
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

5-3-2016 

Identifying Relationships between Scientific Identifying Relationships between Scientific 

Datasets Datasets 

Abdussalam Alawini 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Databases and Information Systems Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Alawini, Abdussalam, "Identifying Relationships between Scientific Datasets" (2016). Dissertations and 
Theses. Paper 2922. 
https://doi.org/10.15760/etd.2918 

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations 
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2922&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/2922
https://doi.org/10.15760/etd.2918
mailto:pdxscholar@pdx.edu


Identifying Relationships between Scientific Datasets

by

Abdussalam Alawini

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

David Maier, Chair

Kristin Tufte

Melanie Mitchell

Tugrul Daim

Portland State University

2016



c© 2016 Abdussalam Alawini



i

ABSTRACT

Scientific datasets associated with a research project can proliferate over time as a

result of activities such as sharing datasets among collaborators, extending existing

datasets with new measurements, and extracting subsets of data for analysis. As

such datasets begin to accumulate, it becomes increasingly difficult for a scientist to

keep track of their derivation history, which complicates data sharing, provenance

tracking, and scientific reproducibility. Understanding what relationships exist

between datasets can help scientists recall their original derivation history. For

instance, if dataset A is contained in dataset B, then the connection between A

and B could be that A was extended to create B.

We present a relationship-identification methodology as a solution to this prob-

lem. To examine the feasibility of our approach, we articulated a set of relevant

relationships, developed algorithms for efficient discovery of these relationships,

and organized these algorithms into a new system called ReConnect to assist sci-

entists in relationship discovery. We also evaluated existing alternative approaches

that rely on flagging differences between two spreadsheets and found that they were

impractical for many relationship-discovery tasks. Additionally, we conducted a

user study, which showed that relationships do occur in real-world spreadsheets,

and that ReConnect can improve scientists’ ability to detect such relationships

between datasets.

The promising results of ReConnect’s evaluation encouraged us to explore a
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more automated approach for relationship discovery. In this dissertation, we in-

troduce an automated end-to-end prototype system, ReDiscover, that identifies,

from a collection of datasets, the pairs that are most likely related, and the relation-

ship between them. Our experimental results demonstrate the overall effectiveness

of ReDiscover in predicting relationships in a scientist’s or a small group of re-

searchers’ collections of datasets, and the sensitivity of the overall system to the

performance of its various components.



iii

DEDICATION

To my mother and father, my endless source of inspiration and dedication.

To my wonderful wife, without whose support I would not have finished my doc-

toral studies.

To the joy of my life, my lovely kids, for making this journey more fun than it

really is.



iv

ACKNOWLEDGMENTS

Many thanks to my adviser, Professor David Maier, for his support and help

throughout my studies. He is a fun person to work with. I definitely learned a lot

from his experience, dedication, and passion for exploration.

I would also like to thank my co-adviser, Dr. Kristin Tufte, for always pushing

my limits, and making sure that Dave and I were always on track.

I have had much support from my committee members. Special thanks to

Professor Melanie Mitchell and her students for helping with the machine learning

part of my research. Many thanks to Professor Tugrul Daim for his valuable

feedback and guidance.

Thanks to Rashmi Nandikur for helping with the implementation and testing

of ReDiscover.

I would like to thank Dr. Bill Howe of the University of Washington for his

collaboration, and for providing us with access to scientific dataset repositories. I

would also like to thank Dr. Mike Cafarella of the University of Michigan and his

students for their help.

Last but not least, I would like to thank my colleagues at the Portland State

University Datalab, including Patrick Leyshock (alumnus), Veronika Megler (alumna),

Hisham Benotman and Basem Elazzabi, for all their support and feedback. Spe-

cial thanks to Scott Britell for his technical support, and for making the Datalab

a fun place for work. Thanks also to Dr. Lois Delcambre for her support and

encouragement.



v

My research was supported by the National Science Foundation (award IIS

1064685), and by the Libyan Ministry of Higher Education and Scientific Research

through the Canadian Bureau for International Education (CBIE). Thanks CBIE

for your commitment to the Libyan-North American Scholarship Program, and for

your excellent support and services.



vi

Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Motivation, Overview and Background . . . . . . . . . . 8

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . 9

2.2 Conceptual Basis for Relationship Identification . . . . . . . 11

2.2.1 Activities, Connections and Relationships . . . . . . . . . . 11

2.2.2 Relationship Definitions . . . . . . . . . . . . . . . . . . . . 14

Ordered Relationships. . . . . . . . . . . . . . . . . . . . . . 16

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Relationship Testing . . . . . . . . . . . . . . . . . . . . . . 20

Data Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Schema Matching . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Relationship Prediction . . . . . . . . . . . . . . . . . . . . . 21

Data-Column Extraction . . . . . . . . . . . . . . . . . . . . 22

Automated Column Matching and Relationship Prediction . 22

Summarizing Categorical Columns . . . . . . . . . . . . . . 23

Chapter 3: Relationship Testing . . . . . . . . . . . . . . . . . . . . . . 26

3.1 ReConnect’s Architecture . . . . . . . . . . . . . . . . . . . . . 26



vii

3.1.1 Converting Spreadsheets to Database Tables . . . . . . . . . 26

3.1.2 Column Correspondence . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Relationship Identification . . . . . . . . . . . . . . . . . . . 31

3.2 User Study and Evaluation . . . . . . . . . . . . . . . . . . . . 37

3.2.1 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Methodological Evaluation . . . . . . . . . . . . . . . . . . . 43

3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4: Relationship Prediction . . . . . . . . . . . . . . . . . . . . 50

4.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Automating the Extraction of Tabular Datasets from Spread-

sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Wide Variety of Dataset Layouts in Spreadsheets . . . . . . 51

Non-data Text . . . . . . . . . . . . . . . . . . . . . . . . . 52

Producing Training Data for Cell Labeling . . . . . . . . . . 52

4.1.2 Scaling to Many Datasets and Columns . . . . . . . . . . . . 52

4.1.3 The Need for Sophisticated Column Matching . . . . . . . . 53

Inferring the Type of a Column . . . . . . . . . . . . . . . . 53

Summarizing Categorical Columns . . . . . . . . . . . . . . 53

4.2 A Description of the Rediscover System . . . . . . . . . . . . 54

4.2.1 Label Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Extract Columns . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Compute Column Summaries . . . . . . . . . . . . . . . . . 63

4.2.4 Match Columns . . . . . . . . . . . . . . . . . . . . . . . . . 64

Computing Set Similarity using Bloom Filters . . . . . . . . 67

4.2.5 Predict Relationships . . . . . . . . . . . . . . . . . . . . . . 71

Predict Relationships Process . . . . . . . . . . . . . . . . . 72

Computing Relationship Features . . . . . . . . . . . . . . . 72

Predict Relationships Results . . . . . . . . . . . . . . . . . 75

Chapter 5: Experimental Evaluation . . . . . . . . . . . . . . . . . . . 77

5.1 Preliminary Evaluation . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Label Cells Experiment . . . . . . . . . . . . . . . . . . . . . . . 84



viii

5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 85

5.3 Predict-Relationships Experiment . . . . . . . . . . . . . . . . 86

5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 6: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Scientific Data Management . . . . . . . . . . . . . . . . . . . . 96

6.2 Relationship Testing . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Similar tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Relevant Techniques . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Relationship Prediction . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Tabular Dataset Extraction . . . . . . . . . . . . . . . . . . 103

6.3.2 Automated Schema Matching Techniques . . . . . . . . . . . 107

6.3.3 Similarity Detection using Bloom Filter . . . . . . . . . . . . 111

Chapter 7: Future Work, Further Applications, and Conclusions . 113

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Multi-Dataset Connection Identification . . . . . . . . . . . 114

7.1.2 Scaling to Large Dataset Collections . . . . . . . . . . . . . 115

7.1.3 Improving ReDiscover’s Prediction Performance . . . . . . . 118

Evaluating Relationship-Prediction Features . . . . . . . . . 118

Conducting Further User Studies . . . . . . . . . . . . . . . 119

Improving Column Matching . . . . . . . . . . . . . . . . . . 119

Exploiting Other Spreadsheet Features . . . . . . . . . . . . 120

7.1.4 Integrating ReConnet with ReDiscover . . . . . . . . . . . . 121

7.2 Further Applications . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Applications with Similar Relationships . . . . . . . . . . . . 123

7.2.2 Applications with New Relationships . . . . . . . . . . . . . 123

7.2.3 Applications with New Relationships Requiring New Features125

7.2.4 Applications with Different Data Formats . . . . . . . . . . 126

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix A: Cell Features . . . . . . . . . . . . . . . . . . . . . . . . . 141



ix

Appendix B: ReDiscover’s Column Summaries . . . . . . . . . . . . . 145

Appendix C: Human-Based Approach Features . . . . . . . . . . . . 148



x

List of Tables

Table 2.1 An example of the activities that Jennifer’s collaborators may

have performed on spreadsheets A, B, C, and D. . . . . . . . . . . 12

Table 2.2 Description of some of the relationships that the relationship-

identification methodology identifies. . . . . . . . . . . . . . . . . . 15

Table 2.3 Description of ordered relationships. . . . . . . . . . . . . . . 18

Table 3.1 The methodological evaluation results . . . . . . . . . . . . . 46

Table 4.1 Description of spreadsheet metadata that ReDiscover collects. 64

Table 5.1 Label Cells Performance. . . . . . . . . . . . . . . . . . . . . 85



xi

List of Figures

Figure 2.1 An example of three related spreadsheets: Spreadsheet A

is row-contained in spreadsheet B, and spreadsheets B and C are

complementary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2 An example of augmentation and sub-containment relation-

ships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.3 An example of prefix and subsequence relationships . . . . . 17

Figure 3.1 ReConnect’s architecture: The process Upload Dataset con-

verts a spreadsheet into a database table, and the process Identify

Relationships detects relationships between pairs of spreadsheets. . 27

Figure 3.2 Dataset selection for spreadsheet B: Jennifer can specify

column and row ranges and the index of the row that contains the

column names of her dataset. . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.3 Column Correspondence process for Spreadsheets A and B:

ReConnect depends on a user’s feedback to identify column corre-

spondences accurately. . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.4 The initial column correspondence between datasets A and B. 30

Figure 3.5 The Identify Relationships Process: ReConnect analyzes col-

umn correspondences, column statistics, and the set of common rows

of two tables to check if they match the conditions for a relationship 32

Figure 3.6 Relationship Identification Overview: Classifying relation-

ships based on column correspondences helps ReConnect limit the

relationships to investigate. . . . . . . . . . . . . . . . . . . . . . . 33

Figure 3.7 An example of two equal spreadsheets with reordered rows

and columns: Change-inference tools report that spreadsheets B

and B′ are not equal (identical). ReConnect reports that they are

equal regardless of their row and column order. . . . . . . . . . . . 47



xii

Figure 3.8 SheetDiff results of comparing spreadsheets B and B′ (shown

in Figure 3.7). Yellow is used for changed cells, blue for added

columns and rows, and red for deleted columns and rows. . . . . . . 48

Figure 3.9 Micorsoft Inquire results of comparing spreadsheets B and

B′ (shown in Figure 3.7). . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 4.1 The main processes in ReDiscover . . . . . . . . . . . . . . . 54

Figure 4.2 The Label Cells Process . . . . . . . . . . . . . . . . . . . . 56

Figure 4.3 Example Label Cells results . . . . . . . . . . . . . . . . . . 59

Figure 4.4 Extract Columns . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.5 Column Layout Examples . . . . . . . . . . . . . . . . . . . 61

Figure 4.6 An example of column data-type inconsistency in spreadsheets 62

Figure 4.7 Example column summaries . . . . . . . . . . . . . . . . . . 63

Figure 4.8 An example of two column summaries and their similarity

vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.9 The Match-Column process . . . . . . . . . . . . . . . . . . 67

Figure 4.10 An example of enhancing the column correspondence of datasets

D and E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.11 Example results of the Predict Relationships algorithm . . . 75

Figure 5.1 Relationship prediction performance results of ReDiscover

and ReDiscoverMCS . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.2 ReDiscover’s Average Prediction Score . . . . . . . . . . . . 82

Figure 5.3 Average interpolated precision at standard recall levels, with

average prediction scores across all relationships . . . . . . . . . . . 90

Figure 5.4 Interpolated precision at standard recall levels, with predic-

tion scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 5.5 The results of ReDiscover’s prediction score evaluation (Part

3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 6.1 An example of data-presentation spreadsheet: Resident pop-

ulation, by age, sex, race, and Hispanic origin: United States, se-

lected years 1950-2009 (A partial picture of the original spread-

sheet). Source: [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 6.2 The classification of ReDiscover’s schema-matching approach

based on Rahm et al.’s taxonomy (Highlighting was added). Source:

[60]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 7.1 An example of a graph of predicted relationships in a collection.115



xiii

Figure 7.2 A possible approach for using blocking techniques to scale

ReDiscover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 7.3 An example of two versions of a dataset about home main-

tenance costs, with a near-match relationship. The values of Cost

column of dataset Maintenance V1 has been rounded to the nearest

dollar in Maintenance V2 dataset. . . . . . . . . . . . . . . . . . . . 124

Figure 7.4 An example of using Bloom filters for computing indicative

features for the bag-row-containment relationship. . . . . . . . . . . 125

Figure 7.5 A sample spreadsheet with vertical and horizontal labels and

subtotals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



1

CHAPTER 1: INTRODUCTION

Large amounts of scientific data currently exist as dataset files outside of database

management systems (DBMSs). As scientists perform various activities with these

datasets—such as combining data split across several files, filtering or rearranging

data to aid their analyses, and sharing datasets with collaborators and receiving

versions with modifications—the size and the number of dataset files related to a

research project increases. In such cases, scientists can lose track of the connections

between their files and it becomes increasingly difficult for them to answer questions

such as: Which dataset is the most complete? Which two versions of datasets go

together? Are there any overlapping datasets? Are there any duplicate datasets?

Not having ready answers to these questions can be an impediment for scientists

to share their data or move it to a DBMS, and can add to the time that they spend

managing their datasets rather than analyzing their data [74].

We believe that determining relationships, such as row-containment, comple-

mentation, duplicate, and augmentation, between datasets can help answer such

questions, and is the focus of this work. For example, assume that a researcher

is trying to determine the most complete version among three datasets stored in

spreadsheets X, Y , and Z, to share with her collaborators. Knowing that datasets

X and Y are row-contained in Z can help her determine that the most complete

version is Z, as it contains the rows of both datasets X and Y . As another exam-

ple, suppose that a scientist performed bacteriological analysis on a set of water

samples and saved it as spreadsheet A, and then created a new spreadsheet B to
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store her chemical analysis on the same set of water samples. A few months later,

she wants to decide whether to upload A, B or both to a shared archive. The

classification of the relationship between these spreadsheets as complementation

can help her determine that the connection between them is that the unmatched

columns provide complementary information about the matching water samples in

A and B. Consequently, she may choose to upload the two spreadsheets together.

Version history could give some hints about connections between datasets, but

that by itself is not enough for the following two reasons. First, version con-

trol systems (VCS) cannot always track versions across all scientists’ activities on

spreadsheets. For instance, when a scientist sends a spreadsheet to a collaborator,

the changes made by her collaborator would not be tracked by the VCS. Second,

relationships could arise between datasets without direct derivation. For instance,

the complementation relationship we just mentioned in the example above could

arise not necessarily from having dataset A derived from B, or vice versa. Thus,

we sometimes need to determine relationships between datasets by looking at the

data stored in them.

In this work we focus on tabular datasets because much of the file-based sci-

entific data are organized as tables, such as spreadsheets, instrument output, and

sensor logs. Moreover, in some cases, ordering of these tabular datasets is sig-

nificant and can help in determining how datasets are connected. For instance,

as ordered tables are manipulated and transformed for analyses, different kinds

of ordered relationships, such as infix, sub-sequence, and reordered rows, can re-

sult between source data, intermediate results, and derived datasets. We need an

approach that can handle relationships involving order.

Since we believe the relationship-identification problem is important, we wanted

to develop an approach to it. Our research had two phases. In the first phase, we

focused on the viability of our relationship-identification approach. We wanted to

know whether relationships arose in practice, whether we could effectively identify
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them, and, if so, are relationships useful for scientists in identifying the original

connections between their datasets? Thus, we built a prototype tool, ReConnect,

that helps a scientist interactively determine connections between two datasets.

The results from ReConnect evaluation were promising, and we were encouraged

by what we observed. However, the interactive, pairwise approach was not suitable

for a scientist with more than few datasets. So, in the second phase, we wanted

to make relationship identification practical at the scale of dataset collections. To

support that case, we had to go beyond pairwise relationship testing, and develop

a more automated approach that reduces user involvement as much as possible.

To that end, we developed ReDiscover, an end-to-end prototype system that helps

scientists determine which pairs to examine for relationships from a collection of

datasets.

More specifically, in the first phase, we articulated a set of relevant relationships

(Section 2.2.1) and developed a methodology for identifying these relationships

between pairs of spreadsheets. This methodology first extracts tabular datasets

from spreadsheets. Then it extracts column features to suggest a column corre-

spondence and also to suggest potential relationships between datasets. Finally,

it establishes correspondences between sets of columns in order to generate SQL

queries to examine column data to confirm suggested relationships. To examine

the viability of our methodology, we first implemented and evaluated ReConnect

(Section 3.1), an interactive tool that implements the methodology. Second, we

conducted a user study where we talked to scientists to both validate our intuition

about relationships and to examine ReConnect’s usefulness in determining mean-

ingful relationships (Section 3.2.1). This study confirmed that the proliferation of

scientific datasets can be a significant problem, and that scientists often struggle

to select and decide how to work with their datasets, especially when working with

collections of datasets where they are uncertain about the connections.

The work on ReConnect established the viability of our relationship-identification



4

approach as it verified the following two hypotheses. First, finding relationships

matters because 1) relationships do actually occur in practice, 2) knowledge of

them can aid scientists in determining original connections between their datasets,

and 3) scientists cannot easily check them manually in spreadsheets of even mod-

est size. Second, we can at least partially automate relationship identification and

testing, as is demonstrated by ReConnect. However, it is tedious for scientists to

apply ReConnect to a collection of, say, 50 datasets, as it would involve looking at

1200+ dataset pairs. Thus, we now needed to develop an approach that is practical

for a scientist to apply across whole collections of his or her datasets.

In the second phase, we examined the applicability of our approach by develop-

ing a relationship-prediction methodology for suggesting the pairs that are likely re-

lated, and the relationship between them, in a collection of datasets. Our method-

ology applies a conditional probabilistic model, namely Conditional Random Fields

(CRFs, Section 4.2.1), to automate data-column extraction (Section 4.2.2), com-

putes fast approximate column summaries using data profiling and Bloom filters

(Sections 4.2.3, and 4.2.4), and applies Support Vector Machines (SVMs) to auto-

mate column matching (Section 4.2.4) and to predict relationships (Section 4.2.5)

between dataset pairs. Specifically, we make the following contributions.

• Development of an approach for automatically extracting tabular datasets

from spreadsheets. We developed a new approach that applies CRFs to iden-

tify spreadsheet cells that are part of a data column, group these cells as

columns, and identify data types for resulting columns. We show that this

approach is capable of extracting datasets in real-life and synthetic spread-

sheets with reasonable accuracy.

• Design and implementation of a summarization technique for categorical col-

umn. We designed a method based on Bloom filters that converts each

categorical column into a fixed-size bit-vector. Using these vectors, the
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relationship-prediction methodology computes similarity between categori-

cal data while preserving our scalable architecture, which avoids comparing

individual data values and bounds the amount of effort required to derive

joint features.

• Development of a new technique, based on Bloom filters, for computing in-

dicative relationship features. We developed a new technique that uses Bloom

filters for computing indicative features for certain relationships, such as du-

plicate, containment, prefix, and suffix.

• Prototype implementation of a scalable system for predicting relationships

(called ReDiscover). To evaluate our methodology, we developed ReDiscover,

an end-to-end prototype prediction system that takes a collection of spread-

sheets as input and produces a list of pairs of datasets and the predicted

relationship between them, if any.

• Experimental validation of the relationship-prediction approach. We evaluate

the ReDiscover approach, demonstrating the effectiveness of our relationship-

prediction methodology. We also evaluate our dataset-extraction technique,

as the accuracy of ReDiscover’s predictions depends heavily on the accuracy

of the dataset-extraction steps.

While relationships can occur in any kind of datasets, this work focuses on

spreadsheets for the following reasons. First, spreadsheets are widely used for

storing tabular datasets across disciplines, whereas other scientific dataset formats,

such as Flexible Image Transport System (FITS) [73], Network Common Data

Form (netCDF) [63] and Hierarchical Data Format (HDF) [40], are more domain

specific.

Second, based on the file-based datasets we examined, we noticed that many

datasets can be characterized as ordered tables at the abstract level. The order of
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rows and columns can provide indications of past activities, which we can help de-

termine by identifying order-based relationships, such as prefix (see Section 2.2.2).

Spreadsheets are one of the formats that capture dataset order. While relational

tables can model order, order is not inherent in them and extra work is required

to capture it.

Third, to identify relationships, our methodology relies on extracting indicative

features from datasets, such as column type and value frequency. We also wanted

to explore using additional kinds of information as indicators for relationships,

such as spreadsheet metadata (e.g. file name, size, and author) and cell properties

(e.g. text alignment, font style, and data format). The trade-off here is that

some other dataset formats have stronger typing of data, which could also aid

relationship identification. However, ReConnect and ReDiscover are equipped with

a type extractor for spreadsheets that allows them to utilize type information in

identifying relationships between datasets.

This dissertation is organized as follows: In Chapter 2, we first discuss the

context and motivation for our research. Next, we discuss related background

research, especially existing techniques and tools that scientists could use to man-

age their datasets. Finally, we introduce the theoretical concepts underlying

our relationship-identification methodology, catalog a set of relationships that

could help scientists discover connections between their datasets, and illustrate

our methodology with an example. In Chapter 3, we introduce ReConnect, a

semi-automated tool for detecting relationships between two datasets. The second

section of that chapter presents an assessment of ReConnect, which involves a user

study, plus an evaluation of the effectiveness of ReConnect relative to four other

change-inference tools in identifying relationships between spreadsheets. Chapter

4 introduces our relationship-prediction methodology, discusses the challenges re-

lated to predicting relationships in large collections of spreadsheets and presents

the architecture of ReDiscover and detailed description of its components. Chapter
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5 presents our experimental evaluation of ReDiscover, which involves three exper-

iments: 1) an assessment of the effect of the result quality of each of ReDiscover’s

components on the results of later stages, 2) an evaluation of our data-column ex-

traction technique and 3) an investigation of the overall effectiveness of ReDiscover

in predicting relationships between datasets. In Chapter 6, we discuss related re-

search work, and we conclude this dissertation in Chapter 7 with a discussion of

further applications for our methodology and possible future research directions.
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CHAPTER 2: MOTIVATION, OVERVIEW AND BACKGROUND

In this chapter, we first discuss the motivation and context of our work in Sec-

tion 2.1. Section 2.2 discusses the conceptual basis for the relationship-identification

methodology, and informally defines the set of relationships we developed for our

methodology. Lastly, Section 2.3 presents concepts and techniques from several

research areas, including data management, machine learning, and data mining,

that we used in our research.

2.1 MOTIVATION

We conducted our work in the context of SQLShare [42], a database service targeted

at small groups of scientists that cannot afford to hire database experts, nor have

the technical skills to effectively use relational database technology. When trying

to use database systems, these scientists confront several impediments, including

the installation, configuration, schema design of database systems, data loading,

data cleaning, and query formulation. With SQLShare, scientists may simply

upload their data, query it to receive an answer, define views to improve data

usability, and share results with other SQLShare users without encountering these

impediments. To help users with query formulation, SQLShare team provides a

set of starter queries—SQL queries based on the user’s uploaded datasets.

However, we observed an additional impediment to using SQLShare in some

cases. Because scientists often accumulate many datasets over the course of a

project, it can be difficult for them to sort through their collections to determine

which ones to upload: Which dataset is the most complete? Which two versions

of datasets go together? Do two datasets overlap? In fact, several scientists have
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asked our collaborators at University of Washington who developed SQLShare for

help with this selection problem. Similar problems exist with other data sharing

platforms such as Fusion Tables [38], Dryad [43], ICPSR [1], and emerging services

related to consortia such as DataOne [55] and the Research Data Alliance [2].

The goal of our work is to overcome this additional impediment: the prob-

lem of deciding which datasets to select, and which course of action to perform

on these datasets. Thus, we began looking for ways to help scientists overcome

this impediment. These tasks often requires that scientists determine (or recall)

the original connections between datasets. Identifying relationships between these

datasets could help with this determination, and is the focus of this dissertation.

Many of these datasets exist in file-based formats, such as spreadsheets and

CSVs. To the best of our knowledge, there is no tool that a scientist can use for

identifying connections between such datasets in a collection. Previous research

focused on managing scientific data stored in databases. In Chapter 6, we discuss

this part of related research in more detail.

In the next section, we present a motivating example, which we use as a running

example throughout the dissertation. This example will help better explain how

identifying relationships between spreadsheets can help scientists make informed

decisions on how to work with their data.

2.1.1 A Motivating Example

Figure 2.1: An example of three related spreadsheets: Spreadsheet A is row-

contained in spreadsheet B, and spreadsheets B and C are complementary.
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Jennifer, a marine scientist, collaborates with a group of colleagues on assessing

the effects of climate change on the Pacific Ocean. She is responsible for manag-

ing and analyzing multiple spreadsheets that contain ocean-observation data, and

wants to upload data to an online service, such as SQLShare, for sharing datasets.

However, she often receives multiple versions of a spreadsheet from different collab-

orators. Consequently, Jennifer has to inspect spreadsheets manually to identify

the best ones to upload.

Figure 2.1 shows three related spreadsheets. Spreadsheets A and B contain wa-

ter sample data including site ID, sample number, sample source, and the depth at

which the sample was collected. Spreadsheet B was created by extending Spread-

sheet A with two additional rows (rows 4 and 5). The relationship between A and

B is row-containment because Spreadsheet A’s data is contained in Spreadsheet

B. Spreadsheet C contains the temperature and salinity readings for the same

water samples found in Spreadsheet B. Spreadsheet C agrees with B on the Site

and Sample # columns, but the rest of the columns are not related by a column

correspondence (Bottle gp and Depth of B do not match temp and salinity of C.)

The relationship between B and C is complement, since the unmatched columns

provide complementary information about the water samples in B and C.

Jennifer needs a tool to aid her in determining that spreadsheet B is a more

complete version of spreadsheet A, and consequently B is the one that she should

upload. Additionally, if she is to upload B, she should also upload C as they

complement each other. In this example, it is easy to eyeball the relationships, but

it would be a tedious and error-prone task to manually determine relationships

between spreadsheets with hundreds of rows and tens of columns. However, no

current tools specifically target this problem.
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2.2 CONCEPTUAL BASIS FOR RELATIONSHIP IDENTIFICATION

We first discuss the conceptual basis of how identifying relationships between

datasets can help scientists recall their original connections. (Section 2.2.1). Then,

we informally define some of the relationships that we seek to identify (Sec-

tion 2.2.2).

2.2.1 Activities, Connections and Relationships

Spreadsheets (and other datasets) are produced and modified as a result of sci-

entists’ activities, and may proliferate as a result of some of those activities. For

example, a user may combine data from multiple spreadsheets, start a new spread-

sheet for each day’s observations, fill in missing or null values in an existing spread-

sheet, or filter or rearrange data to aid in analyses. Understanding that such ac-

tivities have occurred can help the user detect how spreadsheets are connected and

how to work with their data.

Table 2.1 shows activities that Jennifer’s collaborators may have performed on

spreadsheets A, B, C, and D. Some activities will produce distinct relationships,

as in the case of the sort activity, while other activities can produce the same

relationship, as in the case of the adding- versus selecting-rows activities. User

feedback is needed to remove such ambiguity in identifying connections. We want

to provide users with contributing evidence so that they can make the decision as

to how their datasets connect to each other.

Of course, it may be the case that two spreadsheets were not involved in a com-

mon activity. We can also identify the incompatible relationship, which indicates

the absence of a connection.

We observe that scientists’ varied activities typically produce various relation-

ships between their spreadsheets. We want to detect these relationships by ana-

lyzing the data in two spreadsheets without necessarily having knowledge of the
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Table 2.1: An example of the activities that Jennifer’s collaborators may have

performed on spreadsheets A, B, C, and D.

Activity Connection Relationship

Add two water-sample rows

(1352 and 1353) to spreadsheet

A and save it as B.

B is

row-extension of

A

A is row-

contained in

B

Select rows with a depth greater

than 30 meters from spreadsheet

B and save it as A.

A is a selected

subset of B

A is row-

contained in

B

Store the bottle label and depth

of samples 1350 to 1353 in

spreadsheet B, and store the

water temperature and salinity

of the same samples in

spreadsheet C.

Unmatched

columns provide

complementary

information

about the

matching water

samples in B

and C

B and C are

complemen-

tary

Sort spreadsheet B on increasing

Depth and save it as D.

D is a

reordering of B

B is

row-equal to

D

history of the activities that produced or modified these spreadsheets. As we dis-

cussed in the introduction, while version or derivation history could give some tips

about how two datasets are connected, relying on such information is not enough

for this task because 1) VCSs cannot always track versions across different scien-

tists’ activities on spreadsheets, especially when sharing of datasets passes outside

the tracking system, 2) relationships can arise without direct derivation, and 3)
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just knowing that a dataset A is a version of B does not always indicates what

activities changed B.

In this work, we focus on the kinds of activities that scientists perform when

operating on scientific datasets stored in spreadsheets, and we formulate the fol-

lowing two hypotheses. First, determining relationships is useful for scientists, as

it can help them identify connections between their datasets. Second, we can at

least partially automate the process of relationship discovery.

In order to investigate these hypotheses, we built ReConnect, a tool that can

help identify relationships between two datasets (Chapter 2.3.2). One of the main

reasons for building this tool was to evaluate whether our first hypothesis is true

before investing more effort in the development of a more automated approach.

We were able to validate our first hypothesis by conducting a user study that

evaluated the usefulness of ReConnect and the set of relationships it identifies

(see Section 3.2.1). On the basis of these encouraging results, we developed the

relationship-prediction methodology (ReDiscover) to fully automate our approach

(see Chapter 3.2.3).

ReConnect determines relationships between pairs of spreadsheets by first ex-

tracting tabular datasets from them with the help of the user. Second, it extracts

column features to suggest a column correspondence and also to suggest potential

relationships between tabular datasets. Third, our tool establishes correspondences

between sets of columns, with optional user interaction. Determining column cor-

respondences is important for discovering relationships because our relationships

are categorized based on how the columns of two datasets correspond. Fourth,

based on the column correspondence and column statistics, ReConnect suggests a

set of possible relationships. Lastly, a user can select, from the list of suggested

relationships, which relationship to investigate, and then our tool generates SQL

queries to examine the extracted datasets to validate the selected relationship. In

the next section, we introduce some of the relationships that are based on scientists’
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activities on their spreadsheets.

2.2.2 Relationship Definitions

We have developed a set of relationship definitions by inspecting spreadsheets

that we have collected from several sources, such as the EUSES spreadsheet cor-

pus [33] and spreadsheets provided by our scientific collaborators. Tables 2.2

and 2.3 present some of these relationships. Some relationships are special cases

of others. For example, prefix, suffix, infix, and subsequence are special cases of

the row-containment relationship, and reordered columns and reordered rows are

special cases of the equal relationship. Consequently, relationships are not mutu-

ally exclusive, and hence identifying generic relationships (e.g., row-containment)

may indicate the presence of their special cases (e.g., prefix).

Our relationships are defined based on the dataset content of the spreadsheets,

and not their appearance or layout. Our approach considers data the same regard-

less of its position or formatting. More specifically, relationship definitions are clas-

sified based on how the columns of two spreadsheets correspond, and on the data

shared between their rows. Two columns correspond when they are semantically

related and they describe the same real-world object. A Column correspondence is

the maximal set of corresponding column pairs between two datasets. We classify

the column correspondence as Full Correspondence, Sub-correspondence, Exten-

sion Correspondence, and No Correspondence. Full correspondence is when each

column in the first dataset (T1) corresponds to a column in the second dataset

(T2) and vice versa; sub-correspondence is when proper subsets of the columns

of T1 and T2 correspond; extension correspondence is when all of T1’s columns

correspond to a proper subset of T2’s columns; and no correspondence is when

there is no column in T1 that corresponds to any column in T2.

Figure 2.2 shows an example of the augmentation and sub-containment rela-

tionships. Notice that spreadsheet A fully corresponds to B, and that all of A’s
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Table 2.2: Description of some of the relationships that the relationship-

identification methodology identifies.

Relationship Description

Row-containment

“A is row-contained in

B”

When A fully corresponds to B, and the rows of

spreadsheet A are a subset of the rows of spreadsheet

B.

Column-containment

“A is

column-contained in

B”

When A extensionally corresponds to B, and the rows

of spreadsheet A are equal to the corresponding parts

of the rows of spreadsheet B.

Sub-containment

“A sub-contained in

B”

When A sub-corresponds to B, and a portion of the

rows of spreadsheet A is a subset of the rows in the

corresponding columns of spreadsheet B.

Augmentation (Fill-in)

“B augments A”

When A fully corresponds to B, and all rows of

spreadsheets A and B match except for particular

cells, and these cells are empty or null cells in A but

are filled in B.

Complementation∗ When A sub-corresponds to B, where the rows in the

sub-corresponding columns match, and the remaining

columns are not related by column correspondence.

Template∗ When A fully corresponds to B but their data rows

are disjoint.

Equal∗ When A fully corresponds to B, and row-containment

holds in both direction between A and B.

Incompatible∗ No correspondence between A and B.

* Symmetric relationships.
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Figure 2.2: An example of augmentation and sub-containment relationships

cells with missing information, including Null, empty, and No reading values, have

been filled in B. Thus, B is an augmented (filled-in) version of A. Spreadsheet

C sub-corresponds to D because a subset of C columns corresponds to a subset

of D columns (i.e., C.Depth(m)↔D.Depth(m), C.description↔D.Description, and

C.Nitrate[uM]↔D.Nitrate[uM]). Further, a portion of the rows of D is a subset of

the rows in the corresponding columns of C. Consequently, D is sub-contained in

C.

We considered expressing relationships with relational algebra expressions. How-

ever, we found that they are not a good match because some relationships involve

preserving duplication and order, which relational algebra does not directly sup-

port.

Ordered Relationships.

The row and column order between two spreadsheets can provide useful infor-

mation about the connection between them. Table 2.3 lists some of the ordered

relationships. In Jennifer’s spreadsheets, when the row-containment relationship



17

Figure 2.3: An example of prefix and subsequence relationships

holds between spreadsheet A and B, other relationships based on row order that

might also hold are A is a prefix of B or A is a subsequence of B, as shown in

Figure 2.3.

In the case of a prefix relationship, it seems more likely that A was extended

to form B, but in the case of subsequence relationship, it appears more likely

that A is a filtered version (a selection) of the rows in spreadsheet B. This ex-

ample shows how detecting multiple relationships can help users understand the

connection between their spreadsheets. Our intended approach should detect or-

dered relationships, such as prefix, suffix, infix, duplicate, subsequence, reordered

columns, reordered rows, and reordered columns and rows.

As we discussed in the previous section, our relationships abstract from spread-

sheet layout. Thus, the duplicate relationship, which is a special case of the equal

relationship, does not mean that two spreadsheet files are identical. Datasets A

and B can be duplicates while they have different column names, there are other

datasets in the spreadsheets, they appear in different positions. Thus, the duplicate

relationship means more than just that a spreadsheet file is a copy of another. We

discuss the applicability of our approach to spreadsheets for other domains below.
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Table 2.3: Description of ordered relationships.

Relationship Description

Prefix

“A is a prefix of

B”

When A is row-contained in B and the rows of A appear

consecutively at the beginning of B in original order.

Infix

“A is an infix of

B”

When A is row-contained in B and the rows of A appear

consecutively at the middle of B in original order.

Suffix

“A is a suffix of

B”

When A is row-contained in B and the rows of A appear

at the end of B with the same original order.

Subsequence

“A is a

subsequence of

B”

When A is row-contained in B and the rows of A appear

in B in the same relative order.

Duplicate* When A and B are equal and have the same row and

column order.

Reordered

Columns*

A and B are equal with different column order.

Reordered

Rows*

A and B are equal with different row order.

Reordered

Columns and

Rows*

A and B are equal with different column and row orders.

* Symmetric relationships.
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Is our approach appropriate for spreadsheets in general?

Our focus is on spreadsheets that contain scientific datasets, but spreadsheets are

also used for many other kinds of tabular data: sales reports, budgets, gradesheets,

etc. A natural question is whether our methods work for this data. We can cer-

tainly detect instances of the current relationships between data in such spread-

sheets. But the kinds of relationships that exist and their likelihood might be

different for other data sources than what is common for spreadsheets for scientific

datasets.

For instance, consider a spreadsheet containing a project budget, which has in-

dividual entries modified many times—a pattern we do not see much with append-

mostly scientific datasets. Our relationship-identification methodology currently

does not detect a relationship that specifically corresponds to this activity, or other

activities uncommon with scientific datasets. In order for our methodology to iden-

tify such relationships, we would need to build new routines that can handle these

new kinds of relationships.

In the next section, we discuss concepts from the literature that we made use of

in developing our approaches for relationship testing (ReConnect) and prediction

(ReDiscover).

2.3 BACKGROUND

In our research we use a number of techniques from several areas; we will discuss

these techniques and how we use them below. In Section 2.3.1 we address the two

main database techniques used in ReConnect, data profiling and schema matching.

In Section 2.3.2 we introduce and briefly discuss how ReDiscover uses Conditional

Random Fields, Support Vector Machines, and Bloom filters in predicting rela-

tionships between datasets in a collection.
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2.3.1 Relationship Testing

The relationship-identification methodology in ReConnect uses two database techn-

iques—data profiling and schema mapping—to help detect relationships between

datasets. Below, we briefly discuss how ReConnect uses these techniques in rela-

tionship testing.

Data Profiling

Data profiling is the process of collecting and analyzing statistical summaries of

data to understand its structure and content [47]. In the case of database ta-

bles, data profiling involves analyzing instances of column values to determine

information such as the data type, length, value range, discrete values and their

frequency, variance, uniqueness, and occurrence of null values [61]. Data profiling

is commonly used in data cleaning, which is the inspection of data sources for the

purpose of identifying problematic data [10]. Data-cleaning applications use pro-

filing information to aid in analyzing different aspects of attributes’ quality. For

example, the min and max values can be used to determine whether the values of

a given attribute (column) are within permissible range.

After converting spreadsheets into database tables, ReConnect applies data

profiling to analyze instances of column values to determine information such as

column data type, length, format, value range, discrete values and their frequen-

cies, variance, uniqueness, and occurrence of null values. (ReDiscover also applies

data-profiling to collect such information from the extracted data columns.) The

relationship-identification methodology uses this profiling information to aid users

in identifying column correspondences between two tabular datasets and as an

indicator or counter-indicator for suggesting relationships between datasets.

For example, when dataset A fully corresponds to B, all the corresponding

columns in A and B have the same type, and the value ranges of each column in
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A are contained in the value ranges of the corresponding column in B, ReConnect

suggests the following relationships: 1) A is row-contained in B, and 2) A is a

template of B.

Schema Matching

Schema matching is considered an important requirement for applications such as

data warehousing, integrating multiple data sources, and XML message mapping

[9, 41]. In our work, we are not using schema matching to integrate spreadsheets’

data, nor to transform data from one spreadsheet to another. Instead, we apply the

attribute-(column-)correspondence part of schema matching to enable ReConnect

to examine columns’ data to confirm or discard suggested relationships.

More specifically, ReConnect relies on SQL queries to examine large datasets in

an efficient and scalable manner. But before ReConnect can generate SQL queries,

it has to establish a column correspondence between the datasets it is analyzing.

ReConnect uses schema matching techniques, namely semi-automated schema cor-

respondence, to produce an initial column correspondence between two tabular

datasets, and then relies on the user to correct or confirm the correspondence.

ReDiscover also uses schema-matching techniques; however, it applies automatic

schema matching that is based on supervised learning techniques, as we discuss in

more detail in Section 4.2.4.

2.3.2 Relationship Prediction

The relationship-prediction methodology in ReDiscover uses two machine learning

techniques—Conditional Random Fields and Support Vector Machines—to help

predict relationships between dataset pairs in a collection of datasets. Addition-

ally, our methodology uses Bloom filters in summarizing and measuring similarity

between categorical columns. It also uses Bloom filters to compute features for

relationship prediction as we discuss in Section 4.2.5.
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Data-Column Extraction

Many scientists use spreadsheets to store and manipulate tabular datasets. How-

ever, besides tabular datasets, they often use spreadsheets to store other informa-

tion, such as pictures, charts, and comments. Thus, in order for ReDiscover to

predict relationships among tabular datasets in spreadsheets, it must first identify

cells that are part of a data columns and cells that are not.

Conditional Random Fields (CRFs), a framework for building probabilistic

models to label sequence or graphical data [49,70], is widely used for tasks of such

a nature. CRFs can learn complex, overlapping and non-independent features that

operate at multiple levels of granularity. For instance, in the task of table extrac-

tion from text documents [59], CRFs use overlapping language and layout features

and take neighboring context into account when labeling items (lines of text in that

case). CRFs are well matched for our cell-labeling task because spreadsheet cells

are rich in layout, language, and context features. These features are important

for accurate cell labeling. In Section 5.2, we show that simpler models perform

less accurately.

Automated Column Matching and Relationship Prediction

To automate both the process of detecting column matches between the many

pairs of datasets it is analyzing, and the process of predicting relationships between

these pairs, ReDiscover applies a supervised learning model, namely support vector

machines (SVMs) [20]. An SVM is a data-driven classification model that applies

learning algorithms on training data to recognize patterns. SVMs are widely used

in classification tasks, such as handwriting recognition, image classification, and

protein classification [12]. We discuss how ReDiscover applies SVM in column

matching and relationship prediction in more detail in Sections 4.2.4 and 4.2.5

respectively.
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The relationship-prediction methodology can make a better use of a scientist’s

time by predicting which pairs of spreadsheets are likely related, and what the

relationship between them might be. With the use of Conditional Random Fields

in data-column extraction and Support Vector Machines in computing column cor-

respondence and in prediction relationships between pairs of datasets, ReDiscover

is fully automated (though the architecture can accommodate human feedback at

various points).

Summarizing Categorical Columns

For ReDiscover to match data columns and to predict relationships between dataset

pairs without having to extensively analyze their data, it computes statistical sum-

maries for numerical and categorical columns. While using column statistics pro-

vides representative features for numerical data, it is not enough to rely on simple

count statistics, such as common value frequencies, or counts of unique and null

values to summarize categorical data. Some of the statistics do not apply to cat-

egorical data (e.g., mean, standard deviation), or may not be very informative

(e.g., min, max values). Thus, we developed a technique based on Bloom filters

that enables us to inexpensively approximate similarity between two categorical

columns, as we describe in Section 4.2.4.

A Bloom filter is a space-efficient data structure that was originally developed

to test for element membership in a set [11]. It is constructed by converting a

set of elements S = {x1, . . . , xn} into a bit vector bf of length m as following.

First, the bit vector bf is initialized to zero. Second, k independent hash functions

(h1, . . . , hk) are defined, each of which maps xi, for 0 ≤ i ≤ n − 1, to one of the

bit vector elements (bf 0, . . . , bf m−1). Third, each element xi of S is fed to each of

the k hash functions to get k positions in the vector, which are then set to one.

To test for an element membership, we feed that element to the same k hash

functions used to create the bit vector. If all the k bit locations in the bit-vector
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are set, then the element “possibly” exists in the set. Otherwise, the element is

definitely not in the set. One disadvantage of Bloom filters is that false positives

are possible. However, we can tune a Bloom filter to trade the size of its bit vector

against its false-positive rate. (See Section 4.2.4 for more details.)

Bloom filters can also be used for collection-to-collection similarity testing.

For example, Jain et al. [45] developed a technique that uses Bloom filters to

approximate the match between two web documents. First, they used content-

defined chunking (CDC) to extract document features. Next, they create a bit

vector using these extracted features. Lastly, to determine similarity between two

documents, they compare the bit vector of one document with that of the other.

Two documents are marked similar if they share a large number of 1’s. In our

work, we use Bloom filters to summarize categorical data-columns, and to compute

similarity between them, as we explain in detail in Section 4.2.4.

Additionally, Bloom filters can be used for determining containment between

collections. If the set bits of the bit victor for collection A are a subset of the bits

in the vector for collection B, then there is a high probability that all the elements

of A are contained in B. Furthermore, if there is not containment of bits there

cannot be containment of collections. In Section 4.2.5, we show how we use this

property of Bloom filters to help predict containment between two datasets.

In conclusion, scientists’ activities on their datasets leave behind relationships

that are indicative of the original connections between their datasets. Based on

this observation, we developed two hypotheses: 1) knowing these relationships can

help scientists determine connections between their dataset, and 2) we can at least

partially automate the process of relationship identification. To validate theses hy-

pothesis, we first developed ReConnect, a tool for testing for relationships between

two datasets (Chapter 2.3.2), and evaluated our tool with a user study. The results

showed that relationships are useful to researchers and that our methodology can

test for relationships efficiently. Encouraged by these results, we expanded our
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methodology to deal with a scientist’s or a small group of researchers’ collections

of datasets (Chapter 3.2.3). The ultimate goal of our work is to develop efficient

tools for scientists to identify relationships that can help them better understand

and work with their data. We discuss the implementation and the evaluation of

ReConnect in the next chapter.
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CHAPTER 3: RELATIONSHIP TESTING

To validate the utility of our set of relationships in helping scientists with the task

of dataset selection, and to see whether or not we can test for relationships in a

reasonable amount of time, our initial investigation focused on testing relationships

between two datasets. For that purpose, we developed a semi-automated tool,

ReConnect, that enables a scientist to test for relationships between pairs of tabular

datasets embodied in spreadsheets.

3.1 RECONNECT’S ARCHITECTURE

As shown in Figure 3.1, ReConnect’s architecture consists of two processes. The

first process, Upload Dataset, converts a dataset in a spreadsheet into a database

table (Section 3.1.1). Because a spreadsheet may have multiple datasets, datasets

with partial rows or columns, and non-table data, ReConnect allows a user to

guide the conversion process, which improves the accuracy with which tabular

datasets are extracted. The second process, Identify Relationships, involves two

tasks: the first is detecting any column correspondence between the two tables

(Section 3.1.2), and the second is analyzing the column correspondence and data-

profiling statistics to suggest and validate possible relationships between these

datasets (Section 3.1.3). Throughout this section, we use the example from Sec-

tion 2.1.1 to explain how ReConnect works.

3.1.1 Converting Spreadsheets to Database Tables

ReConnect converts a spreadsheet into a database table in two steps. In the first

step, Select Dataset, a user selects a tabular dataset within her spreadsheet. (It is
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Figure 3.1: ReConnect’s architecture: The process Upload Dataset converts a

spreadsheet into a database table, and the process Identify Relationships detects

relationships between pairs of spreadsheets.

also possible for a user to upload several datasets from the same spreadsheet.) As

shown in Figure 3.2, Jennifer selects her table by specifying column (1 to 4) and

row (2 to 5) ranges. She then selects the index of the row that contains the column

names of her table (row 1 contains B’s column names). This step is optional, as

some tables may not have headers. When she clicks the Select button, ReConnect

lets her preview the dataset.

In the second step, Jennifer can edit database table information such as the

table name and column names. She can also specify a primary key for her table.

The tool verifies that a selected column satisfies the constraints on primary keys,
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Figure 3.2: Dataset selection for spreadsheet B: Jennifer can specify column and

row ranges and the index of the row that contains the column names of her dataset.

such as containing neither nulls nor duplicate values. Once she uploads her data,

ReConnect creates a database table and inserts the data in it. ReConnect preserves

column order by appending each column’s position to its corresponding attribute

name in the database table, and preserves row order by adding a new attribute

(row index ), which maintains the original row order, to the database table.

3.1.2 Column Correspondence

ReConnect must identify correspondences between conceptually identical columns

before it can suggest relationships between two spreadsheets. The column corre-

spondence resulting from this process enables ReConnect to suggest relationships
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between two datasets, and to compute the set of common rows (in the correspond-

ing columns) between two tables. It also enables the tool to generate SQL queries

to examine suggested relationships between the tables.

Figure 3.3: Column Correspondence process for Spreadsheets A and B: ReConnect

depends on a user’s feedback to identify column correspondences accurately.

Figure 3.3 shows the column-correspondence process for spreadsheets A and B

from our example in Section 2.1.1. ReConnect first generates an initial column

correspondence by querying the database for column names from table A and B,

and then matches these names by equality. As shown in Figure 3.4, it outputs

the correspondences to Jennifer along with column statistics, including column

data type, the number of rows, the number of null values, the number of unique

values, the maximum and minimum values, and the common value frequency for

each column. These statistics aid her in inspecting and, if necessary, correcting the

proposed correspondences. Jennifer notices that columns Sample of A and Sample

# of B match, so she uses the ReConnect user interface to indicate that these

columns correspond. The example shows user feedback enhancing ReConnect’s

accuracy in identifying column correspondences.
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Figure 3.4: The initial column correspondence between datasets A and B.

ReConnect uses Jennifer’s column correspondences to compute the rows that

are common in A and B: the rows with sample numbers 1350 and 1351 (see

Figure 2.1). Editing column correspondences may result in different sets of common

rows, because ReConnect only checks for row matches relative to the corresponding

columns. If there were no common rows in the corresponding columns, ReConnect

would suggest that she explore sub-correspondences, where the tool attempts to

match a subset of the current column correspondence between A and B looking

for a correspondence that produces the largest set of common rows.

For example, suppose that instead of matching A.Sample → B.Sample #,

Jennifer mistakenly matched A.Sample → B.Site. ReConnect would find no

rows in common for this correspondence. If she chose to use the Explore Sub-

Correspondence feature, then ReConnect starts by removing the A.Site→ B.Site

correspondence from the column correspondences and computing the set of com-

mon rows by matching row values in the remaining corresponding columns:
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A.Sample→ B.Site, A.Bottle gb→ B.Bottle gb, and A.Depth→ B.Depth. This

sub-correspondence will not produce any common rows. Next, ReConnect removes

A.Sample→ B.Site from Jennifer’s column correspondence, and again computes

the set of common rows by matching row values in the corresponding columns:

A.Site → B.Site, A.Bottle gb → B.Bottle gb, and A.Depth → B.Depth. This

sub-correspondence will produce two common rows: the rows with sample numbers

1350 and 1351. ReConnect continues exploring sub-correspondences until it finds

the correspondence that produces the largest number of common rows, which it

then suggests to Jennifer.

Relying on column statistics for determining column correspondence between

datasets may not be sufficient. There are situations where we can have statistically

similar columns that in fact do not correspond. For example, assume spreadsheet

X has Initial Temp and Final Temp columns and spreadsheet Y has Temp1 and

Temp2 columns. Suppose the Initial Temp column closely resemble both Temp1

and Temp2 (similarly for Final Temp). Simple column-to-column comparison does

not give much insight on the correct column-correspondence here. However, com-

paring row values may help detect which of the two correspondences is appropriate,

because row values are more distinctive than single-column values.

3.1.3 Relationship Identification

Figure 3.5 depicts the process of identifying relationships, which involves two steps:

Suggest Relationships and Validate Relationships. In the first step, described in

Algorithm 1, ReConnect attempts to suggest relationships by analyzing column

correspondences and column statistics to check if they are compatible with the

conditions for a relationship.

The result of this step is a “quick and dirty” list of possible relationships—quick

because the analysis does not involve the individual data values in the datasets,

and dirty because statistics and column correspondences may not be sufficient to
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Figure 3.5: The Identify Relationships Process: ReConnect analyzes column cor-

respondences, column statistics, and the set of common rows of two tables to check

if they match the conditions for a relationship

validate certain relationships. For instance, if the number of rows of one spread-

sheet is greater than the number of rows of another, then it is possible that the

relationship between these spreadsheets is Row-containment. However, for ReCon-

nect to validate such a relationship, it must check whether or not all of the data

rows of the first spreadsheet are contained in the second spreadsheet. The purpose

of the list of suggestions is to provide users with hints about possible relationships

without having to analyze the actual data. It also removes from consideration

relationships that cannot possibly hold under the current column correspondence

and statistics.

Figure 3.6 shows how the Relationship Identification methodology classifies
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Figure 3.6: Relationship Identification Overview: Classifying relationships based

on column correspondences helps ReConnect limit the relationships to investigate.

relationships based on properties of a column correspondence. Classifying rela-

tionships based on column correspondences, such as Full Correspondence, Sub-

correspondence, and No Correspondence, helps ReConnect limit the number of

relationships it investigates for a pair of datasets. The figure additionally shows

that relationship conditions are also based on row properties such as row count

and row-value similarity.

During the second step, Validate Relationships, the user can choose a relation-

ship to investigate from the list of suggested relationships. ReConnect validates

the selected relationships by generating an SQL query that examines the two tables

and then analyzing the results of the query, in addition to column correspondences

and statistics. The details of the Validate Relationships process are presented in

Algorithm 2.

For example, since there is a full correspondence between the columns of Jen-

nifer’s spreadsheets A and B, in the Suggest Relationships step, ReConnect ana-

lyzes column statistics to determine which of the three relationships applies: Equal,

Template or A is Row-contained in B. The tool obtains the row count of A and B
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Algorithm 1 Suggest Relationships algorithm

Input: Column correspondences (col corr); column statistics (col stats) and

the set of common rows statistics (CR stats).

Output: List of suggested relationships (suggested relts).

1. col corr class = classify correspondence(Col Corr); .

classify correspodence() takes the column correspondences and returns Full

Correspondence, Extension Correspondence, Sub-correspondence or No

Correspondence

2. possible relts = get the relationships associated with the col corr class

classification;

3. for each relationship in possible relts do

4. relt conds = get the relationship conditions;

5. if col stats and CR stats are compatible with relt conds then

6. suggested relts.add(relationships);

7. end if

8. end for

(RC(A) = 2 and RC(B) = 4). Since the number of rows between A and B is dif-

ferent, the Equal relationship cannot hold. Because RC(B) > RC(A) ReConnect

adds A is row-contained in B to the list of suggested relationships. It also adds

the Template relationship based on the column correspondence.

Suppose that Jennifer selects the A is row-contained in B relationship for val-

idation. The Validate Relationships algorithm starts the validation process by

looking up the validation tests associated with the selected relationship. As part

of each validation test, ReConnect generates an SQL query that examines certain

relationship features. For instance, to count the common rows between A and B,
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Algorithm 2 Validate Relationships algorithm

Input: User-selected relationship (suggested relt); relationship conditions

(relt conds); column correspondence (col corr) and tables A and B.

Output: Confirmation or invalidation of the relationship.

1. valid test = get the validation tests for the selected relationship

suggested relt,

2. for for each test in valid tests do

3. test qry = generate qry(col corr, suggested relts) .

Based on predefined validation test, generate qry() uses the column corre-

spondence to generate an SQL query that is used to test the tables data

for the suggested relationship.

4. test results= run query in DB(test query);.

5. results stats = analyze results(test results); . analyze results()

collects statistics and other information about the results of the test query,

which ReConnect uses to validate the suggested relationship.

6. end for

7. if all validation tests passed then

8. Confirm relationship;

9. else

10. Invalidate relationship;

11. end if

ReConnect generates the following query (which handles repeated rows by group-

ing and counting them in each dataset). The query joins tables A and B based

on the column correspondence, and then counts the set of common rows between

the two tables (RC(CR) = 2). Since RC(B) > RC(A) and RC(A) = RC(CR),
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Reconnect reports to Jennifer that the row containment relationship between A

and B is confirmed.

SELECT SUM(MIN2(t1.Cnt,t2.Cnt)) AS RC_CR

FROM (SELECT ta.Site, ta.Sample, ta.[Bottle gp], ta.Depth, COUNT(*)

as Cnt

FROM A ta

GROUP BY ta.Site, ta.Sample, ta.[Bottle gp], ta.Depth) t1,

(SELECT tb.Site, tb.[Sample #], tb.[Bottle gp], tb.Depth, COUNT(*)

as Cnt

FROM B tb

GROUP BY tb.Site, tb.[Sample #], tb.[Bottle gp], tb.Depth) t2

WHERE t1.Site=t2.Site and t1.Sample=t2.[Sample #] and t1.[Bottle

gp]=t2.[Bottle gp] and t1.Depth=t2.Depth

--MIN2(Arg1,Arg2) returns the minimum value out of the two arguments

passed to it.

The Implementation of ReConnect

We initially implemented ReConnect as a web application running on a local

Microsoft .Net server. The user interface (UI) of ReConnet, including Upload

Datasets and Identify Relationships, was developed in C#, and the database was

implemented in Microsoft SQL Server 2008. To integrate some of ReConnect func-

tionality with SQLShare system, we later converted it into a Windows Azure cloud

application, and migrated its database to Azure SQL Server platform.

As we discussed above, once the user selects a dataset, ReConnect converts

it to DB table. Then, ReConnect uses a set of static stored procedures to com-

pute data-profiling information for the uploaded dataset. These stored procedures

run in ReConnect’s Microsoft SQL Server database. Then, when a user selects
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two datasets to test for relationships, ReConnect computes the initial column cor-

respondence, and allows users to modify the correspondence through the UI, as

shown in Figure 3.4. Based on the column correspondences and column statistics,

ReConnect suggests possible relationships to the user, who then selects which rela-

tionship to validate. Depending on the selected relationship, ReConnect generates

several dynamic SQL queries, which are executed in ReConnect’s database. Lastly,

it analyzes queries results to confirm or invalidate the selected relationship.

In the next section, we discuss the results of our preliminarily evaluation of

ReConnect, and discuss our user study, which provided valuable feedback from

scientists about ReConnect and the set of relationships it identifies.

3.2 USER STUDY AND EVALUATION

The assement of our initial work has two parts. First, we conducted a user study

to asses ReConnect and the set of relationships it identifies. The goal of this study

was to get initial answers to the following research questions.

RQ1 Do the relationships ReConnect detects actually turn up in real-life spread-

sheets?

RQ2 When subjects use spreadsheets, do they confront problems that ReConnect

seeks to solve?

RQ3 Does detecting relationships between spreadsheets help subjects select and

manipulate their data?

RQ4 Are there other kinds of relationships we should consider detecting?

RQ5 Do aspects of spreadsheets that ReConnect cannot currently handle interfere

with detecting relationships?
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Second, we compared the effectiveness of ReConnect and four commercial and

research change-inference tools for spreadsheets in identifying relationships be-

tween spreadsheets.

3.2.1 User Study1

In our study, we asked researchers to attempt to identify relationships between

their spreadsheets with and without the help of ReConnect. The purpose of this

study was to asses the applicability of the concept of relationship identification, the

usefulness of ReConnect in simplifying the task of detecting relationships between

spreadsheets, and to know whether our relationships arise in real-world scientific

spreadsheets. Our user study consisted of three parts. In the first part, we asked

subjects to manually detect relationships between their spreadsheets. In the second

part, subjects used ReConnect to do the same task they had performed in part one

using the same datasets. In the final part, we conducted interviews with subjects

about their experience with the relationship-identification task, both with and

without the use of ReConnect.

Subjects To recruit subjects for the study, we sent emails to mailing lists for fac-

ulty and graduate students in several science departments at different universities

and research labs. We recruited 10 subjects from various science fields such as Bi-

ology, Chemistry, Economics, Agriculture, and Computer Science. Macefiled [54]

indicates that a size of 10 is effective for evaluating early conceptual prototypes.

He states that “In the case of studies related to problem discovery in early con-

ceptual prototypes, there are typically factors that drive the optimal group size

towards the lower end of this [3-20] range” [54].

Prior to each user session, we asked the subjects to send us a pair of spreadsheets

they use in their research work. We wanted to make sure that their spreadsheets

1We had Portland State IRB approval for our user study.
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contained tabular datasets. We also asked for spreadsheets that the user believed

were connected, though we did not require that they be certain of the existence

or the exact nature of the connection. Thus, we were able to evaluate ReConnect

using real-life research spreadsheets that subjects provided.

Methodology We conducted the study using a desktop computer with dual

wide-screen monitors, which enabled subjects to view their spreadsheets side-by-

side to facilitate the manual inspection of relationships. The computer ran Mi-

crosoft Excel 2010 on Windows 7 Enterprise Edition. Sessions were conducted on

a one-on-one basis, where I supervised the session. We describe the three parts of

a session in more details below.

Part One: Detecting Relationships Manually

For each subject, we first explained the concept of relationship identification us-

ing the example spreadsheets shown in Figure 2.1. We also introduced the set of

relationships that ReConnect identifies. Then, each subject was asked to visually

inspect the spreadsheets he or she provided, looking for relationships that could

help him or her understand how the spreadsheets connect to each other. Through-

out this part of the study, we took notes on how the subject inspected his or her

spreadsheets, and answered the subject’s questions.

Part Two: Detecting Relationships Using ReConnect

We first demonstrated ReConnect using spreadsheets shown in Figure 2.1. Next,

subjects used ReConnect to convert their spreadsheets into database tables, and

then to detect relationships between their spreadsheets. During this session, we

provided minimal support for the subjects, and took notes on how they interacted

with the tool. Using ReConnect, subjects identified several relationships, including
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reordered rows and columns, equal, row-containment, column-containment, com-

plelemtation, and template relationships between their datasets.

Part Three: Interviews

In the last part of each session, we interviewed each subject to obtain his or her

feedback about the task of identifying relationships with and without the use of

ReConnect. The main goal of this interview was to find out how helpful detecting

relationships was in deciding how to work with their spreadsheets, to asses the help-

fulness of ReConnect in detecting relationships, and to determine whether there

were other relationships of interest that ReConnect did not handle. Additionally,

to determine whether our relationships arise between scientific datasets, we first

introduced these relationships to our subjects using several synthetic dataset pairs.

Then, we asked each subject whether he or she believed that these relationships

could exist between scientific datasets that they have encountered in their research.

Results Even with the aid of wide-screen dual monitors and the vertical and

horizontal side-by-side view feature that MS-Excel provides, all subjects found it

difficult to visually inspect spreadsheets for relationships. Most difficulties arose

from inspecting spreadsheets with a large number of columns and rows or differ-

ently ordered rows and columns, and from attempting to detect whether or not

two spreadsheets share a subset of their rows or columns (or both). As a result,

subjects sometimes reported relationships incorrectly between their spreadsheets.

For example, a chemistry researcher thought that she had edited a number of rows

in one of her spreadsheets and saved it with a different name. In fact, the rows

of the two spreadsheets were identical but appeared in a different order. However,

she was able to correctly identify that she had added columns that represented

new data for samples.
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In a few cases, subjects were able to “guess” such relationships as column-

containment and row-containment. However, they were not able to confidently

confirm the results of their observations. For instance, while visually inspecting her

spreadsheets, a computer scientist remarked, “Based on the number of rows in both

spreadsheets, I guess the relationship is row-containment. But to confirm that, I

need to write a VBA (Visual Basic for Applications) script.” However, writing

VBA scripts might be a difficult task for users with no programming experience.

Overall, subjects were unable to confidently identify relationships between their

spreadsheets through visual examination.

With ReConnect, subjects quickly and effectively detected useful relationships,

which enabled them to recall the activities they performed to transform one version

of a spreadsheet into another, and to decide how to further reuse or combine

their datasets. For the physics researcher, in addition to confirming the column

containment relationship she detected manually in part one, she found that the

rows of the spreadsheet with more columns had been filtered and reordered (to

facilitate the analysis of an experiment she was conducting).

Besides detecting relationships, the physics and chemistry researchers found

that some of ReConnect’s features could be used for data analysis. For instance,

after analyzing several correspondences between the columns of her spreadsheets,

a chemistry researcher stated “Often, I repeat experiments with minor changes in

my experiment configuration, such as increasing the temperature of the sample

environment by 10 degrees. Using this tool, I can test several column correspon-

dences to analyze the effect of such configuration changes on various experimental

results.”

Discussion The third part of the session (interviews) suggests that the relation-

ships that ReConnect detects do actually exist between scientific datasets (RQ1).

Subjects described several activities they regularly perform on spreadsheets that
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can produce the types of relationships that ReConnect detects. For example,

one subject stated that she often filters a dataset based on several criteria, and

then saves each version as a new spreadsheet. Such activities produce the row-

contaminant relationship between the original dataset and all the derived (filtered)

versions. Another subject stated that he usually performs several experiments on

the same set of chemical samples, and then stores each experiment on a separate

dataset. Such actions give rise to the complementation relationship, as this set of

datasets provide complementary information about the same set of samples.

Most subjects had affirmative responses regarding whether, when working with

spreadsheets, they face problems that ReConnect can help solve (RQ2). One

subject stated that she does not often face such problems because her spreadsheets

contain reference information that is rarely updated. However, she stated that she

previously confronted similar problems when she worked on a collaborative research

project.

The first two parts of the sessions suggest that ReConnect significantly simpli-

fied the task of identifying relationships between spreadsheets, a positive answer

to RQ3. All subjects agreed that determining relationships removed the burden of

comparing and analyzing spreadsheet cells, columns, and rows. Results also sug-

gest that subjects found value in using ReConnect to aid in data-analysis tasks,

which is a potential direction for future work.

Subjects suggested a number of relationships to add to ReConnect’s identifi-

cation capabilities (RQ4). For instance, one subject suggested detecting pairwise

column equality within a given percentage range (near-match relationship), which

could aid her in analyzing her spreadsheets’ data. For instance, she might want

to detect all the rows whose temperature columns are equal within ±2%. Another

subject suggested identifying datasets with calculated columns that contains for-

mulas with reference to other datasets. This relationship is very similar to the

cell/sheet reference feature provide by Microsoft Inquire.
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Regarding whether some aspects of spreadsheets might interfere with detect-

ing relationships (RQ5), a single subject stated that cell formulas could interfere

with detecting relationships, as they may present irrelevant information about the

original spreadsheets’ data.

While the limited number of subjects may not enable us to detect all possible

issues with ReConnect, the group size was sufficient for early problem discovery.

The importance of this study was that it verified that there are no major issues

with the tool, nor with our assumptions about the usefulness of the relationship-

identification methodology. It is also worth mentioning that ReConnect response

time was not an issue, for the size of spreadsheets our users had. The SQL query

formulation and evaluation generally gave response times less than 10 seconds.

To sum up, we had positive feedback from our user study participants about the

usefulness of ReConnect and the set of relationships it identifies. The results of our

study suggest that subjects perform activities on their spreadsheets that give rise

to most of our relationships. It also confirmed that scientists often struggle with

identifying which dataset(s) to select, or how to work with the data stored in their

datasets, and that detecting relationships can help with these tasks. Addition-

ally, subjects proposed detecting new kinds of relationships that could help with

the selection task, including the near-match and cell/sheet reference relationships.

Regarding whether any of the spreadsheet aspects could interfere with detecting

relationships, one subject suspected that spreadsheet formulas may complicate the

process of relationship-identification. We plan to investigate this possibility in

future work.

3.2.2 Methodological Evaluation

Since there are no commercial or research tools that are aimed specifically at dis-

covering relationships between spreadsheets (or tabular datasets more generally),

we looked at other tools that may help scientists with this task. Change-inference
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tools, which enable users to identify changes between pairs of spreadsheets, much

like “diff” utilities on documents, have some capabilities that might help with the

task of discovering connections between datasets. The aim of this evaluation was

to investigate whether there were any existing commercial or research tools that

could provide the same capabilities as ReConnect.

Selected tools We selected one research change-inference tool (SheetDiff [16])

and three commercial tools (DiffEngineX [34], Synkronizer [75], and Excel Inquire

[56]) for our evaluation. These tools generate a report of differences and either

highlight differences between spreadsheets in both spreadsheets, as is the case

with Synkronizer, DiffEngineX, and Inquire, or do so only in one spreadsheet, as

is the case with SheetDiff.

Methodology We used two sets of spreadsheets for our investigation. The first

set was a collection of related pairs of real-life research spreadsheets that our user-

study participants had provided. Since the relationships between each of these

pairs had been identified and confirmed during the user study, we used this set

to evaluate whether or not change-inference tools would help us get to the same

results we had obtained in the user study.

The second set contains 10 pairs of spreadsheets that we selected from the

EUSES corpus [33] and from other sources. This set was constructed to test

combinations of relationships and spreadsheet features that are not covered by the

first set. For instance, if we tested the containment relationship only between small

spreadsheet instances from the first set, then we selected pairs of spreadsheets with

large dataset instances that have the containment relationship between them for

the second set. We also modified some of the selected pairs to test for special

relationships cases such as infix, prefix, suffix, reordered rows, reordered columns,

and reordered rows and columns relationships.
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We started by grouping spreadsheet pairs based on the relationship they rep-

resent. Next, we used these pairs as the input to each of the selected tools. Each

tool was tested with small and large spreadsheet instances. Then, we analyzed the

results of each tool to evaluate how readily these results can be used to confirm

the existence of the previously identified relationship between the inputted pairs.

3.2.3 Results

The results of our experiment are summarized in Table 3.1. Regarding the duplicate

relationship, all tools were able to detect it for both large and small spreadsheet

instances. On the other hand, only ReConnect were able to detect reordered rows

for both large and small spreadsheet instances. The user can easily identify dupli-

cate pairs when change-inference tools reported no changes. For the cell reference

relationship, only Inquire has the capability to provide a graphical representation

(relationship diagram) of links (formula references) between the current workbook

(worksheet, cell) and all other workbooks (worksheets, cells). Such a feature might

help users determine connections between business spreadsheets, such as budgets

and financial statements. However, in the case of scientific spreadsheets, cross-

dataset references are rarely used.

Regarding the containment relationships, including row containment, column

containment, and sub-containment, only ReConnect was able to identify them be-

tween both small and large spreadsheet instances. All other tools were able to

help in detecting containment relationships only between small instances. For

example, users may identify a column-containment relationship by analyzing the

additional columns that Synkronizer reported. However, for large spreadsheet in-

stances, change-inference tools generate a large list of changes that are hard to

comprehend, and hence complicate the relationship-identification task. For exam-

ple, DiffEngineX reported 1472 changes between an 80-row spreadsheet and its
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Table 3.1: The methodological evaluation results

Relationship DiffEngineX Synkronizer SheetDiff Inquire ReConnect

Duplicate + + + + +

Cell/Sheet Reference − − − + −

Row Containment
√ √ √ √

+

Column Containment
√ √ √ √

+

Sub-Containment
√ √ √ √

+

Augmentation
√

−
√ √

+

Complementation −
√ √ √

+

Template
√

−
√ √

+

Infix/Prefix/Suffix −
√

− − +

Subsequence −
√

− − +

Reordered Rows −
√
∗ − − +

Reordered Columns −
√
∗

√
∗ − +

Reordered Rows/Cols − − − − +

Incompatible
√ √ √ √

+

+ The tool can identify relationships in both small and large instances of spreadsheet

pairs.
√

the tool can only identify relationships in small instances of spreadsheet pairs.

− The tool helps identify relationships in neither small nor large spreadsheet pairs.

∗ Results are presented in terms of deleted and added rows and columns. For small

spreadsheets instances, users may be able to infer that two spreadsheets are actually the

same with different row and column order.
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row-extended and reordered version. ReConnect would report as a single relation-

ship.

Figure 3.7: An example of two equal spreadsheets with reordered rows and

columns: Change-inference tools report that spreadsheets B and B′ are not equal

(identical). ReConnect reports that they are equal regardless of their row and

column order.

None of the change-inference tools were able to help in detecting complex re-

lationships, such as reordered rows or reordered columns, where two spreadsheets

contain identical but rearranged data. Spreadsheet B and its reordered version,

B′, shown in Figure 3.7, illustrate the issue of order sensitivity. As shown in Fig-

ure 3.8, SheetDiff reported that columns Sample # and Bottle gp each have two

unmatched cells (the second and the fourth cell). SheetDiff also reported that col-

umn Depth of B′ has been added to B and that Depth of B was deleted without

noticing that the deleted and added columns are actually the same with different

row order.

Similarly, as shown in Figure 3.9, Microsoft Inquire exhibited the order sen-

sitivity issue as it reported that row 5 was added to A, and there are six cells

with “Entered Value Changed”. However, since ReConnect uses schema corre-

spondence, it matched columns Depth and Bottle gp of spreadsheet B with their

counterparts in spreadsheet B′ in spite of their different orders. ReConnect used

this correspondence to compute the set of common rows without sensitivity to the

rows’ order. Because the columns of spreadsheets B and B′ fully correspond, and
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Figure 3.8: SheetDiff results of comparing spreadsheets B and B′ (shown in Fig-

ure 3.7). Yellow is used for changed cells, blue for added columns and rows, and

red for deleted columns and rows.

the row counts of B and B′ are equal to the row count of the set of common rows,

ReConnect reported that spreadsheets B and B′ are equal.

Figure 3.9: Micorsoft Inquire results of comparing spreadsheets B and B′ (shown

in Figure 3.7).

Even with small spreadsheet instances, most change-inference tools reports were

not useful in detecting order-sensitive relationships, such as infix, prefix, suffix,

subsequence, and reordered columns and rows. Only Synkronizer and SheetDiff

were able to help in detecting some of these relationships in small spreadsheet
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instances, due to their ability to aggregate cell changes into higher level changes

(e.g., added rows, deleted columns). However, Synkronizer was able to detect four

out of the five order-sensitive relationships, where SheetDiff was able to detect

only one. Synkronizer’s advantage is its ability to identify when row (or column)

positions have changed between two spreadsheets. However, Synkronizer failed to

identify equal spreadsheets when both rows and columns were reordered.

While change-inference tools do not require user interaction as ReConnect does,

it is still difficult for users to use these tools in the task of understanding relation-

ships between their spreadsheets, because the larger a pair of spreadsheet instances

is, the longer the list of changes users have to analyze. ReConnect offers a “set at a

time” approach to disambiguating a sea of spreadsheets, while the other tools seem

to be row-, column- or cell-oriented — which does not scale as spreadsheets become

larger. In addition, the user-verified schema correspondence allows ReConnect to

easily identify order-sensitive relationships. ReConnect is working on a more con-

ceptual level than other change-inference tools, and hence reports changes in a

more abstract and compact form.

In conclusion, the work on ReConnect confirmed the following. First, relation-

ships do exist in real-life scientific datasets, and detecting them can help scientists

determine connections between their datasets. Second, we can efficiently semi-

automate the relationship-identification process. While it may not be feasible for

scientists to use ReConnect for determining relationships between datasets in a

collection, it remains a useful tool for investigating a pair of datasets. In the next

chapter, we discuss our relationship-prediction methodology that helps scientists

identify the pairs that are mostly likely related, and predicting the relationship

between them. ReConnect can be used to confirm or invalidate these predicted

relationships.
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CHAPTER 4: RELATIONSHIP PREDICTION

In our initial work, where we considered just pairs of spreadsheets, we were able to

validate that the idea of relationship identification can help scientists with the task

of selecting which datasets to work with, and that by using database technology

we can test for relationships in a reasonable amount of time. But looking at real-

life research settings, scientists generally work with more than two datasets—often

with collections of dozens of spreadsheets.

Our first tool relied to some degree on the user’s help with the table-extraction

and column-matching processes. So, even though ReConnect partially automated

the process of relationship identification, which is tedious and error-prone when

attempted manually, it is still time consuming for a scientist to use ReConnect to

compare all possible pairs in a large collection of spreadsheets, to figure out which

spreadsheets are related.

Thus, we sought a more automated approach to handle collections of datasets,

and we decided that by predicting which pairs of spreadsheets were likely related,

and what the relationship between them might be, we can make a better use of

scientist’s time [6]. Now our research question becomes: given a collection of

spreadsheets, how far we can go in predicting relationships between pairs without

user involvement? We now discuss some the challenges we faced in answering this

question.

4.1 CHALLENGES

Upgrading our interactive approach to a fully automated one raised a number of

challenges, such as extracting datasets from spreadsheets, scaling to many datasets,
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and matching data columns. In this section, we discuss the details of these chal-

lenges, while we discuss our solutions to the challenges in the following sections.

4.1.1 Automating the Extraction of Tabular Datasets from Spread-

sheets

Before the relationship-identification methodology can predict relationships in large

collections of datasets, it must first extract tabular datasets without user involve-

ment. However, because of the many variations in dataset layouts and the mixing

of non-text data with tabular datasets, extracting datasets from spreadsheets is

non-trivial. Additionally, using machine-learning techniques, such as Conditional

Random Fields (CRFs), to automate the extraction of datasets can entail some

technical difficulties, as we discuss below.

While the better the accuracy of the dataset-extraction stage, the better the

quality of the results of later stages (such as column matching and relationship

prediction), dataset extraction does not have to be faultless. For instance, even

if our approach misses a row when extracting a dataset, it might still be able to

make reasonable predictions.

Wide Variety of Dataset Layouts in Spreadsheets

Spreadsheets give users freedom of expressiveness in storing and manipulating their

datasets. However, such flexibility often results in a wide variety of layouts for

datasets. For instance, a dataset may have spanning headers, columns separated

by gaps (empty cells), or multiple tables per sheet. As a result of such ad-hoc data

layouts in spreadsheets, dataset-extraction methods must cope with a wide variety

of such layouts.
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Non-data Text

Spreadsheets often hold other information besides datasets, such as charts, notes

and comments, which are often combined with data tables. Our relationship-

prediction methodology must be able to exclude such non-data elements based on

more than just cell contents. For instance, a cell may contain a text string that

could be a string value in a column, a column header, or a non-data comment or

note. Thus, we need a method that can incorporate cell context as well as cell

content. Later in this chapter we will see that CRFs are able to take advantage of

such information in distinguishing between data and non-data cells.

Producing Training Data for Cell Labeling

While we can automate the task of dataset-extraction by using machine learning

methods, such as CRFs and Hidden Markov Models (HMM), for any such methods

to cope with the variety of layouts and non-data elements in spreadsheets, it will

need a large training set. For instance, in our cell-labeling task (Section 4.2.1)

we need to label cell types as part of building the training set, which necessarily

requires human judgment. Consequently, this task can take several hours for even

a small dataset. Further, errors in cell labeling are very likely, due to the intensive

manual work.

4.1.2 Scaling to Many Datasets and Columns

Scientists can accumulate collections of dozens or even hundreds of datasets. Pro-

cessing such datasets for relationship prediction can be time-consuming. To work

efficiently with large collections of datasets, our relationship-prediction methodol-

ogy must scale to many datasets and columns. To achieve this goal, our methodol-

ogy should favor per-dataset and per-column computations and minimize compu-

tation in joint pairwise tests. We discuss the scalable architecture of our approach
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below.

4.1.3 The Need for Sophisticated Column Matching

For our methodology to match data columns and to predict relationships between

datasets without having to extensively compare individual data values, it computes

statistical summaries for numerical and categorical columns. From our experience

with ReConnet, we know that most of the statistics we had for summarizing nu-

merical columns did not apply for categorical data, and the one that did were not

very informative. Furthermore, before computing column summaries, our method-

ology has to infer the type of each data column, which is a challenging task. We

discuss these challenges below.

Inferring the Type of a Column

Inferring the type of a data column in a spreadsheet can be difficult for the following

reasons. First, while spreadsheet data-cells can be formatted as date, number,

text, currency, etc., cell formatting is not always consistent in a column. Second,

spreadsheet users include notes and comments along with data values to describe

anomalies, to make interesting observations or to indicate the absence of certain

values. For instance, a researcher may use several terms, such as NA, Unknown

and No Reading, to indicate the absence of a temperature reading for a given

sample. As a result, data columns may have values of inconsistent types.

Summarizing Categorical Columns

Categorical columns have string values from a limited (often fixed) domain, such

as animal species, blood types, and states or regions. Numerical columns are in-

teger or float data for observations that can be measured, e.g., body temperature.

While column statistics provide representative summaries for numerical data, the

statistics available for categorical data, such as common value frequencies, counts
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of unique and null values, and min and max values, do not provide much insight in

our experience. Furthermore, statistics such as mean and standard deviation are

not even sensible for or compatible with categorical data. Additionally, because our

methodology has to compare a large number of columns, methods for comparing

categorical data that extensively compare individual column values, such as edit

distance and Dice coefficient, are expensive, and hence we preferred to avoid them.

Thus, in order to compare categorical columns efficiently, we would like to com-

pute bounded-size column summaries inexpensively that provide a representative

approximation of the values in these columns.

4.2 A DESCRIPTION OF THE REDISCOVER SYSTEM

Figure 4.1: The main processes in ReDiscover

We developed ReDiscover, a prototype system for predicting relationships in a

large collection of spreadsheets, to help explore a more automated approach. A

scientist can use ReDiscover to identify the pairs that are most likely related, and

then he or she can use ReConnect to confirm ReDiscover’s predicted relationships.

We provide an overview of ReDiscover in this section. We discuss ReDiscover’s
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experimental evaluation in Chapter 4.2.5.

In Figure 4.1, we show the component architecture of ReDiscover, which con-

sists of five processes: Label Cells, Extract Columns, Compute Column Summaries,

Match Columns, and Predict Relationships. First, Label Cells (Section 4.2.1) as-

signs a label to each spreadsheet cell that indicates whether or not it belongs

to a data column. Second, Extract Columns (Section 4.2.2) uses cell labels to

find groups of vertical cells that likely constitute data columns. Third, Com-

pute Column Summaries (Section 4.2.3) computes statistical summaries for the

extracted numerical and categorical columns. Fourth, Match Columns (Section

4.2.4) uses these summaries to identify possible column correspondences for each

pair of datasets. Finally, ReDiscover predicts relationships based on column sum-

maries, spreadsheet metadata, and column correspondence (Section 4.2.5).

We developed ReDiscover with a scalable architecture to work efficiently with

large collection of datasets. Label Cells, Extract Columns, and Compute Columns

Summaries operate on a per-dataset basis. Match Columns and Predict Relation-

ships are the only processes where joint pairwise dataset features are computed.

Thus, for example, Compute Column Summaries can derive summaries of multiple

columns in parallel. The processing in the first three steps is proportional to the

table size of the spreadsheets and can be parallelized easily. Consequently, we tried

to minimize the amount of work that ReDiscover has to do at the end for the n2

pairs of datasets.

4.2.1 Label Cells

As we discussed in Section 2.3.2, extracting data columns from spreadsheets can

be challenging, as there is often non-data information present, such as comments,

and the datasets themselves vary widely in format. Hence, the goal of Label Cells

is to identify cells that are part of a data column and label them accordingly.

Figure 4.2 depicts both Label Cells’ training and application phases. The
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Figure 4.2: The Label Cells Process

Extract Cell Features process, used in both phases, extracts for each worksheet

cell a k-dimensional cell feature vector (currently k = 40) that describes the cell’s

layout, text, content, and context information. In the application phase, using

the Linear Chain version of CRFs, ReDiscover then scans cells vertically2 and the

Classify Cells process assigns one of the following labels to each cell:

CH (Column Header): cells that contain column headers.

DS (Data Start): the first data cell in the column.

DC (Data Continuation): any data cell between the start and the end cell.

DE (Data End): the last data cell in the column.

NDC (Not a Data Cell): a cell that does not belong to a data column.

We defined these labels to guide the process of data-column extraction discussed

in the next section. The specification of Label Cells is as follows:

2While the scan is vertical, the features used contain “horizontal” information
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Input: a vector of binary features Fij = [f0, . . . , fk], where f0, f1,. . ., fk are cell

text, layout, text, content and context features, for each cell cij with column

index i and row index j.

Output: a label lij ∈ {CH,DS,DC,DE,NDC} for each cij.

Function: Assign a label lij to cell cij based on Fij and the observed training

dataset.

Cell Features. Chen et al. [18] describe a combination of layout and textual

features they used in Frame Finder, a tool for locating attribute and value regions

in spreadsheets. In addition to reusing some of those features, we also developed

a comprehensive set of layout, text, content, and context features. (See Appendix

A for the full list of cell features.) The development of these features involved 1)

testing several combinations of feature sets, 2) evaluating the labeling performance

and efficiency (computation time) of each feature set, and 3) identifying the set

that provides the best balance between performance and efficiency.

Layout Features: Layout formatting provides valuable indicators about the

type of cell being observed. For instance, the use of underline, bold, text

alignment (e.g. center alignment), or merged cells is a strong indicator of a

column-header cell.

Text Features: Analyzing the textual content of a cell also conveys important

information about its type. Features such as is all alpha (does a cell contain

only alphabet characters?), is all numeric (does a cell contain only numeric

characters?), is empty cell (is the cell empty?) can help distinguish among

column headers, data, and non-data cells.

Content Features: Understanding the possible meaning of a cell’s content

could provide indications about its position in a data column. For example,
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in year range (does the cell contain a number between 1900 and 2050?) and

is in headers (is the cell content has a word in the list of common column-

header words?) may indicate that a cell contains a column header.

Context Features: Analyzing the features of a cell’s left, right, above and be-

low neighbors can help in determining its label. For instance, features such as

is above num (Does the cell above contain numbers only?) and is below num

(Does the cell below contain numbers only?) can help determine whether a

cell belongs to a data column or not. Our initial CRF model considered

two neighbouring cells, but the current (improved) version considers four

neighbouring cells in all directions.

CRF Training.

We collected a set of real and synthetic spreadsheets to use in training our CRF.

This set covered various data-column configurations in a sheet, such as vertically

stacked columns and data columns with various layout formatting (e.g., a column

with a header that is two cells apart from the first data cell, a column with a

merged-cells header, columns with no headers). To speed up the construction of

the training set, we used a bootstrapping approach where we manually labeled an

initial set and used it to train the CRF. Once an initial CRF model was available,

we used it to quickly classify the cells of the rest of the set and then manually

correct them as needed. We describe the construction of the training set in more

detail below.

First, we divided the training set into an initial set and a remaining set. Second,

using our C# implementation of Extract Cell Features, we extracted cell features

from the initial set. Third, as shown in Figure 4.2, we manually labeled each cell

in the initial set with one of the labels CH, DS, DC, DE, and NDC based on its

position in a column. Fourth, using the CRF++ library [48], we tested our CRF
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Figure 4.3: Example Label Cells results

model on a subset of the remainder set to determine labeling errors. Fifth, we used

ReDiscover’s CRF Results interface (Figure 4.3), to correct labeling errors in the

new spreadsheets and then added the feature vectors and labels of these corrected

spreadsheets to the training dataset. Finally, we repeated the fourth and fifth step

with additional spreadsheets until we obtained satisfactory labeling results.

The Label Cells Results interface, shown in Figure 4.3, displays the output of

the Label Cells CRF classifier. To inspect for labeling errors, a user first selects a

sheet from the tree-view menu. Then, ReDiscover loads the selected sheet’s data

into the table (in the middle of the figure), and colors each cell based on the label

that the CRF classifier has assigned to it (yellow for column headers, light blue for

data start, light green for data continuation, dark green for data end, and pink for
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non-data cells). The user can select mislabeled cells and choose the correct label

from the Edit Cells list (top), then save changes.

For example, spreadsheet Column 2 in Figure 4.3 actually contains two dataset

columns: water/sediment and satum03.1300.R. But because water/sediment (the

top column) had text data, the CRF classifier captured the column header of

satum03.1300.R (the bottom column) as a data value. Consequently, the CRF

classifier did not recognize the second column, which caused it to mistakenly label

Cells 7 to 11 as DC. The user can correct the labels to match those in Column 1.

After correcting any labeling errors, the user can click Retrain CRF to add the

corrected worksheet data to the training dataset to generate a new CRF model.

The output of Label Cells is a list of cell ids (e.g. TD100.xls Sheet1 [2, 1]

belongs to the file TD100.xls and is located in Column 2, Row 1, in Sheet 1) and

their assigned labels. ReDiscover passes this list to the Column Extractor, which

uses it to determine column boundaries. We discuss Cell Label performance in

Section 5.2.

4.2.2 Extract Columns

Figure 4.4: Extract Columns

Once Label Cells labels spreadsheet cells as part of a data column or not,

the Extract Columns process uses these labels to guide data-column extraction.

Figure 4.4 depicts the process of Extract Columns, which involves two steps: Group
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Cells and Curate Columns. The first step, Group Cells, scans cell labels vertically

looking for a group of cells that constitutes a column. In its simplest form, a

column consists of zero or more CH cell, one DS cell, zero or more DC cells,

and one DE cell, as shown in Figure 4.5(a). Group Cells can detect columns with

various layout formats, some of which are presented in Figure 4.5: (a) a single data

column, (b) vertically stacked columns, (c) columns with multiple header cells, (d)

columns with spaces between column header cells and data cells, (e) columns with

no column header, and (g) columns with discontinuous data cells.

Figure 4.5: Column Layout Examples

In Group Cells, ReDiscover stores the cells of each identified column in a list,

which is ordered by the original cells’ positions in that column. Then, it col-

lects column metadata, such as column order (the original column position in

the dataset) and the addresses of the start and the end cells. Next, ReDiscover

passes the resulting column lists and their metadata to Curate Columns for further

column-extraction enhancement.

The second step, Curate Columns, analyzes the data values of each column to

detect their types. In order to identify the data type of a column, ReDiscover must

reconcile any type inconsistency among column values. For instance, in Figure 4.6,

the type of columns Size and Height are float and integer respectively. However,

as we discussed in Section 4.1.3, identifying the correct type in such cases is a

challenging task.
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Figure 4.6: An example of column data-type inconsistency in spreadsheets

The process of Type Inference starts by detecting the type of each individual

value in the column. If all the values agree on the same type, then ReDiscover

assigns that type to the column. Otherwise, it attempts to convert the values

with distinctive types to either the type of the majority of values in the column

or to null. For example, for the Size column in Figure 4.6, ReDiscover finds that

‘NA’ and ‘ “905.12” ’ are the two values with distinctive type (string). It looks

up these values in the default-null list, a dictionary of words that are commonly

used to refer to null values. ReDiscover converts the ‘NA’ to a null as it finds

it the default-null list. For the ‘ “905.12” ’ value, ReDiscover attempt to convert

that value to float, since it is the type of the majority of values in that column.

However, if the conversion fails, ReDiscover replaces the value with null in case the

number of distinctive values in the column is less than five percent. Otherwise, it

converts the type of the whole column to varchar (string).
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Figure 4.7: Example column summaries

4.2.3 Compute Column Summaries

For ReDiscover to match columns and predict relationships between datasets with-

out having to extensively compare column data, it applies data profiling to compute

column summaries. As shown in Figure 4.7, for each column, ReDiscover collects

information such as column data type, value range, common values and their fre-

quencies, mean, variance, and the count of unique and null values. (See Appendix

B, Table 1 for the full list of column summaries.) We discuss the use of column

summaries in more detail in the next two subsections.

To aid in the relationship-prediction task, ReDiscover also collects spreadsheet

metadata, such as file name, title, size, folder path, owner name, last saved by

(user), date created, and date modified (See Table 4.1 for the full list of meta-

data.) Such metadata can prove useful, especially in resolving prediction conflicts

when the computed column summaries and column correspondence are compati-

ble with more than one relationship. For instance, suppose that dataset A fully

corresponds to B, and the row count for both datasets is equal. Based on this

information, there are two possible relationships: duplicate or template. ReDis-

cover can use spreadsheet metadata to help resolve such conflicts. For example, if

Author, WorkbookSize, and NumberOfSheets metadata of A and B match, A and

B are likely duplicates. Otherwise, it is more likely that A and B share the same
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Table 4.1: Description of spreadsheet metadata that ReDiscover collects.

Metadata Name Description

Author The author name of the specified document

Company The company name

Title The title of the spreadsheet document

Subject A brief description about the subject of the speci-

fied document

Comments A breif description about the specified document

Path The file name and location of the specified docu-

ment

NumOfSheets The number of sheets in a spreadsheet

WorkbookSize Spreadsheet document size in bytes

DateCreated The date and time that the specified document was

created

DateLastModified The date and time that the specified document was

last modified

DateAccessed The date and time that the specified document was

last accessed

LastSavedBy The user name of the person who last saved the

spreadsheet

template.

4.2.4 Match Columns

In ReConnect, the Correspond Columns process (Section 3.1.2) uses only column

names to match columns and relies on the user to confirm or correct the resulting

mapping. However, since ReDiscover has to match columns between many dataset
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pairs in a collection, it is infeasible to ask for the user’s help on every pair. We

apply a supervised learning model, namely support vector machines (SVMs) [20]

to improve the column-matching process, and hence reduce user involvement. The

goal of Match Columns is to find the best column correspondence between each

pair of spreadsheets. In order to apply SVMs to column matching, we first need

to formulate it as a classification task

Column Matching as a Binary Classification Problem To determine the

column correspondence between a pair of datasets A and B, we want to find the

maximal set M of matching column pairs. A pair of columns (a, b) match if the

columns are semantically related and they describe the same real-world object. We

denote a matching column pair by (a, b) ∈M , and refer to it as the mapping of a

to b. The column correspondence between A and B is a set M of mapped column

pairs from A and B. We can formalize the problem of identifying pairs of matching

column as a binary classification problem with the following specifications.

Input: The similarity vector v for a column pair (a, b) in col(A)× col(B).

Output: 1 for matching column pairs and -1 for non-matching pairs.

Function: Assign the column pair (a, b) to class 1 (matching) or to class

-1 (non-matching) based on its similarity vector v and the observed training

dataset.

The Similarity Vector of a Column Pair. As shown in Figure 4.9, for each

pair of columns (a, b), ReDiscover uses the columns summaries generated by the

Compute Column Summaries process to derive a similarity vector v that indicates

similarity or dissimilarity between each summary component of the two columns.
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Figure 4.8: An example of two column summaries and their similarity vector

Each similarity vector consists of p similarity metrics (currently p = 18). Each

metric function sj(a, b) (j = 1, . . . , p), computes a similarity score between two

corresponding column-summary components. This score ranges between zero (in-

compatible component values) and one (identical component values). For example,

Unique value count (2) of column Sample (Figure 4.8(a)) and the Unique count

(4) of column Sample # (Figure 4.8(b)) have a similarity score of 0.5, as shown in

Figure 4.8(c).

We use different similarity metrics for different components of the column sum-

mary. For string components, such as column names and common values for cate-

gorical columns, we used Levenshtein distance [50], which is the minimum number

single-char edits required to change one word into the other (normalized between

0 and 1.) For numerical summaries, we simply compute the scaled difference (D)

between two numerical values (D = | (X1−X2)
((X1+X2)/2))

|).

As we discussed in Section 2.3.2, simple count statistics do not provide good

summaries for computing similarity between groups of categorical values. There

are several similarity metrics, such as Jaccard coefficient and Levenshtein distance,

that are often used to compare groups of categorical columns. However, it is quite

expensive to compute such metrics for many column pairs and large datasets. Thus,

we developed a technique based on Bloom filters that enables us to inexpensively
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Figure 4.9: The Match-Column process

approximate similarity between categorical columns.

Computing Set Similarity using Bloom Filters

In our approach, we individually compute a fixed-size bit-vector representation of

each data column. Pairwise column comparisons then use these bit-vectors rather

than the complete set of column values. For instance, for column matching, Match

Columns computes similarity between categorical columns by estimating the Dice

coefficient [28] between the resulting bit-vector pairs. The Dice coefficient of sets

X and Y is 2×|X∩Y |
(|X|+|Y |) and can be approximated from the number of 1-bits in the

bitwise and of the filter vectors [65]. Predict Relationships also uses Bloom filters

in computing features for relationship prediction (Section 4.2.5).

With Bloom filters, false positives are possible but false negatives are not. To

achieve a given expected false-positive rate p, the size m of a Bloom filter must

be proportionate to n, (−n×ln p
(ln 2)2

), where n is the number of elements in the set

(column) [68]. Furthermore, Jain et al. [45] showed that when Bloom filters are

used for measuring similarity between two sets, a 97% matching accuracy can be
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achieved by setting the number of bits in the Bloom filter to 8n. We can select n

for a given collection of datasets by determining an upper bound on the number

of rows in any dataset.

Based on the analysis of Jain et al., and the characteristics of our test collection,

we chose a Bloom filter size of 512 bytes. Based on a random sample of columns,

we find at this size the estimated Dice coefficient is always within 2% of the actual

Dice coefficient.

Training the Match-Columns Classifier In Figure 4.9, we show both the

Match Columns training and application phases. In the training phase, we compute

similarity vectors for pairs of columns using the Compute Similarity Vector process,

which is used by both phases. The spreadsheets we used for training include

various column-matching scenarios, such as columns that are differently named but

conceptually identical, columns with identical names but conceptually different,

incompatible columns, and duplicate columns. Then, we manually labeled the

column pairs as matching or non-matching. Next, using LIBSVM [17], a software

library for SVMs, we trained the Match Columns classifier.

In the application phase, the Compute Column Similarity process first com-

putes a similarity vector for each pair of columns. The Match Columns classifier

first analyzes each similarity vector and classifies it as matching or non-matching.

Second, ReDiscover forms the set (M) of all column pairs (a,b) that are labeled

as matching (i.e, a column correspondence). Third, it passes M to the Enhance

Column Correspondence process, which ensures that all the column mappings in

M are one-to-one, that is, no column in A maps to more than one column in B

and vice versa. We describe the Enhance Column Correspondence process in more

detail below.
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Figure 4.10: An example of enhancing the column correspondence of datasets D

and E.

Enhance Column Correspondence Using our running example, suppose that

Jennifer receives two new spreadsheets, D and E, which both are extended versions

of spreadsheet C (Figure 2.1). D has an extra column, Temp2, that contains new

temperature readings for the same samples in C. Spreadsheet E has an extra

column, salinity2, which represents the water salinity readings for the same samples

in C at a later time. As shown in Figure 4.10, when ReDiscover attempts to match

the columns of spreadsheets D and E, the resulting initial column correspondence

is ambiguous. Column salinity of D is mapped to both columns salinity and

salinity2 of E and column Temp of E is mapped to both columns Temp and

Temp2 of D.

For each column with ambiguous mappings, ReDiscover groups the column cor-

respondences involving that column. For instance, for columnD.salinity, it creates

a one-to-many group that includes D.salinity ↔ E.salinity and D.salinity ↔

E.salinity2 mappings. Similarly for column E.Temp, it creates another one-to-

many group containing E.Temp↔ D.Temp and E.Temp↔ D.Temp2 mappings.

Each one-to-many group contains ambiguous mappings and only one mapping from

such group should be selected. To overcome such matching ambiguity, we devel-

oped the Enhance Column Correspondence process (Figure 4.9), which we detail

in Algorithm 3.
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Algorithm 3 Enhance Column Correspondence algorithm

Input: initial column correspondence for table A and B (col corr).

Output: enhanced column correspondence (enhanced col corr) that represents

a one-to-one mapping.

1. matching score[]=getMatchingScores(col corr); . getMatchingScores()

computes a matching score for each mapping in col corr.

2. idx = 0;

3. while col corr is not empty do

4. while idx < col corr.count do

5. one to one=findO2O(col corr); . findO2O() finds the first

one-to-one mapping in col corr.

6. enhanced col corr.add(O2OMapping);

7. col corr.remove(O2OMapping);

8. end while

9. one to many[]=findO2M(col corr); . findO2M() finds the

one-to-many group with the least number of column involved.

10. bestO2M = getBestO2M(one to many[]); . getBestO2M() finds the

mapping with the highest matching score.

11. enhanced col corr.add(bestO2M);

12. col corr.remove(bestO2M);

13. col corr = reduce corr(bestO2M); . reduce corr() removes

from col corr the remaining mappings that are not selected in the 1-many

group.

14. end while
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ReDiscover first searches for all one-to-one mappings (D.Site ↔ E.Site and

D.Sample↔ E.Sample#) and adds them to the enhanced column-correspondence

list (enhanced col corr), and removes these mappings from the original column-

correspondence list (col corr). Next, it retrieves the similarity vectors of all col-

umn pairs in the remaining column correspondence set. Then, for each vector,

it computes a matching score—the sum of all similarity metrics in that vector.

For the remaining two one-to-many groups (D.Salinity and E.Temp), ReDiscover

chooses the group with the fewest columns involved. In our example in Figure 4.10,

both of the one-to-many groups have two mappings each, so ReDiscover selects the

group with the mapping that has the highest matching score (say the D.Salinity

group). From the selected group, ReDiscover adds the mapping with the highest

matching score (D.salinity ↔ E.salinity) to enhanced col corr and removes it

from the col corr list. Next, refined corr(bestO2M) discards any mapping that has

D.salinity from col corr list. ReDiscover repeats this process with the remaining

one-to-many groups (E.Temp) until col corr is empty.

Finally, ReDiscover passes the enhanced column correspondence to the Predict

Relationships process. Because relationships are classified by column correspon-

dence (Full Correspondence, Sub-Correspondence, Extension Correspondence, and

No Correspondence), ReDiscover can limit the number of relationships it investi-

gates for a pair of spreadsheets using their correspondence classification.

4.2.5 Predict Relationships

The Predict Relationships algorithm is an improved version of Suggest Relation-

ships in ReConnect [5]. While both algorithms share the use of column-correspondence

types (Full-, Sub-, Extension, and No Correspondence) to limit the number of rela-

tionships to investigate, the Predict Relationships algorithm also uses an improved

column-correspondence and spreadsheet metadata in predicting relationships. Ad-

ditionally, it uses a set of SVM classifiers (one per relationship type) for relationship
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prediction. We discuss the details of the Predict Relationships process below.

Predict Relationships Process

As shown in Algorithm 4, Predict Relationships takes as input column summaries,

a column correspondence, and spreadsheet metadata for a pair of datasets. First,

it identifies the type of column correspondence between two datasets to determine

the set of possible relationships between them. Then, for each possible relation-

ship, Predict Relationships 1) computes the relationship feature vector based on

the pair’s column summaries, column correspondence, and metadata, and 2) sends

the resulting feature vector to the relationship SVM classifier (Each relationship

has a separate classifier.) Based on the feature vector and the observed train-

ing dataset, the relationship classifier assigns the dataset pair to either class 1

(relationship exists) or class -1 (relationship does not exist). The SVM classifier

also returns a score that represents the relationship likelihood measure (predic-

tion score). Finally, if the resulting prediction score is greater than or equal to a

given threshold, α (currently α = 30), then Predict Relationships adds the dataset

pair, the predicted relationship, and the prediction score to the list of predicted

relationships.

Computing Relationship Features

For each relationship, ReDiscover computes indicative features of a relationship

from column summaries, such as min and max values, count of unique and null

values, and mean and standard deviation. For example, for the row-containment

relationship, ReDiscover uses the column statistic min value to compute MinAW-

ithinRangeB, a binary feature that is set to “1” when the min value range of each

column in A is within the value range of the column it is mapped to in B. An-

other example is the RowCountDifference feature that ReDiscover computes for

the complementation relationship. This feature measures the similarity between
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Algorithm 4 Predict Relationships algorithm

Input: A dataset pair (D1,D2), column correspondences (col corr); column

summaries (col summ) and spreadsheet metadata (SS meta).

Output: List of pairs of dataset names, the predicted relationship, and the

prediction score (predicted relts).

1. col corr type = identify correspondence(Col Corr); .

identify correspodence() takes the column correspondences and returns Full

Correspondence, Extension Corresponded, Sub-correspondence or No Cor-

respondence

2. possible relts = get the relationships associated with the col corr type

type;

3. for each relationship r in possible relts do

4. features = compute Features(col corr, col stats, SS meta, r);

5. Score = run relt SVM (r, features);

6. if Score ≥ α then

7. predicted relts.add(D1.name, D2.name, r, Score);

8. end if

9. end for

the row counts of a column pair, and takes a value between [0,1] (0 means that

row counts are very different, and 1 means they are identical.) Note that some

relationships, and hence some features, are directed (e.g., A column-contains B 6≡

B column-contains A).

Predict Relationships also uses Match Columns’ results in computing indicative

features for a relationship. For instance, it uses the likelihood score resulting from

the SVM classifier for column matching to compute the average similarity between
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all corresponding columns in A and B. Such an average similarity feature can be

used in predicting the duplicate and the containment relationship as it measures

the overall similarity between all corresponding columns between two datasets.

Spreadsheet metadata, such as file name, size, and folder path (see Section 4.2.3),

can improve relationship-prediction accuracy. For example, knowing that a pair

of datasets have the same file name, size, author, and last modified date provides

evidence of a duplicate relationship. Another example is when the metadata of

two datasets are similar except the size of one file is larger than the other. Predict

Relationships uses the file size feature, among other features, in predicting the

containment relationship.

Computing Relationship Features using Bloom Filters

We incorporated Bloom filters initially to help with column matching, but we also

realized that they could be useful for relationship prediction. Predict Relation-

ships uses Bloom filters in computing features for predicting relationships, such

as containment, duplicate, prefix, and suffix. In the case of the containment rela-

tionship, it computes isAllBVofAContainedInB, a binary feature that is set to “1”

when the bit vector of each column in dataset A is contained in the bit vector of

the column it is mapped to in B, or zero otherwise. Predict Relationships tests if

a bit vector bv1 is contained in bv2 by computing the bitwise and between bv1 and

bv2 and testing if it matches bv1.

For the duplicate relationship, Predict Relationships computes the avgDiceSim-

ilarityforDuplicate feature, which is a value between zero and one that represents

the average Dice similarity estimates for all corresponding columns (computed in

the Match Columns process) between two datasets. The higher the value of the

avgDiceSimilarityforDuplicate feature is, the more similar the content of the two

datasets are, the more likely they are identical.

Predict Relationships also uses Bloom filters to compute indicative features for
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ordered relationships, including prefix, suffix, and reordered rows. When ReDis-

cover predicts that a dataset A is row-contained in dataset B, it further checks

whether A could be a prefix (or suffix) of B by computing two Bloom filters for

each data column in the containing dataset B: one for the first half of the column,

B1, and one for the second half, B2. It also computes Bloom filters A1 and A2

for the first and second half of the corresponding column in A. If A1 ⊆ B1, it is

evidence that A is a prefix of B. But if A2 ⊆ B2, it is evidence that A is a suffix

of B.

When ReDiscover predicts that a pair of datasets, C and D, are equal, it also

checks whether the reordered rows relationships holds between them as follows.

First, it computes a trigram Bloom filter for each data column in the set of corre-

sponding columns (M). Each element in this filter represents a contiguous ordered

sequence of three values from the data column. Next, ReDiscover computes Dice

similarity between the Bloom filters of each pair of corresponding columns. The

less similar the Bloom filters of the corresponding columns in C and D are, the

more likely that the reordered rows relationship holds between them.

Predict Relationships Results

Figure 4.11: Example results of the Predict Relationships algorithm

As shown in Figure 4.11, Predict Relationship outputs a list of dataset names,

the predicted relationship, and the prediction score. A scientist can quickly select a
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pair of datasets that are most likely to have a relationship for further examination

(with ReConnect, for example), without having to visually inspect all datasets in

the collection. Ordering the list of predicted relationships by the prediction score

allows users to work with the most reliable predictions first.

To conclude, we built ReDiscover with the goal of automating relationships dis-

covery in collections of scientific datasets. ReDiscover is an end-to-end prototype

system that helps scientists identify from a collection of datasets the pairs that

are likely related and the predicted relationship between them. It applies CRFs to

automate data-column extraction, computes column summaries using data profil-

ing and approximate categorical column summaries using Bloom filters, and uses

SVMs to automate the process of column-matching and relationship-prediction

between dataset pairs. It also uses Bloom filters to compute indicative relation-

ship features for relationships such as, prefix, suffix, and reordered rows. In the

next chapter, we discuss in detail the results of our experimental evaluation of

ReDiscover.
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CHAPTER 5: EXPERIMENTAL EVALUATION

We developed an end-to-end prototype of our relationship-prediction approach, to

guide the design process and to evaluate the feasibility of our approach. After we

developed the first version of ReDiscover, we performed an initial investigation to

identify the processes whose improvement would benefit its prediction performance

the most (Section 5.1). We found that the quality of the Label Cells process has a

significant effect on the quality of downstream processes, such as Extract Columns

and Compute Column Summaries. We also identified a number of performance

issues with the Label Cells and Match Column processes that affected ReDiscover’s

overall performance.

Based on the results of this investigation, we first implemented several improve-

ments to Label Cells, including fixing cell-extraction errors and improving its CRF

model. To evaluate the improved version of the Label Cells process, we conducted

a second experiment, which we discuss in detail in Section 5.2. Second, we de-

veloped a new approach that uses Bloom filters for computing fast approximate

summaries for categorical columns to improve column matching for such columns.

We also used Bloom filters for computing indicative relationship features (see Sec-

tion 4.2.5). Finally, we evaluated the updated version of ReDiscover on selected

relationships to assess its overall relationship-prediction accuracy (Section 5.3).

5.1 PRELIMINARY EVALUATION

The goal of this experiment is to assess the effect of the result quality of differ-

ent components on the results of later processes, and identify the processes whose
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Figure 5.1: Relationship prediction performance results of ReDiscover and ReDis-

coverMCS

improvement would benefit overall prediction performance the most. In this sec-

tion, we report the results of our initial evaluation of ReDiscover on a variety of

real-world and synthetic spreadsheets. We discuss our evaluation methodology in

detail below.

5.1.1 Methodology

For our experiment, we used 10 pairs of real-world spreadsheets that we collected

from our research collaborators, and 10 pairs from the EUSES corpus [33]. We

modified the EUSES spreadsheets to construct relationships and features that are

not covered by the first set. We used ReConnect to identify relationships between

all pairs as a baseline for judging ReDiscover. Our evaluation methodology consists

of three parts.
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Part 1: Predicting Relationships using ReDiscover

To evaluate the performance of the initial implementation of ReDiscover on pre-

dicting relationships, we first used it to extract columns and compute their sum-

maries, identify column correspondence, and predict the relationship of each pair

of spreadsheets in our test set. Then, we compared ReDiscover’s relationship pre-

dictions with the previously identified relationships and computed the precision,

recall, accuracy, and F1 score of those predictions.

Part 2: Predicting Relationships using Actual Column Summaries

To study the effect of result quality of ReDiscover’s individual processes on the

result quality of subsequent processes, and to identify the processes that when

improved would improve overall prediction accuracy, we evaluated a variant of Re-

Discover, which we call ReDiscoverMCS, in two steps. In the first step, we manually

computed column summaries for each spreadsheet of our test set. These error-free

statistics serve as the ground truth column summaries. Next, we fed ReDiscover’s

Extract Columns process the correct cell labels for the tested spreadsheets, and

compared the resulting column summaries with ground-truth summaries. The pur-

pose of this step was to analyze the effect of cell-labeling errors on the result quality

of the Extract Columns, Match Columns and Predict Relationships processes.

In the second step, we used ReDiscover to compute the column correspondence

and predict relationships for each pair using these manually computed summaries.

For each tested pair, we recorded the resulting column correspondence and the

predicted relationship. Lastly, we evaluated the accuracy of ReDiscoverMCS by

computing the precision, recall, accuracy, and F1 score of its predictions.

Part 3: Evaluating ReDiscover’s Prediction Score

This part is separate from the previous two parts, and focuses on evaluating Re-

Discover’s prediction score. We analyzed ReDiscover’s prediction scores with pairs
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that are related and those that are not to evaluate whether they provide a useful

guide to the user about likelihood of a relationship. For each relationship, we first

selected a subset of dataset pairs that have a specific set of relationships and used

ReDiscover to predict relationships between these pairs. We then computed the

average prediction score for the entire set. Second, we repeated the previous step

for the same relationship with other dataset pairs lacking that relationship. Fi-

nally, we computed the overall average of prediction scores for pairs that had the

relationship, and the overall average for pairs that do not have the relationship.

5.1.2 Results

Figure 5.1 shows the precision, recall, accuracy, and F1 score of ReDiscover and

ReDiscoverMCS predictions of duplicate, row-containment, template, and comple-

mentation relationships (Part 1 and 2). Precision is the number of positive rela-

tionship predictions that are correct, recall is the percentage of positive-labeled

relationships that were predicted as positive, accuracy is the percentage of predic-

tions that are correct, and F1 score is the weighted average of precision and recall

(2× precision×recall
precision+recall

).

For the duplicate and complementation relationships, ReDiscoverMCS accu-

rately predicted them in all spreadsheet pairs, whereas ReDiscover only predicted

66% of the tested pairs with 0.80 F1 for the duplicate relationship (80% with 0.88

F1 for the complementiation relationship). Because of cell-labeling and column-

extraction errors, ReDiscover computed inaccurate column summaries, which re-

sulted in mismatching several columns. Consequently, ReDiscover was not able to

predict the duplicate and complementation relationships for pairs with inacurate

column summaries. On the other hand, ReDiscoverMCS did perfectly well with

various spreadsheet pairs for these relationships because it had accurate column

summaries.
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ReDiscoverMCS outperformed ReDiscover by 20% in predicting the row-conta-

inment relationship with an F1 of 0.75. However, they both fail to predict this

relationship in few pairs of spreadsheets. When we analyzed the results of Part

1 and Part 2 for these pairs, we noticed that, even with manually computed

columns summaries, ReDiscover mismatched several categorical columns. As a

result, ReDiscover categorized the column correspondences for these pairs as sub-

correspondence, where it should have categorized them as full correspondence.

Regarding the template relationship, ReDiscoverMCS correctly predicted 83%

of the pairs, while ReDiscover predicted only 66% of them. ReDiscoverMCS’s F1

was 0.90 and ReDiscover’s was 0.80. As was the case with predicting the duplicate

relationship, errors in cell labeling, which led to errors in column extraction and

column matching, affected the accuracy of ReDiscover’s predictions. ReDiscov-

erMCS also missed a few pairs because of inaccurate column matching.

With respect to the results of the first step of Part 2, we found that the ex-

tracted column summaries, which are based on correct cell labels, matched those

that were computed manually (i.e., ground truth summaries). Consequently, the

low performance of ReDiscover compared to ReDiscoverMCS was a result of incor-

rect labeling by the Label Cells process of ReDiscover. Thus, we concluded that

the result quality of ReDiscover’s Label Cells process has a significant effect on the

result quality of the downstream processes.

Figure 5.2 shows the results of evaluating ReDiscover’s prediction score (Part

3). ReDiscover predicted the presence of the duplicate, containment, template, and

complementation relationships between pairs where these relationships hold with

an overall average prediction score of 75.5. It also predicted the absence of these

relationships between pairs lacking the relationship with an overall average pre-

diction scores of 3.9. We conclude from these results that ReDiscover’s prediction

score is a useful guide for identifying the pairs that are most likely related. Users
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Figure 5.2: ReDiscover’s Average Prediction Score

can save time by skipping pairs with low prediction score as they are unlikely re-

lated. Additionally, by starting with pairs with high prediction scores, users will

not waste time with false-positive predictions.

5.1.3 Discussion

Regarding whether improving certain stages of ReDiscover would improve its pre-

diction performance, we concluded from our assessment results (Part 1 and 2) that

with accurate data-column extraction, ReDiscover produces accurate column sum-

maries, and hence derives better column correspondences and predicts relationships

more accurately. With the presence of cell-labeling errors, such as labeling data

values as NDC or labeling a column’s last cell as DC, the accuracy of ReDiscover’s

column summaries drops. For instance, because of labeling several non-data cells

as DC, ReDiscover incorrectly inferred that a numerical column type was string ;
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thus, it did not compute numerical summaries, such as mean and standard devi-

ation. Improving the Label Cells process should yield better column summaries,

hence enhancing the prediction quality.

The main classification errors of Label Cells were false positives on DC, false

negatives on DE, and false negatives on NDC. Based on these observations, we

made several improvements to the Label Cells process, and its CRF model. First,

we identified and fixed a number of cell-feature extraction bugs. The classification

accuracy of the CRFs model depends on the accuracy of the extracted cell features.

For instance, we found that bugs in is empty and is in nulls feature-extraction

routines were responsible for most of the false negatives on NDC.

Second, to handle the false positives on DC and the false negatives on DE classi-

fication errors, we updated our CRF Model to consider further levels of neighboring

cells in both direction to improve cell labeling accuracy. The initial CRF model

considered only the two adjacent neighboring cells in both directions when it is

classifying a given cell. Consequently, the model was not able to identify the end

cell (DE) of a data column accurately, and labeled several DE cells as data con-

tinuation (DC). We extended our CRF model to consider four neighboring cells

in both directions. As a result, this improved version of the Label Cells process

was able to identify DC and DE cells more accurately, as we will see in the next

section.

The results of our preliminarily evaluation also show that because the col-

umn statistics of the first version of ReDiscover did not provide much insight for

categorical columns, the Match Columns process produced inaccurate column cor-

respondences, which reduced the accuracy of ReDiscover’s relationship prediction.

Based on these observations, we developed a new approach that uses Bloom fil-

ters to compute bounded-size column summaries to approximate the values of a

categorical column inexpensively and effectively (see Section 4.2.4 and 4.2.5). We

discuss our evaluation of the improved version of ReDiscover in Section 5.3.
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In conclusion, the results of our preliminarily evaluation suggest that the accu-

racy of ReDiscover’s predictions were promising. We also found that by improving

Label Cells and Match Columns processes we can improve the overall performance

of our relationship-prediction approach. In the next section, we discuss our evalu-

ation of the improved version of Label Cells process.

5.2 LABEL CELLS EXPERIMENT

Our initial investigation revealed that the performance quality of Extract Columns,

Compute Column Summaries, and Match Columns processes depends significantly

on the quality of the cell-labeling process. After implementing several improve-

ments to the initial Label Cells process, we evaluated it to assess its accuracy, and

also to see whether the use of a sophisticated machine learning technique, such as

CRFs, is justified for such a task (or if a simpler labeling scheme would suffice).

In this experiment, we used 23 real-world spreadsheets that we collected from

our research collaborators and from the EUSES corpus [33]. The cells of our test

spreadsheets were labeled by a human expert using the Label Cells Results interface

(Figure 4.4) to give ground truth. Our evaluation methodology is as follows.

5.2.1 Methodology

First, to assess the performance quality of the Label Cells process, we evaluated

its CRF classifier (LC-CRF, described in Section 4.2.1). We used LC-CRF to label

the cells of our test data3, and then we compared LC-CRF labels with the human-

expert labels and computed the precision, recall, and F1 score of Label Cells’s

classifications. We evaluated per label, because some cell types are more frequent

and we did not want them to dominate the results.

Second, to answer the question of whether such a sophisticated CRF model is

3Test data were separate from the data used to train LC-CRF
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needed for the cell labeling task, we evaluated a restricted version (CRF-Base) of

our CRF model. CRF-Base does not use the left and right content features (see

Appendix A, Table ??), and it considers only the features of cells the immediately

above and below of the cell it is classifying. In contrast, LC-CRF uses the right

and left content features, and it considers four level of neighboring cells in both

directions.

5.2.2 Results and Discussion

Precision Recall F1-Score

NDC CRF-LC 0.92 0.97 0.93

CRF-Base 0.88 0.84 0.85

CH CRF-LC 0.78 0.86 0.80

CRF-Base 0.56 0.73 0.59

DS CRF-LC 0.71 0.81 0.74

CRF-Base 0.91 0.59 0.70

DC CRF-LC 0.93 0.90 0.90

CRF-Base 0.76 0.88 0.80

DE CRF-LC 0.75 0.88 0.79

CRF-Base 0.58 0.81 0.65

Table 5.1: Label Cells Performance.

As shown in Table 5.1, the majority of CRF-LC’s performance metrics, includ-

ing precision, recall, and F1-score, are markedly better than those of CRF-Base

for all types of labels. The only exception is that CRF-Base’s precision (0.91) for

the data-start label (DS) is better than that of CRF-LC (0.71). However, we also

notice that for the same label, CRF-LC’s recall (0.81) is considerably better than
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that of CRF-Base (0.59). When we investigated the high precision of CRF-Base,

we found that it generally tends to generate very few DS labels, which leads to a

low rate of false positives and a high rate of false negatives, and hence CRF-Base

has high precision and low recall. On the other hand, CRF-LC generated more

DS labels and made some errors (false positives) but it identified most of the DS

labels.

When extracting a data column, it is important to correctly identify its header

(CH), the data (DC) and the end (DE) of that column. CRF-LC exhibits high

performance in classifying CH, DC and DE, with average F1-scores of 0.80, 0.90

and 0.79 respectively. The ability of CRF-LC to use the left and right content

features and its ability to consider the features of several cells above and below the

cell it is classifying improves its labeling performance. Overall, we conclude from

Table 5.1 that CRF-LC predicts each type of label with good accuracy, and that

by comparing CRF-LC to the baseline method, CRF-Base, we find that the use of

our more sophisticated CRF model is justified for our cell-labeling task. Based on

the results of our initial investigation (Section 5.1), we know that this difference

in accuracy makes a notable difference in the performance of the downstream

processes, such as Extract Columns and Match Columns. In the next section, we

evaluate the overall performance of ReDiscover in predicting relationships between

datasets.

5.3 PREDICT-RELATIONSHIPS EXPERIMENT

In this experiment, we evaluate the overall relationship-prediction effectiveness of

the improved version of ReDiscover, which 1) has a better-tuned CRF for cell la-

beling, 2) uses Bloom filters for both approximating categorical column summaries

and computing indicative relationship features, and 3) uses improved SVM models

that are trained on new features for relationship prediction. Our assessment of

prediction performance is centered on the benefit to the user. Suppose we order
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pairs of datasets using our prediction scores, and have the user work his or her way

down the a ranked list of results, confirming or rejecting the predicted relationships

(say, using ReConnect). We can compare the work a user would need to do using

our order to that required with another order by considering essentially recall and

precision:

Q1 How far down the list would a user need to go to find a given fraction of the

true relationships?

Q2 How many false predictions would the user have seen by that point?

In addition, we want to know if the absolute prediction score can provide a

cutoff threshold for the pairs the user needs to consider:

Q3 Is there a strong correlation between ReDiscover’s prediction score and the

likelihood of a relationship?

5.3.1 Methodology

We evaluated ReDiscover on five relationships: duplicate, row-containment, tem-

plate complementation, and reordered-rows. We used five test sets for our prelimi-

nary evaluation, a collection of 25 spreadsheets from EUSES, a collection of 80 CSV

files produced by wearable activity monitoring devices, a collection of 20 datasets

related to a geology research project, and two datasets of 21 and 22 spreadsheets,

which we modified from EUSES to construct relationships and features that were

not covered by the first three sets. For each test set, we went through all pairs in-

dividually to identify the existing relationships in the collection. Our relationship

prediction evaluation methodology has three parts:

Part 1: Predicting Relationships using ReDiscover

To measure ReDiscover’s ability to find all relevant relationships (Q1), and to
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quantify wasted user effort resulting from incorrect predictions (Q2), we used Re-

Discover to score the relationship of each pair of spreadsheets in our five test sets,

and ranked the results based on the prediction score. Then, we compared these

predictions with manually identified relationships. We computed the precision at

standard recall levels (discussed below), and the average precision over all relevant

predicted relationships.

Part 2: Predicting Relationships using an approximate Human Baseline

Approach

We wanted to know if ReDiscover’s predictions were better than what a human

might do by “eyeballing” the spreadsheets in a collection. To approximate human

performance, we polled spreadsheet users as to what strategies they might use to

make an initial assessment of whether two spreadsheets are related and how. For

example, some indicated that they would look at spreadsheets’ metadata (e.g.,

file name, size, author, creation date) for hints as to whether the duplicate re-

lationship might hold. Other users stated that they would examine whether the

column names and data types of a dataset pair match in order to identify whether

they share the same template. We built a predictor based on SVMs that uses

such strategies and features, for instance columnNamesMatch, isDataTypesMatch

and isColumnOrderMatch, in classifying relationships, which we call the Human-

Baseline Approach (HBA). (See Appendix C for the complete description of HBA’s

features.)

We judged the prediction for precision of Part 1 and 2 based on what are the

most informative relationships. Thus, we are not just looking whether ReDiscover

or HBA predicted correct relationships, but rather we are considering whether or

not they predicted the most informative ones. For example, because the reordered-

rows relationship is a special case of the equal relationship, their features over-

lap. So, if ReDiscover and HBA predicted the reordered-rows relationship between
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datasets A and B, then they would necessarily predict the equal relationship be-

tween them as well. However, the reordered-rows relationship is more informative

than the equal relationship.

Part 3: Evaluating ReDiscover’s Prediction Score

We analyzed ReDiscover’s prediction scores from Part 1 in order to evaluate their

accuracy, and to see whether there is a correlation between ReDiscover’s prediction

score and the likelihood of a relationship. For each of the five test sets, we divided

ReDiscover’s ranked lists of predictions into five bins based on the prediction score

(100-80, 80-60, 60-40, 40-20, and 20-0). Then for each bin, we computed the per-

cent of pairs with the relationship and the percent of pairs lacking the relationship.

Finally, we computed the overall average prediction score of pairs that had the re-

lationship, and those that did not have the relationship in each bin across the five

test sets (see Figure 5.5).

5.3.2 Results

Figure 5.3 shows the average interpolated precision at standard recall levels (0.00,

0.10, . . ., 1.00) for ReDiscover and HBA predictions of duplicate, row-containment,

template, complementation, and reordered-rows relationships on the five test datasets.

The precision-recall curve is commonly used in evaluating ranked retrieval results

for an information retrieval system. We interpolated the precision by using the

maximum precision obtained at standard recall level i for any actual recall level

greater than or equal to i [71]. We also labeled the precision-recall curves of both

ReDiscover and HBA with their average prediction score across all tested relation-

ships at each standard recall level (i.e., the average prediction score for all pairs up

to a given standard recall point). In Figure 5.4, we show the interpolated precision

per individual relationship.

As shown in Figure 5.3, ReDiscover performed better than the baseline, HBA,
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Figure 5.3: Average interpolated precision at standard recall levels, with average

prediction scores across all relationships

at all standard recall levels for all tested relationships. ReDiscover started with a

perfect precision of 1 where HBA started at 0.55 precision as its top predictions

included incorrect relationships. The precision of the baseline started declining

after recall level 0.2, where ReDiscover’s precision declined slightly only after recall

level 0.6. ReDiscover maintained a precision rate of 0.8 till it predicted all existing

relationships while the baseline precision dropped to 0.15 at recall level 0.9, which

means that it ranked many incorrect predictions before all the correct ones.

We can also conclude from Figure 5.4 that even when we break the inter-

polated precision down by individual relationships, we still see that ReDiscover

outperformed HBA in each of the five tested relationships. In Particular, ReDis-

cover predicted the row-containment (c) and complementation (d) relationships

with prefect precision, where HBA performed poorly in the row-containment rela-

tionship. For the duplicate (a), template (b) and reordered-rows (e) relationships,

ReDiscover performance dropped after recall levels 0.8, 0.6 and 0.7 respectively.
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(a) Duplicate

(b) Template

(c) Row-Containment
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(d) Complementation

(e) Reordered-Rows

Figure 5.4: Interpolated precision at standard recall levels, with prediction scores.

When we analyzed the results we found that ReDiscover predictions were all

correct, but some of the top-ranked predictions were less informative than the best

predictions. We treat such predictions as false negatives (for computing preci-

sion). For example, when evaluating ReDiscover’s performance on predicting the

reordered-rows relationship, we found that it predicted the duplicate relationship
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for some dataset pairs with the reordered-rows relationship with higher predic-

tion scores than those of the reordered-rows predictions. As a result, the ranked

list of predictions contained pairs with less-informative relationships before the

more-informative ones.

On the other hand, HBA’s results for the five tested relationships contained in-

correct predictions, hence, the poor performance of HBA compared to ReDiscover.

However, HBA’s performance in predicting the complementation and reordered-

rows relationships was better than that of the duplicate, template and row con-

tainment relationships. While some of the human-based features are indicative

of the complementation and reordered-rows relationships, these features are not

based on the content of the datasets but rather on their schema and metadata. In

spite of that, and as shown in Figure 5.4, the precision-recall curve of HBA and

ReDiscover never ended at the same point for any of the five tested relationship.

5.3.3 Discussion

Regarding the question of how far a user should go down the ranked list of predic-

tions to find all correct relationships, Figure 5.3 shows that ReDiscover predicted

all existing relationships between pairs of datasets in our test sets with over 0.7

precision. This high precision means that ReDiscover’s list of predictions up to the

recall level of 1.0 contains very few incorrect predictions. Based on HBA’s results,

a user can only find 80% of all existing relationships with 0.33 precision. Looking

another way, a user would only have to examine 34 pairs to find all 24 relationships

with ReDiscover, whereas with HBA he or she would need to look at 124 pairs to

find just 6 of the related pairs.

To answer the question of how much user effort is wasted as a result of false

positives, we computed the average non-interpolated precision of both ReDiscover

and HBA in predicting the duplicate, containment, template, complementation, and
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reordered-rows relationship between all pairs in our test datasets. The average non-

interpolated4 precisions were 0.87 and 0.37 for ReDiscover and HBA, respectively.

The average non-interpolated precision measures the performance over all relevant

relationships, and it rewards systems that rank correct relationships highly [71].

We conclude from the results that ReDiscover generated a low rate of false posi-

tives, and users are less likely to waste time investigating unrelated datasets using

ReDiscover’s predictions as compared to manual methods.

Figure 5.5: The results of ReDiscover’s prediction score evaluation (Part 3).

The results of part three of our evaluation, shown in Figure 5.5, suggest that

ReDiscover’s prediction scores are highly correlated with the likelihood of a re-

lationship (Q3). ReDiscover’s average prediction scores were between 80-100 for

92% of the pairs where the duplicate, containment, template, complementation, and

reordered-rows relationships hold. For over 90% of the pairs lacking these relation-

ships, ReDiscover’s average prediction scores were between 0-20. ReDiscover was

4“The measure is not an average of the precision at standard recall levels. Rather, it is the
average of the precision value obtained after each relevant document is retrieved.” [71]
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able to produce such good prediction scores because of the ability of its SVMs clas-

sifiers to distinguish between classes with high accuracy, which is a result of the use

of distinctive relationship features and comprehensive training datasets. However,

our evaluation was on a subset of the relationship types and we might not do as

well on other types. Additionally, there are generally a lot more pairs without a

relationship than that with the relationship—5% of pairs without a relationship is

likely larger than 5% of pairs with a relationship. We can also conclude from the

results that our cut-off threshold of 30 for reporting results is quite reasonable—a

user would encounter very few false positives, while missing less than 3% of the

actual relationships.

In conclusion, the results of our evaluation shows that ReDiscover is a viable

approach for predicting relationships between scientific datasets in a collection.

ReDiscover achieved such performance because of its ability to compute distinc-

tive relationship features based on column summaries, column correspondences and

spreadsheet metadata. Furthermore, using Bloom filters to compute fast approx-

imation of categorical columns enabled ReDiscover to extract powerful features,

such as isAllBVofAContainedInB, avgDiceSimilarityforDuplicate and avgDiceSim-

ilarityforContainment. In the next chapter, we discuss research work related to

scientific data management (Section 6.1) and to the ReConnect (Section 6.2) and

ReDiscover (Section 6.3) systems.
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CHAPTER 6: RELATED WORK

To the best of our knowledge, we are the first to provide a methodology for helping

scientists determine connections between datasets in a collection in the absence of

explicit provenance or history. In this chapter, we provide a review of tools and

techniques, drawn from several research areas, related to our work. In the first sec-

tion, we address systems that scientists may use to manage collections of datasets,

and discuss why these systems are not adequate for determining which dataset to

select for a given task. In the second section, we address tools and techniques that

are similar or relevant to our relationship-testing approach (ReConnect). In the

last section, we review work related to the relationship-prediction methodology;

specifically we review data extraction techniques, schema matching using machine

learning, and summarizing categorical data using Bloom filters.

6.1 SCIENTIFIC DATA MANAGEMENT

Managing file-based datasets with database systems. Scientific data man-

agement systems, such as SciDB [21] and the Scientific Data Service framework

[31], can help scientists manage their research data. However, as is the case with

DBMSs, such systems require users to have a good technical background to be

able to do so. Furthermore, because these systems are based on multidimensional

arrays, the scientist has to convert his or her file-based datasets, such as spread-

sheets, into the multidimensional-array format. Thus, the scientist still needs help

with determining which dataset to convert to the formats that are compatible with

these systems.
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Other scientific data management systems attempt to manage file-based datasets

by attaching them to a database system. For example, Data Vaults, a scientific

data warehouse developed by Ivanova et al. [44], allows scientists to attach an ex-

ternal file repository to the DBMS, and then access the data and metadata of these

files using a query language. However, Data Vaults assumes that files contain raw

data in the form of CSV or standard scientific file formats, such as MSEED or

GeoTIFF, and is not equipped with data-extraction capabilities for files that may

contain semi-structured datasets, such as spreadsheets.

Alagiannis et al. [4] also recognize that an impediment for using database sys-

tems in scientific analysis applications is the complexity of loading data into a

database and the data-to-query time—the initialization cost of loading data and

preparing the database for queries. Their approach to overcoming such an im-

pediment is to fully integrate “row data” files in the database query engine. To

that end, they developed PostgresRaw, a database system that provides incre-

mental files data loading, on-the-fly indexing and caching to support faster future

queries and improve query performance. However, their approach requires that

the schema of a dataset must be known a priori, and—as is the case with Data

Vaults—it does not provide data extraction capabilities for files that may con-

tain semi-structured datasets. Furthermore, for a scientist to use PostgresRAW,

he or she must know how to write SQL queries, and understand how datasets

are connected. Our relationship-identification methodology automatically extracts

datasets from spreadsheets, and helps researchers decide how to work with data

stored in their file-based datasets by determining connections between them.

Several approaches [3, 8, 15, 19, 22–24] suggest converting spreadsheets into a

relational model to enable managing their data using relational databases and

data-integration tools. However, none of these approaches addresses the problem

of identifying which datasets of interest should be converted from a collection of

datasets. Some of these approaches can also lose valuable information that can be
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used in predicting relationships between datasets. For instance, Cunha et al. [24]

developed a system that attempts to fix spreadsheet errors by extracting their

true (normalized) relational schema. In the process of converting a spreadsheet’s

data into a relational schema, Cunhua’s approach loses the original spreadsheet

schema. Our relationship-identification methodology needs to preserve the original

schema in order to identify the original connections between spreadsheet data.

Additionally, Cunha et al. convert spreadsheet tables into sets of rows (relations)

in which the order of rows is not taken into account. Our methodology captures

dataset order and uses it in predicting ordered relationships such as prefix and

subsequence.

Version control systems (VCS). Ram [62] showed that VCSs, which are used

in the software industry to maintain software code repositories, can be leveraged

in managing scientific data such as datasets, experiment notes, and manuscripts.

The use of VCS tools, such as Github [37] and SourceForge [67], in science can

facilitate collaborations and enhance scientific data reproducibility.

Schopf [66] also proposes that data should be managed in a way similar to

how production software is managed. To better manage data and produce quality

data, Schopf argues that data should be treated as ongoing process. Such a pro-

cess considers that data are manipulated by several contributors; may go through

cyclical releases that include bug fixes, derivation history tracking and versioning;

and producing licensing and citation information with each version release.

While VCSs are very effective tools for keeping track of the history of mod-

ifications to files over time, which might reveal something about the connection

between a dataset and one of its earlier versions, that information does not neces-

sarily help with determining the relationship between versions on different branches

or between independent datasets.
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Data provenance and scientific workflow management systems (SWMS).

SWMSs enable scientists to organize and execute a serious of computational steps

(i.e., workflows) on data collected from several sources. Many of these systems,

including Kepler [7], SciCumulus [27], Chimera [35], VisTrails [13] and MyGrid

[69], are equipped with provenance-tracking functionality, which records important

provenance information to help scientists document the lineage evolution of their

data and the processes used to manipulate it.

Some SWMS systems track the provenance of both data objects and workflows.

For example, the Kepler scientific workflow system [7] collects provenance infor-

mation about the standard data lineage (i.e., derivation history), and the context

in which the workflow was executed. Other SWMS systems focus on collecting

provenance information about data objects. For instance, the Chimera virtual

data system [35] tracks the derivation path of a data product (i.e, dataset) to help

a scientist reproduce a derived data product, and to validate the results of an

experiment. Furthermore, there are systems that provide various capabilities for

tracking the evolution of a workflow from one version to the other. An example

of such systems is the VisTrails, which [13] provides several capabilities. First,

it allows users to explore variations in the design history of a workflow. Second,

it helps a user to determine whether two different workflows share any common

elements or if they were derived from the same root.

While provenance-tracking systems can aid scientists in uncovering relation-

ships (or connections) between their datasets, they cannot track provenance of data

processing outside of the provenance tracking system (offline processing). David-

son et al. [26] stated that “When such analyses [of intermediate workflow results]

are carried out by hand or automated using general-purpose scripting languages,

the means by which results are produced are typically not recorded automatically,
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and often not even recorded manually.” Consequently, determining connections be-

tween such intermediate results can help scientists bridge such gaps in the deriva-

tion history of their datasets. Our relationship-identification approach can detect

informative relationships that can help provenance-tracking systems infer offline

data-transformation activities.

6.2 RELATIONSHIP TESTING

We review work related to our relationship-testing methodology below. First, in

Section 6.2.1 we review change-inference tools that may be used for determining re-

lationships between two spreadsheets. We also address Record Linkage techniques

and discuss how they might be used to improve ReConnect. Then, in Section 6.2.2

we examine techniques that have influenced the way we designed ReConnect, such

as data profiling, and the Clio and Bellman systems.

6.2.1 Similar tools

Change-inference tools [16, 34, 56, 75] may help users understand simple relation-

ships between small spreadsheet instances. By using these tools, users may infer

relationships through analyzing the change lists they generate. As our evaluation

results show (Section 3.2.2), none of these tools can provide adequate help for

users in identifying simple relationships in spreadsheets with hundreds of rows or

columns. Furthermore, in the case of two spreadsheets that contain the same data

but have different row or column orders, current change-inference tools do not

detect that they have identical data.

The problem of Record Linkage (RL)—identifying records coming from differ-

ent sources and representing the same real world entity—has received significant

attention from statistics and computer-science researchers [32]. We believe that
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some RL techniques may be useful to extend our work in two ways. First, field-

matching techniques, including character-based techniques such as edit distance,

or token-based techniques such as Q-Grams with tf-idf [39], can be used to improve

our column-correspondence process by enabling ReConnect to better match sim-

ilar column headers. Second, we may be able to use record-matching techniques,

such as Automated Object Matching [76], to realize additional relationships (e.g.,

a near-match relationship suggested by one of our user-study participants). How-

ever, we still need to do a higher-level analysis of the results of RL techniques in

order to detect such relationships. Giving users back a matching list of identical

records still puts the burden upon them of analyzing the list to understand how

the datasets as a whole connect. As we showed in evaluating change-inference tools

(Section 3.2.2), ReConnect is working on an abstract level, allowing scientists to

understand connections among their datasets without having to analyze individual

records.

6.2.2 Relevant Techniques

ReConnect adapts Clio’s [41] idea of integrating users’ feedback in the schema-

mapping process. Clio, a semi-automated tool that maps column names of two

database tables, has an interactive user interface that allows users to dynamically

provide feedback on proposed schema mappings. As a result, users have full con-

trol over column mappings and can map similar schemata differently for various

purposes. After computing an initial column correspondence, ReConnect allows

users to correct the computed correspondence, which improves the accuracy of the

schema correspondence process and allows users to test various correspondences.

ReConnect also provides the explore sub-correspondence feature, which automati-

cally searches within the current correspondence for the sub-correspondence that

produces the largest set of common rows between spreadsheet pairs and reports

that correspondence to the user.
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Data profiling, the process of gathering and examining statistical summaries of

data to understand its structure and content, is commonly used in data cleaning

and data integration [10,61]. Data-cleaning applications use profiling information

to aid in analyzing different aspects of attributes’ quality. For example, the max

and min can be used to check whether or not the values of a given attribute

(data column) are within the expected range. In our work, we use data profiling

differently: as an aid in identifying attribute correspondences between two different

schemas, which is similar to the way it is used in data-integration applications [30].

The Bellman system [25] is a browser for complex databases that provides

tools and services to help users discover the structure of databases. ReConnect

collects the same statistics that the Bellman system collects, including the number

of rows, the number of distinct values in a column, the number of null values per

column, and the ten most common values in a column along with their respective

frequencies. However, the Bellman system uses this profiling information to help

data analysts understand the structure of a database, whereas ReConnect uses it

to help users connect columns correctly and to guide the process of relationship

identification.

6.3 RELATIONSHIP PREDICTION

The relationship-prediction methodology in ReDiscover builds upon a number of

techniques from several research areas, such as relational databases and machine

learning. In this section, we review techniques relevant to structured data extrac-

tion (Section 6.3.1), automatic schema-matching techniques (Section 6.3.2), and

categorical data summarization using Bloom filters (Section 6.3.3).
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6.3.1 Tabular Dataset Extraction

Our relationship-prediction methodology extracts tabular datasets from spread-

sheets and analyzes their data to recover information that can help a user in iden-

tifying the best dataset(s) to work with, or how to work with data stored in their

datasets (e.g, combining complementary datasets or removing redundant ones).

The work on recovering semantics of tables on the web by Ventetis et al. [72] is the

work most related to ours in this respect. They developed an approach for auto-

matically recovering semantics of tables on the web by 1) adding annotations to the

columns of a table, and 2) using these annotations to determine binary relation-

ships represented by the columns in that table. More specifically, their approach

labels a column A with class C (e.g, species, city) if the majority of the values in

A are labeled with class C in the isA database—a database that contains a set of

pairs of the form (instance, class). Then, it labels the relationship between a pair

of column (A, B) in a table with relationship R (e.g., is Known as, capital of ) if

the majority of pairs of values from A and B occurs in the relations database—a

database of triples of the form (argument1, predicate, argument2). Then, their

approach uses column labels and relationship labels to support table information

retrieval, ranking and other operations, such as combining related tables via joins

or unions.

Our approach is different for the following reasons. First, we use data-profiling

and Bloom filter techniques to summarize column values, and then we analyze

column summaries to determine column correspondences and to predict relation-

ships between datasets. On the other hand, Ventetis et al.’s approach examines

all the values of a column to determine their semantic labels. It also examines all

pairs of values between two columns to identify their relation label. Second, their

techniques use information extracted from the web, including the isA and relations

databases, to associate semantic information to structured tables on the web, and
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then use these recovered semantics to determine related tables. Our methodol-

ogy determines relationships between datasets by extracting indicative features

from the data stored in the datasets without relying on external sources. Lastly,

our approach targets scientific datasets stored in spreadsheets, while Ventetis et

al. target generic tables on the web. Nevertheless, we believe that we can use

recovered semantic information from tabular datasets to compute indicative rela-

tionship features that could improve the performance of our relationship-prediction

approach.

A number of researchers have proposed approaches for extracting data from

spreadsheets [3, 8, 15, 19, 22–24]. For example, the FlashRelate system [8] allows

spreadsheet users with no programming experience to convert ad-hoc data struc-

tures into relational ones. However, FlashRelate is not suitable for extracting data

from a large collection of spreadsheets because users need to provide positive and

negative examples of the desired relational structure from each spreadsheet.

Abraham et al. [3] also developed a system, called UCheck, for extracting tables

from spreadsheets. UCheck is based on a unit-reasoning technique that exploits

label and header information in spreadsheets to identify tables. This unit-reasoning

technique examines the extracted header information to validate the consistency

of cell data and formulas, which allows users to identify potential errors in their

spreadsheets.

Cunha et al. [22] developed ClassSheets, a tool that applies relational database

techniques to convert spreadsheets into the relational model, and it works as fol-

lows. First, ClassSheets detects all functional dependencies among spreadsheet

columns. Next, it attempt to filter as many accidental functional dependencies as

possible. Then, it uses the resulting functional dependencies to identify the rela-

tional schema with candidate primary and foreign keys. After that, it generates

and refactors the relational intermediate directed (RID) graph using the resulting

relational schema. RID is a graph data structure that represents the relationships
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between schemas in a relational model. The graph nodes represent schemas and di-

rected edges represent foreign keys between these schemas [22]. Lastly, ClassSheet

translates the relational graph into a ClassSheet (table). The goal of their work is

to automate the generation of refactored spreadsheets from the inferred ClassSheet

model. However, as is the case with UCheck, the Class Sheet work focuses on help-

ing users avoid spreadsheet errors. Further, by converting spreadsheets into the

relational model, ClassSheet might discard important information, such as row

order and the original spreadsheet schema, which ReDicsover uses in predicting

relationships.

ReDiscover adapts SENBAZURU’s [19] idea of using CRFs in extracting spread-

sheet data. SENBAZURU extracts relational data from spreadsheets and offers

several relational operations over the extracted data. However, there are two fun-

damental differences between ReDiscover and SENBAZURU. ReDiscover operates

on finer level of granularity (spreadsheet cells) than SENBAZURU, which oper-

ates on spreadsheet rows. As a result, ReDiscover can detect data columns that

are stacked vertically or horizontally, whereas SENBAZURU assumes that data

frames can only stack vertically. Second, SENBAZURU is designed with the goal

of inferring hierarchical structures from data-presentation spreadsheets, such as

spreadsheet reports downloaded from the web (e.g, U.S. Census Bureau reports).

These spreadsheets often contain processed data developed when organizing data

for human consumption. Figure 6.1 shows an example of a data-presentation

spreadsheet, which contains information about the United States population be-

tween 1950 and 2009 [14]. The first column of this spreadsheet represents four

different demographics: sex, race, Hispanic origin and year. The goal of such data

formatting is to help humans understand the presented information in a compact

and easy to understand way. Consequently, data-presentation spreadsheets often

have derived fields (e.g., sums, averages), and they are often organized as hier-

archical cross-tabs, which is not common for raw data. In our work, we focus
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Figure 6.1: An example of data-presentation spreadsheet: Resident population,

by age, sex, race, and Hispanic origin: United States, selected years 1950-2009 (A

partial picture of the original spreadsheet). Source: [14].

on data-collection spreadsheets that scientists commonly use for collecting tabular

data (often as raw data).

Conditional random fields were also used for extracting tables from text doc-

uments. Pinto et al. [59] developed a CRF model that uses text content (e.g.,

alphabet characters, digit characters) and layout (e.g., white-space gaps, separator

characters: +, −, :, !, =, ∗) as features for labeling each line of a text document

with one of the following tags.
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• Non-extraction labels for text lines that are not part of a table.

• Header labels for lines that contain a table’s column names.

• Data row labels for lines that contain data cells.

• Caption labels for lines that appear below data but apply to the table.

Pinto et al.’s approach is different from ours because 1) as is the case with SEN-

BAZURU, it assumes that data tables can only stack vertically, 2) our approach

extracts data columns from spreadsheets, where as Pinto et al.’s approach extracts

tables from text files, and 3) ReDiscover’s Label Cells process uses a more compre-

hensive set of features, including layout, text, content and context features, than

those used in Pinto et al.’s approach.

6.3.2 Automated Schema Matching Techniques

Rahm et al. [60] presented a taxonomy that covers several automated schema-

matching approaches, and classified them based on various criteria. Figure 6.2

shows their classification. We also highlighted in blue the schema-matching cate-

gories that applies to our approach. We discuss Rahm et al.’s classification criteria

below.

• Individual versus combinational matchers: individual matching techniques

use a single schema-matching algorithm, whereas combinational techniques

are either hybrid matchers, which match schemas based on multiple criteria,

or composite matchers, which use multiple independent schema-matching

algorithms to match two schemas, and then combine the results of all al-

gorithms to identify the best matching. ReDiscover’s column-matching ap-

proach is classified as an individual-matcher technique, as it only use a single

matching algorithm.
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Figure 6.2: The classification of ReDiscover’s schema-matching approach based on

Rahm et al.’s taxonomy (Highlighting was added). Source: [60].

• Schema- versus instance/content-based: schema-based techniques consider

only schema information, such as column names, types and constraints,

whereas instance-based techniques use attribute values or statistics derived

from them to determine correspondence between schema attributes. Since

our column-matching approach uses column names and column statistics, it

can be classified as both schema-based as well as instance-based approach.

However, ReDiscover compares column summaries of a pair of columns, and

not their individual data values.
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• Structure- versus element-level matching: structural schema-matching tech-

niques compare groups of schema elements, such as tables, while element-

matching techniques identify pairwise correspondence between individual el-

ements, such as attributes. Our schema-matching approach can be catego-

rized under element-matching techniques, as it only matches individual data

columns.

• Linguistic-based: schema-matching techniques under this category use names

of schema elements (e.g., column names) and other text descriptions to de-

termine the correspondence between two schemas. Our approach is classified

as linguistic-based because the SVM model of the Match Columns process

uses column-name similarity in determining corresponding columns.

• Constraint-based: such approaches use schema constraints, such as data

types, value ranges, value uniqueness, cardinality and referential integrity

between schemas. ReDiscover’s column-matching approach can be classified

as constraint-based approach, as it uses information such as min and max

values, row count, unique and nulls values in matching a pair of data columns.

However, because we extract tables from spreadsheets, there is no referential

integrity information that we can use.

• Matching cardinality: does a schema-matching technique produce one-to-one

mappings? Or does it produce one-to-many (or many-to-one) mappings? The

matching cardinality of ReDiscover’s column-matching approach is one-to-

one.

Several instance-level matching approaches [29, 30, 51–53] use machine-learning

techniques, such as neural networks and traditional classification methods, as fol-

lows. First, value instances of the first schema are characterized and matched, on

a one-to-one basis, with value instances from the second schema. Then, the re-

sulting per-instance match results are merged and abstracted to the schema level.
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Our approach is different because we do not match columns based on one-to-one

instance matching between column values. Instead, we match columns based on

similarity vectors, which summarize all the instances in a data column.

The instance-level approach most closely related to ours is the one used in

SEMINT system [53]. SEMINT matches attributes between two database schemas

by first computing matching signatures derived from schema information (e.g.,

attribute name, data type, field length, primary key, foreign key), and data contents

and statistics (e.g., minimum, maximum, average, standard deviation). Then, the

SEMINT system clusters attributes based on the Euclidean distance between their

matching signatures. While SEMINT and ReDiscover both use attribute (column)

statistics for matching, they are different in several aspects. First, the SEMINT

system identifies corresponding attributes in different DBMSs that represent the

same real-world information, hence it works on well-defined tables, and utilizes

schema information such as primary and foreign keys. In contrast ReDiscover

matches the columns of semi-structured tabular datasets stored in spreadsheets.

Second, SEMINT statistics are computed from a small sample of an attribute’s row

values, whereas ReDiscover computes statistics from all the row values of a column.

Lastly, for matching character data, SEMINT computes statistics on the number

of bytes used to store that data. ReDiscover uses Bloom filters to approximate

similarity between bit vector representation of categorical data.

Most of the work on schema matching has focused on a particular data model

(e.g., databases, XML documents) or application (e.g., data integration, data ware-

housing). Thus, the design decisions of such schema-matching techniques are signif-

icantly influenced by the application domain. For instance, schema-matching tech-

niques for data-integration applications are designed to determine similar schema

structures from a set of well-defined tables that often model similar real-world

concepts. In contrast, ReDiscover’s schema-matching approach is designed with

the goal of determining column correspondences between ill-structured tabular
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datasets that model a variety of concepts. Further, we are working in situation

where some datasets are unrelated, and we do not know that a priori.

Techniques used in foreign-key discovery, which are aimed at detecting seman-

tic association between primary- and foreign-key attributes (columns) in relational

databases, are also relevant to ReDiscover’s column-matching technique. Rostin

et al. [64] presented a machine-learning approach that computes all inclusion de-

pendencies (IND) between attributes to find candidate foreign keys. Then, it uses

a binary classification algorithm to determine the true INDs, and hence the true

foreign-key attribute pairs. While ReDiscover and Rostin’s approach share some

features for detecting column association (matching), such as column-name simi-

larity, value-range inclusion and table-size ratio (the ratio of the number of rows

in two columns), Rostin’s features are engineered for detecting foreign-key associa-

tions. Consequently, these features are not adequate for general semantic matching

between columns. On the other hand, ReDiscover uses a set of features that mea-

sure similarity between columns statistics and Bloom filters of two columns, and

hence are more suitable for detecting general column correspondence, as we dis-

cussed in Section 4.2.4.

6.3.3 Similarity Detection using Bloom Filter

In this section we discuss related techniques that use Bloom filters for set (or string)

similarity detection. Jain et al. [45] developed a technique for detecting duplicate

(or near duplicate) documents in the results of a search engine. They use Bloom

filters to detect similar documents by first using Content-Defined Chunks (CDC)

to extract modification-resilient document features. Then, they use these features

to compute a Bloom filter for each document. Next, to detect whether two doc-

uments are near-duplicate, they compare the Bloom filter of one document with

that of another by computing the bit-wise AND between them. As we discussed in

Section 4.2.4, ReDiscover also uses Bloom filters for computing similarity (between
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two columns). However, we use the estimated Dice similarity coefficient for mea-

suring similarity between two Bloom filters. Further, ReDiscover uses Bloom filters

for summarizing column content, where as Jain’s approach uses it for summarizing

web-document content.

Schnell et al. [65] proposed a method for linking the records of multiple databases

with additional information about the same person (patient). Because in the medi-

cal field it is very important to maintain the confidentiality of patients records, they

use Bloom filter for encrypting patient information (e.g., patient name) as follows.

First, they split each record identifier into sets of consecutive bigrams (2-grams).

Then, they compute a Bloom filter for all the bigrams of an identifier. Lastly, they

use the Dice coefficient to compute similarity between the Bloom filters of the

record identifiers they are trying to link. While Schnell’s approach and ReDiscover

share the use of the Dice coefficient for computing similarity between two Bloom

filters, the Bloom filters in the two methods represent different objects. In ReDis-

cover, Bloom filters represent the content of a data column, whereas in Schnell’s

approach they represent bigrams of a person’s record identifier. Additionally, the

two approaches use Bloom filters for different purposes. In ReDiscover, it is used to

summarize data columns to avoid extensively analyzing individual column values

when computing similarity between columns, while in Schnell’s approach, it is used

mainly for preserving the confidentiality of patient-record identifiers. Further, we

use n-grams as a way of encoding some order information into Bloom filters.
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CHAPTER 7: FUTURE WORK, FURTHER APPLICATIONS, AND

CONCLUSIONS

In this study we explored the problem of determining relationships between scien-

tific datasets in a collection of spreadsheets, introduced a relationship-identification

methodology as a solution, and developed two prototype systems to asses our

methodology. We first developed ReConnect, a tool for identifying relationships be-

tween two datasets. Encouraged by its methodological evaluation and the promis-

ing results from our user study, we then extended our methodology to predict

relationships in a collection of datasets. We developed ReDiscover, an end-to-

end prototype system that predicts, from a collection of datasets, related pairs

and their possible relationship. The preliminary evaluation of ReDiscover shows

promising performance and areas for further investigation.

Informed by the feedback we received from our user study subjects, our research

collaborators, observations we made from analyzing the datasets we gathered and

the results of our evaluation, we have identified a number of new research directions.

We also recognized several other application domains for our methodology. In

this chapter, we discuss future extensions of our work (Section 7.1), explore other

application domains for our relationship-prediction methodology (Section 7.2), and

lastly conclude this dissertation in Section 7.3.

7.1 FUTURE WORK

This work focused on determining pairwise connections between scientific datasets.

The first direction we want to explore in the future is extending our methodology
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to detect multi-dataset connections (Section 7.1.1). The second direction for ex-

ploration is scaling to enterprise-level collections of datasets (Sections 7.1.2). The

third direction is enhancing the relationship-prediction performance of ReDiscover

(Section 7.1.3). The last direction we discuss is integrating ReConnect with Re-

Discover to provide users with the ability to predict and validate relationships with

a single system (Section 7.1.4).

7.1.1 Multi-Dataset Connection Identification

As individual relationships are discovered, we can use that information to make

further inference about multi-dataset connections. A connection is identified based

on a certain combination of pairwise relationships. For example, if dataset A

contains B, and C duplicates B, then A contains C as well.

Another future direction would be the identification of the concatenation con-

nection among multiple datasets in a collection. If spreadsheet Y was formed as

the concatenation of spreadsheets {X1, ..., Xn}, or a subset of these spreadsheets,

then the following relationships exists:

a. some Xi is a prefix of Y , where 0 < i ≤ n,

b. some Xj is a suffix of Y , where 0 < j ≤ n,

c. zero or more Xk are infixes of Y , where 1 < k < n, and

d. all Xl are pairwise disjoint and ∪Xl=Y , where 1 ≤ l < m (where m is the

total number of spreadsheets involved in the concatenation).

We are also considering a graph of the relationships discovered so far in a

collection to show to the user, such as the one shown in Figure 7.1. Such a

graph would show related datasets and could include several sub-graphs, each

of which represents a group of related datasets within a collection. The advantage

of the graph feature is that it would provide the user an overview of his or her
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Figure 7.1: An example of a graph of predicted relationships in a collection.

collection and help her determine which pairs to select for analysis, publishing

or sharing efficiently. The graph feature is especially important when analyzing

very large (enterprise-level) collections of datasets. We discuss the challenges and

opportunities for scaling to larger dataset collections in the next section.

7.1.2 Scaling to Large Dataset Collections

In this work, we focused on the feasibility of automating our relationship-prediction

methodology, and we targeted collections arising from individual scientists and

small groups of researchers. In the future, we want to scale our methodology to

larger (possibly enterprise-level) collections of datasets. As we discussed in Sec-

tion 4.2, ReDiscover’s architecture is designed to scale, as it avoids extensive ma-

nipulation of individual values and only uses bounded-size feature summaries for

comparison on O(n2) tasks. The main consideration in scaling for larger dataset
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collections is the ability to parallelize our system. The first three processes of

ReDiscover (Label Cells, Extract Columns and Compute Column Summaries) op-

erate on a per-dataset basis, thus we can easily run these processes for multiple

datasets in parallel.

The second part of ReDiscover (Match Columns and Predict Relationships)

operates on a per-dataset-pair basis. For this part, we have tried to bound the

computation time on pairwise operations by working with column summaries. As

pairs can be considered independently, parallelism can probably help us scale to

thousands of datasets, exhaustively comparing millions of pairs. After that, we

need a way of avoiding the n2 comparisons.

The first possible approach that we plan to investigate to avoiding the n2 prob-

lem is based on blocking techniques from Entity Resolution (ER)—the task of

matching and linking different instances of the same real-world entity [36]. ER

techniques also struggle with the n2 problem as they need to consider all possible

entity pairs in a large collections. Blocking reduces the number of entity compar-

isons by grouping similar entities and comparing only entities in the same group.

(Groups can overlap.) In particular, meta-blocking techniques, such as the su-

pervised meta-blocking technique [58], looks promising for our application. This

technique applies supervised learning algorithms to develop classification mod-

els for quickly distinguishing between redundant or superfluous comparisons and

promising comparisons. Such a technique can significantly reduce the number of

comparisons and hence allows for scaling to large dataset collections.

Figure 7.2 shows one way of applying blocking techniques to scale our approach.

First, ReDiscover computes a Bloom bit-vector for each data-column in a dataset.

Then, it clusters similar columns together based on their bit-vectors. Next, ReDis-

cover uses the resulting column clusters to group related datasets, which are the

datasets with columns that share the same cluster. More specifically, each group

of columns (C) induces a group of datasets (D). That is, D(C)={d ∈ D | ∃ c ∈ C
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Figure 7.2: A possible approach for using blocking techniques to scale ReDiscover.

and c is a column of d}. Now that related datasets are separated into smaller

groups, ReDiscover can distribute these groups to several nodes and process the

last two stages, Match Columns and Predict Relationships, for the resulting groups

simultaneously.

Another way of applying blocking would be by adapting an Information Re-

trieval (IR) approach, namely document retrieval, to deal with the n2 problem.

Our approach would treat every dataset in the collection as a document, and its

column values as terms. Then, the approach builds a full index for all documents

in a collection. Next, using the index, ReDiscover computes the top-k matching

datasets for each dataset in the collection. Because it only considers a dataset and

the top-k best-matching datasets for potential pairs, ReDiscover would reduce the

number of datasets to process for relationship prediction. Document search itself

can be parallelized by term or document [57]. ReDiscover could also create an index
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of terms and the documents in which they occur to cluster related datasets. Such

an index would help ReDiscover group documents based on the number of shared

terms, and process the last two stages of the relationship-prediction approach for

several clusters in parallel. However, these methods are based on heuristics and

might miss related pairs.

7.1.3 Improving ReDiscover’s Prediction Performance

We discuss here ways of further improving ReDiscover’s prediction performance,

including evaluating relationship-prediction features, conducting further user stud-

ies, improving column matching, and exploiting other spreadsheet features.

Evaluating Relationship-Prediction Features

While the results of ReDiscover’s preliminary evaluations showed promising relation-

ship-prediction performance, we believe that there is still room for improving its

accuracy and efficiency. However, there will be always a trade-off between accuracy

and efficiency: fewer features means faster classification time, but less classification

accuracy. We can identify the best balance between accuracy and efficiency by ex-

amining the relative performance of various combinations of relationship-prediction

features.

In the future, we want to experiment with several combinations of existing

and new relationship-prediction features, such as features based on spreadsheet

formulas. For each combination (feature set), first we will need to use it to train

a new SVM model. Next, we will use the new classification model to examine its

relationship-prediction accuracy and its classification time, which is the average

time to classify a pair of datasets. Lastly, we will select the feature set that

produces the best balance between prediction accuracy and classification time.



119

Conducting Further User Studies

In this work, we compared ReDiscover to an approximated human baseline ap-

proach (Section 5.3.1), to see whether its predictions were better than strategies

that a human might use to identify relationships between pairs of datasets in a

collection. In the future, we would like to conduct additional user studies to 1)

evaluate the usefulness of ReDiscover in simplifying the task of determining related

pairs of datasets in a collection, 2) receive feedback from the study participants

about their experience with ReDiscover, and 3) receive feedback about ways of

improving ReDiscover functionality and user experience.

Improving Column Matching

Exploiting user feedback. The results of ReDiscover’s preliminary evaluation

(Section 5.1) showed that cell labeling and column matching are important for

accurate relationship predictions. However, semi-structured data extraction and

schema matching are hard problems. Even limited feedback from users can signif-

icantly improve these tasks. Currently, ReDiscover allows users to fix cell-labeling

errors and retrain the labeling algorithm to avoid similar labeling errors in its fu-

ture predictions. We plan to also exploit users’ feedback in column matching by

implementing a visual column-correspondence user interface (UI). This UI will en-

able users to quickly repair column mappings. User repairs can be used to retrain

our Match Columns classifier as well.

Handling ambiguous column matching. In Section 4.2.4, we discussed column-

correspondence ambiguity issues and introduced the Enhance Column Correspon-

dence method (Algorithm 3), which removes ambiguity by ensuring that the result-

ing column correspondence consists of only one-to-one mappings. However, when

reducing a one-to-many mapping, ReDiscover favors the mapping with the highest

score without considering the effect of selecting such a mapping on the quality
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of the overall resulting column correspondence. Thus, the Enhance Column Cor-

respondence algorithm is characterized as a greedy method that makes locally

optimum choices without guarantying global optimality. We want to enhance this

algorithm by generating several enhanced column-correspondence alternatives and

choosing the one that produces the best overall column-correspondence score.

Improving column matching for datasets with limited-domain columns.

Our current column-matching approach does not perform well with datasets that

consists of several limited-domain columns—columns with few domain values. For

example, assume that dataset A has Animal Category and Animal Category2

columns and dataset B has Animal Class and Animal Class2 columns. The Animal

Category and Animal Category2 columns of A closely resemble both Animal Class

and Animal Class2 of B. Consequently, ReDiscover would match column Animal

Category to columns Animal Class and Animal Class2, and Animal Category2 col-

umn to Animal Class and Animal Class2, as the summaries of these columns are

very similar. Using value-mapping (instance-based) matching techniques can aid

in removing ambiguous column mappings, and hence enhance column-matching

accuracy. An example of such techniques was proposed by Jaiswal et al. [46].

They developed a schema-matching tool that leverages value-mapping to enhance

schema matching for schemas with opaque column names and opaque data in-

stances for numerical and categorical columns. Opaque means “when it is difficult

to understand the semantics of the data values [of a column] from its name” [46].

Exploiting Other Spreadsheet Features

Because scientists may use spreadsheets’ cell formulas and comments, we plan to

incorporate this information into the process of relationship prediction. For in-

stance, ReConnect might check if an added column contains derived data by first
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checking if the values of that column are computed from formulas, and then de-

termine whether these values are uniformly computed from other columns. Such

an enhancement can also address the issue of formulas interfering with detecting

relationships. ReDiscover could also use formulas to determine columns with com-

parable types. For instance, the formula B4 + C4 may indicate that columns B

and C have comparable types. Additionally, ReDiscover could check if datasets

match when computed columns are excluded, and if so it could suggest “equal on

non-computed columns” relationship.

We can also exploit spreadsheet formulas in detecting related datasets. Even

though in scientific spreadsheets formulas rarely contain references to cells in other

sheets within a spreadsheet or in other spreadsheet documents, knowing such in-

formation can help ReDiscover identify datasets that may be related to the dataset

being examined. For example, suppose we have three spreadsheets, A.xlsx, B.xlsx,

and C.xlsx, each of which contains water temperature readings for a set of water

samples at different points in time. Suppose we also have spreadsheet D, which

uses the following formula to compute the average water temperature for this set

of water samples stored in spreadsheets A, B, and C:

AV ERAGE([A.xlsx]WSample1!$B$2, [B.xlsx]WSample2!$B$2,

[C.xlsx]WSample3!$B$2)

From this formula, ReDiscover can determine the spreadsheet names (A.xlsx,

B.xlsx, and C.xlsx), sheet names (WSample1, WSample2 and WSample3) and

column addresses (!$B$2) of the related datasets. Such information can be used

as features for the column-matching and the relationship-prediction classifiers.

7.1.4 Integrating ReConnet with ReDiscover

A future extension of our work is to combine ReDiscover with ReConnect to form

a full relationship-identification system. Such a system would enable scientists
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to predict and test for relationships in large collections of spreadsheets in an inte-

grated environment. It would help scientists decide how to work with their datasets

by suggesting possible operations on datasets based on discovered relationships.

For instance, when the system identifies the complementation relationship between

two datasets, it could suggest combining their data into one dataset via a join.

Furthermore, during the second part of our user study, several scientists sug-

gested that ReConnect should combine tabular datasets or remove irrelevant datasets

based on the suggested relationships. Thus, we plan to extend our methodology

so that it suggests and follows a course of action based on the relationships that it

identifies. For instance, the relationship-identification methodology might be able

to join complementary information in a table, and create data views that reduce

data duplication and complexity.

7.2 FURTHER APPLICATIONS

In this work we focus on detecting relationships that would result from the kinds

of activities that scientists perform when operating on scientific datasets stored in

spreadsheets. However, spreadsheets are also used to store other types of tabular

datasets, such as statistics, budgets, and sales reports. It seems obvious to ask

here whether our methods would work with such datasets. While ReDiscover can

detect instances of the current relationships between data in such spreadsheets,

the types of relationships that exist and their likelihood in other domains might

differ from what is common in scientific spreadsheets.

We can separate the applicability of our techniques to spreadsheets from other

domains into four categories: applications with similar relationships, applications

with new relationships, applications with new relationships requiring new features,

and applications that use different data organizations.
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7.2.1 Applications with Similar Relationships

We could apply our system as is to applications where users perform activities on

their datasets similar to those performed by scientists. User activities, such as

adding or deleting rows or columns, filling in missing values, and reordering data

would produce the same relationships, such as containment, augmentation, and

duplicate, that exist between scientific datasets.

One such application could be in marketing where a group of market ana-

lysts is collecting a list of hotels to help a client make informed decision about

establishing a new hotel. These analysts use spreadsheets to create, manipulate

their list of hotels by adding or deleting rows (e.g., hotels) or columns (e.g., hotel

rating, room types, price per night, etc.). They could use ReDiscover as is to

detect relationships, such as row-containment, augmentation, and complementa-

tion, between their datasets. For example, they could use ReDiscover to detect

the complementation relationship between their datasets to identify datasets that

have complementary information about similar hotels.

7.2.2 Applications with New Relationships

Another class of application domains is where users perform actions that pro-

duce new kinds of relationships, but where we can still use the same column and

spreadsheet-metadata features to detect these relationships. For such applications,

we only need to update the Predict Relationship process of ReDiscover. We can

do that simply by training new SVM models to predict these new relationships

using new combinations of existing features.

An example of this domain is applications where users need to manage and an-

alyze government data and statistics stored in spreadsheets. As a result of users’

activities on these datasets, several new relationships could arise among them.

For instance, a dataset about unemployment rates by state might extended by
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adding new columns for new months. But there might be revised values for pre-

vious months, so the containment relationship does not hold between the original

dataset and its extended versions. An economic analyst might want to determine

if there are extended versions of the dataset he or she is currently working with.

To detect such a relationship, we would train an SVM using combined features

from augmentation and the various containment relationships to predict the new

“revised” relationship.

Figure 7.3: An example of two versions of a dataset about home maintenance

costs, with a near-match relationship. The values of Cost column of dataset Main-

tenance V1 has been rounded to the nearest dollar in Maintenance V2 dataset.

In Figure 7.3, we show another example of two datasets with a near-match

relationship, which is a relationship that was suggested by one of our user study

participants (see Section 3.2.1). The rows of the Cost column of both Maintenance

V1 and V2 datasets are equal within $1, because Cost column values from Mainte-

nance V1 has been rounded to the nearest dollar in Maintenance V2. ReDiscover

could use existing column summaries, such as mean and standard deviation, for

detecting the near-match relationship.
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7.2.3 Applications with New Relationships Requiring New Features

Figure 7.4: An example of using Bloom filters for computing indicative features

for the bag-row-containment relationship.

There are applications where user actions could produce relationships that re-

quire new features. These features would require computing new column sum-

maries, or adjusting column-matching or some other component of ReDiscover.

An example of such domain is when users need to determine if a dataset with

duplicate rows is row-contained in another dataset. This relationship is different

from the set-based row-containment that ReDiscover predicts, as it is based on

bag semantics (i.e., duplicate rows are considered). Thus, using the existing row-

containment features is not enough for predicting the bag-based row-containment

(bag-row-containment) relationship, as these features are based on Bloom filters,
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which do not consider duplicates. Notice that if the bag-row-containment relation-

ship holds between two datasets, then row-containment must hold as well. Thus,

we would only need to predict the bag-row-containment between datasets with the

row-containment relationship.

In Figure 7.4, we show how we can use Bloom filters for computing an indicative

binary feature, isBagContained, for the bag-row-containment relationship. First,

for each column, we append each of its values with the repetition count of that value

in the column. Next, we compute a Bloom filter for each of the appended columns.

Then, we test to see if the Bloom filters of dataset A columns are contained in

their corresponding columns in B. Lastly, the isBagContained feature is set to one

when all of A’s Bloom filters are contained in their corresponding Bloom filters of

B’s columns.

7.2.4 Applications with Different Data Formats

There are also applications where the nature of the data is fundamentally different,

and for which perhaps all of ReDiscover’s components would have to be revised.

Many such applications use spreadsheets that are developed when formatting data

for human consumption. Often, these spreadsheets contain tabular datasets with

row and column labels, and have subtotals, averages, and percentages at various

cells in a column.

Figure 7.5 shows an example of a project-budget-report spreadsheet5 with row

(Project Design, Project Development, etc.) and column (PROJECT TASKS,

LABOR HOURS, etc.) labels. It also has row totals (TOTAL PER TASK), and

column subtotals at various points in the columns. We might want to just extract

the base data in each column and leaving behind the derived data.

The current version of ReDiscover extracts cell formulas, which could help

5Source: Micrsoft Excel 2013 Templates. The “Project Budget” template.
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Figure 7.5: A sample spreadsheet with vertical and horizontal labels and subtotals.

distinguishing based from derived data. However, we still need to develop new

routines for analyzing extracted formulas to distinguish between the two. We also

need to update the Label Cells process of ReDiscover to handle row labels when

labeling a dataset’s cells.

Outside of the relam of spreadsheets, we want to explore the applicability of

the relationship-identification methodology to tabular datasets originating in other

settings, such as DBMSs. A straightforward way for our tool to detect the same

relationships in ordered-table datasets that originate in other formats is to convert

these formats into spreadsheet format. However, the relationships that may exist

between datasets in different formats could be different in kind and likelihood based

on the tools used to generate that format. For example, with spreadsheet tools,

cutting and pasting a column is easy, but it is not as easy in a DBMS environment.

In an DBMS, it is easy to remove rows according to a complex predicate, though

that is not as easy with a spreadsheet tool. Furthermore, researchers tend to create
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a spreadsheet for each run of an experiment or an observation session, whereas in

a DBMS they would not necessarily create a new table. Consequently, certain

relationships are likely to exist between datasets that were generated by one tool

may not exist between those that were produced by another

7.3 CONCLUSION

File-based scientific datasets proliferate as a result of scientists’ activities, such as

sharing datasets with collaborators and receiving versions with modifications, and

copying datasets for backup and analysis purposes. Consequently, scientists can

lose track over time of how their datasets are connected. Hence it is challenging for

them to determine which datasets are best for a given task or how to work with the

data stored in their datasets. Frustrated by the complexity and the time it takes to

manually identify connections among their datasets, especially in large collections,

scientists may select outdated or incomplete datasets, or even forego the planned

task. Existing scientific data-management-systems focus on managing datasets

stored in DBMSs. However, the problem of managing file-based scientific datasets

has not received much attention by the data-management research community.

In this dissertation, we present a relationship-identification methodology as a

solution to this problem. We articulated a set of relationships, such as augmenta-

tion, complementation, and duplicate, that can help scientists determine the origi-

nal connections among their datasets. To examine the feasibility of our approach,

we developed ReConnect, a semi-automated tool for identifying relationships be-

tween two datasets. ReConnect relies on users to specify the location of a dataset

in a spreadsheet, and to help with matching the columns of a dataset pair. Then,

it suggests possible relationships based on how the columns of two datasets corre-

spond. Users can select the relationship they would like to validate, and then Re-

Connect generates SQL queries to test for the relationship. Our user study results

showed that subjects found ReConnect useful, and that determining relationships
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with ReConnect was easier and less error-prone and time-consuming than visually

inspecting their datasets. We also evaluated the effectiveness of ReConnect and

four change-inference tools in identifying relationships between spreadsheets. We

found change-inference tools are difficult to use for this task. ReConnect offers a

“set at a time” approach for determining connections between spreadsheet pairs,

while the other tools are row-, column- or cell-oriented — which does not scale as

spreadsheets become larger. ReConnect works on a more abstracted level than the

other tools, which can help users understand connections more easily.

Encouraged by the results of ReConnect’s evaluation, we extended our approach

to handle collections of datasets, and developed a prototype system, ReDiscover,

that automatically predicts, from a collection of datasets, the pairs that are likely

related and the relationship between them. ReDiscover extracts data columns

from spreadsheets, summarizes data in these columns by computing statistics and

bit-vectors (Bloom filters), and uses these summaries to match columns of dataset

pairs. Then, it uses column summaries, the column-correspondence and spread-

sheet metadata to predict relationships between dataset pairs. Our evaluation of

ReDiscover showed that it predicted relationships with good accuracy, and that it

outperformed an approximated human-based approach, which encodes the strate-

gies that a human might use to identify the tested relationships. We believe that we

can further improve ReDiscover’s performance by implementing the enhancements

we discussed in Section 7.1.

While this work focuses on the feasibility of automating our relationship-prediction

methodology, and targets spreadsheet collections of individual scientists and small

groups of researchers, our techniques are designed with scalability in mind. Scaling

our relationship-prediction methodology to handle very large collections of datasets

will broaden its applicability in other domains. Several colleagues in the data man-

agement community, who reviewed our work, saw the potential for applying our

techniques to spreadsheets in other domains, such as business. One step in this
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direction is to implement and experiment with the blocking techniques that we

discussed in Section 7.1.2.

Nevertheless, our methodology already has significance, especially for scien-

tists, who lack the technical skills or financial resources to use relational database

systems. Such scientists rely heavily on spreadsheets, and need tools that can help

them overcome impediments to sharing their data or deciding how to work with

it. As one of the anonymous reviewers for the International Conference on Data

Engineering stated “It is true that in enterprise and scientific settings, a large per-

centage of the actual data reside in spreadsheet[s]. So any solution that is able to

extract these data and make them useful beyond the confines of the spreadsheet

itself makes an important contribution.”
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APPENDIX A: CELL FEATURES

Cell Context Features

Feature ID Description

is left alpha Does the left cell contain alphabetical char-

acters only?

is left num Does the left cell contain numbers only?

is left alphanum Does the left cell contain alphanumerics?

is left header Is the left cell content in the list of column

headers?

is left empty Is the left cell empty?

is right alpha Does the right cell contain alphabetical char-

acters only?

is right num Does the right cell contain numbers only?

is right alphanum Does the right cell contain alphanumerics?

is right header Is the right cell content in the list of column

headers?

is right empty Is the right cell empty?

is above alpha Does the cell above contain alphabetical

characters only?

is above num Does the cell above contain numbers only?

is above alphanum Does the cell above contain alphanumerics?

is above header Is the cell above content in the list of column

headers?
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is left empty Is the cell above empty?

is below alpha Does the cell below contain alphabetical

characters only?

is below num Does the cell below contain numbers only?.

is below alphanum Does the cell below contain alphanumerics?

is below header Is the cell below content in the list of column

headers?

is below empty Is the cell below empty?
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Cell Layout Features

Feature ID Description

is merge cell Is the cell merged with other

cells?

is left align. Is the cell aligned to the left?

is right align. Is the cell aligned to the right?

is center align. Is the cell aligned to the center?

is font italic Is the cell font italicized?

is font underlinedIs the cell font underlined?

is font bold Is the cell font bold?

Cell Text Features

Feature ID Description

is alpha Does the cell contain only alphabetical char-

acters?

is alpha Does the cell contain only numerical charac-

ters?

is alphanum Does the cell contain alphanumerical charac-

ters?

is empty Is the cell empty?

is all small Are all alphabetical characters small?

is all Capital Are all alphabetical characters capital?

starts capital Is the first character capital?
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Cell Content Features

Feature ID Description

is in nulls Is the cell content in the list of default nulls?

is in headers Is the cell content in the list of column header

terms?

contain colon Does the cell contain a colon?

contain special Does the cell contain any special characters?

is long text Does the cell contain more than 40 charac-

ters?

in year range Is the cell content a number between 1900

and 2050?



145

APPENDIX B: REDISCOVER’S COLUMN SUMMARIES

Description of the column summaries collected by ReDiscover.

Summary Name Description

column id The column header name and column location in-

formation: spreadsheet and sheet names, the order

of the column, and the address of the first and last

cell in that column

col type The inferred data type of the column

row count The count of row values of the specified column

unique The count of unique values of the specified column

null The count of null values of the specified column

max val The maximum value of the specified column

min val The minimum value of the specified column

mean The average of the values (for numerical columns)

of the specified column

Std dev The standard deviation of the values (for numeri-

cal columns) of the specified column A and B.

common val 0 The first most common value in the specified col-

umn

cv0 freq The frequency count of the first most common

value in the specified column

common val 1 The second most common value in the specified

column
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cv1 freq The frequency count of the second most common

value in the specified column

common val 2 The third most common value in the specified col-

umn

cv2 freq The frequency count of the third most common

value in the specified column

common val 3 The fourth most common value in the specified

column

cv3 freq The frequency count of the fourth most common

value in the specified column

common val 4 The fifth most common value in the specified col-

umn

cv4 freq The frequency count of the fifth most common

value in the specified column

common val 5 The sixth most common value in the specified col-

umn

cv5 freq The frequency count of the sixth most common

value in the specified column

common val 6 The seventh most common value in the specified

column

cv6 freq The frequency count of the seventh most common

value in the specified column

common val 7 The eighth most common value in the specified

column

cv7 freq The frequency count of the eighth most common

value in the specified column
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common val 8 The ninth most common value in the specified col-

umn

cv8 freq The frequency count of the ninth most common

value in the specified column

common val 9 The tenth most common value in the specified col-

umn

cv9 freq The frequency count of the tenth most common

value in the specified column
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APPENDIX C: HUMAN-BASED APPROACH FEATURES
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Description of the human-based approach features.

Feature Name Description

columnNamesMatch Do the column names of dataset A match those

of B? (0: no matching column names; 1: some

column names match; 2: all column names match)

columnOrderMatch When the column names of datasets A and B

match, are their columns have in same order?

isWorkbookMatch Do datasets A and B have the same workbook

name?

isWorksheetMatch Do datasets A and B have the same worksheet

name?

isAuthorMatch Do datasets A and B have the same author name?

isSizeEqual Is the size of datasets A and B equal?

isRowCountEqual Is the row count of datasets A and B equal?

isColCountEqual Is the column count of datasets A and B equal?

cntMatchingMetadata The count of matching metadata between datasets

A and B.

isRowCountALessThanB Is the row count of dataset A less than that of B?

isRowCountBLessThanA Is the row count of dataset B less than that of A?

dataTypesMatch Do the columns of datasets A and B have the same

data types?
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