Portland State University

PDXScholar

Dissertations and Theses Dissertations and Theses
2010

Scalable event tracking on high-end parallel systems

Kathryn Marie Mohror
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

b Part of the Systems Architecture Commons

Let us know how access to this document benefits you.

Recommended Citation

Mohror, Kathryn Marie, "Scalable event tracking on high-end parallel systems" (2010). Dissertations and
Theses. Paper 2811.

https://doi.org/10.15760/etd.2805

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.


https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2811
https://doi.org/10.15760/etd.2805
mailto:pdxscholar@pdx.edu

DISSERTATION APPROVAL

The abstract and dissertation of Kathryn Marie Mohror for the Doctor of Philosophy
in Computer Science were presented December 11, 2009, and accepted by the

dissertation committee and the doctoral program.

COMMITTEE APPROVALS:
. Karavanic, Chair

Suresh Sin

Christopher M. Monsere
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL: —__
Wu-chi Feng, Director

Computer Science Ph.D. Program



ABSTRACT

An abstract of the dissertation of Kathryn Marie Mohror for the Doctor of Philosophy

in Computer Science presented December 11, 2009.

Title: Scalable Event Tracing on High-End Parallel Systems

Accurate performance analysis of high end systems requires event-based traces to
correctly identify the root cause of a number of the complex performance problems
that arise on these highly parallel systems. These high-end architectures contain tens to
hundreds of thousands of processors, pushing application scalability challenges to new
heights. Unfortunately, the collection of event-based data presents scalability
challenges itself: the large volume of collected data increases tool overhead, and
results in data files that are difficult to store and analyze. Our solution to these
problems is a new measurement technique called trace profiling that collects the
information needed to diagnose performance problems that traditionally require traces,
but at a greatly reduced data volume. The trace profiling technique reduces the amount
of data measured and stored by capitalizing on the repeated behavior of programs, and

on the similarity of the behavior and performance of parallel processes in an



application run. Trace profiling is a hybrid between profiling and tracing, collecting
summary information about the event patterns in an application run. Because the data
has already been classified into behavior categories, we can present reduced, partially
analyzed performance data to the user, highlighting the performance behaviors that

comprised most of the execution time.



SCALABLE EVENT TRACING ON HIGH-END PARALLEL SYSTEMS

by

KATHRYN MARIE MOHROR

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE

Portland State University
©2010



Acknowledgments

I thank my dissertation advisor, Karen L. Karavanic, for her extraordinary
guidance, understanding, and support over these years. Because of her efforts, I am
solidly prepared for my future research career. I know that at this moment I sincerely
appreciate all she has done for me, as well as I know that my appreciation will only
grow over time as I begin to fully realize the depth of her commitmeﬁt to my success.
Thank you, Karen.

I thank my dissertation committee (Jingke Li, Suresh Singh, Bryant York, and
Christopher Monsere) for taking the time to provide thoughtful feedback and advice
on my research. Your expertise made my dissertation stronger.

Thank you to my fellow students in the High Performance Computing Lab at
Portland State University, and most especially to Rashawn Knapp, for your
camaraderie, your willingness to be a sounding board for new ideas, and ability to sit
through countless practice talks.

I thank John May and Lawrence Livermore National Laboratory for giving me
opportunities for collaboration and for access to LLNL computing resources.

Last, but certainly not least, I thank my husband and family for their unwavering
support during my time in school. I know I was sometimes a very distracted wife,
mother, daughter, sister, but you all supported my goals regardless. Thank you for
cheering me on during the good times and cheering me up during the bad. If it weren’t

for you, the road would have been much more difficult.



Table of Contents

ACKNOWIEAZMENLS .....ooveerenierieiiirererer et i
LSt Of FIUIS. ..cueeuieieieiiet ettt sttt sa s s iv
LISt Of TADIES ...ccuveiiiiieiereiiece ettt et see et soeesoas e e s sras e ae s s s vi
I INEFOQUCHION ..ottt ettt st st e 1
L.l MOUIVALION cteetteieeiieeieeeeteetee ettt see et sse st se st st s eessesesesstesanonnesnasane e 1
1.1.1 Uses Of EVeNnt TTracCing .......ccccoeerervrrnririeriieeeeenreneesneeeresneeseenessnnsenennes 2
1.1.2  SUMMATY...coriiiiririiiereeeerrrerenrecet sttt sesreesarsssae s saaesananes 10

1.2 Dissertation Contributions........cccecerreeeeerieerierieniieniteneene et eseesieeneeeteesenas 10
1.3  Dissertation Organization..........coceeeeeerueerieerieensteriereieeseeceeesseeseesaseeseens 12

2 Related WOTK......oi ittt sttt s 13
2.1 Perturbation ....cccueeiiiiiieiieee et ae e sae s en e sena s 13
2.2 Trace File Size Reduction .......c.coecevverieciirniniineenieeieneesee e see s 15
2.2.1 Trace File COMPIESSION......ccceerierernuieieniereriieniteseeesteserereeseesseeseeensenns 15
2.2.2 Measuring or Writing Less Data .........ccccocveereverennrenrenecennencneneas 16

2.3 Analysis Tool and Visualization Scalability .........ccccecvrvieeveeiinncnveniennnnnne 21

3 Study of Tracing Overheads..........ccccovriiirceesieneieninenecerre e 23
3.1 EXperiment DESIZN ......cccvvuiiieiniericiiiiiiieitereenteee st et eesvessesseesee e e seeesvanne 23
3.2 RESUIS et 28
3.2.1 Event Counts and Trace File SiZeS.......cceccveveriienreeneesirererrerreseeseeenenne 28
3.2.2 EXECUHION TIME ...ooveurrririirirrercreeieseeenteteesre st e see s e e sete e s seseeneas 29
3.2.3 Execution Time vs Event COUNtS ........cc.ceceeerieeesiereriesreseeneneseesennens 32

3.3 CONCIUSIONS ....uveviieiiieiericeee ettt see e see e sttt sbe st be s e sesaa e e e e ne 33

4 Trace Profiling......c.cceevieeeiieiiiciee ettt et ste v e eae b st ne e ens 35
4.1 Background........cccoceoviiiiiieeee ettt s 36
42  Trace Profiling Technique..........cccovvvieiiiineneninertesee e 36
4.2.1 Trace SegMENtation .........ccovereveereererrenieenrerieesesssessseessesseresesssessesssessens 40
4.2.2 Intra-process Segment COMPATISON.......ccvvvrrrrerurerueereesrerseeracesaessesssensens 41
4.2.3 Inter-process Segment COMPATISON........cocvererreriereereriarerneresreseessensans 42

4.3  Trace Profile Segment Comparison Methods..........c..cocoeveeeeeeeeeeeenennns 45
4.3.1 Distance Methods .......cceeuiiieeirriiiieiicieceeee et 45
4.3.2 Iteration-based Methods ..........cccooevemineiinieiieiceccee e 51

44  Traditional Trace and Trace Profile Size Models...........c.ceceeveecercevrvennennns 52
4.4.1 Traditional TTACE .....cccccceririeierirerientintese sttt et cve e ste s eseeseeneseens 52
4.4.2 Trace Profile......cccooieieeieiieeeeeeeee ettt et 54

4.5  Traditional Trace and Trace Profile Size Comparison Using Models ...... 57
4.5.1 Traditional TTACE ........ceeveureceeeiieiieieeieieeteteet ettt ere ettt eaeenenas 58
452 Trace Profile....coieciieoiiiierecie ettt 60
4.5.3 Comparison of Traditional Trace and Trace Profile..........ccccoevennenee.. 60

4.6  Trace Profiling and Visualization...........ccccevueeieeivieceeeeerereenveeese e 62
4.7 SUMIMATY ...cceeieieeiiieiireeeeee et e s ereree st e s steesaeesaeseseseseesasessneesesassnesesnsonne 63

5  Trace Comparison Methods ......c...cecvvereeiiienieiiiiniceeecrer e 65



5.1  Evaluation Methodology ......cccoceeririrteieiiicircincicniinnrest e 66

5.1.1 Benchmarks ........ccccceeveirveeieenienierieneeccnicne st 66
5.1.2  APPHCALION ..ottt 70
5.1.3  InStrumentation.........cecceveeeeereeerenneeneescreeeiresre st s 70
5.1.4 Evaluation Criteria.......ccccvreererreeniersericrineicininienieenusiessesssesssssseesessns 71

5.2  Intra-process Reduction Evaluation Studies.........cccocovnivnvininnicninenne. 74
5.2.1 Threshold Study......cccccoeiriemierieeiricceiercicee et 74
5.2.2 Comparative StUAY .....ccovrveermeerernieriieniiiiniiniiicnieesee e sre s 77

5.3  Inter-process Reduction Evaluation Studies........cccccocviniiiniiinnnninnnnnn. 85
5.3.1 Threshold Study.......ccccoueeieeriiiriirreneee et 85
5.3.2 Comparative StUAY .......ccccccerveriiierniniiiiniiicen e 87

54  Combined Inter-process and Intra-process Reduction Evaluation............ 93
5.4.1 Size and Degree of Matching .........c.cccccevvvvveininciniinncnnicninnieneceeeene. 93
5.4.2  ApproxXimation DiStancCe.........cceceveereieererrersireneeieenrcsie s 94
5.4.3 Retention Of TIends ......ccoceveieriereniiricrenceeee et 96
5.4.4  DISCUSSION...cccuriirrriierrinrereerrreesiaeeitesteeseserssnesenesesesesetesasesbsssasossnssonns 98

5.5 DISCUSSION. ..cuveeirieereereeeeeeeereeterrteericee e sere s et e s eresesessesas e saesbs s ss e snesonns 98
5.5.1 Trace Similarity Methods.......c.ccoeciirinneniicnie 98
5.5.2 Intra- and Inter-process Matching ........c.ccccceevevviineeenennnccnnenennennnenne. 99

5.6 SUINIMAIY...coeeiiieiiierrerirereitresreeesrtesaessreesseeseeeseeseessessneeessesesnessnesssessanens 100

6  Prototype Runtime Trace Profiler .........cccocvveviiviniincniciniiiiiiiiicne 102
6.1 Current Prototype Implementation..........ce.eeeectevrienenenienrcncnncencneenenes 102
6.1.1 Trace Profiler Front End........ccccooevvevievenicmnininccinceenceeciiiecinns 102
6.1.2 Trace Profiler Instrumentation Library .......cc.ccocceveerienennennncoennncnenae 104
6.1.3  Runtime OpPerations.........cceecueeceerireresueereerieeeseensnesseesaseesneesssessscesseess 106

6.2  Experimental SEtUP .....c.coccevvevierrinireierriineeeie s re st sre e 108
6.2.1  APPlICAtION ...ccueieieeeiceteeieeeeeetr et n e 108
6.2.2  MAChINE ....ccuiiiiiiiieieecteee ettt e e e et e e e s s b s 108
6.2.3  To0l Configurations..........ccceeveeeuereeseesieseeieeseesressneseeseeeseesseesseseenvens 108

6.3 RESUILS ...ttt sttt et e 110
6.3.1  EXEcUtion TIME .....ccceoeevieiiiriiereeierteneeteiee et ese et ese st s nas 110
6.3.2  Total File SiZe.......ccvcviruenriiiirerinecenencrenee e see e eseenes 112
6.3.3  FIUSRES .ottt sttt et 114

T T B Y011 U ) WO S 114

T CODNCIUSIONS ....eueeiiuieiiietieriereseeeteerte sttt esteste st et besssssessesseesesseeneessenesaesnsens 65
7.1 FUture WOork.....c...ooiiiee et 117
7.1.1 Performance Tool Memory Bounds..........c.ccceevevueeeeveeeveeeeeereerennens 118
7.1.2  Trace Profiler Measurement Overheads.........ccocevveerrvnvrerreenveenenseensenne 118

8 REIEIENCES ..c.eovireiieiiriiieire sttt ettt et s s s b sa s seenas 122
Appendix: Additional Trace Similarity Study Results.........cccccevereeiecinerecrrrenenens 128

iii



List of Figures

Figure 1 Performance of Uninstrumented EXecutions ...........ccocouevvvveivenecinieennnnne. 25
Figure 2 Experiment EnvIronment. .........cccoceviiinieinienieninininnenenesenssnsesenes 27
Figure 3 Performance of Instrumented EXECUtIONS. .......ccvevvininicirininenninisnenenns 30
Figure 4 Tracing Overhead with Maximum Event Count in a Single Rank. .......... 32
Figure 5 Data from Traditional Trace .........ccccevivninininniiiinircieeeecee 37
Figure 6 Process GIOUP ......cccceeeerierereiicsiniiiiiiintetste st ereen e nbe e ssn s 38
Figure 7 Segment Context Marking .........coocvvevivinviinineninninniininenececeeeerenenene 40
Figure 8 Algorithm for Intra-process Segment Matching ..........ccecoevevnuenrienninnnnn. 41
Figure 9 Intra-process Segment Matching ...........ccoccccoviiiniiiiiiininnninieiene 42
Figure 10 Inter-process Segment Matching ........cccceovverviirviniiiceniiniinnicninncniens 43
Figure 11 Algorithm for Inter-process Matching ..........cccccoivvenneininnciieen 44
Figure 12 Wavelet Transform Example ........cccocvcieviiinincnnnnnncccicicciicienes 50
Figure 13 Trace Profile FOrmat.........cccocceveinviniiiiniiiiinininiciccccsecicne e 55
Figure 14 Input Data to Traditional Trace Size Model ..........ccceeervvrvinriccncncnnes 57
Figure 15 Inputs to Trace Profile Size Model ........ccccocuvveeinnienincnincnencneecne 58
Figure 16 Traditional Trace and Trace Profiling Sizes for Random-Barrier .......... 61
Figure 17 Trace Profiler Visualization ........c..ccoccovvereinienveerienensenscnrcennecetenennee 62

Figure 18 KOJAK and Derivation of Our Performance Diagnosis Representation.73
Figure 19 Intra-process Reduction: Percentage File Sizes and Degree of Matching.

.............................................................................................................................. 78
Figure 20 Intra-process Reduction: Approximation Distance Results for All
Methods at Default Thresholds.........cceccveeverereninenireneeneee et e 79
Figure 21 Intra-process Reduction: KOJAK Performance Trends for
dyn_load balance For Each Method at Default Thresholds...........cccocoeveeiincnenne. 82
Figure 22 Intra-process Reduction: KOJAK Performance Trends for 1tolr 1024 for
Each Method at Default Thresholds. ......cccoceeeerieriienieenienieniececee e 83
Figure 23 Inter-process Reduction: Percentage File Sizes for Methods at Default
TRIEShOLdS...c.eovvveiriiireeceirre et 88
Figure 24 Inter-process Reduction: Degree of Matching for Methods at Default
ThreSholds.......coviiiiiiieieee ettt 89
Figure 25 Inter-process Reduction: Approximation Distance for the Methods at
Default Thresholds........coveeirieirceirireeneeee et 89
Figure 26 Inter-process Reduction: KOJAK Performance Trends for early gather
for Each Method at Default Thresholds........cccoccevvervinvenvienininennenrenerieneeeeeeen 91



Figure 27 Inter-process Reduction: KOJAK Performance Trends for NtoN_1024 for

Each Method at Default Thresholds .........cccvcvviniecenenivininiieeenecencenne 91
Figure 28 Combined Reduction: Percentage File Sizes for Methods at Default
TRIEShOLAS.....ccvieeieieriiec et 95
Figure 29 Combined Reduction: Degree of Matching for Methods at Default
TRIESNOLAS. ....cveeeetetesecct ettt ae e s 95
Figure 30 Combined Reduction: Approximation Distance for Methods at Default
TRIESNOLAS. ....eeieieeeceeee ettt sre e 96
Figure 31 Combined Reduction: KOJAK Performance Trends for NtoN_32 for
Each Method at Default Thresholds ........c.ccoveeeriverinnennenereneneeeeecenenes 97
Figure 32 Combined Reduction: KOJAK Performance Trends for sweep3d_32p for
Each Method at Default Thresholds .........cccevveviriienirinircierenrerceeeeeeraeeees 97
Figure 33 Example Segment Context Marking and Names ........cccoccecveveereruenncnee. 105
Figure 34 Example Instrumentation for Message Passing Function..................... 106
Figure 35 Execution Time of Sweep3d Measured with TAU and TP .................. 111
Figure 36 Write Overhead for Sweep3d with TAU and TP......cocveeevrenrcriienene 112
Figure 37 Total Size of Files Generated for Sweep3d with TAU and TP............. 113
Figure 38 Average File Size Per Rank for TAU and TP.......cccoovevevveeiirecvennene. 113
Figure 39 Total Buffer Flush Count for Sweep3d with TAU and TP................... 115
Figure 40 Average Flush Count Per Rank with TAU and TP...........ccccvvvruevneeee. 115



List of Tables

Table 1
Table 2
Table 3
Table 4
Table 5

Correlation of Total Wall Time with Maximum Event Count in a Rank... 31

Symbols for Full Trace and Trace Profile Models.........cccceeueeeieereneennn. 53
Sizes of Fields in Trace Profiling Data Structures .........ccceceverernuerreverererenns 56
Sizes of Trace Profile and Full Trace........ccccoueeeevvecceneinenceecee e 59

Trace Profile Instrumentation Library Interface

vi



1 Introduction

The major contribution of this dissertation is a novel, low-overhead technique for
collecting event traces on high-end computing systems. We collect the information
needed to correctly diagnose certain complex performance problems at a greatly
reduced data volume over traditional event trace collection methods. Other
contributions of this dissertation include: an in-depth measurement study of the
overheads of traditional event trace collection; an evaluation of methods for
determining event trace equivalence; and post-mortem and runtime prototypes of the

2

new event trace collection technique to demonstrate its viability.

1.1 Motivation

Today’s high-end architectures contain tens to hundreds of thousands of
processors, pushing application scalability challenges to new heights. Performance
analysis is a necessary step to adapt codes to utilize a target high end machine.
Correct diagnosis of certain complex performance problems that arise on high end
systems requires detailed eveﬁt traces. An “event” is a runtime occurrence of a
program activity, such as a machine instruction or basic block execution, memory
reference, function call, or a message send or receive. Generating event traces involves
writing a time stamped record for each event, into a buffer or file for later analysis.
Unfortunately, the collection of event traces presents scalability challenges: the act of
measurement perturbs the target application; and the large volume of collected data

results in data files that are difficult, or even impossible, to store and analyze [45].



There are several documented cases of performance problems that appear only when
the application is run at a large scale [32, 51], driving the need to be able to collect
event traces for large runs. We have a conundrum: we need traces to correctly
diagnose important performance problems, but the sheer volume of data collected
makes collecting full traces at the very least prohibitive, and in the worst case
impossible. For this reason, solving the scaling challenges of event tracing is an

important problem for high end computing.

1.1.1 Uses of Event Tracing

Requirements for the accuracy and types of information in a trace vary based on
the intended use: correctness testing and debugging, simulation, or performance
analysis.

Correctness testing and debugging generally only require that the trace retain the
relative ordering of events. For example, inspecting a trace of a parallel program could
indicate the reason for a deadlock situation by showing the ordering of
synchronization operations; a parallel program might hang because a process is
waiting for a message that was never sent.

Simulation requires traces that retain the order of events and possibly some timing
information. Traces for simulation can be used to predict application performance on
new or theoretical hardware. The events in the trace can be replayed using either
averaged or predicted timing information for the new hardware. Generally, a single
time value is used for all event occurrences instead of individual timing measurements

for each event occurrence. For example, the average time to execute a send operation
2



could be used as the time for all send operations in the trace. This tradeoff allows
acceptable accuracy with faster time to simulated results and smaller trace files.
Performance analysis requires not only the relative ordering of events, but the
timing information for individual events. Performance problems do not necessarily
occur with a high degree of regularity, e.g. in every iteration of a loop, so individual
event timings are needed to show the root causes of problems. For example, trace data
can show a time-varying load imbalance in a parallel job, which causes some ranks to
be late to a synchronization operation at varying times during the program execution.
The individual event timings can show what events are taking more time in the slower
ranks and in what iterations the slowness occurs. In this dissertation, we focus solely

on collecting event traces for the purpose of performance analysis.

1.1.1.1 The Necessity of Event Tracing

Event tracing is used for understanding the causality of events, understanding the
interactions between program elements, and identifying behaviors from event patterns.
Although other performance measurement techniques, such as profiling, exhibit better
scaling properties at the high end, the detail collected in an event trace is needed to
correctly diagnose certain performance problems.

An event trace can show the causality of events, which is helpful when a specific
set of events lead to a performance issue. An example of this is found in a case study
showing the benefits of Stardust, a tool for collecting and retrieving end-to-end
performance traces in a distributed system [62]. The researchers in this study

investigated a user’s reported problem with I/O performance. From an event trace of
3



the program, they were able to see the sequence of events that caused the poor
performance, a series of small requests.

Event traces are useful for showing the interactions between program elements,
because interactions can sometimes be difficult or impossible to understand from static
analysis. For example, understanding the interactions between program elements is
useful in the realm of parallel program debugging. Kranzlmiiller et al. use event
graphs, generated from trace files, to discover bugs in parallel programs [36]. They
use the relationships between processes revealed by the program trace to determine
where race conditions due to non-deterministic execution could occur.

Event-patterns in traces can be analyzed to reveal properties of programs, such as
performance problems and locations of possible optimization. An example of
performance problem that event patterns can help diagnose is the “Late Sender”
problem. This is the situation where the receiving process waits at a blocking receive
call waiting because the sending process hasn’t yet reached the matching send call.
The relative timing of events in the trace would show that the send operations started
late and caused the receive operations to block. Event patterns can also be analyzed to
suggest performance optimizations. Kranzlmiiller et al. present a method for
recognizing point-to-point communication patterns in program traces that correspond
to collective communication operations [38]. Since collective communication
operations are often tuned for high performance on each platform, they suggest to the
user to replace the recognized point-to-point sequence of operations with a collective

communication operation.



Profiling and tracing represent two ends of the spectrum in the trade-off between
the level of detail and the amount of data collected in performance measurement.
Profiling provides summary information and therefore is more scalable than tracing.
For example, a profile can show which functions used the most amount of time in an
execution. This tells a performance analyst a crucial piece of information: where the
program is spending most of its time, identifying candidates for performance
improvements. Profiling has advantages over tracing, because it causes less
perturbation to the target program and produces smaller performance data files.
Tracing a program results in a sequence of time-stamped events, possibly with
accompanying performance information, e.g. the start and end times of a particular
routine, or details about message-passing events, such as the sending and receiving
processes and the communicator used. Tracing provides more detail about the
performance of the program, at the cost of greater perturbation to the target program
and larger resulting data files. Although the costs of collecting event traces are higher,
there are situations where the level of detail provided by tracing is required; the types
of information provided by profiling are, in many cases, too limited for correct
diagnosis of certain performance problems [7, 37]. An example of such a performance
problem is the previously described “Late Sender” problem in a message-passing
program. While a profile could indeed show that excessive time was being spent in
receive operations, the data is not sufficient to distinguish between a late sender or
some other root cause, such as network contention that caused the message to be
received late. In contrast, an event trace captures the relative timing of events, and

5



would show that the send operations started late and caused the receive operations to
block.

Several case studies indicate the need for tracing tools that can scale to large
numbers of concurrent processes, because there are instances when a performance
problem only arises after scaling the execution beyond a certain point. Kale et al.
studied the performance of the NAMD application and found that several performance
issues only appeared when the application was scaled above 1000 processors [32], and
a new performance issue appeared after scaling above 2000 processors. A developer
working with the ViSUS code encountered a hang in the program only after it was
scaled to at least 8192 tasks [6]. A scientist working on the CCSM code reported
intermittent hangs with 472 processes [6]. Several researchers examined the
performance of the SAGE benchmark on ASCI Q [51] and noted a striking divergence
from the performance predicted by their model when they scaled the application above

512 processors.

1.1.1.2 The Scalability Problems of Event Tracing
Although the information obtained from tracing is needed for correctly diagnosing
certain types of performance problems, three key issues prevent it from being a
scalable performance measurement technique: perturbation of the application, the
large volume of data collected, and difficulties in analyzing the highly-detailed data.
Perturbation of the measured program is caused by the execution of added trace
instrumentation instructions, the memory used by the trace buffer, and the flushing the

trace buffer to disk. These perturbations increase the execution time of the program
6



and have the potential to alter the program’s behavior [40]. For example, in one of our
experiments, a traced run of Sphot [1] took roughly 50 times longer to execute than
the untraced run.

Event tracing has the potential to create prohibitively large data files, especially for
highly-parallel, long-running programs. Several researchers have noted this problem
[65, 79]. As an example, in one study, we encountered event counts on the order of
10", for 32-process runs of Sphot that only ran for a few minutes [45). The file size of
the merged trace was 424 GB. We were fortunate, because the system we used
provided a ~250 TB file system with no individual quotas for temporary storage. We
wrote the traces to this file system and transferred them to tape for long-term storage.
If we had not had these resources, we would not have been able to conduct many of
our experiments.

Large trace files pose a challenge to analysis tools. They require significant
amounts of memory and computation for merging, opening, and displaying the traces.
Commonly, during a traced execution, each individual process writes data to its own
trace file. At some point, either at the end of the execution, or as a post-mortem step,
the individual trace files are merged into a single file, ordering the events from
different processes by their time stamps. This merging can be computationally
intensive; in our experiments, we found that the merging could take orders of
magnitude more time than the execution time of the application. The act of simply
opening and displaying a trace file is problematic as well. Generally, a trace
visualization tool needs to scan the entire trace into memory as a preprocessing step.

7



In one of our studies, opening a 600 MB trace from a four-process run proved to be
impossible for one trace-analysis tool. After 30 minutes of waiting, the tool reported
that it had run out of memory and could not open the file. After a time-consuming
conversion to a different trace file format, a different tool successfully opened the file,
but required a parallel back-end to do so.

The level of detail produced by tracing makes human analysis of the data a
significant task. Locating performance problems by looking at a display of a trace of
hundreds or thousands of processes could fairly be described as finding a needle in a
haystack. Current trace visualization tools commonly present Gantt charts, showing a
bar plot of event occurrences over time, left to right, with one bar per process or task.
Generally, the visualization initially shows the entire timeline, and the user has the
option to zoom in on portions of the timeline, and possibly on specific ranks, to see
more detail. At the high end, full-scale trace visualizations become extremely difficult
to read, as the tool user must scroll through thousands of processes and lengthy time
lines. It becomes a matter of either being able to see the whole picture, but not being
able to see enough detail to draw conclusions about patterns in the trace; or being able

to see the needed details, but losing the perspective of the whole picture.

1.1.1.3 Case studies illustrating the problems of tracing
Other researchers using tracing tools for performance analysis have described the
scalability problems of tracing, which, in some cases, prevented them from performing

their experiments.



One researcher we corresponded with recounted a particularly “painful”
experience trying to trace a communication pattern that occurred several hours after
the start of the execution of his application. He performed only a few experiments for
comparison, because he ran out of quota, in spite of the fact that he had taken
measures to reduce the amount of trace data collected, by not starting the trace until
several hours into the execution of the program, and stopping it immediately after the
target iteration. Each reduced run generated several GB of data. The trace analysis tool
took a couple of hours to open and display a single trace file. (John May, personal
communication)

Winstead et al. used a tracing tool to study the I/O performance of an application
[70]. Although their small test runs had no problems, when they scaled up to 512
processors, several problems appeared. First, their runs generated huge amounts of
data, which resulted in unwieldy trace files and significant I/O overhead in the target
program. The I/O overhead had the potential to seriously perturb the loosely
synchronized application. In addition, the overwhelming amount data exercised a file
system bug and caused a system crash.

Chung et al. evaluated several state-of-the-art tracing tools for scalability on Blue
Gene/L [13]. They found that the execution-time overhead of tracing grew faster than
linearly with the number of MPI processes, and that the volume of trace data rapidly
reached the order of 100 GB, which they argued was too large for efficient analysis or
visualization. In their studies, they only executed up to 2048 processes, only a small

fraction of the 131-thousand processor capacity of Blue Gene/L.



1.1.2 Summary

Event traces of parallel programs are an essential tool for correctly identifying the
root cause of an important class of performance problems; however, the large volume
of data collected creates challenges for measurement, storage, and analysis, and, in
some cases, prevents measurement experiments from being conducted af all. The
measured data is perturbed by the execution of measurement instructions, as well as
by the movement of the collected data to store it on disk or to transfer it across the
network. This perturbation increases the running time of the execution, and has the
potential to alter the measurements by an unacceptable level. The sizes of trace files
can easily reach gigabytes for even short-running executions with a small degree of
parallelism. This can limit what experiments are performed, given a particular user’s
available file system resources. Analysis of huge amounts of data is challenging for
both tools and humans. Although ad-hoc methods exist for reducing the amount of
data collected in the trace, these methods require the user to partially analyze the
problem and take extra steps before the measurement run. In addition, reducing the
amount of data collected in these ways has the potential to miss the information
needed for diagnosing the problem. Case studies show the need for tracing parallel
programs at large scales, because performance problems do not always exhibit

themselves during small scale runs.

1.2 Dissertation Contributions
Given the need for gathering event-based trace data for larger application runs and

the scalability challenges of gathering trace data using traditional methods, our goal
10



was to develop a low overhead performance measurement technique for collecting
event traces.

Our first task was to perform a detailed study to investigate the scalability
problems of gathering traces. We used the results from the study to frame our
proposed approach to a scalable method for gathering trace data on high-end systems.
Our study showed that the overhead of writing the trace data to disk during the
execution increased with increasing numbers of writing processes, while the overhead
of trace measurement excluding the writing scaled with the amount of data being
measured. The results of our study suggest the need for a measurement method that
collects event-based performance information while reducing the amount of
performance data, and severely limiting or eliminating the need to write any data to
disk during the execution.

Our solution is a new performance measurement technique that is a hybrid
between profiling and tracing, trace profiling. The technique produces a summary of
the event details collected during a program run, and saves enough information to
adequately describe the dominant performance behaviors of the execution. Because
event trace data is compressed locally, the trace profiling method reduces the major
source of perturbation from event trace collection on today’s high end supercomputing
systems: periodic flushing of trace data to disk during execution. To address the
problem of large data volumes, the technique identifies event patterns that are similar
enough that only one copy need be retained, thereby significantly reducing the amount
of data that needs to be stored. In addition, the reduced data volume decreases the

11



memory and computation burden on analysis tools and the amount of data that needs
to be rendered by a visualization tool.

We implemented a post-mortem prototype of the trace profiling method to
illustrate the viability of the technique and to evaluate methods for deciding trace
similarity. A critical piece of an implementation of the trace profiling technique is the
choice of a method for deciding when traces are similar enough to be considered
equivalent. Using our post-mortem implementation, we evaluated several methods for
deciding trace similarity for compression, amount of error introduced into the
measurements, and whether the compressed data still contained the information
needed to make a correct performance diagnosis.

We implemented a prototype runtime trace profiler. We present a study of trace

profiling overheads, including a comparison to traditional event trace collection.

1.3 Dissertation Organization

In Chapter 3, we present related work. We present the study of the overheads of
traditional event trace collection in Chapter 4. The design of the trace profiling
technique is described in Chapter 5. In Chapter 6, we demonstrate the post-mortem
implementation of our technique and the evaluation of methods for deciding trace
similarity. Chapter 7 describes our runtime implementation and its evaluation. Finally,

we conclude in Chapter 8.

12



2 Related Work
Other researchers have investigated reducing or eliminating the scalability
problems associated with tracing: perturbation of the application program,

unmanageable file sizes, and visualization and analysis challenges.

2.1 Perturbation

Because perturbation is intrinsic to measurement [17], research focuses on
techniques to lower or limit the overheads, remove the overheads in the resulting data,
and to measure and model the overheads.

Researchers have investigated methods to lower the overheads of tracing [37, 50,
55, 58, 75]. The Event Monitoring Utility (EMU) was designed to allow the user to
adjust how much data was collected in each trace record, thereby altering the amount
of measurement overhead [37]. The authors found the writing overhead to be the
largest monitoring overhead. Falcon has several features to reduce the amount of
perturbation in the target program [23]. The buffer sizes used for tracing can be
adjusted at run time, and it uses double-buffering to reduce the overhead of
transmitting the event data to the tool monitor threads. It also allows the type of
performance measurement to be altered at run time, switching between high- and low-
overhead measurement techniques on the fly. The EventSpace tool has several features
designed to lower the overheads of gathering traces [8]. The trace buffer is only
accessed as needed by the monitoring threads. The trace buffers have a fixed size; the

oldest entries are discarded to make room for new entries. This means that trace data is

13



not stored permanently unless it is read by the monitor threads. Also, the tool employs
distributed data analysis to reduce the overhead of sending the trace data on the
network.

Several researchers have developed techniques to attempt to remove overheads
from the reported data [14, 20, 69, 72, 76]. Yan and Listgarten [76] specifically
addressed the overhead of writing the trace buffer to disk in AIMS by generating an
event marker for these write operations and removing the overhead in a post-
processing step.

Several researchers have reported on the overheads of tracing. Yan and Schmidt
argued that the most intrusive activities were the allocation of memory buffers to save
the trace buffer and the periodic flushing of the trace buffer to disk [79]. Gu et al.
reported that the most expensive operations were event buffering and transmission
[23]. Chung et al [13] evaluate several profiling and tracing tools on BG/L in terms of
total overhead and write bandwidth, and note that the overheads of tracing are high
and that the resulting trace files are unmanageably large. They suggest that the
execution time overhead is substantially affected by generation of trace file output, but
provide no measurements for their claim.

Two research efforts have developed models of the overheads in measurement
systems. Malony et al. developed a model to describe the overheads of trace data and
describe the possible results of measurement perturbation [40], then extended it to
cover the overheads of SPMD programs [57]. They assumed that in the case of
programs that do not communicate, the perturbation effect for each processor is only

14



due to the events that occur on that processor. However, they noted, as we do, that the
execution time of traced programs was influenced by other factors than just the events
in each processor independently. They did not explore this further. Waheed et al. [67]
explored the overheads of trace buffer flushing and modeled two different flushing
policies [66]. They found that the differences between the policies decreased with
increased buffer sizes. Their model did not account for the interaction between writing
processes when modeling the buffer flushing policies — instead, they assumed a
constant latency for all writes of the trace buffer.

A primary difference between our results and prior work investigating tracing
overheads is that we identify a previously unexplored scalability problem with tracing.
To the best of our knowledge, while others have noted that the largest overhead of
tracing is writing the data, none have shown how this overhead changes while

increasing the scale of application runs.

2.2 Trace File Size Reduction
Several research efforts focus on reducing the size of the trace file. The efforts fall

into two categories: trace file compression, and measuring or writing less trace data.

2.2.1 Trace File Compression

Several researchers have reported on efforts to reduce file sizes by compression.
Researchers working with the AIMS performance tool noted compression of 40-50%
in trace file sizes when using a binary representation of the trace, as opposed to an

ASCII encoding of the trace [79]. They also found that introducing new trace records

15



to represent event pairs that commonly occur together, such as function entry and exit,
and message events and associated message data, resulted in trace compression of
38% in an ASCII encoding of the trace. The Pablo SDDF trace file format has both
ASCII and binary representations [54]. The Pablo developers reported that, in their
experience, the binary representation of traces ranged from 42-75% smaller than the
ASCII representation of the files [7]. The Open Trace Format (OTF) [33] uses Lib
compression [16] to compress the ASCII traces either on-the-fly or as a post-
processing step. The OTF developers found that OTF compressed trace file sizes were
about half the size of STF trace files for the applications they examined. While these
compression methods do reduce the size of trace files, the size of the traces still scales
with the number of events measured, determined by the number of concurrent
processes and the length of the program run. Gamblin et al. use the CDF 9/7 wavelet
transform to compress traces collected for the purposes of detecting load imbalance
[18]. Kniipfer developed a method called Compressed Complete Call Graphs (CCGs)
that takes a trace file and compresses it based on the event stream and event
measurements to ease the burden on trace analysis tools [34]. These two methods
require that all data be collected before compression begins, which means that the

problems of collecting and storing a large amount of data still exist.

2.2.2 Measuring or Writing Less Data
This section details methods for reducing the amount of data collected by
measuring or writing less data. These techniques fall into three categories: simple

methods that omit data, methods that alter the type of measurement employed based
16



on some rule, and methods that decide when sections of traces are similar and measure

or store a reduced number of pattern executions.

2.2.2.1 Simple Omission Methods

Generally, tracing tools provide API calls that give the user the option of starting
and stopping tracing of the application at any point during the execution [5, 2, 71, 46,
52, 58, 60, 63, 74, 80]. This makes it possible for users to reduce the amount of data
that is collected and to potentially reduce the size of the trace data files to reasonable
levels. Unfortunately, there is a risk that this method might cause the trace to omit
critical information needed for diagnosing the performance problem, and it increases
the burden on the tool user to identify the approximate location of the problem, and to
make code changes to control which events are captured.

TAU [58] reduces the amount of data collected by allowing users to disable
instrumentation in routines that are called very frequently and have short duration.
TAU also includes a tool called tau_reduce that uses profile data to discover which
functions should not be instrumented in a user program, and feeds this information to
the automatic source instrumentor. Here, the size of the trace file still scales with the

number of concurrent processes and the length of the run.

2222 Altering Measurement Type Methods
Three tools alter the type of performance data collected to reduce file size. Pablo
[7] gives users the option of specifying an event-rate threshold. If an event occurs at a

greater rate than the threshold, a less invasive method of measurement, such as event

17



counting, is employed. Vetter presents a method for statistically sampling MPI events
[65]. Each time an MPI event is encountered, it is either sampled or not. For each
sampled event, the tool can record statistics, log the event to a trace file, or even
ignore the data. Falcon provides a choice of measurement sensors: sampling, tracing,
and extended, that can be interchanged at runtime to flexibly alter the amount of data
collected [23]. An example is sampling performance until a problem is detected and
then turning on tracing to get more detailed information. Although each of these
methods reduces the amount of data collected, they do so at the risk that some

important performance behaviors will be missed.

2.2.2.3 Trace Similarity Methods

Several researchers reduce trace file size by deciding when sections of traces are
similar enough that a reduced number of copies of the section need to be retained.
Methods in this category include deletion of similar trace sections; trace sampling;
statistical clustering; and signal processing.

Some researchers use a combination of event names and measurements to decide
when traces are similar. Kniipfer and Spooner define two sections of traces as similar
if the call graph context and measurements of the events are equal. Kniipfer defines
equality using both relative and absolute differences [34]; Spooner et al. use the
relative difference in instruction counts [60].

Another approach defines similarity by event names. By ignoring event
measurements, this approach has the potential to miss important performance

behaviors if there is performance variability in different iterations of the same event
18



stream. Chung et al. use a filter that detects repeated communication patterns [13];
they keep performance data for only one instance of each pattern. Freitag et al. use a
periodicity detector to notice repeating sequences of events and keep a reduced
number of iterations of each sequence [15]. Similarly, Yan and Schmidt detect
repeating sequences of events and store the average measurements of those events
[79]. Noeth and Mueller also detect repeated sequences of message-passing events and
store one copy of each sequence; they optionally store summary information about the
events, such as average measurements [49]. In later work, they include the ability to
store more detailed timing information: statistical “delta” times, histograms, or
histograms by call sequence [53].

Other efforts use trace sampling to reduce trace size. Carrington et al. use trace
sampling to reduce the amount of time it takes to gather memory reference traces for
the purpose of performance modeling [10]. They collect data for a reduced number of
executions of the basic blocks in a program. Vetter presents a method for statistically
sampling MPI events [65]. Each time an MPI event is encountered, it is either
sampled or not. Gamblin et al. use statistical sampling with a user-specified
confidence interval and metric. [19]. Although sampling methods do reduce the
amount of trace data collected, they have the potential to miss critical performance
behaviors that occur during unmeasured portions of the program.

Aguilera et al. [4], Nickolayev et al.[48], and Lee et al. [39] apply statistical
clustering to traces and select a representative trace for each cluster of processes.
Nickolayev and Lee use the Euclidean distance for clustering, while Aguilera uses a

19



metric based on the amount of communication between two processes. These
clustering methods reduce trace data across processes, but do not reduce trace data
within a process (temporal reduction). As a result, file sizes will still scale with the
running time of the application.

Several groups apply methods from signal processing to traces. Casas et al. and
Huffmire et al. use the Haar wavelet transform to automatically determine the phases
of a program [11, 30]. Hauswirth et al. use dynamic time warping to decide when two
traces are similar for aligning multiple traces [26].

Researchers have evaluated several methods for deciding the goodness of a
particular trace similarity metric. Ratn et al. use aggregate statistical measures, such as
total time spent in a function, to evaluate their method [53]. Gamblin et al. compute a
trace confidence measure to evaluate their trace sampling results, which is tells the
percentage of time the mean trace of sampled processes is within an specified error
bound of the mean trace of the full trace [19]. In their wavelet transform method,
Gamblin et al. use a root mean square measure to estimate the error in reduced traces
[18]. They also present qualitative results, showing a visualization based on a reduced
trace compared with one from a complete trace. Yan et al. compare the measurements
in their reduced trace against the real trace time stamp by time stamp and produce both
a relative and absolute measure of the overall differences [77]. In addition, they also
present whole program statistical measurements and visualizations for qualitative

comparison.

20



2.3 Analysis Tool and Visualization Scalability

Three trace file formats address the scalability problems faced by trace analysis
tools. The Scalable Logfile Format (SLOG) was developed to address the scalability
problems encountered by visualization tools [73]. In SLOG, events are partitioned into
intervals called Bounding Boxes, which are organized into a binary tree. This
organization of the data allows the visualization tool to display a low-resolution
representation of the trace data without reading in the entire trace file. The Structured
Trace Format (STF) was designed to write the data to multiple files to allow the files
to be read and written in parallel [2]. Their goals were to make the format be as
compact as possible and allow for fast random access to the data and easy extraction
of the data. The Open Trace Format (OTF) was designed to address the challenges that
come with the ever-increasing scales of HPC platforms [33]. It was designed so that
the trace could be processed by a parallel backend, which reduces the time to open and
visualize very large trace files. OTF uses an ASCII encoding which enables a tool to
do a binary search on files for time intervals.

Several researchers have worked to reduce the amount of data presented to the user
in order to facilitate understanding of the performance of the program. Vetter presents
a method for identifying communication inefficiencies by applying machine learning
techniques to trace files of MPI communication events [64]. The end result is a
breakdown of the communication events that were considered “normal” and
“abnormal” (e.g. late sends or late receives), and the location in the source code from
which they were called. The AIMS performance tool suite computes performance

21



indices from parallel program traces [78]. Performance indices are designed to
quantify program characteristics to locate bottlenecks. An example of a performance
index is the communication overhead index, which gives an indication of how much
of the program’s execution time was spent in communication activities. Although both
of these methods greatly reduce the amount of data presented to the user and help to
identify performance problems, neither method shows causal information for the
problems.

The scalability of trace visualizations is not a new topic [24, 28, 27, 41, 47];
however, the continuing upward scaling of high end systems drives a continuing need
for more scalable solutions. Kniipfer et al. show how CCGs can be used to facilitate
visual understanding of trace data [35]. Color blocks that can be interactively
decomposed represent behavior patterns in the execution. The visualization scales with
the number of parallel entities in the execution and with the running time of the
execution. Spooner and Kerbyson present a tool that takes multiple traces as input and
outputs visualizations that highlight the differences between the traces [60]. Their
primary goal was to generate visualizations that indicate performance differences in
multiple executions over time. They note that their tool could be used to compare
iterations within a single execution; however, this is achieved by either creating a
separate trace file for each iteration or extracting the iteration data from the trace as a
post-mortem step. Neither of these methods addresses the problem of collecting and

storing the possibly enormous amount of trace data.

22



3 Study of Tracing Overheads
We conducted a measurement study to discover the scalability challenges in event
tracing. We used the results of this study as a guide when designing our low-overhead

approach to gathering event traces.

3.1 Experiment Design

Our experiments are designed to focus on separating runtime tracing overhead into
two distinct components: the overhead of just the trace instrumentation, and the
overhead of flushing the trace buffer contents to files. We performed runs with and
without trace instrumentation (instr and nolnstr); and with and without buffer flush to
file enabled (write or noWrite), then calculated the overheads using the following
metrics:

e Wall clock time: MPI_Wtime, measured after MPI Init and before
MPI Finalize. The following are not included in this measurement:
instrumentation overhead for tool setup, finalization, and function calls
before/after the timer is started/stopped; and writing overhead for trace file
creations, final trace buffer flushes before file closure, trace file closure, and,
in the case of MPE, trace file merging.

o Write overhead: Average total wall clock time of the write runs minus

average total wall clock time of the noWrite runs

23



o Instrumentation overhead. Average total wall clock time of the runs that did
not write the trace buffer minus average total wall clock time of the

noBuff nolnstr_noWrite runs

Given our goal of pushing to the current scaling limits of tracing, we wanted to
measure an application with a very high rate of communication, so that trace records
for a high number of MPI communication events would be generated. We picked
SMG2000 (SMG) [9] from the ASC Purple Benchmark suite. SMG is characterized by
an extremely high rate of messages: in our four process runs, SMG executed 434,272
send and receive calls in executions that took approximately 15 seconds. For
comparison, we also included another ASC Purple Benchmark, SPhot (SP) [1]. SP is
an embarrassingly parallel application; in a four-process, single-threaded execution of
512 runs with a total execution time of 350 seconds, the worker processes pass 642
messages, and the master process passes 1926 messages. We configured both
applications with one thread per MPI process.

To vary the number of processes, we used weak scaling for the SMG runs. As we
increased the number of processors, we altered the processor topology to P * 1 * 1,
where P is the number of processors in the run, and kept the problem size per
processor, nx * ny * nz, the same, thereby increasing the total problem size. We used
both weak and strong scalin; for the SP runs, referred to as SPW and SPS

respectively. We configured these approaches by changing the Nruns parameter in the

input file input.dat, which controls the total amount of work done in a single

24



execution. For strong scaling, we kept Nruns constant at 512 for all processor counts;

for weak scaling, we set Nruns equal to the number of MPI ranks.

50 -T
—-SMG

40 -m-SPS
0] —A-SPW
£
g3
@
K
o
E
=20

10 \!\

¢+t —— —F— &
0 T T T T T
0 100 200 300 400 500
Number of Processes

Figure 1 Performance of Uninstrumented Executions

We used SMG'’s built-in metrics to measure Wall Clock Time, summing the values
reported for the three phases of the execution: Struct Interface, SMG Setup, and SMG
Solve. We used the native SPhot wall clock time values for Wall Clock Time. Figure 1
shows the scaling behavior of the uninstrumented applications. As expected, the
execution time of SPS decreases with increasing numbers of processors, since we are
keeping the total problem size constant.

In some sense the choice of a particular tracing tool was irrelevant to our goals: we
wanted to investigate a “typical” tracing tool. However, we wanted to avoid results
that were in some way an artifact of one tool’s particular optimiéations. Therefore, we
used two different robust and commonly used tracing tools for our experiments: TAU

and MPE.

25



We built several versions of TAU version 2.15.1 [58]. For the noWrite versions we
commented out the one line in the trace buffer flush routine of the TAU source that
actually calls the write system call. We altered the number of records stored in the
trace buffer between flushes, by changing the #define for TAU MAX RECORDS
in the TAU source for each size and rebuilding, to test two different buffer sizes: 0.75
MB (32,768 TAU events); 1.5 MB (default size for TAU; 65,536 TAU events); 3.0
MB (131,02 TAU events); and 8.0 MB (349,526 TAU events). We used the default
level of instrumentation for TAU, which instruments all function entries and exits.

MPE (the MultiProcessing Environment (MPE2) version 1.0.3pl [80]) uses the
MPI profiling interface to capture the entry and exit time of MPI functions as well as
details about the messages that are passed between processes, such as the
communicator used. To produce an MPE library that did not write the trace buffer to
disk, we commented out three calls to write in the MPE logging source code. We
also had to comment out one call to CLOG Converge sort because it caused a
segmentation fault when there was no data in the trace files. This function is called in
the MPE wrapper for MPI Finalize, so it did not contribute to the timings
reported in the SMG metrics. We altered the buffer sizes by changing the value of the
environment variable CLOG BUFFERED BLOCKS. We also set the environment
variable MPE LOG_OVERHEAD to “no” so that MPE did not log events
corresponding to the writing of the trace buffer. In MPE, each MPI process writes its
own temporary trace file. During MPI Finalize, these temporary trace files are

merged into one trace file, and the temporary trace files are deleted. The temporary

26



and merged trace files were written in CLOG2 format. We used two different buffer

sizes: 1.5 MB (24 CLOG buffered blocks), and 8.0 MB (default size for MPE; 128

Figure 2 Experiment Environment.

The MPI processes in our experiments, represented by purple circles in the
diagram, ran on a subset of the 1024 compute nodes of MCR. MPI
communication between the processes traveled over the Quadrics QsNet
Elan3 interconnect, shown by the purple dashed line. The I/O traffic for the
Lustre file system, represented by the blue dotted line, also traveled over the
Quadrics interconnect. Metadata requests went to one of two metadata servers
(MDS), a fail-over pair. File data requests first went through the gateway
nodes to an object storage target (OST), which handled completing the
request on the actual parallel file system hardware.

CLOG buffered blocks). For SPW only, we altered the SPhot source to call MPE
logging library routines to log events for all function calls, to correspond to the default
TAU behavior more directly. We refer to this as “MPc” for MPE with customized
logging. For the SPW MPc experiments, we disabled the trace file merge step in
MPI Finalize, because it became quite time consuming with larger trace files.

We collected all of our results on MCR, a 1152-node Linux cluster at LLNL
running the CHAOS operating system [21] (See Figure 2). Each node comprises two

2.4 GHz Pentium Xeon processors and 4 GB of memory. All executions ran on the

27



batch partition of MCR. The trace files, including any temporary files, were stored
using the Lustre file system [61]. This platform is representative of many high end
Linux clusters in current use.

Each of our experiment sets consisted of thirty identical executions.

3.2 Results

In this section, we present results from a study of tracing overheads as we scale up
the number of application processes. These results are part of a larger investigation;
full details are available as a technical report [44]. In this study, we examined how the
overheads of tracing change as the application scales. We ran sets of experiments with
32, 64, 128, 256, and 512 processes, traced with TAU and MPE, using buffer sizes of

1.5 and 8.0 MB,

3.2.1 Event Counts and Trace File Sizes

Here we describe the event counts generated while tracing the applications.
Complete details can be found in the technical report [44]. For SMG, the counts for
TAU and MPE exhibit similar trends, but are different by roughly an order of
magnitude. As the numbers of processors double, the per-process event counts and
trace data written by each process increase slightly (in part due to increased
communication), while the total number of events and resulting trace file sizes double.
For SPS, there are markedly different results between TAU and MPE; the event counts
differ by six orders of magnitude. This is because with TAU we are measuring all

function entries and exits, whereas with MPE we measure only MPI activity. For both

28



TAU and MPE, doubling the number of processors results in the per-process event
counts decreasing by half.

For TAU only, the total event count and resulting trace file sizes remain constant,
whereas for MPE, the maximum per-process event count, the total event count, and
resulting trace file sizes increase slightly. For SPW, the counts for TAU and MPc are
nearly identical, while the counts for MPE differ. Again, this is because of differences
in what was measured by the tools. The total event count and trace file sizes for MPE
are roughly six orders of magnitude less than those of TAU and MPc.

We use this information to derive an expectation for tracing overheads for the
different applications and tools. For the weakly-scaled SMG and SPW, we expect that
the overheads of tracing would remain relatively constant with increasing numbers of
processors because the amount of data being collected and written per-process remains
relatively constant. However, for SPW with MPE, we expect to see very little
overheads due to the small amount of data collected. For SPS and TAU, we expect the
overheads of tracing to decrease with increasing numbers of processors, because the
amount of data being collected and written per-process decreases with increasing
processes. For SPS with MPE, we expect to see very little overhead because of the

small amount of data collected.

3.2.2 Execution Time
Figure 3 shows the average wall clock times for our experiments broken down into
time spent in application code, trace instrumentation, and writing the trace buffer. The

graph on the left shows the measurements for SMG with TAU and MPE, and SPW
29



400

350

B writing

1800

1600

1400

Hinstrumentation
M application

w
(=]
[=]

1200

N
w
[=]

1000

800

Time (seconds)
Time (seconds)

[
w
o

600 4

[

[=}

o
X

400

wn
o

200
o B

' 0
SMG SMG SMG SMG SPW SPW SPW SPW

SPS SPS
TAU TAU MPE MPE TAU TAU MPc MPc TAU TAU
15 80 15 80 15 80 1.5 8.0 1.5 8.0

Figure 3 Performance of Instrumented Executions.

Here we show the total execution time for SMG measured with TAU and
MPE, and SPhot measured with TAU. The colors in the bars indicate the time
spent in application code, time in trace instrumentation, and time writing the
trace buffer. Each bar in a set represents the average behavior of executions
with 32, 64, 128, 256, and 512 processes, respectively. The set labels include

(top to bottom): the benchmark name, the measurement tool, and the buffer
size.

with TAU and MPc. In each run set, we see the same trend; as the number of
processes increases, the total execution time increases, largely due to the time spent
writing the trace buffer. The time spent in the application code and in trace
instrumentation remains relatively constant. The graph on the right shows the
execution times of SPS with TAU. Here, as the numbers of processes increase, the
total execution time decreases. However, even though the time spent in writing the
trace buffer decreases with increasing processors, it does not decrease as rapidly as the
time spent in instrumentation or application code. For SPS and SPW with MPE, the
differences between the write and noWrite executions were indistinguishable due to

the very small amounts of data collected and written.

30



Table 1 Correlation of Total Wall Time with Maximum Event Count in a Rank

SMG SPS SPW
Buffer Sz |Write? |TAU |[MPE |TAU |MPE [TAU |MPE-C [MPE
1.5 yes 0.96 0.85 {091 [-0.78 10.69 0.80 0.98
8.0 yes 097 1090 [0.95 {-0.81 (0.61 [0.76 0.93
1.5 no 0.98 098 [0.99 [-0.70 ]0.81 0.55 0.96
8.0 no 0.98 098 [0.99 [-0.79 ]0.74 0.77 0.95

We computed the percentage contribution to variation using three-factor ANOVA,
with the buffer size, the number of processes, and whether or not the trace buffer was
written to disk as the factors [44]. In general, there was quite a bit of variation in the
running times of the executions that wrote the trace buffer, which explains the high
contribution of the residuals. Sources of variability in writing times for the different
executions include: contention for file system resources, either by competing
processes in the same execution, or by other users of Lustre; contention for network
resources, either by other I/O operations to Lustre, or by MPI communication; and
operating system or daemon interference during the write. Any user of this system
gathering trace data would be subject to these sources of variation in their
measurements. For SMG measured with TAU and MPE, the largest contributing factor
was whether or not the buffer was written, at 33% and 26%, respectively. The largest
contributing factor for SPS with TAU was the number of processes in the run (19%),
followed closely by whether or not the trace buffer was written (14%). SPS with MPE
had the number of processes as the dominating factor at 51%. SPW with TAU and
MPc both had writing the trace buffer as the largest contributor, at 34% and 24%,
while SPW with MPE had the number of processes as the largest, at 81%. The

31



80 60 1000 250 400
SMG TAU

‘ SMG MPE SPS TAU .SPW TAU SPW MPc
m H 900 350 A
R 800 - L {200 '.

1 » ‘ 7

& write overhead
{Binstr overhead |700

600 1 -} 150

3
o

500

400 {8 1100 ;

Time (seconds)
w
o

' 300 4
20 {1

200 - 50 A

100 -

11

7 .74 1.5 3.0 5.9

o L : R
3.7 3.7 3.7 3.7 3.7
*« 1077 *10°7

o {m ln i i ¢ o A o JHRE ;
1.1 12 1.4 15 1.6 .3 3.7 3.7 3.7 3.7 3.7

*10°6

1078
Maximum Event Count in a Single Rank

Figure 4 Tracing Overhead with Maximum Event Count in a Single Rank.

The groups of bars from left to right in the charts represent different processor
counts: for SMG they represent 32, 64, 128, 256, and 512 processes; for SPS
they represent 512, 256, 128, 64, and 32 processes; for SPW, they represent
32,256, 128, 64, and 512 processes.

differences in the dominating factors for the SP runs with MPE are attributed to the

comparatively very small amount of data collected.

3.2.3 Execution Time vs Event Counts
Table 1 shows the correlation of the average total wall clock time with the maximum
event count over all ranks. SPS with MPE had a relatively weak negative correlation
with the maximum event count, because as the process count increases, the number of
messages that the master process receives increases, and the execution time decreases,
giving a negative correlation. In general, executions that did not write the trace buffer
to disk had a higher correlation with the event count than did the executions that did
write the trace buffer to disk.

Figure 4 shows the overheads of writing and instrumentation as the maximum

number of events in a single rank increases. For SMG with TAU and MPE, we see a

32



clear pattern. The instrumentation overhead appears to vary linearly with the number
of events, while the overhead of writing the trace increases much more rapidly, and
does not appear to have a linear relationship with the event count. The behavior of
SPS is different, because in this application, as the number of events increases, the
number of processes decreases; however, the instrumentation overhead still appears to
have a linear relationship with the event count. The write overhead is high at higher
event counts, but also at the low event counts, when the number of writing processes is
higher. For SPW, the instrumentation overhead is relatively constant, as expected
since the number of events does not change much between the run sets. However, the
writing overhead fluctuates widely. The reason for this is that the maximum event
count in a rank does not monotonically increase or decrease with increasing processors

as it does for SMG or SPS.

3.3 Conclusions

In our scaling experiments, the execution times of the noWrite runs tended to scale
with the maximum number of events. However, the execution times of the write runs
did not scale as strongly with the number of events, and tended to scale with
increasing numbers of processors, possibly due to contention caused by sharing the
file system resource. Our results suggest that the trace writes will dominate the
overheads more and more with increasing numbers of processes. They indicate that the
trace overheads are sensitive to the underlying file system.

Realization of a scalable approach to tracing will require an overall reduction in

the total amount of data. Data reduction is needed not only to reduce runtime
33



overhead, but also to address the difficulties of storing and analyzing the resulting

files. We incorporated the results of our measurement studies into the design of our

approach to low-overhead event tracing.

34



4 Trace Profiling

We have developed a novel approach to performance measurement designed to
address the scalability problems of gathering event-based data. Our approach is a
hybrid between profiling and tracing that we call trace profiling. The goal of trace
profiling is to gather enough information to adequately describe the dominant
performance behaviors of the execution, at a greatly reduced data volume than
gathered by a traditional tracing tool. The trace profiling technique detects event
patterns, or segments, in the execution trace that have similar behavior. Segments with
similar behavior are merged, so that only one copy of the segment is retained. Thus, a
trace profile contains a summary of the event patterns that occurred during program
execution.

In Section 5.1, we start by describing traditional event trace collection in order to
provide background for explaining and evaluating trace profiling. Next, in Section 5.2,
we describe the trace profiling technique. We present an overview of the technique
followed by our methodology for marking segments in traces and for segment
merging. In Section 5.3 we detail the methods we use for detecting segments with
similar behavior. In Section 5.4, we present models for predicting the sizes of
traditional traces and trace profiles; in Section 5.5, we use the models to predict the
size reduction achievable by trace profiling and to compare traditional tracing and
trace profiling. Finally, in Section 5.6, we illustrate the potential benefits of trace

profiling for visualization and analysis tools.

35



4.1 Background

Traditional tracing results in an in-order listing of the events that occurred during
an application run. Generally speaking, a traditional tracing tool creates a record for
each event encountered during the execution and stores it in a buffer in memory.
When the buffer becomes full, the contents of the buffer are flushed to disk, and the
buffer is reused. With most tracing tools, each process creates its own event trace; the
individual traces can optionally be merged at the end of the execution.

A traditional event trace of a parallel program contains two types of information: a
mapping of event identifiers to the event names, e.g. the function main might have
identifier 1; and a series of records that contain data about program events. In this
document, we will call the mapping of event identifiers to event names an event map.
The event map can reside in the same file as the event records or a separate file. The
event records contain data about function entries or exits, message passing data, other
performance measurement data, or bookkeeping information. Examples of
bookkeeping records include records that indicate the start and stopping times of
flushing the trace buffer. For function events, there is a separate record each for event
entry and event exit. We show a diagram of example trace files for a parallel

application run with two-process in Figure 5.

4.2 Trace Profiling Technique
Trace profiling is different from traditional tracing because it doesn’t maintain a

complete, in-order list of event entry and exit records for each process. A trace profiler

36



y ﬁ‘,
g k

pe=Entry Type=pit

Figure 5 Data from Traditional Trace

This figure shows the data obtained from a traditional trace. Each process
outputs its own event map and event records file(s). The event records file is
simply an in-order series of event records gathered from start of the program
to the end of the program. In the above diagram, Eid refers to the event
identifier given in the event map and Rid is the rank identifier. Each record
has a timestamp and indicates the event type, e.g. entry or exit.

partitions the processes of the parallel program into process groups. A process group
contains the performance information for one or more processes that had the “same”
behavior. Each process group contains a list of segments. A segment is simply an in-
order series of events and their associated information for a portion (or segment) of the
execution of the program. Each process group maintains a segment execution list,
which is a listing of the order of segment executions and the timestamp at which each
segment execution began. Each segment maintains its time duration and a listing of
the events that executed in the segment. For each event, we maintain the relative
starting time of the event with respect to the start of the segment execution, the event’s
duration, and any other associated information, such as message passing data.

We show a representation of the data for a sample process group in Figure 6. The
process group contains the data for ranks 0, 2, and 4. There were two segments in the

execution that executed two times each. Segment 0 executed first at time=1 and again ,

37



Rank List: 0,2, 4
Segment Map: Qtinit, 1:mainloop
Segment Execution List: 0:1,1:6, 1:23, 0:40

Segmertlist ¢ e
4 Sid=0 Event Data
| Duration=6
Sid=1 Event Data
Duration=17 Et=enter F i
Eid=5 N
Ts=0 |
Dur=16 |

N

Figure 6 Process Group

This figure shows an example process group and the information it contains
about segments. It maintains the ranks of the processes that it represents in the
rank list. The segment map gives a mapping between segment identifiers (Sid)
and the name of the segment. The segment execution list keeps track of the
order of segment executions and their start times (Sid:start time). The
segments for the process group are in the segment list. Each segment has a
duration and event data for the events that executed during that segment. Each
event has an entry record that contains an identifier, Eid, a start time, Ts, and
a duration, Dur; and an exit record.

at time=40; Segment 1 executed at time=6 and again at time=23. We keep separate
entry and exit records for each event: the entry event records store the event identifier
a start time relative to the start of the segment, and a duration; the end records simply
mark the ending of the events so that the function call stack can be maintained.
A trace profile contains the following items:
e FEvent Map: One event map stores the mapping of event names to event
identifiers for all process groups.
® Process Groups: Each process group contains the following:

® Rank List: A list of ranks, which tells which processes’ data the

process group contains.

38



e Segment Map: A mapping between segment identifiers and segment
names.

o Segment Execution List: A listing of segment identifiers and
timestamps, telling the start time of each segment execution in a
process group.

e Segment List. A list of segments for a single process group. Each
segment has a header which gives each segment’s identifier and
duration, and is followed by a list of event data.

e FEvent Start Record: An identifier, a timestamp which
gives its start time relative to the start of the segment; a

duration; and possibly one or more message data records.
e Message Data Record: A type (send or receive), a
rank identifier (source or destination), a tag, and a

communicator.

e FEvent End Record: A marker that indicates an event end.
We merge segments both within and across processes. Segments are merged if
they are equal, as determined by a given difference method. A trace profiler can have
multiple difference methods for deciding segment equality; we describe and compare
several methods in Section 5.3. We describe the criteria and algorithms for intra- and

inter-process merging in Sections 5.2.2 and 5.2.3.

39



int main(){
start_segment(“main_07):;
MPI Init();
end_segment (“main_07);
for(i=0; i < 100; ++i){
start_segment (“main_ loop_1_1");
do_work () ;
MPI Allgather():
end:segment (“main_loop_1_17);
}
for (3=0; 3 < 10; ++3){
start segment (“main loop_2 1”);
do_other_work(};
ena__segment (“main_loop_2_1");
while (k < otherRanks) {
start_segment (“main_loop_2 1 1”);
MPI_Sendrecv();
end:seg'ment (“main_loop_2 1 1");
}
start_segment (“‘main_loop_2_2");
stop_segment (“main_loop_2_2");
}
start_segment (“main_1");
MPI_Finalize();
end_segment ( “main_1") ;

Figure 7 Segment Context Marking

We show a single function, main() with the instructions added to mark the
segment contexts. We mark an initial segment at the start of main, all loops
that contain at least one function event, and code regions surrounding marked
loops. The segment context names are hierarchical: the second loop is
marked "main_loop_2 1" and its subloop is marked "main loop 2 1 1".
Segment marking is automated using a dynamic instrumentation library.

4.2.1 Trace Segmentation

We insert segment markers into the source code or program binary. We define
segments as follows: the initial segment starts at entry to main; for each program
loop containing at least one measured event, we stop the current segment before the
loop starts, start a new segment at the top of each loop iteration, stop the segment at
the bottom of the loop iteration, and start a new segment after the last iteration of the
loop completes; and end the final segment at program termination. The segment

context 1s the section of code, for example, the main loop 1 1 loop in Figure 7.

40



4.2.2 Intra-process Segment Comparison

For intra-process trace reduction, we compare the segments for each context pair
wise to determine if they are similar. If they are, we say that the segments match and
retain a single representative segment. Each segment s; contains an ordered list of
events E; = {eg, ej, ..., em}. We maintain a list storedSegments, which contains the
segments that represent the performance behaviors in the execution, and a list
segmentExecs that holds the starting times and identifier of each representative

segment so that we can later recreate a full trace. Given an equivalence operator ~ for

For i = 0 to len(Epew):
E,ewli].start = Epeyli].start — spew.start
Eneulil.end = Epfi).end — Snew-Start
Snew-€NA = Spew.€Nd — Spew-Start
match = False
For i = 0 to len(storedSegments):
Ssiored = StoredSegments|[i]
match = compareSegments(Snew Sstored)
If match = True:
segmentExecs = segmentExecs \J (Sstored- id Spew-Start)
break
If not match:
Snew-id = getNewld()
segmentExecs = segmentExecs U (Snew-id,Snew-Start)
Spew-Start =0
storedSegments = storedSegments \J Snew-

Boolean compareSegments(Snew, Sstored):
If Spew.context # Sgored.context: return False
If len(Epew) # len(Essoreq): return False
For i = 0 to len(Eyew):
If Een[i].id # Esored[i].id: return False
If Spew = Sstoreq: TEUM True
Else: return False

Figure 8 Algorithm for Intra-process Segment Matching

41



= |

Flgure 9 Intra-process Segment Matchmg

Here we show a portion of an example trace and three segments to illustrate
segment matching. The top bar represents a portion of a trace for the program
in Figure 7. Time increases from left to right, and time values are indicated
above the bar. Segments markers are shown as light gray rectangles with
vertical text that indicates the context of the segment. Events are shown in
white boxes. Below the trace, we show the result of segmentation. In each of
the three segments, the time stamps for the events and ending time of
segments are adjusted relative to the start time of the segment. We name the
segments s0, sI, and s2. In the bottom row, we show two examples of
segment matching (See Section 5.3.).

some similarity metric, and a segment sy, that has events E,., the algorithm
comparing segments is shown in Figure 8. Note that a segments match requires that
segments have the same context and the same number of events occurring in the same

order.

4.2.3 Inter-process Segment Comparison
For inter-process trace reduction, we compare the stored segments lists that were
collected for each process. Initially, each trace profile contains data for a single

process group, each of which only contains data for a single rank. Given two trace

42



g m MPI_Allgather -

24 ) A3
1 25 47 8
0 2 4% s 59 130

23 77
Figure 10 Inter-process Segment Matching

The top and bottom bars represent traces for different ranks of the program in
Figure 7. Time values on the bars increase from left to right. Segments
markers are gray rectangles with text that tells the segment context. Events are
white boxes. Between the traces, we show the result of segmentation. We
name the segments s0.x and s1.x; x indicates the rank that wrote the trace. In
the segments, the time stamps for the events and segment end times are
adjusted relative to the segment start time. To decide matching, we examine
the segments pairwise in order, comparing segment start times and all event
timings.

profiles with equal numbers of segments, we compare each pair of segments in order
and determine if they are similar. If all segments in both traces are deemed similar, we
say that the trace profiles match, add the new process rank identifier into the process
group, and retain a single representative trace profile for the process group. After
comparing all trace profiles, we end up with a set of representative trace profiles, one

for each process group. We give an example of trace matching in Figure 10. In

43



Boolean compareProcessGroups(Py, Pr)
SE, = Py.segmentExecs
SE; = P;.segmentExecs
If len(SEy) # len(SE)): return False
For i = 0; i < len(SEy); ++i:
idp:timey = SEy[i]
id;:time; = SE|[i]
If timey # time;: return False
So = Py.segments
S; = Pj.segments
So = So[ido]
sy = S;[idr]
match = compareSegments(so, 1)
If not match: return False
return True

Boolean compareSegments(so, s1):
If sg.context #=s;.context: return False
If len(Ey) # len(E): return False
For i = 0 to len(E)y):
If Eoli].id = E[{].id: return False
If sp = s5;: return True
Else: return False

Figure 11 Algorithm for Inter-process Matching

addition to comparing event measurements, we also check message passing
parameters: source/target rank, bytes transferred, message tags, and communicators.
All parameters save the source/target rank must be identical; the source/target rank can
be either the same offset, e.g. rank+1 in a nearest neighbor communication pattern, or
the same rank, e.g. all ranks send to rank 0.

To compare two process groups Py and P, with respective segment execution lists,
SEy and SE,, where SE; = {idy:timey, id;:time,, ... idytime,}, and stored segment lists,

S and Sy, where S; = {sq, S1, ..., Sm}, we follow the algorithm in Figure 11.

44



4.3 Trace Profile Segment Comparison Methods

We used several methods to decide the similarity of segments. Each of these is
described below. Our choices were inspired by methods used by other researchers to
reduce traces (See Chapter 3). They fall into two categories: distance methods and

iteration-based methods.

4.3.1 Distance Methods

The distance methods produce a difference measure, which is then compared
against a user-supplied threshold to determine the presence or absence of a match.
Several of the distance methods are standard methods for computing distances
between values and sets of values. We use the relative difference (relDiff), absolute
difference (absDiff), and three variations on the Minkowski distance (Manhattan,

Euclidean, Chebyshev), and wavelet transforms (avgWave, haar Wave).

4.3.1.1 Relative Difference

We compare the relative differences between each event measurement against a
user-defined threshold; if greater, the events are not equal:

|2, — x|

Tellef(xl, xz) = Eq. 1

max(xy, %)

To see how relDiff matches segments, we consider our example in Figure 9. We
compute the relative differences between each of the paired measurements in the
segments. If any are above our chosen threshold, say 0.5, then the match fails.
Comparing s2 with s/, we first compare the start times of the do_work event: x,=1
and x,=1, with relative difference 0. Since the relative difference is less than 0.5, we

45



continue on computing relative differences. Next we check the end times for the
do_work event. Here we compute a relative difference: x,=17 and x;=40, giving a
relative difference of 0.58. This is above our threshold, so the segments do not match.
When we compare 52 with s0, we find that no differences are greater than 0.15 (x;/=17,
x7=20), so the ségments match. The new segment is discarded since its behavior is
reflected in the measurements in s0.

The relative difference function compares each measurement with its paired
counterpart in isolation. The computed difference is proportional to the magnitude of
the paired measurements, meaning that larger differences between larger
measurements don't overshadow differences in smaller measurements. Because the
difference between each measurement pair will be judged in isolation, the relative
difference should be one of the strictest difference criteria in our set. The choice of
threshold used will have a large bearing on the degree of matching, and hence on the
reduction in file size.

One problem with relDiff appears when comparing time stamps in a series. For
example, assume the threshold for comparing time stamps is 0.25. When we compare
events that start at times 1 and 2, the relative difference is % = 0.5. This would result
in a failure to match the events even though there is a difference of only one time unit
between the events. In contrast, if we comparé events that start at 100 and 125, the
relative difference is 0.2, which is a match even though there is a difference of 25 time

units. We expect relDiff to produce reduced traces with a low amount of error, but

with less file size reduction.

46



4.3.1.2 Absolute Difference

As with the relDiff, each measurement is compared with its counterpart. A fixed
size difference, determined by a threshold, is allowed for each measurement pair.
Using our example segments in Figure 9, and a threshold of 20, we see that s2 will not
match s/, because the end times of do_work are 23 time units apart. However, there
are no differences larger than 3 between s2 and s0, so those two segments match. The
threshold choice has an impact on file size and accuracy. We expect this method to
produce fairly accurate results, especially with respect to the timing of events across
processes, because unlike re/Diff it will not have an unfair bias towards events that

occur later in the trace.

4.3.1.3 Minkowski Distance

We compute the Minkowski distance between segments using the formula in Eq.
2. If the distance is greater than a user-specified threshold multiplied by the maximum
value in the event measurements, then the events are not equal. The Manhattan,
Euclidean, and Chebyshev distances are special cases of the Minkowski distance, with
m equal to 1, 2, and lim,,,_,,, respectively [25]. The Chebyshev distance is defined to

be the largest difference between two measurements.

n 1/m
Ln = [lei - yilm} o2
i=1

Using our example in Figure 9, to compare s2 and s, we create a vector of the
measurements for s2, (49, 1, 17, 18, 48), and one for si, (51, 1, 40, 41, 50). The
Manhattan, Euclidean, and Chebyshev distances between these vectors are 50, 32.6,

47



and 23, respectively. The largest measurement in the pair of vectors is 51. If we

choose a threshold of 0.2, then the highest the computed distance can be for a match is

10.2, so s2 and sI will not match using any of the Minkowski distances. When we

compare s0, (50, 1, 20, 21, 49), with s2, we get distances of 8, 4.5, and 3. The

maximum value in the two vectors is 50, so the highest the distances can be for a

match is 10. This means that s2 would match s0 for each of these distance metrics.

There are several issues to consider for the Minkowski distances:

As m increases in the Minkowski distance (See Eq. 2.), the influence of the
larger differences increases, and the influence of the smaller differences
decreases. In the extreme case of the Chebyshev distance, only the
maximum difference has any bearing on the distance value.

As the number of measurements being compared increases, the values of
the Manhattan and Euclidean distances increase. Given vectors of constant
differences greater than 1, the Manhattan distance increases quite rapidly
linearly, and the Euclidean distance increases in the manner of +/x. If the
differences are all between 0 and 1, the computed distances increase more
slowly.

When time stamp values are being compared, e.g. start time and end time
for events, the values are always increasing within a segment. This means
that longer segments are judged less critically than shorter segments,
because the maximum values that are compared with the distance

measurement are larger.

48



Based on these trends, we expect that the Manhattan distance would give the most
accurate results, because it gives larger weight to the smaller differences. The
Euclidean distance would give slightly less accurate results, given the bias towards
larger differences. The Chebyshev distance would be least accurate, because it only

accounts for the largest difference measure.

4.3.1.4 Wavelet Transform

The discrete wavelet transform iteratively decomposes a signal of size L into two
subsignals of size L/2. The first L/2 values give the trends in the original signal, and
the second L/2 values give the fluctuations. Intuitively, it computes the averages and
differences between pairs of numbers [31]. We give examples of transformations in
Figure 12.

We use two wavelet transforms in our experiments: the average transform
described in Figure 12 (avgWave), and the Haar transform (haarWave). The Haar
transform is very similar to the average transform, with the only difference being that

the averages and differences are multiplied by V2 [68]. For example, the trends

computed in step 3 in Figure 12 would be (9v2, 24.25V2). For our implementatioﬁ,
we construct a vector for each of the segments to be compared. The first element of
each vector is the relative start time of the segment, which is 0 in all cases. This is

followed by the event entry and exit time stamps for all events in the segment. The last

49



/ s0 input vector: {0, 1, 20, 21, 49, 50, 0, 0} \

17.625 3
\so transform: {17.625, -7.125, -10.0, 24.75, 0.5, 0.5, -0.5, 0) ) VZ transform: {16.625, -7.625, 8.5, 24.25, 0.5, 0.5, -0.5, 0} )

EuclideanDist = 1.9 = V{12, 0.52, -1.52, 0.52, 02, 02 0%, 0%)
EuclideanMax = 3.5 =0.2 * 17.625

Figure 12 Wavelet Transform Example

Here we show two example average wavelet transforms. We iteratively
compute averages (shown in boxes) and differences (shown between edges)
for pairs of numbers, starting with the original vector. To compare the two
transforms of s0 and s2, we compute the Euclidean distance between them
and compare it against a threshold (0.2) multiplied by the largest element in
the vectors (17.625).

element is the exit time of the segment. Both transforms require an input vector with a
length that is a power of two. We allocate space for the vector so that its length is the
next power of two after the nﬁmber of time stamps in the vector. We zero-pad the
vector after the last time stamp element to the end. To compare transformed vectors,
we compute the Euclidean distance between them [12] and compare it against a
threshold multiplied by the largest value in the pair of transformed vectors. In Figure
12, we show an example comparison of the segments sO and s2 from Figure 9.
Because the computed Euclidean distance, 1.9, is less than the maximum allowed, 3.5,
50 and s2 match.

For both transforms, the values in the transformed vectors will be smaller than the
values in the original vectors. The Haar transform has several properties that the
average transform does not, including preservation of the Euclidean distance [12].

However, its values will be larger than those of the average transform since all values

50



are multiplied by V2. For the Haar transform, we expect more accurate results than
from the Euclidean distance because the maximum value in the transformed vector
will be smaller than the maximum value in the original vector, so the threshold test
will be stricter..The values in the vector from the average transform will be smaller
still; however, the Euclidean distance is not preserved, so the potential exists for a less

strict test than the Euclidean distance.

4.3.2 Tteration-based Methods

We include two iteration-based methods: iter_k and iter_avg.

4.3.2.1 Keep K Iterations

For iter k, we only keep a fixed number of each traced segment of code. We
expect this method to produce small data files. For our example in Figure 9, if k=3, we
would keep all three copies of the main.l segment in the list of stored segments.

However, if k=2, then we would keep s0 and s/ and discard s2.

4.3.2.2 Keep Average Iterations

The iter_avg method keeps the average measurements for each traced section of
code. We expect this method to produce the smallest data sizes, since segments with
the same context and same events will always match. To illustrate this method, we use
the segments in Figure 9 and the stored segments scenario on the left. For this method,
we never have more than one copy of the main.]1 segment, and end up with a single

copy of the main.1 segment that contains averages of the values of s0, s/, and s2.

51



We expect that these methods will produce fairly accurate data for applications
that have little behavior variability, but poorly for applications that do have

performance variabilities.

4.4 Traditional Trace and Trace Profile Size Models
In this section, we present models that predict the amount of data collected for
trace profiling as well as traditional tracing. We illustrate the models with a small

example and extrapolate the results to higher scales.

4.4.1 Traditional Trace
A traditional trace contains an event map and list of event and message records for

each process. We model the size of a traditional trace with the following equation:

P
SfullTraceSize = Z (EventMap + EventData + MessageData)
i=1

where P is the number of processes in the run. The sizes of the EventMap, EventData,

, Eq.3

and MessageData are modeled by the following equations:

EventMap=E, (I, +N,) Eq. 4
EventData =E E, Eq.5
MessageData = M M Eq. 6

The meanings of the symbols in these equations are given in Table 2. The size of
the event map is the product of the number of unique events (£,) by the sum of the
size of the event identifiers (Z;) and the size of the event names (&;). For simplicity, we
use a single number for the length of the event names, the median length. The amount
of event data for each process is the product of the number of events in the file ()

and the size of each event record (E;). The amount of message data is the number of

52



messages in the file (M,) multiplied by the size of the message record (M;). We see
that the size of a traditional trace file will be determined by the number of processes

and the event and message counts for the processes.

Table 2 Symbols for Full Trace and Trace Profile Models

Symbol | Meaning

N; The size of strings representing the names of events or segments
I The size of the event or segment identifier

E, The number of unique events in the execution

P The number of processes or process groups in the file
R, The number of ranks in a process group

R Size of rank representation

Sy The number of unique segments per process group

S The count of segment executions per process group
T The size of a timestamp

E, The number of events

E; Amount of data stored per event

M, The number of messages

M, Amount of data stored per message

H; Size of headers

Hyy Size of segment data header

We use values for the sizes of event identifiers, event data, and message data based
on those used by the TAU tool, configured for function entry and exit tracing and for
gathering message passing data. TAU generates 24-byte records for each entry and
exit event, so E; = 48. For message passing events, 96 bytes of data are generated, M,
= 96. When we evaluate our model, we use slightly different event counts than an
actual TAU trace would contain. We exclude several record types to ensure a more
fair comparison between traditional tracing and trace profiling. The event records we

exclude are;

53



e Records for any functions that are not included in trace profiling segments.
For example, the function main is not included in any segment, so it is not
included in the model for traditional tracing.

e Records for segment markers that we inserted into the code. Each segment
marker generates entry and exit events.

e Any minor administrative records, e.g. TAU’s EVINIT or FLUSH_CLOSE

events.

4.4.2 Trace Profile

A trace profile contains a single event map, followed by data for one or more
process groups. Each process group has a rank list, a segment map, a segment
execution list, and data for segments. For parsing purposes, we added section headers
to the file that indicate the type and number of records that follow the header. We
show the format of a trace profile in Figure 13.

We use the following function to predict the size of a trace profile:

traceProfileSize =

P
H_ + EventMap + Z (RankList +SegmentMap + SegmentExecList + Segments) Eq.7

i=]

The definitions for the symbols used in the equations are in Table 2. The equation
to compute the size of the event map in a trace profile is the same as for the traditional
trace file (See Eq. 4). The equations for computing the sizes of the rank list, the

segment map, segment execution list, and segments are given below:

RankList =H_+ R R, Eq. 8
SegmentMap =H,+ (N, +1,)S, Eq. 9
SegmentExecList = H + (Ts +1, )Se Eq. 10

54



SL'
Segments = H  + Z(H . +H + EventData + MessageData) Eq. 11

FE]

SECTION HEADER (Event Map, N)
Event Map Entries
SECTION HEADER (Process Group, N)
SECTION HEADER (Rank List, N)
Rank List Entries
SECTION HEADER (Segment Map, N)
Segment Map Entries
SECTION HEADER (Segment Execution List,
N)
Segment Execution List Entries
SECTION HEADER (Segment List, N)
SECTION HEADER (Segment, N)
Segment Header
Event Entries

Figure 13 Trace Profile Format

This figure shows the format of a trace profile. Each section header tells the
type of data that will follow it and how many entries of that type to expect
(N). There is one event map per trace profile, followed by data for one or
more process groups. Each process group has a rank list, a segment map, a
segment execution list, and a list of the segments. The section header for each
segment tells how many event entries to expect. The segment header gives the
segment identifier and its duration.

The equations for computing the size of the event data and message data are the
same as for the traditional trace and are given in Eq. 5 and Eq. 6. The size of a trace
profile will largely depend on the degree of merging for process groups and segments,
and on the amount of event and message data collected for each segment. If no process
groups or segments merge, the size of the trace profile will scale with the number of
processes in the run and the number of events and messages for each process, like a

traditional trace. If segments merge, but process groups do not, the trace profile size

55



Table 3 Sizes of Fields in Trace Profiling Data Structures
Data type Field Type Size (bits)
Section Header id char 8
count int 32
Event Map id int 32
size short int 16
name char array | N;
Rank List id int 32
Segment Map id int 32
size char 8
name char array | N;
Segment id int 32
Execution List time stamp double 64
Segment Data id int 32
Header duration double 64
Event Data enter and exit markers char 8
id int 32
relative start double 64
duration double 64
message data char 8
Message Data type (send/recv) and src/dest rank int 32
bytes int 32
tag short int 16
comm short int 16

will scale with the number of processes. If process groups merge, but segments do not,
then the size of the trace profile will depend on the amount of event and message data
collected in the segments. If there is segment and process group merging, then the size

of the trace profile will depend on the number of performance behaviors in the

56



execution. The sizes of the fields in a trace profile are shown in Table 3. We use

values from this table for evaluating our model.

4.5 Traditional Trace and Trace Profile Size Comparison Using Models
Our example program for size comparison is random-barrier, a simple MPI

benchmark from the PPerfMark suite [43]. The random-barrier program has a single

main loop. In each iteration of the main loop, a rank is chosen at random to be the

bottleneck and cause the other ranks to block in MPI Barrier. We manually

E, =[550,250,250,250]
E, =[21,21,21,21]

N, =39

P=4

M, =[200,50,50,50]
SfullTraceSize =99.4 KB

Figure 14 Input Data to Traditional Trace Size Model

partitioned the program into three segments: init, mainloop, and finalize, using TAU’s
phase begin and end events. We ran the benchmark with four MPI processes for 50
iterations, resulting in 1 execution per process of init, 50 executions per process of
mainloop, and 1 execution per process of finalize. Init has 44 function calls and 0
messages; mainloop has 10 function calls and 4 messages in rank 0, and 4 function
calls and 1 message in ranks 1-3; finalize has 6 function calls and 0 messages. We

generated a full trace of the execution using TAU.

57



4.5.1 Traditional Trace

We computed the size of a traditional trace for this four-process run of random-

barrier using our model. The inputs to the model are showing in Figure 14, resulting in

a predicted size of 99.4 KB, shown in Table 4. The actual size of the full amount of

N, =39 [44 10 10 10 6
E,=23 g% 4 4 46
P=4 |44 4 4 4 6
R.=[t 11 1] 44 4 4 4 6
S,=[5 5 5 5] 0 4 4 4 0
S,=[52 52 52 52 01110
traceProfileSize =10.9 KB M. = 01110
01110

Figure 15 Inputs to Trace Profile Size Model

data generated was 109.7 KB. The differences arise from two sources: we are
estimating the size of the event files by using the median size of the strings describing
the events; and we are excluding administrative events, e.g. FLUSH CLOSE, and
segment marker events from both the event file size and the trace file size. The
difference in the sum of the event file sizes is 2493 bytes, and the difference in the
trace file sizes is 13053 bytes, with 9984 bytes accounted for by segment boundary
markers. The size of the full trace is broken down by rank and portion of code in Table

4.

58



Table 4 Sizes of Trace Profile and Full Trace

PROGRAM DATA TYPE TRACE FuLL
SECTION PROFILE TRACE
SIZE S1ZE
(BYTES) (BYTES)
Whole Section Headers (Event Map and | 10 0
Execution Process Group)
Event Map 1012 5769
Rank 0 Rank List 9 0
Segment Map 225 0
Segment Execution List 629 0
Section Header (Segment List) 5 0
init Segment Header 17 0
Event Data 1012 2112
Message Data 0 0
mainloop Segment Header 51 0
Event Data 690 24000
Message Data 144 19200
finalize Segment Header 17 0
Event Data 138 288
Message Data 0 0
Ranks  1-3 | Rank List 27 0
combined Segment Map 675 0
Segment Execution List 1887 0
Section Header (Segment List) 15 0
init Segment Header 51 0
Event Data 3036 6336
Message Data 10 0
mainloop Segment Header 153 0
Event Data 828 28800
Message Data 108 14400
finalize Segment Header 51 0
Event Data 414 864
Message Data 0 0
Trace Profile 10.9 994
Total (KB)




4.5.2 Trace Profile

Using a post-mortem prototype trace profiler, we generated a trace profile from the
full TAU trace of the execution. The difference operator we used was the Euclidean
distance with an event difference threshold of 0.25. The end result was a 10.9 KB file
containing data for four process groups, meaning that the behavior of each of the
processes w'as different enough that they were not combined. Each process group
contained the same segment count: 1 init, 3 mainloop, and 1 finalize, indicating that of
the 50 iterations of mainloop, 3 were found to be representative of the behavior of the
process for that segment. In Figure 15 we show the inputs that we fed into our trace
profile size model. The computed size was 11204 bytes, or 10.9 KB, shown in Table
4. The real size of the trace profile was 10318 bytes, or 10.1 KB. The differences in
the actual and computed sizes of the trace profile are due to the estimation of the sizes

of strings by the parameter /V;. The differences between the actual and computed event

and segment map were 250 and 636 bytes, respectively.

4.5.3 Comparison of Traditional Trace and Trace Profile

Now we use our model to extrapolate the sizes of the trace profile and traditional
trace to 64K processes for the random-barrier example, assuming the conditions of the
four-process run. We show how the sizes grow with increasing processes in Figure 16.
We extrapolate three scenarios for the trace profile. In the first scenario, we assume
that no segments or process groups merge (“No Merge”). In the second, there are
always two process groups, one containing rank 0, and the other containing the rest of

the ranks; and each process group has three segments, one init, one mainloop, and one

60



finalize (“Total Merge”). For the last, we assume the conditions that using the
Euclidean distance gave us for the four process run: each rank is in its own process
group and each process group contains five segments: 1 init, 3 mainloop, and 1
finalize (“Euclidean Distance”). The size of the traditional trace file reaches 1 GB at
64K processes, while the size of the “No Merge” trace profile is approximately 620
MB. This means that even if no processes or event patterns were found to be similar in
the execution, the size of the resulting file will still be smaller than a full traditional

trace. The size difference is largely due the fact that a trace profile does not write

1200 T T T T T T

—Full Trace _
1000 === *“Euclidean Distance
"""" No Merge

e Total Herge (Hypothetical)

200

500

File Size MB

400

200

0

Numbet of Processes

. % 10
Figure 16 Traditional Trace and Trace Profiling Sizes for Random-Barrier

Here we show the predicted sizes of full traces and trace profiles of the
random-barrier program for executions with up to 64,000 processes. The solid
blue line (“Full Trace”) shows the predicted size of the full trace in MB. The
dotted red line (“No Merge™) shows the predicted size of a trace profile if no
processes and no segments were found to have behaved similarly. The dashed
green line(“Euclidean Distance”) shows the size of the trace profile if no
process groups merged, and each process group had five segments (1 init, 3
mainloop, and 1 finalize). The solid aqua line (“Total Merge”) shows the size
of the trace profile if there were always two process groups and total merging
of segments.

61



complete separate event records for function entries and exits, but instead uses the
entry record and maintain a start time, duration, and simply marks the event exit with a
record that only uses a single byte of storage. The “Total Merge” and “Euclidean

Distance” trace profiles reach 0.25 MB and 147 MB, respectively, at 64K processes.

4.6 Trace Profiling and Visualization
The trace profiling technique can also address the scalability challenges in trace
visualization analysis. First, the total amount of data has been reduced significantly,

easing the memory and computation requirements of analysis tools. Second, because

80% 15% 5%

1 Do_work_A
Do_work B
Wirite_data

MPI_Barrier

Figure 17 Trace Profiler Visualization

An example trace profile visualization showing the percentage of time
processes spent in temporally aligned behavior patterns.

the behavior patterns in the execution have already been extracted, the tool can easily
present partially analyzed information to the user, reducing the time taken for
identifying performance problems. A visualization of a trace profile could show the
percentage of time processes in the execution spent in temporally aligned segments.
Such a presentation of this information could significantly reduce the time needed for
diagnosing performance problems when compared to visually inspecting a full

program trace for potentially very many processes. An example mock-up trace profile

62



visualization is shown in Figure 17. This figure shows a representation of a multi-
process execution. There were three groups of processes that behaved similarly:
process group 0, process group 1, and process group 2. In the first segment (on the
left),we see that 80% of the time, process group 0 spent more time in Do_work B and
was late to MPI_Barrier, causing the other ranks to block. In the middle segment, we
see that 15% of the time, process group 0 was again late to MPI_Barrier, but was late
because it executed Write data, and spent somewhat more time in Do_Work_ A than
the other processes. In the segment on the right, we see that 5% of the time, the
processes behaved roughly the same, and reached MPI_Barrier at approximately the
same time. Immediately, the user would be able to see that 95% of the time, process
group 0 is causing the other processes to block in MPI Barrier, and will see that 80%

of the time it is due to a load imbalance in the Do_work B function.

4.7 Summary

Trace profiling is a novel performance measurement technique for gathering
event-based performance data. In this chapter, we first described the trace profiling
technique and segment difference methods, followed by models that predicted the size
of trace profiles and traditional traces. We used the models and a simple benchmark to
illustrate the possible data reduction achievable from using trace profiling over
traditional traces. Our example showed that even if no merging occurs, the trace
profile is still smaller than a full traditional trace, and that with the degree of merging
we obtained when using our prototype implementation, our model predicted a size

savings of a factor of 10 between trace profiling and a traditional full trace for 64K

63



processes. Finally, we described how the reduced amount of data produced in a trace
profile could ease the memory and computation requirements for analysis and
visualization tools. We showed an example visualization of a trace profile, illustrating
how it could potentially facilitate a user’s understanding of the performance of
programs more easily than by visualizing an entire program trace.

In the next chapter, we present a study of methods for comparing traces and
demonstrate that trace profiling can produce reduced traces that still retain the
necessary information for correct performance. Following this, we present our runtime

implementation of a trace profiler and evaluate its overheads compared to traditional

traces.

64



5 Trace Comparison Methods

In this chapter, we demonstrate that trace profiling can produce reduced traces that
retain the information needed for correct performance diagnosis of programs. To do
so, we perform a comparative study of similarity methods in current or proposed use
for trace reduction. Using a post-mortem implementation of a trace profiler, we apply
the similarity methods to the task of deciding segment matching and evaluate the
methods for file size reduction, trace error, and retention of performance trends. Our
goal is to determine a similarity method that yields adequate trace reduction and also
retains the information needed for correct performance analysis. Achieving our goal
required that we answer several key questions:

What metrics can we use to evaluate and compare trace similarity methods? In
addition to file size reduction, we developed and used metrics for error, greatest
possible file size reduction (i.e. potential for repeated patterns), and consistency of
performance diagnosis.

How much error should be allowed? Values that will likely never be exactly equal
need to be compared. We had to decide how much each measurement can vary, and
weigh the consequences of the amount of error. If we are matching traces for the
purpose of trace compression, then a larger allowed error between traces would mean
larger number of matches, and thus a smaller trace file. However, the larger error
might prevent the correct performance diagnosis from being made.

How can we measure the “goodness” of each approach? Most trace compression

studies report the reduction of file size achieved; but no matter how much compression

65



is achieved, if the reduced trace no longer contains the data needed for accurate
performance diagnosis, the method is not useful for our purpose. We evaluate each
approach not just on amount of compression, but also on amount of error and

consistency of diagnosis, and discuss the tradeoffs in weighting the different metrics.

5.1 Evaluation Methodology

In this section we detail our framework for the evaluation of similarity methods.
We investigate traces collected for a set of benchmarks with known behaviors, and for
a full application, running on a Linux'cluster. We apply our post-mortem trace profiler
to full execution traces, varying the similarity method used to determine repeating
patterns within the trace. We evaluate the methods for intra-process segment matching
only, inter-process segment matching only, and combined intra- and inter-process
segment matching. Our evaluation focuses on three metrics: file size reduction,
amount of error in the trace, and retention of performance trends. For file size
reduction we simply compare the sizes of the reduced traces to the full-sized traces
from which they were derived. We calculate the trace error by recreating an
approximated full-sized trace from the reduced version, then comparing it to the actual
full trace. We evaluate retention of performance trends by feeding the actual and
approximated full traces into a performance analysis tool and examining any

differences in the results.

5.1.1 Benchmarks
We crafted our benchmarks to represent classes of performance behaviors that

occur in parallel programs on high end systems. These performance behaviors can
66



appear with a high degree of regularity, sporadically, or progressively change over the
iterations in the execution. To reflect this, we created a set of regularly behaving
benchmarks, a set of irregularly behaving benchmarks, and a benchmark that simulates
dynamic load balancing. Because we know the behavior patterns in each benchmark,
we can evaluate how well each of the methods retains the performance behaviors.

We used the APART Test Suite (ATS) to create our benchmarks. The ATS a
collection of utilities designed to create programs with known behavior for testing
parallel performance tools [22]. We chose behavior patterns from the ATS that
represent performance problems that require trace data for correct diagnosis. For
parallel programs, these performance behaviors fall into four categories based on the
communication pattern being used. We describe these communication patterns here
using MPI functions as examples.

N 21. N processes send data to 1 process. If any of the sending processes are
late, then the receiving process blocks, waiting for them to execute the send operation.
Example MPI functions for this pattern are MPI_Reduce and MPI Gather, with
corresponding performance behavior problems early reduce and early gather.

1 >N. 1 process sends data to N processes. If the sending process is late, then all
N receiving processes will block until the send is executed. Example functions are
MPI Bcast and MPI_ Scatter. The corresponding performance problems are
late_broadcast and late_scatter.

1 1. I process sends to 1 process. There are two cases. In the case of a non-

blocking send and a blocking receive, if the sending process is late, the receiving

67



process will block. In the case of a synchronous send, the sending process will block if
the receiving process is late. Example communication routines are MPI Ssend and
MPI_Recv, with corresponding performance problems late_receiver and late_sender.

N >N. N processes send to N processes. Here, all N processes depend on all
other processes involved in the communication to proceed. If any of the N are late,
then the rest of the processes block until all have reached the communication routine.
An example is MPI Barrier with corresponding performance problem
imbalance_at_barrier.

Benchmarks with Regular Behavior. We chose five example benchmarks
provided with ATS with regular behavior: early gather, imbalance at mpi barrier,
late_receiver, late sender, and late broadcast. Each of the benchmarks simulates a
program with the given behavior problem with the same severity in each iteration. In
other words, all iteratioﬂs of each program will exhibit the performance problem and
all iterations should be very similar. All runs had 8 processes.

We expect the similarity methods to do relatively well on this set of benchmarks
since the iterations have regular behavior. They should be able to find a large number
of segments matches and still retain the correct performance behaviors.

Benchmarks with Irregular Behavior. For this category, we used ATS to create
new benchmarks with irregular behavior. The benchmarks simulate the system
interference identified by Petrini et al. when they ran an application on ASCI Q [51].
The system interference prevented the application from scaling as predicted. The

benchmarks contain iterations with work periods that last approximately 1 ms

68



followed by a communication step, using the communication patterns described
previously. The load for each process is constant in each iteration and across
processes: the only performance problem comes from the interference. We simulated
the system noise using timers to interrupt the processes as described by Petrini et al.
We used two simulation scenarios. The first was a 32-process run, with each of the 32
processes simulating the interrupts specific to the 32 nodes in an ASCI Q cluster. The
second was also a 32-process run, but with the simulated amount of system
interruptions that would occur if there were 1024 processes in the run. When we refer
to the benchmarks in the first category, we use the communication pattern and either a
_32ora_1024,to indicate whether 32 or 1024 processes were simulated, respectively.

For these benchmarks, we expect the methods to find a high number of matches,
since most iterations are very similar. However, it will be important that they don’t
falsely match undisturbed and disturbed iterations, as this has the potential to mask or
amplify the periodic behavior changes due to the simulated interruptions.

Dynamic Load Balancing. Here, we used ATS to create a program that simulates
an application that does dynamic load balancing. For this benchmark, the performance
of the iterations starts at about 1 ms and gets progressively worse, with one-half of the
processes doing more work each iteration and the other half doing less work in each
iteration, until the "load balancer” is triggered. The "load balancer" readjusts the
amount of work on each processor to be equal. The performance problem exhibited by

this program is imbalance at mpi all to all, which falls in the N-to-N communication

69



category. This benchmark is referred to as dyn_load balance and was run with 8
processes.

For this benchmark, we expect less overall matching since behavior changes with
each iteration and very close performance behaviors reoccur only after each simulated
load balance. Here it will be important that the similarity methods do not match
segments with larger differences because the load imbalance may no longer be

apparent in the reduced trace.

5.1.2 Application

We chose Sweep3D 2.2b, a structured mesh application that computes a 1-group
time-independent discrete ordinates three-dimensional Cartesian geometry neutron
transport problem [3]. Structured mesh applications have a regular partitioning of the
data, where all interior data blocks have equal numbers of neighbors. It is likely that
the performance will be very regular over the course of the program, which means that
the reduction methods should be able to find a large number of segment matches
without introducing a large amount of error. We collected traces for two runs of this
application: an 8-process run with input file input.50, sweep3d 8p; and a 32-process

run with input input.150, sweep3d_32p.

5.13 MSMentation

We used the dynamic instrumentation library Dyninst [29] to instrument the full
application for both function entry and exit tracing as well as inserting segment begin
and end markers. The simple benchmarks were marked manually. See Section 5.2.1

for details on program segmentation.
70



5.1.4 Evaluation Criteria
We chose four criteria to evaluate the metrics: percentage of full trace file size,
degree of matching, approximation distance, and retention of correct performance

trends.

5.1.4.1 Percentage of Full Trace File Size

We present the savings in file size as a percentage of the full, non-reduced trace
file, as a relative measure of size reduction. We expect iter_avg to perform the best in
this category since it matches all segments with the same context, regardless of the

measurement values in the segments.

5.1.4.2 Degree of Matching

The degree of matching metric is a measure of how many segment matches
occurred. We define it to be the ratio of the number of matches to the number of
possible matches. The number of possible matches is limited by the structure of the
program. For example, some portions of the code may only execute one time, e.g. an

initialization step, and will not match any other event sequence in the trace.

5.1.4.3 Approximation Distance

We estimate the error in the trace by recreating a full trace from the reduced trace
and comparing each time stamp with its counterpart in the original full trace. The

approximation distance metric tells the 90" percentile of absolute differences between

71



paired measurements in the original and reduced traces.! For this metric, high values
for iter_k and iter_avg mean that there is irregularity in the execution that is not being
captured in the iterations that are retained. High values for absDiff give a rough
indication of the absolute difference of time stamps from the true values in the full
trace. High values for the Minkowski and wavelet methods mean that there are high
maximum values in the set of values being compared, relative to the distance between

those values.

5.1.4.4 Retains Correct Performance Trends

Arguably, the most important criterion for evaluating a trace matching metric for
the purposes of performance analysis is deciding whether or not the reduced trace still
indicates the same performance problems as the full trace. For example, if an analyst
inspecting a full trace detects a late sender performance problem, the same problem
should be detected in the reduced trace with approximately the same severity. The
KOJAK tool set was developed to aid parallel performance analysts in the challenging
task of performance diagnosis [71]. KOJAK's EXPERT tool reads in a trace file and

produces a data file containing performance diagnoses. Each diagnosis consists of a

! When recreating full traces for the iter_k method, we used the last segment that executed of each pattern to fill in
the segment executions that were not collected. Alternatives include using the average measurements from the k
collected segments, or using the centroid of those k segments as determined by a clustering algorithm.

72



&

smrmlmemtofusmmrmeiiummn

Figure 18 KOJAK and Derivation of Our Perfonjmﬁnce Dlagnos1s
Representation.

Here we show a screenshot of KOJAK’s EXPERT tool displaying the
performance diagnosis for dyn load balance. The color bar on the bottom
shows the severity levels, with blue being low and red high, and gray
indicating 0 or close to 0. The left panel shows the performance metrics; the
middle panel shows the code locations; and the right panel shows the
processes. The color blocks next to each metric, code location, and process
show the severity for the selected combination. Above, we have selected the
function MPI_Alltoall and the “Wait at NxN”* metric. This combination has
green or “medium-low” severity and the severity is close to 0 for ranks 4, 6,
and 7 and fairly low for ranks 0-3 and 5. We represent this diagnosis by
abbreviating the metric name, e.g. NN for “Wait at N x N,” coloring the
metric abbreviation according to the severity indicated in the code location
pane, and coloring squares for each process according to their severity levels.
White squares indicate negative severities. We show the abbreviations we use
for selected KOJAK metrics in white rectangles next to the metric names.

metric, a code location, and a severity for each thread in the run [59]. KOJAK's CUBE
tool reads in the analysis data and presents a visualization to the user, indicating the

most important performance trends in the trace in a hierarchical manner.

73



We use the CUBE visualization tool to compare the performance diagnoses for the
recreated traces against the diagnoses for the full trace (See Figure 18). We determine
whether a performance analyst would come to the same conclusions about the reduced
trace as the full trace. If not, then the reduced trace is not adequate for performance
analysis. We admit that this is a subjective test; however, we followed a set of

iguidelines when deciding if the diagnoses were sufficiently similar, so all the methods

were subjected to the same criteria.

5.2 Intra-process Reduction Evaluation Studies

In this section, we present the results of two studies evaluating the similarity
methods for intra-process segment matching using the criteria and programs described
in Sections 6.1.1 and 6.1.2. We first present a threshold study for the similarity
methods from the distance metric category. From this study, we choose a threshold for
each of these methods that represents the best tradeoff in terms of file size reduction,
measurement error, and retention of performance trends. In the second study, we
present the results of a comparative study of the similarity methods, using the

thresholds found to be best for each method in the threshold study.

5.2.1 Threshold Study

We investigated the behavior of the methods in reducing the traces of the
benchmarks while varying the thresholds that determine whether two given segments
should match or not match. The thresholds for re/Diff, Minkowski distances, and the
wavelet transforms were 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. The thresholds for iter k were

1, 10, 50, 100, 500, and 1000, and for absDiff were powers of 10 from 10! to 10,
74



Since no thresholds are used with the iter avg method, it was not included in this
study. The criteria we used to evaluate the methods were 'ﬁle size, approximation
distance, and retention of performance trends (For full results, refer to the Appendix.).
For each method, we chose a representative threshold to be used when comparing the
methods against each other.

relDiff. The file size for each benchmark and the sweep3d runs decreased
relatively steadily with increasing threshold. The approximation distance remained
small until the 0.8 threshold, after which there was a large jump for many of the
benchmarks and sweep3d 32p. Performance trends were correctly retained for most
programs up to a threshold of 0.8. Based on the jump in approximation distance and
loss of performance trends after threshold 0.8, we chose 0.8 as the best threshold for
relDiff.

absDiff. Here the file sizes for the benchmarks and sweep3d dropped off fairly
quickly at a threshold of 100 and continued to decrease slightly with increasing
threshold. The approximation distance stayed relatively low up to a threshold of 107,
after which there was a sharp increase for several of the benchmarks and
sweep3d_32p. Performance trends were retained for most programs at a threshold of
less than 10°. Because the file sizes were relatively low and performance trends were
retained at 10, we chose 10° as the representative threshold for absDiff.

Manhattan, Euclidean, and Chebyshev. When observing file sizes changes, the
Manhattan and Euclidean methods behaved quite similarly; the Chebyshev method

showed some differences. For the Manhattan and Euclidean methods with the regular

75



benchmarks, the 1-to-1 irregular benchmarks, and sweep3d, file sizes decreased
relatively steadily with increasing threshold; with the other irregular benchmarks, the
file size decreased only slightly with increasing threshold, because a matching that
was close to optimal was reached early, at a threshold of 0.1. For Chebyshev with the
1-to-1 irregular benchmarks and sweep3d, file size decreased with increasing
threshold; with the regular benchmarks and remaining irregular benchmarks, file size
was relatively constant with increasing threshold. For all three methods, we observed
the following behavior in approximation distance: with the regular benchmarks,
approximation distance was relatively constant with increasing threshold; with the 1-
to-1 irregular benchmarks, approximation distance increased with increasing
threshold; with the remaining benchmarks, the approximation distance remained low
until after the threshold of 0.8, after which there was a large jump. For sweep3d and
Manhattan and Euclidean, approximation distance increased with increasing
threshold; for Chebyshev, the approximation distance was small and relatively
constant until after the 0.8 threshold. For retention of performance trends, the
Manhattan distance did well up to a threshold of 0.4, and the Euclidean and
Chebyshev distances did well up to 0.2. We based our selection of best thresholds for
these methods on the retention of performance trends metric, because we consider this
metric to be the most important. We chose 0.4 as the best threshold for the Manhattan
distance and 0.2 for the Euclidean and Chebyshev distances.

Wavelet Transforms. For all evaluation criteria, avgWave and haarWave

performed similarly. For all programs, file sizes decreased with increasing threshold,

76



up to the point of perfect matching, after which no further decrease in size is possible.
The best threshold in this category appears to be 0.4 for both methods, because file
size decrease levels off after this threshold. The approximation distance for both
methods remained steady with increasing threshold for the regular benchmarks and the
irregular N-tol, N-to-N, and 1-to-N benchmarks. The approximation distance
increased with increasing thresholds for the irregular 1-to-1 benchmarks and sweep3d.
The threshold 0.2 is best for approximation distance, because of the relatively higher
values for the dyn load_balance benchmark and sweep3d after this threshold. For the
majority of programs, performance trends were retained for both methods at
thresholds below 0.2. For these reasons, we chose 0.2 as the best threshold for the
wavelet transform methods.

iter_k. Generally speaking, there was an increase in file size and decrease in
approximation distance with increasing k. Performance trends were retained for must
programs up to threshold 10. The choice for the best value of k wasn’t clear, but we
chose k=10 as the best because the performance trends were retained for most

programs at this threshold.

5.2.2 Comparative Study
In this section, we present comparative results for the different methods using size
and degree of matching; approximation distance; and retention of performance trends

as the evaluation criteria. Based on the results of the threshold study in Section 6.2.1,

77



35

84.5
58.9
30
u relDiff
o absDiff
® Manhattan
® Euclidean
% Chebyshev
% iterK
H iterAvg
@ avgWave
M haarWave
@ & aet g e et D Al Al AL S g ab ah ab ar R R
2 ?\\3\ & 0’66@ ege\“ (,e(\é \ox} ‘0\\? -‘o\\é \9\;\} o'\“? _&}0'1"\ >®-\§.\’®- .&19'&1 "Jés’a_&}m
D2 &/e, © ey &7 W@ AT 0T S S e o &@3 o0 o8
&‘\>0 & . te2d \%" 7’ gx"
©°
RO
1.000 -
0.950 +
0.900 -
W relDiff
M absDiff
0.850
B Manhattan
® Euclidean
0.800 @ Chebyshev
m iterK
0.750 - o iterAvg
% avgWave
0.700 B haarWave
Q&&éé\éﬁ'@é R I N N S R R P, s B S
»Q‘l}'b §° &P F & & &\M xO‘V & ad »:’ .\;:’ Q.) ¥4 a} &b/ 2
y & F e/ & NN Y @ ) ) o O LU
NS4 & Q&? & & & X E &
N 2
o8 &
&

Figure 19 Intra-process Reduction: Percentage File Sizes and Degree
of Matching.

78



4500

400

1122
o reiDiff

= absDIff 300
& Manhattan Distance
W Euclidean Distance l

= Chebyshev Distance

®iter_k

T e L

Figure 20 Intra-process Reduction: Approximation Distance Results for All
Methods at Default Thresholds.

we present results for the best performing threshold for each method: 0.8 for relDiff,
1000 for absDiff, 0.4 for Manhattan, 0.2 for Euclidean and Chebyshev, 10 iterations

for iter_k, and 0.2 for avgWave and haarWave.

5.2.2.1 Size and Degree of Matching

We present the data for reduction of traces for each method in Figure 19. The
iter_avg method gives the best case values for this category, since exactly one
segment is retained for each unique segment context.

The benchmark data shows that for the most part, the degree of matching for each
of the methods is greater than 0.9, meaning that greater than 90% of the segments
were matched. Exceptions occur with relDiff, which had degree of matching scores as
low as 0.74. RelDiff had the highest file sizes and lowest degree of matching scores.
The next largest file sizes are generated with the ifer & method; however, they are not
much higher than those for the other methods. The Minkowski distances, avgWave,

and haarWave all have nearly identical results, with Chebyshev having a very slight

79



advantage over the others. AbsDiff had only slightly larger file sizes than the
Minkowski distances.

For sweep3d, the results are somewhat different. Because this application has very

regular behavior, we expected the results to be similar to those of the benchmarks.
However, because of the program structure, there are more segments, as well as
differences within the segments, e.g. message passing parameters, that cause segments
not to match. We see that ifer k performed the worst, with the highest file sizes and
lowest degree of matching scores. This is because iter k needed to keep 10 copies of
each individual segment, regardless of how similar in performance they actually were,
whereas the high degree of matching often results in fewer than 10 copies. The next
worst performing were the Minkowski distances, again with Chebyshev having the
smallest file sizes. The wavelet methods performed best, followed by absDiff and
relDiff, each with very close to perfect matching and lowest possible file sizes.

The obvious best method in this category is iter_avg, since all segments match by
definition. A comparison of the average file sizes for each of the other methods yields
the following ranking: avgWave, haarWave, Chebyshev, absDiff, Manhattan,

Euclidean, iter_k, relDiff.

5.2.2.2 Approximation Distance

Figure 20 shows the approximation distance results for each of the methods. The
methods show similar trends across the benchmarks with regular behavior. The
relDiff, absDiff, iter k, and iter_avg methods have consistently low values. The

Minkowski distances, avgWave, and haarWave transform behave similarly, and have

A

80



the highest values overall. The results for the dyn load_balance benchmark show a
different set of behavior, with absDiff having the lowest value, followed by avgWave,
Euclidean, Manhattan, and haarWave. The irregular benchmarks had lower overall
approximation distance values than the other benchmarks, with similar results across
the benchmarks. The worst performing methods in this case were iter_avg and iter_k.
However, the approximation distance values are low in comparison to those for the
other set of benchmarks.

The results for sweep3d show ifer_avg performing the worst for the 8-process run,
and iter k and iter _avg the worst for the 32-process run, indicating that there are
performance behaviors not being captured by those two methods.

The methods that performed the best in this category are relDiff, followed by
absDiff, and then iter_avg. The rest of the methods allowed significant error into at

least one of the reduced traces.

5.2.2.3 Retention of Performance Trends

We present summaries of the performance diagnoses given by KOJAK for selected
benchmarks in Figure 21 and Figure 22. We show how we derive the performance
diagnoses charts and abbreviations for metric names in Figure 18.

For the benchmarks with regular behavior, nearly all the methods performed quite
well. For late receiver, all methods except iter_avg performed equally well, with all
performance trends retained. The results for iter avg with late receiver showed

differences significant enough that they may lead to an inaccurate performance

81



MPI Alltoall [ do work

no loss
relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
[avewave
|haarwave

Figure 21 Intra—process Reduction: KOJAK Performance Trends for
dyn_load_balance For Each Method at Default Thresholds.

Here we show the results for each reduction method in the MPI_Alltoall and
do_work functions. The first row shows the diagnoses for the full trace. Each
box in a row shows a performance diagnosis for a single combination of
metric and code location.

assessment. For early gather, all but the Minkowski distances, avgWave, and
haarWave retained the correct performance trends. The results for
imbalance_at_barrier showed that the Minkowski distances, absDiff, iter avg,
avgWave, and haarWave retained the performance trends, while relDiff and iter k
both showed a negative value for the major performance diagnosis. The amount of
error introduced into the reduced traces caused time stamps to be skewed enough that
the performance diagnoses resulted in negative values. We show the major
performance trends for dyn_load balance in MPI Alltoall and do_work as
reported by the KOJAK tools for the full trace and all methods in Figure 21. The
results for the no loss trace clearly indicate that the lower ranks are spending more
time in MPI Alltoall, because the upper ranks are spending more time in
do_work. None of the methods gave perfect results for the dyn load balance

benchmark; however, absDiff, Manhattan, Euclidean, avgWave, and haarWave gave

82



MPI Ssend

no loss

rel Diff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avgWave
haarWave

1tolr_1024 for Each Method at Default Thresholds.

the closest performance diagnoses because for the most part they maintained the
performance differences due to load imbalance between the upper and lower ranks.
Although Manhattan, Euclidean, avgWave, and haarWave lost the disparity in
do_work, the diagnosis “Wait at NxN” is non-negative and maintains the disparity in
behavior. AbsDiff maintained the disparity in performance in do_work, but reported
that “Wait at NxN” was negative. All other methods lose the expected disparity in
do_work.

For the irregular benchmarks, all methods did pretty well on the N-to-1 and 1-to-N
benchmarks, with the exception of ifer_avg, which failed on three benchmarks, and
Chebyshev, which failed on Ntol 1024. AbsDiff did less well on the 1-to-1 and N-to-
N benchmarks. We show the data for 1tolr_1024 in Figure 22. AbsDiff picked up on
the variations in the iterations due interference, which caused some perfofmance
diagnoses to be skewed in a positive or negative direction. The best performers for
these benchmarks were Manhattan, Euclidean, and avgWave, followed by relDiff, and
haarWave. AbsDiff and iter_avg both only showed correct diagnoses for one

benchmark, 1tolr 32 and 1tols_32, respectively.

83



For sweep3d_8p and sweep3d_32p, all methods but ifer_avg and iter_k produced
correct data. Iter k showed a non-existent disparity in rank performance in
pmpi recv in sweep3d 8p and a greatly inflated severity in pmpi recv in
sweep3d_32p. Iter_avg showed a much lower severity in sweep _than did the no-loss
trace for both sweep3d_8p and sweep3d_32p.

The best methods in this category were Manhattan, Euclidean, and avgWave
which correctly diagnosed 17 out of the 18 execution traces. HarrWave did second
best, correctly diagnosing 16.(' The rest of the methods in order were: relDiff (14);
absDiff and Chebyshev (13); iter k (12); and iter _avg (6). The relatively poor
performance of iter k in this category could be due to our choices in implementing
this method'. It is possible that the first iterations are more subject to variabilities in
execution, before the processes synchronize into their regular behavior patterns, and

that the last segment is not the best choice as a fill in for missing segments.

5.2.2.4 Discussion

To determine best method for comparing traces, we take the highest ranking
methods from each category and weigh the importance of each of the categories. The
best methods from the size category were iter_avg, followed by avgWave, haarWave,
and Chebyshev. Those from the approximation distance category were relDiff and
absDiff, followed by iter_avg. Finally, the methods that best retained performance
trends were avgWave, Manhattan, Euclidean, and haarWave. One could argue that the
absolute most important criteria for judging these methods is whether or not they

retain the correct performance trends, because that is the point of collecting the traces

84



in the first place. However, almost equally important is the ability to collect, store, and
analyze the trace data at all. Given that avgWave performed well in both the size and
retention of performance trends categories, we choose avgWave as the best method of

the ones studied for intra-process segment comparison.

5.3 Inter-process Reduction Evaluation Studies

We evaluated the similarity methods for their ability to find inter-process matches.
We first present a threshold study for the similarity methods. From this study, we
choose a threshold for each of these methods that represents the best tradeoff in terms
of file size reduction, measurement error, and retention of performance trends. Next,
we present the results of a comparative study of the similarity methods, using the
thresholds found to be best for each method in the threshold study. We did not
evaluate itfer_avg or iter_k in this section, because utilizing them for the purpose of

inter-process matching is nonsensical.

5.3.1 Threshold Study

. We investigated the behavior of the similarity methods while varying the
thresholds that determine whether two given segments should match or not match. The
thresholds for relDiff, Minkowski distances, and the wavelet transforms were 0.1, 0.2,
0.4, 0.6, 0.8, and 1.0. The thresholds for absDiff were powers of 10 from 10" to 10°.
The criteria we used to evaluate the methods were file size, approximation distance,
and retention of performance trends (For full results, refer to the Appendix.). For each
method, we chose a representative threshold to be used when comparing the methods

against each other.
85



relDiff. The relative difference method performed poorly for inter-process
matching. For all benchmarks and sweep3d, re/Diff only found matches when the
threshold was 1.0, which means any amount of error was allowed when comparing the
segments. None of the reductions produced by relDiff retained correct performance
trends. For the purpose of our comparison study of inter-process matching, we chose
0.8 as the best threshold for re/Diff. Because no matches were achieved, correct
performance trends were retained.

absDiff. For the benchmarks, file sizes tended to start to decline and approximation
distances began to increase at a threshold of 10°. For the most part, performance trends
were retained for the benchmarks at and below 10°. 4bsDiff was unable to find any
matches for sweep3d_8p; absDiff did find matches for sweep3d_32p at and above 10°,
but correct performance trends were not retained. Correct performance trends were
retained for the majority of the codes at thresholds at or less than 10*. Based on these
results, we chose 10* as the best threshold for absDiff.

Minkowski distances. The three methods performed similarly for the benchmarks.
File sizes decreased relatively steadily with increasing threshold and approximation
distances increased most sharply above thresholds of 0.4. Performance trends were
retained for the majority of the benchmarks for thresholds at or above 0.4. All three
methods performed the same for sweep3d, finding no matches for either sweep3d 8p
or sweep3d_32p at any threshold. We chose 0.4 as the best threshold for all three

methods.

86



Wavelet transforms. For the benchmarks, both methods performed similarly. File
sizes decreased steadily with increasing threshold. The approximation distances for the
most part remained low until reaching the 0.6 threshold. For the majority of the
benchmarks, correct performance trends were retained for thresholds of 0.4 and
higher. Neither method found matches for sweep3d 8p. Both found matches for
sweep3d_32 at threshold 0.8, however performance trends were not retained. Based on
the tradeoffs of size reduction and retention of trends, we chose 0.4 as the best

threshold for both avgWave and haarWave.

5.3.2 Comparative Study

Here, we present a comparative study of inter-process reductions achieved by the
similarity methods at the thresholds chosen in Section 6.3.1. We evaluate the methods
for file size reduction, amount of matching, and retention of correct performance
trends. Although relDiff was unable to find any acceptable inter-process reductions at
thresholds below 1.0, we include its results at the 0.8 threshold as a measure of the
worst-case scenario for file size reduction and merging. For absDiff, we used the
threshold 10% for Manhattan, Euclidean, Chebyshev, avgWave, and haarWave, we

used 0.4.

5.3.2.1 Size and Degree of Matching

We show the percentage file size and degree of matching for all methods and
benchmarks in Figure 23 and Figure 24. RelDiff performed the most poorly since it
was unable to find any matches for any of the benchmarks or sweep3d. AbsDiff

performed better for the irregular benchmarks, with an average 59.7% percent file
87



size, than it did for the regular benchmarks, with an average of 87.5%. The Manhattan
and Euclidean distances and wavelet transforms performed similarly, with average
percent file sizes close to 60% and average degrees of matching at 0.4. Chebyshev
achieved the greatest amount of reductions, with average percent file size at 44.8%

and average degree of matching at 0.6. Outliers in the set of benchmarks were

1tolr 1024 and 1tols_1024. None of the methods but Chebyshev were able to find

100
L] |]
90 l
80 & 1
70 i
60
u relDiff
50 - .
l l W absDiff
40 E Manhattan
30 ® Euclidean
m Chebyshev
20
W avgWave
10 B haarWave
0
@ DS @ S A AV AV AV AV gh D g A g% 4Q AQ
I IS AV N S I AN
PSS el T LSS E P ES
\o’bb & &? _&?\,5@/\6" S TN ‘;,‘@ 4\"'0
o & ¢ °
7 F
©
Figure 23 Inter-process Reduction: Percentage File Sizes for Methods at Default
Thresholds

88



0.9 !
0.8 ]
0.7
0.6
= relDiff
0.3 m absDiff
0.4 'l ® manhattan
0.3 m euclidDiff
=@ chebyDiff
0.2 H ® avgWave
0.1 # haarWave
0 H e
e & & LS S VR, VR VR, VR, PR R NP TR
O P S D T T Tt S AR
\be@boze,\-eol\,\'\'\z\'\r\'q’b/
&\*3,&? ‘o'o & z? RS < RS \.}9 \}0 ‘o'\,/OQ/Ko\xxo.\}/y/ezQ Q")
' 22t E SRR E
/ NI S
7
&
Figure 24 Inter-process Reduction: Degree of Matching for Methods at Default
Thresholds
5.0E+04
4.5E+04 192830
4.0E+04 163316
3.5E+04
3.0E+04
2 5E+04 W relDiff
W absDiff
2.0E+04 X Manhattan
1.5E+04 B Euclidean
1 0E+04 ® Chebyshev
B avgWave
5.0E+03 @ haarWave
0.0E+00 -
&
D7
&
£
Figure 25 Inter-process Reduction: Approximation Distance for the Methods at

Default Thresholds

89



acceptable matches for 1tolr 1024, which only achieved 2 matches of the 30 possible.
For 1tols_1024, all methods but Chebyshev found 2 matches of 30, while Chebyshev
found 5. Additionally, none of the methods were able to find acceptable matches for
sweep3d, so the percentage file sizes are all at 100% and degrees of matching are 0 for
all methods for sweep3d_8p and sweep3d_32p. The in order rankings of the methods
for this category were Chebyshev as the best performer, followed by Euclidean,

avgWave, haarWave, Manhattan, absDiff, and relDiff.

5.3.2.2 Approximation Distance

Generally speaking, the approximation distances for all codes were relatively low
(See Figure 25). The approximation distances for the regular benchmarks were, on
average, an order of magnitude lower than those of the irregular benchmarks. The
exception was the early gather benchmark, which had relatively high approximation
distance values for all methods, excluding absDiff. The approximation distances for
Itolr 1024, 1tols_1024, sweep3d_8p, and sweep3d_32p are 0 or very low, since no
or very little matches were found for those traces. Excluding relDiff, since it achieved
no acceptable matchings, the in order rankings of the methods in this category were

absDiff, avgWave, haarWave, Manhattan, Euclidean, and Chebyshev.

5.3.2.3 Retention of Performance Trends

For this category, relDiff retained trends for all programs. However, since relDiff
did not find any inter-process matches, we exclude it as a contender for top-
performing method in this category. AbsDiff and the wavelet transforms performed

similarly on average for the regular and irregular benchmarks, correctly diagnosing

90



about 80% (absDiff) and 60% (avgWave and haarWave) of the programs from each
category. Manhattan and Euclidean correctly diagnosed about 40% of the regular
benchmarks, and 64% (Manhattan) and 72% (Euclidean) of the irregular ones.
Chebyshev retained trends for 60% of the regular benchmarks, and only 36% of the
irregular benchmarks. Since none of the methods found matches for sweep3d, trends
were retained by default.

We show examples of the KOJAK diagnoses produced for early gather and
NtoN 1024 in Figure 26 and Figure 27. For early gather, we see that only absDiff was
able to retain the correct performance trends. This is likely due to the low number of
matches achieved by absDiff for this benchmark. None of the methods found

acceptable reductions for NtoN _1024. All showed reduced severity for the “Barrier

MPI Gather | do work
no loss o —
relDiff —————
absDiff EX [
Manhattan EX
Euclidean TIETERE
Chebyshev 1 I > SRR ER E
avgWave C I C O N E
haarWave CH; N C O S E

Figure 26 Inter-process Reduction: KOJAK Performance Trends for
early gather for Each Method at Default Thresholds

MPI Barrier do work
no loss EX M (vrll  (sn i no
relDiff e  EEG EESYY EEEYY
absDiff EX i |vreiEE sy A N

Manhattan __ [ex il (vl sy [na B
Euclidean EX I |vPEE syl (Rs
Chebyshev  iex BN |wvirl |sil [z
avgWave rx il pAr i ol | g4
[haarwave Ex iild | sy 54 EX B |

Figure 27 Inter-process Reduction: KOJAK Performance Trends for
NtoN_1024 for Each Method at Default Thresholds

91



Completion” diagnosis, and introduced variation in the severities at the rank level that
don’t appear in the no-loss diagnosis. Additionally, all but absDiff reduced the severity
of the “Wait at Barrier” diagnosis.

In this category, the absDiff method performed best, correctly diagnosing 14 out of
the 18 programs. Next, all three of Euc?idean, avgWave, and haarWave correctly

diagnosed 12, followed by Manhattan (11) and Chebyshev (9).

5.3.2.4 Discussion

Generally speaking, we found that there were far fewer inter-process matches
achieved with good results than we initially expected. We expected there to be a larger
number of matches in the regularly behaving benchmarks, but discovered that, overall,
a higher number of matches was found for the irregular benchmarks with a greater
level of retention of trends. Upon inspection, we found that there were no possible
inter-process matches for sweep3d 8p, given its message passing behavior and our
matching criteria (We require that all message passing parameters, e.g. message tags
and bytes match for the traces to match.). However, we were surprised that no
acceptable matches of the 16 possible were found for sweep3d 32p.

In the file size reduction and degree of matching category, the top performers were
Chebyshev, Euclidean, avgWave, haarWave. For the approximation distance category,
the best methods were absDiff, avgWave, haarWave, and Manhattan. In the category
of retaining performance trends, the best methods were absDiff, followed by three
methods in a tie: Euclidean, avgWave, and haarWave. To choose the best overall

method in this category, we consider both file size reduction and retention of trends.

92



Although Chebyshev produced the smallest data files, it produced reduced traces with
the greatest amount of error and least retention of performance trends. Because
Euclidean, avgWave, and haarWave performed very similarly and relatively well in
file size reduction and retention of trends, we choose all three methods as the top

methods for inter-process reduction.

5.4 Combined Inter-process and Intra-process Reduction Evaluation

In this section, we compare the abilities of the similarity methods to produce
reduced traces using both intra- and inter-process reduction. Excluding ifer k& and
iter_avg, we use two different thresholds for each method, one for intra-process
matching and the other for inter-process matching. For iter k and iter avg, we
perform intra-process matching only. The thresholds we use in this study are those that
we found to be the best for each method in Sections 6.2 and 6.3. For intra- and inter-
process reduction respectively, the thresholds were: relDiff (0.8, 0.8), absDiff (10°,
10%), Manhattan (0.4, 0.4), Euclidean, Chebyshev, avgWave, haarWave (0.2, 0.4). For
iter_k, we used k=10, but no threshold for inter-process reduction since this method
does not perform inter-process reduction. We evaluate the methods as we did for the
intra- and inter-process only studies, for file size reduction, introduction of error into
the reduced trace, and retention of correct performance trends. (For full results, refer

to the Appendix.)

5.4.1 Size and Degree of Matching
For the degree of matching, we compute the sum of the intra- and inter-process

matches that were found as a fraction of the total number of intra- and inter-process
93



matches that could possibly be found (See Figure 29). For intra-process matching,
iter_avg decides all segments with the same context match. Because the possible
number of intra-process matches is much higher than the possible number of inter-
process matches, ifer_avg has the highest degree of matching overall. The ranking of
the methods in order from highest average degree of matching to lowest is: iter_avg,
avgWave, haarWave, absDiff, Euclidean, Chebyshev, Manhattan, iter_k, and relDIiff.

Unlike when considering intra- and inter-process matching in isolation, the expected
file size does not directly follow the degree of matching (See Figure 28). A method
such as ifer_avg that achieves a high degree of intra-process matching but doesn’t
perform inter-process matching can generate larger reduced trace files, because a
single inter-process match has the potential for more file size savings than multiple
intra-process matches. The methods in order of smallest average file size to largest
are: Chebyshev, avgWave, Euclidean, haarWave, Manhattan, absDiff, iter_avg, iter k,

and relDiff.

5.4.2 Approximation Distance

We show the results for the approximation distance in Figure 30. Overall, the
Chebyshev distance introduced the most error and relDiff introduced the least error
into the reduced traces. On average, more absolute error was introduced into the

reduced traces of the regular benchmarks than the irregular benchmarks. The methods

94



589

W absDiff

B Manhattan

= Euclidean

L! M relDiff

I

84.5

® Chebyshev
B iter_k

g

M avgWave

| iter_av,

35

30

25

B haarWave

Figure 28 Combined Reduction: Percentage File Sizes for Methods at Default

Thresholds

b=
o
[%]
=]
©
]

B manhattan
H euclidDiff
% chebyDiff

Biter k

H iter_av

g

B avgWave

B haarWave

Figure 29 Combined Reduction: Degree of Matching for Methods at Default

Thresholds

95



5.0E+04

456404 9E405 12E405] |5 7e404
1.7E405
4.0E+04
3.5E+04
3.0E+04 K relDiff
2 5E404 B absDiff
B Manhattan
2.0E4+04 B Euclidean
1.5E+04 |  Chebyshev
1.0E+04 ® iter_k
M iter_avg
5.0E+03 B avgWave
0.0E+00 - ' 1R 1RE el ol edls M haarWave
L "y S A ™ A
&@&f:é'ﬁp@;é‘}i&%e%eZZN,«Z:«,J;:7°L;917{‘;9';7%, ?:b'?WQ
& ’o"“\A&?,;f\é“’\'f'fz YT YN EE S "5&2«\&9

S '

&

Figure 30 Combined Reduction: Approximation Distance for Methods at
Default Thresholds

in order of smallest to largest average approximation distance are: relDiff, iter_avg,

absDiff, iter k, haarWave, avgWave, Manhattan, Eucliean, and Chebyshev.

5.4.3 Retention of Trends

Overall, the methods were able to produce the most acceptable reduced traces for
the regular benchmarks. An exception was the late receiver benchmark, for which
none of the methods retained performance trends. All reported reduced severity for the
“Late Receiver” diagnosis and lost the correct rank-level severities for that diagnosis

The methods did less well for the irregular benchmarks. Notably, none of the
methods produced acceptable reduced traces for NtoN 32 or NtoN 1024. We show
the results for NtoN_32 in Figure 31. For all of the methods, the severity of “Wait at

Barrier” is under-reported and the rank-level severities do not match those of the no-

96



MPI Barrier

no loss
relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avgWave
haarWave

Figure 31 "Combined Reduction: ‘ KOJAK Performance Trends for NtoN_32 for
Each Method at Default Thresholds

loss trace. Iter k and iter_avg did the worst for this benchmark, with severities
misreported for all of the diagnoses.

None of the methods produced reduced traces that retained trends for sweep3d. We
show the KOJAK ‘diagnoses for sweep3d _32p in Figure 32. All methods reported
reduced severity for “Execution Time” in the sweep  function. All but iter_k showed
reduced severity in “Late Sender”, while iter _k showed different rank-level severities
than the results from the no-loss trace. The iter k method did the worst overall,

showing increased severities for all but the “Late Sender” diagnosis in pmpi_recv_.

pmpl recv

no loss
relDiff
absDiff
Manhattan

Chebyshev
iter_k
iter_avg
avgWave
|haarwave

Figure 32 Combmed Reductlon KOJAK Performance Trends for sweep3d_32p
for Each Method at Default Thresholds

97



The relDiff method produced the largest number of acceptable reduced traces, 10 out
of 18. Manhattan, Euclidean, avgWave, and haarWave retained correct performance
trends in 9 reduced traces. The other methods in order are absDiff (8), Chebyshev (7),

iter_k (6), iter_avg (4).

5.4.4 Discussion

The best performing methods in the file size reduction category were Chebyshev,
avgWave, and Euclidean. iFrom the approximation distance category, the best methods
were relDiff, iter _avg, and absDiff. The methods that best retained performance trends
were relDiff, followed by a tie between Manhattan, FEuclidean, avgWave, and
haarWave. Given its performance in the file size reduction and retention of
performance trends categories, we choose avgWave as the best method for reducing

traces using both intra- and inter-process reductions. .

5.5 Discussion
Here we discuss our expectations for the similarity methods and matching
scenario: intra-process only, inter-process only, and combined intra- and inter-process

matching.

5.5.1 Trace Similarity Methods

For relDiff, we expected low error and relatively large files, which is exactly what
we found to be true. For absDiff, we expected low error. We did find that absDiff had
lower error when compared to most methods. We expected the Minkowski distances

would favor long segments and error would be lowest for Manhattan, followed by

98



Euclidean, and highest for Chebyshev. While we did definitely see more error in the
traces produced by the Chebyshev method, the differences in the results for the
Manhattan and Euclidean methods were largely undistinguishable. We expected
iter_k and iter_avg to produce low error traces for programs with regular behavior and
for iter_avg to have the lowest overall file sizes. We indeed found that iter k did well
for regularly behaving programs and less well for programs with varying behavior
patterns. lter_avg produced better results for the regular benchmarks than the irregular
ones; the averaging of measurements tended to cause loss of iﬁformation needed for
diagnosis. For avgWave and haarWave, we expected stricter comparisons than
Euclidean. Indeed, the wavelet transforms produced slightly larger files for the
benchmark traces; however, the reduced traces of sweep3d were smaller than those

produced by Euclidean.

5.5.2 Intra- and Inter-process Matching

We expected the trace similarity methods to identify high degrees of both intra-
and inter-process matches, and that the number of intra-process matches would be
much higher because of the higher number of possible intra-process matches. We
expected that inter-process matches would yield the greatest gains in terms of file size
and a similar level of retention of performance trends across intra- and inter-process
matching.

We found that the results for intra-process only matches followed our
expectations, but that the results for inter-process only matches did not. While inter-

process matching did achieve the highest gains in terms of file size reduction, there

99



were a much lower number of inter-process matches that retained correct performance
behaviors than we expected. This is due to the larger number of measurements that
must match according to the similarity method used in order for an inter-process
match to be successful, from differing message passing parameters across ranks, and

slight variations in events in initialization segments

5.6 Summary

We developed a post-mortem trace profiler and used it to demonstrate the viability
of trace profiling for trace size reduction and for producing reduced traces that retain
the behaviors needed for correct performance analysis. Additionally, we developed a
new methodology for evaluating definitions for similarity between event traces for the
purpose of performance analysis. We identified criteria for comparing the similarity
methods: file size reduction, degree of matching, approximation distance, and
retention of correct performance trends. We applied these criteria, using benchmarks
with known performance behaviors, as well as with the application sweep3d. We
evaluated the similarity methods for how well they reduced traces using intra-process
reduction only, inter-process reduction only, and combined intra- and inter-process
reductions.

For intra-process reduction, the avgWave method had the best retention of
performance behaviors and good trace file size reduction. The greatest trace file
reductions were achieved with the iter_avg method; however, the error in those traces

led to loss of important performance trends in the data. Because of this we found that

100



using the avgWave method was the best trade-off in terms of error in the reduced trace
and-ﬁle size reduction.

In our inter-process reduction study, we discovered that less matching occurred
than what we expected. Euclidean, avgWave, and haarWave performed very similarly
and relatively well in file size reduction and retention of trends, so we choose all three
methods as the top methods for inter-process reduction. We found that Chebyshev
produced the smallest data files, and that it produced reduced traces with the greatest
amount of error and least retention of performance trends, so it was not chosen as the
best method in this study.

For combined intra- and inter-process reduction, again Chebyshev produced small
files with large amounts of error and lost trends. Based on the ability of avgWave to
produce reduced traces that are relatively small with low error and high rate of
retention of performance trends, we chose it as the best method for combined intra-

and inter-process reduction.

101



6 Prototype Runtime Trace Profiler

We demonstrated the viability of the trace profiling technique in terms of
correctness and file size reduction in our post-mortem studies in Chapter 6. Here, our
goal is to demonstrate that the overhead of writing the collected trace data is lower
with a runtime trace profiler than with a traditional tracing tool. In this chapter, we
first describe our current implementation of a prototype runtime trace profiler.* Then,
we detail our experimental setup for evaluating the overheads and resulﬁng files of the
prototype against a state-of-the-art traditional tracing tool on a typical high-end Linux

cluster. Finally, we present the results of our experiments.

6.1 Current Prototype Implementation

The current runtime trace profiler consists of a front end and a back end trace
profiler instrumentation library. The front end launches the program to be measured
and inserts calls in the program to the trace profiler instrumentation library. The trace
profiler instrumentation library contains routines that implement the trace profiling

technique. This initial implementation supports single-threaded MPI applications.

6.1.1 Trace Profiler Front End

The front end of the trace profiling tool starts and controls the execution of the
target process, locates instrumentation points, and inserts calls to the trace profile
instrumentation library at those points. We use the Dyninst dynamic instrumentation

library for process control and instrumentation insertion [29]. We start a separate

2 In this version of the prototype, we reduce the amount of collected data with intra-process merging only. Inter-
process merging is left as a post-mortem activity.

102



front end process for each rank in the parallel run by starting the front end as a parallel
joB and giving it arguments that indicate the program to start and measure, as well as
other arguments that control measurement details, e.g. the distance metric to use to
compare segments and comparison thresholds. For example, if we are running on a
machine that uses the srun command to start parallel jobs, the command srun -n
8 ./traceProfiler -d haar wave targetProgram would start 8 front
end traceProfiler processes according to the policies of the resource manager on the
machine and compare them using the haarWave distance metric. Each front end would
be responsible for a single instance of targetProgram.

Before starting its target program, the front end sets the environment variable
LD PRELOAD to load the back end library into the measured process when it is
started. By doing this, the measurement routines in the trace profile instrumentation
library are available and can be called from the measured process. Next, the front end
creates the process, but does not execute it until after inserting instrumentation. The
front end locates the functions and loops in the program. It assigns identifiers to all
functions and context names and identifiers to all segments, and passes the names and
identifiers to the trace profile instrumentation library. It instruments the entry and exit
of all functions with calls into the trace profile instrumentation library. Segment
markers are inserted with calls to the trace profile instrumentation library. An initial
segment is started at the entry to main or MAIN . Then, for each loop that contains a
user-specified number of function calls, the current segment is stopped and a new

segment is started at the top of the loop and stopped at the bottom of the loop. At the

103



end of the loop execution a new segment is started. At program termination, the final
segment is stopped®. Segment contexts for non-loop portions of code are named as a
concatenation of the enclosing function name and an integer that makes the name
unique. Segment contexts for loops are assigned as a conéatenation of the enclosing
function name, the hierarchical loop name as assigned by Dyninst, and an integer that
makes the segment name unique. See Figure 33 for an example code snippet with
segment marker instrumentation. Note that the consequences of marking segments in
this manner mean that some segments will contain no events, e.g main_2, all segments
are disjoint, and that it is possible for a function’s entry and exit to cross segment
boundaries if the function or its callees contain a loop that is marked as a segment.
After inserting all instrumentation, the front end starts the execution of the

measured process. At termination of the measured process, the front end process exits.

6.1.2 Trace Profiler Instrumentation Library
In this section, we describe the interface to the trace profile instrumentation library

and its runtime operations.

6.1.2.1 Instrumentation Interface

We show the interface to the trace profile instrumentation library in Table 5. The entry
and exit of functions are recorded by calls to the enterRoutine and

* If the target program is a Fortran application, a call to exitRoutine for MAIN_ is executed before the final
segment is stopped’ In some Fortran implementations, the MAIN _ function is part of the Fortran library and not
part of the user code. It is responsible for executing the main program unit of the user’s Fortran application. As a
result, the MAIN_ function may not exit.

104



int main () {
enterSegment(“main_O”);
MPI Init():
exitSegment () ;
for (i=0; i < 100; ++1i){
enterSegment (“main_loop 1 _17);
do_work();
MPI_Allgather();
exitSegment() ;
}
enterSegment (“main_1");
exitSegment () ;
for (§=0; 3 < 10; ++3j){
enterSegment (“main_loop_2_1");
do_other_work();
exitSegment() ;
while (k < otherRanks) {
enterSegment (“main_loop_2.1_17);
MPI_Sendrecv () ;
exitSegment () ;
}
enterSegment (“main_2");
exitSegment () ;
}
enterSegment (“main_3");
MPI Finalize():
exitSegment() ;

Figure 33 Example Segment Context Marking and Names

exitRoutine functions, respectively. Segment boundaries are marked with calls to
enterSegment and exitSegment. We use the PMPI interface to selectively
collect details about MPI message passing activities. The function MPI Init
contains instrumentation to call the trace profile instrumentation liBrary function,
openTrace, which performs initialization activities. The MPI function definitions
for sending and receiving operations contain calls to sendMessage and
recvMessage which record details about sends and receives: source or target
rank,bytes transferred, message tag, and communicator. In Figure 34, we show the
instrumented definition of MPI_Send. When the user code calls MPI_Send, the
instrumented function in the trace profile instrumentation library is executed, which in

turn calls PMPI Send, the actual call into the message passing library.

105



int MPI_Send( void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm) {

int returnval;

int typesize;

if (dest != MPI_PROC_NULL) {
PMPI_Type size( datatype, &typesize );
sendMessage (translateRankToWorld(comm,dest), typesize*count, tag,
comm) ;
returnvVal = PMPI_Send (buf, count, datatype, dest, tag, comm);
}
return returnvVal;

}

Figure 34 Example Instrumentation for Message Passing Function

6.1.3 Runtime Operations

The current version of the trace profiler front end takes arguments that specify the
distance metric to be used for comparing segment data and comparison thresholds.
The methods implemented into the runtime prototype are those that are described in
Section 5.3. Intra-process segment matching is performed at runtime and inter-process
segment matching is a post-mortem activity.

When the measured process is started, it makes an initial call to enterSegment
to create the first segment and a call to enterRoutine for the entry to main or
MAIN . Presumably, the first function call in the measured program is to MPI_Init.
In the instrumentation for MPI Init, the trace profiler performs initialization
activities, such as setting up the data structures for storing the collected data and
getting the rank identifier for the process. Then, all function event data is collected in
the enterRoutine and exitRoutine functions until the next call to
exitSegment. When exitSegment is called the first time, there are no other

segments stored that could be a potential match, so the first segment is inserted into

106



Table 5 Trace Profile Instrumentation Library Interface

FuNCTION

INSTRUMENTATION LIBRARY

ACTIONS

defineEvents (eventList)

Called before target program execution. The
argument eventList is a listing of function and
segment identifiers and names.

openTrace (rank)

Called in MPI _Init. Performs initialization
activities.

endProgram ()

Called at program termination. Calls
exitSegment’.

enterSegment (id)

Called at a segment entry marker. Sets current
segment.

exitSegment ()

Called at segment exit marker. Exits current
segment.

enterRoutine (id)

Called at function entry to record function entry
time and identifier.

exitRoutine (id)

Called at function exit time to record exit time
and identifier.

sendMessage (dest,
bytes, tag, comm)

Called from instrumented MPI calls to record
details about send operations.

recvMessage (source,
bytes, tag, comm)

Called from instrumented MPI calls to record
details about recv operations.

MPI_*

Intercept calls to the actual MPI library and call
appropriate trace profile instrumentation library
function to record message passing details. They
also execute the call into the MPI library to
execute the operation, e.g. MPI Send calls
sendMessage and PMPI_ Send.

the list of stored representative segments. For all subsequent calls to

enterSegment, a new segment is created. At the matching call to exitSegment,

the segment is terminated and compared using the selected distance metric against the

segments with the same context that have already been stored as representatives.

107



6.2 Experimental Setup

In this section, we report on the experiments we performed to evaluate the
overheads of our current runtime prototype trace profiler (TP). We evaluate our
prototype against a state-of-the-art traditional tracing tool, TAU. We evaluate both
tools for instrumentation and writing overhead as defined in Chapter 4, and for

resulting file size.

6.2.1 Application
We evaluated the prototype using Sweep3d [3] described in Section 6.1.2. We ran
the application with a problem size of 5 x 5 x 6400 with MK=30 and MMI=2. We

measured the application with 32, 64, 128, 256, 512, and 1024 processors.

6.2.2 Machine

We ran our experiments on Hera at LLNL. Hera is an 864-node Linux cluster,
where each node contains 4 AMD quad-core processors, for a total of 16 CPUs per
node. The nodes are connected by an Infiniband switch and are connected to a Lustre
file system. For each experiment, we ran jobs that utilized all CPUs on each node, e.g.
a 32-process run spanned two nodes, and wrote all trace data to the Lustre file system.

The configuration of Hera is very similar to the machine shown in Figure 2.

6.2.3 Tool Configurations
We used TAU version 2.17.1 [58] for our experiments. We configured TAU to

collect entry and exit events for all functions. Note that we did not insert segment

108



markers into the program when measuring with TAU, so the number of
instrumentation points for TAU was lower than it was for our trace profiler prototype.

Our experiments here are similar to those described in Section 4.1. We performed
runs without trace instrumentation (nolnstr), and with and without buffer flush to file
enabled (write or noWrite). Additionally, we experimented with two different buffer
sizes in our experiments: 1.5 MB (def, default size for TAU) and 8.0 MB (8MB,
default size for the widely-used MPE [80]). We altered the buffer size and
write/noWrite configuration of TAU as described in Section 4.1. The choices of buffer
size and write/noWrite configuration for our prototype trace profiler are runtime
options. To measure execution time, we used the wall clock time reported by the
application. We evaluate only overhead that occurs after MPI Init and before
MPI_Finalize; this means that initial file creation and file closing are not included
in the overheads for both tools. Additionally, we do not evaluate any post-mortem
activities, such as trace file merging for TAU or inter-process matching for our
~ prototype.

When the buffer of either tool is full, the trace data is flushed to disk and the buffer
is emptied to collect more data. The flushing policy of our prototype is somewhat
different from that of TAU’s. TAU simply creates a fixed-size buffer and inserts a
series of fixed-size trace records into it. Our implementation creates data structures to
hold process groups and the segments contained in each process group. We flush
TAU’s buffer when the amount of data collected is exactly the maximum buffer size.

We flush the data structures from our prototype at the end of a segment when the

109



amount of data collected meets or exceeds the buffer size. The consequences of this
are that our tool may flush less frequently than TAU.

We implemented a simple buffer flushing policy for our prototype. We simply
flush the data for the entire process group and then reset the process group data to
empty. We append . the process group data at the end of the file, and additionally
update the section header containing the number of process groups in the file.

We ran 30 identical runs for each combination of number of processes, tracing
tool, buffer size, write or noWrite, and for our prototype, flushing policy. For our
prototype runs, we used the avgWave distance metric for segment matching, with
threshold 0.2 and inserted segment markers in loops that contained at least 10 function
calls. We report the average timing information for each configuration. For TAU, the
trace file sizes and number of flushes are deterministic, so we report exact values. For
our prototype, the sizes and number of flushes vary depending on how many segment

matches occur at runtime. We report the averages of these measurements.

6.3 Results
In this section, we present the results of our experiments. We evaluate 'the tracing

tools for instrumentation and writing overhead, size of generated files, and flush count.

6.3.1 Execution Time

We show the execution time of sweep3d measured under the various
configurations with increasing processor count in Figure 35. The execution times for
.the application with no instrumentation are labeled nolnstr. The first four bars after

nolnstr in each processor-count grouping show the TAU runs; the last four bars show
110



120

100

M nolnstr

B TAU_noWrite_def
™ TAU_noWrite_8MB
B TAU_write_def

m TAU_write_8MB

m TP_noWrite_def

B TP_noWrite_8MB
®TP_write_def

B TP _write_8MB

80

60

40

Execution Time {seconds)

20

32 64 128 256 512 1024

Processor Count

Figure 35 Execution Time of Sweep3d Measured with TAU and TP

the results for our prototype (TP). The difference between the execution times for
nolnstr and the noWrite runs shows the amount of instrumentation overhead caused by
each tool and buffer size. The difference between the noWrite and write runs shows
the writing overhead of the tool configuration.

We examine the writing overhead in more detail in Figure 36. At the smaller
processor counts (32, 64, and 128), we see that the writing overhead is not very
detectable. However, at the larger processor counts the writing overhead for TAU and
our prototype increases with increasing processor count. At the default buffer size, the
writing overheads of TAU and of our prototype become more noticeable and increase

with increasing processor count. However, our prototype introduces less overhead

111



80

B TAU_write_def
B TAU_write_SMB
& TP_write_def

B TP_write_S8MB

Write Overhead {seconds)

32 64 128 256 512 1024

Processor Count

Figure 36 Write Overhead for Sweep3d with TAU and TP

than TAU. With the 8 MB buffer, the writing overhead of TAU increases dramatically
with increasing processor count, but the writing overhead for our prototype using the 8

MB buffer increases very slowly with increasing processor count.

6.3.2 Total File Size

We show the sum of file sizes generated during the write runs in Figure 37 and the
average file size per rank in Figure 38. In all cases, the amount of data written
increases with increasing processor count. However, the file sizes generated using our
prototype did not increase as rapidly as did those of TAU. When using the default

buffer size with our prototype, the total amount of data was higher than when using

the 8 MB buffer.
112



Total File Size {GB)

50

B TAU_write_def

® TP_write_def
B TP_write_8MB

32 64 128 256 512 1024

Processor Count

Figure 37 Total Size of Files Generated for Sweep3d with TAU and TP

Average File Size Per Rank {MB)

50

45

40

35

30 -

M TAU_write_def
B TAU_write_8MB
m TP_write_def

B TP_write_8MB

25

20

15

10

1

32 64 128 256 512 1024

Processor Count

Figure 38 Average File Size Per Rank for TAU and TP

B TAU_write_8MB

113



6.3.3 Flushes

The total buffer flushes over all ranks executed by each tool configuration are
shown in Figure 39 and the average per rank flushes are shown in Figure 40. TAU
with the default size buffer generated the most buffer flushes overall, followed by our
prototype using the default size buffer. The least amount of flushes was executed by
our prototype using the 8MB buffer. In all cases, the number of flushes increased with

increasing processor count.

6.4 Discussion

Our goal for trace profiling was to reduce the overheads of tracing by reducing the
amount of trace data being written to disk during runtime. The writing overhead and
resulting data files from our trace profiler prototype were much smaller than those of
TAU. As expected, the writing overheads still scaled with the number of ranks in the
run, because of contention for the shared file system resources. However, the
overheads did not increase nearly as quickly as with TAU. In general, we found that
the instrumentation overhead of our prototype was on the same order of the
instrumentation overhead of TAU.

The choice of buffer size fof TAU had much less of an impact on overheads and
file size than it did with our prototype. Of course, the choice of buffer size would not
impact the file sizes generated by TAU; the same number of events will be written
regardless. The buffer size choice greatly impacted the performance of our prototype.
The larger buffer size allowed the tool to find a larger number of segment matches,

resulting in less flushes, less writing overhead, and smaller data files.

114



Total Flush Count

3.5e+04

3.0E+04

2.5E404

2.0E+04

1.5e+04

1.0E+04

5.0E+03

0.0E+00

B TAU_write_def
B TAU_write_S8MB

B TP_write_def
H TP_write_8MB

32 64 128 256 512 1024

Processor Count

Figure 39 Total Buffer Flush Count for Sweep3d with TAU and TP

Average Flush Count Per Rank

35

30

25

15 4

10 +

B TAU_write_def
 TAU_write_8MB

B TP_write_def
B TP_write_8MB

32 64 128 256 512 1024

Processor Count

Figure 40 Average Flush Count Per Rank with TAU and TP

115



7 Conclusions

In this dissertation, we present a novel performance measurement technique for
collecting event-based performance data and demonstrate its viability for low-
overhead event trace collection for the purpose of parallel performance analysis.

Our first contribution is a study of the overheads of traditional event trace
collection. We demonstrate that event tracing using traditional methods on high-end
parallel systems is not scalable. The act of collecting such highly detailed performance
information and periodically flushing the collected data to disk unduly perturbs the
measured program. Additionally, the trace files created scale with the running time
and number of concurrent entities in the parallel run. Our study indicates that the
major scalability problems of traditional tracing are the overhead due to periodically
flushing the event data to disk and the large resulting trace files.

The second contribution of this dissertation is trace profiling, a new low-overhead
measurement technique for gathering event-based performance data. Trace profiling is
a hybrid of tracing and profiling and collects summary information about event
patterns that occur during program execution. Trace profiling addresses the major
scalability problems of traditional tracing: periodic flushing of trace data to disk; and
the unmanageably large trace files that are generated. The technique detects repeated
event patterns both within and across processes in a parallel run. Because intra-process
event pattern matching is done at runtime, a reduced data volume is flushed to disk

during execution, which results in lower tool overhead due to writing. Additionally,

116



the sizes of the files generated by trace profiling are greatly reduced compared to
traditional tracing.

The third research contribution is a study of similarity metrics for identifying
patterns in event traces. We evaluate several metrics for file size reduction,
introduction of error, and retention of correct performance behaviors in the reduced
trace. In our study, retention of performance trends was the most important criteria for
evaluating similarity metrics for trace reduction. Our study indicates that the average
wavelet transform method performs the best in terms of retention of performance
trends and file size reduction. This study demonstrates the viability of trace profiling
in terms of its ability to collect useful traces that retain the important behavior patterns
at a reduced data volume.

Our fourth contribution shows the low overheads of runtime trace profiling. We
implemented a prototype runtime trace profiler and evaluated it against a state-of-the-
art traditional tracing tool on a typical high-end Linux cluster. We demonstrate that the
overheads of collecting event-based measurement data using trace profiling are lower
than that of traditional tracing and that the resulting data files are smaller.

We conclude that trace profiling is a viable method for low-overhead collection of

event-based performance data on high end systems.

7.1 Future Work

Potential directions for future work include: investigation of memory bounds for
performance tools; and evaluation of the implementation choices for a trace profiler

and their consequences in terms of measurement overheads.

117



7.1.1 Performance Tool Memory Bounds
Any performance measurement tool that is designed to measure large, long-

running parallel programs must bound the amount of memory used in order to be
scalable; a tool cannot simply store all collected data in memory without potentially
incurring serious consequences to the application performance. In our runtime study,
we discovered that the choice of memory bound for storage of event data impacted the
performance of our prototype. The bound affected the amount of event pattern
matching that could occur at runtime, and thus the amount of data that was flushed
periodically during the run. Use of a smaller memory bound resulted in more flushes,
less event pattern matching, and larger resulting data files than use of a larger memory
bound. In our study, we experimented with two memory bounds, chosen because they
are the default buffer sizes for two commonly-used traditional tracing tools. In our
experience, performance tools either have hard-coded default memory bounds or allow
the user to choose the bounds to be used. In either case, there is no guidance given to
the user as to what bound would be a good choice for a particular performance tool
measuring a particular application class on a particular architecture. A direction for
future work would be to develop a model for describing the interactions between tool
memory bounds, application characteristics, and architecture. The model could be

used to provide guidelines for choosing the best memory bounds for a given situation.

7.1.2 Trace Profiler Measurement Overheads
Although all performance measurement techniques introduce perturbation of

varying degrees into the program being measured, performance measurement with a

trace profiler implementation has the potential to introduce irregular perturbation. In

118



the best case, when measuring regularly behaving programs with a trace profiler, there
will be a high degree of matching of event patterns, which will greatly reduce the
number of comparisons that need to be performed during runtime. However, in the
worst case, when measuring programs that have irregular behavior over time, the
number of intra-process event pattern matches will likely decrease, meaning there will
be a larger number of comparisons that need to be performed over time during runtime
and possibly more data that needs to be flushed to honor the memory bounds of the
tool. Additionally, in a parallel run, if more matches are found in some ranks than
others, then the amount of time spent in comparison operations across ranks will vary.
This could introduce perturbation that could affect the behavior of other ranks, if, for
example, some ranks are waiting for communication from ranks that have a larger
number of event pattern comparisons to make. Future research could examine the
potential consequences of the perturbation introduced by trace profiling for different
classes of programs.

The choice of where to introduce segment markers into a program has the potential
to impact both the amount of perturbation introduced into the program and the number
of event pattern matches that can be identified. If segment markers are placed in all
loops, then the instrumentation overhead increases because more instrumentation
instructions are executed. However, the number of segment matches is likely to
increase greatly, because the amount of event data in each segment is smaller. If
segment markers are placed in loops more selectively, then instrumentation overhead

decreases, but segment matching might decrease because of the larger amount of event

119



data in each segment. A direction of future research would be to investigate the
tradeoffs of segment marking policies.

Our evaluation of the runtime prototype included a single simple policy for
honoring the memory bounds for storing event data: flush all event data when the
memory bounds are reached. Although this policy was very simple, it had the
disadvantage of flushing event patterns that could potentially match future event
patterns, resulting in less matching and larger file sizes. One possible option for
honoring the memory bounds is to never write any data to disk during the run, but
instead compress or fold the data in some manner. For example, when the amount of
data collected by the Paradyn performance tool reaches the memory bound, adjacent
data bins are averaged and the memory size is reduced by half [42]. A trace profiler
might increase the given threshold and reevaluate the stored segments for further
matches to reduce memory usage. However, care would need to be taken to ensure
that performance trends are not lost by allowing more error into the reduced trace.
Future studies of trace profiling could investigate variations on policies for honoring
memory bounds and their impact on the scalability of the technique in terms of flush
counts and resulting data file sizes.

In our evaluation of the prototype runtime trace profiler, we evaluated the
prototype for overheads that occur at runtime, which excludes inter-process matching
overheads. Although post-execution inter-process merging would not perturb the
measured program, the computation time for the merging should still be scalable. An

option for scalable inter-process merging is to explore runtime merging. Segments that

120



are flushed during runtime could be checked for inter-process matches using a tree-
based data reduction infrastructure such as MRNet [56], which would reduce the
overall amount of data being written to disk, and in turn, reduce the writing overhead.
An avenue of future work is to investigate and evaluate scalable methods for inter-

process merging in a trace profiler implementation.

121



8 References

[1]  Sphot benchmark. http://www.lInl.gov/asci/purple/benchmarks/limited/sphot/.
downloaded Dec. 8, 2006.

[2] Intel trace collector 7.0 user's guide.
ftp://download.intel.com/support/performancetools/cluster/analyzer/sb/itcreferencegui
de.pdf, January 2007.

3] The ASCI sweep3D readme file.
http://www.c3.1anl.gov/pal/software/sweep3d/sweep3d_readme.html, January 2009.

[4] Maria Gabriel Aguilera, Patricia J. Teller, Michela Taufer, and F. Wolf. A
systematic multi-step methodology for performance analysis of communication traces
of distributed applications based on hierarchical clustering. In /PDPS, 2006.

[5] Allinea user's guide version 1.2. Available by request . from
support@allinea.com, February 2007.

[6] Dorian Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory Lee, Barton P.
Miller, and Martin Schulz. Stack trace analysis for large scale applications. In
International Parallel and Distributed Processing Symposium (IPDPS 2007), Long
Beach, CA, USA, March 26-30 2007.

[7] R. Aydt. The Pablo Self-Defining Data Format.
ftp://ftp.renci.org/pub/archive/Pablo.Release.S/SDDF/Documentation/SDDF.ps.gz,
1992. Downloaded on March 7, 2007.

[8] L. Bongo, O. Anshus, and J. Bjerndalen. Low overhead high performance
runtime monitoring of collective communication. In Proceedings of the 2005
International Conference on Parallel Processing (ICPP), Oslo, Norway, pages 455—
464, June 14-17 2005.

9] Peter N. Brown, RobertD. Falgout, and Jim E. Jones. Semicoarsening
multigrid on distributed memory machines. SIAM J. Sci. Comput., 21(5):1823-1834,
2000.

[10] Laura Carrington, Allan Snavely, Xiaofeng Gao, and Nicole Wolter. A
performance prediction framework for scientific applications. In Workshop on
Performance Modeling - ICCS, 2003.

[11] Marc Casas, Rosa M. Badia, and Jesus Labarta. Automatic phase detection of
MPI applications. In Christian H. Bischof, H. Martin Biicker, Paul Gibbon, Gerhard R.
Joubert, Thomas Lippert, Bernd Mohr, and FransJ. Peters, editors, PARCO,
volume 15 of Advances in Parallel Computing, pages 129-136. I0S Press, 2007.

[12] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient time series matching by
wavelets. In Data Engineering, 1999. Proceedings., 15th International Conference on,
pages 126—133, Mar 1999.

[13] I-Hsin Chung, RobertE. Walkup, Hui-Fang Wen, and Hao Yu. MPI
performance analysis tools on Blue Gene/L. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing (SC'06), page 123, New York, NY, USA, 2006. ACM.

122



[14] A.Fagot and J. de Kergommeaux. Systematic assessment of the overhead of
tracing parallel programs. In Proceedings of 4th Euromicro Workshop on Parallel and
Distributed Processing, pages 179-185, 1996.

[15] Felix Freitag, Julita Corbalan, and Jesus Labarta. A dynamic periodicity
detector: Application to speedup computation. In Proceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS'01), San
Francisco, CA, USA, April 23-17 2001.

[16] J.Gailly and M. Alder. z/ib 1.1.4 Manual. http://www.zlib.net/manual.html,
March 2002. downloaded on on January 30, 2007.

[17] Jason Gait. A probe effect in concurrent programs. Softw. Pract. Exper.,
16(3):225-233, 1986.

[18] Todd Gamblin, Bronis de Supinski, Martin Schulz, Rob Fowler, and Daniel
Reed. Scalable load-balance measurement for SPMD codes. In SC '08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, 2008.

[19] Todd Gamblin, Rob Fowler, and Daniel A. Reed. Scalable methods for
monitoring and detecting behavioral equivalence classes in scientific codes. In
Proceedings of the International Parallel and Distributed Processing Symposium
“ (IPDPS'08), Miami, FL, April 14-28 2008.

[20] J. Gannon, K. Williams, M. Andersland, J. Lumpp, Jr., and T. Casavant. Using
perturbation tracking to compensate for intrusiuon propagation in message passing
systems. In Proceedings of thel4th International Conference on Distributed
Computing Systems, Poznan, Poland, pages 414421, June 21-24 1994.

[21] J. Garlick and C. Dunlap. Building chaos: an operating environment for
livermore linux clusters. Technical Report UCRL-ID-151968, Lawrence Livermore
National Laboratory, Feb. 2002.

[22] Michael Gerndt, Bernd Mohr, and Jesper Larsson Traff. A test suite for parallel
performance analysis tools. Concurrency and Computation: Practice and Experience,
19(11):1465-1480, August 2007.

[23] Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey Vetter. Falcon:
on-line monitoring and steering of large-scale parallel programs. Corncurrency:
Practice and Experience, 10(9):699-736, Dec 1998.

[24] S.T. Hackstadt, A.D. Malony, and B.Mohr. Scalable performance
visualization for data-parallel programs. pages 342-349, May 1994.

[25] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2005.

[26] Matthias Hauswirth, Amer Diwan, Peter F. Sweeny, and Michael C. Mozer.
Automating vertical profiling. In Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languages, and applications,
pages 281 — 296, October 16-20 2005.

[27] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of
parallel programs. volume 8, pages 29-39, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

[28] M.T. Heath, A.D. Malony, and D.T. Rover. The visual display of parallel
performance data. Computer, 28(11):21-28, Nov 1995.

123



[29] Jeff Hollingsworth, Barton Miller, and Jon Cargille. Dynamic program
instrumentation for scalable performance tools. In Proceedings of Scalable High
Performance Computing Conference, Knoxville, TN, USA, pages 841-850, May 23-25
1994.

[30] Ted Huffmire and Tim Sherwood. Wavelet-based phase classification. In
PACT '06: Proceedings of the 15th international conference on Parallel architectures
and compilation techniques, pages 95-104, New York, NY, USA, 2006. ACM.

[31] A.Jensen and A.la Cour-Harbo. Ripples in Mathematics: The Discrete
Wavelet Transform. Springer-Verlag, 2001.

[32] Laxmikant V. Kalé, Sameer Kumar, Gengbin Zheng, and Chee Wai Lee.
Scaling molecular dynamics to 3000 processors with projections: A performance
analysis case study. In International Conference on Computational Science (ICCS
2003), Melbourne, Australia and St. Petersburg, Russia, pages 2332, June 2-4 2003.
[33] A.Kniipfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel. Introducing the
open trace format (OTF). In in Proceedings of International Conference on
Computational Science (ICCS), Reading, UK, pages 526533, May 28-31 2006.

[34] Andreas Kniipfer. A new data compression technique for event based program
traces. In International Conference on Computational Science, pages 956-965, 2003.
[35] Andreas Kniipfer, Bernhard Voigt, Wolfgang E. Nagel, and Hartmut Mix.
Visualization of repetitive patterns in event traces. In PARA, pages 430439, 2006.
[36] Dieter Kranzlmiiller, Siegfried Grabner, and Jens Volkert. Event graph
visualization for debugging large applications. In SPDT '96: Proceedings of the
SIGMETRICS symposium on Parallel and distributed tools, Philadelphia,
Pennsylvania, USA, pages 108—117, 1996.

[37] Dieter Kranzlmiiller, Siegfried Grabner, and Jens Volkert. Monitoring
strategies for hypercube systems. In PDP '96: Proceedings of the 4th Euromicro
Workshop on Parallel and Distributed Processing (PDP '96), page 486, Washington,
DC, USA, 1996. IEEE Computer Society.

[38] Dieter Kranzlmiiller, Andreas Kniipfer, and Wolfgang E. Nagel. Pattern
matching of collective MPI operations. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA '04), Las Vegas, Nevada, USA, June 21-24 2004.

[39] Chee Wai Lee, Celso Mendes, and Laxmikant V. Kalé. Towards scalable
performance analysis and visualization through data reduction. In 13th International
Workshop on High-Level Parallel Programming Models and Supportive Environments
(HIPS 2008) held in conjunction with IPDPS 2008, 2008.

[40] Allen D. Malony, Dan Reed, and Harry Wijshoff. Performance measurement
intrusion and perturbation analysis. Transactions on Parallel and Distributed Systems,
3(4):433-450, July 1992.

[41] Barton P. Miller. What to draw? when to draw?: an essay on parallel program
visualization. J. Parallel Distrib. Comput., 18(2):265-269, 1993.

[42] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia

124



Newhall. The Paradyn parallel performance measurement tool. Computer, 28(11):37—
46, 1995.

[43] Kathryn Mohror and Karen L. Karavanic. Performance tool support for MPI-2
on linux. In SC '04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 28, Washington, DC, USA, 2004. IEEE Computer Society.

[44] Kathryn Mohror and Karen L. Karavanic. A study of tracing overhead on a
high-performance linux cluster. Technical Report TR-06-06, Portland State University
Computer Science Department, December 2006.

[45] Kathryn Mohror and Karen L. Karavanic. Towards scalable event tracing for
high-end systems. In High Performance Computing and Communications, Third
International Conference (HPCC 2007), Houston, Texas, USA, pages 695-706,
September 26-28 2007.

[46] W.E. Nagel, A.Amold, M. Weber, H.C. Hoppe, and K. Solchenbach.
VAMPIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69-80,
1996.

[47] Oscar Naim and Anthony J. G. Hey. Visualization of do-loop performance. In
HPCN Europe, pages 878—887, 1997.

[48] O. Nickolayev, P. Roth, and D. Reed. Real-time statistical clustering for event
trace reduction. International Journal of High Performance Computing Applications,
11(2):69-80, 1997.

[49] Michael Noeth, Frank Mueller, Martin Schulz, and Bronis R. de Supinski.
Scalable compression and replay of communication traces in massively parallel
environments. In 2/th International Parallel and Distributed Processing Symposium
(IPDPS’'07), March 2007.

[50] D.Ogle, K.Schwan, and R. Snodgrass. Application-dependent dynamic
monitoring of distributed and parallel systems. IEEE Transactions on Parallel and
Distributed Systems, 4(7):762—778, July 1993.

[51] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of the missing
supercomputer performance: Achieving optimal performance on the 8,192 processors
of ASCI Q. In Proceedings of the 2003 ACM/IEEE conference on Supercomputing
(SC'03), Phoenix, Arizona, USA, page 55, November 15-21 2003.

[52] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A tool to visualise
and analyze parallel code. In Proceedings of WoTUG-18: Transputer and occam
Developments, volume 44, pages 17-31, Amsterdam, 1995. IOS Press.

[53] Prasun Ratn, Frank Mueller, Bronis R. de Supinski, and Martin Schulz.
Preserving time in large-scale communication traces. In ICS '08: Proceedings of the
22nd annual international conference on Supercomputing, pages 4655, New York,
NY, USA, 2008. ACM.

[54] D.Reed, R.Olson, R. Aydt, T. Madhyastha, T. Birkett, D. Jensen, B. Nazief,
and B. Totty. Scalable performance environments for parallel systems. In Proceedings
of the 6th Distributed Memory Computing Conference, pages 562-569, May 28 - April
1 1991.

[55] D.Reed, P.Roth, R. Aydt, K. Shields, L. Tavera, R. Noe, and B. Schwartz.
Scalable performance analysis: the pablo performance analysis environment. In

125



Proceedings of the Scalable Parallel Libraries Conference, Mississippi State, MS,
USA, pages 104—113, October 6-8 1993.

[56] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A software-
based multicast/reduction network for scalable tools. In SC '03: Proceedings of the
2003 ACM/IEEE conference on Supercomputing, page 21, Washington, DC, USA,
2003. IEEE Computer Society.

[57] S. Sarukkai and A. Malony. Perturbation analysis of high level instrumentation
for spmd programs. In Proceedings of the 4th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, CA, pages 44-53, 1993.
[58] Sameer Shende and Allen D. Malony. The tau parallel performance system.
International Journal of High Performance Computing Applications, 20(2):287-311,
2006.

[59] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An algebra for cross-
experiment performance analysis. In Proc. of the International Conference on Parallel
Processing (ICPP), pages 63—72, Montreal, Canada, August 2004. IEEE Society.

[60] Daniel P. Spooner and Darren J. Kerbyson. Performance feature identification
by comparative trace analysis. Future Generation Comp. Syst., 22(3):369—-380, 2006.
[61] Cluster File Systems. Lustre: A scalable, high-performance file system.
http://www lustre.org/docs/whitepaper.pdf, November 2002. downloaded June 2006.
[62] Eno Thereska, Brandon Salmon, John D. Strunk, Matthew Wachs, Michael
Abd-El-Malek, Julio Lopez, and Gregory R. Ganger. Stardust: tracking activity in a
distributed storage system. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 2006, Saint Malo,
France, pages 3—14, June 26-30 2006.

[63] Using cray performance analysis tools. http://docs.cray.com/books/S-2376-
31/8-2376-31.pdf, October 2006. Downloaded on Feb. 23, 2007.

[64] Jeffrey Vetter. Performance analysis of distributed applications using
automatic classification of communication inefficiencies. In ICS '00: Proceedings of
the 14th international conference on Supercomputing, pages 245-254, New York,
NY, USA, 2000. ACM.

[65] Jeffrey Vetter. Dynamic statistical profiling of communication activity in
distributed applications. In Proceedings of ACM SIGMETRICS 2002 International
Conference on Measurement and Modeling of Computer Systems, Marina Del Rey,
CA, USA, pages 240-250, June 15-19 2002.

[66] A. Waheed, V. F. Melfi, and D. T. Rover. A model for instrumentation system
management in concurrent computer systems. In HICSS '95: Proceedings of the 28th
Hawaii International Conference on System Sciences, page 432, Washington, DC,
USA, 1995. IEEE Computer Society.

[67] A. Waheed, D. Rover, and J. Hollingsworth. Modeling and evaluating design
alternatives for an on-line instrumentation system: A case study. JEEE Transactions
on Software Engineering, 24(6):451-470, June 1998.

[68] James S. Walker. 4 Primer on Wavelets and Their Scientific Applications.
Chapman & Hall/CRC, 2008.

126



[69] K. Williams, M. Andersland, J. Gannon, J. Lummp, Jr., and T. Casavant.
Perturbation tracking. In Proceedings of the 32nd IEEE Conference on Decision and
Control, San Antonio, TX, pages 299-316, 1996.

[70] C. Winstead, H. Pritchar, and V. McKoy. Tuning 1/O Performance on the
Paragon: Fun with Pablo and Norma. IEEE Computer Society Press, 1996.

[71] F.Wolf, B.Mohr, J.Dongarra, and S.Moore. Automatic analysis of
inefficiency patterns in parallel applications. Concurrency and Computation: Practice
and Experience, 19:1481-1496, 2007.

[72] Felix Wolf, Allan Malony, Sameer Shende, and Alan Morris. Trace-based
parallel performance overhead compensation. In in Proceedings of the International
Conference on High Performance Computing and Communications (HPCC),
Sorrento, Italy, September 2005.

[73] C.Eric Wu, Anthony Bolmarcich, Marc Snir, David Wootton, Farid Parpia,
Anthony Chan, Ewing Lusk, and William Gropp. From trace generation to
visualization: a performance framework for distributed parallel systems. In
Supercomputing '00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 50, Washington, DC, USA, 2000. IEEE Computer
Society.

[74] C. Eric Wu, Hubertus Franke, and Yew-Huey Liu. A unified trace environment
for ibm sp systems. IEEE Parallel Distrib. Technol., 4(2):89-93, 1996.

[75] K. Yaghmour and D. Dagenais. Measuring and characterizing system behavior
using kernel-level event logging. In Proceedings of the USENIX Annual 2000
Technical Conference, San Diego, CA, USA, pages 13-26, June 2000.

[76] J. Yan and S. Listgarten. Intrusion compensation for performance evaluation of
parallel programs on a multicomputer. In Proceedings of the 6th International
Conference on Parallel and Distributed Systems, Louisville, KY, October 14-16 1993.
[77] Jerry C. Yan, Haoqgiang H. Jin, and Melisa A. Schmidt. Performance data
gathering and representation from fixed-size satistical data. Technical Report NAS-98-
003, NASA Ames Research Center, 1998.

[78] Jerry C. Yan and Sekhar R. Sarukkai. Analyzing parallel program performance
using normalized performance indices and trace transformation techniques. Parallel
Computing, 22(9):1215-1237, 1996.

[79] Jerry C. Yan and Melisa Schmidt. Constructing space-time views from fixed
size trace files — getting the best of both worlds. In Parallel Computing:
Fundamentals, Applications and New Directions, Proceedings of the Conference
(ParCo'97), Bonn, Germany, pages 633—640, September 19-22 1997.

[80] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward
scalable performance visualization with Jumpshot. The International Journal of High
Performance Computing Applications, 13(3):277-288, Fall 1999.

127



Appendix: Additional Trace Similarity Study Results
List of Figures

Fig. 1 Intra-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Relative Distance ..........cococveeuevrriviecniciciinicrniinnes 133

Fig. 2 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Absolute DiStancCe........cc.evvverueereereieeneenienree e e sre e sane s 134

Fig. 3 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Manhattan DIStance ...........ccoeeeeeeruecereeinenirseneccseseescsesennens 135

Fig. 4 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Euclidean DiStance ..........cocceceevcreneeernieneninnecnicerireesencscsienens 136

Fig. 5 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Chebyshev DiStance..........ccecueveeeienieneneninienieseeeseeseseeeesrenvens 137

Fig. 6 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Keep K Iterations..........ccecereeceerueereeserseeseeneeeseeneseeseeseessesseessenns 138

Fig. 7 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Average Wavelet Transform...........ccccoveeeeieenenienennienicenenceene 139

Fig. 8 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Haar Wavelet Transform ..........cccooeeveiecinieneeniesieneneecnenesee e 140

Fig. 9 Intra-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and relDiff, absDiff, Manhattan ...........ccccecceeevneeniennennene 141

Fig. 10 Intra-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and Euclidean, Chebyshev, iter K........cccoccevvnvenienenen. 142

Fig. 11 Intra-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and Wavelet Transforms..........cccoceveeeeenenerceeceenenenns 143

Fig. 12 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for dyn_load balance..........c.ccceeeveiveneirinininieinercerereeeeereeene 144

Fig. 13 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for early gather...........cccoviririiniininnecc s 145

Fig. 14 Intra-process Reduction: Retention of Performance Trends with Varying
Threshold for imbalance at mpi barrier .........ccooeceveeiecievineeieere e 146

Fig. 15 Intra-process Reduction: Retention of Performance Trends with Varying
Threshold for late_broadcast

Fig. 16 Intra-process Reduction: Retention and Performance Trends with Varying
Thresholds for 1ate TECEIVET .......c.eoviviiirierrieiecreeeecetee e 148

Fig. 17 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1ate Sender..........cccoevieerennieneieeecreeee e 149

Fig. 18 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtO1 32ttt ettt ea e 150



Fig. 19 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for NEON 32 .....ccciiiiiiiiiiicen et 151

Fig. 20 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1tON 32 .. ..ottt s 152

Fig. 21 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 11011 32 ..o 153

Fig. 22 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds fOr 1018 32 ...iiciiiiieciireerererrere sttt b e ean s 154

Fig. 23 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for Ntol 1024 ..ottt 155

Fig. 24 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtoN 1024 .........cocoeviriiiiniiiiniii s 156

Fig. 25 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1tON_ 1024 .......c.coooiiiivimmiiiiiiitctee e 157

Fig. 26 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1tolr 1024 .. ...ttt 158

Fig. 27 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1t018 1024 .....c.eoiiiriiiiiieneeeeeeceeeeetee e st 159

Fig. 28 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for SWeep3d 8P ....cuiveieiriiiieee et 160

Fig. 29 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for SWeep3d 32D ....ccieceviiriiieeeeereceeee e e 161

Fig. 30 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Relative Distance ..........ccooeeeeveeveeeecceniecenenccienieenns 162

Fig. 31 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Absolute DiStance .........cceeceeveeevuerceerieeneenierieeneereeeeennes 163

Fig. 32 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Manhattan Distance ...........ccoceeeeveeceesiencenieeccecieeenne 164

Fig. 33 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Euclidean Distance..........c.cceccevvvvirerienieeneesenieeneeeene 165

Fig. 34 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Chebyshev Distance..........ccocuevvieevievvrneniieniiinieeneennnnes 166

Fig. 35 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Average Wavelet..........cccocvevvvecieciicieniesecieceeeeee e, 167

Fig. 36 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Haar Wavelet .........cc.cocoeovnineininineiiniienreceeeenes 168

Fig. 37 Inter-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and relDiff, absDiff, and Manhattan............................ 169

129



Fig. 38 Inter-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and Euclidean and Chebyshev.........cccoovviiiniinnnnnn. 170

Fig. 39 Inter-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and avgWave and haarWave ..........ccccevviviiciiciinnnnns 171

Fig. 40 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for dyn_load balance..........c.ocoeveviivecininicriniiiiiiiiieeeene 172

Fig. 41 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for early gather........ooccoiniiiiriiiinieccecre 173

Fig. 42 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for imbalance at barrier..........ccccceeivriinienniciinicniiienicctiee 174

Fig. 43 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for late_broadcast.............ccceveviireenrinierreiceeneccrecne s 175

Fig. 44 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1ate TECEIVET .....coeviviiierieieicrec et 176

Fig. 45 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1ate_sender...........cocecuemeiinenieniinciceeeeceee e 177

Fig. 46 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for Nto1 32 ...ttt see s 178

Fig. 47 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtON 32 ..ottt see s 179

Fig. 48 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for TTON_32 ..ot 180

Fig. 49 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1tolr 32

Fig. 50 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 11018 32 ....c.coiiieiciirrreeecrcr ettt 182

Fig. 51 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for Ntol 1024 ..ottt et 183

Fig. 52 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtON 1024 ........coooiioieireieieereteeeeeeee e sae e b e ennsens 184

Fig. 53 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for ItON_ 1024 ..........ocooiiiineiiineeeseeeeieee e eae s s enens 185

Fig. 54 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1tO1r 1024 ....cccvioiiiiieeceeteeteee et ene 186

Fig. 55 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1t01s_1024 .....c.cooiimiirreeeiereeeeeree et 187

Fig. 56 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for SWeep3d_ 8P ......cccouvivireieireieeeeeeeee e 188



Fig. 57 Inter-process Reduction: Retention of Performance Trends with Varying

Thresholds for SWeep3d 32D ..o 189
Fig. 58 Combined Reduction: Retention of Performance Trends with Default
Thresholds for dyn load balance.........c.coceveveernnieccniiniiiiiiiincccene 190
Fig. 59 Combined Reduction: Retention of Performance Trends with Default
Thresholds for early gather.......c.ccocevveviiiriiiiiniiiiiice e, 190
Fig. 60 Combined Reduction: Retention of Performance Trends with Default
Thresholds for imbalance at barmier.......c..coceeevienieriecinenieneeeeinceececreseenenene 190
Fig. 61 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late broadcast...........coceeeevuerrieriennieiinecteececeeerteetee e 191
Fig. 62 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1ate TECEIVET ......couevieriiiiiiiiiectete et 191
Fig. 63 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late SENdeT.........cceoiiirieriiniieeeceeee e 191
Fig. 64 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NEo1 32.....coi ittt see e 192
Fig. 65 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtON 32 ....c.ciiiiiiiririrerenerceeeteceee ettt et srene 192
Fig. 66 Combined Reduction: Retention of Performance Trends with Default
Thresholds for TtoN 32.....c.oiiiiiiiieeeeerteee ettt sreeens 192
Fig. 67 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1t01T 32 ....ciiiiieiieeeeiete ettt e s 193
Fig. 68 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1018 32 ..ottt et sne e s 193
Fig. 69 Combined Reduction: Retention of Performance Trends with Default
Thresholds for Ntol 1024 .........ooeiiiieieeeieceee ettt eae e err e 193
Fig. 70 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtON_ 1024 ......c.ooiiiiiiieiiiereeeeeecntee ettt a e e aens 194
Fig. 71 Combined Reduction: Retention of Performance Trends with Default
Thresholds for TtON_1024........ccooiiiienreirieereerte et esanees 194
Fig. 72 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1to1r 1024 ..ot 194
Fig. 73 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1tols_1024 ..ot 195
Fig. 74 Combined Reduction: Retention of Performance Trends with Default
Thresholds for SWeep3d_ 8P .....ccvvririeririeirirereeeeeesee ettt 195
Fig. 75 Combined Reduction: Retention of Performance Trends with Default
Thresholds for sSWeep3d 32D ..ottt 195



00 02 04 06 08 1.0

Thresholds

- o interference_1to1r_32 § - o interference_1to1r_32
© A fnterference_1 to1s_32 Ay !nterference_1 to1s_32
< + interference_1to1r_1024 3 - + interference_1to1r_1024
= & x interference_1to1s_1024 g o | interference_1to1s_1024
4 ]
3 - a 8§ 7
Q g
- g
B £
§7 N\ g
2 % 5 3
c ] = F3 5 - “
© \$ £ g
o
& ] ~u
- T~a o a-t-4—s—s—8
T T T T T T T T T T
0.0 0.2 0.4 06 08 1.0 00 0.2 0.4 0.6 08 1.0
Thresholds Thresholds
NN o
o early_gather o early_gather
10~ o\ » | & imbalance_at barrier o A imbalance_at_barrier
=4 N\| + late_broadcast 8 & _+ late_broadcast
= % ~X N x late_receiver § 2 |x late_receiver
g w \Q late_sender '3 - ¢ late_sender
R LW g 8-
® 8 . 0 g -
o B \"§9 E
= © e 9
i a + W g 8 +
N g o
b3 'I-\-\\~ $ % X
g » o Ja-s-8—a—s—8s=—="0
T T T T T T T T T T
0.0 0.2 0.4 06 08 10 0.0 0.2 0.4 06 08 1.0
Thresholds Thresholds
© [&- . 8 . o
g 2 | o interference_Nto1_32 & - o interference_Nto1_32
3 Q\ 4 interference_NtoN_32 & |2 interference NtoN_32
N, |@F interference_1toN_32 8 o |+ interference_1toN_32
7w N interference_Nto1_1024 E 8 _| x interference_Nto1_1024
é 2 | O\ interference_NtoN_1024 3 8 | ¢ interference_NtoN_1024
a 9 \v interference_1toN_1024 cE o v interference_1toN_1024
g | o n_load_balance -% § _| @ dyn_load_balance "
&
2 g |® % ¥
T 3z g g
& 2§
o
1 e B 8 g g s
=) — i g — ’ /
?_ ] R o -9-g-g—B—F—
& 7 T T T T T T T T T m

00 02 04 06 08 10

Thresholds

Fig. 1 Intra-process Reduction: File Size and Approximation Distance for

Varying Duration Thresholds and Relative Distance




[=]
= _x o interference_1to1r_32 § o interference_1t §£§
3 A interference_1to1s_32 A interferen s_32
~ + interference_1to1r_1024 b - + interferen@” 1td1r_1024
7 8 x interference_1to1s_1024 8 X interferefte_1tb1s_1024
|72 (=
2 3 - a 8
a 3 =
g _ g A
o 8 E +
15} g - A—X
§ ] < %] /¢/
_ =
2 o=y s o &
¥ T T T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds
A o——0
o early_gather o early gather
1 A imbalance_at_barrier o A imbalance_at_barrier
2 + late_broadcast g =& + late_bro st
- § . x late_receiver g @ x late_receiver
é N ©  late_sender § ¢ late_send
[r=} — z 9
v o g 8 7
N o w® —
» g | £
e & |° 5 o
- - X 5 €
. \ 3 B Hf—+—+
[=]
[=] \ X X
S - _—_ £ 4 I
8 \$%¢—_¢_—a o ‘__Q‘Sg 6—'—6 6
T T T T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds
S
& ¥ 8 N
© © dyn_load_balance S .4 © dyn_load_balancg—r
B A interference_Nto1_32 3 A interference_Ntg¥ 32-Y
+ interference_NtoN_32 § o + interference_Ntg_32 ©
- 8 % interference_1toN_32 s 8 4 % interference_1tgN_32
4 § N ¢ interference_Nto1_1024 2 3 ¢ interference_Nfb1_1024
@ v interference_NtoN_1024 c o v interference_NtoN_1024
g - ® interference_1toN_1024 -% g ® interference_ftoN_1024
A o £ g
o 3 E
T o |© e 8
Y] o & _]
3- S
1 e h o
o —f—g—a—u
$ 4 ~—0—0o——o0—o0 =) t—ﬁ—ﬁ’"’——t/
& T T T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds

Varying Threshold and Absolute Distance

Fig. 2 Intra-process Reduction: File Size and Approximation Distance for

133



% o interference_1to1r_32 g |o° interference_1to1r_32 F
o A interference_1to1s_32 ~ | A& interference_1to1s_32 /
S _ + interference_1to1r_1024 8 o + interference_1to1r_1024 -
= § B interference_1to1s_1024 § ® | x interference_1to1s_10 £=2
o] %)
3 a
Q ] \ e 8 -
= x S
& S +\
o § A\x % S g
LT—- ~ o3
J O\+§->}<-\ § °
A\A\¥§*_ &~ X
8 © ~ o ~a ~A &
s ~o-0 o
3 T T T T T T T T
0.1 02 05 1.0 01 02 05 1.0
Thresholds Thresholds
S [x 0————Q—F———-0—0—0-0
0 o early_gather o early_gather
@ A imbalance_at_barrier o A imbalance_at_barrier
- + late_broadcast 8 8 |+ late_broadcast
7 g _‘z\ % late receiver § 9 |x late_receiver
g § %\@ sender 2 ¢ late_sender
Q = 8
2 | \ g g §
B 8 £
L A X
= N o
- ] \ a 3 4o
g B3+ + +—t—+-+
§ - x S~a—a- A x X X — X — X - %
) d,_ad, bt o Jo=——8———8—04=4-8
T T T T
01 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds
2 A
Q9 g§ © dyn_load_balance & - © dyn_load balance
¥ A Q{Qme@ce Nto1_32 @ |a interference_Nto1_32
al m %123 8 o |+ interference_NtoN_32
= X interference_1ito 8§ 8 - x interference_1toN_32
g n o mterference_Nto1_1024 2 8 | © interference_Nto1_1024
a v interference_NtoN_1024 c o v interference_NtoN_1024
g 9 ® interference_1toN_1024 % S | = interference_1toN_1024
@ F E T
L o 5 o
i ‘% S |
a g g
X
O ~ oL
§ 0-““‘0‘——0——0 o) o & ] ﬁ"—"’g—‘—%
o T T 1 T i T T
01 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds

Fig. 3 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Manhattan Distance

134



Thresholds

[=]
[=]
§ 1 o interference_1to1r_32 o interference_ttotr 32 |7 T
= A interference_1to1s_32 -4 interference_1to1s_32
a1t + interference_1to1r_1024 8 o + interference_1to1r_1024
0 5 A \§ interference_1to1s_1024 § € 7 x interference_1to1s_102
N & —
% 2 |° \X 8 g - =/=RR=]
> —l + .5
N w (=2
& § \ y £ ©
L g 7 A > E
= fre) % o o ]
lJ- v = -~ = ﬂ'
| O\A Xy g 2
Ao < o
S \ Ben S 4
8 4 O~——n
g O«o o -
hd T T T T T T T T
01 02 05 1.0 0.1 02 0.5 1.0
Thresholds Thresholds
8 6 o———Q———0C—0—0-0
3 o early_gather O early_gather
b A\ A imbalance_at_barrier o |2 imbalance_at_barrier
late_broadcast 8 8 4+ late_broadcast
— 7 late_receiver § £ |x late_receiver
g 8 o3 sender CQ] o ¢ late_sender
a 5 - S 5 8 4
2 “ g ¢
& E
2 ~ X — == 5 g
& ——— 4
s |, A A A-A g 37+ + +—+—+-+
0 — X X Xe—X— X=X
& |0 A . — A
kﬂ, bbb o |o=———b=—=8=—0=6:8
T T T T T T T ol
0.1 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds
8 |o—] ] A
T - «dyn_load_balance & - © dyn_load balance
g B qﬂrg;gﬁ‘a‘en Nto1_32 8 |4 interference_Nto1_32
o ¥ “interferen 3\%@.,& ® o |+ interference_NtoN_32
- < | % interference_1toN_32 § 8 | x interference_1toN_32
8 + . gl S .
= 2 ¢ interference_Nto1_1024 g @ ¢ interference_Nto1_1024
a v interference_NtoN_1024 = v interference_NtoN_1024
= 0 1= .
@ © = interference_1toN_1024 2 8 _| = inteference_1toN_1024
N — [=]
& 3 E S 0
. @ E =
—_ x
=g 5 8
i 2 g7
[aY) ~N x
'e] O o — 0 — /+
S | O————0—o0—0-0 c & G— o H—
o T T T T T T i T
0.1 0.2 05 1.0 0.1 02 05 1.0

Thresholds

Varying Threshold and Euclidean Distance

Fig. 4 Intra-process Reduction: File Size and Approximation Distance for

135



§ | =j~o- jnterference_1to1r_32 8 - o interference_1tot1r_32
2] e <] .
3 === giterference_1to1s_32 A interference_1to1s_32
+ intdference_1to1r_1024 8 - + interference_1to1r_1024
5 - X intégerence_1to1s_1024 8 X interference_1to1s_1024
2 2 9 |
a
z 8 N 2 8
T 87 e 2 .
8 g 2 e g e
Q _ ® 8
= 5 T f—R=8
&
g | 2 4y . /
2 2 o
T T T T T i T T
0.1 0.2 05 1.0 0.1 02 0.5 1.0
Thresholds Thresholds
(=)
% S—— zé:—e’ariy;éaﬂrelzs 8=% Q early_gather  © |0 °7°
imbalance_at_barrier o |2 imbalance_at_barier
8 + late_broadcast § & _|+ late_broadcast
- ¥ 7 x late_receiver 8 o X late_receiver
g « ¢ late_sender 2 < late_sender
a 8 |a pay AT A ALY AY = g ]
g %1 £ &
@O E
L o x
T g -
= g 37 + +—t—t+-+
o x x Xe—X—X=X
‘8_ Ap———F———F—F=%-% o |p———H——=8—=6=8=5
© T T T T T T T T
0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
Thresholds Thresholds
e ——l - A
g 3 5] %yn_lomﬁ@ﬁ'nfe LA g - o dyn_load_balance
g A interference_Nto1_32 o A interference_Nto1_32
e + interference_NtoN_32 8 o |+ interference_NtoN_32
P o x interference_1toN_32 8§ 8 - x interference_1toN_32
é = ¢ interference_Nto1_1024 2 3 | © interference_Nto1_1024
a 3 v interference_NtoN_1024 c o |V interference_NtoN_1024
g 3 ® interference_1toN_1024 % S _| = interference_1toN_1024 ol
& - £ ¥
2 8 kS
T 2 _ 2 8
e g S
N & %
7 +
o — /
s |° o 0—0—0-0 o e—8&—»
8 | T T | | T T
T 01 02 05 1.0 01 02 0.5 1.0
Threshokds Thresholds

Varying Threshold and Chebyshev Distance

Fig. 5 Intra-process Reduction: File Size and Approximation Distance for

136



[Te]
e o interference_1to1r_32 # ® interference_1to1r_32
é - A& interference_1to1s_32 g 44 interference_1to1s_32
+ interference_1to1r_1024 & + \interference_1to1r_1024
= 8 x interference_1to1s_1024 § 9 - x lnterference_1to1s_1024
g )
Q
g 8 / 2 g
3 ¢ . § .
o &7 E
o < 2
T oo g S é
S =
- 2 T e,
s o Y
T T T T T T 7 T T T T T T T
10 20 50 100 500 10 20 50 100 500
Thresholds Thresholds
—_— (=
10 o early_gather =2 N +4% early_gather
[=] . . . .
o A imbalance_gt_barrier imbalance_at_barrier
< + late_broagdast § § - te_brogdcast
7 8 X late_recafver A—A = _recejver
2 F <O late_sghder —% i% 2 - sender
e (5] 7 sl T
Qg & 2 g - 2
N8 st X <
2 E il
2 & & ¥ Q- o
g 4 5 b
i = Q -
& o - H—
T T T T T T T T T T T T T
10 20 50 100 500 10 20 50 100 500
Thresholds Thresholds
S
‘O: h © dyn_load_balance 4 g7 ?
2 A interference_Nto1_32 o |2
i + interference_NtoN_3: 2 S 4+
T o X interference_1toN_3 8§ N [x
.g =] < interference_Nto1_1024 2 o <o
T . a 2
a g v interference_NtoN_71024 c © v
g = interference_ttolyB1024 2 B
B ] /a o] s o |4
o £ E = -
L o [~
T F g__
(=
8Y] o} é;_ 8 _]
1 . . /
]
8 |8—————o—° o m 8—8 B—g
& 7 T T T T T T T T T | T T T
10 20 50 100 500 10 20 50 100 500
Thresholds Thresholds

Fig. 6 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Keep k Iterations

137



% o interference_1to1r_32 o interference_1to1r_32 *
— A interference_1to1s_32 -1 & interference_1to1s_32
* + interference_1to1r_1024 8 o + interference_1to1r_1024
T o & x interference_1to1s_1024 E © - x interference_1tols_1024
o] =] R
(=g a [~ =R=R:-
g 8 \\x B x=K:-2
o ¥ + 2 o
N -]
@ \ E °
Q | A b
i ES SN 8 2 4 &
ic S \ ¥ e Xex & < N -
=} \ A=A A < o
(=] Fay N
§ - C— 0o ° o ¢
¥4 T T T T T T
0.1 02 05 10 0.1 02 05 1.0
Thresholds Thresholds
2 X o early_gather % early_gather I
9 < A jmbalance_at_barmier o A imbalance_at_barrier
& \ + late_broadcast § 8 |+ late_broadcast
—_ A & late_receiver 8§ € |x late_receiver
8 7] ONlate_sender 2 <& late_sender
=8 o o
o g AN = &
c B - & £ 8 7
NN g 2
@@ \ £
[+ x
f— - A == ] [=]
[ = —
3 \A_A_A_A g g 1+ + F—t—t-+
i X X X—X—X-X
A P b=t o Jb=——06—=86=—=6=6=6
T T T T T T T T
01 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds
0 [Oo—] o4o©
=3 e~ «lyn_load_balance o dyn_load_balance AN
é &%gﬁ intefferengg_Nto1_32 o | interference_Nto:l_;z/ o
e o) .
o ~F m%gg 2 8 g -{+ interference_NtoN/32
& 9 x interference_1toN_32: I « X interference_1toN_32
£ 3 o interference_Nto1_1024 2 o interference_Nto1_1024
[vo) v interference_NtoN_1024 c 8 |V interference NtoN_1024
o “9: = interference_1toN_1024 -% & | = interferencg 1toN_1024
dOo | £
L e 3 ¢ /
[y g = 8 - o]
(a:S, ] < T o /
0 [0 - o
S _ o 0O—o0—0-0 o % ] g—H=3-8
o T T T T T T T
0.1 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds

Varying Threshold and Average Wavelet Transform

Fig. 7 Intra-process Reduction: File Size and Approximation Distance for

138



g +
§ 1% o interference_1to1r_32 o o interference_1to1r_32
= A interference_1to1s_32 & 14 interference_1to1s_32
o 1+ + interference_1to1r_1024 2 + interference_1to1r_1024
- 2 \\ interference_1to1s_1024 5 o | X interference_1to1s_1024
/)] A - ) |
o 9 2 w0
5 92 e a -
@ c
Py . + S
[=2 A = - -0 £.7-1
= = o —kax 5
_ A—p 3 8
[=] ~A. A =L $ ——— $
S o
§ T P-o. o o
T T T T T T T T
0.1 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds
2 % o early_gather @ eary_gather  © |0 °7°
B A imbalance_at_barrier o A imbalance_at_barrier
P + late_broadcast 8 8 |+ Ilate_broadcast
= a & late_receiver § 9 |x late_receiver
] N @
(% O\Qe_sender 8 o o Iatefsender
= = [=]
o § — X S £ 87
N ®
o @ £
(]
= - A é (=
= == = =3
a 8+ + +—+—+-+
2 \A—A— A-A & ©
0 - X X X=—=X—X-X
R S & bt — =t o Jo=———06=—==6=—6=00
T T T T T T T T
01 02 05 10 0.1 0.2 05 10
Thresholds Thresholds
(o3 Lo-0
b \-Q_ yn_load_balance o dyn_load balance
é 7] g% n\‘rferen e Nto1_32 o A interference_Nto:q_}Z/
S % .2 3 8 A+ interference_NtoN/32
— x mterference 1t 8 © |x interfference_1tgN_32
é 1 < interference_Nto1_1024 .‘% < interference_Nfo1_1024
a v interference_NtoN_1024 = & _| v interference MNtoN_1024
a 8 interference_1toN_1024 -% 8 =2 interferencg_1toN_1024
B & E 7
L @ B o
i = (=2 o
g 3 /
& o
8 |90 0——0—0-0 o @ e B—5=05-5
o T T T T T T T T
0.1 0.2 05 1.0 0.1 0.2 05 1.0
Thresholds Thresholds

Varying Threshold and Haar Wavelet Transform

Fig. 8 Intra-process Reduction: File Size and Approximation Distance for

139



S o
o & e A
< o sweep3d_8p g -1 © sweep3d_8p
A sweep3d_32p A sweep3d_32p
=] ¥ o
= & 7 5§ S
g © 2 3
5 g ’ &
T 9. § 8
28 ¥ 8
[ B g <
[0} %
T & A 2 8
& ™~ & 84
& A,\A < & o]
- O . “a
S | T o—o0-0-0 o da & 6—b—28
© T T T T T T T T
[=]
0.1 02 05 1.0 0.1 02 05 10
Thresholds Thresholds
Relative Difference
A 2 A
o sweep3d_8p § -1 © sweep3d_8p
© A sweep3d_32p O | A sweep3d 32p /
o [+}]
3 g 8 A
@ © g 8
] ] ©
= a
a 38 = ©
o + — 2 <
N2 g 8 7
@» ¥ E ¥
£ 8 2 o
+ A a 8 4
& \ < 8 O——0
o Ae A A—AN /
8)_ B TS0 06— 0—0—0 o Joa—a—0="
& T T T T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds
Absolute Difference
% N A
o o sweep3d_8p o | sweepdd8p | A —A—47
_ A sweep3d_32p g q4 sweep/Bd:SE‘F
Q
[{e] Q
—_ 2 <
2 & A ‘S 8 -
s W0 5 ®
Q - c
Q
S8 \ g 8
o aFJ ~ Fay E N _0
h;f_ ] \A 5 0o—"°
— . =3
Len g 84/ o—" ©
8 2 <
3 o
& O —o___
0~—o0-0-0 o
T T T T T T T T
0.1 02 05 1.0 01 02 05 1.0
Thresholds Thresholds
Manhattan Distance

Varying Thresholds for Sweep3d and relDiff, absDiff, Manhattan

Fig. 9 Intra-process Reduction: File Size and Approximation Distance for

140



500

A
A o sweep3d_8p o sweep3d_8p Ao A—BT
A FaN I
| sweep3d_32p o 8 Jf _sweepfie-32p7]
o ~
=4
g = .% o
5 F A A o 8
8 & \ 5
g 2
@ A £ 8 - -0
@ 1 \A g N o o—©
- © \A"A E_ o O/
g . & € Jo—
T 0-~—~0-~0-0 o -
T T T T T T T
0.1 02 05 10 0.1 0.2 05 1.0
Thresholds Thresholds
Euclidean Distance
S
S Iz g A
2 \ © sweep3d_8p g © sweep3d_8p
- A \A\ Asweede_32p o A sweep3d_32p
T 7] ~a g 8
o = L ©
5 3 [
[as] (=l =4 [=]
5 S g g
® g 3
2 S 'g =]
[ § — ‘g 8 N
<) ] < 8 o
g Jo
S - o O—0—0-0 o & P\ b—a—2
S T T T T T T -
0.1 0.2 0.5 1.0 0.1 0.2 05 10
Thresholds Thresholds
Chebyshev Distance
e o
o —A [=] A
& - ©o sweepad_8p 8 -1 o~sweep3d 8p
N A sweeh3d_32p ® | A sweep3d_32p
1] Fay
7 8 / § g \
o F L ©
€ O a
a < A = o
5 ® c 3 A
Q = S
B n ® O
® 8 / E ¥
L2 x| A 5 o
c 8 5 9
) S
¥ - / n—0 2 8
8 2 o~ e
s 40 - o - ~So————A—n
=} T T T T T T T T T T T T T T
(=]
10 20 50 100 500 10 20 50 100 500
Thresholds Thresholds

Keep k iterations

Fig. 10 Intra-process Reduction: File Size and Approximation Distance for
Varying Thresholds for Sweep3d and Euclidean, Chebysheyv, iter k

141



_A
8 | A\ o sweep3d_8p § o sweep3d 8p A
§ o | A sweepdd_32p N 1A sweep3d 32p /
4 E=N~-01 3 o a
= S /
—_ _ 8 8 - A
8 3 -
g :
Y 2 § 8
g ¥ o 2 8 A
® 8 E -
Q b A
i - =]
§ S Ha—""
0—0—0-0
3‘- —Ho— o—""°
e O~———o—0n0—0-0 o
T T T T T T T T
0.1 02 05 1.0 01 02 05 1.0
Thresholds Thresholds
Average wavelet
Q A
8; _ A\ o sweep3d_8p 8 - o sweep3d _8p
@ A | & sweep3d_32p N & sweep3d_32p /
C—n A © A
E=TEL e o A
g 3% /
[a}
2 v c &
E s 8
& é 7 H o
(7] E T
2 3 R
w ] = (=
8§
-—0—0—0-0
% Ho—_ 60 °
o O———o0—0—0-0 o
[9Y]
T T T T T T T T
0.1 02 05 1.0 0.1 0.2 05 1.0
Thresholkds Thresholds
Haar wavelet

Fig. 11 Intra-process Reduction: File Size and Approximation Distance for
Varying Thresholds for Sweep3d and Wavelet Transforms

142



MPI Alltoall

no loss

relative

difference

0.1

0.2

0.4

0.6
0.8

10

TV T

absolute

difference

100

© LN

1000000

Manhattan

distance

0.1

0.2

0.4

los

o8

|10

Euclidean

gistance

loa

0.2

0.4

0.6

Fi?

0.8

Nﬁxm

1.0

Chebyshev

distance

0.1

COCTIRIITM

0.4

0.6

0.3

1.0

Average

Wavelet

0.1

0.2

o4

0.6

0.8

10

Haar Wavelet

0.1

0.2

.4

0.8

1.0

Keepk

iterstions

500

100

average

Fig. 12 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for dyn_load_balance

143



MBI Gather do work
no foss LTS

relative
difference

0.1
0.2
0.4
0.5
0.3
1.0

absolute
ditferenoce

10

100
11000
10000
100000
1000000

Manhattan

distance

0.1
0.2
04
0.6
0.8
1.0

distance

Euclidean

0.1
0.2
o4
06
08
[Lo

Chebyshev

distance

lo.x
o2
loa
0.6
0.8
10

Average

Wavelet

0.1
0.2
04
0.6
08
Lo

Haar Wavelet

0.1
0.2
lo4
06
0.8
10

irerations

Keep k

100
50
10

average

Fig. 13 Intra-process Reduction: Retention of Performance Trends w1th
Varying Thresholds for early gather

144



MPI Barrier

no loss

relative

difference

0.1

0.2

0.4

0.6

0.8

ahsolute

difference

Manhattan

distance

Euclidean

1.0

Chebyshev

distance

0.1

0.2

0.4

los

0.8

1.0

Average

Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Haar Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Keep k

Irerations

100

e s

average

PLEECAREE
Laass - .
MEELLT

Fig. 14 Intra-process Reductlon Retention of Performance Trends w1th

Varying Threshold for imbalance_at_mpi_barrier

145




MPI Bcast

do_work

[no tass

LEZ

£X

0.1

lo2

lo4

0.6

0.8

relative
difference

1.0

100

1000

10000

100000

absolute
difference

1000000

0.1

0.2

0.4

0.6

Manhattan
distance

[=]

-]

0.1

Euclidean
distance
[=]
o

Chebyshey

distance
=

0.4

Lﬂmlix

0.8

Average

Wavelet
o
[24]

1.0

wwlum&

L5

0.1 L2 N
g 02 LE SR
2 0.4 L0 EI—
2 lo.s LY
8 i) LE LR
2 10
500
w 1100
ot § 50
: 1
average X COM———" CHE N

Fig. 15 Intra-process Reduction: Retention of Performance Trends with
Varying Threshold for late_broadcast

146



MPI Szend

no loss

relative

0.1

CMmE

0.2

0.4

0.6

0.8

difference

1.0

absolute

10

100

1000

10000

100000

difference

1000000

Manhattan

distance

0.1

0.2

0.4

0.6

los

[Lo

Euclidean
distance

0.1

lo2

0.4

0.6

0.8

1.0

Chebyshey
distance

0.1

0.2

0.4

lo.s

0.8

1.0

Avesage

0.1

0.2

0.4

los

0.8

Wavelet

10

Haar Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Keepk

500

100

50

10

iterations

1

average

zxm

Fig. 16 Intra-process Reduction: Retention and Performance Trends with

Varying Thresholds for late_receiver

147



MBI Recw

no loss

e

rela

o1

lo2

04

0.6

0.8

difterence

10

absolute

100

1000

10000

100000

difference

1000000

Manhattan

distance

0.1

0.2

04

0.6

0.8

1.0

Euclidean

0.1

lo2

loa

[0.6

0.8

distance

bR

0.1

0.2

fex ErErrees

0.4

0.6

EX T

distance
&

1.0

Average

0.1

0.2

0.4

0.6

0.8

Waovelet

{10

Haar Wavelet

loa

0.2

04

0.6

0.8

10

Keepk

]r.x

50

|EX ezrerreen

10

Iterations

Fig. 17 Intra-process Reduction: Retention of Performance Trends w1th

Varying Thresholds for late_sender

148



MPI _(_E_a_ther dec work
:01 foss EX g EX B
. EX
0.2 ggx |
g |04 EX B
u g 0.6 Ex N
fg [ EX W
_ 1.0 E& | - ]
10 EX N
100
1000 Ex IR
g g 10000 £Y
2 é 100000 Ex B2
s |1000000 EX B
0.1
0.2 l£§ ]
g . s EX Bl
g s EX BN
5§ [ EX B
22 |5
0.1 [Ex
02 fex
5 0.4 EX WO
B ops EX
§ g ps EX B
S — 1
~ EX
. s o
0.4 EX
g § 06 EX B
0.8 EX W
£ = i
o1 EX Bl
0.2 1EX .
- 04 £x B
E! $ s EX B
= EX B
L0 EX N
- 0.1 EX
¥ 02 EX B
H [o4 Ex Nl
E 0.6 EX IR
g [ EX N
10 EX B
500 1EX W
w (100 Ex
x5 50 Ex N comm
§f o fex MpI cvm comm
1 EXO  vpEE ol | COWN
average EX MpiEE Cpl COER ER

Fig. 18 Intra-process Reduction: Retention

Varying Thresholds for Ntol_32

of Performance Trends with

149



MPI Barrier do_work

na jass

difference

relative

0.1
0.2
0.4
0.6
0.8
1.0

difference

absolute

10

100
1000
10000
100000

Manhattan
distance

0.1
0.2
0.4
0.6
0.8
1.0

Euclidean
distance

0.1
o2
10.4
06
los

1.0

Chebyshey

distance

0.1
0.2
0.4
0.6
0.8
1.0

Average

Wavelet

01
o2
04
los
b3
10

Haar Wavelet

0.1
0.2
0.4
0.5
0.8
1.0

Keep k
iterations

500

10

average EX M SN

Fig. 19 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for NtoN_32

150



l —
oo oss |
0.1 e
o2 el
8 loa r
g g [o6 iid
52 o8 |
&% o MPEE
10 14
100 - S
g 1000 >
85 |00 mp IR
2 % 100000 Vi ]
= 1000000 MPEEA
0.1 : Nid__|
0.2 o e |
é 04 x rap
5 los £ e I
g é 0.3 - KR |
== o BN |vpEa
0.1 £x e a2 I
0.2 e B
0.4 £y R g |
g E s £ I v
g é 08 < il ]
9% | EXES [vpBs
0.1 1y . rAF
0.2 =x 1 |
04 cx rip
é g€ los £ . o |
28 e ] -
o EX BR
0.1 £ o |
0.2 [ gg xR
. 0.4 £y |
%‘ R . . =
zE s |
10 Mp
0.1 rap
£ o2 |
H 04 e
2 06 T |
2‘? 08 - i
1.0 L]
500 idu |
w 100 rer
- g 50 rp -
R w7 S
a1 Mp NS

Fig. 20 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1toN_32

151



no loss

Relative

Differenice

Absolute
Difference
g
8

Manhattan

distance

Euclidean

distance

Chebyshev
distance

AVETaEE
Wavelet

Haar Wavelet

Keep k

iterations

average |EY

Fig. 21 Intra-proc

ess Reduction: Retention of Performance Trends with
Varying Thresholds for 1tolr_32

il 8 4

152



Relative

Difference

Absolute
Difference

Manhattan
distance

Fuclidean
distance

Chebyshev
distance

AVETEEE

Wavelet

Haor Wavelet

Keep k

iterations

Fig. 22 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1tols_32

153



— — MPI_Gather
no loss EX B MpER (o] |
01 EX MPE cvm
0.2 EX i MpiER ] ]
¥ |04 Ex NN [N NN e!| N
g5 [os fex I [V ] cvm
§ £ los EX R PN CVME
® o {ex EE M Bl CMi
i ig PN Emg___
100
8 |10 EX MP BN CME |
Eg oo EX Mp cvmm |
2 £ 100000 EX R P Bl
- 1000000 Me s Cvi
0.1 EX 98 MPE v
02 1Ex I MPER cvil
[ =4
E, JEX ] cvm
T T —
0.8
——p T -
0.1 EX MP M
02 EX ] CMB
04 lex mem Mp cvmm
B2 s EXEN_ vpmm __[cumm
38 s EX B vPEE cvim
- m = % Mp B BN
.. EX ¢
0.2 Ex Bl MpEN (w5 ]
g, s EX B ] CvE
2f ps Ex Bl vp CMm
g5 s EX Bl mp I VB
- l{;x; ] Mp N cMn
. EX P C
o2 EX B MP cMN |
oy [ 4 BT —r
£E s ] MpI cmim
§5 s EXWN  [wpmm |
= 10 EX I MpE CvE.
o1 EXER  [vpEm cvE |
£ 02 {ex o MPE v
H 04 EX = Mp B M
> 0.6 X CMQ
8 08 EX B8 MP I M
10 EX Mp . Cv
500 EX B ] CVi.
w 100 EX B Mp I ol
=5 50 EX Il Y| ]
g o EX N Mp I Y]
: 1 EX ik | CME
average 1EX W Mpi cCMIR ER EY

Fig. 23 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for Ntol_1024

154



MPI Barrier do work
poloss i Toowm Toowm Towm [ owe oowe  loomM
0.1 £ . Ar =5 ac i T gl e
0.2 £x . sp < 24 R Wi am EX S
g |04 Ex R s loo B jwolE oo BN lex BB |
'é g 0.6 EX R (v ch N les @R (welhm oCW IEXEEN
E o8 Ex | S iy ] WREE P ex B0
ES o EX M |MplE  |SN BA Bl BCEM  [ex @
10 4 BRI | Sh po @ (WRSs  (pc M (e M 000
100 X ol |sni (e @ (weSae  nC @ lex B0
g 1000 2 il | s |
§ H 10000 >4 1 e | <1 1R s R
2¢€ [loo000 EX MPEEE  |SN B (A e
S 11000000 EXENS  mpBES  SNEEN  Ra SN BCWM  lexWEy |
0.1 EX RN [veW [ loo W JweSm [cc i lex WM
0.2 ¥ . il ol | aA TR WEB S e . Ex
E . P2 £ . v | sh f wB S . .| Ex
8 s X . 2 = .
58 s Ex
== o EX B
0.1 ty
0.2 24 m
0.4 =y
g g 06 Ex .
2z ;.{8) cy
0.1
0.2 "
g g8 |os Ex vl Sy i £
g g 0.8 £x . it ] 5h S aa S
Lo EXWR I MPEE  ISNEEH IBA WS
0.1 >a | sip s S o4 . we i 2C EX
02 X el [sr . WRm e N
Y g 0.4 [ ] el 4k ne 8L ]
S 'g 0.6 #x ol | | za N e | Ex
g 5 s R NN . 5 —
10 Ao « AN e lexWm
¢ 0.1 s R RO IEXWM 000 |
2 0.2 2z R [ ] Ex B
H 0.4 zs R ] Ex Bl
i 06 ., . 24 T
k] 0.8 1o . [ ] Ex W
10 : [ ] Ex
500 r lex Bl
a 100 B X W
2 g 50 W [ex e
§g [ B lexmm
average EX MP N BA I WREE EX B8

Fig. 24 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for NtoN_1024

155



do_work

no loss

difference

relative

0.1
0.2
0.4
0.6
0.8
10

difference

absolute

hFuu-m-H

100
1000

Manhattan
distance

Euclidean
distance

0.2

Chebyshey
distance

[
[

Average
Wavelet

a

[=)
ot
g

[
Fs
[ o B i

o
o
ey

Haar Wavelet

M
N
Rlivjeang AV

:

i

Keep k
iterations

Fig. 25 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1toN_1024

156



MPI Ssend
s "

Relative

Differenice

Absofute

Difference

Manhattan

distance

Euclidean

distance

Chebyshev
distance

AVETaRE
Wavelet

Haar Wavelet

Keep k

iterations

Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1tolr_1024

157



no loss

Difference

Relative

0.1
0.2
0.4
0.6
0.8
1.0

Absolute

Difference

10

100
1000
10000
100000
1000000

Manhattan

distance

0.1
0.2
0.4
0.6
0.8
1.0

Euclidean
distance

1
E.Z
0.4
0.6
0.8

1.0

Chebyshev
distance

0.1
0.2
0.4
0.6
0.8
1.0

Wavelet

0.1
0.2
0.4
0.6
0.8
1.0

Haar Wavelet

0.1
0.2
0.4
0.6
0.8
1.0

Keepk
iterations

500
100
50
10
1

javerage E)

Fig. 27 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1tols_1024

158



no loss

relative

difference

0.1

0.2

04

0.6

0.8

1.0

absolute

difference

10

160

10000

Manhattan

di

0.1

0.2

0.4

0.6

0.8

1.0

Euchdean

distance

0.1

g

0.2

0.4

o6

EX LRI

0.8

1.0

Chebyshey

distance

0.1

0.2

0.4

0.6

0.8

1.0

Average

Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Haar Wavelet

0.1

0.2

04

0.6

0.8

1.0

Keep &k

iterations

500

100

50

MPLERTIING

10

MPEIIEIEI

TR

1

MPLLTEIE

average

HF S

L3

EX (LT

Fig. 28 Intra-process Reduction: Retention of Performance Trends with
Varying Thresholds for sweep3d_8p

159



no loss

relative

difference

0.1

0.2

0.4

lo6

0.8

1.0

absolute

differentce

10

100

1000000

Manhattan
distance

0.1

0.2

0.4

0.6

0.8

1.0

Euclidean
distance

0.1

0.2

0.4

0.6

0.8

1.0

Chebyshev
distance

0.1

0.2

0.4

0.6

0.8

10

Average

Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Haar Wavelet

0.1

0.2

0.4

K]

0.6

0.8

1.0

Keepk

iterations

500

ud B BN BE [N I B

e

50

; er ﬂﬁrl

i

™

]
Ex Gl pP

CME

Fig. 29 Intra-process Reduction: Retention of Performance Trends with

Varying Thresholds for sweep3d_32p

160



Q a?ﬂi!tnterferent?é‘j‘t‘o?rf o interference_1toir_32 +
F A interference_1to1s_3. g _| & interference_1to1s_32
© + interference_1to1r_1024 b 2 + interference_1to1r_1024
= 8 x interference_1to1s_1(24 E X interference_1to1s_1024
o ¥ o _ A
s & :
L 9
N8 i g 9
L E 9
L < X W
= =3
g g
O X
~ 8 £o
& + & # g—H—&
T T T & T T T T
0.1 02 05 10 0.1 0.2 05 1.0
Thresholds Thresholds
o 2 —— 25 — A
o ® % eaurly_gather(2§ ® _| o early_gather
g A imbalance_at_baryier A jmbalance_at_barrier
& + late_broadcast 8 1 |+ late_broadcast
= a | x—late_receiven — A 8 & X late_receiver
é § |® =@=ﬁ‘re=;='sg—]ﬁﬁf$=ﬁ 2 ¥ | O late_sender +
a § c ~
g £
& & | g 3
2 & g &7 %
= = [3Y
. L
+ —
(Y
h 8 ~°
4 + —@ & $—H—$
T T T T 8 T —T T T
01 02 05 10 0.1 02 05 1.0
Thresholds Thresholds
— T — ]
E‘?: _v=£v e = 7] o dyn_load_balance "
g A interference_Nto1_3 T | A& interference Nto1 32
+ interference_NtoN_3 8 8 |+ interference_NtoN_32
= N x interference_1toN_3 8 § -1 x interference_1toN_32
§ % | < interference_Nto1_10pR4 % <& interference_Nto1_1024
s2) e v interference_NtoN_1004 c g v interference_NtoN_1024 o
] ® interference_1toN_1024 2 3 4 interference_1toN_1024
X —o—+t—q o——0—0 8 2
[77] £ W
v @ = s
T % 4 S 8
[} Q. —
: g 8
=
S | o % @ s—8—»
g T T T T T T
0.1 02 05 10 0.1 02 05 1.0
Thresholds Thresholds
Fig. 30 Inter-process Reduction: File Size and Approximation Distance for

Varying Duration Thresholds and Relative Distance

161



8 & kS mt? & _1to1r_32 o o interference_1to1r_32 T
F i A& interfgrence 1to1s_32 S _| & interference_1tols 32
® + interferenéd 1to1r_1024 3 2 + interference_1to1r_1024
- © x interferepcé\1to1s_1024 g % interference_1to1s_1024
ﬁ S - \ 2 A
Q fmn] 7
a © K g
[5} 0 = )
N = [=]
® 3 E &
2 <« ¥ o
= a
(]
3 & 7
& \ & X
=3 ) o
o—g g e s—a—p™
T T T 8 T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds
—_— A
® 815 %l _8 ther _| © early_gather
§ ] A jmba _at_barrier A imbalance_at_barrier
2 + late_brogdcast ® w1 |+ late_broadcast
- A——alx Jate receiyer % E 1 % late_receiver
g€ 8 t—=—% " Yate_send 2 < ¢ late_sender
- Rlesene =) - +
o 8 © \ g i
<) =
N l‘o') \ ® w 0
© & * £ % - ¢
T & A g 8 %
Q.
A +\® ? ’
) o o
o ? Ja—s—ea—a=g
T T T & T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds
k4 A g ~ —A
8 _|s—|@=ayg load_balance & 1o dyn_load_balance
o A intéference_Nto1_32 ¥ | A interference_Nto1 32 8
© + inteence:NtoN_SZ 8 g |+ interference_NtoN_32
— n % interf§rdnce_1toN_32 8 & - x interference_1toN_32
é s o mterf ge_Nto1_1024 é—" @ | ¢ interference_Nto1_1024
@ § 7 v interfelgnce_NtoN_1024 = o |V interference_NtoN_1{}2 o
g m interfergfcey 1toN_1024 2 % - 2 interference_1toN_192
P — —_—

- < X £ v —w
= 013 — g—_ 8 —
N ® g 87 v

. \ £
E _ ﬁﬁ o {g—@ __‘é
g 7 T T T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds

Fig. 31 Inter-process Reduction: File Size and Approximation Distance for
Varying Duration Thresholds and Absolute Distance

162



[=] Al
8 - o interference_1to1r_32
Q 8 |2 interference_1tols 32
3 2 4 + interference_1to1r_1024
- ® s % interference_1to1s_1024
o 2
<, a 8
o] = © -
® 2 &
N Q9 ®
@ c;:g £ . -0
£ x
T © g o /
g 8 - a="R_2a
= /
& o & 2 s —k—%=¥
+
& 7 T T T T T
0.1 02 0.5 1.0 01 0.2 05 1.0
Thresholds Thresholds
o +
™ o early_gather S o early_gather
? 1% imbalance_at_barrier § -1 & imbalance_at_barrier
2 + broadcast 8 & |+ late_broadcast
—_ late_receiver< 5 -1 x late_receiver
g KO: <> late_sender \ 2 8 |0 late_sender
g 3 $ 2 8- o
8 5 o o 2 «
5 8 | —0o—% g -
= \ g 8 |
) /_\.\ s g *
- AN
\0—0—4) o Jh=———=f=——R—g=0 A
T T T T T T T T
0.1 0.2 05 1.0 0.1 02 0.5 10
Thresholds Thresholds
F——+
_|m=>d-0 wlyn_load_balance o dyn_load_balance
o \A\ﬁ erference_Nto1_32 -{ & interference_Nto1_: A
8 ~J+ \\~ erence_NtoN_32 § + interference_Nt A+ B
- &7 A gnierference_1toN_32 g g |x interference_1t
R N R nge_Nto1_1024 2 S -0 interference N§1_1024
= N ™~ (=) .
@ v (&e\_;h_l_t N_1024 = ¢ | v interference_ljtoN_1024
v g = e_1t0 24 2 ® interference /{toN_1024
? T o © & g . ) x
o & \\,2, = N
i — V\ g. 8 v ~ "
g~ g g - + =g
g X < =2 4
& RN A °=o
- X2 o Jde & 6——0—0-0
T T T T T T T T
0.1 02 05 1.0 01 02 05 1.0
Thresholds Thresholds

Varying Duration Thresholds and Manhattan Distance

Fig. 32 Inter-process Reduction: File Size and Approximation Distance for

163



9e+06

e ) A
ﬁi\q_:tnterference 1t0"l|—r 3_5 § _{ o interference_1to1r_32
| A Ynterferenée~1tol1s_32 8 | & interference_1to1s_32
}-\mterference 1011924 8 + interference_1to1r_1024
-~ 8 \ n\rference 1to1s_1024 8 7 x interference_1tols_1024
£ 3 .
s, A —A__ a
a "~ \ = 8
2 7 o \ 5 °
©
B © \ A E _ -0
aJ O ——
i é 7 ) 8
(o} [=]
o Q9 — Q.
| \, - a8 =8
L AN / o
3 4 o o e« ¥—%=%=%
& T T T T T T [ T
01 02 05 1.0 0.1 02 _05 1.0
Thresholds Thresholds
™ o early_gather _| © early_gather
Q A imbalance_at_barrier A imbalance_at_barrier
2 + late_broadcast 8 8 |+ late_broadcast
= 0 x—late—freceiverx E & T x late_receiver
é 2 O late_sender \ % < [ © late_sender
a 3 \ s —
3 g [® O—0—% T o
8 g | \ 5
L o X 3]
[ 2 N
o aQ
S | & & -
g N o o
O—O—O é + _Q_gg—-———-___gzﬁf
T T T & T T T
01 02 05 1.0 01 02 05
Thresholds Thresholds
_v o dyn_load_balance o dyn_load_balance /
A interference_Nto1_32 {z‘-\ interference_Nto&_32 P
L |0 + interference_NtoN_32 8 +
= & ] interference_1toN_32 5 o |x
g = |2 S Nto1_1024 2 8o
< | ~ !ﬁtertergme_ 01_ 2 S
) dinterferenfe~NtoN_1024 - @ |v
¥ g = 'r?ta@rence‘_‘rt 124 2 B
3 Jo——% 4 E
e © g
=4 $\¢ 5 8
B g 8 7
g x ¥ 5o
é 7] \x:§-:~ A
N o Jds
T T T T T
0.1 02 05 1.0 0.1

Thresholds

Thresholds

Varying Duration Thresholds and Euclidean Distance

Fig. 33 Inter-process Reduction: File Size and Approximation Distance for

164



g |[F0o ge_ttotr_32 o | o interference_ttotr_32 *
F A interference_Ttols 32 S _| A interference_ftols_32
A + interference_TtoAr-1ti24 8 & |+ interference_1to1r_1024
- 0 U x interference_1to1s_1024 5 x interference_1to1s_1024
[14)
Q © TT~a =
<]
28 g 8
A E &
L = x o
w [Ze] ° — o—Aa ~— ‘5.
b \A 2‘ ]
¢ © x
« \ b= N0 o 40
. % 2 g R3=———=8""8=
T T ) T T 8 T T T ;
0.1 02 05 1.0 0.1 0.2 05 1.0
Thresholds Thresholds
A—D-A
0 S o early_gather _| o early_gather
2 A imbalance_at_barrier A imbalance_at_barrier
2 + late_broadcast ® 8 |+ late_broadcast
= o x late_receiver § & 1 x late_receiver
g & | . ¢ late_sender RN ¢ late_sender
= 3 =] +
@— [so] [t -
g =)
I-O e
5 ¢ " @ £ 8
&L o E & OH4—0—04¢
T o é\\ g I X X—X+X
e} + Py [=%
e | S~ 888 < s N
2 + 4 \T\'*' -+ Q o —0—g-o0
0o—p—55 S Je=—"0¢ a—f—+
T T T T & T T T T
01 02 05 1.0 0.1 02 05 1.0
Thresholds
8
s © dyn_load_balance o
©w A A interference_Nto1_32 J4 A
— + interference_NtoN_32 3 +
7 9 8 X interference_1toN_32 8 g |
< T terference_Nto1_1024 2 2 490
@ ¢ v gm NtoN_1024 2 8 |v
_(% do = interference ok, 1 824 % ®
—~ £
o @ o £
N e S g o R
7 " S §.9_ N = ¢
o & -«%E‘ 2\
[=] = o - ——
é‘;’ B T T T T T T T
0.1 02 05 1.0 01 02 05 10
Thresholds Thresholds
Fig. 34 Inter-process Reduction: File Size and Approximation Distance for

Varying Duration Thresholds and Chebyshev Distance

165



[=]
[+
gﬁ § o interference_1to1r_32 /o
8 \ A interference_1to1s_32
F \a\ ® 8 |+ interference_1to1r_1024 | ©
‘{E @ E 3 7 x interference_1to1s_1024 /5 _a
@D ™~
g S ¢ 7
c
g 8 g & s—=
[+5] x
= [=]
o — o 8 § _
g ©
5
. o X— X=X
2 o o -{# # ¥=—r_—F-4
T T T T T T T T
0.1 02 05 10 0.1 02 05 1.0
Thresholds Thresholds
3 | A-A
a early_gather _| o early_gather
< A balance_at_barrier A imbalance_at_barrier
2 + late\broadcast § 8 |+ late_broadcast
T o »x—late—repehers — 8 -8 8 & 7 x late_receiver
'2, S ¢ late_sender -C‘Q’ ~ & late_sender
o & 5 -
o] & =
& u.: \ ‘E 8
_ E <9
2 & |a 5 2
[ o] E. o
= A g _
+ —
2 +§4=‘P—+'+ = 0—gd—0-0
o085 3 s A= =53
T T T T 8 T T T T
0.1 0.2 05 1.0 0.1 02 05 1.0
Thresholds Thresholds
[=]
¥ S A
= © dyn_load_balance =] o dyn_load_balance ® 670
ol A interference_Nto1_32 A interference_Nto1_32 p-1
2 + interference_NtoN_32 3 g |+ interference_NtoN_3:
& &7 %g'nten‘erence_ﬂoN_% 8 8 7| x interference_1toN_3
g 0 .r@:gce_Ntm_wm 2 “ [ ¢ interference_Nto1_1 o
i3] 7 \ erfél toN_1024 e 8 |V interference_NtoN AN o
y 8 interference_1taN=1824 -.'% g | ® interference_1toN 4
@F o © & E ~N
g \E \ +\D \8 2 o >7[ X x}z
— o) ® + -
o \g§ e g g / N .
S = ~I> -
T - N X —
o B A <&
- \§§§ o - ‘é o / o (s}
T ; (I T T T T T
01 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds

Fig. 35 Inter-process Reduction: File Size and Approximation Distance for
Varying Duration Thresholds and Average Wavelet

166




[=)
o
- R T — . -0
LS _ihteﬁerenél'ej to_ll_r_s_gé\+ § o interference_1to1r_32 °
e & intefference_1to1s_32 A interference_1tols_32
F inteterence_ttolr_1024 3 8 |+ interference_1to1r_1024
- © x ~interference_1 to"is_f‘()24 5 8 1 x interfference_1to1s_1024 | o _ A
4 2 T
=S - ] [a] . o
< 4 A ~ E 8 A 7[ N
[ [{o} FACFAN = S
& E 7 E T A/ o
o © o
T § g
[»)
& N X — X =X
& ] ° o % il ¥==—F—F-F
-+ T T T T T T T T
0.1 0.2 0.5 1.0 0.1 0.2 05 1.0
Thresholds Thresholds
A=A
® o early_gather _| o early_gather
% o A imbalance_at_barrier A imbalance_at_barrier
2 + late_broadcast ® @ |+ late_broadcast
= o ' x—late—repeivers — & -5 8§ & T x late_receiver
g S & late_sender i% < ¢ late_sender
a & |° s —
2
S g qF g
% + —+ £ 2
2 & |a 5 &
[V [w] E. N
g NN £
2 + =R +-+ o o—dg—0-0
0o—o0—8-8 3 & B =55
o]
T T T T S 1 T T T
0.1 02 05 1.0 0.1 02 05 10
Thresholds Thresholds
] e yn_load_balance o dyn_load_balance
8\ A W erence_Nto1_32 -{ & interference_Nto1_3
8 \\i—\ ifferference_NtoN_32 8 + interference_NtoN -8=6
> & &Q rence_1toN_32 § = %X interference_1toN /32
,“i 0 O Anteifetence_Nto1_1024 g 8 -1 ¢ interference_Ntog 1024
a . v interiek ge:N-t 1024 c @ | v interference_NtgN_1924 |
AL 5 !
o © =® & e 110 24 = 2 interference_1joN_1@24 \
N C_,,’ o e © - & O
N g © v £
2 @ \ \ 3 x - X
= 3 5 8 - N
8 = &%%v - < ,8_
T ~E ¥ a o
- ~ é \g /
c 8 & o)
T T T T T T T T
0.1 0.2 05 1.0 01 02 05 10
Thresholds Thresholds

Varying Duration Thresholds and Haar Wavelet

Fig. 36 Inter-process Reduction: File Size and Approximation Distance for

167



[=]
[=]
T A A A
12 & o Aswee‘aadiﬁ p § -l o sweep3d_8p
5 a sweep3d_32p o - A sweep3d_32p
T Q
g - ;i
Q n c =
o)
g 8 B
R A E g
L Q X 8 -
E oo £ 8
7 £
[{=]
<
8 o o o—O0—0-0 [=] fay fay A—A—A-0
o 7 T T T T T T
0.1 02 05 1.0 01 02 05 1.0
Thresholds Thresholds
Relative Distance
[=]
A—A__—AT A 2 A
- o sweep3d_8p 2 7° sweep3d_8p
~ A Z\/eede_SQp - | & sweep3d 32p
3 8
- & 7 £ o
g = 3 8
= 8 g
Q 7] A c v
o W 2 A
8 8 N 3
[ - A E g
2 S x 8
o 5 2
n &
[{]
<
& ]lo—0o—0——0—0—0 o 44— A8—A—0OA—0——0
q 7 T T T T T
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Thresholds Thresholds
Absolute Difference
A A A—A_A-A e ]
- © sweep3d_8p - o sweep3d_8p
& A sweep3d_32p ° A sweep3d_32p
T 2
z 8 § o
g A =
e © S g da 4 b—b—B-8
N o |
®» I £
L o =
C o g 0
- qg: C|> =
8
+ o
g ) o o—0—0-0 - -
& 7 T T T ! T T T T
0.1 02 05 1.0 0.1 02 05 1.0
Thresholds Thresholds
Manhattan Distance

Fig. 37 Inter-process Reduction: File Size and Approximation Distance for

Varying Thresholds for Sweep3d and relDiff, absDiff, and Manhattan

168



(o]
— 1 a—a_ar-n "
44 & o Asweede_ESp ~ | o sweep3d 8p
~ A sweep3d_32p ® A sweep3d_32p
Z - g w |
-— o
8 - 2
= a
aQ - =
o © S S da a A—Bb—B-4
N o ©
@ F E
2 o 5
rC «© S un
S o -
-] &. |
0
[=]
r e
(o] o} c—0—0-0 ~ -
§ | T T ! T T T T
0.1 02 05 1.0 01 0.2 05 1.0
Thresholds Thresholds
Euclidean Distance
A A—Td—A—A—A-A e ]
— 0 sweep3d_8p - o sweep3d_8p
B A sweep3d_32p o A sweep3d_32p
+ 2
-~ 87 § o
8 < ,%
% a
=2 s
o © | £ g 4a a B—a—H-0
N (=] o
S £
L g ¥
T e £ g
_ -3 <
8
+ { =]
3 o o 0—o0—0-0 i
a7 T T T T | T T
0.1 02 05 1.0 01 02 05 1.0
Thresholds Thresholds
Chebyshev Distance

Fig. 38 Inter-process Reduction: File Size and Approximation Distance for
Varying Thresholds for Sweep3d and Euclidean and Chebyshev

169



—_— A A Ja
1% 4 o Asweep:iel _8p | o sweep3d_8p
~ A sweepsd_:s\Zp A sweep3d_32p
o Q <
FiR \ e & |
T 3 a g 3
= o
Q . g -
2 8 g =
& E 9 4
2 o X 3
4 g .
<o}
=4 o
+ =]
& "o o] O—O0—0-0 + 4 a A—A—40-0
P T T T 8 T T T
01 02 05 1.0 01 02 05 1.0
Thresholds Thresholds
Average Wavelet
—T—n— A
44 A o Asweeﬁ‘:&sl 8p | o sweep3d 8p
~ A sweede_Cf(.zp A sweep3d_32p
[=] [ by
& g 9 4
7 S a g 3
O - B ®
=3 (=}
Q ] c —
[=]
- T 3
2 8 g &7
e [1e] E.
- [=}
2 |
[{o]
: 8
& (¢} o} c—0—0-0 + & Fal b—A—8B-0
Q
o T T T T S 7 T T T
0.1 02 05 1.0 0.1 0.2 05 10
Thresholds Thresholds
Haar Wavelet

Fig. 39 Inter-process Reduction: File Size and Approximation Distance for
Varying Thresholds for Sweep3d and avgWave and haarWave

170



rakative
difference

bt s S

G

onge

absolute
difforance

distance

0.8

1.0

i1

0.2

0.4

06
0.8

10

Average | Chebyshev
distancs

Wavelst

0.1

0.2

04

0.6

0.3

10

Haar Wavaiet

i1

0.2

0.4

0.5

0.8

MITEERT

COTRET TN

i

Varying Thresholds for dyn_load_balance

&

Retention of Performance Trends wit

171



MPI Gather

I  do wor

no loss

relative

0.1

0.2

0.4

0.6

0.8

RIRIRIRIRR

difference

1.0

absolute

10

100

1000

10000

100000

difference

1000000

distance

0.1

0.2

0.4

0.6

0.8

1.0

£

El

0.1

0.2

0.4

0.6

.8

distance

1.0

L I——

L JEX ELTENETI

Chebyshev

distance

0.1

0.2

0.4

MU

C . .

Jex porrrren

)

0.6

EF —_—

0.8

it

1.0

Average
Wavefet

0.1

ER pEmEsmmm | EX Crmr

EX e

0.2

0.4

0.6

0.8

1.0

Haar Wavelat

0.1

0.2

0.4

0.6

0.8

1.0

Fig. 41 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for early_gather

172



MPI Barrier

no loss

relative

difference

0.1

0.2

0.4

0.6

0.8

1.0

absolute

difference

10

100

1000

10000

100000

1000000

Manhattan
distance

0.1

0.2

0.4

0.6

0.8

1.0

v o

Euclidean

distance

0.1

B CIT T

0.2

0.4

0.6

0.8

1.0

Chebyshev
distance

0.1

0.2

0.4

0.6

0.8

1.0

Average

Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Haar Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Fig. 42 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for imbalance_at_barrier

173



MPI Bcast

do work

no loss

CHR———

relative

difference

0.1

£ N

0.2

0.4

CHEM——

CHE——

0.6

CH .

0.8

1.0

absoliste

difference

10

P —

M

EX COTITRIIS

LA

X ey

100

CHET

1000

10000

100G00

EX Crraas

1000000

ttan
distance

0.1

0.2

0.4

0.6

0.8

1.0

Tirt

£,
£

distance

0.1

0.2

0.4

0.6

0.8

1.0

Chebyshev

distance

0.1

0.2

0.4

0.6

0.8

1.0

Average
Wavelet

0.1

0.2

0.4

Ex

0.6

X BT

0.8

1.0

Haar Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

CHIZTE—

COUZET —

Fig. 43 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for late_broadcast

174



no loss

relative

difference

0.1

0.2

0.4

0.6

0.8

1.0

shsolute

difference

10

100

1000

10000

100000

1000000

Manhattan

distance

0.1

0.2

0.4

0.6

0.8

1.0

Euclidean

distance

0.1

0.2

0.4

0.6

0.8

1.0

Chebyshev

distance

0.1

0.2

0.4

0.6

0.8

1.0

Average

Wavelet

0.1

0.2

0.4

0.6

0.8

10

Haar Wavelet

0.1

0.2

0.4

0.6

0.8

10

Fig. 44 Inter-process Reduction: Retention of Performance Trends thh

Varying Thresholds for late_receiver

175



MPI Recv

do work

no loss

relative

difference

0.1

0.2

0.4

0.6

0.8

1.0

shsolute

difference

10

100

1000

10000

100000

1000000

Manhattan

distance

0.1

0.2

0.4

0.6

0.8

1.0

guclidean

distance

0.1

0.2

0.4

0.6

0.8

1.0

Chebyshey

distance

0.1

0.2

0.4

0.6

0.8

10

Average

Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Haar Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Fig. 45 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for late_sender

176



— __= MPI __Either
no loss EX I Mp & ]
0.1 EX e CMEN
o2 EX W mpE cvE
g s £X Mp N cvE |
£E Jos EX N Mp I CMER
B2 s EXEN  vpEe [CvBE
F5 o Ex VP CMEm
10 Ex W e N CVEl
100 EX Mp R o' |
L 4 [io00 EX B MP I cvi
g oo £x N 5 | cMEB
22  [|w0000 ex [Vl | o] |
e 1000000 EX B MpI crIm comm ER EX W
o1 EX B8R MP I 5]
0.2 EX Mp.
5 oa EX I P
2 s EX I Mp
52 s EX Bl MpE
25 o EXE_ |vpme
0.1 X Mp
0.2 EX W MpE
g, P4 EXBM v
g% s EX W MPo
TE s EX B vPE
—— L0 EX I Mp I
o1 EXIE____[vp
0.2 ExX jiid | ,
0.4 EX N Mp cCMER _ |cONM ER Bl £x
§ g s EX I NP cvME  lcomm  JpREE lcx W
22 s | mp . cvE  |comm ER Bl EX
°F ho EX Wl nip B [ | COMM ___ [fR = EX
0.1 EX Wl id ... CvIN [we] | ER & £x R
0.2 EX N ik | (wli | [«e] | ER 2 £x R
0.4 Ex MPIR CMBN COMMN  |ER iHH EX
§3 s EXEM  upWM  [cuBm  [comm  [rEm  [cxmm
£5 s £X [id | cvEm com ER Bl =x IR
1.0 EX I 1d | Cr COBM ER £x W
. b1 EX Mp . CuiR comml ER @ £x W
I 02 EX P I CMI fate] | ER T £x B
3 0.4 EX N ld | cvilE  (cOMN ER S5 zx N
3 0.6 EX B Mp CMI. CONN ER 5 ]
H 08 EX Mp cv- comm ER B £x I
L0 Ex Mp . CMEE COBR ER IEH £X B

Fig. 46 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for Ntol_32

177



MPI Barrier T
e

no loss

relative
difference

0.1
0.2
0.4
0.6
0.8
1.0

difference

absolute

10

100
1000
10000
100000

RAnnhad

distance

T %ﬁ% BANER  IWREER _IBCEWE X W

0.2 s

04
0.6
0.8
1.0

B

distance

0.1
0.2
0.4
0.6
0.8
1.0

Chebyshev

distance

0.1
10.2
0.4
0.6
0.8
1.0

Average

Wavelet

0.1
0.2
0.4
0.6
0.3
1.0

A89E
EERE

Haar Wavelet

mpd
o i B

o ap
04 =~ W
oo B |voEd
0.8 T T
- — Al [wol

:

Fig. 47 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for NtoN_32

178



MPI_Bcast _ 1 do worx
no loss &% E (‘,%i_!
0.1 EX sl |
0.2 £x o R
§ 0.4 £x ny N
28 s - Il cvil
2g o8 % R Chi .
AT = or
10 £y I Cr4H
100 £y 5
8§ oo X I
g g 10000 £y
2¢ 100000 i R |
© 9 11000000 x| ]
0.1 | Ci/.
0.2 el | g
5 0.4 Ex CriI
8 s £y (]
§8 s .| fod__|
23S o - or
0.1 £y Cr
0.2 EX e ¥
e |pa 74 | v
Z§ s cx W i
28 |os < Nl |
[ ] ) e ! C‘z’!
0.1 e | Cris
02 £y S Ccri
3 0.4 L | <o I
g g s Ex Crvm.
22 s |
“®  ho | Ex I
0.1 ny | L0 ig B £x IR
0.2 £x ns | comm 1B jex
0.4 £y I [ | (%l | Ty | £x N
§¥ s £ AN EENGCT EEETY BT
£5 s £y S | RN | Ty ExX
10 T | - BN | T EX
0.1 ex Bl vl ol LB E8 ex I
3 02 £y I ] comm TY | g
2 0.4 £x I | | Ty |
2 0.6 £ W Cr comm LB fexwm |
[T Com /B [coMM  [lgEm  [exmwm
1.0 = R Ny | e | o LB B EX

Fig. 48 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1toN_32

179



Relative
Difference

Absolute
Difference

Manhattan
distance

Euclidean

distance

Chebyshev

distance

AVETSEE
Wavelet

Haar Wavelet

Fig. 49 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1tolr_32

180



MPI Ssend

no loss

Relative
Difference

Absolute
Difference

distence

Chebyshev

distance

AVETHRY
Wavelet

Haar Wavelet

iz3 1%

*

Fig. 50 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1tols_32

H

181



MPI __G_at:he: _2(3’_ work
o loss EX W Mp R CMiN £x I8
0.1 EX W MPE CMiER 1EX B
0.2 EX B MpEl cvil Ex B
g o4 EX S Mp I EX FE
§5 s 38| e E>
5 g 0.8 EX i5ld |
A T EX B Mp B
10 ExX BN jd |
100 Ex N MpEE
§ 00 EX I MPE
£5 fwoooo EX MP I
E £ 100000 Ex Bl [ |
.. [1000000 EX I Mp .
0.1 EX W 1P
0.2 EX iG1d |
§ 0.4 EX wvip N
22 s EX MPE
58 s EX MPI
T EX I MP i
o1 Ex MR MpiE
0.2 2.6 | Mp
= 0.4 Ex Mp
g s Ex I Mp
TE s EX Mp
e L0 Ex B vp
0.1 Ex mp R
0.2 EX B M
0.4 Ex I | ER B
B8 s EX N MPIM__ | ER B
£ s Ex SN mp I cvE  [coMM [eR m ‘
10 Ex N mip B cMil coll ER B8 e |
0.1 EX W PER cvEl CoNR ER B ry B
0:2 EX B mMp CMBE @ cOMM @ (ER R Ex B
o4 Ex B mp I cvEE colill ER 0
6% s EX I Mp CME comm EREE [ e
; 3- 0.8 EX MpIN comm | i 158
1.0 EX d | ol | CONN ER B x i
01 EX B Mp I Cv CONM ER B lex e
0.2 EX W MP Cm coml ER B2 EX
] 04 EX I mp CMIE [coONM (e B cy Bl
> 0.6 EX W MPI CMER  comm ER a8 FX W
2 0.8 EX I MpE CMEM = colm ER 65 EX B
Lo EX . Mp V- Comm ER 6l Ex B8

Fig. 51 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for Ntol_1024

182



MPI Barrier

do work
—

no loss

ex_
o a

relative
difference

0.1

- |

0.2

S e

0.4

el B

0.6

P
N

3% ra R

0.8

-

Fihilﬁ

ol Y

1.0

absolute
difference

10

.

100

1000

10000

mnir

100000

1000000

Manhattan
distance

0.1

0.2

iy

0.4

0.6

0.8

1.0

Eudidean
distance

0.1

0.2

0.4

0.6

0.8

1.0

Chebyshev
distance

0.1

0.2

0.4

0.6

038

1.0

Average
Wavelet

0.1

£

0.2

¥y s
2

0.4

0.6

0.8

1.0

ve

Haar Wavelet

0.1

e |

0.2

o

0.4

=2 bt s e
|s¢ g [

e

0.6

|

EX 1N

0.8

7 i
f

[

e

1.0

Ex

ifd ]

EX B

Fig. 52 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for NtoN_1024

183



_ nplﬁi:asc — do work

no loss Ex R e cril coll |

01 Ex N MPI Cv comtl .

0.2 EX Sl rap | coms -

g |oa £x vr |C com .|
5 |os £y np cvil ol ||
E & s EX i CuIn oMM ]
£3 o EX M e cvEm  [comm =
10 ex wir B il cOMR .

100 £x 1 it | cvi coms

L 8 o0 X W P CME comm -
2§ oo £x N np cvill  |colil |
E &  [r00000 Ex np R cvi ine] | |
1000000 EX W ... Ch. comm |
0.1 EX M. | <ol ]

0.2 x np i cvim coN [ ]

i: joa ex e ot | colm ||
; g o6 £X MP IR I comm -
2% s EX pp CVIR colm ||
> he Ex Bl vp Il cvi colil [
b1 e I cvim coNN [ ]

0.2 5| cvEm coMm |

. |4 i5id | vl [olsl | .|
$4d s £y BN | vl o
TE s £x B wip I cri coMR [ |
L0 Ex W Mp - CHm comm
0.1 Ex vell  cvE coilm ]

0.2 Ex {5l cvil ol -

z s Ex B ] M COmN L
é § s EX Mp I cvE___ lcomm [ ]
25 los EX MeE cvBl  |comm [ ]
v  ho Ex B mp cvill comm .|
o1 £x wir cril coiil -

0.2 £x hid | ] coll (|

0.4 £x [ | cr oe] | [ 1

$F s Ex W i cvll  [comm ]
£5 o £x Mr I cvim coll ]
L0 Ex | cri comm |

o1 £x W e Cvim comm | |

I 0.2 Ex W ] cMi coll ; *
: o4 Ex nip vl colil ]
3 0.6 Ex P cvEm coMMl -
H 0.8 Ex Wl mp cvi comm ]
10 £x me CvillE  [cONM [ ]

Fig. 53 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1toN_1024

184



Relative
Difference

Absolute
Difference

i

e RR B KRR 262 R R IR

Manhattan
distance

Euclidean
distance

MPI Ssend
e

e
i

TRERR
BEEEEE

§s
2 8 —
5% e
R g
R ]
R Ex 8
E% R 0 [ x 08
g R x
= R )
RE X B
§ RElexin
] REE lex Bl M
3 R B lex
g R e B8 v
R 5 ex Bl

Fig. 54 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1tolr_1024

185



do work

MPI Ssend

Relative

Difference

Absolute

Difference

hattan
distance

.

)

distance

Chebyshey

distance

AvEragE

‘Wavelet

Haar Wavelet

|EEEREEREER

i 85, 0.

Fig. 55 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for 1tols_1024

186



Fig. 56 Inter-process Reduction: Retention of Performance Trends with

no loss 2y e
0.1 EX W | 7 S———
0.2 £ DU | 517 I——
§ 0.4 EX I | 5 —
& 0.6 £X SN | 7 ———
gg 0.8 B —
= 1.0 X G | 7 DR
10 £ SN | 7 ——
100 £ | ) S—
o8 1000 £ DN | 7 E—
§  |i0000 X I | -
Eg 100000 £ I | 1 EE———
® % |hppoooo £ TN | 7 N | S | T O
0.1 EX MM |7 | O |7 e
0.2 £X R | SO | C O | 2 D
g 0.4 £X UGN |7 DU | O MERNE | 7 —
8 s £ — | i —— | o—— | 72 m——
§2 oz X SO |7 SO | e |2 MM
T EX S | i O | O | P ——
0.1 £X NN | GO | PG e
0.2 5 NN | T | o |7 me———"
- 0.4 X A | L | s |2 s
3 g 0.6 £% SR | T IEERNNGE | O | RN
§§ 0.8 EX DU | DR | O | 2 "
W 1.0 £ MU | 17 DR | < | a—
0.1 £ IR | PN | N | 72 P
0.2 £X I |1 MO | R |7 RS
0.4 £ I | | UM | ¢ SR L S—
%’é 0.6 £ I | | L | S |l I
ug 0.8 S A | 1 O | L |72 R | M
5 1.0 EX O | 1P S | O | P2 N || K
51 X B |57 I | C AN | F2 SRS | B
0.2 EX GO | S | O |7 S |15 memamen
0.4 £X R | O | | P SR LS Smn——
§:§ 0.6 £ I | DR | CCON | S | S £
s 0.8 £ D RN | | DN L D
<F Ly TX S | | — |7 a—— | s— X
0.1 X DM | i I | O |2 S | oo EX [13
5 0.2 EX I | i DN | CU O |7 S | mam— EXE
E 0.4 EX I | i ——" | o 7 sass—e: |15 s—c X
E 0.6 X I—— | | s | o2 oo |5 asm—m 54
E 0.8 EX I | I | O | P DS | S L
£ 10 EX GHEMNM | i SN | |7 e | St EX

Varying Thresholds for sweep3d_8p

187



prpl recv
o e

sweep
e

ino loss

s | rata p2 Gl

relative
ditference

0.1

T M ]

0.2

T BT BT

0.4

i p2 Aol |

0.6

i Sl p2 Gell

0.8

1.0

pz Ol

sbsolute
difference

10

100

1000

10000

100000

1000000

Manhattan
distance

0.1

0.2

0.4

0.6

0.8

1.0

Euclidean
distance

0.1

0.2

0.4

0.6

0.8

1.0

Chebyshev

distance

0.1

0.2

0.4

0.6

10.8

1.0

Average
Wavelet

0.1

0.2

0.4

0.6

0.8

1.0

Haar Wavelet

0.1

10.2

0.4

0.6

0.8

1.0

Fig. 57 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for sweep3d_32p

188



MPI Alltoall

no loss

relDiff

absDiff

Manhattan

Euclidean

iChebyshev

iter_k

[iter_avg

lavewave

lhaarWave

LT

el

Fig. 58 Combined Reductlon. Retentlon of Performance Trends with Default

Thresholds for dyn_load_balance

| MPI Gather do work
Ino loss M = T
[relDiff CME

|absDif &

Manhattan EX NN | P | OO

Euclidean

IChebyshev

iter_k

[iter_ave ——

avgWave EX DN | VP | CH I | CC .

haarWave EX M | P O N | CO

Fig. 59 Combined Reduction: Retention of Performance Trends with Default
Thresholds for early gather

MPI Barrier

[no loss

|relDiff

labsDitf

IManhattan

]Euclidean

|Chebyshev

|iter_k

iter_avg
lavgWave

{haarwave

Fig. 60 Combined Reductlon' Retentlon of Performance Trends with Default
Thresholds for imbalance_at_barrier

189




| MPI Bcast do work
no loss CHMEN— WAL ANS
relDiff CHE
absDiff CHET——
Manhattan B
iEudfdean
[Chebyshev
|iter_k
liter_avg
lavgWave T
[haarwave MP EITT——

Fig. 61 Combined Reduction: Retentlon of Performance Trends with Default
Thresholds for late_broadcast

EX ]
EX I

| MPI Ssend
[nofoss ; ’
[reEDiﬁ
labspiff
Manhattan
Euclidean
Chebyshev
iter_k
liter_avg
lavgWave
|haarWave

Fig. 62 Combmed Reductlon Retentlon of Performance Trends with Default
Thresholds for late_receiver

I
[no loss
|retpiff
{absDiff
[Manhattan
[Euclidean
|chebyshev
Iiter_k
iter_avg
|avgwave
lhaarwWave

EX DT
EX LT

Fig. 63 Comblned Reductlon- Retention of Performance Trends with Default
Thresholds for late sender

190



MPI Gather do work
no loss cvill Ex
relDiff cm-g EX ;
absDiff CM X
Manhattan cvi £y IR
Euclid (o 7] | Ex
Chebyshev cvi EX ;
iter_k cvill EX
iiter_avg cviEE Ex_lg;______
avgWave cvEm X
[haarwave cv comm EX I

Fig. 64 Combined Reduction: Retention of Performance Trends with Default
Thresholds for Ntol_32

MPI Barrier do work
no loss
relDiff
[abspirt
|Manhattan
Euclidean
Chebyshew . : i
jiter_k vy N : ; o R ||
Jiter_ave . SNEE]  [BAlEE  |weEEM  [RCEEE  |ex i
javeWave nmprER sy BA i | BC N |
{haarwave MPEER  [snEE  (saBE  (we®™E [pcEm E§ [
Fig. 65 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtoN_32

] MPI Bcast
|noloss Ex pMp Crs oI
IrelDiff £x Wl vip i o
|absDiff EX t4r I iy ol
[Manhattan |y W v B Cr coONE
|Euclidean £ W | Cr |
[Chebyshev Ex g o ]|
fiter_k £y I rap Cv comm
fiter_avg EX B Mp CMEE COBEE

ave £ N I k| ol
{haarwave | ] Cr/ coll

Fig. 66 Combined Reduction: Retention of Performance Trends with Default

Thresholds for 1toN_32

191



MPI Recv

do work

no loss
relDiff
absDiff
Manhattan

MPI Ssend

Euclidean

Chebyshev

iter_k

iter_avg
avgWave
haarWave

Fig. 67 Combined Reduction: Retention

s

= 1
A P

I MP Mo
of Performance

Thresholds for 1tolr_32

Trends with Default

MPI Recv

Combined Reduction: Retention of Performance Trends with Default

Fig. 68
Thresholds for 1tols_32
MPI Gather do work

no loss EX | ]
relDiff EX Bl
{pbsDift EX W
Manhattan | EX W
Euclidean EX
Chebyshev EY g
iter_k Ex Bl
I'ltef_avg EX
lavgWave Ex
IhaasWave Ex R CM [we} |

Fig. 69 Combined Reduction: Retention of Performance Trends with Default

Thresholds for Ntol 1024

192



| MPI Barrier do work
‘no loss ﬁg:i 2A H@ e AH“'-”.#t

relDit UM oo [we’k

jabsDift SN [RA we S

[Euctidean sy il T -

fiter_k | WB il

(iter_avg SN = 2 A WB =

lavgwave n ‘ o

lhaarwave Ex M [vrim  [sy Em ] = [oc WM X Bl

Fig. 70 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtoN_1024

| MPI Bcast do work
{no loss Ex I Mp cr
[relDiff EX Il Mp cvill
[absDiff EX oy | cvm
Manhattan EX dd | i |
Euclidean ex R | Cv
[Chebyshev | ] o | | |
iter_k i | =1
[iter_avg

{avgWave M
[haarwave x R crim

Fig. 71 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1toN_1024

MPI Ssend

no loss

relDiff

absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avgWave
haarWave i

Fig. 72 Combined Reductio: Retention of Performance

M piEE

Thresholds for 1tolr_1024

P2 LS B ex W
Trends with Default

193



MPI Ssend

MPI Recv

do work

no loss
relDiff
absDiff

Manhattan

Euclidean

Chebyshev

iter_k

iter_avg
avgWave

[haarWave

Fig. 73 Combined Reduction: Retentlon of Performance Trends thh Default
Thresholds for 1tols_1024

|noloss

relDiff

[absDitf

|Manhattan

|Euclidean

[Chebyshev

liter_k

liter_avg

|avgWave

{haarwave

LS EROTEITNG

ggumnaagg

Fig. 74 Combined Reduction: Retention of Performance Trends with Default

Thresholds for sweep3d_8p

pmpi recv

[no loss

|relDiff

|absDiff

|Manhnttan

[Euclidean

[chebyshev

liter_k

[iter_avg

[avewave

[haarWave

Fig. 75 Combined Reductlon' Retention of Performance Trends with Default

Thresholds for sweep3d_32p

194



	Scalable event tracking on high-end parallel systems
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461958221.pdf.v3Iyw

