue(dfN ¢ 1im Q' (k) =
k€N k{N' KN ‘

1%m,Q"Ir(k) =r'/i« 1, a contradiction,
k&N
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& Assume that U£(Q § I for each I in 5;(Q). By def-
inition, it must be shown that pf(Q) = lim Q'uf(d) = 1.
Given e >0. Without loss of generality, assume that e
< 2(1- 1/i). so 1/i < 1- e/2 < 1. Pick r = (i(1- e/2)-1)/(i-
1). Theﬁ r' = 1- ¢/2. From lemmas 4.12 and 4.13, 1/i < r <1,
So, I, is in SI(Q) and I 3' Wf(Q). From lemma 4.8, Q'Ir(k)
—» r'/i, Pick u in N 1éfge enough so that if k > u, then
IQ'Ir(k) - r'/i| < e/2 and Ir(k) < Hf(dk)u. Let k¥ > u, then
Q'Ir(k) < Q'uf(dk)u < 1 and iQ'Mf(dk)u -1\ = lQ'Ir(k) - 1]
£ QT () - r/i) 4 \x'/i -] < e/2 4 |1 - e/2 - 1] = e/2 4
e/2 = e.

Corollary 4.24. Let f be in F and Q in T.. If Nf(Q)h is

_ L®
in SR(Q), then f e.w.c.p. over Q.
" Proof. From proposition 3.22, nf(Q)N S T for each T in

SI(Q). Therefore, from theorem 6, f e.w.c.p. over Q.



CHAPTER V

INDEPENDENT TASK SCHEDULING
PERFORMANCE THEOREMS
In this chapter, the m-process independent task sched-
uling model ITS, as given in iZ], is redefined so that the
performancé theorems as given in chapter four éan be applied

to the redefined but equivalent model.
DESCRIPTIONS, SCHEDULES, AND SCHEDULING FUNCTIONS

In the following definitions, let T denote the task set
{T1,T2,T3,...}. T is essentially the resource set R, given
earlier, relabeled. Although the relabeling is a minor péint,
it is mentioned since the notion of task, not resource, is
central to the independent task scheduling model.

O

Definition 5.1. T,et D denote the set ﬁ:& N

description set and elements of D are descriptions. TLet d be

K D ig the

in D, say, d = (d1,d2,...,dn). Then |dl} = max{di: i in Nn}

and INdM = d +dy+...+d_. Think of d; as the time needed’ by -

any processor to complete or process task Ti. So if d = (3,1,
345,1,4), then d is process time description of the task set
‘{T1,T2,T5,T4,T5} where 1 is the process time for task T, and
T4, 345 is the process time for task T3’ and 3 and 4 are re-
spectively the process times for T1 and T5. Thus when refer-~

ring to a task set, refer to its description.
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Definition 5.2. A sequence p(t) in P(T) is called an

s-process if the following conditions hold:
(1) p(t) = @ or p(t) is a singleton for each t in N
(2) There is an s in N so that p(s) # @ and p(t) =
@ if t > s
(3) If p(t) = p(t+k) # @ for some k in N, then p(t) =
p(i) for each i in {t+1,t+2,...,t+k}

Definition 5.%. An m-tuple of s-processes, say, (81,82,

s "“’Sm) is a schedule if the following conditions hold:

3
(1) m> 2
(2) For (j,t) € Nm XN, if Sj(t) £ 0, then Sj(t) #
si(u) for each (i,u) in (Nm - {3 x

(3) If there is a v in N so that s,(v)

@ for each
i in N, then si(t) = @ for each t » v and i in N_
Let S denote the set of all schedules. Let Sm denote

the set {s in S; w(s) = mj.

Definition 5.4. Let Fm denote the set of all functions

from D into Sh such that if f is in Fm, d is in D, s is in

Smy f(d) = 8, d = (d1’d2’-¢‘rdn)9 and s "(319329-0-ysm),
then the following conditions hold:
(1) 1 is in N, iff there is a (j,t) in N, X N such
that T, =,Sj(t)
(2) If for some (j,t) in N, XN, T, = sj(t), then

éé%{Ti} f\sj(t) = d..

(1) guarantees that only the tasks to be scheduled are sched-
ed. (2) guarantees that a task to be scheduled is scheduled
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just long enough to be processes.

Definition 5.5. The m-process, independent task sched-

uling system T, is the 4-tuple (T,Fm,D,Sm) where T is the set

of tasks, Fm is the set of scheduling functions, D is the set

of descriptions, and Sm is the set of schedules.

Fxample 5.6. Let {Ti: i in NS} be a set of tasks to be

scheduled on 3 identical processors where d = (1,3,4,1,2) is
the process time description. Then the system T5 is used.

Let f be in Fsge Then f(d) may have any of the following scheéed-

ules:
P P P P P P P P P
Time L 2 3 1 2 3 1 2 3
1 T1 T2 T3 T1 T2 T5 T2 T3 T4
2 T5 T2 T3 T3 T2 T5 T2 T3
4 T4 T3 T3 T4 T5 T3
5 T3 T5 T1

The first schedule above has length 4. The second and third
schedules both have schedule lengths of 5. The first is an
example of an optimal schedule.

Notice that the definition of ITS given in 5.5 above is
equivalent to the definition of ITS given in [2]). Also at this
point the definitions in chapter 3 can now be applied to ITS.

Thus the performance theorems given in chapter 4 hold for ITS.



CHAPTER VI

SOME SPECULATION

Though the basic work reported in this dissertation
is theoretical in nature, it was felt appropriate to offer
some speculative extensions based on the insights gained
during the development of the theory..

The extension being suggested is toward a general re-
source flow network model (RFN). The motivation is to use
the RFN model to analyze large comblex social systems; such
as industrial, corporate, governmental and combinations of
these systems, in search of new insights into their struc-
ture and behavior,

To begin; two heuristic equations derivable from the
mathemafics of this dissertation are developed;

I. One involves the relation between resource

availability and the degree of resource conflict

experienced in constructing schedules. Roughly
speaking, the level of resource conflict is in-
versely proportional to the availability of re-
sources, This may be represented by the expres-

sion C = kR—1 where C represents the resource con-

flict level, R represents the availability of re=-

sources, and k is a constant of proportion depend-

on the particular system under investigation.
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This expression says that‘for a specified de-
scription, as the quantity of "needed" resources
is increased, the level of scheduling conflict,
in general, decreases. Likewise, as the resource
availability level decreases, the conflict level
increases.

II. The second equation states that the length
of the schedules produced is proportional to the
level of resource conflict. This is represented
by the expression L = hC + m where L represents
the length of the schedule, h the conflict; and
m represents the length of the longest process
description. This expression says that as con-
flict increases, so does the schedule length.
But the schedule length can never get smaller
than the longest process description in the

mix of processes being scheduled,

From these two equations, the equation L = kR-1+ m is
derivable., It says that schedule length is inversely propor-
tional to the availability of resources.

The next step in this speculative exercise is to devel-
op the RFN model in outline form. The explicit mathematical
development is left as a future research project.

A system Xj is an s-type system if it can be conceptu-

alized as given in the following diagram:
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S-system Description. The s-system Xj is made of the

constructs inside the large rectangle given above, Mj is the
management or control mechanism for Xj’ It decides what the
system does by providing the scheduling device Sj with in-
structions or descriptions, denoted d, of the goals it wants
to attain. Using the project descriptions and knowledge about
the resources in the resource or inventory set Rj’ the sched-
uling device Sj produces resource schedules, denoted s, which
are processed by the production or processing device Pj which
in turn produces new resources that are sent to the resource
set along with unused resources for possible distribution to .
a central resource set R. The resource set Rj sends, trades
or otherwise dispenses with Xj's resources through R and
under control of Mj‘ Xj also receives new resources via R,
The dotted lines indicate communications flow. For ex-
ample, the dotted line from M. to R., indicates that M. can

J J J
communicate orders or instructions to Rj but since the arrow -

J

Mj also can give orders to Sj or Pj‘ The dotted line from E

is one way, R. does not communicate orders to Mj' Notice that
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to Mj indicates that there may be an outside,enfity that
gives orders‘or gsets policy for Mj to follow. The solid lines
indicate resource flow.

Intuitively, Mj does high level planniﬁg and has overall
control over Xj (although E, if it exists for Xj’ has control

over Mj)’ S. sees to the detail of carrying out plans and

J
scheduling resources, Pj uses the resources and does the pro-
cessing, and Rj takes care of the inventory.

A process here, intuitively, is a finite step-by-step
procedure for doing something. Resources are used up in the
execution of each step. The things‘that-an s-system does are
accomplished via the processes. A set of processes to be ex-
ecuted by a system during the same processing period is called
a deécription. For instahce, if a company decides to build a
new product, there are specific steps that must be done that
require using company resources, l.e., designing, testing,
producing, and marketing the product. Each of these steps
describes a process that must be completed and many steps or
processes can.be done simultaneously since they do not in gen-

eral require the same resources,

" Properties of S-systems. Each s-system has a set of

critical processes, things that must be done on a regular
basis for the~sur€ival of the system. For example, in most
companies management and accounting functions must be done
regulariy.

Changes in the environment}may require the system to

initiate a new process to respond to these changes. A company
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may have to change a product in order to meet new air pollu-
tion standards. So a new product design and development pfo-
cess would have to be started. These types of changes re-
gquire an additional and sometimes unplanned for expenditure
of resources.

Thus, if not periodically restored, the system's re-
source set is eventually depleted by critical and unplanned
processes, and the system eventually terminates., |

S-systems usually replenish their resource sets by pro-
ducing resources for sale or trade. The sale or trade of a
resource is represented by the exchange of resources with the
critical resource set R. For instance, if x is sold or traded
for y, then x goes to R and y goes to the systems resource set:
from R.

Thus for each s-system there may be a continuous flow
of resources to and from its resource set and R. If a system
is to survive for very long, the resource flow must be such
that there are always enough resources for the operation of
its critical processes, i.e., survivability is a function of
resource availability.

New Systems From 0ld, It is permissible for an s-system

to be a resource of another s-system., This happens when the
management of the first system is controlled by the manage-
ment of the second, For example, company A may own companies
B and C both of which build components for A's use, That is,
A uses B and C as resources to build the components it needs.

Let W denote the set of all s-systems, so for some finite
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indexing set I, W = {Xj: j is in I}. W is called the world
system. Let K denote a resource sink. That is, when a re-
source is destroyed or in some other way deemed totally
useless or valueless, it goes into K. The set R = {X]} L’{Rj:

i is in I}Ais called the world resource set.

Let J = {i,j,k} € I. The coupling product of X; and X,
denoted Xi/Xj’ is the set {Xi,Xj} together with the property
that at least one of the systems has some control of the be-
havior of the other s-gystem. This is referred to as the cou-

pling control property. So the coupling product is commutative
I

and associative. Xi/Xj/Xk may also be denoted as 14T X;. So
IT

Example of an RFN Model. For example, USA = igl' X5

where Xi is in USA if Xi is an s-system and the coupling pro-
perties consist of the laws by which the US government governs.
One of the Xi's here is the US government since the government
can be conceptualized as an s-system. In this manner, the
world system W can be partitioned into a set of governments

(a set of coupling products) that correspond to the governments
of the real world. Using this technique,'a network of resource
and communication flows can be considered. Such a conceﬁt, |
that is, a set of coupling products together with the resource
and communicatiéns network is an example of a resource flow -
network (RFN) model. | |

Conflict Analysis Using RFN Models. Using this model

and the heuristic equations given earlier, an investigation

into the properties and behavior of and conflict between large
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complex social systems such aé world governments and their
interactions can be made,

For example the analysis of world wars can be simulated
using this model. In such a model, the allies of WWII could
be represented as one coupling product; the enemy, Germany
and Japan, as another and the neutral countries as a third.

The RFN model focuses on resources; it provides a re-~
source~based explanation as to why the Germans lost the war.
According to this model, it was basically a question of re-~
flow and scheduling. From the work developed in chapter three,
Spectral Theory, it can be seen that for a fixed test sequence
and a degreasing resource set, the spectfal sequence for each
scheduling funétioh shifts to the right in the spectral diagram
of the test sequence., This in turn means that the schedule
lengths get longer; that is, for a fixed set of processes, as
the resource set decreases, the séhedule lengths increase,

In light of the spectral shift, consider the efforts
the Germans made to hold fronts, expand the war, and build
weapons as examples of critical processes being carried out
in parallel, As the Germans began losing resources at a rate
faster than the replacement rate, the schedule lengths or
processing times of the critical processes began getting
longer and longer because of the increasing resource conflict
generated by the bontinual destruction of their resource set,
The différence of these rates was such that these critical
processes could not be maintained., As a résult the system did

not survive,
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One areé where research and development of this model
is cléarly needed is in the mathematical development of the
resource and communication flow networks, Once this is devel-
oped, a mathematical explanation of the above may be explic-
itly stated.

. Clearly the above speculative extensions of the theoret-
ical results of this dissertation are at an early stage of
conception. Héwever, it is hoped that they suggest some
possible extension of the scheduling_system notions both in

theory and in application.
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