
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

2010

Scalable event tracking on high-end parallel systems Scalable event tracking on high-end parallel systems

Kathryn Marie Mohror
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Systems Architecture Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Mohror, Kathryn Marie, "Scalable event tracking on high-end parallel systems" (2010). Dissertations and
Theses. Paper 2811.
https://doi.org/10.15760/etd.2805

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/144?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2811&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2811
https://doi.org/10.15760/etd.2805
mailto:pdxscholar@pdx.edu

DISSERTATION APPROVAL

The abstract and dissertation of Kathryn Marie Mohror for the Doctor of Philosophy

in Computer Science were presented December 11, 2009, and accepted by the

dissertation committee and the doctoral program.

COMMITTEE APPROVALS:

S

Christopher M. Monsere
Representative of the Office of Graduate Studies

DOCTORAL PROGRAM APPROVAL:
Wu-chi Feng, DirectOr
Computer Science Ph.D. Program

ABSTRACT

An abstract of the dissertation of Kathryn Marie Mohror for the Doctor of Philosophy

in Computer Science presented December 11, 2009.

Title: Scalable Event Tracing on High-End Parallel Systems

Accurate performance analysis of high end systems requires event-based traces to

correctly identify the root cause of a number of the complex performance problems

that arise on these highly parallel systems. These high-end architectures contain tens to

hundreds of thousands of processors, pushing application scalability challenges to new

heights. Unfortunately, the collection of event-based data presents scalability

challenges itself: the large volume of collected data increases tool overhead, and

results in data files that are difficult to store and analyze. Our solution to these

problems is a new measurement technique called trace profiling that collects the

information needed to diagnose performance problems that traditionally require traces,

but at a greatly reduced data volume. The trace profiling technique reduces the amoun!

of data measured and stored by capitalizing on the repeated behavior of programs, and

on the similarity of the behavior and performance of parallel processes in an

application run. Trace profiling is a hybrid between profiling and tracing, collecting

summary information about the event patterns in an application run. Because the data

has already been classified into behavior categories, we can present reduced, partially

analyzed performance data to the user, highlighting the performance behaviors that

comprised most of the execution time.

2

SCALABLE EVENT TRACING ON HIGH-END PARALLEL SYSTEMS

by

KATHRYN MARIE MOHROR

A dissertation submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
Ill

COMPUTER SCIENCE

Portland State University
©2010

Acknowledgments
I thank my dissertation advisor, Karen L. Karavanic, for her extraordinary

guidance, understanding, and support over these years. Because of her efforts, I am

solidly prepared for my future research career. I know that at this moment I sincerely

appreciate all she has done for me, as well as I know that my appreciation will only

grow over time as I begin to fully realize the depth of her commitment to my success.

Thank you, Karen.

I thank my dissertation committee (Jingke Li, Suresh Singh, Bryant York, and

Christopher Monsere) for taking the time to provide thoughtful feedback and advice

on my research. Your expertise made my dissertation stronger.

Thank you to my fellow students in the High Performance Computing Lab at

Portland State University, and most especially to Rashawn Knapp, for your

camaraderie, your willingness to be a sounding board for new ideas, and ability to sit

through countless practice talks.

I thank John May and Lawrence Livermore National Laboratory for giving me

opportunities for collaboration and for access to LLNL computing resources.

Last, but certainly not least, I thank my husband and family for their unwavering

support during my time in school. I know I was sometimes a very distracted wife,

mother, daughter, sister, but you all supported my goals regardless. Thank you for

cheering me on during the good times and cheering me up during the bad. If it weren't

for you, the road would have been much more difficult.

1

Table of Contents

Acknowledgments .. i
List of Figures ... iv
List of Tables .. vi
1 Introduction ... 1

1.1 Motivation ... 1
1.1.1 Uses of Event Tracing ... 2
1.1.2 Summary .. 10

1.2 Dissertation Contributions ... 10
1.3 Dissertation Organization .. 12

2 Related Work ... 13
2.1 Perturbation ... 13
2.2 Trace File Size Reduction ... 15

2.2.1 Trace File Compression ... 15
2.2.2 Measuring or Writing Less Data ... 16

2.3 Analysis Tool and Visualization Scalability ... 21
3 Study of Tracing Overheads .. 23

3 .1 Experiment Design .. 23
3 .2 Results ... 28

3.2.1 Event Counts and Trace File Sizes .. 28
3.2.2 Execution Time ... 29
3.2.3 Execution Time vs Event Counts .. 32

3.3 Conclusions ... 33
4 Trace Profiling ... 35

4.1 Background .. 36
4.2 Trace Profiling Technique ... 36

4.2.1 Trace Segmentation ... 40
4.2.2 Intra-process Segment Comparison ... 41
4.2.3 Inter-process Segment Comparison ... 42

4.3 Trace Profile Segment Comparison Methods .. 45
4.3.1 Distance Methods .. 45
4.3.2 Iteration-based Methods .. 51

4.4 Traditional Trace and Trace Profile Size Models 52
4.4.1 Traditional Trace ... 52
4.4.2 Trace Profile .. 54

4.5 Traditional Trace and Trace Profile Size Comparison Using Models 57
4.5.l Traditional Trace ... 58
4.5.2 Trace Profile .. 60
4.5.3 Comparison of Traditional Trace and Trace Profile 60

4.6 Trace Profiling and Visualization .. 62
4.7 Summary .. 63

5 Trace Comparison Methods .. 65

11

5.1 Evaluation Methodology ... 66
5 .1.1 Benchmarks ... 66
5.1.2 Application .. 70
5.1.3 Instrumentation .. 70
5.1.4 Evaluation Criteria ... 71

5.2 Intra-process Reduction Evaluation Studies .. 74
5.2.1 Threshold Study ... 74
5.2.2 Comparative Study .. 77

5.3 Inter-process Reduction Evaluation Studies .. 85
5.3.1 Threshold Study ... 85
5.3.2 Comparative Study .. 87

5.4 Combined Inter-process and Intra-process Reduction Evaluation 93
5.4.1 Size and Degree of Matching .. 93
5.4.2 Approximation Distance .. 94
5.4.3 Retention of Trends ... 96
5.4.4 Discussion .. 98

5.5 Discussion .. 98
5.5.1 Trace Similarity Methods .. 98
5.5.2 Intra- and Inter-process Matching ... 99

5.6 Summary .. 100
6 Prototype Runtime Trace Profiler ... 102

6.1 Current Prototype Implementation .. 102
6.1.1 Trace Profiler Front End .. 102
6.1.2 Trace Profiler Instrumentation Library ... 104
6.1.3 Runtime Operations ... 106

6.2 Experimental Setup ... 108
6.2.1 Application .. 108
6.2.2 Machine ... 108
6.2.3 Tool Configurations ... 108

6.3 Results ... 110
6.3.1 Execution Time ... 110
6.3.2 Total File Size .. 112
6.3.3 Flushes ... 114

6.4 Discussion .. 114
7 Conclusions ... 65

7.1 Future Work ... 117
7.1.1 Performance Tool Memory Bounds .. 118
7 .1.2 Trace Profiler Measurement Overheads .. 118

8 References ... 122
Appendix: Additional Trace Similarity Study Results .. 128

111

List of Figures

Figure 1 Performance ofUninstrumented Executions ... 25

Figure 2 Experiment Environment. ... 27

Figure 3 Performance of Instrumented Executions ... 30
Figure 4 Tracing Overhead with Maximum Event Count in a Single Rank 32

Figure 5 Data from Traditional Trace ... 37

Figure 6 Process Group ... 38

Figure 7 Segment Context Marking ... 40

Figure 8 Algorithm for Intra-process Segment Matching .. 41

Figure 9 Intra-process Segment Matching ... 42

Figure 10 Inter-process Segment Matching .. 43

Figure 11 Algorithm for Inter-process Matching .. 44

Figure 12 Wavelet Transform Example .. 50

Figure 13 Trace Profile Format ... 55

Figure 14 Input Data to Traditional Trace Size Model ... 57

Figure 15 Inputs to Trace Profile Size Model ... 58

Figure 16 Traditional Trace and Trace Profiling Sizes for Random-Barrier 61

Figure 17 Trace Profiler Visualization .. 62

Figure 18 KOJAK and Derivation of Our Performance Diagnosis Representation. 73

Figure 19 Intra-process Reduction: Percentage File Sizes and Degree of Matching.

·· 78
Figure 20 Intra-process Reduction: Approximation Distance Results for All

Methods at Default Thresholds ... 79

Figure 21 Intra-process Reduction: KOJAK Performance Trends for
dyn_load_balance For Each Method at Default Thresholds 82

Figure 22 Intra-process Reduction: KOJAK Performance Trends for ltolr 1024 for
Each Method at Default Thresholds ... 83

Figure 23 Inter-process Reduction: Percentage File Sizes for Methods at Default
Thresholds ... 88

Figure 24 Inter-process Reduction: Degree of Matching for Methods at Default
Thresholds ... 89

Figure 25 Inter-process Reduction: Approximation Distance for the Methods at
Default Thresholds .. 89

Figure 26 Inter-process Reduction: KOJAK Performance Trends for early _gather
for Each Method at Default Thresholds .. 91

IV

l
Figure 27 Inter-process Reduction: KOJAK Performance Trends for NtoN_1024 for

Each Method at Default Thresholds ... 91

Figure 28 Combined Reduction: Percentage File Sizes for Methods at Default
Thresholds ... 95

Figure 29 Combined Reduction: Degree of Matching for Methods at Default
Thresholds ... 95

Figure 30 Combined Reduction: Approximation Distance for Methods at Default
Thresholds ... 96

Figure 31 Combined Reduction: KOJAK Performance Trends for NtoN_32 for
Each Method at Default Thresholds ... 97

Figure 32 Combined Reduction: KOJAK Performance Trends for sweep3d_32p for
Each Method at Default Thresholds ... 97

Figure 33 Example Segment Context Marking and Names 105

Figure 34 Example Instrumentation for Message Passing Function 106

Figure 35 Execution Time ofSweep3d Measured with TAU and TP 111

Figure 36 Write Overhead for Sweep3d with TAU and TP 112

Figure 37 Total Size of Files Generated for Sweep3d with TAU and TP 113

Figure 38 Average File Size Per Rank for TAU and TP 113

Figure 39 Total Buffer Flush Count for Sweep3d with TAU and TP 115

Figure 40 Average Flush Count Per Rank with TAU and TP 115

v

List of Tables

Table 1 Correlation of Total Wall Time with Maximum Event Count in a Rank ... 31

Table 2 Symbols for Full Trace and Trace Profile Models 53

Table 3 Sizes of Fields in Trace Profiling Data Structures 56
Table 4 Sizes of Trace Profile and Full Trace ... 59

Table 5 Trace Profile Instrumentation Library Interface 107

Vl

1 Introduction

The major contribution of this dissertation is a novel, low-overhead technique for

collecting event traces on high-end computing systems. We collect the information

needed to correctly diagnose certain complex performance problems at a greatly

reduced data volume over traditional event trace collection methods. Other

contributions of this dissertation include: an in-depth measurement study of the

overheads of traditional event trace collection; an evaluation of methods for

determining event trace equivalence; and post-mortem and runtime prototypes of the
•

new event trace collection technique to demonstrate its viability.

1.1 Motivation

Today's high-end architectures contain tens to hundreds of thousands of

processors, pushing application scalability challenges to new heights. Performance

analysis is a necessary step to adapt codes to utilize a target high end machine.

Correct diagnosis of certain complex performance problems that arise on high end

systems requires detailed event traces. An "event" is a runtime occurrence of a

program activity, such as a machine instruction or basic block execution, memory

reference, function call, or a message send or receive. Generating event traces involves

writing a time stamped record for each event, into a buffer or file for later analysis.

Unfortunately, the collection of event traces presents scalability challenges: the act of

measurement perturbs the target application; and the large volume of collected data

results in data files that are difficult, or even impossible, to store and analyze [45].

1

There are several documented cases of performance problems that appear only when

the application is run at a large scale [32, 51], driving the need to be able to collect

event traces for large runs. We have a conundrum: we need traces to correctly

diagnose important performance problems, but the sheer volume of data collected

makes collecting full traces at the very least prohibitive, and in the worst case

impossible. For this reason, solving the scaling challenges of event tracing is an

important problem for high end computing.

1.1.1 Uses of Event Tracing

Requirements for the accuracy and types of information in a trace vary based on

the intended use: correctness testing and debugging, simulation, or performance

analysis.

Correctness testing and debugging generally only require that the trace retain the

relative ordering of events. For example, inspecting a trace of a parallel program could

indicate the reason for a deadlock situation by showing the ordering of

synchronization operations; a parallel program might hang because a process is

waiting for a message that was never sent.

Simulation requires traces that retain the order of events and possibly some timing

information. Traces for simulation can be used to predict application performance on

new or theoretical hardware. The events in the trace can be replayed using either

averaged or predicted timing information for the new hardware. Generally, a single

time value is used for all event occurrences instead of individual timing measurements

for each event occurrence. For example, the average time to execute a send operation
2

could be used as the time for all send operations in the trace. This tradeoff allows

acceptable accuracy with faster time to simulated results and smaller trace files.

Performance analysis requires not only the relative ordering of events, but the

timing information for individual events. Performance problems do not necessarily

occur with a high degree of regularity, e.g. in every iteration of a loop, so individual

event timings are needed to show the root causes of problems. For example, trace data

can show a time-varying load imbalance in a parallel job, which causes some ranks to

be late to a synchronization operation at varying times during the program execution.

The individual event timings can show what events are taking more time in the slower

ranks and in what iterations the slowness occurs. In this dissertation, we focus solely

on collecting event traces for the purpose of performance analysis.

1.1.1.1 The Necessity of Event Tracing

Event tracing is used for understanding the causality of events, understanding the

interactions between program elements, and identifying behaviors from event patterns.

Although other performance measurement techniques, such as profiling, exhibit better

scaling properties at the high end, the detail collected in an event trace is needed to

correctly diagnose certain performance problems.

An event trace can show the causality of events, which is helpful when a specific

set of events lead to a performance issue. An example of this is found in a case study

showing the benefits of Stardust, a tool for collecting and retrieving end-to-end

performance traces in a distributed system [62]. The researchers in this study

investigated a user's reported problem with I/O performance. From an event trace of

3

the program, they were able to see the sequence of events that caused the poor

performance, a series of small requests.

Event traces are useful for showing the interactions between program elements,

because interactions can sometimes be difficult or impossible to understand from static

analysis. For example, understanding the interactions between program elements is

useful in the realm of parallel program debugging. Kranzlmiiller et al. use event

graphs, generated from trace files, to discover bugs in parallel programs [36]. They

use the relationships between processes revealed by the program trace to determine

where race conditions due to non-deterministic execution could occur.

Event-patterns in traces can be analyzed to reveal properties of programs, such as

performance problems and locations of possible optimization. An example of

performance problem that event patterns can help diagnose is the "Late Sender"

problem. This is the situation where the receiving process waits at a blocking receive

call waiting because the sending process hasn't yet reached the matching send call.

The relative timing of events in the trace would show that the send operations started

late and caused the receive operations to block. Event patterns can also be analyzed to

suggest performance optimizations. Kranzlmiiller et al. present a method for

recognizing point-to-point communication patterns in program traces that correspond

to collective communication operations [38]. Since collective communication

operations are often tuned for high performance on each platform, they suggest to the

user to replace the recognized point-to-point sequence of operations with a collective

communication operation.

4

Profiling and tracing represent two ends of the spectrum in the trade-off between

the level of detail and the amount of data collected in performance measurement.

Profiling provides summary information and therefore is more scalable than tracing.

For example, a profile can show which functions used the most amount of time in an

execution. This tells a performance analyst a crucial piece of information: where the

program is spending most of its time, identifying candidates for performance

improvements. Profiling has advantages over tracing, because it causes less

perturbation to the target program and produces smaller performance data files.

Tracing a program results in a sequence of time-stamped events, possibly with

accompanying performance information, e.g. the start and end times of a particular

routine, or details about message-passing events, such as the sending and receiving

processes and the communicator used. Tracing provides more detail about the

performance of the program, at the cost of greater perturbation to the target program

and larger resulting data files. Although the costs of collecting event traces are higher,

there are situations where the level of detail provided by tracing is required; the types

of information provided by profiling are, in many cases, too limited for correct

diagnosis of certain performance problems [7, 37]. An example of such a performance

problem is the previously described "Late Sender" problem in a message-passing

program. While a profile could indeed show that excessive time was being spent in

receive operations, the data is not sufficient to distinguish between a late sender or

some other root cause, such as network contention that caused the message to be

received late. In contrast, an event trace captures the relative timing of events, and

5

would show that the send operations started late and caused the receive operations to

block.

Several case studies indicate the need for tracing tools that can scale to large

numbers of concurrent processes, because there are instances when a performance

problem only arises after scaling the execution beyond a certain point. Kale et al.

studied the performance of the NAMD application and found that several performance

issues only appeared when the application was scaled above 1000 processors [32], and

a new performance issue appeared after scaling above 2000 processors. A developer

working with the ViSUS code encountered a hang in the program only after it was

scaled to at least 8192 tasks [6]. A scientist working on the CCSM code reported

intermittent hangs with 472 processes [6]. Several researchers examined the

performance of the SAGE benchmark on ASCI Q [51] and noted a striking divergence

from the performance predicted by their model when they scaled the application above

512 processors.

1.1.1.2 The Scalability Problems of Event Tracing

Although the information obtained from tracing is needed for correctly diagnosing

certain types of performance problems, three key issues prevent it from being a

scalable performance measurement technique: perturbation of the application, the

large volume of data collected, and difficulties in analyzing the highly-detailed data.

Perturbation of the measured program is caused by the execution of added trace

instrumentation instructions, the memory used by the trace buffer, and the flushing the

trace buffer to disk. These perturbations increase the execution time of the program

6

and have the potential to alter the program's behavior [40]. For example, in one of our

experiments, a traced run of Sphot [1] took roughly 50 times longer to execute than

the untraced run.

Event tracing has the potential to create prohibitively large data files, especially for

highly-parallel, long-running programs. Several researchers have noted this problem

[65, 79]. As an example, in one study, we encountered event counts on the order of

1010
, for 32-process runs of Sphot that only ran for a few minutes [45]. The file size of

the merged trace was 424 GB. We were fortunate, because the system we used

provided a ~250 TB file system with no individual quotas for temporary storage. We

wrote the traces to this file system and transferred them to tape for long-term storage.

If we had not had these resources, we would not have been able to conduct many of

our experiments.

Large trace files pose a challenge to analysis tools. They require significant

amounts of memory and computation for merging, opening, and displaying the traces.

Commonly, during a traced execution, each individual process writes data to its own

trace file. At some point, either at the end of the execution, or as a post-mortem step,

the individual trace files are merged into a single file, ordering the events from

different processes by their time stamps. This merging can be computationally

intensive; in our experiments, we found that the merging could take orders of

magnitude more time than the execution time of the application. The act of simply

opening and displaying a trace file is problematic as well. Generally, a trace

visualization tool needs to scan the entire trace into memory as a preprocessing step.

7

In one of our studies, opening a 600 MB trace from a four-process run proved to be

impossible for one trace-analysis tool. After 30 minutes of waiting, the tool reported

that it had run out of memory and could not open the file. After a time-consuming

conversion to a different trace file format, a different tool successfully opened the file,

but required a parallel back-end to do so.

The level of detail produced by tracing makes human analysis of the data a

significant task. Locating performance problems by looking at a display of a trace of

hundreds or thousands of processes could fairly be described as finding a needle in a

haystack. Current trace visualization tools commonly present Gantt charts, showing a

bar plot of event occurrences over time, left to right, with one bar per process or task.

Generally, the visualization initially shows the entire timeline, and the user has the

option to zoom in on portions of the timeline, and possibly on specific ranks, to see

more detail. At the high end, full-scale trace visualizations become extremely difficult

to read, as the tool user must scroll through thousands of processes and lengthy time

lines. It becomes a matter of either being able to see the whole picture, but not being

able to see enough detail to draw conclusions about patterns in the trace; or being able

to see the needed details, but losing the perspective of the whole picture.

1.1.1.3 Case studies illustrating the problems of tracing

Other researchers using tracing tools for performance analysis have described the

scalability problems of tracing, which, in some cases, prevented them from performing

their experiments.

8

One researcher we corresponded with recounted a particularly "painful"

experience trying to trace a communication pattern that occurred several hours after

the start of the execution of his application. He performed only a few experiments for

comparison, because he ran out of quota, in spite of the fact that he had taken

measures to reduce the amount of trace data collected, by not starting the trace until

several hours into the execution of the program, and stopping it immediately after the

target iteration. Each reduced run generated several GB of data. The trace analysis tool

took a couple of hours to open and display a single trace file. (John May, personal

communication)

Winstead et al. used a tracing tool to study the I/O performance of an application

[70]. Although their small test runs had no problems, when they scaled up to 512

processors, several problems appeared. First, their runs generated huge amounts of

data, which resulted in unwieldy trace files and significant I/O overhead in the target

program. The I/O overhead had the potential to seriously perturb the loosely

synchronized application. In addition, the overwhelming amount data exercised a file

system bug and caused a system crash.

Chung et al. evaluated several state-of-the-art tracing tools for scalability on Blue

Gene/L [13]. They found that the execution-time overhead of tracing grew faster than

linearly with the number of MPI processes, and that the volume of trace data rapidly

reached the order of 100 GB, which they argued was too large for efficient analysis or

visualization. In their studies, they only executed up to 2048 processes, only a small

fraction of the 131-thousand processor capacity of Blue Gene/L.

9

1.1.2 Summary

Event traces of parallel programs are an essential tool for correctly identifying the

root cause of an important class of performance problems; however, the large volume

of data collected creates challenges for measurement, storage, and analysis, and, in

some cases, prevents measurement experiments from being conducted at all. The

measured data is perturbed by the execution of measurement instructions, as well as

by the movement of the collected data to store it on disk or to transfer it across the

network. This perturbation increases the running time of the execution, and has the

potential to alter the measurements by an unacceptable level. The sizes of trace files

can easily reach gigabytes for even short-running executions with a small degree of

parallelism. This can limit what experiments are performed, given a particular user's

available file system resources. Analysis of huge amounts of data is challenging for

both tools and humans. Although ad-hoc methods exist for reducing the amount of

data collected in the trace, these methods require the user to partially analyze the

problem and take extra steps before the measurement run. In addition, reducing the

amount of data collected in these ways has the potential to miss the information

needed for diagnosing the problem. Case studies show the need for tracing parallel

programs at large scales, because performance problems do not always exhibit

themselves during small scale runs.

1.2 Dissertation Contributions

Given the need for gathering event-based trace data for larger application runs and

the scalability challenges of gathering trace data using traditional methods, our goal
10

was to develop a low overhead performance measurement technique for collecting

event traces.

Our first task was to perform a detailed study to investigate the scalability

problems of gathering traces. We used the results from the study to frame our

proposed approach to a scalable method for gathering trace data on high-end systems.

Our study showed that the overhead of writing the trace data to disk during the

execution increased with increasing numbers of writing processes, while the overhead

of trace measurement excluding the ·writing scaled with the amount of data being

measured. The results of our study suggest the need for a measurement method that

collects event-based performance information while reducing the amount of

performance data, and severely limiting or eliminating the need to write any data to

disk during the execution.

Our solution is a new performance measurement technique that is a hybrid

between profiling and tracing, trace profiling. The technique produces a summary of

the event details collected during a program run, and saves enough information to

adequately describe the dominant performance behaviors of the execution. Because

event trace data is compressed locally, the trace profiling method reduces the major

source of perturbation from event trace collection on today's high end supercomputing

systems: periodic flushing of trace data to disk during execution. To address the

problem of large data volumes, the technique identifies event patterns that are similar

enough that only one copy need be retained, thereby significantly reducing the amount

of data that needs to be stored. In addition, the reduced data volume decreases the

11

memory and computation burden on analysis tools and the amount of data that needs

to be rendered by a visualization tool.

We implemented a post-mortem prototype of the trace profiling method to

illustrate the viability of the technique and to evaluate methods for deciding trace

similarity. A critical piece of an implementation of the trace profiling technique is the

choice of a method for deciding when traces are similar enough to be considered

equivalent. Using our post-mortem implementation, we evaluated several methods for

deciding trace similarity for compression, amount of error introduced into the

measurements, and whether the compressed data still contained the information

needed to make a correct performance diagnosis.

We implemented a prototype runtime trace profiler. We present a study of trace

profiling overheads, including a comparison to traditional event trace collection.

1.3 Dissertation Organization

In Chapter 3, we present related work. We present the study of the overheads of

traditional event trace collection in Chapter 4. The design of the trace profiling

technique is described in Chapter 5. In Chapter 6, we demonstrate the post-mortem

implementation of our technique and the evaluation of methods for deciding trace

similarity. Chapter 7 describes our runtime implementation and its evaluation. Finally,

we conclude in Chapter 8.

12

2 Related Work

Other researchers have investigated reducing or eliminating the scalability

problems associated with tracing: perturbation of the application program,

unmanageable file sizes, and visualization and analysis challenges.

2.1 Perturbation

Because perturbation is intrinsic to measurement [17], research focuses on

techniques to lower or limit the overheads, remove the overheads in the resulting data,

and to measure and model the overheads.

Researchers have investigated methods to lower the overheads of tracing [37, 50,

55, 58, 75]. The Event Monitoring Utility (EMU) was designed to allow the user to

adjust how much data was collected in each trace record, thereby altering the amount

of measurement overhead [37]. The authors found the writing overhead to be the

largest monitoring overhead. Falcon has several features to reduce the amount of

perturbation in the target program [23]. The buffer sizes used for tracing can be

adjusted at run time, and it uses double-buffering to reduce the overhead of

transmitting the event data to the tool monitor threads. It also allows the type of

performance measurement to be altered at run time, switching between high- and low

overhead measurement techniques on the fly. The EventSpace tool has several features

designed to lower the overheads of gathering traces [8]. The trace buffer is only

accessed as needed by the monitoring threads. The trace buffers have a fixed size; the

oldest entries are discarded to make room for new entries. This means that trace data is

13

not stored permanently unless it is read by the monitor threads. Also, the tool employs

distributed data analysis to reduce the overhead of sending the trace data on the

network.

Several researchers have developed techniques to attempt to remove overheads

from the reported data [14, 20, 69, 72, 76]. Yan and Listgarten [76] specifically

addressed the overhead of writing the trace buffer to disk in AIMS by generating an

event marker for these write operations and removing the overhead in a post

processing step.

Several researchers have reported on the overheads of tracing. Yan and Schmidt

argued that the most intrusive activities were the allocation of memory buffers to save

the trace buffer and the periodic flushing of the trace buffer to disk [79]. Gu et al.

reported that the most expensive operations were event buffering and transmission

[23]. Chung et al [13] evaluate several profiling and tracing tools on BG/Lin terms of

total overhead and write bandwidth, and note that the overheads of tracing are high

and that the resulting trace files are unmanageably large. They suggest that the

execution time overhead is substantially affected by generation of trace file output, but

provide no measurements for their claim.

Two research efforts have developed models of the overheads in measurement

systems. Malony et al. developed a model to describe the overheads of trace data and

describe the possible results of measurement perturbation [40], then extended it to

cover the overheads of SPMD programs [57]. They assumed that in the case of

programs that do not communicate, the perturbation effect for each processor is only

14

due to the events that occur on that processor. However, they noted, as we do, that the

execution time of traced programs was influenced by other factors than just the events

in each processor independently. They did not explore this further. Waheed et al. [67]

explored the overheads of trace buffer flushing and modeled two different flushing

policies [66]. They found that the differences between the policies decreased with

increased buffer sizes. Their model did not account for the interaction between writing

processes when modeling the buffer flushing policies - instead, they assumed a

constant latency for all writes of the trace buffer.

A primary difference between our results and prior work investigating tracing

overheads is that we identify a previously unexplored scalability problem with tracing.

To the best of our knowledge, while others have noted that the largest overhead of

tracing is writing the data, none have shown how this overhead changes while

increasing the scale of application runs.

2.2 Trace File Size Reduction

Several research efforts focus on reducing the size of the trace file. The efforts fall

into two categories: trace file compression, and measuring or writing less trace data.

2.2.1 Trace File Compression

Several researchers have reported on efforts to reduce file sizes by compression.

Researchers working with the AIMS performance tool noted compression of 40-50%

in trace file sizes when using a binary representation of the trace, as opposed to an

ASCII encoding of the trace [79]. They also found that introducing new trace records

15

to represent event pairs that commonly occur together, such as function entry and exit,

and message events and associated message data, resulted in trace compression of

38% in an ASCII encoding of the trace. The Pablo SDDF trace file format has both

ASCII and binary representations [54]. The Pablo developers reported that, in their

experience, the binary representation of traces ranged from 42-75% smaller than the

ASCII representation of the files [7]. The Open Trace Format (OTF) [33] uses Lib

compression [16] to compress the ASCII traces either on-the-fly or as a post-

processing step. The OTF developers found that OTF compressed trace file sizes were

about half the size of STF trace files for the applications they examined. While these

compression methods do reduce the size of trace files, the size of the traces still scales

with the number of events measured, determined by the number of concurrent

processes and the length of the program run. Gamblin et al. use the CDF 917 wavelet

transform to compress traces collected for the purposes of detecting load imbalance

[18]. Knupfer developed a method called Compressed Complete Call Graphs (CCGs)

that takes a trace file and compresses it based on the event stream and event

measurements to ease the burden on trace analysis tools [34]. These two methods

require that all data be collected before compression begins, which means that the

problems of collecting and storing a large amount of data still exist.

2.2.2 Measuring or Writing Less Data

This section details methods for reducing the amount of data collected by

measuring or writing less data. These techniques fall into three categories: simple

methods that omit data, methods that alter the type of measurement employed based
16

on some rule, and methods that decide when sections of traces are similar and measure

or store a reduced number of pattern executions.

2.2.2.1 Simple Omission Methods

Generally, tracing tools provide API calls that give the user the option of starting

and stopping tracing of the application at any point during the execution [5, 2, 71, 46,

52, 58, 60, 63, 74, 80]. This makes it possible for users to reduce the amount of data

that is collected and to potentially reduce the size of the trace data files to reasonable

levels. Unfortunately, there is a risk that this method might cause the trace to omit

critical information needed for diagnosing the performance problem, and it increases

the burden on the tool user to identify the approximate location of the problem, and to

make code changes to control which events are captured.

TAU [58] reduces the amount of data collected by allowing users to disable

instrumentation in routines that are called very frequently and have short duration.

TAU also includes a tool called tau_reduce that uses profile data to discover which

functions should not be instrumented in a user program, and feeds this information to

the automatic source instrumentor. Here, the size of the trace file still scales with the

number of concurrent processes and the length of the run.

2.2.2.2 Altering Measurement Type Methods

Three tools alter the type of performance data collected to reduce file size. Pablo

[7] gives users the option of specifying an event-rate threshold. If an event occurs at a

greater rate than the threshold, a less invasive method of measurement, such as event

17

counting, is employed. Vetter presents a method for statistically sampling MPI events

[65]. Each time an MPI event is encountered, it is either sampled or not. For each

sampled event, the tool can record statistics, log the event to a trace file, or even

ignore the data. Falcon provides a choice of measurement sensors: sampling, tracing,

and extended, that can be interchanged at runtime to flexibly alter the amount of data

collected [23]. An example is sampling performance until a problem is detected and

then turning on tracing to get more detailed information. Although each of these

methods reduces the amount of data collected, they do so at the risk that some

important performance behaviors will be missed.

2.2.2.3 Trace Similarity Methods

Several researchers reduce trace file size by deciding when sections of traces are

similar enough that a reduced number of copies of the section need to be retained.

Methods in this category include deletion of similar trace sections; trace sampling;

statistical clustering; and signal processing.

Some researchers use a combination of event names and measurements to decide

when traces are similar. Knupfer and Spooner define two sections of traces as similar

if the call graph context and measurements of the events are equal. Knupfer defines

equality using both relative and absolute differences [34]; Spooner et al. use the

relative difference in instruction counts [60].

Another approach defines similarity by event names. By ignoring event

measurements, this approach has the potential to miss important performance

behaviors if there is performance variability in different iterations of the same event

18

stream. Chung et al. use a filter that detects repeated communication patterns [13];

they keep performance data for only one instance of each pattern. Freitag et al. use a

periodicity detector to notice repeating sequences of events and keep a reduced

number of iterations of each sequence [15]. Similarly, Yan and Schmidt detect

repeating sequences of events and store the average measurements of those events

[79]. Noeth and Mueller also detect repeated sequences of message-passing events and

store one copy of each sequence; they optionally store summary information about the

events, such as average measurements [49]. In later work, they include the ability to

store more detailed timing information: statistical "delta" times, histograms, or

histograms by call sequence [53].

Other efforts use trace sampling to reduce trace size. Carrington et al. use trace

sampling to reduce the amount of time it takes to gather memory reference traces for

the purpose of performance modeling [10]. They collect data for a reduced number of

executions of the basic blocks in a program. Vetter presents a method for statistically

sampling MPI events [65]. Each time an MPI event is encountered, it is either

sampled or not. Gamblin et al. use statistical sampling with a user-specified

confidence interval and metric. [19]. Although sampling methods do reduce the

amount of trace data collected, they have the potential to miss critical performance

behaviors that occur during unmeasured portions of the program.

Aguilera et al. [4], Nickolayev et al.[48], and Lee et al. [39] apply statistical

clustering to traces and select a representative trace for each cluster of processes.

Nickolayev and Lee use the Euclidean distance for clustering, while Aguilera uses a

19

metric based on the amount of communication between two processes. These

clustering methods reduce trace data across processes, but do not reduce trace data

within a process (temporal reduction). As a result, file sizes will still scale with the

running time of the application.

Several groups apply methods from signal processing to traces. Casas et al. and

Huffmire et al. use the Haar wavelet transform to automatically determine the phases

of a program [11, 30]. Hauswirth et al. use dynamic time warping to decide when two

traces are similar for aligning multiple traces [26].

Researchers have evaluated several methods for deciding the goodness of a

particular trace similarity metric. Ratn et al. use aggregate statistical measures, such as

total time spent in a function, to evaluate their method [53]. Gamblin et al. compute a

trace confidence measure to evaluate their trace sampling results, which is tells the

percentage of time the mean trace of sampled processes is within an specified error

bound of the mean trace of the full trace [19]. In their wavelet transform method,

Gamblin et al. use a root mean square measure to estimate the error in reduced traces

[18]. They also present qualitative results, showing a visualization based on a reduced

trace compared with one from a complete trace. Yan et al. compare the measurements

in their reduced trace against the real trace time stamp by time stamp and produce both

a relative and absolute measure of the overall differences [77]. In addition, they also

present whole program statistical measurements and visualizations for qualitative

companson.

20

2.3 Analysis Tool and Visualization Scalability

Three trace file formats address the scalability problems faced by trace analysis

tools. The Scalable Logfile Format (SLOG) was developed to address the scalability

problems encountered by visualization tools [73]. In SLOG, events are partitioned into

intervals called Bounding Boxes, which are organized into a binary tree. This

organization of the data allows the visualization tool to display a low-resolution

representation of the trace data without reading in the entire trace file. The Structured

Trace Format (STF) was designed to write the data to multiple files to allow the files

to be read and written in parallel [2]. Their goals were to make the format be as

compact as possible and allow for fast random access to the data and easy extraction

of the data. The Open Trace Format (OTF) was designed to address the challenges that

come with the ever-increasing scales of HPC platforms [33]. It was designed so that

the trace could be processed by a parallel backend, which reduces the time to open and

visualize very large trace files. OTF uses an ASCII encoding which enables a tool to

do a binary search on files for time intervals.

Several researchers have worked to reduce the amount of data presented to the user

in order to facilitate understanding of the performance of the program. Vetter presents

a method for identifying communication inefficiencies by applying machine learning

techniques to trace files of MPI communication events [64]. The end result is a

breakdown of the communication events that were considered "normal" and

"abnormal" (e.g. late sends or late receives), and the location in the source code from

which they were called. The AIMS performance tool suite computes performance

21

indices from parallel program traces [78]. Performance indices are designed to

quantify program characteristics to locate bottlenecks. An example of a performance

index is the communication overhead index, which gives an indication of how much

of the program's execution time was spent in communication activities. Although both

of these methods greatly reduce the amount of data presented to the user and help to

identify performance problems, neither method shows causal information for the

problems.

The scalability of trace visualizations is not a new topic [24, 28, 27, 41, 47];

however, the continuing upward scaling of high end systems drives a continuing need

for more scalable solutions. Knupfer et al. show how CCGs can be used to facilitate

visual understanding of trace data [35]. Color blocks that can be interactively

decomposed represent behavior patterns in the execution. The visualization scales with

the number of parallel entities in the execution and with the running time of the

execution. Spooner and Kerbyson present a tool that takes multiple traces as input and

outputs visualizations that highlight the differences between the traces [60]. Their

primary goal was to generate visualizations that indicate performance differences in

multiple executions over time. They note that their tool could be used to compare

iterations within a single execution; however, this is achieved by either creating a

separate trace file for each iteration or extracting the iteration data from the trace as a

post-mortem step. Neither of these methods addresses the problem of collecting and

storing the possibly enormous amount of trace data.

22

3 Study of Tracing Overheads

We conducted a measurement study to discover the scalability challenges in event

tracing. We used the results of this study as a guide when designing our low-overhead

approach to gathering event traces.

3 .1 Experiment Design

Our experiments are designed to focus on separating runtime tracing overhead into

two distinct components: the overhead of just the trace instrumentation, and the

overhead of flushing the trace buffer contents to files. We performed runs with and

without trace instrumentation (instr and nolnstr); and with and without buffer flush to

file enabled (write or noWrite), then calculated the overheads using the following

metrics:

• Wall clock time: MPI_ Wtime, measured after MPI Init and before

MPI Finalize. The following are not included m this measurement:

instrumentation overhead for tool setup, finalization, and function calls

before/after the timer is started/stopped; and writing overhead for trace file

creations, final trace buffer flushes before file closure, trace file closure, and,

in the case of MPE, trace file merging.

" • Write overhead: Average total wall clock time of the write runs mm us

average total wall clock time of the no Write runs

23

• Instrumentation overhead: Average total wall clock time of the runs that did

not write the trace buff er minus average total wall clock time of the

noBuff_ nolnstr _no Write runs

Given our goal of pushing to the current scaling limits of tracing, we wanted to

measure an application with a very high rate of communication, so that trace records

for a high number of MPI communication events would be generated. We picked

SMG2000 (SMG) [9] from the ASC Purple Benchmark suite. SMG is characterized by

an extremely high rate of messages: in our four process runs, SMG executed 434,272

send and receive calls in executions that took approximately 15 seconds. For

comparison, we also included another ASC Purple Benchmark, SPhot (SP) [1]. SP is

an embarrassingly parallel application; in a four-process, single-threaded execution of

512 runs with a total execution time of 350 seconds, the worker processes pass 642

messages, and the master process passes 1926 messages. We configured both

applications with one thread per MPI process.

To vary the number of processes, we used weak scaling for the SMG runs. As we

increased the number of processors, we altered the processor topology to P * 1 * 1,

where P is the number of processors in the run, and kept the problem size per

processor, nx * ny * nz, the same, thereby increasing the total problem size. We used

both weak and strong scaling for the SP runs, referred to as SPW and SPS

respectively. We configured these approaches by changing the Nruns parameter in the

input file input.dat, which controls the total amount of work done in a single

24

execution. For strong scaling, we kept Nruns constant at 512 for all processor counts;

for weak scaling, we set Nruns equal to the number of MPI ranks.

~
c:
830-1---~-l--~~~~~~~~~~~~~~-j

" .!!!. ..
E
~20+--~~~.--~~~~~~~~~~~~-----i

O+--~~~~~~~~~-,--~~-,-~~~.------'

0 100 200 300 400 500
Number of Processes

Figure 1 Performance of Uninstrumented Executions

We used SMG's built-in metrics to measure Wall Clock Time, summing the values

reported for the three phases of the execution: Struct Interface, SMG Setup, and SMG

Solve. We used the native SPhot wall clock time values for Wall Clock Time. Figure 1

shows the scaling behavior of the uninstrumented applications. As expected, the

execution time of SPS decreases with increasing numbers of processors, since we are

keeping the total problem size constant.

In some sense the choice of a particular tracing tool was irrelevant to our goals: we

wanted to investigate a "typical" tracing tool. However, we wanted to avoid results

that were in some way an artifact of one tool's particular optimizations. Therefore, we

used two different robust and commonly used tracing tools for our experiments: TAU

andMPE.

25

We built several versions of TAU version 2.15.1 [58]. For the no Write versions we

commented out the one line in the trace buffer flush routine of the TAU source that

actually calls the write system call. We altered the number of records stored in the

trace buffer between flushes, by changing the #define for TAU_MAX_RECORDS

in the TAU source for each size and rebuilding, to test two different buffer sizes: 0.75

MB (32,768 TAU events); 1.5 MB (default size for TAU; 65,536 TAU events); 3.0

MB (131,02 TAU events); and 8.0 MB (349,526 TAU events). We used the default

level of instrumentation for TAU, which instruments all function entries and exits.

MPE (the MultiProcessing Environment (MPE2) version l.0.3pl [80]) uses the

MPI profiling interface to capture the entry and exit time of MPI functions as well as

details about the messages that are passed between processes, such as the

communicator used. To produce an MPE library that did not write the trace buffer to

disk, we commented out three calls to write in the MPE logging source code. We

also had to comment out one call to CLOG_ Converge sort because it caused a

segmentation fault when there was no data in the trace files. This function is called in

the MPE wrapper for MPI Finalize, so it did not contribute to the timings

reported in the SMG metrics. We altered the buffer sizes by changing the value of the

environment variable CLOG BUFFERED BLOCKS. We also set the environment - -

variable MPE _LOG_ OVERHEAD to "no" so that MPE did not log events

corresponding to the writing of the trace buffer. In MPE, each MPI process writes its

own temporary trace file. During MPI _Finalize, these temporary trace files are

merged into one trace file, and the temporary trace files are deleted. The temporary

26

and merged trace files were written in CLOG2 format. We used two different buffer

sizes: 1.5 MB (24 CLOG buffered blocks), and 8.0 MB (default size for MPE; 128

--....... --....-!!!'
••••• Ill Lustre IJO tramc

• Computeproceu

Figure 2 Experiment Environment.

The MPI processes in our experiments, represented by purple circles in the
diagram, ran on a subset of the 1024 compute nodes of MCR. MPI
communication between the processes traveled over the Quadrics QsNet
Elan3 interconnect, shown by the purple dashed line. The 1/0 traffic for the
Lustre file system, represented by the blue dotted line, also traveled over the
Quadrics interconnect. Metadata requests went to one of two metadata servers
(MDS), a fail-over pair. File data requests first went through the gateway
nodes to an object storage target (OST), which handled completing the
request on the actual parallel file system hardware.

CLOG buffered blocks). For SPW only, we altered the SPhot source to call MPE

logging library routines to log events for all function calls, to correspond to the default

TAU behavior more directly. We refer to this as "MPc" for MPE with customized

logging. For the SPW MPc experiments, we disabled the trace file merge step in

MPI Finalize, because it became quite time consuming with larger trace files.

We collected all of our results on MCR, a 1152-node Linux cluster at LLNL

running the CHAOS operating system [21] (See Figure 2). Each node comprises two

2.4 GHz Pentium Xeon processors and 4 GB of memory. All executions ran on the

27

batch partition of MCR. The trace files, including any temporary files, were stored

using the Lustre file system [61]. This platform is representative of many high end

Linux clusters in current use.

Each of our experiment sets consisted of thirty identical executions.

3.2 Results

In this section, we present results from a study of tracing overheads as we scale up

the number of application processes. These results are part of a larger investigation;

full details are available as a technical report [44]. In this study, we examined how the

overheads of tracing change as the application scales. We ran sets of experiments with

32, 64, 128, 256, and 512 processes, traced with TAU and MPE, using buffer sizes of

1.5 and 8.0 MB.

3 .2.1 Event Counts and Trace File Sizes

Here we describe the event counts generated while tracing the applications.

Complete details can be found in the technical report [44]. For SMG, the counts for

TAU and MPE exhibit similar trends, but are different by roughly an order of

magnitude. As the numbers of processors double, the per-process event counts and

trace data written by each process increase slightly (in part due to increased

communication), while the total number of events and resulting trace file sizes double.

For SPS, there are markedly different results between TAU and MPE; the event counts

differ by six orders of magnitude. This is because with TAU we are measuring all

function entries and exits, whereas with MPE we measure only MPI activity. For both

28

TAU and MPE, doubling the number of processors results m the per-process event

counts decreasing by half.

For TAU only, the total event count and resulting trace file sizes remain constant,

whereas for MPE, the maximum per-process event count, the total event count, and

resulting trace file sizes increase slightly. For SPW, the counts for TAU and MPc are

nearly identical, while the counts for MPE differ. Again, this is because of differences

in what was measured by the tools. The total event count and trace file sizes for MPE

are roughly six orders of magnitude less than those of TAU and MPc.

We use this information to derive an expectation for tracing overheads for the

different applications and tools. For the weakly-scaled SMG and SPW, we expect that

the overheads of tracing would remain relatively constant with increasing numbers of

processors because the amount of data being collected and written per-process remains

relatively constant. However, for SPW with MPE, we expect to see very little

overheads due to the small amount of data collected. For SPS and TAU, we expect the

overheads of tracing to decrease with increasing numbers of processors, because the

amount of data being collected and written per-process decreases with increasing

processes. For SPS with MPE, we expect to see very little overhead because of the

small amount of data collected.

3.2.2 Execution Time

Figure 3 shows the average wall clock times for our experiments broken down into

time spent in application code, trace instrumentation, and writing the trace buffer. The

graph on the left shows the measurements for SMG with TAU and MPE, and SPW
29

Ill writing
350 +------1111 instrumentation t--11t---11

300 +-------'-lll_ap~p-lic_a~_·o_n __ _,__-111---111
..... ..
]zso+---~---....-llll----111---llUI
8
!zoo +----11!1----~
Cl
E150+---:111r----~
j::

100

50

0
SMG SMG SMG SMG SPW SPW SPW SPW
TAU TAU MPE MPE TAU TAU MPc MPc
1.5 8.0 1.5 8.0 1.5 8.0 1.5 8.0

1800~-~

1600----<

1400-i!i---i

'Ui'1200-----< ,,
c 8 1000 ..,,___ _ ___.
GI
UI

-: 800
E j: 600 _________ ___.

400

200

0
SPS SPS
TAU TAU
1.5 8.0

Figure 3 Performance of Instrumented Executions.

Here we show the total execution time for SMG measured with TAU and
MPE, and SPhot measured with TAU. The colors in the bars indicate the time
spent in application code, time in trace instrumentation, and time writing the
trace buffer. Each bar in a set represents the average behavior of executions
with 32, 64, 128, 256, and 512 processes, respectively. The set labels include
(top to bottom): the benchmark name, the measurement tool, and the buffer
size.

with TAU and MPc. In each run set, we see the same trend; as the number of

processes increases, the total execution time increases, largely due to the time spent

writing the trace buffer. The time spent in the application code and in trace

instrumentation remains relatively constant. The graph on the right shows the

execution times of SPS with TAU. Here, as the numbers of processes increase, the

total execution time decreases. However, even though the time spent in writing the

trace buffer decreases with increasing processors, it does not decrease as rapidly as the

time spent in instrumentation or application code. For SPS and SPW with MPE, the

differences between the write and no Write executions were indistinguishable due to

the very small amounts of data collected and written.

30

Table 1 Correlation of Total Wall Time with Maximum Event Count in a Rank

SMG SPS SPW
Buffer Sz Write? TAU MPE TAU MPE TAU MPE-C MPE
1.5 yes 0.96 0.85 0.91 -0.78 0.69 0.80 0.98
8.0 ves 0.97 0.90 0.95 -0.81 0.61 0.76 0.98
1.5 no 0.98 0.98 0.99 -0.70 0.81 0.55 0.96
8.0 no 0.98 0.98 0.99 -0.79 0.74 0.77 0.95

We computed the percentage contribution to variation using three-factor ANOVA,

with the buffer size, the number of processes, and whether or not the trace buffer was

written to disk as the factors [44]. In general, there was quite a bit of variation in the

running times of the executions that wrote the trace buffer, which explains the high

contribution of the residuals. Sources of variability in writing times for the different

executions include: contention for file system resources, either by competing

processes in the same execution, or by other users of Lustre; contention for network

resources, either by other 1/0 operations to Lustre, or by MPI communication; and

operating system or daemon interference during the write. Any user of this system

gathering trace data would be subject to these sources of variation in their

measurements. For SMG measured with TAU and MPE, the largest contributing factor

was whether or not the buffer was written, at 33% and 26%, respectively. The largest

contributing factor for SPS with TAU was the number of processes in the run (19%),

followed closely by whether or not the trace buffer was written (14%). SPS with MPE

had the number of processes as the dominating factor at 51 %. SPW with TAU and

MPc both had writing the trace buffer as the largest contributor, at 34% and 24%,

while SPW with MPE had the number of processes as the largest, at 81 %. The

31

80

70

60

'Uj'SO .,,
c
840

!
~30
j::

20

10

SMGTAU

30

20

I I I 10

2so~---~

SMG MPE SPSTAU ,SPWTAU
900

800 200 +------<11-l

600 150 +---111----l!H

500

400 100 +---111----l!H

300

•1 200

100

I Ill I I I o o o o+-,-,__.,.._,...~
1.0 1.1 1.2 1.3 1.4 1.1 1.2 1.4 1.5 1.6 .37 .74 1.5 3.0 5.9 3.7 3.7 3.7 3.7 3.7

* 10"'7 * 10"'6 "'10""8 * 10""7
Maximum Event Count in a Single Rank

400
SPWMPc

350

300

250

200

150

100

50

0
3.7 3.7 3.7 3.7 3.7

* 10""'7

Figure 4 Tracing Overhead with Maximum Event Count in a Single Rank.

The groups of bars from left to right in the charts represent different processor
counts: for SMG they represent 32, 64, 128, 256, and 512 processes; for SPS
they represent 512, 256, 128, 64, and 32 processes; for SPW, they represent
32, 256, 128, 64, and 512 processes.

differences in the dominating factors for the SP runs with MPE are attributed to the

comparatively very small amount of data collected.

3 .2.3 Execution Time vs Event Counts

Table 1 shows the correlation of the average total wall clock time with the maximum

event count over all ranks. SPS with MPE had a relatively weak negative correlation

with the maximum event count, because as the process count increases, the number of

messages that the master process receives increases, and the execution time decreases,

giving a negative correlation. In general, executions that did not write the trace buffer

to disk had a higher correlation with the event count than did the executions that did

write the trace buffer to disk.

Figure 4 shows the overheads of writing and instrumentation as the maximum

number of events in a single rank increases. For SMG with TAU and MPE, we see a
....

32

clear pattern. The instrumentation overhead appears to vary linearly with the number

of events, while the overhead of writing the trace increases much more rapidly, and

does not appear to have a linear relationship with the event count. The behavior of

SPS is different, because in this application, as the number of events increases, the

number of processes decreases; however, the instrumentation overhead still appears to

have a linear relationship with the event count. The write overhead is high at higher

event counts, but also at the low event counts, when the number of writing processes is

higher. For SPW, the instrumentation overhead is relatively constant, as expected

since the number of events does not change much between the run sets. However, the

writing overhead fluctuates widely. The reason for this is that the maximum event

count in a rank does not monotonically increase or decrease with increasing processors

as it does for SMG or SPS.

3 .3 Conclusions

In our scaling experiments, the execution times of the no Write runs tended to scale

with the maximum number of events. However, the execution times of the write runs

did not scale as strongly with the number of events, and tended to scale with

increasing numbers of processors, possibly due to contention caused by sharing the

file system resource. Our results suggest that the trace writes will dominate the

overheads more and more with increasing numbers of processes. They indicate that the

trace overheads are sensitive to the underlying file system.

Realization of a scalable approach to tracing will require an overall reduction in

the total amount of data. Data reduction is needed not only to reduce runtime
33

overhead, but also to address the difficulties of storing and analyzing the resulting

files. We incorporated the results of our measurement studies into the design of our

approach to low-overhead event tracing.

34

4 Trace Profiling

We have developed a novel approach to performance measurement designed to

address the scalability problems of gathering event-based data. Our approach is a

hybrid between profiling and tracing that we call trace profiling. The goal of trace

profiling is to gather enough information to adequately describe the dominant

performance behaviors of the execution, at a greatly reduced data volume than

gathered by a traditional tracing tool. The trace profiling technique detects event

patterns, or segments, in the execution trace that have similar behavior. Segments with

similar behavior are merged, so that only one copy of the segment is retained. Thus, a

trace profile contains a summary of the event patterns that occurred during program

execution.

In Section 5.1, we start by describing traditional event trace collection in order to

provide background for explaining and evaluating trace profiling. Next, in Section 5.2,

we describe the trace profiling technique. We present an overview of the technique

followed by our methodology for marking segments in traces and for segment

merging. In Section 5.3 we detail the methods we use for detecting segments with

similar behavior. In Section 5.4, we present models for predicting the sizes of

traditional traces and trace profiles; in Section 5.5, we use the models to predict the

size reduction achievable by trace profiling and to compare traditional tracing and

trace profiling. Finally, in Section 5.6, we illustrate the potential benefits of trace

profiling for visualization and analysis tools.

35

4.1 Background

Traditional tracing results in an in-order listing of the events that occurred during

an application run. Generally speaking, a traditional tracing tool creates a record for

each event encountered during the execution and stores it in a buffer in memory.

When the buffer becomes full, the contents of the buff er are flushed to disk, and the

buffer is reused. With most tracing tools, each process creates its own event trace; the

individual traces can optionally be merged at the end of the execution.

A traditional event trace of a parallel program contains two types of information: a

mapping of event identifiers to the event names, e.g. the function main might have

identifier 1; and a series of records that contain data about program events. In this

document, we will call the mapping of event identifiers to event names an event map.

The event map can reside in the same file as the event records or a separate file. The

event records contain data about function entries or exits, message passing data, other

performance measurement data, or bookkeeping information. Examples of

bookkeeping records include records that indicate the start and stopping times of

flushing the trace buffer. For function events, there is a separate record each for event

entry and event exit. We show a diagram of example trace files for a parallel

application run with two-process in Figure 5.

4.2 Trace Profiling Technique

Trace profiling is different from traditional tracing because it doesn't maintain a

complete, in-order list of event entry and exit records for each process. A trace profiler

36

Ev°'emMap
1 M<lln . ,;·

·2. do ~I(
S ~~S$14

•'EW:f etd=2 • ·.Eld=2
Rltl=:1 ~ •Rid:£:1 Rltl=:1
TJ1Jllij#1 nmrr-:a .rmrr-:7
Typ~nlri ·ry~try T~

• • •

....

• • •
.

· '*Tlme=>:20
• l'yp.a=Ex!

Eld'"'.3
'Rii:F1
Time .. ~
Typ~)(!

Figure 5 Data from Traditional Trace

E'i~1
Rld=t·
uni~4•.· Typa..eltlt.

This figure shows the data obtained from a traditional trace. Each process
outputs its own event map and event records file(s). The event records file is
simply an in-order series of event records gathered from start of the program
to the end of the program. In the above diagram, Eid refers to the event
identifier given in the event map and Rid is the rank identifier. Each record
has a timestamp and indicates the event type, e.g. entry or exit.

partitions the processes of the parallel program into process groups. A process group

contains the performance information for one or more processes that had the "same"

behavior. Each process group contains a list of segments. A segment is simply an in-

order series of events and their associated information for a portion (or segment) of the

execution of the program. Each process group maintains a segment execution list,

which is a listing of the order of segment executions and the timestamp at which each

segment execution began. Each segment maintains its time duration and a listing of

the events that executed in the segment. For each event, we maintain the relative

starting time of the event with respect to the start of the segment execution, the event's

duration, and any other associated information, such as message passing data.

We show a representation of the data for a sample process group in Figure 6. The

process group contains the data for ranks 0, 2, and 4. There were two segments in the

execution that executed two times each. Segment 0 executed first at time= 1 and again ,

37

Rank List 0, 2, 4
Segment Map: O:init, 1:mainloop
Se ment Execution List: 0:1 1 :6 1 :23 0:40

Sid=O Event Data
, Ouration=6

Figure 6 Process Group

This figure shows an example process group and the information it contains
about segments. It maintains the ranks of the processes that it represents in the
rank list. The segment map gives a mapping between segment identifiers (Sid)
and the name of the segment. The segment execution list keeps track of the
order of segment executions and their start times (Sid:start_time). The
segments for the process group are in the segment list. Each segment has a
duration and event data for the events that executed during that segment. Each
event has an entry record that contains an identifier, Eid, a start time, Ts, and
a duration, Dur; and an exit record.

at time=40; Segment 1 executed at time=6 and again at time=23. We keep separate

entry and exit records for each event: the entry event records store the event identifier

a start time relative to the start of the segment, and a duration; the end records simply

mark the ending of the events so that the :function call stack can be maintained.

A trace profile contains the following items:

• Event Map: One event map stores the mapping of event names to event

identifiers for all process groups.

• Process Groups: Each process group contains the following:

• Rank List: A list of ranks, which tells which processes' data the

process group contains.

38

• Segment Map: A mapping between segment identifiers and segment

names.

• Segment Execution List: A listing of segment identifiers and

timestamps, telling the start time of each segment execution in a

process group.

• Segment List: A list of segments for a single process group. Each

segment has a header which gives each segment's identifier and

duration, and is followed by a list of event data.

• Event Start Record: An identifier, a timestamp which

gives its start time relative to the start of the segment; a

duration; and possibly one or more message data records.

• Message Data Record: A type (send or receive), a

rank identifier (source or destination), a tag, and a

communicator.

• Event End Record: A marker that indicates an event end.

We merge segments both within and across processes. Segments are merged if

they are equal, as determined by a given difference method. A trace profiler can have

multiple difference methods for deciding segment equality; we describe and compare

several methods in Section 5.3. We describe the criteria and algorithms for intra- and

inter-process merging in Sections 5.2.2 and 5.2.3.

39

int main () {
start_segment("main_O");
MPI Init ();
end::::segment("main_O");
for(i=O; i < 100; ++i) {

start_segment("main_loop_1_1");
do_work ();
MPI Allgather () ;
end=segment("main_loop_1_1");

for (j=O; j < 10; ++j) {
start_segment("main_loop_2_1");
do other work();
end_segment("main_loop_2_1");
while(k < otherRanks){

start_segment("main_loop_2_1_1");
MPI Sendrecv () ;
end::::segment("main_loop_2_1_1");

start segrnent("rnain loop 2 2");
stop_segment("rnain_loop_2_2");

start_segment("main_l");
MPI Finalize();
end::::segment("main_l");

Figure 7 Segment Context Marking

We show a single function, main() with the instructions added to mark the
segment contexts. We mark an initial segment at the start of main, all loops
that contain at least one function event, and code regions surrounding marked
loops. The segment context names are hierarchical: the second loop is
marked "main_loop_2_1" and its subloop is marked "main_loop_2_1_1".
Segment marking is automated using a dynamic instrumentation library.

4.2.1 Trace Segmentation

We insert segment markers into the source code or program binary. We define

segments as follows: the initial segment starts at entry to main; for each program

loop containing at least one measured event, we stop the current segment before the

loop starts, start a new segment at the top of each loop iteration, stop the segment at

the bottom of the loop iteration, and start a new segment after the last iteration of the

loop completes; and end the final segment at program termination. The segment

context is the section of code, for example, the main _loop_ l _ l loop in Figure 7.

40

4.2.2 Intra-process Segment Comparison

For intra-process trace reduction, we compare the segments for each context pair

wise to determine if they are similar. If they are, we say that the segments match and

retain a single representative segment. Each segment Si contains an ordered list of

events Ei = {e0, e1, ••• , em}. We maintain a list storedSegments, which contains the

segments that represent the performance behaviors in the execution, and a list

segmentExecs that holds the starting times and identifier of each representative

segment so that we can later recreate a full trace. Given an equivalence operator ::::: for

For i = 0 to len(Enew):
Enew[i].start = Enew[i].start - Snew·Start
Enew[i].end = Enew[i].end- Snew·start

Snew·end = Snew·end- Snew·start
match = False
For i = 0 to len(storedSegments):

Sstored = storedSegments[i]
match= compareSegments(snew' Sstored)
If match = True:

segmentExecs = segmentExecs U (sstored.id,snew·start)
break

If not match:
Snew.id = getNewld()
segmentExecs = segmentExecs U (snew·id,Snew·start)
Snew·start = 0
storedSegments = storedSegments u Snew·

Boolean compareSegments(snew, Sstored):
If Snew·context :;CSstored·context: return False
If len(Enew) 1= len(Estored): return False
For i = 0 to len(Enew):

If Enew[i].id :r=Estored[i].id: return False
If Snew::::: Sstored: return True
Else: return False

Figure 8 Algorithm for Intra-process Segment Matching

41

MPl_Allgather do_ work

115
116

MPl_Allgather

143
144

Figure 9 Intra-process Segment Matching

MPl_Allgather

Here we show a portion of an example trace and three segments to illustrate
segment matching. The top bar represents a portion of a trace for the program
in Figure 7. Time increases from left to right, and time values are indicated
above the bar. Segments markers are shown as light gray rectangles with
vertical text that indicates the context of the segment. Events are shown in
white boxes. Below the trace, we show the result of segmentation. In each of
the three segments, the time stamps for the events and ending time of
segments are adjusted relative to the start time of the segment. We name the
segments sO, sl, and s2. In the bottom row, we show two examples of
segment matching (See Section 5.3.).

some similarity metric, and a segment Snew that has events Enew the algorithm

comparing segments is shown in Figure 8. Note that a segments match requires that

segments have the same context and the same number of events occurring in the same

order.

4.2.3 Inter-process Segment Comparison

For inter-process trace reduction, we compare the stored segments lists that were

collected for each process. Initially, each trace profile contains data for a single

process group, each of which only contains data for a single rank. Given two trace

42

MPl_Allgather

l ~ ~
0 24 99

23 77

Figure 10 Inter-process Segment Matching

The top and bottom bars represent traces for different ranks of the program in
Figure 7. Time values on the bars increase from left to right. Segments
markers are gray rectangles with text that tells the segment context. Events are
white boxes. Between the traces, we show the result of segmentation. We
name the segments sO.x and s l .x; x indicates the rank that wrote the trace. In
the segments, the time stamps for the events and segment end times are
adjusted relative to the segment start time. To decide matching, we examine
the segments pairwise in order, comparing segment start times and all event
timings.

profiles with equal numbers of segments, we compare each pair of segments in order

and determine if they are similar. If all segments in both traces are deemed similar, we

say that the trace profiles match, add the new process rank identifier into the process

group, and retain a single representative trace profile for the process group. After

comparing all trace profiles, we end up with a set of representative trace profiles, one

for each process group. We give an example of trace matching in Figure 10. In

43

Boolean compareProcessGroups(Po, P1)
SEo = Pa.segmentExecs
SE 1 = P 1.segmentExecs
Iflen(SEo) * len(SE1): return False
For i = O; i < len(SEo); ++i:

ido:timeo = SEo[i]
id1:time1 = SE1[i]
If timeo ~ time 1: return False
So = Pa.segments
S1 =Pi.segments
so= So[ido]
SJ= S1[id1]
match= compareSegments(so, s1)
If not match: return False

return True

Boolean compareSegments(so, s1):
If s0.context :;ts1.context: return False
If len(Eo) * len(E 1): return False
For i = 0 to len(Eo):

If Eo[i].id ¢E1[i].id: return False
If so~ s1: return True

Else: return False

Figure 11 Algorithm for Inter-process Matching

addition to comparing event measurements, we also check message passing

parameters: source/target rank, bytes transferred, message tags, and communicators.

All parameters save the source/target rank must be identical; the source/target rank can

be either the same offset, e.g. rank+ 1 in a nearest neighbor communication pattern, or

the same rank, e.g. all ranks send to rank 0.

To compare two process groups Po and P1, with respective segment execution lists,

SEo and SE1, where SEi = {ido:timeo, id1:time1, ... idk:timek}, and stored segment lists,

So and S1, where~= {so, s1, ... , sm}, we follow the algorithm in Figure 11.

44

4.3 Trace Profile Segment Comparison Methods

We used several methods to decide the similarity of segments. Each of these is

described below. Our choices were inspired by methods used by other researchers to

reduce traces (See Chapter 3). They fall into two categories: distance methods and

iteration-based methods.

4.3.1 Distance Methods

The distance methods produce a difference measure, which is then compared

against a user-supplied threshold to determine the presence or absence of a match.

Several of the distance methods are standard methods for computing distances

between values and sets of values. We use the relative difference (re!Diff), absolute

difference (absDiff), and three variations on the Minkowski distance (Manhattan,

Euclidean, Chebyshev), and wavelet transforms (avgWave, haarWave).

4.3 .1.1 Relative Difference

We compare the relative differences between each event measurement against a

user-defined threshold; if greater, the events are not equal:

. lx1 - Xzl
relDif f(xv Xz) = () max x1,x2

Eq. 1

To see how re/Diff matches segments, we consider our example in Figure 9. We

compute the relative differences between each of the paired measurements in the

segments. If any are above our chosen threshold, say 0.5, then the match fails.

Comparing s2 with sl, we first compare the start times of the do_work event: x1=1

and xi=l, with relative difference 0. Since the relative difference is less than 0.5, we

45

continue on computing relative differences. Next we check the end times for the

do_ work event. Here we compute a relative difference: x1=17 and x2=40, giving a

relative difference of 0.58. This is above our threshold, so the segments do not match.

When we compare s2 with sO, we find that no differences are greater than 0.15 (x1=17,

x2=20), so the s~gments match. The new segment is discarded since its behavior is

reflected in the measurements in sO.

The relative difference function compares each measurement with its paired

counterpart in isolation. The computed difference is proportional to the magnitude of

the paired measurements, meaning that larger differences between larger

measurements don't overshadow differences in smaller measurements. Because the

difference between each measurement pair will be judged in isolation, the relative

difference should be one of the strictest difference criteria in our set. The choice of

threshold used will have a large bearing on the degree of matching, and hence on the

reduction in file size.

One problem with re!Diff appears when comparing time stamps in a series. For

example, assume the threshold for comparing time stamps is 0.25. When we compare

events that start at times 1 and 2, the relative difference is
2~1

= 0.5. This would result

in a failure to match the events even though there is a difference of only one time unit

between the events. In contrast, if we compare events that start at 100 and 125, the

relative difference is 0.2, which is a match even though there is a difference of 25 time

units. We expect re!Diff to produce reduced traces with a low amount of error, but

with less file size reduction.

46

4.3.1.2 Absolute Difference

As with the re!Diff, each measurement is compared with its counterpart. A fixed

size difference, determined by a threshold, is allowed for each measurement pair.

Using our example segments in Figure 9, and a threshold of 20, we see that s2 will not

match sl, because the end times of do_ work are 23 time units apart. However, there

are no differences larger than 3 between s2 and sO, so those two segments match. The

threshold choice has an impact on file size and accuracy. We expect this method to

produce fairly accurate results, especially with respect to the timing of events across

processes, because unlike re!Diff it will not have an unfair bias towards events that

occur later in the trace.

4.3.1.3 Minkowski Distance

We compute the Minkowski distance between segments using the formula in Eq.

2. If the distance is greater than a user-specified threshold multiplied by the maximum

value in the event measurements, then the events are not equal. The Manhattan,

Euclidean, and Chebyshev distances are special cases of the Minkowski distance, with

m equal to 1, 2, and limm--Hio respectively [25]. The Chebyshev distance is defined to

be the largest difference between two measurements.

Eq.2

Using our example in Figure 9, to compare s2 and sl, we create a vector of the

measurements for s2, (49, 1, 17, 18, 48), and one for sl, (51, 1, 40, 41, 50). The

Manhattan, Euclidean, and Chebyshev distances between these vectors are 50, 32.6,

47

and 23, respectively. The largest measurement in the pair of vectors is 51. If we

choose a threshold of 0.2, then the highest the computed distance can be for a match is

10.2, so s2 and sl will not match using any of the Minkowski distances. When we

compare sO, (50, 1, 20, 21, 49), with s2, we get distances of 8, 4.5, and 3. The

maximum value in the two vectors is 50, so the highest the distances can be for a

match is 10. This means that s2 would match sO for each of these distance metrics.

There are several issues to consider for the Minkowski distances:

• As m increases in the Minkowski distance (See Eq. 2.), the influence of the

larger differences increases, and the influence of the smaller differences

decreases. In the extreme case of the Chebyshev distance, only the

maximum difference has any bearing on the distance value.

• As the number of measurements being compared increases, the values of

the Manhattan and Euclidean distances increase. Given vectors of constant

differences greater than 1, the Manhattan distance increases quite rapidly

linearly, and the Euclidean distance increases in the manner of .JX. If the

differences are all between 0 and 1, the computed distances increase more

slowly.

• When time stamp values are being compared, e.g. start time and end time

for events, the values are always increasing within a segment. This means

that longer segments are judged less critically than shorter segments,

because the maximum values that are compared with the distance

measurement are larger.

48

Based on these trends, we expect that the Manhattan distance would give the most

accurate results, because it gives larger weight to the smaller differences. The

Euclidean distance would give slightly less accurate results, given the bias towards

larger differences. The Chebyshev distance would be least accurate, because it only

accounts for the largest difference measure.

4.3.1.4 Wavelet Transform

The discrete wavelet transform iteratively decomposes a signal of size L into two

subsignals of size L/2. The first L/2 values give the trends in the original signal, and

the second L/2 values give the fluctuations. Intuitively, it computes the averages and

differences between pairs of numbers [31]. We give examples of transformations in

Figure 12.

We use two wavelet transforms in our experiments: the average transform

described in Figure 12 (avgWave), and the Haar transform (haarWave). The Haar

transform is very similar to the average transform, with the only difference being that

the averages and differences are multiplied by -{2 [68]. For example, the trends

computed in step 3 in Figure 12 would be (9..fi., 24.25-{2). For our implementatio~,

we construct a vector for each of the segments to be compared. The first element of

each vector is the relative start time of the segment, which is 0 in all cases. This is

followed by the event entry and exit time stamps for all events in the segment. The last

49

sOtransform: (17.625, -7.125, -10.0, 24.75, -0.5, -0.5, -0.5, OJ s2 transform: (16.625, -7.625, -8.5, 24.25, -0.5, -0.5, -0.5, 0)

EuclideanDist = 1.9 = ../(12, 0.5', -1.52, 0.52, O', 02, 02, 02)

EuclldeanMax = 3.5 = 0.2 • 17.625

Figure 12 Wavelet Transform Example

Here we show two example average wavelet transforms. We iteratively
compute averages (shown in boxes) and differences (shown between edges)
for pairs of numbers, starting with the original vector. To compare the two
transforms of sO and s2, we compute the Euclidean distance between them
and compare it against a threshold (0.2) multiplied by the largest element in
the vectors (17 .625).

element is the exit time of the segment. Both transforms require an input vector with a

length that is a power of two. We allocate space for the vector so that its length is the

next power of two after the number of time stamps in the vector. We zero-pad the

vector after the last time stamp element to the end. To compare transformed vectors,

we compute the Euclidean distance between them [12] and compare it against a

threshold multiplied by the largest value in the pair of transformed vectors. In Figure

12, we show an example comparison of the segments sO and s2 from Figure 9.

Because the computed Euclidean distance, 1.9, is less than the maximum allowed, 3.5,

sO and s2 match.

For both transforms, the values in the transformed vectors will be smaller than the

values in the original vectors. The Haar transform has several properties that the

average transform does not, including preservation of the Euclidean distance [12].

However, its values will be larger than those of the average transform since all values

50

are multiplied by ..JZ. For the Haar transform, we expect more accurate results than

from the Euclidean distance because the maximum value in the transformed vector

will be smaller than the maximum value in the original vector, so the threshold test

will be stricter. The values in the vector from the average transform will be smaller

still; however, the Euclidean distance is not preserved, so the potential exists for a less

strict test than the Euclidean distance.

4.3.2 Iteration-based Methods

We include two iteration-based methods: iter _k and iter _avg.

4.3.2. I Keep K Iterations

For it er_ k, we only keep a fixed number of each traced segment of code. We

expect this method to produce small data files. For our example in Figure 9, ifk=3, we

would keep all three copies of the main. l segment in the list of stored segments.

However, ifk=2, then we would keep sO and sl and discard s2.

4.3.2.2 Keep Average Iterations

The iter _avg method keeps the average measurements for each traced section of

code. We expect this method to produce the smallest data sizes, since segments with

the same context and same events will always match. To illustrate this method, we use

the segments in Figure 9 and the stored segments scenario on the left. For this method,

we never have more than one copy of the main. I segment, and end up with a single

copy of the main.I segment that contains averages of the values of sO, sl, and s2.

5I

We expect that these methods will produce fairly accurate data for applications

that have little behavior variability, but poorly for applications that do have

performance variabilities.

4.4 Traditional Trace and Trace Profile Size Models

In this section, we present models that predict the amount of data collected for

trace profiling as well as traditional tracing. We illustrate the models with a small

example and extrapolate the results to higher scales.

4.4.1 Traditional Trace

A traditional trace contains an event map and list of event and message records for

each process. We model the size of a traditional trace with the following equation:

p

fullTraceSize = I. (EventMap + EventData + MessageData) , Eq. 3

where Pis the number of processes in the run. The sizes of the EventMap, EventData,

and MessageData are modeled by the following equations:

EventMap =En (Is + Ns) Eq.4

EventData = EcEs Eq. 5

MessageData = McMs Eq. 6
The meanings of the symbols in these equations are given in Table 2. The size of

the event map is the product of the number of unique events (En) by the sum of the

size of the event identifiers (Is) and the size of the event names (Ns). For simplicity, we

use a single number for the length of the event names, the median length. The amount

of event data for each process is the product of the number of events in the file (Ee)

and the size of each event record (Es)· The amount of message data is the number of

52

messages in the file (Mc) multiplied by the size of the message record (Ms). We see

that the size of a traditional trace file will be determined by the number of processes

and the event and message counts for the processes.

Table 2 Symbols for Full Trace and Trace Profile Models

Symbol Meanin~

Ns The size of strings representing the names of events or se!!lllents
ls The size of the event or segment identifier
En The number of unique events in the execution
p The number of processes or process groups in the file
Re The number of ranks in a process group
Rs Size of rank representation
Sn The number of unique segments per process group
Se The count of se!!lllent executions per process group
Ts The size of a timestamp
Ee The number of events
Es Amount of data stored per event
Mc The number of messages
Ms Amount of data stored per message
Hs Size of headers
Hsd Size of segment data header

We use values for the sizes of event identifiers, event data, and message data based

on those used by the TAU tool, configured for function entry and exit tracing and for

gathering message passing data. TAU generates 24-byte records for each entry and

exit event, so Es= 48. For message passing events, 96 bytes of data are generated, Ms

= 96. When we evaluate our model, we use slightly different event counts than an

actual TAU trace would contain. We exclude several record types to ensure a more

fair comparison between traditional tracing and trace profiling. The event records we

exclude are:

53

• Records for any functions that are not included in trace profiling segments.

For example, the function main is not included in any segment, so it is not

included in the model for traditional tracing.

• Records for segment markers that we inserted into the code. Each segment

marker generates entry and exit events.

• Any minor administrative records, e.g. TAU's EVINIT or FLUSH_CLOSE

events.

4.4.2 Trace Profile

A trace profile contains a single event map, followed by data for one or more

process groups. Each process group has a rank list, a segment map, a segment

execution list, and data for segments. For parsing purposes, we added section headers

to the file that indicate the type and number of records that follow the header. We

show the format of a trace profile in Figure 13.

We use the following function to predict the size of a trace profile:

traceProfileSize =
p

H, + EventMap + L(RankList +SegmentMap + SegmentExecList +Segments)
Eq. 7

i=I

The definitions for the symbols used in the equations are in Table 2. The equation

to compute the size of the event map in a trace profile is the same as for the traditional

trace file (See Eq. 4). The equations for computing the sizes of the rank list, the

segment map, segment execution list, and segments are given below:

RankList = H. + R.Rc

SegmentMap = H. + (N. +I.)s'n
SegmentExecList = H. + (T. +I.)s'e

Eq. 8

Eq. 9

Eq. 10

54

Sc

Segments = H s + L (H s + H sd + EventData + MessageData)
j=l

SECTION HEADER (Event Map, N)
Event Map Entries
SECTION HEADER (Process Group, N)

SECTION HEADER (Rank List, N)
Rank List Entries
SECTION HEADER (Segment Map, N)
Segment Map Entries
SECTION HEADER (Segment Execution List,
N)
Segment Execution List Entries
SECTION HEADER (Segment List, N)

SECTION HEADER (Segment, N)
Segment Header
Event Entries

Figure 13 Trace Profile Format

This figure shows the format of a trace profile. Each section header tells the
type of data that will follow it and how many entries of that type to expect
(N). There is one event map per trace profile, followed by data for one or
more process groups. Each process group has a rank list, a segment map, a
segment execution list, and a list of the segments. The section header for each
segment tells how many event entries to expect. The segment header gives the
segment identifier and its duration.

Eq. 11

The equations for computing the size of the event data and message data are the

same as for the traditional trace and are given in Eq. 5 and Eq. 6. The size of a trace

profile will largely depend on the degree of merging for process groups and segments,

and on the amount of event and message data collected for each segment. If no process

groups or segments merge, the size of the trace profile will scale with the number of

processes in the run and the number of events and messages for each process, like a

traditional trace. If segments merge, but process groups do not, the trace profile size

55

Table 3 Sizes of Fields in Trace Profiling Data Structures

Data type Field Type Size (bits)
Section Header id char 8

count int 32

Event Map id int 32

size short int 16

name char array Ns

Rank List id int 32

Segment Map id int 32

size char 8

name char array Ns

Segment id int 32
Execution List time stamp double 64

Segment Data id int 32
Header duration double 64

Event Data enter and exit markers char 8

id int 32

relative start double 64

duration double 64

message data char 8

Message Data type (send/recv) and src/dest rank int 32

bytes int 32

tag short int 16
comm short int 16

will scale with the number of processes. If process groups merge, but segments do not,

then the size of the trace profile will depend on the amount of event and message data

collected in the segments. If there is segment and process group merging, then the size

of the trace profile will depend on the number of performance behaviors in the

56

execution. The sizes of the fields in a trace profile are shown in Table 3. We use

values from this table for evaluating our model.

4.5 Traditional Trace and Trace Profile Size Comparison Using Models

Our example program for size comparison is random-barrier, a simple MPI

benchmark from the PPerfMark suite [43]. The random-barrier program has a single

main loop. In each iteration of the main loop, a rank is chosen at random to be the

bottleneck and cause the other ranks to block in MPI _Barrier. We manually

EC = [550,250,250,250]

En = [21,21,21,21]

Ns=39

P=4

Mc = [200,50,50,50]

ful/TraceSize = 99 .4 KB

Figure 14 Input Data to Traditional Trace Size Model

partitioned the program into three segments: init, mainloop, and finalize, using TAU's

phase begin and end events. We ran the benchmark with four MPI processes for 50

iterations, resulting in 1 execution per process of init, 50 executions per process of

mainloop, and 1 execution per process of finalize. Init has 44 function calls and 0

messages; mainloop has 10 function calls and 4 messages in rank 0, and 4 function

calls and 1 message in ranks 1-3; finalize has 6 function calls and 0 messages. We

generated a full trace of the execution using TAU.

57

4.5.1 Traditional Trace

We computed the size of a traditional trace for this four-process run of random-

barrier using our model. The inputs to the model are showing in Figure 14, resulting in

a predicted size of99.4 KB, shown in Table 4. The actual size of the full amount of

N =39 s
-44 10 10 10 6

En =23 44 4 4 4 6
E =

P=4 c 44 4 4 4 6

RC= [1 1 1 1] -44 4 4 4 6

Sn= [5 5 5 5] 0 4 4 4 0-

Se= [52 52 52 52] 0 1 1 1 0
M=

traceProfileSize = 10.9 KB c 0 1 1 1 0

0 1 1 1 0
~ -

Figure 15 Inputs to Trace Profile Size Model

data generated was 109. 7 KB. The differences anse from two sources: we are

estimating the size of the event files by using the median size of the strings describing

the events; and we are excluding administrative events, e.g. FLUSH_CLOSE, and

segment marker events from both the event file size and the trace file size. The

difference in the sum of the event file sizes is 2493 bytes, and the difference in the

trace file sizes is 13053 bytes, with 9984 bytes accounted for by segment boundary

markers. The size of the full trace is broken down by rank and portion of code in Table

4.

58

Table 4 Sizes of Trace Profile and Full Trace

PROGRAM DATA TYPE TRACE FULL

SECTION PROFILE TRACE

SIZE SIZE

(BYTES) (BYTES)

Whole Section Headers (Event Map and 10 0
Execution Process Grouo)

Event Map 1012 5769
RankO Rank List 9 0

Segment Mao 225 0
Segment Execution List 629 0
Section Header (Segment List) 5 0

init Segment Header 17 0
Event Data 1012 2112
Message Data 0 0

mainloop Segment Header 51 0
Event Data 690 24000
Message Data 144 19200

finalize Segment Header 17 0
Event Data 138 288
Message Data 0 0

Ranks 1-3 Rank List 27 0
combined Se~entMap 675 0

Segment Execution List 1887 0
Section Header (Segment List) 15 0

init Segment Header 51 0
Event Data 3036 6336
Message Data 0 0

mainloop Segment Header 153 0
Event Data 828 28800
Message Data 108 14400

finalize Segment Header 51 0
Event Data 414 864
Message Data 0 0

Trace Profile 10.9 99.4
Total (KB)

59

4.5.2 Trace Profile

Using a post-mortem prototype trace profiler, we generated a trace profile from the

full TAU trace of the execution. The difference operator we used was the Euclidean

distance with an event difference threshold of 0.25. The end result was a 10.9 KB file

containing data for four process groups, meaning that the behavior of each of the
t

processes was different enough that they were not combined. Each process group

contained the same segment count: 1 init, 3 mainloop, and 1 finalize, indicating that of

the 50 iterations of mainloop, 3 were found to be representative of the behavior of the

process for that segment. In Figure 15 we show the inputs that we fed into our trace

profile size model. The computed size was 11204 bytes, or 10.9 KB, shown in Table

4. The real size of the trace profile was 10318 bytes, or 10.1 KB. The differences in

the actual and computed sizes of the trace profile are due to the estimation of the sizes

of strings by the parameter N8 • The differences between the actual and computed event

and segment map were 250 and 636 bytes, respectively.

4.5.3 Comparison of Traditional Trace and Trace Profile

Now we use our model to extrapolate the sizes of the trace profile and traditional

trace to 64K processes for the random-barrier example, assuming the conditions of the

four-process run. We show how the sizes grow with increasing processes in Figure 16.

We extrapolate three scenarios for the trace profile. In the first scenario, we assume

that no segments or process groups merge ("No Merge"). In the second, there are

always two process groups, one containing rank 0, and the other containing the rest of

the ranks; and each process group has three segments, one init, one mainloop, and one

60

finalize ("Total Merge"). For the last, we assume the conditions that usmg the

Euclidean distance gave us for the four process run: each rank is in its own process

group and each process group contains five segments: 1 init, 3 mainloop, and 1

finalize ("Euclidean Distance"). The size of the traditional trace file reaches 1 GB at

64K processes, while the size of the "No Merge" trace profile is approximately 620

MB. This means that even if no processes or event patterns were found to be similar in

the execution, the size of the· resulting file will still be smaller than a full traditional

trace. The size difference is largely due the fact that a trace profile does not write

1200 r----.---------,.------.---------,.---------,.---------,-------,

-Full Trace
- - • Eucl !dean Distance

1000

"'""No Merge
-rota! Merge (Hypothetical)

800

~

-~ "' 600 '' ... , ...

400

200 ,
·····

·····

····· ·····
....

.....
·····

.... --------------

....

....
....

--------------·
-- -----0ollllllilo ws.s--.. ______ 2 ________ 3 ______ ._.i4 __,.._.i ____ 6 _____ _J7

Number of Processes 4
x 10

Figure 16 Traditional Trace and Trace Profiling Sizes for Random-Barrier

Here we show the predicted sizes of full traces and trace profiles of the
random-barrier program for executions with up to 64,000 processes. The solid
blue line ("Full Trace") shows the predicted size of the full trace in MB. The
dotted red line ("No Merge") shows the predicted size of a trace profile if no
processes and no segments were found to have behaved similarly. The dashed
green line("Euclidean Distance") shows the size of the trace profile if no
process groups merged, and each process group had five segments (1 init, 3
mainloop, and 1 finalize). The solid aqua line ("Total Merge") shows the size
of the trace profile if there were always two process groups and total merging
of segments.

61

complete separate event records for function entries and exits, but instead uses the

entry record and maintain a start time, duration, and simply marks the event exit with a

record that only uses a single byte of storage. The "Total Merge" and "Euclidean

Distance" trace profiles reach 0.25 MB and 147 MB, respectively, at 64K processes.

4.6 Trace Profiling and Visualization

The trace profiling technique can also address the scalability challenges in trace

visualization analysis. First, the total amount of data has been reduced significantly,

easing the memory and computation requirements of analysis tools. Second, because

80%

Do_work_A
Do work B
Write data
MPl_Barrier

15%

Figure 17 Trace Profiler Visualization

5%

An example trace profile visualization showing the percentage of time
processes spent in temporally aligned behavior patterns.

the behavior patterns in the execution have already been extracted, the tool can easily

present partially analyzed information to the user, reducing the time taken for

identifying performance problems. A visualization of a trace profile could show the

percentage of time processes in the execution spent in temporally aligned segments.

Such a presentation of this information could significantly reduce the time needed for

diagnosing performance problems when compared to visually inspecting a full

program trace for potentially very many processes. An example mock-up trace profile

62

visualization is shown in Figure 17. This figure shows a representation of a multi

process execution. There were three groups of processes that behaved similarly:

process group 0, process group 1, and process group 2. In the first segment (on the

left),we see that 80% of the time, process group 0 spent more time in Do_work_B and

was late to MPI Barrier, causing the other ranks to block. In the middle segment, we

see that 15% of the time, process group 0 was again late to MPI_Barrier, but was late

because it executed Write_ data, and spent somewhat more time in Do_ Work_ A than

the other processes. In the segment on the rig11t, we see that 5% of the time, the

processes behaved roughly the same, and reached MPI _Barrier at approximately the

same time. Immediately, the user would be able to see that 95% of the time, process

group 0 is causing the other processes to block in MP! _Barrier, and will see that 80%

of the time it is due to a load imbalance in the Do work B function.

4.7 Summary

Trace profiling is a novel performance measurement technique for gathering

event-based performance data. In this chapter, we first described the trace profiling

technique and segment difference methods, followed by models that predicted the size

of trace profiles and traditional traces. We used the models and a simple benchmark to

illustrate the possible data reduction achievable from using trace profiling over

traditional traces. Our example showed that even if no merging occurs, the trace

profile is still smaller than a full traditional trace, and that with the degree of merging

we obtained when using our prototype implementation, our model predicted a size

savings of a factor of 10 between trace profiling and a traditional full trace for 64K

63

processes. Finally, we described how the reduced amount of data produced in a trace

profile could ease the memory and computation requirements for analysis and

visualization tools. We showed an example visualization of a trace profile, illustrating

how it could potentially facilitate a user's understanding of the performance of

programs more easily than by visualizing an entire program trace.

In the next chapter, we present a study of methods for comparing traces and

demonstrate that trace profiling can produce reduced traces that still retain the

necessary information for correct performance. Following this, we present our runtime

implementation of a trace profiler and evaluate its overheads compared to traditional

traces.

64

5 Trace Comparison Methods

In this chapter, we demonstrate that trace profiling can produce reduced traces that

retain the information needed for correct performance diagnosis of programs. To do

so, we perform a comparative study of similarity methods in current or proposed use

for trace reduction. Using a post-mortem implementation of a trace profiler, we apply

the similarity methods to the task of deciding segment matching and evaluate the

methods for file size reduction, trace error, and retention of performance trends. Our

goal is to determine a similarity method that yields adequate trace reduction and also

retains the information needed for correct performance analysis. Achieving our goal

required that we answer several key questions:

What metrics can we use to evaluate and compare trace similarity methods? In

addition to file size reduction, we developed and used metrics for error, greatest

possible file size reduction (i.e. potential for repeated patterns), and consistency of

performance diagnosis.

How much error should be allowed? Values that will likely never be exactly equal

need to be compared. We had to decide how much each measurement can vary, and

weigh the consequences of the amount of error. If we are matching traces for the

purpose of trace compression, then a larger allowed error between traces would mean

larger number of matches, and thus a smaller trace file. However, the larger error

might prevent the correct performance diagnosis from being made.

How can we measure the "goodness" of each approach? Most trace compression

studies report the reduction of file size achieved; but no matter how much compression

65

is achieved, if the reduced trace no longer contains the data needed for accurate

performance diagnosis, the method is not useful for our purpose. We evaluate each

approach not just on amount of compression, but also on amount of error and

consistency of diagnosis, and discuss the tradeoffs in weighting the different metrics.

5.1 Evaluation Methodology

In this section we detail our framework for the evaluation of similarity methods.

We investigate traces collected for a set of benchmarks with known behaviors, and for

a full application, running on a Linux cluster. We apply our post-mortem trace profiler

to full execution traces, varying the similarity method used to determine repeating

patterns within the trace. We evaluate the methods for intra-process segment matching

only, inter-process segment matching only, and combined intra- and inter-process

segment matching. Our evaluation focuses on three metrics: file size reduction,

amount of error in the trace, and retention of performance trends. For file size

reduction we simply compare the sizes of the reduced traces to the full-sized traces

from which they were derived. We calculate the trace error by recreating an

approximated full-sized trace from the reduced version, then comparing it to the actual

full trace. We evaluate retention of performance trends by feeding the actual and

approximated full traces into a performance analysis tool and examining any

differences in the results.

5 .1.1 Benchmarks

We crafted our benchmarks to represent classes of performance behaviors that

occur in parallel programs on high end systems. These performance behaviors can

66

appear with a high degree of regularity, sporadically, or progressively change over the

iterations in the execution. To reflect this, we created a set of regularly behaving

benchmarks, a set of irregularly behaving benchmarks, and a benchmark that simulates

dynamic load balancing. Because we know the behavior patterns in each benchmark,

we can evaluate how well each of the methods retains the performance behaviors.

We used the APART Test Suite (ATS) to create our benchmarks. The ATS a

collection of utilities designed to create programs with known behavior for testing

parallel performance tools [22]. We chose behavior patterns from the ATS that

represent performance problems that require trace data for correct diagnosis. For

parallel programs, these performance behaviors fall into four categories based on the

communication pattern being used. We describe these communication patterns here

using MPI functions as examples.

N 7 1. N processes send data to 1 process. If any of the sending processes are

late, then the receiving process blocks, waiting for them to execute the send operation.

Example MPI functions for this pattern are MPI_Reduce and MPI_Gather, with

corresponding performance behavior problems early _reduce and early _gather.

1 7 N. 1 process sends data to N processes. If the sending process is late, then all

N receiving processes will block until the send is executed. Example functions are

MPI Beast and MPI Scatter. The corresponding performance problems are

late broadcast and late scatter.

1 71. 1 process sends to 1 process. There are two cases. In the case of a non

blocking send and a blocking receive, if the sending process is late, the receiving

67

process will block. In the case of a synchronous send, the sending process will block if

the receiving process is late. Example communication routines are MPI _ Ssend and

MPI _Recv, with corresponding performance problems late_receiver and late_sender.

N -7N. N processes send to N processes. Here, all N processes depend on all

other processes involved in the communication to proceed. If any of the N are late,

then the rest of the processes block until all have reached the communication routine.

An example is MPI_Barrier with corresponding performance problem

imbalance at barrier.

Benchmarks with Regular Behavior. We chose five example benchmarks

provided with ATS with regular behavior: early _gather, imbalance_ at_ mpi_ barrier,

late_receiver, late_sender, and late_broadcast. Each of the benchmarks simulates a

program with the given behavior problem with the same severity in each iteration. In

other words, all iterations of each program will exhibit the performance problem and

all iterations should be very similar. All runs had 8 processes.

We expect the similarity methods to do relatively well on this set of benchmarks

since the iterations have regular behavior. They should be able to find a large number

of segments matches and still retain the correct performance behaviors.

Benchmarks with Irregular Behavior. For this category, we used ATS to create

new benchmarks with irregular behavior. The benchmarks simulate the system

interference identified by Petrini et al. when they ran an application on ASCI Q [51].

The system interference prevented the application from scaling as predicted. The

benchmarks contain iterations with work periods that last approximately 1 ms

68

followed by a communication step, usmg the communication patterns described

previously. The load for each process is constant in each iteration and across

processes: the only performance problem comes from the interference. We simulated

the system noise using timers to interrupt the processes as described by Petrini et al.

We used two simulation scenarios. The first was a 32-process run, with each of the 32

processes simulating the interrupts specific to the 32 nodes in an ASCI Q cluster. The

second was also a 32-process run, but with the simulated amount of system

interruptions that would occur if there were 1024 processes in the run. When we refer

to the benchmarks in the first category, we use the communication pattern and either a

_32 or a _1024, to indicate whether 32 or 1024 processes were simulated, respectively.

For these benchmarks, we expect the methods to find a high number of matches,

since most iterations are very similar. However, it will be important that they don't

falsely match undisturbed and disturbed iterations, as this has the potential to mask or

amplify the periodic behavior changes due to the simulated interruptions.

Dynamic Load Balancing. Here, we used ATS to create a program that simulates

an application that does dynamic load balancing. For this benchmark, the performance

of the iterations starts at about 1 ms and gets progressively worse, with one-half of the

processes doing more work each iteration and the other half doing less work in each

iteration, until the "load balancer" is triggered. The "load balancer" readjusts the

amount of work on each processor to be equal. The performance problem exhibited by

this program is imbalance at mpi all to all, which falls in the N-to-N communication

69

category. This benchmark is referred to as dyn_load_balance and was run with 8

processes.

For this benchmark, we expect less overall matching since behavior changes with

each iteration and very close performance behaviors reoccur only after each simulated

load balance. Here it will be important that the similarity methods do not match

segments with larger differences because the load imbalance may no longer be

apparent in the reduced trace.

5.1.2 Application

We chose Sweep3D 2.2b, a structured mesh application that computes a 1-group

time-independent discrete ordinates three-dimensional Cartesian geometry neutron

transport problem [3]. Structured mesh applications have a regular partitioning of the

data, where all interior data blocks have equal numbers of neighbors. It is likely that

the performance will be very regular over the course of the program, which means that

the reduction methods should be able to find a large number of segment matches

without introducing a large amount of error. We collected traces for two runs of this

application: an 8-process run with input file input.50, sweep3d_8p; and a 32-process

run with input input.150, sweep3d_32p.

5.1.3 Instrumentation

We used the dynamic instrumentation library Dyninst [29] to instrument the full

application for both function entry and exit tracing as well as inserting segment begin

and end markers. The simple benchmarks were marked manually. See Section 5.2.1

for details on program segmentation.

70

5 .1.4 Evaluation Criteria

We chose four criteria to evaluate the metrics: percentage of full trace file size,

degree of matching, approximation distance, and retention of correct performance

trends.

5.1.4.1 Percentage of Full Trace File Size

We present the savings in file size as a percentage of the full, non-reduced trace

file, as a relative measure of size reduction. We expect iter _avg to perform the best in

this category since it matches all segments with the same context, regardless of the

measurement values in the segments.

5.1.4.2 Degree of Matching

The degree of matching metric is a measure of how many segment matches

occurred. We define it to be the ratio of the number of matches to the number of

possible matches. The number of possible matches is limited by the structure of the

program. For example, some portions of the code may only execute one time, e.g. an

initialization step, and will not match any other event sequence in the trace.

5.1.4.3 Approximation Distance

We estimate the error in the trace by recreating a full trace from the reduced trace

and comparing each time stamp with its counterpart in the original full trace. The

approximation distance metric tells the 90th percentile of absolute differences between

71

paired measurements in the original and reduced traces.1 For this metric, high values

for iter _ k and iter _avg mean that there is irregularity in the execution that is not being

captured in the iterations that are retained. High values for absDiff give a rough

indication of the absolute difference of time stamps from the true values in the full

trace. High values for the Minkowski and wavelet methods mean that there are high

maximum values in the set of values being compared, relative to the distance between

those values.

5.1.4.4 Retains Correct Performance Trends

Arguably, the most important criterion for evaluating a trace matching metric for

the purposes of performance analysis is deciding whether or not the reduced trace still

indicates the same performance problems as the full trace. For example, if an analyst

inspecting a full trace detects a late sender performance problem, the same problem

should be detected in the reduced trace with approximately the same severity. The

KOJAK tool set was developed to aid parallel performance analysts in the challenging

task of performance diagnosis [71]. KOJAK's EXPERT tool reads in a trace file and

produces a data file containing performance diagnoses. Each diagnosis consists of a

1 When recreating full traces for the iter _ k method, we used the last segment that executed of each pattern to fill in
the segment executions that were not collected. Alternatives include using the average measurements from the k
collected segments, or using the centroid of those k segments as determined by a clustering algorithm.

72

I>.
I> .:L

. ~. •s-oa.~~~~
.I>· Iii o.iioi{~ll.,
I> • il.m. t!ODi~ ..

·i. mli.DQ:tl~li'
p' .jlttrioNdbs1 ... ·

Figure 18 KOJAK and Derivation of Our Performance Diagnosis
Representation.

Here we show a screenshot of KOJAK's EXPERT tool displaying the
performance diagnosis for dyn_load_balance. The color bar on the bottom
shows the severity levels, with blue being low and red high, and gray
indicating 0 or close to 0. The left panel shows the performance metrics; the
middle panel shows the code locations; and the right panel shows the
processes. The color blocks next to each metric, code location, and process
show the severity for the selected combination. Above, we have selected the
function MPI Alltoall and the "Wait at NxN" metric. This combination has
green or "medium-low" severity and the severity is close to 0 for ranks 4, 6,
and 7 and fairly low for ranks 0-3 and 5. We represent this diagnosis by
abbreviating the metric name, e.g. NN for "Wait at N x N," coloring the
metric abbreviation according to the severity indicated in the code location
pane, and coloring squares for each process according to their severity levels.
White squares indicate negative severities. We show the abbreviations we use
for selected KOJAK metrics in white rectangles next to the metric names.

metric, a code location, and a severity for each thread in the run [59]. KOJAK's CUBE

tool reads in the analysis data and presents a visualization to the user, indicating the

most important performance trends in the trace in a hierarchical manner.

73

We use the CUBE visualization tool to compare the performance diagnoses for the

recreated traces against the diagnoses for the full trace (See Figure 18). We determine

whether a performance analyst would come to the same conclusions about the reduced

trace as the full trace. If not, then the reduced trace is not adequate for performance

analysis. We admit that this is a subjective test; however, we followed a set of
I
I

guidelines when deciding if the diagnoses were sufficiently similar, so all the methods

were subjected to the same criteria.

j

5.2 Intra-process Reduction Evaluation Studies

In this section, we present the results of two studies evaluating the similarity

methods for intra-process segment matching using the criteria and programs described

in Sections 6.1.1 and 6.1.2. We first present a threshold study for the similarity

methods from the distance metric category. From this study, we choose a threshold for

each of these methods that represents the best tradeoff in terms of file size reduction,

measurement error, and retention of performance trends. In the second study, we

present the results of a comparative study of the similarity methods, using the

thresholds found to be best for each method in the threshold study.

5 .2.1 Threshold Study

We investigated the behavior of the methods in reducing the traces of the

benchmarks while varying the thresholds that determine whether two given segments

should match or not match. The thresholds for relDiff, Minkowski distances, and the

wavelet transforms were 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. The thresholds for iter _ k were

1, 10, 50, 100, 500, and 1000, and for absDiff were powers of 10 from 101 to 106
•

74

Since no thresholds are used with the it er_ avg method, it was not included in this

study. The criteria we used to evaluate the methods were file size, approximation

distance, and retention of performance trends (For full results, refer to the Appendix.).

For each method, we chose a representative threshold to be used when comparing the

methods against each other.

re/Di.ff The file size for each benchmark and the sweep3d runs decreased

relatively steadily with increasing threshold. The approximation distance remained

small until the 0.8 threshold, after which there was a large jump for many of the

benchmarks and sweep3d _ 32p. Performance trends were correctly retained for most

programs up to a threshold of 0.8. Based on the jump in approximation distance and

loss of performance trends after threshold 0.8, we chose 0.8 as the best threshold for

relDiff.

absDiff. Here the file sizes for the benchmarks and sweep3d dropped off fairly

quickly at a threshold of 100 and continued to decrease slightly with increasing

threshold. The approximation distance stayed relatively low up to a threshold of 104
,

after which there was a sharp increase for several of the benchmarks and

sweep3d_32p. Performance trends were retained for most programs at a threshold of

less than 103
• Because the file sizes were relatively low and performance trends were

retained at 103
, we chose 103 as the representative threshold for absDiff.

Manhattan, Euclidean, and Chebyshev. When observing file sizes changes, the

Manhattan and Euclidean methods behaved quite similarly; the Chebyshev method

showed some differences. For the Manhattan and Euclidean methods with the regular

75

benchmarks, the l-to-1 irregular benchmarks, and sweep3d, file sizes decreased

relatively steadily with increasing threshold; with the other irregular benchmarks, the

file size decreased only slightly with increasing threshold, because a matching that

was close to optimal was reached early, at a threshold of 0.1. For Chebyshev with the

1-to-1 irregular benchmarks and sweep3d, file size decreased with increasing

threshold; with the regular benchmarks and remaining irregular benchmarks, file size

was relatively constant with increasing threshold. For all three methods, we observed

the following behavior in approximation distance: with the regular benchmarks,

approximation distance was relatively constant with increasing threshold; with the 1-

to-1 irregular benchmarks, approximation distance increased with increasing

threshold; with the remaining benchmarks, the approximation distance remained low

until after the threshold of 0.8, after which there was a large jump. For sweep3d and

Manhattan and Euclidean, approximation distance increased with increasing

threshold; for Chebyshev, the approximation distance was small and relatively

constant until after the 0.8 threshold. For retention of performance trends, the

Manhattan distance did well up to a threshold of 0.4, and the Euclidean and

Chebyshev distances did well up to 0.2. We based our selection of best thresholds for

these methods on the retention of performance trends metric, because we consider this

metric to be the most important. We chose 0.4 as the best threshold for the Manhattan

distance and 0.2 for the Euclidean and Chebyshev distances.

Wavelet Transforms. For all evaluation criteria, avgWave and haarWave

performed similarly. For all programs, file sizes decreased with increasing threshold,

76

up to the point of perfect matching, after which no further decrease in size is possible.

The best threshold in this category appears to be 0.4 for both methods, because file

size decrease levels off after this threshold. The approximation distance for both

methods remained steady with increasing threshold for the regular benchmarks and the

irregular N-tol, N-to-N, and 1-to-N benchmarks. The approximation distance

increased with increasing thresholds for the irregular 1-to- l benchmarks and sweep3d.

The threshold 0.2 is best for approximation distance, because of the relatively higher

values for the dyn_load_balance benchmark and sweep3d after this threshold. For the

majority of programs, performance trends were retained for both methods at

thresholds below 0.2. For these reasons, we chose 0.2 as the best threshold for the

wavelet transform methods.

iter _ k. Generally speaking, there was an increase in file size and decrease in

approximation distance with increasing k. Performance trends were retained for must

programs up to threshold 10. The choice for the best value of k wasn't clear, but we

chose k= 10 as the best because the performance trends were retained for most

programs at this threshold.

5 .2.2 Comparative Study

In this section, we present comparative results for the different methods using size

and degree of matching; approximation distance; and retention of performance trends

as the evaluation criteria. Based on the results of the threshold study in Section 6.2.1,

77

84.5
5 .9

30

• relDiff

• absDiff

Ill Manhattan

Ill Euclidean

11 Chebyshev

II iterK

1111 iterAvg

1111 avgWave

lllhaarWave

• relDiff

• absDiff

1111 Manhattan

Ill Euclidean

mChebyshev

111 iterK

111 iterAvg

llavgWave

• haarWave

Figure 19 Intra-process Reduction: Percentage File Sizes and Degree
of Matching.

78

7000 ·~~- ······---·--···-·--- 600 --~------,.---,,---

43206 4500

6000 +--11111-lll-1_90_71 __________ -m---
500 -l-----ll-------l---+-1199---

190
5000 +-lllll.___ ___________ __

4000

2000

•relDiff

• absDlff 300
• Manhattan Distance

• Euclidean Distance
200 -

• Chebyshev Distance

•iter_k

_ _._____..,__ Ill iter_avg

•avgWave

•haarWave

Figure 20 Intra-process Reduction: Approximation Distance Results for All
Methods at Default Thresholds.

we present results for the best performing threshold for each method: 0.8 for relDiff,

1000 for absDiff, 0.4 for Manhattan, 0.2 for Euclidean and Chebyshev, 10 iterations

for iter _k, and 0.2 for avgWave and haarWave.

5.2.2.1 Size and Degree of Matching

We present the data for reduction of traces for each method in Figure 19. The

it er_ avg method gives the best case values for this category, smce exactly one

segment is retained for each unique segment context.

The benchmark data shows that for the most part, the degree of matching for each

of the methods is greater than 0.9, meaning that greater than 90% of the segments

were matched. Exceptions occur with relDiff, which had degree of matching scores as

low as 0.74. RelDiffhad the highest file sizes and lowest degree of matching scores.

The next largest file sizes are generated with the iter _ k method; however, they are not

much higher than those for the other methods. The Minkowski distances, avgWave,

and haarWave all have nearly identical results, with Chebyshev having a very slight

79

advantage over the others. AbsDiff had only slightly larger file sizes than the

Minkowski distances.

For sweep3d, the results are somewhat different. Because this application has very

regular behavior, we expected the results to be similar to those of the benchmarks.

However, because of the program structure, there are more segments, as well as

differences within the segments, e.g. message passing parameters, that cause segments

not to match. We see that iter _ k performed the worst, with the highest file sizes and

lowest degree of matching scores. This is because iter _ k needed to keep 10 copies of

each individual segment, regardless of how similar in performance they actually were,

whereas the high degree of matching often results in fewer than 10 copies. The next

worst performing were the Minkowski distances, again with Chebyshev having the

smallest file sizes. The wavelet methods performed best, followed by absDiff and

relDiff, each with very close to perfect matching and lowest possible file sizes.

The obvious best method in this category is iter _avg, since all segments match by

definition. A comparison of the average file sizes for each of the other methods yields

the following ranking: avgWave, haarWave, Chebyshev, absDiff, Manhattan,

Euclidean, iter _ k, relDiff.

5.2.2.2 Approximation Distance

Figure 20 shows the approximation distance results for each of the methods. The

methods show similar trends across the benchmarks with regular behavior. The

relDiff, absDiff, iter _ k, and iter _avg methods have consistently low values. The

Minkowski distances, avgWave, and haarWave transform behave similarly, and have

80

the highest values overall. The results for the dyn_load _balance benchmark show a

different set of behavior, with absDiffhaving the lowest value, followed by avg Wave,

Euclidean, Manhattan, and haarWave. The irregular benchmarks had lower overall

approximation distance values than the other benchmarks, with similar results across

the benchmarks. The worst performing methods in this case were it er_ avg and iter _ k.

However, the approximation distance values are low in comparison to those for the

other set of benchmarks.

The results for sweep3d show iter _avg performipg the worst for the 8-process run,

and iter _k and iter _avg the worst for the 32-process run, indicating that there are

performance behaviors not being captured by those two methods.

The methods that performed the best in this category are re/Diff, followed by

absDiff, and then iter _avg. The rest of the methods allowed significant error into at

least one of the reduced traces.

5.2.2.3 Retention of Performance Trends

We present summaries of the performance diagnoses given by KOJAK for selected

benchmarks in Figure 21 and Figure 22. We show how we derive the performance

diagnoses charts and abbreviations for metric names in Figure 18.

For the benchmarks with regular behavior, nearly all the methods performed quite

well. For late_receiver, all methods except iter _avg performed equally well, with all

performance trends retained. The results for iter _avg with late _receiver showed

differences significant enough that they may lead to an inaccurate performance

81

no loss F;tJ I

relDiff l("m'.Ji

absDiff LIJ1<tk
Manhattan ! &ii!%<

Euclidean

Chebyshev
iter_k
iter_avg
avgWave
haarWave EX MP CM CO EX

Figure 21 Intra-process Reduction: KOJAK Performance Trends for
dyn_load_balance For Each Method at Default Thresholds.

Here we show the results for each reduction method in the MPI Alltoall and
do_ work functions. The first row shows the diagiioses for the full trace. Each
box in a row shows a performance diagnosis for a single combination of
metric and code location.

assessment. For early_gather, all but the Minkowski distances, avgWave, and

haarWave retained the correct performance trends. The results for

imbalance at barrier showed that the Minkowski distances, absDiff, iter _avg,

avg Wave, and haar Wave retained the performance trends, while re/Diff and iter _ k

both showed a negative value for the major performance diagnosis. The amount of

error introduced into the reduced traces caused time stamps to be skewed enough that

the performance diagnoses resulted in negative values. We show the maJor

performance trends for dyn_load_balance in MP I_ All toall and do work as

reported by the KOJAK tools for the full trace and all methods in Figure 21. The

results for the no loss trace clearly indicate that the lower ranks are spending more

time in MPI All toall, because the upper ranks are spending more time in

do_ work. None of the methods gave perfect results for the dyn_load_balance

benchmark; however, absDiff, Manhattan, Euclidean, avgWave, and haarWave gave

82

00~ -

~~ -
absDiff 11111
Manhattan E -
Euclidean 11111
Chebyshev 1111
~~ -iter_avg 11111
avg\Nave 1111
haar\Nave Ill 1 P BMPm m m ..

Figure 22 Intra-process Reduction: KOJAK Performance Trends for
ltolr 1024 for Each Method at Default Thresholds.

the closest performance diagnoses because for the most part they maintained the

performance differences due to load imbalance between the upper and lower ranks.

Although Manhattan, Euclidean, avgWave, and haarWave lost the disparity in

do_ work, the diagnosis "Wait at NxN" is non-negative and maintains the disparity in

behavior. AbsDiff maintained the disparity in performance in do_ work, but reported

that "Wait at NxN" was negative. All other methods lose the expected disparity in

do work.

For the irregular benchmarks, all methods did pretty well on the N-to-1 and 1-to-N

benchmarks, with the exception of iter _avg, which failed on three benchmarks, and

Chebyshev, which failed on Ntol _ 1024. AbsDiff did less well on the 1-to-1 and N-to-

N benchmarks. We show the data for ltolr_1024 in Figure 22. AbsDiff picked up on

the variations in the iterations due interference, which caused some performance

diagnoses to be skewed in a positive or negative direction. The best performers for

these benchmarks were Manhattan, Euclidean, and avgWave, followed by relDiff, and

haarWave. AbsDiff and iter _avg both only showed correct diagnoses for one

benchmark, ltolr_32 and ltols_32, respectively.

83

For sweep3d_8p and sweep3d_32p, all methods but iter _avg and iter _k produced

correct data. lter k showed a non-existent disparity in rank performance m

pmpi _ recv in sweep3d_8p and a greatly inflated severity m pmpi recv m

sweep3d_32p. Iter _avg showed a much lower severity in sweep_ than did the no-loss

trace for both sweep3d_8p and sweep3d_32p.

The best methods in this category were Manhattan, Euclidean, and avgWave

which correctly diagnosed 17 out of the 18 execution traces. HarrWave did second
I

best, correctly diagnosing 16.' The rest of the methods in order were: re/Di.ff (14);

absDiff and Chebyshev (13); iter _k (12); and iter _avg (6). The relatively poor

performance of iter _ k in this category could be due to our choices in implementing

this method1
• It is possible that the first iterations are more subject to variabilities in

execution, before the processes synchronize into their regular behavior patterns, and

that the last segment is not the best choice as a fill in for missing segments.

5.2.2.4 Discussion

To determine best method for comparing traces, we take the highest ranking

methods from each category and weigh the importance of each of the categories. The

best methods from the size category were iter _avg, followed by avgWave, haarWave,

and Chebyshev. Those from the approximation distance category were re/Di.ff and

absDiff, followed by iter _avg. Finally, the methods that best retained performance

trends were avgWave, Manhattan, Euclidean, and haarWave. One could argue that the

absolute most important criteria for judging these methods is whether or not they

retain the correct performance trends, because that is the point of collecting the traces

84

in the first place. However, almost equally important is the ability to collect, store, and

analyze the trace data at all. Given that avg Wave performed well in both the size and

retention of performance trends categories, we choose avg Wave as the best method of

the ones studied for intra-process segment comparison.

5 .3 Inter-process Reduction Evaluation Studies

We evaluated the similarity methods for their ability to find inter-process matches.

We first present a threshold study for the similarity methods. From this study, we

choose a threshold for each of these methods that represents the best tradeoff in terms

of file size reduction, measurement error, and retention of performance trends. Next,

we present the results of a comparative study of the similarity methods, using the

thresholds found to be best for each method in the threshold study. We did not

evaluate iter _avg or iter _ k in this section, because utilizing them for the purpose of

inter-process matching is nonsensical.

5.3.1 Threshold Study

We investigated the behavior of the similarity methods while varymg the

thresholds that determine whether two given segments should match or not match. The

thresholds for re/Diff, Minkowski distances, and the wavelet transforms were 0.1, 0.2,

0.4, 0.6, 0.8, and 1.0. The thresholds for absDiff were powers of 10 from 101 to 106
.

The criteria we used to evaluate the methods were file size, approximation distance,

and retention of performance trends (For full results, refer to the Appendix.). For each

method, we chose a representative threshold to be used when comparing the methods

against each other.

85

re!Diff. The relative difference method performed poorly for inter-process

matching. For all benchmarks and sweep3d, re!Diff only found matches when the

threshold was 1.0, which means any amount of error was allowed when comparing the

segments. None of the reductions produced by re/Diff retained correct performance

trends. For the purpose of our comparison study of inter-process matching, we chose

0.8 as the best threshold for re!Diff. Because no matches were achieved, correct

performance trends were retained.

absDiff. For the benchmarks, file sizes tended to start to decline and approximation

distances began to increase at a threshold of 104
• For the most part, performance trends '

were retained for the benchmarks at and below 104
. AbsDiff was unable to find any

matches for sweep3d_8p; absDiff did find matches for sweep3d_32p at and above 105
,

but correct performance trends were not retained. Correct performance trends were

retained for the majority of the codes at thresholds at or less than 104
. Based on these

results, we chose 104 as the best threshold for absDiff.

Minkowski distances. The three methods performed similarly for the benchmarks.

File sizes decreased relatively steadily with increasing threshold and approximation

distances increased most sharply above thresholds of 0.4. Performance trends were

retained for the majority of the benchmarks for thresholds at or above 0.4. All three

methods performed the same for sweep3d, finding no matches for either sweep3d _ 8p

or sweep3d_32p at any threshold. We chose 0.4 as the best threshold for all three

methods.

86

Wavelet transforms. For the benchmarks, both methods performed similarly. File

sizes decreased steadily with increasing threshold. The approximation distances for the

most part remained low until reaching the 0.6 threshold. For the majority of the

benchmarks, correct performance trends were retained for thresholds of 0.4 and

higher. Neither method found matches for sweep3d_8p. Both found matches for

sweep3d _32 at threshold 0.8, however performance trends were not retained. Based on

the tradeoffs of size reduction and retention of trends, we chose 0.4 as the best

threshold for both avgWave and haarWave.

5 .3 .2 Comparative Study

Here, we present a comparative study of inter-process reductions achieved by the

similarity methods at the thresholds chosen in Section 6.3.1. We evaluate the methods

for file size reduction, amount of matching, and retention of correct performance

trends. Although relDiffwas unable to find any acceptable inter-process reductions at

thresholds below 1.0, we include its results at the 0.8 threshold as a measure of the

worst-case scenario for file size reduction and merging. For absDiff, we used the

threshold 104
; for Manhattan, Euclidean, Chebyshev, avgWave, and haarWave, we

used 0.4.

5.3.2.1 Size and Degree of Matching

We show the percentage file size and degree of matching for all methods and

benchmarks in Figure 23 and Figure 24. RelDiff performed the most poorly since it

was unable to find any matches for any of the benchmarks or sweep3d. AbsDiff

performed better for the irregular benchmarks, with an average 59. 7% percent file

87

size, than it did for the regular benchmarks, with an average of 87 .5%. The Manhattan

and Euclidean distances and wavelet transforms performed similarly, with average

percent file sizes close to 60% and average degrees of matching at 0.4. Chebyshev

achieved the greatest amount of reductions, with average percent file size at 44.8%

and average degree of matching at 0.6. Outliers in the set of benchmarks were

ltolr_1024 and ltols_1024. None of the methods but Chebyshev were able to find

100

90

80

70

60
• relDiff

50
• absDiff

40 II Manhattan

30 •Euclidean

• Chebyshev
20 11avgWave

10 Ii haarWave

0

88

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 ---,-----,

5.0E+04 -,---------.---..-----------------

4.SE+04 +--------.---11-1-9_2_83_0 _____________ _

4.0E+04 +----=16'°-'9'-"3'-='1'-"-611---11------------=-------

3.5E+04

3.0E+04

2.SE+04

2.0E+04

1.5E+04

1.0E+04

5.0E+03

O.OE+OO

• relDiff

• absDiff

Ill manhattan

• euclidDiff

• chebyDiff

11 avgWave

II haarWave

• relDiff

• absDiff

11 Manhattan

•Euclidean

• Chebyshev

111avgWave

1111 haarWave

89

acceptable matches for 1 to lr _ 1024, which only achieved 2 matches of the 30 possible.

For ltols_1024, all methods but Chebyshev found 2 matches of 30, while Chebyshev

found 5. Additionally, none of the methods were able to find acceptable matches for

sweep3d, so the percentage file sizes are all at 100% and degrees of matching are 0 for

all methods for sweep3d_8p and sweep3d_32p. The in order rankings of the methods

for this category were Chebyshev as the best performer, followed by Euclidean,

avgWave, haarWave, Manhattan, absDiff, and re!Diff.

5.3.2.2 Approximation Distance

Generally speaking, the approximation distances for all codes were relatively low

(See Figure 25). The approximation distances for the regular benchmarks were, on

average, an order of magnitude lower than those of the irregular benchmarks. The

exception was the early _gather benchmark, which had relatively high approximation

distance values for all methods, excluding absDiff. The approximation distances for

ltolr_1024, ltols_1024, sweep3d_8p, and sweep3d_32p are 0 or very low, since no

or very little matches were found for those traces. Excluding re/Di.ff, since it achieved

no acceptable matchings, the in order rankings of the methods in this category were

absDiff, avgWave, haarWave, Manhattan, Euclidean, and Chebyshev.

5.3.2.3 Retention of Performance Trends

For this category, re!Diff retained trends for all programs. However, since re!Diff

did not find any inter-process matches, we exclude it as a contender for top

performing method in this category. AbsDiff and the wavelet transforms performed

similarly on average for the regular and irregular benchmarks, correctly diagnosing

90

about 80% (absDiff) and 60% (avg Wave and haar Wave) of the programs from each

category. Manhattan and Euclidean correctly diagnosed about 40% of the regular

benchmarks, and 64% (Manhattan) and 72% (Euclidean) of the irregular ones.

Chebyshev retained trends for 60% of the regular benchmarks, and only 36% of the

irregular benchmarks. Since none of the methods found matches for sweep3d, trends

were retained by default.

We show examples of the KOJAK diagnoses produced for early _gather and

NtoN_1024 in Figure 26 and Figure 27. For early_gather, we see that only absDiffwas

able to retain the correct performance trends. This is likely due to the low number of

matches achieved by absDiff for this benchmark. None of the methods found

acceptable reductions for NtoN _ 1024. All showed reduced severity for the "Barrier

no loss EX MP ' relDiff EX MM MP•; ij

absDiff EX & -· MP• twee
Manhattan EX •• §W MP -Euclidean EX MP
Chebyshev EX MP

MPI Gather

CM
CM
CM
CM

CM

CM

co ER

COM MER
CO Will @@ii ER

COMW*IMER
co ER
co ER

do work

EX!jUpj!FJ

EX " • ,:i;';1 1rn

EXt' I I ,,, 'I 'I

EX I,,,,.,~ .I 'l l l

EX fii\1&4:11 :tll!Pjjj

EX fn!H<t<,t,fH I

MP CM co ER avgWave EX EX (f !?4 H?HI
haarWave EX MP CO ER EX r .11,JtiU t\11¥11

no loss

relDiff
absDiff

Figure 26 Inter-process Reduction: KOJAK Performance Trends for
early _gather for Each Method at Default Thresholds

Manhattan
Euclidean

Chebyshev
avgWave
haarWave

91

Completion" diagnosis, and introduced variation in the severities at the rank level that

don't appear in the no-loss diagnosis. Additionally, all but absDiff reduced the severity

of the "Wait at Barrier" diagnosis.

In this category, the absDiff method performed best, correctly diagnosing 14 out of

the 18 programs. Next, all three of Euclidean, avgWave, and haarWave correctly

diagnosed 12, followed by Manhattan (11) and Chebyshev (9).

5 .3 .2.4 Discussion

Generally speaking, we found that there were far fewer inter-process matches

achieved with good results than we initially expected. We expected there to be a larger

number of matches in the regularly behaving benchmarks, but discovered that, overall,

a higher number of matches was found for the irregular benchmarks with a greater

level of retention of trends. Upon inspection, we found that there were no possible

inter-process matches for sweep3d _Sp, given its message passing behavior and our

matching criteria (We require that all message passing parameters, e.g. message tags

and bytes match for the traces to match.). However, we were surprised that no

acceptable matches of the 16 possible were found for sweep3d _32p.

In the file size reduction and degree of matching category, the top performers were

Chebyshev, Euclidean, avgWave, haarWave. For the approximation distance category,

the best methods were absDiff, avg Wave, haar Wave, and Manhattan. In the category

of retaining performance trends, the best methods were absDiff, followed by three

methods in a tie: Euclidean, avgWave, and haarWave. To choose the best overall

method in this category, we consider both file size reduction and retention of trends.

92

Although Chebyshev produced the smallest data files, it produced reduced traces with

the greatest amount of error and least retention of performance trends. Because

Euclidean, avgWave, and haarWave performed very similarly and relatively well in

file size reduction and retention of trends, we choose all three methods as the top

methods for inter-process reduction.

5.4 Combined Inter-process and Intra-process Reduction Evaluation

In this section, we compare the abilities of the similarity methods to produce

reduced traces using both intra- and inter-process reduction. Excluding iter _ k and

iter _avg, we use two different thresholds for each method, one for intra-process

matching and the other for inter-process matching. For iter _k and iter _avg, we

perform intra-process matching only. The thresholds we use in this study are those that

we found to be the best for each method in Sections 6.2 and 6.3. For intra- and inter-

process reduction respectively, the thresholds were: re/Di.ff (0.8, 0.8), absDiff (103
,

104
), Manhattan (0.4, 0.4), Euclidean, Chebyshev, avgWave, haarWave (0.2, 0.4). For

iter _k, we used k=lO, but no threshold for inter-process reduction since this method

does not perform inter-process reduction. We evaluate the methods as we did for the

intra- and inter-process only studies, for file size reduction, introduction of error into

the reduced trace, and retention of correct performance trends. (For full results, refer

to the Appendix.)

5.4.1 Size and Degree of Matching

For the degree of matching, we compute the sum of the intra- and inter-process

matches that were found as a fraction of the total number of intra- and inter-process

93

matches that could possibly be found (See Figure 29). For intra-process matching,

it er_ avg decides all segments with the same context match. Because the possible

number of intra-process matches is much higher than the possible number of inter

process matches, iter _avg has the highest degree of matching overall. The ranking of

the methods in order from highest average degree of matching to lowest is: it er_ avg,

avgWave, haarWave, absDiff, Euclidean, Chebyshev, Manhattan, iter _k, and re!Diff.

Unlike when considering intra- and inter-process matching in isolation, the expected

file size does not directly follow the degree of matching (See Figure 28). A method

such as iter _avg that achieves a high degree of intra-process matching but doesn't

perform inter-process matching can generate larger reduced trace files, because a

single inter-process match has the potential for more file size savings than multiple

intra-process matches. The methods in order of smallest average file size to largest

are: Chebyshev, avg Wave, Euclidean, haar Wave, Manhattan, absDiff, iter _avg, iter _ k,

and re/Diff.

5.4.2 Approximation Distance

We show the results for the approximation distance in Figure 30. Overall, the

Chebyshev distance introduced the most error and re/Di.ff introduced the least error

into the reduced traces. On average, more absolute error was introduced into the

reduced traces of the regular benchmarks than the irregular benchmarks. The methods

94

84.5

20 .-.---+---I···--- --· ···--·--·· ··········-····--·-·--·-·-···-···-···-········-····--··----

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

58.9

• relDiff

• absDiff

a Manhattan

a Euclidean

a Chebyshev

a iter_k

II iter_avg

II avgWave

• haarWave

• relDiff

a absDiff

II manhattan

II euclidDiff

Ill chebyDiff

II iter_k

II iter_avg

lll!lavgWave

II haarWave

r

95

5.0E+o4 ---------..---w-------------..---.----
1.2E+o5

4.SE+o4 -+--------t----..-.1 °..u...ii:: . .i.nJ.L,,L...c; ___ -+-------11--+--~c; 1£.i-04-
1.7E+o5

3.SE+04 +--1--1-11------1-----1----111--------1-----.11---t----t-----r-

2.SE+04 -i-4_.__ __ --1-----1---111--------1-------.---+----+-

2.0E+o4 ·+---+-----·- ----·---··--··········-- f-·---····· _ .. __________ -

1.SE+o4 -t-.---111t-tt----1
1.0E+o4 +-1---111._._----1---1---1111--1111---11H--11---.1----11--111t------+---+---t-

• relDiff

• absDiff

II Manhattan

•Euclidean

• Chebyshev

Ill iter_k

I 1111 iter_avg

5.0E+o3 ; J I '1 '1

1
ij • avgWave

o.OE+oO -i.io!•-.L.,,_.._....,_..J.._. • ..,_, _.1 1,........,..,_..._..,._......,I.,_.._-.-, __._,.-u' ..__,_.c&..L,--""11 ~R.lli.-r'....._,_.._.,..._._...,.1 _.....1,--, ,~, II haarWave

in order of smallest to largest av~rage approximation distance are: re/Diff, iter _avg,

absDiff, iter _k, haarWave, avg Wave, Manhattan, Eucliean, and Chebyshev.

5.4.3 Retention of Trends

Overall, the methods were able to produce the most acceptable reduced traces for

the regular benchmarks. An exception was the late _receiver benchmark, for which

none of the methods retained performance trends. All reported reduced severity for the

"Late Receiver" diagnosis and lost the correct rank-level severities for that diagnosis

The methods did less well for the irregular benchmarks. Notably, none of the

methods produced acceptable reduced traces for NtoN_32 or NtoN_l024. We show

the results for NtoN _ 32 in Figure 31. For all of the methods, the severity of "Wait at

Barrier" is under-reported and the rank-level severities do not match those of the no-

96

r

!""

I
I

do work

no loss

relDiff
absDiff
Manhattan
Euclidean

Chebyshev

iter_k
iter_avg
avgWave
haarWave

Figure 31

loss trace. It er_ k and it er_ avg did the worst for this benchmark, with severities

misreported for all of the diagnoses.

None of the methods produced reduced traces that retained trends for sweep3d. We

show the KOJAK diagnoses for sweep3d_32p in Figure 32. All methods reported

reduced severity for "Execution Time" in the sweep function. All but iter k showed - -

reduced severity in "Late Sender", while iter _k showed different rank-level severities

than the results from the no-loss trace. The iter _ k method did the worst overall,

showing increased severities for all but the "Late Sender" diagnosis in pmpi recv _.

sweep

no loss -relDiff -absDiff -Manhattan --Chebyshev 1111
iter_k -iter_avg -avgWave -haarWave

Figure 32

97

r
I

I
I

The relDiff method produced the largest number of acceptable reduced traces, 10 out

of 18. Manhattan, Euclidean, avgWave, and haarWave retained correct performance

trends in 9 reduced traces. The other methods in order are absDiff (8), Chebyshev (7),

iter _ k (6), iter _avg (4).

5.4.4 Discussion

The best performing methods in the file size reduction category were Chebyshev,

avgWave, and Euclidean. From the approximation distance category, the best methods

were re/Diff, iter _avg, and absDiff. The methods that best retained performance trends

were re/Diff, followed by a tie between Manhattan, Euclidean, avg Wave, and

haarWave. Given its performance in the file size reduction and retention of

performance trends categories, we choose avgWave as the best method for reducing

traces using both intra- and inter-process reductions._

5 .5 Discussion

Here we discuss our expectations for the similarity methods and matching

scenario: intra-process only, inter-process only, and combined intra- and inter-process

matching.

5.5.1 Trace Similarity Methods

For re/Diff, we expected low error and relatively large files, which is exactly what

we found to be true. For absDiff, we expected low error. We did find that absDiffhad

lower error when compared to most methods. We expected the Minkowski distances

would favor long segments and error would be lowest for Manhattan, followed by

98

Euclidean, and highest for Chebyshev. While we did definitely see more error in the

traces produced by the Chebyshev method, the differences in the results for the

Manhattan and Euclidean methods we~e largely undistinguishable. We expected

iter _ k and iter _avg to produce low error traces for programs with regular behavior and

for iter _avg to have the lowest overall file sizes. We indeed found that iter _ k did well

for regularly behaving programs and less well for programs with varying behavior

patterns. Jter _avg produced better results for the regular benchmarks than the irregular

ones; the averaging of measurements tended to cause loss of information needed for

diagnosis. For avgWave and haarWave, we expected stricter comparisons than

Euclidean. Indeed, the wavelet transforms produced slightly larger files for the

benchmark traces; however, the reduced traces of sweep3d were smaller than those

produced by Euclidean.

5.5.2 Intra- and Inter-process Matching

We expected the trace similarity methods to identify high degrees of both intra

and inter-process matches, and that the number of intra-process matches would be

much higher because of the higher number of possible intra-process matches. We

expected that inter-process matches would yield the greatest gains in terms of file size

and a similar level of retention of performance trends across intra- and inter-process

matching.

We found that the results for intra-process only matches followed our

expectations, but that the results for inter-process only matches did not. While inter

process matching did achieve the highest gains in terms of file size reduction, there

99

r
I
I

I

were a much lower number of inter-process matches that retained correct performance

behaviors than we expected. This is due to the larger number of measurements that

must match according to the similarity method used in order for an inter-process

match to be successful, from differing message passing parameters across ranks, and

slight variations in events in initialization segments

5.6 Summary

We developed a post-mortem trace profiler and used it to demonstrate the viability

of trace profiling for trace size reduction and for producing reduced traces that retain

the behaviors needed for correct performance analysis. Additionally, we developed a

new methodology for evaluating definitions for similarity between event traces for the

purpose of performance analysis. We identified criteria for comparing the similarity

methods: file size reduction, degree of matching, approximation distance, and

retention of correct performance trends. We applied these criteria, using benchmarks

with known performance behaviors, as well as with the application sweep3d. We

evaluated the similarity methods for how well they reduced traces using intra-process

reduction only, inter-process reduction only, and combined intra- and inter-process

reductions.

For intra-process reduction, the avg Wave method had the best retention of

performance behaviors and good trace file size reduction. The greatest trace file

reductions were achieved with the iter _avg method; however, the error in those traces

led to loss of important performance trends in the data. Because of this we found that

100

using the avg Wave method was the best trade-off in terms of error in the reduced trace

and file size reduction.

In our inter-process reduction study, we discovered that less matching occurred

than what we expected. Euclidean, avgWave, and haarWave performed very similarly

and relatively well in file size reduction and retention of trends, so we choose all three

methods as the top methods for inter-process reduction. We found that Chebyshev

produced the smallest data files, and that it produced reduced traces with the greatest

amount of error and least retention of performance trends, so it was not chosen as the

best method in this study.

For combined intra- and inter-process reduction, again Chebyshev produced small

files with large amounts of error and lost trends. Based on the ability of avg Wave to

produce reduced traces that are relatively small with low error and high rate of

retention of performance trends, we chose it as the best method for combined intra

and inter-process reduction.

101

6 Prototype Runtime Trace Profiler

We demonstrated the viability of the trace profiling technique in terms of

correctness and file size reduction in our post-mortem studies in Chapter 6. Here, our

goal is to demonstrate that the overhead of writing the collected trace data is lower

with a runtime trace profiler than with a traditional tracing tool. In this chapter, we

first describe our current implementation of a prototype runtime trace profiler.2 Then,

we detail our experimental setup for evaluating the overheads and resulting files of the

prototype against a state-of-the-art traditional tracing tool on a typical high-end Linux

cluster. Finally, we present the results of our experiments.

6.1 Current Prototype Implementation

The current runtime trace profiler consists of a front end and a back end trace

profiler instrumentation library. The front end launches the program to be measured

and inserts calls in the program to the trace profiler instrumentation library. The trace

profiler instrumentation library contains routines that· implement the trace profiling

technique. This initial implementation supports single-threaded MPI applications.

6.1.1 Trace Profiler Front End

The front end of the trace profiling tool starts and controls the execution of the

target process, locates instrumentation points, and inserts calls to the trace profile

instrumentation library at those points. We use the Dyninst dynamic instrumentation

library for process control and instrumentation insertion [29]. We start a separate

2 In this version of the prototype, we reduce the amount of collected data with intra-process merging only. Inter
process merging is left as a post-mortem activity.

102

i

•

front end process for each rank in the parallel run by starting the front end as a parallel

job and giving it arguments that indicate the program to start and measure, as well as

other arguments that control measurement details, e.g. the distance metric to use to

compare segments and comparison thresholds. For example, if we are running on a

machine that uses the srun command to start parallel jobs, the command srun -n

8 . /traceProfiler -d haar_wave targetProgram would start 8 front

end traceProfiler processes according to the policies of the resource manager on the

machine and compare them using the haarWave distance metric. Each front end would

be responsible for a single instance of targetProgram.

Before starting its target program, the front end sets the environment variable

LD _PRELOAD to load the back end library into the measured process when it is

started. By doing this, the measurement routines in the trace profile instrumentation

library are available and can be called from the measured process. Next, the front end

creates the process, but does not execute it until after inserting instrumentation. The

front end locates the functions and loops in the program. It assigns identifiers to all

functions and context names and identifiers to all segments, and passes the names and

identifiers to the trace profile instrumentation library. It instruments the entry and exit

of all functions with calls into the trace profile instrumentation library. Segment

markers are inserted with calls to the trace profile instrumentation library. An initial

segment is started at the entry to main or MAIN_. Then, for each loop that contains a

user-specified number of function calls, the current segment is stopped and a new

segment is started at the top of the loop and stopped at the bottom of the loop. At the

103

end of the loop execution a new segment is started. At program termination, the final

segment is stopped3
• Segment contexts for non-loop portions of code are named as a

concatenation of the enclosing function name and an integer that makes the name

unique. Segment contexts for loops are assigned as a concatenation of the enclosing

function name, the hierarchical loop name as assigned by Dyninst, and an integer that

makes the segment name unique. See Figure 33 for an example code snippet with

segment marker instrumentation. Note that the consequences of marking segments in

this manner mean that some segments will contain no events, e.g main_2, all segments

are disjoint, and that it is possible for a function's entry and exit to cross segment

boundaries if the function or its callees contain a loop that is marked as a segment.

After inserting all instrumentation, the front end starts the execution of the

measured process. At termination of the measured process, the front end process exits.

6.1.2 Trace Profiler Instrumentation Library

In this section, we describe the interface to the trace profile instrumentation library

and its runtime operations.

6.1.2.1 Instrumentation Interface

We show the interface to the trace profile instrumentation library in Table 5. The entry
and exit of functions are recorded by calls to the enterRoutine and

3 If the target program is a Fortran application, a call to exi tRoutine for MAIN is executed before the final
segment is stopped· In some Fortran implementations, the MAIN_ function is part of the Fortran library and not
part of the user code. It is responsible for executing the main program unit of the user's Fortran application. As a
result, the MAIN_ function may not exit.

104

int main() {
enterSegment("main_O");
MPI Init ();
exitSegment();

}

for(i=O; i < 100; ++i) {
enterSegment("main_loop_l_l");
do_work ();
MPI Allgather();
exitSegment();

enterSegment("main_l");
exitSegment();
for (j=O; j < 10; ++j){

enterSegment("main_loop_2_1");
do other work();
exitsegment();
while(k < otherRanks) {

enterSegment("main_loop_2.1_1");
MPI Sendrecv();
exitSegment();

enterSegment("main_2");
exitSegment ();

enterSegment("main_3");
MPI Finalize();
exitSegment();

Figure 33 Example Segment Context Marking and Names

exi tRoutine functions, respectively. Segment boundaries are marked with calls to

enterSegment and exi tSegment. We use the PMPI interface to selectively

collect details about MPI message passing activities. The function MPI _Ini t

contains instrumentation to call the trace profile instrumentation library function,

openTrace, which performs initialization activities. The MPI function definitions

for sending and receiving operations contain calls to send.Message and

recvMessage which record details about sends and receives: source or target

rank,bytes transferred, message tag, and communicator. In Figure 34, we show the

instrumented definition of MPI _Send. When the user code calls MPI Send, the

instrumented function in the trace profile instrumentation library is executed, which in

tum calls PMPI Send, the actual call into the message passing library.

105

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int
tag, MPI_Comm comm) {

int returnVal;
int typesize;

if (dest != MPI PROC NULL) {
PMPI_Type_size(datatype, &typesize);
sendMessage(translateRankToWorld(comm,dest), typesize*count, tag,

comm);
returnVal = PMPI_Send(buf, count, datatype, dest, tag, comm);

return returnVal;

Figure 34 Example Instrumentation for Message Passing Function

6.1.3 Runtime Operations

The current version of the trace profiler front end takes arguments that specify the

distance metric to be used for comparing segment data and comparison thresholds.

The methods implemented into the runtime prototype are those that are described in

Section 5.3. Intra-process segment matching is performed at runtime and inter-process

segment matching is a post-mortem activity.

When the measured process is started, it makes an initial call to enterSegment

to create the first segment and a call to enterRoutine for the entry to main or

MAIN_. Presumably, the first function call in the measured program is to MPI _ Ini t.

In the instrumentation for MPI _ Ini t, the trace profiler performs initialization

activities, such as setting up the data structures for storing the collected data and

getting the rank identifier for the process. Then, all function event data is collected in

the enterRoutine and exi tRoutine functions until the next call to

exi tSegment. When exi tSegment is called the first time, there are no other

segments stored that could be a potential match, so the first segment is inserted into

106

Table 5 Trace Profile Instrumentation Library Interface

INSTRUMENTATION LIBRARY ACTIONS
FUNCTION

defineEvents(eventList) Called before target program execution. The
argument eventList is a listing of function and
segment identifiers and names.

openTrace(rank) Called in MPI Init. Performs initialization -
activities.

endProgram () Called at program termination. Calls
exitSegment3

.

enterSegment(id) Called at a segment entry marker. Sets current
segment.

exi tSegment () Called at segment exit marker. Exits current
segment.

enterRoutine(id) Called at function entry to record function entry
time and identifier.

exitRoutine(id) Called at function exit time to record exit time
and identifier.

sendMessage(dest, Called from instrumented MPI calls to record
bytes, tag, comm) details about send operations.

recvMessage(source, Called from instrumented MPI calls to record
bytes, tag, comm) details about recv operations.

MPI * Intercept calls to the actual MPI library and call -
appropriate trace profile instrumentation library
function to record message passing details. They
also execute the call into the MPI library to
execute the operation, e.g. MPI Send calls -
send.Message and PMPI Send.

-

the list of stored representative segments. For all subsequent calls to

enterSegment, a new segment is created. At the matching call to exi tSegment,

the segment is terminated and compared using the selected distance metric against the

segments with the same context that have already been stored as representatives.

107

r
\
l

6.2 Experimental Setup

In this section, we report on the experiments we performed to evaluate the

overheads of our current runtime prototype trace profiler (TP). We evaluate our

prototype against a state-of-the-art traditional tracing tool, TAU. We evaluate both

tools for instrumentation and writing overhead as defined in Chapter 4, and for

resulting file size.

6.2.1 Application

We evaluated the prototype using Sweep3d [3] described in Section 6.1.2. We ran

the application with a problem size of 5 x 5 x 6400 with MK=30 and MMI=2. We

measured the application with 32, 64, 128, 256, 512, and 1024 processors.

6.2.2 Machine

We ran our experiments on Hera at LLNL. Hera is an 864-node Linux cluster,

where each node contains 4 AMD quad-core processors, for a total of 16 CPUs per

node. The nodes are connected by an Infiniband switch and are connected to a Lustre

file system. For each experiment, we ran jobs that utilized all CPUs on each node, e.g.

a 32-process run spanned two nodes, and wrote all trace data to the Lustre file system.

The configuration of Hera is very similar to the machine shown in Figure 2.

6.2.3 Tool Configurations

We used TAU version 2.17.l [58] for our experiments. We configured TAU to

collect entry and exit events for all functions. Note that we did not insert segment

108

markers into the program when measuring with TAU, so the number of

instrumentation points for TAU was lower than it was for our trace profiler prototype.

Our experiments here are similar to those described in Section 4.1. We performed

runs without trace instrumentation (nolnstr), and with and without buffer flush to file

enabled (write or noWrite). Additionally, we experimented with two different buffer

sizes in our experiments: 1.5 MB (def, default size for TAU) and 8.0 MB (8MB,

default size for the widely-used MPE [80]). We altered the buffer size and

write/no Write configuration of TAU as described in Section 4.1. The choices of buffer

size and write/no Write configuration for our prototype trace profiler are runtime

options. To measure execution time, we used the wall clock time reported by the

application. We evaluate only overhead that occurs after MPI Ini t and before

MPI _Finalize; this means that initial file creation and file closing are not included

in the overheads for both tools. Additionally, we do not evaluate any post-mortem

activities, such as trace file merging for TAU or inter-process matching for our

prototype.

When the buffer of either tool is full, the trace data is flushed to disk and the buffer

is emptied to collect more data. The flushing policy of our prototype is somewhat

different from that of TAU's. TAU simply creates a fixed-size buffer and inserts a

series of fixed-size trace records into it. Our implementation creates data structures to

hold process groups and the segments contained in each process group. We flush

TAU's buffer when the amount of data collected is exactly the maximum buffer size.

We flush the data structures from our prototype at the end of a segment when the

109

amount of data collected meets or exceeds the buffer size. The consequences of this

are that our tool may flush less frequently than TAU.

We implemented a simple buffer flushing policy for our prototype. We simply

flush the data for the entire process group and then reset the process group data to

empty. We append. the process group data at the end of the file, and additionally

update the section header containing the number of process gr~mps in the file.

We ran 30 identical runs for each combination of number of processes, tracing

tool, buffer size, write or noWrite, and for our prototype, flushing policy. For our

prototype runs, we used the avg Wave distance metric for segment matching, with

threshold 0.2 and inserted segment markers in loops that contained at least 10 function

calls. We report the average timing information for each configuration. For TAU, the

trace file sizes and number of flushes are deterministic, so we report exact values. For

our prototype, the sizes and number of flushes vary depending on how many segment

matches occur at runtime. We report the averages of these measurements.

6.3 Results

In this section, we present the results of our experiments. We evaluate the tracing

tools for instrumentation and writing overhead, size of generated files, and flush count.

6.3.1 Execution Time

We show the execution time of sweep3d measured under the various

configurations with increasing processor count in Figure 35. The execution times for

the application with no instrumentation are labeled nolnstr. The first four bars after

nolnstr in each processor-count grouping show the TAU runs; the last four bars show

110

100

"in"
80 • nolnstr "ts c

0 •TAU _noWrite_def u
G1
~ • TAU_noWrite_8MB
G1
E 60 II TAU _write_def
l=
c i11TAU_write_8MB 0
+:;
:::s • TP _noWrite_def u
~ 40

• TP _noWrite_SMB LIJ

• TP _write_ def

20 mTP _write_8MB

32 64 128 256 512 1024

Processor Count

Figure 35 Execution Time ofSweep3d Measured with TAU and TP

the results for our prototype (TP). The difference between the execution times for

nolnstr and the no Write runs shows the amount of instrumentation overhead caused by

each tool and buffer size. The difference between the no Write and write runs shows

the writing overhead of the tool configuration.

We examine the writing overhead in more detail in Figure 36. At the smaller

processor counts (32, 64, and 128), we see that the writing overhead is not very

detectable. However, at the larger processor counts the writing overhead for TAU and

our prototype increases with increasing processor count. At the default buff er size, the

writing overheads of TAU and of our prototype become more noticeable and increase

with increasing processor count. However, our prototype introduces less overhead

111

80

70

60
in
"'C c
0 50 u
GJ
.!!.
"'C

"' 40 cu
.i: ..
GJ
:::0
0
GJ 30
~

20

10

0

32 64 128 256

Processor Count

512 1024

• TAU_write_def

11 TAU_write_8MB

• TP _write_def

11 T~_write_8MB

Figure 36 Write Overhead for Sweep3d with TAU and TP

than TAU. With the 8 MB buffer, the writing overhead of TAU increases dramatically

with increasing processor count, but the writing overhead for our prototype using the 8

MB buff er increases very slowly with increasing processor count.

6.3.2 Total File Size

We show the sum of file sizes generated during the write runs in Figure 3 7 and the

average file size per rank in Figure 38. In all cases, the amount of data written

increases with increasing processor count. However, the file sizes generated using our

prototype did not increase as rapidly as did those of TAU. When using the default

buffer size with our prototype, the total amount of data was higher than when using

the 8 MB buffer.

112

50

45

40

35

;;-
~ 30
~
iii 25
~ u:
ca 20 ;2

15

10

5

0

32 64 128 256

Processor Count

512 1024

II TAU_write_def

111 TAU_write_SMB

11 TP _write_def

1111 TP _write_SM B

Figure 37 Total Size of Files Generated for Sweep3d with TAU and TP

50

45

40

;;-
~ 35
~ c as 30 a:: ..
cu
a.
cu 25 N

iii
~

20 u:
cu
Ill)
as .. 15 cu
~

10

5

0

32 64 128 256

Processor Count

512 1024

II TAU_write_def

111 TAU_write_8MB

• TP _write_def

111 TP _write_8MB

Figure 38 Average File Size Per Rank for TAU and TP

113

6.3 .3 Flushes

The total buffer flushes over all ranks executed by each tool configuration are

shown in Figure 39 and the average per rank flushes are shown in Figure 40. TAU

with the default size buffer generated the most buffer flushes overall, followed by our

prototype using the default size buffer. The least amount of flushes was executed by

our prototype using the 8MB buffer. In all cases, the number of flushes increased with

increasing processor count.

6.4 Discussion

Our goal for trace profiling was to reduce the overheads of tracing by reducing the

amount of trace data being written to disk during runtime. The writing overhead and

resulting data files from our trace profiler prototype were much smaller than those of

TAU. As expected, the writing overheads still scaled with the number of ranks in the

run, because of contention for the shared file system resources. However, the

overheads did not increase nearly as quickly as with TAU. In general, we found that

the instrumentation overhead of our prototype was on the same order of the

instrumentation overhead of TAU.

The choice of buffer size for TAU had much less of an impact on overheads and

file size than it did with our prototype. Of course, the choice of buffer size would not

impact the file sizes generated by TAU; the same number of events will be written

regardless. The buffer size choice greatly impacted the performance of our prototype.

The larger buffer size allowed the tool to find a larger number of segment matches,

resulting in less flushes, less writing overhead, and smaller data files.

114

.I

3.SE+04

3.0E+04

2.5E+o4

.... c
:J

2.0E+04 8
.c
Ill
:::ll

u::::
n; 1.5E+04

~

1.0E+04

5.0E+03

O.OE+OO

Figure 39

35

30

~ 25 c
"' a:
~

D..
.... 20 c
= 0 u
.c
Ill

= 15 u::::
G1
DO
~
GI

10 ~

5

0

32

32 64 128 256

Processor Count

512 1024

11 TAU_write_def

11 TAU_write_8MB

• TP _write_def

II TP _write_SMB

Total Buffer Flush Count for Sweep3d with TAU and TP

64 128 256

Processor Count

512 1024

II TAU _write_def

II TAU_write_8MB

• TP _write_ def

II TP _write_8MB

Figure 40 Average Flush Count Per Rank with TAU and TP

115

7 Conclusions
In this dissertation, we present a novel performance measurement technique for

collecting event-based performance data and demonstrate its viability for low

overhead event trace collection for the purpose of parallel performance analysis.

Our first contribution is a study of the overheads of traditional event trace

collection. We demonstrate that event tracing using traditional methods on high-end

parallel systems is not scalable. The act of collecting such highly detailed performance

information and periodically flushing the collected data to disk unduly perturbs the

measured program. Additionally, the trace files created scale with the running time

and number of concurrent entities in the parallel run. Our study indicates that the

major scalability problems of traditional tracing are the overhead due to periodically

flushing the event data to disk and the large resulting trace files.

The second contribution of this dissertation is trace profiling, a new low-overhead

measurement technique for gathering event-based performance data. Trace profiling is

a hybrid of tracing and profiling and collects summary information about event

patterns that occur during program execution. Trace profiling addresses the major

scalability problems of traditional tracing: periodic flushing of trace data to disk; and

the unmanageably large trace files that are generated. The technique detects repeated

event patterns both within and across processes in a parallel run. Because intra-process

event pattern matching is done at runtime, a reduced data volume is flushed to disk

during execution, which results in lower tool overhead due to writing. Additionally,

116

the sizes of the files generated by trace profiling are greatly reduced compared to

traditional tracing.

The third research contribution is a study of similarity metrics for identifying

patterns in event traces. We evaluate several metrics for file size reduction,

introduction of error, and retention of correct performance behaviors in the reduced

trace. In our study, retention of performance trends was the most important criteria for

evaluating similarity metrics for trace reduction. Our study indicates that the average

wavelet transform method performs the best in terms of retention of performance

trends and file size reduction. This study demonstrates the viability of trace profiling

in terms of its ability to collect useful traces that retain the important behavior patterns

at a reduced data volume.

Our fourth contribution shows the low overheads of runtime trace profiling. We

implemented a prototype runtime trace profiler and evaluated it against a state-of-the

art traditional tracing tool on a typical high-end Linux cluster. We demonstrate that the

overheads of collecting event-based measurement data using trace profiling are lower

than that of traditional tracing and that the resulting data files are smaller.

We conclude that trace profiling is a viable method for low-overhead collection of

event-based performance data on high end systems.

7 .1 Future Work

Potential directions for future work include: investigation of memory bounds for

performance tools; and evaluation of the implementation choices for a trace profiler

and their consequences in terms of measurement overheads.

117

7 .1.1 Performance Tool Memory Bounds
Any performance measurement tool that is designed to measure large, long-

running parallel programs must bound the amount of memory used in order to be

scalable; a tool cannot simply store all collected data in memory without potentially

incurring serious consequences to the application performance. In our runtime study,

we discovered that the choice of memory bound for storage of event data impacted the

performance of our prototype. The bound affected the amount of event pattern

matching that could occur at runtime, and thus the amount of data that was flushed

periodically during the run. Use of a smaller memory bound resulted in more flushes,

less event pattern matching, and larger resulting data files than use of a larger memory

bound. In our study, we experimented with two memory bounds, chosen because they

are the default buffer sizes for two commonly-used traditional tracing tools. In our

experience, performance tools either have hard-coded default memory bounds or allow

the user to choose the bounds to be used. In either case, there is no guidance given to

the user as to what bound would be a good choice for a particular performance tool

measuring a particular application class on a particular architecture. A direction for

future work would be to develop a model for describing the interactions between tool

memory bounds, application characteristics, and architecture. The model could be

used to provide guidelines for choosing the best memory bounds for a given situation.

7 .1.2 Trace Profiler Measurement Overheads
Although all performance measurement techniques introduce perturbation of

varying degrees into the program being measured, performance measurement with a

trace profiler implementation has the potential to introduce irregular perturbation. In

118

the best case, when measuring regularly behaving programs with a trace profiler, there

will be a high degree of matching of event patterns, which will greatly reduce the

number of comparisons that need to be performed during runtime. However, in the

worst case, when measuring programs that have irregular behavior over time, the

number of intra-process event pattern matches will likely decrease, meaning there will

be a larger number of comparisons that need to be performed over time during runtime

and possibly more data that needs to be flushed to honor the memory bounds of the

tool. Additionally, in a parallel run, if more matches are found in some ranks than

others, then the amount of time spent in comparison operations across ranks will vary.

This could introduce perturbation that could affect the behavior of other ranks, if, for

example, some ranks are waiting for communication from ranks that have a larger

number of event pattern comparisons to make. Future research could examine the

potential consequences of the perturbation introduced by trace profiling for different

classes of programs.

The choice of where to introduce segment markers into a program has the potential

to impact both the amount of perturbation introduced into the program and the number

of event pattern matches that can be identified. If segment markers are placed in all

loops, then the instrumentation overhead increases because more instrumentation

instructions are executed. However, the number of segment matches is likely to

increase greatly, because the amount of event data in each segment is smaller. If

segment markers are placed in loops more selectively, then instrumentation overhead

decreases, but segment matching might decrease because of the larger amount of event

119

data in each segment. A direction of future research would be to investigate the

tradeoffs of segment marking policies.

Our evaluation of the runtime prototype included a single simple policy for

honoring the memory bounds for storing event data: flush all event data when the

memory bounds are reached. Although this policy was very simple, it had the

disadvantage of flushing event patterns that could potentially match future event

patterns, resulting in less matching and larger file sizes. One possible option for

honoring the memory bounds is to never write any data to disk during the run, but

instead compress or fold the data in some manner. For example, when the amount of

data collected by the Paradyn performance tool reaches the memory bound, adjacent

data bins are averaged and the memory size is reduced by half [42]. A trace profiler

might increase the given threshold and reevaluate the stored segments for further

matches to reduce memory usage. However, care would need to be taken to ensure

that performance trends are not lost by allowing more error into the reduced trace.

Future studies of trace profiling could inve~tigate variations on policies for honoring

memory bounds and their impact on the scalability of the technique in terms of flush

counts and resulting data file sizes.

In our evaluation of the prototype runtime trace profiler, we evaluated the

prototype for overheads that occur at runtime, which excludes inter-process matching

overheads. Although post-execution inter-process merging would not perturb the

measured program, the computation time for the merging should still be scalable. An

option for scalable inter-process merging is to explore runtime merging. Segments that

120

are flushed during runtime could be checked for inter-process matches using a tree

based data reduction infrastructure such as MRNet [56], which would reduce the

overall amount of data being written to disk, and in tum, reduce the writing overhead.

An avenue of future work is to investigate and evaluate scalable methods for inter

process merging in a trace profiler implementation.

121

8 References

[1] Sphot benchmark. http://www.llnl.gov/asci/purple/benchmarks/limited/ sphot/.
downloaded Dec. 8, 2006.
[2] Intel trace collector 7 .0 user's guide.
ftp://download.intel.com/support/performancetools/cluster/analyzer/sb/itcreferencegui
de. pdf, January 2007.
[3] The ASCI sweep3D readme file.
http://www.c3.lanl.gov/pal/software/sweep3d/sweep3d_readme.html, January 2009.
[4] Maria Gabriel Aguilera, Patricia J. Teller, Michela Taufer, and F. Wolf. A
systematic multi-step methodology for performance analysis of communication traces
of distributed applications based on hierarchical clustering. In IPDPS, 2006.
[5] Allinea user's guide version 1.2. Available by request . from
support@allinea.com, February 2007.
[6] Dorian Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory Lee, Barton P.
Miller, and Martin Schulz. Stack trace analysis for large scale applications. In
International Parallel and Distributed Processing Symposium (IPDPS 2007), Long
Beach, CA, USA, March 26-30 2007.
[7] R. Aydt. The Pablo Self-Defining Data Format.
ftp://ftp.renci.org/pub/archive/Pablo.Release.5/SDDF/Documentation/SDDF.ps.gz,
1992. Downloaded on March 7, 2007.
[8] L. Bongo, 0. Anshus, and J. Bj0mdalen. Low overhead high performance
runtime monitoring of collective communication. In Proceedings of the 2005
International Conference on Parallel Processing (ICPP), Oslo, Norway, pages 455-
464, June 14-17 2005.
[9] Peter N. Brown, Robert D. Falgout, and Jim E. Jones. Semicoarsening
multigrid on distributed memory machines. SIAM J. Sci. Comput., 21 (5): 1823-1834,
2000.
[10] Laura Carrington, Allan Snavely, Xiaofeng Gao, and Nicole Wolter. A
performance prediction framework for scientific applications. In Workshop on
Performance Modeling-ICCS, 2003.
[11] Marc Casas, Rosa M. Badia, and Jesus Labarta. Automatic phase detection of
MPI applications. In Christian H. Bischof, H. Martin Bucker, Paul Gibbon, Gerhard R.
Joubert, Thomas Lippert, Bernd Mohr, and Frans J. Peters, editors, PARCO,
volume 15 of Advances in Parallel Computing, pages 129-136. IOS Press, 2007.
[12] Kin-Pong Chan and Ada Wai-Chee Fu. Efficient time series matching by
wavelets. In Data Engineering, 1999. Proceedings., 15th International Conference on,
pages 126-133, Mar 1999.
[13] I-Hsin Chung, Robert E. Walkup, Hui-Fang Wen, and Hao Yu. MPI
performance analysis tools on Blue Gene/L. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing (SC'06), page 123, New York, NY, USA, 2006. ACM.

122

~

I

I
!

[14] A. Fagot and J. de Kergommeaux. Systematic assessment of the overhead of
tracing parallel programs. In Proceedings of 4th Euromicro Workshop on Parallel and
Distributed Processing, pages 179-185, 1996.
[15] Felix Freitag, Julita Corbalan, and Jesus Labarta. A dynamic periodicity
detector: Application to speedup computation. In Proceedings of the 15th
International Parallel and Distributed Processing Symposium (JPDPS'Ol), San
Francisco, CA, USA, April 23-17 2001.
[16] J. Gailly and M. Alder. zlib 1.1.4 Manual. http://www.zlib.net/manual.html,
March 2002. downloaded on on January 30, 2007.
[17] Jason Gait. A probe effect in concurrent programs. Softw. Pract. Exper.,
16(3):225-233, 1986.
[18] Todd Gamblin, Bronis de Supinski, Martin Schulz, Rob Fowler, and Daniel
Reed. Scalable load-balance measurement for SPMD codes. In SC '08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, 2008.
[19] Todd Gamblin, Rob Fowler, and Daniel A. Reed. Scalable methods for
monitoring and detecting behavioral equivalence classes in scientific codes. In
Proceedings of the International Parallel and Distributed Processing Symposium

· (IPDPS'08), Miami, FL, April 14-28 2008.
[20] J. Gannon, K. Williams, M. Andersland, J. Lumpp, Jr., and T. Casavant. Using
perturbation tracking to compensate for intrusiuon propagation in message passing
systems. In Proceedings of the] 4th International Conference on Distributed
Computing Systems, Poznan, Poland, pages 414--421, June 21-24 1994.
[21] J. Garlick and C. Dunlap. Building chaos: an operating environment for
livermore linux clusters. Technical Report UCRL-ID-151968, Lawrence Livermore
National Laboratory, Feb. 2002.
[22] Michael Gemdt, Bernd Mohr, and Jesper Larsson Traff. A test suite for parallel
performance analysis tools. Concurrency and Computation: Practice and Experience,
19(11):1465-1480, August 2007.
[23] Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey Vetter. Falcon:
on-line monitoring and steering of large-scale parallel programs. Concurrency:
Practice and Experience, 10(9):699-736, Dec 1998.
[24] S.T. Hackstadt, A.D. Malony, and B. Mohr. Scalable performance
visualization for data-parallel programs. pages 342-349, May 1994.
[25] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2005.
[26] Matthias Hauswirth, Amer Diwan, Peter F. Sweeny, and Michael C. Mozer.
Automating vertical profiling. In Proceedings of the 20th annual ACM SJGPLAN
conference on Object oriented programming, systems, languages, and applications,
pages 281 - 296, October 16-20 2005.
[27] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of
parallel programs. volume 8, pages 29-39, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.
[28] M.T. Heath, A.D. Malony, and D.T. Rover. The visual display of parallel
performance data. Computer, 28(11):21-28, Nov 1995.

123

[29] Jeff Hollingsworth, Barton Miller, and Jon Cargille. Dynamic program
instrumentation for scalable performance tools. In Proceedings of Scalable High
Performance Computing Conference, Knoxville, TN, USA, pages 841-850, May 23-25
1994.
[30] Ted Huffmire and Tim Sherwood. Wavelet-based phase classification. In
PACT '06: Proceedings of the 15th international conference on Parallel architectures
and compilation techniques, pages 95-104, New York, NY, USA, 2006. ACM.
[31] A. Jensen and A. la Cour-Harbo. Ripples in Mathematics: The Discrete
Wave/et Transform. Springer-Verlag, 2001.
[32] Laxmikant V. Kale, Sameer Kumar, Gengbin Zheng, and Chee Wai Lee.
Scaling molecular dynamics to 3000 processors with projections: A performance
analysis case study. In International Conference on Computational Science (ICCS
2003), Melbourne, Australia and St. Petersburg, Russia, pages 23-32, June 2-4 2003.
[33] A. Kniipfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel. Introducing the
open trace format (OTF). In in Proceedings of International Conference on
Computational Science (ICCS), Reading, UK, pages 526-533, May 28-31 2006.
[34] Andreas Kniipfer. A new data compression technique for event based program
traces. In International Conference on Computational Science, pages 956-965, 2003.
[35] Andreas Knupfer, Bernhard Voigt, Wolfgang E. Nagel, and Hartmut Mix.
Visualization of repetitive patterns in event traces. In PARA, pages 430--439, 2006.
[36] Dieter Kranzlmuller, Siegfried Grabner, and Jens Volkert. Event graph
visualization for debugging large applications. In SPDT '96: Proceedings of the
SIGMETRICS symposium on Parallel and distributed tools, Philadelphia,
Pennsylvania, USA, pages 108-117, 1996.
[37] Dieter Kranzlmuller, Siegfried Grabner, and Jens Volkert. Monitoring
strategies for hypercube systems. In PDP '96: Proceedings of the 4th Euromicro
Workshop on Parallel and Distributed Processing (PDP '96), page 486, Washington,
DC, USA, 1996. IEEE Computer Society.
[38] Dieter Kranzlmuller, Andreas Knupfer, and Wolfgang E. Nagel. Pattern
matching of collective MPI operations. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA '04), Las Vegas, Nevada, USA, June 21-24 2004.
[39] Chee Wai Lee, Celso Mendes, and Laxmikant V. Kale. Towards scalable
performance analysis and visualization through data reduction. In 13th International
Workshop on High-Level Parallel Programming Models and Supportive Environments
(HIPS 2008) held in conjunction with IPDPS 2008, 2008.
[40] Allen D. Malony, Dan Reed, and Harry Wijshoff. Performance measurement
intrusion and perturbation analysis. Transactions on Parallel and Distributed Systems,
3(4):433--450, July 1992.
[41] Barton P. Miller. What to draw? when to draw?: an essay on parallel program
visualization. J. Parallel Distrib. Comput., 18(2):265-269, 1993.
[42] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia

124

Newhall. The Paradyn parallel performance measurement tool. Computer, 28(11):37-
46, 1995.
[43] Kathryn Mohror and Karen L. Karavanic. Performance tool support for MPI-2
on linux. In SC '04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 28, Washington, DC, USA, 2004. IEEE Computer Society.
[44] Kathryn Mohror and Karen L. Karavanic. A study of tracing overhead on a
high-performance linux cluster. Technical Report TR-06-06, Portland State University
Computer Science Department, December 2006.
[45] Kathryn Mohror and Karen L. Karavanic. Towards scalable event tracing for
high-end systems. In High Performance Computing and Communications, Third
International Conference (HPCC 2007), Houston, Texas, USA, pages 695-706,
September 26-28 2007.
[46] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach.
V AMPIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69-80,
1996.
[47] Oscar Nairn and Anthony J. G. Hey. Visualization of do-loop performance. In
HPCN Europe, pages 878-887, 1997.
[48] 0. Nickolayev, P. Roth, and D. Reed. Real-time statistical clustering for event
trace reduction. International Journal of High Performance Computing Applications,
11(2):69-80, 1997.
[49] Michael Noeth, Frank Mueller, Martin Schulz, and Bronis R. de Supinski.
Scalable compression and replay of communication traces in massively parallel
environments. In 21th International Parallel and Distributed Processing Symposium
(IPDPS'07), March 2007.
[50] D. Ogle, K. Schwan, and R. Snodgrass. Application-dependent dynamic
monitoring of distributed and parallel systems. IEEE Transactions on Parallel and
Distributed Systems, 4(7):762-778, July 1993.
[51] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin. The case of the missing
supercomputer performance: Achieving optimal performance on the 8, 192 processors
of ASCI Q. In Proceedings of the 2003 ACM/IEEE conference on Supercomputing
(SC'03), Phoenix, Arizona, USA, page 55, November 15-21 2003.
[52] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARA VER: A tool to visualise
and analyze parallel code. In Proceedings of WoTUG-18: Transputer and occam
Developments, volume 44, pages 17-31, Amsterdam, 1995. IOS Press.
[53] Prasun Ratn, Frank Mueller, Bronis R. de Supinski, and Martin Schulz.
Preserving time in large-scale communication traces. In JCS '08: Proceedings of the
22nd annual international conference on $upercomputing, pages 46-55, New York,
NY, USA, 2008. ACM.
[54] D. Reed, R.Olson, R. Aydt, T. Madhyastha, T. Birkett, D. Jensen, B. Nazief,
and B. Totty. Scalable performance environments for parallel systems. In Proceedings
of the 6th Distributed Memory Computing Conference, pages 562-569, May 28 -April
1 1991.
[55] D. Reed, P. Roth, R. Aydt, K. Shields, L. Tavera, R. Noe, and B. Schwartz.
Scalable performance analysis: the pablo performance analysis environment. In

125

Proceedings of the Scalable Parallel Libraries Conference, Mississippi State, MS,
USA, pages 104-113, October 6-8 1993.
[56] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A software
based multicast/reduction network for scalable tools. In SC '03: Proceedings of the
2003 ACM/IEEE conference on Supercomputing, page 21, Washington, DC, USA,
2003. IEEE Computer Society. ·
[57] S. Sarukkai and A. Malony. Perturbation analysis of high level instrumentation
for spmd programs. In Proceedings of the 4th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, San Diego, CA, pages 44-53, 1993.
[58] Sameer Shende and Allen D. Malony. The tau parallel performance system.
International Journal of High Performance Computing Applications, 20(2):287-311,
2006.
[59] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore. An algebra for cross
experiment performance analysis. In Proc. of the International Conference on Parallel
Processing (ICPP), pages 63-72, Montreal, Canada, August 2004. IEEE Society.
[60] Daniel P. Spooner and Darren J. Kerbyson. Performance feature identification
by comparative trace analysis. Future Generation Comp. Syst., 22(3):369-380, 2006.
[61] Cluster File Systems. Lustre: A scalable, high-performance file system.
http://www.lustre.org/docs/whitepaper.pdf, November 2002. downloaded June 2006.
[62] Eno Thereska, Brandon Salmon, John D. Strunk, Matthew Wachs, Michael
Abd-El-Malek, Julio Lopez, and Gregory R. Ganger. Stardust: tracking activity in a
distributed storage system. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 2006, Saint Malo,
France, pages 3-14, June 26-30 2006.
[63] Using cray performance analysis tools. http://docs.cray.com/books/S-2376-
31/S-2376-3 l.pdf, October 2006. Downloaded on Feb. 23, 2007.
[64] Jeffrey Vetter. Performance analysis of distributed applications using
automatic classification of communication inefficiencies. In JCS '00: Proceedings of
the 14th international conference on Supercomputing, pages 245-254, New York,
NY, USA, 2000. ACM.
[65] Jeffrey Vetter. Dynamic statistical profiling of communication activity in
distributed applications. In Proceedings of ACM SIGMETRICS 2002 International
Conference on Measurement and Modeling of Computer Systems, Marina Del Rey,
CA, USA, pages 240-250, June 15-19 2002.
[66] A. Waheed, V. F. Melfi, and D. T. Rover. A model for instrumentation system
management in concurrent computer systems. In HICSS '95: Proceedings of the 28th
Hawaii International Conference on System Sciences, page 432, Washington, DC,
USA, 1995. IEEE Computer Society.
[67] A. Waheed, D. Rover, and J. Hollingsworth. Modeling and evaluating design
alternatives for an on-line instrumentation system: A case study. IEEE Transactions
on Software Engineering, 24(6):451-470, June 1998.
[68] James S. Walker. A Primer on Wavelets and Their Scientific Applications.
Chapman & Hall/CRC, 2008.

126

. I

[69] K. Williams, M. Andersland, J. Gannon, J. Lummp, Jr., and T. Casavant.
Perturbation tracking. In Proceedings of the 32nd IEEE Conference on Decision and
Control, San Antonio, TX, pages 299-316, 1996.
[70] C. Winstead, H. Pritchar, and V. McKoy. Tuning I/O Performance on the
Paragon: Fun with Pablo and Norma. IEEE Computer Society Press, 1996.
[71] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Automatic analysis of
inefficiency patterns in parallel applications. Concurrency and Computation: Practice
and Experience, 19:1481-1496, 2007.
[72] Felix Wolf, Allan Malony, Sameer Shende, and Alan Morris. Trace-based
parallel performance overhead compensation. In in Proceedings of the International
Conference on High Performance Computing and Communications (HPCC),
Sorrento, Italy, September 2005.
[73] C. Eric Wu, Anthony Bolmarcich, Marc Snir, David Wootton, Farid Parpia,
Anthony Chan, Ewing Lusk, and William Gropp. From trace generation to
visualization: a performance framework for distributed parallel systems. In
Supercomputing '00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 50, Washington, DC, USA, 2000. IEEE Computer
Society.
[7 4] C. Eric Wu, Hubertus Franke, and Yew-Huey Liu. A unified trace environment
for ibm sp systems. IEEE Parallel Distrib. Technol., 4(2):89-93, 1996.
[75] K. Yaghmour and D. Dagenais. Measuring and characterizing system behavior
using kernel-level event logging. In Proceedings of the USENIX Annual 2000
Technical Conference, San Diego, CA, USA, pages 13-26, June 2000.
[76] J. Yan and S. Listgarten. Intrusion compensation for performance evaluation of
parallel programs on a multicomputer. In Proceedings of the 6th International
Conference on Parallel and Distributed Systems, Louisville, KY, October 14-16 1993.
[77] Jerry C. Yan, Haoqiang H. Jin, and Melisa A. Schmidt. Performance data
gathering and representation from fixed-size satistical data. Technical Report NAS-98-
003, NASA Ames Research Center, 1998.
[78] Jerry C. Yan and Sekhar R. Sarukkai. Analyzing parallel program performance
using normalized performance indices and trace transformation techniques. Parallel
Computing, 22(9): 1215-1237, 1996.
[79] Jerry C. Yan and Melisa Schmidt. Constructing space-time views from fixed
size trace files - getting the best of both worlds. In Parallel Computing:
Fundamentals, Applications and New Directions, Proceedings of the Conference
(ParCo'97), Bonn, Germany, pages 633-640, September 19-22 1997.
[80] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward
scalable performance visualization with Jumpshot. The International Journal of High
Performance Computing Applications, 13(3):277-288, Fall 1999.

127

Appendix: Additional Trace Similarity Study Results
List of Figures

Fig. 1 Intra-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Relative Distance .. 133

Fig. 2 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Absolute Distance .. 134

Fig. 3 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Manhattan Distance ... 13 5

Fig. 4 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Euclidean Distance .. 136

Fig. 5 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Chebyshev Distance ... 13 7

Fig. 6 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Keep k Iterations .. 138

Fig. 7 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Average Wavelet Transform .. 139

Fig. 8 Intra-process Reduction: File Size and Approximation Distance for Varying
Threshold and Haar Wavelet Transform ... 140

Fig. 9 Intra-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and relDiff, absDiff, Manhattan 141

Fig. 10 Intra-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and Euclidean, Chebyshev, iter_k 142

Fig. 11 Intra-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and Wavelet Transforms ... 143

Fig. 12 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for dyn_load_balance .. 144

Fig. 13 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for early _gather ... 145

Fig. 14 Intra-process Reduction: Retention of Performance Trends with Varying
Threshold for imbalance_ at_ mpi _barrier .. 146

Fig. 15 Intra-process Reduction: Retention of Performance Trends with Varying
Threshold for late broadcast ... 14 7

Fig. 16 Intra-process Reduction: Retention and Performance Trends with Varying
Thresholds for late receiver .. 148

Fig. 17 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for late_ sender ... 149

Fig. 18 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds forNto1_32 ... 150

128

Fig. 19 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtoN 32 .. 151

Fig. 20 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltoN 32 ... 152

Fig. 21 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1 to lr 32 .. 153

Fig. 22 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltols 32 .. 154

Fig. 23 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for Ntol 1024 ... 155

Fig. 24 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtoN 1024 .. 156

Fig. 25 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1 toN 1024 ... 157

Fig. 26 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltolr 1024 .. 158

Fig. 27 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltols 1024 .. 159

Fig. 28 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for sweep3d _ 8p ... 160

Fig. 29 Intra-process Reduction: Retention of Performance Trends with Varying
Thresholds for sweep3d_32p ... 161

Fig. 30 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Relative Distance .. 162

Fig. 31 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Absolute Distance ... 163

Fig. 32 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Manhattan Distance .. 164

Fig. 33 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Euclidean Distance .. 165

Fig. 34 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Chebyshev Distance .. 166

Fig. 35 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Average Wavelet ... 167

Fig. 36 Inter-process Reduction: File Size and Approximation Distance for Varying
Duration Thresholds and Haar Wavelet .. 168

Fig. 3 7 Inter-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and relDiff, absDiff, and Manhattan 169

129

Fig. 38 Inter-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and Euclidean and Chebyshev 170

Fig. 39 Inter-process Reduction: File Size and Approximation Distance for Varying
Thresholds for Sweep3d and avgWave and haarWave .. 171

Fig. 40 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for dyn _load_ balance .. 172

Fig. 41 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for early _gather ... 173

Fig. 42 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for imbalance at barrier ... 17 4

Fig. 43 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for late broadcast .. 175

Fig. 44 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for late receiver .. 17 6

Fig. 45 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for late sender ... 1 77

Fig. 46 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for Ntol 32 ... 178

Fig. 47 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtoN 32 .. 179

Fig. 48 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1 toN 32 ... 180

Fig. 49 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltolr_32 ... 181

Fig. 50 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltols 32 .. 182

Fig. 51 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for Ntol 1024 ... 183

Fig. 52 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for NtoN 1024 .. 184

Fig. 53 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1 toN 1024 ... 185

Fig. 54 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for 1 tolr_1024 .. 186

Fig. 55 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for ltols_1024 .. 187

Fig. 56 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for sweep3d _ 8p ... 188

130

r·

I

Fig. 57 Inter-process Reduction: Retention of Performance Trends with Varying
Thresholds for sweep3d_32p ... 189

Fig. 58 Combined Reduction: Retention of Performance Trends with Default
Thresholds for dyn_load_balance .. 190

Fig. 59 Combined Reduction: Retention of Performance Trends with Default
Thresholds for early _gather ... 190

Fig. 60 Combined Reduction: Retention of Performance Trends with Default
Thresholds for imbalance at barrier ... 190

Fig. 61 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late broadcast .. 191

Fig. 62 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late receiver .. 191

Fig. 63 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late sender ... 191

Fig. 64 Combined Reduction: Retention of Performance Trends with Default
Thresholds for Nto 1 32 ... 192

Fig. 65 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtoN 32 .. 192

Fig. 66 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1 toN 32 ... 192

Fig. 67 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltolr 32 .. 193

Fig. 68 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltols 32 .. 193

Fig. 69 Combined Reduction: Retention of Performance Trends with Default
Thresholds for Ntol 1024 ... 193

Fig. 70 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtoN 1024 .. 194

Fig. 71 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltoN_1024 ... 194

Fig. 72 Combined Reduction: Retention of Performance Trends with Default
Thresholds for 1 to lr 1024 .. 194

Fig. 73 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltols 1024 .. 195

Fig. 74 Combined Reduction: Retention of Performance Trends with Default
Thresholds for sweep3d _ 8p ... 195

Fig. 7 5 Combined Reduction: Retention of Performance Trends with Default
Thresholds for sweep3d_32p ... 195

131

(()
0
+
(]J
..-

0

8
~
C\J

0

8
0
LO

0
0

8
LO

8
+
~

o interference_1to1r_32
6. interference_1to1s_32
+ interference_1to1r_ 1024
x interference_1to1s_1024

0.0 0.2 0.4 0.6 0.8 1.0

Thresholds

l:l. _ 6. early_gather
O- o \ imbalance_at_barrier

x "-~ ::!:=~:::st
<\. x late _sender

+\
~:::t~~~

+~:'~
+~~~

~.

0.0 0.2 0.4 0.6 0.8 1.0

Thresholds

interference_Nto1_32
interference _NtoN_32
interference_ 1toN_32
interference_Nto1_ 1024
interference_NtoN_1024
"nterference_ 1toN_1024

n_load_balance

0.0 0.2 0.4 0.6 0.8 1.0

(]J

g
~
cs
c:
0

~
E
-~
a.
~

(]J
(.)
c:

~
cs
c:
0

~
E
-~
a_
~

(]J

g
~
cs
c:
0
"i
E
-~
a.
~

0
0 ..-

0
LO

0

0

8
LO

0

8
0 ..-

0

8
LO

0

8
8
o:::i

0
0
0 g
0
0

8
'<;!"

0
0
0
0
C\J

0

o interference_ 1to1 r_32
t::.. interference_ 1 to1 s_32
+ interference_ 1 to1r_1024
x interference_ 1 to1s_1024

·-·-·-•-*--•
0.0 0.2 0.4 0.6 0.8 1.0

Thresholds

o early_gather
t::.. imbalance_at_barrier
+ late_broadcast
x late_receiver
O late_sender

0

'./:
·-·-·-·-·-·~~

0.0 0.2 0.4 0.6 0.8 1.0

Thresholds

o interference_Nto1_32
t::.. interference_NtoN_32
+ interference_ 1toN_32
x interference_Nto1_ 1024
o interference_NtoN_ 1024
v interference_ 1toN_1024
181 dynJ oad_balance

0.0 0.2 0.4 0.6 0.8 1.0

Thresholds Thresholds

Fig. 1 Intra-process Reduction: File Size and Approximation Distance for
Varying Duration Thresholds and Relative Distance

r

I

132

r

0 x 0 0 interterence_ 1 to1 r_32 0 intelference_ 1 t 0 0 0
0 6. interterence_ 1 to1 s_32

(")
6. interteren LO

I'- + interterence_1to1r_ 1024 Q.) + interteren (.)

x interference_1to1s_1024
c: x interfere ';)' 0 Ci:I

0
Q.) 0

rJ) 0
>. 15 0 0 (\J

@ ~ c:
0 Q.)
~ N

0 + us 0 E tA-X ..!E 0 "§ 0
0 0 u:: LO 0.. .-
LO

~ 0 .(/ 0 LO

8 ~~~fP====•-41< ./ ~ 0
-.:!"

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

Thresholds Thresholds

fJ.

early_gather early _gather
o--o

0 0

6. imbalance_at_barrier 0
6. imbalance barrier

8 + late_broadcast Q.) 0 + late_broad st (.) 0
0 x late _receiver c: LO

i 0 $,...
LO 0 late_sender rJ) 0 >. (\J 15 0

@ c: 0
Q.) 0 0

0 ~ 0
N 0 ,...
us 0 E 0 Q.) LO ")(

0: e 0
0 a. 0 + +-+ ~ LO

•-•""'"'$.L~L~ ~
0

~.
0
0
0

~·-·--· 0 LO

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

Thresholds Thresholds

0
+

'*"
0

~~ Q.)
0 dyn_load_balance 0 dyn_load_balan ~ 0 0

6. intelf erence_Nto1_32
0 6. intelf erence_Nt --32-\J 00

+ interterence_NtoN_32 Q.) + intelf erence_Nt -:_32 ° (.) 0
~ x intelf erence_ 1toN_32 c: 0 x intelf erence_ 1t 32 i 0 ~ 0 -+ 0 intelference_Nto1_ 1024 0 0 interterence_N 1_1024 >. ~ 15 ~

@ \l interterence_NtoN_ 1024 c: 0 \l oN_1024
Q.) 181 interterence_1toN_ 1024 0 0 oN 1024
N ~ 0

us 0 o---o
~ E -.;t

Q.) 0 ")(+ 0: Q.) e 0
(\J a. 0

a. 0
<{ 0

C\J

0
0 0
Q.)
0

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05

Thresholds Thresholds

Fig. 2 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Absolute Distance

133

0
0
g
tD

""'

I.()
0
+
~

I.()
0
+
Q)

T""

x
o interference_1to1r_32
6. interterence_1to1s_32
+ interterence 1to1r 1024

~=~=1to1s~1~4

o~+:=:::::~,

0.1

x

0.2

~ 6.--.._b. --¥ .. *
o........__ -6-t::,.

0
-o-o

0.5 1.0

Thresholds

o early_gather
b. imbalance_at_barrier
+ late_broadcast

0 x
D,. ~

~ ~~
D,. ~

0 ~" \<i>·<i>
+~+---- ---6-b.-.6.

0----lb-=-©=-dr--©

0.1 0.2 0.5 1.0

Thresholds

o dyn_load_balance
<t~ce Nto1 32

-F~MQN=.32
x interference_1t~~si
o interf erence_Nto1_ 1024
V' interference_NtoN_ 1024
181 interference_1toN_ 1024

0--0--0~0-o-o
0.1 0.2 0.5 1.0

0
0

0
~

0
tD

0
N

0

o interference_ 1to1 r_32
b. interference_ 1to1s_32
+ interference_ 1to1r_1024

0.1 0.2 0.5

Thresholds

+

I
i=&

1.0

0---0---0- 0-0-0
o early_gather

0
0
0 -
I.()
T""

0
0
0 -
0
T""

0

b. imbalance_at_barrier
+ late_broadcast
x late_receiver
o late_sender

g -+---+---+-+-+-+
x---x---x-x-x-x

o _&=~=e=e=e=~

0.1

0

I

0.2

I

0.5

Thresholds

8 - o dyn_load_balance
:i5 b. interterence_Nto1_32

0 + interference_NtoN_32
g _ x interference_ 1toN_32
g o interference_Nto1_ 1024

V' interference_NtoN_ 1024 g _ 121 interference_ 1toN_1024
0

""'
0
0
0 -
0
C\J

1.0

x

_..a-dfo
o - •--=•=•-•-•-=w

I

0.1

I

0.2

I

0.5

I

1.0

Thresholds Thresholds

Fig. 3 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Manhattan Distance

134

0
0

8
~

LO
0
+
~

LO
0

t
~

LO
0
-!-

~

~
+
(I,)

x
o interference_1to1r_32
6. interference 1to1s 32

+ + interference -1to1r -1024
£:,. - -

0 ~~n::ce_1to1s_1024

\VA~i~
\ ~ *-¥-+

0.1

0.1

O~ 6.-A-
~ 6._b.

0-0-0-0

0.2 0.5 1.0

Thresholds

early _gather
imbalance _at_barrier
late_broadcast

0.2 0.5 1.0

Thresholds

o:f.Y!l_load_balance
·~~..1Jto1_32

+ 'iritertBreii~~~.
x interference_1toN_32
o interference_Nto1_ 1024
" interf erence_NtoN_ 1024
IXI interference_HoN_ 1024

0
----- 0 --0-0-0-0

0.1 0.2 0.5 1.0

(!)

g
~
i5
c:
0

i
E
-~
0.

~

0
0

0

o interference_ 1to1 r_32
!:::. interference_ 1 to1 s_32
+ interference_ 1to1r_1024
x interference_ 1to1s_102

0.1 0.2 0.5

Thresholds

+-+

1.0

°o early_8ather 0
-

0
-

0
-

0

0 6. imbalance_at_barrier
8 _ + late_broadcast
LO
T""

0
0
0 -
0 ..-

0

x late_receiver
o late_sender

§ - +---+---+-+-+-+

8
0
0
co
0
0
0

f6

8
8
'V

0

8
0
C\J

0

x---x---x-x-x-x

T

0.1

I

0.2 0.5

Thresholds

o dynjoad_balance
!:::. interference_Nto1_32
+ interference_NtoN_32
x interference_ 1toN_32
o interference_Nto1_ 1024
"V interf erence_NtoN_ 1024
~ interference_ 1toN_1024

-o-o-•==•--·-·-
0.1 0.2 0.5

1.0

0

1.0

Thresholds Thresholds

Fig. 4 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Euclidean Distance

135

0
0
0
o:i

~

8
0 v
~

0

0.1

..jnterference_ 1 to1 r_32
erference_ 1 to1 s_32

erence_1to1r_ 1024
rence_1to1s_1024

0.2 0.5 1.0

Thresholds

~ ea1ly~=o=o
t::,. imbalance_at_barrier
+ late_broadcast

~ t=====t=====t~t=t=t
C')

0

8
8 v

0
0
0
0
0
C')

0

8
8
C\J

8
0 g

0.1 0.2 0.5 1.0

Thresholds

• o ~~aran~e-*-•
t::,. interference_Nto1_32
+ interference_NtoN_32
x interference_1toN_32
O interference_Nto1_ 1024
"il interference_NtoN_1024
131 interference_ 1toN_ 1024

0---0---0-0-o-o

0.1 0.2 0.5 1.0

cu
(.)
c:

~
1:5
c:
0
"i
E
-~
0..

~

0
~

0
0 ,..

0
LO

0

o interference_ 1to1 r_32
t::,. interference_ 1to1 s_32
+ interference_ 1to1r_1024
x interference_ 1to1s_1024

0.1 0.2 0.5

Thresholds

1.0

0o early_~ather o- o- o-o

0 t::,. imbalance_at_barrier
8 _ + late_broadcast
LO ,..

0
0
0 -
0 ,....

0

8
LO

x late_receiver
o late_sender

+---+---+-+-+-+
x---x---x-x-x-x

o _e=~=e=e=e=~
I I

0.1 0.2 0.5

Thresholds

8 g - o dyn_load_balance
o::i t::,. interference_Nto1_32

0 + interference_NtoN_32
8 - x interference_ 1toN_32
0
(,0

1.0

O interference_Nto1_ 1024

0 'i7 interference_NtoN_ 1024
g _ 181 interference_ 1toN_1024
0 0 0

~ - I x

0 - i=====i====~==i-i1+
I

0.1

I

0.2

I

0.5 1.0

Thresholds Thresholds

Fig. 5 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Chebyshev Distance

136

interference_1to1r_32 •
I()

8 0
('I) interference_ 1to1 r_32

+ 6 interference_1to1s_32 0 interference_ 1to1 s_32 Q.)
00 + interference_1to1r_ 10 4 Q.) ('I)

interference_ 1to1r_1024 0
(0 x interference_1to1s_1 24

c: I() terference_ 1to1s_1024 ~ 0 ~ C\I
Q.J + >. Q.) i5 0 E9. c.o c: C\J
Q.) (0 • 0
N 0

/
-~ I()

Ci5 + E Q.)

~ -.;!" ·:;;:
LI: e 0

(0 0.
,....

$~!~~~-0 ~ + Q.) I()
C\J--•

""' ·--· 0 •
10 20 50 100 500 10 20 50 100 500

Thresholds Thresholds

~=~ 0
0 early _gather C\J early_gather I() ,....

0
b imbalance barrier imbalance_at_barrier +

Q.) - - 8
""" + late_bro Q.) te_br~st 0

x c:
00 s ~ Q.) 0 0
>. + i5 00

Q.)

E9. ('I) c:
Q) i('5l 0 g I() ~ N 0

J*
Ci5 + E
Q) Q.) ·:;;: 0

:'·-·
a: C\J e -.;!"

I() 0.
0

~·
~ 0 +

Q.) C\J ,....
~ 0

10 20 50 100 500 10 20 50 100 500

Thresholds Thresholds

8 (0 w
0 0 dyn_load_balance ~ dynjoad_balance +
Q) 6 interference_Nto1_32 · terference to1_32 (0 0 + interference_NtoN_3 Q) 0 in rfere~Nt N_32 0 0

x interference_ 1 toN_3 c: C\J x inte re 1t 32 00 (0 ~ Q) 0 0 interference_Nto1_ 0 0 interfe e Nto1 024 >. + i5 0
interfere<fice=NtoN-=_ 1 24 ~ Q) \l interf erence_NtoN c: I() "'iJ

""" Q) 181 interference_ Ho 0 181 interference_ 1 tOOI 1 O
N ~ 0

Ci5 E 8 Q)
(0 ·:;;: 0 0 a: + 0

\ Q) 0.. 0 C\J 0.
< ~

8 (I ·-· + 0 ·-· Q)
0

10 20 50 100 500 10 20 50 100 500

Thresholds Thresholds

Fig. 6 Intra-process Reduction: File Size and Approximation Distance for
Varying Threshold and Keep k Iterations

137

0
8
g
-.;!'

x
interference_1to1r_32
interference_ 1 to1 s_32
interference_1to1r_ 1024

~ x interference 1to1s 1024

~~~¥~*~*•* 
~6-.6...._/::l_A 

0.1 

x 

0 

o-o-o 
'o 

0.2 0.5 1.0 

Thresholds 

o early_gather 
.6. imbalance_at_barrier 
+ late_broadcast 

\\i ~" 
A~ «.§=~=~ 

/::,.-b.-.6.-b. 

+----0 ---"lh-==--©="lh-=-dr=-dr 

0.1 

0 

0.2 0.5 1.0 

Thresholds 

(5i.:(!l_load_balance 
1::,. .J,nteinreR~~to1_32 
w~~fe~a 

x interference_1toN_32 -
O interference_Nto1_ 1024 
'V interference_NtoN_1024 
lg) interference_ 1toN_1024 

0
---- 0 ---o-o-o-o 

0.1 0.2 0.5 1.0 

°' g 
~ 
0 
c: 
0 

i 
E 
-~ 

0.. 
~ 

°' g 
~ 
0 
c: 
0 

i 
E 
-~ 
c.. 
~ 

o interference_ 1to1 r_32 
- .6. interference_ 1to1 s_32 

0 + interference_ 1to1r_1024 
o - x interference_ 1to1s_1024 

g -

0 -
~~l~~-~l~~~~l~~~-.--J 

0.1 0.2 0.5 1.0 

Thresholds 

oo early_8a""til'er o - o - o - o 

0 b. imbalance_at_barrier 
8 _ + late_broadcast 
LC"J ..... 

0 g 
0 ..... 

0 

x late_receiver 
o late_sender 

g - +---+---+-+-+-+ LC"J 

0 
0 
0 
M 

0 
0 

~ 

g 
0 

0 

x---x---x-x-x-x 

0.1 0.2 0.5 

Thresholds 

o dyn_load_balance 0 

b. interference Nto,1 ~ 
+ interference_NtoNQ2 

_32 
o interference_ _ 
\l interference toN_ 1024 
121 interferenc _ 1toN_1024 

0 

~o 

0.1 0.2 0.5 

0 

1.0 

" 0 

1.0 

Thresholds Thresholds 

Fig. 7 Intra-process Reduction: File Size and Approximation Distance for 
Varying Threshold and Average Wavelet Transform 

138 



0 

8 
0 
(.0 
v 

0 
0 
0 

:i5 v 

0 
0 

8 
::;: 

x 

+ 

0.1 

x 

interference_1to1r_32 
interference_ 1 to1 s_32 
interference_1to1r_ 1024 
interference_1to1s_1024 

0.2 0.5 1.0 

Thresholds 

o early_gather 
b. imbalance_at_barrier 
+ late_broadcast 

O: ate_sender 
e:,.\<S late_receiver 

0.1 

0 

I 

0.2 0.5 1.0 

Thresholds 

<f Yn_load_balance 

~ jn~~o1_32 

x i~ce:tt1J:i::t 
O interference_Nto1_ 1024 
'V interference_NtoN_ 1024 
ll!:I interference_1toN_ 1024 

0 -0----0~0-o-o 

0.1 0.2 0.5 1.0 

Q) 
(.) 
c: 
~ 
1:5 
s:: 
0 

~ 
E 
-~ 
a. 
~ 

Q) 
(.) 
s:: 

~ 
1:5 
s:: 
0 
-~ 

E 
-~ 

0.. 
~ 

0 
l!"J ,.... 

8 

0 

o interference_ 1to1 r_32 
b. interference_ 1to1 s_32 
+ interference_ 1 to1r_1024 
x interference_ 1 to1s_1024 

0.1 0.2 0.5 

Thresholds 

+ 

1.0 

0o early_~ather 0 
-

0 
-

0 
-

0 

0 b. imbalance_at_barrier 
8 _ + late_broadcast 
l!"J ,.... 

0 
0 
0 -
0 ,.... 

0 

x late_receiver 
o late_sender 

8 - +---+---+-+-+-+ L!'l 

0 
0 
0 
(") 

0 
0 

~ 

8 
0 

x---x---x-x-x-x 

I 

0.1 

I 

0.2 0.5 

Thresholds 

o dyn_load_balance o 
b. interference Nto1 d 
+ interference_NtoN232 
x interference_ 1t _32 
0 01_1024 
'V interference toN_ 1024 
181 interferenc _ 1toN_1024 

0.1 0.2 0.5 

I 

1.0 

0-0 

1.0 

Thresholds Thresholds 

Fig. 8 Intra-process Reduction: File Size and Approximation Distance for 
Varying Threshold and Haar Wavelet Transform 

139 



tO 
0 0 -t - 6. 0 ,D,. 

°' 

~ 
0 sweep3d_8p 0 - 0 sweep3d_8p 

I 
a:i g 6. sweep3d_32p .6. sweep3d_32p 
tO °' 0 u 0 
-t - c: 0 

(i) °' ~ 
0 -

tO 0 

°' [::. tO >. i5 
en tO 

~ 
c: 0 - 0 0 0 

QJ -t - fil 0 -
N QJ 0 

1:i5 """' E """' QJ ·x 
B: tO 6. e 0 

0 

~[::. 
0.. 8 -t - 0.. 

°' <( 0 
C\I C\I 0 0----- _t::._.6. I! 0 0--0 0 -o-o-o 0 - .6---6---0.-.¢.-.0 -t -
QJ I I I I I I 
0 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 LO 

Thresholds Thresholds 

Relative Difference 
0 

6. 8 sweep3d_8p 
b.. 

0 sweep3d_8p 0 

/ 0 
6. sweep3d_32p a:i .6. sweep3d_32p 

tO 
0 QJ 

d; u 0 
c: 0 !:::,. 

i tO $ 0 
0 (,I) tO >. 

tO i5 
@. 0 c: 0 
QJ -t 0 0 

QJ fil 0 N 

"""' 
0 

C75 E """' ..9:l tO 
·x 

u:: 0 0 
0 !:::,. 0. 0 
-t 0 
QJ ~ ~ 0 

C\I C\I 

8 
0 .6.----..L::,,_-b,.-f::. 

-t ---0-0-0-0--0 0 .6-o--.6~ 
QJ 
0 

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05 

Thresholds Thresholds 

Absolute Difference 
tO 
0 
-t 6. .6.-6.-b.. QJ 

~ 
0 sweep3d_8p 0 ,...... 

0 .c::..--
6. sweep3d_32p 0 .6. 

QJ """' tO u 
0 c: 

i -t ~ 0 

°' b.. 0 
>. LO 

~ 
i5 (I') 

@. c: 
QJ 0 

tO "i 8 N 0 1:i5 -t /:::,. E C\I o-o QJ QJ 
~[::. ·x (I') o-B: 0 

0-------_,D,._b.. 0. 0 

~ 0 ___,o------
tO 
0 
-t 

o--o °' T'" 

--- 0 -o-o-o 0 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 

Thresholds Thresholds 

Manhattan Distance 
Fig. 9 Intra-process Reduction: File Size and Approximation Distance for 

Varying Thresholds for Sweep3d and relDiff, absDiff, Manhattan 

140 



L::i.. 

1~ sweep3d_8p 

\ sweep3d_32p 

--;) tO (]) 0 >. + - l:!,. 

fa. Q.) 

~A M 
(]) 
N 

Ci5 
(]) '--.... 
0: l::>.-....l::. 

tO 
-L::i., 

0 
+ -
(]) 0----0--

0-0-0-0 

I I I I 

0.1 0.2 0.5 1.0 

Thresholds 

Euclidean Distance 

8 
0 

8 
0 ,.... 

8 
0 
0 
g 
0 

8 
8 
C\J 

sweep3d_8p 
sweep3d_32p 

0---- 0---o-o-o-o 

0.1 0.2 0.5 1.0 

Thresholds 

Cheb shev Distance 

tO 
0 
+ 
(]) 
0 
-o::i 

0 
0 
+ 
(]) 
0 
0 

10 20 

Kee k iterations 

0-0 

50 100 500 

Thresholds 

(]) 
(.) 
c: 

~ 
i5 
c: 
0 
"i 
E ·x e 
0. 

~ 

(]) 
(.) 
c: 
ct! 
ti 
i5 
c: 
0 
-~ 

E 
-~ 
0. 
0. 

<:C 

8 
in 

0 
0 

"" 
0 
0 
Cl) 

0 
0 
N 

0 
0 

0 

0 

8 
0 
o::i 

8 
0 
0 
tO 

0 
0 

8 
"" 
0 
0 
0 
0 
C\J 

0 

0 

8 g 

8 
8 
tO 

0 

8 
~ 
0 
0 
0 
0 
C\J 

0 

0------
0--

0.1 0.2 

o-O 
0 -o--

0.5 1.0 

Thresholds 

o sweep3d_8p 
l::>. sweep3d_32p 

I 
0 

.c---..o.---o-.c.-~ 

0.1 0.2 0.5 

Thresholds 

L::i.. 
o~eep3d_8p 
l::>. sw~d_32p 

10 20 50 100 

Thresholds 

1.0 

500 

Fig. 10 Intra-process Reduction: File Size and Approximation Distance for 
Varying Thresholds for Sweep3d and Euclidean, Chebyshev, iter_k 

141 



tO 
A~ 8 sweep3d_8p 

/::,.~.!:;;. 
0 - 0 
+ 0 

I Q.) t::. C\J t::. sweep3d_32p 
Q.) 

£::.. u 0 6./ c: g -i s 
rJJ .... 

I >. i5 
s L() c: 

8 0 0 
Q.) + ~ N 

~ 
0 

Ci5 E 
Q.) -~ 
0: £::.. 0.. 0 

- 6.-----0 c.. LO <( 

LO 0-0-0-0-0 0 
0----+ 0

-0------0-0-0-0 Q.) 0 -
C\J 

I I I I 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 

Thresholds Thresholds 

Avera e wavelet 

tO £::..~ 
0 .!:;;. 

0 0 - 0 sweep3<1_8p I I + 0 
Q.) t::. C\J t::. sweep3d_32p .... 

Q.) 
.6. __. .!:;;. u 0 c: 

fil ~ ~ - / Q.) 

>. i5 .!:;;. 
@. LO c: 

8 / 
0 0 Q.) + ~ N Q.) 0 

Ci5 tO E .... 
.!}l ·x 
[[ e 0 .6. c.. 

~ -./:;;..-----~ 
LO 0---0-0-0-0 0 
+ 0

--- 0 --0-0-0-0 0--Q.) 0 -
C\J 

I I I I 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 

Thresholds Thresholds 

Haar wavelet 
Fig. 11 Intra-process Reduction: File Size and Approximation Distance for 

Varying Thresholds for Sweep3d and Wavelet Transforms 

142 



no loss 

0.1 

0.2 

0.6 

0.8 

1.0 

10 

100 
1000 

10000 

100000 

0.4 

0.6 

0.8 

1..0 

0.1 
0.2 

0.4 

0.6 

0.8 

0.2 

0.4 

0.6 

0.8 

1..0 

0.1 
0.2 
0.4 

0.6 
0.8 

1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 

100 
50 

10 

1 

Fig. 12 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for dyn_load_balance 

143 



10000 EX •illltd1WM urwww:a ER - EX 
100000 
1000000 

0.1 

0.2 

0.4 

0.6 

o.s 
1...0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.4 

0.6 

O.S 

1...0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

0.1 
0.2 
0.4 
0.6 

0.8 
1.0 

500 

100 
50 

10 

1 

EX•J p 

EXF• 

EXWWIMM MF'EWB 

U ER 

£R 

£R 

Ell 
£R 

EX I 1-i'ff"1ji'M 

EX ! %!ftn!JE1" fl 
EXUi@r!I!! 

as•w 
i:xww••n 

.. c co ERll f ~
ER 

MP& 
MPMiA 
-~:. •• 

£RM 
£REW D 

£X 

EX •Mff&M MP• SiFB 

EXW!ilW MPE*••• 

aw• MP 
EXWW •&ii MP 

EX MM MPM•t w 

£X 
EX 

EX•WWMM 
EX 
EX•• M 

EXMM• 
EX 
EX &AM 
EX MM 

EX N MU 
EX PUi 
EX 

EX Rf!!!!!!! 
EX h!lFB 
EXEAH MM 

MP 
MPA I 

UP•• APB 
MP 
MJ'EM#Mf>i 
MP••1_,, 

MP& U UW 
MP 
MP 
MP 
MF 

MP 

MP 
UP 
MP&1•+PWA 

c 
CM•• • 
CMPt•er.,, 

co 
co+ 
cow 

MR CO 
.. co 

ERMllli!iMiJ!iil¥I EX 

ER £X 

ER 

c~- ER 

CAW 
co 

Cl *MM CO 

c..-w•mww co 
CN•' •p CO 
CM WPP CO 

co 
c co 
c co 
c 

WEM Ell& 

• £R• 
[l 

• u; 

ae• u11r1 
..... 

£R EX 

EA EX 
ER EXP.IH UH fl 
ER EX w., • 

EAIMU!ilPDlll UC§f¥1¥jtl 

ERW-!ll!!lW EXIR®'l i&il·,J .. ! 

c---.. coww. 
c coww 
c co 
c 
c 
er 
er 
er 
CH 

Ct 

co 
co 

!! COIP 
.. co 

co 
co 

m ER 

mr ER 
ER 
£R if ii 

Fig. 13 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for early _gather 

144 



ti 
< ;= 

i 
i 
~ 
la 
:! 

.. 
Mj 
Q. s 
! .i 

nofoss 
0.1 

0.2 

0.4 

0.6 

0.8 
1.0 

10 

100 
1000 

10000 

100000 

1000000 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 
0.6 

0.8 

1-0 
0.1 

0.2 

0.4 

0.6 

0.8 

0.8 
1.0 

0.1 
0.2 
0.4 
0.6 
0.8 

1-0 

500 

100 

so 
10 

1 

ave1~ 

Fig. 14 

MPI Barrie.r 
5fHUti +jj§ !;lull!! P 

Wll•P· 

WltfiMii i 

iVOri§4 

•1t!Jit*' EX 
~'lfEtmMI a 
W!tHhP a 

EX 
WBif';vMi EX 
tPlikf&f 

ws 
«~tll!MN 

Intra-process Reduction: Retention of Performance Trends with 
Varying Threshold for imbalance_at_mpi_barrier 

145 



MPI Beast 
no loss 

0.1 

0.2 u 
0.4 u Lt! 

0.6 EX 

0.8 u 
1..0 u 
10 ti( 

100 ltX 
1000 ·ex cc 
10000 U MP Cl! (0 

100000 .E.% MP C!klt CO LI 

1000000 :u Mr' C CO U> 

0.1 U MP CMIJI CO LB 

0.2 in i\~& <:ti,::t· cc u 
0.4 IU · 11V Ci\! tC I.I 

0.6 fwU' er.. CC •LR 

0.8 MF CM C· 'LI 

LO u ~P c ro iu 
0.1 IEX !141' I. to 'rn 
0.2 If.:\ MP C. CG 'Lit 

do work: 

ID 
EXL£Hd Ii U 

ex1ntFma1n 
EX 
EX=, , ,,, .. , w•• 

~ .u ~ cm ~ 
-~:!-~~ 
~~ ~ :: ~~ 
1..0 D MP C" 

El(ltUUtll:l 

EX~ 

500 CK M? OI tC LI iX 

1.00 tX f.::t> cm re LI EX 

.1111 .i 50 'f:i; MP .ct' CG U £X •" 

cg::1::~~~o~ag~e:::::E;~~~iiiii:~=~:~iiiii::~i·iiiiii:JI~~iji.~oi1~i1l~EX~ti·~i·-i··~;+~gi;[rn"::j 
Fig. 15 Intra-process Reduction: Retention of Performance Trends with 

Varying Threshold for late_broadcast 

146 



no loss 
0.1 

0-2 

0.4 

0.6 

0.8 

1.0 

10 

100 
1000 
10000 

100000 
1000000 

0.1 

0-2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 

100 
50 

10 
1 

average 

EXR II MW\M 
EXP· Mf 

EXWW+*# 
EX @Ml! 

EXPRtM·+M 

EXWAA•? 

EX lbl 
EX pa 
EX M 
EX 1M 

EX•••
EXWN WW 
EXWUI 

EXMMM'Mi 

EXWW ¥B 

EX***#M# 
EXMW 

MP•" -

MP•&M*M' 
MP• Ml 

MP .. -

MP 
MP 

MP 
MP 
MPN 
MP 
MP 
MP 

MPW 

MPW 

ff 

4 

MPI Ssend 
cu 
c•••
CJ --

c 
er -
CJ ¥MkM 

do work 

- LRM\ 
'2 W1M@W@M LR Mi 

PZ• LR 
PZ P LR E !iifi EX 
n• •LR EX~ 

FZ• •• M# LRHH EK 

P2P ·- LI.BM 
EX till 00¥!1 a·1 

Ul U EX 

'2M!1!1PM- LI. 
P2 P¥W••11 LI. 
PZWNN- Ul 

P2MMW- LR 
P2: LR 

WI 

EX!kkki¥1!¥Ht.! 
EX!u !)Xl··i I 

CMllm:-- P2 LI. 

- PZ+••;m LR 
LR-

P2 M Uh! 
P2 W ii NRiill Ul 
P2- en LI.WM AM 
P2: LRltM&•-
Pl ut *lliWm u • •§lut•5A 

P2 ft +* i' LR*M't EX 
pa=·, ••1 LR•+ '' u 

Fig. 16 Intra-process Reduction: Retention and Performance Trends with 
Varying Thresholds for late_ receiver 

147 



no loss 

0.1 

0.2 

0.4 
0.6 

0.8 

1.0 

10 

100 

1000 
10000 

100000 

1000000 

0.1 

0.2 

0.6 

0.8 

EXM MM 

EX M?M 

EX.t••WM 

EX*W W 
EX11Ml•:MM 

El<¥ w 

EX§ •• 
EXE &P 

EX••w1 
EX WWW 

EX-' 2P " 

EX •• 

MPM' •W 

MPW .. 
MP~;M+ .. 

MP# &• 

MP#& A 

MPN&•M 

MPI Recv 
CMl&*MM P2. MM 

do work 
LS IM**MM ua~ 

Ct49M .. P2Wi• .. 
CM$ H Pl 

CMIWWWW P2WM 
er •@P'l• n i**B•i• I.SIMM*• EXf'.HH!UM 

1.SiiNillM .. EX CM -- PltE• I. 
O+&WF W Pa I.St··-- 0'" 

Pl& I MW LS 

CMMMWW Pl #Ml F LS 

CM#& 

CM!rP 

P2 

• P2 I 
CM &MW P2 

+ LS EX 

EC 

4 lSi;iMM .. D 
M 1.$ 

Cfllii P2'MRI .. LS 
CM!!!• MM P21¥1MWiMM LS 

0.1 

0.2 
EX H 'W Mi'WEWMN C!MN --- P2 • LS£• 
EXRWH*¥• Mi' CM& P2 M l.S 

0.4 
0.6 

0-8 

1.0 

EXi,WWM•W 

EXiiil-•W 

Mi' Cf pww P2 LS .. EX 

.. CM 

0.1 

0.2 

0.4 
0.6 

1.0 

0.1 
0.2 
0.4 

0.6 
0.8 
1.0 

EX'• •p• 

EXE M 

Elt 
EXW W 
EX kW 

EX we 'M 

MPW& 

Mi' Ml& 
MPRIWA% .. 

Mf'Mb§MMN 

MPM + 

MPiM 

MfiWM B W 
Mi'&$ 'WW 
MP • 

0.1 EX ffiMWM&W MP 

0.2 EX- MP 

~0-.4~~~~-~...,._EX_ MP 
0.6 ~ 

P2 fW LS @MMMM EX 

P2 MM LS* 

WEX~ 

CMWI••• P2 

Cr 
er 

... P2 LS !XI !ffi1Ju fl I 

Cl< 

CM A 
CWW&!M 
cw 

-- P2 LS~~1'}Hllfl'l 
nan•• i.s w •• 
Pl LS 

• P2 LS 

EX!lli!jiil 

M P2. •• 
Cll>W P2 Iii I I & EX w:::u::J:.m 
CMI •W. P2 f1$Mif .. W LS 44 WR M EXl'LU l1l1U .. , 

8 LS W & W .M EX i<i t f. \ * Wd 

Fig. 17 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for late_ sender 

148 



orlc 

DDloSS 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

10 

100 

1000 

10000 

100000 

1000000 
0.1 

0.2 

0.4 

0.6 

0.8 
1 .. 0 

0.1 

0.2 

0.4 

0.6 

0..8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 
0.4 
0.6 
0.8 

1.0 

0.1 
0.2 
0.4 
0.6 
CUI 

1.0 

500 

100 

50 

10 

1 

average 

Fig. 18 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for Nto1_32 

149 



f I 
<~ 

i 
I .... 

1111 

! 

... I 
e- ! 
~~ 

ooJoss 
0.1 

0.2 

0.4 

0.6 

o.s 
1.0 

10 

100 
1000 

10000 

100000 
1000000 
0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

OJI 

1.0 

0.1 

0.2 

0.4 

0.1 

0.2 
0.4 

0.6 
0.8 
1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 
100 
50 

10 

1 

average 

Fig. 19 

do work 

Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for NtoN_32 

150 



B 15 .... 
u 

-!: 2! 'a 

; I 
I~ 

I! 
i~ 
:i;:; 

! § 

~! 

1~ 
~i 

u 
li 
!t 
i ..... 
Cl 

:! 

... 
.. i 
2' ! 
~~ 

DO k>ss 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

10 

100 

1000 
10000 

100000 
1000000 

0.1 

02 

0.4 

0.6 

0.8 

1.0 

0.1 

02 
0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 
0;2 

0.4 
0.6 
0.8 
1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 

100 

50 

10 

1 
average 

Fig. 20 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltoN_32 

151 



ff 
.i J j_ 
l:CCl 

ii 
i! 

); 
ii 
~"O 

}., 
i~ 

~~ 

.11 
! 
31 

j 

.IC i 
c.i 
Ill ... 
1U U 
:i.!.t! 

no loss 
cu 
0.2 

0.4 

0.6 
0.8 

1.0 

10 

100 

1000 

10000 

100000 

1000000 

0.6 

0.8 

1.0 

0.1 

0.1 

0.2 

0.6 

0.8 

1.0 

0.1 

0.8 
1.0 

500 

100 

50 

10 

1 

average 

Fig. 21 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltolr_32 

152 



8 
.1 ! 
I~ 

11 
w~ t· 

Ju 
ral 
2:~ 

i § 
1J 
I.I.I: ts 

f s ii 
v 'O 

1i 
i 
a 
~ 

ti 
i 
I 
:a 
:! 

~1 
&! 
::i~ 

OOIOM 

0.1 

0.2 

0.4 

0.6 
0.8 

1.0 

10 

100 

1000 

10000 

100000 

1000000 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.6 

0.8 

1.0 

0.1 
0.2 

1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 

100 

so 
10 

1 

average 

Fig. 22 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltols_32 

153 



no loss 

0.1 

0.2 

8 0.4 

v = 0.6 ·i f! -ii 0.8 
2! 'a 1.0 

10 

100 

~ e 1000 

10000 

Ii 100000 

1000000 

0.1 

0.2 
c: 0.4 

j~ 0.6 

5i l! 0.8 
2':6 1.0 

0.1 

0.2 

! I 
0.4 

0.6 

t· 0.8 IU~ 1.0 

0.1 

0.2 

!., 0.4 

i"' 0.6 

!I 0.8 

1.0 

0.1 
0.2 

«> ;; 
0.4 

!i 0.6 
!t • 0.8 
<i= 1.0 

0.1 

I 0.2 
!i! 0.4 

~ 0.6 
ID 0.8 :! 1.0 

500 

~i 
100 

50 
c. .. 

10 II.I ... 
!U II ac:.t::: 1 

average 

Fig. 23 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for Ntol_l024 

154 



8 

·i I 
~~ 

2:1 ~ 
= I is 
IO 'lliJ 

c 

j I 
:a e 
:i u 

! I 
~ .. 
= .i I.I.I "a 

ls 
~1 

f I 
<~ 

! 
u 

i 
!I 
:! 

no loss 
0.1 

0.2 

0.4 

0.6 
0..8 

1.0 

10 
100 
1000 
10000 
100000 

1000000 
0.1 
0.2 

0.4 

0.6 

0..8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

0.1 
0.2 
0.4 

Fig. 24 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for NtoN_1024 

155 



8 

·!! .!! 
GI·-.. "a 

GI fl 
~ii 
- b Ii 

c 
11:> 

j8 
ii 
:i 'ii 

ti§ 

~-=. LM 

lj 
!"a 

l.i 
E ! 
~SC 

.; 
Ill 

I :: 
a 
:! 

~.i 
Q. 0 u .. 
~-~ 

no toss 

0.1 

0_2 

0.4 

0_6 
0.8 

1..0 

10 
100 

1000 

10000 

100000 
1000000 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0 • .2 

0.4 

0.6 

0.8 

1..0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 
0 . .2 
0.4 
0.6 
0.8 
1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 

100 

50 

10 
l 

average 

Fig. 25 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltoN_1024 

156 



B 
.Ii 
Ii 

u 
a~ i Cl.I 

I~ 

ju 
.! u 1.I :e,, 

ti 8 

1.i 
I.I.I "a 

1 u 
1~ 
§i 

; 
i 
Ill :. 

.i 
u 
~ 
I 
I ::: 

.v.i 
ft! 
~~ 

00 loss 

0.1 

0.2 

0.4 

0.6 
0.8 

1.0 

10 
100 
1000 

10000 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 
0.2 
0.4 

0.6 
0.8 
1.0 

0.1 

0.2 
0.4 
0.6 

50 

10 

1 

Fig. 26 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltolr_1024 

157 



~ 
.3 ! 0.6 

!~ 0.8 

1.0 

10 

100 

!S ~ 
1000 

ii 10000 

100000 ia 1000000 

0.1 

0.2 

! ~ Ii FQ8:__--l~==-i~~~~~~+...u.~+r=.~+=1~ 
1.0 

t; 

I 
J 
~ 
I 
lii 
Ill 

::r::: 

.j 
Q. s ti .. 

::.e .I 

1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 

100 

50 

10 

1 

average 

Fig. 27 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for ltols_1024 

158 



~;cv .sweep 

ooloss 

~ 
f.IF- u- MC EX ~ 

0..1 kt?- r.J1 n L$- WIM ... EX • 

0.2 EX- MF- oz ·?4- ts- M<l • EX~ 
8 0.4 !X- 1%1'- a' ?Z lS- UOi I EX~ 

~ = 0.6 EX- M?- (Mt ?2- LS- MC I -li:v " .. 
·- f! l! fl 0.8 u- Mr- t~- n LS- MIO IEX H 

!!~ 1.0 EX~ MPUllC:W at~ P2 u- Ilk! EXnJ::.':IDJ 
10 [l- ~!'- m ?2- LS- M( 9 IU .• "" 

100 ~x- MF- 0: 1'2 LS- .... EX, ... u 

s~ 
1000 u- ~ii- at ,?2- lS- MU u::• 1., ... 

10000 -·~ L!~ .(>~ ;,.~ ts- M{== {'.;~ 

Ii 100000 EXa::a:Dm MP• .~•t:;i CM~ P2 L>- W" £X l L:::".I.L ]J 

1000000 EX • MhJJlddU!li!tl 

~~ 
~ EXd '...Ll .il 

iU u- MF CB tM' 

0.2 &!P- (.. !.$- M( E.X~ 
c: 0.4 EX.- MJ·- C$i, .. 1.5- Mill!!• -EX 

II 0.6 fl{- Ml' t 'n- LS- MC £X 

0.8 tl\- MF- (~.~ LS- MOii EX «Th~ 

:i:i::I 1..0 £!\- ~!'- ($<' 'P2- lS- "'*' EX~ 

0..1 u- t<'H'- 0£ Fl- LS- .... u~ 

0.2 EX- 114?- C~t n l.S- MC I -EX 

I§ 
0.4 n- MP- c [P2- l.S- M'1777-• EX~ 
0.6 i.K- lit!' 0£ 

~~= 
MC EX '" . 

11 0.8 It- MP- CJ$- MC EX rt'·' T''ll'iQl 
iB ti 1.0 tl- !ti!' t.:%.t- LS- M( 

-~ 0.1 u- ~F- Cl& n. 
0.2 tt- Ml'- {A( P2 LS- Ml EX~ 

1~ 
0.4 £1- MP- tf il'Z- l.S- MC EX 
0.6 [t;- ~F- (fl rz- LS- ·~ EX ·~ ···~~ 

~i 0.8 E\- !;kl' a; i'2- LS- - EX~ 

1..0 EX~ Mi'~ . P2 LS- ™-ta 0.1 tt- Mr- CH ¥1- LS- tA4 
0.2 ~p- (~.~ ?2- LS- w 

f li 
0.4 EX- ~!'- '~ 12- lS-0.6 t~- ht? c Ft t.S- MC: iEX 

~ ! 0.8 u- 11.tP- c~ l"2 LS-

~ q: == 1_0 u- Ml'- -0.1 nr- ~1'- c ?2- lS-
.!t 0.2 [;(- btr- c ¥2- LS- Ml u~ 

I 0.4 u- MP- { vz- LS- MC: u 
0.6 u- MP- CM i':!- lS- *** • 'EX 

i 0.8 ~~!'- {t,:- !'.! 

"-~ 
jQ 

::z:: 
1..0 ~p- Ct::- Pi! LS-
500 EX- Mi>- I:" ¥2- lf.-

~.i 
100 EX~ w~ cu~ ?2 LI,~ fY.-.:_:J 
50 NPl.finiil Bl CM~ ?2. ' l5' ~ M<1 A EXa1lL •. '.] 

ci.1ij 
u ... 10 El<~ MPillnWfihil\l at~ PZ tS.~ ~~<~mi•- EX~'.'ll'.IJ 
~! 1 ex~ MP~ CM~ Pl~ u- Ml I EX fTLT'l''l 

average u- MF- c 1'2 EX rr :::n::n 
Fig. 28 Intra-process Reduction: Retention of Performance Trends with 

Varying Thresholds for sweep3d _ 8p 

159 



! 
II C 
·i e 
-~ 
~:a 

5 ! 
JI 
iliil ia 

c: 

j; 
fi I :e 'ts 

! § 
~a 
~ -= 

""" 'Q 

1~ 
!I 

J! 
!I 
.; 
!U 
g 
!: 
& 
:! 

... J c.. 
QI ... 

~~ 

no loss 
0.1 

0.2 

0.4 

0.6 
0.8 

1.0 

10 

100 
1000 

10000 

100000 

0.1 

0.2 

0.4 

0.6 

0.8 

1.0 

0.1 

0.2 

0.4 

0.6 

0.8 

0.6 

0.8 

1.0 

0.1 

0.2 
0.4 
0.6 
0.8 

1.0 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 

500 
100 
50 

10 
1 

average 

Fig. 29 Intra-process Reduction: Retention of Performance Trends with 
Varying Thresholds for sweep3d_32p 

160 

r 



LC') 
0 
+ 
~ 

:8 
+ 
~ 

LC') 
0 
+ 
(1' 

T'" 

(,0 
0 
+ 
(1' 

C\J 

0 
0 
+ 
~ 

0.1 

0.1 

0.1 

o 'nterf eren":JT'o~C 
t::. interference_1to1s_3 
+ interference_1to1r_1 24 
x interference_1to1s_1 24 

0.2 0.5 1.0 

Thresholds 

~ early:Bather((j= ~ 
t::. imbalance_at_ba ier 
+ late_broadcast 
M----late..-+et:eive~ - b. 

~ late =smiaer t.b- = 

0.2 0.5 

Thresholds 

~YiJTi)8d~i: w 
t::. interference_Nto1_3 
+ interference_NtoN_3 
x interference_1toN_3 
O interference_Nto1_ 1 
"i1 interference_NtoN_1 

1.0 

181 interference_1toN_10 4 

0.2 0.5 1.0 

(l) 

g 
~ 
15 
c: 
0 
·~ 
E 
·~ 
0. 

~ 

LO 
0 
+ 
(l) 
C\J 

0 
0 
+ 
~ 

LC') 
0 
Q'; 
C\J 

0 
0 
+ 
(l) 
0 

8 
8 
""" 
0 
0 
0 
0 
M 

0 

8 
0 
C\J 

8 
8 

o interference_ 1to1 r_32 
t::. interference_ 1 to1 s_32 
+ interference_ 1 to1 r _ 1024 
x interference_ 1 to1s_1024 

+ 

x 
j,o ·---·---·-·-· 

0.1 0.2 0.5 

Thresholds 

o early_gather 
t::. imbalance_at_barrier 
+ late_broadcast 
x late_receiver 
O late_sender 

1.0 

0 ·---·---·-·-·/ 
0.1 0.2 0.5 

Thresholds 

o dyn_load_balance 
t::. interference_Nto1_32 
+ interference_NtoN_32 
x interference_ 1 toN_32 
o interference_Nto1_ 1024 
\l interference_NtoN_ 1024 
181 interference_ 1toN_1024 

1.0 

0 ·---•---·-·-· 

0.1 0.2 0.5 1.0 

Thresholds Thresholds 

Fig. 30 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Relative Distance 

161 



(() 
0 
+ 
Q) 
'V 

(() 
0 
+ 
&l 

0 
0 
+ 
Q) 
0 

1e+01 

1e+01 

1e+01 

1e+03 

Thresholds 

1e+03 

Thresholds 

1e+03 

Thresholds 

1e+05 

1e+05 

1e+05 

Q) 
(.) 
c: 

~ 
15 
c: 
0 

~ 
E 
-~ 
0. 

~ 

LO 
0 
+ 
Q) 
C\J 

0 
0 
+ 
Q) 

0 

LO 
0 
d; 
C\J 

0 
0 
+ 
~ 

8 
8 
'V 

0 
0 
0 
0 
C") 

0 
0 
0 

~ 

8 
8 

0 

o interference_ 1to1 r_32 
b interference_ 1 to1 s_32 
+ interference_ 1 to1r_1024 
x interference_ 1 to1s_1024 

1e+01 1e+03 

Thresholds 

o early_gather 
b.. imbalance_at_barrier 
+ late_broadcast 
x late_receiver 
o late _sender 

1e+01 1e+03 

Thresholds 

o dyn_load_balance 

1e+05 

1e+05 

b interference_Nto1_32 
+ interference_NtoN_32 
x interference_ 1toN_32 
o interference_Nto1_ 1 4 
V' interference_NtoN_ 1 2 
181 interference_ 1toN_1 2 

1e+01 1e+03 1e+05 

Thresholds 

+ 

Fig. 31 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Absolute Distance 

162 



in 
0 
+ 
~ 
in 
0 
d; 
~ 

::g 
+ 
Q;) 

(\J 

in 
0 
+ 
Q;) ,... 

i.o 
0 
+ 

JS 

(.0 
0 
+ 
~ 

0 

\ 
0-0 

0.1 0.2 0.5 1.0 

Thresholds 

0 
o early_gather 

.;;. imbalance at barrier 
+~roadeast 
x late_receiveix 

~ O late_sender 

<:~:s:::<:\ 
0.1 

0.1 

~~-+-4--b.. 
~ " o-o-• 

0.2 0.5 1.0 

Thresholds 

0.2 0.5 1.0 

Q;) 
c.> 
c: 

~ 
(5 
c: 
0 
·~ 
E ·g 
c.. 
~ 

Q;) 
c.> 
c: 

~ 
(5 
c: 
0 

~ 
E 
-~ 
a. 
~ 

g 
0 

~ 

8 
0 
0 
(") 

0 
0 

8 

0 

8 
0 

8 
~ 

0 

8 
8 
(\J 

0 

8 
0 
0 ,... 

0 

8 
8 
~ 

8 g 

0 

o interference_ 1to1 r_32 
b.. interference_ 1to1 s_32 
+ interference_ 1to1r_1024 
x interference_ 1 to1s_1024 

0.1 0.2 0.5 

Thresholds 

o early_gather 
b.. imbalance_at_barrier 
+ late_broadcast 
x late_receiver 
o late_sender 

------o-o
~~i=$=$= 

0.1 

0 

b.. 

+ 
x 
0 
\J 

0.1 

0.2 0.5 

Thresholds 

0.2 0.5 

Thresholds Thresholds 

1.0 

+ 

1.0 

1.0 

Fig. 32 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Manhattan Distance 

163 



~ 
0 

8 + 
tnterferende_1to"tr:3~-+ !:::. Q.) 0 interference_ 1to1 r_32 O') 0 

ffiterfmmc!e::-UP~ s 32 
0 /::;. interference_ 1to1 s_32 l.() 

interference 1to N:024: a.:i + interference_ 1to1 r_1024 () 

8 
0 - - c: x interference_ 1 to1s_1024 ~ I ell 

a.:i + ts 
>. Q.) 

!:::.-!:::. 1:5 0 
r.... 0 

@.. ---. D. i:: 0 

\ 0 0 
a.:i 0 ~ 

~ 
N 

1:i5 ~ ~ 
.6. E 

0 ·g -o 
Q.) + /1:, CT: ~ 0 0. 0 

""' 
c. 0 .t::.7&==2./ <( 8 0 

~ \ ?o 
0 

0 0 ·--*--*-*=f=f + Q.) 
;:") 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 

Thresholds Thresholds 

0 
LO 0 early_gather 0 early_gather 
0 .6. imbalance _at_barrier /::;. imbalance_at_barrier + 
Q.) 

+ late_broadcast Q.) l.() + late _broadcast "d" () 0 
)!(< late _receiverx c: + x late _receiver i l.{'J ! Q.) 

0 0 late_sender "d" 0 late_sender >. + 1:5 
@.. Q.) 

c: ;:") 

~ 0 Q.) 

~ N l.() 

~:----0-0-\ 
l.() 

1:i5 0 E 0 + ·g + Q.) Q.) Q.) 

CT: C\J 
0. C\J 

l.() 
6~ ~ ~ 0 

+ 
Q.) -<lt--+-4"=4 0 ---0-0-,... ---- ' 0 

0-0-0-• + ~~$=~=~== 
Q.) 
0 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 

Thresholds Thresholds 

'if 
dyn_load_balance 0 

interference_Nto1_32 /::;. 
~ interference_NtoN_32 Q.) 

+ 0 (.) 
+ Jnterference_ 1toN_32 c: 

0 ~ Q.) ! LO 0 Q.) 1~ce_Nto1_1024 8 0 >. 1:5 
@.. zli~~e::::Nt~ 1024 c: ~ \l 
Q.) ~ Ll!:I ·n erence:it 'ILG24 0 
N 0 ~ 

1:i5 + 0 E Q.) 

..92 ;:") -~ u::: 0 c. 0 
c. 0 

~ <( 0 
0 
+ Q.) 

0 

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 

Thresholds Thresholds 

Fig. 33 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Euclidean Distance 

164 



0.1 

~qe_1to1r_32 
in~ce::tto.Jls ....... 32 
interferenee:rto'1c 24 

24 

0.2 0.5 1.0 

Thresholds 

0~1 o early_gather ~ + _ b.. imbalance_at_barrier 
-* + late_broadcast 
I{) x late_receiver 
~ _ · o late_sender 
(!;I 

C') 

:§ x:---~ 

~-e~ ~ 
~ -+~ ---b..----~-~-~-~ 
~ ~+--~~+-+, 

(,0 
0 
j; 

C\J 

0 
0 
d; 
0 

0.1 

0.1 

o---o-.6=.e~• 
I 

0.2 0.5 

Thresholds 

dyn_load_balance 
interference_Nto1_32 
interference_NtoN_32 

I 

1.0 

x interference_1toN_32 
g~erence_Nto1_1024 

'V 1riterleren~toN 1024 
~ interference~~1g24 

o~ ~ ~~~~~-V' 
@-!~@'~ 

0.2 0.5 1.0 

Thresholds 

I{) 
0 
j; 

C\J 

I{) 
0 
j; 

C\J 

8 
+ 
(!;I 
0 

8 
8 
C') 

8 
8 

0 

o interference_ 1to1 r_32 
b.. interference_ 1to1 s_32 
+ interference_ 1to1r_1024 
x interference_ 1 to1s_1024 

.6.
----·~--c.::=::::::o
~--*=====*-~= 

0.1 0.2 0.5 

Thresholds 

o early_gather 
b.. imbalance_at_barrier 
+ late_broadcast 
x lateJeceiver 
o late_sender 

x---x 

+ 

1.0 

+ 

;i_
~ 

0 -0- -0 

.~~---+-+-+ 

0.1 

0 

b.. 

+ 
x 
0 
V' 

0.1 

0.2 0.5 1.0 

Thresholds 

0.2 0.5 1.0 

Thresholds 

Fig. 34 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Chebyshev Distance 

165 



:8 
+ 
~ 
LO 
0 
+ 
QJ 

...... 

c;o 
0 
+ 
QJ 

LO 

c;o 
0 
+ 
~ 

c;o 
0 
d; 

0.1 

0.1 

0.1 

0 

0.2 0.5 1.0 

Thresholds 

early_gather 
bi. balance_at_barrier 
+ lat broadcast 
~--lat<tf~~~ ~ ~ = ~ 
o late_sender 

0.2 0.5 1.0 

Thresholds 

0.2 0.5 1.0 

Thresholds 

QJ 

g 
~ cs 
c: 
0 
-~ 
E 
-~ 
0. 

~ 

8 
~ - o interference_ 1to1 r_32 ° 

bi. interference 1 to1 s 32 / 
8 + interference -1 to1 r -1024 

1 
? 

fl5 - x interference= 1 to1s-=_1024 I/ c,. _ c,. 

g 1/ 

: ~ ;~76

=-:_x-x 
0 - ·---·---*::::::::::::+-+-+ 

0 
0 
+ 
QJ 
0 

0 
0 
0 
0 
'<t 

0 
0 

8 
C\l 

0 

8 
0 ...... 

0 

I I 

0.1 0.2 0.5 

Thresholds 

o early_gather 
bi. imbalance_at_barrier 
+ late_broadcast 
x late_receiver 
o late_sender 

0.1 0.2 0.5 

Thresholds 

o dyn_load_balance 
bi. interference_Nto1_32 
+ interference_NtoN_3 
x interference_ 1toN_3 
o interference_Nto1_ 1 
v interf erence_NtoN 
181 interference_ 1 toN 

0.1 0.2 0.5 

Thresholds 

1.0 

1.0 

1.0 

Fig. 35 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Average Wavelet 

166 



L!'l 
0 
+ 
Q.) ,.... 

(.0 
0 
+ 
Q.) 
L!'l 

0.1 

0.1 

0 

" 0 

0.2 0.5 1.0 

Thresholds 

o early _gather 
b. imbalance_at_barrier 
+ late_broadcast 
~ late_r~eiw~=~=~ 
o late_sender 

0.2 0.5 1.0 

Thresholds 

erference_Nto1_32 
erence_NtoN_32 
rence_ 1toN_32 

nee Nto1 1024 
~rj.itqf'!-=_ 1 024 
ce _ 1t0!\C'1@~~ 

Q~--'---~~~--~~~~--i 

~~'<,,"-¥ 
®~::i 

0.1 0.2 0.5 1.0 

Thresholds 

Q.) 
(.) 
c: s 
(/) 

0 
c: 
0 
"i 
E 
·~ 
0. 

~ 

Q.) 
(.) 
c: 

~ 
0 
c: 
0 

~ 
E 
·~ 
0.. 
~ 

8 
8 
N 

0 
0 

~ 

0 
g 
0 ,... 

0 

8 
L!'l 

0 

L!'l 
0 
d; 
N 

8 
+ 
Q.) 
0 

8 
8 

0 

o interference_ 1to1 r_32 
b. interference_ 1 to1 s_32 

0-0 

+ interference_ 1to1r_1024 
x interference_ 1 to1s_102 6 _ D. 

07 
,, ____--~r1" 

II x-x-x 
·---·---"¥::::::::::::+-+-+ 

0.1 0.2 0.5 

Thresholds 

o early_gather 
b. imbalance_at_barrier 
+ late_broadcast 
x late_receiver 
O late_sender 

0.1 0.2 0.5 

Thresholds 

0 

b. 

+ 
x 
0 
\J 

------b, ·---·---0 
0.1 0.2 0.5 

Thresholds 

1.0 

1.0 

1.0 

Fig. 36 Inter-process Reduction: File Size and Approximation Distance for 
Varying Duration Thresholds and Haar Wavelet 

167 



1:::..---.CJ.. 

8 
+ 8 0---0---0-0-0-0 

C\i 
0.1 0.2 0.5 1.0 

Thresholds 

Relative Distance 

'i 
>. 
E9.. 
Q) 
N 

Ci5 
J:1 
i.I: 

I'-
0 
+ 
Q.) 

C! 

ID 
0 
+ 
Q.) 

0 
~ 

ID 
0 
+ 

1:::..-1:::..-.CJ.. 

8 o-o-o~o-o-o 
C\i 

1e+01 1e+03 1e+05 

Thresholds 

Absolute Difference 

ID 
0 
+ 
Q.) 

0 
0 

ID 
0 
+ 

1:::..---,CJ.. 1:::..-1:::..-1:::..-.0. 
o sweep3d_8p 
!:::.. sweep3d_32p 

8 0---0---0-0-0-0 

C\i 

0.1 0.2 0.5 1.0 

Q.) 
(.) 
c: 
l9 
(/) 

cs 
c: 
0 

i 
E 
-~ 
0. 

~ 

Q) 
(.) 
c: 
l9 
(/) 

cs 
c: 
0 

i 
E ·x 
e 
0. 

~ 

0 
0 

8 - o sweep3d_8p 
~ b. sweep3d_32p 

0 

8 
0 
0 

0 
0 
0 -

:i5 

,CJ.. 

I 

I 
o -.o.---.0.---.0.-.0.-.0.-0 

I I I I 

0.1 0.2 0.5 1.0 

Thresholds 

0 
0 

.0. 0 
sweep3d_Bp I 0 0 

I 
l!"J ,... b. sweep3d_32p 

0 

8 
0 
0 .... 

6. 

I 
0 

8 
~ 

0 -.o.-.o.-.o.~.o.-o-o 

I 

1e+01 1e+03 

C! -

l!"J 0 -

Thresholds 

o sweep3d_8p I 
b. sweep3d_32p 

I 

1e+05 

~ - 0.---.0.---0.-.0.-6-.0. 

l!"J 
0 -
I 

I 

0.1 

I 

0.2 0.5 1.0 

Thresholds Thresholds 

Manhattan Distance 
Fig. 37 Inter-process Reduction: File Size and Approximation Distance for 

Varying Thresholds for Sweep3d and relDiff, absDiff, and Manhattan 

168 



~ 
0 
+ 

l:l.---l:l. l:l.-l:l.-6-l:l. 
o sweep3d_8p 
b,. sweep3d_32p 

~ 0---0---0-0-0-0 

C\i 
0.1 0.2 0.5 1.0 

Thresholds 

Euclidean Distance 

l'-
0 
+ 
~ 

~ 
0 
+ 
CD 
0 
t.6 

~ 
0 
+ 

l:l.---£1 b.-l:l.-6-l:l. 
o sweep3d_8p 
b,. sweep3d_32p 

~ 0---0---0-0-0-0 

C\i 
0.1 0.2 0.5 1.0 

q -

iq -
0 

o sweep3d_8p 
6 sweep3d_32p 

~ - 6---6---6-6-6-.0. 

l!') 

ci -
I 

q 
I -~1.----~1----~,--___,,r 

l!') 

ci 

0 
ci 

0.1 0.2 0.5 1.0 

Thresholds 

o sweep3d_8p 
6 sweep3d_32p 

6---..0.---6-..C.-6-.0. 

0.1 0.2 0.5 1.0 

Thresholds Thresholds 

Cheb shev Distance 
Fig. 38 Inter-process Reduction: File Size and Approximation Distance for 

Varying Thresholds for Sweep3d and Euclidean and Chebyshev 

169 



tD 
0 
+ 

t:.---n t:.-n 
o sweep3G..IP 
b. sweep3d_ 2p 

~ 0---0---0-0-0-0 

C\i 
0.1 0.2 0.5 

Thresholds 

Avera e Wavelet 

1.0 

t:.---n t:.-n 
o sweep3G..IP 
b. sweep3d_ 2p 

tD 
0 
+ 
~ 0---0---0-0-0-0 

C\i 
0.1 0.2 0.5 1.0 

Thresholds 

Haar Wavelet 

OJ 
() 
c: 

~ 
1:5 
c: 
0 
i 
E 
-~ 
c.. 
~ 

OJ 
() 
c: 

~ 
1:5 
c: 
0 

~ 
E 
-~ 
0.. 

~ 

o sweep3d_ 8p 
b. sweep3d_32p 

8 + .o.---/J.---.0.-/J.-D.-o 
OJ 
0 

0 

0.1 0.2 0.5 

Thresholds 

o sweep3d_8p 
b. sweep3d_32p 

1.0 

':; .o.---/J.---o-/J.-D.-o 
~ 

0.1 0.2 0.5 1.0 

Thresholds 

Fig. 39 Inter-process Reduction: File Size and Approximation Distance for 
Varying Thresholds for Sweep3d and avgWave and haarWave 

170 



u 
11111 " 

u 
II 

Fig. 40 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for dyn_load_balance 

171 

r 



MPI Gather do work 

0.8 EX MP•'Z¥ Ct ug CO ER 

1.0 EX MP er.~ c: ER EX 

10 EX MM MP aa; c co ER&fui 
100 EX MPaRitEMI CW COM ER EX1,2: iii l!J 

" ~ 1000 EX. MPMm!l@UIP c•• co-n - -•ID EX 
l ~ 10000 EX •11.- MPEiOOhB CMiiiii+ co I ER •t:l'.dijfi EX rnwo u H 

J $ 100000 'EX M C: CO ER EX hri ! dlH 

rG:..:~:__,~~~~1::000::::::11ieEXv~~~~f¥~+[:]~~~;5·.ij~~~:::E~~:j•~~ijij~~C~O . .. ~ £)(.,, 

0.2 EX MP CMI CO •m EX 

0.4 E:XW@ MflP w CM #iW CO 

0.6 £X M? t: CO 

0.8 U MP CM CO 

1.0 EX f<if' Cit CO 

0.1 EX M MJI+@ C CO 

0.2 EX Pft MP CM8iil CO 

0.4 EX M? C~; C 

0.6 D MP c~. CO 

0.8 U MP CM CO 

1.0 ll\ MP 0 CO 

0.1 EX MP•* M C CO 

0.2 [)( Mf' CM CO 

).4 E:J: i\lP 0 00 

ER EX \'ii@¥# ii!!"§ I 

ER EX O'li!'1J2:LW 
ER Hll EX 

ER EX•H 

ER EXQLIJtl;;til 

ER EU:£4;l •JUI 

EA EX PfflM $ Jiff 1 

ER EX~ 

ER EX··" 

ER 'M EX 

UM!4Q_· --- EX 

il~.6~~~~~[X~~~~~~~~1~t~~~~~C~M~·~~~~~c~o~~~~~E.l'l~~~~~EX~ll'tl*i*~21*1'139~~ l.8 U Ml' C CO ER EX ,,,, 

Lo EX lid"' c co ER I i---- ll EX MP C CO ER 

0.2 EX MP" I M CM co ER 
0.4 EX MP CLJ CO U , 
0.6 EX ~..,, c en ER 

0.8 E'.\i MP Of CO ER ¥ 
1.0 [X Mr (!\,'. ro ER 

iO.l EX •'&@U4W MP \!lid CMWJ•"HilUR CO 
0.2 EX MM% 5 MP i%Jl¥1 C._,•UR CO 
0.4 EX m· 
0.6 EX 

0.8 [X 
1.0 EX 

co co 
co 
co 

ERW D.t tiiJ#@Mh VJ 
ER EX 
EA EX 
ER E01$1!nH 

ER EX 
ER EX,~ 

Fig. 41 Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for early _gather 

172 



no loss 

0.1 

0.2 

8 0.4 
41 c 0.6 :! f! 
Ill J:! 0.8 
!!~ 1.0 

10 

100 

1:l I 1000 

10000 1 I ~ .Q Si 
Ill "O 

0.1 

0.2 
c 0.4 di 

j § 0.6 

iJ 0.8 

L~Mti 

E,M~\-

itXfWMij+++ 

I i:J< e11z ' !liimiJ 

VP!:i'H S.Ntt:t.t;;W 

sri 1111- ' 

MPtM WlliiR ~?4WJ!-iH§llUJ 

D1 i&NMi iWW '1Pfifi* i£ SN rn:::a&fi !lt,l\ $ > % fo 

MH!UMM l?4 t&ifif.*MM 

Dhdh 

IU 
M.Pti#id-

''" 

$!Hi! H&R- I ~A 0 ¥ 
SN HZ;;; ii\i!ifaiM ttA 

EX Mifa#MiP MP'iMJ#J& M ISN M%Sftk 16 B.'4Nf,ffi 
Ut+ff~, SHU ¥MM Mii@ 

MPt@#&MWi $NtWR¥ 

EX 

W3nn EX 

W!itih!¥ EX 

do work 

EX 

Wlfltl:W'£§MM EX Ullf;f".tm 

Wlill ASH Hi"' FQ&i% B ti :t;:! 

maotn 
Wilk¥$& EX~%>\ WU 

'WBi!IMHijfii !LX ftt8i!¥$i 1¥\iij 

WIS!1JQll EX 

!U•tp Ji s~nmkwW ~H¥•* ' ' e:xw;1:rn;;:s1;:rn 
:IE "O 1.0 

0.1 

0.2 

c: 0.4 

~:.,::~~~t::::::::::::~l~~~t@~i~·*~9i~~~~i~~1~Pii'~-il4~~~~~5N~~~~~l]e"~A4_~-~~~~1w···_ ,, ..... 1"'"""""
11

•

1 
U f'.W-£ Piill;4@ MP&&¥ SNl!:1ii\t! \j!TuM!I 

ElC fr¥MffeMMi ~t$f ISN C~QMf* W!1i:tiiii'· i§WJ¥ft f-'i i 

l ~ lo.6 

'ii s 0.8 ::s J'l 
W"O 1.0 i:x IWIM 

Mf'~~ \>NM%@ m!A@li\¥ 

liN CPA @a ~ 
...., ____ _, __________ _ 

0.1 

.2 
> 0.4 

i~ 0.6 

i.1 0.8 
c..i "O 1.0 

ti 
~ ~ Cl 

< == 1.0 

0.1 
tl 0.2 

1 0.4 
:= 0.6 
ta !)_8 Ill = tn 

Fig. 42 

lf¥%¥#£f 

(X 

11:~1m;¥ 

SM %41@*t 

Mfli@Mf,fiWW ~Wit 

WB 
WI 

tA 

Vt I m. I R!IM 

''A 

EX k4¥M·h MP§ DM§ ,1 !>:J ti\# #iS¥ 1M \\Ef%¥i 
k t\iE U I M : :.N a:::::LS'il:.t:LJ BA t W l&i*il* WB 

fLA ii£-Q i@ 

EX 

* ;:( pMPJiri¥1£1M 

Inter-process Reduction: Retention of Performance Trends with 
Varying Thresholds for imbalance_at_barrier 

173 



no loss 

0.1 

0.2 

0.4 

lo.6 
O.S 

1.0 
10 

100 

MPI Beast 

Mr CM ro 

M~~Ct) 

MP ii ; c 

.U3 

u 

do work 

EX~ 

EXtft:. 11 JAtfll 

II 1000 ILK 
u ! 

co 
co 
to 
co 

LI 

UI 

u 
u 

""!_:_~_-4.;,;I=;,;;1;;,~;;;,;~;.;....-~-
10 

:: 

c 
C:Mif!WM 
CH 1¥& 

0.2 IO Mf CM 

MPW\lii C 

MP CM & 

MP CWW&& 

EX 

EX MP 

co 
co 

M CO 

co 
COHN 

co 

.4 EX MPll'JB CMW CO 

.6 EX MP C CO•B 
O.S EX Mil CMi CO 

1.0 EX MP AM CMM"A 448 CO 

0.1 EX ~Pl• Cl491fi CO 

0.2 EX Mf' C CO 

o.4 EX.,., MP CM CO 

0.6 EX Mh!&A C CO 

LS 
U! 

LI 
LI 

LI 
LB 

LB 

tam 
LB fWllB 

UI 

LI 

~~~:::...._~~~~~~!!!!!!!!!!!!!!~!:~:.!!!!!!!!_J!~~N!'!!!!!!!!!!B~~~O~!!!!!!!jJ 

EXttnidU
EX!''! i 1 prrm

EX

EX

EX

EX!':\:E~

EX

EX?i&HQ1A

EX
E(

0.1 FA JAP Ck :;o UI EX

0.2 EX MP C COM!
0.4 EX.@ MP C CO

0.6 EX MP C CO

O.S EX MPCrir C CO
1.0 EX MPBM CO
0.1 L:X MP

0.2 EX MP
0.4 EX MW! MP

0.6 EX MP
O.S EX MP
1.0 EX MP

c
CM@

CMJJi
CMi

c
c

co
co
co
co
co
COWN

LB
UI
UI
LB

EX 1- ** ** e1w·1

EXO!nfHI•

ex e :t t '&' r & *
Fig. 43 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for late_broadcast

174

no loss

10

100

1000

10000

100000

1000000

0.1

n•1•
EX•'
EXMliMi

£X+>+B1•1
EX••

EX•&

...

EXWI
aww•-m
EX +fu $Mi

EX Mi BJ
EX
EX
EX*
EX- & II

MllMMW:M
M!IE M Mj

MPE *
MP M

MP W

MPMMiAW

MP w

MP• BJ

MP& 9
MP
MP
MPN

-I -MP-91
MP+yikWM§

CME E* P2 •% • -
CM+§ 4,111 PZMMMM$
Cf B'JBI n
CM•- P2EWM¥fi

Ct! P2

cam a r2
C P2MM
CM an P2

CM P2•t•

ct +w n•
c~ •w P2 •11iW
CM w P2

Cf ._ n• Wti
CM --

LRM•,•t•I

LR*' EXltnil t I IH

LR

Lt••w+# EX

LR. EX~

LRmRll EXt'¥¥$it:!"i*il

LR•1 JM EX

LR EXWJ11tilill

LR& NW
LR

LR
LR.&

LRE••:m
LR

LR

LR• iiiM
LR EX~

EX rr;rrr:r:Jtl!J
•em EXWUIAHS

CM

CM+
c

P2

P2& I
P2

fr* LR&

- LR+
U\

WI EX
&I EX~

EUP .! uus
EX t t l 11l 1££X3 c

Cf
Ct.I

CMMM
CMME
CMiJ
Ct

n•a
M P:Z .. 11\W•

LR

Ul ··UlMkWWN·•·»
LRMMiBMI
LR• w

LRW -
Fig. 44 Inter-process Reduction: Retention of Performance Trends with

Varying Thresholds for late receiver

175

10

100 EXM'

&I I 1000 EX! ..

,__i_i ___ ~_= :o _~
... a-== 1000000 ~

0.1

0.2 ¥ UW-WW

0.4 ru• .•

0.6 £* I

0.8 •

MP• •

MPW••••
MPU*i.MM•
MP *#

MP A •

MP!fJ' •;•

MP ••

MPM AW
MP

do work

Cldf1'W WW P24 *AW ts M A !JIN.

cu
P2ii¥
P2:

Ct P2
Cwt;!MliW• P2'

ts+ WSM EX

ts fill
w LS

• EX
;w EX fJ >I -~ r t M ;

El(Mm

l.S M EX H Hi., tkt '

•• LSlllWW•4 EXUf:l,kl ,,;a

o.wa P;lt•• .. LSFW

cw •&• n LS• JM EX Pif t! @ t iii ~i

W EX
1.0 N!li &N MP P 4 CM!N W M W P2 *W1M

I.SC
LS EX

0.1 MM MP •W Clt P2 1.S

~o~.2t=======~~~~~lliill~~~M~P~k*i~·~·~·i=~c~·~·~·~·~~~~~P~2~~~~~LS~i~Wk*~~ .. ~·~;~~~~~=] 0.4 EX M • MP CMI 1 • P2i!AN LS MIA

0.6 EX MflliW WW Cfl P2 iii+ LS
l-01 ___ so-----~, MP• CWMM*W P2 ~ •• EUiM*M''

~ t>U• • CMm.ws•9 P2 .. IJ EX n;m:rrm
0.1 EX. Mf'IMM!WW Cfl P2 l.S EX '

0.2 EX i M 4 MPWW+ • & CM& M .. P2 M 1.S

0.4 EX & M MP W C P2 - & ts
0.6 EX MP• !TM Ct P2 A LS EM
0.8 MME I
1.0 EX 4 + Pllh&

0.1 EX- WW MP
0.2 EX MP A WW

0.4 EX MPMk ·-
0.6 EX

0.8 EX*· "
1.0 EX 114

0.1 EX W
0.2 EX@ M

0.4 EXi!ii+ M
0.6 EXMM W

0.8 IEX ••
1.0 EX -•+•:p

MP 14
MP
MP•

MP
MP ,w
MPl\•WMM
MPWW1••W

C:M11E I M& P2. LS sip EX

C:M ••• P2 1..5 M# EX
Cl.Ul!Em P21!&4MN ts EX!tl!1Jt·g&1
CW& WM Ph&MM M LS M EX! hi&*ll
c• M P2 LS MM EX¢¥% ifiXi i I
C'rl A P2 LSWWW (.Xt:l!Hlliti

ciuuew1 ww Pa aw LS EX 1r1 1 141 r i'.l

ca•w•._ P2i¥W
CMn•••·• ?2 &•W
CM&Ni Pa

CW&W& P2:
CMii•H • ?2.

1.SM1MMP EX

WM LS; M Eli ii;Jfi f,Vt

LS SW .. EX ti j I !!OW

LSMt EX!UiUUll

Fig. 45 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for late_sender

176

B
j i
~~

i I
0 ~

1:1 !;
Cl -g

c
~ s
.! c
cs
Ill ... :e ~

5i Cl
Cl ~

"11:1 s 1 ..
Ll,l '"g

!§
~J
c.>""

Ii
.. :I> " . i ;:

1l
ii
I

== :.
Ill ::r:

no loss

0.6

0.8

1.0

0.8

1.0

0.1

0.2

0.4

0.6

0.8

1.0

0.1

0.2
0.4

0.6

0.8

1.0

0.1

0.2

0.4

0.6
0.8

1.0

Fig. 46 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for Nto1_32

177

" ~ :! !
.!!~
~ lij

~ I
1~
.Q -Ill "'O

c

~ 8
ij
::! "'O

= 8 ll c:

~i
Ii.I "a

)I

!~
.! J
U"O

ii
!i
tl
1
Ill

3:
:;
Ill =

no loss

10

100

1000

10000

100000

Fig. 47 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for NtoN_32

178

0.2

GI ~
0.4

~ 9! 0.6

.! :! 0.8
~ :;; LO

10

100

" I
1000

)j 10000

100000
Ill "ti 1000000

0.1

0.2
c 0.4 Ill

j ~ 0.6

Iii~ 0.8
:& :;;

1.0

0.1

0.2.

c 0.4 "*.,.
0.6 Ill ~ ;s .e 0.8 :I..!! w "ti 1.0

0.1

0.2
> 0.4

i§ 0.6

!.I 0.8
;;.;I "ti 1.0

0.1

0.2

tl
JI
1j
1J

= :: 0.6

ii 0.8

= 1.0

Fig. 48 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for 1toN_32

179

Fig. 49 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for ltolr_32

180

Fig. 50 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for ltols_32

181

Fig. 51 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for Ntol_l024

182

Fig. 52 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for NtoN_1024

183

s
" = :! ~

..$! ii
!! :;

1d = ~
]~ . .,,
c

~ s
ii

n:i .l!2
:!! 'O

Iii Cl

.! ~
]J
W"Q

::.

f s .a c ., .g
'6 :;

ti
~ .
<(==

"ij

1
== ..
n:i

!

1000000

0.1

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.4

0.6

0.8

LO
0.1

0.2

0.4

0.6

0.8

0.6

0.8

1.0

0.1

0.2

0.4

0.6

.8

1.0

Fig. 53 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for ltoN_ 1024

184

Fig. 54 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for ltolr_1024

185

Fig. 55 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for ltols_1024

186

nofoss

ICU
0.2

0.4

0.6

0.8

1.0

10

,;;" w;i- LS- MQ!%PtMM 11: ..

EX- M:7- Cr< Pl- 1.5- fl# *MM EX~

?2- IU- Ml'11••1m EX~ f'l- U- M<ff•ppm EX~
LO EX- t.{I'- C14

fCU EX- ~ti'·- Di

0.1 EX- t.if'- (A'

0.2

0.4

0.6

0.8

LO
0.1

0.2

0.4

0.6

0.8

1.0

0.1

0.2

0.4

o.6
QS

1.0

U- Mf'- Ct.- Pl- LS- MlllllRF
EX- Mi. (t F.:- U- ftli<M u- lltf'- {$1 11'2- u-,.
EX- MP- (h Y.!- .l!i- Ml r..- ,, ,
£¥- Ml'- .n- ts- fltt@*MRF EX~
EX- Mf'- i;, iP1- .U- fiJIO EX~

EX- iii?-(~,,- rz- u- M<lH@ EX~

tX- M CJ>' n- ts- M<Hi •

EX- Mr- CR: l'Z- iLS- MOW-a ••
EX- MP- C 1'1- U- MOM l!ttl EX~
EX- Ml'- Ch Pl- tS- MC ><I

i:x- li1 c r:a- u- MC " 1
•. ,,

EX- M?- Ck 1'2- ,U- MCM\IMI W EX~ EX- MP- C, ,2_ U- MC'

Fig. 56 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for sweep3d _Sp

187

s
I.I c:

.a: !
!~
!! "C

! §
= e 1 u

.Q !:
GI '1:1

c
~ s
Jc
fij

:iii "C

Ci
8 ~

tJ
IA.I "O

>

f s .a c
4' J
ts"'

fl
<C ~

~
ii
~

I

10

100

1000

10000

100000

Fig. 57 Inter-process Reduction: Retention of Performance Trends with
Varying Thresholds for sweep3d _ 32p

188

no loss

relDiff
absOiff
Manhattan
Euclidean
Chebyshev
iter k
iter avg
avgWave
haarWave

,, f!llr--

t 1v4415,,_ -
mo

• l!\i'.ht4

t;t Vt

~'

f!r I I

MPI Alltoall do work

= .. ~.~···· -- f~if."1,fJ~,·-- ~--- NN-._.l. Ll....i EX WMNft·if«!'J
,. n=rr- . ' f.1.£14¥: ' o;vu: NNW-- i 1 I 1 EX ;1 l n
'! ti!UfM\IM n;f i -·WWI I·· NN-. m . .J EX MAW t GQ

MP

tE'C.m I t X W•· 1:1 d NN--=JB[J EX
NNlllD::T]I] EX

CM

.H!N

II Ph U I

co
t4 1 ! Nl\!--JLJ..J EX

NN-:r::Jll:J EX !k.-M•H I +n

Fig. 58 Combined Reduction: Retention of Performance Trends with Default
Thresholds for dyn_load_balance

MPI Gather do work
no loss EX MP*M' ®" CM cow ER- EX ,,,,.

relDiff EX MP• • CM co ER w EX .. $>'.~"P- 'ii ,_,,J_ ::!- ,ii;

absDiff EX MP*-'MM CM co ER* WI EX!! IHUJi]

Manhattan EX MP CM co ER ; iifM EX A""'' .
Euclidean EX MP CM co ERijl~ EX j

Chebyshev £X MP CM co ER EXw,,~,

iter k EXWM MP CM CO• ER EX t;J I L1 ·I ·i P®

iter avg EX MP ER•* EX j ~

avgWave £X MP CM co ER. .. EXl!tt!rl:&t\l
haarWave EX MP CM co ER EX"* '·'''·'

Fig. 59 Combined Reduction: Retention of Performance Trends with Default
Thresholds for early _gather

no loss
relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter ~
avgWave
haarWave

FXM>.';,y,._
£:(IT£H§

f.X t f•:!iti

i EX I *Ii 1ttlifim
EX M-'¥,t ,-
EX t,fii&Ai I

MPiU;i'ij *
M?g;r;m:'-

MPUm!tMiim
Mf'!iM t t5:1'M!ib

MP1t1a··a11W

MPI Barrier

SNUifM?W*M SA
SN k¥4¥'fH&iM PA
SN t#Q!M

SNPiiEMii\

SN
SNHW

A:A.,

!tAMiW·

Mtltt.¥!:¥,: ;
SP •• !fPMW

SN Wi ¥54 DJ!#I M ihf& ;;1g;u

SN 1£'¥211! - 0A

do work

WBtw_JJJ..J EX
EX F\l!if:'.14 Hl'J

Wl1DWfilH EX
W!httt.-1 I EX

W!'tu! t*M§ EX

EXI H'M MM

Fig. 60 Combined Reduction: Retention of Performance Trends with Default
Thresholds for imbalance at barrier

189

no loss

relDiff
absOiff

Manhattan

Euclidean
Chebyshev

iter_k
iter_avg
avgWave
haarWave

EX

EX
EX

EXMM
EX GMif

EX
EX

0:
EX
EX

MP

MP
MP

MPMIB\I
MP!iMii
MP

MP
MP
MPAtiii:,
MPWM&

MPI Beast
CM

CM
CM
CM®@"

CMttWM§

CM
CM
CM
CM
CM•,@@A

do work
co l~ EX•
co LB EX····
co Lt! EXn '

co LB EX
co LB •m £X
co LB NW EX rrrrorp;:J
co LB EX:f'rlfitbgt&lil

co LB EX &<:@:. ;~ ~"·~

c:o LBPWt' EXu i j 13 I !]

COMM§ LB WM#, EX, 1· ,.,, ~-

Fig. 61 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late_broadcast

no loss

relDiff
abs Di ff

Manhattan
Euclidean
Chebyshev

iter_k
iter avg

avgWave
haarWave

EX

EX
EXM
EX•
EX
EX
EX

EX

MP•@tt %*¥

MP•
MPMM
MPM #Mi

MP MM
MP* h*rt -MPMM:tl:--

i
Ai MPMM§++§

MPI Ssend

CM••

CM' I, ea

CM
CM
CMM

CM••
CM

CM
CM
CMMM

P2-i

P2MMI
P2
P2
Pl•@

P2•
P2 ?CT
P2 M
P2
P2MWW I

do work
LR* ?CT EX

LR
LRMMIWWii EX,~ 1e ,

LR. EX '"
LR EX
LR ;;; @WM EX"
LR &Mt% ,.t§WM EX I I MA "%,tli [~J
LR •u•#•hr• EX Qti'ftl·,i' j,, 'i\tJ

LR. EXt!'l33HH1
LR

Fig. 62 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late_receiver

no loss

relDiff EX

absOiff EX•
Manhattan I EX
Euclidean I EX M
Chebyshev EX
iter k EXi+

, ..
fMM

@••
cMM -..

MPI Recv
MPMMM·*M CMMMWMM

MPtMN·EiM CMm-:•@MiMMM
MPffiM,M1M# CMMM

MPE• • A CM!+

MPIMWMW CMMI ff

MP'WM*N CMi!iM

MP!MliMWW CM!!!1*

P21i@ ••
P2 .,.
P2ifW.,_AM
P.2 NM

P2
P2 -P2

,_
LS i •
LS ·~ M

LS mm
lSFMWi*W
LS

LS
LS ' 'MM

do work
EX

EX AA

EX h~ ,

EXntk".1 ¥.1 iii

EX t + l'.fivfi 9 1.1

MP®Mt-w CMFm- P2 , .. LS --·--iter ~ EX l1Mj EX H1 !"1 I ! t 4

av&Wave EX 1W M MPIW- CMliiM P2 ¥ @MM LS fJMMfl- EX I:£]· i 111 bi
haarWave EX IW·M*M MPreM"M#@M CMR 95 WM P.2 if iM+ LS m MMM EX m:;m:::X:;;I@1ri:lil

Fig. 63 Combined Reduction: Retention of Performance Trends with Default
Thresholds for late sender

190

no loss

relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_av&
avgWave
haarWave

Fig. 64

no loss

retDiff

absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avgWave

Fig. 65 Combined Reduction: Retention of Performance Trends with Default
Thresholds for NtoN 32

no loss

relOiff
absDiff
Manhattan
Euclidean
Chebyshev

iter_k
iter_avg
av&Wave
haarWave

Fig. 66 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltoN 32

191

no loss

relDiff
absDiff

Manhattan
Eudidean
Chebyshev
iter_k
iter_avg
avgWave

haarWave

Fig. 67 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltolr 32

no loss

relDiff
absDiff
Manhattan
Eudidean
Chebyshev
iter_k
iter_avg
avgWave

haarWave

Fig. 68 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltols 32

Fig. 69 Combined Reduction: Retention of Performance Trends with Default
Thresholds for Ntol 1024

192

no loss

relDiff
absDiff

Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avr.Wave
haarWave

Fig. 70

do work
no loss -re!Diff
absDiff -Manhattan
Euclidean -Chebyshev -iter_k -iter_avg -avgWave -haarWave -Fig. 71 Combined Reduction: Retention of Performance Trends with Default

Thresholds for ltoN 1024

no loss

relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
aveWave

Fig. 72 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltolr 1024

193

MPI Ssend
no loss

relDiff
absDiff
Manhattan

Euclidean
Chebyshev
iter_k
iter_avg
avgWave

Fig. 73 Combined Reduction: Retention of Performance Trends with Default
Thresholds for ltols_l024

no loss

relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avgWave
haarWave

Fig. 74

no loss

relDiff
absDiff
Manhattan
Euclidean
Chebyshev
iter_k
iter_avg
avgWave

Cf

CM
CM
cw
CJ\!

pmpi recv
n
?2
P'2
rz
P2

LS

LS
LS
LS
LS

MO
MO

-M M

sweep
EXnid t MH'll!

EXMM
FW EX

EX
EX

CM ?2 n W LS- M EX&
EX iljiillll I t<)fiu MPWW >"?bl! CME \Q 11 nH P2 Rif$1>,j'1 it@ ts m:@w ,., EX

D'. MP tt,: ?? LS MOiiiii I EX
EX MP C , ?£ LS MC I EX
EX MP Qi P2 LS id M MC I EX

Combined Reduction: Retention of Performance Trends with Default
Thresholds for sweep3d _Sp

swee

Fig. 75 Combined Reduction: Retention of Performance Trends with Default
Thresholds for sweep3d_32p

194

	Scalable event tracking on high-end parallel systems
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461958221.pdf.v3Iyw

