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ABSTRACT 

An abstract of the dissertation of Kathryn Marie Mohror for the Doctor of Philosophy 

in Computer Science presented December 11, 2009. 

Title: Scalable Event Tracing on High-End Parallel Systems 

Accurate performance analysis of high end systems requires event-based traces to 

correctly identify the root cause of a number of the complex performance problems 

that arise on these highly parallel systems. These high-end architectures contain tens to 

hundreds of thousands of processors, pushing application scalability challenges to new 

heights. Unfortunately, the collection of event-based data presents scalability 

challenges itself: the large volume of collected data increases tool overhead, and 

results in data files that are difficult to store and analyze. Our solution to these 

problems is a new measurement technique called trace profiling that collects the 

information needed to diagnose performance problems that traditionally require traces, 

but at a greatly reduced data volume. The trace profiling technique reduces the amoun! 

of data measured and stored by capitalizing on the repeated behavior of programs, and 

on the similarity of the behavior and performance of parallel processes in an 



application run. Trace profiling is a hybrid between profiling and tracing, collecting 

summary information about the event patterns in an application run. Because the data 

has already been classified into behavior categories, we can present reduced, partially 

analyzed performance data to the user, highlighting the performance behaviors that 

comprised most of the execution time. 
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1 Introduction 

The major contribution of this dissertation is a novel, low-overhead technique for 

collecting event traces on high-end computing systems. We collect the information 

needed to correctly diagnose certain complex performance problems at a greatly 

reduced data volume over traditional event trace collection methods. Other 

contributions of this dissertation include: an in-depth measurement study of the 

overheads of traditional event trace collection; an evaluation of methods for 

determining event trace equivalence; and post-mortem and runtime prototypes of the 
• 

new event trace collection technique to demonstrate its viability. 

1.1 Motivation 

Today's high-end architectures contain tens to hundreds of thousands of 

processors, pushing application scalability challenges to new heights. Performance 

analysis is a necessary step to adapt codes to utilize a target high end machine. 

Correct diagnosis of certain complex performance problems that arise on high end 

systems requires detailed event traces. An "event" is a runtime occurrence of a 

program activity, such as a machine instruction or basic block execution, memory 

reference, function call, or a message send or receive. Generating event traces involves 

writing a time stamped record for each event, into a buffer or file for later analysis. 

Unfortunately, the collection of event traces presents scalability challenges: the act of 

measurement perturbs the target application; and the large volume of collected data 

results in data files that are difficult, or even impossible, to store and analyze [45]. 
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There are several documented cases of performance problems that appear only when 

the application is run at a large scale [32, 51 ], driving the need to be able to collect 

event traces for large runs. We have a conundrum: we need traces to correctly 

diagnose important performance problems, but the sheer volume of data collected 

makes collecting full traces at the very least prohibitive, and in the worst case 

impossible. For this reason, solving the scaling challenges of event tracing is an 

important problem for high end computing. 

1.1.1 Uses of Event Tracing 

Requirements for the accuracy and types of information in a trace vary based on 

the intended use: correctness testing and debugging, simulation, or performance 

analysis. 

Correctness testing and debugging generally only require that the trace retain the 

relative ordering of events. For example, inspecting a trace of a parallel program could 

indicate the reason for a deadlock situation by showing the ordering of 

synchronization operations; a parallel program might hang because a process is 

waiting for a message that was never sent. 

Simulation requires traces that retain the order of events and possibly some timing 

information. Traces for simulation can be used to predict application performance on 

new or theoretical hardware. The events in the trace can be replayed using either 

averaged or predicted timing information for the new hardware. Generally, a single 

time value is used for all event occurrences instead of individual timing measurements 

for each event occurrence. For example, the average time to execute a send operation 
2 



could be used as the time for all send operations in the trace. This tradeoff allows 

acceptable accuracy with faster time to simulated results and smaller trace files. 

Performance analysis requires not only the relative ordering of events, but the 

timing information for individual events. Performance problems do not necessarily 

occur with a high degree of regularity, e.g. in every iteration of a loop, so individual 

event timings are needed to show the root causes of problems. For example, trace data 

can show a time-varying load imbalance in a parallel job, which causes some ranks to 

be late to a synchronization operation at varying times during the program execution. 

The individual event timings can show what events are taking more time in the slower 

ranks and in what iterations the slowness occurs. In this dissertation, we focus solely 

on collecting event traces for the purpose of performance analysis. 

1.1.1.1 The Necessity of Event Tracing 

Event tracing is used for understanding the causality of events, understanding the 

interactions between program elements, and identifying behaviors from event patterns. 

Although other performance measurement techniques, such as profiling, exhibit better 

scaling properties at the high end, the detail collected in an event trace is needed to 

correctly diagnose certain performance problems. 

An event trace can show the causality of events, which is helpful when a specific 

set of events lead to a performance issue. An example of this is found in a case study 

showing the benefits of Stardust, a tool for collecting and retrieving end-to-end 

performance traces in a distributed system [62]. The researchers in this study 

investigated a user's reported problem with I/O performance. From an event trace of 
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the program, they were able to see the sequence of events that caused the poor 

performance, a series of small requests. 

Event traces are useful for showing the interactions between program elements, 

because interactions can sometimes be difficult or impossible to understand from static 

analysis. For example, understanding the interactions between program elements is 

useful in the realm of parallel program debugging. Kranzlmiiller et al. use event 

graphs, generated from trace files, to discover bugs in parallel programs [36]. They 

use the relationships between processes revealed by the program trace to determine 

where race conditions due to non-deterministic execution could occur. 

Event-patterns in traces can be analyzed to reveal properties of programs, such as 

performance problems and locations of possible optimization. An example of 

performance problem that event patterns can help diagnose is the "Late Sender" 

problem. This is the situation where the receiving process waits at a blocking receive 

call waiting because the sending process hasn't yet reached the matching send call. 

The relative timing of events in the trace would show that the send operations started 

late and caused the receive operations to block. Event patterns can also be analyzed to 

suggest performance optimizations. Kranzlmiiller et al. present a method for 

recognizing point-to-point communication patterns in program traces that correspond 

to collective communication operations [38]. Since collective communication 

operations are often tuned for high performance on each platform, they suggest to the 

user to replace the recognized point-to-point sequence of operations with a collective 

communication operation. 
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Profiling and tracing represent two ends of the spectrum in the trade-off between 

the level of detail and the amount of data collected in performance measurement. 

Profiling provides summary information and therefore is more scalable than tracing. 

For example, a profile can show which functions used the most amount of time in an 

execution. This tells a performance analyst a crucial piece of information: where the 

program is spending most of its time, identifying candidates for performance 

improvements. Profiling has advantages over tracing, because it causes less 

perturbation to the target program and produces smaller performance data files. 

Tracing a program results in a sequence of time-stamped events, possibly with 

accompanying performance information, e.g. the start and end times of a particular 

routine, or details about message-passing events, such as the sending and receiving 

processes and the communicator used. Tracing provides more detail about the 

performance of the program, at the cost of greater perturbation to the target program 

and larger resulting data files. Although the costs of collecting event traces are higher, 

there are situations where the level of detail provided by tracing is required; the types 

of information provided by profiling are, in many cases, too limited for correct 

diagnosis of certain performance problems [7, 37]. An example of such a performance 

problem is the previously described "Late Sender" problem in a message-passing 

program. While a profile could indeed show that excessive time was being spent in 

receive operations, the data is not sufficient to distinguish between a late sender or 

some other root cause, such as network contention that caused the message to be 

received late. In contrast, an event trace captures the relative timing of events, and 
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would show that the send operations started late and caused the receive operations to 

block. 

Several case studies indicate the need for tracing tools that can scale to large 

numbers of concurrent processes, because there are instances when a performance 

problem only arises after scaling the execution beyond a certain point. Kale et al. 

studied the performance of the NAMD application and found that several performance 

issues only appeared when the application was scaled above 1000 processors [32], and 

a new performance issue appeared after scaling above 2000 processors. A developer 

working with the ViSUS code encountered a hang in the program only after it was 

scaled to at least 8192 tasks [ 6]. A scientist working on the CCSM code reported 

intermittent hangs with 472 processes [6]. Several researchers examined the 

performance of the SAGE benchmark on ASCI Q [51] and noted a striking divergence 

from the performance predicted by their model when they scaled the application above 

512 processors. 

1.1.1.2 The Scalability Problems of Event Tracing 

Although the information obtained from tracing is needed for correctly diagnosing 

certain types of performance problems, three key issues prevent it from being a 

scalable performance measurement technique: perturbation of the application, the 

large volume of data collected, and difficulties in analyzing the highly-detailed data. 

Perturbation of the measured program is caused by the execution of added trace 

instrumentation instructions, the memory used by the trace buffer, and the flushing the 

trace buffer to disk. These perturbations increase the execution time of the program 
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and have the potential to alter the program's behavior [40]. For example, in one of our 

experiments, a traced run of Sphot [ 1] took roughly 50 times longer to execute than 

the untraced run. 

Event tracing has the potential to create prohibitively large data files, especially for 

highly-parallel, long-running programs. Several researchers have noted this problem 

[65, 79]. As an example, in one study, we encountered event counts on the order of 

1010
, for 32-process runs of Sphot that only ran for a few minutes [ 45]. The file size of 

the merged trace was 424 GB. We were fortunate, because the system we used 

provided a ~250 TB file system with no individual quotas for temporary storage. We 

wrote the traces to this file system and transferred them to tape for long-term storage. 

If we had not had these resources, we would not have been able to conduct many of 

our experiments. 

Large trace files pose a challenge to analysis tools. They require significant 

amounts of memory and computation for merging, opening, and displaying the traces. 

Commonly, during a traced execution, each individual process writes data to its own 

trace file. At some point, either at the end of the execution, or as a post-mortem step, 

the individual trace files are merged into a single file, ordering the events from 

different processes by their time stamps. This merging can be computationally 

intensive; in our experiments, we found that the merging could take orders of 

magnitude more time than the execution time of the application. The act of simply 

opening and displaying a trace file is problematic as well. Generally, a trace 

visualization tool needs to scan the entire trace into memory as a preprocessing step. 
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In one of our studies, opening a 600 MB trace from a four-process run proved to be 

impossible for one trace-analysis tool. After 30 minutes of waiting, the tool reported 

that it had run out of memory and could not open the file. After a time-consuming 

conversion to a different trace file format, a different tool successfully opened the file, 

but required a parallel back-end to do so. 

The level of detail produced by tracing makes human analysis of the data a 

significant task. Locating performance problems by looking at a display of a trace of 

hundreds or thousands of processes could fairly be described as finding a needle in a 

haystack. Current trace visualization tools commonly present Gantt charts, showing a 

bar plot of event occurrences over time, left to right, with one bar per process or task. 

Generally, the visualization initially shows the entire timeline, and the user has the 

option to zoom in on portions of the timeline, and possibly on specific ranks, to see 

more detail. At the high end, full-scale trace visualizations become extremely difficult 

to read, as the tool user must scroll through thousands of processes and lengthy time 

lines. It becomes a matter of either being able to see the whole picture, but not being 

able to see enough detail to draw conclusions about patterns in the trace; or being able 

to see the needed details, but losing the perspective of the whole picture. 

1.1.1.3 Case studies illustrating the problems of tracing 

Other researchers using tracing tools for performance analysis have described the 

scalability problems of tracing, which, in some cases, prevented them from performing 

their experiments. 
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One researcher we corresponded with recounted a particularly "painful" 

experience trying to trace a communication pattern that occurred several hours after 

the start of the execution of his application. He performed only a few experiments for 

comparison, because he ran out of quota, in spite of the fact that he had taken 

measures to reduce the amount of trace data collected, by not starting the trace until 

several hours into the execution of the program, and stopping it immediately after the 

target iteration. Each reduced run generated several GB of data. The trace analysis tool 

took a couple of hours to open and display a single trace file. (John May, personal 

communication) 

Winstead et al. used a tracing tool to study the I/O performance of an application 

[70]. Although their small test runs had no problems, when they scaled up to 512 

processors, several problems appeared. First, their runs generated huge amounts of 

data, which resulted in unwieldy trace files and significant I/O overhead in the target 

program. The I/O overhead had the potential to seriously perturb the loosely 

synchronized application. In addition, the overwhelming amount data exercised a file 

system bug and caused a system crash. 

Chung et al. evaluated several state-of-the-art tracing tools for scalability on Blue 

Gene/L [13]. They found that the execution-time overhead of tracing grew faster than 

linearly with the number of MPI processes, and that the volume of trace data rapidly 

reached the order of 100 GB, which they argued was too large for efficient analysis or 

visualization. In their studies, they only executed up to 2048 processes, only a small 

fraction of the 131-thousand processor capacity of Blue Gene/L. 
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1.1.2 Summary 

Event traces of parallel programs are an essential tool for correctly identifying the 

root cause of an important class of performance problems; however, the large volume 

of data collected creates challenges for measurement, storage, and analysis, and, in 

some cases, prevents measurement experiments from being conducted at all. The 

measured data is perturbed by the execution of measurement instructions, as well as 

by the movement of the collected data to store it on disk or to transfer it across the 

network. This perturbation increases the running time of the execution, and has the 

potential to alter the measurements by an unacceptable level. The sizes of trace files 

can easily reach gigabytes for even short-running executions with a small degree of 

parallelism. This can limit what experiments are performed, given a particular user's 

available file system resources. Analysis of huge amounts of data is challenging for 

both tools and humans. Although ad-hoc methods exist for reducing the amount of 

data collected in the trace, these methods require the user to partially analyze the 

problem and take extra steps before the measurement run. In addition, reducing the 

amount of data collected in these ways has the potential to miss the information 

needed for diagnosing the problem. Case studies show the need for tracing parallel 

programs at large scales, because performance problems do not always exhibit 

themselves during small scale runs. 

1.2 Dissertation Contributions 

Given the need for gathering event-based trace data for larger application runs and 

the scalability challenges of gathering trace data using traditional methods, our goal 
10 



was to develop a low overhead performance measurement technique for collecting 

event traces. 

Our first task was to perform a detailed study to investigate the scalability 

problems of gathering traces. We used the results from the study to frame our 

proposed approach to a scalable method for gathering trace data on high-end systems. 

Our study showed that the overhead of writing the trace data to disk during the 

execution increased with increasing numbers of writing processes, while the overhead 

of trace measurement excluding the ·writing scaled with the amount of data being 

measured. The results of our study suggest the need for a measurement method that 

collects event-based performance information while reducing the amount of 

performance data, and severely limiting or eliminating the need to write any data to 

disk during the execution. 

Our solution is a new performance measurement technique that is a hybrid 

between profiling and tracing, trace profiling. The technique produces a summary of 

the event details collected during a program run, and saves enough information to 

adequately describe the dominant performance behaviors of the execution. Because 

event trace data is compressed locally, the trace profiling method reduces the major 

source of perturbation from event trace collection on today's high end supercomputing 

systems: periodic flushing of trace data to disk during execution. To address the 

problem of large data volumes, the technique identifies event patterns that are similar 

enough that only one copy need be retained, thereby significantly reducing the amount 

of data that needs to be stored. In addition, the reduced data volume decreases the 
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memory and computation burden on analysis tools and the amount of data that needs 

to be rendered by a visualization tool. 

We implemented a post-mortem prototype of the trace profiling method to 

illustrate the viability of the technique and to evaluate methods for deciding trace 

similarity. A critical piece of an implementation of the trace profiling technique is the 

choice of a method for deciding when traces are similar enough to be considered 

equivalent. Using our post-mortem implementation, we evaluated several methods for 

deciding trace similarity for compression, amount of error introduced into the 

measurements, and whether the compressed data still contained the information 

needed to make a correct performance diagnosis. 

We implemented a prototype runtime trace profiler. We present a study of trace 

profiling overheads, including a comparison to traditional event trace collection. 

1.3 Dissertation Organization 

In Chapter 3, we present related work. We present the study of the overheads of 

traditional event trace collection in Chapter 4. The design of the trace profiling 

technique is described in Chapter 5. In Chapter 6, we demonstrate the post-mortem 

implementation of our technique and the evaluation of methods for deciding trace 

similarity. Chapter 7 describes our runtime implementation and its evaluation. Finally, 

we conclude in Chapter 8. 
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2 Related Work 

Other researchers have investigated reducing or eliminating the scalability 

problems associated with tracing: perturbation of the application program, 

unmanageable file sizes, and visualization and analysis challenges. 

2.1 Perturbation 

Because perturbation is intrinsic to measurement [17], research focuses on 

techniques to lower or limit the overheads, remove the overheads in the resulting data, 

and to measure and model the overheads. 

Researchers have investigated methods to lower the overheads of tracing [37, 50, 

55, 58, 75]. The Event Monitoring Utility (EMU) was designed to allow the user to 

adjust how much data was collected in each trace record, thereby altering the amount 

of measurement overhead [37]. The authors found the writing overhead to be the 

largest monitoring overhead. Falcon has several features to reduce the amount of 

perturbation in the target program [23]. The buffer sizes used for tracing can be 

adjusted at run time, and it uses double-buffering to reduce the overhead of 

transmitting the event data to the tool monitor threads. It also allows the type of 

performance measurement to be altered at run time, switching between high- and low

overhead measurement techniques on the fly. The EventSpace tool has several features 

designed to lower the overheads of gathering traces [8]. The trace buffer is only 

accessed as needed by the monitoring threads. The trace buffers have a fixed size; the 

oldest entries are discarded to make room for new entries. This means that trace data is 
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not stored permanently unless it is read by the monitor threads. Also, the tool employs 

distributed data analysis to reduce the overhead of sending the trace data on the 

network. 

Several researchers have developed techniques to attempt to remove overheads 

from the reported data [14, 20, 69, 72, 76]. Yan and Listgarten [76] specifically 

addressed the overhead of writing the trace buffer to disk in AIMS by generating an 

event marker for these write operations and removing the overhead in a post

processing step. 

Several researchers have reported on the overheads of tracing. Yan and Schmidt 

argued that the most intrusive activities were the allocation of memory buffers to save 

the trace buffer and the periodic flushing of the trace buffer to disk [79]. Gu et al. 

reported that the most expensive operations were event buffering and transmission 

[23]. Chung et al [13] evaluate several profiling and tracing tools on BG/Lin terms of 

total overhead and write bandwidth, and note that the overheads of tracing are high 

and that the resulting trace files are unmanageably large. They suggest that the 

execution time overhead is substantially affected by generation of trace file output, but 

provide no measurements for their claim. 

Two research efforts have developed models of the overheads in measurement 

systems. Malony et al. developed a model to describe the overheads of trace data and 

describe the possible results of measurement perturbation [40], then extended it to 

cover the overheads of SPMD programs [57]. They assumed that in the case of 

programs that do not communicate, the perturbation effect for each processor is only 
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due to the events that occur on that processor. However, they noted, as we do, that the 

execution time of traced programs was influenced by other factors than just the events 

in each processor independently. They did not explore this further. Waheed et al. [67] 

explored the overheads of trace buffer flushing and modeled two different flushing 

policies [66]. They found that the differences between the policies decreased with 

increased buffer sizes. Their model did not account for the interaction between writing 

processes when modeling the buffer flushing policies - instead, they assumed a 

constant latency for all writes of the trace buffer. 

A primary difference between our results and prior work investigating tracing 

overheads is that we identify a previously unexplored scalability problem with tracing. 

To the best of our knowledge, while others have noted that the largest overhead of 

tracing is writing the data, none have shown how this overhead changes while 

increasing the scale of application runs. 

2.2 Trace File Size Reduction 

Several research efforts focus on reducing the size of the trace file. The efforts fall 

into two categories: trace file compression, and measuring or writing less trace data. 

2.2.1 Trace File Compression 

Several researchers have reported on efforts to reduce file sizes by compression. 

Researchers working with the AIMS performance tool noted compression of 40-50% 

in trace file sizes when using a binary representation of the trace, as opposed to an 

ASCII encoding of the trace [79]. They also found that introducing new trace records 
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to represent event pairs that commonly occur together, such as function entry and exit, 

and message events and associated message data, resulted in trace compression of 

38% in an ASCII encoding of the trace. The Pablo SDDF trace file format has both 

ASCII and binary representations [54]. The Pablo developers reported that, in their 

experience, the binary representation of traces ranged from 42-75% smaller than the 

ASCII representation of the files [7]. The Open Trace Format (OTF) [33] uses Lib 

compression [16] to compress the ASCII traces either on-the-fly or as a post-

processing step. The OTF developers found that OTF compressed trace file sizes were 

about half the size of STF trace files for the applications they examined. While these 

compression methods do reduce the size of trace files, the size of the traces still scales 

with the number of events measured, determined by the number of concurrent 

processes and the length of the program run. Gamblin et al. use the CDF 917 wavelet 

transform to compress traces collected for the purposes of detecting load imbalance 

[18]. Knupfer developed a method called Compressed Complete Call Graphs (CCGs) 

that takes a trace file and compresses it based on the event stream and event 

measurements to ease the burden on trace analysis tools [34]. These two methods 

require that all data be collected before compression begins, which means that the 

problems of collecting and storing a large amount of data still exist. 

2.2.2 Measuring or Writing Less Data 

This section details methods for reducing the amount of data collected by 

measuring or writing less data. These techniques fall into three categories: simple 

methods that omit data, methods that alter the type of measurement employed based 
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on some rule, and methods that decide when sections of traces are similar and measure 

or store a reduced number of pattern executions. 

2.2.2.1 Simple Omission Methods 

Generally, tracing tools provide API calls that give the user the option of starting 

and stopping tracing of the application at any point during the execution [5, 2, 71, 46, 

52, 58, 60, 63, 74, 80]. This makes it possible for users to reduce the amount of data 

that is collected and to potentially reduce the size of the trace data files to reasonable 

levels. Unfortunately, there is a risk that this method might cause the trace to omit 

critical information needed for diagnosing the performance problem, and it increases 

the burden on the tool user to identify the approximate location of the problem, and to 

make code changes to control which events are captured. 

TAU [58] reduces the amount of data collected by allowing users to disable 

instrumentation in routines that are called very frequently and have short duration. 

TAU also includes a tool called tau_reduce that uses profile data to discover which 

functions should not be instrumented in a user program, and feeds this information to 

the automatic source instrumentor. Here, the size of the trace file still scales with the 

number of concurrent processes and the length of the run. 

2.2.2.2 Altering Measurement Type Methods 

Three tools alter the type of performance data collected to reduce file size. Pablo 

[7] gives users the option of specifying an event-rate threshold. If an event occurs at a 

greater rate than the threshold, a less invasive method of measurement, such as event 
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counting, is employed. Vetter presents a method for statistically sampling MPI events 

[65]. Each time an MPI event is encountered, it is either sampled or not. For each 

sampled event, the tool can record statistics, log the event to a trace file, or even 

ignore the data. Falcon provides a choice of measurement sensors: sampling, tracing, 

and extended, that can be interchanged at runtime to flexibly alter the amount of data 

collected [23]. An example is sampling performance until a problem is detected and 

then turning on tracing to get more detailed information. Although each of these 

methods reduces the amount of data collected, they do so at the risk that some 

important performance behaviors will be missed. 

2.2.2.3 Trace Similarity Methods 

Several researchers reduce trace file size by deciding when sections of traces are 

similar enough that a reduced number of copies of the section need to be retained. 

Methods in this category include deletion of similar trace sections; trace sampling; 

statistical clustering; and signal processing. 

Some researchers use a combination of event names and measurements to decide 

when traces are similar. Knupfer and Spooner define two sections of traces as similar 

if the call graph context and measurements of the events are equal. Knupfer defines 

equality using both relative and absolute differences [34]; Spooner et al. use the 

relative difference in instruction counts [60]. 

Another approach defines similarity by event names. By ignoring event 

measurements, this approach has the potential to miss important performance 

behaviors if there is performance variability in different iterations of the same event 
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stream. Chung et al. use a filter that detects repeated communication patterns [13]; 

they keep performance data for only one instance of each pattern. Freitag et al. use a 

periodicity detector to notice repeating sequences of events and keep a reduced 

number of iterations of each sequence [15]. Similarly, Yan and Schmidt detect 

repeating sequences of events and store the average measurements of those events 

[79]. Noeth and Mueller also detect repeated sequences of message-passing events and 

store one copy of each sequence; they optionally store summary information about the 

events, such as average measurements [49]. In later work, they include the ability to 

store more detailed timing information: statistical "delta" times, histograms, or 

histograms by call sequence [53]. 

Other efforts use trace sampling to reduce trace size. Carrington et al. use trace 

sampling to reduce the amount of time it takes to gather memory reference traces for 

the purpose of performance modeling [10]. They collect data for a reduced number of 

executions of the basic blocks in a program. Vetter presents a method for statistically 

sampling MPI events [65]. Each time an MPI event is encountered, it is either 

sampled or not. Gamblin et al. use statistical sampling with a user-specified 

confidence interval and metric. [19]. Although sampling methods do reduce the 

amount of trace data collected, they have the potential to miss critical performance 

behaviors that occur during unmeasured portions of the program. 

Aguilera et al. [4], Nickolayev et al.[48], and Lee et al. [39] apply statistical 

clustering to traces and select a representative trace for each cluster of processes. 

Nickolayev and Lee use the Euclidean distance for clustering, while Aguilera uses a 

19 



metric based on the amount of communication between two processes. These 

clustering methods reduce trace data across processes, but do not reduce trace data 

within a process (temporal reduction). As a result, file sizes will still scale with the 

running time of the application. 

Several groups apply methods from signal processing to traces. Casas et al. and 

Huffmire et al. use the Haar wavelet transform to automatically determine the phases 

of a program [11, 30]. Hauswirth et al. use dynamic time warping to decide when two 

traces are similar for aligning multiple traces [26]. 

Researchers have evaluated several methods for deciding the goodness of a 

particular trace similarity metric. Ratn et al. use aggregate statistical measures, such as 

total time spent in a function, to evaluate their method [53]. Gamblin et al. compute a 

trace confidence measure to evaluate their trace sampling results, which is tells the 

percentage of time the mean trace of sampled processes is within an specified error 

bound of the mean trace of the full trace [19]. In their wavelet transform method, 

Gamblin et al. use a root mean square measure to estimate the error in reduced traces 

[18]. They also present qualitative results, showing a visualization based on a reduced 

trace compared with one from a complete trace. Yan et al. compare the measurements 

in their reduced trace against the real trace time stamp by time stamp and produce both 

a relative and absolute measure of the overall differences [77]. In addition, they also 

present whole program statistical measurements and visualizations for qualitative 

companson. 
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2.3 Analysis Tool and Visualization Scalability 

Three trace file formats address the scalability problems faced by trace analysis 

tools. The Scalable Logfile Format (SLOG) was developed to address the scalability 

problems encountered by visualization tools [73]. In SLOG, events are partitioned into 

intervals called Bounding Boxes, which are organized into a binary tree. This 

organization of the data allows the visualization tool to display a low-resolution 

representation of the trace data without reading in the entire trace file. The Structured 

Trace Format (STF) was designed to write the data to multiple files to allow the files 

to be read and written in parallel [2]. Their goals were to make the format be as 

compact as possible and allow for fast random access to the data and easy extraction 

of the data. The Open Trace Format (OTF) was designed to address the challenges that 

come with the ever-increasing scales of HPC platforms [33]. It was designed so that 

the trace could be processed by a parallel backend, which reduces the time to open and 

visualize very large trace files. OTF uses an ASCII encoding which enables a tool to 

do a binary search on files for time intervals. 

Several researchers have worked to reduce the amount of data presented to the user 

in order to facilitate understanding of the performance of the program. Vetter presents 

a method for identifying communication inefficiencies by applying machine learning 

techniques to trace files of MPI communication events [64]. The end result is a 

breakdown of the communication events that were considered "normal" and 

"abnormal" (e.g. late sends or late receives), and the location in the source code from 

which they were called. The AIMS performance tool suite computes performance 
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indices from parallel program traces [78]. Performance indices are designed to 

quantify program characteristics to locate bottlenecks. An example of a performance 

index is the communication overhead index, which gives an indication of how much 

of the program's execution time was spent in communication activities. Although both 

of these methods greatly reduce the amount of data presented to the user and help to 

identify performance problems, neither method shows causal information for the 

problems. 

The scalability of trace visualizations is not a new topic [24, 28, 27, 41, 47]; 

however, the continuing upward scaling of high end systems drives a continuing need 

for more scalable solutions. Knupfer et al. show how CCGs can be used to facilitate 

visual understanding of trace data [35]. Color blocks that can be interactively 

decomposed represent behavior patterns in the execution. The visualization scales with 

the number of parallel entities in the execution and with the running time of the 

execution. Spooner and Kerbyson present a tool that takes multiple traces as input and 

outputs visualizations that highlight the differences between the traces [60]. Their 

primary goal was to generate visualizations that indicate performance differences in 

multiple executions over time. They note that their tool could be used to compare 

iterations within a single execution; however, this is achieved by either creating a 

separate trace file for each iteration or extracting the iteration data from the trace as a 

post-mortem step. Neither of these methods addresses the problem of collecting and 

storing the possibly enormous amount of trace data. 
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3 Study of Tracing Overheads 

We conducted a measurement study to discover the scalability challenges in event 

tracing. We used the results of this study as a guide when designing our low-overhead 

approach to gathering event traces. 

3 .1 Experiment Design 

Our experiments are designed to focus on separating runtime tracing overhead into 

two distinct components: the overhead of just the trace instrumentation, and the 

overhead of flushing the trace buffer contents to files. We performed runs with and 

without trace instrumentation (instr and nolnstr); and with and without buffer flush to 

file enabled (write or noWrite), then calculated the overheads using the following 

metrics: 

• Wall clock time: MPI_ Wtime, measured after MPI Init and before 

MPI Finalize. The following are not included m this measurement: 

instrumentation overhead for tool setup, finalization, and function calls 

before/after the timer is started/stopped; and writing overhead for trace file 

creations, final trace buffer flushes before file closure, trace file closure, and, 

in the case of MPE, trace file merging. 

" • Write overhead: Average total wall clock time of the write runs mm us 

average total wall clock time of the no Write runs 
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• Instrumentation overhead: Average total wall clock time of the runs that did 

not write the trace buff er minus average total wall clock time of the 

noBuff_ nolnstr _no Write runs 

Given our goal of pushing to the current scaling limits of tracing, we wanted to 

measure an application with a very high rate of communication, so that trace records 

for a high number of MPI communication events would be generated. We picked 

SMG2000 (SMG) [9] from the ASC Purple Benchmark suite. SMG is characterized by 

an extremely high rate of messages: in our four process runs, SMG executed 434,272 

send and receive calls in executions that took approximately 15 seconds. For 

comparison, we also included another ASC Purple Benchmark, SPhot (SP) [1]. SP is 

an embarrassingly parallel application; in a four-process, single-threaded execution of 

512 runs with a total execution time of 350 seconds, the worker processes pass 642 

messages, and the master process passes 1926 messages. We configured both 

applications with one thread per MPI process. 

To vary the number of processes, we used weak scaling for the SMG runs. As we 

increased the number of processors, we altered the processor topology to P * 1 * 1, 

where P is the number of processors in the run, and kept the problem size per 

processor, nx * ny * nz, the same, thereby increasing the total problem size. We used 

both weak and strong scaling for the SP runs, referred to as SPW and SPS 

respectively. We configured these approaches by changing the Nruns parameter in the 

input file input.dat, which controls the total amount of work done in a single 
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execution. For strong scaling, we kept Nruns constant at 512 for all processor counts; 

for weak scaling, we set Nruns equal to the number of MPI ranks. 
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Figure 1 Performance of Uninstrumented Executions 

We used SMG's built-in metrics to measure Wall Clock Time, summing the values 

reported for the three phases of the execution: Struct Interface, SMG Setup, and SMG 

Solve. We used the native SPhot wall clock time values for Wall Clock Time. Figure 1 

shows the scaling behavior of the uninstrumented applications. As expected, the 

execution time of SPS decreases with increasing numbers of processors, since we are 

keeping the total problem size constant. 

In some sense the choice of a particular tracing tool was irrelevant to our goals: we 

wanted to investigate a "typical" tracing tool. However, we wanted to avoid results 

that were in some way an artifact of one tool's particular optimizations. Therefore, we 

used two different robust and commonly used tracing tools for our experiments: TAU 

andMPE. 
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We built several versions of TAU version 2.15.1 [58]. For the no Write versions we 

commented out the one line in the trace buffer flush routine of the TAU source that 

actually calls the write system call. We altered the number of records stored in the 

trace buffer between flushes, by changing the #define for TAU_MAX_RECORDS 

in the TAU source for each size and rebuilding, to test two different buffer sizes: 0.75 

MB (32,768 TAU events); 1.5 MB (default size for TAU; 65,536 TAU events); 3.0 

MB (131,02 TAU events); and 8.0 MB (349,526 TAU events). We used the default 

level of instrumentation for TAU, which instruments all function entries and exits. 

MPE (the MultiProcessing Environment (MPE2) version l.0.3pl [80]) uses the 

MPI profiling interface to capture the entry and exit time of MPI functions as well as 

details about the messages that are passed between processes, such as the 

communicator used. To produce an MPE library that did not write the trace buffer to 

disk, we commented out three calls to write in the MPE logging source code. We 

also had to comment out one call to CLOG_ Converge sort because it caused a 

segmentation fault when there was no data in the trace files. This function is called in 

the MPE wrapper for MPI Finalize, so it did not contribute to the timings 

reported in the SMG metrics. We altered the buffer sizes by changing the value of the 

environment variable CLOG BUFFERED BLOCKS. We also set the environment - -

variable MPE _LOG_ OVERHEAD to "no" so that MPE did not log events 

corresponding to the writing of the trace buffer. In MPE, each MPI process writes its 

own temporary trace file. During MPI _Finalize, these temporary trace files are 

merged into one trace file, and the temporary trace files are deleted. The temporary 
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and merged trace files were written in CLOG2 format. We used two different buffer 

sizes: 1.5 MB (24 CLOG buffered blocks), and 8.0 MB (default size for MPE; 128 

--....... --....-!!!' 
••••• Ill Lustre IJO tramc 

• Computeproceu 

Figure 2 Experiment Environment. 

The MPI processes in our experiments, represented by purple circles in the 
diagram, ran on a subset of the 1024 compute nodes of MCR. MPI 
communication between the processes traveled over the Quadrics QsNet 
Elan3 interconnect, shown by the purple dashed line. The 1/0 traffic for the 
Lustre file system, represented by the blue dotted line, also traveled over the 
Quadrics interconnect. Metadata requests went to one of two metadata servers 
(MDS), a fail-over pair. File data requests first went through the gateway 
nodes to an object storage target (OST), which handled completing the 
request on the actual parallel file system hardware. 

CLOG buffered blocks). For SPW only, we altered the SPhot source to call MPE 

logging library routines to log events for all function calls, to correspond to the default 

TAU behavior more directly. We refer to this as "MPc" for MPE with customized 

logging. For the SPW MPc experiments, we disabled the trace file merge step in 

MPI Finalize, because it became quite time consuming with larger trace files. 

We collected all of our results on MCR, a 1152-node Linux cluster at LLNL 

running the CHAOS operating system [21] (See Figure 2). Each node comprises two 

2.4 GHz Pentium Xeon processors and 4 GB of memory. All executions ran on the 
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batch partition of MCR. The trace files, including any temporary files, were stored 

using the Lustre file system [61]. This platform is representative of many high end 

Linux clusters in current use. 

Each of our experiment sets consisted of thirty identical executions. 

3.2 Results 

In this section, we present results from a study of tracing overheads as we scale up 

the number of application processes. These results are part of a larger investigation; 

full details are available as a technical report [44]. In this study, we examined how the 

overheads of tracing change as the application scales. We ran sets of experiments with 

32, 64, 128, 256, and 512 processes, traced with TAU and MPE, using buffer sizes of 

1.5 and 8.0 MB. 

3 .2.1 Event Counts and Trace File Sizes 

Here we describe the event counts generated while tracing the applications. 

Complete details can be found in the technical report [44]. For SMG, the counts for 

TAU and MPE exhibit similar trends, but are different by roughly an order of 

magnitude. As the numbers of processors double, the per-process event counts and 

trace data written by each process increase slightly (in part due to increased 

communication), while the total number of events and resulting trace file sizes double. 

For SPS, there are markedly different results between TAU and MPE; the event counts 

differ by six orders of magnitude. This is because with TAU we are measuring all 

function entries and exits, whereas with MPE we measure only MPI activity. For both 

28 



TAU and MPE, doubling the number of processors results m the per-process event 

counts decreasing by half. 

For TAU only, the total event count and resulting trace file sizes remain constant, 

whereas for MPE, the maximum per-process event count, the total event count, and 

resulting trace file sizes increase slightly. For SPW, the counts for TAU and MPc are 

nearly identical, while the counts for MPE differ. Again, this is because of differences 

in what was measured by the tools. The total event count and trace file sizes for MPE 

are roughly six orders of magnitude less than those of TAU and MPc. 

We use this information to derive an expectation for tracing overheads for the 

different applications and tools. For the weakly-scaled SMG and SPW, we expect that 

the overheads of tracing would remain relatively constant with increasing numbers of 

processors because the amount of data being collected and written per-process remains 

relatively constant. However, for SPW with MPE, we expect to see very little 

overheads due to the small amount of data collected. For SPS and TAU, we expect the 

overheads of tracing to decrease with increasing numbers of processors, because the 

amount of data being collected and written per-process decreases with increasing 

processes. For SPS with MPE, we expect to see very little overhead because of the 

small amount of data collected. 

3.2.2 Execution Time 

Figure 3 shows the average wall clock times for our experiments broken down into 

time spent in application code, trace instrumentation, and writing the trace buffer. The 

graph on the left shows the measurements for SMG with TAU and MPE, and SPW 
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Figure 3 Performance of Instrumented Executions. 

Here we show the total execution time for SMG measured with TAU and 
MPE, and SPhot measured with TAU. The colors in the bars indicate the time 
spent in application code, time in trace instrumentation, and time writing the 
trace buffer. Each bar in a set represents the average behavior of executions 
with 32, 64, 128, 256, and 512 processes, respectively. The set labels include 
(top to bottom): the benchmark name, the measurement tool, and the buffer 
size. 

with TAU and MPc. In each run set, we see the same trend; as the number of 

processes increases, the total execution time increases, largely due to the time spent 

writing the trace buffer. The time spent in the application code and in trace 

instrumentation remains relatively constant. The graph on the right shows the 

execution times of SPS with TAU. Here, as the numbers of processes increase, the 

total execution time decreases. However, even though the time spent in writing the 

trace buffer decreases with increasing processors, it does not decrease as rapidly as the 

time spent in instrumentation or application code. For SPS and SPW with MPE, the 

differences between the write and no Write executions were indistinguishable due to 

the very small amounts of data collected and written. 
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Table 1 Correlation of Total Wall Time with Maximum Event Count in a Rank 

SMG SPS SPW 
Buffer Sz Write? TAU MPE TAU MPE TAU MPE-C MPE 
1.5 yes 0.96 0.85 0.91 -0.78 0.69 0.80 0.98 
8.0 ves 0.97 0.90 0.95 -0.81 0.61 0.76 0.98 
1.5 no 0.98 0.98 0.99 -0.70 0.81 0.55 0.96 
8.0 no 0.98 0.98 0.99 -0.79 0.74 0.77 0.95 

We computed the percentage contribution to variation using three-factor ANOVA, 

with the buffer size, the number of processes, and whether or not the trace buffer was 

written to disk as the factors [44]. In general, there was quite a bit of variation in the 

running times of the executions that wrote the trace buffer, which explains the high 

contribution of the residuals. Sources of variability in writing times for the different 

executions include: contention for file system resources, either by competing 

processes in the same execution, or by other users of Lustre; contention for network 

resources, either by other 1/0 operations to Lustre, or by MPI communication; and 

operating system or daemon interference during the write. Any user of this system 

gathering trace data would be subject to these sources of variation in their 

measurements. For SMG measured with TAU and MPE, the largest contributing factor 

was whether or not the buffer was written, at 33% and 26%, respectively. The largest 

contributing factor for SPS with TAU was the number of processes in the run (19%), 

followed closely by whether or not the trace buffer was written (14%). SPS with MPE 

had the number of processes as the dominating factor at 51 %. SPW with TAU and 

MPc both had writing the trace buffer as the largest contributor, at 34% and 24%, 

while SPW with MPE had the number of processes as the largest, at 81 %. The 
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Figure 4 Tracing Overhead with Maximum Event Count in a Single Rank. 

The groups of bars from left to right in the charts represent different processor 
counts: for SMG they represent 32, 64, 128, 256, and 512 processes; for SPS 
they represent 512, 256, 128, 64, and 32 processes; for SPW, they represent 
32, 256, 128, 64, and 512 processes. 

differences in the dominating factors for the SP runs with MPE are attributed to the 

comparatively very small amount of data collected. 

3 .2.3 Execution Time vs Event Counts 

Table 1 shows the correlation of the average total wall clock time with the maximum 

event count over all ranks. SPS with MPE had a relatively weak negative correlation 

with the maximum event count, because as the process count increases, the number of 

messages that the master process receives increases, and the execution time decreases, 

giving a negative correlation. In general, executions that did not write the trace buffer 

to disk had a higher correlation with the event count than did the executions that did 

write the trace buffer to disk. 

Figure 4 shows the overheads of writing and instrumentation as the maximum 

number of events in a single rank increases. For SMG with TAU and MPE, we see a 
.... 
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clear pattern. The instrumentation overhead appears to vary linearly with the number 

of events, while the overhead of writing the trace increases much more rapidly, and 

does not appear to have a linear relationship with the event count. The behavior of 

SPS is different, because in this application, as the number of events increases, the 

number of processes decreases; however, the instrumentation overhead still appears to 

have a linear relationship with the event count. The write overhead is high at higher 

event counts, but also at the low event counts, when the number of writing processes is 

higher. For SPW, the instrumentation overhead is relatively constant, as expected 

since the number of events does not change much between the run sets. However, the 

writing overhead fluctuates widely. The reason for this is that the maximum event 

count in a rank does not monotonically increase or decrease with increasing processors 

as it does for SMG or SPS. 

3 .3 Conclusions 

In our scaling experiments, the execution times of the no Write runs tended to scale 

with the maximum number of events. However, the execution times of the write runs 

did not scale as strongly with the number of events, and tended to scale with 

increasing numbers of processors, possibly due to contention caused by sharing the 

file system resource. Our results suggest that the trace writes will dominate the 

overheads more and more with increasing numbers of processes. They indicate that the 

trace overheads are sensitive to the underlying file system. 

Realization of a scalable approach to tracing will require an overall reduction in 

the total amount of data. Data reduction is needed not only to reduce runtime 
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overhead, but also to address the difficulties of storing and analyzing the resulting 

files. We incorporated the results of our measurement studies into the design of our 

approach to low-overhead event tracing. 
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4 Trace Profiling 

We have developed a novel approach to performance measurement designed to 

address the scalability problems of gathering event-based data. Our approach is a 

hybrid between profiling and tracing that we call trace profiling. The goal of trace 

profiling is to gather enough information to adequately describe the dominant 

performance behaviors of the execution, at a greatly reduced data volume than 

gathered by a traditional tracing tool. The trace profiling technique detects event 

patterns, or segments, in the execution trace that have similar behavior. Segments with 

similar behavior are merged, so that only one copy of the segment is retained. Thus, a 

trace profile contains a summary of the event patterns that occurred during program 

execution. 

In Section 5.1, we start by describing traditional event trace collection in order to 

provide background for explaining and evaluating trace profiling. Next, in Section 5.2, 

we describe the trace profiling technique. We present an overview of the technique 

followed by our methodology for marking segments in traces and for segment 

merging. In Section 5.3 we detail the methods we use for detecting segments with 

similar behavior. In Section 5.4, we present models for predicting the sizes of 

traditional traces and trace profiles; in Section 5.5, we use the models to predict the 

size reduction achievable by trace profiling and to compare traditional tracing and 

trace profiling. Finally, in Section 5.6, we illustrate the potential benefits of trace 

profiling for visualization and analysis tools. 
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4.1 Background 

Traditional tracing results in an in-order listing of the events that occurred during 

an application run. Generally speaking, a traditional tracing tool creates a record for 

each event encountered during the execution and stores it in a buffer in memory. 

When the buffer becomes full, the contents of the buff er are flushed to disk, and the 

buffer is reused. With most tracing tools, each process creates its own event trace; the 

individual traces can optionally be merged at the end of the execution. 

A traditional event trace of a parallel program contains two types of information: a 

mapping of event identifiers to the event names, e.g. the function main might have 

identifier 1; and a series of records that contain data about program events. In this 

document, we will call the mapping of event identifiers to event names an event map. 

The event map can reside in the same file as the event records or a separate file. The 

event records contain data about function entries or exits, message passing data, other 

performance measurement data, or bookkeeping information. Examples of 

bookkeeping records include records that indicate the start and stopping times of 

flushing the trace buffer. For function events, there is a separate record each for event 

entry and event exit. We show a diagram of example trace files for a parallel 

application run with two-process in Figure 5. 

4.2 Trace Profiling Technique 

Trace profiling is different from traditional tracing because it doesn't maintain a 

complete, in-order list of event entry and exit records for each process. A trace profiler 
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This figure shows the data obtained from a traditional trace. Each process 
outputs its own event map and event records file(s). The event records file is 
simply an in-order series of event records gathered from start of the program 
to the end of the program. In the above diagram, Eid refers to the event 
identifier given in the event map and Rid is the rank identifier. Each record 
has a timestamp and indicates the event type, e.g. entry or exit. 

partitions the processes of the parallel program into process groups. A process group 

contains the performance information for one or more processes that had the "same" 

behavior. Each process group contains a list of segments. A segment is simply an in-

order series of events and their associated information for a portion (or segment) of the 

execution of the program. Each process group maintains a segment execution list, 

which is a listing of the order of segment executions and the timestamp at which each 

segment execution began. Each segment maintains its time duration and a listing of 

the events that executed in the segment. For each event, we maintain the relative 

starting time of the event with respect to the start of the segment execution, the event's 

duration, and any other associated information, such as message passing data. 

We show a representation of the data for a sample process group in Figure 6. The 

process group contains the data for ranks 0, 2, and 4. There were two segments in the 

execution that executed two times each. Segment 0 executed first at time= 1 and again , 
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Rank List 0, 2, 4 
Segment Map: O:init, 1:mainloop 
Se ment Execution List: 0:1 1 :6 1 :23 0:40 

Sid=O Event Data 
, Ouration=6 

Figure 6 Process Group 

This figure shows an example process group and the information it contains 
about segments. It maintains the ranks of the processes that it represents in the 
rank list. The segment map gives a mapping between segment identifiers (Sid) 
and the name of the segment. The segment execution list keeps track of the 
order of segment executions and their start times (Sid:start_time). The 
segments for the process group are in the segment list. Each segment has a 
duration and event data for the events that executed during that segment. Each 
event has an entry record that contains an identifier, Eid, a start time, Ts, and 
a duration, Dur; and an exit record. 

at time=40; Segment 1 executed at time=6 and again at time=23. We keep separate 

entry and exit records for each event: the entry event records store the event identifier 

a start time relative to the start of the segment, and a duration; the end records simply 

mark the ending of the events so that the :function call stack can be maintained. 

A trace profile contains the following items: 

• Event Map: One event map stores the mapping of event names to event 

identifiers for all process groups. 

• Process Groups: Each process group contains the following: 

• Rank List: A list of ranks, which tells which processes' data the 

process group contains. 
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• Segment Map: A mapping between segment identifiers and segment 

names. 

• Segment Execution List: A listing of segment identifiers and 

timestamps, telling the start time of each segment execution in a 

process group. 

• Segment List: A list of segments for a single process group. Each 

segment has a header which gives each segment's identifier and 

duration, and is followed by a list of event data. 

• Event Start Record: An identifier, a timestamp which 

gives its start time relative to the start of the segment; a 

duration; and possibly one or more message data records. 

• Message Data Record: A type (send or receive), a 

rank identifier (source or destination), a tag, and a 

communicator. 

• Event End Record: A marker that indicates an event end. 

We merge segments both within and across processes. Segments are merged if 

they are equal, as determined by a given difference method. A trace profiler can have 

multiple difference methods for deciding segment equality; we describe and compare 

several methods in Section 5.3. We describe the criteria and algorithms for intra- and 

inter-process merging in Sections 5.2.2 and 5.2.3. 
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int main () { 
start_segment("main_O"); 
MPI Init (); 
end::::segment("main_O"); 
for(i=O; i < 100; ++i) { 

start_segment("main_loop_1_1"); 
do_work (); 
MPI Allgather () ; 
end=segment("main_loop_1_1"); 

for (j=O; j < 10; ++j) { 
start_segment("main_loop_2_1"); 
do other work(); 
end_segment("main_loop_2_1"); 
while(k < otherRanks){ 

start_segment("main_loop_2_1_1"); 
MPI Sendrecv () ; 
end::::segment("main_loop_2_1_1"); 

start segrnent("rnain loop 2 2"); 
stop_segment("rnain_loop_2_2"); 

start_segment("main_l"); 
MPI Finalize(); 
end::::segment("main_l"); 

Figure 7 Segment Context Marking 

We show a single function, main() with the instructions added to mark the 
segment contexts. We mark an initial segment at the start of main, all loops 
that contain at least one function event, and code regions surrounding marked 
loops. The segment context names are hierarchical: the second loop is 
marked "main_loop_2_1" and its subloop is marked "main_loop_2_1_1". 
Segment marking is automated using a dynamic instrumentation library. 

4.2.1 Trace Segmentation 

We insert segment markers into the source code or program binary. We define 

segments as follows: the initial segment starts at entry to main; for each program 

loop containing at least one measured event, we stop the current segment before the 

loop starts, start a new segment at the top of each loop iteration, stop the segment at 

the bottom of the loop iteration, and start a new segment after the last iteration of the 

loop completes; and end the final segment at program termination. The segment 

context is the section of code, for example, the main _loop_ l _ l loop in Figure 7. 
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4.2.2 Intra-process Segment Comparison 

For intra-process trace reduction, we compare the segments for each context pair 

wise to determine if they are similar. If they are, we say that the segments match and 

retain a single representative segment. Each segment Si contains an ordered list of 

events Ei = {e0, e1, ••• , em}. We maintain a list storedSegments, which contains the 

segments that represent the performance behaviors in the execution, and a list 

segmentExecs that holds the starting times and identifier of each representative 

segment so that we can later recreate a full trace. Given an equivalence operator ::::: for 

For i = 0 to len(Enew): 
Enew[i].start = Enew[i].start - Snew·Start 
Enew[i].end = Enew[i].end- Snew·start 

Snew·end = Snew·end- Snew·start 
match = False 
For i = 0 to len(storedSegments): 

Sstored = storedSegments[i] 
match= compareSegments(snew' Sstored) 
If match = True: 

segmentExecs = segmentExecs U (sstored.id,snew·start) 
break 

If not match: 
Snew.id = getNewld() 
segmentExecs = segmentExecs U (snew·id,Snew·start) 
Snew·start = 0 
storedSegments = storedSegments u Snew· 

Boolean compareSegments(snew, Sstored): 
If Snew·context :;CSstored·context: return False 
If len(Enew) 1= len(Estored): return False 
For i = 0 to len(Enew): 

If Enew[i].id :r=Estored[i].id: return False 
If Snew::::: Sstored: return True 
Else: return False 

Figure 8 Algorithm for Intra-process Segment Matching 
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Figure 9 Intra-process Segment Matching 

MPl_Allgather 

Here we show a portion of an example trace and three segments to illustrate 
segment matching. The top bar represents a portion of a trace for the program 
in Figure 7. Time increases from left to right, and time values are indicated 
above the bar. Segments markers are shown as light gray rectangles with 
vertical text that indicates the context of the segment. Events are shown in 
white boxes. Below the trace, we show the result of segmentation. In each of 
the three segments, the time stamps for the events and ending time of 
segments are adjusted relative to the start time of the segment. We name the 
segments sO, sl, and s2. In the bottom row, we show two examples of 
segment matching (See Section 5.3.). 

some similarity metric, and a segment Snew that has events Enew the algorithm 

comparing segments is shown in Figure 8. Note that a segments match requires that 

segments have the same context and the same number of events occurring in the same 

order. 

4.2.3 Inter-process Segment Comparison 

For inter-process trace reduction, we compare the stored segments lists that were 

collected for each process. Initially, each trace profile contains data for a single 

process group, each of which only contains data for a single rank. Given two trace 
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Figure 10 Inter-process Segment Matching 

The top and bottom bars represent traces for different ranks of the program in 
Figure 7. Time values on the bars increase from left to right. Segments 
markers are gray rectangles with text that tells the segment context. Events are 
white boxes. Between the traces, we show the result of segmentation. We 
name the segments sO.x and s l .x; x indicates the rank that wrote the trace. In 
the segments, the time stamps for the events and segment end times are 
adjusted relative to the segment start time. To decide matching, we examine 
the segments pairwise in order, comparing segment start times and all event 
timings. 

profiles with equal numbers of segments, we compare each pair of segments in order 

and determine if they are similar. If all segments in both traces are deemed similar, we 

say that the trace profiles match, add the new process rank identifier into the process 

group, and retain a single representative trace profile for the process group. After 

comparing all trace profiles, we end up with a set of representative trace profiles, one 

for each process group. We give an example of trace matching in Figure 10. In 
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Boolean compareProcessGroups(Po, P1) 
SEo = Pa.segmentExecs 
SE 1 = P 1.segmentExecs 
Iflen(SEo) * len(SE1): return False 
For i = O; i < len(SEo); ++i: 

ido:timeo = SEo[i] 
id1:time1 = SE1[i] 
If timeo ~ time 1: return False 
So = Pa.segments 
S1 =Pi.segments 
so= So[ido] 
SJ= S1[id1] 
match= compareSegments(so, s1) 
If not match: return False 

return True 

Boolean compareSegments(so, s1): 
If s0.context :;ts1.context: return False 
If len(Eo) * len(E 1 ): return False 
For i = 0 to len(Eo): 

If Eo[i].id ¢E1[i].id: return False 
If so~ s1: return True 

Else: return False 

Figure 11 Algorithm for Inter-process Matching 

addition to comparing event measurements, we also check message passing 

parameters: source/target rank, bytes transferred, message tags, and communicators. 

All parameters save the source/target rank must be identical; the source/target rank can 

be either the same offset, e.g. rank+ 1 in a nearest neighbor communication pattern, or 

the same rank, e.g. all ranks send to rank 0. 

To compare two process groups Po and P1, with respective segment execution lists, 

SEo and SE1, where SEi = {ido:timeo, id1:time1, ... idk:timek}, and stored segment lists, 

So and S1, where~= {so, s1, ... , sm}, we follow the algorithm in Figure 11. 
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4.3 Trace Profile Segment Comparison Methods 

We used several methods to decide the similarity of segments. Each of these is 

described below. Our choices were inspired by methods used by other researchers to 

reduce traces (See Chapter 3). They fall into two categories: distance methods and 

iteration-based methods. 

4.3.1 Distance Methods 

The distance methods produce a difference measure, which is then compared 

against a user-supplied threshold to determine the presence or absence of a match. 

Several of the distance methods are standard methods for computing distances 

between values and sets of values. We use the relative difference (re!Diff), absolute 

difference (absDiff), and three variations on the Minkowski distance (Manhattan, 

Euclidean, Chebyshev), and wavelet transforms (avgWave, haarWave). 

4.3 .1.1 Relative Difference 

We compare the relative differences between each event measurement against a 

user-defined threshold; if greater, the events are not equal: 

. lx1 - Xzl 
relDif f(xv Xz) = ( ) max x1,x2 

Eq. 1 

To see how re/Diff matches segments, we consider our example in Figure 9. We 

compute the relative differences between each of the paired measurements in the 

segments. If any are above our chosen threshold, say 0.5, then the match fails. 

Comparing s2 with sl, we first compare the start times of the do_work event: x1=1 

and xi=l, with relative difference 0. Since the relative difference is less than 0.5, we 
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continue on computing relative differences. Next we check the end times for the 

do_ work event. Here we compute a relative difference: x1=17 and x2=40, giving a 

relative difference of 0.58. This is above our threshold, so the segments do not match. 

When we compare s2 with sO, we find that no differences are greater than 0.15 (x1=17, 

x2=20), so the s~gments match. The new segment is discarded since its behavior is 

reflected in the measurements in sO. 

The relative difference function compares each measurement with its paired 

counterpart in isolation. The computed difference is proportional to the magnitude of 

the paired measurements, meaning that larger differences between larger 

measurements don't overshadow differences in smaller measurements. Because the 

difference between each measurement pair will be judged in isolation, the relative 

difference should be one of the strictest difference criteria in our set. The choice of 

threshold used will have a large bearing on the degree of matching, and hence on the 

reduction in file size. 

One problem with re!Diff appears when comparing time stamps in a series. For 

example, assume the threshold for comparing time stamps is 0.25. When we compare 

events that start at times 1 and 2, the relative difference is 
2~1 

= 0.5. This would result 

in a failure to match the events even though there is a difference of only one time unit 

between the events. In contrast, if we compare events that start at 100 and 125, the 

relative difference is 0.2, which is a match even though there is a difference of 25 time 

units. We expect re!Diff to produce reduced traces with a low amount of error, but 

with less file size reduction. 

46 



4.3.1.2 Absolute Difference 

As with the re!Diff, each measurement is compared with its counterpart. A fixed 

size difference, determined by a threshold, is allowed for each measurement pair. 

Using our example segments in Figure 9, and a threshold of 20, we see that s2 will not 

match sl, because the end times of do_ work are 23 time units apart. However, there 

are no differences larger than 3 between s2 and sO, so those two segments match. The 

threshold choice has an impact on file size and accuracy. We expect this method to 

produce fairly accurate results, especially with respect to the timing of events across 

processes, because unlike re!Diff it will not have an unfair bias towards events that 

occur later in the trace. 

4.3.1.3 Minkowski Distance 

We compute the Minkowski distance between segments using the formula in Eq. 

2. If the distance is greater than a user-specified threshold multiplied by the maximum 

value in the event measurements, then the events are not equal. The Manhattan, 

Euclidean, and Chebyshev distances are special cases of the Minkowski distance, with 

m equal to 1, 2, and limm--Hio respectively [25]. The Chebyshev distance is defined to 

be the largest difference between two measurements. 

Eq.2 

Using our example in Figure 9, to compare s2 and sl, we create a vector of the 

measurements for s2, (49, 1, 17, 18, 48), and one for sl, (51, 1, 40, 41, 50). The 

Manhattan, Euclidean, and Chebyshev distances between these vectors are 50, 32.6, 
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and 23, respectively. The largest measurement in the pair of vectors is 51. If we 

choose a threshold of 0.2, then the highest the computed distance can be for a match is 

10.2, so s2 and sl will not match using any of the Minkowski distances. When we 

compare sO, (50, 1, 20, 21, 49), with s2, we get distances of 8, 4.5, and 3. The 

maximum value in the two vectors is 50, so the highest the distances can be for a 

match is 10. This means that s2 would match sO for each of these distance metrics. 

There are several issues to consider for the Minkowski distances: 

• As m increases in the Minkowski distance (See Eq. 2.), the influence of the 

larger differences increases, and the influence of the smaller differences 

decreases. In the extreme case of the Chebyshev distance, only the 

maximum difference has any bearing on the distance value. 

• As the number of measurements being compared increases, the values of 

the Manhattan and Euclidean distances increase. Given vectors of constant 

differences greater than 1, the Manhattan distance increases quite rapidly 

linearly, and the Euclidean distance increases in the manner of .JX. If the 

differences are all between 0 and 1, the computed distances increase more 

slowly. 

• When time stamp values are being compared, e.g. start time and end time 

for events, the values are always increasing within a segment. This means 

that longer segments are judged less critically than shorter segments, 

because the maximum values that are compared with the distance 

measurement are larger. 
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Based on these trends, we expect that the Manhattan distance would give the most 

accurate results, because it gives larger weight to the smaller differences. The 

Euclidean distance would give slightly less accurate results, given the bias towards 

larger differences. The Chebyshev distance would be least accurate, because it only 

accounts for the largest difference measure. 

4.3.1.4 Wavelet Transform 

The discrete wavelet transform iteratively decomposes a signal of size L into two 

subsignals of size L/2. The first L/2 values give the trends in the original signal, and 

the second L/2 values give the fluctuations. Intuitively, it computes the averages and 

differences between pairs of numbers [31]. We give examples of transformations in 

Figure 12. 

We use two wavelet transforms in our experiments: the average transform 

described in Figure 12 (avgWave), and the Haar transform (haarWave). The Haar 

transform is very similar to the average transform, with the only difference being that 

the averages and differences are multiplied by -{2 [68]. For example, the trends 

computed in step 3 in Figure 12 would be (9..fi., 24.25-{2). For our implementatio~, 

we construct a vector for each of the segments to be compared. The first element of 

each vector is the relative start time of the segment, which is 0 in all cases. This is 

followed by the event entry and exit time stamps for all events in the segment. The last 
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sOtransform: (17.625, -7.125, -10.0, 24.75, -0.5, -0.5, -0.5, OJ s2 transform: (16.625, -7.625, -8.5, 24.25, -0.5, -0.5, -0.5, 0) 

EuclideanDist = 1.9 = ../(12, 0.5', -1.52, 0.52, O', 02, 02, 02) 

EuclldeanMax = 3.5 = 0.2 • 17.625 

Figure 12 Wavelet Transform Example 

Here we show two example average wavelet transforms. We iteratively 
compute averages (shown in boxes) and differences (shown between edges) 
for pairs of numbers, starting with the original vector. To compare the two 
transforms of sO and s2, we compute the Euclidean distance between them 
and compare it against a threshold (0.2) multiplied by the largest element in 
the vectors (17 .625). 

element is the exit time of the segment. Both transforms require an input vector with a 

length that is a power of two. We allocate space for the vector so that its length is the 

next power of two after the number of time stamps in the vector. We zero-pad the 

vector after the last time stamp element to the end. To compare transformed vectors, 

we compute the Euclidean distance between them [12] and compare it against a 

threshold multiplied by the largest value in the pair of transformed vectors. In Figure 

12, we show an example comparison of the segments sO and s2 from Figure 9. 

Because the computed Euclidean distance, 1.9, is less than the maximum allowed, 3.5, 

sO and s2 match. 

For both transforms, the values in the transformed vectors will be smaller than the 

values in the original vectors. The Haar transform has several properties that the 

average transform does not, including preservation of the Euclidean distance [12]. 

However, its values will be larger than those of the average transform since all values 
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are multiplied by ..JZ. For the Haar transform, we expect more accurate results than 

from the Euclidean distance because the maximum value in the transformed vector 

will be smaller than the maximum value in the original vector, so the threshold test 

will be stricter. The values in the vector from the average transform will be smaller 

still; however, the Euclidean distance is not preserved, so the potential exists for a less 

strict test than the Euclidean distance. 

4.3.2 Iteration-based Methods 

We include two iteration-based methods: iter _k and iter _avg. 

4.3.2. I Keep K Iterations 

For it er_ k, we only keep a fixed number of each traced segment of code. We 

expect this method to produce small data files. For our example in Figure 9, ifk=3, we 

would keep all three copies of the main. l segment in the list of stored segments. 

However, ifk=2, then we would keep sO and sl and discard s2. 

4.3.2.2 Keep Average Iterations 

The iter _avg method keeps the average measurements for each traced section of 

code. We expect this method to produce the smallest data sizes, since segments with 

the same context and same events will always match. To illustrate this method, we use 

the segments in Figure 9 and the stored segments scenario on the left. For this method, 

we never have more than one copy of the main. I segment, and end up with a single 

copy of the main.I segment that contains averages of the values of sO, sl, and s2. 
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We expect that these methods will produce fairly accurate data for applications 

that have little behavior variability, but poorly for applications that do have 

performance variabilities. 

4.4 Traditional Trace and Trace Profile Size Models 

In this section, we present models that predict the amount of data collected for 

trace profiling as well as traditional tracing. We illustrate the models with a small 

example and extrapolate the results to higher scales. 

4.4.1 Traditional Trace 

A traditional trace contains an event map and list of event and message records for 

each process. We model the size of a traditional trace with the following equation: 

p 

fullTraceSize = I. (EventMap + EventData + MessageData) , Eq. 3 

where Pis the number of processes in the run. The sizes of the EventMap, EventData, 

and MessageData are modeled by the following equations: 

EventMap =En (Is + Ns) Eq.4 

EventData = EcEs Eq. 5 

MessageData = McMs Eq. 6 
The meanings of the symbols in these equations are given in Table 2. The size of 

the event map is the product of the number of unique events (En) by the sum of the 

size of the event identifiers (Is) and the size of the event names (Ns). For simplicity, we 

use a single number for the length of the event names, the median length. The amount 

of event data for each process is the product of the number of events in the file (Ee) 

and the size of each event record (Es)· The amount of message data is the number of 
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messages in the file (Mc) multiplied by the size of the message record (Ms). We see 

that the size of a traditional trace file will be determined by the number of processes 

and the event and message counts for the processes. 

Table 2 Symbols for Full Trace and Trace Profile Models 

Symbol Meanin~ 

Ns The size of strings representing the names of events or se!!lllents 
ls The size of the event or segment identifier 
En The number of unique events in the execution 
p The number of processes or process groups in the file 
Re The number of ranks in a process group 
Rs Size of rank representation 
Sn The number of unique segments per process group 
Se The count of se!!lllent executions per process group 
Ts The size of a timestamp 
Ee The number of events 
Es Amount of data stored per event 
Mc The number of messages 
Ms Amount of data stored per message 
Hs Size of headers 
Hsd Size of segment data header 

We use values for the sizes of event identifiers, event data, and message data based 

on those used by the TAU tool, configured for function entry and exit tracing and for 

gathering message passing data. TAU generates 24-byte records for each entry and 

exit event, so Es= 48. For message passing events, 96 bytes of data are generated, Ms 

= 96. When we evaluate our model, we use slightly different event counts than an 

actual TAU trace would contain. We exclude several record types to ensure a more 

fair comparison between traditional tracing and trace profiling. The event records we 

exclude are: 
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• Records for any functions that are not included in trace profiling segments. 

For example, the function main is not included in any segment, so it is not 

included in the model for traditional tracing. 

• Records for segment markers that we inserted into the code. Each segment 

marker generates entry and exit events. 

• Any minor administrative records, e.g. TAU's EVINIT or FLUSH_CLOSE 

events. 

4.4.2 Trace Profile 

A trace profile contains a single event map, followed by data for one or more 

process groups. Each process group has a rank list, a segment map, a segment 

execution list, and data for segments. For parsing purposes, we added section headers 

to the file that indicate the type and number of records that follow the header. We 

show the format of a trace profile in Figure 13. 

We use the following function to predict the size of a trace profile: 

traceProfileSize = 
p 

H, + EventMap + L(RankList +SegmentMap + SegmentExecList +Segments) 
Eq. 7 

i=I 

The definitions for the symbols used in the equations are in Table 2. The equation 

to compute the size of the event map in a trace profile is the same as for the traditional 

trace file (See Eq. 4). The equations for computing the sizes of the rank list, the 

segment map, segment execution list, and segments are given below: 

RankList = H. + R.Rc 

SegmentMap = H. + (N. +I. )s'n 
SegmentExecList = H. + (T. +I. )s'e 

Eq. 8 

Eq. 9 

Eq. 10 
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Sc 

Segments = H s + L (H s + H sd + EventData + MessageData) 
j=l 

SECTION HEADER (Event Map, N) 
Event Map Entries 
SECTION HEADER (Process Group, N) 

SECTION HEADER (Rank List, N) 
Rank List Entries 
SECTION HEADER (Segment Map, N) 
Segment Map Entries 
SECTION HEADER (Segment Execution List, 
N) 
Segment Execution List Entries 
SECTION HEADER (Segment List, N) 

SECTION HEADER (Segment, N) 
Segment Header 
Event Entries 

Figure 13 Trace Profile Format 

This figure shows the format of a trace profile. Each section header tells the 
type of data that will follow it and how many entries of that type to expect 
(N). There is one event map per trace profile, followed by data for one or 
more process groups. Each process group has a rank list, a segment map, a 
segment execution list, and a list of the segments. The section header for each 
segment tells how many event entries to expect. The segment header gives the 
segment identifier and its duration. 

Eq. 11 

The equations for computing the size of the event data and message data are the 

same as for the traditional trace and are given in Eq. 5 and Eq. 6. The size of a trace 

profile will largely depend on the degree of merging for process groups and segments, 

and on the amount of event and message data collected for each segment. If no process 

groups or segments merge, the size of the trace profile will scale with the number of 

processes in the run and the number of events and messages for each process, like a 

traditional trace. If segments merge, but process groups do not, the trace profile size 
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Table 3 Sizes of Fields in Trace Profiling Data Structures 

Data type Field Type Size (bits) 
Section Header id char 8 

count int 32 

Event Map id int 32 

size short int 16 

name char array Ns 

Rank List id int 32 

Segment Map id int 32 

size char 8 

name char array Ns 

Segment id int 32 
Execution List time stamp double 64 

Segment Data id int 32 
Header duration double 64 

Event Data enter and exit markers char 8 

id int 32 

relative start double 64 

duration double 64 

message data char 8 

Message Data type (send/recv) and src/dest rank int 32 

bytes int 32 

tag short int 16 
comm short int 16 

will scale with the number of processes. If process groups merge, but segments do not, 

then the size of the trace profile will depend on the amount of event and message data 

collected in the segments. If there is segment and process group merging, then the size 

of the trace profile will depend on the number of performance behaviors in the 
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execution. The sizes of the fields in a trace profile are shown in Table 3. We use 

values from this table for evaluating our model. 

4.5 Traditional Trace and Trace Profile Size Comparison Using Models 

Our example program for size comparison is random-barrier, a simple MPI 

benchmark from the PPerfMark suite [43]. The random-barrier program has a single 

main loop. In each iteration of the main loop, a rank is chosen at random to be the 

bottleneck and cause the other ranks to block in MPI _Barrier. We manually 

EC = [550,250,250,250] 

En = [21,21,21,21] 

Ns=39 

P=4 

Mc = [200,50,50,50] 

ful/TraceSize = 99 .4 KB 

Figure 14 Input Data to Traditional Trace Size Model 

partitioned the program into three segments: init, mainloop, and finalize, using TAU's 

phase begin and end events. We ran the benchmark with four MPI processes for 50 

iterations, resulting in 1 execution per process of init, 50 executions per process of 

mainloop, and 1 execution per process of finalize. Init has 44 function calls and 0 

messages; mainloop has 10 function calls and 4 messages in rank 0, and 4 function 

calls and 1 message in ranks 1-3; finalize has 6 function calls and 0 messages. We 

generated a full trace of the execution using TAU. 
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4.5.1 Traditional Trace 

We computed the size of a traditional trace for this four-process run of random-

barrier using our model. The inputs to the model are showing in Figure 14, resulting in 

a predicted size of99.4 KB, shown in Table 4. The actual size of the full amount of 

N =39 s 
-44 10 10 10 6 

En =23 44 4 4 4 6 
E = 

P=4 c 44 4 4 4 6 

RC= [1 1 1 1] -44 4 4 4 6 

Sn= [5 5 5 5] 0 4 4 4 0-

Se= [52 52 52 52] 0 1 1 1 0 
M= 

traceProfileSize = 10.9 KB c 0 1 1 1 0 

0 1 1 1 0 
~ -

Figure 15 Inputs to Trace Profile Size Model 

data generated was 109. 7 KB. The differences anse from two sources: we are 

estimating the size of the event files by using the median size of the strings describing 

the events; and we are excluding administrative events, e.g. FLUSH_CLOSE, and 

segment marker events from both the event file size and the trace file size. The 

difference in the sum of the event file sizes is 2493 bytes, and the difference in the 

trace file sizes is 13053 bytes, with 9984 bytes accounted for by segment boundary 

markers. The size of the full trace is broken down by rank and portion of code in Table 

4. 
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Table 4 Sizes of Trace Profile and Full Trace 

PROGRAM DATA TYPE TRACE FULL 

SECTION PROFILE TRACE 

SIZE SIZE 

(BYTES) (BYTES) 

Whole Section Headers (Event Map and 10 0 
Execution Process Grouo) 

Event Map 1012 5769 
RankO Rank List 9 0 

Segment Mao 225 0 
Segment Execution List 629 0 
Section Header (Segment List) 5 0 

init Segment Header 17 0 
Event Data 1012 2112 
Message Data 0 0 

mainloop Segment Header 51 0 
Event Data 690 24000 
Message Data 144 19200 

finalize Segment Header 17 0 
Event Data 138 288 
Message Data 0 0 

Ranks 1-3 Rank List 27 0 
combined Se~entMap 675 0 

Segment Execution List 1887 0 
Section Header (Segment List) 15 0 

init Segment Header 51 0 
Event Data 3036 6336 
Message Data 0 0 

mainloop Segment Header 153 0 
Event Data 828 28800 
Message Data 108 14400 

finalize Segment Header 51 0 
Event Data 414 864 
Message Data 0 0 

Trace Profile 10.9 99.4 
Total (KB) 
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4.5.2 Trace Profile 

Using a post-mortem prototype trace profiler, we generated a trace profile from the 

full TAU trace of the execution. The difference operator we used was the Euclidean 

distance with an event difference threshold of 0.25. The end result was a 10.9 KB file 

containing data for four process groups, meaning that the behavior of each of the 
t 

processes was different enough that they were not combined. Each process group 

contained the same segment count: 1 init, 3 mainloop, and 1 finalize, indicating that of 

the 50 iterations of mainloop, 3 were found to be representative of the behavior of the 

process for that segment. In Figure 15 we show the inputs that we fed into our trace 

profile size model. The computed size was 11204 bytes, or 10.9 KB, shown in Table 

4. The real size of the trace profile was 10318 bytes, or 10.1 KB. The differences in 

the actual and computed sizes of the trace profile are due to the estimation of the sizes 

of strings by the parameter N8 • The differences between the actual and computed event 

and segment map were 250 and 636 bytes, respectively. 

4.5.3 Comparison of Traditional Trace and Trace Profile 

Now we use our model to extrapolate the sizes of the trace profile and traditional 

trace to 64K processes for the random-barrier example, assuming the conditions of the 

four-process run. We show how the sizes grow with increasing processes in Figure 16. 

We extrapolate three scenarios for the trace profile. In the first scenario, we assume 

that no segments or process groups merge ("No Merge"). In the second, there are 

always two process groups, one containing rank 0, and the other containing the rest of 

the ranks; and each process group has three segments, one init, one mainloop, and one 
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finalize ("Total Merge"). For the last, we assume the conditions that usmg the 

Euclidean distance gave us for the four process run: each rank is in its own process 

group and each process group contains five segments: 1 init, 3 mainloop, and 1 

finalize ("Euclidean Distance"). The size of the traditional trace file reaches 1 GB at 

64K processes, while the size of the "No Merge" trace profile is approximately 620 

MB. This means that even if no processes or event patterns were found to be similar in 

the execution, the size of the· resulting file will still be smaller than a full traditional 

trace. The size difference is largely due the fact that a trace profile does not write 

1200 r----.---------,.------.---------,.---------,.---------,-------, 

-Full Trace 
- - • Eucl !dean Distance 

1000 

"'""No Merge 
-rota! Merge (Hypothetical) 

800 

~ 

-~ "' 600 .... '' ... , ... 

400 

200 , ..... 
····· .... 

····· 

····· ····· 
.... ..... 

..... 
····· 

.... --------------

.... .... 

------

.... .... .... 
.... 

--------------· 
-- -----0ollllllilo ..... ws.s--.. ..... ______ 2 ________ 3 ______ ._.i4 ...... __ .....,.._.i ............ ____ 6 _____ _J7 

Number of Processes 4 
x 10 

Figure 16 Traditional Trace and Trace Profiling Sizes for Random-Barrier 

Here we show the predicted sizes of full traces and trace profiles of the 
random-barrier program for executions with up to 64,000 processes. The solid 
blue line ("Full Trace") shows the predicted size of the full trace in MB. The 
dotted red line ("No Merge") shows the predicted size of a trace profile if no 
processes and no segments were found to have behaved similarly. The dashed 
green line("Euclidean Distance") shows the size of the trace profile if no 
process groups merged, and each process group had five segments (1 init, 3 
mainloop, and 1 finalize). The solid aqua line ("Total Merge") shows the size 
of the trace profile if there were always two process groups and total merging 
of segments. 

61 



complete separate event records for function entries and exits, but instead uses the 

entry record and maintain a start time, duration, and simply marks the event exit with a 

record that only uses a single byte of storage. The "Total Merge" and "Euclidean 

Distance" trace profiles reach 0.25 MB and 147 MB, respectively, at 64K processes. 

4.6 Trace Profiling and Visualization 

The trace profiling technique can also address the scalability challenges in trace 

visualization analysis. First, the total amount of data has been reduced significantly, 

easing the memory and computation requirements of analysis tools. Second, because 

80% 

Do_work_A 
Do work B 
Write data 
MPl_Barrier 

15% 

Figure 17 Trace Profiler Visualization 

5% 

An example trace profile visualization showing the percentage of time 
processes spent in temporally aligned behavior patterns. 

the behavior patterns in the execution have already been extracted, the tool can easily 

present partially analyzed information to the user, reducing the time taken for 

identifying performance problems. A visualization of a trace profile could show the 

percentage of time processes in the execution spent in temporally aligned segments. 

Such a presentation of this information could significantly reduce the time needed for 

diagnosing performance problems when compared to visually inspecting a full 

program trace for potentially very many processes. An example mock-up trace profile 
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visualization is shown in Figure 17. This figure shows a representation of a multi

process execution. There were three groups of processes that behaved similarly: 

process group 0, process group 1, and process group 2. In the first segment (on the 

left),we see that 80% of the time, process group 0 spent more time in Do_work_B and 

was late to MPI Barrier, causing the other ranks to block. In the middle segment, we 

see that 15% of the time, process group 0 was again late to MPI_Barrier, but was late 

because it executed Write_ data, and spent somewhat more time in Do_ Work_ A than 

the other processes. In the segment on the rig11t, we see that 5% of the time, the 

processes behaved roughly the same, and reached MPI _Barrier at approximately the 

same time. Immediately, the user would be able to see that 95% of the time, process 

group 0 is causing the other processes to block in MP! _Barrier, and will see that 80% 

of the time it is due to a load imbalance in the Do work B function. 

4.7 Summary 

Trace profiling is a novel performance measurement technique for gathering 

event-based performance data. In this chapter, we first described the trace profiling 

technique and segment difference methods, followed by models that predicted the size 

of trace profiles and traditional traces. We used the models and a simple benchmark to 

illustrate the possible data reduction achievable from using trace profiling over 

traditional traces. Our example showed that even if no merging occurs, the trace 

profile is still smaller than a full traditional trace, and that with the degree of merging 

we obtained when using our prototype implementation, our model predicted a size 

savings of a factor of 10 between trace profiling and a traditional full trace for 64K 
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processes. Finally, we described how the reduced amount of data produced in a trace 

profile could ease the memory and computation requirements for analysis and 

visualization tools. We showed an example visualization of a trace profile, illustrating 

how it could potentially facilitate a user's understanding of the performance of 

programs more easily than by visualizing an entire program trace. 

In the next chapter, we present a study of methods for comparing traces and 

demonstrate that trace profiling can produce reduced traces that still retain the 

necessary information for correct performance. Following this, we present our runtime 

implementation of a trace profiler and evaluate its overheads compared to traditional 

traces. 
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5 Trace Comparison Methods 

In this chapter, we demonstrate that trace profiling can produce reduced traces that 

retain the information needed for correct performance diagnosis of programs. To do 

so, we perform a comparative study of similarity methods in current or proposed use 

for trace reduction. Using a post-mortem implementation of a trace profiler, we apply 

the similarity methods to the task of deciding segment matching and evaluate the 

methods for file size reduction, trace error, and retention of performance trends. Our 

goal is to determine a similarity method that yields adequate trace reduction and also 

retains the information needed for correct performance analysis. Achieving our goal 

required that we answer several key questions: 

What metrics can we use to evaluate and compare trace similarity methods? In 

addition to file size reduction, we developed and used metrics for error, greatest 

possible file size reduction (i.e. potential for repeated patterns), and consistency of 

performance diagnosis. 

How much error should be allowed? Values that will likely never be exactly equal 

need to be compared. We had to decide how much each measurement can vary, and 

weigh the consequences of the amount of error. If we are matching traces for the 

purpose of trace compression, then a larger allowed error between traces would mean 

larger number of matches, and thus a smaller trace file. However, the larger error 

might prevent the correct performance diagnosis from being made. 

How can we measure the "goodness" of each approach? Most trace compression 

studies report the reduction of file size achieved; but no matter how much compression 
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is achieved, if the reduced trace no longer contains the data needed for accurate 

performance diagnosis, the method is not useful for our purpose. We evaluate each 

approach not just on amount of compression, but also on amount of error and 

consistency of diagnosis, and discuss the tradeoffs in weighting the different metrics. 

5.1 Evaluation Methodology 

In this section we detail our framework for the evaluation of similarity methods. 

We investigate traces collected for a set of benchmarks with known behaviors, and for 

a full application, running on a Linux cluster. We apply our post-mortem trace profiler 

to full execution traces, varying the similarity method used to determine repeating 

patterns within the trace. We evaluate the methods for intra-process segment matching 

only, inter-process segment matching only, and combined intra- and inter-process 

segment matching. Our evaluation focuses on three metrics: file size reduction, 

amount of error in the trace, and retention of performance trends. For file size 

reduction we simply compare the sizes of the reduced traces to the full-sized traces 

from which they were derived. We calculate the trace error by recreating an 

approximated full-sized trace from the reduced version, then comparing it to the actual 

full trace. We evaluate retention of performance trends by feeding the actual and 

approximated full traces into a performance analysis tool and examining any 

differences in the results. 

5 .1.1 Benchmarks 

We crafted our benchmarks to represent classes of performance behaviors that 

occur in parallel programs on high end systems. These performance behaviors can 
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appear with a high degree of regularity, sporadically, or progressively change over the 

iterations in the execution. To reflect this, we created a set of regularly behaving 

benchmarks, a set of irregularly behaving benchmarks, and a benchmark that simulates 

dynamic load balancing. Because we know the behavior patterns in each benchmark, 

we can evaluate how well each of the methods retains the performance behaviors. 

We used the APART Test Suite (ATS) to create our benchmarks. The ATS a 

collection of utilities designed to create programs with known behavior for testing 

parallel performance tools [22]. We chose behavior patterns from the ATS that 

represent performance problems that require trace data for correct diagnosis. For 

parallel programs, these performance behaviors fall into four categories based on the 

communication pattern being used. We describe these communication patterns here 

using MPI functions as examples. 

N 7 1. N processes send data to 1 process. If any of the sending processes are 

late, then the receiving process blocks, waiting for them to execute the send operation. 

Example MPI functions for this pattern are MPI_Reduce and MPI_Gather, with 

corresponding performance behavior problems early _reduce and early _gather. 

1 7 N. 1 process sends data to N processes. If the sending process is late, then all 

N receiving processes will block until the send is executed. Example functions are 

MPI Beast and MPI Scatter. The corresponding performance problems are 

late broadcast and late scatter. 

1 71. 1 process sends to 1 process. There are two cases. In the case of a non

blocking send and a blocking receive, if the sending process is late, the receiving 
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process will block. In the case of a synchronous send, the sending process will block if 

the receiving process is late. Example communication routines are MPI _ Ssend and 

MPI _Recv, with corresponding performance problems late_receiver and late_sender. 

N -7N. N processes send to N processes. Here, all N processes depend on all 

other processes involved in the communication to proceed. If any of the N are late, 

then the rest of the processes block until all have reached the communication routine. 

An example is MPI_Barrier with corresponding performance problem 

imbalance at barrier. 

Benchmarks with Regular Behavior. We chose five example benchmarks 

provided with ATS with regular behavior: early _gather, imbalance_ at_ mpi_ barrier, 

late_receiver, late_sender, and late_broadcast. Each of the benchmarks simulates a 

program with the given behavior problem with the same severity in each iteration. In 

other words, all iterations of each program will exhibit the performance problem and 

all iterations should be very similar. All runs had 8 processes. 

We expect the similarity methods to do relatively well on this set of benchmarks 

since the iterations have regular behavior. They should be able to find a large number 

of segments matches and still retain the correct performance behaviors. 

Benchmarks with Irregular Behavior. For this category, we used ATS to create 

new benchmarks with irregular behavior. The benchmarks simulate the system 

interference identified by Petrini et al. when they ran an application on ASCI Q [ 51]. 

The system interference prevented the application from scaling as predicted. The 

benchmarks contain iterations with work periods that last approximately 1 ms 
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followed by a communication step, usmg the communication patterns described 

previously. The load for each process is constant in each iteration and across 

processes: the only performance problem comes from the interference. We simulated 

the system noise using timers to interrupt the processes as described by Petrini et al. 

We used two simulation scenarios. The first was a 32-process run, with each of the 32 

processes simulating the interrupts specific to the 32 nodes in an ASCI Q cluster. The 

second was also a 32-process run, but with the simulated amount of system 

interruptions that would occur if there were 1024 processes in the run. When we refer 

to the benchmarks in the first category, we use the communication pattern and either a 

_32 or a _1024, to indicate whether 32 or 1024 processes were simulated, respectively. 

For these benchmarks, we expect the methods to find a high number of matches, 

since most iterations are very similar. However, it will be important that they don't 

falsely match undisturbed and disturbed iterations, as this has the potential to mask or 

amplify the periodic behavior changes due to the simulated interruptions. 

Dynamic Load Balancing. Here, we used ATS to create a program that simulates 

an application that does dynamic load balancing. For this benchmark, the performance 

of the iterations starts at about 1 ms and gets progressively worse, with one-half of the 

processes doing more work each iteration and the other half doing less work in each 

iteration, until the "load balancer" is triggered. The "load balancer" readjusts the 

amount of work on each processor to be equal. The performance problem exhibited by 

this program is imbalance at mpi all to all, which falls in the N-to-N communication 
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category. This benchmark is referred to as dyn_load_balance and was run with 8 

processes. 

For this benchmark, we expect less overall matching since behavior changes with 

each iteration and very close performance behaviors reoccur only after each simulated 

load balance. Here it will be important that the similarity methods do not match 

segments with larger differences because the load imbalance may no longer be 

apparent in the reduced trace. 

5.1.2 Application 

We chose Sweep3D 2.2b, a structured mesh application that computes a 1-group 

time-independent discrete ordinates three-dimensional Cartesian geometry neutron 

transport problem [3]. Structured mesh applications have a regular partitioning of the 

data, where all interior data blocks have equal numbers of neighbors. It is likely that 

the performance will be very regular over the course of the program, which means that 

the reduction methods should be able to find a large number of segment matches 

without introducing a large amount of error. We collected traces for two runs of this 

application: an 8-process run with input file input.50, sweep3d_8p; and a 32-process 

run with input input.150, sweep3d_32p. 

5.1.3 Instrumentation 

We used the dynamic instrumentation library Dyninst [29] to instrument the full 

application for both function entry and exit tracing as well as inserting segment begin 

and end markers. The simple benchmarks were marked manually. See Section 5.2.1 

for details on program segmentation. 
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5 .1.4 Evaluation Criteria 

We chose four criteria to evaluate the metrics: percentage of full trace file size, 

degree of matching, approximation distance, and retention of correct performance 

trends. 

5.1.4.1 Percentage of Full Trace File Size 

We present the savings in file size as a percentage of the full, non-reduced trace 

file, as a relative measure of size reduction. We expect iter _avg to perform the best in 

this category since it matches all segments with the same context, regardless of the 

measurement values in the segments. 

5.1.4.2 Degree of Matching 

The degree of matching metric is a measure of how many segment matches 

occurred. We define it to be the ratio of the number of matches to the number of 

possible matches. The number of possible matches is limited by the structure of the 

program. For example, some portions of the code may only execute one time, e.g. an 

initialization step, and will not match any other event sequence in the trace. 

5.1.4.3 Approximation Distance 

We estimate the error in the trace by recreating a full trace from the reduced trace 

and comparing each time stamp with its counterpart in the original full trace. The 

approximation distance metric tells the 90th percentile of absolute differences between 
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paired measurements in the original and reduced traces.1 For this metric, high values 

for iter _ k and iter _avg mean that there is irregularity in the execution that is not being 

captured in the iterations that are retained. High values for absDiff give a rough 

indication of the absolute difference of time stamps from the true values in the full 

trace. High values for the Minkowski and wavelet methods mean that there are high 

maximum values in the set of values being compared, relative to the distance between 

those values. 

5.1.4.4 Retains Correct Performance Trends 

Arguably, the most important criterion for evaluating a trace matching metric for 

the purposes of performance analysis is deciding whether or not the reduced trace still 

indicates the same performance problems as the full trace. For example, if an analyst 

inspecting a full trace detects a late sender performance problem, the same problem 

should be detected in the reduced trace with approximately the same severity. The 

KOJAK tool set was developed to aid parallel performance analysts in the challenging 

task of performance diagnosis [71]. KOJAK's EXPERT tool reads in a trace file and 

produces a data file containing performance diagnoses. Each diagnosis consists of a 

1 When recreating full traces for the iter _ k method, we used the last segment that executed of each pattern to fill in 
the segment executions that were not collected. Alternatives include using the average measurements from the k 
collected segments, or using the centroid of those k segments as determined by a clustering algorithm. 
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Figure 18 KOJAK and Derivation of Our Performance Diagnosis 
Representation. 

Here we show a screenshot of KOJAK's EXPERT tool displaying the 
performance diagnosis for dyn_load_balance. The color bar on the bottom 
shows the severity levels, with blue being low and red high, and gray 
indicating 0 or close to 0. The left panel shows the performance metrics; the 
middle panel shows the code locations; and the right panel shows the 
processes. The color blocks next to each metric, code location, and process 
show the severity for the selected combination. Above, we have selected the 
function MPI Alltoall and the "Wait at NxN" metric. This combination has 
green or "medium-low" severity and the severity is close to 0 for ranks 4, 6, 
and 7 and fairly low for ranks 0-3 and 5. We represent this diagnosis by 
abbreviating the metric name, e.g. NN for "Wait at N x N," coloring the 
metric abbreviation according to the severity indicated in the code location 
pane, and coloring squares for each process according to their severity levels. 
White squares indicate negative severities. We show the abbreviations we use 
for selected KOJAK metrics in white rectangles next to the metric names. 

metric, a code location, and a severity for each thread in the run [59]. KOJAK's CUBE 

tool reads in the analysis data and presents a visualization to the user, indicating the 

most important performance trends in the trace in a hierarchical manner. 
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We use the CUBE visualization tool to compare the performance diagnoses for the 

recreated traces against the diagnoses for the full trace (See Figure 18). We determine 

whether a performance analyst would come to the same conclusions about the reduced 

trace as the full trace. If not, then the reduced trace is not adequate for performance 

analysis. We admit that this is a subjective test; however, we followed a set of 
I 
I 

guidelines when deciding if the diagnoses were sufficiently similar, so all the methods 

were subjected to the same criteria. 

j 

5.2 Intra-process Reduction Evaluation Studies 

In this section, we present the results of two studies evaluating the similarity 

methods for intra-process segment matching using the criteria and programs described 

in Sections 6.1.1 and 6.1.2. We first present a threshold study for the similarity 

methods from the distance metric category. From this study, we choose a threshold for 

each of these methods that represents the best tradeoff in terms of file size reduction, 

measurement error, and retention of performance trends. In the second study, we 

present the results of a comparative study of the similarity methods, using the 

thresholds found to be best for each method in the threshold study. 

5 .2.1 Threshold Study 

We investigated the behavior of the methods in reducing the traces of the 

benchmarks while varying the thresholds that determine whether two given segments 

should match or not match. The thresholds for relDiff, Minkowski distances, and the 

wavelet transforms were 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. The thresholds for iter _ k were 

1, 10, 50, 100, 500, and 1000, and for absDiff were powers of 10 from 101 to 106
• 
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Since no thresholds are used with the it er_ avg method, it was not included in this 

study. The criteria we used to evaluate the methods were file size, approximation 

distance, and retention of performance trends (For full results, refer to the Appendix.). 

For each method, we chose a representative threshold to be used when comparing the 

methods against each other. 

re/Di.ff The file size for each benchmark and the sweep3d runs decreased 

relatively steadily with increasing threshold. The approximation distance remained 

small until the 0.8 threshold, after which there was a large jump for many of the 

benchmarks and sweep3d _ 32p. Performance trends were correctly retained for most 

programs up to a threshold of 0.8. Based on the jump in approximation distance and 

loss of performance trends after threshold 0.8, we chose 0.8 as the best threshold for 

relDiff. 

absDiff. Here the file sizes for the benchmarks and sweep3d dropped off fairly 

quickly at a threshold of 100 and continued to decrease slightly with increasing 

threshold. The approximation distance stayed relatively low up to a threshold of 104
, 

after which there was a sharp increase for several of the benchmarks and 

sweep3d_32p. Performance trends were retained for most programs at a threshold of 

less than 103
• Because the file sizes were relatively low and performance trends were 

retained at 103
, we chose 103 as the representative threshold for absDiff. 

Manhattan, Euclidean, and Chebyshev. When observing file sizes changes, the 

Manhattan and Euclidean methods behaved quite similarly; the Chebyshev method 

showed some differences. For the Manhattan and Euclidean methods with the regular 
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benchmarks, the l-to-1 irregular benchmarks, and sweep3d, file sizes decreased 

relatively steadily with increasing threshold; with the other irregular benchmarks, the 

file size decreased only slightly with increasing threshold, because a matching that 

was close to optimal was reached early, at a threshold of 0.1. For Chebyshev with the 

1-to-1 irregular benchmarks and sweep3d, file size decreased with increasing 

threshold; with the regular benchmarks and remaining irregular benchmarks, file size 

was relatively constant with increasing threshold. For all three methods, we observed 

the following behavior in approximation distance: with the regular benchmarks, 

approximation distance was relatively constant with increasing threshold; with the 1-

to-1 irregular benchmarks, approximation distance increased with increasing 

threshold; with the remaining benchmarks, the approximation distance remained low 

until after the threshold of 0.8, after which there was a large jump. For sweep3d and 

Manhattan and Euclidean, approximation distance increased with increasing 

threshold; for Chebyshev, the approximation distance was small and relatively 

constant until after the 0.8 threshold. For retention of performance trends, the 

Manhattan distance did well up to a threshold of 0.4, and the Euclidean and 

Chebyshev distances did well up to 0.2. We based our selection of best thresholds for 

these methods on the retention of performance trends metric, because we consider this 

metric to be the most important. We chose 0.4 as the best threshold for the Manhattan 

distance and 0.2 for the Euclidean and Chebyshev distances. 

Wavelet Transforms. For all evaluation criteria, avgWave and haarWave 

performed similarly. For all programs, file sizes decreased with increasing threshold, 
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up to the point of perfect matching, after which no further decrease in size is possible. 

The best threshold in this category appears to be 0.4 for both methods, because file 

size decrease levels off after this threshold. The approximation distance for both 

methods remained steady with increasing threshold for the regular benchmarks and the 

irregular N-tol, N-to-N, and 1-to-N benchmarks. The approximation distance 

increased with increasing thresholds for the irregular 1-to- l benchmarks and sweep3d. 

The threshold 0.2 is best for approximation distance, because of the relatively higher 

values for the dyn_load_balance benchmark and sweep3d after this threshold. For the 

majority of programs, performance trends were retained for both methods at 

thresholds below 0.2. For these reasons, we chose 0.2 as the best threshold for the 

wavelet transform methods. 

iter _ k. Generally speaking, there was an increase in file size and decrease in 

approximation distance with increasing k. Performance trends were retained for must 

programs up to threshold 10. The choice for the best value of k wasn't clear, but we 

chose k= 10 as the best because the performance trends were retained for most 

programs at this threshold. 

5 .2.2 Comparative Study 

In this section, we present comparative results for the different methods using size 

and degree of matching; approximation distance; and retention of performance trends 

as the evaluation criteria. Based on the results of the threshold study in Section 6.2.1, 
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Figure 20 Intra-process Reduction: Approximation Distance Results for All 
Methods at Default Thresholds. 

we present results for the best performing threshold for each method: 0.8 for relDiff, 

1000 for absDiff, 0.4 for Manhattan, 0.2 for Euclidean and Chebyshev, 10 iterations 

for iter _k, and 0.2 for avgWave and haarWave. 

5.2.2.1 Size and Degree of Matching 

We present the data for reduction of traces for each method in Figure 19. The 

it er_ avg method gives the best case values for this category, smce exactly one 

segment is retained for each unique segment context. 

The benchmark data shows that for the most part, the degree of matching for each 

of the methods is greater than 0.9, meaning that greater than 90% of the segments 

were matched. Exceptions occur with relDiff, which had degree of matching scores as 

low as 0.74. RelDiffhad the highest file sizes and lowest degree of matching scores. 

The next largest file sizes are generated with the iter _ k method; however, they are not 

much higher than those for the other methods. The Minkowski distances, avgWave, 

and haarWave all have nearly identical results, with Chebyshev having a very slight 

79 



advantage over the others. AbsDiff had only slightly larger file sizes than the 

Minkowski distances. 

For sweep3d, the results are somewhat different. Because this application has very 

regular behavior, we expected the results to be similar to those of the benchmarks. 

However, because of the program structure, there are more segments, as well as 

differences within the segments, e.g. message passing parameters, that cause segments 

not to match. We see that iter _ k performed the worst, with the highest file sizes and 

lowest degree of matching scores. This is because iter _ k needed to keep 10 copies of 

each individual segment, regardless of how similar in performance they actually were, 

whereas the high degree of matching often results in fewer than 10 copies. The next 

worst performing were the Minkowski distances, again with Chebyshev having the 

smallest file sizes. The wavelet methods performed best, followed by absDiff and 

relDiff, each with very close to perfect matching and lowest possible file sizes. 

The obvious best method in this category is iter _avg, since all segments match by 

definition. A comparison of the average file sizes for each of the other methods yields 

the following ranking: avgWave, haarWave, Chebyshev, absDiff, Manhattan, 

Euclidean, iter _ k, relDiff. 

5.2.2.2 Approximation Distance 

Figure 20 shows the approximation distance results for each of the methods. The 

methods show similar trends across the benchmarks with regular behavior. The 

relDiff, absDiff, iter _ k, and iter _avg methods have consistently low values. The 

Minkowski distances, avgWave, and haarWave transform behave similarly, and have 
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the highest values overall. The results for the dyn_load _balance benchmark show a 

different set of behavior, with absDiffhaving the lowest value, followed by avg Wave, 

Euclidean, Manhattan, and haarWave. The irregular benchmarks had lower overall 

approximation distance values than the other benchmarks, with similar results across 

the benchmarks. The worst performing methods in this case were it er_ avg and iter _ k. 

However, the approximation distance values are low in comparison to those for the 

other set of benchmarks. 

The results for sweep3d show iter _avg performipg the worst for the 8-process run, 

and iter _k and iter _avg the worst for the 32-process run, indicating that there are 

performance behaviors not being captured by those two methods. 

The methods that performed the best in this category are re/Diff, followed by 

absDiff, and then iter _avg. The rest of the methods allowed significant error into at 

least one of the reduced traces. 

5.2.2.3 Retention of Performance Trends 

We present summaries of the performance diagnoses given by KOJAK for selected 

benchmarks in Figure 21 and Figure 22. We show how we derive the performance 

diagnoses charts and abbreviations for metric names in Figure 18. 

For the benchmarks with regular behavior, nearly all the methods performed quite 

well. For late_receiver, all methods except iter _avg performed equally well, with all 

performance trends retained. The results for iter _avg with late _receiver showed 

differences significant enough that they may lead to an inaccurate performance 
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Figure 21 Intra-process Reduction: KOJAK Performance Trends for 
dyn_load_balance For Each Method at Default Thresholds. 

Here we show the results for each reduction method in the MPI Alltoall and 
do_ work functions. The first row shows the diagiioses for the full trace. Each 
box in a row shows a performance diagnosis for a single combination of 
metric and code location. 

assessment. For early_gather, all but the Minkowski distances, avgWave, and 

haarWave retained the correct performance trends. The results for 

imbalance at barrier showed that the Minkowski distances, absDiff, iter _avg, 

avg Wave, and haar Wave retained the performance trends, while re/Diff and iter _ k 

both showed a negative value for the major performance diagnosis. The amount of 

error introduced into the reduced traces caused time stamps to be skewed enough that 

the performance diagnoses resulted in negative values. We show the maJor 

performance trends for dyn_load_balance in MP I_ All toall and do work as 

reported by the KOJAK tools for the full trace and all methods in Figure 21. The 

results for the no loss trace clearly indicate that the lower ranks are spending more 

time in MPI All toall, because the upper ranks are spending more time in 

do_ work. None of the methods gave perfect results for the dyn_load_balance 

benchmark; however, absDiff, Manhattan, Euclidean, avgWave, and haarWave gave 
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Figure 22 Intra-process Reduction: KOJAK Performance Trends for 
ltolr 1024 for Each Method at Default Thresholds. 

the closest performance diagnoses because for the most part they maintained the 

performance differences due to load imbalance between the upper and lower ranks. 

Although Manhattan, Euclidean, avgWave, and haarWave lost the disparity in 

do_ work, the diagnosis "Wait at NxN" is non-negative and maintains the disparity in 

behavior. AbsDiff maintained the disparity in performance in do_ work, but reported 

that "Wait at NxN" was negative. All other methods lose the expected disparity in 

do work. 

For the irregular benchmarks, all methods did pretty well on the N-to-1 and 1-to-N 

benchmarks, with the exception of iter _avg, which failed on three benchmarks, and 

Chebyshev, which failed on Ntol _ 1024. AbsDiff did less well on the 1-to-1 and N-to-

N benchmarks. We show the data for ltolr_1024 in Figure 22. AbsDiff picked up on 

the variations in the iterations due interference, which caused some performance 

diagnoses to be skewed in a positive or negative direction. The best performers for 

these benchmarks were Manhattan, Euclidean, and avgWave, followed by relDiff, and 

haarWave. AbsDiff and iter _avg both only showed correct diagnoses for one 

benchmark, ltolr_32 and ltols_32, respectively. 
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For sweep3d_8p and sweep3d_32p, all methods but iter _avg and iter _k produced 

correct data. lter k showed a non-existent disparity in rank performance m 

pmpi _ recv in sweep3d_8p and a greatly inflated severity m pmpi recv m 

sweep3d_32p. Iter _avg showed a much lower severity in sweep_ than did the no-loss 

trace for both sweep3d_8p and sweep3d_32p. 

The best methods in this category were Manhattan, Euclidean, and avgWave 

which correctly diagnosed 17 out of the 18 execution traces. HarrWave did second 
I 

best, correctly diagnosing 16.' The rest of the methods in order were: re/Di.ff (14); 

absDiff and Chebyshev (13); iter _k (12); and iter _avg (6). The relatively poor 

performance of iter _ k in this category could be due to our choices in implementing 

this method1
• It is possible that the first iterations are more subject to variabilities in 

execution, before the processes synchronize into their regular behavior patterns, and 

that the last segment is not the best choice as a fill in for missing segments. 

5.2.2.4 Discussion 

To determine best method for comparing traces, we take the highest ranking 

methods from each category and weigh the importance of each of the categories. The 

best methods from the size category were iter _avg, followed by avgWave, haarWave, 

and Chebyshev. Those from the approximation distance category were re/Di.ff and 

absDiff, followed by iter _avg. Finally, the methods that best retained performance 

trends were avgWave, Manhattan, Euclidean, and haarWave. One could argue that the 

absolute most important criteria for judging these methods is whether or not they 

retain the correct performance trends, because that is the point of collecting the traces 
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in the first place. However, almost equally important is the ability to collect, store, and 

analyze the trace data at all. Given that avg Wave performed well in both the size and 

retention of performance trends categories, we choose avg Wave as the best method of 

the ones studied for intra-process segment comparison. 

5 .3 Inter-process Reduction Evaluation Studies 

We evaluated the similarity methods for their ability to find inter-process matches. 

We first present a threshold study for the similarity methods. From this study, we 

choose a threshold for each of these methods that represents the best tradeoff in terms 

of file size reduction, measurement error, and retention of performance trends. Next, 

we present the results of a comparative study of the similarity methods, using the 

thresholds found to be best for each method in the threshold study. We did not 

evaluate iter _avg or iter _ k in this section, because utilizing them for the purpose of 

inter-process matching is nonsensical. 

5.3.1 Threshold Study 

We investigated the behavior of the similarity methods while varymg the 

thresholds that determine whether two given segments should match or not match. The 

thresholds for re/Diff, Minkowski distances, and the wavelet transforms were 0.1, 0.2, 

0.4, 0.6, 0.8, and 1.0. The thresholds for absDiff were powers of 10 from 101 to 106
. 

The criteria we used to evaluate the methods were file size, approximation distance, 

and retention of performance trends (For full results, refer to the Appendix.). For each 

method, we chose a representative threshold to be used when comparing the methods 

against each other. 
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re!Diff. The relative difference method performed poorly for inter-process 

matching. For all benchmarks and sweep3d, re!Diff only found matches when the 

threshold was 1.0, which means any amount of error was allowed when comparing the 

segments. None of the reductions produced by re/Diff retained correct performance 

trends. For the purpose of our comparison study of inter-process matching, we chose 

0.8 as the best threshold for re!Diff. Because no matches were achieved, correct 

performance trends were retained. 

absDiff. For the benchmarks, file sizes tended to start to decline and approximation 

distances began to increase at a threshold of 104
• For the most part, performance trends ' 

were retained for the benchmarks at and below 104
. AbsDiff was unable to find any 

matches for sweep3d_8p; absDiff did find matches for sweep3d_32p at and above 105
, 

but correct performance trends were not retained. Correct performance trends were 

retained for the majority of the codes at thresholds at or less than 104
. Based on these 

results, we chose 104 as the best threshold for absDiff. 

Minkowski distances. The three methods performed similarly for the benchmarks. 

File sizes decreased relatively steadily with increasing threshold and approximation 

distances increased most sharply above thresholds of 0.4. Performance trends were 

retained for the majority of the benchmarks for thresholds at or above 0.4. All three 

methods performed the same for sweep3d, finding no matches for either sweep3d _ 8p 

or sweep3d_32p at any threshold. We chose 0.4 as the best threshold for all three 

methods. 
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Wavelet transforms. For the benchmarks, both methods performed similarly. File 

sizes decreased steadily with increasing threshold. The approximation distances for the 

most part remained low until reaching the 0.6 threshold. For the majority of the 

benchmarks, correct performance trends were retained for thresholds of 0.4 and 

higher. Neither method found matches for sweep3d_8p. Both found matches for 

sweep3d _32 at threshold 0.8, however performance trends were not retained. Based on 

the tradeoffs of size reduction and retention of trends, we chose 0.4 as the best 

threshold for both avgWave and haarWave. 

5 .3 .2 Comparative Study 

Here, we present a comparative study of inter-process reductions achieved by the 

similarity methods at the thresholds chosen in Section 6.3.1. We evaluate the methods 

for file size reduction, amount of matching, and retention of correct performance 

trends. Although relDiffwas unable to find any acceptable inter-process reductions at 

thresholds below 1.0, we include its results at the 0.8 threshold as a measure of the 

worst-case scenario for file size reduction and merging. For absDiff, we used the 

threshold 104
; for Manhattan, Euclidean, Chebyshev, avgWave, and haarWave, we 

used 0.4. 

5.3.2.1 Size and Degree of Matching 

We show the percentage file size and degree of matching for all methods and 

benchmarks in Figure 23 and Figure 24. RelDiff performed the most poorly since it 

was unable to find any matches for any of the benchmarks or sweep3d. AbsDiff 

performed better for the irregular benchmarks, with an average 59. 7% percent file 
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size, than it did for the regular benchmarks, with an average of 87 .5%. The Manhattan 

and Euclidean distances and wavelet transforms performed similarly, with average 

percent file sizes close to 60% and average degrees of matching at 0.4. Chebyshev 

achieved the greatest amount of reductions, with average percent file size at 44.8% 

and average degree of matching at 0.6. Outliers in the set of benchmarks were 

ltolr_1024 and ltols_1024. None of the methods but Chebyshev were able to find 

100 

90 

80 

70 

60 
• relDiff 

50 
• absDiff 

40 II Manhattan 

30 •Euclidean 

• Chebyshev 
20 11avgWave 

10 Ii haarWave 

0 

88 



1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 ---,-----, 

5.0E+04 -,---------.---..-----------------

4.SE+04 +--------.---11-1-9_2_83_0 _____________ _ 

4.0E+04 +----=16'°-'9'-"3'-='1'-"-611---11------------=-------

3.5E+04 

3.0E+04 

2.SE+04 

2.0E+04 

1.5E+04 

1.0E+04 

5.0E+03 

O.OE+OO 

• relDiff 

• absDiff 

Ill manhattan 

• euclidDiff 

• chebyDiff 

11 avgWave 

II haarWave 

• relDiff 

• absDiff 

11 Manhattan 

•Euclidean 

• Chebyshev 

111avgWave 

1111 haarWave 

89 



acceptable matches for 1 to lr _ 1024, which only achieved 2 matches of the 30 possible. 

For ltols_1024, all methods but Chebyshev found 2 matches of 30, while Chebyshev 

found 5. Additionally, none of the methods were able to find acceptable matches for 

sweep3d, so the percentage file sizes are all at 100% and degrees of matching are 0 for 

all methods for sweep3d_8p and sweep3d_32p. The in order rankings of the methods 

for this category were Chebyshev as the best performer, followed by Euclidean, 

avgWave, haarWave, Manhattan, absDiff, and re!Diff. 

5.3.2.2 Approximation Distance 

Generally speaking, the approximation distances for all codes were relatively low 

(See Figure 25). The approximation distances for the regular benchmarks were, on 

average, an order of magnitude lower than those of the irregular benchmarks. The 

exception was the early _gather benchmark, which had relatively high approximation 

distance values for all methods, excluding absDiff. The approximation distances for 

ltolr_1024, ltols_1024, sweep3d_8p, and sweep3d_32p are 0 or very low, since no 

or very little matches were found for those traces. Excluding re/Di.ff, since it achieved 

no acceptable matchings, the in order rankings of the methods in this category were 

absDiff, avgWave, haarWave, Manhattan, Euclidean, and Chebyshev. 

5.3.2.3 Retention of Performance Trends 

For this category, re!Diff retained trends for all programs. However, since re!Diff 

did not find any inter-process matches, we exclude it as a contender for top

performing method in this category. AbsDiff and the wavelet transforms performed 

similarly on average for the regular and irregular benchmarks, correctly diagnosing 
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about 80% ( absDiff) and 60% (avg Wave and haar Wave) of the programs from each 

category. Manhattan and Euclidean correctly diagnosed about 40% of the regular 

benchmarks, and 64% (Manhattan) and 72% (Euclidean) of the irregular ones. 

Chebyshev retained trends for 60% of the regular benchmarks, and only 36% of the 

irregular benchmarks. Since none of the methods found matches for sweep3d, trends 

were retained by default. 

We show examples of the KOJAK diagnoses produced for early _gather and 

NtoN_1024 in Figure 26 and Figure 27. For early_gather, we see that only absDiffwas 

able to retain the correct performance trends. This is likely due to the low number of 

matches achieved by absDiff for this benchmark. None of the methods found 

acceptable reductions for NtoN _ 1024. All showed reduced severity for the "Barrier 

no loss EX MP ' relDiff EX MM MP•; ij 

absDiff EX & -· MP• twee 
Manhattan EX •• §W MP -Euclidean EX MP 
Chebyshev EX MP 

MPI Gather 

CM 
CM 
CM 
CM 

CM 

CM 

co ER 

COM MER 
CO Will @@ii ER 

COMW*IMER 
co ER 
co ER 

do work 

EX!jUpj!FJ 

EX " • ,:i;';1 1rn 

EXt' I I ,,, 'I 'I 

EX I,,,,.,~ .I 'l l l 

EX fii\1&4:11 :tll!Pjjj 

EX fn!H<t<,t,fH I 

MP CM co ER avgWave EX EX (f !?4 H?HI 
haarWave EX MP CO ER EX r .11,JtiU t\11¥11 

no loss 

relDiff 
absDiff 

Figure 26 Inter-process Reduction: KOJAK Performance Trends for 
early _gather for Each Method at Default Thresholds 

Manhattan 
Euclidean 

Chebyshev 
avgWave 
haarWave 

91 



Completion" diagnosis, and introduced variation in the severities at the rank level that 

don't appear in the no-loss diagnosis. Additionally, all but absDiff reduced the severity 

of the "Wait at Barrier" diagnosis. 

In this category, the absDiff method performed best, correctly diagnosing 14 out of 

the 18 programs. Next, all three of Euclidean, avgWave, and haarWave correctly 

diagnosed 12, followed by Manhattan (11) and Chebyshev (9). 

5 .3 .2.4 Discussion 

Generally speaking, we found that there were far fewer inter-process matches 

achieved with good results than we initially expected. We expected there to be a larger 

number of matches in the regularly behaving benchmarks, but discovered that, overall, 

a higher number of matches was found for the irregular benchmarks with a greater 

level of retention of trends. Upon inspection, we found that there were no possible 

inter-process matches for sweep3d _Sp, given its message passing behavior and our 

matching criteria (We require that all message passing parameters, e.g. message tags 

and bytes match for the traces to match.). However, we were surprised that no 

acceptable matches of the 16 possible were found for sweep3d _32p. 

In the file size reduction and degree of matching category, the top performers were 

Chebyshev, Euclidean, avgWave, haarWave. For the approximation distance category, 

the best methods were absDiff, avg Wave, haar Wave, and Manhattan. In the category 

of retaining performance trends, the best methods were absDiff, followed by three 

methods in a tie: Euclidean, avgWave, and haarWave. To choose the best overall 

method in this category, we consider both file size reduction and retention of trends. 
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Although Chebyshev produced the smallest data files, it produced reduced traces with 

the greatest amount of error and least retention of performance trends. Because 

Euclidean, avgWave, and haarWave performed very similarly and relatively well in 

file size reduction and retention of trends, we choose all three methods as the top 

methods for inter-process reduction. 

5.4 Combined Inter-process and Intra-process Reduction Evaluation 

In this section, we compare the abilities of the similarity methods to produce 

reduced traces using both intra- and inter-process reduction. Excluding iter _ k and 

iter _avg, we use two different thresholds for each method, one for intra-process 

matching and the other for inter-process matching. For iter _k and iter _avg, we 

perform intra-process matching only. The thresholds we use in this study are those that 

we found to be the best for each method in Sections 6.2 and 6.3. For intra- and inter-

process reduction respectively, the thresholds were: re/Di.ff (0.8, 0.8), absDiff (103
, 

104
), Manhattan (0.4, 0.4), Euclidean, Chebyshev, avgWave, haarWave (0.2, 0.4). For 

iter _k, we used k=lO, but no threshold for inter-process reduction since this method 

does not perform inter-process reduction. We evaluate the methods as we did for the 

intra- and inter-process only studies, for file size reduction, introduction of error into 

the reduced trace, and retention of correct performance trends. (For full results, refer 

to the Appendix.) 

5.4.1 Size and Degree of Matching 

For the degree of matching, we compute the sum of the intra- and inter-process 

matches that were found as a fraction of the total number of intra- and inter-process 
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matches that could possibly be found (See Figure 29). For intra-process matching, 

it er_ avg decides all segments with the same context match. Because the possible 

number of intra-process matches is much higher than the possible number of inter

process matches, iter _avg has the highest degree of matching overall. The ranking of 

the methods in order from highest average degree of matching to lowest is: it er_ avg, 

avgWave, haarWave, absDiff, Euclidean, Chebyshev, Manhattan, iter _k, and re!Diff. 

Unlike when considering intra- and inter-process matching in isolation, the expected 

file size does not directly follow the degree of matching (See Figure 28). A method 

such as iter _avg that achieves a high degree of intra-process matching but doesn't 

perform inter-process matching can generate larger reduced trace files, because a 

single inter-process match has the potential for more file size savings than multiple 

intra-process matches. The methods in order of smallest average file size to largest 

are: Chebyshev, avg Wave, Euclidean, haar Wave, Manhattan, absDiff, iter _avg, iter _ k, 

and re/Diff. 

5.4.2 Approximation Distance 

We show the results for the approximation distance in Figure 30. Overall, the 

Chebyshev distance introduced the most error and re/Di.ff introduced the least error 

into the reduced traces. On average, more absolute error was introduced into the 

reduced traces of the regular benchmarks than the irregular benchmarks. The methods 
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in order of smallest to largest av~rage approximation distance are: re/Diff, iter _avg, 

absDiff, iter _k, haarWave, avg Wave, Manhattan, Eucliean, and Chebyshev. 

5.4.3 Retention of Trends 

Overall, the methods were able to produce the most acceptable reduced traces for 

the regular benchmarks. An exception was the late _receiver benchmark, for which 

none of the methods retained performance trends. All reported reduced severity for the 

"Late Receiver" diagnosis and lost the correct rank-level severities for that diagnosis 

The methods did less well for the irregular benchmarks. Notably, none of the 

methods produced acceptable reduced traces for NtoN_32 or NtoN_l024. We show 

the results for NtoN _ 32 in Figure 31. For all of the methods, the severity of "Wait at 

Barrier" is under-reported and the rank-level severities do not match those of the no-
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Figure 31 

loss trace. It er_ k and it er_ avg did the worst for this benchmark, with severities 

misreported for all of the diagnoses. 

None of the methods produced reduced traces that retained trends for sweep3d. We 

show the KOJAK diagnoses for sweep3d_32p in Figure 32. All methods reported 

reduced severity for "Execution Time" in the sweep function. All but iter k showed - -

reduced severity in "Late Sender", while iter _k showed different rank-level severities 

than the results from the no-loss trace. The iter _ k method did the worst overall, 

showing increased severities for all but the "Late Sender" diagnosis in pmpi recv _. 

sweep 

no loss -relDiff -absDiff -Manhattan --Chebyshev 1111 
iter_k -iter_avg -avgWave -haarWave 

Figure 32 
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The relDiff method produced the largest number of acceptable reduced traces, 10 out 

of 18. Manhattan, Euclidean, avgWave, and haarWave retained correct performance 

trends in 9 reduced traces. The other methods in order are absDiff (8), Chebyshev (7), 

iter _ k (6), iter _avg ( 4). 

5.4.4 Discussion 

The best performing methods in the file size reduction category were Chebyshev, 

avgWave, and Euclidean. From the approximation distance category, the best methods 

were re/Diff, iter _avg, and absDiff. The methods that best retained performance trends 

were re/Diff, followed by a tie between Manhattan, Euclidean, avg Wave, and 

haarWave. Given its performance in the file size reduction and retention of 

performance trends categories, we choose avgWave as the best method for reducing 

traces using both intra- and inter-process reductions._ 

5 .5 Discussion 

Here we discuss our expectations for the similarity methods and matching 

scenario: intra-process only, inter-process only, and combined intra- and inter-process 

matching. 

5.5.1 Trace Similarity Methods 

For re/Diff, we expected low error and relatively large files, which is exactly what 

we found to be true. For absDiff, we expected low error. We did find that absDiffhad 

lower error when compared to most methods. We expected the Minkowski distances 

would favor long segments and error would be lowest for Manhattan, followed by 
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Euclidean, and highest for Chebyshev. While we did definitely see more error in the 

traces produced by the Chebyshev method, the differences in the results for the 

Manhattan and Euclidean methods we~e largely undistinguishable. We expected 

iter _ k and iter _avg to produce low error traces for programs with regular behavior and 

for iter _avg to have the lowest overall file sizes. We indeed found that iter _ k did well 

for regularly behaving programs and less well for programs with varying behavior 

patterns. Jter _avg produced better results for the regular benchmarks than the irregular 

ones; the averaging of measurements tended to cause loss of information needed for 

diagnosis. For avgWave and haarWave, we expected stricter comparisons than 

Euclidean. Indeed, the wavelet transforms produced slightly larger files for the 

benchmark traces; however, the reduced traces of sweep3d were smaller than those 

produced by Euclidean. 

5.5.2 Intra- and Inter-process Matching 

We expected the trace similarity methods to identify high degrees of both intra

and inter-process matches, and that the number of intra-process matches would be 

much higher because of the higher number of possible intra-process matches. We 

expected that inter-process matches would yield the greatest gains in terms of file size 

and a similar level of retention of performance trends across intra- and inter-process 

matching. 

We found that the results for intra-process only matches followed our 

expectations, but that the results for inter-process only matches did not. While inter

process matching did achieve the highest gains in terms of file size reduction, there 
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were a much lower number of inter-process matches that retained correct performance 

behaviors than we expected. This is due to the larger number of measurements that 

must match according to the similarity method used in order for an inter-process 

match to be successful, from differing message passing parameters across ranks, and 

slight variations in events in initialization segments 

5.6 Summary 

We developed a post-mortem trace profiler and used it to demonstrate the viability 

of trace profiling for trace size reduction and for producing reduced traces that retain 

the behaviors needed for correct performance analysis. Additionally, we developed a 

new methodology for evaluating definitions for similarity between event traces for the 

purpose of performance analysis. We identified criteria for comparing the similarity 

methods: file size reduction, degree of matching, approximation distance, and 

retention of correct performance trends. We applied these criteria, using benchmarks 

with known performance behaviors, as well as with the application sweep3d. We 

evaluated the similarity methods for how well they reduced traces using intra-process 

reduction only, inter-process reduction only, and combined intra- and inter-process 

reductions. 

For intra-process reduction, the avg Wave method had the best retention of 

performance behaviors and good trace file size reduction. The greatest trace file 

reductions were achieved with the iter _avg method; however, the error in those traces 

led to loss of important performance trends in the data. Because of this we found that 
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using the avg Wave method was the best trade-off in terms of error in the reduced trace 

and file size reduction. 

In our inter-process reduction study, we discovered that less matching occurred 

than what we expected. Euclidean, avgWave, and haarWave performed very similarly 

and relatively well in file size reduction and retention of trends, so we choose all three 

methods as the top methods for inter-process reduction. We found that Chebyshev 

produced the smallest data files, and that it produced reduced traces with the greatest 

amount of error and least retention of performance trends, so it was not chosen as the 

best method in this study. 

For combined intra- and inter-process reduction, again Chebyshev produced small 

files with large amounts of error and lost trends. Based on the ability of avg Wave to 

produce reduced traces that are relatively small with low error and high rate of 

retention of performance trends, we chose it as the best method for combined intra

and inter-process reduction. 
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6 Prototype Runtime Trace Profiler 

We demonstrated the viability of the trace profiling technique in terms of 

correctness and file size reduction in our post-mortem studies in Chapter 6. Here, our 

goal is to demonstrate that the overhead of writing the collected trace data is lower 

with a runtime trace profiler than with a traditional tracing tool. In this chapter, we 

first describe our current implementation of a prototype runtime trace profiler.2 Then, 

we detail our experimental setup for evaluating the overheads and resulting files of the 

prototype against a state-of-the-art traditional tracing tool on a typical high-end Linux 

cluster. Finally, we present the results of our experiments. 

6.1 Current Prototype Implementation 

The current runtime trace profiler consists of a front end and a back end trace 

profiler instrumentation library. The front end launches the program to be measured 

and inserts calls in the program to the trace profiler instrumentation library. The trace 

profiler instrumentation library contains routines that· implement the trace profiling 

technique. This initial implementation supports single-threaded MPI applications. 

6.1.1 Trace Profiler Front End 

The front end of the trace profiling tool starts and controls the execution of the 

target process, locates instrumentation points, and inserts calls to the trace profile 

instrumentation library at those points. We use the Dyninst dynamic instrumentation 

library for process control and instrumentation insertion [29]. We start a separate 

2 In this version of the prototype, we reduce the amount of collected data with intra-process merging only. Inter
process merging is left as a post-mortem activity. 

102 

i 



• 

front end process for each rank in the parallel run by starting the front end as a parallel 

job and giving it arguments that indicate the program to start and measure, as well as 

other arguments that control measurement details, e.g. the distance metric to use to 

compare segments and comparison thresholds. For example, if we are running on a 

machine that uses the srun command to start parallel jobs, the command srun -n 

8 . /traceProfiler -d haar_wave targetProgram would start 8 front 

end traceProfiler processes according to the policies of the resource manager on the 

machine and compare them using the haarWave distance metric. Each front end would 

be responsible for a single instance of targetProgram. 

Before starting its target program, the front end sets the environment variable 

LD _PRELOAD to load the back end library into the measured process when it is 

started. By doing this, the measurement routines in the trace profile instrumentation 

library are available and can be called from the measured process. Next, the front end 

creates the process, but does not execute it until after inserting instrumentation. The 

front end locates the functions and loops in the program. It assigns identifiers to all 

functions and context names and identifiers to all segments, and passes the names and 

identifiers to the trace profile instrumentation library. It instruments the entry and exit 

of all functions with calls into the trace profile instrumentation library. Segment 

markers are inserted with calls to the trace profile instrumentation library. An initial 

segment is started at the entry to main or MAIN_. Then, for each loop that contains a 

user-specified number of function calls, the current segment is stopped and a new 

segment is started at the top of the loop and stopped at the bottom of the loop. At the 

103 



end of the loop execution a new segment is started. At program termination, the final 

segment is stopped3
• Segment contexts for non-loop portions of code are named as a 

concatenation of the enclosing function name and an integer that makes the name 

unique. Segment contexts for loops are assigned as a concatenation of the enclosing 

function name, the hierarchical loop name as assigned by Dyninst, and an integer that 

makes the segment name unique. See Figure 33 for an example code snippet with 

segment marker instrumentation. Note that the consequences of marking segments in 

this manner mean that some segments will contain no events, e.g main_2, all segments 

are disjoint, and that it is possible for a function's entry and exit to cross segment 

boundaries if the function or its callees contain a loop that is marked as a segment. 

After inserting all instrumentation, the front end starts the execution of the 

measured process. At termination of the measured process, the front end process exits. 

6.1.2 Trace Profiler Instrumentation Library 

In this section, we describe the interface to the trace profile instrumentation library 

and its runtime operations. 

6.1.2.1 Instrumentation Interface 

We show the interface to the trace profile instrumentation library in Table 5. The entry 
and exit of functions are recorded by calls to the enterRoutine and 

3 If the target program is a Fortran application, a call to exi tRoutine for MAIN is executed before the final 
segment is stopped· In some Fortran implementations, the MAIN_ function is part of the Fortran library and not 
part of the user code. It is responsible for executing the main program unit of the user's Fortran application. As a 
result, the MAIN_ function may not exit. 
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int main() { 
enterSegment("main_O"); 
MPI Init (); 
exitSegment(); 

} 

for(i=O; i < 100; ++i) { 
enterSegment("main_loop_l_l"); 
do_work (); 
MPI Allgather(); 
exitSegment(); 

enterSegment("main_l"); 
exitSegment(); 
for (j=O; j < 10; ++j){ 

enterSegment("main_loop_2_1"); 
do other work(); 
exitsegment(); 
while(k < otherRanks) { 

enterSegment("main_loop_2.1_1"); 
MPI Sendrecv(); 
exitSegment(); 

enterSegment("main_2"); 
exitSegment (); 

enterSegment("main_3"); 
MPI Finalize(); 
exitSegment(); 

Figure 33 Example Segment Context Marking and Names 

exi tRoutine functions, respectively. Segment boundaries are marked with calls to 

enterSegment and exi tSegment. We use the PMPI interface to selectively 

collect details about MPI message passing activities. The function MPI _Ini t 

contains instrumentation to call the trace profile instrumentation library function, 

openTrace, which performs initialization activities. The MPI function definitions 

for sending and receiving operations contain calls to send.Message and 

recvMessage which record details about sends and receives: source or target 

rank,bytes transferred, message tag, and communicator. In Figure 34, we show the 

instrumented definition of MPI _Send. When the user code calls MPI Send, the 

instrumented function in the trace profile instrumentation library is executed, which in 

tum calls PMPI Send, the actual call into the message passing library. 
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int MPI_Send( void *buf, int count, MPI_Datatype datatype, int dest, int 
tag, MPI_Comm comm) { 

int returnVal; 
int typesize; 

if (dest != MPI PROC NULL) { 
PMPI_Type_size( datatype, &typesize ); 
sendMessage(translateRankToWorld(comm,dest), typesize*count, tag, 

comm); 
returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm); 

return returnVal; 

Figure 34 Example Instrumentation for Message Passing Function 

6.1.3 Runtime Operations 

The current version of the trace profiler front end takes arguments that specify the 

distance metric to be used for comparing segment data and comparison thresholds. 

The methods implemented into the runtime prototype are those that are described in 

Section 5.3. Intra-process segment matching is performed at runtime and inter-process 

segment matching is a post-mortem activity. 

When the measured process is started, it makes an initial call to enterSegment 

to create the first segment and a call to enterRoutine for the entry to main or 

MAIN_. Presumably, the first function call in the measured program is to MPI _ Ini t. 

In the instrumentation for MPI _ Ini t, the trace profiler performs initialization 

activities, such as setting up the data structures for storing the collected data and 

getting the rank identifier for the process. Then, all function event data is collected in 

the enterRoutine and exi tRoutine functions until the next call to 

exi tSegment. When exi tSegment is called the first time, there are no other 

segments stored that could be a potential match, so the first segment is inserted into 
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Table 5 Trace Profile Instrumentation Library Interface 

INSTRUMENTATION LIBRARY ACTIONS 
FUNCTION 

defineEvents(eventList) Called before target program execution. The 
argument eventList is a listing of function and 
segment identifiers and names. 

openTrace(rank) Called in MPI Init. Performs initialization -
activities. 

endProgram () Called at program termination. Calls 
exitSegment3

. 

enterSegment(id) Called at a segment entry marker. Sets current 
segment. 

exi tSegment () Called at segment exit marker. Exits current 
segment. 

enterRoutine(id) Called at function entry to record function entry 
time and identifier. 

exitRoutine(id) Called at function exit time to record exit time 
and identifier. 

sendMessage(dest, Called from instrumented MPI calls to record 
bytes, tag, comm) details about send operations. 

recvMessage(source, Called from instrumented MPI calls to record 
bytes, tag, comm) details about recv operations. 

MPI * Intercept calls to the actual MPI library and call -
appropriate trace profile instrumentation library 
function to record message passing details. They 
also execute the call into the MPI library to 
execute the operation, e.g. MPI Send calls -
send.Message and PMPI Send. 

-

the list of stored representative segments. For all subsequent calls to 

enterSegment, a new segment is created. At the matching call to exi tSegment, 

the segment is terminated and compared using the selected distance metric against the 

segments with the same context that have already been stored as representatives. 

107 



r 
\ 
l 

6.2 Experimental Setup 

In this section, we report on the experiments we performed to evaluate the 

overheads of our current runtime prototype trace profiler (TP). We evaluate our 

prototype against a state-of-the-art traditional tracing tool, TAU. We evaluate both 

tools for instrumentation and writing overhead as defined in Chapter 4, and for 

resulting file size. 

6.2.1 Application 

We evaluated the prototype using Sweep3d [3] described in Section 6.1.2. We ran 

the application with a problem size of 5 x 5 x 6400 with MK=30 and MMI=2. We 

measured the application with 32, 64, 128, 256, 512, and 1024 processors. 

6.2.2 Machine 

We ran our experiments on Hera at LLNL. Hera is an 864-node Linux cluster, 

where each node contains 4 AMD quad-core processors, for a total of 16 CPUs per 

node. The nodes are connected by an Infiniband switch and are connected to a Lustre 

file system. For each experiment, we ran jobs that utilized all CPUs on each node, e.g. 

a 32-process run spanned two nodes, and wrote all trace data to the Lustre file system. 

The configuration of Hera is very similar to the machine shown in Figure 2. 

6.2.3 Tool Configurations 

We used TAU version 2.17.l [58] for our experiments. We configured TAU to 

collect entry and exit events for all functions. Note that we did not insert segment 
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markers into the program when measuring with TAU, so the number of 

instrumentation points for TAU was lower than it was for our trace profiler prototype. 

Our experiments here are similar to those described in Section 4.1. We performed 

runs without trace instrumentation (nolnstr), and with and without buffer flush to file 

enabled (write or noWrite). Additionally, we experimented with two different buffer 

sizes in our experiments: 1.5 MB (def, default size for TAU) and 8.0 MB (8MB, 

default size for the widely-used MPE [80]). We altered the buffer size and 

write/no Write configuration of TAU as described in Section 4.1. The choices of buffer 

size and write/no Write configuration for our prototype trace profiler are runtime 

options. To measure execution time, we used the wall clock time reported by the 

application. We evaluate only overhead that occurs after MPI Ini t and before 

MPI _Finalize; this means that initial file creation and file closing are not included 

in the overheads for both tools. Additionally, we do not evaluate any post-mortem 

activities, such as trace file merging for TAU or inter-process matching for our 

prototype. 

When the buffer of either tool is full, the trace data is flushed to disk and the buffer 

is emptied to collect more data. The flushing policy of our prototype is somewhat 

different from that of TAU's. TAU simply creates a fixed-size buffer and inserts a 

series of fixed-size trace records into it. Our implementation creates data structures to 

hold process groups and the segments contained in each process group. We flush 

TAU's buffer when the amount of data collected is exactly the maximum buffer size. 

We flush the data structures from our prototype at the end of a segment when the 
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amount of data collected meets or exceeds the buffer size. The consequences of this 

are that our tool may flush less frequently than TAU. 

We implemented a simple buffer flushing policy for our prototype. We simply 

flush the data for the entire process group and then reset the process group data to 

empty. We append. the process group data at the end of the file, and additionally 

update the section header containing the number of process gr~mps in the file. 

We ran 30 identical runs for each combination of number of processes, tracing 

tool, buffer size, write or noWrite, and for our prototype, flushing policy. For our 

prototype runs, we used the avg Wave distance metric for segment matching, with 

threshold 0.2 and inserted segment markers in loops that contained at least 10 function 

calls. We report the average timing information for each configuration. For TAU, the 

trace file sizes and number of flushes are deterministic, so we report exact values. For 

our prototype, the sizes and number of flushes vary depending on how many segment 

matches occur at runtime. We report the averages of these measurements. 

6.3 Results 

In this section, we present the results of our experiments. We evaluate the tracing 

tools for instrumentation and writing overhead, size of generated files, and flush count. 

6.3.1 Execution Time 

We show the execution time of sweep3d measured under the various 

configurations with increasing processor count in Figure 35. The execution times for 

the application with no instrumentation are labeled nolnstr. The first four bars after 

nolnstr in each processor-count grouping show the TAU runs; the last four bars show 
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Figure 35 Execution Time ofSweep3d Measured with TAU and TP 

the results for our prototype (TP). The difference between the execution times for 

nolnstr and the no Write runs shows the amount of instrumentation overhead caused by 

each tool and buffer size. The difference between the no Write and write runs shows 

the writing overhead of the tool configuration. 

We examine the writing overhead in more detail in Figure 36. At the smaller 

processor counts (32, 64, and 128), we see that the writing overhead is not very 

detectable. However, at the larger processor counts the writing overhead for TAU and 

our prototype increases with increasing processor count. At the default buff er size, the 

writing overheads of TAU and of our prototype become more noticeable and increase 

with increasing processor count. However, our prototype introduces less overhead 
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than TAU. With the 8 MB buffer, the writing overhead of TAU increases dramatically 

with increasing processor count, but the writing overhead for our prototype using the 8 

MB buff er increases very slowly with increasing processor count. 

6.3.2 Total File Size 

We show the sum of file sizes generated during the write runs in Figure 3 7 and the 

average file size per rank in Figure 38. In all cases, the amount of data written 

increases with increasing processor count. However, the file sizes generated using our 

prototype did not increase as rapidly as did those of TAU. When using the default 

buffer size with our prototype, the total amount of data was higher than when using 

the 8 MB buffer. 
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6.3 .3 Flushes 

The total buffer flushes over all ranks executed by each tool configuration are 

shown in Figure 39 and the average per rank flushes are shown in Figure 40. TAU 

with the default size buffer generated the most buffer flushes overall, followed by our 

prototype using the default size buffer. The least amount of flushes was executed by 

our prototype using the 8MB buffer. In all cases, the number of flushes increased with 

increasing processor count. 

6.4 Discussion 

Our goal for trace profiling was to reduce the overheads of tracing by reducing the 

amount of trace data being written to disk during runtime. The writing overhead and 

resulting data files from our trace profiler prototype were much smaller than those of 

TAU. As expected, the writing overheads still scaled with the number of ranks in the 

run, because of contention for the shared file system resources. However, the 

overheads did not increase nearly as quickly as with TAU. In general, we found that 

the instrumentation overhead of our prototype was on the same order of the 

instrumentation overhead of TAU. 

The choice of buffer size for TAU had much less of an impact on overheads and 

file size than it did with our prototype. Of course, the choice of buffer size would not 

impact the file sizes generated by TAU; the same number of events will be written 

regardless. The buffer size choice greatly impacted the performance of our prototype. 

The larger buffer size allowed the tool to find a larger number of segment matches, 

resulting in less flushes, less writing overhead, and smaller data files. 
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7 Conclusions 
In this dissertation, we present a novel performance measurement technique for 

collecting event-based performance data and demonstrate its viability for low

overhead event trace collection for the purpose of parallel performance analysis. 

Our first contribution is a study of the overheads of traditional event trace 

collection. We demonstrate that event tracing using traditional methods on high-end 

parallel systems is not scalable. The act of collecting such highly detailed performance 

information and periodically flushing the collected data to disk unduly perturbs the 

measured program. Additionally, the trace files created scale with the running time 

and number of concurrent entities in the parallel run. Our study indicates that the 

major scalability problems of traditional tracing are the overhead due to periodically 

flushing the event data to disk and the large resulting trace files. 

The second contribution of this dissertation is trace profiling, a new low-overhead 

measurement technique for gathering event-based performance data. Trace profiling is 

a hybrid of tracing and profiling and collects summary information about event 

patterns that occur during program execution. Trace profiling addresses the major 

scalability problems of traditional tracing: periodic flushing of trace data to disk; and 

the unmanageably large trace files that are generated. The technique detects repeated 

event patterns both within and across processes in a parallel run. Because intra-process 

event pattern matching is done at runtime, a reduced data volume is flushed to disk 

during execution, which results in lower tool overhead due to writing. Additionally, 
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the sizes of the files generated by trace profiling are greatly reduced compared to 

traditional tracing. 

The third research contribution is a study of similarity metrics for identifying 

patterns in event traces. We evaluate several metrics for file size reduction, 

introduction of error, and retention of correct performance behaviors in the reduced 

trace. In our study, retention of performance trends was the most important criteria for 

evaluating similarity metrics for trace reduction. Our study indicates that the average 

wavelet transform method performs the best in terms of retention of performance 

trends and file size reduction. This study demonstrates the viability of trace profiling 

in terms of its ability to collect useful traces that retain the important behavior patterns 

at a reduced data volume. 

Our fourth contribution shows the low overheads of runtime trace profiling. We 

implemented a prototype runtime trace profiler and evaluated it against a state-of-the

art traditional tracing tool on a typical high-end Linux cluster. We demonstrate that the 

overheads of collecting event-based measurement data using trace profiling are lower 

than that of traditional tracing and that the resulting data files are smaller. 

We conclude that trace profiling is a viable method for low-overhead collection of 

event-based performance data on high end systems. 

7 .1 Future Work 

Potential directions for future work include: investigation of memory bounds for 

performance tools; and evaluation of the implementation choices for a trace profiler 

and their consequences in terms of measurement overheads. 
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7 .1.1 Performance Tool Memory Bounds 
Any performance measurement tool that is designed to measure large, long-

running parallel programs must bound the amount of memory used in order to be 

scalable; a tool cannot simply store all collected data in memory without potentially 

incurring serious consequences to the application performance. In our runtime study, 

we discovered that the choice of memory bound for storage of event data impacted the 

performance of our prototype. The bound affected the amount of event pattern 

matching that could occur at runtime, and thus the amount of data that was flushed 

periodically during the run. Use of a smaller memory bound resulted in more flushes, 

less event pattern matching, and larger resulting data files than use of a larger memory 

bound. In our study, we experimented with two memory bounds, chosen because they 

are the default buffer sizes for two commonly-used traditional tracing tools. In our 

experience, performance tools either have hard-coded default memory bounds or allow 

the user to choose the bounds to be used. In either case, there is no guidance given to 

the user as to what bound would be a good choice for a particular performance tool 

measuring a particular application class on a particular architecture. A direction for 

future work would be to develop a model for describing the interactions between tool 

memory bounds, application characteristics, and architecture. The model could be 

used to provide guidelines for choosing the best memory bounds for a given situation. 

7 .1.2 Trace Profiler Measurement Overheads 
Although all performance measurement techniques introduce perturbation of 

varying degrees into the program being measured, performance measurement with a 

trace profiler implementation has the potential to introduce irregular perturbation. In 
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the best case, when measuring regularly behaving programs with a trace profiler, there 

will be a high degree of matching of event patterns, which will greatly reduce the 

number of comparisons that need to be performed during runtime. However, in the 

worst case, when measuring programs that have irregular behavior over time, the 

number of intra-process event pattern matches will likely decrease, meaning there will 

be a larger number of comparisons that need to be performed over time during runtime 

and possibly more data that needs to be flushed to honor the memory bounds of the 

tool. Additionally, in a parallel run, if more matches are found in some ranks than 

others, then the amount of time spent in comparison operations across ranks will vary. 

This could introduce perturbation that could affect the behavior of other ranks, if, for 

example, some ranks are waiting for communication from ranks that have a larger 

number of event pattern comparisons to make. Future research could examine the 

potential consequences of the perturbation introduced by trace profiling for different 

classes of programs. 

The choice of where to introduce segment markers into a program has the potential 

to impact both the amount of perturbation introduced into the program and the number 

of event pattern matches that can be identified. If segment markers are placed in all 

loops, then the instrumentation overhead increases because more instrumentation 

instructions are executed. However, the number of segment matches is likely to 

increase greatly, because the amount of event data in each segment is smaller. If 

segment markers are placed in loops more selectively, then instrumentation overhead 

decreases, but segment matching might decrease because of the larger amount of event 
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data in each segment. A direction of future research would be to investigate the 

tradeoffs of segment marking policies. 

Our evaluation of the runtime prototype included a single simple policy for 

honoring the memory bounds for storing event data: flush all event data when the 

memory bounds are reached. Although this policy was very simple, it had the 

disadvantage of flushing event patterns that could potentially match future event 

patterns, resulting in less matching and larger file sizes. One possible option for 

honoring the memory bounds is to never write any data to disk during the run, but 

instead compress or fold the data in some manner. For example, when the amount of 

data collected by the Paradyn performance tool reaches the memory bound, adjacent 

data bins are averaged and the memory size is reduced by half [42]. A trace profiler 

might increase the given threshold and reevaluate the stored segments for further 

matches to reduce memory usage. However, care would need to be taken to ensure 

that performance trends are not lost by allowing more error into the reduced trace. 

Future studies of trace profiling could inve~tigate variations on policies for honoring 

memory bounds and their impact on the scalability of the technique in terms of flush 

counts and resulting data file sizes. 

In our evaluation of the prototype runtime trace profiler, we evaluated the 

prototype for overheads that occur at runtime, which excludes inter-process matching 

overheads. Although post-execution inter-process merging would not perturb the 

measured program, the computation time for the merging should still be scalable. An 

option for scalable inter-process merging is to explore runtime merging. Segments that 
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are flushed during runtime could be checked for inter-process matches using a tree

based data reduction infrastructure such as MRNet [56], which would reduce the 

overall amount of data being written to disk, and in tum, reduce the writing overhead. 

An avenue of future work is to investigate and evaluate scalable methods for inter

process merging in a trace profiler implementation. 
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Fig. 49 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltolr_32 
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Fig. 50 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltols_32 
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Fig. 51 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for Ntol_l024 
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Fig. 52 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for NtoN_1024 
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Fig. 54 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltolr_1024 
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Fig. 55 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltols_1024 
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Fig. 72 Combined Reduction: Retention of Performance Trends with Default 
Thresholds for ltolr 1024 
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Fig. 73 Combined Reduction: Retention of Performance Trends with Default 
Thresholds for ltols_l024 
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Fig. 75 Combined Reduction: Retention of Performance Trends with Default 
Thresholds for sweep3d_32p 
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