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ABSTRACT

Scientific datasets associated with a research project can proliferate over time as a
result of activities such as sharing datasets among collaborators, extending existing
datasets with new measurements, and extracting subsets of data for analysis. As
such datasets begin to accumulate, it becomes increasingly difficult for a scientist to
keep track of their derivation history, which complicates data sharing, provenance
tracking, and scientific reproducibility. Understanding what relationships exist
between datasets can help scientists recall their original derivation history. For
instance, if dataset A is contained in dataset B, then the connection between A
and B could be that A was extended to create B.

We present a relationship-identification methodology as a solution to this prob-
lem. To examine the feasibility of our approach, we articulated a set of relevant
relationships, developed algorithms for efficient discovery of these relationships,
and organized these algorithms into a new system called ReConnect to assist sci-
entists in relationship discovery. We also evaluated existing alternative approaches
that rely on flagging differences between two spreadsheets and found that they were
impractical for many relationship-discovery tasks. Additionally, we conducted a
user study, which showed that relationships do occur in real-world spreadsheets,
and that ReConnect can improve scientists’ ability to detect such relationships
between datasets.

The promising results of ReConnect’s evaluation encouraged us to explore a



i

more automated approach for relationship discovery. In this dissertation, we in-
troduce an automated end-to-end prototype system, ReDiscover, that identifies,
from a collection of datasets, the pairs that are most likely related, and the relation-
ship between them. Our experimental results demonstrate the overall effectiveness
of ReDiscover in predicting relationships in a scientist’s or a small group of re-
searchers’ collections of datasets, and the sensitivity of the overall system to the

performance of its various components.
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CHAPTER 1: INTRODUCTION

Large amounts of scientific data currently exist as dataset files outside of database
management systems (DBMSs). As scientists perform various activities with these
datasets—such as combining data split across several files, filtering or rearranging
data to aid their analyses, and sharing datasets with collaborators and receiving
versions with modifications—the size and the number of dataset files related to a
research project increases. In such cases, scientists can lose track of the connections
between their files and it becomes increasingly difficult for them to answer questions
such as: Which dataset is the most complete? Which two versions of datasets go
together? Are there any overlapping datasets? Are there any duplicate datasets?
Not having ready answers to these questions can be an impediment for scientists
to share their data or move it to a DBMS, and can add to the time that they spend
managing their datasets rather than analyzing their data [74].

We believe that determining relationships, such as row-containment, comple-
mentation, duplicate, and augmentation, between datasets can help answer such
questions, and is the focus of this work. For example, assume that a researcher
is trying to determine the most complete version among three datasets stored in
spreadsheets X, Y, and Z, to share with her collaborators. Knowing that datasets
X and Y are row-contained in Z can help her determine that the most complete
version is Z, as it contains the rows of both datasets X and Y. As another exam-
ple, suppose that a scientist performed bacteriological analysis on a set of water

samples and saved it as spreadsheet A, and then created a new spreadsheet B to



store her chemical analysis on the same set of water samples. A few months later,
she wants to decide whether to upload A, B or both to a shared archive. The
classification of the relationship between these spreadsheets as complementation
can help her determine that the connection between them is that the unmatched
columns provide complementary information about the matching water samples in
A and B. Consequently, she may choose to upload the two spreadsheets together.

Version history could give some hints about connections between datasets, but
that by itself is not enough for the following two reasons. First, version con-
trol systems (VCS) cannot always track versions across all scientists’ activities on
spreadsheets. For instance, when a scientist sends a spreadsheet to a collaborator,
the changes made by her collaborator would not be tracked by the VCS. Second,
relationships could arise between datasets without direct derivation. For instance,
the complementation relationship we just mentioned in the example above could
arise not necessarily from having dataset A derived from B, or vice versa. Thus,
we sometimes need to determine relationships between datasets by looking at the
data stored in them.

In this work we focus on tabular datasets because much of the file-based sci-
entific data are organized as tables, such as spreadsheets, instrument output, and
sensor logs. Moreover, in some cases, ordering of these tabular datasets is sig-
nificant and can help in determining how datasets are connected. For instance,
as ordered tables are manipulated and transformed for analyses, different kinds
of ordered relationships, such as infix, sub-sequence, and reordered rows, can re-
sult between source data, intermediate results, and derived datasets. We need an
approach that can handle relationships involving order.

Since we believe the relationship-identification problem is important, we wanted
to develop an approach to it. Our research had two phases. In the first phase, we
focused on the viability of our relationship-identification approach. We wanted to

know whether relationships arose in practice, whether we could effectively identify



them, and, if so, are relationships useful for scientists in identifying the original
connections between their datasets? Thus, we built a prototype tool, ReConnect,
that helps a scientist interactively determine connections between two datasets.
The results from ReConnect evaluation were promising, and we were encouraged
by what we observed. However, the interactive, pairwise approach was not suitable
for a scientist with more than few datasets. So, in the second phase, we wanted
to make relationship identification practical at the scale of dataset collections. To
support that case, we had to go beyond pairwise relationship testing, and develop
a more automated approach that reduces user involvement as much as possible.
To that end, we developed ReDiscover, an end-to-end prototype system that helps
scientists determine which pairs to examine for relationships from a collection of
datasets.

More specifically, in the first phase, we articulated a set of relevant relationships
(Section 2.2.1) and developed a methodology for identifying these relationships
between pairs of spreadsheets. This methodology first extracts tabular datasets
from spreadsheets. Then it extracts column features to suggest a column corre-
spondence and also to suggest potential relationships between datasets. Finally,
it establishes correspondences between sets of columns in order to generate SQL
queries to examine column data to confirm suggested relationships. To examine
the viability of our methodology, we first implemented and evaluated ReConnect
(Section 3.1), an interactive tool that implements the methodology. Second, we
conducted a user study where we talked to scientists to both validate our intuition
about relationships and to examine ReConnect’s usefulness in determining mean-
ingful relationships (Section 3.2.1). This study confirmed that the proliferation of
scientific datasets can be a significant problem, and that scientists often struggle
to select and decide how to work with their datasets, especially when working with
collections of datasets where they are uncertain about the connections.

The work on ReConnect established the viability of our relationship-identification



approach as it verified the following two hypotheses. First, finding relationships
matters because 1) relationships do actually occur in practice, 2) knowledge of
them can aid scientists in determining original connections between their datasets,
and 3) scientists cannot easily check them manually in spreadsheets of even mod-
est size. Second, we can at least partially automate relationship identification and
testing, as is demonstrated by ReConnect. However, it is tedious for scientists to
apply ReConnect to a collection of, say, 50 datasets, as it would involve looking at
1200+ dataset pairs. Thus, we now needed to develop an approach that is practical
for a scientist to apply across whole collections of his or her datasets.

In the second phase, we examined the applicability of our approach by develop-
ing a relationship-prediction methodology for suggesting the pairs that are likely re-
lated, and the relationship between them, in a collection of datasets. Our method-
ology applies a conditional probabilistic model, namely Conditional Random Fields
(CRFs, Section 4.2.1), to automate data-column extraction (Section 4.2.2), com-
putes fast approximate column summaries using data profiling and Bloom filters
(Sections 4.2.3, and 4.2.4), and applies Support Vector Machines (SVMs) to auto-
mate column matching (Section 4.2.4) and to predict relationships (Section 4.2.5)

between dataset pairs. Specifically, we make the following contributions.

e Development of an approach for automatically extracting tabular datasets
from spreadsheets. We developed a new approach that applies CRFs to iden-
tify spreadsheet cells that are part of a data column, group these cells as
columns, and identify data types for resulting columns. We show that this
approach is capable of extracting datasets in real-life and synthetic spread-

sheets with reasonable accuracy.

e Design and implementation of a summarization technique for categorical col-
umn. We designed a method based on Bloom filters that converts each

categorical column into a fixed-size bit-vector. Using these vectors, the



relationship-prediction methodology computes similarity between categori-
cal data while preserving our scalable architecture, which avoids comparing
individual data values and bounds the amount of effort required to derive

joint features.

e Development of a new technique, based on Bloom filters, for computing in-
dicative relationship features. We developed a new technique that uses Bloom
filters for computing indicative features for certain relationships, such as du-

plicate, containment, prefiz, and suffiz.

e Prototype implementation of a scalable system for predicting relationships
(called ReDiscover). To evaluate our methodology, we developed ReDiscover,
an end-to-end prototype prediction system that takes a collection of spread-
sheets as input and produces a list of pairs of datasets and the predicted

relationship between them, if any.

o Experimental validation of the relationship-prediction approach. We evaluate
the ReDiscover approach, demonstrating the effectiveness of our relationship-
prediction methodology. We also evaluate our dataset-extraction technique,
as the accuracy of ReDiscover’s predictions depends heavily on the accuracy

of the dataset-extraction steps.

While relationships can occur in any kind of datasets, this work focuses on
spreadsheets for the following reasons. First, spreadsheets are widely used for
storing tabular datasets across disciplines, whereas other scientific dataset formats,
such as Flexible Image Transport System (FITS) [73], Network Common Data
Form (netCDF) [63] and Hierarchical Data Format (HDF) [40], are more domain
specific.

Second, based on the file-based datasets we examined, we noticed that many

datasets can be characterized as ordered tables at the abstract level. The order of



rows and columns can provide indications of past activities, which we can help de-
termine by identifying order-based relationships, such as prefiz (see Section 2.2.2).
Spreadsheets are one of the formats that capture dataset order. While relational
tables can model order, order is not inherent in them and extra work is required
to capture it.

Third, to identify relationships, our methodology relies on extracting indicative
features from datasets, such as column type and value frequency. We also wanted
to explore using additional kinds of information as indicators for relationships,
such as spreadsheet metadata (e.g. file name, size, and author) and cell properties
(e.g. text alignment, font style, and data format). The trade-off here is that
some other dataset formats have stronger typing of data, which could also aid
relationship identification. However, ReConnect and ReDiscover are equipped with
a type extractor for spreadsheets that allows them to utilize type information in
identifying relationships between datasets.

This dissertation is organized as follows: In Chapter 2, we first discuss the
context and motivation for our research. Next, we discuss related background
research, especially existing techniques and tools that scientists could use to man-
age their datasets. Finally, we introduce the theoretical concepts underlying
our relationship-identification methodology, catalog a set of relationships that
could help scientists discover connections between their datasets, and illustrate
our methodology with an example. In Chapter 3, we introduce ReConnect, a
semi-automated tool for detecting relationships between two datasets. The second
section of that chapter presents an assessment of ReConnect, which involves a user
study, plus an evaluation of the effectiveness of ReConnect relative to four other
change-inference tools in identifying relationships between spreadsheets. Chapter
4 introduces our relationship-prediction methodology, discusses the challenges re-
lated to predicting relationships in large collections of spreadsheets and presents

the architecture of ReDiscover and detailed description of its components. Chapter



5 presents our experimental evaluation of ReDiscover, which involves three exper-
iments: 1) an assessment of the effect of the result quality of each of ReDiscover’s
components on the results of later stages, 2) an evaluation of our data-column ex-
traction technique and 3) an investigation of the overall effectiveness of ReDiscover
in predicting relationships between datasets. In Chapter 6, we discuss related re-
search work, and we conclude this dissertation in Chapter 7 with a discussion of

further applications for our methodology and possible future research directions.



CHAPTER 2: MOTIVATION, OVERVIEW AND BACKGROUND

In this chapter, we first discuss the motivation and context of our work in Sec-
tion 2.1. Section 2.2 discusses the conceptual basis for the relationship-identification
methodology, and informally defines the set of relationships we developed for our
methodology. Lastly, Section 2.3 presents concepts and techniques from several
research areas, including data management, machine learning, and data mining,

that we used in our research.

2.1 MOTIVATION

We conducted our work in the context of SQLShare [42], a database service targeted
at small groups of scientists that cannot afford to hire database experts, nor have
the technical skills to effectively use relational database technology. When trying
to use database systems, these scientists confront several impediments, including
the installation, configuration, schema design of database systems, data loading,
data cleaning, and query formulation. With SQLShare, scientists may simply
upload their data, query it to receive an answer, define views to improve data
usability, and share results with other SQLShare users without encountering these
impediments. To help users with query formulation, SQLShare team provides a
set of starter queries—SQL queries based on the user’s uploaded datasets.
However, we observed an additional impediment to using SQLShare in some
cases. Because scientists often accumulate many datasets over the course of a
project, it can be difficult for them to sort through their collections to determine
which ones to upload: Which dataset is the most complete? Which two versions

of datasets go together? Do two datasets overlap? In fact, several scientists have



asked our collaborators at University of Washington who developed SQLShare for
help with this selection problem. Similar problems exist with other data sharing
platforms such as Fusion Tables [38], Dryad [43], ICPSR [1], and emerging services
related to consortia such as DataOne [55] and the Research Data Alliance [2].

The goal of our work is to overcome this additional impediment: the prob-
lem of deciding which datasets to select, and which course of action to perform
on these datasets. Thus, we began looking for ways to help scientists overcome
this impediment. These tasks often requires that scientists determine (or recall)
the original connections between datasets. Identifying relationships between these
datasets could help with this determination, and is the focus of this dissertation.

Many of these datasets exist in file-based formats, such as spreadsheets and
CSVs. To the best of our knowledge, there is no tool that a scientist can use for
identifying connections between such datasets in a collection. Previous research
focused on managing scientific data stored in databases. In Chapter 6, we discuss
this part of related research in more detail.

In the next section, we present a motivating example, which we use as a running
example throughout the dissertation. This example will help better explain how
identifying relationships between spreadsheets can help scientists make informed

decisions on how to work with their data.

2.1.1 A Motivating Example

Spreadsheet A Spreadsheet B Spreadsheet C
Site Sample |Bottlegp| Depth |[|Site Sample # | Bottle gp | Depth |[|Site Sample # | temp salinity
NH-10 1350 1-3 70.4 NH-10 1350 1-3 70.4 NH-10 1350| 8.815 32.6
NH-10 1351 4-6 60.9 NH-10 1351 4-6 60.9 NH-10 1351| 8.814 32.6
NH-10 1352 7-9 28.7 NH-10 1352| 8.805 325
NH-10 1353| 10-12 3.9 NH-10 1353| 8.834 325

Figure 2.1: An example of three related spreadsheets: Spreadsheet A is row-

contained in spreadsheet B, and spreadsheets B and C' are complementary.
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Jennifer, a marine scientist, collaborates with a group of colleagues on assessing
the effects of climate change on the Pacific Ocean. She is responsible for manag-
ing and analyzing multiple spreadsheets that contain ocean-observation data, and
wants to upload data to an online service, such as SQLShare, for sharing datasets.
However, she often receives multiple versions of a spreadsheet from different collab-
orators. Consequently, Jennifer has to inspect spreadsheets manually to identify
the best ones to upload.

Figure 2.1 shows three related spreadsheets. Spreadsheets A and B contain wa-
ter sample data including site ID, sample number, sample source, and the depth at
which the sample was collected. Spreadsheet B was created by extending Spread-
sheet A with two additional rows (rows 4 and 5). The relationship between A and
B is row-containment because Spreadsheet A’s data is contained in Spreadsheet
B. Spreadsheet C' contains the temperature and salinity readings for the same
water samples found in Spreadsheet B. Spreadsheet C' agrees with B on the Site
and Sample # columns, but the rest of the columns are not related by a column
correspondence (Bottle gp and Depth of B do not match temp and salinity of C.)
The relationship between B and C'is complement, since the unmatched columns
provide complementary information about the water samples in B and C.

Jennifer needs a tool to aid her in determining that spreadsheet B is a more
complete version of spreadsheet A, and consequently B is the one that she should
upload. Additionally, if she is to upload B, she should also upload C' as they
complement each other. In this example, it is easy to eyeball the relationships, but
it would be a tedious and error-prone task to manually determine relationships
between spreadsheets with hundreds of rows and tens of columns. However, no

current tools specifically target this problem.
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2.2 CONCEPTUAL BASIS FOR RELATIONSHIP IDENTIFICATION

We first discuss the conceptual basis of how identifying relationships between
datasets can help scientists recall their original connections. (Section 2.2.1). Then,
we informally define some of the relationships that we seek to identify (Sec-

tion 2.2.2).

2.2.1 Activities, Connections and Relationships

Spreadsheets (and other datasets) are produced and modified as a result of sci-
entists’ activities, and may proliferate as a result of some of those activities. For
example, a user may combine data from multiple spreadsheets, start a new spread-
sheet for each day’s observations, fill in missing or null values in an existing spread-
sheet, or filter or rearrange data to aid in analyses. Understanding that such ac-
tivities have occurred can help the user detect how spreadsheets are connected and
how to work with their data.

Table 2.1 shows activities that Jennifer’s collaborators may have performed on
spreadsheets A, B, C', and D. Some activities will produce distinct relationships,
as in the case of the sort activity, while other activities can produce the same
relationship, as in the case of the adding- versus selecting-rows activities. User
feedback is needed to remove such ambiguity in identifying connections. We want
to provide users with contributing evidence so that they can make the decision as
to how their datasets connect to each other.

Of course, it may be the case that two spreadsheets were not involved in a com-
mon activity. We can also identify the incompatible relationship, which indicates
the absence of a connection.

We observe that scientists’ varied activities typically produce various relation-
ships between their spreadsheets. We want to detect these relationships by ana-

lyzing the data in two spreadsheets without necessarily having knowledge of the
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Table 2.1: An example of the activities that Jennifer’s collaborators may have

performed on spreadsheets A, B, C, and D.

Activity

Connection

Relationship

Add two water-sample rows
(1352 and 1353) to spreadsheet

A and save it as B.

B is
row-extension of

A

A is row-
contained in

B

Select rows with a depth greater

A is a selected

A is row-

Depth and save it as D.

reordering of B

than 30 meters from spreadsheet subset of B contained in
B and save it as A. B
Store the bottle label and depth Unmatched B and C are
of samples 1350 to 1353 in columns provide | complemen-
spreadsheet B, and store the complementary tary
water temperature and salinity information
of the same samples in about the
spreadsheet C'. matching water
samples in B
and C
Sort spreadsheet B on increasing Dis a B is

row-equal to

D

history of the activities that produced or modified these spreadsheets. As we dis-

cussed in the introduction, while version or derivation history could give some tips

about how two datasets are connected, relying on such information is not enough

for this task because 1) VCSs cannot always track versions across different scien-

tists’ activities on spreadsheets, especially when sharing of datasets passes outside

the tracking system, 2) relationships can arise without direct derivation, and 3)
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just knowing that a dataset A is a version of B does not always indicates what
activities changed B.

In this work, we focus on the kinds of activities that scientists perform when
operating on scientific datasets stored in spreadsheets, and we formulate the fol-
lowing two hypotheses. First, determining relationships is useful for scientists, as
it can help them identify connections between their datasets. Second, we can at
least partially automate the process of relationship discovery.

In order to investigate these hypotheses, we built ReConnect, a tool that can
help identify relationships between two datasets (Chapter 2.3.2). One of the main
reasons for building this tool was to evaluate whether our first hypothesis is true
before investing more effort in the development of a more automated approach.
We were able to validate our first hypothesis by conducting a user study that
evaluated the usefulness of ReConnect and the set of relationships it identifies
(see Section 3.2.1). On the basis of these encouraging results, we developed the
relationship-prediction methodology (ReDiscover) to fully automate our approach
(see Chapter 3.2.3).

ReConnect determines relationships between pairs of spreadsheets by first ex-
tracting tabular datasets from them with the help of the user. Second, it extracts
column features to suggest a column correspondence and also to suggest potential
relationships between tabular datasets. Third, our tool establishes correspondences
between sets of columns, with optional user interaction. Determining column cor-
respondences is important for discovering relationships because our relationships
are categorized based on how the columns of two datasets correspond. Fourth,
based on the column correspondence and column statistics, ReConnect suggests a
set of possible relationships. Lastly, a user can select, from the list of suggested
relationships, which relationship to investigate, and then our tool generates SQL
queries to examine the extracted datasets to validate the selected relationship. In

the next section, we introduce some of the relationships that are based on scientists’
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activities on their spreadsheets.

2.2.2 Relationship Definitions

We have developed a set of relationship definitions by inspecting spreadsheets
that we have collected from several sources, such as the EUSES spreadsheet cor-
pus [33] and spreadsheets provided by our scientific collaborators. Tables 2.2
and 2.3 present some of these relationships. Some relationships are special cases
of others. For example, prefix, suffix, infix, and subsequence are special cases of
the row-containment relationship, and reordered columns and reordered rows are
special cases of the equal relationship. Consequently, relationships are not mutu-
ally exclusive, and hence identifying generic relationships (e.g., row-containment)
may indicate the presence of their special cases (e.g., prefix).

Our relationships are defined based on the dataset content of the spreadsheets,
and not their appearance or layout. Our approach considers data the same regard-
less of its position or formatting. More specifically, relationship definitions are clas-
sified based on how the columns of two spreadsheets correspond, and on the data
shared between their rows. Two columns correspond when they are semantically
related and they describe the same real-world object. A Column correspondence is
the maximal set of corresponding column pairs between two datasets. We classify
the column correspondence as Full Correspondence, Sub-correspondence, Exten-
sion Correspondence, and No Correspondence. Full correspondence is when each
column in the first dataset (T1) corresponds to a column in the second dataset
(T2) and vice versa; sub-correspondence is when proper subsets of the columns
of T1 and T2 correspond; extension correspondence is when all of T1’s columns
correspond to a proper subset of T2’s columns; and no correspondence is when
there is no column in T1 that corresponds to any column in T2.

Figure 2.2 shows an example of the augmentation and sub-containment rela-

tionships. Notice that spreadsheet A fully corresponds to B, and that all of A’s
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Description of some of the relationships that the relationship-

identification methodology identifies.

Relationship

Description

Row-containment
“A is row-contained in

B’?

When A fully corresponds to B, and the rows of
spreadsheet A are a subset of the rows of spreadsheet

B.

Column-containment
“Ais
column-contained in

B’?

When A extensionally corresponds to B, and the rows
of spreadsheet A are equal to the corresponding parts

of the rows of spreadsheet B.

Sub-containment

“A sub-contained in

B??

When A sub-corresponds to B, and a portion of the
rows of spreadsheet A is a subset of the rows in the

corresponding columns of spreadsheet B.

Augmentation (Fill-in)
“B augments A”

When A fully corresponds to B, and all rows of
spreadsheets A and B match except for particular
cells, and these cells are empty or null cells in A but

are filled in B.

Complementationx When A sub-corresponds to B, where the rows in the
sub-corresponding columns match, and the remaining
columns are not related by column correspondence.

Templatex When A fully corresponds to B but their data rows
are disjoint.
Equalx When A fully corresponds to B, and row-containment
holds in both direction between A and B.
Incompatiblex No correspondence between A and B.

* Symmetric relationships.
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B Augments A

Spreadsheet A Eull- S0ce Spreadsheet B
[Depth (m) |description Nitrate [uM] | ammonium Depth (m) |description Nitrate [uM] | ammonium ]
115|deep 31.290 0.132 115|deep 31.290 0.132
50|deep Null 0.189 50|deep 33.000 0.189
16.5|below NO2 max 21.900 0.470 16.5|below NO2 max 21.900 0.470
14| nitrite max 21.900 | No reading 14 |nitrite max 21.900 0.470 |
7.8|chlorop max 14.320 i 7.8|chlorop max 14_320L 0.236
2|surface 0.040 2|surface 0.050 0.040
D is Sub-Contained in C
Spreadsheet C __——""Slb-Correspondente——_____Spreadsheet D
IDepth (m) |description Nitrate [uM] |||ammonium epth (m) |Description Nitrate [uM] | nM/day
115|deep 31.290 0.132 115|deep 31.290 121.543
50|deep 33.000 0.189 50|deep 33.000 109.670
16.5|below NO2 max 21.900 0.470 16.5|below NO2 max 21.900 418.228
14 |nitrite max 21.900 0.470 90|Near avg Ni 24.342 182.258
7.8|chlorop max 14.320 0.236 53.2|Above avg Ni 29.870 190.902
2|surface 0.050 0.040 120.5|Max Ni & depth 33.120 595.387

Figure 2.2: An example of augmentation and sub-containment relationships

cells with missing information, including Null, empty, and No reading values, have
been filled in B. Thus, B is an augmented (filled-in) version of A. Spreadsheet
C' sub-corresponds to D because a subset of C' columns corresponds to a subset
of D columns (i.e., C.Depth(m)<> D.Depth(m), C.descriptionssD.Description, and
C.Nitrate[uM]< D. Nitrate[uM]). Further, a portion of the rows of D is a subset of
the rows in the corresponding columns of C'. Consequently, D is sub-contained in
C.

We considered expressing relationships with relational algebra expressions. How-
ever, we found that they are not a good match because some relationships involve
preserving duplication and order, which relational algebra does not directly sup-

port.

Ordered Relationships.

The row and column order between two spreadsheets can provide useful infor-
mation about the connection between them. Table 2.3 lists some of the ordered

relationships. In Jennifer’s spreadsheets, when the row-containment relationship
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A'is a Prefix of B

Spreadsheet A Spreadsheet B
Site Sample # | Bottle gp| Depth Site Sample # | Bottle gp| Depth
NH-10 1350 1-3 704 wwmmmmw==- NH-10 1350 1-3 70.4
NH-10 1351 4-6 609 Eemmm———— NH-10 1351 4-6 60.9
NH-10 1352 7-9 28.7
NH-10 1353| 10-12 3.9

A is a subsequence of B

Spreadsheet A Spreadsheet B
Site Sample # | Bottle gp| Depth Site Sample # | Bottle gp| Depth
NH-10 1350 1-3 704 e NH-10 1352| 79 28.7
NH-10 1351 46 609 |, T NH-10 1350| 13 70.4
\~~~~ NH-10 1353| 10-12 3.9
*aNH-10 1351 4-6 60.9

Figure 2.3: An example of prefix and subsequence relationships

holds between spreadsheet A and B, other relationships based on row order that
might also hold are A is a prefiz of B or A is a subsequence of B, as shown in
Figure 2.3.

In the case of a prefix relationship, it seems more likely that A was extended
to form B, but in the case of subsequence relationship, it appears more likely
that A is a filtered version (a selection) of the rows in spreadsheet B. This ex-
ample shows how detecting multiple relationships can help users understand the
connection between their spreadsheets. Our intended approach should detect or-
dered relationships, such as prefiz, suffiz, infiz, duplicate, subsequence, reordered
columns, reordered rows, and reordered columns and rows.

As we discussed in the previous section, our relationships abstract from spread-
sheet layout. Thus, the duplicate relationship, which is a special case of the equal
relationship, does not mean that two spreadsheet files are identical. Datasets A
and B can be duplicates while they have different column names, there are other
datasets in the spreadsheets, they appear in different positions. Thus, the duplicate
relationship means more than just that a spreadsheet file is a copy of another. We

discuss the applicability of our approach to spreadsheets for other domains below.



Table 2.3: Description of ordered relationships.

Relationship Description
Prefix When A is row-contained in B and the rows of A appear
“A is a prefix of | consecutively at the beginning of B in original order.
B”
Infix When A is row-contained in B and the rows of A appear
“A is an infix of | consecutively at the middle of B in original order.
B
Suffix When A is row-contained in B and the rows of A appear
“A is a suffix of | at the end of B with the same original order.
B
Subsequence When A is row-contained in B and the rows of A appear
“Ais a in B in the same relative order.

subsequence of

B
Duplicate* When A and B are equal and have the same row and
column order.

Reordered A and B are equal with different column order.
Columns*
Reordered A and B are equal with different row order.

Rows™
Reordered A and B are equal with different column and row orders.

Columns and

Rows*

* Symmetric relationships.
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Is our approach appropriate for spreadsheets in general?

Our focus is on spreadsheets that contain scientific datasets, but spreadsheets are
also used for many other kinds of tabular data: sales reports, budgets, gradesheets,
etc. A natural question is whether our methods work for this data. We can cer-
tainly detect instances of the current relationships between data in such spread-
sheets. But the kinds of relationships that exist and their likelihood might be
different for other data sources than what is common for spreadsheets for scientific
datasets.

For instance, consider a spreadsheet containing a project budget, which has in-
dividual entries modified many times—a pattern we do not see much with append-
mostly scientific datasets. Our relationship-identification methodology currently
does not detect a relationship that specifically corresponds to this activity, or other
activities uncommon with scientific datasets. In order for our methodology to iden-
tify such relationships, we would need to build new routines that can handle these
new kinds of relationships.

In the next section, we discuss concepts from the literature that we made use of

in developing our approaches for relationship testing (ReConnect) and prediction

(ReDiscover).

2.3 BACKGROUND

In our research we use a number of techniques from several areas; we will discuss
these techniques and how we use them below. In Section 2.3.1 we address the two
main database techniques used in ReConnect, data profiling and schema matching.
In Section 2.3.2 we introduce and briefly discuss how ReDiscover uses Conditional
Random Fields, Support Vector Machines, and Bloom filters in predicting rela-

tionships between datasets in a collection.
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2.3.1 Relationship Testing

The relationship-identification methodology in ReConnect uses two database techn-
iques—data profiling and schema mapping—to help detect relationships between
datasets. Below, we briefly discuss how ReConnect uses these techniques in rela-

tionship testing.

Data Profiling

Data profiling is the process of collecting and analyzing statistical summaries of
data to understand its structure and content [47]. In the case of database ta-
bles, data profiling involves analyzing instances of column values to determine
information such as the data type, length, value range, discrete values and their
frequency, variance, uniqueness, and occurrence of null values [61]. Data profiling
is commonly used in data cleaning, which is the inspection of data sources for the
purpose of identifying problematic data [10]. Data-cleaning applications use pro-
filing information to aid in analyzing different aspects of attributes’ quality. For
example, the min and max values can be used to determine whether the values of
a given attribute (column) are within permissible range.

After converting spreadsheets into database tables, ReConnect applies data
profiling to analyze instances of column values to determine information such as
column data type, length, format, value range, discrete values and their frequen-
cies, variance, uniqueness, and occurrence of null values. (ReDiscover also applies
data-profiling to collect such information from the extracted data columns.) The
relationship-identification methodology uses this profiling information to aid users
in identifying column correspondences between two tabular datasets and as an
indicator or counter-indicator for suggesting relationships between datasets.

For example, when dataset A fully corresponds to B, all the corresponding

columns in A and B have the same type, and the value ranges of each column in
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A are contained in the value ranges of the corresponding column in B, ReConnect
suggests the following relationships: 1) A is row-contained in B, and 2) A is a

template of B.

Schema Matching

Schema matching is considered an important requirement for applications such as
data warehousing, integrating multiple data sources, and XML message mapping
[9,41]. In our work, we are not using schema matching to integrate spreadsheets’
data, nor to transform data from one spreadsheet to another. Instead, we apply the
attribute-(column-)correspondence part of schema matching to enable ReConnect
to examine columns’ data to confirm or discard suggested relationships.

More specifically, ReConnect relies on SQL queries to examine large datasets in
an efficient and scalable manner. But before ReConnect can generate SQL queries,
it has to establish a column correspondence between the datasets it is analyzing.
ReConnect uses schema matching techniques, namely semi-automated schema cor-
respondence, to produce an initial column correspondence between two tabular
datasets, and then relies on the user to correct or confirm the correspondence.
ReDiscover also uses schema-matching techniques; however, it applies automatic
schema matching that is based on supervised learning techniques, as we discuss in

more detail in Section 4.2.4.

2.3.2 Relationship Prediction

The relationship-prediction methodology in ReDiscover uses two machine learning
techniques—Conditional Random Fields and Support Vector Machines—to help
predict relationships between dataset pairs in a collection of datasets. Addition-
ally, our methodology uses Bloom filters in summarizing and measuring similarity
between categorical columns. It also uses Bloom filters to compute features for

relationship prediction as we discuss in Section 4.2.5.
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Data-Column Extraction

Many scientists use spreadsheets to store and manipulate tabular datasets. How-
ever, besides tabular datasets, they often use spreadsheets to store other informa-
tion, such as pictures, charts, and comments. Thus, in order for ReDiscover to
predict relationships among tabular datasets in spreadsheets, it must first identify
cells that are part of a data columns and cells that are not.

Conditional Random Fields (CRFs), a framework for building probabilistic
models to label sequence or graphical data [49,70], is widely used for tasks of such
a nature. CRFs can learn complex, overlapping and non-independent features that
operate at multiple levels of granularity. For instance, in the task of table extrac-
tion from text documents [59], CRFs use overlapping language and layout features
and take neighboring context into account when labeling items (lines of text in that
case). CRFs are well matched for our cell-labeling task because spreadsheet cells
are rich in layout, language, and context features. These features are important
for accurate cell labeling. In Section 5.2, we show that simpler models perform

less accurately.

Automated Column Matching and Relationship Prediction

To automate both the process of detecting column matches between the many
pairs of datasets it is analyzing, and the process of predicting relationships between
these pairs, ReDiscover applies a supervised learning model, namely support vector
machines (SVMs) [20]. An SVM is a data-driven classification model that applies
learning algorithms on training data to recognize patterns. SVMs are widely used
in classification tasks, such as handwriting recognition, image classification, and
protein classification [12]. We discuss how ReDiscover applies SVM in column
matching and relationship prediction in more detail in Sections 4.2.4 and 4.2.5

respectively.
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The relationship-prediction methodology can make a better use of a scientist’s
time by predicting which pairs of spreadsheets are likely related, and what the
relationship between them might be. With the use of Conditional Random Fields
in data-column extraction and Support Vector Machines in computing column cor-
respondence and in prediction relationships between pairs of datasets, ReDiscover
is fully automated (though the architecture can accommodate human feedback at

various points).

Summarizing Categorical Columns

For ReDiscover to match data columns and to predict relationships between dataset
pairs without having to extensively analyze their data, it computes statistical sum-
maries for numerical and categorical columns. While using column statistics pro-
vides representative features for numerical data, it is not enough to rely on simple
count statistics, such as common value frequencies, or counts of unique and null
values to summarize categorical data. Some of the statistics do not apply to cat-
egorical data (e.g., mean, standard deviation), or may not be very informative
(e.g., min, max values). Thus, we developed a technique based on Bloom filters
that enables us to inexpensively approximate similarity between two categorical
columns, as we describe in Section 4.2.4.

A Bloom filter is a space-efficient data structure that was originally developed
to test for element membership in a set [11]. It is constructed by converting a
set of elements S = {z1,...,x,} into a bit vector bf of length m as following.
First, the bit vector bf is initialized to zero. Second, k independent hash functions
(hi,...,hy) are defined, each of which maps x;, for 0 < i < n — 1, to one of the
bit vector elements (bf, ..., bf,,_1). Third, each element x; of S is fed to each of
the k£ hash functions to get k£ positions in the vector, which are then set to one.

To test for an element membership, we feed that element to the same k hash

functions used to create the bit vector. If all the k& bit locations in the bit-vector
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are set, then the element “possibly” exists in the set. Otherwise, the element is
definitely not in the set. One disadvantage of Bloom filters is that false positives
are possible. However, we can tune a Bloom filter to trade the size of its bit vector
against its false-positive rate. (See Section 4.2.4 for more details.)

Bloom filters can also be used for collection-to-collection similarity testing.
For example, Jain et al. [45] developed a technique that uses Bloom filters to
approximate the match between two web documents. First, they used content-
defined chunking (CDC) to extract document features. Next, they create a bit
vector using these extracted features. Lastly, to determine similarity between two
documents, they compare the bit vector of one document with that of the other.
Two documents are marked similar if they share a large number of 1’s. In our
work, we use Bloom filters to summarize categorical data-columns, and to compute
similarity between them, as we explain in detail in Section 4.2.4.

Additionally, Bloom filters can be used for determining containment between
collections. If the set bits of the bit victor for collection A are a subset of the bits
in the vector for collection B, then there is a high probability that all the elements
of A are contained in B. Furthermore, if there is not containment of bits there
cannot be containment of collections. In Section 4.2.5, we show how we use this
property of Bloom filters to help predict containment between two datasets.

In conclusion, scientists’ activities on their datasets leave behind relationships
that are indicative of the original connections between their datasets. Based on
this observation, we developed two hypotheses: 1) knowing these relationships can
help scientists determine connections between their dataset, and 2) we can at least
partially automate the process of relationship identification. To validate theses hy-
pothesis, we first developed ReConnect, a tool for testing for relationships between
two datasets (Chapter 2.3.2), and evaluated our tool with a user study. The results
showed that relationships are useful to researchers and that our methodology can

test for relationships efficiently. Encouraged by these results, we expanded our
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methodology to deal with a scientist’s or a small group of researchers’ collections
of datasets (Chapter 3.2.3). The ultimate goal of our work is to develop efficient
tools for scientists to identify relationships that can help them better understand
and work with their data. We discuss the implementation and the evaluation of

ReConnect in the next chapter.
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CHAPTER 3: RELATIONSHIP TESTING

To validate the utility of our set of relationships in helping scientists with the task
of dataset selection, and to see whether or not we can test for relationships in a
reasonable amount of time, our initial investigation focused on testing relationships
between two datasets. For that purpose, we developed a semi-automated tool,
ReConnect, that enables a scientist to test for relationships between pairs of tabular

datasets embodied in spreadsheets.

3.1 RECONNECT’S ARCHITECTURE

As shown in Figure 3.1, ReConnect’s architecture consists of two processes. The
first process, Upload Dataset, converts a dataset in a spreadsheet into a database
table (Section 3.1.1). Because a spreadsheet may have multiple datasets, datasets
with partial rows or columns, and non-table data, ReConnect allows a user to
guide the conversion process, which improves the accuracy with which tabular
datasets are extracted. The second process, Identify Relationships, involves two
tasks: the first is detecting any column correspondence between the two tables
(Section 3.1.2), and the second is analyzing the column correspondence and data-
profiling statistics to suggest and validate possible relationships between these
datasets (Section 3.1.3). Throughout this section, we use the example from Sec-

tion 2.1.1 to explain how ReConnect works.

3.1.1 Converting Spreadsheets to Database Tables

ReConnect converts a spreadsheet into a database table in two steps. In the first

step, Select Dataset, a user selects a tabular dataset within her spreadsheet. (It is
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Legends:
Spreadsheets . oyetomouputs >
~ . Data flow 3
& q
O
:.,Qé}-'&q%
/ Upload Datasets \ Identify. Relationships \
Select
Dataset (DS)
Convert DS Calculate
to DB Table Data Profiling

\ / Column statistics /

ReConnect
Database

Figure 3.1: ReConnect’s architecture: The process Upload Dataset converts a
spreadsheet into a database table, and the process Identify Relationships detects

relationships between pairs of spreadsheets.

also possible for a user to upload several datasets from the same spreadsheet.) As
shown in Figure 3.2, Jennifer selects her table by specifying column (1 to 4) and
row (2 to 5) ranges. She then selects the index of the row that contains the column
names of her table (row 1 contains B’s column names). This step is optional, as
some tables may not have headers. When she clicks the Select button, ReConnect
lets her preview the dataset.

In the second step, Jennifer can edit database table information such as the
table name and column names. She can also specify a primary key for her table.

The tool verifies that a selected column satisfies the constraints on primary keys,
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Choose Your File To Upload :

Browse...

File Name: E\UploadedUserFiles\B.xlsx
File Content: application/vnd.openxmiformats-officedocument.spreadsheetml.sheet
File Size: 12105bytes

Enter data range
Columns: From: |1 To: |4

Rows:  From: 2 To: |5

Enter the row index of Column Names 1

Original Spreadsheet Data Selected Data
s e sunpi Botiego ooy

1 Site  Sample # Bottle gp Depth NH-10 1350 1=3 704
2 MNH-10 1350 1-3 704 MNH-10 1351 4-6 60.9
3 NH-10 1351 4-6 60.9 MNH-10 1352 -9 28.7
4 MNH-10 1352 7-9 28.7 MNH-10 1353 10-12 39

5 NH-10 1353 10-12 20

6
7 by Dr. Jim
a8 6:004M

Figure 3.2: Dataset selection for spreadsheet B: Jennifer can specify column and

row ranges and the index of the row that contains the column names of her dataset.

such as containing neither nulls nor duplicate values. Once she uploads her data,
ReConnect creates a database table and inserts the data in it. ReConnect preserves
column order by appending each column’s position to its corresponding attribute
name in the database table, and preserves row order by adding a new attribute

(row_index), which maintains the original row order, to the database table.

3.1.2 Column Correspondence

ReConnect must identify correspondences between conceptually identical columns
before it can suggest relationships between two spreadsheets. The column corre-

spondence resulting from this process enables ReConnect to suggest relationships
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between two datasets, and to compute the set of common rows (in the correspond-
ing columns) between two tables. It also enables the tool to generate SQL queries

to examine suggested relationships between the tables.

Generate Correspondence Verify Correspondence
/ Initial Column Corrected / \
=P Correspondence Correspondence
A é | | m—
= Site Site Site Site

Analyze Explore Sub-
Sample Sample # || Sample Sample # Correspondence correspondences

Correspond,
Bottle gb Bottle gb || Bottle gb Bottle gb poncy Correspondence

il =
= . .
Depth | Depth Depth Depth \ oy /
\ . d -
-

+

B A B
%\ e
& .
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Figure 3.3: Column Correspondence process for Spreadsheets A and B: ReConnect

depends on a user’s feedback to identify column correspondences accurately.

Figure 3.3 shows the column-correspondence process for spreadsheets A and B
from our example in Section 2.1.1. ReConnect first generates an initial column
correspondence by querying the database for column names from table A and B,
and then matches these names by equality. As shown in Figure 3.4, it outputs
the correspondences to Jennifer along with column statistics, including column
data type, the number of rows, the number of null values, the number of unique
values, the maximum and minimum values, and the common value frequency for
each column. These statistics aid her in inspecting and, if necessary, correcting the
proposed correspondences. Jennifer notices that columns Sample of A and Sample
# of B match, so she uses the ReConnect user interface to indicate that these
columns correspond. The example shows user feedback enhancing ReConnect’s

accuracy in identifying column correspondences.
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Figure 3.4: The initial column correspondence between datasets A and B.

ReConnect uses Jennifer’s column correspondences to compute the rows that
are common in A and B: the rows with sample numbers 1350 and 1351 (see
Figure 2.1). Editing column correspondences may result in different sets of common
rows, because ReConnect only checks for row matches relative to the corresponding
columns. If there were no common rows in the corresponding columns, ReConnect
would suggest that she explore sub-correspondences, where the tool attempts to
match a subset of the current column correspondence between A and B looking
for a correspondence that produces the largest set of common rows.

For example, suppose that instead of matching A.Sample — B.Sample #,
Jennifer mistakenly matched A.Sample — B.Site. ReConnect would find no
rows in common for this correspondence. If she chose to use the Explore Sub-
Correspondence feature, then ReConnect starts by removing the A.Site — B.Site
correspondence from the column correspondences and computing the set of com-

mon rows by matching row values in the remaining corresponding columns:
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A.Sample — B.Site, A.Bottle gb — B.Bottle gb, and A.Depth — B.Depth. This
sub-correspondence will not produce any common rows. Next, ReConnect removes
A.Sample — B.Site from Jennifer’s column correspondence, and again computes
the set of common rows by matching row values in the corresponding columns:
A.Site — B.Site, A.Bottle gb — B.Bottle gb, and A.Depth — B.Depth. This
sub-correspondence will produce two common rows: the rows with sample numbers
1350 and 1351. ReConnect continues exploring sub-correspondences until it finds
the correspondence that produces the largest number of common rows, which it
then suggests to Jennifer.

Relying on column statistics for determining column correspondence between
datasets may not be sufficient. There are situations where we can have statistically
similar columns that in fact do not correspond. For example, assume spreadsheet
X has Initial Temp and Final Temp columns and spreadsheet Y has Templ and
Temp?2 columns. Suppose the Initial Temp column closely resemble both Temp1
and Temp2 (similarly for Final Temp). Simple column-to-column comparison does
not give much insight on the correct column-correspondence here. However, com-
paring row values may help detect which of the two correspondences is appropriate,

because row values are more distinctive than single-column values.

3.1.3 Relationship Identification

Figure 3.5 depicts the process of identifying relationships, which involves two steps:
Suggest Relationships and Validate Relationships. In the first step, described in
Algorithm 1, ReConnect attempts to suggest relationships by analyzing column
correspondences and column statistics to check if they are compatible with the
conditions for a relationship.

The result of this step is a “quick and dirty” list of possible relationships—quick
because the analysis does not involve the individual data values in the datasets,

and dirty because statistics and column correspondences may not be sufficient to
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Figure 3.5: The Identify Relationships Process: ReConnect analyzes column cor-
respondences, column statistics, and the set of common rows of two tables to check

if they match the conditions for a relationship

validate certain relationships. For instance, if the number of rows of one spread-
sheet is greater than the number of rows of another, then it is possible that the
relationship between these spreadsheets is Row-containment. However, for ReCon-
nect to validate such a relationship, it must check whether or not all of the data
rows of the first spreadsheet are contained in the second spreadsheet. The purpose
of the list of suggestions is to provide users with hints about possible relationships
without having to analyze the actual data. It also removes from consideration
relationships that cannot possibly hold under the current column correspondence

and statistics.

Figure 3.6 shows how the Relationship Identification methodology classifies
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Figure 3.6: Relationship Identification Overview: Classifying relationships based

on column correspondences helps ReConnect limit the relationships to investigate.

relationships based on properties of a column correspondence. Classifying rela-
tionships based on column correspondences, such as Full Correspondence, Sub-
correspondence, and No Correspondence, helps ReConnect limit the number of
relationships it investigates for a pair of datasets. The figure additionally shows
that relationship conditions are also based on row properties such as row count
and row-value similarity.

During the second step, Validate Relationships, the user can choose a relation-
ship to investigate from the list of suggested relationships. ReConnect validates
the selected relationships by generating an SQL query that examines the two tables
and then analyzing the results of the query, in addition to column correspondences
and statistics. The details of the Validate Relationships process are presented in
Algorithm 2.

For example, since there is a full correspondence between the columns of Jen-
nifer’s spreadsheets A and B, in the Suggest Relationships step, ReConnect ana-
lyzes column statistics to determine which of the three relationships applies: Fqual,

Template or A is Row-contained in B. The tool obtains the row count of A and B
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Algorithm 1 Suggest Relationships algorithm

Input: Column correspondences (col_corr); column statistics (col_stats) and

the set of common rows statistics (C'R_stats).

Output: List of suggested relationships (suggested_relts).

1.

6.

7.

8.

col_corr_class = classify_correspondence(Col_Corr); >
classify_correspodence() takes the column correspondences and returns Full
Correspondence, Extension Correspondence, Sub-correspondence or No

Correspondence

. possible_relts = get the relationships associated with the col_corr_class

classification;

. for each relationship in possible_relts do

relt_conds = get the relationship conditions;
if col_stats and C'R_stats are compatible with relt_conds then
suggested_relts.add(relationships);

end if

end for

(RC(A) =2 and RC(B) = 4). Since the number of rows between A and B is dif-
ferent, the Equal relationship cannot hold. Because RC(B) > RC(A) ReConnect

adds A is row-contained in B to the list of suggested relationships. It also adds

the Template relationship based on the column correspondence.

Suppose that Jennifer selects the A is row-contained in B relationship for val-

idation. The Validate Relationships algorithm starts the validation process by

looking up the validation tests associated with the selected relationship. As part

of each validation test, ReConnect generates an SQL query that examines certain

relationship features. For instance, to count the common rows between A and B,
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Algorithm 2 Validate Relationships algorithm

Input: User-selected relationship (suggested_relt); relationship conditions

(relt_conds); column correspondence (col_corr) and tables A and B.

Output: Confirmation or invalidation of the relationship.

1.

10.

11.

valid_test = get the validation tests for the selected relationship

suggested_relt,

. for for each test in valid_tests do

test_qry = generate_qry(col_corr, suggested_relts) >
Based on predefined validation test, generate_qry() uses the column corre-
spondence to generate an SQL query that is used to test the tables data
for the suggested relationship.

test_results= run_query_in_D B(test_query);.

results_stats = analyze_results(test_results); > analyze_results()
collects statistics and other information about the results of the test query,

which ReConnect uses to validate the suggested relationship.
end for
if all validation tests passed then
Confirm relationship;
else
Invalidate relationship;

end if

ReConnect generates the following query (which handles repeated rows by group-

ing and counting them in each dataset). The query joins tables A and B based

on the column correspondence, and then counts the set of common rows between

the two tables (RC(CR) = 2). Since RC(B) > RC(A) and RC(A) = RC(CR),
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Reconnect reports to Jennifer that the row_containment relationship between A

and B is confirmed.

SELECT SUM(MIN2(t1.Cnt,t2.Cnt)) AS RC_CR
FROM (SELECT ta.Site, ta.Sample, ta.[Bottle gpl, ta.Depth, COUNT(*)
as Cnt
FROM A ta
GROUP BY ta.Site, ta.Sample, ta.[Bottle gpl, ta.Depth) ti,
(SELECT tb.Site, tb.[Sample #], tb.[Bottle gpl, tb.Depth, COUNT(*)
as Cnt
FROM B tb
GROUP BY tb.Site, tb.[Sample #], tb.[Bottle gp], tb.Depth) t2
WHERE t1.Site=t2.Site and tl1.Sample=t2.[Sample #] and t1.[Bottle
gpl=t2. [Bottle gp]l and tl.Depth=t2.Depth
--MIN2(Argl,Arg2) returns the minimum value out of the two arguments

passed to it.

The Implementation of ReConnect
We initially implemented ReConnect as a web application running on a local
Microsoft .Net server. The user interface (UI) of ReConnet, including Upload
Datasets and Identify Relationships, was developed in C#, and the database was
implemented in Microsoft SQL Server 2008. To integrate some of ReConnect func-
tionality with SQLShare system, we later converted it into a Windows Azure cloud
application, and migrated its database to Azure SQL Server platform.

As we discussed above, once the user selects a dataset, ReConnect converts
it to DB table. Then, ReConnect uses a set of static stored procedures to com-
pute data-profiling information for the uploaded dataset. These stored procedures

run in ReConnect’s Microsoft SQL Server database. Then, when a user selects
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two datasets to test for relationships, ReConnect computes the initial column cor-
respondence, and allows users to modify the correspondence through the Ul, as
shown in Figure 3.4. Based on the column correspondences and column statistics,
ReConnect suggests possible relationships to the user, who then selects which rela-
tionship to validate. Depending on the selected relationship, ReConnect generates
several dynamic SQL queries, which are executed in ReConnect’s database. Lastly,
it analyzes queries results to confirm or invalidate the selected relationship.

In the next section, we discuss the results of our preliminarily evaluation of
ReConnect, and discuss our user study, which provided valuable feedback from

scientists about ReConnect and the set of relationships it identifies.

3.2 USER STUDY AND EVALUATION

The assement of our initial work has two parts. First, we conducted a user study
to asses ReConnect and the set of relationships it identifies. The goal of this study

was to get initial answers to the following research questions.

RQ1 Do the relationships ReConnect detects actually turn up in real-life spread-

sheets?

RQ2 When subjects use spreadsheets, do they confront problems that ReConnect

seeks to solve?

RQ3 Does detecting relationships between spreadsheets help subjects select and

manipulate their data?
RQ4 Are there other kinds of relationships we should consider detecting?

RQ5 Do aspects of spreadsheets that ReConnect cannot currently handle interfere

with detecting relationships?
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Second, we compared the effectiveness of ReConnect and four commercial and
research change-inference tools for spreadsheets in identifying relationships be-

tween spreadsheets.

3.2.1 User Study!

In our study, we asked researchers to attempt to identify relationships between
their spreadsheets with and without the help of ReConnect. The purpose of this
study was to asses the applicability of the concept of relationship identification, the
usefulness of ReConnect in simplifying the task of detecting relationships between
spreadsheets, and to know whether our relationships arise in real-world scientific
spreadsheets. Our user study consisted of three parts. In the first part, we asked
subjects to manually detect relationships between their spreadsheets. In the second
part, subjects used ReConnect to do the same task they had performed in part one
using the same datasets. In the final part, we conducted interviews with subjects
about their experience with the relationship-identification task, both with and

without the use of ReConnect.

Subjects To recruit subjects for the study, we sent emails to mailing lists for fac-
ulty and graduate students in several science departments at different universities
and research labs. We recruited 10 subjects from various science fields such as Bi-
ology, Chemistry, Economics, Agriculture, and Computer Science. Macefiled [54]
indicates that a size of 10 is effective for evaluating early conceptual prototypes.
He states that “In the case of studies related to problem discovery in early con-
ceptual prototypes, there are typically factors that drive the optimal group size
towards the lower end of this [3-20] range” [54].

Prior to each user session, we asked the subjects to send us a pair of spreadsheets

they use in their research work. We wanted to make sure that their spreadsheets

'We had Portland State IRB approval for our user study.
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contained tabular datasets. We also asked for spreadsheets that the user believed
were connected, though we did not require that they be certain of the existence
or the exact nature of the connection. Thus, we were able to evaluate ReConnect

using real-life research spreadsheets that subjects provided.

Methodology We conducted the study using a desktop computer with dual
wide-screen monitors, which enabled subjects to view their spreadsheets side-by-
side to facilitate the manual inspection of relationships. The computer ran Mi-
crosoft Excel 2010 on Windows 7 Enterprise Edition. Sessions were conducted on
a one-on-one basis, where I supervised the session. We describe the three parts of

a session in more details below.

Part One: Detecting Relationships Manually

For each subject, we first explained the concept of relationship identification us-
ing the example spreadsheets shown in Figure 2.1. We also introduced the set of
relationships that ReConnect identifies. Then, each subject was asked to visually
inspect the spreadsheets he or she provided, looking for relationships that could
help him or her understand how the spreadsheets connect to each other. Through-
out this part of the study, we took notes on how the subject inspected his or her

spreadsheets, and answered the subject’s questions.

Part Two: Detecting Relationships Using ReConnect

We first demonstrated ReConnect using spreadsheets shown in Figure 2.1. Next,
subjects used ReConnect to convert their spreadsheets into database tables, and
then to detect relationships between their spreadsheets. During this session, we
provided minimal support for the subjects, and took notes on how they interacted

with the tool. Using ReConnect, subjects identified several relationships, including
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reordered rows and columns, equal, row-containment, column-containment, com-

plelemtation, and template relationships between their datasets.

Part Three: Interviews

In the last part of each session, we interviewed each subject to obtain his or her
feedback about the task of identifying relationships with and without the use of
ReConnect. The main goal of this interview was to find out how helpful detecting
relationships was in deciding how to work with their spreadsheets, to asses the help-
fulness of ReConnect in detecting relationships, and to determine whether there
were other relationships of interest that ReConnect did not handle. Additionally,
to determine whether our relationships arise between scientific datasets, we first
introduced these relationships to our subjects using several synthetic dataset pairs.
Then, we asked each subject whether he or she believed that these relationships

could exist between scientific datasets that they have encountered in their research.

Results Even with the aid of wide-screen dual monitors and the vertical and
horizontal side-by-side view feature that MS-Excel provides, all subjects found it
difficult to visually inspect spreadsheets for relationships. Most difficulties arose
from inspecting spreadsheets with a large number of columns and rows or differ-
ently ordered rows and columns, and from attempting to detect whether or not
two spreadsheets share a subset of their rows or columns (or both). As a result,
subjects sometimes reported relationships incorrectly between their spreadsheets.
For example, a chemistry researcher thought that she had edited a number of rows
in one of her spreadsheets and saved it with a different name. In fact, the rows
of the two spreadsheets were identical but appeared in a different order. However,
she was able to correctly identify that she had added columns that represented

new data for samples.
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In a few cases, subjects were able to “guess” such relationships as column-
containment and row-containment. However, they were not able to confidently
confirm the results of their observations. For instance, while visually inspecting her
spreadsheets, a computer scientist remarked, “Based on the number of rows in both
spreadsheets, I guess the relationship is row-containment. But to confirm that, I
need to write a VBA (Visual Basic for Applications) script.” However, writing
VBA scripts might be a difficult task for users with no programming experience.
Overall, subjects were unable to confidently identify relationships between their
spreadsheets through visual examination.

With ReConnect, subjects quickly and effectively detected useful relationships,
which enabled them to recall the activities they performed to transform one version
of a spreadsheet into another, and to decide how to further reuse or combine
their datasets. For the physics researcher, in addition to confirming the column
containment relationship she detected manually in part one, she found that the
rows of the spreadsheet with more columns had been filtered and reordered (to
facilitate the analysis of an experiment she was conducting).

Besides detecting relationships, the physics and chemistry researchers found
that some of ReConnect’s features could be used for data analysis. For instance,
after analyzing several correspondences between the columns of her spreadsheets,
a chemistry researcher stated “Often, I repeat experiments with minor changes in
my experiment configuration, such as increasing the temperature of the sample
environment by 10 degrees. Using this tool, I can test several column correspon-
dences to analyze the effect of such configuration changes on various experimental

results.”

Discussion The third part of the session (interviews) suggests that the relation-
ships that ReConnect detects do actually exist between scientific datasets (RQ1).

Subjects described several activities they regularly perform on spreadsheets that
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can produce the types of relationships that ReConnect detects. For example,
one subject stated that she often filters a dataset based on several criteria, and
then saves each version as a new spreadsheet. Such activities produce the row-
contaminant relationship between the original dataset and all the derived (filtered)
versions. Another subject stated that he usually performs several experiments on
the same set of chemical samples, and then stores each experiment on a separate
dataset. Such actions give rise to the complementation relationship, as this set of
datasets provide complementary information about the same set of samples.

Most subjects had affirmative responses regarding whether, when working with
spreadsheets, they face problems that ReConnect can help solve (RQ2). One
subject stated that she does not often face such problems because her spreadsheets
contain reference information that is rarely updated. However, she stated that she
previously confronted similar problems when she worked on a collaborative research
project.

The first two parts of the sessions suggest that ReConnect significantly simpli-
fied the task of identifying relationships between spreadsheets, a positive answer
to RQ3. All subjects agreed that determining relationships removed the burden of
comparing and analyzing spreadsheet cells, columns, and rows. Results also sug-
gest that subjects found value in using ReConnect to aid in data-analysis tasks,
which is a potential direction for future work.

Subjects suggested a number of relationships to add to ReConnect’s identifi-
cation capabilities (RQ4). For instance, one subject suggested detecting pairwise
column equality within a given percentage range (near-match relationship), which
could aid her in analyzing her spreadsheets’ data. For instance, she might want
to detect all the rows whose temperature columns are equal within £2%. Another
subject suggested identifying datasets with calculated columns that contains for-
mulas with reference to other datasets. This relationship is very similar to the

cell/sheet reference feature provide by Microsoft Inquire.
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Regarding whether some aspects of spreadsheets might interfere with detect-
ing relationships (RQ5), a single subject stated that cell formulas could interfere
with detecting relationships, as they may present irrelevant information about the
original spreadsheets’ data.

While the limited number of subjects may not enable us to detect all possible
issues with ReConnect, the group size was sufficient for early problem discovery.
The importance of this study was that it verified that there are no major issues
with the tool, nor with our assumptions about the usefulness of the relationship-
identification methodology. It is also worth mentioning that ReConnect response
time was not an issue, for the size of spreadsheets our users had. The SQL query
formulation and evaluation generally gave response times less than 10 seconds.

To sum up, we had positive feedback from our user study participants about the
usefulness of ReConnect and the set of relationships it identifies. The results of our
study suggest that subjects perform activities on their spreadsheets that give rise
to most of our relationships. It also confirmed that scientists often struggle with
identifying which dataset(s) to select, or how to work with the data stored in their
datasets, and that detecting relationships can help with these tasks. Addition-
ally, subjects proposed detecting new kinds of relationships that could help with
the selection task, including the near-match and cell/sheet reference relationships.
Regarding whether any of the spreadsheet aspects could interfere with detecting
relationships, one subject suspected that spreadsheet formulas may complicate the
process of relationship-identification. We plan to investigate this possibility in

future work.

3.2.2 Methodological Evaluation

Since there are no commercial or research tools that are aimed specifically at dis-
covering relationships between spreadsheets (or tabular datasets more generally),

we looked at other tools that may help scientists with this task. Change-inference
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tools, which enable users to identify changes between pairs of spreadsheets, much
like “diff” utilities on documents, have some capabilities that might help with the
task of discovering connections between datasets. The aim of this evaluation was
to investigate whether there were any existing commercial or research tools that

could provide the same capabilities as ReConnect.

Selected tools We selected one research change-inference tool (SheetDiff [16])
and three commercial tools (DiffEngineX [34], Synkronizer [75], and Excel Inquire
[56]) for our evaluation. These tools generate a report of differences and either
highlight differences between spreadsheets in both spreadsheets, as is the case
with Synkronizer, DiffEngineX, and Inquire, or do so only in one spreadsheet, as

is the case with SheetDiff.

Methodology We used two sets of spreadsheets for our investigation. The first
set was a collection of related pairs of real-life research spreadsheets that our user-
study participants had provided. Since the relationships between each of these
pairs had been identified and confirmed during the user study, we used this set
to evaluate whether or not change-inference tools would help us get to the same
results we had obtained in the user study.

The second set contains 10 pairs of spreadsheets that we selected from the
EUSES corpus [33] and from other sources. This set was constructed to test
combinations of relationships and spreadsheet features that are not covered by the
first set. For instance, if we tested the containment relationship only between small
spreadsheet instances from the first set, then we selected pairs of spreadsheets with
large dataset instances that have the containment relationship between them for
the second set. We also modified some of the selected pairs to test for special
relationships cases such as infix, prefix, suffir, reordered rows, reordered columns,

and reordered rows and columns relationships.
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We started by grouping spreadsheet pairs based on the relationship they rep-
resent. Next, we used these pairs as the input to each of the selected tools. Each
tool was tested with small and large spreadsheet instances. Then, we analyzed the
results of each tool to evaluate how readily these results can be used to confirm

the existence of the previously identified relationship between the inputted pairs.

3.2.3 Results

The results of our experiment are summarized in Table 3.1. Regarding the duplicate
relationship, all tools were able to detect it for both large and small spreadsheet
instances. On the other hand, only ReConnect were able to detect reordered rows
for both large and small spreadsheet instances. The user can easily identify dupli-
cate pairs when change-inference tools reported no changes. For the cell reference
relationship, only Inquire has the capability to provide a graphical representation
(relationship diagram) of links (formula references) between the current workbook
(worksheet, cell) and all other workbooks (worksheets, cells). Such a feature might
help users determine connections between business spreadsheets, such as budgets
and financial statements. However, in the case of scientific spreadsheets, cross-
dataset references are rarely used.

Regarding the containment relationships, including row containment, column
containment, and sub-containment, only ReConnect was able to identify them be-
tween both small and large spreadsheet instances. All other tools were able to
help in detecting containment relationships only between small instances. For
example, users may identify a column-containment relationship by analyzing the
additional columns that Synkronizer reported. However, for large spreadsheet in-
stances, change-inference tools generate a large list of changes that are hard to
comprehend, and hence complicate the relationship-identification task. For exam-

ple, DiffEngineX reported 1472 changes between an 80-row spreadsheet and its
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Table 3.1: The methodological evaluation results

Relationship DiffEngineX| Synkronizery SheetDiff| Inquire| ReConnect

Duplicate + + + + +

Cell/Sheet Reference | — - _

Row Containment

Reordered Rows/Cols | — _ _ _

+
v v v v |+

Column Containment | / Vv v v +
Sub-Containment vV i v v +
Augmentation Vv — v v +
Complementation — Vi Vv vV +
Template Vv — v v +
Infix/Prefiz/Suffix — v — — +
Subsequence — Vv — _ +
Reordered Rows — V* _ _ +
Reordered Columns — NG NG _ +
+

+

Incompatible Vv Vv Vv Vv

T The tool can identify relationships in both small and large instances of spreadsheet

pairs.

vV the tool can only identify relationships in small instances of spreadsheet pairs.

~ The tool helps identify relationships in neither small nor large spreadsheet pairs.

* Results are presented in terms of deleted and added rows and columns. For small
spreadsheets instances, users may be able to infer that two spreadsheets are actually the

same with different row and column order.
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row-extended and reordered version. ReConnect would report as a single relation-

ship.

Spreadsheet B Spreadsheet B' (Reorderd version of B)
Site Sample # | Bottle gp| Depth Site Sample # | Depth |Bottle gp
NH-10 1350 1-3 70.4 NH-10 1350, 704 1-3
NH-10 1351 4-6 60.9 NH-10 1353 3.9 10-12
NH-10 1352 7-9 28.7 NH-10 1352 28.7 7-9
NH-10 1353| 10-12 3.9 NH-10 1351 60.9 4-6

Figure 3.7: An example of two equal spreadsheets with reordered rows and
columns: Change-inference tools report that spreadsheets B and B’ are not equal
(identical). ReConnect reports that they are equal regardless of their row and

column order.

None of the change-inference tools were able to help in detecting complex re-
lationships, such as reordered rows or reordered columns, where two spreadsheets
contain identical but rearranged data. Spreadsheet B and its reordered version,
B’, shown in Figure 3.7, illustrate the issue of order sensitivity. As shown in Fig-
ure 3.8, SheetDiff reported that columns Sample # and Bottle gp each have two
unmatched cells (the second and the fourth cell). SheetDiff also reported that col-
umn Depth of B’ has been added to B and that Depth of B was deleted without
noticing that the deleted and added columns are actually the same with different
row order.

Similarly, as shown in Figure 3.9, Microsoft Inquire exhibited the order sen-
sitivity issue as it reported that row 5 was added to A, and there are six cells
with “Entered Value Changed”. However, since ReConnect uses schema corre-
spondence, it matched columns Depth and Bottle gp of spreadsheet B with their
counterparts in spreadsheet B’ in spite of their different orders. ReConnect used
this correspondence to compute the set of common rows without sensitivity to the

rows’ order. Because the columns of spreadsheets B and B’ fully correspond, and
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Figure 3.8: SheetDiff results of comparing spreadsheets B and B’ (shown in Fig-
ure 3.7). Yellow is used for changed cells, blue for added columns and rows, and

red for deleted columns and rows.

the row counts of B and B’ are equal to the row count of the set of common rows,

ReConnect reported that spreadsheets B and B’ are equal.
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Figure 3.9: Micorsoft Inquire results of comparing spreadsheets B and B’ (shown

in Figure 3.7).

Even with small spreadsheet instances, most change-inference tools reports were
not useful in detecting order-sensitive relationships, such as infix, prefix, suffiz,
subsequence, and reordered columns and rows. Only Synkronizer and SheetDiff

were able to help in detecting some of these relationships in small spreadsheet
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instances, due to their ability to aggregate cell changes into higher level changes
(e.g., added rows, deleted columns). However, Synkronizer was able to detect four
out of the five order-sensitive relationships, where SheetDiff was able to detect
only one. Synkronizer’s advantage is its ability to identify when row (or column)
positions have changed between two spreadsheets. However, Synkronizer failed to
identify equal spreadsheets when both rows and columns were reordered.

While change-inference tools do not require user interaction as ReConnect does,
it is still difficult for users to use these tools in the task of understanding relation-
ships between their spreadsheets, because the larger a pair of spreadsheet instances
is, the longer the list of changes users have to analyze. ReConnect offers a “set at a
time” approach to disambiguating a sea of spreadsheets, while the other tools seem
to be row-, column- or cell-oriented — which does not scale as spreadsheets become
larger. In addition, the user-verified schema correspondence allows ReConnect to
easily identify order-sensitive relationships. ReConnect is working on a more con-
ceptual level than other change-inference tools, and hence reports changes in a
more abstract and compact form.

In conclusion, the work on ReConnect confirmed the following. First, relation-
ships do exist in real-life scientific datasets, and detecting them can help scientists
determine connections between their datasets. Second, we can efficiently semi-
automate the relationship-identification process. While it may not be feasible for
scientists to use ReConnect for determining relationships between datasets in a
collection, it remains a useful tool for investigating a pair of datasets. In the next
chapter, we discuss our relationship-prediction methodology that helps scientists
identify the pairs that are mostly likely related, and predicting the relationship
between them. ReConnect can be used to confirm or invalidate these predicted

relationships.
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CHAPTER 4: RELATIONSHIP PREDICTION

In our initial work, where we considered just pairs of spreadsheets, we were able to
validate that the idea of relationship identification can help scientists with the task
of selecting which datasets to work with, and that by using database technology
we can test for relationships in a reasonable amount of time. But looking at real-
life research settings, scientists generally work with more than two datasets—often
with collections of dozens of spreadsheets.

Our first tool relied to some degree on the user’s help with the table-extraction
and column-matching processes. So, even though ReConnect partially automated
the process of relationship identification, which is tedious and error-prone when
attempted manually, it is still time consuming for a scientist to use ReConnect to
compare all possible pairs in a large collection of spreadsheets, to figure out which
spreadsheets are related.

Thus, we sought a more automated approach to handle collections of datasets,
and we decided that by predicting which pairs of spreadsheets were likely related,
and what the relationship between them might be, we can make a better use of
scientist’s time [6]. Now our research question becomes: given a collection of
spreadsheets, how far we can go in predicting relationships between pairs without
user involvement? We now discuss some the challenges we faced in answering this

question.

4.1 CHALLENGES

Upgrading our interactive approach to a fully automated one raised a number of

challenges, such as extracting datasets from spreadsheets, scaling to many datasets,
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and matching data columns. In this section, we discuss the details of these chal-

lenges, while we discuss our solutions to the challenges in the following sections.

4.1.1 Automating the Extraction of Tabular Datasets from Spread-

sheets

Before the relationship-identification methodology can predict relationships in large
collections of datasets, it must first extract tabular datasets without user involve-
ment. However, because of the many variations in dataset layouts and the mixing
of non-text data with tabular datasets, extracting datasets from spreadsheets is
non-trivial. Additionally, using machine-learning techniques, such as Conditional
Random Fields (CRFs), to automate the extraction of datasets can entail some
technical difficulties, as we discuss below.

While the better the accuracy of the dataset-extraction stage, the better the
quality of the results of later stages (such as column matching and relationship
prediction), dataset extraction does not have to be faultless. For instance, even
if our approach misses a row when extracting a dataset, it might still be able to

make reasonable predictions.

Wide Variety of Dataset Layouts in Spreadsheets

Spreadsheets give users freedom of expressiveness in storing and manipulating their
datasets. However, such flexibility often results in a wide variety of layouts for
datasets. For instance, a dataset may have spanning headers, columns separated
by gaps (empty cells), or multiple tables per sheet. As a result of such ad-hoc data
layouts in spreadsheets, dataset-extraction methods must cope with a wide variety

of such layouts.
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Non-data Text

Spreadsheets often hold other information besides datasets, such as charts, notes
and comments, which are often combined with data tables. Our relationship-
prediction methodology must be able to exclude such non-data elements based on
more than just cell contents. For instance, a cell may contain a text string that
could be a string value in a column, a column header, or a non-data comment or
note. Thus, we need a method that can incorporate cell context as well as cell
content. Later in this chapter we will see that CRF's are able to take advantage of

such information in distinguishing between data and non-data cells.

Producing Training Data for Cell Labeling

While we can automate the task of dataset-extraction by using machine learning
methods, such as CRFs and Hidden Markov Models (HMM), for any such methods
to cope with the variety of layouts and non-data elements in spreadsheets, it will
need a large training set. For instance, in our cell-labeling task (Section 4.2.1)
we need to label cell types as part of building the training set, which necessarily
requires human judgment. Consequently, this task can take several hours for even
a small dataset. Further, errors in cell labeling are very likely, due to the intensive

manual work.

4.1.2 Scaling to Many Datasets and Columns

Scientists can accumulate collections of dozens or even hundreds of datasets. Pro-
cessing such datasets for relationship prediction can be time-consuming. To work
efficiently with large collections of datasets, our relationship-prediction methodol-
ogy must scale to many datasets and columns. To achieve this goal, our methodol-
ogy should favor per-dataset and per-column computations and minimize compu-

tation in joint pairwise tests. We discuss the scalable architecture of our approach
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below.

4.1.3 The Need for Sophisticated Column Matching

For our methodology to match data columns and to predict relationships between
datasets without having to extensively compare individual data values, it computes
statistical summaries for numerical and categorical columns. From our experience
with ReConnet, we know that most of the statistics we had for summarizing nu-
merical columns did not apply for categorical data, and the one that did were not
very informative. Furthermore, before computing column summaries, our method-
ology has to infer the type of each data column, which is a challenging task. We

discuss these challenges below.

Inferring the Type of a Column

Inferring the type of a data column in a spreadsheet can be difficult for the following
reasons. First, while spreadsheet data-cells can be formatted as date, number,
text, currency, etc., cell formatting is not always consistent in a column. Second,
spreadsheet users include notes and comments along with data values to describe
anomalies, to make interesting observations or to indicate the absence of certain
values. For instance, a researcher may use several terms, such as NA, Unknown
and No Reading, to indicate the absence of a temperature reading for a given

sample. As a result, data columns may have values of inconsistent types.

Summarizing Categorical Columns

Categorical columns have string values from a limited (often fixed) domain, such
as animal species, blood types, and states or regions. Numerical columns are in-
teger or float data for observations that can be measured, e.g., body temperature.
While column statistics provide representative summaries for numerical data, the

statistics available for categorical data, such as common value frequencies, counts
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of unique and null values, and min and max values, do not provide much insight in
our experience. Furthermore, statistics such as mean and standard deviation are
not even sensible for or compatible with categorical data. Additionally, because our
methodology has to compare a large number of columns, methods for comparing
categorical data that extensively compare individual column values, such as edit
distance and Dice coefficient, are expensive, and hence we preferred to avoid them.
Thus, in order to compare categorical columns efficiently, we would like to com-
pute bounded-size column summaries inexpensively that provide a representative

approximation of the values in these columns.

4.2 A DESCRIPTION OF THE REDISCOVER SYSTEM

Collection of Spreadsheets Spreadsheet Metadata

g 5 4

Lo Column Summaries

Column Column
Summaries Mapping

Worksheet
Cells

Cell Labels Columns

Compute ’
Extract Match Predict
Label Cells . Columns . Column ’ Columns . Relationships

Summaries
Predicted
Relationships

Pair Relationship Score
Species_Code.xls, Row-Containment ~ 90%
Species_Code_Vl.xls

Template 75%
05-25.xls, 003_4.xls

Complementation ~ 65%
SE_yr.xls, E_mo.xls

Figure 4.1: The main processes in ReDiscover

We developed ReDiscover, a prototype system for predicting relationships in a
large collection of spreadsheets, to help explore a more automated approach. A
scientist can use ReDiscover to identify the pairs that are most likely related, and
then he or she can use ReConnect to confirm ReDiscover’s predicted relationships.

We provide an overview of ReDiscover in this section. We discuss ReDiscover’s
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experimental evaluation in Chapter 4.2.5.

In Figure 4.1, we show the component architecture of ReDiscover, which con-
sists of five processes: Label Cells, Extract Columns, Compute Column Summaries,
Match Columns, and Predict Relationships. First, Label Cells (Section 4.2.1) as-
signs a label to each spreadsheet cell that indicates whether or not it belongs
to a data column. Second, Extract Columns (Section 4.2.2) uses cell labels to
find groups of vertical cells that likely constitute data columns. Third, Com-
pute Column Summaries (Section 4.2.3) computes statistical summaries for the
extracted numerical and categorical columns. Fourth, Match Columns (Section
4.2.4) uses these summaries to identify possible column correspondences for each
pair of datasets. Finally, ReDiscover predicts relationships based on column sum-
maries, spreadsheet metadata, and column correspondence (Section 4.2.5).

We developed ReDiscover with a scalable architecture to work efficiently with
large collection of datasets. Label Cells, Extract Columns, and Compute Columns
Summaries operate on a per-dataset basis. Match Columns and Predict Relation-
ships are the only processes where joint pairwise dataset features are computed.
Thus, for example, Compute Column Summaries can derive summaries of multiple
columns in parallel. The processing in the first three steps is proportional to the
table size of the spreadsheets and can be parallelized easily. Consequently, we tried
to minimize the amount of work that ReDiscover has to do at the end for the n?

pairs of datasets.

4.2.1 Label Cells

As we discussed in Section 2.3.2, extracting data columns from spreadsheets can
be challenging, as there is often non-data information present, such as comments,
and the datasets themselves vary widely in format. Hence, the goal of Label Cells
is to identify cells that are part of a data column and label them accordingly.

Figure 4.2 depicts both Label Cells’ training and application phases. The
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Figure 4.2: The Label Cells Process

Extract Cell Features process, used in both phases, extracts for each worksheet
cell a k-dimensional cell feature vector (currently k = 40) that describes the cell’s
layout, text, content, and context information. In the application phase, using
the Linear Chain version of CRFs, ReDiscover then scans cells vertically? and the

Classify Cells process assigns one of the following labels to each cell:
CH (Column Header): cells that contain column headers.
DS (Data Start): the first data cell in the column.
DC' (Data Continuation): any data cell between the start and the end cell.
DE (Data End): the last data cell in the column.
NDC' (Not a Data Cell): a cell that does not belong to a data column.

We defined these labels to guide the process of data-column extraction discussed

in the next section. The specification of Label Cells is as follows:

2While the scan is vertical, the features used contain “horizontal” information
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Input: a vector of binary features F;; = [fo, ..., fr], where fo, fi...., fi are cell
text, layout, text, content and context features, for each cell ¢;; with column

index ¢ and row index j.
Output: a label [;; € {CH,DS,DC,DE, NDC} for each ¢;;.

Function: Assign a label [;; to cell ¢;; based on Fj; and the observed training

dataset.

Cell Features. Chen et al. [18] describe a combination of layout and textual
features they used in Frame Finder, a tool for locating attribute and value regions
in spreadsheets. In addition to reusing some of those features, we also developed
a comprehensive set of layout, text, content, and context features. (See Appendix
A for the full list of cell features.) The development of these features involved 1)
testing several combinations of feature sets, 2) evaluating the labeling performance
and efficiency (computation time) of each feature set, and 3) identifying the set

that provides the best balance between performance and efficiency.

Layout Features: Layout formatting provides valuable indicators about the
type of cell being observed. For instance, the use of underline, bold, text
alignment (e.g. center alignment), or merged cells is a strong indicator of a

column-header cell.

Text Features: Analyzing the textual content of a cell also conveys important
information about its type. Features such as is_all_alpha (does a cell contain
only alphabet characters?), is_all_numeric (does a cell contain only numeric
characters?), is_empty_cell (is the cell empty?) can help distinguish among

column headers, data, and non-data cells.

Content Features: Understanding the possible meaning of a cell’s content

could provide indications about its position in a data column. For example,
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in_year_range (does the cell contain a number between 1900 and 20507) and
is_in_headers (is the cell content has a word in the list of common column-

header words?) may indicate that a cell contains a column header.

Context Features: Analyzing the features of a cell’s left, right, above and be-
low neighbors can help in determining its label. For instance, features such as
is_above_num (Does the cell above contain numbers only?) and is_below_num
(Does the cell below contain numbers only?) can help determine whether a
cell belongs to a data column or not. Our initial CRF model considered
two neighbouring cells, but the current (improved) version considers four

neighbouring cells in all directions.

CRF Training.

We collected a set of real and synthetic spreadsheets to use in training our CRF.
This set covered various data-column configurations in a sheet, such as vertically
stacked columns and data columns with various layout formatting (e.g., a column
with a header that is two cells apart from the first data cell, a column with a
merged-cells header, columns with no headers). To speed up the construction of
the training set, we used a bootstrapping approach where we manually labeled an
initial set and used it to train the CRF. Once an initial CRF model was available,
we used it to quickly classify the cells of the rest of the set and then manually
correct them as needed. We describe the construction of the training set in more
detail below.

First, we divided the training set into an initial set and a remaining set. Second,
using our C# implementation of Extract Cell Features, we extracted cell features
from the initial set. Third, as shown in Figure 4.2, we manually labeled each cell
in the initial set with one of the labels CH, DS, DC, DE, and NDC based on its
position in a column. Fourth, using the CRF++ library [48], we tested our CRF
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Figure 4.3: Example Label Cells results

model on a subset of the remainder set to determine labeling errors. Fifth, we used
ReDiscover’s CRF _Results interface (Figure 4.3), to correct labeling errors in the
new spreadsheets and then added the feature vectors and labels of these corrected
spreadsheets to the training dataset. Finally, we repeated the fourth and fifth step
with additional spreadsheets until we obtained satisfactory labeling results.

The Label Cells Results interface, shown in Figure 4.3, displays the output of
the Label Cells CRF classifier. To inspect for labeling errors, a user first selects a
sheet from the tree-view menu. Then, ReDiscover loads the selected sheet’s data
into the table (in the middle of the figure), and colors each cell based on the label
that the CRF classifier has assigned to it (yellow for column headers, light blue for

data start, light green for data continuation, dark green for data end, and pink for
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non-data cells). The user can select mislabeled cells and choose the correct label
from the Edit Cells list (top), then save changes.

For example, spreadsheet Column 2 in Figure 4.3 actually contains two dataset
columns: water/sediment and satum03.1300.R. But because water/sediment (the
top column) had text data, the CRF classifier captured the column header of
satum03.1300.R (the bottom column) as a data value. Consequently, the CRF
classifier did not recognize the second column, which caused it to mistakenly label
Cells 7 to 11 as DC. The user can correct the labels to match those in Column 1.

After correcting any labeling errors, the user can click Retrain CRF to add the
corrected worksheet data to the training dataset to generate a new CRF model.

The output of Label Cells is a list of cell ids (e.g. T'D100.xzls_Sheetl_[2,1]
belongs to the file TD100.xls and is located in Column 2, Row 1, in Sheet 1) and
their assigned labels. ReDiscover passes this list to the Column Extractor, which
uses it to determine column boundaries. We discuss Cell Label performance in

Section 5.2.

4.2.2 Extract Columns

TD100:dsx_Data_[1.1) CH Cell Labels

TD100dsx_Data_[1.2] DS

TD100:dsx_Data_[1.3] DC 1 )
TD100dsx_Data_[1.4] DC List of cells
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TO100xsx Data {16]  OC Group Cells
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TD100xsx Data_[19]  DC Columns

TD100xsx_Data {1.10]  OC ,
TD100xdsx Data_[1.11]  DC ReDiscover
TD100xsc Data 11121 OC Database

Figure 4.4: Extract Columns

Once Label Cells labels spreadsheet cells as part of a data column or not,
the Extract Columns process uses these labels to guide data-column extraction.

Figure 4.4 depicts the process of Extract Columns, which involves two steps: Group
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Cells and Curate Columns. The first step, Group Cells, scans cell labels vertically
looking for a group of cells that constitutes a column. In its simplest form, a
column consists of zero or more CH cell, one DS cell, zero or more DC cells,
and one DE cell, as shown in Figure 4.5(a). Group Cells can detect columns with
various layout formats, some of which are presented in Figure 4.5: (a) a single data
column, (b) vertically stacked columns, (¢) columns with multiple header cells, (d)
columns with spaces between column header cells and data cells, (e) columns with

no column header, and (g) columns with discontinuous data cells.

CH CH CH CH NDC CH

DS DS CH NDC DS DS

DC BEE T s NDC D D

DC NDC DC DS DC DC Legends:

DC CH DC DC DC NDC CH: Column Header
DC DS DC DC DC NDC DS: Data Start

DC DC DC DC DC NDC DC: Data Continue

DC DC DC DC DC DC
[ T T T
(@) (b) (0 (d (e)

(f)

Figure 4.5: Column Layout Examples

In Group Cells, ReDiscover stores the cells of each identified column in a list,
which is ordered by the original cells’ positions in that column. Then, it col-
lects column metadata, such as column order (the original column position in
the dataset) and the addresses of the start and the end cells. Next, ReDiscover
passes the resulting column lists and their metadata to Curate Columns for further
column-extraction enhancement.

The second step, Curate Columns, analyzes the data values of each column to
detect their types. In order to identify the data type of a column, ReDiscover must
reconcile any type inconsistency among column values. For instance, in Figure 4.6,
the type of columns Size and Height are float and integer respectively. However,
as we discussed in Section 4.1.3, identifying the correct type in such cases is a

challenging task.
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Figure 4.6: An example of column data-type inconsistency in spreadsheets

The process of Type Inference starts by detecting the type of each individual
value in the column. If all the values agree on the same type, then ReDiscover
assigns that type to the column. Otherwise, it attempts to convert the values
with distinctive types to either the type of the majority of values in the column
or to null. For example, for the Size column in Figure 4.6, ReDiscover finds that
‘NA” and * “905.12”* are the two values with distinctive type (string). It looks
up these values in the default-null list, a dictionary of words that are commonly
used to refer to null values. ReDiscover converts the ‘NA’ to a null as it finds
it the default-null list. For the ‘ “905.12” * value, ReDiscover attempt to convert
that value to float, since it is the type of the majority of values in that column.
However, if the conversion fails, ReDiscover replaces the value with null in case the
number of distinctive values in the column is less than five percent. Otherwise, it

converts the type of the whole column to varchar (string).
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Figure 4.7: Example column summaries

4.2.3 Compute Column Summaries

For ReDiscover to match columns and predict relationships between datasets with-
out having to extensively compare column data, it applies data profiling to compute
column summaries. As shown in Figure 4.7, for each column, ReDiscover collects
information such as column data type, value range, common values and their fre-
quencies, mean, variance, and the count of unique and null values. (See Appendix
B, Table 1 for the full list of column summaries.) We discuss the use of column
summaries in more detail in the next two subsections.

To aid in the relationship-prediction task, ReDiscover also collects spreadsheet
metadata, such as file name, title, size, folder path, owner name, last saved by
(user), date created, and date modified (See Table 4.1 for the full list of meta-
data.) Such metadata can prove useful, especially in resolving prediction conflicts
when the computed column summaries and column correspondence are compati-
ble with more than one relationship. For instance, suppose that dataset A fully
corresponds to B, and the row count for both datasets is equal. Based on this
information, there are two possible relationships: duplicate or template. ReDis-
cover can use spreadsheet metadata to help resolve such conflicts. For example, if
Author, WorkbookSize, and NumberOfSheets metadata of A and B match, A and
B are likely duplicates. Otherwise, it is more likely that A and B share the same
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Metadata Name | Description

Author The author name of the specified document

Company The company name

Title The title of the spreadsheet document

Subject A brief description about the subject of the speci-
fied document

Comments A breif description about the specified document

Path The file name and location of the specified docu-
ment

NumOfSheets The number of sheets in a spreadsheet

WorkbookSize Spreadsheet document size in bytes

DateC'reated The date and time that the specified document was
created

DateLastModified | The date and time that the specified document was
last modified

DateAccessed The date and time that the specified document was
last accessed

LastSavedBy The user name of the person who last saved the
spreadsheet

template.

4.2.4 Match Columns

In ReConnect, the Correspond Columns process (Section 3.1.2) uses only column
names to match columns and relies on the user to confirm or correct the resulting

mapping. However, since ReDiscover has to match columns between many dataset
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pairs in a collection, it is infeasible to ask for the user’s help on every pair. We
apply a supervised learning model, namely support vector machines (SVMs) [20]
to improve the column-matching process, and hence reduce user involvement. The
goal of Match Columns is to find the best column correspondence between each
pair of spreadsheets. In order to apply SVMs to column matching, we first need

to formulate it as a classification task

Column Matching as a Binary Classification Problem To determine the
column correspondence between a pair of datasets A and B, we want to find the
maximal set M of matching column pairs. A pair of columns (a,b) match if the
columns are semantically related and they describe the same real-world object. We
denote a matching column pair by (a,b) € M, and refer to it as the mapping of a
to b. The column correspondence between A and B is a set M of mapped column
pairs from A and B. We can formalize the problem of identifying pairs of matching

column as a binary classification problem with the following specifications.

Input: The similarity vector v for a column pair (a,b) in col(A) x col(B).
Output: 1 for matching column pairs and -1 for non-matching pairs.

Function: Assign the column pair (a,b) to class 1 (matching) or to class
-1 (non-matching) based on its similarity vector v and the observed training

dataset.

The Similarity Vector of a Column Pair. As shown in Figure 4.9, for each
pair of columns (a,b), ReDiscover uses the columns summaries generated by the
Compute Column Summaries process to derive a similarity vector v that indicates

similarity or dissimilarity between each summary component of the two columns.
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column_id col_type row_count unique MNull 'max_val min_val mean Std_dev |common_val_0 cv0_freq common_val_1 |cv1_freq
Sample |int 2 2 0 1351 1350 |1350 |0.707.. (1350 1 1351 1

Summary of column Sample of Spreadsheet A

column_id col_type | row_count unique Nul max_val min_val mean Std_dev common_val_0 cv0_freq common_val_1 cv1_freq
Sample # |int o |4 4 0 1353 1350 (1351 |1.29099 | 1350 1 1351 1

Summary of column Sample # of Spreadsheet B

Column Unigque |Null Max Min Std Common CcVo
Name Type Count Count Value Value Mean Deviation |Value 0 (CV0) |Frequency .
0.75 1 0.5 1 0.99 1 0.99 0.55 1 1

The similarity vector of columns A.[Sample] and B.[Sample #]

Figure 4.8: An example of two column summaries and their similarity vector

Each similarity vector consists of p similarity metrics (currently p = 18). Each
metric function s;(a,b) (j = 1,...,p), computes a similarity score between two
corresponding column-summary components. This score ranges between zero (in-
compatible component values) and one (identical component values). For example,
Unique value count (2) of column Sample (Figure 4.8(a)) and the Unique count
(4) of column Sample # (Figure 4.8(b)) have a similarity score of 0.5, as shown in
Figure 4.8(c).

We use different similarity metrics for different components of the column sum-
mary. For string components, such as column names and common values for cate-
gorical columns, we used Levenshtein distance [50], which is the minimum number
single-char edits required to change one word into the other (normalized between

0 and 1.) For numerical summaries, we simply compute the scaled difference (D)

(X1—X2)
= | carmrm)-

between two numerical values (D X1 (CEsAID)]

As we discussed in Section 2.3.2, simple count statistics do not provide good
summaries for computing similarity between groups of categorical values. There
are several similarity metrics, such as Jaccard coefficient and Levenshtein distance,
that are often used to compare groups of categorical columns. However, it is quite
expensive to compute such metrics for many column pairs and large datasets. Thus,

we developed a technique based on Bloom filters that enables us to inexpensively
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Figure 4.9: The Match-Column process

approximate similarity between categorical columns.

Computing Set Similarity using Bloom Filters

In our approach, we individually compute a fixed-size bit-vector representation of
each data column. Pairwise column comparisons then use these bit-vectors rather
than the complete set of column values. For instance, for column matching, Match
Columns computes similarity between categorical columns by estimating the Dice

coefficient [28] between the resulting bit-vector pairs. The Dice coefficient of sets

X and Y is (2|§(‘|)f|¥|; and can be approximated from the number of 1-bits in the

bitwise and of the filter vectors [65]. Predict Relationships also uses Bloom filters
in computing features for relationship prediction (Section 4.2.5).

With Bloom filters, false positives are possible but false negatives are not. To
achieve a given expected false-positive rate p, the size m of a Bloom filter must
be proportionate to n, (—T(lhxl—l;)é’), where n is the number of elements in the set
(column) [68]. Furthermore, Jain et al. [45] showed that when Bloom filters are

used for measuring similarity between two sets, a 97% matching accuracy can be
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achieved by setting the number of bits in the Bloom filter to 8n. We can select n
for a given collection of datasets by determining an upper bound on the number
of rows in any dataset.

Based on the analysis of Jain et al., and the characteristics of our test collection,
we chose a Bloom filter size of 512 bytes. Based on a random sample of columns,
we find at this size the estimated Dice coefficient is always within 2% of the actual
Dice coefficient.

Training the Match-Columns Classifier In Figure 4.9, we show both the
Match Columns training and application phases. In the training phase, we compute
similarity vectors for pairs of columns using the Compute Similarity Vector process,
which is used by both phases. The spreadsheets we used for training include
various column-matching scenarios, such as columns that are differently named but
conceptually identical, columns with identical names but conceptually different,
incompatible columns, and duplicate columns. Then, we manually labeled the
column pairs as matching or non-matching. Next, using LIBSVM [17], a software
library for SVMs, we trained the Match Columns classifier.

In the application phase, the Compute Column Similarity process first com-
putes a similarity vector for each pair of columns. The Match Columns classifier
first analyzes each similarity vector and classifies it as matching or non-matching.
Second, ReDiscover forms the set (M) of all column pairs (a,b) that are labeled
as matching (i.e, a column correspondence). Third, it passes M to the Enhance
Column Correspondence process, which ensures that all the column mappings in
M are one-to-one, that is, no column in A maps to more than one column in B
and vice versa. We describe the Enhance Column Correspondence process in more

detail below.
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Spreadsheet D Initial Column Correspondence Enhanced Column Correspondence
Site Sample [Temp [Temp2 [Salinity of datasets D and E of datasets D and E

NH-10 1350| 8.815 8805 326 D.Site E.Site }E)ne-to-one
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[] one-to-many group

Figure 4.10: An example of enhancing the column correspondence of datasets D

and F.

Enhance Column Correspondence Using our running example, suppose that
Jennifer receives two new spreadsheets, D and E, which both are extended versions
of spreadsheet C' (Figure 2.1). D has an extra column, Temp?2, that contains new
temperature readings for the same samples in C'. Spreadsheet E has an extra
column, salinity2, which represents the water salinity readings for the same samples
in C at a later time. As shown in Figure 4.10, when ReDiscover attempts to match
the columns of spreadsheets D and FE, the resulting initial column correspondence
is ambiguous. Column salinity of D is mapped to both columns salinity and
salinity?2 of E and column Temp of E is mapped to both columns Temp and
Temp2 of D.

For each column with ambiguous mappings, ReDiscover groups the column cor-
respondences involving that column. For instance, for column D.salinity, it creates
a one-to-many group that includes D.salinity <+ FE.salinity and D.salinity <>
E.salinity2 mappings. Similarly for column E.Temp, it creates another one-to-
many group containing E.Temp <> D.Temp and E.Temp <+ D.Temp2 mappings.
Each one-to-many group contains ambiguous mappings and only one mapping from
such group should be selected. To overcome such matching ambiguity, we devel-
oped the Enhance Column Correspondence process (Figure 4.9), which we detail

in Algorithm 3.
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Algorithm 3 Enhance Column Correspondence algorithm

Input: initial column correspondence for table A and B (col_corr).

Output: enhanced column correspondence (enhanced_col_corr) that represents

a one-to-one mapping.

1.

10.

11.

12.

13.

14.

matching_score[|=get M atchingScores(col_corr); > get MatchingScores()

computes a matching score for each mapping in col_corr.

. idx = 0;

. while col_corr is not empty do

while dx < col_corr.count do

one_to_one=find020(col_corr); > findO20() finds the first

one-to-one mapping in col_corr.
enhanced_col _corr.add(O20 M apping);
col_corr.remove(O20 Mapping);
end while

one_to-manyl[|=findO2M (col _corr); > findO2M () finds the

one-to-many group with the least number of column involved.

bestO2M = getBestO2M (one_to_many([]); © getBestO2M () finds the
mapping with the highest matching_score.

enhanced_col _corr.add(bestO2M);
col_corr.remove(bestO2M);

col_corr = reduce_corr(bestO2M); > reduce_corr() removes
from col_corr the remaining mappings that are not selected in the 1-many
group.

end while
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ReDiscover first searches for all one-to-one mappings (D.Site <> E.Site and
D.Sample <» E.Sample #) and adds them to the enhanced column-correspondence
list (enhanced_col_corr), and removes these mappings from the original column-
correspondence list (col_corr). Next, it retrieves the similarity vectors of all col-
umn pairs in the remaining column correspondence set. Then, for each vector,
it computes a matching score—the sum of all similarity metrics in that vector.
For the remaining two one-to-many groups (D.Salinity and E.Temp), ReDiscover
chooses the group with the fewest columns involved. In our example in Figure 4.10,
both of the one-to-many groups have two mappings each, so ReDiscover selects the
group with the mapping that has the highest matching score (say the D.Salinity
group). From the selected group, ReDiscover adds the mapping with the highest
matching score (D.salinity <> E.salinity) to enhanced_col_corr and removes it
from the col_corr list. Next, refined_corr(bestO2M) discards any mapping that has
D.salinity from col_corr list. ReDiscover repeats this process with the remaining
one-to-many groups (E.Temp) until col_corr is empty.

Finally, ReDiscover passes the enhanced column correspondence to the Predict
Relationships process. Because relationships are classified by column correspon-
dence (Full Correspondence, Sub-Correspondence, Extension Correspondence, and
No Correspondence), ReDiscover can limit the number of relationships it investi-

gates for a pair of spreadsheets using their correspondence classification.

4.2.5 Predict Relationships

The Predict Relationships algorithm is an improved version of Suggest Relation-
ships in ReConnect [5]. While both algorithms share the use of column-correspondence
types (Full-, Sub-, Extension, and No Correspondence) to limit the number of rela-
tionships to investigate, the Predict Relationships algorithm also uses an improved
column-correspondence and spreadsheet metadata in predicting relationships. Ad-

ditionally, it uses a set of SVM classifiers (one per relationship type) for relationship
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prediction. We discuss the details of the Predict Relationships process below.

Predict Relationships Process

As shown in Algorithm 4, Predict Relationships takes as input column summaries,
a column correspondence, and spreadsheet metadata for a pair of datasets. First,
it identifies the type of column correspondence between two datasets to determine
the set of possible relationships between them. Then, for each possible relation-
ship, Predict Relationships 1) computes the relationship feature vector based on
the pair’s column summaries, column correspondence, and metadata, and 2) sends
the resulting feature vector to the relationship SVM classifier (Each relationship
has a separate classifier.) Based on the feature vector and the observed train-
ing dataset, the relationship classifier assigns the dataset pair to either class 1
(relationship exists) or class -1 (relationship does not exist). The SVM classifier
also returns a score that represents the relationship likelihood measure (predic-
tion score). Finally, if the resulting prediction score is greater than or equal to a
given threshold, a (currently a@ = 30), then Predict Relationships adds the dataset
pair, the predicted relationship, and the prediction score to the list of predicted

relationships.

Computing Relationship Features

For each relationship, ReDiscover computes indicative features of a relationship
from column summaries, such as min and max values, count of unique and null
values, and mean and standard deviation. For example, for the row-containment
relationship, ReDiscover uses the column statistic min value to compute MinAW-
ithinRangeB, a binary feature that is set to “1” when the min value range of each
column in A is within the value range of the column it is mapped to in B. An-
other example is the RowCountDifference feature that ReDiscover computes for

the complementation relationship. This feature measures the similarity between
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Algorithm 4 Predict Relationships algorithm

Input: A dataset pair (D1,D2), column correspondences (col_corr); column
summaries (col_summ) and spreadsheet metadata (SS_meta).
Output: List of pairs of dataset names, the predicted relationship, and the

prediction score (predicted_relts).

1. col_corr_type = identify_correspondence(Col_Corr); >
identify_correspodence() takes the column correspondences and returns Full
Correspondence, Extension Corresponded, Sub-correspondence or No Cor-

respondence

2. possible_relts = get the relationships associated with the col_corr_type
type;

3. for each relationship r in possible_relts do

4. features = compute_Features(col_corr, col_stats, SS_meta, r);

5. Score = run_relt_.SVM (r, features);

6. if Score > o then

7. predicted_relts.add(D1.name, D2.name, r, Score);
8. end if
9. end for

the row counts of a column pair, and takes a value between [0,1] (0 means that
row counts are very different, and 1 means they are identical.) Note that some
relationships, and hence some features, are directed (e.g., A column-contains B #
B column-contains A).

Predict Relationships also uses Match Columns’ results in computing indicative
features for a relationship. For instance, it uses the likelihood score resulting from

the SVM classifier for column matching to compute the average similarity between
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all corresponding columns in A and B. Such an average similarity feature can be
used in predicting the duplicate and the containment relationship as it measures
the overall similarity between all corresponding columns between two datasets.
Spreadsheet metadata, such as file name, size, and folder path (see Section 4.2.3),
can improve relationship-prediction accuracy. For example, knowing that a pair
of datasets have the same file name, size, author, and last modified date provides
evidence of a duplicate relationship. Another example is when the metadata of
two datasets are similar except the size of one file is larger than the other. Predict
Relationships uses the file size feature, among other features, in predicting the

containment relationship.

Computing Relationship Features using Bloom Filters

We incorporated Bloom filters initially to help with column matching, but we also
realized that they could be useful for relationship prediction. Predict Relation-
ships uses Bloom filters in computing features for predicting relationships, such
as containment, duplicate, prefir, and suffiz. In the case of the containment rela-
tionship, it computes isAlIBVofAContainedInB, a binary feature that is set to “1”
when the bit vector of each column in dataset A is contained in the bit vector of
the column it is mapped to in B, or zero otherwise. Predict Relationships tests if
a bit vector bv; is contained in bvy by computing the bitwise and between bv; and
bvy and testing if it matches bv;.

For the duplicate relationship, Predict Relationships computes the avgDiceSim-
tlarityforDuplicate feature, which is a value between zero and one that represents
the average Dice similarity estimates for all corresponding columns (computed in
the Match Columns process) between two datasets. The higher the value of the
avgDiceSimilarityforDuplicate feature is, the more similar the content of the two
datasets are, the more likely they are identical.

Predict Relationships also uses Bloom filters to compute indicative features for
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ordered relationships, including prefiz, suffir, and reordered rows. When ReDis-
cover predicts that a dataset A is row-contained in dataset B, it further checks
whether A could be a prefix (or suffix) of B by computing two Bloom filters for
each data column in the containing dataset B: one for the first half of the column,
By, and one for the second half, By. It also computes Bloom filters A; and A,
for the first and second half of the corresponding column in A. If A; C By, it is
evidence that A is a prefix of B. But if Ay C By, it is evidence that A is a suffix
of B.

When ReDiscover predicts that a pair of datasets, C' and D, are equal, it also
checks whether the reordered rows relationships holds between them as follows.
First, it computes a trigram Bloom filter for each data column in the set of corre-
sponding columns (M). Each element in this filter represents a contiguous ordered
sequence of three values from the data column. Next, ReDiscover computes Dice
similarity between the Bloom filters of each pair of corresponding columns. The
less similar the Bloom filters of the corresponding columns in C' and D are, the

more likely that the reordered rows relationship holds between them.

Predict Relationships Results

Datasets Predicted Prediction
Relationship Score

Species_Code.xls, Species_ids.xls Row-Containment 90
Template 75

05-25.xls, 003_4.xls

Duplicate 35
SE_yrxls, E_mo.xls

Figure 4.11: Example results of the Predict Relationships algorithm

As shown in Figure 4.11, Predict Relationship outputs a list of dataset names,

the predicted relationship, and the prediction score. A scientist can quickly select a
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pair of datasets that are most likely to have a relationship for further examination
(with ReConnect, for example), without having to visually inspect all datasets in
the collection. Ordering the list of predicted relationships by the prediction score
allows users to work with the most reliable predictions first.

To conclude, we built ReDiscover with the goal of automating relationships dis-
covery in collections of scientific datasets. ReDiscover is an end-to-end prototype
system that helps scientists identify from a collection of datasets the pairs that
are likely related and the predicted relationship between them. It applies CRFs to
automate data-column extraction, computes column summaries using data profil-
ing and approximate categorical column summaries using Bloom filters, and uses
SVMs to automate the process of column-matching and relationship-prediction
between dataset pairs. It also uses Bloom filters to compute indicative relation-
ship features for relationships such as, prefix, suffix, and reordered rows. In the
next chapter, we discuss in detail the results of our experimental evaluation of

ReDiscover.



7

CHAPTER 5: EXPERIMENTAL EVALUATION

We developed an end-to-end prototype of our relationship-prediction approach, to
guide the design process and to evaluate the feasibility of our approach. After we
developed the first version of ReDiscover, we performed an initial investigation to
identify the processes whose improvement would benefit its prediction performance
the most (Section 5.1). We found that the quality of the Label Cells process has a
significant effect on the quality of downstream processes, such as Extract Columns
and Compute Column Summaries. We also identified a number of performance
issues with the Label Cells and Match Column processes that affected ReDiscover’s
overall performance.

Based on the results of this investigation, we first implemented several improve-
ments to Label Cells, including fixing cell-extraction errors and improving its CRF
model. To evaluate the improved version of the Label Cells process, we conducted
a second experiment, which we discuss in detail in Section 5.2. Second, we de-
veloped a new approach that uses Bloom filters for computing fast approximate
summaries for categorical columns to improve column matching for such columns.
We also used Bloom filters for computing indicative relationship features (see Sec-
tion 4.2.5). Finally, we evaluated the updated version of ReDiscover on selected

relationships to assess its overall relationship-prediction accuracy (Section 5.3).

5.1 PRELIMINARY EVALUATION

The goal of this experiment is to assess the effect of the result quality of differ-

ent components on the results of later processes, and identify the processes whose
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Figure 5.1: Relationship prediction performance results of ReDiscover and ReDis-

coverMCS

improvement would benefit overall prediction performance the most. In this sec-
tion, we report the results of our initial evaluation of ReDiscover on a variety of
real-world and synthetic spreadsheets. We discuss our evaluation methodology in

detail below.

5.1.1 Methodology

For our experiment, we used 10 pairs of real-world spreadsheets that we collected
from our research collaborators, and 10 pairs from the EUSES corpus [33]. We
modified the EUSES spreadsheets to construct relationships and features that are
not covered by the first set. We used ReConnect to identify relationships between
all pairs as a baseline for judging ReDiscover. Our evaluation methodology consists

of three parts.
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Part 1: Predicting Relationships using ReDiscover

To evaluate the performance of the initial implementation of ReDiscover on pre-
dicting relationships, we first used it to extract columns and compute their sum-
maries, identify column correspondence, and predict the relationship of each pair
of spreadsheets in our test set. Then, we compared ReDiscover’s relationship pre-
dictions with the previously identified relationships and computed the precision,

recall, accuracy, and F1 score of those predictions.

Part 2: Predicting Relationships using Actual Column Summaries

To study the effect of result quality of ReDiscover’s individual processes on the
result quality of subsequent processes, and to identify the processes that when
improved would improve overall prediction accuracy, we evaluated a variant of Re-
Discover, which we call ReDiscoverMCS, in two steps. In the first step, we manually
computed column summaries for each spreadsheet of our test set. These error-free
statistics serve as the ground truth column summaries. Next, we fed ReDiscover’s
Extract Columns process the correct cell labels for the tested spreadsheets, and
compared the resulting column summaries with ground-truth summaries. The pur-
pose of this step was to analyze the effect of cell-labeling errors on the result quality
of the Extract Columns, Match Columns and Predict Relationships processes.

In the second step, we used ReDiscover to compute the column correspondence
and predict relationships for each pair using these manually computed summaries.
For each tested pair, we recorded the resulting column correspondence and the
predicted relationship. Lastly, we evaluated the accuracy of ReDiscoverMCS by

computing the precision, recall, accuracy, and F'1 score of its predictions.

Part 3: Evaluating ReDiscover’s Prediction Score
This part is separate from the previous two parts, and focuses on evaluating Re-

Discover’s prediction score. We analyzed ReDiscover’s prediction scores with pairs
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that are related and those that are not to evaluate whether they provide a useful
guide to the user about likelihood of a relationship. For each relationship, we first
selected a subset of dataset pairs that have a specific set of relationships and used
ReDiscover to predict relationships between these pairs. We then computed the
average prediction score for the entire set. Second, we repeated the previous step
for the same relationship with other dataset pairs lacking that relationship. Fi-
nally, we computed the overall average of prediction scores for pairs that had the

relationship, and the overall average for pairs that do not have the relationship.

5.1.2 Results

Figure 5.1 shows the precision, recall, accuracy, and F1 score of ReDiscover and
ReDiscoverMCS predictions of duplicate, row-containment, template, and comple-
mentation relationships (Part 1 and 2). Precision is the number of positive rela-
tionship predictions that are correct, recall is the percentage of positive-labeled
relationships that were predicted as positive, accuracy is the percentage of predic-

tions that are correct, and F1 score is the weighted average of precision and recall

(2 precision X recall )
precision+recall /*

For the duplicate and complementation relationships, ReDiscoverMCS accu-
rately predicted them in all spreadsheet pairs, whereas ReDiscover only predicted
66% of the tested pairs with 0.80 F1 for the duplicate relationship (80% with 0.88
F1 for the complementiation relationship). Because of cell-labeling and column-
extraction errors, ReDiscover computed inaccurate column summaries, which re-
sulted in mismatching several columns. Consequently, ReDiscover was not able to
predict the duplicate and complementation relationships for pairs with inacurate
column summaries. On the other hand, ReDiscoverMCS did perfectly well with
various spreadsheet pairs for these relationships because it had accurate column

summaries.
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ReDiscoverMCS outperformed ReDiscover by 20% in predicting the row-conta-
inment relationship with an F1 of 0.75. However, they both fail to predict this
relationship in few pairs of spreadsheets. When we analyzed the results of Part
1 and Part 2 for these pairs, we noticed that, even with manually computed
columns summaries, ReDiscover mismatched several categorical columns. As a
result, ReDiscover categorized the column correspondences for these pairs as sub-
correspondence, where it should have categorized them as full correspondence.

Regarding the template relationship, ReDiscoverMCS correctly predicted 83%
of the pairs, while ReDiscover predicted only 66% of them. ReDiscoverMCS’s F1
was 0.90 and ReDiscover’s was 0.80. As was the case with predicting the duplicate
relationship, errors in cell labeling, which led to errors in column extraction and
column matching, affected the accuracy of ReDiscover’s predictions. ReDiscov-
erMCS also missed a few pairs because of inaccurate column matching.

With respect to the results of the first step of Part 2, we found that the ex-
tracted column summaries, which are based on correct cell labels, matched those
that were computed manually (i.e., ground truth summaries). Consequently, the
low performance of ReDiscover compared to ReDiscoverMCS was a result of incor-
rect labeling by the Label Cells process of ReDiscover. Thus, we concluded that
the result quality of ReDiscover’s Label Cells process has a significant effect on the
result quality of the downstream processes.

Figure 5.2 shows the results of evaluating ReDiscover’s prediction score (Part
3). ReDiscover predicted the presence of the duplicate, containment, template, and
complementation relationships between pairs where these relationships hold with
an overall average prediction score of 75.5. It also predicted the absence of these
relationships between pairs lacking the relationship with an overall average pre-
diction scores of 3.9. We conclude from these results that ReDiscover’s prediction

score is a useful guide for identifying the pairs that are most likely related. Users
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Figure 5.2: ReDiscover’s Average Prediction Score

can save time by skipping pairs with low prediction score as they are unlikely re-
lated. Additionally, by starting with pairs with high prediction scores, users will

not waste time with false-positive predictions.

5.1.3 Discussion

Regarding whether improving certain stages of ReDiscover would improve its pre-
diction performance, we concluded from our assessment results (Part 1 and 2) that
with accurate data-column extraction, ReDiscover produces accurate column sum-
maries, and hence derives better column correspondences and predicts relationships
more accurately. With the presence of cell-labeling errors, such as labeling data
values as NDC or labeling a column’s last cell as DC, the accuracy of ReDiscover’s
column summaries drops. For instance, because of labeling several non-data cells

as DC, ReDiscover incorrectly inferred that a numerical column type was string;
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thus, it did not compute numerical summaries, such as mean and standard devi-
ation. Improving the Label Cells process should yield better column summaries,
hence enhancing the prediction quality.

The main classification errors of Label Cells were false positives on DC, false
negatives on DE, and false negatives on NDC. Based on these observations, we
made several improvements to the Label Cells process, and its CRF model. First,
we identified and fixed a number of cell-feature extraction bugs. The classification
accuracy of the CRF's model depends on the accuracy of the extracted cell features.
For instance, we found that bugs in is_empty and is_in_nulls feature-extraction
routines were responsible for most of the false negatives on NDC.

Second, to handle the false positives on DC and the false negatives on DE classi-
fication errors, we updated our CRF Model to consider further levels of neighboring
cells in both direction to improve cell labeling accuracy. The initial CRF model
considered only the two adjacent neighboring cells in both directions when it is
classifying a given cell. Consequently, the model was not able to identify the end
cell (DE) of a data column accurately, and labeled several DE cells as data con-
tinuation (DC). We extended our CRF model to consider four neighboring cells
in both directions. As a result, this improved version of the Label Cells process
was able to identify DC and DE cells more accurately, as we will see in the next
section.

The results of our preliminarily evaluation also show that because the col-
umn statistics of the first version of ReDiscover did not provide much insight for
categorical columns, the Match Columns process produced inaccurate column cor-
respondences, which reduced the accuracy of ReDiscover’s relationship prediction.
Based on these observations, we developed a new approach that uses Bloom fil-
ters to compute bounded-size column summaries to approximate the values of a
categorical column inexpensively and effectively (see Section 4.2.4 and 4.2.5). We

discuss our evaluation of the improved version of ReDiscover in Section 5.3.
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In conclusion, the results of our preliminarily evaluation suggest that the accu-
racy of ReDiscover’s predictions were promising. We also found that by improving
Label Cells and Match Columns processes we can improve the overall performance
of our relationship-prediction approach. In the next section, we discuss our evalu-

ation of the improved version of Label Cells process.

5.2 LABEL CELLS EXPERIMENT

Our initial investigation revealed that the performance quality of Extract Columns,
Compute Column Summaries, and Match Columns processes depends significantly
on the quality of the cell-labeling process. After implementing several improve-
ments to the initial Label Cells process, we evaluated it to assess its accuracy, and
also to see whether the use of a sophisticated machine learning technique, such as
CRFs, is justified for such a task (or if a simpler labeling scheme would suffice).
In this experiment, we used 23 real-world spreadsheets that we collected from
our research collaborators and from the EUSES corpus [33]. The cells of our test
spreadsheets were labeled by a human expert using the Label Cells Results interface

(Figure 4.4) to give ground truth. Our evaluation methodology is as follows.

5.2.1 Methodology

First, to assess the performance quality of the Label Cells process, we evaluated
its CRF classifier (LC-CRF, described in Section 4.2.1). We used LC-CRF to label
the cells of our test data3, and then we compared LC-CRF labels with the human-
expert labels and computed the precision, recall, and F1 score of Label Cells’s
classifications. We evaluated per label, because some cell types are more frequent
and we did not want them to dominate the results.

Second, to answer the question of whether such a sophisticated CRF model is

3Test data were separate from the data used to train LC-CRF
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needed for the cell labeling task, we evaluated a restricted version (CRF-Base) of
our CRF model. CRF-Base does not use the left and right content features (see
Appendix A, Table ??), and it considers only the features of cells the immediately
above and below of the cell it is classifying. In contrast, LC-CRF uses the right
and left content features, and it considers four level of neighboring cells in both

directions.

5.2.2 Results and Discussion

Precision| Recall | F1-Score
NDC| CRF-LC 0.92 0.97 0.93
CRF-Base 0.88 0.84 0.85
CH | CRF-LC 0.78 0.86 0.80
CRF-Base 0.56 0.73 0.59
DS | CRF-LC 0.71 0.81 0.74
CRF-Base 0.91 0.59 0.70
DC | CRF-LC 0.93 0.90 0.90
CRF-Base 0.76 0.88 0.80
DE | CRF-LC 0.75 0.88 0.79
CRF-Base 0.58 0.81 0.65

Table 5.1: Label Cells Performance.

As shown in Table 5.1, the majority of CRF-LC’s performance metrics, includ-
ing precision, recall, and F1-score, are markedly better than those of CRF-Base
for all types of labels. The only exception is that CRF-Base’s precision (0.91) for
the data-start label (DS) is better than that of CRF-LC (0.71). However, we also
notice that for the same label, CRF-LC’s recall (0.81) is considerably better than
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that of CRF-Base (0.59). When we investigated the high precision of CRF-Base,
we found that it generally tends to generate very few DS labels, which leads to a
low rate of false positives and a high rate of false negatives, and hence CRF-Base
has high precision and low recall. On the other hand, CRF-LC generated more
DS labels and made some errors (false positives) but it identified most of the DS
labels.

When extracting a data column, it is important to correctly identify its header
(CH), the data (DC) and the end (DE) of that column. CRF-LC exhibits high
performance in classifying CH, DC and DE, with average F1-scores of 0.80, 0.90
and 0.79 respectively. The ability of CRF-LC to use the left and right content
features and its ability to consider the features of several cells above and below the
cell it is classifying improves its labeling performance. Overall, we conclude from
Table 5.1 that CRF-LC predicts each type of label with good accuracy, and that
by comparing CRF-LC to the baseline method, CRF-Base, we find that the use of
our more sophisticated CRF model is justified for our cell-labeling task. Based on
the results of our initial investigation (Section 5.1), we know that this difference
in accuracy makes a notable difference in the performance of the downstream
processes, such as Extract Columns and Match Columns. In the next section, we
evaluate the overall performance of ReDiscover in predicting relationships between

datasets.

5.3 PREDICT-RELATIONSHIPS EXPERIMENT

In this experiment, we evaluate the overall relationship-prediction effectiveness of
the improved version of ReDiscover, which 1) has a better-tuned CRF for cell la-
beling, 2) uses Bloom filters for both approximating categorical column summaries
and computing indicative relationship features, and 3) uses improved SVM models
that are trained on new features for relationship prediction. Our assessment of

prediction performance is centered on the benefit to the user. Suppose we order
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pairs of datasets using our prediction scores, and have the user work his or her way
down the a ranked list of results, confirming or rejecting the predicted relationships
(say, using ReConnect). We can compare the work a user would need to do using
our order to that required with another order by considering essentially recall and

precision:

Q1 How far down the list would a user need to go to find a given fraction of the

true relationships?

Q2 How many false predictions would the user have seen by that point?

In addition, we want to know if the absolute prediction score can provide a

cutoff threshold for the pairs the user needs to consider:

Q3 Is there a strong correlation between ReDiscover’s prediction score and the

likelihood of a relationship?

5.3.1 Methodology

We evaluated ReDiscover on five relationships: duplicate, row-containment, tem-
plate complementation, and reordered-rows. We used five test sets for our prelimi-
nary evaluation, a collection of 25 spreadsheets from EUSES, a collection of 80 CSV
files produced by wearable activity monitoring devices, a collection of 20 datasets
related to a geology research project, and two datasets of 21 and 22 spreadsheets,
which we modified from EUSES to construct relationships and features that were
not covered by the first three sets. For each test set, we went through all pairs in-
dividually to identify the existing relationships in the collection. Our relationship

prediction evaluation methodology has three parts:

Part 1: Predicting Relationships using ReDiscover

To measure ReDiscover’s ability to find all relevant relationships (Q1), and to
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quantify wasted user effort resulting from incorrect predictions (Q2), we used Re-
Discover to score the relationship of each pair of spreadsheets in our five test sets,
and ranked the results based on the prediction score. Then, we compared these
predictions with manually identified relationships. We computed the precision at
standard recall levels (discussed below), and the average precision over all relevant

predicted relationships.

Part 2: Predicting Relationships using an approximate Human Baseline
Approach

We wanted to know if ReDiscover’s predictions were better than what a human
might do by “eyeballing” the spreadsheets in a collection. To approximate human
performance, we polled spreadsheet users as to what strategies they might use to
make an initial assessment of whether two spreadsheets are related and how. For
example, some indicated that they would look at spreadsheets’ metadata (e.g.,
file name, size, author, creation date) for hints as to whether the duplicate re-
lationship might hold. Other users stated that they would examine whether the
column names and data types of a dataset pair match in order to identify whether
they share the same template. We built a predictor based on SVMs that uses
such strategies and features, for instance columnNamesMatch, isDataTypesMatch
and isColumnOrderMatch, in classifying relationships, which we call the Human-
Baseline Approach (HBA). (See Appendix C for the complete description of HBA’s
features.)

We judged the prediction for precision of Part 1 and 2 based on what are the
most informative relationships. Thus, we are not just looking whether ReDiscover
or HBA predicted correct relationships, but rather we are considering whether or
not they predicted the most informative ones. For example, because the reordered-
rows relationship is a special case of the equal relationship, their features over-

lap. So, if ReDiscover and HBA predicted the reordered-rows relationship between
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datasets A and B, then they would necessarily predict the equal relationship be-
tween them as well. However, the reordered-rows relationship is more informative

than the equal relationship.

Part 3: Evaluating ReDiscover’s Prediction Score

We analyzed ReDiscover’s prediction scores from Part 1 in order to evaluate their
accuracy, and to see whether there is a correlation between ReDiscover’s prediction
score and the likelihood of a relationship. For each of the five test sets, we divided
ReDiscover’s ranked lists of predictions into five bins based on the prediction score
(100-80, 80-60, 60-40, 40-20, and 20-0). Then for each bin, we computed the per-
cent of pairs with the relationship and the percent of pairs lacking the relationship.
Finally, we computed the overall average prediction score of pairs that had the re-
lationship, and those that did not have the relationship in each bin across the five

test sets (see Figure 5.5).

5.3.2 Results

Figure 5.3 shows the average interpolated precision at standard recall levels (0.00,
0.10, ..., 1.00) for ReDiscover and HBA predictions of duplicate, row-containment,
template, complementation, and reordered-rows relationships on the five test datasets.
The precision-recall curve is commonly used in evaluating ranked retrieval results
for an information retrieval system. We interpolated the precision by using the
maximum precision obtained at standard recall level ¢ for any actual recall level
greater than or equal to ¢ [71]. We also labeled the precision-recall curves of both
ReDiscover and HBA with their average prediction score across all tested relation-
ships at each standard recall level (i.e., the average prediction score for all pairs up
to a given standard recall point). In Figure 5.4, we show the interpolated precision
per individual relationship.

As shown in Figure 5.3, ReDiscover performed better than the baseline, HBA,
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Figure 5.3: Average interpolated precision at standard recall levels, with average

prediction scores across all relationships

at all standard recall levels for all tested relationships. ReDiscover started with a
perfect precision of 1 where HBA started at 0.55 precision as its top predictions
included incorrect relationships. The precision of the baseline started declining
after recall level 0.2, where ReDiscover’s precision declined slightly only after recall
level 0.6. ReDiscover maintained a precision rate of 0.8 till it predicted all existing
relationships while the baseline precision dropped to 0.15 at recall level 0.9, which
means that it ranked many incorrect predictions before all the correct ones.

We can also conclude from Figure 5.4 that even when we break the inter-
polated precision down by individual relationships, we still see that ReDiscover
outperformed HBA in each of the five tested relationships. In Particular, ReDis-
cover predicted the row-containment (c¢) and complementation (d) relationships
with prefect precision, where HBA performed poorly in the row-containment rela-
tionship. For the duplicate (a), template (b) and reordered-rows (e) relationships,

ReDiscover performance dropped after recall levels 0.8, 0.6 and 0.7 respectively.
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Figure 5.4: Interpolated precision at standard recall levels, with prediction scores.

When we analyzed the results we found that ReDiscover predictions were all

correct, but some of the top-ranked predictions were less informative than the best

predictions. We treat such predictions as false negatives (for computing preci-

sion). For example, when evaluating ReDiscover’s performance on predicting the

reordered-rows relationship, we found that it predicted the duplicate relationship
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for some dataset pairs with the reordered-rows relationship with higher predic-
tion scores than those of the reordered-rows predictions. As a result, the ranked
list of predictions contained pairs with less-informative relationships before the
more-informative ones.

On the other hand, HBA’s results for the five tested relationships contained in-
correct predictions, hence, the poor performance of HBA compared to ReDiscover.
However, HBA’s performance in predicting the complementation and reordered-
rows relationships was better than that of the duplicate, template and row con-
tainment relationships. While some of the human-based features are indicative
of the complementation and reordered-rows relationships, these features are not
based on the content of the datasets but rather on their schema and metadata. In
spite of that, and as shown in Figure 5.4, the precision-recall curve of HBA and

ReDiscover never ended at the same point for any of the five tested relationship.

5.3.3 Discussion

Regarding the question of how far a user should go down the ranked list of predic-
tions to find all correct relationships, Figure 5.3 shows that ReDiscover predicted
all existing relationships between pairs of datasets in our test sets with over 0.7
precision. This high precision means that ReDiscover’s list of predictions up to the
recall level of 1.0 contains very few incorrect predictions. Based on HBA’s results,
a user can only find 80% of all existing relationships with 0.33 precision. Looking
another way, a user would only have to examine 34 pairs to find all 24 relationships
with ReDiscover, whereas with HBA he or she would need to look at 124 pairs to
find just 6 of the related pairs.

To answer the question of how much user effort is wasted as a result of false
positives, we computed the average non-interpolated precision of both ReDiscover

and HBA in predicting the duplicate, containment, template, complementation, and
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reordered-rows relationship between all pairs in our test datasets. The average non-
interpolated? precisions were 0.87 and 0.37 for ReDiscover and HBA, respectively.
The average non-interpolated precision measures the performance over all relevant
relationships, and it rewards systems that rank correct relationships highly [71].
We conclude from the results that ReDiscover generated a low rate of false posi-
tives, and users are less likely to waste time investigating unrelated datasets using

ReDiscover’s predictions as compared to manual methods.
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Figure 5.5: The results of ReDiscover’s prediction score evaluation (Part 3).

The results of part three of our evaluation, shown in Figure 5.5, suggest that
ReDiscover’s prediction scores are highly correlated with the likelihood of a re-
lationship (Q3). ReDiscover’s average prediction scores were between 80-100 for
92% of the pairs where the duplicate, containment, template, complementation, and
reordered-rows relationships hold. For over 90% of the pairs lacking these relation-

ships, ReDiscover’s average prediction scores were between 0-20. ReDiscover was

4“The measure is not an average of the precision at standard recall levels. Rather, it is the
average of the precision value obtained after each relevant document is retrieved.” [71]
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able to produce such good prediction scores because of the ability of its SVMs clas-
sifiers to distinguish between classes with high accuracy, which is a result of the use
of distinctive relationship features and comprehensive training datasets. However,
our evaluation was on a subset of the relationship types and we might not do as
well on other types. Additionally, there are generally a lot more pairs without a
relationship than that with the relationship—5% of pairs without a relationship is
likely larger than 5% of pairs with a relationship. We can also conclude from the
results that our cut-off threshold of 30 for reporting results is quite reasonable—a
user would encounter very few false positives, while missing less than 3% of the
actual relationships.

In conclusion, the results of our evaluation shows that ReDiscover is a viable
approach for predicting relationships between scientific datasets in a collection.
ReDiscover achieved such performance because of its ability to compute distinc-
tive relationship features based on column summaries, column correspondences and
spreadsheet metadata. Furthermore, using Bloom filters to compute fast approx-
imation of categorical columns enabled ReDiscover to extract powerful features,
such as isAlIBVofAContainedInB, avgDiceSimilarityforDuplicate and avgDiceSim-
wlarityforContainment. In the next chapter, we discuss research work related to
scientific data management (Section 6.1) and to the ReConnect (Section 6.2) and

ReDiscover (Section 6.3) systems.
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CHAPTER 6: RELATED WORK

To the best of our knowledge, we are the first to provide a methodology for helping
scientists determine connections between datasets in a collection in the absence of
explicit provenance or history. In this chapter, we provide a review of tools and
techniques, drawn from several research areas, related to our work. In the first sec-
tion, we address systems that scientists may use to manage collections of datasets,
and discuss why these systems are not adequate for determining which dataset to
select for a given task. In the second section, we address tools and techniques that
are similar or relevant to our relationship-testing approach (ReConnect). In the
last section, we review work related to the relationship-prediction methodology;
specifically we review data extraction techniques, schema matching using machine

learning, and summarizing categorical data using Bloom filters.

6.1 SCIENTIFIC DATA MANAGEMENT

Managing file-based datasets with database systems. Scientific data man-
agement systems, such as SciDB [21] and the Scientific Data Service framework
[31], can help scientists manage their research data. However, as is the case with
DBMSs, such systems require users to have a good technical background to be
able to do so. Furthermore, because these systems are based on multidimensional
arrays, the scientist has to convert his or her file-based datasets, such as spread-
sheets, into the multidimensional-array format. Thus, the scientist still needs help
with determining which dataset to convert to the formats that are compatible with

these systems.
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Other scientific data management systems attempt to manage file-based datasets
by attaching them to a database system. For example, Data Vaults, a scientific
data warehouse developed by Ivanova et al. [44], allows scientists to attach an ex-
ternal file repository to the DBMS, and then access the data and metadata of these
files using a query language. However, Data Vaults assumes that files contain raw
data in the form of CSV or standard scientific file formats, such as MSEED or
GeoTIFF, and is not equipped with data-extraction capabilities for files that may
contain semi-structured datasets, such as spreadsheets.

Alagiannis et al. [4] also recognize that an impediment for using database sys-
tems in scientific analysis applications is the complexity of loading data into a
database and the data-to-query time—the initialization cost of loading data and
preparing the database for queries. Their approach to overcoming such an im-
pediment is to fully integrate “row data” files in the database query engine. To
that end, they developed PostgresRaw, a database system that provides incre-
mental files data loading, on-the-fly indexing and caching to support faster future
queries and improve query performance. However, their approach requires that
the schema of a dataset must be known a priori, and—as is the case with Data
Vaults—it does not provide data extraction capabilities for files that may con-
tain semi-structured datasets. Furthermore, for a scientist to use PostgresRAW,
he or she must know how to write SQL queries, and understand how datasets
are connected. Our relationship-identification methodology automatically extracts
datasets from spreadsheets, and helps researchers decide how to work with data
stored in their file-based datasets by determining connections between them.

Several approaches [3,8, 15,19, 22-24] suggest converting spreadsheets into a
relational model to enable managing their data using relational databases and
data-integration tools. However, none of these approaches addresses the problem
of identifying which datasets of interest should be converted from a collection of

datasets. Some of these approaches can also lose valuable information that can be
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used in predicting relationships between datasets. For instance, Cunha et al. [24]
developed a system that attempts to fix spreadsheet errors by extracting their
true (normalized) relational schema. In the process of converting a spreadsheet’s
data into a relational schema, Cunhua’s approach loses the original spreadsheet
schema. Our relationship-identification methodology needs to preserve the original
schema in order to identify the original connections between spreadsheet data.
Additionally, Cunha et al. convert spreadsheet tables into sets of rows (relations)
in which the order of rows is not taken into account. Our methodology captures
dataset order and uses it in predicting ordered relationships such as prefix and

subsequence.

Version control systems (VCS). Ram [62] showed that VCSs, which are used
in the software industry to maintain software code repositories, can be leveraged
in managing scientific data such as datasets, experiment notes, and manuscripts.
The use of VCS tools, such as Github [37] and SourceForge [67], in science can
facilitate collaborations and enhance scientific data reproducibility.

Schopf [66] also proposes that data should be managed in a way similar to
how production software is managed. To better manage data and produce quality
data, Schopf argues that data should be treated as ongoing process. Such a pro-
cess considers that data are manipulated by several contributors; may go through
cyclical releases that include bug fixes, derivation history tracking and versioning;
and producing licensing and citation information with each version release.

While VCSs are very effective tools for keeping track of the history of mod-
ifications to files over time, which might reveal something about the connection
between a dataset and one of its earlier versions, that information does not neces-
sarily help with determining the relationship between versions on different branches

or between independent datasets.
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Data provenance and scientific workflow management systems (SWMS).
SWMSs enable scientists to organize and execute a serious of computational steps
(i.e., workflows) on data collected from several sources. Many of these systems,
including Kepler [7], SciCumulus [27], Chimera [35], VisTrails [13] and MyGrid
[69], are equipped with provenance-tracking functionality, which records important
provenance information to help scientists document the lineage evolution of their
data and the processes used to manipulate it.

Some SWMS systems track the provenance of both data objects and workflows.
For example, the Kepler scientific workflow system [7] collects provenance infor-
mation about the standard data lineage (i.e., derivation history), and the context
in which the workflow was executed. Other SWMS systems focus on collecting
provenance information about data objects. For instance, the Chimera virtual
data system [35] tracks the derivation path of a data product (i.e, dataset) to help
a scientist reproduce a derived data product, and to validate the results of an
experiment. Furthermore, there are systems that provide various capabilities for
tracking the evolution of a workflow from one version to the other. An example
of such systems is the VisTrails, which [13] provides several capabilities. First,
it allows users to explore variations in the design history of a workflow. Second,
it helps a user to determine whether two different workflows share any common
elements or if they were derived from the same root.

While provenance-tracking systems can aid scientists in uncovering relation-
ships (or connections) between their datasets, they cannot track provenance of data
processing outside of the provenance tracking system (offline processing). David-
son et al. [26] stated that “When such analyses [of intermediate workflow results]
are carried out by hand or automated using general-purpose scripting languages,

the means by which results are produced are typically not recorded automatically,
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and often not even recorded manually.” Consequently, determining connections be-
tween such intermediate results can help scientists bridge such gaps in the deriva-
tion history of their datasets. Our relationship-identification approach can detect
informative relationships that can help provenance-tracking systems infer offline

data-transformation activities.

6.2 RELATIONSHIP TESTING

We review work related to our relationship-testing methodology below. First, in
Section 6.2.1 we review change-inference tools that may be used for determining re-
lationships between two spreadsheets. We also address Record Linkage techniques
and discuss how they might be used to improve ReConnect. Then, in Section 6.2.2
we examine techniques that have influenced the way we designed ReConnect, such

as data profiling, and the Clio and Bellman systems.

6.2.1 Similar tools

Change-inference tools [16,34, 56, 75] may help users understand simple relation-
ships between small spreadsheet instances. By using these tools, users may infer
relationships through analyzing the change lists they generate. As our evaluation
results show (Section 3.2.2), none of these tools can provide adequate help for
users in identifying simple relationships in spreadsheets with hundreds of rows or
columns. Furthermore, in the case of two spreadsheets that contain the same data
but have different row or column orders, current change-inference tools do not
detect that they have identical data.

The problem of Record Linkage (RL)—identifying records coming from differ-
ent sources and representing the same real world entity—has received significant

attention from statistics and computer-science researchers [32]. We believe that



101

some RL techniques may be useful to extend our work in two ways. First, field-
matching techniques, including character-based techniques such as edit distance,
or token-based techniques such as Q-Grams with tf-idf [39], can be used to improve
our column-correspondence process by enabling ReConnect to better match sim-
ilar column headers. Second, we may be able to use record-matching techniques,
such as Automated Object Matching [76], to realize additional relationships (e.g.,
a near-match relationship suggested by one of our user-study participants). How-
ever, we still need to do a higher-level analysis of the results of RL techniques in
order to detect such relationships. Giving users back a matching list of identical
records still puts the burden upon them of analyzing the list to understand how
the datasets as a whole connect. As we showed in evaluating change-inference tools
(Section 3.2.2), ReConnect is working on an abstract level, allowing scientists to
understand connections among their datasets without having to analyze individual

records.

6.2.2 Relevant Techniques

ReConnect adapts Clio’s [41] idea of integrating users’ feedback in the schema-
mapping process. Clio, a semi-automated tool that maps column names of two
database tables, has an interactive user interface that allows users to dynamically
provide feedback on proposed schema mappings. As a result, users have full con-
trol over column mappings and can map similar schemata differently for various
purposes. After computing an initial column correspondence, ReConnect allows
users to correct the computed correspondence, which improves the accuracy of the
schema correspondence process and allows users to test various correspondences.
ReConnect also provides the explore sub-correspondence feature, which automati-
cally searches within the current correspondence for the sub-correspondence that
produces the largest set of common rows between spreadsheet pairs and reports

that correspondence to the user.
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Data profiling, the process of gathering and examining statistical summaries of
data to understand its structure and content, is commonly used in data cleaning
and data integration [10,61]. Data-cleaning applications use profiling information
to aid in analyzing different aspects of attributes’ quality. For example, the max
and min can be used to check whether or not the values of a given attribute
(data column) are within the expected range. In our work, we use data profiling
differently: as an aid in identifying attribute correspondences between two different
schemas, which is similar to the way it is used in data-integration applications [30].

The Bellman system [25] is a browser for complex databases that provides
tools and services to help users discover the structure of databases. ReConnect
collects the same statistics that the Bellman system collects, including the number
of rows, the number of distinct values in a column, the number of null values per
column, and the ten most common values in a column along with their respective
frequencies. However, the Bellman system uses this profiling information to help
data analysts understand the structure of a database, whereas ReConnect uses it
to help users connect columns correctly and to guide the process of relationship

identification.

6.3 RELATIONSHIP PREDICTION

The relationship-prediction methodology in ReDiscover builds upon a number of
techniques from several research areas, such as relational databases and machine
learning. In this section, we review techniques relevant to structured data extrac-
tion (Section 6.3.1), automatic schema-matching techniques (Section 6.3.2), and

categorical data summarization using Bloom filters (Section 6.3.3).
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6.3.1 Tabular Dataset Extraction

Our relationship-prediction methodology extracts tabular datasets from spread-
sheets and analyzes their data to recover information that can help a user in iden-
tifying the best dataset(s) to work with, or how to work with data stored in their
datasets (e.g, combining complementary datasets or removing redundant ones).
The work on recovering semantics of tables on the web by Ventetis et al. [72] is the
work most related to ours in this respect. They developed an approach for auto-
matically recovering semantics of tables on the web by 1) adding annotations to the
columns of a table, and 2) using these annotations to determine binary relation-
ships represented by the columns in that table. More specifically, their approach
labels a column A with class C' (e.g, species, city) if the majority of the values in
A are labeled with class C' in the isA database—a database that contains a set of
pairs of the form (instance, class). Then, it labels the relationship between a pair
of column (A, B) in a table with relationship R (e.g., is Known as, capital of) if
the majority of pairs of values from A and B occurs in the relations database—a
database of triples of the form (argumentl, predicate, argument2). Then, their
approach uses column labels and relationship labels to support table information
retrieval, ranking and other operations, such as combining related tables via joins
or unions.

Our approach is different for the following reasons. First, we use data-profiling
and Bloom filter techniques to summarize column values, and then we analyze
column summaries to determine column correspondences and to predict relation-
ships between datasets. On the other hand, Ventetis et al.’s approach examines
all the values of a column to determine their semantic labels. It also examines all
pairs of values between two columns to identify their relation label. Second, their
techniques use information extracted from the web, including the isA and relations

databases, to associate semantic information to structured tables on the web, and
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then use these recovered semantics to determine related tables. Our methodol-
ogy determines relationships between datasets by extracting indicative features
from the data stored in the datasets without relying on external sources. Lastly,
our approach targets scientific datasets stored in spreadsheets, while Ventetis et
al. target generic tables on the web. Nevertheless, we believe that we can use
recovered semantic information from tabular datasets to compute indicative rela-
tionship features that could improve the performance of our relationship-prediction
approach.

A number of researchers have proposed approaches for extracting data from
spreadsheets [3,8,15,19,22-24]. For example, the FlashRelate system [8] allows
spreadsheet users with no programming experience to convert ad-hoc data struc-
tures into relational ones. However, FlashRelate is not suitable for extracting data
from a large collection of spreadsheets because users need to provide positive and
negative examples of the desired relational structure from each spreadsheet.

Abraham et al. [3] also developed a system, called UCheck, for extracting tables
from spreadsheets. UCheck is based on a unit-reasoning technique that exploits
label and header information in spreadsheets to identify tables. This unit-reasoning
technique examines the extracted header information to validate the consistency
of cell data and formulas, which allows users to identify potential errors in their
spreadsheets.

Cunha et al. [22] developed ClassSheets, a tool that applies relational database
techniques to convert spreadsheets into the relational model, and it works as fol-
lows. First, ClassSheets detects all functional dependencies among spreadsheet
columns. Next, it attempt to filter as many accidental functional dependencies as
possible. Then, it uses the resulting functional dependencies to identify the rela-
tional schema with candidate primary and foreign keys. After that, it generates
and refactors the relational intermediate directed (RID) graph using the resulting

relational schema. RID is a graph data structure that represents the relationships
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between schemas in a relational model. The graph nodes represent schemas and di-
rected edges represent foreign keys between these schemas [22]. Lastly, ClassSheet
translates the relational graph into a ClassSheet (table). The goal of their work is
to automate the generation of refactored spreadsheets from the inferred ClassSheet
model. However, as is the case with UCheck, the Class Sheet work focuses on help-
ing users avoid spreadsheet errors. Further, by converting spreadsheets into the
relational model, ClassSheet might discard important information, such as row
order and the original spreadsheet schema, which ReDicsover uses in predicting
relationships.

ReDiscover adapts SENBAZURU’s [19] idea of using CRF's in extracting spread-
sheet data. SENBAZURU extracts relational data from spreadsheets and offers
several relational operations over the extracted data. However, there are two fun-
damental differences between ReDiscover and SENBAZURU. ReDiscover operates
on finer level of granularity (spreadsheet cells) than SENBAZURU, which oper-
ates on spreadsheet rows. As a result, ReDiscover can detect data columns that
are stacked vertically or horizontally, whereas SENBAZURU assumes that data
frames can only stack vertically. Second, SENBAZURU is designed with the goal
of inferring hierarchical structures from data-presentation spreadsheets, such as
spreadsheet reports downloaded from the web (e.g, U.S. Census Bureau reports).
These spreadsheets often contain processed data developed when organizing data
for human consumption. Figure 6.1 shows an example of a data-presentation
spreadsheet, which contains information about the United States population be-
tween 1950 and 2009 [14]. The first column of this spreadsheet represents four
different demographics: sex, race, Hispanic origin and year. The goal of such data
formatting is to help humans understand the presented information in a compact
and easy to understand way. Consequently, data-presentation spreadsheets often
have derived fields (e.g., sums, averages), and they are often organized as hier-

archical cross-tabs, which is not common for raw data. In our work, we focus
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Resident population, by age, sex, race, jand Hispanic origin: United States, selected years 1850-2009

(Data are based on the decennial census updated with data from multiple sources)

Sex, race, Total
Hispanic origin, resident Under 1-4 3-14 15-24 25-34
and year population 1 year years years years years
Rll persons Number in thousands
1850, ittt et et e e, 150,697 3,147 13,017 24,318 22,098 23,759
B T 179,323 4,112 16,209 35,465 24,020 22,818
B 203,212 3,485 13,660 40,748 35,441 24,907
R 1 226,546 3,534 12,815 34,942 42,487 37,082
1880, ittt i et et e e, 248,710 3,548 14,812 35,083 37,013 43,161
2000, i e e, 281,422 3,806 15,370 41,078 309,184 309,802
2006 et et e i 299,398 4,130 16,287 40,337 42,435 40,416
2007 . et i et e i, 301,621 4,257 16,467 40,164 42,506 40,591
2008, i e et e e, 304,060 4,313 16,693 40,120 42,373 40,932
2009, it e et e e, 307,007 4,261 17,038 40,583 43,077 41,566
Male
1850, it e et e et e e, 74,833 1,602 6,634 12,375 10,918 11,3597
1860, i ettt et a e e, 88,331 2,080 8,240 18,029 11,906 11,178
1070t entienetnantanssannanns 98,912 1,778 6,968 20,7589 17,551 12,217
R ] 110,053 1,806 6,556 17,855 21,419 18,382
1880, . ittt e iia e, 121,238 2,018 7,581 17,971 18,913 21,3564
2000, e et e e, 138,054 1,948 7,862 21,043 20,079 20,121
P20 L T 147,512 2,113 8,329 20,640 21,845 20,565
2007 . e et e i 148,650 2,179 8,424 20,549 21,860 20,683
2008, .t 149,925 2,208 B, 540 20,522 21,873 20,900
2000, i e et e e, 151,449 2,178 8,708 20,758 22,145 21,224
Female

1850, ittt ittt et a e e, 75,864 1,545 6,383 11,944 11,181 12,162
1860, i et n et a e e, 80,992 2,022 7,969 17,437 12,114 11,639
1870 ittt et a e e, 104,300 1,707 6,701 19,986 17,890 12,690
1080, . irenienearnanianssannanns 116,493 1,727 6,258 17,087 21,068 18,700
R L 127,471 1,928 7,231 17,124 18,098 21,596
2000, i e et e e, 143,368 1,857 7,508 20,034 18,103 19,771
200 151,886 2,017 7,959 19,697 20,590 19,851

Figure 6.1: An example of data-presentation spreadsheet: Resident population,
by age, sex, race, and Hispanic origin: United States, selected years 1950-2009 (A
partial picture of the original spreadsheet). Source: [14].

on data-collection spreadsheets that scientists commonly use for collecting tabular
data (often as raw data).

Conditional random fields were also used for extracting tables from text doc-
uments. Pinto et al. [59] developed a CRF model that uses text content (e.g.,
alphabet characters, digit characters) and layout (e.g., white-space gaps, separator
characters: +, —, :, |, =, %) as features for labeling each line of a text document

with one of the following tags.
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e Non-extraction labels for text lines that are not part of a table.

e Header labels for lines that contain a table’s column names.

e Data row labels for lines that contain data cells.

e (Caption labels for lines that appear below data but apply to the table.

Pinto et al.’s approach is different from ours because 1) as is the case with SEN-
BAZURU, it assumes that data tables can only stack vertically, 2) our approach
extracts data columns from spreadsheets, where as Pinto et al.’s approach extracts
tables from text files, and 3) ReDiscover’s Label Cells process uses a more compre-
hensive set of features, including layout, text, content and context features, than

those used in Pinto et al.’s approach.

6.3.2 Automated Schema Matching Techniques

Rahm et al. [60] presented a taxonomy that covers several automated schema-
matching approaches, and classified them based on various criteria. Figure 6.2
shows their classification. We also highlighted in blue the schema-matching cate-
gories that applies to our approach. We discuss Rahm et al.’s classification criteria

below.

e Individual versus combinational matchers: individual matching techniques
use a single schema-matching algorithm, whereas combinational techniques
are either hybrid matchers, which match schemas based on multiple criteria,
or composite matchers, which use multiple independent schema-matching
algorithms to match two schemas, and then combine the results of all al-
gorithms to identify the best matching. ReDiscover’s column-matching ap-
proach is classified as an individual-matcher technique, as it only use a single

matching algorithm.
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Legend:
The classification of ReDiscover
schema-matching approach

Schema Matching Approaches

/ \

Individual matcher approaches Combining matchers
Schema-only based Instance/contents-based Hybrid matchers ~ Composite matchers
Element-level Structure-level Element-level Manual Automatic
/ \ | / \ composition composition
... Constraint- Constraint- o Constraint-
Linguist Linguisti
EUEIE T based based ¢ based
JIN/IN /N IN SN (e
- Match cardinality
- Auxiliary information used ...
* Name similarity S ;
. e « Type similarity ~ * Graph * IR techniques .
‘?‘::?:f;m » Key properties matching (word frequencies, Vah‘efa e amd
« Global key terms) Sample approaches

namespaces

Figure 6.2: The classification of ReDiscover’s schema-matching approach based on

Rahm et al.’s taxonomy (Highlighting was added). Source: [60].

e Schema- versus instance/content-based: schema-based techniques consider
only schema information, such as column names, types and constraints,
whereas instance-based techniques use attribute values or statistics derived
from them to determine correspondence between schema attributes. Since
our column-matching approach uses column names and column statistics, it
can be classified as both schema-based as well as instance-based approach.
However, ReDiscover compares column summaries of a pair of columns, and

not their individual data values.



109

e Structure- versus element-level matching: structural schema-matching tech-
niques compare groups of schema elements, such as tables, while element-
matching techniques identify pairwise correspondence between individual el-
ements, such as attributes. Our schema-matching approach can be catego-
rized under element-matching techniques, as it only matches individual data

columns.

e Linguistic-based: schema-matching techniques under this category use names
of schema elements (e.g., column names) and other text descriptions to de-
termine the correspondence between two schemas. Our approach is classified
as linguistic-based because the SVM model of the Match Columns process

uses column-name similarity in determining corresponding columns.

e Constraint-based: such approaches use schema constraints, such as data
types, value ranges, value uniqueness, cardinality and referential integrity
between schemas. ReDiscover’s column-matching approach can be classified
as constraint-based approach, as it uses information such as min and max
values, row count, unique and nulls values in matching a pair of data columns.
However, because we extract tables from spreadsheets, there is no referential

integrity information that we can use.

e Matching cardinality: does a schema-matching technique produce one-to-one
mappings? Or does it produce one-to-many (or many-to-one) mappings? The
matching cardinality of ReDiscover’s column-matching approach is one-to-

one.

Several instance-level matching approaches [29, 30, 51-53] use machine-learning
techniques, such as neural networks and traditional classification methods, as fol-
lows. First, value instances of the first schema are characterized and matched, on
a one-to-one basis, with value instances from the second schema. Then, the re-

sulting per-instance match results are merged and abstracted to the schema level.
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Our approach is different because we do not match columns based on one-to-one
instance matching between column values. Instead, we match columns based on
similarity vectors, which summarize all the instances in a data column.

The instance-level approach most closely related to ours is the one used in
SEMINT system [53]. SEMINT matches attributes between two database schemas
by first computing matching signatures derived from schema information (e.g.,
attribute name, data type, field length, primary key, foreign key), and data contents
and statistics (e.g., minimum, maximum, average, standard deviation). Then, the
SEMINT system clusters attributes based on the Euclidean distance between their
matching signatures. While SEMINT and ReDiscover both use attribute (column)
statistics for matching, they are different in several aspects. First, the SEMINT
system identifies corresponding attributes in different DBMSs that represent the
same real-world information, hence it works on well-defined tables, and utilizes
schema information such as primary and foreign keys. In contrast ReDiscover
matches the columns of semi-structured tabular datasets stored in spreadsheets.
Second, SEMINT statistics are computed from a small sample of an attribute’s row
values, whereas ReDiscover computes statistics from all the row values of a column.
Lastly, for matching character data, SEMINT computes statistics on the number
of bytes used to store that data. ReDiscover uses Bloom filters to approximate
similarity between bit vector representation of categorical data.

Most of the work on schema matching has focused on a particular data model
(e.g., databases, XML documents) or application (e.g., data integration, data ware-
housing). Thus, the design decisions of such schema-matching techniques are signif-
icantly influenced by the application domain. For instance, schema-matching tech-
niques for data-integration applications are designed to determine similar schema
structures from a set of well-defined tables that often model similar real-world
concepts. In contrast, ReDiscover’s schema-matching approach is designed with

the goal of determining column correspondences between ill-structured tabular
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datasets that model a variety of concepts. Further, we are working in situation
where some datasets are unrelated, and we do not know that a priori.

Techniques used in foreign-key discovery, which are aimed at detecting seman-
tic association between primary- and foreign-key attributes (columns) in relational
databases, are also relevant to ReDiscover’s column-matching technique. Rostin
et al. [64] presented a machine-learning approach that computes all inclusion de-
pendencies (IND) between attributes to find candidate foreign keys. Then, it uses
a binary classification algorithm to determine the true INDs, and hence the true
foreign-key attribute pairs. While ReDiscover and Rostin’s approach share some
features for detecting column association (matching), such as column-name simi-
larity, value-range inclusion and table-size ratio (the ratio of the number of rows
in two columns), Rostin’s features are engineered for detecting foreign-key associa-
tions. Consequently, these features are not adequate for general semantic matching
between columns. On the other hand, ReDiscover uses a set of features that mea-
sure similarity between columns statistics and Bloom filters of two columns, and
hence are more suitable for detecting general column correspondence, as we dis-

cussed in Section 4.2.4.

6.3.3 Similarity Detection using Bloom Filter

In this section we discuss related techniques that use Bloom filters for set (or string)
similarity detection. Jain et al. [45] developed a technique for detecting duplicate
(or near duplicate) documents in the results of a search engine. They use Bloom
filters to detect similar documents by first using Content-Defined Chunks (CDC)
to extract modification-resilient document features. Then, they use these features
to compute a Bloom filter for each document. Next, to detect whether two doc-
uments are near-duplicate, they compare the Bloom filter of one document with
that of another by computing the bit-wise AND between them. As we discussed in

Section 4.2.4, ReDiscover also uses Bloom filters for computing similarity (between
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two columns). However, we use the estimated Dice similarity coefficient for mea-
suring similarity between two Bloom filters. Further, ReDiscover uses Bloom filters
for summarizing column content, where as Jain’s approach uses it for summarizing
web-document content.

Schnell et al. [65] proposed a method for linking the records of multiple databases
with additional information about the same person (patient). Because in the medi-
cal field it is very important to maintain the confidentiality of patients records, they
use Bloom filter for encrypting patient information (e.g., patient name) as follows.
First, they split each record identifier into sets of consecutive bigrams (2-grams).
Then, they compute a Bloom filter for all the bigrams of an identifier. Lastly, they
use the Dice coefficient to compute similarity between the Bloom filters of the
record identifiers they are trying to link. While Schnell’s approach and ReDiscover
share the use of the Dice coefficient for computing similarity between two Bloom
filters, the Bloom filters in the two methods represent different objects. In ReDis-
cover, Bloom filters represent the content of a data column, whereas in Schnell’s
approach they represent bigrams of a person’s record identifier. Additionally, the
two approaches use Bloom filters for different purposes. In ReDiscover, it is used to
summarize data columns to avoid extensively analyzing individual column values
when computing similarity between columns, while in Schnell’s approach, it is used
mainly for preserving the confidentiality of patient-record identifiers. Further, we

use n-grams as a way of encoding some order information into Bloom filters.
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CHAPTER 7: FUTURE WORK, FURTHER APPLICATIONS, AND
CONCLUSIONS

In this study we explored the problem of determining relationships between scien-
tific datasets in a collection of spreadsheets, introduced a relationship-identification
methodology as a solution, and developed two prototype systems to asses our
methodology. We first developed ReConnect, a tool for identifying relationships be-
tween two datasets. Encouraged by its methodological evaluation and the promis-
ing results from our user study, we then extended our methodology to predict
relationships in a collection of datasets. We developed ReDiscover, an end-to-
end prototype system that predicts, from a collection of datasets, related pairs
and their possible relationship. The preliminary evaluation of ReDiscover shows
promising performance and areas for further investigation.

Informed by the feedback we received from our user study subjects, our research
collaborators, observations we made from analyzing the datasets we gathered and
the results of our evaluation, we have identified a number of new research directions.
We also recognized several other application domains for our methodology. In
this chapter, we discuss future extensions of our work (Section 7.1), explore other
application domains for our relationship-prediction methodology (Section 7.2), and

lastly conclude this dissertation in Section 7.3.

7.1 FUTURE WORK

This work focused on determining pairwise connections between scientific datasets.

The first direction we want to explore in the future is extending our methodology
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to detect multi-dataset connections (Section 7.1.1). The second direction for ex-
ploration is scaling to enterprise-level collections of datasets (Sections 7.1.2). The
third direction is enhancing the relationship-prediction performance of ReDiscover
(Section 7.1.3). The last direction we discuss is integrating ReConnect with Re-
Discover to provide users with the ability to predict and validate relationships with

a single system (Section 7.1.4).

7.1.1 Multi-Dataset Connection Identification

As individual relationships are discovered, we can use that information to make
further inference about multi-dataset connections. A connection is identified based
on a certain combination of pairwise relationships. For example, if dataset A
contains B, and C duplicates B, then A contains C' as well.

Another future direction would be the identification of the concatenation con-
nection among multiple datasets in a collection. If spreadsheet Y was formed as
the concatenation of spreadsheets { X7, ..., X,,}, or a subset of these spreadsheets,

then the following relationships exists:
a. some X; is a prefix of Y, where 0 <1 < n,
b. some Xj is a suffizx of Y, where 0 < j <mn,
c. zero or more Xy are infires of Y, where 1 < k < n, and

d. all X, are pairwise disjoint and UX;=Y", where 1 < [ < m (where m is the

total number of spreadsheets involved in the concatenation).

We are also considering a graph of the relationships discovered so far in a
collection to show to the user, such as the one shown in Figure 7.1. Such a
graph would show related datasets and could include several sub-graphs, each
of which represents a group of related datasets within a collection. The advantage

of the graph feature is that it would provide the user an overview of his or her
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Figure 7.1: An example of a graph of predicted relationships in a collection.
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collection and help her determine which pairs to select for analysis, publishing
or sharing efficiently. The graph feature is especially important when analyzing
very large (enterprise-level) collections of datasets. We discuss the challenges and

opportunities for scaling to larger dataset collections in the next section.

7.1.2 Scaling to Large Dataset Collections

In this work, we focused on the feasibility of automating our relationship-prediction
methodology, and we targeted collections arising from individual scientists and
small groups of researchers. In the future, we want to scale our methodology to
larger (possibly enterprise-level) collections of datasets. As we discussed in Sec-
tion 4.2, ReDiscover’s architecture is designed to scale, as it avoids extensive ma-
nipulation of individual values and only uses bounded-size feature summaries for

comparison on O(n?) tasks. The main consideration in scaling for larger dataset
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collections is the ability to parallelize our system. The first three processes of
ReDiscover (Label Cells, Extract Columns and Compute Column Summaries) op-
erate on a per-dataset basis, thus we can easily run these processes for multiple
datasets in parallel.

The second part of ReDiscover (Match Columns and Predict Relationships)
operates on a per-dataset-pair basis. For this part, we have tried to bound the
computation time on pairwise operations by working with column summaries. As
pairs can be considered independently, parallelism can probably help us scale to
thousands of datasets, exhaustively comparing millions of pairs. After that, we
need a way of avoiding the n? comparisons.

The first possible approach that we plan to investigate to avoiding the n? prob-
lem is based on blocking techniques from Entity Resolution (ER)—the task of
matching and linking different instances of the same real-world entity [36]. ER
techniques also struggle with the n? problem as they need to consider all possible
entity pairs in a large collections. Blocking reduces the number of entity compar-
isons by grouping similar entities and comparing only entities in the same group.
(Groups can overlap.) In particular, meta-blocking techniques, such as the su-
pervised meta-blocking technique [58], looks promising for our application. This
technique applies supervised learning algorithms to develop classification mod-
els for quickly distinguishing between redundant or superfluous comparisons and
promising comparisons. Such a technique can significantly reduce the number of
comparisons and hence allows for scaling to large dataset collections.

Figure 7.2 shows one way of applying blocking techniques to scale our approach.
First, ReDiscover computes a Bloom bit-vector for each data-column in a dataset.
Then, it clusters similar columns together based on their bit-vectors. Next, ReDis-
cover uses the resulting column clusters to group related datasets, which are the
datasets with columns that share the same cluster. More specifically, each group

of columns (C) induces a group of datasets (D). That is, D(C)={d € D |3 ce C
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Figure 7.2: A possible approach for using blocking techniques to scale ReDiscover.

and c¢ is a column of d}. Now that related datasets are separated into smaller
groups, ReDiscover can distribute these groups to several nodes and process the
last two stages, Match Columns and Predict Relationships, for the resulting groups
simultaneously.

Another way of applying blocking would be by adapting an Information Re-
trieval (IR) approach, namely document retrieval, to deal with the n? problem.
Our approach would treat every dataset in the collection as a document, and its
column values as terms. Then, the approach builds a full index for all documents
in a collection. Next, using the index, ReDiscover computes the top-k matching
datasets for each dataset in the collection. Because it only considers a dataset and
the top-k best-matching datasets for potential pairs, ReDiscover would reduce the
number of datasets to process for relationship prediction. Document search itself

can be parallelized by term or document [57]. ReDiscover could also create an index
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of terms and the documents in which they occur to cluster related datasets. Such
an index would help ReDiscover group documents based on the number of shared
terms, and process the last two stages of the relationship-prediction approach for
several clusters in parallel. However, these methods are based on heuristics and

might miss related pairs.

7.1.3 Improving ReDiscover’s Prediction Performance

We discuss here ways of further improving ReDiscover’s prediction performance,
including evaluating relationship-prediction features, conducting further user stud-

ies, improving column matching, and exploiting other spreadsheet features.

Evaluating Relationship-Prediction Features

While the results of ReDiscover’s preliminary evaluations showed promising relation-
ship-prediction performance, we believe that there is still room for improving its
accuracy and efficiency. However, there will be always a trade-off between accuracy
and efficiency: fewer features means faster classification time, but less classification
accuracy. We can identify the best balance between accuracy and efficiency by ex-
amining the relative performance of various combinations of relationship-prediction
features.

In the future, we want to experiment with several combinations of existing
and new relationship-prediction features, such as features based on spreadsheet
formulas. For each combination (feature set), first we will need to use it to train
a new SVM model. Next, we will use the new classification model to examine its
relationship-prediction accuracy and its classification time, which is the average
time to classify a pair of datasets. Lastly, we will select the feature set that

produces the best balance between prediction accuracy and classification time.
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Conducting Further User Studies

In this work, we compared ReDiscover to an approximated human baseline ap-
proach (Section 5.3.1), to see whether its predictions were better than strategies
that a human might use to identify relationships between pairs of datasets in a
collection. In the future, we would like to conduct additional user studies to 1)
evaluate the usefulness of ReDiscover in simplifying the task of determining related
pairs of datasets in a collection, 2) receive feedback from the study participants
about their experience with ReDiscover, and 3) receive feedback about ways of

improving ReDiscover functionality and user experience.

Improving Column Matching

Exploiting user feedback. The results of ReDiscover’s preliminary evaluation
(Section 5.1) showed that cell labeling and column matching are important for
accurate relationship predictions. However, semi-structured data extraction and
schema matching are hard problems. Even limited feedback from users can signif-
icantly improve these tasks. Currently, ReDiscover allows users to fix cell-labeling
errors and retrain the labeling algorithm to avoid similar labeling errors in its fu-
ture predictions. We plan to also exploit users’ feedback in column matching by
implementing a visual column-correspondence user interface (UI). This UI will en-
able users to quickly repair column mappings. User repairs can be used to retrain

our Match Columns classifier as well.

Handling ambiguous column matching. In Section 4.2.4, we discussed column-
correspondence ambiguity issues and introduced the Enhance Column Correspon-
dence method (Algorithm 3), which removes ambiguity by ensuring that the result-
ing column correspondence consists of only one-to-one mappings. However, when
reducing a one-to-many mapping, ReDiscover favors the mapping with the highest

score without considering the effect of selecting such a mapping on the quality
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of the overall resulting column correspondence. Thus, the Enhance Column Cor-
respondence algorithm is characterized as a greedy method that makes locally
optimum choices without guarantying global optimality. We want to enhance this
algorithm by generating several enhanced column-correspondence alternatives and

choosing the one that produces the best overall column-correspondence score.

Improving column matching for datasets with limited-domain columns.
Our current column-matching approach does not perform well with datasets that
consists of several limited-domain columns—columns with few domain values. For
example, assume that dataset A has Animal Category and Animal Category?2
columns and dataset B has Animal Class and Animal Class2 columns. The Animal
Category and Animal Category2 columns of A closely resemble both Animal Class
and Animal Class2 of B. Consequently, ReDiscover would match column Animal
Category to columns Animal Class and Animal Class2, and Animal Category2 col-
umn to Animal Class and Animal Class2, as the summaries of these columns are
very similar. Using value-mapping (instance-based) matching techniques can aid
in removing ambiguous column mappings, and hence enhance column-matching
accuracy. An example of such techniques was proposed by Jaiswal et al. [46].
They developed a schema-matching tool that leverages value-mapping to enhance
schema matching for schemas with opaque column names and opaque data in-
stances for numerical and categorical columns. Opaque means “when it is difficult

to understand the semantics of the data values [of a column] from its name” [46].

Exploiting Other Spreadsheet Features

Because scientists may use spreadsheets’ cell formulas and comments, we plan to
incorporate this information into the process of relationship prediction. For in-

stance, ReConnect might check if an added column contains derived data by first
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checking if the values of that column are computed from formulas, and then de-
termine whether these values are uniformly computed from other columns. Such
an enhancement can also address the issue of formulas interfering with detecting
relationships. ReDiscover could also use formulas to determine columns with com-
parable types. For instance, the formula B4 + C'4 may indicate that columns B
and C have comparable types. Additionally, ReDiscover could check if datasets
match when computed columns are excluded, and if so it could suggest “equal on
non-computed columns” relationship.

We can also exploit spreadsheet formulas in detecting related datasets. Even
though in scientific spreadsheets formulas rarely contain references to cells in other
sheets within a spreadsheet or in other spreadsheet documents, knowing such in-
formation can help ReDiscover identify datasets that may be related to the dataset
being examined. For example, suppose we have three spreadsheets, A.zlsx, B.xlsz,
and C.xlsx, each of which contains water temperature readings for a set of water
samples at different points in time. Suppose we also have spreadsheet D, which
uses the following formula to compute the average water temperature for this set
of water samples stored in spreadsheets A, B, and C:

AVERAGE([A.xlsx)W Samplel!$B$2, [B.xlsz|W Sample2!$ B$2,

[C.xlsx]W Sample3!$B$2)
From this formula, ReDiscover can determine the spreadsheet names (A.zlsx,
B.zxlsz, and C.xlsx), sheet names (WSamplel, WSample2 and WSample3) and
column addresses (!$B%2) of the related datasets. Such information can be used

as features for the column-matching and the relationship-prediction classifiers.

7.1.4 Integrating ReConnet with ReDiscover

A future extension of our work is to combine ReDiscover with ReConnect to form

a full relationship-identification system. Such a system would enable scientists
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to predict and test for relationships in large collections of spreadsheets in an inte-
grated environment. It would help scientists decide how to work with their datasets
by suggesting possible operations on datasets based on discovered relationships.
For instance, when the system identifies the complementation relationship between
two datasets, it could suggest combining their data into one dataset via a join.
Furthermore, during the second part of our user study, several scientists sug-
gested that ReConnect should combine tabular datasets or remove irrelevant datasets
based on the suggested relationships. Thus, we plan to extend our methodology
so that it suggests and follows a course of action based on the relationships that it
identifies. For instance, the relationship-identification methodology might be able
to join complementary information in a table, and create data views that reduce

data duplication and complexity.

7.2 FURTHER APPLICATIONS

In this work we focus on detecting relationships that would result from the kinds
of activities that scientists perform when operating on scientific datasets stored in
spreadsheets. However, spreadsheets are also used to store other types of tabular
datasets, such as statistics, budgets, and sales reports. It seems obvious to ask
here whether our methods would work with such datasets. While ReDiscover can
detect instances of the current relationships between data in such spreadsheets,
the types of relationships that exist and their likelihood in other domains might
differ from what is common in scientific spreadsheets.

We can separate the applicability of our techniques to spreadsheets from other
domains into four categories: applications with similar relationships, applications
with new relationships, applications with new relationships requiring new features,

and applications that use different data organizations.
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7.2.1 Applications with Similar Relationships

We could apply our system as is to applications where users perform activities on
their datasets similar to those performed by scientists. User activities, such as
adding or deleting rows or columns, filling in missing values, and reordering data
would produce the same relationships, such as containment, augmentation, and
duplicate, that exist between scientific datasets.

One such application could be in marketing where a group of market ana-
lysts is collecting a list of hotels to help a client make informed decision about
establishing a new hotel. These analysts use spreadsheets to create, manipulate
their list of hotels by adding or deleting rows (e.g., hotels) or columns (e.g., hotel
rating, room types, price per night, etc.). They could use ReDiscover as is to
detect relationships, such as row-containment, augmentation, and complementa-
tion, between their datasets. For example, they could use ReDiscover to detect
the complementation relationship between their datasets to identify datasets that

have complementary information about similar hotels.

7.2.2 Applications with New Relationships

Another class of application domains is where users perform actions that pro-
duce new kinds of relationships, but where we can still use the same column and
spreadsheet-metadata features to detect these relationships. For such applications,
we only need to update the Predict Relationship process of ReDiscover. We can
do that simply by training new SVM models to predict these new relationships
using new combinations of existing features.

An example of this domain is applications where users need to manage and an-
alyze government data and statistics stored in spreadsheets. As a result of users’
activities on these datasets, several new relationships could arise among them.

For instance, a dataset about unemployment rates by state might extended by
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adding new columns for new months. But there might be revised values for pre-
vious months, so the containment relationship does not hold between the original
dataset and its extended versions. An economic analyst might want to determine
if there are extended versions of the dataset he or she is currently working with.
To detect such a relationship, we would train an SVM using combined features
from augmentation and the various containment relationships to predict the new

“revised” relationship.

Maintenance_V1 Maintenance_V2
Item Cost Item Cost
Roof Material 1500.40 Roof Material 1500
Window Frames 350.95 Window Frames 351
Doors 120.57 Doors 121
Woods 140.99 Woods 141
Paint 220.36 Paint 220
Labor 400.96 Labor 401

Figure 7.3: An example of two versions of a dataset about home maintenance
costs, with a near-match relationship. The values of Cost column of dataset Main-

tenance_V1 has been rounded to the nearest dollar in Maintenance_V2 dataset.

In Figure 7.3, we show another example of two datasets with a mear-match
relationship, which is a relationship that was suggested by one of our user study
participants (see Section 3.2.1). The rows of the Cost column of both Maintenance
V1 and V2 datasets are equal within $1, because Cost column values from Mainte-
nance_V1 has been rounded to the nearest dollar in Maintenance_ V2. ReDiscover
could use existing column summaries, such as mean and standard deviation, for

detecting the near-match relationship.
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7.2.3 Applications with New Relationships Requiring New Features

Input Columns

Gppend repetition\

Compute a Bloom fitter
count to each value
for each appended column
AL A | coir [ co2 | »
0o/1{1|/0({1|/0|0f0|1|1
A A A1 A1 Coll BF
B A A2 A2 Col2BFo|1|1|0|1|0|1|0|1]|1
B B * B 1 A 3 '
C B B 2 B 1
D C c_1 B_2 Test for containment between
D c D1 c1 the Bloom filters of Coll and
Col2
D D D_2 c2
D D3 D1
contained
\_ D_3 iy, in Col 2 BF?

Collis NOT Coll is Bag-
Bag-contained contained in
in Col2 Col2

Figure 7.4: An example of using Bloom filters for computing indicative features

for the bag-row-containment relationship.

There are applications where user actions could produce relationships that re-
quire new features. These features would require computing new column sum-
maries, or adjusting column-matching or some other component of ReDiscover.
An example of such domain is when users need to determine if a dataset with
duplicate rows is row-contained in another dataset. This relationship is different
from the set-based row-containment that ReDiscover predicts, as it is based on
bag semantics (i.e., duplicate rows are considered). Thus, using the existing row-
containment features is not enough for predicting the bag-based row-containment

(bag-row-containment) relationship, as these features are based on Bloom filters,
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which do not consider duplicates. Notice that if the bag-row-containment relation-
ship holds between two datasets, then row-containment must hold as well. Thus,
we would only need to predict the bag-row-containment between datasets with the
row-containment relationship.

In Figure 7.4, we show how we can use Bloom filters for computing an indicative
binary feature, isBagContained, for the bag-row-containment relationship. First,
for each column, we append each of its values with the repetition count of that value
in the column. Next, we compute a Bloom filter for each of the appended columns.
Then, we test to see if the Bloom filters of dataset A columns are contained in
their corresponding columns in B. Lastly, the isBagContained feature is set to one
when all of A’s Bloom filters are contained in their corresponding Bloom filters of

B’s columns.

7.2.4 Applications with Different Data Formats

There are also applications where the nature of the data is fundamentally different,
and for which perhaps all of ReDiscover’s components would have to be revised.
Many such applications use spreadsheets that are developed when formatting data
for human consumption. Often, these spreadsheets contain tabular datasets with
row and column labels, and have subtotals, averages, and percentages at various
cells in a column.

Figure 7.5 shows an example of a project-budget-report spreadsheet® with row
(Project Design, Project Development, etc.) and column (PROJECT TASKS,
LABOR HOURS, etc.) labels. It also has row totals (TOTAL PER TASK), and
column subtotals at various points in the columns. We might want to just extract
the base data in each column and leaving behind the derived data.

The current version of ReDiscover extracts cell formulas, which could help

®Source: Micrsoft Excel 2013 Templates. The “Project Budget” template.
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A B C D E F G H |
PROJECT TASKS LABOR HOURS LABOR COST ($) MATERIAL COST ($) TRAVEL COST ($) OTHER COST ($) TOTAL PER TASK
Develop Functional Specifications 1.0 $1.00 $1.00 $1.00 $1.00 $5.00
Develop System Architecture 1.0 $1.00 $1.00 $1.00 $1.00 $5.00
Develop Preliminary Design Specification 1.0 $1.00 $1.00 $1.00 $1.00 $5.00
Develop Detailed Design Specifications 1.0 $1.00 $1.00 $1.00 $1.00 $5.00
Develop Acceptance Test Plan 1.0 $1.00 $1.00 $1.00 $1.00 $5.00
Subtotal 5.0 $5.00 $5.00 $5.00 $5.00 $25.00
Develop Components 00 §0.00 $0.00 $0.00 $0.00 $0.00
Procure Software 0o $0.00 $0.00 $0.00 $0.00 $0.00
Procure Hardware 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Development Acceptance Test Package 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Perform Unitintegration Test 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Subtotal 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Install System 0.0 $0.00 $0.00 50.00 $0.00 $0.00
Train Customers 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Perform Acceptance Test 00 §0.00 $0.00 $0.00 $0.00 $0.00
Perform Post Project Review 00 §0.00 $0.00 $0.00 $0.00 $0.00
Provide Warranty Support 00 $0.00 $0.00 $0.00 $0.00 $0.00
Archive Materials 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Subtotal 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Customer Progress Meetings/Reports 0.0 $0.00 $0.00 50.00 $0.00 $0.00
Internal Status MeetingsiReports 0.0 $0.00 $0.00 50.00 $0.00 $0.00
Third-Party Vendor Interface 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Interface to Other Internal Departments 00 $0.00 $0.00 $0.00 $0.00 $0.00
Configuration Management 00 §0.00 $0.00 $0.00 $0.00 $0.00
Quality Assurance 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Overall Project Management 0.0 $0.00 $0.00 $0.00 $0.00 $0.00
Subtotal 0.0 $0.00 $0.00 $0.00 $0.00 $0.00

PROJECT
DEVELOPMENT

B
5
2

=
(5]
w
3
[
o

PROJECT
MANAGEMENT

Figure 7.5: A sample spreadsheet with vertical and horizontal labels and subtotals.

distinguishing based from derived data. However, we still need to develop new
routines for analyzing extracted formulas to distinguish between the two. We also
need to update the Label Cells process of ReDiscover to handle row labels when
labeling a dataset’s cells.

Outside of the relam of spreadsheets, we want to explore the applicability of
the relationship-identification methodology to tabular datasets originating in other
settings, such as DBMSs. A straightforward way for our tool to detect the same
relationships in ordered-table datasets that originate in other formats is to convert
these formats into spreadsheet format. However, the relationships that may exist
between datasets in different formats could be different in kind and likelihood based
on the tools used to generate that format. For example, with spreadsheet tools,
cutting and pasting a column is easy, but it is not as easy in a DBMS environment.
In an DBMS,; it is easy to remove rows according to a complex predicate, though

that is not as easy with a spreadsheet tool. Furthermore, researchers tend to create
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a spreadsheet for each run of an experiment or an observation session, whereas in
a DBMS they would not necessarily create a new table. Consequently, certain
relationships are likely to exist between datasets that were generated by one tool

may not exist between those that were produced by another

7.3 CONCLUSION

File-based scientific datasets proliferate as a result of scientists’ activities, such as
sharing datasets with collaborators and receiving versions with modifications, and
copying datasets for backup and analysis purposes. Consequently, scientists can
lose track over time of how their datasets are connected. Hence it is challenging for
them to determine which datasets are best for a given task or how to work with the
data stored in their datasets. Frustrated by the complexity and the time it takes to
manually identify connections among their datasets, especially in large collections,
scientists may select outdated or incomplete datasets, or even forego the planned
task. Existing scientific data-management-systems focus on managing datasets
stored in DBMSs. However, the problem of managing file-based scientific datasets
has not received much attention by the data-management research community.
In this dissertation, we present a relationship-identification methodology as a
solution to this problem. We articulated a set of relationships, such as augmenta-
tion, complementation, and duplicate, that can help scientists determine the origi-
nal connections among their datasets. To examine the feasibility of our approach,
we developed ReConnect, a semi-automated tool for identifying relationships be-
tween two datasets. ReConnect relies on users to specify the location of a dataset
in a spreadsheet, and to help with matching the columns of a dataset pair. Then,
it suggests possible relationships based on how the columns of two datasets corre-
spond. Users can select the relationship they would like to validate, and then Re-
Connect generates SQL queries to test for the relationship. Our user study results

showed that subjects found ReConnect useful, and that determining relationships
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with ReConnect was easier and less error-prone and time-consuming than visually
inspecting their datasets. We also evaluated the effectiveness of ReConnect and
four change-inference tools in identifying relationships between spreadsheets. We
found change-inference tools are difficult to use for this task. ReConnect offers a
“set at a time” approach for determining connections between spreadsheet pairs,
while the other tools are row-, column- or cell-oriented — which does not scale as
spreadsheets become larger. ReConnect works on a more abstracted level than the
other tools, which can help users understand connections more easily.

Encouraged by the results of ReConnect’s evaluation, we extended our approach
to handle collections of datasets, and developed a prototype system, ReDiscover,
that automatically predicts, from a collection of datasets, the pairs that are likely
related and the relationship between them. ReDiscover extracts data columns
from spreadsheets, summarizes data in these columns by computing statistics and
bit-vectors (Bloom filters), and uses these summaries to match columns of dataset
pairs. Then, it uses column summaries, the column-correspondence and spread-
sheet metadata to predict relationships between dataset pairs. Our evaluation of
ReDiscover showed that it predicted relationships with good accuracy, and that it
outperformed an approximated human-based approach, which encodes the strate-
gies that a human might use to identify the tested relationships. We believe that we
can further improve ReDiscover’s performance by implementing the enhancements
we discussed in Section 7.1.

While this work focuses on the feasibility of automating our relationship-prediction
methodology, and targets spreadsheet collections of individual scientists and small
groups of researchers, our techniques are designed with scalability in mind. Scaling
our relationship-prediction methodology to handle very large collections of datasets
will broaden its applicability in other domains. Several colleagues in the data man-
agement community, who reviewed our work, saw the potential for applying our

techniques to spreadsheets in other domains, such as business. One step in this
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direction is to implement and experiment with the blocking techniques that we
discussed in Section 7.1.2.

Nevertheless, our methodology already has significance, especially for scien-
tists, who lack the technical skills or financial resources to use relational database
systems. Such scientists rely heavily on spreadsheets, and need tools that can help
them overcome impediments to sharing their data or deciding how to work with
it. As one of the anonymous reviewers for the International Conference on Data
Engineering stated “It is true that in enterprise and scientific settings, a large per-
centage of the actual data reside in spreadsheet[s]. So any solution that is able to
extract these data and make them useful beyond the confines of the spreadsheet

itself makes an important contribution.”
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APPENDIX A: CELL FEATURES

Cell Context Features

Feature ID

Description

1s_left_alpha

Does the left cell contain alphabetical char-

acters only?

1s_left.num

Does the left cell contain numbers only?

1s_left_alphanum

Does the left cell contain alphanumerics?

1s_left_header

Is the left cell content in the list of column

headers?

1s_left_empty

Is the left cell empty?

1s_right_alpha

Does the right cell contain alphabetical char-

acters only?

1s_right_num

Does the right cell contain numbers only?

1s_right_alphanum

Does the right cell contain alphanumerics?

1s_right_header

Is the right cell content in the list of column

headers?

1s_right_empty

Is the right cell empty?

1s_above_alpha

Does the cell above contain alphabetical

characters only?

1s_above_num

Does the cell above contain numbers only?

1s_above_alphanum

Does the cell above contain alphanumerics?

1s_above_header

Is the cell above content in the list of column

headers?

141



1s_left_empty

Is the cell above empty?

1s_below_alpha

Does the cell below contain alphabetical

characters only?

1s_below_num

Does the cell below contain numbers only?.

15_below_alphanum

Does the cell below contain alphanumerics?

1s_below_header

Is the cell below content in the list of column

headers?

15_below _empty

Is the cell below empty?
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Cell Layout Features

Feature 1D Description

1s-merge_cell Is the cell merged with other
cells?

1s_left_align. Is the cell aligned to the left?

1s_right_align. Is the cell aligned to the right?

1s_center_align. | Is the cell aligned to the center?

1s_font_italic Is the cell font italicized?

1s_font_underlinedls the cell font underlined?

1s_font_bold Is the cell font bold?

Cell Text Features

Feature ID Description

1s_alpha Does the cell contain only alphabetical char-
acters?

1s_alpha Does the cell contain only numerical charac-
ters?

1s_alphanum Does the cell contain alphanumerical charac-
ters?

1s_empty Is the cell empty?

1s_all_small Are all alphabetical characters small?

1s_all_Capital Are all alphabetical characters capital?

starts_capital Is the first character capital?




Cell Content Features

Feature ID

Description

1s_in_nulls

Is the cell content in the list of default nulls?

1s_in_headers

Is the cell content in the list of column header

terms?

contain_colon

Does the cell contain a colon?

contain_special

Does the cell contain any special characters?

1s_long_text

Does the cell contain more than 40 charac-

ters?

m_year_range

Is the cell content a number between 1900

and 20507
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APPENDIX B: REDISCOVER’S COLUMN SUMMARIES

Description of the column summaries collected by ReDiscover.

Summary Name

Description

column_id The column header name and column location in-
formation: spreadsheet and sheet names, the order
of the column, and the address of the first and last
cell in that column

col_type The inferred data type of the column

row_count The count of row values of the specified column

unique The count of unique values of the specified column

null The count of null values of the specified column

max_val The maximum value of the specified column

min_val The minimum value of the specified column

mean The average of the values (for numerical columns)
of the specified column

Std_dev The standard deviation of the values (for numeri-

cal columns) of the specified column A and B.

common_val_0

The first most common value in the specified col-

umn

cvl_freq

The frequency count of the first most common

value in the specified column

common_val_1

The second most common value in the specified

column
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cvl_freq

The frequency count of the second most common

value in the specified column

common_val_2

The third most common value in the specified col-

umn

cv2_freq

The frequency count of the third most common

value in the specified column

common_val_3

The fourth most common value in the specified

column

cv3_freq

The frequency count of the fourth most common

value in the specified column

common_val_/

The fifth most common value in the specified col-

umn

cv4_freq

The frequency count of the fifth most common

value in the specified column

common_val_5

The sixth most common value in the specified col-

umn

cvd_freq

The frequency count of the sixth most common

value in the specified column

common_val_6

The seventh most common value in the specified

column

cvb_freq

The frequency count of the seventh most common

value in the specified column

common_val_7

The eighth most common value in the specified

column

cv7_freq

The frequency count of the eighth most common

value in the specified column
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common_val_8

The ninth most common value in the specified col-

umn

cv8_freq

The frequency count of the ninth most common

value in the specified column

common_val_9

The tenth most common value in the specified col-

umn

cv9_freq

The frequency count of the tenth most common

value in the specified column
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APPENDIX C: HUMAN-BASED APPROACH FEATURES
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Description of the human-based approach features.

Feature Name Description

columnNamesMatch Do the column names of dataset A match those
of B? (0: no matching column names; 1: some
column names match; 2: all column names match)

columnOrderMatch When the column names of datasets A and B
match, are their columns have in same order?

1s WorkbookMatch Do datasets A and B have the same workbook
name?

1s WorksheetMatch Do datasets A and B have the same worksheet
name?

isAuthorMatch Do datasets A and B have the same author name?

18S1ze Bqual Is the size of datasets A and B equal?

1sRowCountEqual Is the row count of datasets A and B equal?

isColCountEqual Is the column count of datasets A and B equal?

centMatchingMetadata The count of matching metadata between datasets
A and B.

isRowCountALessThanB | Is the row count of dataset A less than that of B?

isRowCountBLessThanA | Is the row count of dataset B less than that of A?

dataTypesMatch Do the columns of datasets A and B have the same

data types?
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