Portland State University PDXScholar

Dissertations and Theses

Dissertations and Theses

1978

A technique to calculate complex electromagnetic fields by using the finite element method

Davood Asgharian Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

Part of the Computer Sciences Commons Let us know how access to this document benefits you.

Recommended Citation

Asgharian, Davood, "A technique to calculate complex electromagnetic fields by using the finite element method" (1978). *Dissertations and Theses.* Paper 2863. https://doi.org/10.15760/etd.2859

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

AN ABSTRACT OF THE THESIS OF Davood Asgharian for the Master of Science in Applied Science presented May 16, 1978.

Title: A Technique to Calculate Complex Electromagnetic Fields by Using the Finite Element Method.

APPROVED BY MEMBERS OF THE THESIS COMMITTEE:

	Vijay	К.	Garg		 	 >
-						
$\overline{\mathcal{D}}$	Franz	N.	Rad			
	Ralph	D.	Greiling	0		
	Inmor	T	Voin			

James L. Hein

A computer program based on Maxwell's equations is developed to calculate two-dimensional complex potentials by the Finite Element Method. This study offers a solution to a complex continuum problem by allowing a subdivision into a series of simple interrelated problems. The region of interest is divided into triangular elements. For each node in the grid, the Finite Element Method is used to set up an equation for the potential as a function of those of the surrounding nodes. All these equations are solved by the Gaussian Elimination Method. For increased accuracy this method requires a high degree of division of the region of interest. This could cause a storage problem on the computer. To eleviate this problem a half-banded scheme is used. A comparison is provided between the data obtained from the developed algorithm and an actual experiment. In this experiment two-types of sunken swimming pools, reinforced and non-reinforced, were used to hold three different waters of conductivities $29\mu v/cm$, $1500\mu v/cm$ and $3000\mu v/cm$. In order to test the accuracy of the computer program developed, the results of another solved problem are also compared to another computer program's results which was based on capacitive and resistive distribution of potentials. The result of this study shows the hazard may exist on the edges of the swimming pool when the resistivity of the surrounding soil is high.

A TECHNIQUE TO CALCULATE COMPLEX ELECTROMAGNETIC

FIELDS BY USING THE FINITE ELEMENT METHOD

Ъу

DAVOOD ASGHARIAN

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in APPLIED SCIENCE

Portland State University

TO THE OFFICE OF GRADUATE STUDIES AND RESEARCH:

The members of the Committee approve the thesis of Davood Asgharian presented May 16, 1978.

James L. Hein

Stanley E. Rauch, Dean Graduate Studies and Research DEDICATED TO MY LOVING WIFE

÷

.

.

.

ACKNOWLEDGMENTS

The author gratefully acknowledges indebtedness to Dr. V. J. Garg for his suggestion of the problem, criticisms, and suggestions during the course of this study and his sacrifice of time and energy during the writing of this thesis.

The author wishes to express his gratitude to Dr. F. Rad for his advice and reviewing this thesis. I would also like to express my appreciation to Professor R. Greiling for making many constructive comments.

Consultation with Dr. W. Mueller was also a great aid in the writing of the computer portion of this study.

The author wishes to thank Ms. Donna Mikulic for the excellent and efficient typing of this thesis.

I am especially indebted to my dear wife for her encouragement, understanding and unfailing patience.

TABLE OF CONTENTS

ACKNOWLEDGMENTS iv				
LIST	OF	TABLES	vii	
LIST	OF	FIGURES	viii	
CHAPT	ΓER	·		
	I	INTRODUCTION	1	
		1.1 REVIEW OF LITERATURE 1.2 STATEMENT OF THE PROBLEM	1 3	
	II	FINITE ELEMENT METHOD	4	
		2.1 DEFINITION 2.2 FORMULATION OF FINITE ELEMENT METHOD 2.3 FORMULATION OF BOTENTIAL PROPLEMS WITH SPATIAL	4 4	
		FINITE ELEMENT SUBDIVISIONS	8	
		2.4 FINITE ELEMENT SOLUTION OF COMPLEX POTENTIAL ELECTRIC FIELDS	10	
	III	COMPUTER PROGRAM	18	
		 3.1 SOLUTION TECHNIQUE FOR THE FINITE ELEMENT METHOD 3.2 RESULTS OF THE COMPUTER SOLUTION 3.3 COMPARISON OF RESULTS WITH OTHER COMPUTER TECHNIQUE 	18 29 35	
	IV	EXPERIMENTAL PROGRAM	38	
	v	RESULTS	42	
		 5.1 COMPARISON OF CALCULATED VALUES WITH EXPERI- MENTAL RESULTS 5.2 POTENTIAL HAZARD TO THE HUMAN BODY 5.3 THE LIMITATIONS AND ACCURACY OF THE THEORETICAL TECHNIQUE 	42 52 59	

VI CONCLUSION

		Page
APPENDIX A	EULER'S THEOREM OF VARIATIONAL CALCULUS	63
APPENDIX B	THE GAUSSIAN METHOD	66
APPENDIX C	CALCULATION OF CURRENT DENSITY	72
APPENDIX D	LISTING OF PROGRAMS AND SUBROUTINES	76
APPENDIX E	COMPUTER RESULTS	87
APPENDIX F	EXPERIMENTAL RESULTS	100

LIST OF TABLES

Table		Page
3.1	Comparison of Results of a Specific Problem	37
5.1 - 5.4	Calculated Current Travelling Through the Human Body Standing on the Soil	54- 57
5.5	Calculated Current Travelling Through the Human Body Inside the Swimming Pool	58
C.1 - C.3	Calculated Current Densities on the Surface of the Earth	73- [,] 75
E.1 - E.9	Current Densities Calculated in Soil	88 - 9 6
E.10 - E.12	Current Densities Calculated in Water	97 - ·99
F.1 - F.9	Current Densities Measured in Soil	101-109
F.10 - F.12	Current Densities Measured in Water	110

LIST OF FIGURES

Figure		Page
2.1	Triangular Division of the Area	5
2.2	One Triangle	6
2.3	Typical Triangle with Vertices Marked	11
2.4	Area Coordinates	11
3.1	Region 's' is Divided in 18 Triangular Elements	19
3.2	Banded Form of a Symmetrical Matrix	22
3.3	Flow Chart, Subroutine "BANDWIDTH"	 24
3.4	Flow Chart, Subroutine "FIND"	25
3.5	The Finite Element Model	
3.6	Regional Division of the Experimental Model	32
3.7	Flow Chart, Subroutine "GOOD"	33
3.8	Flow Chart, Program "TES"	34
3.9	Resistive and Complex Admittance Networks	35
3.10	Two Materials in Series	36
4.1	Schematic Diagram of the Experimental Model	50
4.2	Schematic Diagram of the Electrical Circuit	40
5.1-5.8	Calculated Current Densities	41
5.9	Levels of Current Hagarda to the W	44-51
	Body	53
В	Flow Chart, Subroutine "SOLVE"	70

CHAPTER I

INTRODUCTION

1.1 REVIEW OF LITERATURE

A considerable amount of work has been done in the past in calculating the self and mutual impedance of two parallel ground return wires. The following paragraphs summarize these attempts in chronological order.

The first attempt was made by Carson (1). He investigated the problem of wave propagation along a transmission system composed of an overhead wire parallel to the surface of the earth. However a complete solution of determining the actual impedance is impossible because of the non-homogeneity of the earth. The solution to the problem, where the actual earth is replaced by a plane homogeneous semi-infinite solid has promoted considerable theoretical and practical interest.

In 1951, Lacey and Wasley (2) at the Hydro-Electro Power Commission of Ontario, Canada, developed an equation for the mutual impedance of two finite length earth-return circuits, either parallel or at an angle. The equation developed by them is to be a generalization of Carson's work.

In 1965, Wedepohl (3) published a paper on wave propagation in multiconductor overhead lines which would permit the earth-return path to have a relative permeability other than unity, which was not permissible in the analysis by Carson. In this paper, the new approach is applied to the case of a two-layer earth, including the effects of displacement currents. The results were in agreement with those obtained for the case of a homogeneous earth.

In 1966, Krakowski (4) developed equations for the mutual impedances of overhead lines with the earth as a return path. In this paper the problem deals with two different lines which cross each other at an angle, α , different from zero. A particular case of this problem is the same as Carson's solution for $\alpha = 0$. The general solution of this problem is considered, assuming that the earth is uniformly conducting and that both overhead conductors are parallel to the surface of the earth.

In 1973, Nakagawa (5) published a paper in this area. This solution permits the earth-return path to be considered as three layers of different resistivities, permitivities and permeabilities. A stratified earth causes marked differences in the earth impedances and the resultant wave deformations from the homogeneous case. The depth of a layer is a significant factor to the value of the stratified-earth impedance. The displacement currents can influence earth-return impedances. This is only at very high frequencies and under the conditions of high earth resistivity and low conductor height.

All these papers prove that there are several ways of calculating the distributed impedance of ground return transmission lines.

Magnusson (6) developed a method of calculating the mutual and self-impedance of overhead lines with the earth as a return path. He also calculated the mutual and self-impedance of the line under the following conditions:

A. A conductor height of 35 feet

B. A line-to-ground short-circuit current of 2000 amperes.

C. A ground conductivity of 0.01 mho per meter

By the calculated value of the mutual and self-impedance of overhead lines with the earth as a return path and the use of the developed formula, he calculated the current densities in a typical below grade swimming pool.

The densities change with respect to the distance of the swimming pool from the vertical plane of the transmission line. The calculated current densities in the pool were found to be hazardous to the swimmer in the swimming pool.

1.2 STATEMENT OF THE PROBLEM

The purpose of this investigation is to develop a computer code based on Maxwell's equations to calculate potentials between points of interest on the surface of the earth and swimming pool by knowing at least two boundary conditions, using the Finite Element Method.

In order to check the validity of this study, the results are compared to experimental values.

CHAPTER II

FINITE ELEMENT METHOD

2.1 DEFINITION

The Finite Element Method is a numerical technique for obtaining approximate solutions to a wide variety of engineering problems. The ability to use elements of various types and sizes and to model a system of arbitrary geometry, are the main advantages of the Finite Element Method.

Other approximate methods, for example the Finite Difference Method, lacks these advantages. Using these approximate methods, a specific numerical result may be obtained for a specific problem, but a general computer solution applicable to all cases is not possible.

The Finite Element Method offers a way to solve a complex continuum problem by subdividing the continuum into a series of simpler interrelated problems. It gives a consistent technique for modeling the system as an assemblage of discrete parts or finite elements.

2.2 FORMULATION OF FINITE ELEMENT METHOD

It is desirable to obtain results in a general form applicable to any situation. For this purpose a division of the region into triangular shape elements is used as shown in Fig. 2.1.

The problem is to calculate the values of $H_N^{(e)}$ (i.e., voltage) at each node, (N = 1, 2, ..., n) by knowing values of $H_N^{(e)}$ at some node

Figure 2.1 Triangular division of the area.

as boundary conditions.

The integer numbers of 1, 2, ..., n represent the number of the particular node and value of H at node 5 which is written as H_5 . The integer numbers written inside parenthesis, for example, (3) represents the element's number.

Each element has three nodes and each node has its own coordinate values. For example, element (1) has nodes 1,2,7 and coordinate values of (x_1, y_1) , (x_2, y_2) , (x_7, y_7) , and element (5) has nodes 6,7,5 and coordinate values of (x_6, y_6) , (x_{y_7}, y_7) , (x_5, y_5) .

Fig. 2.2 shows a typical triangle from the whole area of Fig. 2.1. The assumption is that the value of h (i.e., voltage) at any point inside the triangle is a linear function of H at the triangle's three nodes, or simply:

$$h^{(e)} = [N_{\ell}^{(e)} N_{m}^{(e)} N_{m}^{(e)}] \begin{bmatrix} H_{\ell} \\ H_{m} \\ H_{m} \end{bmatrix} = [N][H] \qquad 2-1$$

Therefore, for the area of Fig. 2.1, the values of h in each element are:

$$h^{(1)} = N_1^{(1)} H_1 + N_2^{(1)} H_2 + N_7^{(1)} H_7$$
 2-2

$$h^{(2)} = N_2^{(2)} H_2 + N_3^{(2)} H_3 + N_7^{(2)} H_7$$
 2-3

$$h^{(3)} = N_3^{(3)} H_3 + N_4^{(3)} H_4 + N_7^{(3)} H_7$$
 2-4

$$h^{(4)} = N_4^{(4)} H_4 + N_5^{(4)} H_5 + N_7^{(4)} H_7$$
 2-5

$$h^{(5)} = N_5^{(5)} H_5 + N_6^{(5)} H_6 + N_7^{(5)} H_7$$
 2-6

$$h^{(6)} = N_6^{(6)} H_6 + N_1^{(6)} H_1 + N_7^{(6)} H_7$$
 2-7

Where [N] is called a shape function and will be seen later to play a paramount role in the Finite Element Method. The shape function is a function of area coordinates:

$$N_n^{(e)} = 1/2A^{(e)} [a_n^{(e)} + b_n^{(e)} X + c_n^{(e)} Y]$$
 2-8

Where A = area of the triangle:

$$a_{n} = x_{\ell}y_{m} - x_{m}y_{\ell}$$
$$b_{n} = y_{\ell} - y_{m}$$
$$c_{n} = x_{m} - x_{\ell}$$

For example N_7 for element (4) is:

$$N_7^{(4)} = 1/2A^{(4)} [a_7^{(4)} + b_7^{(4)} X + c_7^{(4)} Y]$$

Where:

$$a_7 = x_4 y_5 - x_5 y_4$$

 $b_7 = y_4 - y_5$
 $c_7 = x_5 - x_4$

and so on.

The total h in this area is equal to the summation of hS in the elements.

$$h = \sum_{e=1}^{E} h^{(e)}$$
 2-9

Where E is the number of the last node. Eq. 2-9 could be written in matrix form as well as in summation form.

$$\begin{bmatrix} h^{(1)} \\ h^{(2)} \\ h^{(3)} \\ h^{(3)} \\ h^{(4)} \\ h^{(5)} \\ h^{(6)} \end{bmatrix} = \begin{bmatrix} N_1^{(1)} & N_2^{(1)} & 0 & 0 & 0 & 0 & N_7^{(1)} \\ 0 & N_2^{(2)} & N_3^{(2)} & 0 & 0 & 0 & N_7^{(2)} \\ 0 & 0 & N_3^{(3)} & N_4^{(3)} & 0 & 0 & N_7^{(3)} \\ 0 & 0 & 0 & N_4^{(4)} & N_5^{(4)} & 0 & N_7^{(4)} \\ 0 & 0 & 0 & 0 & N_5^{(5)} & N_6^{(5)} & N_7^{(4)} \\ 0 & 0 & 0 & 0 & 0 & N_6^{(6)} & N_7^{(6)} \\ N_1^{(6)} & 0 & 0 & 0 & 0 & N_6^{(6)} & N_7^{(6)} \end{bmatrix} \begin{bmatrix} H_1 \\ H_2 \\ H_3 \\ H_4 \\ H_5 \\ H_6 \end{bmatrix} 2-10$$

2.3 FORMULATION OF POTENTIAL PROBLEMS WITH SPATIAL FINITE ELEMENT SUBDIVISIONS

The current density J_T consists of both conduction and displacement components, respectively:

$$J_{m} = \sigma E + (\partial/\partial t) D \qquad 2-11$$

where

$$D = jt^{\omega} \varepsilon E \qquad 2-12$$

After substitution of Eq. 2-12 into Eq. 2-11 one may obtain this result:

$$J_{T} = (\sigma + j_{\omega}\varepsilon)E \qquad 2-13$$

Equation 2-13 by Kirchoff's law must satisfy the continuity

equation.

$$\nabla \cdot J_{\mathrm{T}} = 0 \qquad 2-14$$

$$\nabla \cdot (\sigma + j\omega\varepsilon)E = 0 \qquad 2-15$$

but

$$\mathbf{E} = -\nabla \mathbf{V} = \mathbf{0}$$
 2-16

$$\nabla \cdot (\sigma + j_{\omega \varepsilon}) \nabla V = 0 \qquad 2-17$$

where

$$\nabla \mathbf{V} = [(\partial/\partial \mathbf{x}) \nabla \mathbf{a}_{\mathbf{x}} + (\partial/\partial \mathbf{y}) \nabla \mathbf{a}_{\mathbf{y}} + (\partial/\partial \mathbf{z}) \nabla \mathbf{a}_{\mathbf{z}}]$$
 2-18

Substitute Eq. 2-18 back in Eq. 2-16:

$$\nabla \cdot (\sigma + j\omega\varepsilon)[(\partial/\partial x)Va_x + (\partial/\partial y)Va_y + (\partial/\partial z)Va_z] = 0 \quad 2-19$$

$$\nabla \cdot \mathbf{A} = (\partial/\partial \mathbf{x})\mathbf{A} + (\partial/\partial \mathbf{y})\mathbf{A} + (\partial/\partial \mathbf{z})\mathbf{A}$$
 2-20

Therefore the resultant equation is:

$$(\partial/\partial x)(\sigma + j\omega\varepsilon)(\partial/\partial x)V + (\partial/\partial y)(\sigma + j\omega\varepsilon)(\partial/\partial y)V +$$

 $(\partial/\partial z)(\sigma + j\omega\varepsilon)(\partial/\partial z)V = 0$ 2-21

In order to solve Eq. 2-21 one may need to know Euler's theorem of variational calculus, as outlined in Appendix A. By the help of variational calculus, a function I(V) could be found where $\delta I(V) = 0$ everywhere.

$$I(V) = 1/2 \int_{\Omega} \left[(\sigma + j\omega\varepsilon) (\partial V/\partial x)^{2} + (\sigma + j\omega\varepsilon) (\partial V/\partial y)^{2} + (\sigma + j\omega\varepsilon) (\partial V/\partial z)^{2} \right] dx dy dz$$

$$2-22$$

but

$$v^{(e)} = \sum_{i=1}^{3} N_i V_i = [N] [V]^{(e)}$$
 2-23

The derivative of I(V) with respect to the V is equal to zero.

$$\partial I(V)^{(e)} / \partial V_{i} = 0$$

$$= \int_{\Omega} \left\{ \left[(\sigma + j\omega\varepsilon) (\partial V^{(e)} / \partial x) (\partial / \partial V_{i}) (\partial V^{(e)} / \partial x) \right] + \left[(\sigma + j\omega\varepsilon) (\partial V^{(e)} / \partial y) (\partial / \partial V_{i}) \partial V^{(e)} / \partial y \right] + \left[(\sigma + j\omega\varepsilon) (\partial V^{(e)} / \partial z) (\partial / \partial V_{i}) (\partial V^{(e)} / \partial z) \right] \right\} dx dy dz 2-24$$
From Eq. 2-23 it is obvious that the derivative of $V^{(e)}$ with respect

But from Eq. 2-23 it is obvious that the derivative of $V^{(*)}$ with respect to x is:

$$\partial V^{(e)} / \partial x = \sum_{i=1}^{3} (\partial N_i / \partial x) V_i = [\partial N / \partial x] [V]^{(e)}$$
 2-25

$$(\partial/\partial V_{i})(\partial V^{(e)}/\partial x) = (\partial/\partial V_{i})[(\partial N_{i}/\partial x)V_{i}] = \partial N_{i}/\partial x \qquad 2-26$$

where

$$\partial V^{(e)} / \partial V_i = N_i$$
 2-27

The result of the substitution of Eq. 2-25, 2-26 and 2-27 back in Eq. 2-24 is:

$$\partial I(V)^{(e)} / \partial V_{i} = 0 = \int_{\Omega} \left\{ (\sigma + j\omega\varepsilon) [\partial N/\partial x] [V] (\partial N_{i}/\partial x) + (\sigma + j\omega\varepsilon) [\partial N/\partial y] [V] (\partial N_{i}/\partial y) + (\sigma + j\omega\varepsilon) [\partial N/\partial z] [V] [\partial N_{i}/\partial_{z}] \right\} dx dy dz \qquad 2-28$$

Equation 2-28 could be written in general form as:

$$[K][V] = [0]$$
 2-29

Where:

$$K_{i,j} = \int_{\Omega} \left\{ (\sigma + j\omega\varepsilon) (\partial N_{i}/\partial x) (\partial N_{j}/\partial x) + (\sigma + j\omega\varepsilon) (\partial N_{i}/\partial y) \right\} dx dy dz$$

$$(\partial N_{j}/\partial y) + (\sigma + j\omega\varepsilon) (\partial N_{i}/\partial z) (\partial N_{j}/\partial z) dx dy dz$$

$$2-30$$

2.4 FINITE ELEMENT SOLUTION OF COMPLEX POTENTIAL ELECTRIC FIELDS

The region of the problem can be subdivided into triangles in any desired manner, insuring only that all different material interfaces coincide with triangle sides. Figure 2.3 shows a typical region divided into triangles.

It is assumed that there is a linear variation of potential within each triangular element with respect to the nodal potentials.

A convenient set of coordinates L_1, L_2, L_3 for a triangle ℓ, m, n , Fig. 2.4, is defined by the following linear relation between these and the Cartesian system:

Figure 2.3 Typical triangle with vertices marked.

$$\kappa = L_{1} x_{\ell} + L_{2} x_{m} + L_{3} x_{n}$$
 2-31

$$y = L_1 y_{\ell} + L_2 y_m + L_3 y_n$$
 2-32

$$1 = L_1 + L_2 + L_3$$
 2-33

To every set, L_1 , L_2 , L_3 (which are not independent, but are related by the third equation) corresponds a unique set of Cartesian coordinates. At point 1, $L_1 = 1$ and $L_2 = L_3 = 0$, etc. A linear relation between the area coordinates and Cartesian coordinates implies that contours of L_1 are equally placed straight lines parallel to side 2-3 on which $L_1 = 0$ etc. It is easy to see that an alternative definition of the coordinate L_1 of a point P is by a ratio of the area of the shaded triangle to that of the total triangle.

$$L_1 = \frac{\text{area Pmn}}{\text{area } \ell mn}$$
 2-34

One may write Equations 2-31 through 2-33 in matrix form and solve it for L_1 , L_2 , L_3 .

$$\begin{bmatrix} x_{\ell} & x_{m} & x_{n} \\ y_{\ell} & y_{m} & y_{n} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} L_{1} \\ L_{2} \\ L_{3} \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$L_{1} = \frac{\begin{vmatrix} x & x_{m} & x_{n} \\ y & y_{m} & y_{n} \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} x_{\ell} & x_{m} & x_{n} \\ y_{\ell} & y_{m} & y_{n} \\ 1 & 1 & 1 \end{vmatrix}} = \frac{(x_{m}y_{n} - x_{n}y_{m}) + x(y_{m} - y_{n}) + y(x_{n} - x_{m})}{2A}$$

$$L_{2} = \frac{\begin{vmatrix} x_{\ell} & x & x_{n} \\ y_{\ell} & y_{m} & y_{n} \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} x_{\ell} & x_{m} & x_{n} \\ y_{\ell} & y_{m} & y_{n} \\ 1 & 1 & 1 \end{vmatrix}} = \frac{(x_{n}y_{\ell} - x_{\ell}y_{n}) + x(y_{n} - y_{\ell}) + y(x_{\ell} - x_{n})}{2A}$$

$$L_{3} = \frac{\begin{vmatrix} x_{\ell} & x_{m} & x_{n} \\ y_{\ell} & y_{m} & y_{n} \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} x_{\ell} & x_{m} & x_{n} \\ y_{\ell} & y_{m} & y_{n} \\ 1 & 1 & 1 \end{vmatrix}} = \frac{(x_{\ell}y_{m} - x_{m}y_{\ell}) + x(y_{\ell} - y_{m}) + y(x_{m} - x_{\ell})}{2A}$$

$$2-37$$

Where:

2A = 2*(area of the triangle) =
$$(x_m y_n - x_n y_m) + (x_n y_\ell - x_\ell y_m) + (x_\ell y_m - x_m y_\ell) - (x_\ell y_m - x_m y_\ell)$$
 2-39

The area coordinates are the shape functions: $N_1 = L_1, N_2 = L_2$ and $N_3 = L_3$.

The potential inside the triangular element is a linear function of the nodal's potentials:

$$v^{(e)} = L_1 V_l + L_2 V_m + L_3 V_n$$
 2-40

After substituting Equations 2-36, 2-37 and 2-38 into Equation 2-40 one obtains:

$$v^{(e)} = \frac{1}{2A} \left[\left[(x_{m}y_{n} - x_{n}y_{m}) + x(y_{m} - y_{n}) + y(x_{n} - x_{m}) \right] V_{\ell} + \left[(x_{n}y_{\ell} - x_{\ell}y_{n}) + x(y_{n} - y_{\ell}) + y(x_{\ell} - x_{n}) \right] V_{m} + \left[(x_{\ell}y_{m} - x_{m}y_{\ell}) + x(y_{\ell} - y_{m}) + y(x_{m} - x_{\ell}) \right] V_{n} \right]$$

$$= 2-41$$

In order to solve Equation 2-28 the shape functions must be known. When they are determined they can be substituted in Equation 2-42.

$$[K][V] = [0]$$
 2-42

Matrix K is calculated for a two dimensional problem.

$$K_{ij} = \int_{\Omega} \left[(\sigma + j\omega\varepsilon)(\partial N_i / \partial x)(\partial N_j / \partial x) + (\sigma + j\omega\varepsilon)(\partial N_i / \partial y) \right] (\partial N_j / \partial y) dx dy$$
2-43

For each element (σ + j $\omega\epsilon$) may be taken outside the integration sign. Therefore:

$$K_{1,1} = [(dN_1/dx)^2 + (dN_1/dy)^2]dx dy$$

= $[\frac{(y_m - y_n)^2}{4*A^2} + \frac{(x_n - x_m)^2}{4*A^2}] dx dy = \frac{(y_m - y_n)^2 + (x_n - x_m)^2}{4*A}$ 2-44

$$K_{1,2} = \left[\frac{(y_m - y_n)(y_n - y_l)}{4*A^2} + \frac{(x_n - x_m)(x_l - x_m)}{4*A^2}\right] dx dy =$$

$$\frac{(y_{m}-y_{n})(y_{n}-y_{l}) + (x_{n}-x_{m})(x_{l}-x_{n})}{4*A}$$
 2-45

$$K_{1,3} = \frac{(y_m - y_n)(y_{\ell} - y_m) + (x_n - x_m)(x_m - x_{\ell})}{4*A}$$
 2-46

$$K_{2,1} = K_{1,2}$$
 2-47

$$K_{2,2} = \frac{(y_n - y_l)^2 + (x_l - x_n)^2}{4*A}$$
 2-48

$$K_{2,3} = \left[\frac{(y_n - y_l)(y_l - y_m)}{4*A^2} + \frac{(x_l - x_n)(x_m - x_l)}{4*A^2}\right] dx dy =$$

.

.

$$\frac{(y_n - y_l)(y_l - y_m) + (x_l - x_n)(x_m - x_l)}{4*A}$$
 2-49

$$K_{3,1} = K_{1,3}$$
 2-50

$$K_{3,2} = K_{2,3}$$
 2-51

$$K_{3,3} = \frac{(y_{\ell} - y_{m})^{2} + (x_{m} - x_{\ell})^{2}}{4*A}$$
 2-52

Substituting Equations 2-44 thru 2-51 into Equation 2-42 and writing the result in matrix form:

0	0	ا م
	II	
a A	⊳ [#]	∧ ⁿ
L <u></u>		l
$ (y_{m} - y_{n}) (y_{\chi} - y_{m}) + (x_{m} - x_{\chi}) (x_{m} - x_{\chi}) $	$(y_{n}^{-y})(y_{k}^{-y_{m}}) + (x_{k}^{-x_{m}})(x_{m}^{-x})$	$(\mathbf{x}_{g}-\mathbf{x}_{m})^{2} + (\mathbf{x}_{m}-\mathbf{x}_{g})^{2}$ $(\mathbf{x}_{m}-\mathbf{x}_{g})^{2}$
$(y_{m} - y_{n}) (y_{n} - y_{k}) + (x_{n} - x_{m}) (x_{k} - x_{n})$	$(y_n - y_g)^2 + (x_g - x_n)^2$	$(\mathbf{x}_{n}^{-\mathbf{Y}})(\mathbf{x}_{g}^{-\mathbf{Y}_{m}}) + (\mathbf{x}_{g}^{-\mathbf{Y}_{m}})$
$(y_{m} - y_{n})^{2} + (x_{n} - x_{m})^{2}$	$(y_{m}^{-}y_{n})(y_{n}^{-}y_{\ell}) + (x_{n}^{-}x_{m})(x_{\ell}x_{n}^{-}x_{n})$	$(x_{m}^{T}, x_{n}^{T}) (x_{k}^{T}, x_{m}^{T}) + (x_{m}^{T}, x_{k}^{T}) (x_{m}^{T}, x_{k}^{T})$
	6/4*Å*	

2-53

CHAPTER III

COMPUTER PROGRAM

3.1 SOLUTION TECHNIQUE FOR THE FINITE ELEMENT METHOD

A computer program is written to solve Eq. 2-53 for the region of interest which consists of n-type of materials and at least two boundary conditions. This equation in the short form is given by:

$$[K][V] = [0]$$
 3-1

Matrix [K] is the coefficient matrix and consists of all the properties of the materials in the region. Each element in the region could have a different property from the others. Matrix [K] is calculated for each element with its own properties and then transferred to the final coefficient matrix [F]. One example is given below.

Region S, Fig. 3.1, is divided into 18 triangular elements and each element has been numbered from 1 to 18.

Also all nodes are numbered in a fashion to create a sparse [F] matrix to reduce the band-width of the [F] matrix. To do so, the side which has less nodes than the other is determined. Then the nodes are numbered from one end to the other and returned to the original side, as shown in Fig. 3.1. This method insures the smallest possible bandwidth for the [F] matrix.

19

x

The arbitrary element Z has nodes l,m,n and coordinates of (xN , YN), (xNm, YNm), (xNn, YNn) and material property of P. By using Eq. 2-53 we can solve for matrix K:

$$K = \begin{bmatrix} K_{\ell,\ell} & K_{\ell,m} & K_{\ell,n} \\ K_{m,\ell} & K_{m,m} & K_{m,n} \\ K_{n,\ell} & K_{n,m} & K_{n,n} \end{bmatrix}$$

By transformation, $K_{\ell,\ell}$ goes to the [F] matrix in row ℓ and column ℓ and then added to the previous value of $F_{\ell,\ell}$. Similarly, $K_{\ell,m}$ goes into the row ℓ and column m of the matrix [F] and then added to the previous values of $F_{\ell,m}$, and so on.

After completing the matrix [F], Equation 3-1 becomes:

$$[F][V] = [0]$$
 3-3

where it has the dimension of (No. of nodes by No. of nodes) and K is a 3 by 3 matrix. Since Equation 3-3 is equal to zero, it requires the boundary conditions for solution. The boundary conditions are used to create values on the other side of the equation.

For instance, region S in Fig. 3.1 has two boundaries, one at each end. Nodes 1,5,9 and 13 from one end and nodes 4,8,12 and 16 from the other end are the boundary nodals and have known values of voltage. Therefore we can leave these nodes out of our calculations. For example: element (7) has nodes 5,6,9 where nodes 5,9 have known values and node 6 is an unknown.

The matrix notation for this element after calculating the K matrix is:

3-2

$$\begin{bmatrix} K_{5,5} & K_{5,6} & K_{5,9} \\ K_{6,5} & K_{6,6} & K_{6,9} \\ K_{9,5} & K_{9,6} & K_{9,9} \end{bmatrix} \begin{bmatrix} V_5 \\ V_6 \\ V_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
3-4

Therefore there is just one equation and one unknown and it is easy to transfer the known values to the other side of the equation. The result is:

$$[K_{6,6}][V_6] = [-K_{6,5} * V_5 - K_{6,9} * V_9] = [B_6]$$
 3-5

Now this equation is transferred to the [F] matrix:

$$[F][V] = [B]$$
 3-6

For the small size of matrix [F] we can find the inverse of the [F] matrix and multiply it with the [B] matrix to find the values of the nodes.

All finite element solutions require a high subdivision of the region for the utmost accuracy. This makes matrix [F] so large that it becomes useless to solve by the invertion of the [F] matrix.

Due to the nature of the problem, provided that the nodes are numbered in a careful manner, the non-zero terms in matrix [F] will be concentrated in a narrow band situated adjacent to the leading diagonal. This fact, combined with the symmetrical nature of matrix [F] indicates that only a relatively small portion of the matrix is of real interest. If advantage is taken of these observations, demands on the computer storage may be considerably reduced. Moreover, if the solution procedure is so arranged that many of the operations involving the zero terms are eliminated, the speed of the solution can be increased. Methods which take advantage of the banded nature of matrix [F] are often called 'banded methods'.

Methods which offer potentially greater economies are the so-called 'half-banded schemes'. The upper half of the diagonal band of the matrix is stored as a rectangular matrix as shown in Figure 3.2.

Figure 3.2 Banded form of a symmetrical matrix.

The upper half band part of matrix [F] is stored in matrix [A] which is much smaller than matrix [F]. Matrix [A] has a number of columns equal to the bandwidth and rows equal to the number of nodes. Each row of matrix [F] is transferred to matrix [A].

To calculate the band-width of a finite element problem, one must know the number of all elements and their node numbers, because bandwidth is equal to the largest difference between two nodes in one element; that is compared to the rest of elements + 1.

Figure 3.3 is a flow chart of the computer program which finds the bandwidth of matrix [F] or any other symmetrical matrix. Figure 3.4 is a flow chart which determines the coefficient matrix and transfers the upper half part of matrix [F] to matrix [A].

Equation 3-6 takes the form:

$$[A][V] = [B]$$

It is impossible to find the inverse of [A] because it is no longer a square matrix. Therefore, the Gaussian Elimination Technique is used to solve Equation 3-7. Another step to save memory space is to eliminate matrix [V] from the equation. To do so, the problem between [A] and [B] is solved and the result is stored in matrix [B]. Matrix [B] has the same dimension as matrix [V].

For more understanding of the Gaussian Elimination Technique an example is solved in Appendix B along with the flow chart.

Appendix D includes a listing of the main program as well as all subroutines discussed in this chapter.

3-7

Figure 3.3 Flow chart, subroutine "BANDWIDTH".

Figure 3.4 (Continued)

3.2 RESULTS OF THE COMPUTER SOLUTION

The problem was to calculate current densities everywhere in the region S. Region S was a large area of soil with a sunken swimming pool in the center of the region. The region was divided into 760 elements with three types of materials and two boundary conditions. Figure 3.5 shows the subdivided region of 'S'.

For large problems such as this involving many elements, it is useful to possess a routine which generates the complete set of data for the finite element program.

Region 'S' was subdivided into five regions. Region one was below the swimming pool, region two and four were the swimming pool ends and the soil; region three was the swimming pool and surrounding soil; and region five was above the swimming pool. Figure 3.6 shows these five regions.

The reason for dividing region 'S' into five regions was to make data preparation easier. Regions 2,3,4 were divided in a different fashion than 1 and 5. Region 1,5 and 2,4 are identical in values of x and y with some constant. Also the results of each region can be stored in a different matrix and recalled when needed. All nodes on each boundary are given the same number for simplification purposes.

A subroutine was written to find the coordinates of all nodes. Figure 3.7 shows a flow chart of such a subroutine.

Figure 3.5 shows that nodes 1,10,19,28 and 37 have the same value of x and nodes 1,2,3,4,5,6,7,8 and 9 have the same values of y. Therefore coordinates of nodes are calculated and stored in a matrix for later use.

Another data file is generated which consists of all elements with their nodal numbers. Figure 3.8 shows a flow chart of this program (called "TES") which can read the element's number and their nodal numbers from the file and find the corresponding coordinate values and store them in a separate file, which lacks the information about the first and last row of the region 'S'. This information could be added to the file easily.

This data file is ready to be given to the main program for calculation of voltages at each node. A program is written to calculate the current densities in the region in the y-direction. Results of computer program, in tabular form are given in Appendix E.

A comparison of the computer results with experimental results is given in Chapter V.

Figure 3.5 The finite element model.

.

REGION ONE REGION TWO REGION THREE REGION FOUR REGION FIVE х́

Y

Figure 3.6 Regional division of the experimental model.

Figure 3.7 Flow chart, subroutine "GOOD".

Figure 3.8 Flow chart, program "TES".

3.3 COMPARISON OF RESULTS WITH OTHER COMPUTER TECHNIQUES

In order to check the accuracy of the proposed theoretical technique which is based on Maxwell's equations, solutions to selected problems were compared to results obtained using another computer program, which calculates electric fields in configurations with both capacitive and resistive distribution of potentials (Anderson, 1976, Ref. No. 16).

Figure 3.9 Resistive and complex admittance networks.

Figure 3.9 shows triangular elements and their complex admittance network. The resultant equation for the complex potential at the center node is:

$$V_{o} = \frac{1}{\sum_{n=1}^{6} (G+jB)_{n}} \sum_{n=1}^{6} (G+jB)_{n} V_{n}$$
 3.8

To check the accuracy of the program, results of a specific problem are compared.

A square of 100 x 100 mm is divided up into two series connected halves, one where the capacitive distribution dominates, and one where the resistive distribution dominates. Permittivities and conductivities are chosen in such a way that the voltage across each half has the same magnitude (Fig. 3.10). A very coarse subdivision of only 16 triangular elements is used.

Table 3.1 shows the comparison of results using Andersen's solution and the proposed solution, to the actual values. As evident from Table 3.1, agreement between the proposed solution and the actual values is very close.

TABLE 3.1

Sta.	Actual Values	Andersen's Solution	Proposed Solution
· Y	100+j0	100+j0	100 +j 0
С	75+j25	74.99+j24.97	74.9999+j24.9695
В	50 + j50	49.98+j50.02	49.9999+j50.0001
A	25 + j25	24.99+j24.99	24.9999+j24.9999
x	0+j0	0 + j0	0 1 j0

Also, the accuracy of the proposed theoretical solution was verified by comparing the results of the theoretical solution to known actual values. In all cases very close agreement was observed.

CHAPTER IV

EXPERIMENTAL PROGRAM

In conjunction with the theoretical analysis, an experimental program was set up. This experiment was based on an average current density of 0.07 amp per square meter in the uniform ground under the transmission line. (See Appendix C.)

In order to create a similar situation for the experiment, a large box with conductors at two ends was chosen to hold the soil and the swimming pool. Figure 4.1 shows a schematic diagram of the box.

To create a uniform current density throughout the soil a known voltage calculated from Equation 4-1 was applied across the conductors.

$$J = E\sigma = E/\rho \qquad 4-1$$

where J = current density

 ρ = resistivity of soil

 σ = conductivity of soil

E = applied voltage

Resistivity of the soil was calculated from Equation 4-2.

$$R = V/I = \rho l/s = l/\sigma s \qquad 4-2$$

The experiment was done for three different resistivity values for the soil, each soil type with two different types of swimming pools, reinforced and non-reinforced swimming pool; and each swimming pool containing three different types of water.

Three resistivity values for soil and conductivity values for water were:

	For S	oil	Fo	r Water
a:	1000	ohm-meter	30	micro-mho/cm
Ъ:	55	ohm-meter	1500 [.]	micro-mho/cm
c:	10	ohm-meter	3000	micro-mho/cm

To determine the current densities, first potentials at predetermined points were measured and then current densities were calculated from potential measurements.

current densities = <u>difference in two potentials</u> (distance between two potentials)* conductivity of the material

Figure 4.2 shows a schematic diagram of the circuit used to measure the potentials at each point.

Reference 18 contains a detailed description of the experimental program and results. Selected results of this experimental program are presented in tabular form in Appendix F.

Longitudinal Cross Section

SWITCH 1 TO MEASURE VOLTAGES IN THE SOIL. SWITCH 2 TO MEASURE VOLTAGES IN THE WATER.

Figure 4.2 Schematic diagram of the electrical circuit.

CHAPTER V

RESULTS

5.1 COMPARISON OF CALCULATED VALUES WITH EXPERIMENTAL RESULTS

In order to compare the calculated results with the measured values, current densities of medium case (resistivity of the soil = 55 ohm-meter) are plotted in Figures 5.1 to 5.8.

In these figures, current densities are plotted versus distance. Each figure represents calculated and measured current densities in the soil as well as the swimming pool.

The calculated current densities in these figures show the expected symmetry of the system about the center line, Figures 5.1-5.8. This is one verification of the accuracy of the computer program.

The measured values of current densities do not show the same exact symmetry. This could be explained in terms of the accuracy of the instruments. Also the conductivity of the soil is not uniform everywhere and the given value of conductivity is only an average measured value. Another reason for the discrepancy between the theoretical and measured values is the two dimensional computer modeling, which assumes the swimming pool walls to be infinitely long in the z-direction (depth).

The calculated values of the current densities between stations 1 to 6 and 12 to 17, Figures 5.1-5.2, in the soil are higher than measured values. The measured values of current densities inside and outside the swimming pool between stations 6 to 12 are higher than calculated values. Between stations 6 to 12 the theoretical model assumes a plate of iron bars of infinite depth. Due to this plate of high conductivity, the potential gradients along the plate are zero, resulting in zero current densities along the line 'C'. Furthermore, the current flowing along the paths 'A' and 'B' are attracted toward the infinite iron plate resulting in lower values of current densities along 'A' and 'B' as compared to the experimental case, where only finite plates of iron bars exist.

Along the line 'D', the calculated current densities must go through the infinite iron plate, while in the measured case the current paths go through the bottom surface bars of the swimming pool. Results in tabular form are shown in Appendices D and E.

The reason for higher current densities and potential gradients along the line 'C' between stations 6-8 and 10-12 is the sharp change in material conductivities at these stations (soil conductivity = 1.8×10^{-1} mho/m; iron conductivity = 1.1×10^{6} mho/m). Due to high conductivity of iron bars the current is attracted toward the pool walls and thus increasing the field (potential gradient) around the corners.

Figure 5.1 Calculated current densities.

Figure 5.2 Calculated current densities.

Figure 5.3 Calculated current densities.

Figure 5.4 Calculated current densities.

Figure 5.5 Calculated current densities.

Figure 5.6 Calculated current densities.

Figure 5.7 Calculated current densities.

Figure 5.8 Calculated current densities.

5.2 POTENTIAL HAZARD TO THE HUMAN BODY

It is known that the real measure of shock intensity lies in the amount of current (amperes) forced through the body, and not the voltage (17). Figure 5.9 shows levels of current hazards to the human body.

To define how hazardous the observed current densities are to humans, currents through the human body are calculated. The human body's resistance is in the neighborhood of 1000 ohm (17). the human body if one is standing in the vicinity of the swimming pool. Similar calculations are done for a person who is inside the swimming pool and results are shown in Table 5.5.

In comparing the calculated currents traveling through the human body with Fig. 5.9, one concludes that hazard may exist on the edge of the swimming pool where the resistivity of the surrounding soil is very high. However, this analysis does not include the presence of a human body in the model. Also, the effects of short duration currents (1-10 cycles) on the human body need further investigation.

CALCULATED CURRENT TRAVELING THROUGH THE HUMAN BODY STANDING ON THE SOIL

LINE A STANDING ON THE SOIL

SOIL RESISTIVITY=1160 OHM-METER WATER CONDUCTIVITY=1500 MICRO-MOH/CM

POOL TYPE: REINFORCED

FOOT TO FOOT RESISTANCE OF HUMAN BODY = 1000 OHM

FOOT TO FOOT DISTANCE = 50 CM.

ST#ST#VOLTS/METERVOLTSAMP.12102.500 51.250 0.05125 23101.836 50.918 0.05092 34100.472 50.236 0.05024 4596.78248.391 0.04839 5684.76942.384 0.04278 6769.02034.510 0.03451 7867.36833.684 0.03368 8953.21026.605 0.02660 910 51.741 25.870 0.02587 1011 64.211 32.105 0.03211 1112 65.882 32.941 0.03294 1213 80.417 40.208 0.04021 1314 91.500 45.750 0.04575 1415 94.874 47.437 0.04744 1516 96.235 48.118 0.04812	BET	WEEN	VOLTAGE GRADIENT	VOLTAGE ACROSS BODY	CURRENT THROUGH BODY
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ST∦	ST∦	VOLTS/METER	VOLTS	AMP.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	102.500	51,250	0.05125
3 4 100.472 50.236 0.05024 4 5 96.782 48.391 0.04839 5 6 84.769 42.384 0.04278 6 7 69.020 34.510 0.03451 7 8 67.368 33.684 0.03368 8 9 53.210 26.605 0.02660 9 10 51.741 25.870 0.02587 10 11 64.211 32.105 0.03211 11 12 65.882 32.941 0.03294 12 13 80.417 40.208 0.04021 13 14 91.500 45.750 0.04775 14 15 94.874 47.437 0.04744 15 16 96.447 48.224 0.04822 16 17 96.235 48.118 0.04812	2	3	101.836	50,918	0.05092
4 5 96.782 48.391 0.04839 5 6 84.769 42.384 0.04278 6 7 69.020 34.510 0.03451 7 8 67.368 33.684 0.03368 8 9 53.210 26.605 0.02660 9 10 51.741 25.870 0.02587 10 11 64.211 32.105 0.03211 11 25.882 32.941 0.03294 12 13 80.417 40.208 0.04021 13 14 91.500 45.750 0.04575 14 15 94.874 47.437 0.04744 15 16 96.447 48.224 0.04822 16 17 96.235 48.118 0.04812	3	4	100.472	50.236	0,05024
56 84.769 42.384 0.04278 67 69.020 34.510 0.03451 78 67.368 33.684 0.03368 89 53.210 26.605 0.02660 910 51.741 25.870 0.02587 1011 64.211 32.105 0.03211 1112 65.882 32.941 0.03294 1213 80.417 40.208 0.04021 1314 91.500 45.750 0.04575 1415 94.874 47.437 0.04744 1516 96.447 48.224 0.04822 1617 96.235 48.118 0.04812	4	5	96 .7 82	48.391	0.04839
67 69.020 34.510 0.034210 78 67.368 33.684 0.03368 89 53.210 26.605 0.02660 910 51.741 25.870 0.02587 1011 64.211 32.105 0.03211 1112 65.882 32.941 0.03294 1213 80.417 40.208 0.04021 1314 91.500 45.750 0.04575 1415 94.874 47.437 0.04744 1516 96.447 48.224 0.04822 1617 96.235 48.118 0.04812	5	6	84.769	42.384	0.04278
78 67.368 33.684 0.03368 89 53.210 26.605 0.02660 910 51.741 25.870 0.02587 1011 64.211 32.105 0.03211 1112 65.882 32.941 0.03294 1213 80.417 40.208 0.04021 1314 91.500 45.750 0.04575 1415 94.874 47.437 0.04744 1516 96.447 48.224 0.04822 1617 96.235 48.118 0.04812	6	7	69.020	34,510	0.03451
8953.21026.6050.0360091051.74125.8700.02587101164.21132.1050.03211111265.88232.9410.03294121380.41740.2080.04021131491.50045.7500.04575141594.87447.4370.04744151696.44748.2240.04822161796.23548.1180.04812	7	8	67.368	33,684	0.03368
910 51.741 25.870 0.02587 1011 64.211 32.105 0.03211 1112 65.882 32.941 0.03294 1213 80.417 40.208 0.04021 1314 91.500 45.750 0.04575 1415 94.874 47.437 0.04744 1516 96.447 48.224 0.04822 1617 96.235 48.118 0.04812	8	9	53.210	26,605	0.02660
10 11 64.211 32.105 0.03211 11 12 65.882 32.941 0.03294 12 13 80.417 40.208 0.04021 13 14 91.500 45.750 0.04575 14 15 94.874 47.437 0.04744 15 16 96.447 48.224 0.04822 16 17 96.235 48.118 0.04812	9	10	51.741	25.870	0.02587
1112 65.882 32.941 0.03294 1213 80.417 40.208 0.04021 1314 91.500 45.750 0.04575 1415 94.874 47.437 0.04744 1516 96.447 48.224 0.04822 1617 96.235 48.118 0.04812	10	11	64.211	32.105	0.03211
12 13 80.417 40.208 0.04021 13 14 91.500 45.750 0.04575 14 15 94.874 47.437 0.04744 15 16 96.447 48.224 0.04822 16 17 96.235 48.118 0.04812	11	12	65.882	32.941	0.03294
13 14 91.500 45.750 0.04575 14 15 94.874 47.437 0.04744 15 16 96.447 48.224 0.04822 16 17 96.235 48.118 0.04812	12	13	80.417	40,208	0.04021
141594.87447.4370.04744151696.44748.2240.04822161796.23548.1180.04812	13	14	91.500	45.750	0.04575
15 16 96.447 48.224 0.04822 16 17 96.235 48.118 0.04812	14	15	94.874	47.437	0 04744
16 17 96.235 48.118 0.04812	15	16	96.447	48.224	0.04922
40.110 0.04812	16	17	96.235	48,118	0.04022
				40.110	. 0.04012

CALCULATED CURRENT TRAVELING THROUGH THE HUMAN BODY STANDING ON THE SOIL

LINE B STANDING ON THE SOIL

SOIL RESISTIVITY=1160.00 OHM-METER WATER CONDUCTIVITY=1500 MICRO-MOH/CM

POOL TYPE: REINFORCED

FOOT TO FOOT RESISTANCE OF HUMAN BODY = 1000 OHM

FOOT TO FOOT DISTANCE = 50 CM.

BETV	VEEN	VOLTAGE GRADIENT	VOLTAGE ACROSS BODY	CURRENT THROUGH BODY
ST#	ST∦	VOLTS/METER	VOLTS	AMP.
1	2	104.737	52.368	0.05237
2	3	104.492	52.246	0.05225
3	4	104.961	52.480	0.05248
4	5	105.509	52.755	0.05275
5	6	103.148	51.574	0.05157
6	7	71.176	35,588	0.03559
7	8	62.632	31.316	0.03132
8	9	28.275	14.137	0.01414
9	10	27.056	13.528	0.01353
10	11	58.947	29.474	0.02947
11	12	67.255	33.627	0.03363
12	13	97.199	48.600	0.04860
13	14	99.493	49.747	0.04975
14	15	98.984	49.492	0.04949
15	16	98.852	49.426	0.04943
16	17	98.209	49.105	0.04910

CALCULATED CURRENT TRAVELING THROUGH THE HUMAN BODY STANDING ON THE SOIL

LINE C STANDING ON THE SOIL

SOIL RESISTIVITY=1160 OHM-METER WATER CONDUCTIVITY=1500 MICRO-MOH/CM

POOL TYPE: REINFORCED

FOOT TO FOOT RESISTANCE OF HUMAN BODY = 1000 OHM

FOOT TO FOOT DISTANCE = 50 CM

BET	WEEN	VOLTAGE GRADIENT	VOLTAGE ACROSS BODY	CURRENT THROUGH BODY
ST∦	ST#	VOLTS/METER	VOLTS	AMP.
1	2	105.066	52.533	0.05253
2	3	104.951	52.475	0.05240
3	4	105.945	52.972	0.05297
4	5	108.403	54.201	0.05420
5	6	122.431	61.215	0.06122
6	7	200.980	100.490	0.10049
7	8	0.000	0.000	0.00000
8	9	0.000	0.000	0.00000
9	10	0.000	0.000	0.00000
10	11	0.000	0.000	0.00000
11	12	188.235	94.118	0.09412
12	13	115.208	57.604	0.05760
13	14	102.185	51.093	0.05109
14	15	99.882	49.941	0.04994
15	16	99.276	49.638	0.04964
16	17	98.536	49.268	0.04927
				, *

CALCULATED CURRENT TRAVELING THROUGH THE HUMAN BODY STANDING ON THE SOIL

LINE D STANDING ON THE SOIL

SOIL RESISTIVITY=1160 OHM-METER WATER CONDUCTIVITY=1500 MICRO-MOH/CM

POOL TYPE: REINFORCED

FOOT TO FOOT RESISTANCE OF HUMAN BODY = 1000 OHM

FOOT TO FOOT DISTANCE = 50 CM

BETWEEN	VOLTAGE GRADIENT	VOLTAGE ACROSS BODY	CURRENT THROUGH BODY
ST# ST#	VOLTS/METER	VOLTS	AMP.

			•	· · · .
1	2	105.461	52.730	0.05273
2	3	105.410	52.705	0.05270
3	4	106.929	53.465	0.05346
4	5	110.787	55.394	0.05539
5	6	127.153	63.576	0.06358
6	7	131.961	65.980	0.06598
7	8	IN WATER	IN WATER	IN WATER
8	9	IN WATER	IN WATER	IN WATER
9	10	IN WATER	IN WATER	IN WATER
10	11	IN WATER	IN WATER	IN WATER
11	12	123.922	61.961	0.06196
12	13	119.630	59.815	0.05981
13	14	104.394	52.197	0.05220
14	15	100.795	50.398	0.05040
15	16	99,717	49.859	0,04986
16	17	98.863	49.431	0.04943

CALCULATED CURRENT TRAVELING THROUGH THE HUMAN BODY INSIDE THE SWIMMING POOL

SOIL RESISTIVITY=59.50 OHM-METER WATER CONDUCTIVITY=3000 MICRO-MOH/CM

POOL TYPE: NON-REINFORCED

FOOT TO FOOT RESISTANCE OF HUMAN BODY = 1000 OHM

FOOT TO FOOT DISTANCE = 50 CM

BET	VEEN	VOLTAGE GRADIENT	VOLTAGE ACROSS BODY	CURRENT THROUGH BODY
ST#	ST#	VOLTS/METER	VOLTS	AMP.
1	2	0.875	0.438	0.00044
2	3	0.800	0.400	0.00040
3	4	0.775	0.388	0.00039
4	5	0.787	0.394	0.00039
5	6	0.788	0.394	0.00039
6	7	0.788	0.394	0.00039
7	8	0.800	0.400	0.00040

5.3 THE LIMITATIONS AND ACCURACY OF THE THEORETICAL TECHNIQUE

The technique used in the proposed solution is called The Finite Element Method. This is a powerful numerical technique to solve problems which require a high degree of accuracy. The solution of problems solved using this technique are comparatively more accurate than those solved by other numerical methods such as the Finite Difference Method.

However, there are some limitations as described below:

- (1) This program as it exists now can only handle two-dimensional problems. However, with further development, it would be possible to solve three-dimensional complex electro-magnetic and electro-static field problems.
- (2) This program uses only the triangular division of the region of interest. Rectangular or other shapes can be accommodated if the program is modified.
- (3) The computer storage is another limitation. This limitation was improved by using the half-banded method.

CHAPTER VI

CONCLUSION

In this study a computer code based on Maxwell's Equations was developed to use the Finite Element Method to calculate complex voltage gradients and current densities on the surface of any desired region.

In order to evaluate the accuracy of this program, the solution to a selected problem was compared to the solution using another computer technique. In addition, solution to several problems were compared to actual known values. In all cases close agreement between the theoretical solution and actual values was observed.

Also in order to check the validity of the program, theoretical results were compared to results obtained from experimental tests, and the comparison showed close agreement.

BIBLIOGRAPHY

- John R. Carson; "Wave Propagation in Overhead Wires with Ground Return", The Bell System Technical Journal, 1926, 5, pp. 539-554.
- L. J. Lacey; "The Mutual Impedance of Earth-Return Circuits", IEEE, Vol. 621, 392.2, 1952.
- 3. L. M. Wedepohl and R. G. Wasley; "Wave Propagation in Multiconductor Overhead Lines", Proc. IEE, 1966, 113, (4).
- 4. M. Krakowski; "Mutual Impedance of Crossing Earth-Return Circuits", Proceedings of the IEE, Feb. 76, Vol. 114, No. 2.
- 5. Mr. Nakagawa; "Earth Return Impedance of Overhead Lines Above a 3-Layer Earth", Proceedings of IEE, Dec. 1973, Vol. 120, Number 12.
- P. Magnusson; "Wave Propagation Over Parallel Wires: The Proximity Effect", Vol. X11, Apr. 1921.
- 7. H. Bateman; "Partial Differential Equations of Mathematical Physics", Cambridge University Press, 1959.
- 8. E. D. Sunde; "Earth Conduction Effects in Transmission Systems", Van Nostrand, 1949.
- 9. B. O. Pierce; "A Short Table of Integrals", Boston: Ginn and Company, 1929.
- N. W. McLachlan, "Bessel Function for Engineers", 2nd Ed. Oxford University Press, 1955.
- 11. Wiley; "The Finite Element Method for Engineers", New York, 1975.
- O. C. Zienkiewicz, "The Finite Element Method in Engineering Science", McGraw-Hill, 1971.
- P. Silvester; "Finite Element Solution of Saturable Magnetic Field Problems", Transaction on Power Apparatus and Systems, Vol. PAS-89, No. 7, Oct. 1970.
- 14. O. W. Andersen; "LaPlacian Electrostatic Field Calculations by Finite Elements with Automatic Grid Generations", Transaction on Power Apparatus and Systems, IEEE, Nov. 1972.
- 15. O. C. Zienkiewicz and Y. K. Cheung; "The Finite Element Method Instructural and Continuum Mechanics", McGraw-Hill, 1967.
- 16. O. W. Andersen; "Finite Element Solution of Complex Potential Electric Fields", IEEE Transactions on Power, Vol. PAS-96, No. 4, July/ August 1977.
- 17. E. W. Kimbark, "Direct Current Transmission", Vol I, Wiley-Interscience, 1948.
- 18. V. K. Garg, F. Rad, T. Killian; "Study of Distribution of Ground Fault Currents in Below Grade Swimming Pools Located Near Transmission Lines", Portland State University, 1978.

APPENDIX A

EULER'S THEOREM OF VARIATIONAL CALCULUS

The transition from a variational statement to an equivalent governing differential equation is relatively simple and will be demonstrated here. The reverse process, however, is more involved and any generalized processes restrictive for the very reason that frequently on variational principle can be established.

Let us take a problem which is to be minimized.

$$g = \int_{v} f(x,y,z,H,H_{x},H_{y},H_{z}) dv + \int_{c} (qH + pH^{2}/2) ds$$
 A-1

In this equation f is an arbitrary function, $H_x = \frac{\partial H}{\partial x}$, etc., and c is a portion of the boundary surface on which prescribed values of H are not imposed. On remainder $H = H_B$.

Considering an arbitrary small variation of the unknown function and its derivitives

$$\delta g = \int_{V} \left(\frac{\partial f}{\partial H} \, \delta H + \frac{\partial f}{\partial H_{x}} \, \delta H_{x} + \frac{\partial f}{\partial H_{y}} \, \delta H_{y} + \frac{\partial f}{\partial H_{z}} \, \delta H_{z} \right) dv + \int_{C} (q \delta H + p H \delta H) ds$$
 A-2

as

$$\delta H_{x} = \delta \left(\frac{\partial H}{\partial x}\right) = \frac{\partial}{\partial x} (\delta H), \text{ etc.}$$

Equation A-2 can be written as;

$$\delta g = \int_{V} \left[\frac{\partial f}{\partial H} \, \delta H + \frac{\partial f}{\partial H_{X}} \, \frac{\partial}{\partial x} \, (\delta H) + \frac{\partial f}{\partial H_{y}} \, \frac{\partial}{\partial y} \, (\delta H) + \frac{\partial f}{\partial H_{z}} \, \frac{\partial}{\partial z} \, (\delta H) \right] dv$$
$$+ \int_{V} (q \, \delta H + p H \, \delta H) \, ds = 0 \qquad A-3$$

In the above we have equated δx to zero, as at the minimum (or stationary point) the 'variation' becomes zero.

Now putting dv = dxdydz and integrating the second term of Equation A-3 by parts with respect to x

$$\int_{\mathbf{v}} \frac{\partial \mathbf{f}}{\partial \mathbf{H}_{\mathbf{x}}} \frac{\partial}{\partial \mathbf{x}} (\delta \mathbf{H}) d\mathbf{v} = \int_{\mathbf{s}} \frac{\partial \mathbf{f}}{\partial \mathbf{H}_{\mathbf{x}}} \delta \mathbf{HL}_{\mathbf{x}} d\mathbf{s} - \int_{\mathbf{v}} \frac{\partial}{\partial \mathbf{x}} (\frac{\partial \mathbf{f}}{\partial \mathbf{H}_{\mathbf{x}}}) \delta \mathbf{H} d\mathbf{v}$$

In which L_x is the direction cosine of the normal to the outer surface with the x axis. Performing similar operation on the other terms of Equation A-3 and substituting, it becomes;

$$\delta g = \int_{V} \delta H \frac{\partial f}{\partial H} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial H_{x}} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial H_{y}} \right) - \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial H_{z}} \right) dv +$$
$$\int_{C} \delta H q + pH + L_{x} \frac{\partial f}{\partial H_{x}} + L_{y} \frac{\partial f}{\partial H_{y}} + L_{z} \frac{\partial f}{\partial H_{z}} ds \qquad A-4$$

The second integral is only taken over the boundary C as on the remainder of surface S we have prescribed values of H and therefore $\delta H = 0$.

For Equation A-4 to be true for any arbitrary variation H first integral should be equal to zero;

$$\frac{\partial f}{\partial H} - \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial H_x} \right) - \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial H_y} \right) - \frac{\partial}{\partial z} \left(\frac{\partial f}{\partial H_z} \right) = 0$$
 A-5a

Everywhere within the region V, and on the boundary C

$$L_{x} \frac{\partial f}{\partial H_{x}} + L_{y} \frac{\partial f}{\partial H_{y}} + L_{z} \frac{\partial f}{\partial H_{z}} = 0$$
 A-5b

These two equations, if satisfied by H, minimize g. If the solution is unique then formulations A-1 and A-5 are equivalent. The above differential equations are known as the Euler equations of the problem.

APPENDIX B

THE GAUSSIAN METHOD

As an example, the solution of three equations and three unknowns is described below:

$$200X - 100Y + 0Z = -8$$

-100X + 200Y - 100Z = -8
$$0X - 100Y + 100Z = -8$$
B-1

In matrix form:

$$\begin{bmatrix} 200 & -100 & 0 \\ -100 & 200 & -100 \\ 0 & -100 & 100 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} -8 \\ -8 \\ -8 \\ -8 \end{bmatrix}$$
B-2

Let us first solve this problem as it is in the form of B-2 then reduce it to the banded form.

$$\begin{bmatrix} 200 & -100 & 0 \\ -100 & 200 & -100 \\ 0 & -100 & 100 \end{bmatrix} \mathbf{9} \begin{bmatrix} -8 \\ -8 \\ -8 \\ -8 \end{bmatrix}$$

Divide the first row by the diagonal element of the first row.

$$\begin{bmatrix} 1 & -0.5 & 0 \\ -100 & 200 & -100 \\ 0 & -100 & 100 \end{bmatrix}, \begin{bmatrix} -0.04 \\ -8 \\ -8 \\ -8 \end{bmatrix}$$

Multiply the first row by the first element of the second row and subtract the first row from the second row.

$$\begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 150 & 100 \\ 0 & -100 & 100 \end{bmatrix}, \begin{bmatrix} -0.04 \\ -12 \\ -8 \end{bmatrix}$$

This manipulation introduced a zero to the second row, therefore these are two unknowns in the second row. Now divide the second row by the diagonal element of the row.

$$\begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 1 & -2/3 \\ 0 & -100 & 100 \end{bmatrix} \cdot \begin{bmatrix} -0.04 \\ -0.08 \\ -8 \end{bmatrix}$$

Multiply the second row by the second element in the third row and subtract the second row from the third row.

$$\begin{bmatrix} 1 & -0.5 & 0 \\ 0 & 1 & -2/3 \\ 0 & 0 & 100/3 \end{bmatrix} \mathbf{p} \begin{bmatrix} -0.04 \\ -0.08 \\ -16 \end{bmatrix}$$

This introduced two zeros to the third row and the third row contains just one unknown. The unknown may now be easily calculated. One may proceed to the second and third rows and calculate all the unknowns. The answer:

100/00

$$Y - 2/3Z = -0.08$$

$$Y - 2/3(-0.48) = -0.08$$
 $Y = -0.4$

$$X - 0.5Y = -0.4$$

 $X = -0.04 + 0.5(-0.4) = -0.24$

Now put the upper half band of the coefficient matrix in a new [D] matrix and solve the problem.

I *****) *****	B *****
200	-100	-8
2 0 0	-100	-8
100	0	-8

For simplicity let us not multiply or divide the first columns by any numbers. At the end substitute 1 for all these elements. Also, due to symmetry of [A], D(1,2) = A(2,1) and D(2,2) = A(3,2).

First store D(1,2) in c, because it is the same as A(2,1) and there is no A(2,1) in our [D] matrix.

Divide the first row by the first element of the first row.

200	-0.5		-0.04	
200	-100	9	-8	
100	0		-8	

Then multiply the first row by the stored value of c and subtract D(1,2) from D(2,1), because these two elements correspond to the same unknown in matrix [A].

200	-0.5		-0.04	
150	-100	و	-12	
100	0		-8	

Now store D(2,2) in c and divide the second row by the first element of the row.

$$\begin{bmatrix} 200 & -0.05 \\ 150 & -2/3 \\ 100 & 0 \end{bmatrix} \begin{bmatrix} -0.04 \\ -0.08 \\ -8 \end{bmatrix}$$

Multiply the second row by the stored value of c and subtract D(2,2) from D(3,1), because these two elements correspond to the same unknowns.

200	-0.5		-0.04	
150	-2/3	,	-0.08	
100/3	0		-16	

Divide the third row by the first element.

200	-0.5		-0.04
150	-2/3	و	-0.08
100/3	0		-0.48

Now substitute 1 for column one.

Γ	1	-0.5		-0.04
	1	-2/3	و	-0.08
L	1	0		-0.48

This is the same result as before in banded form. Therefore, the problem has been solved by the use of a simpler method and also it saved memory space. Fig. 3.1 shows a flow chart of such a program.

Figure B. Flow chart, subroutine "SOLVE".

APPENDIX C

CALCULATION OF CURRENT DENSITY

The equation for mutual impedance (6) between two infinitely long conductors, at heights h_1 and h_2 meters above the earth, and separated by a horizontal distance of y_1 meters, in the power series form is:

$$Z_{12}(h_1, 0, y_1) = \frac{j \omega \mu_0}{4\pi} \left[\ln\left(\frac{4}{h_1'^2 + y_1'^2}\right) + 1 - 2\gamma\right] + \frac{\omega \mu_0}{8} - \frac{(1 - j) \frac{\omega \mu_0 h_1'}{3\sqrt{2\pi}} - \frac{j \omega \mu_0 (h_1'^2 - y_1'^2)}{64} - \frac{\omega \mu_0 (h_1'^2 - y_1'^2)}{32\pi} - \frac{\omega \mu_0 (h_1'^2 - y_1'^2)}{64} - \frac{\omega \mu_0 (h_1'^2 - y_1'^2)}{32\pi} \left[\ln\left(\frac{h_1'^2 + y_1'^2}{4}\right) + 2\gamma - 5/2 \right]$$

Where Y is Euler's number, 0.577216

$$h'_{1} = h_{1} \sqrt{\omega \mu_{0} \sigma_{1}}$$
, $h'_{2} = h_{2} \sqrt{\omega \mu_{0} \sigma_{1}}$, $y'_{1} = y_{1} \sqrt{\omega \mu_{0} \sigma_{1}}$

and current density equation is:

$$J = Z_{12}(h_1, 0, y_1) * \sigma * I_{sc}$$
 C-2

Based on equations C-1 and C-2, impedances and current densities on the surface of the earth for various values of y and different values of ρ are calculated and given in Tables C.1 to C.3.

The worst case is for y = 0 and the current density for such value of y is 0.07 amp per square meter.

TABLE C.1

CALCULATED CURRENT DENSITIES ON THE SURFACE OF THE EARTH

		METER	METER	METER	ME LETR	METER	MLTER	ME LER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METFR	METER	METER	METER	METER	METER						
		50.	sa.	s0.	50.	sa.	50.	50.	sa.	59.	su.	sa.	50.	sa.	su.	sa.	sa.	sa.	sa.	sa.	sa.	50.	50.	sa.	50.	sa.	sa.	sa.	50.	sa.	sa.	sa.
		PER	ы Б	ь Е.С.	FFR	PER	PER	FCR	PER	рЕ.R.	FER	PER	PER	PER	PER	FER	PER.	PER	с Ч Ц	PER	с К Ц С	PER	PER	PER	PER	ы Б С	PER	Р. Е. К	PER	с ЧЦ ЧЦ	PER	PER
	•	AMF.	ANF.	AMF.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	ANP.	AMP.	AMP.	AMP.	AMF.	AMP.	AMP.	AMP.	AMP.	ANP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.
CURRENT	DENSITY	0.504623	0.458480	0.394751	0.345908	0.308631	0.279052	0.254778	0.234338	0.216790	0.201498	0.188018	0.176028	0.165285	0.155608	0.146854	0.138908	0.131681	0.125098	0.119100	0.113636	0.108664	0.104151	0.100066	0.096386	0.093089	0.090159	0.087581	0.085345	0.083441	0.081861	0.080600
ANGLE		77.0	75.7	73.5	71.2	69.2	67.2	65.4	63.6	61.9	60.2	58.6	57.1	55.6	54.2	52.8	51.4	50.2	48.9	47.8	46.7	45.6	44.7	43.8	43.0	42.2	41.6	41.1	40.6	40.3	40.1	39.9
MUTUAL.		.2523E-03	.2292E-03	.1974E-03	.1730E-03	.1543E-03	.1395E-03	.1274E-03	.1172E-03	.1084E-03	.1007E03	•9401E-04	.8801E-04	.8264E-04	.7780E-04	.7343E-04	•6945E-04	•6584E-04	.6255E-04	.59556-04	•5682E-04	.5433E-04	•5208E-04	.5003E-04	 4819E-04 	.46545-04	.4508E-04	.4379E-04	.4267E-04	.4172E-04	.4093E-04	.4030E-04
IMAGINARY	IMPEDANCE	.24586-03	.2221E-03	.1892E-03	 1630F-03 	.1442E-03	.1286E-03	.1158E-03	1049E-03	.95586-04	.8744E-04	.8026E-04	.73886-04	.6818E-04	.6307E-04	.5846E-04	.5431E-04	.5055E-04	•4716E-04	.4409E-04	.4132E-04	.3884E-04	•3560E-04	3461E-04	.3285E-04	.3129E-04	.2994E-04	.28785-04	.2779E-04	.269BE-04	.2634E-04	.2586E-04
REAL PART	IMPEDANCE	.5601E-04	•5663E-04	•5619E-04	.5559E 04	•5487E-04	•5404E-04	•5313U-04	.52150-04	.51126-04	•5005E-04	•4895E-04	.4783E-04	.4570E-04	 4556E-04 	•4442E-04	•4330E-04	•4219E-04	.4109E-04	.4003E-04	•3899E-04	.3800E-04	•3704E-04	•3413E-04	.3526E-04	•3445E-04	•3370E-04	.3301E-04	•3238E-04	.3182E-04	•3133E-04	.3091E-04
DISTANCE	FROM CENT	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	30.0	0.04	100.0	110.0	120.0	130.0	140.0	150.0	160.0	170.0	180.0	190.0	200.0	210.0	.220.0	230.0	240.0	250.0	260.0	270.0	280.0	290.0	300.0

CALCULATED CURRENT DENSITIES ON THE SURFACE OF THE EARTH

		IG. METER	A. METER	R. METER	R. METER	R. METER	R. METER	Q. METER	IG. HETER	A. METER	R. METER	A. METER	G. METER	IQ. METER	R. METER	RO. METER	A. METER	IQ. METER	R. METER	IQ. METER	R. METER	R. METER	30. METER	R. METER	3Q. METER	R. METER	R. METER	R. METER	3Q. METER	RA. METER	30. METER
		PER 0	PER S	PER 2	PER 9	PER S	FER 0	PER S	PER S	PER 0	5 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	PER	PER 9	PER S	PER S	PER S	FER 5	PER S	5 1 1 1 1 1 1	PER S	FER S	PER S	PER S	PER S	PER 0	PER S	PER 0	5 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 EE	5 234 5	PER
		AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMF.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMF.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.
CHEERNT	DENSITY	0.067201	0.062532	0.056056	0.051057	0.047211	0.044133	0.041583	0.039414	0.037530	0.035869	0.034385	0.033045	0.031826	0.030707	0.029576	0.028719	0.027827	0.026994	0.026211	0.025474	0.024778	0.024119	0.023494	0.022900	0.022334	0.021794	0.021278	0.020784	0.020311	0.019857
ANGLE		80.0	79.2	78.0	76.8	75.7	74.8	73.8	73.0	72.1	71.4	70.6	69.9	69.1	68.4	67.8	67.1	66.4	65.8	65.1	64.5	63.9	63.3	62.7	62.1	61.5	61.0	60.4	59.8	59.3	58.7
MITHA		.3360E-03	.3127E-03	•2803E-03	· 2553E-03	.2361E-03	.2207E-03	.2079E-03	.1971E-03	.1877E-03	•1793E-03	.1719E-03	.1652E-03	.1591E-03	•1535E-03	.1484E-03	.1436E-03	•1391E-03	.1350E-03	.1311E-03	.1274E-03	.1239E-03	.1206E-03	.1175E-03	.1145E-03	.1117E-03	.1090E-03	.1054E-03	.1039E-03	.1016E-03	.99286-04
TMAGINARY	IMPEDANCE	•3309F-03	•3072E-03	.2741E-03	.2485E-03	.22886-03	.2129103	.1997E-03	 1884E-03 	.1786E-03	1699E-03	 1622E-03 	 1551E-03 	.1437E-03	.1428E-03	.1373E-03	.1323E-03	.1275E-03	.1231E-03	1189E-03	.1150E-03	.1113E-03	.1077E-03	.1044E-03	.1012E-03	.9817E-04	.9527E-04	.9250E-04	 B984E-04 	.8730E-04	.8485E-04
REAL PART	TMPETIANCE	.58421-04	.5840E-04	.5834E-04	.5825E-04	.5814E-04	.5801F-04	.5787E-04	.5770E-04	•5752E-04	•5733E-04	•5712E-04	•5690E-04	.5467E-04	•5643E-04	.5617E-04	.5591E-04	 5554E-04 	•5534E-04	.5508E-04	•5478E-04	•5443E-04	.5417E-04	•5386E-04	.53556-04	•5322E-04	•5290E-04	•5256E-04	•5223E-04	•5189E-04	.51556-04
DISTANCE	FROM CENT	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0	160.0	170.0	180.0	190.0	200.0	210.0	220.0	230.0	240.0	N0.0	260.0	270.0	280.0	290.0

TABLE C.3

CALCULATED CURRENT DENSITIES ON THE SURFACE OF THE EARTH

		METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	METER	MFTFR
		sa.	sa.	sa.	50.	5 Q .	SR.	5 0.	sa.	sq.	50.	5 0.	sa.	sa.	50.	. 0S	sa.	sa.	sa.	50.	58.	5 0.	50.	sa.	sa.	so.	sa.	sa.	sa.	sa.	sa.	5Q.
		ΡCR	С С С С С С	F.E.R.	PER	FER	с Ц Ц Ц	PER	PER	PER	P.E.R.	PER	P.F.	PER	ί Έ Γ	PER:	PER	ы С	P.E.F.	PER	P.E.R.	PER	βER	PER	ЪП. К	PER	βER	βER	PER	iy Li U	β E K	PER
		AMP.	ANP.	AMP.	AMF.	AMP.	AMP.	ANF.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	AMP.	ANP.	AMP.	AMP.	AMP.	ANF.	ANF.	AMP.	AMP.	AMP.
CURRENT	DENSITY	0.008426	0.007956	0.007303	0.006798	0.006409	0.006096	0.005837	0.005615	0.005422	0.005252	0.005099	0.004961	0.004835	0.004718	0.004611	0.004511	0.004417	0.004330	0.004247	0.004169	0.004095	0.004025	0.003958	0.003894	0.003833	0.003774	0.003718	0.003664	0.003612	0.003562	0.003514
ANGLE		82.0	81.5	80.7	80.0	79.4	78.9	78.4	77.9	77.5	77.1	76.7	76.3	75.9	75.6	75.3	74.9	74.6	74.3	74.0	73.7	73.4	73.2	72.9	72.6	72.3	72.1	71.8	71.6	71.3	71.0	70.8
MUTUAL		•4213E-03	.39786-03	•3652E-03	•3399E-03	.3204E-03	•3048E-03	.2918E-03	•2808E-03	.2711E-03	.2626E-03	.2550E-03	•2480E-03	.2417E-03	·2359E-03	.2305E-03	·22555E-03	.2209E-03	•2165E-03	.2123E-03	.2084E-03	.2047E-03	.2012E-03	•1979E-03	.1947E-03	.1916E-03	•1887E-03	.1859E-03	.1832E-03	.1806E-03	.1781E-03	.1757E-03
IMAGTNARY	IMPEDANCE	.4171E-03	.3934E-03	.3604E-03	•3348E-03	.3150E-03	.2991E-03	•2850E-03	.2745E-03	.2647E-03	•2559E-03	•2481E-03	·2410E-03	•2345E-03	•2285E-03	.2230E-03	.21786-03	·2130E-03	.2084E-03	.2041E-03	.2001E-03	 1953E-03 	 1926E-03 	.1891E-03	.1858E-03	 1826E-03 	.17956-03	 1766E-03 	.1738E-03	.1711E-03	.1684E-03	1659E-03
REAL PART	IMPEDANCE	.5896E-04	.58966-04	.58956-04	. 5894E-04	.5893E-04	 5891E-04 	.5839E-04	.58866-04	•5884E-04	.5881E-04	.5878E-04	.58755-04	.5871E-04	.5867E-04	.5864E-04	.5859E-04	•5855E-04	.5851E-04	.5846E-04	•5841E-04	.5336E-04	•5831E-04	• 5826E-04	.5820E-04	.5815E-04	.5809E-04	.5803E-04	.57976-04	.5790E-04	•5784E-04	.5778E-04
DISTANCE	FROM CENT	0.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	B0.0	0.04	100.0	110.0	120.0	130.0	1.40.0	150.0	160.0	170.0	180.0	190.0	200.0	210.0	220.0	230.0	240.0	250.0	260.0	270.0	280.0	290.0	300.0

APPENDIX D

LISTING OF PROGRAMS AND SUBROUTINES

Listing of Programs:

MAIN GOOD TES SEARCH

and Subroutines:

BAND PROPT FIND SOLVE PROGRAM MAIN

c.	COMMON A(401,20),N(3,760),XN(3,760),YN(3,760),MAT(760),IEL(760) COMMON B(401),V(403) INTEGER N,NODE,LNODE,IEL,IELE COMPLEX A,B,PROP,P1,P2,P3,V,BCV
	P1=(1.8182E-04,3.542E-11) P2=(30.0E-00.0.00E+01) P3=(3.0E-03,7.4374E-10)
	IEW - BAND-WIDTH OF THE COEFFICIENT MATRIX NODE - NUMBER OF NODES LNODE- NUMBER OF LAST NODE BEFORE THE NODE WITH BOUNDRAY COND. IEL - NAME OF MATRIX WHICH STORES ELEMENTS NUMBER IELE - NUMBER OF ELEMENTS
1 C	READ(15,1)NODE,IELE,LNODE,BCV FORMAT(I3,1X,I3,1X,I3,2(1X,F7,3))
69	WRITE(66,69)P1 WRITE(66,69)P2 WRITE(66,69)P3 FORMAT(2(1X,E14.6))
L	<pre>IBW=0 DU 20 I=1,IELE READ(15,2)IEL(I),N(1,I),N(2,I),N(3,I),XN(1,I),YN(1,I),XN(2,I),YN(2,I</pre>
0	
2	FORMAT(I3,3(1X,I3),6(1X,F8.3),1X,I1)
20 C	CONTINUE
C	DO 22 I=1,IELE
с с	THIS SUBROUTINE FINDS THE BAND-WIDTH OF THE MATRIX
22 C C	CALL BAND(N,I,LNODE,IBW)
	DO SO I=1,LNODE
60	A(I,J)=(0.0,0.0)
199	$I(0 \ 199 \ KK=1, LNODE$ U(NK) = (0, 0, 0, 0)
1 , ,	V(LNODE+1)=(0.0,0.0) V(LNODE+2)=BCV
С	CO IAO VETAIFEF
С С	SUBROUTINE FROPT FINDS THE PROPERT OF MATERIALS AND AREA OF IHE ELEMENT.

MAIN (CONT.) PROGRAM

C

С С C C

0000000

Ü С

CALL PROPT(MAT,K,PROP,P3,P1,P2,S,XN,YN) THIS SUBROUTINE FINDS THE COEFFICIENT MATRIX AND CONSTANTS. CALL FIND(N,K,LNODE,YN,XN,S,PROP,B,V,A) C 190 CONTINUE THIS SUBROUTINE CALCULATES THE VOLTAGES AT EACH NODES. CALL SOLVE(LNODE, IBW, A, B) CALL RESULT(BCV,B) 1000 CONTINUE STOP END

	DIMENSION X(401),Y(401),XX(17),YY(17)
	READ(15,2)L,M,NX,NY
2	FORMAT(413)
	$10 \ 10 \ I = 1, NX$
10	READ(15,1)XX(I)
	DO 20 I=1,NY
20	READ(15,1)YY(I)
1	FORMAT(F8.3)
	J=0
	L 1 = 1
	DO 30 I=L,M
	J=J+1
	X(I)=XX(J)
	Y(I) ≔YY(L1)
	I1=I-L+1
	IF(I1.LT.NX) GO TO 30
	P=I1/FLOAT(NX)
	L1=IFIX(P)
	P=P-L1
	IF(P.EQ.0.0) GO TO 35
	GO TO 36
35	J=0
36	L1=L1+1
30	CONTINUE
	DO 50 I=L,M
50	WRITE(16,3)I,X(I),Y(I)
3	FORMAT(3X,13,2(2X,F8,3))

6

. .

PROGRAM TES

DIMENSION N(3,760),XN(3,760),YN(3,760),MAT(760),IEL(760),X(401) DIMENSION Y(401) DO 5 I=1,401 5 READ(13,1)KK,X(I),Y(I) FORMAT(3X, 13, 2(2X, F8.3)) 1 DC 10 I=17,744 READ(14,2)IEL(I),N(1,I),N(2,I),N(3,I),MAT(I) 2 FORMAT(13,3(1X,13),1X,11) L=N(1,I)J=N(2,I) K=N(3,I) XN(1,I)=X(L) $Y \land (1, I) = Y(L)$ XN(2,I)=X(J)YH(2,I)=Y(J) XH(3,I)=X(K) Ytl(3,I)=Y(K)10 CONTINUE DO 20 I=1,16 20 READ(16,3)IEL(I),N(1,I),N(2,I),N(3,I),XN(1,I),YN(1,I),XN(2,I),YN(2 C,I),XN(3,I),YN(3,I),MAT(I) FORMAT(I3,3(1X,I3),6(1X,F8,3),1X,I1) 3 DO 40 I=745,760 40 READ(16,3)IEL(I),N(1,I),N(2,I),N(3,I),XN(1,I),YN(1,I),XN(2,I),YN(2 C,I),XN(3,I),YN(3,I),MAT(I) DO 100 I=1,760 WEITE(17,4)IEL(I),N(1,I),N(2,I),N(3,I),XN(1,I),YN(1,I),XN(2,I),YN(100 C2, I), XN(3, I), YN(3, I), MAT(I) 4 FORMAT(I3,3(1X,I3),6(1X,F8.3),1X,I1) STOP END

PROGRAM SEARCH

```
PIE=3.1415926
     W=377.0
     XMU=4*PIE*(10E-8)
     ZEGMA=0.1
     GAMA=0.577216
     H1 = 10.68
     H=H1*SQRT(W*XMU*ZEGMA)
     WRITE(15,1)
     WRITE(15,2)
     FORMAT(2X, "DISTANCE", 4X, "REAL PART", 5X, "IMAGINARY", 5X, " MUTUAL "
 1
    C, 5X, *ANGLE*, 3X, *CURRENT*)
     FORMAT(2X, "FROM CENT", 3X, "IMPEDANCE", 5X, "IMPEDANCE", 26X, "DENSITY")
 2
     DO 99 N=0,30
     Y1=N*10.0
     Y=Y1*SQRT(W*XMU*ZEGMA)
     9=H本×5+人××5
     B=H**5-7**5
     C=ALOG(A/4)
     D = ALOG(4/A)
     REAL1=(1.0/8.0)-(H/(4.24264*PIE))-((B/(32*PIE))*(C+2*GAMA-2.5))
     XIMAG1=((D+1.0-2*GAMA)/(4*FIE))+(H/(4.24264*FIE))-(B/64)
     REAL=W*XMU*REAL1
     XIMAG=W*XMU*XIMAG1
     Z=SQRT(REAL**2+XIMAG**2)
     PHI=ATAN(XIMAG/REAL)
     PHI=PHI*(180.0/PIE)
     XJ=Z*ZEGMA*20000.0
     WRITE(15,3)Y1, REAL, XIMAG, Z, PHI, XJ
     FORMAT(2X,F6,1,5X,E9.4,5X,E9.4,5X,E9.4,5X,F5.1,3X,F8.6,2X,
 3
    C"AMP. PER SQ. METER")
99
     CONTINUE
     STOP
     END
```

SUBROUTINE BAND

when shad bade bade black then wate some bade state and state wate some state

```
SUBROUTINE BAND(N, I, LNODE, IBW)
DIMENSION N(3,760)
IF(N(1,I).GT.LNODE) GO TO 60
IF(N(2,I),GT,LNODE) GO TO 60
IF(N(3,I).GT.LNODE) GO TO 60
IB1=ABS(N(1,I)-N(2,I))
IB2=ABS(N(2,I)-N(3,I))
IB3=ABS(N(1,I)-N(3,I))
IF(IB1.LT.IB2) GO TO 40
IF(IB1.LT.IB3) GO TO 45
IBW1 = IB1 + 1
GO TO 50
IF(IB2+LT+IB3) GO TO 45
IBW1=IB2+1
GO TO 50
IBW1=IB3+1
IF(IBW.LT.IBW1) GO TO 55
GO TO 60
IBW=IBW1
IBW1=0
RETURN
END
```

40

45

50

55

SUBROUTINE PROPT

10

20

30

SUBROUTINE PROFT(MAT,K,PROP,P3,F1,P2,S,XN,YN) DIMENSION MAT(760),XN(3,760),YN(3,760) COMPLEX PROP,P1,P2,P3 IF(MAT(K).EQ.1) GO TO 10 IF(MAT(K).EQ.2) GO TO 20 PROP=P3 GO TO 30 PROP=P1 GO TO 30 PROP=P2 S=2*((XN(1,K)*YN(2,K)-XN(2,K)*YN(1,K))+(XN(2,K)*YN(3,K)-XN(3,K)*YN C(2,K))+(XN(3,K)*YN(1,K)-XN(1,K)*YN(3,K))) RETURN END

SUBROUTINE FIND

.

.

	SUBROUTINE FIND(N,K,LNODE,YN,XN,S,PROP,B,V,A)
	DIMENSION A(401,20),V(403),B(401),N(3,760),XN(3,760),YN(3,760)
	COMPLEX PROP,A,B,X,V
	DD 99 H=1-3
	$\mathbf{F}(\mathbf{A}) = \mathbf{F}(\mathbf{A}) + F$
	$\frac{1}{1} \left[\left(\frac{1}{1} \right) \left($
4.9	15 (1 50, 2) CD TD 91
00	
05	
65	
01	10 10 03 TEXNXXXX LE LNODEN CO TO 101
01	
101	00 10 70 TECNTERN LE INODEN OD TO 201
101	1F (N(1)())+CC+CNUDE/ 00 10 201 9=////////0.201200////////////////////////
	A = ((() R(2)R() - R(3)R() + R(3)R() - R(1)R() + R(2)R(-R(3)R() + R(3)R() + R(3)R(
~~	
82	$\frac{1}{10} \frac{1}{10} \frac$
100	
182	IF (N(1), C) + LE + LNUDE) GU TU 282
	$x = (((T_N(2_jN) - T_N(3_jN)) * (T_N(1_jN) - T_N(2_jN)) + (X_N(2_jN) - X_N(3_jN)) * (X_N(1_jN))$
	C-XN(2)(K)))/S)*PRUP
	MM=N(1,K)
	NN=N(M;K)
	B(NN) = -XXV(MM) + B(NN)
~ ~	60 TO 90
83	IF(N(M,K),LE,LNODE) GU TO 183
	GO TO 90
183	IF(N(I,K),LE,LNODE) GO TO 283
	X = (((YN(3,K) - YN(1,K)) * (YN(1,K) - YN(2,K)) + (XN(3,K) - XN(1,K)) * (XN(1,K))
	C-XN(2+K)))/S)*PROP
	MM=N(I,K)
	NN=N(M,K)
	B(NN) = -X*V(MM) + B(NN)
	GO TO 90
281	MM=N(I,K)-N(M,K)+1
	NN≔N(M,K)
	A(NN+HH)=(((YN(2+K)-YN(3+K))*(YN(3+K)-YN(1+K))+(XN(2+K)-XN(3+K))*(
	CXN(3,K)-XN(1,K)))/S)*PROF+A(NN,MM)
	GO TO 90
282	MM=N(I,K)-N(M,K)+1
	NN=N(K•K)
	A(NN, MM)=(((YN(2,K)-YN(3,K))*(YN(1,K)-YN(2,K))+(XN(2,K)-XN(3,K))*(
	CXN(1,K)-XN(2,K)))/S)*PROF+A(NN,MM)

· .

SUBROUTINE FIND(CONT.)

283	GD TO 90 $MM=N(I_{F}K)-N(M_{F}K)+1$ $NN=N(M_{F}K)$ $A(NN_{F}MM)=(((YN(3_{F}K)-YN(1_{F}K))*(YN(1_{F}K)-YN(2_{F}K))+(XN(3_{F}K)-XN(1_{F}K))*(CXN(1_{F}K)-XN(2_{F}K)))/S)*PROP+A(NN_{F}MM)$
80	GO TO 90 IF(N(M,K).GT.LNODE) GO TO 90 IF(M.EQ.1) GO TO 51 IF(M.EQ.2) GO TO 52 MM=N(M,K) A(MM,1)=((((YN(1,K)-YN(2,K))**2)+(XN(1,K)-XN(2,K))**2)/S)*PROP+A(M
	CM+1)
51	50 TO 90 MM=N(M,K) A(MM,1)=((((YN(2,K)-YN(3,K))**2)+(XN(2,K)-XN(3,K))**2)/S)*PROP+A(M CM,1) GO TO 90
52	M = N(M, K)
	A(MM,1)=((((YN(3,K)-YN(1,K))**2)+(XN(3,K)-XN(1,K))**2)/S)*PROP+A(M CM,1)
90 99	CONTINUE CONTINUE RETURN END

SUBROUTINE SOLVE

SUBROUTINE SOLVE(NSIZE, MBAND, A, B) DIMENSION A(401,20),B(401) COMPLEX A, B, C С FORWARD REDUCTION OF MATRIX(GAUSS ELIMINATION) DO 100 N=1,NSIZE DO 200 L=2, MBAND IF(A(N,L).EQ.(0.0,0.0)) GD TO 200 I=N+L-1 $C = A(N_{y}L)/A(N_{y}1)$ J=0 DO 30 K=L,MBAND J=J+1 30 $A(I_{J}J) = A(I_{J}J) - C*A(N_{J}K)$ $A(N_{J}L) = C$ 200 CONTINUE 100 CONTINUE FORWARD REDUCTION OF CONSTANTS С DO 10 N=1,NSIZE DO 20 L=2, MBAND IF(A(N,L),EQ,(0,0,0,0)) GO TO 20 I=N+L-1 B(I)=B(I)-A(N,L)*B(N)20 CONTINUE 10 B(N) = B(N) / A(N, 1)SOLVE FOR UNKOWNS BY BACK-SUBSTITUTION С DO 40 M=2,NSIZE N=NSIZE+1-M DO 50 L=2,MBAND IF(A(N,L),EQ,(0,0,0,0)) GD TO 50 K=N+L-1 $B(N) = B(N) - A(N,L) \times B(K)$ 50 CONTINUE 40 CONTINUE RETURN END

.

APPENDIX E

COMPUTER RESULTS

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 55.00 OHM-METER WATER CONDUCTIVITY= 30 MICRO-MH0/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE= 17.080VOLTS

TOTAL CURRENT=140.4 MILI AMPS

,

RENT USITY	L AMP Der 1eter	88.465	88.791	89.979	93.267	106.939	111.310	******	*****	*****	*****	110.988	106.590	92.964	89,692	88.483	88,305
	MILS	080 338	350	593	378	338	527	*** *:	***	***	526 *:	216	584	476	224	740	000
VOL TAGE	VOLTS	5 17.0	5 14.6	5 13.5	5 11.5	5 8 8	2 0 0 1	(**** u	x**** 0	ر» ****	5 8.5	5 0 0	5.0	ч. Ю С	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 0	5 0.(
Y (CM)		1079.	3 1079.	1 1079.	6 1079.	4 1079.	0 1079.	0 1079.	4 1079.	0 1079.	0 1079.	3 1079.	1 1079.	2 1079.	9 1079.	5 1079.	6 1079.
XXX CURRENT DENSITY	MILI AMP Peř Sq.meter	88.10	88.43	89.19	91.24	102.99	169.22	00.00	0.02	0.02	0.00	168.68	102.66	90.97	88,86	88.09	88.00
**C /0LTAGE	VOLTS	17,080	14.859	13,613	11.446	9.000	8.527	8.527	8.527	8.526	8.526	8,055	5.616	3.456	2.214	0.738	0.000
Y (CH)		800.1 800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1
** CURRENT DENSITY	MILI AMP Per Sq.meter	87.869	88,015	88,332	88.846	86.842	60.200	52,589	23,961	23,903	52,493	60.021	86,555	88.564	88,060	87,712	87.712
**B VOLTAGE	VOL TS	17.080 16.343	14.868	13.634	11.524	9.462	9.293	9.238	8.527	7.817	7.762	7.595	5.539	3.436	2,206	0.735	0.000
Y (CM)		660.4 660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4
A** CURRENT DENSITY	MILI AMF Per Sq.meter	86.080	85,867	84.538	81.603	71.582	58,733	56.693	45.412	45.348	56.597	58,447	71.380	81,359	84.345	85,530	85,907
** VOLTAGE	VOLTS	17.080	14.919	13.738	11.800	10.100	9.936	9.876	8.528	7.182	7.123	6.960	5.264	3,332	2.154	0.720	0.000
Y (CM)		63.5 63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63,5
X(M) Z(CM)		0.00 5.0	4.57 5.0	7.11 5.0	11.43 5.0	15.75 5.0	16.26 5.0	16.45 5.0	21.84 5.0	27.24 5.0	27.43 5.0	27.94 5.0	32.26 5.0	36.58 5.0	39.12 5.0	42.16 5.0	43.69 5.0
ST ND		10	ю	4	ហ	\$	7	8	6	10	11	12	13	14	10 17	16	17

FINITE ELEMENT METHOD

.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 55.00 OHM-METER WATER CONDUCTIVITY=1500 MICRO-MHO/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE= 17.080VOLTS

TOTAL CURRENT=141.0 MILI AMPS

AMP ER ETER VOL	MILI AMP Per sa.meter vol
660.4 17.	660.4 17.
080 660.4 16. 947 440 4 14	86.080 660.4 16. ef e.7 240 7 14
538 660.4 13.0	84.538 660.4 13.
603 660.4 11.	81.603 660.4 11.
582 660.4 9.4	71.582 660.4 9.4
733 660.4 9.	58.733 660.4 9.
693 660.4 9.	56.693 660.4 9.
412 660.4 8.	45.412 660.4 8.
348 660.4 7.1	45.348 660.4 7.1
597 660.4 7.7	56.597 660.4 7.7
447 660.4 7.5	58.447 660.4 7.5
380 660.4 5.5	71.380 660.4 5.5
359 660.4 3.4	81.359 660.4 3.4
345 660.4 2.2	84.345 660.4 2.2
530 660.4 0.7	85.530 660.4 0.7
907 660.4 0.	85.907 660.4 0.

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 55.00 DHM-METER WATER CONDUCTIVITY=3000 MICR0-MHD/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE= 17,080VOLTS

TOTAL CURRENT=141.0 MILI AMFS

M) VOLTAGE CURRENT DENSITY	MILI AMP PER VOLTS SQ.METER	79.5 17.080	79.5 16.338 88.465	79.5 14.850 88.791	79.5 13.593 89.979	79.5 11.378 93.267	79.5 8.838 106.935	79.5 8.527 111.346	79.5 ******* ******	79.U ******* ******	20°0 米米米米米 米米米米米 10°02	79.5 8.526 *******	79.5 8.216 110.988	79.5 5.684 106.594	79.5 3.476 92.964	79.5 2.224 89.692	79.5 0.740 88.483	79.5 0.000 88.305
CURRENT Y(C) DENSITY	MILI AMP Per Sq.meter	10	88,107 10	88,433 10	89.191 10	91.246 10	102.990 10	169.256 10	0.000 10	0.020 10	0.024 10	0.000 10	168.647 10	102.661 10	90,976 10	88,869 10	88,095 10	88,006 10
oLTAGE	VOLTS	17.080	16.341	14.859	13.613	11.446	9,000	8.527	8,527	8,527	8.526	8.526	8,055	5.617	3.456	2,214	0.738	000.0
Y (M) V		800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1
CURRENT DENSITY	MILI AMP Per Sq.meter		87.869	88,015	88,332	88.846	86.837	60.200	52,589	23,961	23,907	52,398	60.021	86,559	88,560	88,067	87.712	87.712
**E VOLTAGE	VOLTS	17,080	16.343	14.868	13.634	11.524	9.462	9.293	9.238	8.527	7.817	7.763	7,595	5,539	3.436	2,206	0,735	0.000
Y (CM)		660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4
A** CURRENT DENSITY	MILI AMP PER SQ.METER		86,080	85,807	84.610	81,603	71.582	58,697	56,788	45.412	45.348	56.502	58.482	71.380	81,359	84,345	85,530	85,907
** VOLTAGE	VOLTS	17.080	16.358	14.920	13.738	11.800	10.100	9.936	9.876	8,528	7.182	7.123	6.960	5,264	3,332	2.154	0.720	000.0
Y (CH)		63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5
X(M) Z(CM)		0.00 5.0	1.52 5.0	4.57 5.0	7.11 5.0	11.43 5.0	15.75 5.0	16.26 5.0	16.45 5.0	21.84 5.0	27,24 5,0	27.43 5.0	27.94 5.0	32.26 5.0	36.58 5.0	39.12 5.0	42.16 5.0	43.69 5.0
ST ND		1	2	м	4	_{ເກ}	9	7	8	6	10	11	4	13	14	1 1 2	16	17

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY= 30 MICRO-MH0/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

TOTAL CURRENT=138.4 MILI AMPS

CURRENT Y(CM) VOLTAGE CURRENT DENSITY DENSITY	MILI AMP MILI AMP PER PER SQ.METER VOLTS SQ.METER	1079.5 18.300	65.353 1079.5 17.708 65.243	65.307 1079.5 16.527 65.142	65.110 1079.5 15.550 64.646	64.417 1079.5 13.930 63.054	61.809 1079.5 12.528 54.569	71.462 1079.5 12.437 30.107	86.460 1079.5 ****** ** ***	88.183 1079.5 ****** ** ****	B8.170 1079.5 ****** ******	87.166 1079.5 5.863 ******	71.230 1079.5 5.772 30.073	61.832 1079.5 4.370 54.558	64.424 1079.5 2.750 63.058	65.063 1079.5 1.773 64.640	65.289 1079.5 0.592 65.118	65.413 1079.5 0.000 65.291
**C>	VOLTS	18.300	17.707	16.523	15.539	13,884	12.296	12,080	11.982	9.150	6.318	6.220	6,004	4.416	2.760	1.777	0.593	0.000
Y (M) Y		800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1
3** CURRENT DENSITY	MILI AMP PER SQ.METER		65.464	65.473	65.374	65.390	67.024	76.755	78.520	82,765	82.774	78.343	76.722	67.021	65,390	65,387	65.438	65,523
**I VOLTAGE	VOLTS	18,300	17.706	16.519	15.531	13.851	12.129	11.897	11.808	9.150	6.492	6.403	6.171	4.449	2.769	1.781	0.594	0.000
Y (CM)		660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4
A** CURRENT DENSITY	MILI AMP Per Sq.meter		66.015	66.245	66.565	67.569	70.683	74.108	74.991	77.316	77.312	74.638	74.208	70.691	67.573	66,585	66.165	66.130
** VOLTAGE	VOLTS	18,300	17.701	16.500	15.494	13,758	11.942	11.718	11.633	9.150	6.667	6.583	6.358	4.542	2.806	1,800	0.600	00000
Y (CM)		63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5
X(M) Z(CM)		0.00 5.0	1.52 5.0	4.57 5.0	7.11 5.0	11.43 5.0	15.75 5.0	16.26 5.0	16.45 5.0	21.84 5.0	27.24 5.0	27.43 5.0	27.94 5.0	32,26 5.0	36.58 5.0	39.12 5.0	42.16 5.0	43.69 5.0
ST NO		1	64	м	4	ស	9	2	8	6	10	11	12	13	14	15	16	17

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

'

.

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY=1600 MICRO-MHO/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

TOTAL CURRENT=142.7 MILI AMPS

•

D VOLTAGE CURRENT DENSITY	MILI AMP PER VOLTS SQ.METER	5 18, 300	5 17.563 81.22	5 16.085 81.52	5 14.841 82.31	5 12.666 84.65	5 10.209 95.63	5 9.873 111.05	***************************************	······································	······································	5 8.427 ******	5 8.091 111.12	5 5.634 95.62	5 3.459 84.65	5 2.215 82.30	5 0.738 81.46	5 0.000 81.36
** CURRENT Y(CM) V DENSITY	MILI AMP FER SQ.METER	1079.5	81.003 1079.5	81.248 1079.5	81.718 1079.5	82.983 1079.5	89.327 1079.5	105.538 1079.5	75.873 1079.5	27.246 1079.5	27.240 1079.5	76.049 1079.5	105.505 1079.5	89.323 1079.5	82.983 1079.5	81.698 1079.5	81.195 1079.5	81.164 1079.5
**C VOLTAGE	VOLTS	18.300	17,565	16.092	14.857	12,725	10.430	10.111	10.025	9.150	8.275	8,189	7,870	5.575	3,443	2.209	0.736	000.0
Y(CH)		800.1	800.1	800.1	800.1	800.1	800.1	800.1	5 800.1	800.1	1 800.1	1 800.1	. 800.1	1 800.1	2 800.1	1 800.1	800.1	800.1
(B** CURRENT DENSITY	MILI AMP Per Sq.meter		80.893	80.972	81,188	81.387	79.830	63,852	60.875	41.005	41.015	60,345	64.051	79.816	81.402	81,155	80.945	80.970
** VOLTAGE	NOL TS	18.300	17.568	16.098	14.871	12,780	10.729	10.536	10.467	9.150	7.833	7.764	7.571	5,520	3.429	2.202	0.734	00010
, Ч (СМ)		660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4
KA** CURRENT DENSITY	MILI AMF FER SQ.METER		79.680	79.593	78.806	76.911	70.605	62.529	61.757	54.305	54.311	61.404	62,661	70.605	76.895	78.793	79.549	79.813
*: VOLTAGE	VOLTS	18.300	17.577	16.134	14.943	12.967	11.153	10.964	10.894	9.150	7.406	7.336	7.147	5,333	3,357	2.166	0.724	000.0
Y(CM)		63+5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5
X(M) Z(GM)		0.00 5.0	1.52 5.0	4.57 5.0	7.11 5.0	11.43 5.0	15.75 5.0	16.26 5.0	16.45 5.0	21.84 5.0	27.24 5.0	27.43 5.0	27.94 5.0	32.26 5.0	36.58 5.0	39.12 5.0	42.16 5.0	43.69 5.0
ST NO		1	N	м	4	ហ	9	2	8	6	10	11	12	13	14	15	16	17

;

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY=3000 MICRO-MH0/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

TOTAL CURRENT=143.3 MILI AMPS

MILI AMP FER MILI AMP FER<	st NO	X(M) Z(CM)) Y(CM)	**/ VOLTAGE	A** CURRENT DENSITY	Y (CM)	**I VOLTAGE	3 ** CURRENT DENSITY	Y(CM) V	**C: OLTAGE	** CURRENT Y DENSITY	(CH) VOL	**D* -TAGE	* CURRENT DENSITY
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				VOLTS	MILI AMP PER SQ.METER		VOLTS	MILI AMP PER SQ.METER		VOLTS	MILI AMP Per Sq.meter	22	DLTS	MILI AMP Per SQ.Meter
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.00 5.0	63.5	18.300		660.4	18.300		800.1	18.300		1079.5	18.300	
3 4.57 5.0 63.5 16.090 81.193 660.4 16.048 82.848 800.1 16.041 83.124 1079.5 14 5 7.11 5.0 63.5 14.877 83.637 1079.5 14 5 7.11 5.0 63.5 14.877 80.262 660.4 14.773 83.637 1079.5 12 6 15.75 5.0 63.5 11.877 83.637 1079.5 12 7 16.265 $50.63.5$ 10.870 660.4 10.556 81.581 800.1 14.777 83.637 1079.5 79 7 16.265 $50.63.5$ 10.870 660.4 10.556 81.521 800.1 12.652 1079.5 84.872 8 16.265 $50.63.5$ $70.680.4$ 10.257 59.715 800.1 9.150 78.872 1079.5 84.872 9 21.845 $50.63.5$ 7.490 660.4 7.936 59.715 800.1 8.531 19.265 1079.5 84.872 10 27.24 $50.63.5$ 7.430 560.4 7.745 55.715 800.1 8.5271 19.265 1079.5 84.872 11 27.43 5.0 63.5 7.430 $55.906.4$ 7.745 56.973 81.442 78.872 1079.5 81.432 12 27.745 $56.0.4$ 7.745 $56.0.4$ 7.745 56.711 92.5721 1079.5 11.52726 1079.5 51	N	1.52 5.0	63.5	17.562	81,334	660.4	17,550	82,656	800.1	17.548	82,876	1079.5	17.546	83,097
4 $7.115.0$ 63.5 14.877 80.262 660.4 14.793 83.041 800.1 14.777 83.637 1079.5 14 5 $11.4355.0$ 63.55 12.871 78.078 660.4 12.652 81.533 800.1 12.587 85.162 1079.5 7 7 $116.2655.0$ 63.55 11.870 61.206 660.4 10.556 81.531 800.1 12.569 85.162 1079.5 7	ю	4.57 5.0	63.5	16.090	81.193	660.4	16.048	82,848	800.1	16.041	83.124	1079.5	16.033	83,454
5 11.43 5.0 63.5 12.687 78.078 660.4 12.652 83.333 800.1 12.589 85.162 1079.5 12 7 15.75 5.0 63.55 11.055 70.683 660.4 10.556 81.581 800.1 12.589 85.162 1079.5 12 7 16.26 5.0 63.55 10.870 51.206 660.4 10.556 81.581 800.1 9.769 78.872 1079.5 9 8 16.25 0.33.5 9.1500 51.437 660.4 70.297 59 76 78.872 1079.5 8*** 9 21.845 0.33.5 9.1500 55.715 800.1 9.769 79.765 1079.5 8*** 10 27.245 0.433 51.437 660.4 7.936 55.715 800.1 8.442 78.872 1079.5 8 11 27.43 5.0 63.55 7.436 50.4 7.745 65.728 800.1 8.442 78.872 1079.5 8 11 27.43	4	7.11 5.0	63.5	14.877	80,262	660.4	14.793	83,041	800.1	14.777	83.637	1079.5	14.758	84,364
6 15.75 5.0 63.5 11.055 70.683 660.4 10.556 81.581 800.1 9.265 72.722 1079.5 9 7 16.26 5.0 63.5 10.870 61.206 660.4 10.364 63.551 800.1 9.150 17510 1079.5 9 9 16.45 5.0 63.5 10.802 59.973 660.4 10.277 59.110 800.1 9.769 78.872 1079.5 8*** 9 21.84 5.0 63.5 7.498 51.440 660.4 7.936 58.715 800.1 9.769 78.872 1079.5 **** 10 27.24 5.0 63.5 7.498 51.437 660.4 7.935 58.934 800.1 8.531 19.7265 1079.5 8*** 11 27.43 51.437 660.4 7.745 651.290 800.1 8.531 1979.55 1079.5 51 12 27.745 63.575 660.4 7.745 651.209 81.600.1 8.731 1970.55 51 51079.	ស	11.43 5.0	63,5	12,871	78,078	660.4	12,652	83,333	800.1	12.589	85,162	1079.5	12,523	86,992
7 16.26 5.0 63.5 10.870 61.206 660.4 10.364 63.521 800.1 9.858 115.100 1079.5 *** 9 21.84 5.0 63.5 10.802 59.973 660.4 10.297 59.110 800.1 9.769 78.872 1079.5 **** 9 21.84 5.0 63.5 7.150 51.440 660.4 9.150 35.715 800.1 9.769 78.872 1079.5 **** 10 27.24 5.0 63.5 7.498 51.437 660.4 7.935 58.934 800.1 8.531 19.265 1079.5 **** 11 27.24 5.0 63.5 7.448 51.437 660.4 7.935 58.934 800.1 8.531 19.265 1079.5 8**** 11 27.24 50.6 640.4 7.745 653.279 800.1 8.651 1079.5 5 12 27.94 50.44 7.745 653.279 800.1 8.672 1079.5 5 1 13	4	15.75 5.0	63.5	11.055	70.683	660.4	10.556	81.581	800.1	10.206	92,752	1079.5	9.971	99.318
8 16.45 5.0 63.5 10.802 59.973 660.4 10.297 59.110 800.1 9.769 78.872 1079.5 *** 9 21.84 5.0 63.5 9.150 51.440 660.4 9.150 35.715 800.1 9.150 19.265 1079.5 *** 10 27.24 5.0 63.5 7.498 51.437 660.4 7.936 58.974 800.1 8.531 19.265 1079.5 ** 11 27.24 5.0 63.5 7.430 59.04 8.003 35.728 800.1 8.531 19.265 1079.5 8 * 11 27.24 5.0 63.5 7.430 59.04 7.745 65.24 800.1 8.651 1079.5 8 12 27.794 50.01 8.60.4 7.745 6.5.275 80.0.1 8.675 1079.5 5 13 32.266 50.4 7.745 6.5.2728 800.1 5.721 1079.5 5 13 32.266 5.0 63.75 660.	~	16.26 5.0	63.5	10.870	61.206	660.4	10.364	63,521	800.1	9,858	115.100	1079.5	9.626	114.173
9 21.84 5.0 63.5 9.150 51.440 660.4 9.150 35.715 800.1 9.150 19.265 1079.5 **** 10 27.24 5.0 63.5 7.478 51.437 660.4 9.150 35.728 800.1 8.531 19.265 1079.5 **** 11 27.24 5.0 63.5 7.478 51.437 660.4 7.936 58.974 800.1 8.531 19.265 1079.5 8 11 27.24 51.60 55.7 7.430 59.904 660.4 7.735 58.974 800.1 8.531 19.265 1079.5 8 12 27.794 50 63.5 54.09 800.1 8.537 1079.5 5 5 13 32.266 50.64 7.745 65.649 5.660.4 5.660.4 5.660.4 5.7745 80.1 5.7711 92.7211 1079.5 5 14 36.58 50.661.4 5.660.4 5.660.4 5.660.4 5.6723 1079.5 5 5 5.661.1079.5 5	8	16.45 5.0	63.5	10.802	59,993	660.4	10.297	59.110	800.1	9.769	78.872	1079.5 >	*****	*******
10 27.24 5.0 63.5 7.498 51.437 660.4 8.003 35.728 800.1 8.531 19.265 1079.5 *** 11 27.43 5.0 63.5 7.430 59.904 660.4 7.936 58.934 800.1 8.442 78.872 1079.5 8 12 27.43 5.0 63.5 7.429 56.0.4 7.745 55.900.1 8.093 115.265 1079.5 8 13 32.26 5.0 63.5 5.429 70.667 5.60.4 5.648 81.609 800.1 8.073 11079.5 5 5 13 32.26 5.0 63.5 5.429 70.667.4 5.648 81.609 800.1 92.721 1079.5 5 5 14 36.58 5.0 63.5 5.60.4 2.567 83.337 800.1 3.524 85.155 1079.5 5 3 3.524 85.155 1079.5 3 1 8.7554 1079.5 3 3.524 85.155 1079.5 3 3.556 1079.5	6	21.84 5.0	63.5	9.150	51.440	660.4	9,150	35,715	800.1	9.150	19.265	1079.5 >	*****	*******
11 27.43 5.0 63.5 7.430 59.904 660.4 7.936 58.934 800.1 8.442 78.872 1079.5 8 12 27.94 5.0 63.5 7.245 61.305 660.4 7.745 63.270 800.1 8.093 115.265 1079.5 8 13 32.26 5.0 63.5 5.429 70.695 660.4 5.648 81.607 800.1 5.711 92.721 1079.5 5 14 36.58 5.0 63.5 5.429 70.697 660.4 3.507 83.337 800.1 5.711 92.721 1079.5 5 14 36.58 5.0 63.5 2.210 80.275 85.155 1079.5 5 15 39.12 5.0 63.5 2.252 83.021 800.1 2.257 83.068 1079.5 2 15 42.45 5.0 63.5 6.0.4 0.7551 82.778 800.1 0.0755 2 16 42.45 5.000 800.4 0.000 82.776	10	27.24 5.0	63.5	7.498	51.437	660.4	8,003	35,728	800.1	8.531	19.265	1079.5 >	*****	******
12 27.94 5.0 63.5 7.245 640.4 7.745 63.290 800.1 8.093 115.265 1079.5 8 13 32.26 5.0 63.5 5.429 70.695 660.4 5.648 81.609 800.1 5.711 92.721 1079.5 5 14 36.58 5.0 63.5 5.429 70.697 660.4 5.648 81.607 800.1 5.711 92.721 1079.5 5 14 36.58 5.0 63.5 3.423 78.047 660.4 3.5507 83.337 800.1 3.524 85.155 1079.5 3 15 39.12 5.0 63.5 2.210 80.275 660.4 2.2552 83.021 800.1 2.7579 83.068 1079.55 2 15 42.45 5.0 63.5 0.7751 82.7778 800.1 0.0000 81.077 10779.5 0 15 43.67 0.0000 81.448 660.4 0.0001 82.778 800.1 0.0001 0.7755 5 0 177	11	27.43 5.0	63.5	7.430	59.904	660.4	7.936	58,934	800.1	8.442	78.872	1079.5	8.674	******
13 32.26 5.0 63.5 5.429 70.695 660.4 5.648 81.609 800.1 5.711 92.721 1079.5 5 14 36.568 5.0 63.5 3.423 78.047 660.4 3.507 83.337 800.1 3.524 85.155 1079.5 3 15 39.12 5.0 63.5 2.210 80.275 660.4 2.2552 83.021 800.1 2.259 83.650 1079.55 2 16 42.16 5.0 63.5 0.739 81.147 660.4 0.751 82.778 800.1 0.753 83.068 1079.55 2 16 42.16 5.0 63.5 0.739 81.147 660.4 0.751 82.778 800.1 0.7553 83.068 1079.55 0 17 43.67 5.0 63.5 0.0000 81.448 660.4 0.0000 82.776 800.1 0.0000 83.020 1079.55 0	12	27.94 5.0	63.5	7.245	61,305	660.4	7.745	63,290	800.1	8,093	115.265	1079.5	8.329	114.173
14 36.58 5.0 63.5 3.423 78.047 660.4 3.507 83.337 800.1 3.524 85.155 1079.5 3 15 39.12 5.0 63.5 2.210 80.275 660.4 2.252 83.021 800.1 2.259 83.650 1079.55 2 16 42.16 5.0 63.5 0.739 81.147 660.4 0.751 82.778 800.1 0.753 83.068 1079.55 0 17 43.67 5.0 63.55 0.0000 81.448 660.4 0.751 82.776 800.1 0.0000 83.020 1079.55 0 17 43.67 5.0 63.55 0.0000 81.448 660.4 0.0000 82.776 800.1 0.0000 83.020 1079.55 0	13	32,26 5,0	63,5	5.429	70.695	660.4	5.648	81.609	800.1	5.711	92.721	1079.5	5.777	502.99
15 39.12 5.0 63.5 2.210 80.275 660.4 2.252 83.021 800.1 2.259 83.650 1079.5 2 16 42.16 5.0 63.5 0.739 81.147 660.4 0.751 82.778 800.1 0.753 83.068 1079.5 0 17 43.69 5.0 63.5 0.000 81.448 660.4 0.000 82.796 800.1 0.000 83.020 1079.5 0	14	36.58 5.0	63,5	3,423	78,047	660.4	3,507	83,337	800.1	3,524	85,155	1079.5	3,542	87,023
16 42.16 5.0 63.5 0.739 81.147 660.4 0.751 82.778 800.1 0.753 83.068 1079.5 0 17 43.69 5.0 63.5 0.000 81.448 660.4 0.000 82.796 800.1 0.000 83.020 1079.5 0	15	39.12 5.0	63.5	2,210	80,275	660.4	2,252	83.021	800.1	2,259	83,650	1079.5	2.267	84.338
17 43.69 5.0 63.5 0.000 81.448 660.4 0.000 82.796 800.1 0.000 83.020 1079.5 C	16	42.16 5.0	63.5	0.739	81.147	660.4	0.751	82,778	800.1	0.753	83,068	1079.5	0.755	83,376
	17	43.69 5.0	63.5	00000	81.448	660.4	000.0	82,796	800.1	000.0	83,020	1079.5	000.000	83,253

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY=1160+00 OHM-METER WATER CONDUCTIVITY= 30 MICR0-MH0/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE=359.000VOLTS

TOTAL CURRENT=139.1 MILI AMPS

sT	X(M) Z(CM)	Y (CM)	**A VOLTAGE	A** CURRENT	Ү (СМ)	**5 VOLTAGE	3** CURRENT	Y(CM) (JOLTAGE	** CURRENT	У(СМ) VOLTAG	**D**	JRRENT
9				DENSITY			DENSITY			DENSITY		ā	ENSITY
				MILI AMP PER			MILI AMP PER			MILI AMP PER		MII	LI AMP PER
	*		VOLTS	SQ.METER		VOLTS	SQ.METER		VOLTS	SQ.METER	VOLTS	SQ	.METER
+1	0.00 5.0	63.5	\$59.000		660.4	359,000		800.1	359.000		1079.5 359.	000	
N	1.52 5.0	63.5	343,420	88.072	660.4	343,080	89,994	800.1	343,030	90.277	1079.5 342.	086	90.560
ы	4.57 5.0	63.5	312.360	87.876	660.4	311.220	90.140	800.1	311.030	90.536	1079.5 310.	830	90.960
4	7.11 5.0	63.5	286,840	86.614	660.4	284.570	90.449	800.1	284.130	91.298	1079.5 283.	680	92.146
പ	11.43 5.0	63.5	245.030	83,472	660.4	239,000	90.978	800.1	237,310	93.474	1079.5 235.	830	95,530
\$	15.75 5.0	63.5	208.410	73.110	660.4	194.450	88,942	800.1	184.430	105.573	1079.5 180.	920	109.625
2	16.26 5.0	63.5 2	204.890	59,734	660.4	190.820	61.601	800.1	174.190	173.771	1079.5 174.	190	114.207
8	16.45 5.0	63.5	203.610	57.924	660.4	189.630	53,851	800.1	174.190	00000	1079.5 ****	***	*****
6	21.84 5.0	63.5 1	174.930	45,807	660.4	174.390	24.341	800.1	174.190	00000	1079.5 ****	***	******
10	27.24 5.0	63.5 1	146.990	44.625	660.4	159.780	23,335	800.1	174.190	00000	1079.5 ****	***	******
11	27.43 5.0	63.5	145.770	55.209	660.4	158.660	50.683	800,1	174.190	00000	1079.5 174.	190	******
2	27.94 5.0	63.5 1	142.410	57.019	660.4	155,230	58,207	800.1	164.590	162.911	1079.5 167.	860	107.419
M	32.26 5.0	63.5 1	107.670	69.357	660.4	113.230	83,851	800.1	114,800	99.403	1079.5 116.	180	103,177
4	36.58 5.0	63.5	68.142	78.916	660.4	70.238	85,832	800.1	70.646	88.151	1079.5 71.	062	90.076
ព	39.12 5.0	63.5	44.044	81.788	660.4	45.090	85.352	800.1	45.269	86.129	1079.5 45.	452	86.920
16	42.16 5.0	63.5	14.724	82.926	660.4	15.030	85.019	800.1	15,080	85,384	1079.5 15.	131	85.757
17	43.69 5.0	63.5	0.000	83,288	660.4	0.000	85.019	800.1	000.0	85,302	1079.5 0.	000	85.590

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY=1160.00 OHM-METER WATER CONDUCTIVITY=1500 MICRO-MHD/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE=359.000VOLTS

TOTAL CURRENT=139.1 MILI AMFS

K* CURRENT DENSITY	MILI AMP Per Sq.meter		90.616	90.960	92.180	95.550	109.665	114.207	*****	******	******	******	107.250	103.177	90.036	86,892	85,737	85.562
D* 0LTAGE	VOLTS	359,000	342.970	5 310.820	5 283,660	5 235,800	5 180.870	5 174.140	****	· ******	******	5 174.140	5 167,820	5 116.140	5 71.042	5 45.440	5 15,126	0,000
х (сн) v		1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5	1079.5
: * * CURRENT DENSITY	MILI AMP Per Sq.meter	- 7058 - 7058 - 807 - 1994 - 607 - 1997 - 1998 - 1994 - 199	90.277	90.564	91.332	93.494	105.592	173.941	000.0	000.0	0.00.0	000.0	162,911	99.364	88,131	86.105	85.358	85.279
/0LTAGE	VOLTS	359.000	343,030	311.020	284,110	237,280	184.390	174.140	174.140	174.140	174.140	174.140	164.540	114.770	70.626	45.256	15.076	0000
Y(CM) 1		800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800,1	800.1	800.1	800.1	800.1
XXX CURRENT DENSITY	MILI AMP Per Sq.meter		89.994	90.168	90.483	90.998	88,962	61,601	53,851	24.341	23,335	50,683	58,207	83,831	85,810	85.331	84.994	84,996
**E VOLTAGE	VOLTS	359,000	343.080	311.210	284.550	238,970	194.410	190.780	189.590	174.350	159.740	158.620	155.190	113,200	70.219	45.077	15.026	0.00.0
Y (CM)		660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4
A ** CURRENT DENSITY	MILI AMP PER SQ.METER		88,129	87,904	86.614	83.492	73.130	59.734	57,471	45.823	44.625	55,209	56.849	69.357	78.894	81,764	82.903	83,265
** VOLTAGE	VOLTS	359.000	343.410	312,340	286,820	245.000	208.370	204.850	203.580	174.890	146.950	145.730	142.380	107.640	68.123	44.032	14.720	0.000
Y (CM)		63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63,5	63.5	63.5	63.5
X(M) Z(CM)		0.00 5.0	1.52 5.0	4.57 5.0	7.11 5.0	11.43 5.0	15.75 5.0	16.26 5.0	16.45 5.0	21.84 5.0	27.24 5.0	27.43 5.0	27.94 5.0	32.26 5.0	36.58 5.0	39.12 5.0	42.16 5.0	43.69 5.0
LSN		1	C4	м	4	n	Ŷ	~	ω	6	10	11	N F	13	14	5 T	16	17

FINITE ELEMENT METHOD

·

•

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY=1160.00 OHM-METER WATER CONDUCTIVITY=3000 MICRO-MHD/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE=359.000V0LTS

TOTAL CURRENT=139.1 MILI AMPS

K CURRENT DENSITY MILI AMP	SQ.METER		90.560	90.932	92.112	95.490	109.605	114.207	*******	*******	*******	*******	107.419	103.217	90.096	86,943	85,783	85.613	
D* CM) VOLTAGE	VOLTS	079.5 359.000	079.5 342.980	079.5 310.840	079.5 283.700	079.5 235.870	079.5 180.970	079.5 174.240	079.U ***	****** 5.620	0.79.55 *****	079.5 174.240	079.5 167.910	079.5 116.210	079.5 71.082	079.5 45.465	079.5 15.135	079.5 0.000	
** CURRENT Y(DENSITY MILI AMP	SQ.METER	÷ ·	90.220 1	90.536 1	91.264 1	93,454 1	105,533 1	173.771 1	0,000 1	0.000 1	0.000 1	0.000 1	163,080 1	99,423 1	88.171 1	86.156 1	85.406 1	85,324 1	
x+c vol.TAGE	 00LTS	359,000	343.040	311.040	284.150	237.340	184.480	174.240	174.240	174.240	174.240	174.240	164.630	114.830	70.666	45,281	15,084	00000	
Y (CH)		800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	800.1	
** CURRENT DENSITY MILI AMP	SQ.METER		89,938	90.111	90.449	90,958	88,902	61.401	53,851	24.341	23,335	51,136	58.207	83.871	85,854	85,375	85,042	85.042	
**B VOLTAGE		359,000	343.090	311.240	284,590	239.030	194.500	190.870	189.680	174.440	159,830	158,700	155.270	113.260	70.257	45.102	15,034	000.0	
YCCH)		660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	660.4	
A** CURRENT DENSITY MILI AMP	SQ.METER		88.072	87.848	86,580	83,452	73.110	59.564	57.924	45,807	44.625	55,209	57.019	69.377	78.940	81,808	82.949	83,311	
VOLTAGE	VOL TS	359.000	343.420	312.370	286.860	245.060	208.440	204.930	203,650	174.970	147.030	145.810	142.450	107.700	68.160	44.056	14.728	000.0	
Y (CH)		63.5	63.5	63.5	63.55	63.5	63.5	63.5	63.5	93+59	63.5	63.5	63.5	63.5	63.5	63.5	63.5	63.5	
X(M) Z(CH)		0.00 5.0	1.52 5.0	4.57 5.0	7.11 5.0	11.43 5.0	15.75 5.0	16.26 5.0	16.45 5.0	21.84 5.0	27.24 5.0	27.43 5.0	27.94 5.0	32.26 5.0	36.58 5.0	39.12 5.0	42.16 5.0	43.69 5.0	
LS		 (N	M	4	n	\$	~	œ	6	10	11	12	13	14	15	16	17	

					1** CURRENT DENSITY	MILI AMF PER SQ.METER		22,425	20.437	18.750	17.550	16.838	16,346	16.115
		M			**D VOLTAGE	VOL TS	12,329	12.030	11.485	10.985	10.517	10.068	9.632	9.150
		= 30 MICRD-MHD/(18,300VDLTS		CC* CURRENT Y(CM) ' DENSITY	MILI AMP PER SQ.METER	260.00	21.075 260.00	19.838 260.00	18.375 260.00	17.325 260.00	16.650 260.00	16.189 260.00	15.988 260.00
	N WATER	UCTIVITY	OL.TAGE=	ILI AMPS	*C VOLTAGE	VOLTS	12.266	11.985	11.456	10.966	10.504	10.060	9.628	9.150
E ELEMENT METHOD	TY CALCULATION I	IETER WATER COND	ORCED MAXIMUM V	CURRENT=138.4 M	B# CURRENT Y(CM) DENSITY	MILI AMP PER SQ.METER	170.00	21.525 170.00	19.237 170.00	17.625 170.00	16.725 170.00	16.125 170.00	15.859 170.00	15.680 170.00
FINITE	ENT DENSI	50 DHMh	NON-REINF	TOTAL	*BI VOLTAGE	VOLTS	12.188	11.901	11.388	10.918	10.472	10.042	9.619	9,150
	CURRI	Y= 59.5	түре: 1		Y (CH)		90.00	90.00	90.00	00.06	90.00	90.00	90.00	00.09
		RESISTIVIT	P00L		4A* Current Density	MILI AMP Per Sq.meter		20.175	17.212	16.200	15.750	15.450	15.300	15,242
		SOILF			*Af VOLTAGE	VOLTS	12.006	11.737	11.278	10.846	10.426	10.014	9.606	9.150
					Y(CM)		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
					Z (CM)		2.0	5.0	5.0	5.0	5.0	0°0	5.0	5.0
					X(CM)		10.00	50.00	130.00	210.00	290.00	370.00	450.00	539.75
					LS ND			N	ы	4	ci Ci	9	~	8
TABLE E.11

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN WATER

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY=1600 MICRD-MHD/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

TOTAL CURRENT=142.7 MILI AMPS

** 7100011	DENSITY	MILI AMP Per	SQ.METER		122,800	150.200	172.800	187.000	195.800	201.000	203.766
G**	VULIAGE		NOLTS	9.748	9.718	9,643	9.556	9.463	9.365	9.264	9.150
	DENSITY	MILI AMP Per	SQ.METER	260.00	137,200 260,00	159.000 260.00	178.200 260.00	190.200 260.00	198.200 260.00	202,800 260,00	205+192 260+00
)) *	VUL TAGE		VOLTS	9.764	9.729	9,650	9.561	9.466	9,366	9.265	9.150
	CURRENT Y(CM) V DENSITY	MILI AMP PER	SQ.METER	170.00	154.000 170.00	177.000 170.00	190.200 170.00	198.000 170.00	203.400 170.00	206.800 170.00	208.758 170.00
*BB)	VOLTAGE		VOLTS	9.793	9.755	9.666	9.571	9.472	9.370	9.267	9.150
	Y(CM)			00.06	90.00	90.00	90.00	90.00	00.09	90.00	00.09
A*	CURRENT DENSITY	MILI AMP Per	SQ.METER		224.000	212.600	207.400	208.400	210.600	212.600	213.749
*AA	VOLTAGE		VOLTS	9.852	9.796	9.689	9.586	9.482	9.376	9.270	9.150
	Y(CM)			10.00	10,00	10.00	10.00	10.00	10.00	10.00	10.00
	Z (CM)			5.0	5.0	5.0	5.0	5.0	5.0	5.0	0 10
	X (CM)			10.00	50.00	130.00	210.00	290.00	370.00	450.00	539,75
ł	L ON			ħ	N	M	4	ы	9	~	ω

TABLE E.12

FINITE ELEMENT METHOD

CURRENT DENSITY CALCULATION IN WATER

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY=3000 MICRO-MHD/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

TOTAL CURRENT=143.3 MILI AMPS

IXX CURRENT DENSITY	MILI AMP Per Sq.meter		128.250	162.000	189.750	207,375	217.875	224,625	227,632	
**D Jol tage	VOL TS	9.502	9.485	9+442	9,391	9.336	9.278	9.218	9.150	
C* CURRENT Y(CM) V DENSITY	MILI AMP PER SQ.METER	260.00	144.750 260.00	172.875 260.00	196.500 260.00	211.125 260.00	220.875 260.00	226.500 260.00	229.638 260.00	
XOLTAGE	VOLTS	9.512	9.493	9.447	9.394	9.338	9.279	9.219	9.150	
17 Υ(CM) -	e 8	170.00	170.00	170.00	5 170.00	5 170.00	5 170.00	5 170.00	0170.00	
BB* CURREN DENSI1	MILI AN Per Sq.mete		168.000	196.125	211.875	220.875	227.625	231.375	233.64	
*BI VOLTAGE	ST. JOV	9.532	9.510	9.458	9.401	9.342	9.282	9.220	9.150	
Y (CM)		90.09	00.04	00.02	00.06	90.00	00.06	90.00	00.09	
A* CURRENT DENSITY	MILI AMP PER SQ.METER		261,000	241,875	233,625	233,250	236,250	238,125	240,000	
*Af VOLTAGE	VOLTS	9.572	9.537	9.473	9.411	9.348	9,285	9.222	9.150	
Y (CM)		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	
Z (CM)		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
X(CM)		10.00	50,00	130.00	210.00	290.00	370,00	450.00	539.75	
LS N		1	N	ы	4	ស	9	2	8	

99

APPENDIX F

EXPERIMENTAL RESULTS

B.P.A FROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 55.00 OHM-METER WATER CONDUCTIVITY= 30 MICRD-MH0/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE= 17.080VOLTS

TOTAL CURRENT=140.4 MILI AMPS

D ********************************	DENSITY	DENSITY DENSITY TENSITY	DENSITY DENSITY DENSITY MILI AMP PER VOLTS SQ.METER VOLTS SQ.METER 3.74 17.080 107.95 17.080	DENSITY DENSITY DENSITY MILI AHP PER PER VOLTS SQ.METER VOLTS SQ.METER 3.74 17.080 57.266 107.95 16.560 62.038	DENSITY DENSITY DENSITY MILI AMP PER VOLTS SQ.METER VOLTS SQ.METER VOLTS SQ.METER VOLTS SQ.METER 3.74 17.080 107.95 15.560 62.038 3.74 15.310 76.951 107.95 15.310 74.565	DENSITY DENSITY DENSITY DENSITY DENSITY HILL AMP HER PER PER PER PER PER PER PER PER PER P	DENSITY DENSITY DENSITY MILI AMP MILI AMP MILI AMP PER PER MILI AMP PER PER MILI AMP S.74 17.080 S7.266 107.95 15.560 62.038 S.74 15.310 74.951 107.95 15.560 62.038 S.74 15.460 74.034 107.95 12.450 74.182	DENSITY DENSITY DENSITY DENSITY MILI AMP MILI AMP MILI AMP MILI AMP PER PER MILI AMP FER VDLTS SQ.METER VOLTS SQ.METER 3.74 17.080 57.266 107.95 17.080 3.74 15.310 76.951 107.95 15.310 74.565 3.74 15.310 74.744 107.95 15.310 74.565 3.74 12.450 86.957 107.95 12.450 74.565 3.74 12.340 86.957 107.95 12.450 75.615	DENSITY DENSITY DENSITY MILI AHP MILI AHP MILI AHP MELER MILI AHP MILI AHP FER PER FER S.74 17.080 57.266 107.95 S.74 15.310 74.565 36.038 S.74 15.310 74.765 15.310 S.74 12.460 74.765 15.310 S.74 12.460 74.765 15.450 S.74 12.460 74.755 10.2020 S.74 10.390 16.402 74.152 S.74 10.390 16.402 75.192 S.74 10.390 16.4042 96.052	MILI AMP MENSITY MELL AMP MELL AMP HILI AMP FER MILI AMP MILI AMP FER FER MILI AMP FER VOLTS SQ.METER VOLTS SQ.METER 3.74 17.080 57.266 107.95 15.569 62.038 3.74 15.310 74.744 107.95 15.310 74.565 3.74 15.310 74.744 107.95 15.310 74.565 3.74 15.310 74.744 107.95 15.310 74.565 3.74 15.310 74.744 107.95 15.310 74.565 3.74 12.460 74.079 74.744 102.080 3.74 10.390 86.957 107.95 12.450 75.415 3.74 10.390 86.957 107.95 9.580 104.42 3.74 10.390 86.957 107.95 9.580 104.42	MILI AMP MELI AMP MILI AMP MELI AMP MILI AMP PER MILI AMP MILI AMP PER PER PER MELER MILI AMP PER PER PER PER PER S.74 17.080 57.266 107.95 15.560 62.038 S.74 15.310 76.951 107.95 15.560 62.038 S.74 15.310 76.951 107.95 15.510 74.182 S.74 15.310 74.744 107.95 15.310 74.182 S.74 12.460 76.035 107.95 12.450 75.615 S.74 10.390 86.957 107.95 12.450 75.615 S.74 10.390 86.957 107.95 9.580 164.042 S.74 10.390 9.557 107.95 9.580 164.042 S.74 10.90 77.955 9.580 164.042 S.74 19.00 77.955 9.580 164.042	MILI AMP MILI AMP MILI AMP MILI AMP PER MILI AMP PER VOLTS SG.METER VOLTS 8.74 17.080 57.266 107.95 17.080 8.74 17.080 57.266 107.95 15.560 62.038 8.74 15.310 74.951 107.95 14.250 74.182 8.74 15.310 74.951 107.95 14.250 74.182 8.74 15.310 74.951 107.95 14.250 74.182 8.74 10.390 86.957 107.95 14.250 74.182 8.74 10.390 86.957 107.95 12.450 75.415 8.74 10.390 115.555 107.95 9.580 164.042 8.74 10.390 11.749 9.580 164.042 8.74 9.569 107.95 9.580 164.042 8.74 9.569 107.95 9.580 164.042 8.74 9.569 107	MILI AMP MELI AMP MILI AMP MILI AMP PER VOLTS SQ.METER VOLTS SQ.METER VOLTS SQ.METER VOLTS SQ.METER MILI AMP FER VOLTS SQ.METER VOLTS SQ.METER S.74 17.080 57.266 107.95 17.080 62.038 S.74 15.310 76.951 107.95 15.310 74.565 S.74 15.310 76.037 107.95 15.310 74.565 S.74 10.390 86.957 107.95 12.450 74.565 S.74 10.390 86.957 107.95 12.450 74.565 S.74 10.390 86.957 107.95 12.450 74.042 B.74 10.090 115.555 107.95 9.580 164.042 B.74 10.090 115.955 10.795 9.580 164.042 B.74 10.900 21.74107.95 9.580 164.042 B.74 10.900 21.	MILI AHP MILI AHP MILI AHP MILI AHP MILI AHP PER MILI AHP MILI AHP PER VOLTS SG.METER VOLTS SG.METER 8.74 17.080 57.266 107.95 17.080 62.038 8.74 15.310 76.951 107.95 15.310 74.565 8.74 15.310 76.951 107.95 15.310 74.565 8.74 15.310 76.951 107.95 15.310 74.565 8.74 15.310 76.951 107.95 15.310 74.565 8.74 15.310 74.744 107.95 15.460 74.565 8.74 12.460 86.955 107.95 15.400 74.565 8.74 12.460 74.750 74.500 74.565 8.74 10.080 115.575 107.95 14.4042 8.74 10.080 115.575 107.95 84.4444 8.74 10.080 115.795 12.460 12.4002	MILI AHP PER MILI AHP MILI AHP <thmili ahp<="" th=""></thmili>	MILI AHP FER MILI ATA MILI ATA <th at<="" mili="" th=""><th>MILI AMP MILI AMP MILI AMP MILI AMP FER MILI AMP FER VOLTS SG.METER VOLTS SG.METER 8.74 17.080 57.266 107.95 17.080 52.038 8.74 17.080 57.266 107.95 15.560 62.038 8.74 15.310 74.744 107.95 14.250 75.182 8.74 15.310 74.744 107.95 15.510 74.555 8.74 15.310 74.744 107.95 12.450 75.4182 8.74 12.450 75.035 107.95 12.450 75.4182 8.74 14.270 75.182 75.615 75.615 75.615 8.74 10.390 86.957 107.955 12.450 75.616 8.74 10.390 81.74 10.200 102.080 75.615 8.74 10.390 81.07.955 12.450 75.615 75.615 8.74 10.390 107.955 10.020</th></th>	<th>MILI AMP MILI AMP MILI AMP MILI AMP FER MILI AMP FER VOLTS SG.METER VOLTS SG.METER 8.74 17.080 57.266 107.95 17.080 52.038 8.74 17.080 57.266 107.95 15.560 62.038 8.74 15.310 74.744 107.95 14.250 75.182 8.74 15.310 74.744 107.95 15.510 74.555 8.74 15.310 74.744 107.95 12.450 75.4182 8.74 12.450 75.035 107.95 12.450 75.4182 8.74 14.270 75.182 75.615 75.615 75.615 8.74 10.390 86.957 107.955 12.450 75.616 8.74 10.390 81.74 10.200 102.080 75.615 8.74 10.390 81.07.955 12.450 75.615 75.615 8.74 10.390 107.955 10.020</th>	MILI AMP MILI AMP MILI AMP MILI AMP FER MILI AMP FER VOLTS SG.METER VOLTS SG.METER 8.74 17.080 57.266 107.95 17.080 52.038 8.74 17.080 57.266 107.95 15.560 62.038 8.74 15.310 74.744 107.95 14.250 75.182 8.74 15.310 74.744 107.95 15.510 74.555 8.74 15.310 74.744 107.95 12.450 75.4182 8.74 12.450 75.035 107.95 12.450 75.4182 8.74 14.270 75.182 75.615 75.615 75.615 8.74 10.390 86.957 107.955 12.450 75.616 8.74 10.390 81.74 10.200 102.080 75.615 8.74 10.390 81.07.955 12.450 75.615 75.615 8.74 10.390 107.955 10.020
TAGE CI	LTS SR	.080	.560 6	.310 7.	.250 7	.450 7	.020 10	.580 16	** ***	** ****	**** **	.150 **	,580 19	.120 11	.200 8	.040 7		
NOL.	ΩΛ Ο	17	5 16	5 15	5 14	5 12	5 10	6	*** 5	***	*** 0	с. 10	5 7	5	ε α	20		
Y (CH)		107.95	107.95	107.95	107.95	107.95	107.95	107.95	107.95	10	107.95	107.95	107.95	107.95	107.95	107.95	1	
** CURRENT DENSITY	MILI AMP PER SQ.METER		57.266	76.951	74.744	76.035	86.957	115.575	170.955	206.75	31.744	124.274	169.420	95.981	81.382	74.233		
**C VOLTAGE	VOLTS	17.080	16.600	15.310	14.270	12.460	10.390	10.080	9.690	0.8.0	7.930	7.730	7.250	5.110	3.200	2.080		
Y(CM)		78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74		
** CURRENT DENSITY	MILI AMP Per Sq.Meter		53.686	79.337	76.182	74.355	74.775	96.934	91.772	44.745	53.721	94.448	107.08	82,077	81.808	70.919		
**B: VOLTAGE	AOL TS	17.080	16.630	15.300	14.240	12.470	10.690	10.430	10.230	8.820	7.3:0	7.160	6.930	5.100	3.180	2.110		
Y (CH)		66.04	66.04	65.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	64.04	66.04	66.04	66.04		
LARCURRENT DENSITY	MILI ANP Per Sq.meter		******	******	61.808	67.213	63,852	******	******	******	*****	******	******	72.210	75.417	70.256		
¢ VOLTAGE	VOLTS	17.080	****	14.940	14.080	12.480	10.960	******	******	8.840	******	******	6.630	5.070	3,300	2.240		
Y (CM)		6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.5.	6.1.1	6.75	6.37	6.35	6.35	6.35		
Z(CM)		1.50	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.70	1.70	1.90	1.70	1.90	1.90	1.90		
(H)		0.000	0.152	0.457	0.710	1.143	1.576	1.625	1.664	2.187	2.707	2.743	247.99	3.200	3.627	3.901		

B.P.A PROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

•

SOIL RESISTIVITY= 55,00 DHM-METER WATER CONDUCTIVITY=1500 MICR0-MH0/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE= 17.080VOLTS

OTAL CURRENT=141.0 MTLT AMP

	IXX CURRENT DENSITY	MILI AMP PER SQ.METER	69.196	70.985	75.463	76.035	103.340	160.314	*****	******	*****	******	182.464	110.333	83,938	74.233	79.337	63.912
	D VOLTAGE	VOLTS	17.080	15.310	14.260	12.450	066.6	9.560	****	******	******	0.150	7.630	5.170	3.200	2.080	0.750	00000
	K CURRENT Y(CM) DENSITY	ЧІLІ АНР Per Sq.meter	107.95 54.880 107.95	77.547 107.95	75.463 107.95	77.295 107.95	85.697 107.95	115.575 107.95	183.543 107.95	151101 BOLLSD	31.744 107.95	119.303 107.95	171.937 107.95	96.429 107.95	81.808 107.95	72.908 107.95	78.740 107.95	64.765 107.95
ILI AMPS	x*C*) JOLTAGE	NOLTS 1	17.080	15.320	14.270	12.430	10.390	10.080	9.680	0.00	7.980	7.740	7.250	5.100	3.180	2.080	0.760	0.000
	Y (CH) 1		78.74	78.74	78.74	79.74	78.74	78.74	78.74	/0./4	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74
CURRENT=14	CURRENT DENSITY	MILI AMP Fer Sq.meter	52.493	80.530	76.182	73.934	76.455	104.390	91.772	44.303	53.373	74.545	94.741	81.629	82.660	72.908	80.530	63.060
TOTAL	**B VOLTAGE	VOLTS	17.080	15.290	14.230	12.470	10.650	10.370	10.170	0.900	7.370	7.220	6.950	5.130	3.190	2.090	0.740	00000
	Y(CM)		66.04 66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04
	A** CURRENT DENSITY	MILI AMP Per Sg.meter	**	******	64.682	65.533	64.273	******	******	******	******	******	******	72.210	76.269	60.931	******	*****
	/ VOL TAGE	NOLTS	17.080	14.950	14.050	12.490	10.960	****	******	0.3.0	******	******	6.680	5.070	3,280	2.240	******	00000
	Y(CM)		6.35 6.35	6.35	6.35	6.35	6.35	. 6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35
	ST X(M) Z(CM) NO		1 0.000 1.90	3 0.457 1.90	4 0.710 1.90	5 1.143 1.90	6 1.576 1.90	7 1.625 1.90	B 1.664 1.90	9 2.165 1.70	10 2.747 1.90	11 2.743 1.90	12 2.795 1.90	13 3.200 1.90	14 3.627 1.90	15 3.901 1.90	16 4.206 1.90	17 4.420 1.90

B.P.A FROJECT F.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 55.00 OHM-METER WATER CONDUCTIVITY=3000 MICR0-MHN/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE= 17.080VOLTS

TOTAL CURRENT=141.0 MILI AMPS

**	CUFRENT DENSITY	MIL.I AMP Per	SQ.METER		66.810	72.178	76.900	76.455	105.441	123.031	* * * * * * *	******	******	******	200.008	111.679	81,803	75.559	80.530	62.208
U **	VOLTAGE		VOLTS	17.080	16.520	15.310	14.240	12.420	9.910	9.580	*******	******	******	8.200	7.630	5.140	3,270	2.080	0.730	0.000
	IT Y(CH)	đ	н н	107.95	0 107.95	107.95	3 107.95	5 107.95	7 107.95	9 107.95	10.101	107.05	107.95	1 107.95	107.95	5 107.95	0 107.95	5 107.95	5 107.95	3 107.95
**	CURREN	MILI AM PER	SQ.METE		54.880	76.354	78,336	74.775	86,957	103.119	1881.1.5.	27.556	31.744	109.361	192.991	94.635	82.660	72.245	81.126	62.208
**	VOLTAGE		VOLTS	17.080	16.620	15.340	14.250	12.470	10.400	10.110	9.700	9.910	8.000	7.780	7.230	5.120	3.180	2.090	0.730	0.000
	Y (CH)			78.74	78.74	78.74	78.74	78.74	78.74	78.74	70.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74	78.74
**	CURRENT DENSITY	MILI AMP Per	SQ.METER		47.721	82.916	74.744	75.193	73.934	89.477	711.006	48.140	53.373	79.536	94.741	80.732	83.086	72.909	82.916	60.504
8**	VOLTAGE		VOLTS	17,080	16.680	15,290	14.250	12.460	10.700	10.460	10.790	8.910	7.380	7.270	6.950	5.150	3.200	2.100	0.710	0.000
	Y (CM)			66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04
**	CURRENT DENSITY	MILI AMP Per	SQ.METER	2222	******	******	63.964	65.953	64.273	******	*******	******	******	******	*****	73.107	75.843	69.594	******	******
J**	VOLTAGE		NOLTS	17.080	******	14.960	14.070	12.500	10.970	******	******	9.870	******	******	6.700	5.070	3.290	2.240	*****	00000
	Y (CH)			6.35	6.35	6.35	6.35	6.35	6.35	6.35	1.2.11	6.35.	6.35	6.35	6.35	6.35	6,35	6.35	6,35	6.35
	Z(CM)			1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90
	r x(M)			0.000	2 0.152	3 0.457	4 0.710	5 1.143	\$ 1.576	7 1.625	1.1.14	9 2.185	0 2.707	1 2.743	2 2.795	3 3.200	4 3.627	5 3.901	5 4.206	7 4.420
	UN S			-			4		2		-		ĭ	11	ï	1	1	1	ř	F

_
~
•
ĿΗ
ы
Ч
щ
4
H

B.P.A PROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 59.50 DHM-METER WATER CONDUCTIVITY= 30 MICRO-MHD/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

TOTAL CURRENT=138.4 MILI AMPS

144 CURRENT DENSITY	MILI ANF PER SQ.METER		74.991	68.374	. 71.084	62.130	58.247	44.801	*****	*****	******	******	48.653	63.847	72.470	64.943	74.439	60.654
L VOLTAGE	VOLTS	18.300	17.620	16.380	15.310	13.710	12.210	12.080	****	*****	******	6.710	6.560	5,020	3.180	2.120	0.770	00000
RENT Y(CM)	AMP ER ETER	107.95	477 107.95	131 107.95	777 107.95	178 107.95	906 107,95	371 107.95	337 107.95	120 107.95	035 107.95	635 107.95	845 107.95	992 107.95	227 107.95	168 107.95	991 107.95	846 107.95
K*C** CURI DEN	MILI Fi SQ.M		. 69.	71.	63.	0 67.	0 62.	72.0	182.	0 57.	73.	0 105.	77.0	67.	75.	.99 0	74.0	0 59.
VOLTAGE	VOLTS	18.300	17.67(16.380	15.420	13.69(12.07(11.86	11.430	9.640	7.22(9.99	6.75(5.11(3.20	2.12	0.76	0.00
ит Ү(СМ) ГҮ	4 X	78.74	78.74	3 78.74	3 78.74	1 78.74	0 78.74	4 78.74	1 78.74	5 78.74	7 78.74	78.74	1 78.74	7 78.74	3 78.74	3 78.74	1 78.74	1 78.74
ER** CURREN DENSII	MILI AN PER SR.METE		69.477	73.886	67.763	66.401	62.13(79.261	76.348	66.421	75.77	101.090	74.60	68.40	74.83	66.168	74.97	58,291
** VOLTAGE	VOLTS	18.300	17.670	16.330	15.310	13.600	12.000	11.770	11.590	9.530	7.180	6.960	6.730	5.080	3,180	2.100	0.740	00000
Г Ү(СМ)	0 %	66.04	66.04	66.04	66.04	66.04	66.04	66.04	40.64	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04
A** CURREN DENSIT)	MILI AMF PER SQ.METER		******	*****	59.126	60.965	63,295	*****	******	*****	******	******	******	72.553	71.682	64.943	******	*****
** VOLTAGE	VOLTS	18.300	******	16.000	15.110	13.540	11.910	*****	******	9.460	*****	******	6.900	5.150	3,330	2.270	******	0.000
Y (CM)		6.35	6.35	6.35	6.35	6.35	6.35	6.35	1.7.1	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35
Z(CM)		1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.70	1.90	1.90	1.90	1.90	1.90	1.90	1.90	1.90
ST X(H) ND		1 0.000	2 0.152	3 0.457	4 0.710	5 1.113	5 1.576	7 1.625	8 1.4.4	9 2.165	10 2.707	11 2.743	12 2.795	13 3.200	14 3.627	15 3.901	16 4.206	17, 4.420

B.P.A PROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY=1600 MICRD-MHD/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300V0LTS

TOTAL CURRENT=142.7 MILI AMPS

XXX CURRENT DENSITY :	MILI AMP Fer Sq.meter	81.607 72.785 71.749 671.749 671.749 671.749 671.743 671.099 100.745 700.745 700.745 700.745 700.745 700.745 700.745 66.956
**D VOL.TAGE	, STJOV	117.550 177.550 117.550 117.550 113.50 110.50 113.50 110.50 10000000000
L Y(CM)		107.95 107.95 107.95 107.95 107.95 107.95 107.95 107.95 107.95 107.95
** CURREN1 DENSIT1	MILI ANF PER SQ.METER	74.991 75.542 68.427 75.686 71.065 71.065 11.8.753 11.8.753 11.8.753 11.8.753 11.8.753 11.8.753 11.6.753 11
**C JOLTAGE	VOLTS	18.300 17.6250 15.250 15.250 15.250 11.452 11.450 11.410 9.460 9.460 7.480 7.490 7.4000 7.4000 7.4000 7.4000 7.4000 7.4000 7.40000000000
Y (CH)		78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74 78.74
:** CURRENT DENSITY	MILI AMP Per Sq.meter	74.991 74.991 69.755 67.175 67.175 67.176 82.710 82.710 82.710 82.710 82.710 82.710 82.710 82.710 82.75 81.083 81.083 77.732 69.356 69.356 69.356 69.378
**B VOLTAGE	VOLTS	117.620 176.200 117.620 117.620 111.3500 111.3500 110.3500 110.3500 110.3500 110.3500 110.3500 110000000000000
Y (CH)		66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04 66.04
1## CURRENT DENSITY	MILI AMP Per Sq.heter	*** *********************************
¢ VDLTAGE	VOLTS	************************************
Y (CM)		6,355 7,556 7,557 7,567 7,5577 7,5577 7,5577 7,5577 7,55777 7,55777 7,55777 7,5577777777
Z(CM)		00000000000000000000000000000000000000
т х(н)		7 2 0
σž		

B.P.A PROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY=3000 MICRD-MH0/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VOLTS

.

TOTAL CURRENT=143.3 MILI AMPS

			A**	**		3××	**		() **	**		****	
 ST X(M) 10	Z(CH)	Y(CH)	VOLTAGE	CURRENT	Y (CM)	VOL.TAGE	CURRENT	Y(CM)	VOLTAGE	CURRENT Y	CM) VOLTA	AGE	CURRENT DENSITY
				MILI AMP			MILI AMP			MILI AMP		-	IIL.I AMP
				PER			PER			PER			P.C.R.
			VOLTS	SQ.METER		VOLTS	SQ.METER		VOLTS	SQ.METER	. 10A	1s	3Q.METER
1 0.000	1.90	6.35	18.300		66.04	18.300		78.74	18.300	107	.95 18.	300	
2 0.152	1.90	6.35	******	******	66.04	17.580	79.402	78.74	17.580	79.402 107	.95 17.	570	80.505
3 0.457	1.90	6.35	15.870	******	66.04	16.210	75.542	78.74	16.210	75.542 107	.95 16.	210	74.991
4 0.710	1.90	6.35	14.960	60.455	66.04	15.140	71.084	78.74	15.170	69.091 107	.95 15.	130	71.749
5 1.143	1.90	6.35	13.300	64.460	66.04	13.290	71.838	78.74	13,330	71.449 107	.95 13.	370	68,343
6 1.576	1.90	6.35	11.700	62.130	66.04	11.540	67.954	78.74	11.280	79.604 107	.95 10.	870	97.073
7 1.625	1.90	6.35	******	*****	66.04	11.260	96.495	78.74	11.020	89.603 107	.95 10.	470	137.850
8 1.664	1.90	61.35	*****	******	66.04	11.100	67,045	78.74	10.620	169.462 107	**** 50.	***	*****
9 2.185	1.90	6.35	9.450	******	66.04	9.460	52,803	78.74	9.460	37.405 107	**** 56.	***	*****
10 2.707	1.90	6.35	******	******	66.04	7.650	58.345	78.74	8.390	34.503 107	.95 ****	***	*****
11 2.74%	1.90	6.35	******	******	66.04	7.470	82.710	78.74	8.010	174.611 107	.95 8.	930	*****
 12 2.795	1.90	6.35	7.110	******	66.04	7.230	77.845	78.74	7.610	129.742 107	.95 7.	066	207,537
13 3.200	1.90	6.35	5.350	72.967	66.04	5.430	74.626	78.74	5.440	89.966 107	.95 5.	420	106.549
14 3.627	1.90	6.35	3.470	73.258	66.04	3.400	79,953	78.74	3.400	80.347 107	.95 3.	400	79.559
15 3.901	1,90	6.35	2.440	64.330	66.04	2.320	66.168	78.74	2.270	69.232 107	.95 2.	290	68.005
16 4.206	1.90	6.35	******	******	66.04	0.840	81.607	78.74	0.870	77.196 107	.95 0.	880	77.748
17 4.420	1.90	6.35	0.000	******	66.04	0.000	66.163	78.74	0,000	68.531 107	.95 0.	000	69.319

B.P.A PROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY=1160.00 DHM-METER WATER CONDUCTIVITY= 30 MICRD-MHD/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE=359.000V0LTS

TOTAL CURRENT=139.1 MILI AMPS

.

K* CURRENT DENSITY	MILI AMF PER SQ.METER		141.416	79.193	74.967	*****	*****	70.708	*****	*****	米ネッキャンキ	*****	133.097	******	*****	72.279	75.364	84.849
D VOLTAGE	VOLTS	359.000	334,000	306.000	284.000	***	185,000	182.000	******	******	*****	181.000	173.000	*****	71.000	48.000	21.000	00000
* CURRENT Y(CM) DENSITY	MILI AMP Per Sq.heter	107.95	152.729 107.95	76.364 107.95	71.560 107.95	****** 107.95	****** 107.95	212.123 107.95	87.025 107.95	-1.654 107.95	1.654 107.95	70.708 107.95	199.645 107.95	******* 107.95	****** 107.95	65.994 107.95	87.678 107.95	72.728 107.95
C# M) VOLTAGE	VOLTS	74 359.000	74 332.000	74 305.000	74 284.000	74 **	74 196.000	74 184.000	74 180.000	74 101.000	74 180.000	74 177.000	74 165.000	74 ******	74 70.000	74 49.000	74 18.000	74 0.000
L# CURRENT Y(C DENSITY	MILI AMP Per Sq.meter	78.	158.385 78.	76.364 78.	71.560 78.	****** 78.	****** 78.	123.739 78.	43.512 78.	33,080 78.	34.734 78.	94.277 78.	99.823 78.	****** 78.	****** 78.	65.994 78.	84.849 78.	76.768 78.
B* M) VOLTAGE	VOLTS	04 359.000	04 331.000	04 304.000	04 283.000	04 **	04 207.000	04 200.000	04 198.000	04 178.000	04 157,000	04 153.000	04 147.000	04 ******	04 70.000	04 47.000	04 19,000	04 0.000
## CURRENT Y(C DENSITY	MILI AMP Per Sq.heter	.99	181.012 66.	76.364 66.	78.375 66.	57.761 66.	57.761 66.	****** 66.	******* 66.	******* 66.	******* 66.	****** 66.	****** 99'	61.670 66.	80.809 66.	47.139 65.	92.021 66.	88.890 66.
A CM) VDLTAGE	VOLTS	.35 359.000	.35 327.000	.35 300.000	.35 277.000	.35 248.000	.35 219.000	***** 50.	****** 02.5	1.35 1/3.000	******* 52.5	******* 500*1	.35 135.000	.35 106.000	.35 66.000	1.35 51.000	5.35 22.000	.35 0.000
ST X(M) Z(CH) Y		1 0.000 1.90	2 0.152 1.90	3 0.457 1.90	4 0.710 1.90	5 1.143 1.90	6 1.576 1.90 (7 1.625 1.90	B 1.664 1.90	9 2.185 1.90	10 2.707 1.90	11 2.743 1.90	12 2.795 1.90	13 3.200 1.90	14 3.627 1.90	15 3.701 1.70 4	16 4.206 1.90	17.4.420 1.90
	·																	

B.P.A PROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY=1160.00 DHM-METER WATER CONDUCTIVITY=1500 MICR0-MHD/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE=359.000VOLTS

TOTAL CURRENT=139.1 MILI AMPS

D## CURRENT DENSITY 	MILI AMP Per S0.meter		155.782	80.673	77.087	******	* * * * * *	84.932	*****	オナキャギキキ	* * * * * * * *	*****	81.818	*****	******	71.091	77.891	79.430
! VDLTAGE	VOLTS	359.000	331.460	302.937	280.315	****	185.893	180.975	******	******	******	173.107	169.189	******	69.833	47.211	19.671	0.000
URRENT Y(CM) ENSITY	LI AMP Per .Meter	107.95	1.345 107.95	0.673 107.95	3.735 107.95	***** 107.95	**** 107.95	8.636 107.95	2.797 107.95	1.627 107.95	1.627 107.95	9.545 107.95	2.727 107.95	***** 107.95	***** 107.95	1.818 107.95	9.018 107.95	5.506 107.95
C VOLTAGE C	VOLTS SQ	359,000	330.477 16	301.953 8	280.315 7	** ******	195.729 **	193.926 20	181.959 4	180.975	179.992	177.041 6	164.255 21	** ******	69.833 * *	50.162 6	13.688 8	0.000 7
ит У(СМ) ГҮ	6 €	78.74	78.74	3 78.74	5 78.74	k 78.74	k 78.74	73.74	4 78.74	5 7R.74	5 70.74	5 78.74	78.74	k 78.74	k 78.74	78.74	5 78.74	2 78.74
8** CURREN DENSIT	MILI AM Per Sq.mete		166.905	80.673	73.735	******	*****	156.477	85.594	32.536	32.536	69.545	130.905	******	******	64.905	86.236	71.532
E VOLTAGE	VOLTS	359,000	329.493	300.970	279.332	***	208.515	199.663	195.729	1/6.058	15.6.386	153.436	145.567	******	68,849	48.195	17.704	0.000
Y(CH)		66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04	66.04
4 ** CURRENT DENSITY	MILI AMP Per Sq.Heter		189.164	77.891	67.032	62.689	54.853	******	******	******	*****	******	******	62.748	73.519	58,727	83,455	87.429
/ VOLTAGE	VOLTS	359.000	325,559	278.019	278.348	246.874	219.334	*****	******	1/7.941	******	******	135.732	106.225	69.833	51.145	21.638	0.000
Υ(CH)		6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.35	6.2.1	6.2.9	6.35	6.35	6.35	6.35	6.35	6.75	6.35
ST X(M) Z(CM) ND		1 0.000 1.90	2 0.152 1.90	3 0.457 1.90	4 0.710 1.90	5 1.143 1.90	6 1.576 1.90	7 1.625 1.90	8 1.664 1.90	9 2.185 1.70	10 2.707 1.90	11 2.743 1.90	12 2.795 1.90	13 3.200 1.90	14 3.627 1.90	15 3.901 1.90	16 4.206 1.90	17 4.420 1.90

B.P.A FROJECT P.S.U.

CURRENT DENSITY CALCULATION IN SOIL

SOIL RESISTIVITY=1160.00 DHM-METER WATER CONDUCTIVITY=3000 MICRD-MHD/CM

POOL TYPE: REINFORCED MAXIMUM VOLTAGE=359.000VOLTS

TOTAL CURRENT=139.1 MILI AMPS

			9 * *	. **		# *B	3**		0 * *	**		Q**	**	
ST X(M) NO	Z (CM)	Y(CH)	VOLTAGE	CURRENT	Y (CM)	VOLTAGE	CURRENT DENSITY	Y (CH)	VOL. TAGE	CURRENT DENSITY	Y (CM)	VOLTAGE	CURRENT DENSITY	
				MILI AMP Per			MILI ANP Per			MILI AMP Per			MILI AMP PER	
			VOLTS	SQ.METER		VOLTS	SQ.METER		VOLTS	SQ.METER		VOLTS	SQ.METER	
1 0.000	1.90	6.35	359.000		66.04	359.000		78.74	359.000		107.95	359.000		
2 0.152	1.90	6.35	325.559	137.164	66.04	329.493	166.909	78.74	332.444	150.218	107.95	332.444	150.218	
3 0.457	1.90	6.35	293.019	77.691	66.04	275.068	97.364	78.74	303.921	80.673	107.95	303.921	80.473	
4 0.710	1.90	6.35	272.447	87.141	66.04	280.315	50.274	78.74	282.282	73,735	107.95	281.299	77.087	
5 1.143	1.90	6.35	245.890	52.894	66.04	******	******	78.74	******	*****	107.95	******	*****	
6 1.576	1.90	6.35	218.351	54.853	66.04	208.515	******	78.74	196.712	*****	107.95	184.910	******	
7 1.625	1.90	61.35	******	******	66.04	201.630	121.705	78.74	184.910	208.636	107.95	181.959	52.159	
8 3.644	1.70	6.2.9	******	******	66.04	199.663	42.797	78.74	102,942	42.797	107.95	******	******	
9 2.185	1.90	6.35	178.025	******	66.04	177.041	37.416	78.74	180.975	5.254	107.95	******	****	
10 2.707	1.90	6.35	******	*****	66.04	157.370	32.536	78.74	179.992	1.627	107.95	******	*** ***	
11 2.743	1.70	6.35	******	******	66.04	155.403	46.364	78.74	178,025	46.364	107,95	180.975	**** ****	
12 2.795	1.90	6.35	135./32	******	66.04	145.567	163.636	78.74	164.255	120.022	107.95	172.123	147.273	
13 3.200	1.90	6.35	106.225	62.748	66.04	******	******	78.74	*****	*****	107.95	******	*** ***	
14 3.627	1.90	6.35	68.849	75.506	66.04	69.833	******	78.74	70.816	******	107.95	70.816	****	
15 3.901	1.90	6.35	50.162	58.727	66.04	49.178	64.909	78.74	50.162	64.909	107.95	48.195	71.091	
16 4.206	1.90	6.35	21.638	80.673	66.04	19.671	83.455	78.74	19.671	86.236	107,95	19.671	80.673	
17 4.420	1.90	6.35	0.000	87.429	66.04	0.000	79.480	78.74	0.000	79.480	107.95	0.000	79.480	

B.P.A FROJECT P.S.U.

CURRENT DENSITY CALCULATION IN WATER

SOIL RESISTIVITY= 59.50 OHM-METER WATER CONDUCTIVITY= 30 MICRO-MHD/CM

FOOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300VDLTS

TOTAL CURRENT=138.4 MILI AMPS

** CURRENT DENSITY	MILI AMP PER SQ.METER		12.000	16.875	11.625	11.625	11.250	10.500	10,588
**D VOLTAGE	VOLTS	11.340	11,180	10,730	10.420	10.11.0	9.810	9,530	9,230
Y (CM)		26.00	26,00	26,00	26.00	26,00	26+00	26.00	26+00
C.* CURRENT DENSITY	MILI AMP Per Sq.meter		20.250	16.312	11.813	11.625	10.500	10.875	10.941
*CC VDLTAGE	VOLTS	11.480	11.210	10.775	10.460	10.150	9.870	9,580	9.270
Υ (CM)		17.00	17.00	17.00	17.00	17.00	17.00	17.00	17,00
38* CURRENT DENSITY	MILI AMP PER SQ.METER		21,000	14.625	11.250	10.875	10.500	10.875	10.941
*BI VOLTAGE	VOLTS	11.430	11.150	10,760	10.460	10.170	9.890	9.600	9.290
Y (CM)		00.4	00•6	6,00	9.00	9,00	00.9	9.00	9,00
IA* CURRENT DENSITY	MILI AMP Per Sq.meter		16.500	8,250	9.375	10.500	10.875	10.500	11.294
*Af VOLTAGE	VOLTS	11.140	10.920	10.700	10.450	10.170	9.880	9.600	9.280
Y (CM)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Z(CM)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0,5
ST X(CM) ND		1 1.00	2 5.00	3 13.00	4 21.00	5 29.00	6 37.00	7 45.00	8 53,50
		1							

					14. CURRENT DENSITY	MILI AMP PER SQ.METER		40.000	130.000	130,000	160.000	160.000	160,000	169.412
		Ξ	0		**D VOLTAGE	VOLTS	9.580	9.570	9,505	9.440	0 9 2 9 0	9.280	9.200	9,110
		лонм-ох			Y(CM)		26.00	26,00	26,00	26.00	26,00	26.00	26.00	26,00
		=1600 MIC	18.300VDLT		CC* CURRENT DENSITY	MILI AMP Per Sq.meter		40.000	120.000	140,000	160.000	140.000	180.000	169,412
	N WATER	UCTIVITY	OL TAGE=	ILI AMPS	*CI VOL.TAGE	VOL TS	9.580	9.570	9.510	9.440	9.360	9.290	9.200	9.110
.U.	II NOIL	ER CONDI	VIMUM VI	42.7 M	Y (CM)		17.00	17,00	17,00	17.00	17,00	17.00	17.00	17.00
PROJECT P.S	ITY CALCUL	SO DHM-METER WAT	JRCED MA)	CURRENT=1	38* Current Density	MILI AMP PER SQ.METER		40,000	120,000	120.000	160,000	160.000	160.000	188,235
B+₽+A F	ENT DENSI		ON-REINF	TOTAL	*BI VOL.TAGE	VOLTS	9.580	9.570	9.510	9.450	9.370	9.290	9.210	9.110
	CURR	. 59.	TYPE: N		Y (CM)		00.9	00.6	00,9	9.00	9.00	9.00	9,00	6.00
		RESISTIVITY	P00L 1		AA* CURRENT DENSITY	MILI AMP PER SQ.METER		40.000	80,000	120,000	160,000	160,000	180,000	188,235
		SOIL F			*A/ VOLTAGE	VOLTS	9.570	9.560	9.520	9.460	9,380	9.300	9.210	9.110
					Y (CM)		1.00	1.00	1.00	1.00	1.00	1,00	1,00	1.00
					Z (CM)		0.5	5°0	0.5	<u>ە</u> .5	0.5	0.5	0.5	0.5
					ST X(CM) NO		1 1.00	2 5.00	3 13.00	4 21.00	5 29,00	6 37,00	7 45.00	8 53,50

111

B.P.A PROJECT P.S.U.

.

CURRENT DENSITY CALCULATION IN WATER

SOIL RESISTIVITY= 59.50 DHM-METER WATER CONDUCTIVITY=3000 MICRD-MHD/CM

POOL TYPE: NON-REINFORCED MAXIMUM VOLTAGE= 18.300V0LTS

TOTAL CURRENT=143.3 MILI AMPS

** CURRENT DENSITY	MILI AMP Per Sg.meter		75.000	112.500	150.000	150.000	225.000	150.000	211.765
**D JOLTAGE	VOLTS	9.390	9.380	9.350	9.310	9.270	9.210	9.170	9.110
Y(CH)		26.00	26.00	26.00	26.00	26.00	26.00	26.00	26.00
C* CURRENT DENSITY	MILI AMP Per Sq.meter		150.000	150.000	112.500	150.000	225.000	150.000	211.765
*CC VOLTAGE	NDLTS	9.400	9.380	9.340	9.310	9.270	9.210	9.170	9.110
Y (CM)		17.00	17.00	17,00	17.00	17.00	17.00	17.00	17.00
B* CURRENT DENSITY	MILI AMP Per Sq.meter		150.000	150.000	150.000	150.000	187.500	187,500	211.765
*BB VOLTAGE	VOLTS	9.410	9,390	9.350	9.310	9.270	9.220	9.170	9.110
Y (CM)		00.6	00.9	9.00	9.00	00.9	9.00	9.00	9.00
A * CURRENT DENSITY	MILI AMP PER SQ.METER		0000	150.000	187,500	187.500	150.000	187.500	211.765
*AA VOLTAGE	VOLTS	9.400	9.400	9.360	9.310	9.260	9.220	9.170	9.110
у (см)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Z(CM)		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ST X(CM) NO		1 1.00	2 5.00	3 13.00	4 21.00	5 29.00	6 37.00	7 45.00	8 53.50
		1							