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Abstract

This dissertation presents a duality theorem of the Aubin-Nitsche type for

discontinuous Petrov Galerkin (DPG) methods. This explains the numerically ob-

served higher convergence rates in weaker norms. Considering the specific example

of the mild-weak (or primal) DPG method for the Laplace equation, two further

results are obtained. First, for triangular meshes, the DPG method continues to

be solvable even when the test space degree is reduced, provided it is odd. Second,

a non-conforming method of analysis is developed to explain the numerically ob-

served convergence rates for a test space of reduced degree. Finally, for rectangular

meshes, the test space is reduced, yet the convergence is recovered regardless of

parity.
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Chapter 1

Introduction
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1.1 Motivation

The discontinuous Petrov-Galerkin (DPG) method was introduced in 2009 by

Demkowicz and Gopalakrishnan [16, 17, 21]. It started with analyzing spectral

methods for the simplest 1D convection problem. The DPG method guarantees

the best approximation property in the so-called energy (dual or residual) norm.

This best approximation is obtained by calculating optimal test functions which

realize the supremum of the inf-sup condition. Using spaces of the Discontinuous

Galerkin (DG) method, the calculation of the optimal test functions can be done

locally for each element of the mesh. Like a hybrid method, the DPG method also

has interface variables.

Our goal is to reduce the cost of the method as much as possible, while main-

taining the convergence rate of the method. Part of this work focuses on reducing

the order of the test spaces. This has many advantages. First, consider the left

hand side matrix of the linear system arising from the DPG method. As we shall

see later, its assembly requires computation of the Gram matrix of the test space.

Even though this matrix is block diagonal, it is of some practical interest to reduce

the block size, especially when operating near the limit of memory bandwidth in

multi-core architectures. Second, consider the right hand side computation. In

cases where load terms are expensive to evaluate, reduction of test space degree

brings significant computational savings. Finally, the third and the most com-

pelling reason that prompted us to investigate this issue, is that there are practical

limits on the degree of polynomials one can use in most finite element software.

We prefer to hit this practical limiting degree with the trial space, rather than

with the test space, because it is the approximation properties of the trial space

2



that determines the final solution quality.

As an example to illustrate the main points, we will use the Poisson equation

with Dirichlet boundary condition,

´∆u “ f on Ω, (1.1a)

u “ 0 on BΩ. (1.1b)

There are two DPG methods for the Poisson equation. One is based on an

ultra-weak formulation [18] (where constitutive and conservation equations are

both integrated by parts) while the other is based on the so-called mild-weak, or

primal formulation, developed in [8, 19] (where only the conservation equation is

integrated by parts). The example which motivates our study is the latter.

1.2 Literature Review

Finite element methods (FEM) have been proven to be extremely useful in the

numerical approximation of the self-adjoint elliptic partial differential equations

solutions [22]. It can be applied to very general and complicated geometries of

interest. In addition, there are tools for their error analysis, which depends on

the variational interpretation of the FEM as a minimization problem over finite-

dimensional spaces. However, the use of (classical) FEM for the numerical solu-

tion of hyperbolic problems and other strongly non-self-adjoint PDE problems is,

generally speaking, not satisfactory. These problems do not arise naturally in a

variational setting. Indeed, the use of FEM for such problems has been a subject

of research in the 1970s and 1980s and for most of the 1990s. Instead, finite volume

3



methods (FVM) have been predominantly used in industrial software packages for

the numerical solution of hyperbolic systems, especially in the area of Computa-

tional Fluid Dynamics [22]. This motivated the introduction of a new class of

FEM, namely, the discontinuous Galerkin (DG) FEM.

1.2.1 The DG Methods

In 1971 Reed and Hill [32] proposed the DG method for the numerical solution of

the nuclear transport PDE problem. They combine features of the finite element

and the finite volume methods (FVM) and have been successfully applied to hy-

perbolic, elliptic, parabolic and mixed form problems arising from a wide range of

applications. These methods were later analyzed by LeSaint and Raviart [28] (er-

ror estimate for tensor product mesh) and by Johnson and Pitkaranta [27]. In the

area of elliptic problems, Nitsche’s work on weak imposition of essential boundary

conditions [30] for (classical) FEM, allowed for finite element solution spaces that

do not satisfy the essential boundary conditions.

Few years later, Baker [4] proposed the first modern discontinuous Galerkin

method for elliptic problems, later followed by Wheeler [33], Arnold [1] and others.

An application of the penalty method to the finite element method is analyzed by

Babuska [3]. The DG methods were applied to many partial differential equations.

A good review can be found in the reference [14] by Cockburn et al.

DG methods exhibit attractive properties for the numerical approximation of

problems of hyperbolic or nearly-hyperbolic type, compared to both classical FEM

and FVM. Indeed, in contrast with classical FEM, but together with FVM, DG

methods are, by construction, locally (or nearly locally) conservative with respect

to the state variable; moreover, they exhibit enhanced stability properties in the
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vicinity of sharp gradients (e.g., boundary or interior layers) and/or discontinuities

which are often present in the analytical solution of convection/transport domi-

nated PDE problems. Additionally, DG methods offer advantages in the context of

automatic local mesh and order adaptivity, such as increased flexibility in the mesh

design (irregular grids are admissible) and the freedom to choose the elemental

polynomial degrees without the need to enforce any conformity requirements. The

implementation of genuinely (locally varying) high-order reconstruction techniques

for FVM still remains a computationally difficult task, particularly on general un-

structured hybrid grids. Therefore, DG methods emerge as a very attractive class

of arbitrary order methods for the numerical solution of various classes of PDE

problems where classical FEM are not applicable and FVM produce typically low

order approximations. Finally, The DG methods are attracting the interest of

many scientists because:

• They enforce the equations in an element-by-element fashion through a Galerkin

formulation which can give rise to locally conservative methods.

• They can handle any type of mesh, element shape and basis functions.

• They are ideally suited for hp´adaptivity.

• They have a built-in stabilization mechanism which does not degrade their

(high-order) accuracy.

• They can be applied to a wide variety of partial differential equations.

However, the DG methods (for second-order elliptic equations) have been crit-

icized because:

5



• For the same mesh and the same polynomial degree, the number of globally

coupled degrees of freedom of the DG methods is much bigger than those of

the standard FEM. Moreover, the orders of convergence of both the vector

and scalar variables are also the same.

• For the same mesh and the same index, the number of globally coupled

degrees of freedom of the DG methods are much bigger than those of the

hybridized version of the RT and BDM methods. Moreover, the orders of

convergence of both the vector and the local average of the scalar variables

are smaller by one.

1.2.2 The HDG Methods

Discontinuous function spaces are used in the DG methods which creates a major

disadvantage: unlike in continuous Galerkin (CG) methods (standard FEM), de-

grees of freedom are not shared between elements. As a consequence, the number

of unknowns is substantially higher compared to a CG discretization. Especially

for implicit time discretization this imposes large memory requirements, and po-

tentially leads to increased time-to-solution. In order to avoid these disadvantages,

a technique called hybridization may be utilized (see [12]), resulting in hybridized

discontinuous Galerkin (HDG) methods introduced by Cockburn, Gopalakrishnan

and Lazarov [13]. Here, the globally coupled unknowns have support on the mesh

skeleton, i.e. the element interfaces(numerical traces and numerical fluxes resulted

from integration by parts), only. This reduces the size of the global system and

coincidentally improves the sparsity pattern.

The HDG method is created using shape functions with support only on element

6



edges. These are interface or hybrid variables. The value of the solution inside

element interiors can be recovered from interface variables. The HDG methods is

considered as one of the stabilized methods. Stabilization techniques are employed

through the choice of the HDG numerical flux. The HDG methods are obtained

by discretizing characterizations of the exact solution written in terms of many

local problems, one for each element of the mesh, with suitably chosen data, and

in terms of a single global problem that actually determines them. This permits

efficient implementation since they inherit the above-mentioned structure of the

exact solution. This is what renders them efficiently implementable, especially

within the framework of hp´adaptive methods, as is typical of DG methods.

The way in which they are defined allows them to be, in some instances, more

accurate than already existing DG methods. In fact, in some cases when standard

DG methods do not converge, HDG methods do. The HDG methods can be used

for steady-state problems and for time-dependent problems when implicit time-

marching methods are used.

HDG methods use a characterization of the exact solution in terms of solu-

tions of local problems and transmission conditions. Also it uses discontinuous

approximations for both the solution inside each element and its trace on the ele-

ment boundary. The local solvers is defined by using a Galerkin method to weakly

enforce the equations on each element. It defines a global problem by weakly

imposing the transmission conditions.

1.2.3 The DPG Method

The Discontinuous Petrov-Galerkin (DPG) was introduced by Demkowicz and

Gopalakrishnan [16,17,21]. Petrov-Galerkin methods generalize the Galerkin method

7



(Bubnov-Galerkin method) by allowing distinct trial and test spaces. The trial

space is where the solution is sought. The test space is used to enforce the equa-

tions. In DPG method, one computes ”optimal” test functions and they are called

”optimal” since the supremum in the inf-sup condition is attained at them. With

such optimal test functions, the discrete variational form of the problem inherits

stability from the continuous variational form of it. The choice of the inner prod-

uct on the test space affects the computation of the optimal test functions, so it

is important in the method. Computing those optimal test functions is an extra

step in the DPG method compared to other finite element methods. In addition,

these test spaces can have discontinuities on the boundaries of the mesh elements,

which makes the calculations of the optimal test functions local and inexpensive.

By the DPG method, we get optimal solution in an energy norm and it produces

a symmetric positive definite stiffness matrix.

There are several advantages of the DPG method over other finite element

method: (a) stability is guaranteed, (b) its stiffness matrix is always symmetric

and positive definite so we can use iterative solvers, and (c) it has an error represen-

tation function that can be used for a-posteriori error estimation and adaptivity.

It is considered as a hybrid DG method and can be thought of as a least-square

method in nonstandard norms, or as Petrov-Galerkin methods with special test

spaces, or as a nonstandard mixed method.

1.2.4 Scope

This dissertation will proceed in five main parts. We will begin by introducing

the abstract Discontinuous Petrov-Galerkin (DPG) method as a mixed method for

linear problems highlighting some important properties of the method. Our next

8



step will be presenting the new reduced degree DPG method for odd and even

degrees. Then, we will analyze the DPG method by nonconforming analysis using

Strang lemma. Next, the duality argument for the DPG method will be presented.

Finally, We will study the convergence rates of the DPG method for rectangular

meshes and show how we can get the same convergence rate with a reduced test

space.

9



Chapter 2

The DPG Method
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In this chapter, we introduce the DPG method. First, we begin with the general

settings of the method. Then, we introduce the main example in this study, namely,

the Poisson Equation with Dirichlet boundary conditions.

2.1 General results

We start with a linear variational problem, and we want to approximate x P X

satisfying

bpx, yq “ `pyq @y P Y. (2.1)

Here X is called a trial space and Y is called a test space. We assume that X and Y

are Hilbert spaces, b is a bilinear and continuous form onXˆY (bp¨, ¨q : XˆY Ñ R)

and ` is a linear continuous form on Y , i.e. an element of the dual space Y ˚. Here

and throughout p., .qY denotes the inner product in Y with the corresponding norm

}y}Y .

Suppose X0 and X̂ are Hilbert spaces over R. Solutions are sought in the “trial

space” X “ X0 ˆ X̂ and have an “interior” component in X0 and an “interface”

component in X̂. Suppose there are continuous bilinear forms b̂p¨, ¨q : X̂ ˆ Y Ñ R

and b0p¨, ¨q : X0 ˆ Y Ñ R be set by

bp pw, ŵq, y q “ b0pw, yq ` b̂pŵ, yq, (2.2)

for all pw, ŵq P X and y P Y .

Given any ` P Y ˚ we are interested in approximating an x ” px0, x̂q P X

satisfying equation 2.1.

Definition 2.1. Given any trial space Xh, we define it optimal test space for the
11



continuous bilinear form bp., .q : X ˆ Y Ñ R by

Y opt
h “ T pXhq

where T : X Ñ Y (the trial-to-test operator) be defined by

pTw, yqY “ bpw, yq, @y P Y, w P X. (2.3)

Equation 2.3 uniquely defines a Tw for any given w P X, by Riesz representa-

tion theorem. We call Tw the ”optimal” test function of w, because it solves an

optimization problem, as we see next.

Proposition 2.2. (Optimizer). For any w P X, the maximum of

fwpyq “
|bpw, yq|

}y}Y

over all nonzero y P Y is attained at y “ Tw.

Proof. By duality in Hilbert spaces,

sup
0‰yPY

fzpyq “ sup
0‰yPY

|pTz, yqY |

}y}Y
“ }Tz}Y

and fzpTzq “ }Tz}Y .

The DPG approximation to x ” px0, x̂q P X , lies in a finite dimensional trial

subspace Xh Ď X (where h denotes a parameter determining the finite dimension).
12



LetXh,0 Ď X0 and X̂h Ď X̂ be finite-dimensional subspaces and letXh “ Xh,0ˆX̂h.

So the ”ideal” DPG method reads: find xh P Xh satisfying

bpxh, yq “ `pyq, @y P Y opt
h “ T pXhq. (2.4)

Since the trial space is different from the test space in general, this is a Petrov-

Galerkin approximation, which is well-posed [17, 18]. The main difficulty of the

ideal method is that in order to compute xh (see [25]) , one needs a basis for Y opt
h ,

which must be obtained by applying T . This is infeasible, as seen from 2.3, if Y is

infinite dimensional, unless a solution to 2.3 can be written out in closed form. In

certain one-dimensional problems, and in some multi-dimensional problems, like

the transport equation, the application of T can be exactly written out in closed

form (see [16, 17]). But for the vast majority of interesting problems, this is not

possible. To overcome the above-mentioned difficulty, we need to define Y r which

is a finite-dimensional subspace of Y and approximate the operator T by T r, where

T r : X Ñ Y r be defined by

pT rw, yqY “ bpw, yq, @y P Y r, w P Xh. (2.5)

Instead of solving the ”ideal” DPG method 2.4 in a closed form, we will solve

the so-called ”practical” DPG method(see [25]). For (2.1), the ”practical” DPG

method computes xh ” pxh,0, x̂hq in Xh satisfying

bpxh, yq “ `pyq, @y P Y r
h “ T rpXhq. (2.6)

13



Remark 2.3. The process of introducing the interface space X̂h is called hybridiza-

tion. X̂h is a space of new unknowns of interelement fluxes and traces. It localizes

the action of the operator T r with the use of a space Y that contains functions

discontinuous across mesh element interfaces. This then implies that the Gram

matrix becomes block diagonal, with one block per mesh element (since Y r may

now be chosen to be a DG subspace). The application of T r is thus reduced to an

easy block diagonal inversion.

2.1.1 The Error Analysis of the Practical DPG Method

In this section, we will show the discrete stability of the practical DPG method.

So we need to prove the discrete inf-sup condition over the space Y r, which can be

done easily by proving the existence of a Fortin operator into Y r. A fundamental

quasioptimality result for the practical DPG methods is stated in Theorem 2.6

below. It holds under these assumptions.

Assumption 2.4. Suppose tz P X : bpz, yq “ 0, @y P Y u “ t0u and suppose there

exist C1, C2 ą 0 such that

C1}y}Y ď sup
0‰zPX

|bpz, yq|

}z}X
ď C2}y}Y @y P Y. (2.7)

Assumption 2.5. There is a linear operator Π : Y Ñ Y r and a CΠ ą 0 such that

14



for all wh P Xh and all v P Y ,

bpwh, v ´Πvq “ 0, and }Πv}Y ď CΠ}v}Y .

Theorem 2.6 (see [25]). Suppose Assumptions 2.4 and 2.5 hold. Then the DPG

method (2.6) is uniquely solvable for xh and

}x´ xh}X ď
C2CΠ
C1

inf
zhPXh

}x´ zh}X

where x is the unique exact solution of (2.1).

2.1.2 DPG Method as a Mixed Method

Another well-known result, motivated by [15], is an equivalence of the DPG method

with a mixed Bubnov-Galerkin formulation, so it is easily implementable in codes

without support for Petrov-Galerkin forms. Instead of identifying the second ar-

gument in the formulation 2.6 as the optimal test function, we identify the first

argument as the error representation function. To state it, we first define the error

representation function: let εr be the unique element of Y r satisfying

pεr, yqY “ `pyq ´ bpxh, yq, @y P Y
r. (2.8)

Theorem 2.7. The following are equivalent statements:

i) xh P Xh solves the DPG method (2.6).
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ii) xh P Xh and εr P Y r solve the mixed formulation

pεr, yqY ` bpxh, yq “ `pyq @y P Y r, (2.9a)

bpzh, ε
r
q “ 0 @zh P Xh. (2.9b)

Its simple proof is omitted (see e.g. [23]).

Thus, the method comes with a ”built-in” a-posteriori error estimation or, more

precisely, a-posteriori error evaluation. This is useful for hp´adaptivity. So, no

need to code an error estimator for driving adaptivity in DPG methods.

Remark 2.8. The norm of εr is bounded by the error: Choosing y “ εr in (2.8),

we obtain

}εr}2Y “ pε
r, εrqY “ `pεrq ´ bpxh, ε

r
q “ bpx´ xh, ε

r
q.

Hence, by Assumption 2.4,

}εr}Y ď C2}x´ xh}X . (2.10)

This theme is further developed in [10], where }εr}Y is established to be both a

reliable and an efficient error estimator.
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2.1.3 Weakly conforming test space

In this section we discuss an alternate interpretation of the DPG method based on

the concept of global optimal test functions (see [20]).

In order to study a relation between the approximate local and global test

functions, we will consider the abstract notation for the bilinear form 2.2. The

variable ŵ denotes the unknown abstract trace defined on the internal skeleton

only. For global-conforming test functions, the second term vanishes. To see that,

we define a weakly conforming test space as follows,

Y r
0 “ ty P Y

r : b̂pŵh, yq “ 0, @ŵh P X̂hu (2.11)

and let T r0 : X0 Ñ Y r
0 be defined by pT r0w, yqY “ b0pw, yq for all y P Y r

0 . In the

examples we have in mind, Y r is a discontinuous Galerkin (DG) space, and Y r
0 is a

subspace with weak interelement continuity constraints, i.e., a weakly conforming

space. In such cases, the application of the operator T r0 requires a global inversion.

We then compare these two DPG methods:

Find pxh,0, x̂hq P Xh : bp pxh,0, x̂hq, y q “ `pyq @y P Y r
h ” T rpXhq. (2.12a)

Find xh,0 P Xh,0 : b0pxh,0, yq “ `pyq @y P Y r
h,0 ” T r0 pXh,0q. (2.12b)

The first is the same as (2.6), the standard DPG method. We view (2.12a) as

a “hybridized” form of the second method (2.12b), and the next theorem shows

in what sense they are equivalent. The method (2.12b) is not the preferred for

implementation due to the expense of applying T r0 , but we will use it later for

error analysis.
17



Theorem 2.9. The test spaces satisfy Y r
h,0 Ă Y r

h . Hence, if pxh,0, x̂hq P Xh

solves (2.12a), then xh,0 solves (2.12b).

Proof. Let Y r
K be the Y -orthogonal complement of Y r

h in Y r. Then we have the

orthogonal decomposition

Y r
“ Y r

h ` Y
r
K (2.13)

where Y r
K is the Y -orthogonal complement of Y r

h in Y r. Let y0 P Y
r
h,0. Apply (2.13)

to decompose y0 “ yh ` yK, with yh P Y
r
h and yK P Y

r
K.

First, we claim that yK P Y
r

0 . This is because

b̂pŵh, yKq “ pT
r
p0, ŵhq, yKqY “ 0 @ŵh P X̂h.

The last identity followed from the orthogonality of yK to T rpXhq.

Next, we claim that yK “ 0. It suffices to prove that py0, yKqY “ 0 since

py0, yKqY “ }yK}
2
Y . Since y0 P Y

r
h,0, there is a wh P Xh,0 such that y0 “ T r0wh.

Then,

py0, yKqY “ pT
r
0wh, yKqY “ b0pwh, yKq as yK P Y

r
0

“ pT rpwh, 0q, yKqY “ 0 as T rpXhq K yK.

Finally, since yK “ 0, we have y0 “ yh ` 0 P Y r
h . Thus Y r

h,0 Ă Y r
h . The second

statement of the theorem is now obvious by choosing y P Y r
h,0 in (2.12a).
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We conclude that the practical DPG method may be interpreted simply as

a localization of the corresponding global PG methodology (see [20]). From the

analysis point of view, it looks like one can deemphasize convergence of traces

(and fluxes) and focus on studying the convergence of the interior variables only. In

particular, a discretization of traces with discontinuous elements is non-conforming

from the point of view of the DPG method but it is perfectly OK from the point of

view of the global PG method and non-conforming discretization of optimal test

functions. As the approximation of optimal test functions in non-conforming, one

has to account for both approximation and consistency errors using the Second

Strang Lemma.

2.1.4 Injectivity

The bilinear forms bp., .q and b̂p., .q generate operators. There is a relation between

these operators, namely, the injectivity of one of them implies the injectivity of

the other under some assumptions. By the injectivity, we guarantee the unique

solvability of the method.

Let Bh : Xh Ñ pY rq˚ be the operator generated by the form bp¨, ¨q, i.e.,

pBhwhqpyq “ bpwh, yq, @wh P Xh, y P Y
r.

Similarly, let B̂h : X̂h Ñ pY rq˚ be defined by

pB̂hẑhqpyq “ b̂pẑh, yq, @ẑh P X̂h, y P Y
r. (2.14)

The injectivity of Bh yields the unique solvability of the DPG method
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Assumption 2.10. Suppose

a) Xh,0 Ď Y r,

b) b̂pẑh, z0q “ 0 for all ẑh P X̂h and z0 P Xh,0, and

c) any z0 P Xh,0 satisfying b0pz0, z0q “ 0 must be zero.

Theorem 2.11. If Bh is injective, then B̂h is injective, and the DPG method (2.6)

is uniquely solvable. Conversely, if B̂h is injective, then Bh is injective, provided

Assumption 2.10 holds.

Proof. Suppose Bh is injective. The injectivity of B̂h is obvious from B̂hŵh “

Bhp0, ŵhq. We also claim that T r is injective: Indeed, if wh P Xh satisfies T rwh “ 0,

then 0 “ pT rwh, yqY “ bpwh, yq “ pBhwhqpyq for all y P Y r, so wh “ 0. The

injectivity of T r implies that dimpY r
h q “ dimpXhq, so the DPG method (2.6) yields

a square system. Moreover, since (2.6) is the same as

pT rxh, T
rwhqY “ `pT rwhq @wh P Xh,

the injectivity of T r also implies that there is a unique solution xh in Xh.

Now suppose B̂h is injective. To prove that Bh is injective, consider a pw0, ŵq P
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Xh satisfying Bhpw0, ŵq “ 0. Then

0 “ pBhpw0, ŵqqpw0q by Assumption 2.10(a)

“ b ppw0, ŵq, w0q “ b0pw0, w0q ` b̂pŵ, w0q

“ b0pw0, w0q, by Assumption 2.10(b).

Therefore, by Assumption 2.10(c), w0 “ 0. It only remains to show that ŵ “ 0.

But pB̂hŵqpyq “ b̂pŵ, yq “ bp p0, ŵq, yq “ pBhpw0, ŵqqpyq “ 0 for all y P Y r. Hence

the injectivity of B̂h implies ŵ “ 0.

2.2 Application to the Poisson Equation

Suppose Ω is a bounded open polygon in R2 with Lipschitz boundary, meshed by

Ωh, a geometrically conforming shape regular finite element mesh of triangles. Let

h “ maxKPΩh
diamK. Let BΩh denote the collection of all element boundaries

BK for all elements K in Ωh. We assume that BK is Lipschitz for all K P Ωh, so

that we may use trace theorems on each element, but the shape of the elements

is otherwise arbitrary. We now study the DPG approximation to the Dirichlet

problem

´∆u “ f on Ω, (2.15a)

u “ 0 on BΩ. (2.15b)

All functions are real-valued in this section.
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There are two DPG methods for the Laplace’s equation. One is based on

an ultra-weak formulation [18] (where constitutive and conservation equations are

both integrated by parts) while the other is based on the so-called mild-weak,

or primal formulation, developed in [8, 19] (where only the conservation equation

is integrated by parts). The latter is the one which we are going to use in this

dissertation. We obtain a weak formulation (as in [19]) by multiplying 2.15 by a

test function and integrate by parts over each element K then sum up to get the

so-called the primal formulation, as follows:

Find pu, q̂nq P X “ X0 ˆ X̂ satisfying

p∇u,∇vqΩh
´ xq̂n, vyBΩh

“ pf, vqΩh
@v P Y (2.16)

where the spaces and the notations used are defined below using the framework

of section 2.1, as follows,

Set X0 “ H1
0 pΩq, X̂ “ H´1{2

pBΩhq,

Y “ H1
pΩhq, where

H1
pΩhq “ tv : v|K P H

1
pKq, @K P Ωhu,

H´1{2
pBΩhq “ tη P

ź

K

H´1{2
pBKq : D r P Hpdiv, Ωq such that

η|BK “ r ¨ n|BK , @K P Ωhu,

where n denotes the unit outward normals on the boundary of mesh elements. The
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space H´1{2pBΩhq is normed, as in [31], by

}r̂n}H´1{2pBΩhq
“ inf

 

}r}Hpdiv,Ωq : @r P Hpdiv, Ωq such that r̂n|BK “ r ¨ n|BK
(

.

(2.17)

The ”broken” Sobolev space H1pΩhq is normed by

}v}2H1pΩhq
“ pv, vqΩh

` p∇v,∇vqΩh
, (2.18)

Throughout the derivatives are always calculated element by element, and

pr, sqΩh
“

ÿ

KPΩh

pr, sqK , x`, wyBΩh
“

ÿ

KPΩh

x`, wy1{2,BK .

where p¨, ¨qK denotes the L2pKq-inner product and x`, ¨y1{2,BK denotes the action of

a functional ` in H´1{2pBKq.

The bilinear and linear forms of the weak formulation are set by

b0pu, vq “ p∇u,∇vqΩh
, b̂pq̂n, vq “ ´xq̂n, vyBΩh

, `pvq “ pf, vqΩh
.

This completes the definition of all the notations that appeared in 2.16.

Remark 2.12. The variational formulation 2.16 is similar to the one in ( [7],p.141),

which is called primal hybrid method. There, it is used as motivation to intro-

duce hybrid and non-conforming methods. An important difference between the
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two formulations is that, the formulation in [7] is standard Galerkin (or Bubnov-

Galerkin), while 2.16 is a Petrov-Galerkin formulation since X ‰ Y .

The well-posedness of 2.16 is proven in [19], i.e. assumption 2.4 was verified

for this formulation there. We will denote the exact solution of the resulting weak

formulation (2.1) by pu, q̂nq P X. Note that q̂n|BK “ Bnu|BK for all K P Ωh.

2.2.1 The DPG Approximation

Consider applying the method on a two-dimensional domain Ω meshed by a geo-

metrically conforming finite element mesh of triangles of mesh size h. The method

produces an approximation uh to the solution u of the Laplace’s equation in the

interior of the mesh elements, as well as an approximation to the flux q on the

element interfaces. The first is a polynomial of degree at most ku on each mesh

element and the second is a polynomial of degree at most kq on each mesh edge.

The method uses test functions v that are polynomials of degree at most kv on

each mesh element.

To complete the specification of the method, it only remains to set the discrete

spaces. Let PkpDq denote the set of polynomials of degree at most k on the

domain D (with the understanding that the set is empty when k ă 0). Let

PkpΩhq “ tv : v|K P PkpKq for all K P Ωhu and let PkpBΩhq denote the set of

functions v on BΩh having the property v|E P PkpEq for all edges of BK and for all
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K P Ωh. In [19], the finite dimensional spaces are set as follows: k ě 0,

Case 1

Xh,0 “ PkpΩhq XX0 ñ ku “ k

X̂h “ Pk´1pBΩhq X X̂ ñ kq “ k ´ 1

Y r
“ Pk`1pΩhq ñ kv “ k ` 1

Remark 2.13. We call this as case 1, as we are going to take into consideration

more cases and analyze them focusing on the covergence rates of the DPG method

for each case.

The discrete solution in each of these cases is denoted by puh, q̂n,hq P Xh.

Assumption 2.5 was verified in [19] using the above-mentioned finite dimensional

spaces.This then led to [19, Theorem 4.1], which states that

}u´uh}H1pΩq`}q̂n´q̂n,h}H´1{2pBΩhq
ď C inf

pwh,r̂n,hqPXh

`

}u´wh}H1pΩq`}q̂n´r̂n,h}H´1{2pBΩhq

˘

.

Here and henceforth, C denotes a generic constant independent of the size of the

triangles in Ωh (but dependent on mesh shape regularity), whose value at different

occurrences may vary. As explained in previous papers (see e.g., [18]), applications

of the Bramble-Hilbert Lemma in the Lagrange and Raviart-Thomas spaces show
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that

inf
whPPlpΩhqXX0

}u´ wh}H1pΩq ď Chl|u|Hl`1pΩq, @l ě 0,

(2.19a)

inf
r̂n,hPPm´1pBΩhqXX̂

}q̂n ´ r̂n,h}H´1{2pBΩhq
ď Chm

`

|u|Hm`1pΩq ` |f |HmpΩq

˘

, @m ě 1.

(2.19b)

Therefore,

}u´ uh}H1pΩq ` }q̂n ´ q̂n,h}H´1{2pBΩhq
ď Chk

`

|u|Hk`1pΩq ` |f |HkpΩq

˘

. (2.20)

So the convergence rate of }u´ uh}H1pΩq is Ophkq.

2.3 Numerical Results

In this section, we report results from a numerical experiment. The presented DPG

method for the Laplace equation was used to solve the Dirichlet problem with Ω

set to the unit square. The function f was chosen so that the exact solution is

u “ sinpπxqsinpπyq (2.21)

We construct an nˆn uniform mesh by dividing Ω into n2 congruent squares and

further subdividing each square into two triangles by connecting the diagonal of

positive slope. Its mesh size is h “
?

2{n. The method is applied on a sequence of

such meshes with geometrically increasing n. The implementation of the method
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is done using FEniCS.

The convergence rates for case 1 in H1´norm and in L2´norm are shown in the

figures below. The slopes report the rate of convergence in L2pΩq, approximately

calculated using two successive error values by log2p}u´ uh}L2pΩq{}u´ uh{2}L2pΩqq.

The H1pΩq-convergence rate is computed similarly. We observe from the figures

that the L2pΩq-rate is one order higher than the H1pΩq-rate, as expected from

Theorem 5.5.
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Figure 2.1: Case 1 H1´Error
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Figure 2.2: Case 1 L2´Error
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2.4 DPG Convergence Rates for Singularities

In this section, we will present an example where convergence rates do not improve

even with increasing the polynomial degrees. We encounter this situation with

singularities as in the following example.

Example 2.14.

´∆u “ f on Ω “ r0, 1s2, (2.22a)

u “ 0 on BΩ. (2.22b)

Where The function f was chosen so that the exact solution is

u “ xp1´ xqyp1´ yq logpx2
` y2

q (2.23)

We notice that there is a singularity at the origin.

We construct an nˆ n uniform mesh by dividing Ω into n2 congruent squares

and further subdividing each square into two triangles by connecting the diago-

nal of positive slope. Its mesh size is h “
?

2{n. The method is applied on a

sequence of such meshes with geometrically increasing n. The implementation of

the method is done using NGSolve. In table 2.4, the last column reports the rate

of convergence in L2pΩq, approximately calculated using two successive rows by

log2p}u´ uh}L2pΩq{}u´ uh{2}L2pΩqq. The H1pΩq-convergence rate is computed sim-

ilarly. We observe from the table that the L2pΩq-rate is one order higher than

the H1pΩq-rate, as expected from Theorem 5.5. In addition, the convergence rate

does not improve when k ą 3 due to the regularity limit, since we approximate the
30



singular solution 2.23 which is in Hs`1pΩq for s ă 3, this observation in accordance

with 2.19. We consider here case 1 from section 2.2.1 and the numerical results

are shown in table 2.4.
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Figure 2.3: Singularity (k=1, n=16)

Table 2.1: Case 1: pku, kq, kvq “ pk, k ´ 1, k ` 1q

n }u´ uh}H1pΩq rate }u´ uh}L2pΩq rate

k “ 1
2 1.24E-01 1.02 1.67E-02 1.79
4 6.15E-02 0.85 4.80E-03 1.67
8 3.41E-02 0.98 1.51E-03 1.94
16 1.73E-02 1.00 3.93E-04 1.98
32 8.68E-03 1.00 9.98E-05 2.00
64 4.34E-03 2.50E-05

k “ 2
2 7.19E-02 1.85 1.53E-03 2.57
4 1.99E-02 1.91 2.57E-04 2.97
8 5.30E-03 1.93 3.28E-05 3.00
16 1.39E-03 1.96 4.10E-06 3.02
32 3.57E-04 1.98 5.06E-07 3.02
64 9.05E-05 6.24E-08
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Figure 2.4: Singularity (k=10, n=2)

Table 2.2: Case 1: pku, kq, kvq “ pk, k ´ 1, k ` 1q

n }u´ uh}H1pΩq rate }u´ uh}L2pΩq rate

k “ 3
2 1.19E-02 2.25 7.18E-04 3.49
4 2.51E-03 2.61 6.38E-05 3.59
8 4.13E-04 2.70 5.29E-06 3.66
16 6.35E-05 2.74 4.18E-07 3.72
32 9.48E-06 2.78 3.17E-08 3.76
64 1.38E-06 2.34E-09

k “ 4
2 5.20E-03 2.65 2.40E-05 3.75
4 8.26E-04 2.88 1.78E-06 3.88
8 1.12E-04 2.93 1.21E-07 3.90
16 1.48E-05 2.95 8.09E-09 3.93
32 1.90E-06 2.97 5.30E-10 3.96
64 2.43E-07 3.42E-11
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Table 2.3: Case 1: pku, kq, kvq “ pk, k ´ 1, k ` 1q

n }u´ uh}H1pΩq rate }u´ uh}L2pΩq rate

k “ 5
2 1.61E-03 2.71 3.95E-05 4.07
4 2.46E-04 2.93 2.36E-06 3.97
8 3.23E-05 2.96 1.50E-07 3.98
16 4.14E-06 2.98 9.55E-09 3.98
32 5.25E-07 2.99 6.03E-10 3.99
64 6.61E-08 3.80E-11

k “ 6
2 6.66E-04 3.03 3.42E-06 3.87
4 8.13E-05 3.02 2.33E-07 3.99
8 1.00E-05 3.01 1.47E-08 3.99
16 1.25E-06 3.00 9.23E-10 4.00
32 1.56E-07 3.00 5.79E-11 4.00
64 1.95E-08 3.62E-12

Table 2.4: Case 1: pku, kq, kvq “ pk, k ´ 1, k ` 1q

n }u´ uh}H1pΩq rate }u´ uh}L2pΩq rate

k “ 10
2 8.30E-05 2.96 2.99E-07 4.03
4 1.07E-05 2.98 1.83E-08 4.01
8 1.35E-06 2.99 1.13E-09 4.01
16 1.70E-07 2.99 7.04E-11 4.00
32 2.13E-08 4.39E-12
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Chapter 3

Reduced Degree DPG Methods Based on Parity
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3.1 Introduction

The purpose of this chapter is to provide a theoretical explanation for some nu-

merically observed convergence rates of the discontinuous Petrov-Galerkin (DPG)

method (case 2). While some aspects of the theory that follows are general, we will

use the Laplace equation throughout as the example to illustrate the main points.

Considering the notation used in section 2.2.1, we want to reduce the poly-

nomial degree of the test space, in order to get a cheaper method with the same

convergence rates. It is the interplay between the convergence rates and the degrees

ku, kq, kv that we intend to study.

We will study here the following case: k ě 1, (k is odd)

Case 2

Xh,0 “ Pk´1pΩhq XX0 ñ ku “ k ´ 1

X̂h “ Pk´1pBΩhq X X̂ ñ kq “ k ´ 1

Y r
“ PkpΩhq ñ kv “ k

Case 1 in section 2.2.1 is the standard DPG setting for which error estimates

in the energy norm are proven in [19] . Case 2 is motivated by a desire to reduce

the test space degree.

Our numerical experience with a few examples with smooth solutions is sum-

marized in Table (3.1) . We observed that Case 2 is not always stable: It yielded

singular stiffness matrices for some even k. However, when k is odd, it converged,

albeit at one order less than the standard DPG case displayed in the first row. In
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addition, we observed that the convergence rate in L2pΩq, in both cases, is one

order higher than in H1pΩq.

We explain the higher convergence rate in L2pΩq by developing a duality ar-

gument for DPG methods (analyzed in chapter 5). The duality theory is general

and can be applied beyond the Laplace example as in section 5.4 where it has

been applied for the Helmholtz equation. In this chapter, We give a complete

theoretical explanation for the even-odd behavior, including negative results by

counterexamples for even k, and a proof of a positive result for odd k.

3.2 Explaining the even-odd separation

We must first check if the DPG system is solvable for case 2. For this, Theorem 2.11

is useful. Clearly, Assumption 2.10 holds – in fact, it holds for all cases: items (a)

and (b) are obvious, while (c) follows by the Poincaré inequality. Hence, applying

Theorem 2.11, we conclude that the DPG method in Case 2 is uniquely solvable

if and only if B̂h is injective.

Example 3.1. We begin with a negative result showing that B̂h is not injective

when k “ 2. On a mesh consisting of a single element in the xy-plane, namely

the unit triangle with vertices a0 “ p0, 0q, a1 “ p1, 0q and a2 “ p0, 1q, we choose a

basis for X̂h: Letting ei denote the edge opposite to ai and 1ei denote the indicator

Table 3.1: Summary of numerically observed convergence rates

h-convergence rates of uh
in H1pΩq in L2pΩq

Case 1 k k ` 1
Case 2 (k odd) k ´ 1 k
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function of ei, the basis is p1e2 , x|e2 , 1e1 , y|e1 , 1e0{
?

2, x|e0{
?

2q. For the test space

Y r, we choose the polynomial basis (1, x, y, x2, xy, y2). The stiffness matrix of

the operator B̂h with respect to these bases is

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 1{2 1 1{2 1 1{2

1{2 1{3 0 0 1{2 1{3

0 0 1{2 1{3 1{2 1{6

1{3 1{4 0 0 1{3 1{4

0 0 0 0 1{6 1{12

0 0 1{3 1{4 1{3 1{12

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

whose determinant is zero. Hence the DPG method is not uniquely solvable in this

example.

Example 3.2. We will present another negative result showing that B̂h is not

injective when k “ 4. On a mesh consisting of the unit triangle only, we choose a

basis for X̂h (using the notation in example 3.1): the basis is

p1e2 , x|e2 , x
2
|e2 , x

3
|e2 , 1e1 , y|e1 , y

2
|e1 , y

3
|e1 , 1e0{

?
2, x|e0{

?
2, x2

|e0{
?

2, x3
|e0{
?

2q.

For the trial space Y r, we choose the polynomial basis

p1 , x , y , yx , x2 , y2 , x2y , y2x , y2x2 , x3 , y3 , x3y , y3x , x4 , y4
q
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Let B be the stiffness matrix of the operator B̂h with respect to these bases, we

find that

detpBT
˚Bq “ 0.

Hence the DPG method is not uniquely solvable in this example.

We now show that for odd k, the situation is better.

Lemma 3.3. Let K be a triangle and k ě 1 be an odd integer. Any w in PkpKq

satisfying

ż

E

w q ds “ 0 @ q P Pk´1pEq, @ edges E Ă BK, (3.1a)

ż

K

w r dx “ 0 @ r P Pk´3pKq, if k ě 3, (3.1b)

must vanish on K.

Proof. Equation (3.1a) implies that w|E must be a scaled Legendre polynomial

of degree exactly k on E. Since k is odd, this implies that the values of w at

the endpoints of each edge must have opposite signs. This is impossible unless

w vanishes on BK. But if w|BK “ 0, then w ” 0 if k “ 1. If k ě 3, then w “

λ1λ2λ3sk´3, for some sk´3 P Pk´3pKq where λi is the ith barycentric coordinate.

Then (3.1b) implies w ” 0 on K.

Theorem 3.4. In Case 2, for odd k ě 3, these statements hold:

i) The DPG method is uniquely solvable.
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ii) The solution puh, q̂n,hq of the DPG method satisfies

}u´uh}H1pΩq`}q̂n´ q̂n,h}H´1{2pBΩhq
ď Chk´1

`

|u|HkpΩq ` |f |Hk´1pΩq

˘

. (3.2)

iii) If Ω is convex, then

}u´ uh}L2pΩq ď Chk
`

|u|HkpΩq ` |f |Hk´1pΩq

˘

. (3.3)

Proof. By Theorem 2.6, if we verify Assumption 2.5, then the DPG method is

uniquely solvable.

To do so, we first claim that there exists a CΠ ą 0 and a unique Πv P PkpKq

for any v P H1pKq, such that

ż

E

pv ´Πvqq ds “ 0 @ q P Pk´1pEq, @ edges E Ă BK, (3.4a)

ż

K

pv ´Πvqr dx “ 0 @ r P Pk´3pKq (3.4b)

}Πv}H1pKq ď CΠ}v}H1pKq @ v P H1
pKq. (3.4c)

It is easy to see that (3.4a)–(3.4b) forms a square system for Π, so existence of Πv

follows from uniqueness. But uniqueness is already proved by Lemma 3.3. The

estimate (3.4c) will be proved by the following simple scaling argument:

Define the bilinear form ap., .q : Y rˆX̄h Ñ R, where X̄h “ Pk´1pEqˆPk´3pKq.
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The equations (3.4a) and (3.4b) can be written in the form,

apΠv, pq, rqq “ F pq, rq @pq, rq P Pk´1pEq ˆ Pk´3pKq (3.5)

where

apΠv, pq, rqq “

ż

E

Πvq ds`

ż

K

Πvr dx

and

F pq, rq “

ż

E

vq ds`

ż

K

vr dx

Suppose that ttiu
N
i“1 “ tpqi, riqu

N
i“1 is a basis of the space Pk´1pEq ˆ Pk´3pKq, and

teju
M
j“1 is a basis of PkpKq. So Πv “

řM
j“1 pjej, where pj’s are constant, which

implies,

ÿ

j

pjapej, tiq “ F ptiq @i “ 1, 2, ..., N (3.6)

which can be written as a system of equations

AP “ b

where Aij “ apej, tiq which is a square matrix, P “ rp1, p2, ..., pM s
T and b “

rF pt1q, F pt2q, ..., F ptNqs
T . which implies,

P “ A´1b
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so

}P }
8
ď
›

›A´1
›

›

8
}b}

8

On the reference triangle K̂ (with vertices p0, 0q,p1, 0q, and p0, 1q), we get

}Πv}H1pK̂q “

›

›

›

›

›

ÿ

j

pjej

›

›

›

›

›

H1pK̂q

ď maxtp1, p2, ..., pMu

›

›

›

›

›

ÿ

j

ej

›

›

›

›

›

H1pK̂q

ď C }P }
8

Where C is a constant depends on ej’s.

ď C
›

›A´1
›

›

8
}b}

8
ď C max

ri,qi
|F ptiq| “ C max

ri,qi
p

ż

E

vri `

ż

K̂

vqiq

where C “ Cpejq }A
´1}

8
. The constant C might be different from step to step,

ď Cpmax
E
}v}L2pEq ` }v}L2pK̂qq ď C }v}H1pK̂q

The last inequality was obtained by the trace theorem. So we have shown the

following on the reference element,

›

›

›

xΠv
›

›

›

2

L2pK̂q
`

ˇ

ˇ

ˇ

xΠv
ˇ

ˇ

ˇ

2

H1pK̂q
ď Cp}v̂}2L2pK̂q ` |v̂|

2
H1pK̂qq (3.7)

Let G P C1pΩq such that K “ GpK̂q and is given by Gpx̂q “ hK x̂ ` b, where

hK is the diameter of K and b P R2. We suppose that DGpx̂q, the Jacobian

matrix is invertible for any x̂ and that G is globally invertible on K. We then
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have DG´1pxq “ pDGpx̂qq´1. If v̂px̂q is a function on K̂, we define vpxq on K by

v “ v̂ ˝ G´1. By the scaling equation (in two dimensions,equation 2.37 of [7]),

|v̂|m,K̂ “ hm´1 |v|m,K , where |.|m,K is the seminorm of HmpKq, we get

h´2
}Πv}2L2pKq ` |Πv|

2
H1pKq ď Cph´2

}v}2L2pKq ` |v|
2
H1pKqq

Applying the last inequality to v´ v̄ (where v̄ is average value of v over K) to get,

h´2
}Πpv ´ v̄q}2L2pKq ` |Πpv ´ v̄q|

2
H1pKq ď Cph´2

}v ´ v̄}2L2pKq ` |v ´ v̄|
2
H1pKqq

By Friedrichs’ inequality we get (Note that Πpv ´ v̄q “ Πv ´ v̄),

h´2
}Πv ´ v̄}2L2pKq ` |Πv|

2
H1pKq ď Cp|v|2H1pKq ` |v|

2
H1pKqq ď C |v|2H1pKq

It implies the following two inequalities,

}Πv ´ v̄}L2pKq ď Ch |v|H1pKq

|Πv|H1pKq ď C |v|H1pKq (3.8)
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Now,

}Πv}L2pKq ď }v̄}L2pKq`}Πv ´ v̄}L2pKq ď }v}L2pKq`Ch |v|H1pKq ď p1`Chq }v}H1pKq

(3.9)

Adding the inequalities (3.8) and (3.9) to get,

}Πv}H1pKq ď CΠ }v}H1pKq

where CΠ “ maxt1` Ch,Cu.

The energy error estimate (3.2) now follows from Theorem 2.6 and (2.19). The

L2 error estimate (3.3) follows from Theorem 5.2: The required verification of

Assumption 5.1 proceeds as in the proof of Theorem 5.5 – the only difference is in

the degrees of approximation spaces in the first two infimums in (5.23), a difference

that is inconsequential for the rest of the arguments.

Theorem 3.4 explains all entries in the second row of table (3.1) . The con-

vergence rate in (3.2) is suboptimal and limited by the low degree of uh. This

motivates the next case.

3.3 Numerical Results

Using the exact solution 2.21 and the same mesh as in section 2.3, The convergence

rates for case 2 in H1´norm and in L2´norm are shown in the figures below.
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Figure 3.1: Case 2 H1´Error

45



Figure 3.2: Case 2 L2´Error
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Chapter 4

Nonconforming Analysis
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4.1 Introduction

In this chapter, we will use case 2 in chapter 3 to introduce a more interesting

case, case 3. The only difference between Case 2 and Case 3 is that the degree of

uh is increased by one. Keeping k odd for Case 3, we find that the original DPG

convergence rates can be recovered, in spite of using a smaller kv. Similarly, we

observed that the convergence rate in L2pΩq, in all cases, is one order higher than

in H1pΩq.

The table below summarizes the three cases under study and table (4.1) pro-

vides the convergence rates in the H1-norm and the L2-norm for the three cases.

ku kq kv

Case 1: k k ´ 1 k ` 1,

Case 2: k ´ 1 k ´ 1 k,

Case 3: k k ´ 1 k.

4.2 Case 3: A nonconforming analysis

We analyze Case 3 using a technique of analysis different from the previous sub-

section, appealing to Theorem 2.9 and the second Strang lemma (see e.g. [11]) in

the analyses of nonconforming methods.

Table 4.1: Summary of numerically observed convergence rates

h-convergence rates of uh
in H1pΩq in L2pΩq

Case 1 k k ` 1
Case 2 (k odd) k ´ 1 k
Case 3 (k odd) k k ` 1
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Theorem 4.1. In Case 3, for odd k ě 1, these statements hold:

i) B̂h is injective and the DPG method is uniquely solvable.

ii) The uh-component of the solution satisfies

}u´ uh}H1pΩq ď Chk
`

|u|Hk`1pΩq ` |f |HkpΩq

˘

. (4.1)

iii) If Ω is convex, then

}u´ uh}L2pΩq ď Chk`1
`

|u|Hk`1pΩq ` |f |HkpΩq

˘

. (4.2)

Proof. First, observe that if k ě 3, then by the unisolvency of the DPG method in

Case 2, namely Theorem 3.4 (i), its Bh is injective, which implies by Theorem 2.11

that B̂h of Case 2 is injective. But since the flux (X̂h) and test spaces (Y r) of

Case 3 are identical to that of Case 2, both cases have the same B̂h. Hence B̂h of

Case 3 is injective and consequently by Theorem 2.11, Bh of Case 3 is injective.

Thus we have proved the first statement of the theorem for k ě 3. For k “ 1, if

pB̂hr̂n,hqpwq “ xr̂n,h, wyBΩh
“ 0 for all w P Y r, then

ż

BK

w r̂n,h ds “ 0, @w P PkpKq.

The matrix of this system (for r̂n,h) is the transpose of the matrix of (3.1) (for w),
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which is invertible by Lemma 3.3. Hence r̂n,h “ 0, i.e., B̂h is injective when k “ 1.

Next we prove (4.1). Recall that Y r
0 is defined in (2.11) and Y r

h,0 in (2.12b). By

Theorem 2.9, uh P Xh,0 satisfies (2.12b), i.e.,

b0puh, yq “ pf, yqΩ, @y P Y r
h,0. (4.3)

We proceed by viewing this as a nonconforming Petrov-Galerkin discretization of

b0pu, yq “ pf, yqΩ, @y P H1
0 pΩq

and bounding the consistency error in an argument akin to the second Strang

lemma. Let Cp denote the constant, derived from Poincaré inequality, such that

}w}H1pΩq ď Cp} gradw}L2pΩq for all w P H1
0 pΩq. Then, for any wh P Xh,0

}uh ´ wh}H1pΩq ď Cp sup
zhPXh,0

pgradpuh ´ whq, grad zhqΩ
} grad zh}L2pΩq

ď C2
p sup
zhPXh,0

b0puh ´ wh, zhq

}zh}H1pΩq

ď C2
p sup
yPY r

0

b0puh ´ wh, yq

}y}Y
“ C2

p}T
r
0 puh ´ whq}Y “ C2

p sup
yPY r

h,0

b0puh ´ wh, yq

}y}Y

“ C2
p sup
yPY r

h,0

b0puh ´ u, yq ` b0pu´ wh, yq

}y}Y

“ C2
p sup
yPY r

h,0

pf, yqΩ ´ b0pu, yq ` b0pu´ wh, yq

}y}Y
, (4.4)

where we have used (6.26). Since bppu, q̂nq, yq “ pf, yqΩ for all y P Y , the term

representing the consistency error in (6.27) can be written as pf, yqΩ ´ b0pu, yq “

50



b̂pq̂n, yq. By the definition of Y r
0 (see (2.11)), we also have b̂pq̂n, yq “ b̂pq̂n ´ r̂n,h, yq

for any r̂n,h P X̂h and y P Y r
0 . Therefore,

}uh´wh}H1pΩq ď C2
p sup
yPY r

h,0

bppu´ wh, q̂n ´ r̂n,hq, yq

}y}Y
ď C2

pC2

`

}q̂n ´ r̂n,h}X̂ ` }u´ wh}H1pΩq

˘

.

Since r̂n,h and q̂n are element-by-element traces of an rh in Rk´1 and q “ gradu,

respectively,

}r̂n,h ´ q̂n}X̂ ď }rh ´ gradu}Hpdiv,Ωq,

so

}uh ´ wh}H1pΩq ď C

ˆ

inf
rhPRk´1

}rh ´ gradu}Hpdiv,Ωq ` }u´ wh}H1pΩq

˙

.

Finally, by the triangle inequality,

}u´ uh}H1pΩq ď }u´ wh}H1pΩq ` }uh ´ wh}H1pΩq

ď C
`

}u´ wh}H1pΩq ` h
k
p|u|Hk`1pΩq ` |f |HkpΩqq

˘

for any wh P Xh,0. Choosing wh to be an appropriate interpolant, the proof of

(4.1) is finished.

The final estimate (4.2) is proved by verifying Assumption 5.1 (along the lines

of the proof of theorem 5.5) and applying theorem 5.2.
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The final row of table 4.1 is now completely explained by theorem 4.1.

4.3 Numerical Analysis

Using the exact solution 2.21 and the same mesh in section 2.3, The convergence

rates for case 3 in H1´norm and in L2´norm are shown in the figures.
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Figure 4.1: Case 3 H1´Error

53



Figure 4.2: Case 3 L2´Error
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Chapter 5

Duality Argument
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5.1 Introduction

The duality argument is a technique used by Aubin and Nitsche (see [2,29,30]) to

derive a priori error estimates in the L2-norm for Bubnov-Galerkin methods. The

approach is also known as Aubin-Nitsche trick.

For the DPG methods, we can perform an analogue of the Aubin-Nitsche du-

ality argument. First we need to write the DPG method as a Bubnov-Galerkin

method, which is feasible using theorem 2.7.

In addition, there are many ingredients for the duality argument which need to

be established for the DPG methods, such a regularity theorem, a Bramble-Hilbert

lemma, and a Galerkin Orthogonality property.

5.2 General Settings

By virtue of Theorem 2.7, we may rewrite the DPG method (2.6) as follows: Find

xh,0 P X0,h, x̂h P X̂h, and εr P Y r solving

b0pw, ε
r
q “ 0 @w P X0,h, (5.1a)

b̂pŵ, εrq “ 0 @ŵ P X̂h, (5.1b)

b0pxh,0, yq` b̂px̂h, yq` pε
r, yqY “ `pyq, @y P Y r. (5.1c)

Defining

apz, ẑ, v|w, ŵ, yq “ b0pw, vq ` b̂pŵ, vq ` b0pz, yq ` b̂pẑ, yq ` pv, yqY ,
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the mixed system (5.1) can then be rewritten as

apxh,0, x̂h, ε
r
|w, ŵ, yq “ `pyq, @w P X0,h, ŵ P X̂h, y P Y

r,

where the complex conjugate on the first two terms make the form a sesquilinear.

Now, observe that with ε “ 0, the exact solution px0, x̂, εq P X0 ˆ X̂ ˆ Y satisfies

the same equation for all w P X0, ŵ P X̂, y P Y . Hence, we have a ‘Galerkin

orthogonality’ relation

apx0 ´ xh,0, x̂´ x̂h, ε´ ε
r
|w, ŵ, yq “ 0, (5.2)

for all w P X0,h, ŵ P X̂h, y P Y
r. Note also that

|apz, ẑ, v|w, ŵ, yq| ď C2}pz, ẑq}X}y}Y ` C2}pw, ŵq}X}v}Y ` }v}Y }y}Y

ď
`

C2
2}pz, ẑq}

2
X ` 2}v}2Y

˘1{2 `
C2

2}pw, ŵq}
2
X ` 2}y}2Y

˘1{2

ď }a} }pz, ẑ, vq}X0ˆX̂ˆY
}pw, ŵ, yq}X0ˆX̂ˆY

where }a} is a constant not larger than maxpC2
2 , 2q. Under the following assump-

tion, we can extend the Aubin-Nitsche technique [29] to DPG methods, as seen in

the next theorem.

Assumption 5.1. Suppose L and Z are Hilbert spaces such that the embeddings

Z Ď X0 ˆ X̂ ˆ Y and X0 Ď L are continuous. Assume that there is a C3phq ą 0
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such that for any g P L, there is a Upgq P Z satisfying

apw, ŵ, y|Upgqq “ pw, gqL (5.3)

for all pw, ŵ, yq P X0 ˆ X̂ ˆ Y and

inf
WPX0,hˆX̂hˆY r

}Upgq ´W }X0ˆX̂ˆY
ď C3phq}g}L. (5.4)

Theorem 5.2. Suppose Assumption 5.1 holds. Then,

}x´ xh,0}L ď C3phq}a}}px, x̂, εq ´ pxh,0, x̂h, ε
r
q}X0ˆX̂ˆY

.

Proof. Setting g “ w “ x´ xh,0, ŵ “ x̂´ x̂h, and y “ ε´ εr in (5.3),

}x´ xh,0}
2
L “ apx´ xh,0, x̂´ x̂h, ε´ ε

r
|Upx´ xh,0qq

“ apx´ xh,0, x̂´ x̂h, ε´ ε
r
|Upx´ xh,0q ´W q, by (5.2),

ď }a}}px´ xh,0, x̂´ x̂h, ε´ ε
r
q}X0ˆX̂ˆY

}Upx´ xh,0q ´W }X0ˆX̂ˆY

for any W P X0,h ˆ X̂h ˆ Y
r. Hence (5.4) completes the proof.

Remark 5.3. Let A : X0 ˆ X̂ ˆ Y Ñ pX0 ˆ X̂ ˆ Y q˚ be the operator generated

by ap¨, ¨q, i.e., pApz, ẑ, vqqpw, ŵ, yq “ apz, ẑ, v|w, ŵ, yq for all pz, ẑ, vq, pw, ŵ, yq P

X0 ˆ X̂ ˆ Y. If Assumption 2.4 holds, then A is a bijection. (This follows from
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the Babuška-Brezzi theory [7], applied to the mixed system (2.9): the “inf-sup

condition” follows from (2.7), and the “coercivity in the kernel condition” is trivial.)

Hence, the dual operator of A is also a bijection whereby we conclude that (5.3)

has a unique solution Upgq.

Remark 5.4. All results of this section hold for spaces over the real field R – one

only needs to replace C by R, sesquilinear by bilinear, and conjugate-linear by linear

to obtain the corresponding statements for real valued function spaces. The DPG

method for the Helmholtz equation [24] provides an example where sesquilinear

forms over C are used. For simplicity, in the remaining sections we will restrict

ourselves to real-valued functions.

5.3 Case 1: Application of the duality argument

Theorem 5.5. Suppose Ω is convex. Then, for Case 1,

}u´ uh}L2pΩq ď Chk`1
`

|u|Hk`1pΩq ` |f |HkpΩq

˘

.

Proof. Set

Z1 “ H2
pΩq XX0, L “ L2

pΩq,

Z2 “ H2
pΩq X Y, Z “ Z1 ˆ X̂ ˆ Z2.
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To verify Assumption 5.1, let g P L. By Remark 5.3, there is a unique Upgq ”

pz, ẑn, dq P X0 ˆ X̂ ˆ Y solving (5.3). Writing out (5.3) in component form,

pd, yqY `p∇z,∇yqΩh
´ xẑn, yyBΩh

“ 0, @y P Y, (5.5a)

p∇d,∇wqΩh
“ pg, wqΩh

@w P X0, (5.5b)

xd, ŵnyBΩh
“ 0 @ŵn P X̂. (5.5c)

We need to understand the regularity of solutions of (5.5). Considering the

d component first, we claim that (5.5c) implies d P H1
0 pΩq: Indeed the distri-

butional gradient ∇d acting on a test function φ P DpΩq2 satisfies p∇dqpφq “

´pd, div φqΩh
“ p∇d, φqΩh

´ xd, φ ¨ nyBΩh
and the last term vanishes by (5.5c), so

the distributional gradient is in L2pΩq2. It is also easy to see that the trace of d

vanishes on BΩ. Then, (5.5b) implies that ´∆d “ g. Next, consider z P H1
0 pΩq.

Equation (5.5a) with y P H1
0 pΩq yields p∇z,∇yqΩh

“ ´pd, yqΩh
´ p∇d,∇yqΩh

“

´pd, yqΩh
`p∆d, yqΩh

which implies ∆z “ d` g. Finally, using the equations for z

and d in (5.5a) and integrating by parts, we find xẑn, yyBΩh
“ xn ¨∇pd` zq, yyBΩh

.
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Summarizing, the classical form of (5.5) is

´∆d “ g, on Ω, (5.6a)

d “ 0, on BΩ, (5.6b)

∆z “ d` g, on Ω, (5.6c)

z “ 0, on BΩ, (5.6d)

ẑn “ n ¨∇pd` zq, on BK, @K P Ωh. (5.6e)

Thus, by full regularity of the Dirichlet problem on a convex domain [26], d

and z are in H2pΩq, and moreover,

}d}Z2 ď C}g}L,

}z}Z1 ď C p}d}L ` }g}Lq ď C}g}L,

}ẑ}X̂ ď }∇pd` zq}Hpdiv,Ωq

“ }∇pd` zq}L ` }∆pd` zq}L

“ }∇pd` zq}L ` }d}L by (5.6),

ď C}g}L.

Hence

}pz, ẑ, dq}Z ď C}g}L. (5.7)
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To complete the verification of Assumption 5.1, we now only need to bound

some approximation errors. By the Bramble-Hilbert lemma,

inf
WPX0,hˆX̂hˆY r

}Upgq ´W }2
X0ˆX̂ˆY

“ inf
whPPkpΩhqXX0

}z ´ wh}
2
H1pΩq ` inf

vhPPk`1pBΩhq
}d´ vh}

2
H1pΩhq

` inf
ŵhPPk´1pBΩhqXX̂

}ẑ ´ ŵh}
2
X̂

(5.8)

ď Ch2
´

|d|2H2pΩq ` |z|
2
H2pΩq

¯

` inf
rhPRk´1

}∇pd` zq ´ rh}2Hpdiv,Ωq

where Rk´1 is the Raviart-Thomas subspace [31] of Hpdiv, Ωq consisting of all

vector functions which when restricted to an element takes the form xp1 ` p2

for some p1 P Pk´1pKq and some p2 P Pk´1pKq
2. Let Πh

RT denote the Raviart-

Thomas projection into Rk´1. By its well-known commutativity property with the

L2-projection Πh
k´1 onto Pk´1pΩhq, we have

inf
rhPRk´1

}∇pd` zq ´ rh}Hpdiv,Ωq ď }pI ´Π
h
RTq∇pd` zq}Hpdiv,Ωq

ď }pI ´Πh
RTq∇pd` zq}L ` }pI ´Πh

k´1q∆pd` zq}L

ď }pI ´Πh
RTq∇pd` zq}L ` }pI ´Πh

k´1qd}L, by (5.6),

ď Ch|d` z|H2pΩq ` Ch|d|H1pΩq,

where we used the Bramble-Hilbert lemma again in the final step. Hence using the
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regularity estimate (5.7),

inf
WPX0,hˆX̂hˆY r

}Upgq ´W }X0ˆX̂ˆY
ď Ch}g}L,

thus verifying Assumption 5.1. Now, applying Theorem 5.2,

}u´ uh}L2pΩq ď Ch
`

}u´ uh}H1pΩq ` }q̂n ´ q̂n,h}H´1{2pBΩhq
` }ε´ εr}H1pΩhq

˘

where ε “ 0 and εr is as in (2.8). This implies, by virtue of (2.10) in Remark 2.8,

}u´ uh}L2pΩq ď Ch
`

}u´ uh}H1pΩq ` }q̂n ´ q̂n,h}H´1{2pBΩhq

˘

so the proof is finished using (2.20).

5.4 Application to the Helmholtz Equation with Impedance Boundary

Condition

We consider the following boundary value problem for the Helmholtz equation

´∆u´ k2u “ f1 on Ω, (5.9a)

∇u ¨ n` iku “ f2 on BΩ. (5.9b)
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where f1 P L
2pΩq and f2 P L

2pBΩq with positive wave number k ą 0. The weak

formulation problem of 5.9 is: Find pu, q̂nq P X “ X0 ˆ X̂ satisfying

p∇u,∇vqΩh
` ikxu, vyBΩ´k

2
pu, vqΩh

´xq̂n, vyBΩhzBΩ “ pf1, vqΩh
`xf2, vyBΩ, @v P Y

(5.10)

Set,

X “ H1
pΩq, X̂ “ H

´1{2
0 pBΩhq, Y “ H1

pΩhq,

Z1 “ H2
pΩq X Y, Z2 “ H2

pΩq XX, L “ L2
pΩq,

Z “ Z1 ˆ Z2 ˆ X̂.

To verify assumption 5.1, let g P L. Write Upgq in component form as pd, u, q̂nq.

Then 5.3 becomes

apv, w, ŵ|d, u, q̂nq “ pw, gqL

which gives using 5.1: Find pd, u, q̂nq P Y ˆX ˆ X̂ satisfying

pd, vqY`p∇u,∇vqΩh
` ikxu, vyBΩ´k

2
pu, vqΩh

´xq̂n, vyBΩhzBΩ “ 0, @v P Y,

(5.11a)

p∇d,∇wqΩh
`ikxd, wyBΩ´k

2
pd, wqΩh

“ pg, wqΩh
@w P X,

(5.11b)

xd, ŵyBΩh
“ 0 @ŵ P X̂.

(5.11c)
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Equation 5.11c implies that d P H1pΩq. Therefore, integration by parts for

equation 5.11b over Ω to get

´p∆d, wqΩ ` x∇d ¨ n,wyBΩ ` ikxd, wyBΩ ´ k2
pd, wqΩ “ pg, wqΩ

which implies,

∆d ` k2d“ ´g, in Ω, (5.12a)

∇d ¨ n ` ikd “ 0 on BΩ, (5.12b)

Equation 5.11a with v P H1
0 pΩq yields

pd, vqY `p∇u,∇vqΩh
´ k2

pu, vqΩh
“ 0, (5.13a)

´ p∆u, vqΩh
´ k2

pu, vqΩh
“ ´pd, vqΩh

` p∆d, vqΩh
(5.13b)

Where the last equation is obtained by integrating by parts and the definition of

the H1´norm, this implies

∆u ` k2u “ d ´ ∆d (5.14)

“ d ` g ` k2d, by 5.12a (5.15)

“ pk2
` 1qd` g (5.16)
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Equation 5.11a gives

xq̂n, vyBΩhzBΩ “ pd, vqΩh
` p∇d,∇vqΩh

` p∇u,∇vqΩh
` ikxu, vyBΩ ´ k

2
pu, vqΩh

Integration by parts and equation 5.14 yield

xq̂n, vyBΩhzBΩ ´ ikxu, vyBΩ “ x∇d ¨ n, vyBΩh
` x∇u ¨ n, vyΩh

which results in the following two equations

xq̂n, vyBΩhzBΩ “ x∇d ¨ n, vyBΩhzBΩ`x∇u ¨ n, vyBΩhzBΩ, (5.17a)

´ikxu, vyBΩ “ x∇d ¨ n, vyBΩ `x∇u ¨ n, vyBΩ (5.17b)

Equation 5.17a implies

q̂n “ ∇d ¨ n ` ∇u ¨ n, on BΩhzBΩ (5.18)

Equations 5.17b and 5.12b imply

∇u ¨ n ` iku “ ikd, on BΩ (5.19)

The following is a summary of the boundary value equations we’ve got,

∆d` k2d “ ´g on Ω, (5.20a)

∇d ¨ n` ikd “ 0 on BΩ. (5.20b)
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∆u` k2u “ pk2
` 1qd` g on Ω, (5.21a)

∇u ¨ n` iku “ ikd on BΩ. (5.21b)

Thus, by full regularity on a convex domain d, u P H2pΩq, and moreover,

}d}Z1 ď C}g}L,

}u}Z2 ď C p}d}L ` }g}Lq ď C}g}L,

}q̂n}X̂ ď }∇pd` uq}Hpdiv,Ωq

ď C}g}L.

Hence

}pd, u, q̂nq}Z ď C}g}L. (5.22)

Assume that Yh, Xh, and X̂h are finite dimensional subspaces of Y,X, and X̂,

respectively. by the Bramble-Hilbert lemma and standard approximation theory,

for W “ pvh, wh, ŵhq P Yh ˆXh ˆ X̂h, we have

}Upgq ´W }2
YˆXˆX̂

“ }d´ vh}
2
H1pΩhq

` }u´ wh}
2
H1pΩq ` }q̂n ´ ŵh}

2
H´1{2pBΩhq

(5.23)

ď Ch2
´

|d|2H2pΩq ` |u|
2
H2pΩq

¯

` }pI ´ Πq∇pd` uq}2Hpdiv,Ωq

where Π is the Raviart-Thomas projection. By its commutativity property with
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the L´projection P ,

}pI ´ Πq∇pd` uq}2Hpdiv,Ωq

ď }pI ´ Πq∇pd` uq}2L ` }pI ´ P q∆pd` uq}2L (5.24)

ď }pI ´ Πq∇pd` uq}2L ` Cp}pI ´ P qdq}2L ` }pI ´ P quq}2Lq

ď Ch
´

|d` u|2H2pΩq ` |d|
2
H1pΩq ` |u|

2
H1pΩq

¯

Where the last inequality is obtained by the Bramble-Hilbert lemma, which implies

}Upgq ´W }2
YˆXˆX̂

ď Ch}g}L (5.25)

So assumption 5.1 is verified. Therefore, by theorem 5.2, the interior xh converges

(in the L2-norm) one order faster than the numerical traces.
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Chapter 6

The Convergence Rates of The DPG Method with Rectangular Meshes
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6.1 Introduction

The goal of this chapter is to study the convergence rates of the DPG method for

rectangular meshes. The Poisson equation with Dirichlet boundary condition is

the primary example to study the convergence rates here. In order to show the

discrete stability of the practical DPG method, we need to prove the existence of

a Fortin operator as in the assumption 2.5. We will use the Fortin operator which

was proven to exist in [9] to introduce some of the cases which we intend to study

in the chapter.

Our goal is to improve the convergence rates of the DPG method. To achieve

this, we will use some techniques from [31] to introduce new cases in section 6.4.

We need first to introduce the problem and the rectangular finite dimensional

spaces before defining the cases which we are going to analyze as we have done in

the previous chapters.

6.2 Application to the Poisson Equation

Suppose Ω is a bounded open polygon in R2 with Lipschitz boundary, meshed by

Ωh, a geometrically conforming shape regular finite element mesh of quarilaterals.

Let BΩh denote the collection of all element boundaries BK for all elements K

in Ωh, where h is the mesh size. We now study the DPG approximation to the

Dirichlet problem

´∆u “ f on Ω, (6.1a)

u “ 0 on BΩ. (6.1b)
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All functions are real-valued in this section.

The weak formulation reads:

Find pu, q̂nq P X “ X0 ˆ X̂ satisfying

p∇u,∇vqΩh
´ xq̂n, vyBΩh

“ pf, vqΩh
@v P Y (6.2)

where

b0pu, vq “ p∇u,∇vqΩh
, b̂pq̂n, vq “ ´xq̂n, vyBΩh

, `pvq “ pf, vqΩ.

and

X0 “ H1
0 pΩq,

X̂ “ H´1{2
pBΩhq,

Y “ H1
pΩhq,

Assumption 2.4 was verified for this formulation in [19]. So the exact solution

of the resulting weak formulation (2.1) is denoted by pu, q̂nq P X. Note that

q̂n|BK “ Bnu|BK for all K P Ωh.

Now, we want to set the discrete spaces. But before doing that, we want to

define some spaces in order to determine what discrete spaces we are going to use.

Let K̂ be the unit square r0, 1s ˆ r0, 1s in the pξ, ηq-plane with vertices a1 “

p0, 0q, a2 “ p1, 0q, a3 “ p1, 1q, a4 “ p0, 1q. For any integer k ą 1, we define Qk,kpK̂q

to be the space of polynomials of degree at most k in each variable separately on
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K̂ which can be written in the form

ppξ, ηq “
ÿ

0ďi,jďk

cijξ
iηj.

For the numerical fluxes and traces we need local polynomial spaces defined on

the boundary BK as

PrpBKq “ tP P L
2
pBKq, P |E P PrpEq for all edges E of Ku,

ĂPrpBKq “ PrpBKq X CpBKq

where PrpEq stands for polynomials of degree r on E and CpBKq stands for the

space continuous functions on BK. With the above-defined finite dimensional

space, we introduce the following cases to solve 6.1 using the DPG method. We

want to study these cases, and compare their convergence rates. That is, for any

integer k ě 1, we set

Case 4 Case 5 Case 6

Xh,0 “ Qk,kpΩhq XX0 Xh,0 “ Qk,kpΩhq XX0 Xh,0 “ Qk`1,k`1pΩhq XX0,

X̂h “ PkpBΩhq X X̂ X̂h “ Pk´1pBΩhq X X̂ X̂h “ PkpBΩhq X X̂,

Y r
“ Qk`2,k`2pΩhq Y r

“ Qk`2,k`2pΩhq Y r
“ Qk`2,k`2pΩhq.

We introduce case 4 with exactly the same spaces used in the construction of the

Π-operator which was constructed in [9]. By using the Bramble-Hilbert Lemma,

we observe that the convergence rates in the H1-norm (when the primal variable is
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approximated) is one degree lower than that of the flux variable q̂n, which motivates

us to introduce case 5 as the convergence rates for the two variables are the same.

Also, case 5 is cheaper than case 4, yet both have the same convergence rate. as

summarized in the table.

Case 6 is introduced since the convergence rates match for the two variables. We

have proven theoretically that the convergence rate is one degree higher compared

to the cases 4 and 5. All convergence rates are summarized in the table.

6.3 Error Analysis

In this section, we want to analyze cases 4 and 5. We will show the well-posedness

of these cases by proving that the assumption 2.5 is satisfied depending on the

Fortin operator of [9].

Lemma 6.1. Let BpKq be defined as

BpKq “ tz P Qk`2,k`2pKq : z is zero at the vertices of Ku .

Table 6.1: Summary of the convergence rates

h-convergence rates of uh
in H1pΩq in L2pΩq

Case 4 k k ` 1
Case 5 k k ` 1
Case 6 k ` 1 k ` 2
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Then there exists a projector R0
K onto BpKq Ă H1pKq such that

pR0
Kz, vqK “ pz, vqK @v P Qk,kpKq,

(6.3)

@

R0
Kz, w

D

BK
“ xz, wy

BK @w P PkpBKq,

(6.4)

h´1
K

›

›R0
Kz

›

›

L2pKq
`
ˇ

ˇR0
Kz

ˇ

ˇ

H1pKq
ď Cph´1

K }z}L2pKq ` |z|H1pKqq @z P H1
pKq.

(6.5)

Proof. The proof can be found in ( [9], Lemma 4.2).

We can now construct a projector into the enriched finite element space such

that the H1-norm is bounded by an h-independent number. This is the content of

the following Lemma.

Lemma 6.2. There is a projector RK from H1pKq into Qk`2,k`2pKq such that

pRKz, vqK “ pz, vqK @v P Qk,kpKq, (6.6)

xRKz, wyBK “ xz, wyBK @w P PkpBKq, (6.7)

}RKz}H1pKq ď C }z}H1pKq @z P H1
pKq. (6.8)

Proof. The proof can be found in ( [9], Lemma 4.3).

The next theorem shows the unique solvability for cases 4 and 5 and the con-

vergence rate for each case.
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Theorem 6.3. In Cases 4 and 5, these statements hold:

i) The DPG method is uniquely solvable.

ii) The solution puh, q̂n,hq of the DPG method satisfies

}u´ uh}H1pΩq ` }q̂n ´ q̂n,h}H´1{2pBΩhq
ď Chk

`

|u|Hk`1pΩq ` |f |HkpΩq

˘

. (6.9)

iii) If Ω is convex, then

}u´ uh}L2pΩq ď Chk`1
`

|u|Hk`1pΩq ` |f |HkpΩq

˘

. (6.10)

Proof. By theorem 2.6, if we verify assumption 2.5, then the DPG method is

uniquely solvable. But this assumption was verified by lemmas 6.1 and 6.2.

The proof of 6.9 is straight forward by 2.19. Also, the final estimate is proved by

verifying Assumption 5.1 (along the lines of the proof of theorem 5.5) and applying

theorem 5.2.

Another way to match the convergence rates of the primal variable u and the

flux variable q̂ is to introduce case 6. The next theorem analyzes case 6.

Theorem 6.4. In Case 6, for k ě 1, these statements hold:

i) B̂h is injective and the DPG method is uniquely solvable.
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ii) The uh-component of the solution satisfies

}u´ uh}H1pΩq ď Chk`1
`

|u|Hk`2pΩq ` |f |Hk`1pΩq

˘

. (6.11)

Proof. First, observe that if k ě 1, then by the unisolvency of the DPG method

in Case 4, its Bh is injective, which implies by Theorem 2.11 that B̂h of Case 4 is

injective. But since the flux (X̂h) and test spaces (Y r) of Case 6 are identical to

that of Case 4, both cases have the same B̂h. Hence B̂h of Case 6 is injective and

consequently by Theorem 2.11, Bh of Case 6 is injective. Thus we have proved the

first statement of the theorem for k ě 1.

The the second part of the theorem can be proven in the same way as the proof

of theorem 6.7.

6.4 Reduced-Degree Test Spaces

In this section, we are going to introduce more interesting cases. These are cheaper

than the cases 4 and 6, respectively, yet they provide the same convergence rate in

the primal variable. We need first two lemmas, then we can introduce the discrete

spaces which are used in cases 7 and 8.

Lemma 6.5 (see [31]). Assume that K̂ is the unit square. Let k ě 1 be an integer.
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Then the space of functions µ P Pk´1pBK̂q such that

@v P ĂPkpBK̂q,

ż

BK̂

µv dγ “ 0 (6.12)

is one dimensional.

Proof. Since K̂ is a unit square, we have ĂPkpBK̂q “ Qk,kpK̂q|BK̂ and dimpPk´1pBK̂qq “

4k, dimpĂPkpBK̂qq “ 4k.

For all v P ĂPkpBK̂q, we get µv P P2k´1pBK̂q so that the integral
ş

BK̂
µv dγ can

be computed exactly in terms of the values of the function µv at pk ` 1q Gauss-

Lobatto quadrature points of each side of BK̂. Denote by ta1, a5, . . . , ak`3, a2u (resp.

ta2, ak`4, . . . , a2k`2, a3u, ta3, a2k`3, . . . , a3k`1, a4u, ta4, a3k`2, . . . , a4k, a1u) the set of

pk ` 1q Gauss-Lobatto points of the side ra1, a2s (resp. ra2, a3s, ra3, a4s, ra4, a1s).

Clearly, for each i “ 1, . . . , 4k, there exists a unique function vi P ĂPkpBK̂q such

that

vipajq “ δij, 1 ď j ď 4k.

Then, replacing v by vi, 1 ď i ď 4k, in 6.12 gives

µpaiq “ 0, 5 ď i ď 4k (6.13)
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and
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

µ12pa1q ` µ14pa1q “ 0,

µ21pa2q ` µ23pa2q “ 0,

µ32pa3q ` µ34pa3q “ 0,

µ41pa4q ` µ43pa4q “ 0,

(6.14)

where µij “ µji is the restriction of µ to the rai, ajs. Let

0 “ ξ0 ă ξ1 ă ¨ ¨ ¨ ă ξk´1 ă ξk “ 1

be the pk ` 1q Gauss-Lobatto abscissea for r0, 1s; we introduce the homogeneous

polynomial of degree k ´ 1 in the variables ξ and η

pk´1pξ, ηq “
k´1
ź

i“1

pηiξ ´ ξiηq (6.15)

where ηi “ 1´ ξi, 1 ď i ď k ´ 1. Since ηi “ ξk´i, 1 ď i ď k ´ 1 we get

pk´1pξ, ηq “ p´1qk´1pk´1pη, ξq.
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Thus, conditions 6.13 mean

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

µ12 “ c12pk´1pξ, 1´ ξq,

µ23 “ c23pk´1pη, 1´ ηq,

µ34 “ c34pk´1p1´ ξ, ξq,

µ41 “ c41pk´1p1´ η, ηq,

(6.16)

Using 6.16, conditions 6.14 become

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

c12pk´1pξ, 1´ ξq ` c14pk´1pη, 1´ ηq “ 0,

c21pk´1p1´ ξ, ξq ` c23pk´1pη, 1´ ηq “ 0,

c32pk´1p1´ η, ηq ` c34pk´1p1´ ξ, ξq “ 0,

c41pk´1p1´ η, ηq ` c43pk´1pξ, 1´ ξq “ 0,

(6.17)

which implies,
$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

c12 ` c14 “ 0,

p´1qk´1c12 ` c23 “ 0,

p´1qk´1c23 ` p´1qk´1c43 “ 0,

c43 ` p´1qk´1c14 “ 0,

(6.18)

Which implies,

$

’

’

&

’

’

%

c12 “ ´c23 “ c34 “ ´c41 “ c when k is odd,

c12 “ c23 “ c34 “ c41 “ c when k is even.

(6.19)
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The system 6.18 has nontrivial solutions for all k, and the space of µk´1pBK̂q is

one-dimensional.

In [31], they have constructed a suitable hybrid element by introducing a new

space as in the following lemma.

Lemma 6.6 (see [31]). Let k ě 1 be an integer. Define P̂kpK̂q to be the space of

polynomials spanned by Qk,kpK̂q and the function

v0pξ, ηq “

$

’

’

’

&

’

’

’

%

Hpξ, ηqrpξp1´ ξqqpk´1q{2 ` pηp1´ ηqqpk´1q{2s , k is odd

Hpξ, ηqp2ξ ´ 1qp2η ´ 1qrpξp1´ ξqqpk´2q{2 ` pηp1´ ηqqpk´2q{2s , k is even

(6.20)

where Hpξ, ηq “ ξp1 ´ ξq ´ ηp1 ´ ηq. Then the pair of spaces pP̂kpK̂q, Pk´1pBK̂qq

satisfies
"

µk´1pBK̂q; @v P P̂kpK̂q,

ż

BK̂

µv dγ “ 0

*

“ t0u (6.21)

Proof. Let µ be a function of Pk´1pBK̂q such that

@v P P̂kpK̂q,

ż

BK̂

µv dγ “ 0

By Lemma 6.5, µ can be written in the form 6.16. Hence, it is sufficient to prove

that
4
ÿ

i“1

ż

rai,ai`1s

pk´1v0 dγ ‰ 0 pa1 “ a5q
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Since these four integrals are equal, we have only to check that

ż

ra1,a2s

pk´1pξ, 1´ ξqv0 dξ ‰ 0. (6.22)

When k is odd, the left-hand side of 6.22 can be written as

ż

ra1,a2s

qk´1pξqrpξqξp1´ ξq dξ, (6.23)

where

qk´1 “ pk´1pξ, 1´ ξq, rpξq “ pξp1´ ξqqpk´1q{2

Since the roots of qk´1 are the Gauss-Lobatto abscissae ξ1, . . . , ξk´1, the polynomial

qk´1 is orthogonal to polynomials of degree ď k ´ 2 with respect to the weight

function ξp1´ ξq. Now, r is a polynomial of degree k ´ 1 so that

ż 1

0

qk´1rpξqξp1´ ξqdξ ‰ 0.

Otherwise, qk´1 would be orthogonal to all polynomials of degree ď k´ 1 which is

clearly impossible, so c12 “ c23 “ c34 “ c41 “ c “ 0, which implies that µ “ 0. A

similar argument for even k yields that µ “ 0
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Using lemma 6.6, we introduce cases 7 and 8 as follows

Case 7 Case 8

Xh,0 “ Qk,kpΩhq XX0 Xh,0 “ Qk`1,k`1pΩhq XX0

X̂h “ PkpBΩhq X X̂ X̂h “ PkpBΩhq X X̂

Y r
“ P̂k`1pΩhq Y r

“ P̂k`1pΩhq

Case 7 is comparable with case 4, as they have the same trial finite dimensional

subspaces Xh,0 and X̂h. But Y r of case 7 has less degrees of freedom than those of

case 4. Yet both cases have the same convergence rate. By the Bramble-Hilbert

Lemma, the convergence rates in case 7 do not match, which motivates us to

introduce case 8 in order to get the same convergence rates in the H1-norm.

In next theorems, we will prove the unique solvability of the DPG method for

cases 7 and 8. In addition, the convergence rate of cases 7 and 8 will be proven

theoretically, which matches what we have observed numerically, to be of orders k

and k ` 1, respectively.

Theorem 6.7. In Cases 7 and 8, for k ě 1, these statements hold:

i) B̂h is injective and the DPG method is uniquely solvable.

ii) In case 7, the uh-component of the solution satisfies

}u´ uh}H1pΩq ď Chk
`

|u|Hk`1pΩq ` |f |HkpΩq

˘

. (6.24)
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iii) In case 8, the uh-component of the solution satisfies

}u´ uh}H1pΩq ď Chk`1
`

|u|Hk`2pΩq ` |f |Hk`1pΩq

˘

. (6.25)

Proof. Lemma 6.6 implies that the operator B̂h is injective for case 4. In addition,

theorem 2.11 implies the injectivity of the operator Bh, since the three assumptions

are obviously satisfied in this case.

Next we prove (6.24). It is similar to the proof of theorem (3.5) of [6].

Recall that Y r
0 is defined in (2.11) and Y r

h,0 in (2.12b). By Theorem 2.9, uh P Xh,0

satisfies (2.12b), i.e.,

b0puh, yq “ pf, yqΩ, @y P Y r
h,0. (6.26)

We proceed by viewing this as a nonconforming Petrov-Galerkin discretization of

b0pu, yq “ pf, yqΩ, @y P H1
0 pΩq

and bounding the consistency error in an argument akin to the second Strang

lemma. Let Cp denote the constant, derived from Poincaré inequality, such that
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}w}H1pΩq ď Cp} gradw}L2pΩq for all w P H1
0 pΩq. Then, for any wh P Xh,0

}uh ´ wh}H1pΩq ď Cp sup
zhPXh,0

pgradpuh ´ whq, grad zhqΩ
} grad zh}L2pΩq

ď C2
p sup
zhPXh,0

b0puh ´ wh, zhq

}zh}H1pΩq

ď C2
p sup
yPY r

0

b0puh ´ wh, yq

}y}Y
“ C2

p}T
r
0 puh ´ whq}Y “ C2

p sup
yPY r

h,0

b0puh ´ wh, yq

}y}Y

“ C2
p sup
yPY r

h,0

b0puh ´ u, yq ` b0pu´ wh, yq

}y}Y

“ C2
p sup
yPY r

h,0

pf, yqΩ ´ b0pu, yq ` b0pu´ wh, yq

}y}Y
, (6.27)

where we have used (6.26). Since bppu, q̂nq, yq “ pf, yqΩ for all y P Y , the term

representing the consistency error in (6.27) can be written as pf, yqΩ ´ b0pu, yq “

b̂pq̂n, yq. By the definition of Y r
0 (see (2.11)), we also have b̂pq̂n, yq “ b̂pq̂n ´ r̂n,h, yq

for any r̂n,h P X̂h and y P Y r
0 . Therefore,

}uh´wh}H1pΩq ď C2
p sup
yPY r

h,0

bppu´ wh, q̂n ´ r̂n,hq, yq

}y}Y
ď C2

pC2

`

}q̂n ´ r̂n,h}X̂ ` }u´ wh}H1pΩq

˘

.

Since r̂n,h and q̂n are element-by-element traces of an rh in Rk and q “ gradu,

respectively, where Rk is the Raviart-Thomas subspace [31] of Hpdiv, Ωq consisting

of all vector functions which when restricted to an element takes the form xp1`p2
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for some p1 P PkpKq and some p2 P PkpKq
2.

}r̂n,h ´ q̂n}X̂ ď }rh ´ gradu}Hpdiv,Ωq

ď Chk`1
`

|u|Hk`1pΩq ` |f |HkpΩq

˘

where the last inequality is obtained from [1]. So

}uh ´ wh}H1pΩq ď C

ˆ

inf
rhPRk

}rh ´ gradu}Hpdiv,Ωq ` }u´ wh}H1pΩq

˙

.

Finally, by the triangle inequality,

}u´ uh}H1pΩq ď }u´ wh}H1pΩq ` }uh ´ wh}H1pΩq

ď C
`

}u´ wh}H1pΩq ` h
k`1
p|u|Hk`1pΩq ` |f |HkpΩqq

˘

for any wh P Xh,0. Choosing wh to be an appropriate interpolant, the proof of

(6.24) is finished. Finally, the proof of (6.25) is similar.

6.5 Numerical Results

All the numerical results in this chapter obtained by solving the Poisson equation

with Dirichlet boundary condition using the DPG method. The domain Ω set to
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the unit square. The function f was chosen so that the exact solution is

u “ sinpπxqsinpπyq (6.28)

We construct an n ˆ n uniform mesh by dividing Ω into n2 congruent squares.

Its mesh size is h “
?

2{n. The method is applied on a sequence of such meshes

with geometrically increasing n. The implementation of the method is done using

Python and the NGSolve Finite Element Library and the mesh has been generated

by the Netgen Mesh Generator.

The convergence rates for cases 4, 5, and 6 are shown in the figures below.
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Figure 6.1: Case 4 H1´Error
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Figure 6.2: Case 5 H1´Error
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Figure 6.3: Case 4 L2´Error
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Figure 6.4: Case 5 L2´Error

90



Figure 6.5: Case 6 L2´Error

91



Some numerical results for cases 7 and 8 are shown in the following tables. It

is worth mentioning that the Y r space is not standard in cases 7 and 8, so it is

not implemented in the finite elements libraries. We have implemented it using a

C++ code and we have used it in the NGSolve finite element library to get these

numerical results.

Table 6.2: H1pΩq and L2pΩq convergence for the case 7

n }u´ uh}H1pΩq rate }u´ uh}L2pΩq rate

k “ 2
4 2.51E-02 1.93 4.69E-03 1.88
8 6.58E-03 1.87 1.27E-03 2.01
16 1.80E-03 1.99 3.16E-04 2.00
32 4.54E-04 2.13 7.87E-05 2.00
64 1.03E-04 1.97E-05
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Table 6.3: H1pΩq and L2pΩq convergence for the case 8

n }u´ uh}H1pΩq rate }u´ uh}L2pΩq rate

k “ 2
4 5.11E-03 3.54 7.03E-05 4.02
8 4.40E-04 3.22 4.34E-06 3.97
16 4.71E-05 3.08 2.77E-07 3.99
32 5.59E-06 3.02 1.74E-08 4.00
64 6.87E-07 1.09E-09

The table below summarizes the cases covered in this chapter with their con-

vergence rates in the H1-norm and the L2-norm.

Table 6.4: Summary of the convergence rates

h-convergence rates of uh
in H1pΩq in L2pΩq

Case 4 k k ` 1
Case 5 k k ` 1
Case 6 k ` 1 k ` 2
Case 7 k k
Case 8 k ` 1 k ` 2
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Chapter 7

Future Work and Conclusion
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The goal of this work has been to explore the convergence rates of the Discon-

tinuous Petrov-Galerkin (DPG) method with triangular and rectangular meshes.

We began in Chapter 1 by introducing the DPG method as a Discontinuous

Galerkin (DG) method and as a Hybrid Discontinuous Galerkin (HDG) method,

and we give a brief literature review of each category of these finite element meth-

ods.

In Chapter 2, we introduced the general settings of the DPG method. Addi-

tionally, we present how the DPG method can be seen as a mixed method which

makes it a standard finite element method where the implementation of the method

easier. Another advantage of the mixed formulation is a built-in error represen-

tation function which is useful for adaptivity. Finally, we present the Poisson

equation with Dirichlet boundary condition as a model problem to illustrate the

results of this study. Specially, we use the primal weak formulation where only the

conservation equation is integrated by parts.

In Chapter 3, we introduced the reduced degree DPG method for triangular

meshes. The goal is to study the impact on the convergence rates of the DPG

method. The polynomial degree of the finite dimensional test subspace has been

decreased, and as a result, we have observed a parity in the behavior. We present

the different behavior of the method for even and odd polynomial degrees. Further-

more, we explain this behavior by introducing counter examples for the even-degree

case showing that the DPG method is not uniquely solvable. In contrast, we con-

struct a Fortin operator for the odd-degree case which is required to prove the

stability on the discrete level.

In Chapter 4, we showed another technique for error analysis, namely, the non-

conforming analysis using Strang Lemma. The construction of a Fortin operator
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is infeasible for some cases which motivated us to use global optimal test functions

by using a weakly conforming test space. With this technique, we analyzed the

error just for the primal variable, while the trace variable is vanished due to the

use of the weakly conforming test space. The achievement is that we were able to

reduce the test space degree and yet recover the convergence rate which is obtained

previously by other researchers.

In Chapter 5, we presented a duality argument version for the DPG method.

The theory is applicable for the DPG in general. It interprets the higher conver-

gence rate in weaker norms. We showed how this theory is applied to the Poisson

equation and the Helmholtz equation.

Finally, in chapter 6, we presented the construction of a reduced finite dimen-

sional test subspace over rectangular meshes. As we have seen for the triangular

meshes, sometimes constructing a Fortin operator is not possible. So we used a

technique introduced by Raviart and Thomas [31], to construct a finite element

space over rectangles which implies the unique solvability of the DPG method.

Furthermore, we were able to recover the convergence rate of the standard DPG

method (the one obtained by constructing a Fortin operator).

In conclusion, we have examined carefully the convergence rate of the DPG

method over different type of meshes. We introduced new cases where the test

space is reduced without losing the convergence rates obtained earlier by other

researcher.

7.1 Accomplishments

In the theoretical scope of this dissertation, we have developed and proven a du-

ality argument theory for the DPG methods. In particular, we have applied the
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duality argument to two examples, namely, the Poisson equation with Dirichlet

boundary condition and the Helmholtz Equation with impedance boundary con-

dition. Furthermore, with the duality argument of the DPG method, we are able

to measure the error in the L2-norm and explain theoretically the one-order higher

convergence rate than the one observed in the H1-norm. Additionally, we have

explained theoretically the parity in the behavior of the DPG method for some

reduced test spaces. Also, we have applied the nonconforming analysis and the

Strang lemma to the DPG method and gotten error estimates in H1-norm. Fi-

nally, we used different techniques to construct reduced finite dimensional spaces

for the DPG method with various type of meshes.

In the numerical and computational scope of this dissertation, we recovered

the convergence rates of the DPG method despite using reduced test spaces. Con-

vergence of the method is demonstrated under an exact solution to the Poisson

equation with Dirichlet boundary condition problem. Those convergence rates

obtained confirm the theoretical results.

7.2 Future work

As is the case with any research, much work remains to be done. We outline here

several areas of work which we hope to pursue in the future.

• Three Dimensional Meshes

We want to extend this study to partial differential equations over three di-

mensional domains. We might start with the Poisson equation with Dirich-

let boundary condition and show the stability on the discrete level, which

is achieved by constructing a Fortin operator over the unit cube. Then, we
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may work on reducing the test space and come up with DPG methods which

are cheaper than the one we aim to obtain by the Fortin operator.

• Reduced Test Space for The DPG Method Applied to Various

Problems

The DPG method has been applied to many Partial Differential Equations

and exhibited its robustness. We plan to start from there and try to minimize

the cost of the DPG method by constructing test spaces with reduced degrees,

in order to recover the convergence rates obtained earlier.
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